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ABSTRACT

A new method for predicting the off design performance of a
multistage compressor has been developed. This method replaces
the usua.lvroutine numerical integration through the compressor by
approximate analytical integration. The overall compressor perform-
anée of the compressor is found as a perturbation of the design
pei'formance in terms of linear and quadratic expansions in two
parameters, the deviation from the design flow rate and the dkeviation
from the design speed. The procedure for this preliminary examina-
tion has been simplified by assuming that all the single stage
performance characteristics are identical and that the difference
between static and stagnation conditions are negligible.

The results of this method are quadratic equations,in terms of
the two perturbation parameters,for the temperature ratio, pressure
ratio and adiabatic efficiency of the overall compressor. The
amount of numerical work in finding the coefficients of these quadratic
expansions is not negligible, however the method appears promising.
Reasonably accurate results are expected for speeds varying as much
é,s ten per cent from design and flow rates varying as much as four

per cent from the design flow.
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I. INTRODUCTION

The usual technique for calculation of multistage compressor
performance is numerical. Starting at the entrance with a prescribed
flow rate and rotor speed the pressures, temperatures and flow
coefficients are determined behind each stage in succession from the
known performance characteristics of the individual stages. Although
this method can be carried out rather rapidly on machines, it is
desirable to have available a method that is more suitable for explor-
atory investigations of the influence of stage characteristics,

A new method is pfoposed which replaces the routine numerical
integration through the compressor by approximate analytical integra-
tion. The overall performance of the compressor can be found as a
perturbation of the design performance in terms of linear and quadratic
expansions in two parameters, the deviation from the design flow rate
and the deviation from the design speed. The amount of numerical
work in finding the coefficients in the expansion is not negligible,
nevertheless the method appears promising.

The investigation should be considered as preliminary, Cer-
tain approximations, such as the assumptions that all single stage
performance characteristics are identical and that the difference be-
tween stagnation and static conditions are negligible, are not essential

but simplify the procedure for the initial examination.



II. DEVELOPMENT OF EQUATIONS

A, Work Coefficient

The performance of multistage 'compressors is generally
presented as plots of température and pressure ratios against dimen-
sionless Weight flow for given dimensionless compressor speed. The
stage performance is most conveniently represented in the dimension-
less form as a work coefficient (Y'), pressure coefficient (¥) and
adiabatic efficiency (n) against a flow coefficient (¢). These

dimensionless quantities are defined as:

Ah. _ AT
U/Z

'll/ =

Vim M

U/Z
yo- A
¢ -0 - euA

rl = e—

Ahc is the increase in stagnation enthalpy per stage, Cp the gpeciﬁc
heat of the gas at constant pressure, AT the increase in stagnation
temperature per stage, Ap the increase in stagnation pressure per
stage, and p the gas density., The compressor rotor reference
speed is represented by U and the mean axial gas velocity by Vm’
rh is the mass flow of gas and A the cross sectional area of the

flow annulus,
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The multistage compressor temperature ratio, pressure ratio,
and adiabatic efficiency will be determined from the single stage
dimensionless characteristics,
Iﬁ general it can be said that the work coefficient ¥ is a

function of the flow coefficient:

Y = F@)

The temperature rise (AT) in a single stage can thus be written as a

function of the flow coefficient:

IV VR Vil
AT = V= 5o Fo)

Zcr

A multistage compressor will be assumed to be made up of
stages which all have the same characteristic. Such a compressor
can be considered to be made up of an infinite number of infinitesimal
stages such that the temperature can be considered to be a continuous
variable along the axis of the compressor. Let the continuous axial
variable be £, replacing the sequence §n = %, where n is the
stage number from the entrance and N is the total number of stages
of the compressor {0 £ n = N), Using the variable £ the tempera-

ture rise can be written in the differential form:

dT U’
ol - T(4)
d£ Cp
The compressor then has an overall '"length" of unity, and the

function ‘T (¢) becomes:

_ F() N
T = N R N



"
The adiabatic compressor efficiency is normally defined as:

T. — T¢o)
T - Tw

where T is the actual temperature and Ti is the isentropic final

n =

temperature for a given pressure rise. Introducing the isentropic

T,
i

. 7]
relationship o) - {—%E} this becomes: v
(Vg 7~ |
)? T/T(o) —

where -gﬁ) and T/T(o) are the total pressure and temperéture

ratios, p(o) and T(o) are the initial pressure and temperature and

§ 1is the ratio of specific heats of the gas. In a single stage the
pressure and temperature increase can be represented by Ap and
AT suchthat p = p(o)+ Ap and T = T(o)+ AT. The stage

efficiency thus becomes:

(l + A’Vp(o)%l
AT
T (0

l

N =

Since Ap is small compared to p(o) the pressure term can be

expanded to give:

Therefore in the limiting case, with Ap very small (as in the single

stage):



Z—%,—'— AP/P(O)

7
AT/ T )
Ap ¥ AT
pe n(w) T (o) (1)

This will also be the form of the limiting case as Ap— o so that the

differential form can be written as:

1odep _ 77(_X_)_L__J_T; (12)
P dg€ Y-1/' T d§
The adiabatic efficiency (n) as defined here can be shown to
be equivalent to the definition n = W/’qf in the limiting case. By

the definitions of the work and pressure coefficients:

, A p
v o _ eu/z) _ Ap
L' Cp AT c, AT
But for Ap small equation (1) applies and:
, y )£
v _ 7 ( Y1 ) T
A4 e ©r
Substituting the thermodynamic relations for a perfect gas:
P _R . R _ ¥-
er Cp y
gives _LP. '

W
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B. Differential Equations for Flow Coefficient

The flow coefficient has been defined as:

. m
4> - e UA
Introducing the perfect gas relation,
p=eRT
the flow coefficient becomes:
- mRT
4) P UA
Taking the logarithm and differentiating with respect to £ this
becomes:
Jod9 ot 4T _ 4 dp _ 1 dA
¢ d§ T dg p dg A dg
’ ’ ¢ /
or i —_— T - p - ‘ A

H
¢ T P A
where the ( “) denotes differentiation with respect to the variable £,

7/
Substituting for -5— from equation (la) this reduces to:

¢ _ a3 T . A
5 _{' nx—n} T A @

This is an approximate relation since the differences between static

and total temperature and pressure have been neglected in the
development.

At the compressor design point the flow coefficient, efficiency
and temperature rise are assumed to be constants throughout £, and
equal to the single stage parameters at the design point. Let the sub-
script ( ,) denote the design condition. Therefore at design

conditions:



constant

-6
1
&~
"

n=mn, ~ constant

(j—g)o 1:,= U°ZT;= constant

(3)

At the design point equation (3) can easily be integrated to give the

temperature at any point in the compressor as:
2
u
T. = —— T & + 6 (4)
Cp
where @, is the inlet temperature.

Dividing equation (3) by (4) gives:

, U, T
T _ < - (5)
K dile - e g
P
where BO is defined as:
B = Dot
) us

Equation (2) can now be solved to determine the area variation

of the compressor:

R R o -

/
Letting the term n(-—izf_T) -1 = { and noting that ¢ =0 (since ¢

is a constant) and substituting in equation (5):

A’ _ fo (6)

A £+ e
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This area distribution is fixed by the design geometry. Substituting

(6) into equation (2) the general differential equation becomes:

¢ T _ L
¢ P+ T+5 o

To eliminate the temperature (T) equation (7) is solved for T and

substituted in the expression for T:

£FT
= f _ 97
£+6 $
. T
o= Lo T o S d FT - d t g
U U dg | L _ ¢ dg| £ ¢
£+6. 4 £48. 9
T = 3 L
 dg fo  _ _@°
£+e. ¢
Performing the differentiations and substituting the relations:
d7 _ dT d¢ — dr 43’
d& d¢ dE d¢
d& d¢ dg dé
there results the general differential cquation in ¢:
" t. df 47 J ’
T = | [TEL LR T
e g [ e r ) +2r] (3)

- [('r—j-% + ¥—‘j%)¢+’r(l+fﬂ—gz+ ’C"((g;’;;a);d’ =0
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C. Solution for the Flow Coefficient

A series expansion of each of the terms involved in the
differential equation has been used to find a solution for the flow
coefficient. From the single stage performance it is seen that both
the efficiency function { and work coefficient 7T are functions of
thé variable ¢:

f = f(9) T = T(9)
These functions can thus be expressed as a Taylor series expansion
about the design point, The stage efficiency at design is assumed to
have its maximum value, hence the first derivative of the efficiency
function becomes zero (%%)o = 0. The Taylor series expansions

thus become:

o) = £ + .'Z_(j;fz)ow_@"_,_ _El,_(jzs)o(d)_‘kf_;. -

(9)
Te= T+ (45)Co -g)+ %(%)@—Q)z—l- 'z(%;)@-daf*-

The flow coefficient will be represented by a series of the

form:

¢ = 4’.+(¢—42,)= b, +e<{>,+€z4>z4.e’¢3+ _____ (10)

The factor € represents a convenient small parameter to be
replaced by unity in the final form. Substitution of the series (9) and
(10) into equation (8) results in a series equation in powers of € .

Equating terms in like powers of € gives a series of linear
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differential equations in the flow coefficients ¢n (n=1, 2....n).
Only the first two of these coefficients will be retained. The linear

differential equations for these coefficients are:

¢, + {ﬁ,%q:, +Z}£L@° ¢'= o (11)

R R o %

'} 1 n ” !
iy S A N gt £y 2| 0.4
g —E - 8w
1 " ) 2
— _2-.— s €+&’ 4’:
Note that the ( /) denotes differentiation with respect to the varible

€ when used with the flow function ¢ and denotes differentiation with

respect to the variable ¢ when used with f or T . The constants

’ Vi 7”7

T 1’0 s ’ro s fo’ fo and q;o are all known from the single stage

characteristic.

To simplify the solution of equations (11) and (12) the following

notations have been introduced:

/

= .Fo T;
z, = 4,
<« = %, 4+ 2
NE A A
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The coefficients of the left side of equation (12) become:

B= fa{nra+} ;o= E(n—f) -fre; D=1

Using this notation equations (11) and (12) become:

b, + g:(ﬁ b= O (11a)
“ -4 I= ! éé Q! - (12a)
b+ 5+@o¢= Bo+ C £+ps +D(g+ﬁ«)"

o«
Multiplying equation (11a) by the integrating factor (£ + (30)

(£ +p) 0"+ «(g+ A) <p= o
d <
Cl g { (g + ﬂo) (p, = 0
Integrating:
o !
(“-.; + ﬁo ) 4), = constant
The constant can be found by introducing the boundary condition
at £ = 0 ¢1 = q;l (0) and therefore:

Constant = ﬂ,d 4)"(0)

Therefore:

(g " ¢‘. (o) (11b)



12

Integrating between the limits 0 to £:

d — Py = Lg(g SOB.Y ¢./(o)
b = &_(i"_l_ {| — (%@e)l-“} d o) + b

In terms of 7, this becomes:

xu
b, = ¢ — ZI.H (g+°(5, }<|><a) (13)

Equation 12a is solved in a similar manner. The integrating factor
(& + ﬁo) is again applied to the left side of the equation and the
solutions for ¢1/ and ¢y form (11b) and (13) substituted into the

right side. On integrating once the equation is of the form:

. {z.+2) -(1,+2)
b, - E(g_mlzz ) F(g+p)  +G(E+p) +HE+E)  In5t0-

The coefficients E, F, G, and H are a collection of all the constants
in the equation not involved in the integration. On integrating the

second term of the flow coefficient becomes:

205 +0) 205, +1) ~(3.+) %+
e ° 60 |
= 0 — E ey {(e;(i@) } = (€+@») - '}

e .

xa 1
G- I |
=G h £+6o t He {(§+(3\) In g+(3 Z,+ [] + ;,H}

The coefficients of equation (14) are defined as follows:



_ _ C D @, )
N _{B Z.+1 + ot 2, + | 43.“

X +3 142

4)/( l— 9 +”1 (5 4)(0) 4}(0)

St
g

£, +1
D 6, (o)+ @ 4) (o) s
ZD Bo 4 D of
G 3 “)3 (3 4) 5 chmcj:(o) + 7] 4>|<)

All terms containing the variable £ will be designated by lower case

b's with subscripts:

Xot1
ba: Zﬁ{(g(io(s.)a—) |

2Lt
by~ 2(z:+l){€+o(3~) - '} (16)
be= In =&
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Introducing the coefficients (15) and (16) into equations (13)

and (14) the first and second flow coefficient terms become:

b — by §@ (13a)

4)1 (©) + q 4)120;2 tc 4>n’(°) 49‘(0)-{-51 4)'%0) + € 4)2,(0) (14a)

where the coefficients of (14a) are defined as:

a =f%—,{b (B ;i: ;;w)l)*b( (z;+|)‘)+l’l’( z;u)"'}’sxﬂ( —2—?‘}}

C=b, (—E%T (X, +|)) l°5(c ) 51«“ (C ‘o*’)

d=p 28 (b, —ab) ; e= —b,

Since a large number of coefficients will be used in the

following equations, they will be represented by lower case letters
with number subscripts. The letter will be used to indicate coeffi-
cients of a given term (a for q)?(o); c for 4)1/(0) q;l(o); d for ¢i‘(o)
and e for either ¢1/(o) or ¢2/(o)), The number subscript refers to
a given equation. The lower case b refers to terms containing the

variable §.

D. Flow Coefficient Initial Conditions

Equations 13a and 14a can be used to determine the flow

coefficient in terms of the initial conditions at & = 0; (¢1(0)s cl)ll(o)’
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q)z(o) and q>2/(o)). The first stage of the compressor will be assumed
to operate with the same characteristic as the single stage, therefore
at £ = 0,¢(0) will be known. Let ¢{o) = bg * ed)l(o) with q)n(o) =0
for n >1, thus 4)1(0) is prescribed and 4)2(0) = 0. For the initial

condition at £ = 0 equation (7) becomes:

¢I(o)= {F(o) T + f. } b (17)

T ) @o

By definition:

d€ Cp
TO=
, (18)
T _ U T Yt ( ’Ho))
T ) e, ® @ T

2 : ,
The term u- ig similar to the term defined as‘/@ ; therefore let:
C (3
P
(5 = __ch_C_*-B__ = @o + e (5' (19)
u" 7 :

Substituting from the expansions (9) and (10) gives:

du= ¢ + € {b= 0 for n>1}
Te) = T+ €T $o+ €° _’2_ d>,<°)z |
fo) = f +€ -t g0 20)

cl)'(o) = € d@ + e (ﬁ;w)
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Substituting (18) and the expansions (19) and (20) into equations (17)
results in a series equation in powers of € . Equating terms of like
powers of € gives the following expressions for the flow coefficient

derivatives at the initial conditions:

R

z ! o 2
(bz(o): ("'z,'_ga_fo—)@ vd’,“) — 1E°©¢;° (5' - é: {‘—’% + { Zf'b °} @)

E. Flow Coefficient - Final Form

Substituting the initial conditions (21) into the expressions for
the flow coefficient terms (13a and 14a) results in a quadratic
expression for the flow coefficient in terms of the velocity (or speed)
perturbation {31 , and the flow coefficient perturbation ¢1(o) of

the form:

2 z
dg) = ¢, + eh, @ +€1A21@'Z+GA.1&¢’.‘°’+ €A b e Aud,

The upper case letters will.be used to represent coefficients of a
given equation and the subscripts refer to the terms in the equation,
The subscripts 1 and 2 will be used to represent coefficients of the
terms q)l(o) and [31 respectively.

Small deviations from the design point are accomplished by
letting € q;l(o) and € ﬁl be small, This can be accomplished by

letting € = 1 and using small perturbation of q)l(o) and [31.
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Letting € = 1 the flow coefficient becomes:

4) = 4):; + Al @l +Az7. @'1 +Al7.@' 4)-(0) '+'A' 4),(0)-'- Au 4>‘m7‘ (22)

The coefficients of equation (22) are expressed in terms of the initial

design conditions (1 ,'r,’)'r.")f,,g") 4’.) and the location along the length

of the compressor §. Th‘ese coefficients are most easily expressed

in terms of the coeffiéien‘cs of all the previous equations involved.
Express the initial conditions (21) as:

der= B, § + B, s

(21a)

o 0= B, ¢ +B,64e + B, 6

where

_ _ : _ £
B:— . (5‘ ) B,_ @oz

arn . Yo, 5, +f. . - f.4,
B.= - —6—{7{ + _EL}) B~ G. ! Bzz.— @3

Substituting into equations (13a) and (l4a) the coefficients of equation

(22) become:
A, = — B.b;

A= a Bl —bBy

A 2aBB, +c B, —b,B,

A= | — bsB

A

= QB,Z‘F CB. +CJ —-'D;Bu
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F, Temperature and Pressure Ratios

The differential equation for the temperature rise through the

compressor is integrated to determine the temperature ratios as

2

follows: J_-l__ _ U T ()
dt c,,
PR 3
TE) — T -~ _UY f TP dg
Cp .

Substituting the expansion of 7T (¢) and dividing by T(o) = & the

temperature ratio is:

Te) U (st i e o AT 5
= € 1 ----
T(D) l + CP@ {g ,I: + € ’I:—cf‘¢' g + ’n’[¢l Jg + Z o éJg + }
. u'n 1 .
Let € = 1 and substitute =) = B the temperature ratio becomes:
F

IO - e Efrb)ir S 4] e

The flow coefficient is defined as:

4;_ Vo - _ mRT
u pUA pUA

The flow coefficient ratio at any station in the compressor becomes:

d)(g) - MRT@) . p ) U<°) Al")_ T(E) P(o) A(o)
¢ MRTE P& UEAG T p&) AE

since m and U are constant through the compressor. The pressure

ratio is thus given by:

(5) _ TE) ¢ A (24)

o) T 6E) Acg)
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The temperature ratio is given by equation (23) and the flow coeffi-
cients by equations (20) and (22). The area ratio is fixed by the

geometry at the design condition given by equation (6) as:
J1odA (J__)
A dg £+ 6

4 §
[4 - i<k

Integrating gives:

[}

A (8) _ 3o
In IO f In 7o
A(o) — < + s )F.
AG) @,é

The integrals in equation (23) are found by direct integration
of by 4)? and b, as given by equations (13) and (14). The results
are again expressed in terms of the initial conditions and coefficients
involving the design conditions and axial position (§) through the

compressor, Thus:

_[g(">| Jg = §¢,‘°) + €, 47',(0)

/ ’ 2'
fgchzag _ asz‘(n)z+ c, $w b 4 d, ¢,

§ , ,
fd’zdg = 0G4 (hl“’?‘f‘ Cs CP.(‘” cb.“) + ds ¢»‘°72 + &, ¢z(°)
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In terms of the coefficients of equation (12) and the £ variable

coefficients (16) the coefficients of these equations are given by:

2)

e|=

I

an(@iflenes)  am (5 h) 5 hn

& ¥) £/, c-2D 5D b D
A=— - = — —_
3 (z.u){ (B Y (x,+l)‘> 2 (B * ‘)

J*' (%,+1)
c_ _ 2D(2x+)) _
b+ - ) hbfe- £5) +5+6) 7 J}
eo C-2D 4D
C = _ CQx.+1) _ D 2D
O {5( < UF,*"’) * L’Z[ Z(Z41) (L, #1)? Z,(I.’.H)"]

e 22 +m 2]

=~ A5 ¢ S e rpiL)

Substituting these integrals into equation (23) and introducing
the initial conditions as given by equations (21a) the temperature
ratio also reduces to a qﬁadratic expression in the velocity perturba-
tion {31 and the initial flow coefficient perturbation ¢1 (o). This

equation is of the form:
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T

T(o) (;6 {(€+P,) 'I-:Dz @; +:D21 @'2 + :D,z (3, ¢’(o)+]), 4)‘(0) +D"¢,z(°) (23a)

The coefficients of equation (23a) are given by:

D1= j;zB;_el - Za

D T(aB; +2¢,B,) + 2= B+ £,

D,- - (Beq+ )

DIL=

27T

% (20,B,B,+B,c, + B, 2 (24BB,+ B, o)~ %,

D= = (B'a,+Be,+d,+Be)r 2 (a,B+B e+ £)

The maximum value of the temperature ratio at a given speed
(‘61 = constant) is found by setting the derivative of the temperature

ratio with respect to ¢1(o) equal to zero:

(E)
dcfp"’) 1—1:(") { B + D, +2D,.¢,@=O

The value of the flow coefficient for the maximum temperature ratio

is thus:

(P(D) - D»z_ @l + Dl
1 max Z'Du

The second derivative corresponds to the curvature of the temperature

ratio curve and is:
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d* {T(é\} _ _2D.
p| d)llo? T (o) @o

and is inciependent of ﬁl. The temperature ratio curves can thus be
completely determined by the coefficients of equation (23a).

| A similar parabolic curve can be found for the pressure ratio
by substituting equations (20), (22), (23a) and (25) into equation (24),
and dropping all the terms of f; and q;l(o) higher than the second
order., The same procedure can be used to express the adiabatic
efficiency n by substituting the equations of pressure and tempera-
ture ratio in the equation:

) -
P(o)

T (8) —
T (o)

The compressor efficiency (nc) is determined by setting £ = 1.
The second order equations for the pressure ratio and efficiency thus

reduce to the following form;

f+! z
'Ii((i)) = (gga@n) {' + Ez @.l -+ Ezz @,2 -+ EIZ@'d%(a)—l— E' (P.(o)—{— E"(P‘(o) (2 5)

n = ’?O{ | 4+ Ca B+ G, B +CirB, o1+ C, S+ C, §,c0 (26)

The coefficients of these equations are most easily expressed in terms

of the coefficients of the previous equations and are:
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D, _ A ) _ _1-A, D,
B Tve T e e Sy
_ (AN _ Az _ _A.D, D,
E, (Ez:) P, ¢,(g+p) * £+ 3
2AA "Az A; | Dz'AlDl "AzD}
= i lz — 2 + Dlz + L
B ¢, b, £ +(So[ é,

= (L:)‘ M gip,{l)"* > —‘cp“_‘A,'D'}

K= (E5f )" = k=)

The coefficient C1 can be assumed to be zero since the

maximum efficiency at design speed is known to occur at the single

stage design flow rate. Setting the derivative of the efficiency with

respect to the initial flow coefficient equal to zero:

%@: n,{qz@.+ o +2c.,d>,w}=

the maximum efficiency is found to occur at an initial flow coefficient

perturbation of:



b= —-{ Cit Cua B }

2Cy

Since the maximum adiabatic efficiency at design speed (8 = 0) must
occur very close to the design flow, C1 should be very small.
The speed function (Bl) for maximum efficiency is found by

substituting the value of the flow coefficient perturbation (¢l (o)) for

maximum efficiency into equation (26é) which becomes:

= i+ BL2) g+ S5) 0

Setting the derivative with respect to [31 equal to zero the maximum

efficiency is found to occur at a speed function of:

_ _CCr - 2CuC,
g 4.CuCoy — Ciz
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III, APPLICATION

Thé performance of a ten stage compressor has been computed
to illustrate the use of the method. The single stage characteristics
for the research compressor as described in reference 1 have been
used in this analysis, The single stage characteristics for this
compressor are shown in Figure 1 in terms of the parameters T
and f. The values of the design point constants for this example are;

T, = 1.95, v, = -17.25, ’rg =-37.5, £ =2.01, fc:’ = - 118
and ¢ = 0.44. The reference rotor speed for this example is
Uo = 1000 fps. The gas is air at standard temperature and pressure
with @ _ = 520°R, C, = .24 Btu/1b°R and ¥ =1.4. The value
of 8 and Z"o then become; B, = 1. 603 and ;o = - 3,288, The
broken line curves in Figure 1 are the approximate curves represent-
ing the quadratic expansions found by dropping all terms higher than
the second order in equations (9). This approximation is seen to be
reasonably accurate for flow coefficients from 0. 40 to 0. 50.
The overall compressor performance is found by letting
‘N = 10 and & = 1.0 in equations (23a), (25) and (26). The speed
variable is computed from equation (19) which can be simplified to

give:

J 65 - eltl -]

cp® Uo
B— —8+ L - @°+(u

The resulting temperature ratio curves for the ten stage compressor
are shown in Figure 2 as a function of the inlet flow coefficient. The

pressure ratio and efficiency curves are shown in Figure 3. The
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maximum efficiency is found to occur at B, = 0.363 which corre -
sponds to U/U_ = 0.903.

The operating point of each stage is found by varying £ in ten
" equal increments and solving equation (22) for the flow coefficient.
The operating points at design speed for the first, second, fifth and
last stage of the ten stage compressor are shown in Figure 4. The
stage flow coefficient (¢) is plotted as a function of the compressor
inlet flow coefficient (¢ (0)). The stage efficiency (n), work coeffi-
cient (Y¥') and pressure coefficient ('Ly'l) are shown as functions of
the stage flow coefficient (¢). These curves indicate the range in
which the quadratic approximation is reasonably accurate. The quad-
ratic expansion of T and f are shown in Figure 1 to be reasonably
accurate for stage flow coefficients between 0. 40 and 0. 50, The tenth
stage 1s seen to be outside this range at design speed for compressor
inlet flow coefficients greater than 0. 455 and less than 0. 400,

The last stage flow éoefficient will have the greatest variation

from the compressor inlet flow coefficient for off design speed
conditions. The operating points for the tenth stage at varying speeds
are shovm in Figure 5,

The operating range of the tenth stage indicates that the method
should be reasonably accurate for a fairly wide range of compressor
inlet flow coefficients at design speed. For varying speeds reasonable
accuracy can be expected at speeds varying up to ten per cent off

design with a similar flow coefficient deviation.
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CONCLUDING REMARKS

It has been shown that the off design characteristics of a multi-
stage compressor can be predicted by a method using approximate
analytical integration. The method can be expected to give reasonably
accurate results at design speed for compressor inlet flow coefficients
varying as much as four per cent from the design condition. At off
design speeds the method should be accurate for speeds varying up to
ten per cent from design with similar flow coefficient variation for each
speed. A comparison with actual test results has not been made since
none could be found for a cyompressor with all stages having identical
characteristics,

This method should be extended to include varying stage
characteristics., This could be done by assuming a given single stage
characteristic over a section of the compressor and different single
stage characteristics over other sections. The approximate integra-
tions could then be carried out over the various sections using the

appropriate stage constants for that section,
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