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ABSTRACT

Regional variations in the crustal structure of southern Calif-
ornia are defined by travel-time data from natural and artificial
events. We show that the crust of the Mojave, northeastern Peninsular
Ranges, eastern Transverse Ranges and Colorado Desert is dominated
by a velocity of 6.2+0.1 km/sec. The western Transverse Ranges and
the western portion of the Peninsular Ranges are typified by a crustal
velocity of 6.7 km/sec. The data indicate that the Transverse Ranges
do not have a distinct crustal root. As the topography is not sup-
ported isostatically, the Range must be sustained by major north-
south compression. A composite profile extending north from the
southern end of the Salton Sea defines a crustal thickness for the
Coachella Valley of less than 20 km. Through the inversion of Rayleigh
wave dispersion data obtained from the analysis of teleseismic surface
waves recorded across southern California, we have obtained average
S-wave models for the southern Mojave-central Transverse Ranges and
the Peninsular Ranges. The observed P-wave velocities and the cal-
culated Poisson's ratio from both P- and S-wave data require a quartz
rich crust for the Mojave and a more mafic crust for the Peninsular
Ranges. All S-wave models suggest a slight mid-crustal velocity rever-—
sal that is approximately coincident with the bottom of the seismic
zone.

Regional variations in Pn velocities are ogtained from several
reversed refraction profiles. These data show that Pn varies from

7.7 to 8.2 km/sec. The high Pn values, 8.2 km/sec, are observed in
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the eastern Mojave, the western Transverse Ranges and the Coast Ranges.
The 7.8 km/sec Pn velocity extends from the Imperial Valley, through
the central Transverse Ranges, and across the western Mojave. Pn
profiles indicate that the Moho beneath the eastern Transverse Ranges
and the southeastern Mojave dips 2-3° west.

P-delay studies of a vertically incident PKP phase indicate that
a high velocity, 8.3 km/sec structure exists within the shallow upper
mantle beneath much of the geomorphic Transverse Ranges. This feature
is not offset by the San Andreas fault. We suggest that the continuity
of this anomaly across the plate boundary indicates that if the upper
mantle participates in plate motion, the mantle plate boundary must
be laterally displaced from the crustal boundary. We suggest that
the mantle boundary may extend northwest from the Salton Trough and
across the eastern end of the velocity anomaly, in the vicinity of
the active Helendale-Lenwood—-Camprock faults. We propose that the
horizontal decoupling between the crust and mantle, required by the
lateral displacement at depth of the plate boundary, is accommodated,

in part, within the 7.8 km/sec layer.
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Introduction
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The initial work leading to this thesis began with carefully
repeated crustal travel-time measurements from quarries located
throughout southern California to both temporary and permanent stations
of the regional array. The initial goal was to document velocity
variations that were reported by other investigators to precede local
earthquakes. As the real, systematic variations in velocity have been
less than a few percent, and as the region has not experienced a
moderate earthquake (ML> 6) since 1971, we have utilized the travel-
time data collected as part of these studies, augmented with data from
natural and artificial events, to define the velocity structure of the
crust and upper mantle of southern California. Chapter 2 models the
P-wave data from seismograms of 20 blasts that were recorded by 17
permanent and 20 temporary stations. The average structure determined
for the region of the central Transverse Ranges and the southern
Mojave consists of a 4 km thick 5.5 km/sec layer underlain successively
by a 23.4 km thick 6.3 km/sec layer, a 5.0 km/sec thick 6.8 km/sec
layer and a 7.8 km/sec half space. The details of the lower crust, as
determined from this initial data set, are not well constrained. This
structure models the travel-time data, corrected for local station and
source delays, to * 0.15 sec.

As the velocity structure derived in Chapter 2 is an average over
several sub-provinces, we have compiled additional travel-time data
from regional, natural and artificial events in-order to define
velocity variations within individual geologic provinces. In Chapter
3 we present a representative sample of both crust and upper mantle

travel-time curves. A Pg velocity of 6.2+ 0.1 km/sec is observed for
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the Mojave, eastern Transverse Ranges and Colorado desert. Within the
western Transverse Ranges and the western portion of the Peninsular
Ranges, first arrivals have an apparent velocity of 6.7 km/sec. With
the constraints of a fixed array, a special effort has been made to
select events that approximately reverse several Pn profiles. These
profiles show that Pn varies from 7.7 to 8.2 km/sec. The low Pn
velocity of 7.8 km/sec extends northwest from the Imperial Valley,
through the region of San Bernardino, and fans out across the central
Mojave. Moho dips derived from Pn profiles from the eastern Transverse
Ranges and the Mojave indicate a relatively uniform westward dip. A
composite profile extending across the Coachella Valley from a cali-
bration blast at the south end of the Salton Sea defines an average
crustal thickness of 16 to 19 km.

Although the P-wave velocity model for southern California is
slowly becoming more detailed and precise, the S-wave structure has
been virtually ignored. As suitable refraction data are not readily
available, we have designed a technique, discussed in Chapter 4, for
deriving local crustal structure that utilizes the dispersion char-
acteristics of fundamental mode surface waves. Teleseismic Rayleigh
waves, MS> 7.0, in the period range 14 to 28 sec, are well recorded
by the short period Benioff array within southern California. Multiple
arrivals that hamper local dispersion analysis within this period
range are detected by narrow band-pass filtering. The records are
then windowed on distinct, coherent peaks that move uniformly across
the array. Four to seven stations are included in the determination

of both the phase velocity across the array and the incidence azimuth.
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For earthquakes in the western Pacific, the derived incidence azimuths
are systematically rotated counterclockwise by 2-16°. Most of the
rotation results from refraction at the continental shelf. However,
for events in the southern Pacific, the corrected azimuths for the
first arrivals deviate several degreces from the great circle path.
Phase velocity data for both the southern Mojave-central Transverse
Ranges and the Peninsular Ranges are used in a damped, generalized
inversion to obtain regional S-wave velocity models. The starting
models are constructed from the travel-time studies described in
Chapters 2 and 3. Poisson's ratio as a function of depth is calculated
for these two regions. The comparison with laboratory ultrasonic
studies requires a quartz-rich crust within the southern Mojave-central
Transverse Ranges and a mafic crust within the Peninsular Ranges.

In Chapter 5 we return to the crustal P-wave structure of the
Transverse Ranges. Modeling of a reversed, east-west profile indicates
that this mountain range does not have a distinct crustal root. As
the topography is not supported isostatically, the observed style of
deformation requires major north-south compression. Unlike other
provinces within southern California, the Transverse Ranges are under-
lain at a depth of about 40 km by a refractor with a P-velocity of
8.3 km/sec. P-delays from a vertically incident, well-recorded
teleseism suggest that this velocity anomaly extends to a depth of
100 km. These data indicate that this high velocity, ridge-like
structure is coincident with much of the areal extent of the geo-
morphic Transverse Ranges and is not offset by the San Andreas fault.

Four hypotheses are advanced to explain the continuity of this feature



_5_
across the plate boundary: 1) Dynamic phase change, 2) A coincidental
alignment of crust or mantle anomalies, 3) Restriction of the litho-
sphere to the crust, 4) Displacement of plate boundary at depth from
the San Andreas fault at the surface. Within the context of the last
hypothesis, we suggest the plate boundary at depth is at the eastern
end of the velocity anomaly, in the vicinity of the active Helendale-
Lenwood-Camprock faults. The 7.8 km/sec layer, observed in the regions
of the Salton Trough, northeastern Peninsular Ranges, central Trans-
verse Ranges and the western Mojave, is suggested as a zone of
decoupling necessary to accommodate the horizontal shear that results
from the divergence of the crust and upper mantle plate boundaries.
We suggest that the Transverse Ranges may be, in part, the result of
enhanced coupling between the crust and upper mantle suggested by
the locally thin 7.8 km/sec layer.

After discussing the implications of the observed mantle velocity
anomaly, we conclude in Chapter 6 by discussing the recent seismicity
in the west-central Transverse Ranges. Since the San Fernando earth-
quake, February 1971, the density of the southern California seismic
array has increased by an order of magnitude. The enhanced coverage
provides an ideal setting for the study of the long-term seismicity
of the San Fernando aftershock zone and the adjacent regions. Most
of the recent activity within the aftershock zone has been thrust
faulting at depths shallower than and south of the mainshock. One
event located slightly deeper than and several km north of the main
event suggests shear along a flat plane. Transport of the upper

block is south. This event is very similar to another deep, ML = 4.5,
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earthquake 30 km west of San Fernando. If these events are typical
of midcrustal deformation, the west-central Transverse Ranges may be
a form of decollement; the horizontal decoupling zone, suggested in
Chapter 5 to be localized in the 7.8 km/sec layer, may extend into
the crust. A rapid increase in seismicity (HL:>3.0) in the region
south of San Fernando suggests an increase in regional strain that
was either contemporaneocus with or immediately followed the San

Fernando earthquake.
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Average P-wave Structure for

Southern California: A Starting Model
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ABSTRACT

About twenty blasts are used to determine an average crustal
structure for the western Mojave, central Transverse Ranges and
northern Peninsular Ranges of Southern California. The shot time is
determined up to 10 msec by using a disposable pick-up placed directly
on the explosive. About 17 permanent stations and 20 temporary
stations are used for the reccrdings. With a fast paper speed
(typically 1 cm/sec) and the WWVB radio signals superposed on the
seismic trace, absolute timing accuracy of up to 10 msec is achieved.
A representative structure thus determined consists of a 4 km thick
5.5 km/sec layer underlain successively by 23.4 km thick 6.3 km/sec
layer, 5.0 km thick 6.8 km/sec layer and 7.8 km/sec half space. The
details of the lower crust are somewhat uncertain. This structure
can explain the travel time data, corrected for the station and

source elevations and for the station delays, to * 0.15 sec.
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INTRODUCT ION

Implicit in earthquake prediction studies, in modeling ground
motions from various expected ruptures and in placing boundary condi-
tions on the mechanisms of rapid crustal deformation, such as the
Palmdale uplift, is the requirement of a detailed understanding of the
structure of the crust and upper mantle within Southern California.
Pioneer works on this subject in southern California include those by
Gutenberg (1944, 1951, 1952, 1955), Richter (1950), Shor (1955),

Press (1956, 1960), and Roller and Healy (1963).

The structure determined by Press (1960) has long been used in
the earthquake location program by the Seismological Laboratory, Cali-
fornia Institute of Technology (Hileman et al., 1973) (Press's model
has an upper layer 26.2 km thick with P velocity of 6.11 km/sec; a
second layer 25.6 km thick with P velocity of 7.66 km/sec and an
underlying half-space with P velocity of 8.11 km/sec). The recent
increase in the number of seismic stations as well as the improved

timing accuracy warrant a more detailed study of the crust.
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DATA

Figure 2.1 shows the locations of the explosions used in this phase
of the study. The coordinates and nature of the blasts are listed in
Table 2.1. 1In most cases, the shot was timed with a disposable pick-up
placed directly on the explosive. The signal was recorded on a
Kinemetrics PS-1 portable seismograph unit together with the WWVB
radioc signal. This method permits a determination of the shot time
to within +10 msec. The shot point location was determined to 1/100
minute from U.S. Geological Survey quadrangles. These events were
recorded by permanent seismic stations belonging to the southern
California seismic network and temporary stations consisting of the
Kinemetrics portable units and Caltech seismographic trailers (Figure
2.1). Except on few occasions, the signals recorded by the permanent
stations were telemetered through telephone lines to Pasadena and
recorded on 16 mm films (Develocorder) with the WWVB radio signal
superimposed on the seismic trace. The portable Kinemetrics units
are run with 1 cm/sec paper speed with the WWVB radio signal super-
imposed on the trace. In some cases a strip-chart recorder was used
with 1 to 2 cm/sec paper speed. The trailer recordings are also timed
with either WWVB or WWV radic signals. Figure 2.2 shows typical
examples of the seismograms. With these recording systems, a timing
accuracy of up to 10 msec is achieved when the signal onset is clear.

Figure 2.1 also shows the source-station cémbinations used in the
present study and several profiles which were established specifically

for the determination of crustal structure.
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Figure 2.2 Examples of the records. (A) Kinemetrics (PS-1) portable
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metered record on Develocorder from permanent stations (film speed:

1 cm/sec on a viewer). (C) Strip chart recording at temporary
stations (paper speed: 2 cn/sec).
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Table 2.1 Explosion data
Location Approximate Elevation Note
Coordinates (m)
Victorville 34.63°N, 117.11°W 1280 Cement Quarry
Corona 33.84°N, 117.51°W 300 Dacite Porphyry
Jensen 34.03°N, 117.43°W 360 Cement Quarry
Gypsum Canyon 33.86°N, 117.71°W 150 Sand and Gravel
Randsburg 38.52°N, 117.17°W 750 Navy Testing
Gorman 34.83°N, 118.76°W 1290 Cement Quarry
Mojave 35.03°N, 118.32°W 1190 Cement Quarry
Monolith 35.15°N, 118.39°W 1350 Cement Quarry
Hector 34.75°N, 116.42°W 600 Bentonite Quarry
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The travel time data, summarized in Table 2.2, are assigned grades

A (*f 10 msec), B (* 30 sec), and C (* 100 msec).

UPPER CRUST

All of the travel time data obtained for the source-station
combinations shown in Figure 2.l are plotted, regardless of the azimuth,
on the reduced travel time curve given by Figure 2.3. Since the alti-
tude of the shot points and the stations varies from 350 to 2280 m,
and also the local geologic structure differs beneath individual shot
points and stations, these data are not homogeneous. Nevertheless, in
view of the fairly random coverage of the paths as shown in Figure 2.1,
this figure depicts the overall variation of the short-distance
(A< 220 km) travel times in southern California. The scatter is
surprisingly small in view of the vast variability of geology in this
area. With a few exceptions, the scatter is within *# 0.3 sec of the
average. The straight line segments shown in Figure 2.3 correspond to
a structure determined for a more restricted profile which will be

discussed in the following.

Victorville Blast

The Victorville blasts have been used to establish a fairly com-
plete profile extending from the quarry to the station MWC (Figure 2.1).
Figure 2.4a shows the data uncorrected for station elevation and local
geology. The data along the profile (closed circles) can be fit very
well by two segments having apparent velocities of 5.32 km/sec and

6.35 km/sec, the cross-over being at 37.5 km. This indicates a structure
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Figure 2.3 (a) Reduced travel times for all data except those for
the Hector blast. Travel time curves are for the structure shown
in the inset. P_P branch shows the Moho reflection. (b) Reduced
travel times corrected for the elevations at both source and
stations. The structure is shown in the inset.
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Table 2.2a Victorville blast
Station A4 Azimuth T—4/6 Corrected Grade
(km) (deg) (sec) T—4/6
(sec)
Navajo 8.24 237.8 0.21 0.21 C
UICT 16.18 241.1 0.28 0.28 B
Trash 24.39 245.1 0.52 0.391) B
Baldy Mesa 34.82 242.6 0.68 0.471) C
EXP-O 44.55 244.8 0.74 0.29 A
Table Mt. 59.08 2424 0.60 0.24 A
Crystal Lake 74.63 243.1 0.37 0.06 B
Charlton Flats 89.55 245.0 0.36 0.07 C
MWwWC 98.03 2429 0.26 —0.05 C
Mt. Emma 90.62 258.8 0.34 0.08 B
CSP 43.12 211.6 0.46 0.20 A
SBB 65.64 2759 0.54 0.33 A
RVR 74.64 195.0 0.44 0.28 B
GSC 79.63 20.5 0.62 0.39 B
PEC 81.97 183.2 0.54 0.35 B
VPD 108.43 213.7 0.33 0.18 C
TPC 113.92 120.5 0.66 0.46 C
IRC 121.29 257.7 0.19 0.00 C
PLM 143.44 170.7 0.25 —0.05 C
PYR 149.71 267.8 —0.04 —0.30 C
ISA 167.58 3125 —0.49 —0.71 C

For station coordinates, see HiLEMAN ef al. (1973) for permanent stations
(three-letter abbreviation) and Table 2j for temporary stations.
1 Corrected for local structure.
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Table 2.2b Corona blast
Station A4 Azimuth T-—4/6 Corrected Grade
(km) (deg) (sec) T—4/6
(sec)
RVR 20.77 358 0.23 0.23 A
VPD 23.81 263.0 0.72 0.72 B
PEC 3248 80.0 0.32 0.32 B
SJIQ 39.85 2320 0.77 0.77 B
Dalton Lake 45.85 3223 0.47 0.39 A
CSP 52.53 15.2 0.40 0.24 B
MWC 66.27 309.9 0.44 0.23 B
PAS 70.25 299.2 0.25 0.19 B
SPH 7742 262.4 0.37 0.30 B
PLM 80.71 132.0 0.38 0.19 B
UCLA-1 86.67 290.2 0.16 0.09 —
SCR 92.37 288.8 0.11 0.05 &
IRC 102.46 306.7 0.02 —0.07 B
TWL 111.53 296.1 0.41 0.35 C
TPC 137.89 774 —0.08 —0.17 B
PYR 139.48 305.6 0.25 0.10 C
GSC 174.3 215 —0.52 —0.70 B
IXP 185.7 135.0 -1.55 —-1.72 C
SBC 214.15 288.7 —1.69 -1.74 C
ISA 218.74 336.3 —2.36 —-2.52 C
Table 2.2c¢ Jensen blast
Station y: | Azimuth T— A4/6 Corrected Grade
(km) (deg) (sec} T—4j6
(ec)
RVR 6.45 1243 0.14 0.14 B
PEC 29.23 120.6 0.33 0.33 B
CSpP 30.99 13.0 0.54 0.54 B
VPD 38.40 2325 0.74 0.74 B
Table 2.2d Gypsum Canyon
Station 4 Azimuth T-—4/6 Corrected Grade
(km) (deg) (sec) T—4/6
(sec)
VPD T.52 2233 0.83 0.83 A
SIQ 30.01 205.5 1.18 1.18 B
TCC 31.84 297.1 1.82 1.82 B
RVR 33.71 65.1 0.57 0.57 C
PEC 50.55 86.4 0.60 0.52 A
MWC 51.42 320.8 091 0.71 L &
CSP 57.94 337 0.82 0.67 B
SBB 92.07 3533 0.74 0.64 B
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Table 2.2e Randsburg blast
Station 4 Azimuth T— 4/ Corrected Grade
(km) (deg) (sec) T—Aj6
(sec)

Navy Test Range—1  13.90 237.8 0.47 0.47 B
Galileo Hiil 63.29 237.6 0.58 0.40 B
Kramer Hill 71.11 213.1 0.22 0.06 A
Jackrabbit Hill 92.46 2128 0.30 0.14 A
SBB 110.14 213.1 0.10 -0.06 B
Lovejoy Buttes 121.01 211.3 -0.04 —0.21 A
GSC 40.95 126.5 0.58 0.48 A
CLC 50.84 3102 0.23 0.07 G
ISA 119.47 276.9 0.32 0.15 B
CSP 136.82 187.3 0.24 —0.03 B
SWM 156.67 235.8 097 0.77 C
MWC 165.49 209.8 0.22 —0.04 C
PEC 180.81 179.8 —-0.64 —0.85 C
Table 2.2f Mojave biast

Station a4 Azimuth T—4/6 Corrected Grade

(km) (deg) (sec) T—-4/6
(sec)

Willow Springs  11.71 211.0 0.73 0.73 A

Rosamond 26.93 214.2 1.13 1.13 B

Lake Hughes  41.95 194.1 0.85 0.63 B

SWM 43.16 214.0 0.90 0.66 A

FIC 55.47 250.8 0.79 0.57 B

SBB 59.78 1304 0.61 0.41 A

PYR 65.24 216.6 0.90 0.66 A

ISA 68.54 348.1 0.51 0.31 C

IRC 72.37 185.8 0.77 0.59 B

MWC 93.62 165.1 0.66 0.36 B

GSC 141.09 776 0.32 0.10 C

Table 2.2g Gorman blast

Station 4 Azimuth T— 4/6 Corrected Grade

(km) (deg) (sec) T—A4/6
(sec)

FTC 12.88 288.9 0.78 0.78 A

West Liebre Mt. 13.21 153.2 0.82 0.82 B

SWM 20.89 128.6 0.88 0.88 A

Pine Canyon 27.81 123.1 0.82 0.82 A

PYR 29.76 176.8 1.01 1.01 A

Lake Hughes 35.20 120.5 0.92 0.92 A




-20-

Table 2.2h Monolith blast
Station 4 Azimuth T— 4f6 Corrected Grade
(km) (deg) (sec) T-—4/6
(sec)
ISA 55.76 351.7 0.64 0.41 B
PYR 71.81 206.9 0.68 0.41 B
SBB 72.36 1344 0.54 0.32 C
IRC 83.88 180.7 0.62 0.42 C
Table 2.2i Hector blast
Station 4 Azimuth T—4/6 Corrected Grade
(km) (deg) (sec) T—4/6
(sec)
GSC 70.71 330.7 1.16 1.00 B
TPC 79.12 154.0 1.01 0.88 B
CSP 98.98 240.1 0.77 0.58 B
PEC 116.53 215.8 0.72 0.60 B
SBB 128.35 267.5 0.60 0.46 B
Table 2. 2_i Station coordinates
Station Latitude Longitude Height
Navajo 34°35.41'N 117°11.25'W 910
UICT 34°33.54'N 117°15.95'W 900
Trash 34°32.22'N 117°21.15'W 870
Baldy Mesa 34°29.11'N 117°26.88'W 1012
EXP-O 34°2747'N 117°33.00'W 1130
Table Mt. 34°2291'N 117°40.84'W 2280
Crystal Lake 34°19.39°N 117°50.07'W 1736
Charlton Flats 34°17.09N 117°59.53'W 1556
Mt. Emma 34°28.07'N 118°04.74'W 1305
SBB 34°41.31'N 117°49.43'W 829
Dalton Lake 34°10.20'N 117°48.56'W 523
UCLA—1 34°06.52'N 118°23.27'W 347
Navy Test Range—1 35°27.29°'N 117°17.79'W 867
Galileo Hill 35°12.87'N 117°45.23'W 945
Kramer Hill 34°59.03'N 117°35.52'W 774
Jackrabbit Hill 34°49.21'N 117°42.89'W 830
Lovejoy Buttes 34°35.27'N 117°51.14'W 879
Willow Springs 34°57.03'N 118°23.04'W 1180
Rosamond 34°50.40°'N 118°29.00°'W 872
Lake Hughes 34°40.43'N 118°25.76'W 1000
Lake Hughes—2 34°40.59'N 118°26.07'W 1024
West Liebre Mt. 34°43.77°'N 118°41.70'W 1627

Pine Canyon 34°41.93'N 118°30.34'W 1146




L
as shown in the inset. The off-profile stations (open circle) are
within * 0.3 sec of the above travel time curves indicating a lateral
uniformity of the structure.

Next we will consider corrections for elevation and local structure
at both the source and the station. These corrections are very diffi-
cult to make precisely. Utilizing the structure given in the inset of
Figure 2.4a, the station and the source height corrections can be given
by At = -h cos io/vo where h is the height, L is the velocity at the
surface, here 5.32 km/sec, and io is the incidence angle at the station
or the take-off angle at the source. For-§, i0 = 900, for Pg, i0 =
57°, and for P, i = 42°.

n’ "o

The effect of the local geology cannot be estimated unless the
structure is known. The correction is probably negligible for stations
on bedrock, but it can become considerably large for stations on
alluvium. For estimating this correction, we have made short range
(up to 1.4 km) refraction measurements at stations 3 (Trash), 4 (Baldy
Mesa) and 5 (EXP-0) shown in Figure 2.4. These profiles were recorded
with a 24-channel refraction system. Small charges were used as
seismic sources. The profiles are shown in Figures 2.5a, b, and c.
Since these structures are used only for correction purposes, the dip
of the layers is not considered and the insets represent the average
structure. The corrections are then computed as the difference of
the travel times for a vertical path between this structure and a
homogeneous 5.32 km/sec layer. The largest height correction amounts

to 0.23 sec (Table Mountain, 2280 m) and the largest station correction

amounts to 0.21 sec (EXP-0). Although these corrections are
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Figure 2.5 Short range refraction measurements at temporary stations

EXP-0 (a), Baldy Mesa (b) and Trash (c).

given in the inset.

Structures (averaged) are
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significant, they are still small enough so that the errors arising
from the crude correction method are probably insignificant. Figure
2.4b shows the corrected travel times. These data can be fit very
well by two straight segments having apparent velocities of 5.5 km/sec,
and 6.3 km/sec; the cross-over is at 28.0 km. The corresponding
structure is given in the inset. In this structure, any feature above
the sea level has been stripped off. Considering the source-station
combinations shown in Figure 2.1, this structure can be considered to
represent the structure north of the San Andreas fault in this area.
We will use these travel time curves as a standard for comparison with

the results from other profiles.

Corona, Jensen and Gypsum Canyon Blast

For these blasts (Figure 2.6a), no attempt has been made to align
stations to make up a profile. However, it is remarkable that the
combined travel times for the Corona and Jensen blasts are very con-
sistent with those determined by the Victorville blast. If the 6.3
km/sec branch is shifted upward by 0.1 sec, the agreement would be
even better. This indicates that the 5.5 km/sec layer is 0.5 km
thicker in this region than the Victorville profile. It should also
be noted that the arrivals at stations VPD, SJQ, SPH and TWL for the
Corona blast and at VPD for the Jensen blast are delayed by 0.3 sec
to 0.7 sec, the average being 0.5 sec. All of these stations are
located on the alluvium of the Los Angeles basin. Although the details
of the local structure beneath these stations are unknown, a delay of

0.5 sec seems reasonable for the alluvium. If we use this wvalue for
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Figure 2.6 Travel times for various blasts. Height corrections are
applied for both source and stations. Solid travel time curves are
for the structure fitted to the corrected Victorville data. (a)
Corona, Jensen and Gypsum Canyon blasts. Numbered stations are;

1: Dalton Lake; 2: UCLA-1. (b) Randsburg blast. Numbered stations
are; 1: Navy Test Range-1; 2: Galileo Hill; 3: Kramer Hill; 4:
Jackrabbit Hill; 5: Lovejoy Buttes. (c) Mojave, Gorman and Mono-
lith blasts. Dotted travel time curves correspond to the structure
shown in the inset. Numbered stations arej; 1: Willow Springs; 2:
Rosamond; 3: Lake Hughes; 4: West Liebre Mt.; 5: Pine Canyon.

(d) Hector blast. The dotted line shows the 6.3 km/sec line dis-
placed upward by 0.9 sec from the Victorville curve.
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the time delay at these stations, the data for the Corona and the
Jensen blasts become very consistent with the structure obtained for
the Victorville profile.

For the Gypsum Canyon blast, the data, though scattered consider-
ably, show systematically late arrivals. However, if we assume a
delay of 0.5 sec for the Los Angeles basin alluvium, these delays can
readily be explained. Since in this case, the shot point itself is on
the alluvium, allowance should be made for an additional delav of 0.5
sec. Thus if we subtract 1.0 sec from the times at stations on the
Los Angeles basin alluvium (VPD, TCC, SJQ) and 0.5 sec from other
stations (RVR, MWC, PEC, CSP, SBB), the general trend for the Gypsum
Canyon blast becomes consistent with that for the Corona and the
Jensen blasts. These source-station combinations represent primarily
the structure south of the San Andreas fault. We therefore conclude
that, except for the delay of about 0.5 sec beneath the stations on
the Los Angeles basin alluvium, the upper crustal structure of the
central Transverse Ranges and the northern Peninsula Ranges is nearly

the same, velocitywise, as that in the south-central Mojave.

Randsburg Blast

Figure 2.6b shows the travel time data for the Randsburg blast.
The height corrections are made, but no corrections are made for the
local structure. The closed circles represent the stations along the
profile to Mount Wilson, and the open circles, off-profile stations.
There is no obvious difference between these two groups of stations,

and they are, as a whole, consistent with the Victorville travel time
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curves. If the whole curve were shifted upwards by 0.1 sec, the agreement
would become even better. It is possible that this 0.1 sec delay is

due to the local structure beneath the source. However, owing to the

lack of short-distance data, it is not resolvable whether the delay is

due to the source or to a thickening of the top, presumably 5.5 km/sec,

layer.

Mojave, Monolith and Gorman Blast

Figure 2.2 shows the composite travel-time data for the HMojave,
Monolith and Gorman blasts together with the travel-time curves
obtained for the Victorville profile. The observed arrivals at A < 40
km are delayed by nearly 0.5 sec. Most of these data are obtained
from the Gorman blast for which the paths are essentially within the
fault zone of either the Garlock or the San Andreas faults. Refraction
measurements made in 1965 in this area (Don L. Anderson, personal
communication, 1973) suggest low-velocity, presumably highly shattered,
surface layers to a depth of 600 m as shown in the inset of Figure 2.6c.
The dotted lines in Figure 2.6c are the travel time curves correspond-
ing to this structure; the delay can be accounted for by this low-
velocity surface layer.

The arrival times at A > 40 km are delayed by 0.25 sec. Both
Mojave and Monolith are cement quarries. Usually the in-situ velocity
in limestones is relatively high, about 4 km/sec, so that a large
source delay is unlikely. It seems that the above delay can be
explained most reasonably by a thickening of about 1.5 km of the 5.5

km/sec layer.
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Hector

Figure 2.6d shows the travel time data for the Hector blast.
Unlike other blasts, all the arrivals are consistently late by 0.9 sec.
Although the lack of short-distance data does not permit the deter-
mination of the structure, the above delay seems to be mostly due to
the source. Hector mine is quarrying bentonite, a very soft clay
mineral (ultrasonic velocity ~ 1.7 km/sec), and an excessively large
delay is quite possible. In view of this possible large source delay,
the data obtained by this blast may not be adequate for crustal
studies unless the structure beneath the quarry can be determined.

In the interpretation that follows, these data will not be used
directly. However, the consistent 6.3 km/sec branch strengthens the
evidence for the existence of a layer with this velocity.

In summary, if we remove all the structures above the sea level,
and are to find a single upper crustal structure that represents the
whole area, we obtain a model consisting of a 4 km thick 5.5 km/sec
layer underlain by a 6.3 km/sec layer. There is an indication that
the 5.5 km/sec layer is about 1 to 1.5 km thinner along the Victorville
to Mount Wilson path than elsewhere. The well defined 6.3 km/sec
branch up to 150 km suggests a substantial thickness of at least 10

km for this layer. This model will be used in the following.
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LOWER CRUST

Since most of the blasts are not large enough to be recorded at
distances beyond 150 km, the data for the lower crust are incomplete.
As shown in Figure 2.3, there are arrivals at A > 160 km which indi-
cate the Pn branch, but the slope cannot be well defined. It is also
not clear whether there is another branch intermediate between the
6.3 km/sec and the Pn branch. However, there are several constraints
which are useful for determining the lower crustal structure. These
constraints come from the following observations:

(1) The round-trip travel timefor the clear near-vertical Moho
reflections, PMP’ observed at Corona is 10.5 sec (Shor, 1955; see also
Richter, 1958). (2) For the Victorville blast, a very large second
arrival was observed at Mt. Wilson (A = 98 km), but it was not observed
at Crystal Lake (A = 75 km) nor Charlton Flats (A = 90 km) (see
Figure 2.7); we consider this strong phase as the Moho reflection near
the critical distance Ac, and set Ac at 90 to 98 km. (3) This strong
phase is also observed for other blasts at stations from A = 90 to
110 km. PMP - P times are 1.5 sec to 3 sec depending on the distance
(see Figure 2.7). (4) The P velocity is determined as 7.66 km/sec by
Press (1960), while 8.0 to 8.2 km/sec has been suggested by Gutenberg
(1955). We examined a Nevada event to determine the P, velocity over
a distance range 200 to 400 km beneath the area considered. The origin
time and the location of this event are known sufficiently well for
this purpose. TFigure 2.8 shows the reduced travel time curve. The
station corrections suggested in the earlier section have been applied.

The Pn velocity of about 7.8 km/sec appears appropriate for the central
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MOHO REFLECTIONS
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Figure 2.7 Examples of the Moho reflection (P 1P) near the critical
distance. Note the absence of the P_P phase a% Crystal Lake (A =
74.8 km) and Charlton Flats (A = 89.6 km).
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Mojave. This value,which is intermediate between Press (1960) and
Gutenberg (1955), will be used in the following.

First, we assume that the 6.3 km/sec layer extends to the Moho.
Then to satisfy (1), the thickness of the 6.3 km/sec layer should be
approximately 28 km, the height correction having been considered.
However, simple calculatioﬁ shows that this structure brings Ac at 85
km which is slightly too small. One possible way of increasing A is
to insert an intermediate layer at the bottom of the crust. For
example, replacing the bottom 4.6 km of the 6.3 km/sec layer by a 5
km thick 6.8 km/sec layer brings AC up to 90 km and still satisfies (1).

This model gives PMP ~ P times of 2.7 sec and 2.1 sec, at A = 90
km and 110 km respectively, and therefore satisfies (2) and (3). Of
course, this is not the only possibility. However, since the structure
down to 15 km is fairly well constrained by the data for A < 150 km, the
range of the possible models is not large. The least certain is the
velocity of the intermediate layer. The travel time curves for this
structure are given in Figure 2.3b which shows the overall consistency
of this model with the data. The phase refracted in the 6.8 km/sec
layer never appears as the first arrival for shallow focus events.

The structure obtained here differs from that of Press (1960). 1In
particular, the &4 km thick upper layer (5.5 km/sec) found in the
present study does not exist in Press (1960). Since Press's emphasis
was on the regionmal structure rather than the local structure, he had
only two stations at A< 50 km, which are too few to determine this
layer. Press's model includes a 8.11 km/sec layer at about 50 km

depth. None of the above discussed profiles is long enough to detect



this layer.
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DISCUSSION AND CONCLUSIONS

The crustal structure obtained here (see the inset of Figure 2.3b)
is not unique, particularly the lower crust, but it fits the travel-
time data within * 0.3 sec. If corrections are made for station and
the source delays, the fit would be better than * 0.15 sec, and there-
fore it will serve as a useful model for the location of local earth-
quakes and as a basis of comparison for other regions within southern
California. It may be suggested that, if no corrections for station
height and delay are included in the location program, use of the
structure given in Figure 2.3 is appropriate. 1If the station correc—
tions for height and possibly for station delays are included in the
location program the structure shown in Figure 2.3b would be more
appropriate. (0.5 sec may be tentatively used for the stations in the
Los Angeles basin. This delay is consistent with that calculated for

’
the velocity-depth functions obtained from sonic logs from oil explora-
tions. The calculated delay ranges from 0.47 to 0.69 sec for several
locations in the Los Angeles basin.)

The present data do not preclude a possibility of a velocity
reversal in the mid to lower crust. More detailed analyses of the
amplitude and the waveform of the first as well as later arrivals
are necessary for the determination of the details of the lower crust.

It is rather surprising that the structure is very homogeneous
in the entire area. Press (1960) also pointed éut this fact. The
velocity of the upper 3 to 5 km thick layer is fairly well defined
at 5.5 km/sec (see Figures 2.3b and 2.4b). It is instructive to

compare the crustal velocities with laboratory velocity-pressure data
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for typical granites. Figure 2.9 shows such comparison. The crustal
velocity to a depth of 4 km is significantly lower than that for
granites. If we accept the prevalent notion that the upper crustal
layer consists of granitic rocks, this discrepancy requires explanation.
The most obvious is that the upper crustal rocks are both highly

fractured and weathered.
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CHAPTER 3

Regional Variations in Crust and Mantle

P-Wave Velocities
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ABSTRACT

Seismograms of natural and artificial events recorded by the
southern California array, in conjunction with several portable
stations, define travel-time curves for both crust and upper mantle
P-wave phases. A Pg velocity of 6.2+ 0.1 km/sec is observed for the
Mojave, eastern Transverse Ranges and Colorado desert. Within the
western Transverse Ranges and the western portion of the Peninsular
Ranges, first arrivals have an apparent velocity of 6.7 km/sec.

With the constraints of a fixed array, a special effort has been made

to select events that approximately reverse several Pn profiles. These
profiles show that Pn varies from 7.7 to 8.2 km/sec. The low P
velocity of 7.8 km/sec extends northwest from the Imperial Valley,
through the region of San Bernardino, and fans out across the central
Mojave. Moho dips, derived from Pn profiles from the eastern Transverse
Ranges and the Mojave, indicate a relatively uniform westward dip.

A composite profile extending across the Coachella Valley from a cali-
bration blast at the south end of the Salton Sea defines an average

crustal thickness of 16 to 19 km.
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INTRODUCTION

Before the expansion of the southern California array, crust
and upper mantle velocity studies required elaborate, expensive field
operations. Those studies involved both relatively large explosions
and portable arrays of seismometers. The studies of Roller and Healy
(1963) and Healy (1963) are classic examples of long-line seismic
refraction studies within southern California. With the expanded,
present array, Figure 3.1, we are frequently able to inexpensively
compile composite profiles throughout the region by using both earth-
quakes (ML> 3) and quarry blasts as sources. As the stations seldom
fall into perfect, linear arrays, these profiles tend to average
structure within a sub-province. Although this technique does not
define the fine details of the crust, such as can be determined from
special refraction profiles, the abundant source-station combinations
can provide significant new data on the average structure within each
sub-province of southern California.

All of the travel-time data used in this study have been read
from either 16 mm film, at a magnification of 1 sec/cm, or from
digital recordings from the Caltech online system (Johnson, 1978).
Average timing accuracy is slightly better than 100 msec. All data
have been corrected to an elevation of sea level, Table 3.1, as
discussed in Chapter 2. These corrections have been based on an
average upper crustal velocity of 5 km/sec. Stations situated on
deep accumulations of sediments, such as the Los Angeles basin and
the Imperial Valley, have not been used in the determination of

crustal and reversed upper mantle velocities.
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As discussed in Chapter 2, the surface 5.5 km/sec layer is not
resolvable unless several stations along a profile are within 40
km of the blast. Earthquakes in general are not adequate for studies
of this shallow layer, as the hypocentral depths are usually greater
than the layer is thick. As a result, this layer is not investigated.
Although there is some evidence for regional variations in the thickness
of the 5.5 km/sec layer, dip on the bottom of this layer is unresolved.
However, variations of several km in the thickness of this layer will
not significantly change our results.

The dominant crustal phase recorded as the first arrival over
most of the array, for the distance range 20 to 160 km, is termed Pg'
The apparent phase velocity ranges from 6.1 to 6.4 km/sec. Because
of the large amplitude and slow decay with distance of this phase,
it is frequently read, incorrectly, as the first arrival at distances
well beyond the cross-over to Pn' Regional variations in Pg have
been mapped through the study of 60 travel-time curves. In this
chapter we present the results of nine typical profiles.

For the Peninsular Ranges and the western Transverse Ranges, the
most frequently observed crustal arrival, termed P*, has an apparent
velocity of 6.5 to 6.8 km/sec. This layer is interpreted as an upward
extension of the relatively thin layer inferred for the lower Mojave
crust, at the expense of the 6.1 - 6.4 km/sec layer, Chapter 2. In
Chapter 5, a well-reversed, east-west profile through the Transverse
Ranges quantifies the westward increase in thickness of this layer.

One of the principal goals of this chapter is to define both the P-wave

velocities and the regional extent of the phases that dominate the



i
observed crustal arrivals.

The use of quarry blasts in the construction of composite profiles
is relatively straightforward. Frequently the origin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>