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IV 

Abstract 

We consider the problem of constructing confidence intervals of fixed width d and 

confidence level 'Y for the success probability p in Bernoulli trials. Algorithms are 

given for calculating numerical lower bounds on the average expected sample size 

required and an asymptotic lower bound is obtained as d -> O. Sequential and two­

stage procedures are proposed that attain the asymptotic lower bounds and nearly 

attain the numerical lower bounds. Asymptotically optimal sequential and two-stage 

confidence intervals of fixed width and confidence level are proposed for the mean in 

a general (non-Bernoulli) context. 
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Chapter 1 Introduction 

Let Xl, X 2 , ... be independent Bernoulli random variables with unknown parameter 

o :::; p :::; 1, i.e., for each i = 1,2 ... , P(Xi = 1) = p = 1 - P(Xi = 0). Let [L, R] 

be a confidence interval for the parameter p , where Land R are functions of the 

observed X/so The confidence interval [L, R] has confidence level , if its coverage 

probability is at least " i.e., infp Pp(L :::; p :::; R) :::: ,. It has width d if Pp(R - L :::; 

d) = 1 for all p. We are interested in finding level , width d confidence intervals 

that require a minimal amount of sampling. There are two ways to approach this 

problem: by a fixed sample size method, or by a sequential method. A fixed sample 

size method consists of (n , L, R), where n is the number of observations needed, and 

[L, R] is the confidence interval based on the observations. In contrast, a sequential 

method consists of (N, L , R) where N is a stopping time (also called a stopping rule) 

denoting the number of observations taken, which is a random variable based on the 

observations. Our results concern sequential methods, which require less sampling 

than fixed sample size methods. Throughout this work, and d are given numbers, 

0 < , < 1, d > 0 and we denote by h = d/ 2 the length of the half interval. 

There are two classical fixed sample size methods to obtain confidence intervals 

for p. 
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SAM (Standard Approximate Method) By the Central Limit Theorem and Slut-

sky's ([10]) theorem the confidence interval 

has coverage probability approximately equal to "'I, where c is the (1+"'1)/2 quantile of 

the standard normal distribution, i.e., c = <I>-1((1+"'I)/2) > 0 where <I> is the standard 

normal distribution function. However, for p close to 0 and 1 this approximation 

breaks down and the coverage probability approaches O. 

SAM (Standard Exact Method) This method is based on constructing the two 

uniformly most accurate (1 +"'1) /2 one-sided confidence intervals, described in Chapter 

3.5 of [11]. Given that Sn = 2:~=1 Xi = k the confidence interval [L, R] is obtained 

by solving these two equations for Land R : 

( ) 
1-"'1 

Pp=L Sn ~ k = -2-

( ) 
1-"'1 

Pp=R Sn:S; k = -2-

Neither of these methods yields fixed width confidence intervals. There are two 

improvements of the classical methods up to now, both designed to give confidence 

intervals of fixed width. 
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Classical Sequential Method (Chow-Robbins [4]) The idea of this method is to 

use the confidence interval based on the Central Limit Theorem approximation 

but to sample until the width of this interval becomes less than d. Hence the method 

uses the following stopping rule: N is the smallest n for which 2cJ Xn(l;Xn ) < d. 

This method also has only approximate coverage probability , and the approximation 

breaks down when p is close to 0 and 1. 

Pushed Confidence Intervals (Lorden [12]) Lorden has obtained the best fixed 

sample size method for giving confidence intervals of exact coverage probability , 

and fixed width d. It is the best in the sense that it uses the smallest possible sample 

size n. Chapter 4 includes a discussion of this method and our application of it in 

the sequential case. 

Let ),.(p) be a probability density function defined on [0 , 1]. Define 

1 

B(r, d,),.) = inf J EpN ),.(p) dp, 

o 

where the infimum is taken over all confidence intervals (N, L , R) of level, and 

width d. The quantity B(r, d, ),.) represents the minimal amount of sampling needed 

to obtain a level , width d confidence interval, in the sense of minimizing the average 

over p (using),. as a weight function) of the expectation, when p is true , of the sample 

size. 
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With few exceptions, problems in sequential analysis about best possible perfor-

mance, such as the one defined by Bb, d, A), lead to theorems proved only in asymp-

totic form, as the sample size becomes large. In the present problem, asymptotic 

theory is most naturally developed by letting d -+ 0 with" held fixed. In Chapter 

2 we use a Bayes technique to obtain an asymptotic lower bound on Bb, d, >.) as 

d -+ O. In Chapter 3 we modify an idea of Chow and Robbins [4] to construct level 

" width d confidence intervals that achieve the asymptotic lower bound. Combining 

these two results yields the following theorem. 

Theorem 1. For any positive continuous function>. defined on [0, 1] 

The method proposed in Chapter 3 is developed as a solution to the problem of 

constructing a confidence interval for the unknown mean of a distribution belonging 

to a general class of distributions . Under some mild moment conditions, we construct 

fixed width d level " confidence intervals, that are asymptotically efficient in a certain 

sense. We also consider an appealing special class of sequential methods called two-

stage procedures. These rely on a preliminary (first-stage) sample of a fixed size, 

m, followed if necessary by a second stage of variable size. We construct two-stage 

confidence interval procedures that are asymptotically efficient and in the Bernoulli 

case attain Bb, d, >.) in the limit as d -+ O. 

Another goal of this investigation is to determine algorithms for constructing 

"nearly optimal" sequential confidence intervals , along with methods for calculating 
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how close they come to attaining Bb, d, >') . Such constructions have two parts: the 

stopping rule N and the so called terminal decision rule that calculates the interval 

[L, R] based on Nand XN . It turns out that rather than center the interval at XN 

and use probability estimates to guarantee coverage probability I, which suffices for 

the asymptotic theory of Chapter 3, it is much more effective for small sample sizes 

to apply Lorden's "push" algorithm [12] to optimize the construction of [L, R] for a 

given stopping rule N. These considerations reduce the problem to one of finding the 

best (or nearly best) stopping rules N. In Chapter 4 we give a method for computing 

explicit lower bounds on Bb, d, >.) and describe two new methods for constructing 

nearly optimal stopping rules. The first method is based on the auxiliary Bayes 

problem of Chapter 2 and uses a Backward Induction scheme to compute the stopping 

rule. The second method is based on selecting a member of the asymptotically optimal 

family of solutions proposed in Chapter 3. For both methods we use as a terminal 

decision the confidence intervals obtained by Lorden's push algorithm. We also give 

a method for obtaining nearly optimal two-stage confidence interval procedures. As 

the numerical results in Table 1 of Chapter 4 illustrate, the algorithms for both the 

sequential and two-stage rules come very close to solving the problem of attaining 

B ( ')', d, >.) in practice. 
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Chapter 2 Lower Bound on Average 

Expected Sample Size 

2.1 Bayes Auxiliary Problem 

Given a probability density function 1f (p) defined on the interval [0, 1J and c> 0, we 

consider the problem of minimizing 

1 J { h2~ (c) EpN - p (1 - p) Pp (L ~ p ~ R)} 1f (p) dp (2.1) 

o 

over all width d = 2h confidence intervals (N, L, R) for p, assuming without loss 

of generality that R = L + d. There is no restriction on the confidence level of 

the intervals. Our goal is to find a lower bound on the quantity (2.1), useful for 

constructing lower bounds on Bb, d, -X). A standard way to solve this problem is to 

use the following Bayes technique. Let p be a random variable, p E [0 ,1] with density 

function 1f, also called the prior density of p. Define the loss function for (N, L, R) 

as a function of p by 

h2¢(C) 
I: (N, L , R) = c N - P (1 - p) l{L::;p::;R} 
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Then (2.1) can be interpreted in the form 

1 

E (£ (N, L, R)) = J {h2~ (c) EpN - p (1 - p) Pp (L <:S p <:S R) } 7r (p) dp , 

o 

where the expectation on the left-hand side is taken with respect to the sequence of 

Bernoulli random variables {Xi} with probability of success p , where p is a random 

variable having probability density function 7r. In this form the problem is known as 

a Bayes problem and E (£ (N, L , R)) is called the integrated risk of the procedure 

(N, L, R). We are interested in a lower bound on the integrated risk in terms of h, "f 

and 7r. A standard way to study the integrated risk is to express it in terms of a 

conditional expectation, i.e., 

E(£(N,L , R)) = E{E(£(N, L,R) IN,SN)} 

and to obtain bounds on E (£ (N, L, R) IN, SN), which is called the posterior expected 

loss. Define s = SN as the number of "successes" at termination, i.e., the number 

of observed l 's, and f = N - s as the number of "failures" at termination, i.e. , the 

number of observed O's. We use the following notation for the conditional expectation 

given Nand SN : E ('Is , j) = E CIN = s + j, SN = s). Then the posterior expected 

loss is 

L+d 

E (£Is, j) = h2~ (c) (s + j) - J p (1 - p) 7r (pis, j) dp (2.2) 

L 
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where 7r (pI8, f) is the conditional density of p given N = 8 + f and SN = 8, which is 

also known as the posterior density of p 

The posterior expected loss will be minimal when L is chosen to maximize the integral 

on the right-hand side of equation (2.2), and since the integrand depends only on 8 

and f, the optimal value for L will depend only on 8 and f. Such an optimal value 

is called a Bayes terminal decision, which we denote by L (8, f). Without loss of 

generality we assume that L = L (8, f) , which reduces the problem to choosing N 

optimally. 

We depict the random walk generated by Xl, X 2 , ... in the following way: it starts 

at the origin of the two-dimensional coordinate system, where the 8 axis is horizontal 

and the faxis is vertical. For each success it moves to the right, i.e., it increases the 8 

coordinate by 1 and for each failure it increases the f coordinate by 1. Thus (8, f) is 

the position of the random walk after observing s + f data points. A stopping rule N 

determines a partition of the integer lattice points - each (s, f) is either a stopping 

point or a continuation point. 

First we will find a lower bound on the integrated risk in the case when the prior 

distribution of p is Beta(a, b) , a, b > 0, i.e., the prior density function of p is the 
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Beta(a, b) density function 

pa- l (1 _ p /-1 
fa ,dp) = B (a, b) , 

1 

where B (a, b) = J pa-l (1 - p)b- l dp, is the Beta function. 
o 

2.2 Lower Bound on the Posterior Expected Loss 

with Uniform Prior 

In this section we assume that p has a uniform distribution on [0,1]' i.e., a Beta(l, 1) 

distribution. 

Lemma 1. There exists a constant C such that 

E (£Is, f) 2 (c¢ (c) - 'I) E (p (1 - p) Is, f) - Ch. (2.3) 

Proof. If p has uniform prior density, then the posterior density of p at (s, f) 

is the Beta(s + 1, f + 1) density (see page 193 of [16]). If the confidence interval 

associated with the stopping point (s, f) is [z, z + 2h] , then the posterior expected 

loss is 
z+2h 

h2¢ ( ) J p (1 - p) pS (1 - p)f dp 
E (£Is , f) = c (s + f) _ _ z __ :--__ --,--__ 

C B (s + 1, f + 1) 

z+2h 
J pS+l (1 - P )f+l dp 

= h
2
¢ (c) (s + f) _ B (s + 2, f + 2) _ z_......,....-_--:--:---_ 

c B (s + 1, f + 1) B (s + 2,f + 2) 
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= h
2
¢ (c) (3 + 1) _ (3 + 1) (f + 1) 
C (3 + 1 + 2) (3 + 1 + 3) 

z+2h 
J ps+1 (1 - p )f+l dp 
z 

B (3 + 2, 1 + 2) 
(2.4) 

where we used Euler's formula for the Beta function, B (3, 1) = ri(~:W, to eval-

uate B (3 + 2, 1 + 2) /B (3 + 1, 1 + 1). Also, since the posterior distribution of p is 

Beta( 3 + 1, 1 + 1) , the posterior expect ation of p (1 - p) is 

E 1- 3 =B(3+2,1+ 2)= (3+1)(f+1) 
(p( p)I ,1) B(3+1,1+1) (3+1+2)(3+1+3)' (2.5) 

From now on, we will assume that 3 :::; j. By symmetry all the claims need only be 

proved in the case 3 2:: j. 

Case 1. Suppose that 3 =f. 1 and 

(3 + 1) (f + 1) < h 
2(f-3)(3+1+2) -

Then (2.3) is satisfied. 

Proof of Case 1. We have 

z+2h J ps+1 (1 - p )f+1 dp 
E (£13 1) = h

2
¢ (c) (3 + 1) _ (3 + 1) (f + 1) -"z':--____ _ 

, c (3 + f + 2) (3 + f + 3) J ps+1 (1 _ p)f+l dp 

o 

> h
2
¢ (c) (3 + 1) _ (3 + 1) (f + 1) > -E (p (1 - p) 13 1) 

- C (3 + 1 + 2)(3 + 1 + 3) - , 
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Therefore 

E (£, 18, 1) - (c¢ (C) - ,) E (p (1 - p) 18, 1) 2 - (1 - , + c¢ ( c)) (8 + (; : ~~ ~ ~ : Y + 3) 

2h (f - 8) 
2-(1-,+C¢(C)) 8+1+3 2-(1-,+c¢(c))2h, 

which proves (2.3) 

Case 2. Suppose that 

Then (2.3) is satisfied. 

(8 + 1) (f + 1) > h (f _ 8) 
2(8+1+2) -

(2.6) 

Proof of Case 2. Let a = 8 + 1 and b = 1 + 1. Our goal is to find an upper bound 

on 
z+2h 

g(z)= J pa (1_p)b dp . 

z 

Define gl (p) = pa (1 - p)b . Suppose 9 achieves its maximum at zo, then 

o = g' (zo) = gl (zo + 2h) - gl (zo) . 

However, gl (p) is an increasing function in the interval [0, aj (a + b)] and decreasing 

on [aj (a + b), 1], which implies Zo < aj (a + b) < Zo + 2h. For a change of variable in 

9 (z) set 

a 
p=--+x. 

a+b 



12 

The above inequalities imply that for all p E [zo, Zo + 2h], 

Ixl < 2h . 

The inequality 

x 2 x 3 

log (1 + x) ::; x - 2 + 3 (2.7) 

is valid for all x > -1. Now 

log (pa (1 - p)b) = a log (a: b + x) + b log (a ~ b - x) 

= a log (a : b) + b log (a ~ b) + a log ( 1 + x (a a+ b)) + b log (1 - x (a b+ b) ) 

~ log Ca :":;"+b) + (a log (1 + x (aa+b») +blog (1 _ x (ab+b») ) 

By assumption b 2: a. We use Ixl < 2h and (2.7) to get 

where (J" is defined by the last equation, i. e., 

ab 
(J"= 
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Notice now that (2.6) can be restated as 

Now we combine the above inequalities 

zo+2h J pa (1 - p)b dp 

zo 

(a + b + I)! aabb 

alb! (a + bt+b 
zo-a/ (a+b) 

zo+2h-a/ (a+b) 

J 
< (a + b + I)! aabb 

alb! (a + bt+b 
zo-a/(a+b) 

zo+2h-a/(a+b) 

J 

since the highest probability density interval for the normal distribution is the sym-

metric interval around zero. Using Stirling's formula in the form found in [6J page 

52, 

and we obtain 
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Finally we obtain 

By the mean value theorem 

<I> (x) -1/ 2 ,./, ( ) __ 1_ 
smax'l-'x-~, 

x y2n 

so for all positive x, 

2x 
2<I> (x) - 1 < -. - V2if 

An upper bound for the last term in (2.8) can be obtained from the inequality 

1 1 

a + b /1 _ 4h(bL a2 ) 

V 3ab 

( (h) ) f2 /a+b 2h 
2<1) ~ - 1 ::; V;V -;;;;-h ::; .,fo. 

By (2.6) 

(2.8) 
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For any 0 < x :::; 2/3 

1 l-yT=X x 
yT=X = 1 + yT=X < 1 + yT=X < 1 + J3x. I- x I- x - l-x-

Now we deal with the first term in (2.8) 

1 (2<1> (!!.) _ 1) :::; 2<1> (!!.) _ 1 + J34h (b
2 

- a
2

) (2<1> (!!.) _ 1) VI - 4h(bL a 2
) CT CT 3ab CT 

3ab 

< 2<1> (h' ~ _ 1 '3'4h (b
2 

- a
2

) - V~) +V0 3ab . 

Finally 

Now we substitute this inequality in (2.4) 

h2
¢ (c) ab (2iF. (hV Ca +ab

b
) 
3 

) - 1) _ E (£Is, f) ~ c (a + b - 2) - (a + b) (a + b + 1) '±' 

ab J34h (b2 
- a2

) _ ab 2h 
(a + b) (a + b + 1) 3ab (a + b) (a + b + 1) viii 

> h
2
¢ (c) (a + b _ 2) _ ab (2<1> (hJ<a + b)3) _ 1) _ 4V3h _ ~ 

- c (a + b) (a + b + 1) ab 3 2viii 
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For all x ?: 0 define the function 

K(x) = <}(c)x - (2<1> (Vx) -1). 
c 

Its derivative 

is an increasing function and has a unique root x = c2 . In fact, K' (x) < 0 when 

0 < x < c2 and K' (x) > 0 for x > c2. Therefore, 

K (x) ?: K (c2
) = c<} (c) - , . 

Using this inequality we complete the proof. 

E (£1 f) h2 <} (c) (b) ab (2;t;. (hla +abb)3) - 1) _ 
s, ?: c a+ - (a+b)(a+b+1) '±' 

h2 <} (c) 4V3h h ab 
- 2 - -- - -- > -:---:--:-----:-

c 3 2y17T- (a+b)(a+b+1) 

. (h2~(C)(a +b)2~+b+l) _ (2<1> (h (a+b)2~~+b+l)) -1)) -Csh 

> ab K (h2 (a + b)2 (a + b + 1)) _ C
3
h 

- (a + b) (a + b + 1) ab 

?: E (p (1 - p) Is, 1) (c<} (c) - ,) - C3 h, 

where C3 depends only on , . This completes the proof of Lemma 1. 
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The above argument suggests as a solution of the Bayes problem the stopping 

boundary 

(S+1+2)2(S+1+3) C
2 

(S + 1) (J + 1) h2 ' 

This stopping boundary is a special case of the Chow-Robbins stopping rules. 

2.3 Lower Bound on the Integrated Risk with Beta 

Prior 

In this section we assume that p is a Beta( a, b) random variable, where a and bare 

positive numbers. Denote by Ea,b the expectation, when the prior distribution of p is 

Beta(a, b) . 

Lemma 2. There is a constant C1 depending only on a and b such that 

Ea,b (£Is, 1) 2': (c¢ (c) -,) Ea,b (p (1 - p) Is, 1) - e1h 

Proof. By (2.2) 

h2¢ (c) 
Ea,b (£Is, 1) = c (s + j) - Ea,b (p (1 - p) lL::O;p::O;Rls, j) 
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where the second expectation depends only on the posterior distribution of p , which 

is Beta( a + s, b + 1). Therefore, 

Ea,b (£Is, 1) = E1,1 (£ Is + (a - 1), f + (b - 1)) - (a + b - 2) h2 ¢ ~c) (2.9) 

By Lemma 1 

E 1,1 (£Is + (a - 1) , f + (b - 1)) 2 E1,1 (p (1 - p) Is + (a - 1), f + (b - 1)) - Ch 

= Ea,dp (1- p) Is , 1) - Ch, 

again because the conditional distribution of p is the same. Combine these two results 

and the fact that h < 1 to complete the proof of the lemma. 

The optimal boundary suggested by the above argument when the prior is 

Beta(a, b) is given by 

(s + f + a + b)2 (s + f + a + b + 1) c2 

(s + a) (j + b) h2 · 

Lemma 3. There is a constant C1 depending only on a and b such that 

Ea,b (£) 2 (c¢ (c) - ,) Ea,b (p (1 - p)) - C1h. 

Proof. Integrate the inequality in Lemma 2 with respect to the distribution of 

(s, f) . 
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2.4 Asymptotic Lower Bound on the Sample Size 

of a Fixed Width Confidence Interval 

Now we apply the result from the previous section to obtain a lower bound on the 

average expected sample size of any sequential confidence interval (N, L, R) of width 

2h and confidence level T We can of course assume that the width is exactly 2h. 

Recall that !a,b (p) is the Beta( a, b) density function. 

Lemma 4. For any positive numbers a and b and any confidence interval (N, L , R) 

of width 2h and confidence level" a lower bound on the expected sample size averaged 

with respect to !a,b (p) as h -+ 0 is given by 

1 1 

h
2 J Ep (N) !a,b (p) dp 2:: c

2 J p (1 - p) !a,b (p) dp+O (h) = c
2 

(a + b) (:b+ b + 1) +0 (h) . 
o 0 

Proof. Fix p and integrate 

with respect to Xl , X 2 , ... to get 
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Now we integrate with respect to p and get 

1 

h
2
¢ (c) J Ea,b (£) :::; c Ep (N) fa,b (p) dp -,Ea,bP (1 - p) . 

o 

By Lemma 3, therefore, 

1 

h
2
¢(c) J c¢(c)Ea,b(p(l - p)) + O(h) :::; c Ep (N) f a,b (p) dp 

o 

and the conclusion of the lemma follows , using the fact that 

E ((1 _ )) _ ab 
a,b P P - (a + b) (a + b + 1) 

by (2.5). 

Now we extend this result to a general class of priors. 

Theorem 2. Let f (p) be a positive continuous function defined on the interval [0,1]. 

If {( N (h) , L (h) , R (h))} is a family of confidence intervals of width 2h and confidence 

level " then 

1 1 

liminf h 2 J Ep (N) f (p) dp ;:::: c2 Jp (1 - p) f (p) dp. 
h--....O 

o 0 

Proof. Choose <5 > ° such that f (p) ;:::: <5 for all p E [0 , 1] . It is well known that 
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the Bernstein polynomials 

converge uniformly to any continuous function. Therefore, for a fixed c there exist n 

and some positive numbers lk such that 

n 

If (p) - L lkfk ,n-k (p) I < c. 
k=O 

Now 

1 n 1 

liminf h2 J Ep (N) (J (p) + c) dp 2: L l k liminf h2 J Ep (N) fk ,n - k (p) dp 
h~O h~O 

o k=O 0 

nIl 

2: L lkC2 J p (1 - p) ik,n - k (p) dp 2: c2 J p (1 - p) U (p) - c) dp 
k=O 0 0 

On the other hand 
1 

lim inf h 2 J Ep (N) (J (p) + c) dp 
h~O 

o 

1 

::; (1 + J) li~-1~f h2 J Ep (N) f (p) dp. 
o 
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Therefore, 

1 1 

(1 + J) li~jrf h2 J Ep (N) f (p) dp ? c
2 J p (1 - p) f (p) dp - ~ c . 

o 0 

Letting c go to zero, we obtain the desired result. 

Remark. If we consider only stopping rules N (h) for which E (N) = 0 (h- 2 ) in 

the above theorem, we can drop the assumption f (p) > O. Note that all reasonable 

stopping rules are of this type. In fact the optimal fixed size stopping rule needs no 

more than 0 (h- 2 ) observations. 
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Chapter 3 Asymptotically Efficient Fixed 

W"idth Confidence Intervals of Exact 

Coverage for the Mean of a Population 

A method for constructing width 2h confidence intervals (N, L , R) for the mean f-l of 

independent identically distributed random variables Xl, X 2 , ' " with finite variance 

is described by Chow and Robbins in [4] . The stopping rule considered is 

where limn->oo Cn = C = q,-1((1 + "Y)/2), and "y is the desired coverage level. Here 

defining a sequence of estimators of the unknown variance. Upon stopping the confi-

dence interval is 

[L, R] = [XN(h) - h, XN(h) + h]. 

Theorem 3 (Chow-Robbins). Let cr2 be the variance of the Xi'S. If 0 < cr < 00 , 
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then 

h
lim P(XN(h) - h :::; jJ, :::; XN(h) + h) = ,. 
-+0 

(3.1) 

The coverage probability of these confidence intervals is asymptotically" i.e., 

the probability of their containing the true jJ, will be arbitrarily close to , when h 

is sufficiently small. However, in a parametric problem like the Bernoulli case, the 

definition of a confidence interval requires more than just asymptotic coverage. At a 

minimum what is needed is the so-called strong asymptotic coverage, which specifies 

that the convergence of the coverage probability in (3.1) is uniform in p. Then for h 

sufficiently small the coverage probability will be arbitrarily close to , simultaneously 

for all p. This is critical since p is unknown. Theorem 4 below resolves these issues; 

in fact , our procedures guarantee coverage probability" once h is suffuciently small. 

Moreover, that theorem and its Corollary at the end of Section 3.2 are used along 

with the lower bound proved in Theorem 2 in Chapter 2 to prove Theorem 1. 

We consider the general problem of constructing width 2h level , confidence in-

tervals for the mean of a population in a parametric context. Let Xl, X 2 , ... be 

independent and identically distributed random variables with unknown distribution 

F which belongs to a known class of distributions F . Let jJ,F and oJ. be the mean 

and the variance of F. A level, confidence interval (N, L, R) for the mean jJ, = jJ,F 
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is a procedure satisfying 

?F(L :'S J-LF :'S R) 2':, for all F E F. 

Fix 0 < , < 1 and C = <;[>-1((1 + , )/ 2) . 

In this chapter, but only in this chapter, we will be interested in width 2h confi-

dence intervals for J-L that are centered at the point estimate XN(h), i.e., 

[XN(h) - h, XN(h) + h). 

Therefore, we identify the confidence interval (N(h), L = XN(h) - h , R = XN(h) + h) 

with the stopping time N(h) , and will refer to this confidence interval by referring 

only to the stopping time N(h). 

The stopping time we propose is defined by 

N(h) = min {n 2': K n-K>V:~ C

2 

} - nh2 

where K = K(h) and Ch are parameters to be chosen. We will find conditions on K 

and Ch sufficient for coverage probability " which also yield asymptotically efficient 

N(h) in the sense of Theorem 4. Throughout this chapter we assume that: 

Also, without loss of generality assume that Ch is bounded between fixed numbers c' 
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and C", i.e ., 0 < c' < Ch < C", for all h. 

Theorem 4 describes a method for constructing width 2h level, confidence inter-

vals for the mean. Assume that all F E F have finite fourth moment. Let 

We will omit the subscript F when there is no ambiguity. 

Theorem 4. Suppose that for all F E F, min { W F, W F / oJ} < B for some positive 

constant B. Then for K = h-1.85 and Ch = C + hO.13 the confidence intervals defined 

by N (h) achieve confidence level " i. e. , 

(3.2) 

In addition N(h) is asymptotically efficient for all F E F , in the sense that 

(3.3) 

Moreover, N is asymptotically efficient with respect to any probability measure 1r 

defined on F for which f01 oJ. d1r < 00, i.e., 

(3.4) 

The meaning of " asymptotically efficient" in the above theorem, also sometimes 

called Chow-Robbins asymptotic efficiency, is based on the following observation. If 
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(J' were known, then by the Central Limit Theorem we would need to take approxi-

mately c2
(J'2 / h2 observations to achieve coverage probability r using fixed sample size 

symmetric confidence intervals. Thus, (3.3) shows that for unknown (J' a sequential 

stopping rule can use the sequence {Vn } estimating (J'2 to achieve on the average the 

same sample size as would be required if (J'2 were known. Note that this definition of 

asymptotic efficiency does not necessarily guarantee best possible performance among 

sequential rules. However, Theorem 2 shows that in the case when F is the family 

of Bernoulli distributions and 7r is a probability distribution with positive continuous 

density, asymptotic efficiency with respect to 7r in the sense of (3.4) does guaran­
"--

tee best possible performance among sequential procedures. A discussion of related 

papers in the literature is given at the end of this chapter. 

Remark 1. The choice of K and Ch is not the optimal choice we can make. To make 

such a choice one needs to look at the eight terms that provide a lower bound on the 

coverage probability in Lemma 9, for each term deduce a linear inequality that needs 

to be satisfied by logh (K), logh (Ch) and the other functions involved, and solve these 

strict linear inequalities. The actual optimal choice is close to the one we made. 

3.1 ASYIIlptotic Efficiency 

This is Lemma 2 from [15]. 

Lemma 5. For any a> 0, and m 2:: 1, 
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The following direct consequence of Lemma 5 is of use later. 

Lemma 6. 

Esup IXnl < 1f.L1 + 160'2 + 1. 
n 

Proof. 

Esup IXnl :::; Esup IXn - f.L1 + 1f.L1· 
n n 

By Lemma 5 

and the result follows. Define 

2 1 Ln 
( - 2 1 s = - X · - X) = T 7 --n J n Vn . 

n . 1 n 
J= 

Next we derive a lemma similar to Lemma 5. 

Lemma 7. For any a > 0, and m ~ 1, 

( ) 16( w
2 -0'4 0'2) 

P sup 1 s~ - 0'21 ~ a :::; - 2 2 + - , 
n~m m a a 
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Proof. 

by the preceding lemma. 

Lemma 8 (Asymptotically Efficient Sample Size). Suppose that 

lim h2 K(h) = 0 and lim Ch = c. 
h~O h~O 

Then 

(i) for every F E F , (3.3) holds, 

(ii) for any probability measure 7r on F satisfying J a} d7r < 00, (3.4) holds. 

Proof. (i) We use N as a shorthand for N(h). First we establish a lower bound 

on N. Since Vn ;:::: n-1 and 
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taking square roots shows that 

(3.5) 

Thus N -+ 00 as h -+ O. Since also limn-+oo Vn = a 2 a.s. , 

The stopping rule also satisfies 

(3.6) 

As h -+ 0 therefore 

lim Nh2 = (ac)2 a.s. 
h-+O 

To prove (3.3), i.e., that 

lim E(N)h2 = (ac? 
h-+O 

it suffices to show that {Nh2h>o are bounded by an integrable function for h in a 

neighborhood of O. From inequality (3.6) we deduce that for h sufficiently small 

Nh2 :::; (c"? sup Vn + 1 
n 
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It suffices to show that E sUPn Vn < 00, which follows from 

,\"",n (X. _ )2 
V. < ui=l t f.l + 1 n _ 

n 

by Lemma 6 and the fact that X i has a finite fourth moment. 

(ii) In order to establish (3.4), we need to show that {h2 E(N)} are uniformly 

integrable with respect to 7r for all h in a neighborhood of O. From (3.6) we get 

N-l 

N(N - 1)h2 :::; (e")2 + (N - l)(K + 1)h2 + (e")2 L(Xi - XN_d2 

i=l 

N-l 

:::; (e")2 + N(K + 1)h2 + (e")2 L(Xi - f.l) 2 
i=l 

N 

:::; (e")2 + N(K + 1)h2 + (e"? L(Xi - f.l) 2. 
i=l 

Therefore, 
N 

N 2h2 :::; (e")2 + N(K + 2)h2 + (e")2 L(Xi - f.l? 
i=l 

Using Wald's equation ([7]) 

and hence 



32 

Therefore, 

Since (J2 is integrable with respect to 7[", we get the uniform integrability of h2 E(N) 

with respect to 7[", which completes the proof of Lemma 8. 

3.2 Exact Coverage Probability 

Our choice for the parameters Ch and K will be based on the following technical 

lemma. Define nmin = max{K, c' /h} -1. Since N(h) 2: K, (3.5) ensures that N(h) -

1 2: nmin. Use N as a shorthand for N(h). 

Lemma 9. Suppose that E and E l are such that 

1 2 
-> E> ---
2 n m in(J2 

(3.7) 

(3.8) 

Then for h sufficiently small and for all F E F, a lower bound on the coverage 
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probability of the confidence intervals defin ed by N(h) is given by 

(3 .9) 

where the Ci's are positive and depend on r, but not on h. 

Let 

Now 

p(l~ -11 >c) =P(IN-Nol >cNo) 
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( 
2 21 2 h

2 1) :::; 2P sup ISn - 0" > cO" - --2 - --. 
n:::::nmin (c') nm.n 

Notice that for h sufficiently small nmin :::; (c/)2 / h2, since limh->o K h2 = O. So for h 

sufficiently small l /nm in ~ h2/(c/)2 and we get that 

P (I;' - 11 > c) :::; 2P ( sup Is'; - 0"21 > cO"2 - _2_. ) . (3.10) 
o n:::::nmin nm~n 

By (3.7) we can apply Lemma 7 to the right-hand side of (3.10) 

(3.11) 

Let Sn = 2:~ Xi' Now estimate the probability that f-L is not covered. 

P(f-L is not covered) '- P (I;; - f-LI > h) = P(ISN - N f-LI > hN) 

:::; P (/ ~ - 1/ > c) + P (/ ~ - 1/ :::; c and IS N - N f-LI > hN ) 

:::; P (I ~ -11 > c) + P (ISNO - Nof-LI > hNo - chNo - c10"VNa) 
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At this point we need to estimate the last two terms in (3.12). We begin with the 

last term. Let n' = min{N, No}. By Kolmogorov's ([6]) inequality we get 

The middle term in (3.12) will be estimated by normal approximation. Let Fn(x) be 

the distribution function of 

From the Berry-Esseen ([6]) theorem we know that 

for all x. Now 
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Finally we need a lower bound for this term 

(3.14) 

By (3.7) 

Therefore, 

( VNo) ~ h(1- E)-(]"- - El ~ ~(c - () . 

Notice that for h sufficiently small ( is less than 1. Also by (3.8) ( > O. Denote the 

minimum of ¢ on the interval (c, c + 1) by M. By the mean value theorem, for some 

~ E (c,c+() 

~(c + () = ~(c) + (¢(~) ~ ~(c) + (M. 
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Finally 

We now combine this inequality with inequality (3.13) to get the desired estimate of 

the middle term in (3.12), and the proof of the lemma is complete. 

Lemma 10. Suppose that there are positive (}o and b such that for all F E F , (}5 :s: (}J. 

and Wp / (}J. < b. If Ch 2 c+hO. 13 and K 2 0, then for h sufficiently small the confidence 

intervals defined by N ( h) achieve confidence level,. 

Proof. Choose c = hO. 42 and Cl = hO. 14 . It is easy to see that for h sufficiently 

small (3.7) and (3.8) are satisfied. We also see that 

Also 

Finally for h sufficiently small 

1 h 
< 2 :s: hO.84 = O(Ch - c). 

nminC 
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By Lemma 9 for h sufficiently small the dominating nonconstant term in (3.9) is Ch-C 

and therefore 

P (p is not covered) < 1 - ry. 

Lemma 11. Suppose that for some positive constant wo, w~ :::; w6, for all F E F. 

Then if K 2:: h-l.S5 and Ch 2:: c) for h sufficiently small the confidence intervals defined 

by N (h) achieve confidence level ry. 

Proof. From Lemma 5 we see that if the variance is small (depending on h), 

the desired coverage is easy to establish: 

So if (J2 < Kh2(1-ry)/8 there is nothing to prove. Assume that (J2 2:: Kh2 (1-ry)/8 2:: 

(1- ry)hO. 15 /8. Again in (3.9) choose c = h°.4S and Cl = hO.16 . It's easy to see that for 

h sufficiently small, (3.7) and (3.8) are satisfied. Also 

Notice that nrnin = K, for h sufficiently small. Since w is uniformly bounded, so are 

(J and p, i.e., (J :::; (Jo and P :::; Po. For h sufficiently small 
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Also for h sufficiently small 

Finally, for h sufficiently small 

From (3.9) we get that for h sufficiently small 

P(p is not covered) < 1 - 'Y. 

Remark 2. The minimal possible order of magnitude for K in the above proof is 

actually h -1.8 in the following sense. There is a constant, say C , depending only on 

the confidence level 'Y, such that if K = C h -1.8, the symmetric confidence intervals 

will achieve precise coverage for h sufficiently small. To see this we need to repeat 

the above proof with c = hO.6 , Cl = hO. 2 . The magnitudes of the terms in (3.9) are as 

follows: 

The role of the constant C is to ensure that the coefficient in front of Kh2 is larger 

than all the coefficients in front of the terms of the same magnitude hO.2
, which will 

make Kh2 again the dominating term in (3.9). 
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Proof of Theorem 4. If WF < B then Lemma 11 applies. If WF > B, then 

B /a} < wF/a} < B, which implies that aF > 1 and Lemma 10 applies. 

Remark 3. The condition that min{ w, W / a 2 } is uniformly bounded can be restated 

as 

1
. W 
1m 2 < 00 

w---t(X) a 

and it is satisfied for most common family of distributions. Examples are the Normal, 

Exponential, Chi-Square, Extreme Value, Poisson and Geometric families of distri-

butions. This condition will fail only for classes of distributions with very heavy 

tails. 

The next corollary says that if the random variables X i are bounded, we can make 

a simple choice for Ch, namely c. In particular this applies to the family of Bernoulli 

distri bu tions. 

Corollary 1. Let Xi be bounded iid random variables, z.e., IXil < B for some con-

stant B independent of F. Let N be the stopping rule 

N=min{n2:K 

For K = h- 1.85 this stopping rule is asymptotically efficient for any F in the sense of 

(3.3) and for any probability measure 7r on:F in the sense of (3.4), and the confidence 

intervals defined by N achieve confidence level 'Y . 

Proof. By Lemma 11 confidence level 'Y is achieved , and the asymptotic efficiency 

follows from Lemma 8. Notice that since the Xi's are bounded, so is a and therefore 
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f (J2 d7r < 00, for any 7r. 

Application of this corollary together with Theorem 2 completes the proof of 

Theorem 1. 

3.3 Two Stage Confidence Intervals 

Here we discuss the two stage procedures associated with our stopping rules. Theorem 

5 shows that the advantage of taking the observations fully sequentially will not 

appear in the first order term of E(N). 

Theorem 5. If min { w, w / (J2} is uniformly bounded for F E F , then for K -

rh-1.851 and Ch = C + hO. 13 the two stage procedure 

1. Take K observations. 

2. If K < r VK~ l then take r VK~ l- K more observations; otherwise stop. 

3. [L, R) = [XN(h) - h, XN(h) + h). 

achieves confidence level , and is asymptotically efficient for any F E F in the sense 

of (3.3). In addition if7r(F) is a probability measure on F such that f (J2 d 7r(F) < 00, 

this two stage procedure is asymptotically efficient with respect to 7r in the sense of 

(3·4)· 

Proof: The proof is based on the same ideas we used in the proof of Theorem 4. 

Take 

N = r max { K, VK ~~ } l 
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It is easy to see that 

2 

IN - No l ::s; ~~10-2 - VKI + 1. 

Define nmin = K - 1. Inequalities (3.10), (3.11) and (3.12) are obtained the same 

way. The analogues of (3.13) and (3 .14) are 

[ ( VNa) ] 6p ::s; 2 1 - <P h( 1 - c) ~ - Cl + 0-
3
..JK 

and 

As before we obtain 

( VNa) ( Ch - C ) <P h( 1 - c) -0-- - Cl 2': <P C - Cc + -2- - Cl . 

( VNa) (Ch - C )' <P h(l - c)~ - Cl 2': <p(c) + -Cc + - 2- - Cl <P (c + 1), 

and as in (3.9) we get 

Now we take K = h-1.85 , C = h°.42 , Cl = hO.14 and Ch = C+ hO.13 . As in Lemma 11 we 
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can deduce that (T2 2': C4ho.15 where C4 is independent of h. The only new term we 

have in the non-coverage probability is 

6p 6w3/ 2 

(T3yIK :s; (T3y1K' 

Suppose that min{w,w/(T2} :s; B. Then for all w > B, W/(T2:s; Band 

6p 6B3/ 2 

-(J3-ylK-=K= :s; -ylK-K- = o( Ch - c) 

Ifw:S;B 

6p 6B3/ 2 6B3/ 2 

(T3yIK :s; (T3yIK :s; (C
4
hO.15 )3/2yIK = O(Ch - c) . 

This establishes P(p is not covered) :s; 1 - r for h sufficiently small. The remaining 

claims are proved as in Theorem 4. 

Remark 4. When the random variables Xi are bounded, then as in the sequential 

case we can choose Ch = c. However , to guarantee coverage probability r the second 

stage has to be modified to "take I VK ~~ l more observations. " 

3.4 Related Literature 

A parametric problem was first considered by Anscombe in [1] in the case of the 

normal distribution. This problem is quite different from the Bernoulli problem con-

sidered in this thesis, since the sample mean and the sample variance are independent 

in the case of the normal distribution. Other notable results for normal populations 
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include those of Simons [17], who showed that a modified Chow-Robbins procedure 

achieves exact coverage, Starr [18], who investigates numerically the errors in the cov­

erage probability approximation for a Chow-Robbins type boundary, and Woodroofe 

[20] , who finds an asymptotic lower bound on expected sample size under the condi­

tion of uniform convergence of the coverage probability. Also in the normal population 

case, second order results are obtained by Simons [17] and Woodroofe [20]. There 

are, however , no results in the literature establishing for non-normal distributions 

asymptotic optimality in the sense of Theorem 1, where confidence level ry is guar­

anteed. While there is considerable research which studies specific sampling plans 

and compares them to the hypothetical fixed sample size plan if the variance were 

known, there is no research which seeks to find optimal sequential procedures and 

lower bounds on their expected sample sizes, except [20] in the normal case. We con­

jecture that a lower bound on the average expected sample size, similar to Theorem 

2 in the Bernoulli case, is true also for a general class of distributions, under suitable 

conditions. 

The first important theorem about a two-stage interval estimation procedure was 

established by Stein [19] in the case of the normal distribution. There have been other 

modifications and improvements of this procedure, for example [9] and [13]. However, 

the literature contains no optimality results , like those in Theorem 5, for non-normal 

distributions, except in [8] , where the exponential distribution is considered. 

For a comprehensive and up-to-date review in the area of fixed-width sequential 

and multistage confidence intervals , one can refer to [7] and [14] . 
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Chapter 4 Exact Lower Bounds and 

Nearly Optimal Procedures 

4.1 Backward Induction 

Here we describe a method for computing explicit lower bounds on B(ry, d, A). We 

define a Bayes problem similar to the problem defined in Chapter 2. Let p be a random 

variable with density function A and let Xl, X 2 , ... be Bernoulli random variables with 

parameter p. Define the loss function of a sequential procedure (N, L, R), R = L + d 

to be 

where e and l are parameters to be specified later. We are interested in finding 

procedures that minimize the integrated risk I = E(£). 

There is a nice interpretation of this problem. An unknown p is selected from 

a known distribution A. A statistician can sample from Bernoulli(p) and each ob­

servation costs e. The statistician decides how much to sample and after stopping 

announces an interval of width d. The statistician receives (p(1 - p))l if p belongs 

to that interval and otherwise receives O. We are interested in the strategy that 

maximizes the earnings. The solution of this problem is given by Optimal Stopping 

Theory in the form of an algorithm called Backward Induction ([3], [5]). By Theorem 
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3, Chapter 7, in [3] there exists a t such that for the optimal strategy Pp(N :s: t) = 1 

for all p. Therefore, we can restrict the search for the optimal strategy to the class of 

strategies with uniformly bounded sample size. The smallest possible posterior loss 

for (N, L , R), after observing s successes and j failures and stopping is 

L+d 

E(£lj, s) = E(£IN = s + j, SN = s) = e(s + 1) - mF J (p(l - p))I),(pls, 1) dp. 

L 

Let l(s, j) denote the smallest possible posterior loss of an optimal strategy, given 

that the point (s, 1) is reached. Then 

l(s,1) = min{E(£ls, j), P(Xs+f+l = lis, 1)1(s + 1,1) + P(Xs+f+1 = Ols, 1)1(s, j + I)} 

(4.1) 

This equation expresses the fact that the smallest possible conditional expected loss, 

given that the point (s, 1) is reached, is the minimum of the smallest loss if one 

stops and the smallest loss if one continues. The latter is evaluated by considering 

the probabilities of the cases Xs+f+1 = 1 and Xs+f+l = 0 and multiplying by the 

best possible conditional expected losses in those cases. Now we wish to compute 

1= 1(0,0). To begin, we compute l(s, 1) for (s,1) = (0, t), (1, t - 1), ... , (t, 0) using 

l(s, j) = E(£lj, s). 

Then for each k = t - 1, t - 2, ... ,0 in succession, the "backward induction" proceeds 

by computing l(s, 1) for (s , 1) = (0, k), (1 , k - 1) , ... , (k, 0) using (4.1). The optimal 
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stopping time is defined by: stop at the first n such that 

i.e., the stopping points are those (s, 1) for which I(s , 1) = E(£ls, f), and each point 

which is not a stopping point is a continuation point. 

Denote I by Ie,l and the optimal stopping time by N* (e, l) to indicate the de-

pendence on the parameters e and l. The stopping rule N *, with parameters chosen 

properly, is the stopping rule which we want to calculate. 

Also, the value of Ie ,l leads to a lower bound on BCr, d,),) in the following way. If 

(N, L, R) is a width d level , confidence interval, then 

1 1 

Ie,l ::; E(£(N, L , R)) = e j EpN),(p) dp - j Pp(L ::; p::; R)(p(l - p))l),(p) dp 
o 0 

1 1 

::; e j EpN),(p)dp-, j(P(l-P))I)'(P)dP, 
o 0 

which implies the lower bound 

1 

Ie,l +, J(p(l - p))l ),(p) dp 
BCr, d,),) ~ ___ O~ ____ _ 

e 
(4.2) 

Relation (4.2) is used to obtain a numerical lower bounds on BCr, d,),) by choosing 

pairs of values of e and l, computing Ie,l by backward induction, and using the largest 

value of the right-hand side of (4.2) obtained in this way. 
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Remark 5. For other families of distributions the factor (p(l- p))1 should be replaced 

Remark 6. We can obtain analytically a value of t that can be used in the algorithm 

but such a t would be unnecessarily large. Instead we guess a value of t, start the 

algorithm, and if there are continuation points on the line s + f = t, we increase t, 

repeating the procedure until there are no continuation points on that line. As an 

initial guess of t we take c2 / d2
, which is the asymptotic result for p = 0.5 . 

4.2 Asymptotically Efficient Stopping Times 

Here we describe explicitly the stopping rules suggested by the asymptotic theory. 

Suppose that we are interested in finding a width 2h level 'Y confidence interval 

1 

(N, L, R) for p that minimizes J Ep(N)fa,b (P) dp, where fa,b(P) is the Beta(a, b) den­
o 

sity function. The stopping rule N'(K) suggested by the asymptotic theory is 

N'(K) = min {n _ K > c
2
(s + a)(J + b)} 

n - h2n 2 ' 

where c = 11>-1 ((1 + 'Y)/2) and s = Sn , f = n - Sn. The stopping rule depends on 

a parameter K which is restricted to integer values, for simplicity. The two stage 

procedure, NI/(Ch' K), depending on the parameters Ch and K, is defined by: the 

sample size for the first stage is K and the sample size for the second stage is 

{a r c~(s + a)(J + b)l- K} 
max , h2 K2 ' 
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where s = SK is the number of observed successes during the first stage and f -

K - SK is the number of observed failures during the first stage. When the second 

stage sample size is 0, the sampling terminates after the first stage. The parameters 

Ch and K will be determined numerically as described in Section 4.4. 

R emark 7. It was suggested by the asymptotic theory that for the fully sequential 

procedures only the parameter K needs to be selected and Ch can be taken to be c. 

For the two-stage procedure both parameters Ch and K need to be selected numeri­

cally. Our numerical investigation shows that if we restrict Ch to C in the two-stage 

procedure, the performance suffers. This was also suggested by the asymptotic theory. 

4.3 Lorden's Push Algorithm 

In this section we will discuss Lorden's method for constructing confidence intervals 

that improve upon the performance of [Xn - h, Xn + h]. Lorden shows ([12]) that 

in the fixed sample size case one can improve the minimum coverage probability 

obtained by fixed width d confidence intervals by letting [L , R] increase as a function 

of Xn as rapidly as possible, i.e., the intervals [L, R] are pushed to the right as much 

as possible. This push algorithm can also be applied in the sequential setting for 

any given stopping rule, N (see Theorem 7), and the algorithm constructs the so­

called pushed confidence intervals. The pushed confidence intervals applied to the 

stopping rules N* (e , l) , N' (K) and Nil (Ch' K) described in the previous sections form 

the confidence interval procedures that we propose for use. 

Fix a stopping rule N. In order to apply the push algorithm we need to define 
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an ordering of the stopping points (s, 1) = (S N, N - S N)' The push algorithm uses 

this ordering to set confidence intervals covering smaller p values for smaller points, 

i.e., if (s, 1) precedes (s', II) then L(s , 1) ~ L(s',1') and R(s , i) ~ R(s', I'). In the 

fixed sample size case the optimal (see [12]) ordering of the stopping points is defined 

by their maximum likelihood estimate of p, i.e., by the number of successes. In the 

sequential case such an optimality property is not known, i.e., there is no reasonable 

conjecture that determines the optimal ordering of the stopping points. In the hope 

of achieving near-optimality, we propose to use the maximum likelihood estimate of 

p, i.e., if (8,1) and (8',1') are two stopping points, we say that (8,1) precedes (8',1') 

if 8/ (s + i) < s' / (s' + i')· If s / (s + 1) = s' / (s' + 1') , we say that (8, 1) precedes (s', 1') 

if s < s'. Index the stopping points as (Si' Ii) for i = 1, ... ,]. Let J be the index of the 

actual stopping point (S N , N - S N ). Now we have to define the confidence interval 

[L , RJ for all the possible values of J, 1, ... ,], so that Land R increase as a function 

of J as rapidly as possible. 

There is another consideration that plays an important role. The sample space 

of J is finite, and if the confidence intervals are based only on J, then the coverage 

probability as a function of p will have relatively large jumps at the endpoints of the 

confidence intervals. Greater efficiency, i.e. , larger 1', is achievable by reducing the 

size of the jumps through a technique called randomization. Let U be a uniformly 

distributed random variable on the interval [-0.5,0.5]' independent of the XIs . Let 

Y = SN + U. The randomized pushed confidence intervals for p are based on the 

value of Y, i.e., L = L(Y) and R = L + d increase in Y as rapidly as possible. 
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The optimality property that determines the construction of Lorden's pushed 

intervals, even in the fixed sample size case, requires that the endpoints Land R 

of the confidence intervals be restricted to a finite grid {O, !, ~, ... , rn~l, 1} in order 

to make a numerical algorithm possible. As explained in [12], the construction of 

optimal [L , R] that are not limited to a grid requires taking monotonic majorants, 

which are not computable. In our numerical investigations we use m = 105 , so that 

little is lost by this restriction. Theorem 8 shows that ~ is an upper bound on 

the difference between the unrestricted shortest-width intervals and shortest-width 

intervals that are grid limited, i.e., that have end points in {O, !, ... , 1}. Let Pk = ! 
for k = 0, .. . ,m. 

Definition 1. A confidence interval [L , R] has grid coverage level '"Y if for k = 1, ... , m 

( 4.3) 

for P = Pk- l and P = Pk · 

Choose m and r so that .I.... = d. rn 

Theorem 6 (Lorden). Grid-limited level '"Y confidence intervals have grid coverage 

level '"Y. 

Proof. Let [L , R] be a grid-limited level '"Y confidence interval. Let Yk = 

inf{yIL(y) > Pk} for k = 0, ... , m and Yk = -0.5 for k = -r, ... , -1. Note that 
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{ydk=-r is a nondecreasing sequence. Suppose Pk- l < P < Pk. Then 

{ ::; Pp(L(Y) ::; P ::; R(Y)) = Pp(L(Y) ::; Pk-l < Pk ::; R(Y)) (4.4) 

Now L(y) ::; Pk- l if and only if y < Yk or Y = Yk and L(Yk) ::; Pk- l' Also R(y) 2:: Pk if 

and only if L(y) :2: Pk- r if and only if Y > Yk-r or Y = Yk- r and L(Yk- r) = Pk-r. Since 

Y is a continuous random variable, for all P 

Since Pp(Yk- r ::; Y ::; Yk) is a continuous function of p, we obtain that 

Pp(L(Y) ::; Pk-l < Pk ::; R(Y)) is a continuous function of p, and since inequality 

(4.4) is valid for P E (Pk - l,Pk) we conclude that 

for P = Pk- l and P = Pk· 

In the fixed sample size case, the converse of the above theorem is also true, as 

shown in [12]. However, in the sequential case it is not true in general for all stopping 

rules, but it is true for some classes of stopping rules. Discussion of this will appear in 

[2]. When m is large the coverage level of a confidence interval is well approximated 

by its grid-coverage level and the procedures that we propose achieve grid-coverage 

level {. 
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Denote by Fk the distribution function of Y when Pk is true, i.e., Fk(y) = 

Pp=Pk (Y ::; y). Since Y is a continuous random variable, the inverse functions Fk-
1 (ex) , 

k = 0, ... , m, defining the ex quantiles are well-defined and are strictly increasing for 

° < ex < 1. It is convenient to define for all k 

-.5 if ex = ° 
Fk- l(ex) = j + .5, if ex = 1 

+00, if a > 1, 

which preserves the strictly increasing property. We are interested in finding the 

smallest integer r such that there exist grid-limited width rim level '"Y confidence 

intervals for p that are nondecreasing functions of Y. 

Theorem 7 (Lorden). Suppose a stopping time N is given and also an ordering 

{(Si ' fi) , i = 1, .. }} of the stopping points. Fix m and require that 

L, R E {a, 11m, 21m, ... , 1}. Suppose that there exists a width rim confidence interval 

[L , R] with grid coverage level '"Y such that L(Y) and R(Y) are nondecreasing in Y. 

Then there exists a nondecreasing sequence {ydk=-r such that 

if Yk < Y < Yk+l then [L(y), R(y)] = [Pk,Pk+r]' (4.5) 

The sequence {Yk}k=- r satisfies 

(4.6) 
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As a consequence, Yk 2:: Xk for all k, where {xdk=-r is defined by Xk = -0.5 if k < 0 

and if k 2:: 0 

Then 

( 4.8) 

defines grid-limited width rim confidence intervals with grid coverage level ,",(, and 

L*(y) 2:: L(y) and R*(y) 2:: R(y) for all y. 

Proof. Let Yk = inf{yIL(y) 2:: Pk} Then (4.5) is clearly satisfied. We have 

and 

The two inequalities yield 
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and 

which proves (4.6), since {yd is nondecreasing. Now it is straightforward to prove 

by induction on k that Yk 2: Xk· The induction step uses the fact that Yk-r 2: Xk-r 

implies Fj(Yk-r) 2: Fj(Xk-r) for j = k - 1, k and the fact that Fj-
1 is nondecreasing. 

The confidence interval [L *, R*] has grid confidence level '"Y since (4.7) implies that 

(4.9) and (4.10) hold with Xk in place of Yk. 

Note that the sequence {Xk} is well-defined whether or not width rim confidence 

intervals of grid coverage level '"Y exist. The terms Xk are all finite if and ony if 

Fk-1(Xk-r) :::; 1 - '"Y for all k. This is how we numerically check whether grid level 

'"Y width d confidence intervals exist: we compute the sequence {xd using equation 

(4.7), and if Xm is finite the algorithm succeeds and equation (4.8) defines the pushed 

confidence intervals. Otherwise, Theorem 7 says that width rim intervals with grid 

coverage level '"Y do not exist. Thus, given Nand m, we can use the push algorithm 

to find the smallest r (by trial and error) for which width rim confidence intervals of 

grid coverage level '"Y exist as a nondecreasing function of Y. 

The following theorem shows that grid-limited confidence intervals are not much 

longer than non-grid-limited ones. 

Theorem 8 (Lorden). Suppose that r is the smallest integer such that grid limited 

width rim level '"Y confidence intervals nondecreasing in Y exist. If there exists a level 

'"Y width d confidence interval procedure that is nondecreasing in Y, then d > (r-2)/m. 

Proof. Suppose that d :::; (r - 2)/m. If Pj :::; L(y) < pj+l then R(y) < Pj+r-l· 
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Define [L*(y), R*(y)] = [pj,Pj+r-l] for such y. Then clearly [L*(y), R*(y) ] defines a 

nondecreasing grid-limited width (r-1)/m confidence interval with coverage probabil­

ity 'Y, contrary to the assumption that rim is the smallest possible level 'Y monotonic 

grid limited confidence interval. 

Remark 8. The pushed confidence intervals are not symmetric with respect to the 

symmetry on the interval [0,1] : P --+ 1 - p. However , Lorden has shown in [12] that 

the pushed confidence intervals, once they are constructed, can be easily modified to 

be symmetric and all the optimalities continue to hold. 

4.4 Numerical Examples 

In this section we report numerical results obtained for specific sets of parameters. We 

use inequality (4.2) to produce explicit lower bounds on B("( , d, '\). The maximization 

with respect to the parameters land e is done on a grid. Given 'Y, d, and ,\ we wish to 

determine the set of parameters defining N*, N' and Nil for which the push algorithm 

succeeds, i.e. , such that the push algorithm constructs width d level 'Y confidence 

intervals for P and 

(4.11) 

is minimal. 

For N* this is done in the following way. For a fixed l, Ep (N* ( e, l)) is a decreasing 

function of e. Therefore, for l on a grid we determine the largest e for which the push 
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algorithm succeeds. Then we minimize (4.11) with respect to l. The values of l we 

used are all in the interval [0,2]. 

The value of K that specifies N' is selected to be the smallest K for which the push 

confidence intervals succeed, the reason being again that Ep(N'(K)) in increasing in 

K. Since K is an integer this computation is very fast . In fact the biggest advantage 

of N' is that it requires much less computation when compared to N* and Nil. The 

search for K is initiated at K = O. 

The search for the optimal parameters Ch and K for the two stage procedure 

N"(Ch, K) is done in the following way. Since Ep(N"(Ch, K)) is increasing in Ch, for 

a fixed K we determine the smallest Ch for which the push algorithm succeeds and 

then we minimize (4.11) with respect to K. 

Tables 1 and 2 show that all three procedures that we propose come very close to 

being optimal. Another conclusion that we can draw (something we already suspect 

from the asymptotic theory) is that the advantage of a fully sequential procedure when 

compared to a two-stage procedure is relatively small, and the two-stage procedures 

are very effective in the Bernoulli problem. Table 2 also shows that occasionally the 

two-stage procedure Nil performs better than the sequential, but this is due to the 

fact that the two stage procedure is optimized with respect to two parameters and 

the sequential is optimized only with respect to one parameter, which we artificially 

restricted to the integer values for simplicity. Also in Table 2 in one instance the 

Bayesian procedure performed worse than the sequential and the two-stage procedure, 

which we think is due to the discrete nature of E(N). Table 3 shows maxp Ep(N*) 
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and max N*, which occurs for p = 0.5. The results show that our procedures always 

perform better than the Classical Extreme Tails method. However, they perform 

worse than Lorden's best fixed sample size method for some values of p. Table 4 shows 

the optimal choice for the parameters defining the stopping rules. Figures 4.1 and 4.2 

show the stopping boundaries N* and N ' , which are very close. Figures 4.3 and 4.4 

show the stopping boundaries for the two-stage rule. The meaning of the graph is the 

following: the straight line represents the first stage sample size and to get the second 

stage sample size one needs to find the intersection point of the second boundary and 

the line connecting the origin of the coordinate system and the position of the random 

walk after the first stage. The sum of the two coordinates of that intersection point 

represents the total number of observations. Figures 4.5 and 4.6 show Ep(N*) as a 

function of p when the prior function is Beta(l, 1) and Beta(3,3) compared to the 

classical fixed sample method and Lorden's best fixed sample method. Figures 4.7 

and 4.8 show the curves defining the pushed confidence intervals and, for comparison, 

the straight lines defining the centered confidence intervals. 
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Table 1. Average Expected Sample Size with Uniform Prior, ,"(=0.95 

h 0.1 0.065 0.05 0.03 
Classical Extreme Tails 104 240 402 1096 
Lorden Fixed-Sample Size 78 199 347 1004 
Two-Stage Proced ure( N") 65.1 154.3 261.4 722.2 
Sequential Procedure(N') 63.1 152.5 256.9 714.2 
Bayesian Procedure(N*) 62.6 151.3 256.0 712.3 
Lower Bound 61.1 149.0 253.7 709.3 

Table 2. Average Expected Sample Size with Beta(3,3) Prior, '"(=0.95 

h 0.1 0.065 0.05 0.03 
Classical Extreme Tails 104 240 402 1096 
Lorden Fixed-Sample Size 78 199 347 1004 
Two-Stage Procedure(N") 76.3 188.9 323.3 909.4 
Sequential Procedure(N') 76.7 189.2 323.3 908.5 
Bayesian Procedure(N*) 76.1 188.2 323.1 909.7 
Lower Bound 74.6 187.0 321.3 906.6 

Table 3. maxpEp(N*) and maxN* with Uniform Prior, ,"(=0.95 

h 0.1 0.065 0.05 0.03 
maxpEp(N*) 90.9 222.1 376.8 1065.8 
maxN* 92 225 378 1068 

Table 4. Parameter Specification with Uniform Prior, ,"(=0.95 

h 0.1 0.065 0.05 0.03 

(Ch , K) for N" (1.8,36) (1.87,52) (1.908,95) (1.938,190) 

(K) for N' -7 -5 -5 -3 
(e10 - 0, l) for N* (1.69,0.81) (0.7283,0.87) (0.4368,0.87) (0.1594,1) 

Lower Bound (1.8,1.2) (0.76,1.17) (0.45,1.1 ) (0.16,1.05) 
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Figure 4.1: N * and N'(dotted line) , Uniform Prior, h = 0.1, '"Y = 0.95 
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Figure 4.2: N* and N'(dotted line), Uniform Prior, h = 0.03, 'Y = 0.95 
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Figure 4.3: Nil, Uniform Prior, h = 0.1, 1=0.95 
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Figure 4.4: Nil , Uniform Prior , h = 0.03, 1=0.95 
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Figure 4.5: Ep(N*), Uniform Prior (the more peaked graph) and Beta(3,3) Prior, 
Classical Fixed Sample and Best Fixed Sample, h = 0.1, "y = 0.95 
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Figure 4.6: Ep(N*), Uniform Prior (the more peaked graph) and Beta(3,3) Prior, 
Classical Fixed Sample and Best Fixed Sample, h = 0.03, "y = 0.95 
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Figure 4.7: Pushed Confidence Intervals for N* and centered intervals , Uniform Prior, 
h = 0.1, "( = 0.95 
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Figure 4.8: Pushed Confidence Intervals for N* and centered intervals, Uniform Prior, 
h = 0.03, "( = 0.95 
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