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Abstract 

This thesis presents a set of mathematical techniques for analyzing neural activity and then 

applies them to data from a variety of experiments. Imaging data, in which movies of 

brain activity are recorded, is considered first and ways to suppress noise and characterize 

the signal are explored. Data from the cortex of behaving monkeys is then considered. 

These techniques are used to analyze the activity of populations of neurons during eye 

movements. Oscillations are found that encode information predicting "where" and "when" 

an eye movement is made. Activity in other parts of the brain involved in reaching and 

the perception of motion are then analyzed and shown to encode other information in a 

similar way. These results show neuronal dynamics may be used by the brain to process 

information during behavior. 
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Introduction 

The brain constitutes a complex dynamical system with a large number of degrees of free­

dom, so multichannel measurements are necessary to gain a detailed understanding of its 

behavior. Such multichannel measurements, made available by current instrumentation, 

include multielectrode recordings, optical brain images using intrinsic (Blasdel and Salama, 

1986; Grinvald et al., 1992) or extrinsic (Davila et al., 1973) contrast agents , functional 

magnetic resonance imaging (fMRI) (Ogawa et al. , 1992; Kwong et al., 1992) and mag­

netoencephalography (MEG) (Hamalainen et al., 1993). As a result of improvements in 

the capabilities of the measuring apparatus, as well as growth in computational power and 

storage capacity, the data sets generated by these experiments are increasingly large and 

more complex. The analysis and visualization of such multichannel data is an important 

piece of the associated research program, and is the subject of this thesis. 

There are several common problems associated with the different types of multichannel 

data enumerated above. First, preprocessing is necessary to remove nuisance components, 

arising from both instrumental and physiological sources, from the data. Second, an ap­

propriate representation of the data for purposes of analysis and visualization is necessary. 

Third, there is the task of extracting any underlying simplicities from the signal, mostly 

in the absence of strong models for the dynamics of the relevant parts of the brain. If 

there are simple features that are hidden in the complexity of the data, then the analytical 

methodology should be such as to r eveal such features efficiently. 

With the current exponential growth in computational power and storage capacity, it is 

increasingly possible to perform the above steps in a semiautomated way, and even in real 

time. In fact, this is almost a prerequisite to the success of multichannel measurements, since 

the large dimensionality of the data sets effectively precludes exhaustive manual inspection 

by the human experimenter. An additional challenge is to perform the above steps as far 

as possible in real time, thus allowing quick feedback into the experiment. Note that even 



2 

given the increases in storage capacity it is desirable to have ways of compressing the data 

while retaining the appropriate information, so as to prevent saturation of the available 

storage. 

Problems such as the above are clearly not unique to neuroscience. Automated analy­

sis plays an important role in the emergent discipline of computational molecular biology. 

Despite the current relevance of these problems, the appropriate analyt ical and computa­

tional tools are in an early stage of development. In addition, investigators in the field are 

sometimes unaware of the appropriate modern signal processing tools. Since little is un­

derstood about the detailed workings of the brain, a straightforward exploratory approach 

using crude analysis protocols is usually favored. However , given the increasing availability 

of computational resources, this unnecessarily limits the degree of knowledge that can be 

gained from the data, and at worst can lead to erroneous conclusions, for example when 

statistical methods are applied inappropriately (cf.Cleveland (1993) p .177). Alternatively, 

a superficial application of complex signal processing or statistical t echniques can lead to 

results that are difficult to interpret. 

An aspect of the data in question that cannot be emphasized enough is the fact that 

the data constitute time series, mostly multivariate. While techniques for treating static 

high-dimensional data are widely known and appreciated both in multivariate statistics and 

in the field of pattern recognition, the techniques for treating time series data are less well 

developed, except in special cases. Special consideration is given to analyzing the data in 

reference to the associated behavior of the animal. 

The first chapter reviews some of the relevant analytica l techniques for multivariate 

time series. In particular, a description of muititaper spectral methods (Thomson , 1982; 

Thomson and Chave, 1991; Percival and Walden, 1993). This is a framework for performing 

spectral analysis of univariate and multivariate time series that has particular advantages 

for t he data at hand. A central issue is to be able to deal with very short data segments and 

st ill obtain statistically well behaved estimators. Reasons for this are that gathering long 

time series may be expensive (for example in fMRI), and that the presence of nonstationarity 

in the data due to behavior makes it preferable to use a short, moving analysis window. 
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Multitaper methods are particularly powerful for performing spectral analysis of short data 

segments. This chapter also presents the spectral analysis of point processes which can be 

treated in the same fashion as continuous time series. 

The second chapter treats in succession dynamic brain imaging data gathered in MEG, 

optical, and fMRI experiments. Based on the analysis of actual data sets , protocols to 

remove artifactual components as well as to determine the structure of the signal are dis­

cussed. The properties of the data as multivariate time series are emphasized. Principal 

concerns are twofold: (1 ) characterization and removal of the typical artifacts, and (2) char­

acterization of underlying structure of the signal left after removal of artifacts. Together 

with parts of chapter one, this work was published in the Biophysical Journal (Mitra and 

Pesaran , 1999). 

The third chapter presents spiking and local field potential (LFP) activity from area 

LIP in the parietal lobe during a memory-saccade task. Using multitaper spectral analysis 

presented in Chapter 1 elevated power in the gamma band (25- 90 Hz) in spiking and LFP 

activity is found during the memory period but not simple fixation. This activity is spatially 

tuned to the direction of the saccade. Spiking and LFP activity are also coherent in the 

gamma band but not low frequency. These results are evidence for memory fields defined by 

temporal structure that we term dynamic memory fi elds in which spiking is correlated with 

extracellular currents that give rise to gamma band LFP power. LFP activity in the beta 

frequency band (15-25 Hz) is related to preparation, and movement execution is a lso found. 

Therefore, t emporal structure in t he LFP in parietal cortex predicts both t he direction and 

t ime of a planned movement which could accelerate the development of a cortical neural 

prosthesis. 

The fourth and final chapter compares and contrasts spiking activity from three areas 

that contain gamma band activity, the lateral intra-parietal area (LIP), t he parietal reach 

region (PRR) , and the middle temporal area (MT) , during three different tasks, the memory­

saccade, the memory-reach and a visual motion discrimination task, respectively. Previous 

analysis of these data are extended by estimating interspike interval (lSI) correlations using 

the interval spectrum. This sheds new light on the nature of gamma band activity in 
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parietal cortex, and implications for stochastic process models for the data are discussed. 

The thesis also contains two appendices. The first appendix presents work using optical 

imaging with an extrinsic contrast agent to study waves of electrical activity in the visual 

areas of turtle cortex. This work was published in the Proceedings of the National Academy, 

USA (Precht! et al. , 1997). The second appendix presents work studying the nonlinear 

dynamics of the syrinx in a song bird. This work was published in Nature (Fee et al. , 1998). 

The final appendix contains a list of abbreviations. 
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Chapter 1 Data analysis techniques 

1.1 Time serIes analysis techniques 

Here we briefly review some methods used to analyze time series data. The aim here is 

not to provide a complete list of the relevant techniques, but discuss those methods which 

are directly relevant for the work to follow. In particular , in the next section, we provide 

a review of multitaper spectral analysis techniques (Thomson, 1982; Percival and Walden, 

1993) . 

The basic example to be considered is the power spectral analysis of a single (scalar) 

time series, or an output scalar time series given an input scalar time series. The presence 

of t emporal structure in neural act ivity is of much interest (Singer and Gray, 1995) . Cor­

relation functions are often estimated in the time domain to detect t emporal structure but 

have long been known to suffer serious problems of estimation bias and variance which are 

exacerbated in the context of a behaving animal (for a review see J arvis and Mitra (2001)). 

These problems cannot be addressed by pooling observations across a large period of time 

with different associated behaviors during the experiment as this leads to violation of the 

stationarity assumption and potential misinterpretation of the dat a. The relevant analysis 

t echniques can be generally categorized under two different attributes: linear or nonlinear, 

and parametric or nonparametric. We will mostly be concerned with multitaper spectral 

techniques, for which the attributes are linear and nonparametric. Although we categorize 

the techniques as linear , note that spectra are quadratic functions of the data. Also, some 

of the spectral quantities we consider are other nonlinear functions of t he data. We pre­

fer nonparametric spectral techniques (e.g., multitaper spectral estimates) over parametric 

ones (e.g., autoregressive spectral estimates, also known as maximum entropy spectral esti­

mates, or linear predictive spectral estimates). Some weaknesses of parametric methods in 

the present context are lack of robustness and lack of sufficient flexibility to fit data with 
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complex spectral content. The reader is referred to the literature for a comparison between 

parametric and nonparametric spectral methods (Thomson, 1982; Percival and Walden, 

1993), and we also discuss this issue further below. 

Methods based on time lag or delay embeddings will not be used as they characterize 

neurobiological time series as outputs of underlying nonlinear dynamical systems. These 

methods work if the underlying dynamical system is low-dimensional and if one can obtain 

large volumes of data so as to enable construction of the attractor in phase space. The 

amount of data needed grows exponentially with the dimension of the underlying attractor. 

On the one hand, it is true that neurobiological time series are outputs of rather nonlinear 

dynamical systems. However, in most cases it is not clear that the constraint of low di­

mensionality is met , except perhaps for very small networks of neurons. In cases where the 

dynamics may appear low-dimensional for a short time, nonstationarity is a serious issue, 

and precludes acquisition of very long stretches of data. One might think that nonsta­

tionarity could be accounted for by simply including more dynamical degrees of freedom. 

However, that also would require the acquisition of exponentially larger data sets. We 

constrain ourselves to spectral analysis techniques as opposed to the techniques indicated 

above. The reason for this is twofold: first , spectral analysis remains a fundamental com­

ponent of the repertoire of tools applied to these problems, and as far as we are concerned, 

the appropriate spectral techniques have not been sufficiently well studied or utilized in 

the present context . Second, it remains debatable whether much progress has been made 

in understanding the systems involved using the nonlinear techniques (Theiler and Rapp, 

1996; Rapp et al. , 1994). 

1.1.1 Time domain versus frequency domain: resolution and nonstation­

arity 

In the neurobiological context, data are often characterized in terms of appropriate corre­

lation functions. This is equivalent to computing corresponding spectral quantities. If the 

underlying processes are stationary, then the correlation functions are diagonal in frequency 

space. For stationary processes, local error bars can be imposed for spectra in the frequency 
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domain, whereas the corresponding error bars for correlation functions in the time domain 

are nonlocal (Percival and Walden, 1993). In addition, if the data conta ins oscillatory com­

ponents, which is true for the data treated here, they are compactly represented in frequency 

space. These reasons form the basis for using a frequency-based representation. For some 

other advantages of spectra over autocovariance functions, see Percival and Walden (1993), 

pp. 147- 149. The arguments made here are directly applicable to the continuous processes 

that are of interest in the current paper. Similar arguments also apply to the computation 

of correlation functions for spike trains. An exception should be made for those spike train 

examples where there are sharp features in the time domain correlation functions, e.g., due 

to monosynaptic connections. However, broader features in spike train correlation functions 

are better studied in the frequency domain. 

Despite the advantages of the frequency domain indicated above, the frequent presence 

of nonstationarity in the data makes it necessary in most cases to use a t ime-frequency rep­

resentation. In general, the window for spectral analysis is chosen to be as short as possible 

to be consistent with the spectral structure of the data, and t his window is translated in 

time. Fundamental to t ime-frequency representations is the uncertainty principle, which 

sets the bounds for simultaneous resolution in t ime and frequency. If the time-frequency 

plane is 'tiled' so as to provide time and frequency resolutions i:;.t by i:;.j , then i:;.ti:;.j 2: 1. 

Although there has been a lot of work involving tiling t he time-frequency plane using time­

scale representations (wavelet bases), we choose to work with frequency rather than scale 

as the basic quantity, since the time series we are dealing with are better described as 

having structure in the frequency domain. In particular, the spectra typically have large 

dynamic range (which indicates good compression of data in the frequency space), and also 

have spectral peaks, rather than being scale invariant. The time-frequency analysis is often 

crucial to see this structure, since a long-t ime average spectrum may prove to be quite 

featureless. An example of this is presented by MEG data in Section 2.4.1. 
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1.1.2 Digitization rate, Nyquist frequency, Fourier transforms 

Some quantities central to the discussion are defined below. Consider a time series window 

of length T. The frequency resolution is given by the so-called Raleigh frequency, of = 1 /T. 

In all real examples, the time series is obtained at discrete time locations. If we assume 

the discrete time locations are uniformly spaced at intervals of b.t, then the number of 

time points N in the interval T is given by N = T /( b.t) . The digitization frequency or 

digitization rate is by definition 1/(b.t). An important quantity is the Nyquist frequency 

fNyq, defined as half the digitization frequency fN yq = 1/(2b.t). In this context, it is 

important to recall the Nyquist theorem and the related concept of aliasing. The basic 

idea of the Nyquist theorem is that the digitized time series is a faithful representation 

of the original continuous time series as long as the original one does not contain any 

frequency components above the Nyquist frequency. Put in a different way, a continuous 

time series, which is band-limited to the interval [- B, B], should b e digitized at a rate > 2B 

(i.e., b.t = 1/ (2B)) in order to retain all the information present in the continuous time 

series. Aliasing is an undesirable effect that occurs if this criterion is violated, namely if a 

time series with frequency content outside the frequency interval [- fNyq, f Nyq] is digitized 

at an interval b.t = 2/fNyq . The spectral power outside the specified interval is then 

'aliased' back into the interval [- fNyq, fNyq]. Consequently, the Nyquist theorem tells us 

how frequently a continuous time series should be digitized. These concepts are fundamental 

to the discussion, and the reader unfamiliar with them would benefit from consulting an 

appropriate text (e.g. , (Percival and Walden, 1993)). 

The Fourier transform xU) of a discrete time series {xt lt = nb.t, n = 1, 2, ... , N} is 

defined in this paper as 

N 

xU) = L Xtexp( -27rifnb.t) (1.1) 
n=l 

In places where we use the convention b.t = 1, the above equation may be rewritten replacing 

n by t as 
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N 

xU) = L Xtexp( -27ri ft) (1.2) 
t = 1 

The corresponding Nyquist frequency is dimensionless and numerically equal to 1/2 . In 

any real application, of course, both the digitization rate and the Nyquist frequency have 

appropriate units. The total time window length T now becomes interchangeable with N. 

More generally, T = N t::.t as above. One frequent source of confusion is between the Fourier 

transform defined above and the fast Fourier transform (FFT). The FFT is an algorithm 

to efficiently compute the Fourier transform on a discrete grid of time points, and should 

not be confused with the Fourier transform, which is the underlying continuous function of 

frequency defined above. 

1.1.3 Conventional spectral analysis 

In this and subsequent subsect ions, we set t::.t = 1, T = N. Physical units are restored where 

appropriate. We consider below a model example of a t ime series constructed by adding a 

stochastic piece, consisting of an autoregressive process excited by white Gaussian noise, to 

three sinusoids. The time series is given by Yt = Xt + 2:%=1 Ak sin(27r fkt + ¢k), where t = 

1, 2, .. , N wit h N=1024, and the parameters of the sinusoids are Ak = (0.7,0.7, 0.08) , fk = 

(0.122,0.391,0.342), and ¢k = (0, 7r/3, 27r/3) for k = (1,2, 3). Here Xt is an autoregressive 

process of order 4 given by Xt = 2:~= 1 akXt- k + £t , with ak = (1.87, - 1.96, 1.55, - 0.683) . 

For successive time samples t, £t are independently drawn from a normal distribution with 

unit variance. In Fig. 2, the first 300 points of the time series example are plotted. 

In conventional nonparametric spectral analysis a t apered Fourier transform of the data 

is used to estimate t he power spectrum. There are various choices of tapers. We use 

'taper' rather t han 'window' , because window is used below to label a segment of data used 

in spectral analysis, particula rly in t ime-frequency analysis. A taper with optimal band­

limiting propert ies is the zeroth discrete prolate spheroidal sequence, which is described in 

detail later in the text. Using this taper, a single taper spectral estimate is given in t he 

top right corner of Figure 1.4. In this and the following section, the Fourier transforms are 
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Figure 1. 1: Piece of a time series composed of a stochastic piece generated by an order 4 
autoregressive process added to a sum of three sinusoids (see text) . 
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F igure 1.2: Autoregressive spectral estimate of time series data shown in Figure 1.1 (dash ed 
line). Also shown is the theoretical spectrum of the underlying process (solid line) _ Note 
that the sine waves lead to delta functions, whose heights have been determined for the 
display so that the integrated intensity over a Raleigh frequency gives the correct strength 
of the theoretical delta function. The autoregressive estimate completely misses the peaks 
at f = 0.122 and f = 0.391. 
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implemented using an FFT after t he time series of length N is padded out to length 4N 

or 8N. This still gives a discrete representation of the corresponding continuous functions 

of frequency; however, the grid is sufficiently fine that the resulting function appears to be 

smooth as a function of frequency. 

1.1.4 Autoregressive spectral estimation 

To illustrate a parametric spectral estimate, we show in Figure 1.2 the results of an autore­

gressive (AR) modeling of the data using an order 19 AR process. We used the Levinson­

Durbin procedure for purposes of t his illustration (P ercival and Walden (1993) p.397). The 

order of the AR model was determined using the Akaike information criterion (Akaike, 

1974). Although the parametric est imate is smooth, it fails to accurately estimate the un­

derlying theoretical spectrum. In particular, it completely misses the delta function peaks 

at f = 0.122 and f = 0.391. 

Some comments are in order regarding AR spectral estimates. The basic weakness of 

this method is that it starts with the correlation function of the data in order to compute 

the AR coefficients. This, however, presupposes the answer, since the correlation function is 

nothing but the Fourier t ransform of t he spectrum: if the correlation function were actually 

known, there would be no need to estimate the spectrum. In practice, an estimate of the 

correlation function is made from the data, which contains the same bias problems as in 

estimating spectra. In fact, in obtaining the illustrated fit, we computed the correlation 

function by Fourier transforming a direct multitaper spectral estimate (to be described 

below) . Attempts to escape from the circularity pointed out above usually result in strong 

model assumptions, which then lead to misfits in the spectra (for further discussions, see 

Thomson (1990) , p.614). Despite t hese problems, AR methods do have some use in spectral 

estimation , namely to obtain pre whitening filters that reduce the dynamic range of t he 

process, and thus help reduce bias in the final spectral estimate. Another valid usage of AR 

methods is to treat sufficiently narrow-band signals that can be appropriately modeled by 

low order AR processes. 
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Figure 1.3: Left column: prolate spheroidal data t apers for NW = 5 (k=1. . . 4). R ight 
column: tapered time series corresponding to t he time series in the example given in the 
text (part of which is shown in Figure 1.1), multiplied by the data tapers in the left column. 

1.1.5 Multitaper spectral analysis 

Here we present a brief review of multitaper estimation (Thomson, 1982). This method 

involves the use of mult iple orthogonal data tapers, in particular prolat e spheroidal func­

tions, which provide a local eigenbasis in frequency space for finite length data sequences . A 

summary of the advantages of this technique can be found in Percival and Walden (1993) , 

Chapter 7. 
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Consider a finite length sample of a discrete time process Xt, t = 1, 2, ... , N. Let us 

assume a spectral representation for the process, 

1 

Xt = [ : dX(f)exp(27rilt) 
2 

The Fourier transform of the data sequence x(f) is therefore given by 

where 

N ! 

x(f) = L Xtexp(-27rilt) = [: K(f - /' ,N)dX(fI) 
1 2 

K(f - /" N) = exp( - 27ri(f - /,)(N + 1)/2) si~(N7r(f - 1')) 
sm(7r(f - II)) 

(1.3) 

(1 .4) 

(1.5) 

Note that for a stationary process, the spectrum is given by S(f)dl = E[ldX(f)n 

A simple estimate of the spectrum (apart from a normalization constant) is obtained by 

squaring the Fourier transform of the data sequence, i.e. , Ix(f) 12. This suffers from two 

difficulties: first, x(f) is not equal to X(f) except when the data length is infinite, in which 

case the kernel in Equation 1.5 becomes a delta function. Rather, it is related to X (f) by 

a convolution, as given by Equation 1.4. This problem is usually referred to as "bias," and 

corresponds to a mixing of information from different frequencies of the underlying process 

due to a finite data window length. Second, even if the data window length were infinite, 

calculating Ix(f) 12 without using a tapering function (a quantity known as the periodogram) 

effectively squares the observations without averaging; the spectrum is the expectation of 

this squared quantity. T his issue is referred to as the lack of consistency of the periodogram 

estimate, namely the failure of t he periodogram to converge to the spectrum for large data 

lengths. The reason for this is straightforward. When one t akes a fast Fourier transform 

of the data, one is estimating N quantities from N data values, which obviously leads to 

overfitting if the data are stochastic. More precisely, the squared Fourier transform of the 
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time series is an inconsistent estimator of the spectrum, because it does not converge as the 

data time series tends to infinite length. 

To resolve the first issue, the data are usually multiplied by a data taper, which leads 

to replacing t he kernel in Equation 1.5 by a kernel that is more localized in frequency. 

However, this leads to the loss of the ends of the data. To surmount the second problem, 

the usual approach is to average together overlapping segments of the time series (Welch, 

1967). Repetition ofthe experiment also gives rise to an ensemble over which the expectation 

can be taken, but we are interested in single trial calculations involving only a single time 

series. Evidently, some amount of smoothing is necessary to reduce the variance of the 

estimate, the question being what is an appropriate and systematic way to performing this 

smoothing. 

An elegant approach toward the solution to both of the above problems is provided by 

the multitaper spectral estimation method in which the data are multiplied by not one, but 

several orthogonal tapers, and Fourier transformed to obtain the basic quantity for fur ther 

spectral analysis. The method can be motivated by treating Equation 1.4 as an integral 

equation to be solved in a regularized way. The simplest example of the method is given 

by the direct multitaper spectral estimate SMT(f), defined as the average over individual 

tapered spectral estimates, 

(1.6) 

where 

N 

xk (f) = L Wt(k)xtexp{ -27rift) (1.7) 

Here Wt(k) (k = 1,2, . .. , K) are K orthogonal taper functions with appropriate prop­

erties. A particular choice of these taper functions , with optimal spectral concentration 

properties, is given by the discrete prolate spheroidal sequences (DPSS) (Slepian and Pol­

lak, 1961). Let Wt{k, W, N) be the kth DPSS of length N and frequency bandwidth pa-
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Figure 1.5: Direct multitaper spectral estimate of time series example using WT = 5, 
K = 9. The estimates for the first four of the nine tapers that are averaged to create this 
estimate are shown in Figure 1.4. The theoretical spectrum is also shown. 

rameter W. The DPSS form an orthogonal basis set for sequences of length, N, and are 

characterized by a bandwidth parameter W . The important feature of these sequences is 

that for a given bandwidth parameter Wand taper length N, K = 2NW - 1 sequences out 

of a total of N each have their energy effectively concentrated within a range [-W, W] of 

frequency space. Consider a sequence Wt of length N whose Fourier transform is given by 

U(f) = I:~ Wtexp(-2rrift). Then we can consider the problem of finding sequences Wt so 

that the spectral amplitude U (f) is maximally concentrated in the interval [-W, W], i.e. , 

(1.8) 

is maximized, subject to a normalization constraint which may be imposed using a Lagrange 

multiplier. It can be shown that the optimality condition leads to a matrix eigenvalue 

equation for Wt(k, W, N) 

I:N sin[2rrW(t - t'll , _ \ 
( ') Wt - AWt rrt-t 

t'=l 

(1.9) 

The eigenvectors of this equation are the DPSS. The remarkable fact is that the first 

2NW eigenvalues Ak(N, W) (sorted in descending order) are each approximately equal to 
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one, while the remainder are approximately zero. Since it follows from the above definitions 

that 

(1.10) 

this is a precise statement of the spectral concentration mentioned above. The fact that 

many of the eigenvalues are close to one makes the eigenvalue problem Equation 1.9 ill­

conditioned and unsuitable for the actual computation of the prolates [this can be achieved 

by a better-conditioned tridiagonal form (Percival and Walden, 1993)]. The DPSS can 

be shifted in concentration from [- W, W] centered around zero frequency to any non-zero 

center frequency interval [fo - W, fo + W] by simply multiplying by the appropriate phase 

factor exp(27rifot), an operation known as demodulation. The usual strategy is to select the 

desired analysis half-bandwidth W to be a small multiple ofthe Raleigh frequency l iN, and 

then take the leading 2NW - 1 DPSS as data tapers in the multitaper analysis. Note that 

::; 2NW of the sequences are typically taken, since the last few of these have progressively 

worsening spectral concentration properties. 

For illustration, in the left column of Figure 1.3 we show the first 4 DPSS for W = 51N. 

Note that the orthogonality condition ensures that successive DPSS each have one more 

zero crossing than the previous one. In the right column of Figure 1.3, we show the time 

series example from the earlier subsection multiplied by each of the successive data tapers. 

In the left column of Figure 1.4 we show the spectra of the data tapers themselves, showing 

the spectral concentration property. The vertical marker denotes the bandwidth parameter 

W . 

In Figure 1.4 we show the magnitude squared Fourier transforms of the tapered time 

series shown in Figure 1.3. The arithmetic average of these spectra for k = 1,2, ... , 9 (note 

that only 4 of 9 are shown in Figures 1.3 and 1.4) gives a direct multitaper estimate of 

the underlying process, shown in Figure 1.5. Also shown in that figure is the theoretical 

spectrum of the underlying model. 

In the direct estimate, an arithmetic average of the different spectra is taken. However, 
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Figure 1.6: a) F-statistic values for testing for the presence of a significant sinusoidal 
component in the t ime series example along with significance levels. b) Direct multi taper 
spectral estimate of the t ime series example using WT = 5, K = 9 reshaped to remove the 
sinusoidal lines. The theoretical spectr um is also shown in bold. 

the different data tapers differ in their spectral side-lobes, so that a weighted average is more 

appropriate. In addition, the weighting factors should be chosen adapt ively depending on 

the local variations in the spectrum. For more detailed considerations along t hese lines, t he 

reader is referred to Thomson (1982). 

Sine waves in the original time series correspond to square peaks in t he multitaper 

spectral estimate. This is usually an indication that the time series contains a sinusoidal 

component along with a broad background . The presence of such a sinusoidal component 

may be detected by a test based on a goodness-of-fit F-statistic (T homson, 1982) . To 

proceed, let us assume that the data contain a sinusoid of complex amplitude J1. at frequency 

fo (the corresponding real series being R e (J.Lexp(27rifot))). Let us also assume t hat in a 

frequency interval [fa - W, fa + Wl around fa, the process, to which t he sinusoid is added, 

is white. Note that this is a much weaker assumption than demanding that the process is 

white over the entire frequency range. Under these assumptions, for f E[fo - W, fa + W ], 

the tapered Fourier transforms of the data are given by 
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(1.11) 

Here Uk (f) is the Fourier transform of the kth DPSS, and fis in the range [fo-W, 10+ WJ. 

The assumption of a locally white background implies that nk(f) are independently and 

identically distributed complex Gaussian variables. Treating Equation 1.11 as a linear 

regression equation at 1 = 10 leads to an estimate of the sine wave amplitude (which 

corresponds to a part icular tapered Fourier transform of the data) 

(1.12) 

and to an F statistic for the significance of a non-zero J.L 

(1.13) 

Under the null hypothesis that there is no line present, F(fo) has an F distribution 

with (2,2K - 2) degrees of freedom. We plot this function F(f) for the time series in the 

above example in Figure 1.6a. For this example we have chosen W = 7 IN, K = 13. One 

obtains an independent F statistic every Raleigh frequency, and since there are N Raleigh 

frequencies in the spectrum, the statistical significance level is chosen to be 1 - l iN. T his 

means that on an average, there will be at most one false detection of a sinusoid across all 

frequencies. A horizontal line in Figure 1.6a indicates this significance level. Thus, a line 

crossing this level is found to be a significant sinusoid present in the data. The sinusoids 

known to be present in the data are shown to give rise to very significant F-statistics at 

this level of significance, and there is one spurious crossing of the threshold by a small 

amount. The linear regression leads to an estimate for the sinusoid amplitudes. In the 

present example, the percentage differences between the OTiginal and estimated amplitudes 

were found to be 6%, 4%, and 2% for increasing frequencies; the corresponding errors fOT 

the phase were 0.2%, 2%, and 2%. Note that the errors in phase estimation are smaller 

than the errors in the amplitude estimates. From the estimated amplitudes and phases, the 
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sinusoidal components can be reconstructed and subtracted from the data. The spectrum 

of the residual time series can then be estimated by the same techniques. This residual 

spectrum is shown in Figure 1.6b, along with the theoretical spectrum of the underlying 

autoregressive process. 

1.1.6 Choice of the bandwidth parameter 

The choice of the time window length T = N .6.t and the bandwidth parameter W is critical 

for applications. No simple procedure can be given for these choices, because the choice 

really depends on the data set at hand, and is best made iteratively by visual inspection and 

some degree of trial and error. 2TW = 2W/ (1 /T) gives the number of Raleigh frequencies 

over which the spectral estimate is effectively smoothed, so that the variance in the estimate 

is typically reduced by 2TW. Thus, the choice of W is a choice of how much to smooth. In 

qualitative terms, the bandwidth parameter should be chosen to reduce variance while not 

overly distorting the spectrum. This can be done formally by trading off an appropriate 

weighted sum of the estimated variance and bias . However, as a rule of the thumb we 

find fixing the time bandwidth product TW at a small number (typically 3 or 4) and 

then varying the window length in time until sufficient spectral resolution is obtained is a 

r·easonable strategy. This presupposes that the data are examined in t he t ime frequency 

plane so that T may be significantly smaller than the total data length. 

1.2 Analysis of multivariate data 

So far we have concentrated on the analysis of univariate time series. However, the principal 

subject of this paper is multichannel data, so we now consider the analysis of multivariate 

time series. The basic methods for dealing with such data are similar to those used for other 

multivaria te data, with modifications to take into account the fact t hat we are dealing with 

time series. In fact , a scalar time series can itself be usefully represented as a multivariate 

time series by going to a lag-vector representation or a time-frequency representation. Such 

a representation may be desirable to understand the structure underlying the scalar time 
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series. Other examples of multichannel data include multiple spike trains and various forms 

of brain imaging, including optical imaging using intrinsic and extrinsic contrast agents, 

magnetic resonance imaging, and magnetoencephalography. In general, one can think of 

one or two space dimensions added to the time dimension in the data. In the sections 

below, we briefly review some of the concepts useful to our analysis later in the paper. The 

techniques can be grouped into two general classes: choosing an appropriate low-dimensional 

representation (e.g., in principal components analysis) or choosing a partitioning of the 

multidimensional space (e.g., in various forms of clustering). In this section we concentrate 

on mode decomposition. A discussion of clustering methods may be found in Duda and 

Hart (1973). 

1.2.1 Eigenmode analysis: SVD 

The singular value decomposition (SVD) is a representation of a general matrix of funda­

mental importance in linear algebra that is widely used to generate canonical representa­

tions of multivariate data. It is equivalent to principal component analysis in multivariate 

statistics, but in addition is used to generate low-dimensional representations for complex 

multidimensional time series. The SVD of an arbitrary (in general complex) p x q matrix 

(p> q) M is given by M = UAVt , where the p x q matrix U has orthonormal columns , 

the q x q matrix A is diagonal with real, non-negative entries and the q x q matrix V is 

unitary. Note that the matrices MMt = UA2Ut and MtM = VA2Vt are hermitian, with 

eigenvalues corresponding to the diagonal entries of A 2 and U and V the corresponding 

matrices of eigenvectors. Consider the special case of space-time data I(x , t). The SVD of 

such data is given by 

I(x, t) = 2: An1n(x)an(t) (1.14) 
n 

where In(x) are the eigenmodes of the "spatial correlation matrix" 

C(x , x') = 2: I(x , t)I(x' , t) (1.15) 
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Figure 1.7: Sorted singular values corresponding to a space-time SVD of functional MRI 
image time series from data set V. The tail in the spectrum is fit with the theoretical 
formula given in the text. 

Similarly, an(t) are the eigenmodes of the "temporal correlation matrix" 

C(t, t ' ) = L I(x, t)I(x, t' ) (1.16) 
x 

If the sequence of images were randomly chosen from an ensemble of spatial images, 

then C(x, x') would converge to the ensemble spatial correlation function in the limit of 

many time samples. If in addition the ensemble had space translational invariance, then the 

eigenmodes In (x) would be plane waves exp(ik·x), the mode number "n" would correspond 

to wave vectors and the singular values would correspond to the spatial structure factor 

S(k). In general, the image ensemble in question will not have translational invariance; 

however, the SVD will then provide a basis set analogous to wave vectors. In physics 

one normally encounters structure factors S(k) that decay with wave vector. In the more 

general case, the singular value spectrum, organized in descending order, will show a decay 

indicative of the structure in the data. 

To make sense of an SVD performed on a data matrix, it is important to know the 

expected distribution of singular values if the entries of the matrix were random. This 

problem lies in the domain of random matrix theory, and can be solved in special cases 

(Sengupta and Mitra, 1999). As an example, consider the case ofap x q matrix M = Mo+N 
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where Mo is fixed and the entries of N are independently normally distributed with zero 

mean and identical variance (T2. Mo may be thought of as the desired or underlying signal; 

for an SVD to be useful, Mo should effectively have a low rank structure. A typical 

procedure is to take the SVD of M and to truncate the singular value spectrum to keep 

only values that cross a threshold. Consider t he special case in which Mo = 0, so that 

we are dealing with a purely noise matrix. In this case, it can be shown that (Denby and 

Mallows, 1991; Sengupta and Mitra, 1999) the density of singular values, defined as 

(1.17) 
n 

is given in the limit of large matrix sizes by 

(1.18) 

where (Recall that (T2 is the variance of t he matrix entries, and p , q are the dimensions of 

the matrix) 

(1.19) 

It is somewhat easier to work with the integrated density of states peA) = faA p(x)dx, 

since A plotted against 1- p eA) gives the sorted singular values (in decreasing order). More 

generally, M o is not zero but is given by a low rank matrix. The distribution of the singular 

values can be worked out in t his case, but if the original matrix has low rank and if the 

'signal' singular values are large compared to the 'noise' singular values, then the singular 

value distribution shows a tail which can be fit by the above formula, the only quantity 

needing adjustment being the total weight under the density function peA) (i.e., an overall 

normalization factor). 

To illustrate the above, in Figure 1. 7 we show the sorted singular values from the SVD 

of data set C consisting of 550 frames of fMRI data. The original image data consisted 

of 550 images each 64 x 64 pixels big, but the space data was first masked to select out 
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Figure 1.8: Spectra of first 20 principal component time series from data set V. (a) 
Weighted average spectrum. (b) Image showing the spectra versus mode number. The log 
amplitudes of the spectra are color coded. 

1877 pixels. Thus, the SVD is performed on a 1877 x 550 matrix. The resulting singular 

values are shown with the range truncated to magnify the noise tail. Also shown is the 

theoretical singular value spectrum expected for the noise tail (dashed line) based on the 

formula Equation 1.18 for a pure noise matrix with a single adjustable parameter 0"2, which 

has been selected to match the middle portion of the ta il. The total weight of the density 

has been adjusted to account for the last 500 singular values. 

Unlike in the temporal domain, where going to a frequency-based representation does 

make sense for neurobiological data, the spatial wave-vector representation is not of general 

use because of the generic lack of translational invariance in space. However, the spatial 

basis generated by an SVD is somewhat more meaningful. It may, for example, reflect 

underlying anatomical structure. Application of the SVD on space-time imaging data may 

be found in the literature, sometimes with modifications. However, the space-time SVD 

suffers from a severe drawback in the present context. The difficulty is that there is 110 

reason why the neurobiologically distinct modes in the data should be orthogonal to each 



25 

other, a constraint imposed by the SVD. In practice, it is observed that an SVD on space­

time data, different sources of fluctuations, such as cardiac and respiratory oscillations 

and results of neuronal activity, may appear in the same mode of the decomposition, thus 

preventing an effective segregation of the different degrees of freedom. 

As an example, consider the SVD of the fMRI data set C, the corresponding singular 

value distribution of which has been shown in Figure 1. 7. Note that in these data the digiti­

zation rate was 5 Hz, and the length of the time series 110 s. The mixing of physiologically 

distinct processes in the individual principal component (PC) time series thus obtained can 

be seen by studying the spectra of the PCs. Figure 1.8a shows the average spectrum across 

PCs of data set C. The peak near zero frequency corresponds to the stimulus response 

as well as possible vasomotor oscillation or other slow fluctuations. The peaks at 0.3 Hz 

and 0.6 Hz correspond to breathing, and the peak at 1.3 Hz corresponds to the cardiac 

cycle. In Figure 1.8b, the spectra are shown for the first 20 modes (with the largest sin­

gular values). The spectra are coded as gray scale intensities, and are shown against the 

corresponding mode numbers. As is clear from studying the spectra as a function of mode 

number (Fig. 1.8b), the decomposition mixes the various effects. 

We describe below a more effective way of separating distinct components in the image 

time series dealt with here using a decomposition analogous to the space-time SVD, but in 

the space-frequency domain. The success of the method stems from the fact that the data 

in question are better characterized by a frequency based representation. 

1.2.2 Space-frequency SVD 

From the presence of spectral peaks in Figure 1.8a it can be inferred that different com­

ponents in the dynamic image data may be separated if the SVD were performed after 

localizing the data in the frequency domain. This can be achieved by projecting the space­

time data to a frequency interval, and then performing SVD on this space-frequency data 

(Thomson and Chave, 1991; Mann and Park, 1994; Mitra et aI., 1997). Projecting the data 

on a frequency interval can be performed effectively by using DPSS with the appropriate 

bandwidth parameter. For a fixed center frequency f and a half bandwidth W, consider 
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the projection matrix 

Pk,t(f; W) = Wk(t, W) exp(27ritf) k = 1,2, '" K (L20) 

In the above, we assume that K = [2NW], where [X] is the integer closest to X but less 

than X, Acting on the space of sequences of length N, this matrix projects out a subspace 

with frequencies concentrated in [] - w, f + W]. Note that pt P serves as an optimal 

bandlimiting filter on the time series. Given the N x x N space-time data matrix J = J(x, t), 

the space-frequency data corresponding to the frequency band [j - W, ] + W] are given by 

the N x x K complex matrix J = J pT. In expanded form, 

N 

J(x, k; f) = L J(x, t)wdt, W) exp(27ritf) (L21) 
t=l 

We are considering here the SVD of the N x x K complex matrix with entries J(x, k; f) 

for fixed ]. 

(L22) 
n 

This SVD can be carried out as a function of the center frequency f, using an appropriate 

choice of W. In the best case most of the coherent structure is captured by the dominant 

singular vector at each frequency. At each frequency f one obtains a singular value spectrum 

An(f) (n=1,2, .. ,K), the corresponding (in general complex) spatial mode In(x; I), and the 

corresponding local frequency modes an(k; f). The frequency modes can be projected back 

into the time domain using Pk,t(f; W) to give (narrow-band) time varying amplitudes of 

the complex eigenimage. 

In the space-frequency SVD computation, an overall coherence aU) may be defined as 

(it is assumed that K :s: N x ) 

a(f) - Ai (f) 
- L;~(= 1 A~U) 

(L23) 
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Figure 1.9: Overall coherence spectrum corresponding to the functional MRI time series 
examined in Figures 1.7 and 1.8. 

The overall coherence spectrum then reflects how much of the fluctuation in the fre­

quency band [J - W, f + Wl is captured by the dominant spatial mode. If the image 

data are completely coherent in that frequency band, then CU) = 1. More generally, 

1 ~ CU) ~ 0, and for random data, assuming N x » K, CU) ~ k. If N x and K are 

comparable, then results such as those in the previous section may be used to determine 

the distribution of C(f). 

To illustrate this technique, we show results of its application to data set C of fMRI data. 

The calculation used 19 DPSS, corresponding to a full bandwidth of 0.2 Hz. The overall 

coherence spectrum resulting from a space-frequency SVD analysis of this data is shown in 

Figure 1.9. Note the correspondence of this spectrum, which is dimensionless, to the power 

spectrum presented in Figure 1.8a. The magnitudes li1(x; f)1 of the dominant spatial 

eigenmodes as a function of frequency are shown in Figure 1.10. The leading eigenmodes 

separate the distinct sources of fluctuations as a function of frequency. 

1.3 Local frequency ensemble and jackknife error bars 

One important advantage of the multitaper method is that it offers a natural way of estimat­

ing error bars corresponding to most quantities obtained in time series analysis, even if one is 

dealing with an individual instance of a time series. The fundamental notion here is that of 
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Figure 1.10: Amplitudes of leading spatial eigenmodes for the space-frequency SVD of 
fMRI data from data set C. Note that the spatial structure varies as a function of center 
frequency with the physiological oscillations segregating into distinct frequency bands. 

a local frequency ensemble. The idea is that if the spectrum of the process is locally flat over 

a bandwidth 2W, then the tapered Fourier transforms xk (f) = L;:;"1 exp( -27ri ft)x(t)wk(t) 

constitute a statistical ensemble for the Fourier transform of the process at the frequency fa. 

Assuming that the underlying process is locally white in the frequency range [fo - W, fo+ W J, 

then it follows from the orthogonality ofthe data tapers that xk(f) are uncorrela ted random 

variables with the same variance. For large N, xk(f) may be assumed to be asymptotically 

normally distributed under some general circumstances (for related results see Mallows 

(1967)). This provides one way of thinking about the direct multi taper estimate presented 

in the previous sections: the estimate consists of an average over the local frequency en­

semble. 

The above discussion serves as a motivation for multitaper estimates of the correlation 

function, the transfer function, and the coherence between two time series. Given two 

time series Xt , Yt , and the corresponding multiple t apered Fourier transforms xk (f),-iJk (f), 

the following direct estimates can be defined (Thomson, 1982) for the correlation function 

Cyx (f) = E[Y(f)x*(f)J , the transfer function Tyx(f) = E[Y(f) x* (f)J /E [lx(f )12], and the 

coherence function Pyx (f) = E[Y(f)x* (f)J/ v' E [l x(f) 12JE[ly(f)l2J: 
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Figure 1.11: Jackknife error bars on multitaper spectral estimate corresponding to spec­
trum shown in Figure 1.5. The spectral estimate is the solid bar and the error bars are 
represented by dots. 

. 1 f{ 

Cyx(f) = K:L fJdf)x'k(f) (1.24) 
k=l 

(1.25) 

(1.26) 

These definitions allow the estimation of the coherence and transfer function from a 

single instance of a pair of time series. By using the local frequency ensemble one can also 

estimate jackknife error bars for the spectra and the above quantities. The idea of the 

jackknife is to create different estimates by leaving out a data taper in turn. This creates 

a set of estimates from which an error bar may be computed (Thomson and Chave, 1991). 

As an example, we show in Figure 1.11 jackknife estimates of the standard deviations of 

the spectral estimate in Figure 1.5. Jackknife error bars and transfer functions for spectral 

estimates averaged across trials can be generated in the same way from the joint ensemble 

indexed by trial and taper. This procedure is used in the analysis of data in Chapters 3 

and 4. 
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1.4 Spectral analysis of point processes 

We now consider point processes and the mathematical description of the firing of action 

potentials by neurons. We are interested in characterizing second order correlations using 

spectral analysis and the procedure is similar in spirit to the analysis of continuous time 

series described above. Point processes can be represented by the number of events in time 

(the counting process) or by the sequence of time intervals between events (the interval 

process). These representations are equivalent but complementary (Daley and Vere-Jones, 

1988). We give the definitions and formulae for second moments in each representation 

and then discuss the Poisson process and the renewal process which are the fundamental 

counting and interval processes respectively. Results exist for univariate and multivariate 

processes, but here we will exclusively present the univariate case. Univariate results for 

counting processes can be generalized to the multivariate case without difficulty, but those 

for interval processes cannot be generalized due to the problem of specifying relationships 

between intervals in multidimensional time. Our approach follows that of Cox and Lewis 

(1966). 

1.4.1 Counting process 

The counting process is given in terms of the number of events , dN(t), that occur in an 

interval (t , t + tlt). Multiple events are excluded by taking the limit tlt -+ 0 so dN(t) 

takes the values 0 and 1. The following presents steps in the calculation that lead to the 

second-order properties of the counting process. The mean and variance of dN(t) are 

E[dN(t)] 

Var[dN(t)] 

prob{dN(t) = I} 

f.1.ntlt 

E[{dN(t)}2]- {E[dN(t)]}2 

prob{dN(t) = 1} - [prob{dN(t) = 1}]2 

f.1.ntlt 
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where J.Ln is the average number of events in the interval (0, t ]. 

Covariance properties of the counting process result from considering 

E[dN(t)dN(t + T)] = prob{dN(t) = dN(t + T) = I} 

= J.Ln(.6.t)prob{dN(t + T) = IldN(t) = I} 

The probability on the right can be expressed as the renewal density, T/n(T), which gives the 

probability of an event at time t + T in the future given an event at time t. This then leads 

to the following expression for the covariance 

The covariance function, CdN(T) , also known as the auto-correlation function is then 

(1.27) 

The spectrum of a point process, SdN(f), is the Fourier transform of the covariance, or 

auto-correlation, function: 

(1.28) 

As is the case for continuous time series, the spectrum and auto-correlation function 

of a point process contain equivalent information, but the spectrum has better statistical 

properties. Multitaper methods can be used to estimate the spectrum of a point process. 
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1.4.2 Interval process 

The interval process is defined by the sequence Xl, X 2, ... of intervals between successive 

events. This sequence is stationary in time, where time is given by the serial number of the 

event. This representation is treated in the same way as a continuous time series. The mean 

and variance of Xi are denoted by /-1x and 0";, respectively. The ratio, /-1;/0";, is called the 

coefficient of variation and measures the deviation of the distribution from an exponential. 

The correlation properties of the sequence are given by the autocorrelation function, ex (k) , 

and the spectrum, S x (q), known here as the interval spectrum to distinguish it from the 

spectrum of the counts presented above. 

The autocorrelation function is given by 

(1.29) 

and the interval spectrum is given by 

00 

Sx(k) = 0"~/(27r) L e-27rikQcx(q) (1.30) 
q=-oo 

Multitaper methods can be used to estimate the interval spectrum. 

1.4.3 Poisson process 

The simplest counting process is the Poisson process which is often used to model random 

spiking activity. This process is parameterized by a rate: the average number of events 

occurring during a given interval (Cox and Lewis, 1966). Since the probability of an event 

occurring at a given time is not dependent on activity before that time, there is no tempo-

ral structure in a Poisson process. The spectrum measures dependencies in the temporal 

ordering of events in a random process. A Poisson process has a flat or white spectrum so 

spike spectra with significant deviations from uniformity are evidence of temporal structure. 

If suppression is also present in the spectrum, a Poisson process with a stochastic, time­

varying rate cannot describe the activity either (Brillinger, 1978). We explore this issue in 
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more detail in Chapter 4. 

1.4.4 Renewal process 

Spike activity that is non-Poisson is often modeled using a renewal process. A renewal 

process is completely described by its renewal density or lSI histogram; therefore, the 

temporal structure in a renewal process is determined by the rate of each interval and 

does not extend beyond neighboring pairs of events. In Chapter 4 we use the interval 

spectrum, which is sensitive to the ordering of intervals in time, to test whether spiking 

activity is a renewal process. 

1.5 Spectral analysis of hybrid processes 

The data considered in Chapter 3 are spiking activity (a point process) and the LFP (a con­

t inuous valued time series), The analysis of such 'hybrid ' data presents some novel features 

that we discuss here. Similarly to the situation for point and continuous processes, spectral 

analysis provides a unified framework for the charactel·ization of correlations in hybrid pro­

cesses and we use multitaper methods of spectral estimation developed by Thomson (1982) 

to construct estimators for all spectral quanti t ies. Correlation function measures such as 

the auto- and cross-correlation function characterize the same statistical structure in time 

series as spectra and cross-spectra; however , spectral estimates offer significant advantages 

over their time domain counterparts. An important one is that nearby points in time are 

highly correlated while neighboring points in frequency are a lmost independent. The use of 

data tapers makes estimates of the spectrum even less susceptible than the auto-correlation 

function to such problems of statistical bias and variance (Brillinger, 1978) and therefore 

more suitable for investigating temporal structure in experimental data. 

The coherency, CU), is a complex quantity that is a function of frequency for a given 

window in time and measures the degree of predictability of one process using a linear 

function of the other (Brillinger , 1975; Rosenberg et al., 1989), or phase coherence. In 

Chapter 3 we use a hybrid version of the coherency for point process and ordinary t ime 
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series data to measure the relation between spiking and LFP activity. 

The magnitude of the coherency lies between zero and one and is called the coherence. 

Coherence indicates the strength of a linear relationship between different processes. The 

coherency is used in preference to the cross-correlation function to measure the relation 

between two processes. The cross-correlation function is typically normalized by the zero 

lag estimates of the autocorrelation function. This is ad-hoc since it depends on the bin 

size used to estimate the zero lag autocorrelat ion. In contrast , the coherency is normalized 

independently for each frequency band by dividing by the spectrum of each process. This 

normalization means changes in coherence are not a result of changes in firing rate and 

allows t he coherency to be meaningfully averaged across different pairs of time series. 
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Chapter 2 

data 

Analysis of dynamic brain imaging 

2.1 Introduction 

Modern imaging techniques for probing brain function, including functional magnetic res­

onance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalog­

raphy, generate large data sets with complex content . This chapter develops appropriate 

techniques for analysis and visualization of such imaging data, to separate the signal from 

the noise and characterize the signal. The techniques developed fall into the general cate­

gory of multivariate time series analysis, and in particular we extensively use the multitaper 

framework of spectral analysis. We develop specific protocols for the analysis of fMRI, op­

tical imaging and MEG data, and illustrate the techniques by applications to real data 

sets generated by these imaging modalities. In general, the analysis protocols involve two 

distinct stages: 'noise' characterization and suppression, and 'signal' characterization and 

visualization. An important general conclusion of our study is the utility of a frequency­

based representation, with short, moving analysis windows to account for nonstationarity in 

the data. Of particular note are (1) the development of a decomposition technique (space­

frequency singular value decomposition) that is shown to be a useful means of characterizing 

the image data, and (2) the development of an algorithm, based on multitaper methods, 

for the removal of approximately periodic physiological art ifacts arising from cardiac and 

respiratory sources. 

In this chapter, we treat in succession dynamic brain imaging data gathered in MEG, op­

tical, and fMRI experiments. Based on the analysis of actual data sets using the techniques 

introduced in Chapter 1, we discuss protocols for analysis to remove artifactual components 

and determine the structure of the signal. 
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2.2 Different brain imaging techniques 

2.2.1 Imaging techniques and their spatiotemporal resolution 

The three main techniques of interest here are optical imaging, fMRI, and MEG. Optical 

imaging falls into the further subcategories of intrinsic and extrinsic contrast . In extrinsic 

contrast optical imaging, an optical contrast agent sensitive to neuronal activity is added 

t o the preparation. Examples of such contrast agents include voltage-sensitive dyes and 

Ca2+ concentration-sensitive contrast agents. Voltage-sensitive dye molecules inserted in 

the cell membrane and the small Stark shifts produced in the molecule by changes in the 

transmembrane voltage are sources of the contrast. The signal-to-noise ratio (SNR) in these 

experiments is typically poor, being of the order of unity. The spatial resolution is set by 

the optical resolution and scattering properties of the medium and can be of the order 

of microns. The temporal resolution is limited by the digitization rate of the recording 

apparatus (CCD camera or photodiode array) and can current ly go up to ~ 1 kHz, which 

is the intrinsic timescale of neuronal activity. In calcium ion-sensit ive imaging, the intrinsic 

times cales are slower, so the demands on the digitization rate are somewhat less. The SNR 

ratio is significantly better compared to current ly available voltage-sensitive dyes. The 

spatial resolution is greatly enhanced in confocal (Pawley, 1995) and multiphoton scanning 

optical imaging (Denk et al. , 1990). The imaging rates in multiphoton scanning optical 

imaging a re currently significantly slower t han the corresponding rates for CCD cameras. 

Intrinsic optical imaging and fMRI rely on the same underlying mechanism, namely 

hemodynamic changes triggered by neuronal activity. Hemodynamic changes include changes 

in blood flow and blood oxygenation level. The intrinsic timescale for these changes is slow, 

ranging from hundreds of milliseconds to several seconds. The intrinsic spatial scale is also 

somewhat large, ranging from hundreds of microns to millimeters. These scales are well 

within the scope of optical techniques. In both the extrinsic and intrinsic cases discussed 

above, various noise sources, including physiological fluctuations, are important indirect 

determinants of the spatiotemporal resolution. 

In fMRI, the instrumental limitations on the spatial and temporal resolutions are sig-
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nificant, and for fixed SNR, a tradeoff exists between spatial and temporal resolution, as 

well as between temporal resolut ion and spatial coverage. The fMRI images are typically 

gathered in two-dimensional slices of finite thickness, and for a fixed SNR, the number of 

slices is roughly linear in time. For single slice experiments, t he temporal resolution is 

~ 100 ms, and the spatial resolution is ~ 1 mm. This spatial resolution can be improved 

for a single slice by sacrificing temporal resolution. For multiple slices covering the whole 

head, the temporal resolution is ~ 2 s. Note that these numbers may be expected to change 

somewhat based on future improvements in instrumentation. The principal advantage of 

fMRI is that it is noninvasive imaging, making it suitable for the study of the human brain. 

In addition, optical imaging is limited to the surface of the sample, whereas fMRI is a 

volumetric imaging t echnique. 

In MEG, weak magnetic fields of the order of tens of jT/VHz generated by electric 

currents in the brain are measured using superconducting quantum interferometric detector 

(SQUID) arrays positioned on the skull. Like fMRI, MEG is a noninvasive imaging technique 

and therefore applicable to the human brain. The temporal resolution (~1 ms) is much 

higher than in fMRI, although the spatial resolut ion is in general significantly poorer. The 

spatial resolution of MEG remains a debatable issue, because of the ill-posed nature of the 

inverse problem that must be solved in order to obtain an image from the MEG data . A 

promising direction for future research appears to be a combined use of fMRI and MEG 

performed separately on the same subject. 

2.2.2 Sources of noise 

As mentioned previously, the 'noise' present in the imaging data arise from two broad cate­

gories of sources, biological and nonbiological. Biological noise sources include cardiac and 

respiratory cycles, as well as motion of the experimental subject. In imaging studies involv­

ing hemodynamics such as fMRI and intrinsic optical imaging, an additional physiological 

source of noise is slow 'vasomotor' oscillations (Mitra et al. , 1997; Mayhew et al. , 1996) . In 

addition in all studies of evoked activity, ongoing brain activity not locked to or triggered by 

the stimulus appears as noise. Nonbiological noise sources include photon counting noise in 
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optical imaging experiments, noise in the electronic instrumentation, 60 Hz noise, building 

vibrations, and the like. 

We first consider optical imaging using voltage-sensitive dyes in animal preparations. 

The sensitivity of these experiments is currently limited by photon counting noise. The 

Stark shifts associated with the available dyes lead to changes in the optical fluorescence 

signal on the order of t::.F / F ~ 10-3 / m V. The typical SNR is therefore of order unity or 

less. In addition, absorption changes arising from hemodynamic sources, whether related to 

the stimulus or not, corrupt the voltage-sensitive dye images. Perfusing the brain with an 

artificial oxygen-supplying fluid can eliminate these artifacts (Prechtl et aI. , 1997). Motion 

artifacts and electronic noise may also be significant. In contrast, calcium-sensitive dye 

images have comparatively large signal changes for spike mediated Ca2+ fluxes, and are 

less severely affected by the photon counting noise. However , motion artifacts can still be 

severe, particularly at higher spatial resolutions. 

In fMRI experiments in humans , the instrumental noise is small, typically a fraction of a 

percent. The dominant noise sources are of physiological origin, mainly cardiac, respiratory 

and vasomotor sources (Mitra et aI., 1997). Depending on the time between successive 

images, these oscillations may be well resolved in the frequency spectrum, or a liased and 

smeared over the sampling frequency interval. Subject motion, resulting from respiration 

or other causes, is a major confounding factor in these experiments. 

In MEG experiments the SNR is usually very low. Hundreds of trial averages are 

sometimes needed to extract evoked responses. Magnetic fields from currents associated 

with the cardiac cycle are a strong noise source, as are 60 Hz electrical sources and other 

nonbiological current sources. In studying the evoked response, the spontaneous activity 

not related to the stimulus is a dominant source of undesirable fluctuations. 

2.3 Description of data sets 

In this section we describe the data sets used to illustrate the techniques developed in 

the paper. We have used data from three different imaging techniques, corresponding to 
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multichannel MEG recordings, optical image t ime series, and MRI time series. The data are 

grouped into four sets, referred to below using the letters A through V. Brief discussions of 

the data collection are provided below. The data have either been previously reported or 

are gathered using the same techniques as in other reports. In each case, a more detailed 

description may be found in the accompanying reference. 

Data set A consists of multichannel MEG recordings. Descriptions of the apparatus and 

experimental methods for these data can be found in (Joliot et a!., 1994) . For our purposes 

it is sufficient to note that the data were gathered simultaneously from 74 channels using 

a digitization rate of 2.083 kHz for a total duration of 5 min, and correspond to magnetic 

fields resulting from spontaneous brain activity recorded from an awake human subject in 

a resting state with eyes closed. 

Data set 13 consists of dynamic optical images of the pro cerebral lobe of the terrestrial 

mollusc Limax (Kleinfeld et a!., 1994) , gathered after staining the lobe with a voltage­

sensitive dye. The digitization rate is 75 Hz and the total duration of the recording is 23 s. 

The images are 105 x 34 pixels in extent and cover an area of ~ 600J.Lm x 200J.Lm. 

Data sets C and V contain £MRI data and consist of time series of magnetic resonance 

images of the human brain showing a coronal slice toward the occipital pole (Mitra et a!., 

1997; Le and Hu, 1996). The data were gathered in the presence (C) or absence (V) of 

a visual stimulus. For data set C, binocular visual st imulus was provided by a pair of 

flickering red LED patterns (8 Hz), presented for 30 s starting 40 s after the beginning of 

image acquisition. The digitization rate for the images was 5 Hz and the total duration 110 

s. The images are 64 x 64 pixels and cover a field of view of 20cm x 20cm. 

2.4 Analysis techniques for different modalities 

We now deal with specific examples of data from different brain imaging modalities. We 

concent rate on general strategies for dealing with such data, and most of our techniques 

apply with minor changes across the modes. However, it is easier to treat the various cases 

separately, and we present somewhat parallel developments in the following sections. The 
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data sets A through D have been briefly discussed before. 

2.4.1 Magnetoencephalography 

In this section we consider data set A consist ing of multichannel MEG recordings . The 

number of channels is 74 (37 on each hemisphere), the digitization rate 2.083 kHz, and the 

duration of the recording is 5 min. 

2.4.1.1 Preprocessing 

An occasional artifact in MEG recordings consists of regularly spaced spikes in the record­

ings due to cardiac activity. This is caused when the comparatively strong magnetic field 

due to currents in the heart is not well canceled. To suppress this artifact, we proceed 

as follows: first, a space-time SVD is performed on t he multichannel data. The cardiac 

artifacts are usually quite coherent in space, and show up in a few principal component 

time series. In those time series, the spikes are segmented out by determining a threshold 

by eye and segmenting out 62 .5 ms before and after the threshold cross ing. The segmented 

heartbeat events are then averaged to determine a mean waveform. Since the heartbeat 

amplitude is not constant across events, the heartbeat spikes are removed individually by 

fitting a scaling amplitude to the mean waveform using a least-squares technique. Each 

spike modeled by the mean waveform multiplied by a scaling amplitude is then subtracted 

from the time series. Figure 2.1 illustrates the results of this procedure. 

A fairly common problem in electrical recordings is the presence of 60 Hz artifacts and 

on occasion sinusoidal artifacts at other frequencies. Such sinusoidal artifacts, if they lie 

in the relevant data range, are usually dealt with using notch filters. This is, however, 

unnecessarily severe since the notch filters may remove too la rge a band of frequencies, in 

particular in the case of MEG data where frequencies close t o 60 Hz are of interest. We 

find that the 60 Hz line and other fixed sinusoidal artifacts can be efficiently est imated and 

removed using the methods for sinusoidal estimation described in Section 1.1.5. Specifically, 

in this case the frequency of the line is accurately known (this requires a precise knowledge 

of the digitization rate) and one has only to estimate its amplitude and phase. This is done 
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Figure 2.1: PC time series of MEG data from data set A containing cardiac artifacts. The 
upper plot shows the t.ime course before suppression and the spikes due to the heart beat 
are clearly visible. The lower plot shows t.he time course after suppression of the heart beat 
using the technique described in the text. 

for a small time window using Eq.1.12. By sliding this time window along, one obtains a 

slowly varying estimate of the amplitude and phase, and is therefore able to reconstruct 

and subtract the sinusoidal artifact. The results of such a procedure are illustrated in 

Figure 2.2a, where a time averaged spectrum is shown for a single channel before and after 

subtraction of the line frequency component . In Figure 2.2b, the amplitude of the estimated 

60 Hz component is shown with its slow modulation over time. 

2.4.1.2 Time-frequency analysis 

The spectral analysis of multichannel data presents the fundamental problem of how to 

simultaneously visualize or otherwise examine the time-frequency content of many channels. 

One way to reduce the dimensionality of the problem is to work with PC time series. A 

space-time SVD of MEG data gives a rapidly decaying singular value spectrum. This 

indicates that one can consider only the first few temporal components to understand the 

spectral content of the data. For purposes of illustration of our techniques we consider the 

first three PC time series in a 5 min segment recording of spontaneous awake activity. 

A useful preliminary step in spectral analysis is prewhitening using an appropriate au­

toregressive model. This is necessary because the spectrum has a large dynamic range. 
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Figure 2.2: (a) Time averaged spectrum before (solid line) and after (dotted line) sub­
traction of 60 Hz artifact (single channel time series) from MEG data in data set A. (b) 
Estimated time varying amplitude of the 60 Hz line frequency. 

Prewhitening leads to equalization of power across frequencies, which allows better visual­

ization of time-frequency spectra. In addition, a space-time SVD is better performed on 

prewhitened data, since otherwise the large amplitude, low frequency oscillations completely 

dominate the principal components. The qualitative character of the average spectrum is a 

slope on a semilogarithmic scale (Fig. 2.2a). The goal is to prewhiten with a low order AR 

model so that the peaks in the spectrum are left in place, but the overall slope is removed. 

Considering the derivative of the spectrum rather than the spectrum itself achieves a similar 

result. 

T he procedure is to first calculate a moving estimate of t he spectrum using a short 

time window (T = 0.358 in the present case) and a direct multitaper spectral estimator 

(W = 4/T; K = 6). These estimates are then averaged over time to obtain a smooth overall 

spectrum. Next, a low order autoregressive model (order = 10 in the present case) is fit to 

the spectral estimate. We use the Levinson Durbin recursion to fit the AR modeL Results 

of such a fit are shown in Figure 2.3. The coefficients of the autoregressive process are 

then used to filter the data, and the residuals are subjected to further analysis. Thus, if 

the coefficients obtained are ak and the original time series is Xt, then the residuals are 
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Figure 2.3: AR fit to averaged spectrum of MEG data from data set .A averaged over 
non-overlapping windows in time for purposes of prewhitening. The thick line shows the 
autoregressive fit to the average spectrum. The thin line shows the average spectrum. A 
low-order AR spectral estimate is used to reduce the dynamic range in the spectrum without 
fitting specific structural features of the data. 

OXt = Xt - :L~ Xt-k ak, which are subjected to a time-frequency analysis. 

Typical time-frequency spectra of prewhitened PC time series are shown in Figure 2.4. 

The spectra were obtained using a direct multitaper estimate for Is long time windows and 

for W = 4Hz, K = 6. 

To assess the quality of the spectral characterization it is important to quantify the 

presence (or absence) of correlations between fluctuations at different frequencies. One 

measure of the correlations between frequencies for a given time series is given by the 

following quantity analogous to the coherence between different channels: 

(2.1) 

The estimate can be further averaged across time windows to increase the number 

of degrees of freedom. This quantity, computed for the leading PC time series obtained 

earlier , is displayed in Figure 2.5a. In this figure, the magnitude of the estimate p(f,I') 

for the leading PC time series is displayed as a function of the two arguments, f and 

1'. For comparison, in Figure 2.5b, results of the same procedure obtained after initially 
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Figure 2.4: Time frequency spectrum of first three pes obtained in a space-time SVD of 
MEG data from data set A pre-whitened by the filter shown in Figure 2.3. 
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Figure 2.5: (a) Magnitude of p(j, I') for the leading PC time series of MEG data from 
data set A. (b) Magnit ude of p(j, I') for the leading PC time series after initially scrambling 
the time series. 

scrambling the time series are also displayed . A visual comparison shows the lack of evidence 

for correlations across frequencies in an average sense. This rules out, for example, the 

scenario in which transient peaks in the spectrum at high frequencies are predominantly 

harmonics of corresponding transient peaks at low frequencies. Although in the present case 

we obtain a null result , it can be expected that this measure will provide useful information 

when correlations between different frequencies are actually present. 

2.4.1.3 Multichannel spectral analysis 

The time frequency spectra of leading PCs shown in the earlier section capture t he spectral 

content of the MEG signal that is coherent in space. Alternatively, one can perform a 

space-frequency SVD with a moving time window on the data. It is also desirable to obtain 

time-averaged characterizations of the coherence across channels. This can be done by 

considering the coherence functions between channels Pij (j) , which can be estimated as 

in Eq.1.26 using multitaper methods. The estimate, when calculated for a moving time 

window, can be further averaged across time windows. Displaying the matrix Pij poses a 

visualization problem, since the indices i, j themselves correspond to locations on a two-
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Figure 2.6: Coherence of MEG activity from data set A between points in space displayed 
by lines of proportionate thickness. Coherence was computed for a center frequency of 20 
Hz and half bandwidth 5 Hz. 

dimensional grid. Thus, an image displaying the matrix Pij does not preserve the spatial 

relationships between channels. One solution to this visualization problem is presented 

in Figure 2.6, by representing t he strength of t he coherence between two space points by 

the thickness of a bond connecting the two points. This figure shows the coherence Pij(f) 

computed with a center frequency 20 Hz and half bandwidth 5 Hz. The bond strengths 

have been thresholded to facilitate the display. This visualization, although not quantitative, 

allows for an assessment of the organization of the coherences in space. 

An alternative way of performing principal component analysis on space-time data while 

localizing information in the frequency domain is clearly to apply a space-time SVD to data 

which has first been frequency filtered into the desired band. To obtain frequency filters 

with optimal band-limiting properties, projection filters based on DPSS are used. For 

illustration, we perform this analysis on the data under discussion. The individual channels 

were first filtered into the frequency band 35-45 Hz. This gives a complex time series at each 

spat ial location. The first three dominant spatial eigenmodes in a space-frequency SVD are 

displayed in Figure 2.7, with singular values decreasing from the top to the bottom of the 
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Figure 2.7: Dominant spatial eigenmodes of a space-time SVD of band pass filtered ME G 
data from data set A for t he frequency band 35- 45 Hz. The two hemispheres of t he bra in 
are projected onto a plane, each being sampled by 37 sensors . There is clearly a high degree 
of spa tial coherence at this frequency band. 
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figure. Since the spatial eigenmodes are complex, their values are represented by arrows, 

whose lengths correspond to magnitudes and whose directions correspond to phases. It is 

quite clear from the figure that the data show a high degree of spatial coherence on an 

average. 

2.4.2 Optical imaging 

In this subsection we consider optical imaging data. We consider the general case of imaging 

data gathered either using intrinsic or extrinsic contrast. The case of intrinsic contrast is 

closely related to fMRI, and the analysis parallels that of the fMRI data sets C and D. To 

illustrate some effects important in the case of extrinsic contrast, we consider data set B. 

Data set B was gathered in presence of a voltage sensitive dye, and consists of images of an 

isolated procerebral lobe of Limax, with a digitization rate 75 Hz and duration 23 s. 

2.4.2 .1 Spectral analysis of PC time series 

The general procedure outlined above for fMRI data consisting of a space-time SVD followed 

by a spectral analysis of the PC time series is useful to obtain a preliminary characterization 

of the data. In particular, in the case of optical imaging data using intrinsic or extrinsic 

contrast in the presence of respiratory and cardiac artifacts, this procedure helps the assess­

ment of the artifactual content of the data. However, as discussed earlier, the space-time 

SVD mixes up distinct dynamic components of the image data, and is therefore of limited 

utility for a full characterization of the data. 

2.4.2.2 Removal of physiological artifacts 

We have developed a method for efficient suppression of respiratory and cardiac artifacts 

from brain imaging data (including optical images and MRI images for high digitization 

rates) by modeling these processes by slow amplitude- and frequency-modulated sinusoids. 

Other approaches to suppression of these artifacts in the literature include "gating," fre­

quency filtering, modeling of the oscillations by a periodic function (Le and Hu, 1996), 
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and removal of selected components in a space-time SVD (Orbach et al. , 1995). These ap­

proaches have varying efficacies. For example, gating aliases the relevant oscillations down 

to zero frequency, so that any variation in these oscillations cause slow fluctuations in the 

data, which is in general undesirable. Frequency filtering removes more spectral energy than 

is strictly necessary from the signal. Modeling of the oscillations by a periodic function is 

imperfect because the oscillations themselves may vary in time. This can be rectified by 

a llowing t he parameters of the oscillations to slowly change in time. One must be able to 

fit a sinusoidal model robustly to short t ime series segments to do this properly. Finally, 

removing selected components in a space-time SVD is not a safe procedure because, as dis­

cussed before, the space-time SVD does not necessarily separate the different components 

of the image data. 

Our method for suppressing the above mentioned oscillatory components is based on 

multi taper methods for estimating sinusoids in a colored background described earlier. The 

method is based on modeling the oscillations by a sum of sinusoids whose amplitude and 

frequency are allowed to vary slowly. T he modeled oscillations are removed from the time 

series in the data to obtain the desired residuals. Although a space-time SVD is not sufficient 

by itself, applying such a removal technique to the leading temporal PCs, and reconstituting 

the residual time series appears to give good I·esults. This procedure was found to be effective 

for a wide variety of data, including optical imaging using both intrinsic and extrinsic 

contrast in rat brain, and in fMRI data. The details of the technique are presented in the 

section on fMRI data. 

2.4.2.3 Space-frequency SVD 

In this section we present the results of a space-frequency SVD applied to data set B. 

This technique has been described above (Figs. 1.9, 1.10) for data set C. In Figure 2.8 

the coherence spectrum is shown for data set B. The coherence was computed on a coarse 

grid, since there is not much finer structure than that displayed in the spectrum. In this 

case, 13 DPSS were used, corresponding to a full bandwidth of 0.3 Hz. The preparation 

(procerebrallobe of Limax) is known to show oscillations, which are organized in space as a 



50 

1.00 

0.75 
Q) 
u 
c 
i!' 0.50 Q) 
.c 
0 
0 

0.25 

0.00 
0 2 3 4 5 

Frequency (Hz) 

Figure 2.8: Coherence spectrum for a space-frequency SVD of optical imaging data in 
data set B from the procerebral lobe of Limax. 

traveling wave. Traveling waves in the image, gathered in the presence of a voltage sensitive 

dye, reflect traveling waves in the electrical activity. The coherence spectrum displayed in 

Figure 2.8 shows a fundamental frequency of about 1.25 Hz and the corresponding first two 

harmonics. 

T he amplitudes of the leading spa tial eigenmode as a function of center frequency are 

shown in Figure 2.9. Note that t he spatial distribution of coherence is more localized to 

the center of the image at the higher harmonics. This reflects the change in shape of the 

waveform of oscillation that is known to occur in the preparation as a function of spatial 

position. This phenomenon has been interpreted as a result of differing spatial concentration 

profiles of two different cell types in this system (Kleinfeld et aL, 1994). Based on this past 

interpretation, the leading modes at the fundamental and harmonic frequencies directly 

reflect the spatial distribution of the different cell types. 

The spatial eigenmodes are complex and possess a phase in addition to an amplitude. 

T his a llows for the invest igation of t raveling waves in the data. Let the leading spatial 

eigenmode, as a function of frequency, be expressed as 

i 1 (x ;f) = A(x;f)exp(ie(x ; f)) (2.2) 

Given the convention we are following for the Fourier transform (Eq.l.l), one may define 
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Figure 2.9: Leading spatial eigenmodes of the space-frequency SVD corresponding to 
Figure 2.8. The amplitudes of the leading modes are shown as a function of center frequency. 

the following local wave vector: 

k{x ; 1) = - Ve(x; 1) (2.3) 

If the coherent fluctuations at a given frequency correspond to traveling plane waves, 

then k(x; f) corresponds to the usual definition of the wave vector. More generally, this 

quantity allows the systematic examination of phase gradients in the system, which corre­

sponds to traveling excitations. 

The local wave vector map for data set 8 at a center frequency of 2.5 Hz (the first 

harmonic) is shown in Figure 2.10a, superposed on top of contours of constant phase. In 

Figure 1.10b, the constant phase contours for center frequencies 1.25 Hz, 2.5 Hz (fundamen­

tal and first harmonic) are superposed. On superposing the contours for the fundamental 

and the first harmonic, we discover an effect that was not evident in the earlier analysis of 

the data (Kleinfeld et al., 1994), namely that the phase gradients at 1.25 and 2.5 Hz are 

slightly tilted with respect to each other. This can be interpreted as two different waves 
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(a) (b) 

Figure 2.10: Leading spatial eigenmodes of the space-frequency SVD corresponding to 
Figure 2.9. (a) Gradients of the phase of the leading SVD mode at a center frequency of 2.5 
Hz, corresponding to local wave-vectors for the wave motion, are shown as arrows. These 
are superposed on constant phase contours for the mode. (b) Constant phase contours for 
spatial eigenmodes of the space-frequency SVD for center frequencies 1.25 Hz and 2.5 Hz. 
2.5 Hz is shown by the bold contour. 

simultaneously present in the system, but running in slightly different directions. Coexist­

ing waves present at different temporal frequencies with different directions of propagation 

have also been revealed by space-frequency SVD analysis of voltage-sensitive dye images of 

turtle visual cortex (Prechtl et al. , 1997). 

2.4.3 Magnetic resonance imaging 

The data sets C and D comprising functional MRI data have been used in earlier sections to 

illustrate the techniques presented in the paper (Figs. 1.7- 1.10). In this section we continue 

to illustrate analytical techniques on this data set. The data sets were gathered with a 

digitization rate of 5 Hz and a total duration of 110 s. Data set C/V was gathered in the 

presence/absence of a flashing LED checkerboard pattern serving as visual stimulus. An 

extra problem in the analysis of MRI data is the presence of motion related artifacts, which 

have to be suppressed (Mitra et al., 1997). 
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2.4.3.1 Removal of physiological artifacts 

Here a detailed description is provided of the method for removal of physiological oscillations 

discussed in the section on optical imaging data. A space-time SVD of the data is first 

computed, followed by sinusoidal modelling of the leading principal component time series. 

This is necessary for two reasons: (1) The images in question typically have many pixels, 

and it is impractical to perform the analysis separately on all pixels. (2) the leading SVD 

modes capture a large degree of global coherence in the oscillations. 

Consider a single principal component time series, a(t). We assume that the time 

series is a sum of two components. The first component consists of a sum of amplitude­

and frequency-modulated sinusoids representing respiratory and cardiac oscillations. The 

second component 5a(t) contains the desired signal. 

a(t) = .L An(t) cos[jn(t)t + <Pn(t)) + 5a(t) (2.4) 
n 

The goal is to estimate the smooth functions An(t), fn(t), and <Pn(t) , which give the 

component to be subtracted from the original time series. 

It is necessary to choose an optimally sized analysis window. This window must be 

sufficiently small to capture the variations in the amplitude, frequency, and phase, but 

must be long enough to have the frequency resolution to separate the relevant peaks in 

t he spectrum, both artifactual and originating in the desired signal. The choice of window 

size depends to some extent on the nature of the data, and cannot be easily automated. 

However, in similar experiments it is safe to use the same parameters. Ideally, one would 

choose the window size in some adaptive manner, but we find it adequate for our present 

purposes to work with a fixed window size. 

The frequencies fn(t) have to satisfy sevel-al criteria. Usually one is removing the respi­

ratory and cardiac components. The corresponding spectra contain small integer multiples 

of two fundamental frequencies , with the possible presence of sidebands due to nonlinear 

interactions between the oscillations. The frequency F-test described in Multitaper spectral 

analysis is used to determine the fundamental frequency tracks fn(t) in Equation 2.4. The 
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Figure 2.11 : Time frequency plot of frequency tracks for a moving sinusoidal model of t he 
cardiac and respiratory artifacts in fMRI data from data set C. The analysis is performed 
on a PC time series obtained by performing a space-time SVD. 

time series used for this purpose may either be a PC time series or an independently mon­

itored physiological time series. Note that the assumption here is that within an analysis 

bandwidth of the relevant peak in the cardiac or respiratory cycle, the data can be modeled 

as a sine wave in a locally white background. The fundamental frequency tracks are used 

to construct the tracks for the harmonics and the sidebands. 

In the example, we show the results of the analysis on one principal component time 

series from data set C. The fundamental frequency tracks were determined by using the 

F-test on a moving analysis window on t he PC time series. 

If the F-test does not provide a frequency estimate for short segments of the data, 

estimates may be interpolated using a spline, for example. After the frequency tracks are 

determined , t he amplitude and phase of the sinusoids are calculated using Equation 1.12 for 

each analysis window location. Note that t he shift in time between two successive analysis 

windows can be as small as the digitization rate of the data, but is limited in practice by 

the available computational resources. The est imated sinusoids are reconstructed for each 
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Figure 2.12: Top: Part of PC time series forming the basis of Fig.23. Middle: Estimated 
cardiac and respiratory components corresponding to top plot. Bottom: Time series with 
cardiac and respiratory components suppressed. 

analysis window, and the successive estimates are overlap-added to provide the final model 

waveform for the artifacts. 

The frequency tracks are shown in Figure 2.11 superposed on a time-frequency spectral 

estimate of the principal component time series. In Figure 2.12, results of the procedure 

described above are shown in the time domain for the chosen PC. Notice the change in 

the frequency corresponding to the cardiac cycle (~ 1.3 Hz) in the initial part of the time 

period. This would prevent the adequate estimation of this component if a model with 

fixed periodicity were used. In contrast the method used here allows for slow variations in 

the amplitudes of the oscillations in addition to variations in frequency. A strong stimulus 

response is noticeable in this PC (data set C was gathered in the presence of visual stimulus). 

2.4.3.2 Space-frequency SVD 

In this section, the results of a space-frequency SVD are shown for data sets C and V . 

Recall that data sets C and V were collected with identical protocols , except that in data 

set C a controlled visual stimulus is applied. Figure 2.13 shows the coherence spectra 

resulting from the space-frequency SVD. In this calculation, the DPSS used corresponded 

to a full bandwidth of 0.1 Hz. The coherence spectra for t he two data sets are more or less 
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Figure 2.13: Coherence spectrum for a space-frequency SVD of fMRI data from data 
sets C and 1) in presence of visual stimulus (solid curve) compared with absence of visual 
stimulus (dotted curve). 

the same. The coherence near zero frequency is higher for data set C which contains the 

visual stimulus. The stimulus response can be seen clearly in the amplitude of the leading 

spatial eigenmode of the space-frequency SVD for data set C (Fig. 2.14) at close to zero 

frequency. At higher frequencies, coherence arising from artifactual (respiratory) sources 

causes a different pattern of spatial amplitudes. As opposed to the space-time SVD, this 

procedure segregates the stimulus response from the oscillatory artifacts. 

2.5 Discussion 

We have tried to outline analysis protocols for data from the different modalities of brain 

imaging. It is useful to recapitulate the essential features of these protocols in a unified 

manner, and to indicate the domains of validity of the different techniques proposed. 

Visualization of raw data 

It is usually necessary to directly visualize the raw data, both as a crude check on the quality 

of the experiment and to direct further analysis. In this stage, one may look at individual 

time series £i'om the images or look at the data displayed dynamically as a movie. The 

relevant images are often noisy, so a noise reduction step is first necessary even before t he 

preliminary visualization. In cases where the visualization is limited by large shot noise, 
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Figure 2.14: Amplitudes of leading spatial eigenmodes corresponding to the space­
frequency SVD in Figure 2.13. Center frequencies from 0 Hz to 0.3 Hz in 0.1 Hz increments . 
Top: Wit hout stimulus. Bottom: With stimulus. 

truncation of a space-time SVD with possibly some additional smoothing provides a simple 

noise reduction step for the visualization. 

Preliminary characterization 

In the next stage, it is useful to obtain quantities that help parse out the content of the 

data, in part icular to identify the various artifacts. Despite its limitations , a space-time 

SVD is useful at t his stage to reduce the data to a few time series and corresponding 

eigenimages. Examination of the aggregate spectra of the PC time series, for example, 

reveals the extent of cardiac/respiratory content of fMRI/optical imaging data. In case of 

MEG , direct examination of the PC time series reveals the degree of cardiac contamination. 

Examination of the corresponding spatial images reveals the spat ial locations of the artifacts. 

In case offMRI data, where the digitization rate may not be very high, studying the spectra 

can reveal whether cardiac/respiratory artifacts still lead to possibly aliased frequency peaks 

in the power spectra. 

A fur ther , more powerful characterization is obtained by t he space-frequency SVD. For 

optical data and for rapidly sampled fMRI data, there is sufficient frequency resolution 

that at this stage the oscillatory artifacts segregate well. Studying the overall coherence 
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spectrum reveals the degree to which the images are dominated by the respective art ifacts 

at the artifact frequencies, while the corresponding leading eigenimages show the spatial 

distribution of these artifacts more cleanly compared to the space-time SVD. Moreover, 

provided the stimulus response does not completely overlap the artifact frequencies, a char­

acterization is also obtained of the spatiotemporal distribution of the stimulus response. 

In case of fMRI, if the digitization rates are too slow « 0.3 Hz), thel·e may not be any 

segregation in the frequency domain of the various components of the image; this can be 

established at this stage by examining the eigenimages of the space-frequency SVD. In this 

case, the techniques described in this paper would be of limited use. 

A rtifact removal 

Based on the preliminary inspection stage, one can proceed to remove the various artifacts 

to the extent possible. The techniques described in this paper are most relevant to artifacts 

that are sufficiently periodic, such as cardiac /respiratory artifacts in optical/fMRI data, 

60 Hz noise in optical data/ MEG, and other frequency-localized noise such as building/fan 

vibrations (optical imaging data). There are two basic ways of using the frequency segre­

gation of the artifacts to remove them. One method is to directly model the waveforms of 

the oscillations using the frequency- and ampli tude-modulated sinusoidal fit described in 

the sections on optical/fMRI data. 

For fMRI data, if the digitization rate is too low, then the techniques described here are 

not useful. However , for fMRI data, even with digitization rates of 1- 2 s, it appears possible 

to use the frequency segregation of the physiological artifacts , using one of two methods. 

If auxiliary time series are available for cardiac/respiratory oscillations, one may construct 

the transfer function from these time series to the data using the multitaper technique 

described above, perform a statistical test of significance such as the F-test, and remove 

the significantly fitted components. Alternatively, if no auxiliary data are available, t he 

space-frequency SVD may be examined for presence of these artifacts, and if the artifacts 

can be identified with some frequency band then filtering techniques m ay be used. 

In each of the cases described above, the fundamental operation is performed on an 

individual time series. This may be performed pixel by pixel in the image, or to reduce 
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computational time, the steps may alternatively be performed on the leading PC time series 

and the artifacts thus reconstructed may be then subtracted from the raw data . 

Stimulus response characterization 

This may be the most delicate step, since the goal of the experiment is usually to find the 

stimulus response which is not known a priori. If the stimulus is presented periodically 

and repeatedly, the transfer function may be computed in the frequency domain using the 

techniques described before. Often , some strong assumption is made about the stimulus 

response (e.g., the image intensity will rise during the stimulus) , and methods of signal 

detection theory or statistical hypothesis t est ing are applied to extract the response based 

on the assumed signal model. 

One general assumption about the stimulus response to a single trial might be that it 

lives in a part icular region of frequency space. In the case of fMRI data , where the response 

is often a prolonged increase in signal intensity, this would correspond to the signal having 

relatively low frequencies. In this case, the space-frequency SVD described in the paper is 

of utility in describing the stimulus response, as illustrated in the section on fMRI data. 

Similarly, in optical imaging, if the stimulus was modula ted with a particular temporal 

frequency, the same idea would be applicable. 

It is to be emphasized that it is not possible to develop " black box" -like techniques 

that are a panacea to all problems of data analysis. It is neither possible nor desirable to 

entirely eliminate the human component in the process. However, relevant computational 

and analytical tools can be a powerful aid to making sense of the data, and are used most 

effectively in a closed loop system where the results of analysis influence experimentation. 
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Chapter 3 Temporal structure during working 

memory in Macaque parietal cortex 

3.1 Introduction 

Working memory is a brain system requiring the temporary storage and manipulation of in­

formation necessary for cogni tion (Baddeley, 1992). The neurophysiological basis of working 

memory is studied in non-human primates by recording activity during delayed response 

tasks (Fuster, 1995). Cue-selective elevations in single unit mean firing rates have been 

recorded during the delay period in many brain areas during different versions of these 

tasks (Fuster and Jervey, 1982; Bruce and Goldberg, 1985; Gnadt and Andersen, 1988; 

Miyashita and Chang, 1988; Funahashi et al., 1989; Koch and Fuster, 1989; Miller et al. , 

1996; Zhou and Fuster, 1996). Parietal cortex is important to spatial cognition (Ander­

sen, 1995) and spatially-tuned increases in firing rate during working memory were first 

reported in parietal cortex on the lateral bank ofthe intraparietal sulcus (area LIP) (Gnadt 

and Andersen, 1988). In analogy to receptive fields in the sensory system, such activity can 

be said to form memory fields (Funahashi et al. , 1989) and is thought to reflect the plan 

to make a movement (Mazzonni et al., 1996; Snyder et al. , 1997; Batista and Andersen, 

2001). Converging evidence indicates memory fields may be important to understanding 

the neural basis of working memory (Goldman-Rakic, 1995). 

Temporally correlated neuronal activity in the form of reverberations has long been 

thought to be important to short-term memory (Lorente de No, 1938; Hebb, 1949; Amit , 

1995) but measures of mean act ivity, such as the firing rate, do not capture correlations 

and measures of the variance, such as the spectrum, a re required. If reverberant activity 

is present in neuronal activity, temporal structure localized in frequency may also predict 

planned saccades would be evidence for memory fields of t emporal structure, or dynamic 
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memory fields. Dynamic memory fields are defined by cue-selective changes in the temporal 

structure of neuronal activity. The temporal structure of neuronal activity has been the 

subject of great interest (Singer and Gray, 1995; Roskies, 1999) and work has related it to 

perception (Eckhorn et al. , 1988; Gray and Singer, 1989; Engel et a l. , 1990; Kreiter and 

Singer, 1996; Cardoso de Oliveira et al., 1997; Friedman-Hill et al. , 2000), attent ion (Fries 

et al. , 2001 ) and action (Rouguel et al. , 1979; Sanes and Donoghue, 1993; Bressler et al. , 

1993; Murthy and Fetz, 1996a,b; Roelfsema et al. , 1997; Donoghue et al., 1998; Lebedev 

and Wise, 2000). Previous studies of neural activity during object working memory have 

reported temporal structure in spike activity in monkeys (Nakamura et al. , 1992) and in 

EEG activity in humans (Tallon-Baudry et al. , 1999). The presence of temporal structure 

specific to a remembered movement plan would lend experimental support to the idea that 

working memory, and potentially other cognitive processes, involves reverberating neuronal 

activity. 

We recorded spiking and local field potential (LFP) activity from two macaques dur­

ing a memory-saccade task using a single tetrode located in area LIP. Spike activity has 

been previously examined in area LIP during this task (Gnadt and Andersen, 1988; Chafee 

and Goldman-Rakic, 1998) . Previous analysis of this data has investigated it for temporal 

structure. Pezaris et al. (1997) looked for oscillations using autocorrelation functions but 

averaged over different behavioral conditions and reported their absence. Pezaris et al. 

(1999) showed structure in auto- and cross-covariation between spike trains without estab­

lishing statistical significance. LFP activity has not been previously studied in parietal 

cortex during working memory. We use multitaper spectral analysis techniques, which were 

important to our obtaining the present results, to investigate temporal structure in spiking 

and LFP activity. We find significant structure in the spectrum of spiking and LFP activity 

and the coherency between them. These results are evidence for dynamic memory fields 

specific to both the direction and time of a planned movement and suggest t emporal struc­

ture in neuronal activity may reflect neural processing and could be used in the control of 

a neural prosthesis. 
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3.2 Materials and methods 

3.2.1 Animal preparation 

Recordings were made from two adult male Rhesus monkeys (Maccaca mulatta). Each ani­

mal was fitted with a stainless steel head post embedded in a dental acrylic head cap to fix 

their head position, a scleral search coil to record eye position and a stainless steel record­

ing chamber over a craniotomy to gain access to the cortex. All surgical procedures and 

animal care protocols were approved by t he California Institute of Technology Institutional 

Animal Care and Use Committee and were in accordance with National Institutes of Health 

Guidelines. 

3.2.2 Behavioral task 

Recordings were made while animals performed a memory-saccade task (see Fig.1). Each 

tria l of this task began with the illumination of a central fixation light, to which the an­

imal made a saccade. As long as the fixation light was present, the animal was required 

to maintain fixation within a 20 circular window. After foveation was established for a 

backgTound period of 1 s, a location was cued by a light flashed for 100 ms at one of 8 

fixed locations evenly distributed on a circle, radius 100
• Following the location cue, the 

monkey had to maintain fixation for a further period of 1000 ms, at the end of which the 

fixat ion light was extinguished, and the animal was required to saccade to the remembered 

location. To help the animal maintain saccadic accuracy, the cued location was reillumi­

nated for a minimum of 500 ms, often triggering a corrective saccade, and the animal was 

required to hold fixation at t he new location while the target remained on. On completion 

of a successful trial, the animal was rewarded with a drop of water or juice. Cued locations 

were randomly interleaved to collect between 10-15 successful trials for each location in 

blocked fashion. Locations were cued with spots of light generated with a two-beam optical 

bench from incandescent sources, and rear-projected onto a scr·een for viewing by mirror 

galvanometers. 
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Fixation 

Saccade + -
Figure 3.1: The monkey performs a memory-saccade to one of eight saccade directions. 
a) The trial begins with the illumination of a fixation light at the center of the screen. 
The monkey saccades to the fixation light and maintains fixation for one second, which 
determines the baseline period. b) A location is then cued at one of eight points by a flash 
of light for lOOms and extinguished. c) The monkey must maintain fixation for a further 
second at which point d) the fixation light is extinguished and the monkey performs a 
saccade to the remembered location cue. When the saccade is completed and the monkey's 
eye position is within 2° of the target, e) it reilluminates and the monkey is rewarded with 
a drop of juice. A small corrective saccade follows the reillumination of the location cue. 
There is a short (2- 3 s) intertrial interval before the fixation light reilluminates signalling 
the start of a new trial. 

3.2.3 Electrophysiological recordings 

Electrical activity was recorded from the behaving monkey using single tetrodes (Reece and 

O'Keefe, 1989) adapted for use in the awake monkey preparation (Pezaris et aI., 1997). This 

is extensively described by Pezaris (2000), and is briefly summarized here. Tetrodes, made 

from 12f.Lm tungsten wire (California Fine Wire, CAl, were placed in a fine guide tube and 

positioned using a standard hydraulic micro drive (Fred Haer Corp, Brunswick, ME). Neural 

signals were amplified by a custom four-channel headstage amplifier (gain of 100) feeding a 

custom four-channel variable-gain preamplifier (gain of 1-5000 nominally set to 200 (Pezaris, 

2000)) and anti-alias filters (9-pole elliptical low-pass, Ic = 10 kHz, Tucker-Davis Technolo­

gies (TDT), Gainesville, FL) before being digitized with a four-channel instrumentation­

grade 16-bit analog to digital converter Us = 20 kHz, also TDT). Digital data were then 

streamed to disk and written to CD-ROM. The polarity of the signal was reversed to give 

positive-going spike activity. Continuous extracellular traces were processed off-line to ex­

tract and classify spike events and calculate the LFP. Figure 3.2 presents the extracellular 

potential from a channel of the tetrode. Panel a) presents activity during one trial and 

panel b) presents activity during the memory period on an expanded time base. 
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Figure 3.2: a) One channel of broadband (1 Hz - 10 kHz) tetrode data sampled at 20 kHz 
for a memory-saccade trial during a saccade to the preferred d irection. The polar ity of the 
potential is reversed . b) The data in panel a) viewed on an expanded t ime base during 
working memory from 0.6- 1.1 s . 
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3.2.4 Spike sorting 

Spike activity was extracted from the digitized recordings by an automated procedure which 

identified and sorted spike waveforms into clusters, each presumed to arise from a single 

cell. The algorithm has been developed and described by Sahani et al. (1998) and in detail 

by Sahani (1999) and is summarized here. 

Prior to spike sorting, the recordings were bandpass filtered (0.6- 10 kHz). A statistical 

model describing the distribution of spike shapes was then fitted to waveforms extracted 

from 30 s of data, as described below. This model was used to classify spike events in the 

rest of the recording. 

First, candidate spike times were identified by comparing the signal to a threshold of 

three times the root-mean-square (RMS) signal value on each channel. Spikes were accepted 

when the trace i) crossed and remained above the threshold for at least 0.1 ms on at least 

one channel; ii) crossed the threshold on the other channels either within 0.1 ms of this 

time, or else not within 1 ms; iii) did not remain above threshold for longer than 1 ms; and 

iv) did not cross the threshold again within 1 ms. These constraints reduced the number of 

overlapped spike events in order to reduce bias in estimating the spike waveform model. 

A 2.4 ms segment (48 samples per channel) of data was then extracted from all four 

channels, centered on each identified spike time. A (two times RMS) thresholded center of 

mass was calculated for each spike waveform, and the segment resampled by interpolation 

to yield 24 samples per channel (1.2 ms), with the center of mass falling one-quarter of 

the way into the waveform. The precision of this center of mass alignment was 4- 8 times 

the original sampling frequency. The different channels were then concatenated to yield 

96-dimensional event vectors. 

The background noise covariance expected in these event vectors was estimated using 

1.2 ms segments extracted from the recording at times when no threshold-crossing was seen. 

The event vectors were then transformed to lie in a space where this noise covariance was 

whitened, and a mixture of a single Gaussian and a uniform density fit to them. The princi­

pal eigenvectors of the covariance of the Gaussian provided robust estimates of the principal 
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components of the data in the noise-whi tened space. Low-dimensional event vectors were 

obtained by projecting each transformed event onto the four leading eigenvectors of the 

Gaussian covariance. 

Events were clustered by fitting a mixture of Gaussian distributions to the low-dimensional 

event vectors. The covariance of each Gaussian was fixed at the identity matrix (since the 

background noise is white in the transformed event space). A uniform component was in­

troduced in the mixture to reduce the effect of outliers. The fit was performed using the 

Relaxation Expectation-Maximization algorithm (Sahani, 1999; see also Ueda and Nakano 

1994) which helped to avoid problems of local minima. The number of Gaussian components 

was determined by cascading model selection (Sahani, 1999). 

Each Gaussian component in the mixture was taken to represent the distribution of 

spikes expected from a single cell, and events were assigned to cells according to a maximum 

a posteriori rule. The autocorrelogram of spikes assigned to each cluster was checked to 

ensure that no violations of the biophysical refractory period «1 ms) were seen. To ensure 

that the clustering was robustly determined, the segment of data used to fit the model was 

varied and only models that were consistent for a ll segments were included in the database. 

3.2.5 Data analysis 

Spikes were binned at 1 ms time resolution to give spike trains. LFP time series were 

calculated from t he extracellular recording on one tetrode channel by low-pass filtering the 

signal at 250 Hz (Thomson, 1994). LFP records were inspected for evidence of artifactual 

power at 60 Hz and its harmonics by the presence of sharp spectral lines at t hose frequencies. 

An artifact was present in some recordings during periods of low signal strength but had 

little power and its influence could not be detected in subsequent data analysis. When 

correlating spiking and LFP activity we were concerned about spikes leaking through the 

filter into the LFP. We took two steps to reduce those artifacts. First, we estimated the 

LFP from the channel of the tetrode that had the smallest spike amplitude. Second, we 

subtracted a mean spike waveform from t he extracellular recording at each spike time before 

filtering. 
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MEAN RESPONSES: The mean response of spike activity, the peri-stimulus time histogram 

(PSTH) , was calculated by counting the number of spikes per 1 ms bin and averaging across 

trials for each saccade direction aligned to the location cue onset, followed by smoothing 

with a Gaussian kernel , (a = 10 ms). The mean LFP response was calculated by averaging 

the amplitude of the LFP across trials for each saccade direction aligned to the location cue 

onset. This was then smoothed with a Gaussian kernel, (a = 10 ms). The mean response 

was also calculated by aligning to the time of the saccade before averaging (Barash et aI. , 

1991) with little change in the results. 

SPECTRAL ANALYSIS: 

Three periods during the trial were investigated: baseline, working memory and peri­

saccadic. The baseline period extended 750- 250 ms before the onset of the location cue. 

The working memory period extended 450- 950 ms following the offset of the location cue. 

The peri-saccadic period extended 250 ms either side of the saccade. Baseline activity 

was estimated by pooling activity from all successful trials. Working memory and peri­

saccadic activity were estimated by pooling activity from successful trials according to 

saccade direction. 

Two saccade directions of interest were defined for spiking and LFP activity, preferred 

and anti-preferred (opposite to preferred). The preferred direction of spike activity was 

the direction that elicited the maximum firing rate during the period from the offset of 

the location cue to the offset of the fixation light. The preferred direct ion of the LFP 

was defined as the direction with the greatest gamma band (25- 90 Hz) power during the 

same period. In this study, multiple cells recorded at the same site had the same preferred 

direction and the preferred direction of spiking and LFP activity were in alignment in all 

recordings. Activity from different locations was aligned to the preferred direction before 

estimating population quantities. 

Time-frequency representations of the activity were calculated on a 500 ms window that 

was stepped by 50 ms between estimates through the trial with the time index aligned to 

the center of the analysis window. As a control, window size was varied from 200-750 ms 
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with no significant change in the results. Time-frequency representations were estimated 

by averaging trials aligned in time to the location cue. 

SPIKE SPECTRUM: The spike spectrum was estimated on a 500 ms window using 9 Slepian 

data tapers with time-bandwidth product 2p = 10 giving a frequency resolut ion of ± 10 Hz. 

The result was then smoothed with a lag window with the same bandwidth for visualization 

purposes (Percival and Walden, 1993). The spike spectrum was estimated for each cell giving 

the single cell estimate. Spike activity from each cell was aligned according to preferred 

direction and averaged for each saccade direction across a ll cells in each monkey to give the 

population average. We normalized the spectrum by dividing by the mean firing rate to 

give the rate-normalized spectrum when comparing across cells or periods of the task. Spike 

spectrum significance levels were computed from estimates of the variance using a jackknife 

over tapers and trials. (Thomson and Chave, 1991; Efron and Tibshirani, 1993) and were 

used to test the hypothesis that the spectrum was non-uniform. 

LFP SPECTRUM: The LFP spectrum was estimated on a 500 ms window using 5 Slepian 

data tapers with time-bandwidth product 2p = 5 giving a frequency resolution of ±5 Hz. 

The result was then smoothed with a lag window of the same bandwidth for visualization. 

The spectrum of LFP activity was estimated for each recording giving the single site esti­

mate. LFP activity from each site was aligned according to preferred direction and averaged 

for each saccade direction across all sites in each monkey to give the population average. 

LFP spectrum significance levels were estimated with multi taper methods using the jack­

knife, as for the spike spectrum , and used to test the hypothesis that the LFP spectrum 

was different in one period of the trial compared with another. 

SPIKE-FIELD COHERENCY: Spike-field coherency was estimated on a 500 ms window using 

9 Slepian data tapers with t ime-bandwidt h product 2p = 10 giving a fi'equency resolution 

of ±1O Hz. Identified spike activity was suppressed in the extracellular potential before est i­

mating t he LFP by subtract ing a 2 ms mean spike waveform aligned to the event time. The 

spike &orting stability criterion described above insured the effectiveness of this suppression. 
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The coherency was estimated for each cell giving the single cell estimate. Spike-field co­

herency estimates were aligned according to preferred direction and the complex coherency 

values averaged to give the population coherency. Significance levels were estimated with 

multitaper methods using the jackknife, analogously to the spectrum. 

SPIKE-TRIGGERED AVERAGE (STA) POTENTIAL: The relation between spike activity and 

the extracellular potential was assessed with the use of a STA of the raw data during baseline 

and working memory prior to a saccade in the preferred direction for that cell. Segments of 

the raw voltage trace 200 ms long centered on the spike were extracted. Spike waveforms 

were suppressed by subtracting a 2 ms mean spike shape waveform. The traces were then 

averaged to give the STA potential. The STA potential provided a measure of association 

between spike activity and the extracellular potential in the time domain. Since any residual 

spike energy would be visible as a sharp « 1 ms) fluctuation in the spike-triggered potential 

at zero time, this allowed an assessment of the spike suppression procedure. 95% confidence 

intervals were calculated by estimating the standard error of the mean and were used to 

test the hypothesis that the STA potential was non-zero. 

PHASE HISTOGRAM: The LFP was filtered into the gamma frequency band (25- 90 Hz) 

using a 100 ms digital filter constructed from 6 Slepian functions (NW = 3.5) . This gave 

a complex-valued series. The phase of this signal was sampled at spike times during the 

baseline and working memory and pooled from the preferred direction during working mem­

ory, and from all trial conditions during baseline then, finally, pooled across all cells in the 

study. These phases are the frequency domain version of the STA potential. The histogram 

of phases between baseline and working memory provided a control for the coherency as 

estimation of the histograms was not limited to spikes from a particular cell. A one-sample 

Kolmogorov-Smirnov (K-S) test was used to determine significance level for deviations of 

the phase histogram during working memory or baseline from a uniform distribution. A 

two-sample K-S test was used to determine the significance level for deviations of the phase 

histogram during working memory from baseline (Rao, 1965). 
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3.3 Results 

The database for this study contained 16 cells l'ecorded at 16 sites in one monkey and activity 

from 24 cells recorded at 18 sites in another monkey. The LFP was extracted from all these 

recordings (16 sites in one monkey, 18 sites in the second). Since we were primarily interested 

in memory period activity, a subjective evaluation was made during data collection to make 

recordings when tuned memory activity was present in multiunit activity. Subsequently, 

during off-line analysis , recordings were further selected for containing at least one clearly 

and stably isolated cell, using criteria described in the Methods section above. 

3.3.1 Mean spike and LFP responses 

Mean spike activity in area LIP during memory-guided saccades has been characterized 

in previous reports (Gnadt and Andersen, 1988; Barash et al., 1991). We found 28 of 40 

neurons (70%) had significant memory period activity (p < 0.05). 

The upper panel of Figure 3.3a presents line plots of the spike rate in the preferred 

and anti-preferred directions for a typical cell with memory activity. The PSTH is shown 

across trial conditions in a 2D plot in the lower panel. The upper panel of part b) shows 

the mean LFP response for t he same site in line plots for the preferred and anti-preferred 

directions. This was calculated by averaging the amplitude of the LFP across trials to the 

same direction. The response across trial directions is shown in a 2D plot in the lower 

panel. Increases in the mean LFP are spatially tuned during and just after the location 

cue like those in the firing rate but spatially tuned memory activity is not. Broad tuning 

of the mean LFP is present across saccade directions peri- and post-saccadically which 

may be related to the updating of movement fields following the saccade. There is also a 

suppression in the mean LFP response following the saccade that is spatially tuned. These 

features are seen in recordings from all sites in area LIP in both monkeys and are evidence 

for behaviorally-locked responses in the LFP at low frequency. 
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Figur e 3.3: Line and 2D plots showing t he mean response of spike and LFP activity 
averaged across saccades in each direction . a ) Upper panel: Line plots of spike mean 
response in preferred (solid) and anti-preferred (dashed) direct ions . Lower panel: 2D plot 
of the PSTH averaged across trials aligned to t he initial target onset as a function of cue 
direction . b) Upper panel: Line plot of t he LFP mean response in t he preferred (solid) 
and anti-preferred (dashed) directions. Lower panel: 2D plot of the LFP mean response 
averaged across trials aligned to the initial target onset as a function of cue direction. Time 
is on the x axis and for 2D plot s, direction is on the y axis aligned to the preferred direction 
at 0°. 
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Figure 3.4: Line plots showing the spectrum of spike activity for a single cell averaged 
during baseline and working memory. a) Line plot of the spectrum during the baseline 
period (solid) with 95% error bars (dashed) estimated with a jackknife across tapers and 
trials. The high-frequency limit is shown by the dotted line. b) Line plot of the spectrum 
during working memory. Three features are indicated: 1) The value of the spectrum at low 
frequencies So; 2) the value at the peak in the gamma band S'Y and 3) the mean firing rate, 
A. These measures are combined to give a measure of the spectral shape in the gamma 
band, oS (see main text). 

3.3.2 Temporal structure in spike activity 

Increases in the mean firing rate of cells during working memory tasks have been cited as 

evidence for memory fields that predict saccades to a remembered location in space (Gnadt 

and Andersen, 1988; F'unahashi et al., 1989). Temporal structure in spike activity may 

also predict saccades to remembered spatial locations which would be evidence for memory 

fields of temporal structure, or dynamic memory fields. Here, we define dynamic memory 

fields in spike activity by changes in the shape of the spectrum during working memory. 

In contrast, memory fields described by the mean firing rate are defined by changes in the 

high-frequency limit, or level, of the spectrum, not the shape. Other measures of temporal 

structure constructed from an interval representation will be discussed below. 

Figure 3.4 presents spectral analysis of spike activity from a typical cell with memory 

activity. Panel a) shows the results during the baseline. T he level of the spectrum is equal 

to its mean firing rate and the spectrum of a Poisson process with the same mean rate 

would fallon this line. The measured activity is not significantly different from Poisson 

except at low « 10 Hz) frequencies where it is suppressed. 
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Figure 3Ab shows the results of the analysis of activity during working memory from the 

same cell. The spectrum during working memory is significantly different from a Poisson 

process. There is a significant peak in the spectrum in the gamma band at 50 Hz. The 

spectrum during working memory is also strongly suppressed at low frequency (0-10 Hz). 

These two fea tures indicate the cell fires spikes at regular intervals during working memory. 

The figure is annotated with the peak of the spectrum in the gamma band (25- 90 Hz), S-p 

the value of the spectrum at 0 Hz, So , and the mean firing rate A. 

We combine these features into a spectral shape parameter, 5S, that is used to quantify 

the degree of temporal structure in t he spike spectrum across a population of recordings. 

5S = Soy - So 
A 

This measure is related to the derivative of the spectrum and quant ifies deviations of the 

spectrum from a Poisson process that are local in frequency. Importantly, since 5S is 

explicitly normalized by the level of t he spectrum it is a dimensionless number and is not 

biased by the mean firing rate. 

Figure 3.5a presents results during baseline and panel b) presents results during working 

memory. The top panel shows the population average spectrum in each case. 95% confidence 

intervals shown by dashed lines indicate that deviations from the Poisson level are significant 

during working memory across the population and not during baseline. The lower panels 

of F igure 3.5 present the distribution of the spectral shape parameter pooled across all cells 

in t he database. 

The central vertical panel shows the distribution of spectral shape for baseline and 

working memory activity across the data set. These distributions were unimodal, but 

somewhat skew so we used the median as a measure of central tendency, displayed as a 

notch in the box plot for each condition. Robust 95% confidence intervals for this estimate 

are shown by the extent of the notch about the median. Similar box plot displays present 

population data in later figures. 
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Figure 3.5: A comparison of spectra l structure in spike activity during baseline and work­
ing memory across a population of recordings. Central panel: Box plots showing the spectral 
shape for spike activity, oS, during working m emory in the preferred direction compared to 
t he baseline, pooled across a p opulation of recordings from both monkeys. oS is unimodal 
and the distributions are skew so the median is used as a measure of central tendency, 
shown at center of the box plot for each condition. Robust 95% confidence intervals for 
this estimate are shown by the extent of the notch. Side panels: Line plots showing the 
rate-normalized spectrum out to 200 Hz during baseline (left) and working memory (right). 
Individual plots of spectra in the upper, median and lower quartiles are shown, as well as 
the population average spectrum for baseline and working memory activity. Arrows indicate 
the approximate location of each spectrum in the distribut ion. The high-frequency limit is 
shown by dotted , horizontal line at 1. 
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The median spectral shape during the baseline is small indicating that baseline activity 

contains little temporal structure. In contrast, the distribution of spectral shape during 

working memory is significantly larger (p < 0.05) . This is consistent with the population 

average spectrum and shows that working memory activity in area LIP contains significant 

temporal structure not present during the baseline. 

The individual plots of the spectrum during baseline reveal little temporal structure 

except for a small amount of suppression at low frequencies (0-10 Hz) . In contrast, those 

during working memory reveal significant temporal structure with a peak in the gamma 

frequency band (25-90 Hz) and sharp suppression at low frequencies (0-10 Hz) across the 

distribution. 

Analysis of temporal structure in non-preferred directions suggests dynamic memory 

fields are aligned to the same spatial location as fields defined by the mean firing rate. 

Under the present experimental design, equal numbers of trials are performed for each cue 

direction, resulting in data from the non-preferred directions having fewer spikes available for 

analysis. Since resolving temporal structure in spiking requires more spikes than estimating 

the mean firing rate, it is difficult to estimate how the spectrum changes with the rate in 

these data. Figure 3.9, below, presents the distribution of spectral shape for each direction 

across the population and demonstrates this problem. 

We estimated the spectrogram of spike activity during trials to the preferred direction to 

see how temporal structure is organized during the trial. Figure 3.6a presents the results for 

a typical cell and panel b) after averaging across the population of cells. The spectrogram, 

shown in the upper panels, is dominated by changes in the rate. To compare temporal 

structure between time intervals with different firing rates, we present an estimate of the 

rate-normalized spectrogram in the lower panels. The rate-normalized spectrogram suggest s 

the temporal structure during working memory is not a visual response to the location cue 

since it begins after the offset of the location cue and extends through the saccade. 

Additional analysis not presented here show that the shape of the spectrum given by 

the frequency at the gamma band peak is relatively constant across the population of cells 

in both monkeys and is not correlated with the the mean firing rate. This is evidence the 
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Figure 3.6: 2D plots showing the spectrum of spike activity in the preferred direction 
with and without rate normalization for a single cell and a population average across both 
monkeys. a) Upper panel: 2D plot of the spectrogram for a single cell. Lower panel: 2D 
plot of the spectrogram for a single cell normalized by the rate. b) Upper panel: 2D plot 
of the population average spectrogram. Lower panel: 2D plot of the population average 
spectrogram normalized by the rate. Time is on the x axis , frequency on the y axis and 
power is color-coded on a linear scale. 
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spike activity is not well modelled by a simple integrate-and-fire model with uncorrelated 

inputs. The mean firing rate of the cell is , however, correlated with the strength of the 

spectral suppression and its width in frequency. 

These data contradict the commonly held assumption that spike arrival times are inde­

pendent and are evidence for the presence of significant temporal structure that is modulated 

by the behavioral state of the monkey. During the baseline, the probability of the cell firing 

can be modelled as a Poisson process. In contrast, the activity during working memory 

shows detailed temporal structure. The probability of the cell firing is suppressed for a 

period around each spike and then enhanced to give increased power in a broad, gamma 

frequency band (25-90 Hz). 

3.3.3 Temporal structure in LFP activity 

LFP activity is generated by extracellular currents that are thought to be related to synaptic 

activity in a local population of cells (Mitzdorf, 1985). Previous studies have reported that 

temporal structure is present in LFP activity in cats (Gray and Singer, 1989) and macaques 

(Eckhorn et al., 1993; Kreiter and Singer, 1996). If the temporal structure we observe in 

spiking during working memory is a result of synchronized synaptic activity it may also be 

present in the LFP. 

Figure 3.7 presents the LFP spectrum at a single site for trials to the preferred direc­

tion. Panel a) presents the results during working memory (solid) and baseline (dashed). 

Although most of the power in the LFP is below 30 Hz , working memory activity above 30 

Hz is elevated compared to baseline and peaked in the gamma frequency band (25-90 Hz). 

Panel b) presents the relative power of the spectrum between working memory and baseline 

formed by dividing the spectrum during working memory by the spectrum during baseline. 

Temporal structure in LFP activity changes between working memory and baseline in a 

gamma band, but not at low frequencies. 

The significant difference in power in the gamma band (25-90 Hz) is also present in a 

population average of the spectrum. Figure 3.8a presents the population average spectrum 

during the baseline and panel b) during working memory in the preferred direction. The 
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Figure 3. 7: Line plots showing the spectrum of LFP activity averaged during baseline 
and working memory. a) Line plot of the spectrum during baseline (dashed) and working 
memory (solid) on a log scale at a single site. The bar indicates the extent of 95% error 
bars for the spectrum estimated with a jackknife across tapers and trials. b) Line plot of 
the ratio of LFP spectrum during working memory and baseline on a linear scale at a single 
site. Arrows highlight the power at low frequency (0- 10 Hz) and in the gamma band (25- 90 
Hz) . Characterization of the interval properties of spike activity from a sample cell. a) The 
lSI histogram during the baseline. b) The lSI histogram during working memory. c) The 
interval spectrum for memory activity (solid) with 95% confidence intervals (dashed) . The 
dotted horizontal line shows the spectrum of a renewal process for comparison. 
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LFP Spectrum Popu lation Data 
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Figure 3.8: Comparison of changes in relative power between baseline and memory activity 
in the LFP across a population of recordings. a) LFP spectrum averaged across a population 
of sites recorded in two monkeys. Average spectrum during baseline with 95% confidence 
intervals. b) Average LFP spectrum during working memory in the preferred direction with 
95% confidence intervals. c) The left panel shows box plots showing low frequency (0- 10 
Hz) and gamma band (25- 90 Hz) power in the LFP during working memory in the preferred 
direct ion relative to baseline pooled across a population of recordings from both monkeys. 
The right panel shows line plots of the ratio of power during working memory to baseline 
against frequency out to 200 Hz. Plots of spectra in the upper , median and lower quartiles 
are shown and asterisks mark their approximate position on the box plot. The center of 
the notch marks the median and the extent of the notch gives confidence intervals for this 
estimate. 
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confidence intervals do not overlap in the gamma band (25- 90 Hz) indicating the difference 

in power is significant across the population. 

In Figure 3.8 we also compared the relative power between working memory and baseline 

at low frequency (0- 10 Hz) and at the peak in the gamma band (25-90 Hz) across the data 

set. Panel c) shows box plots of the distribution in each frequency band. The distribution 

of relative power at low frequency (0- 10 Hz) is not different from 1, while the distribution 

of relative power in the gamma band (25-90 Hz) is significantly greater than 1. Panel d) 

presents the relative power across the distribution. 

We tested the hypothesis that power in the LFP in the gamma frequency band (25- 90 

Hz) was greater in the preferred direction during working memory compared to baseline 

against the null hypothesis that there was no difference. Gamma band LFP power was 

significantly greater (p < 0.05) in the preferred direction during working memory than 

baseline in 27 of 34 (82%) of sites recorded from. 

The increase in LFP power in a gamma band during working memory is evidence for 

dynamic memory fields similar to those seen in spike activity, presented above. We were 

interested to determine how these memory fields were spatially tuned. Figure 3.9 presents 

tuning curves for a) the mean firing rate; b) gamma band LFP power; c) spike spectral 

shape and d) low frequency LFP power across a population of recordings pooled across 

both monkeys. The mean firing rate and LFP gamma band activity (25- 90 Hz) show clear 

tuning. The spike spectral shape shows some tuning, but it is not well resolved since the 

firing rate was low in non-preferred directions. LFP activity at low frequencies (0-10 Hz) 

does not show significant spatial tuning. This shows spatial tuning in the LFP is local in 

frequency and not due to an overall increase in power. 

We tested the hypothesis that gamma band LFP power was greater during working 

memory in the preferred direction compared to the anti-preferred direction against the 

null hypothesis that there was no difference. Gamma band (25- 90 Hz) LFP power during 

working memory was significantly greater (p < 0.05) in the preferred direction compared to 

the anti-preferred direction at 28 of 34 (85%) sites recorded from. 

Figure 3.10 shows spectrograms for LFP activity averaged during trials to the preferred 
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Figure 3.9: Box plots showing the tuning of spectral measures of spiking and LFP activity 
during the memory period relative to the baseline pooled across a population of recordings 
in both monkeys . a) Tuning curve with box plots showing mean firing ra te across the 
population. b) Tuning curve with box plots showing relative power in the gamma band 
(25- 90 Hz) across the population. c) Tuning curve with box plots of spike spectral shape, 
8S, across the population. d) Tuning curve with box plots showing relative power at low 
frequency (0-10 Hz) across the population. 
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LFP Spectrograms 
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Figure 3.10: Spectrograms of LFP activity averaged across trials during saccades to either 
the preferred or anti-preferred direction. a) 2D plot of the spectrogram in the preferred 
direction at a single site. b) 2D plot of the spectrogram in the anti-preferred direction at 
a single site. c) 2D plot of the spectrogram in the preferred direction averaged across a 
population of recordings from both monkeys. d) 2D plot of the spectrogram in the anti­
preferred direction averaged across a population of recordings from both monkeys. In each 
panel, time is on the x axis, frequency is on the y axis and power is color-coded on a log 
scale. 
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Figure 3.11: Power in the LFP in the gamma (25-90 Hz) and beta (15- 25 Hz) frequency 
bands during trials with saccades to the preferred directions. Power in each frequency 
band is normalized by the level during baseline. a) Gamma band (solid) and beta band 
(dashed) activity from a single site. b) Population average gamma band (solid) and beta 
band (dashed) act ivity from two monkeys. 

and anti-preferred directions. In the preferred direction, the increase in gamma band power 

is sustained during the memory period through the saccade for a single site and across the 

population. In addition to dynamic memory fields the LFP contains different task-related 

activity in the beta frequency band (15- 25 Hz). This activity does not show simple spatial 

tuning, but is modulated during t he trial. 

Figure 3.11 shows LFP power in the gamma and beta frequency bands over time. Ele­

vations in gamma band power are clearly seen and extend through the saccade, similar to 

the elevations of gamma band power in spiking activity. Activity in the beta band is mod­

ulated during working memory and peri-saccadically. Immediately after the location cue, 

beta band power is suppressed and it then increases toward the end of the memory period. 

Beta band activity is also suppressed peri-saccadically during saccades to all directions and 

this is present in activity at a single site and a population average. We tested the hypothesis 
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that peri-saccadic activity in the beta frequency band (15- 25 Hz) is suppressed compared 

to working memory against the null hypothesis that there was no difference. Beta band 

activity was significantly suppressed (p < 0.05) at 34 of 34 (100%) sites recorded from. 

These observations are evidence for temporal structure in the LFP in multiple frequency 

bands. Activity in the gamma frequency band is spatially tuned while activity in the beta 

frequency band is dynamically modulated during the task. 

3.3.4 Coherency between spiking and LFP activity 

We report temporal structure in the gamma frequency band (25-90 Hz) that is present in 

both spiking and LFP activity during working memory. If spike activity is being driven 

by synchronized synaptic activity and these currents are also measured in LFP activity t he 

processes may be coherent. We investigated this possibility by studying the extracellular 

potential centered on spikes and by calculating the coherency between spiking and LFP 

activity during baseline and working memory. A study of spike-field coherency may also 

provide useful information about the nature of non-Poisson temporal structure in spike 

trains. 

We first estimated the STA potential. The mean potential in a 200 ms window was 

calculated conditional on spike times during working memory and compared against baseline 

at a single site. Figure 3. 12a shows the STA potential during the baseline period and 

panel b) shows it during working memory. The STA during working memory shows an 

oscillatory component in the average that is absent from the baseline indicating that the 

phase of the potential in that frequency band is coherent with spike activity. However, this 

structure remains just below significance across much of the window although it is clearly 

present. This suggests that error bars constructed in the time domain are not suitable to 

detect signals localized in frequency and that frequency-domain techniques may describe 

this activity more clearly. 

We present two ways to test for correlated activity that is localized in frequency. In 

the first, we estimate the coherency between spiking and LFP activity. In the second, we 

study a frequency domain version of the STA potential. We filter the STA potential in the 
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Figure 3.12: Spike-triggered average potential for activity from a single cell at a single 
site during baseline and working memory for saccades to the preferred direction. a) Spike­
triggered average potential during the baseline. b) Spike-triggered average potential during 
working memory. 

gamma frequency band (25- 90 Hz) and compare the histogram of the phase at spike times 

between baseline and working memory pooled across all cells in this study. 

Figure 3.13 shows the coherence between a cell and the simultaneously recorded LFP. 

Panel a) shows activity during baseline and panel b) activity during working memory. There 

is no significant spike-field coherence during the baseline whereas a sharp increase in the 

spike-field coherence exceeds 99% confidence intervals in the gamma frequency band during 

working memory. 

We calculated the coherency for the 40 cells in this study during saccades to the prefened 

direction and compared the distribution of coherence in the gamma band between the 

baseline and working memory. Figure 3.14 presents the results. The central panel shows 

the distribution of gamma band coherence during working memory is significantly larger 

(p < 0.05) than during baseline across the population. T he left panel shows no significant 

structure is observed during baseline; in contrast, the right panel shows there is significant 

coherence during working memory. 
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Figure 3.13: Coherency between spiking and LFP activity at a single site. a) Line plot 
of spike-field coherence during the baseline. b) Line plot of spike-field coherence during 
working memory. Dashed lines show 99% confidence intervals. 

A comparison of activity between multiple cells and the LFP recorded at the same site 

was not possible as there were only two pairs of simultaneously recorded cells with elevations 

in firing rate during working memory in this study. 

Figure 3.15 presents the coherence against time and frequency during saccades to the 

preferred direction. Panel a) shows the results at a single site and panel b) shows the 

population average. An increase in gamma band coherence is seen after the location cue and 

during the memory period. When the coherence is significant, the phase of the coherency 

is shown by an arrow and is approximately zero radians indicating the cell fil·es on or just 

before the peak of the LFP oscillation (according to our convention for the LFP). The phase 

of the coherency during working memory is relatively constant across the gamma band so 

spike and LFP activity do not lag each other in time. These observations are evidence for 

sustained phase- locking between the spiking and the LFP during working memory. The 

population average shows the increase in gamma band coherency between the LFP and 

spiking is significant (p < 0.01). Therefore, spiking locks to gamma band temporal structure 

in the LFP during working memory with the same preferred phase in all recordings from 

area LIP in this study. 

Confidence intervals for the estimates of spike-field coherency are sensitive to the total 

number of spikes available, so these measures are less sensitive to coherency during baseline 

than working memory. We applied a test for spike-field coherency that had the same 
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Figure 3.14: Comparison of spike-field coherence during baseline and working memory 
across a population of recordings in two monkeys. Central panel: Box plots showing spike­
field coherence during working memory in the preferred direction compared to the baseline 
pooled across a population of recordings from both monkeys. Side panels: Line plots 
showing spike-field coherence out to 200 Hz during baseline (left) and working memory 
(right). Individual plots of coherence in the upper, median and lower quartiles are shown 
and asterisks mark their approximate position on the box plot. 
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F igure 3.15: Coherency of spiking and LFP activity across t ime. a) Coherency at a single 
site in the preferred d irection . b) Coherency in the population average in the preferred 
direction. T ime is on the x axis and frequency on the y axis. The coherence is color-coded 
on a linear scale. Arrows denote the phase where the coherence is significant (p < 0.01) . 
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Figure 3.16: The distribution of the phase of the gamma band (25-90 Hz) activity in the 
LFP at spike times for all cells in the data set during saccades to their preferred direction. 
Working memory (solid) and baseline (dashed) period distributions are compared. 

statistical power during the baseline and working memory. This is a frequency-domain 

version of the STA potential that could be pooled across recordings (see Section 3.2.5). 

Figure 3.16 shows the normalized histogram of this spike-triggered gamma band phase 

during working memory (solid) and the baseline (dashed). The distribution during working 

memory is significantly different from uniform (p < 0.01 K-S test: N= 6192) as well as 

significantly different from baseline (p < 0.01 K-S test: N= 6192) while the distribution 

during baseline is not significantly different from uniform (p < 0.01 K-S test : N=6192). 

Consequently, t here is no evidence of gamma-band phase-locking between spiking and LFP 

activity in the gamma band during the baseline. 

The presence of significant gamma band coherence between spiking and LFP activity 

has consequences for models of spike activity during working memory. It shows spiking 

during working memory cannot be modelled as a renewal process which is in agreement 

with results of t he interval analysis presented above. 
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3.4 Discussion 

This study investigates the relation of neuronal dynamics to working memory by examining 

temporal structure within and between spiking and LFP activity in area LIP of macaque 

parietal cortex during a memory-saccade task. We focus on the three principal findings 

of this work: i) spike activity contains temporal structure during working memory and 

not simple fixation which is evidence for dynamic memory fields; ii) LFP activity reveals 

spatially tuned dynamic memory fields in the gamma band (25-90 Hz) but not at low 

frequencies (0-10 Hz) ; and iii) dynamic memory fields in spiking and LFP activity are 

coherent in the gamma band with the same phase across LIP. This means spike activity 

contains temporal structure that is local in frequency. Results from the LFP suggest this 

activity is synchronized across large populations of neurons. 

3.4.1 Understanding the temporal structure in spike activity 

Our findings show spike activity during working memory is not well modelled by a Poisson 

and contains temporal structure local in frequency. This contradicts commonly held as­

sumptions about the independence of spiking activity (Shadlen and Newsome, 1994). Our 

analysis of the spike spectrum shows that during working memory there is temporal struc­

ture due to a combination of spectral suppression and a gamma band spectral peak. The 

significant spike-field coherency confirms this and shows that during periods of elevated 

firing the temporal correlations are local in frequency. The role of temporal structure in 

neural coding has been controversial (Roskies, 1999). Our results are clear evidence that 

temporal structure in spiking activity in parietal cortex is modulated during behavior and 

organized in dynamic memory fields that may reflect neural processing. 

3.4.2 Temporal structure in the LFP 

Our results indicate gamma band LFP activity is also organized in dynamic memory fields 

during working memory. The tuning of temporal structure in spike activity was not well 

resolved in some cue directions but by analyzing the LFP we were able to study temporal 
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structure in all directions. This illustrates the improved statistical power of LFP activity 

compared with spike activity when the firing rate is low. The presence of dynamic memory 

fields in the LFP suggests the presence of synchronized activity in large populations of 

neurons. This is supported by the results of spike-field coherence and suggests the LFP 

reflects the columnar organization of area LIP (Blatt et al., 1990). 

Two other aspects of LFP activity related to the task were also interesting. Firstly, the 

tuning of the LFP mean response broadens peri- and post-saccadically. The significance 

of this is not known, but it may be related to signals to update the eye fields in area LIP 

following the saccade (Gnadt and Andersen, 1988; Duhamel et al., 1992; Batista et al., 

1999; Snyder et al., 1999) . Secondly, the LFP has additional temporal structure in the beta 

frequency band that could be related to movement execution and preparatory aspects of 

the task. These results indicate temporal structure in the LFP in parietal cortex contains 

a variety of specific information about the direction and time of planned movements. 

Parietal cortex is implicated in higher cognitive function and spiking activity in various 

parieta l areas codes for movement plans (Andersen, 1995; Bracewell et a l. , 1996; Snyder 

et al., 1997). There is interest in decoding cortical signals for a neural prosthesis but 

acquiring spiking activity with chronically implanted electrodes remains a challenge (Shenoy 

et al. , 1999). Since the LFP is easier to acquire than spiking, our findings suggest that 

decoding the temporal structure in LFP activity could accelerate the development of this 

application. 

3.4.3 Coherent gamma band activity during working memory 

We find that during working memory the coherency between spiking and LFP activity is 

significant in the gamma band. Spikes exhibit phase locking to the LFP and preferentially 

fire at the peak of a broad LFP oscillation throughout the memory period, and this temporal 

structure is not present during simple fixation. While we have observed coherent activity 

during working memory, it is important to note such activity need not be specific to working 

memory. Area LIP is activated by a number of other oculomotor tasks that require spatial 

cognition (Colby and Goldberg, 1999) and coherent gamma band activity could be present 



92 

during those tasks. 

Our finding of correlations in a broad gamma frequency band modulated by behavior 

complements recent reports of gamma band act ivity during attention in the monkey (Fries 

et al. , 2001) and working memory in human EEG (Tallon-Baudry et al. , 1998, 1999) . These 

and other studies suggest that, in addition to providing important statistical advantages, 

investigating correlations between spikes and LFP activity may help bridge the gap between 

potentially related results showing modulated temporal structure in EEG activity in humans 

and single unit activity in non-human primates (Tallon-Baudry and Bertrand, 1999) . 
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Chapter 4 Interspike interval correlations in 

cortical activity: Data analysis and modeling 

4.1 Introduction 

In Chapter 3 we report on temporal structure in spiking activity and t he LFP recorded in 

area LIP of a Macaque performing a memory task. Using spectral analysis we find spatially 

tuned activity in the gamma band (25-90 Hz) that is coherent between spiking and the 

LFP. Gamma band activity has also been reported in Macaque visual cortex in areas VI 

(Friedman-Hill et al., 2000), V4 (Fries et al., 2001) and MT (Bair et al., 1994; Kreiter 

and Singer, 1996) , as well as recently, in the parietal reach region (PRR) (Buneo et al.). 

Although it is widespread, the nature of the activity is debated. Some argue the gamma 

band spectral peak results from an oscillatory process (Singer and Gray, 1995) while others 

argue it is simply due to bursting (the firing of action potentials in quick succession) and 

not oscillatory (Bair et aI., 1994). 

Importantly, the spectrum or auto-correlation function is often used to characterize tem­

poral structure in spiking. As discussed earlier (see Chapter 1.4) these estimate correlations 

in the counting process. In some cases , the interspike interval (lSI) histogram is also esti­

mated, but correlat ions in the interval process have not been characterized in the behaving 

monkey before. As we will show, certain lSI correlations are expected if spiking activity 

participates in oscillatory processes. 

In this chapter we present spiking activity from thI'ee areas that contain gamma band 

activity, LIP, PRR, and MT, during three different tasks, the memory-saccade, the memory­

reach and a visual motion discrimination task, respectively. We extend previous analysis 

of these data by estimating lSI correlations using the interval spectrum. This sheds new 

light on the nature of gamma band activity and we discuss the implications for stochastic 
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process models. 

4.2 Methods 

4.2.1 Behavioral paradigms 

Memory-saccade task 

The memory-saccade task is presented in Chapter 3.2.2. In brief, animals were head-fixed 

in front of a vertical screen. Visual stimuli were generated by incandescent light sources . 

'frials began with the illuminat ion of a central location which the animal fixated. A spatial 

location was cued with a flash (duration 100 ms) at one of equal angles on a circle radius 

10°. After a delay period of 1000 ms, the central fixation light was extinguished and the 

animal made a saccade to the remembered location of the cue in complete darkness. T he 

animal was then rewarded with a drop of juice. 

Memory-reach task 

The memory-reach task is the analog of the memory-saccade task, but for reaching. Full 

details of the task are presented in Snyder et al. (1997). Animals were head-fixed in front 

of a vertica l board of touch sensitive buttons conta ining red and green LEDS. The red LE D 

instructed where to direct their gaze while the green LED instructed animals where to place 

their hand. 'frials began with the illumination of both the red and green LED directly in 

front of the animals. After the animals looked and reached to the target , a spatial location 

was cued for a reach by flashing (duration 300 ms) the gl'een LED at one of eight peripheral 

locations. After a delay period of 800- 1000 ms , the central LEDs were extinguished and 

the animal made a reach to the remembered location of the cue while maintaining fixation 

in complete darkness. The animal was then rewarded with a drop of juice. 
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Visual motion discrimination task 

Full details of the task are presented in Britten et al. (1992). In brief, spiking activity 

was recorded during the performance of a visual motion discrimination task. The motion 

stimulus was created by coherently moving a fract ion of dots in a random dot display 

in a particular direction. The fraction of dots, or motion coherence, ranged from 0% to 

99.9%. Displays with motion coherence between these limits induced a motion percept 

with varying strength. Animals were trained to discriminate opposite directions of motion 

during a 2s period and indicate their judgement of motion by making a saccade to a target 

LED following the stimulus offset. They were rewarded for each correct discrimination with 

a drop of juice. 

4.2.2 Experimental recordings 

Area LIP 

Single cell and LFP recordings were obtained simultaneously from sites in area LIP from 

two monkeys using custom tetrodes. Spike trains were binned at 1 ms resolution. Results 

are presented from the analysis of 40 neurons recorded in two monkeys. Full details of the 

experimental recording are presented in Chapter 3.2.3. 

PRR 

Single cell recordings were obtained from sites in PRR from two monkeys using standard 

tungsten microelectrodes. The LFP was not recorded. Spike trains were binned at 1 ms 

resolution. Results are presented from the analysis of 98 neurons recorded in two monkeys. 

Full details of the experimental recording are presented in Batista et al. (1999). 

Area MT 

Single cell recordings were obtained from sites in area MT ii'om four monkeys using standard 

tungsten microelectrodes. The LFP was not recorded. Spike t rains were binned at 1 ms 

resolution. Results are presented from the analysis of 187 neurons selected from 253 neurons 
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in a neuronal database published on the internet l . Full details of the experimenta l recording 

are presented in Britten et al. (1992). 

4.2.3 Data analysis 

Spike trains were analyzed by estimating the spectrum, lSI histogram and interval spectrum. 

SPECTRUM: The spectrum was estimated for each motion coherence condition by averaging 

a rate-normalized spectrogram across time and over trials. The rate-normalized spectrogram 

was estimated using multi taper methods (W = 20 Hz) with a 250 ms moving-window shifted 

by 50 ms between estimates. This procedure minimized the influence of rate variations on 

the est imated spectrum. 

lSI HISTOGRAM: The lSI histogram was estimated using spike trains binned at 1 ms then 

smoothed by a 10 ms Gaussian kernel. 

INTERVAL SPECTRUM: The interval spectrum of spike activity was estimated by calculating 

the spectrum of a sequence of ten or more consecutive intervals between spikes. Three 

Slepian data tapers with time-bandwidth product 2p = 4 were uRed. The result was then 

smoothed with a lag window with the same bandwidth. The interval spectrum was not 

computed if a sequence of ten consecutive intervals in the window was not available (i.e. , the 

firing rate was less than 20 Hz). 

The interval spectrum was estimated from the sequence of inters pike intervals in a sin­

gle Is window at the end of the visual stimulus period. Multitaper methods were used 

(W = 0.1) and significance was assessed using a jackknife procedure averaged over trials 

and tapers. The sequence of intervals was log-transformed and normalized by the variance 

of the inters pike interval (lSI) distribution before estimating the interval spectrum. The 

log transformation stabilized the variance of the lSI sequence making it more suitable for 

spectral analysis. When the analysis was repeated without this transformation, the re­

sults were qualitatively t he same but with larger confidence intervals. This is because the 

l http://www .cns.nyu.edu/~wyeth/data/newsome/newsome.html 
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untransformed lSI distribution has a long tail. 

4.3 Results 

4.3.1 Stochastic process models 

A variety of stochastic process models have been used to describe neuronal firing. Typically, 

models are matched to metrics that reflect spike count and interspike interval variability. 

Since we will be analyzing lSI correlations in experimental data, we focus on models de­

scribed by their interval properties and their spectra. 

Elementary models 

The sequence of time intervals between consecutive spikes, or interspike intervals (ISIs) , 

forms a representation of spike activity, the interval representat ion , that is complementary 

to the sequence of spike arrival times, or counting representation, that we have considered 

so far. Activity from a Poisson process, which has no temporal structure, has the following 

interval properties: i) the lSI distribution falls exponentially with the length of the interval 

and ii) the sequence of ISIs is uncorrelated. Figure 4.1 presents analysis of simulated data 

from a Poisson process to illustrate these properties. 

A renewal process, which can contain temporal structure, generalizes the interval prop­

erties of the Poisson process by allowing the lSI distribution to t ake any form. (Cox and 

Lewis, 1966). All the temporal structure in a renewal process is represented in the distri­

bution of times to the next spike i.e., the distribution of interspike intervals (ISIs). You can 

derive the spectrum from t he lSI distribution. This is not true in general as the correlations 

between intervals make it difficult to transform joint distributions of intervals to counts and 

vice versa Cox and Lewis (1966). Traditionally, the renewal process has been used to model 

neuronal spiking activity because it provides a simple mathematical description of a cell 

whose membrane potential is reset after each spike, and more generally, it can model how 

a spike event affects the t ime of the next spike. 
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Figure 4.1: Activity from simulated Poisson process. a) The lSI histogram. b) Spectrum 
normalized by t he rate (solid). Poisson limit (Dotted) . c) The interval spectrum (solid) 
with 95% confidence intervals (dashed). The dotted horizontal line shows the spectrum of 
a renewal process for comparison . 

Two kinds of temporal structure widely observed in cort ical spiking activity are refrac­

toriness (in addition to the biophysical refractory period) and bursting. T he biophysical 

refractory period, in which the cell is unable to fire an action potential for ~ 1 ms after 

each spike is well-established, but its effect is subtle at firing rates less than 100 Hz. Re­

fractoriness describe the tendency of a cell not to fire for up to 20 ms following each spike. 

Bursting describes a tendency to fire short sequences of action potentials wit h ISIs less than 

~ 5 ms. We first discuss refractoriness, then bursting. 

Relative refractoriness 

A popular model of neuronal firing that efficiently captures refractoriness is the integrate­

and-fire neuron. In this model, the cell integrates synaptic currents in its dendrites and 

fires when the membrane potentia l exceeds a random threshold, after which the membrane 

potential resets . The integrate-and-fire neuron with constant current inputs is a renewal 

process (as there is no memory of the process beyond the last spike) and the lSI distribution 

is determined by the statistics of the random threshold (Gabbiani and Koch, 1998). 

Figure 4.2 presents analysis of simulated data from an integrate-and-fire model with a 

random threshold. The lSI histogram (and therefore the threshold) is distributed according 

to a gamma function, order five. The spectrum is suppressed at low frequencies and the 

int erval spectrum is constant. Spectral suppression at low frequency is often interpreted 
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Figure 4.2: Activity from simulated renewal process. a} The lSI histogram. b} Spectrum 
normalized by the rate (solid). Poisson limit (dotted). c} The interval spectrum (solid) 
with 95% confidence intervals (dashed). The dotted horizontal line shows the spectrum of 
a renewal process for comparison. 

as being a result of refractoriness (Gabbiani and Koch, 1998; Bail' et al., 1994). Since 

refractoriness is defined by a time to the next spike, features in the spectrum can only be 

interpreted in this way if the activity comes from a renewal process. Since the interval 

spectrum is constant for this example, spectral suppression is due to refractoriness. 

Bursting 

Bursting can be simply included in the integrate-and-fire model by having the cell fire more 

than one spike each time the threshold is crossed. This is also known as the alternating 

renewal process. Figure 4.3 presents analysis of simulated data for a model where the cell 

fires two spikes 2 ms apart. The lSI histogram is the same as the previous model with 

an additional peak at short times due to the bursts. The spectrum contains one p eak at 

low frequency in the gamma band and another at the bursting frequency. The interval 

spectrum is constant apart from a delta-function peak at 0.5 which reflects the lack of 

correlation between the lengths of the intervals, except at every other lag. 

lSI correlations 

A simple model that extends the integrate-and-fire model to include more general lSI cor­

relations than the alternating renewal process is provided by the Markov renewal process. 

The process is characterized by a sequence of states determined by a Markov chain with a 
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F igure 4 .3: Activity from simula ted process with bursting. a) The lSI histogram. b) 
Spectrum normalized by the rate (solid). Poisson limit (dotted). c) The interval spectrum 
for memory activity (solid) with 95% confidence intervals (dashed). The dotted horizontal 
line shows the spectrum of a renewal process for comparison. 
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Figure 4.4: Activity from simulated Markov renewal process. a) The lSI histogram. b) 
Spectrum normalized by the rate (solid). Poisson limit (dotted). c) The interval spectrum 
for memory activity (solid) with 95% confidence intervals (dashed). The dotted horizontal 
line shows the spectrum of a renewal process for comparison. 

matrix of transition probabilities, P , so that if the process is in state i , the probability is Pij 

that the next state will be j (Cox and Isham, 1980). Since P is a matrix of probabilities, 

I:,j P i j = 1. Each state is a renewal process, intervals are independent and drawn from a 

distribution function, Fij . The number of events in each state is geometrically distributed 

according to P . 

We consider a Markov renewal process with two classes. The transition matrix is defined 

by PI = 0.05 and P2 = 0.5. We assume the interval distribution depends only on the type 

of point at the beginning of the interval so Fll == FI2 == FI and F2I == F22 == F2. We model 

FI with an exponentia l function, rate 500 Hz, and F2 as a gamma function, order 5, rate 

50 Hz. 
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Figure 4.5: Activity from a sample LIP cell. a) The lSI histogram during working memory. 
b) The Spectrum normalized by the rate (solid). Poisson limit (dotted). c) The interval 
spectrum for memory activity (solid) with 95% confidence intervals (dashed). The dotted 
horizontal line shows the spectrum of a renewal process for comparison. 

Figure 4.4 presents analysis of simulated data from this process. The bimodal lSI his­

togram results from the distributions from two classes. The spectrum is similar to Figure 4.3 

and contains two peaks, one at low frequency, and the other at the bursting frequency. The 

interval spectrum, however, is quite different. This is related to the stochastic nature of the 

lifetimes of each state. 

4.3.2 Interval analysis of cortical activity 

lSI histograms and their relation to gamma band activity have been previously reported 

in macaque area MT (Bail' et al., 1994) and in the visual cortex of the cat (Gray and 

McCormick, 1996). To determine whether there is additional temporal structure in cortical 

activity due to correlations between ISIs, we analyzed activity from three cortical fields : LIP, 

PRR and MT. We estimated the lSI histogram, the spectrum and the interval spectrum. 

The interval spectrum is analogous to the serial-order correlation function, but is a more 

sensitive measure that has not been previously presented for neuronal spiking act ivity. 

Area LIP 

We analyzed the intervals for a sample LIP cell. Figure 4.5a shows lSI histogram is bi­

modal: Intervals are either very short, < 3 ms, i.e ., bursts, or center around 10-20 ms. 

Figure 4.5b shows the spectrum contains a gamma band peak and another peak at the 
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bursting frequency. Figure 4.5c presents the interval spectrum for memory activity from 

the sample cell on a log scale (solid) accompanied by 95% confidence intervals (dashed). 

The dotted line presents a uniform spectrum for comparison. The interval spectrum does 

contain significant structure with increasing energy at shorter lags. This means neighboring 

intervals are anti-correlated: short intervals are likely to follow long ones, and long intervals 

are likely to follow short ones. These observations are evidence that spiking activity in area 

LIP is non-renewal wit h single spikes and bursts that are temporally patterned in a broad 

gamma frequency band. T he lSI correlations suggest a Markov renewal process, or some 

variation t hereof, can model this activity. 

Area MT 

Previous analysis of temporal structure in MT reports gamma band peaks in the spectrum 

of many cells during the presentation of visual motion to the preferred direction (Bair 

et al. , 1994). In that study, an investigation of the lSI histogram showed cells with gamma 

band peaks also burst. Since no evidence was found that the activity was not a renewal 

process, the authors concluded the temporal structure in the spectrum could be explained 

by structme in t he ISIs, specifically the bursting. However, t he interval spectrum was not 

es timated to test the renewal process model. Another model proposed by Bair et al. (1994) 

is that the cell fires bursts distributed according to a renewal process (cf. Chapter 4.3.1). 

Om analysis of lSI correlations explicitly tests these models. 

Figure 4.6 presents analysis of activity from three typical cells during the presentation 

of highly coherent (51.2%- 99.9%) visual motion to their preferred direction. 

T he first row, labelled Poisson, presents a cell that does not bmst . It has a spectrum 

that is suppressed at low frequency but is otherwise constant and an interval spectrum 

that is constant. These features are consistent with a renewal process, and the activity is 

well-modeled by an integrate-and-fire neuron. 

T he second row , labelled Bursting, presents a cell that bursts. T he lSI histogram has 

a narrow peak at short intervals and the spectrum has a peak at high frequency and rises 

up at low frequency. These features are due to many spikes in bursts arriving with t he 
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normalized by t he rate (solid). Poisson limit (dotted). c) The inter val spectrum for memory 
activity (solid) with 95% confidence intervals (dashed). The dotted horizontal line shows 
t he spectrum of a renewal process for comparison . 
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Figure 4.7: Activity from population of MT cells. a) The lSI histogram. b) Spectrum 
normalized by the rate (solid). Poisson limit (dotted). c) The interval spectrum for memory 
activity (solid) with 95% confidence intervals (dashed). The dotted horizontal line shows 
the spectrum of a renewal process for comparison. 

same spacing. However, the interval spectrum is not constant. The positive slope means 

the lengths of intervals are anti-correlated and means the length of interburst intervals is 

correlated with the length of the bursts. 

The third row, labelled Chattering, presents a cell that also bursts, as shown by the 

narrow peak in the ISIH. Like the Bursting cell, the spectrum has a peak at high frequency 

and rises up below 100 Hz. Unlike the bursting cell , the ISIH contains an additional broad 

p eak at 20 ms and the spectrum drops to a value less than 1 at DC. The fall in the spectrum 

results in a prominent gamma band peak. The interval spectrum shows the intervals are 

anti-correlated. Bair et al. (1994) attribute the drop in the spectrum to refractoriness, but 

as the burst intervals are correlated with the length of longer "refractory" intervals , the 

dip in the spectrum at DC is not explained by a "time to last spike" phenomenon. An 

alternative explanation is that a driving process correlates the intraburst and interburst 

intervals leading to a Markov renewal process, or some variation thereof, similar to that 

found in LIP. 

The analysis of sample cells showed that some cells exhibit activity that is not consistent 

with a renewal process. In particular, the departures best resolved with the interval spec-



18tH 
0.15 

c: 0.1 
g 

J 
0.. 0 .05 

80 100 

2.5 

2 

. 
e;1.5 
0. 

105 

Spectrum Interval Spectrum 

%~------~O~.2~5------~0.5 
Index· j 

Figure 4.8: Activity from a sample PRR cell with gamma band spectral peak. a) The 
lSI histogram. b) Spectrum normalized by the rate (solid). Poisson limit (dotted). c) The 
interval spectrum for memory activity (solid) with 95% confidence intervals (dashed). The 
dotted horizontal line shows the spectrum of a renewal process for comparison. 

trum were present over the whole range of the function. Therefore, we decided to divide the 

population of cells into three classes: those with an interval spectrum that was constant, 

had positive slope, or negative slope. Of the 174 cells in the study, 93 had no slope, 83 had 

positive slope and 8 had negative slope. We were interested to see if there were a differ­

ence in the average spectrum in each class. Figure 4.7a plots the average interval spectrum 

for each class of cells and Figure 4.7b, the average spectrum. The results show that cells 

without lSI correlations or some positive lSI correlations have spectra that are constant 

with some suppression at low frequency but no peak. In contrast, cells with negative lSI 

correlat ions have spectra with a lot of structure, particularly at high frequency and in the 

gamma band. These cells have lSI correlations that can be well captured by the Markov 

renewal process. 

PRR 

Recently, (Buneo et al.) report that the spectrum of spiking in PRR contains a gamma 

band spectral peak during a memory-reach task. Interestingly, across the population the 

spectral peak is at a slightly lower frequency than those reported for LIP and MT. Here 

the spectrum, lSI histogram and lSI spectrum are presented for these data. 

Figure 4.8 presents the analysis for a sample PRR cell with gamma band activity. The 

lSI histogram shows many spikes arrive in bursts, similar to cells shown from LIP and MT, 
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but a number of differences exist. The lSI is not bimodal, the spectrum does not have a 

peak at the bursting frequency, and the interval spectrum does not have a peak at 0.5. The 

first two of these differences indicate bursting does not occur with as precise an lSI as in 

LIP and MT. The peak in the interval spectrum at 1/3 indicates bursts arrive in triplets, 

not doublets. In combination with the observation that the firing rate is as high as is found 

in LIP (Snyder et al., 1997) but the spectral peak is at a lower frequency, indicates the cell 

fires more spikes per burst but with a longer interburst interval. Across the population of 

cells, 40 out of 87 showed these or similar features. Since the distribution of spike counts 

per state in the Markov renewal process is geometric, this structure is not well modelled by 

this process. 

4.4 Discussion 

Using the interval spectrum we have shown that ISIs are not independent in a substantial 

class of cortical cells. There is t emporal structure due to correlat ions between intervals; 

therefore, the activity cannot be modeled by a renewal process. The Markov renewal process 

with two states models aspects of activity in LIP and MT, but does not capture activity 

from PRR. 

Work suggests cells showing lSI correlations form a special class of cortical cells that are 

called "chattering" or "fast rhythmic bursting" (Gray and McCormick, 1996; Steriade et al., 

1998). What are the characteristics of these cells? In vitro experiments on cortical slices 

shows that chattering in response to constant depolarizing currents is critically dependent 

on the interplay between after hyperpolarization and afterdepolarization currents that follow 

each spike (Brumberg et al., 2000). These currents may mediate transitions between two 

states such as used in a Markov renewal process. However, this description seems to be 

incomplete, as it does not model lSI correlations observed in PRR. In this case, in place 

of a constant current input to the cell, we postulate the existence of another process that 

modulates that dependencies between intervals which results in more triplets than doublets. 
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Appendix A: Visual stimuli induce waves of 

electrical activity in turtle cortex 

The computations involved in the processing of a visual scene invariably involve the inter­

actions among neurons throughout all of visual cortex. One hypothesis is that the timing of 

neuronal activity, as well as the amplitude of activity, provides a means to encode features 

of objects. The experimental data from studies on cat support a view in which only syn­

chronous (no phase lags) activity carries information about the visual scene (Gray et al., 

1989). In contrast, theoretical studies suggest, on the one hand, the utility of multiple 

phases within a population of neurons as a means to encode independent visual features 

and, on the other hand, the likely existence of timing differences solely on the basis of 

network dynamics. Here we use wide-field imaging in conjunction with voltage sensitive 

dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our 

data consist of single-trial measurements. We analyze our data in the frequency domain 

to isolate coherent events that lie in different fi·equency bands. Low frequency oscillations 

« 5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These 

oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral 

peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists 

of plane waves and spiral-like waves, as well as more complex patterns. The plane waves 

have an average phase gradient of ~ 7r /2 radians/mm and propagate orthogonally to the 

low frequency waves. Our results show that large-scale systematic differences in neuronal 

timing are present during visual processing. 
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Introduction 

The flow of visual information through the retino-geniculo-cortical pathway in turtles projects 

to a rostral area of its dorsal cortex (Hall and Ebner, 1970; Desan, 1988), whose cellular and 

synaptic physiology share basic features with mammalian neocortex (Connors and Krieg­

stein , 1986; Kriegstein and Connors, 1986). Anatomical studies indicate that the geniculo­

cortical afferents traverse the lateromedial width of dorsal cortex with few collaterals and 

their ending define the border between a lateral, solely visual area (D2) and a medial area 

(D1) that receives input from multiple sensory modalities (Desan, 1988; Heller and Ulinski, 

1987) (Fig. A.la). These afferents, along with widely distributed intrinsic fibers (Cosans 

and Ulinski, 1990), form an extensively interconnected lattice that is reminiscent of an as­

sociation area. This organizat ion is consistent with the finding that single neurons respond 

to stimuli in all quadrants of the visual field (Mazurskaya, 1972) and that visual stimula­

tion leads to oscillations in t he local field potential (LFP) throughout all of visual cortex 

(Prechtl, 1994). The frequency content of the oscillations is state dependent; a band near 

20 Hz is specific to visual stimuli while lower frequency bands depend more generally on 

arousal (Prechtl and Bullock, 1995). 

A.1 Methods 

A.I.1 Preparation 

Pond turtles (Fseudemys scripta) of both sexes with carapace lengths between 12 and 16 

cm were maintained in aquaria (20° to 25° C). Use of the animals were under the guidelines 

of the Marine Biological Laboratory at Woods Hole and the National Institutes of Health. 

Under anesthesia by cold narcosis, t he dorsal aspect of the telencephalon was exposed as 

described (Prechtl, 1994). The brain was partially isolated by sectioning the spinal cord 

and cranial nerves IV-XII from a ventral approach. The innominate artery was catheterized 

and the animal was continuously perfused with an oxygenated artificial cerebrospinal fluid 

(CSF); 96.5 mM NaCI, 2.6 mM KCI, 4.0 mM CaCI2 , 2.0 mM MgCb, 31.5 mM NaHC03 , 10 
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mM dextrose and 1.5% (w/v) 60 - 90 kD dextran; saturated with 5% (v/v) CO2 in 02, pH 

7.4. The pial surface of the brain was stained for 15 min. with 0.02 - 0.08% (w/v) solutions 

of voltage-sensitive dye (JPW1114 or RH795; Molecular Probes, Eugene, OR) in CSF. The 

dye was observed to stain tissue throughout the entire depth of dorsal cortex (~ 500 mm). 

At the end of each experiment the animal was injected with a lethal dose of sodium 

pentobarbital; we recorded the response from the isoelectric brain as a measure of our noise 

level. Further, the exposed surface of the turtle cortex was labelled with pin holes at the 

center of the optical field; these marks and the LFP electrode locus served as fiducials for 

the location of the D1/D2 border. The brain was subsequently sectioned at 30 mm and 

stained with cresyl violet; the D1/D2 border is defined by differences in cell packing and 

the width of the subcellular layer (Desan, 1988) . 

A.1.2 Optical recording 

A 3.5 mm diameter region that encompassed most of rostral dorsal cortex was imaged with 

a 0.5 numerical aperture epi-illumination system (Prechtl and Bullock, 1995) onto an octag­

onal array of photodiodes whose individual outputs were band-limited (0.3 Hz single-pole 

high-pass and 300 Hz 4-pole Bessel low-pass filter) (Kleinfeld and Delaney, 1996) and digi­

t ized at 2/ Nyquist = 10 Hz for 8 s epochs under the control of NeuroPlex acquisition software 

(Universal Imaging, West Chester, PAl. The intensity of emitted light at time t for a pixel 

centered at (x, y) is denoted I(x, y, t). The spatially averaged change in transmembrane 

potential within the field of each pixel is linearly proportional to the fractional change in 

emitted light, i.e., DV(x, y, t) ex: DI(x, y, t)/ I( x, y, t) where DI(x, y, t) = I(x, y, t) - I(x, y) 

is the filtered signal and I(x, y) is the DC value prior to acquisition of the sequence. Defec­

tive optical channels are ignored and the final data contain 447 spatial measurements. 

A.1.3 Electrophysiology 

Data from an epipia l field electrode were acquired (1 Hz single-pole high-pass filter) con­

currently with the optical images. The location of the electrode was marked by electro-
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depositing iron from the electrode at the end of each experiment. 

A.l.4 Stimuli 

The loom was a white brick, 9 x 12 cm, that moved toward the contralateral eye on a 45° 

azimuth from midline. The total excursion was from 30 cm (100 subtended angle) to 5 cm 

(60°) at a speed of 8 cm/s. The step illumination was a red (620 nm) light emitting diode; 

the light was diffused by covering the eye with moistened tissue paper. 

A.1.5 Data reduction 

Five numerical procedures were performed with the data. 

Spectral estimation: 

For a given time series, denoted V(t), the power spectrum, SU), was obtained with a direct 

multitaper estimate (Thomson, 1982) given by 

J( 

SU) = (1/ K) LSd!) (A. I ) 
k=l 

where 

T 

SkU) = ! L e- i21r!twk(t)V(t) !2 (A.2) 
t=l 

is the discrete Fourier transform of V(t) multiplied by the kth Slepian taper, denoted wdt). 

The tapers form an orthogonal basis and are characterized by a bandwidth parameter, 

denoted W; there are K + 1 = 2WT such functions that are concentrated spectrally in 

the full bandwidth 2W, where T is the record length. The concentration reduces bias 

in the spectral estimate, while the average over spectral estimates reduces variance. The 

bandwidth is chosen to achieve smoothing while preserving relevant spectral structure. 
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Denoising: 

The presence of shot-noise in the optical signal makes direct visualization of t he space-time 

data difficult. As the desired signal is correlated in space and time, filtering can be used 

to improve the signal-to-noise ratio. Temporal filtering is appropriate since the frequency 

spectrum contains peaks; however, spatial frequency filtering will blur sharp spatial features 

that are present in the data. Superior results to conventional smoothing or filtering methods 

were obtained by truncating a space-time singular va lue decomposition (SVD) of the data 

V (x , y, t) . The standard SVD is applied to the two-dimensional data matrix obtained by 

collapsing the spatial dimensions into a single index, denoted x , i.e. , V(x , y , t) -+ V(x, t). 

The decomposition is given by V(x , t) = ~n AnFn(x)Gn(t) , where the spatial modes Fn(x) 

and the temporal modes Gn(t) each form an orthogonal basis and R is the rank of the 

matrix V. The singular values An are presumed to be in descending order. The data from 

an active brain was empirically found to be characterized by a few large singular values 

and a long tail of values; that from the pentobarbital perfused animal contained only the 

tail. This result can be quant itatively explained by assuming that the data for an act ive 

brain is a low rank matrix corrupted by shot noise (Sengupta and Mitra, 1999). We thus 

truncate the SVD to keep a number of modes Rmax consistent with the estimated shot noise 

to obtain a denoised matrix VDenoised(X, t) = ~~::;r AnFn(x)Gn (t) . In practice, R = 447 

and Rmax < 40. 

Temporal filtering: 

Projection filters based on Slepian functions provide optimal frequency isola tion and were 

used for purposes of temporal filtering. For a given length of time series, i.e., V(t) with 

t E [1, T J, the projection operator P has matrix entries Pk,t = e-21rijtwk(t) . The Slepian 

functions Wk(t) are characterized by a bandwidth W (see above) ; the choice k < 2WT 

projects the spectral energy into a frequency band [j - W, f + WJ. The projected or fil tered 

time series is given by V filt ered = p TpV. 
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Spatial coherence: 

To examine the spatial patterns of coherence corresponding to peaks in the frequency spec­

tra, a space-frequency SVD (Mann and Park, 1994) was used. In this method, the space-time 

data is first projected into a local temporal frequency domain using the projection operator 

defined above. 

T 

V k(x , t) = LV(x , t) e27riftwk(t) (A.3) 
t=1 

Here the index k effectively defines a local frequency index in the band [j - W, f + Wj with 

k < 2WT. For a fixed frequency, f, a SVD is performed on the complex matrix V(x, t) to 

yield 

R 

Vk(X , t) = L An(f)Fn(x; j)Gn(k; f) (A.4) 
n=l 

where R is the rank of V dx, t) , typically set by 2WT. If the fluctuations were completely 

coherent in the given frequency band, only one of the singular values would be non-zero. 

A measure of coherence is then given by the ratio of the power of the leading mode to the 

total power. 

I< 

C(f) = AI(f) / LA%(f) (A.5) 
k= 1 

for a completely coherent response C(f) = 1 while for a uniform random process CU) = 

11K. Where C (f) has a peak, it is useful to examine the largest spatial mode V 1 (x,f). 

The magnitude of this complex image gives the spatial distribution of coherence at that 

frequency, while gradients in its phase indicate the local direction of propagation. 

Demodulation: 

Slow changes in the magnitude a nd phase of the oscillatory response near a particular 

frequency are found by complex demodulation of the de noised data. We form V(x, y, t) = 
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e27riJtV(x, y, t). ,so that in temporal frequency space the origin is now shifted to the center 

frequency f and low-pass filter each t ime series. 

A.2 Results 

A.2.1 Basic response 

We measured the change in fluorescence from cortex stained with voltage sensitive dye 

(Prechtl and Bullock, 1995; Orbach and Cohen, 1983) together with measurements of t he 

LFP (Fig. A.1a). The optical measurements provide a means to record the average trans­

membrane potential at ~ 450 neighboring sites with an intrinsic spatial resolut ion of ~ 150 

mm per site (Orbach and Cohen, 1983) . The optical signal at a single location atop dorsal 

cortex shows a large depolarization upon onset of a loom (Fig. A.1b), a behaviorally rel­

evant stimulus (Killackey et a!., 1972), consistent with previous results (Senseman , 1996). 

Superimposed on the depolarization are relatively fast oscillations (Fig. A.1b) whose t iming 

is correlated with those seen in the LFP sampled at an adj acent location (Fig. A.1c; cor­

relation coefficient = 0.6). We detect no changes in t he intrinsic optical properties of the 

preparation upon stimulation (data not shown). 

Both the LFP and the optical signal show weak spectral features prior to stimulation 

(Figs. A.1d,e). In the presence of a visual stimulus, the power is enhanced at all frequencies 

and a significant peak emerges near 18 Hz (* in Figs. A.1d,e). The average spectrum across 

all strongly act ivated sites in the optical field (Figs. A.2a, b) is similar to that seen at the 

previous single location (Fig. A.2e) ; a band centered at 18 Hz appears within 0.5 s of the 

onset of stimula tion and lasts for nearly 2 s of the 3 s stimulation period (Fig. A.2a). Similar 

results are observed in all preparations with the loom (n = 7). 

We tested if our preparation procedures distorts the spectral content of t he signals. 

First, we compared the stimulus-induced LFP from both intact preparations and prepara­

tions in which the brain was isolated from nociceptive and discriminative sensory inputs. 

The spectral content of the LFP was essentia lly unchanged . Further, we observed that the 

spectral content was unchanged by vascular perfusion, a procedure that removed a system-
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Figure A.I: Experimental procedure (a) and the response from single cortical locations 
(b-e), (a) Schematic of the set-up, A 3,5 mm diameter region of stained cortex that 
encompasses parts of lateral (D2) and medial (Dl) dorsal cortex was imaged onto an array 
of photodiodes (135 mm/pixel), A metal electrode was used to measure the LFP, (b) The 
optical signal, low pass filtered at 40 Hz, The large depolarization appears ~ 400 m s after 
stimulus onset of the loom (t = 0); its decay rate is twice that for t he high-pass filter. 
The insert shows the approximate location of the pixel relative to t he reconstructed Dl / D2 
border (Sec, A.l), (c) Overlay of the optical signal at one pixel and the adjacent local field 
potential (LFP) , as indicated in the insert in part b, The large depolarizat ion in the optical 
signal was removed with a median filter (400 ms wide) and the relative amplitudes of the 
two signals were adjusted to give the maximal overlap during the stimulus intervaL (d) 
Spectral power (logarithmic scale) in the LFP during the 1 to 2 s epoch prior to stimulation 
and the 1 to 2 s epoch after the onset of stimulation (2WT = 5.0; K=3), Note the emergence 
of a broad peak at 18 Hz (*) during stimulation, (e) Spectral power in the optica l signal 
during t he 1 to 2 s epoch prior to stimulation and the 1 to 2 s epoch after the onset. 
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Figure A.2: The spatiotemporal optical signaL (a) The average of the power spectra for 
72 pixels over the most active part of cortex, computed over sliding 1 s intervals (2WT 
= 4.0; K = 2). The logarithm of the data is false colored, with red corresponding to the 
maximum and purple corresponding to minimum values. The transition near 0.3 s reflects 
the onset of stimulus-induced activity. The star indicates the stimulus-induced band at 18 
Hz. (b) The spectrum for a particular 1 s interval (bar in part a) . (c) The broadband filtered 
optical data. We plot every 8th frame (126 Hz) of the single-trial response. The data were 
spatially denoised, low-pass filtered at 60 Hz, and the large stimulus-induced depolarization 
was removed with a median filter (400 ms width). The color scale for each frame was 
separately normalized. Note the net flow of depolarization in the rostral-to-caudal and 
medial-to-Iateral directions . Orientation and size of the optical field as in Figure A.1a. 



116 

atic source of optical noise. Lastly, we checked for pharmacological effects of the voltage 

sensitive dye. Dye concentrations of 0.08% (w Iv) or more decreased the magnitude of the 

"20 Hz" band in the LFP by 10%; concentrations at twice this level had a more pronounced 

effect. Thus our images may contain suppressed high frequency activity, although other 

sources of distortion, such as anesthetics or anticholinergic paralytics, are absent from the 

preparation. 

A.2.2 Large-scale dynamics 

Are the stimulus-induced oscillations in different regions of turtle visual cortex coherent 

with each other? The "raw" image data was denoised (Sec. A.l) and a front of depolar­

ization (Fig. A.lb) that propagates along the direction of the afferents (Senseman, 1996) 

was subtracted. The resultant sequence of images exhibits spatial patterns that evolve 

over time. For the sequence of Figure A.2c, we observe depolarization and hyperpolariza­

tion that travel in the caudal direction, consistent with low resolution LFP measurements 

(Prechtl and Bullock, 1995), as well as swirls of polarization. This examination shows that 

the spatial and temporal aspects of the response are coupled. However, the images appear 

complex, not surprisingly in light of the broad spectral content of the response, and are 

dominated by the larger amplitudes of the low frequency activity. 

As a means to probe for a simple spatiotemporal structure that might underlie the 

response, we determined if the observed cortical signal exhibits a dominant pattern of 

spatial coherence within separate frequency bands. We considered the response over 3 s 

intervals prior to and during stimulation (Sec. A.l) ; the magnitude of calculated coherence 

for each pixel in the dominant pattern reports the stability of the oscillation and the phase 

reports the relative timing of the oscillation during the 3 s interval. Prior to stimulation, 

significant coherence is limited to frequencies less than ~ 5 Hz (Fig. A.3a). The magnitude 

of the coherence is dispersed (false color plot, Fig. A.3b) , but the phase gradient lies in 

the laterorostral to mediocaudal direction (contour plot, Fig. A.3b); this axis parallels the 

thalamocortical input tract (Figs. A. l a ,b) (Ulinski, 1986). The presence of a stimulus causes 

the spatial coherence at low frequencies to apparently coalesce (Fig. A.3c) while the phase 
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Figure A.3: The magnitude and phase of the spatial coherence of the optical signal from 
a space-frequency SVD analysis. (a) The coherence averaged over a T = 3 s interval 
both prior to and subsequent to the onset of stimulation. In the latter case the interval 
encompasses the entire epoch of significant spectral power in the band at 18 Hz (Fig. A.2a). 
The coherence was estimated at successive frequency bins (2WT = 3.0; K = 7); a value 
of C(f) of 0.14 indicates the lack of significant coherence (b) Phase (contour lines) and 
amplitude (false color) of the coherence at f = 3 Hz prior to stimulation. The magnitude 
defines the spatial distribution of coherence while the phase defines the temporal delays 
between different regions. The relative magnitude is false colored with red for maximum 
and blue/green for zero and the phase is overlaid as a contour plot with 1f /12 radians per 
contour. The arrow indicates the dominant direction of the gradient. (c - f) Phase and 
amplitude at f = 3, 8, 18, and 22 Hz, respectively, during stimulation by a loom. (g) Phase 
and amplitude at 18 Hz for the next trial with the same animaL Orientation of the optical 
field as in Figure A.1a). 

gradient remains congruent to that seen prior to stimulation (cf. Figs. A.3b ,c). Further, 

the stimulus elicits spatial coherence in bands centered near the higher frequencies of 8, 

18, and 23 Hz (Fig. A.3a). The magnitude of the coherence for each of these additional 

bands are colocalized. Their phase gradients lie in the mediorostral to laterocaudal direction 

(Figs. A.3d,e,f) ; this axis parallels the D1 / D2 border and is perpendicular to the gradient 

of the ongoing low frequency activity (cf. Figs. A.2c,e). Repetition of the stimulus leads to 

a dominant pattern with a similar spatial localization and phase gradient (cf. Figs. A.2e,g). 
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The three essential features of the response discussed above were seen in all trials (7 

animals, 3-4 trials /animal), vis, (i) the low frequency activity propagates predominantly 

along t he afferent fiber tract, (ii) the high frequency activity propagates predominantly 

orthogonal to that at low frequency, and (iii) stimulus-induced coherent activity is localized. 

The variability in the direction of propagation for the dominant component was 25° (SD) for 

frequencies below ~ 5 Hz and 15° for frequencies ~ 8 Hz; for the 18 Hz band the variability 

drops to 5°. The direction of this phase gradient did not significantly change when the axis 

of the loom was shifted by 90° in the horizontal plane or when the oscillations were induced 

by a step of illumination rather than a loom (n = 3) ; thus the direction appears to be 

intrinsic to cortex. The gradient across the region of highest spatial coherence is 1.4 ± 0.2 

radians/mm (mean ± SD) for frequencies between 8 and 12 Hz and 1.6 ± 0.3 radians/mm 

for frequencies between 16 and 20 Hz. The inferred propagation speeds are 0.05 and 0.09 

mm/ms, respectively; such slow speeds are reported for fibers in turtle cortex. 

Spatial events tha t are short-lived or whose pattern drifts will not survive the averaging 

used to determine the dominant pattern (Fig. A.3) , yet may be fundamental to the un­

derlying dynamics. We focus on the temporal evolution of the stimulus induced response 

within the 18 Hz band; demodulation (Sec. A.l) of the data provides a means to isolate the 

magnitude (color saturation; Fig. A.4) and phase (color hue; Fig. A.4) of the response. The 

phase is poorly defined at the onset of stimulation and shows an initial coherent response 

that corresponds to linear waves (* in Fig. A.4a) tha t run in the caudolateral direction, as 

was seen in the dominant mode of the coherence (Fig. A.3e). At later times we observe the 

onset of a phase singularity and circular waves (** in Fig. A.4a), followed by a return to 

linear waves (*** in Fig. A.4a). The singularity lies near the Dl / D2 border but does not 

correspond to any presently known anatomical feature or to injury. The epicenter wanders 

as the response progresses; this partly accounts for the absence of a circular component in 

the dominant mode over the 3 s stimulation period, described above (Fig. A.3e). Lastly, 

the presence of a circular wave at 18 Hz persists when the demodulate is averaged over 

independent time intervals (4 cycles; Fig. A.4b). Consistent with a lifetime of at least 4 

periods, the circular wave at 18 Hz is not accompanied by similar waves at neighboring 
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Figure A.4: Temporal evolution of the band-limited electrical activity. (a) The magnitude 
and phase of the optical response centered at 18 Hz as a function of time, beginning wit h 
the onset of the loom. We plot the demodulate, Vj (x , y, t), so that color-saturation level is 
normalized by the magnitude of the demodulate and the color hue codes the phase. Note 
the presence of approximately linear (* and ***) and circular (**) phase shifts . Each frame 
corresponds to an independent sample (9 Hz); a phase shift of 271" radians corresponds to 
a cycling through the chromatic scale (e.g., red to green to blue to red). The final row 
includes contour maps of the phase only at times t = 0.68 s (*) , t = 1.45 s (**), and t = 
2.22 s (***); each contour corresponds to 71"/12 radians. Orientation of the optical field as 
in Figure A.1a). (b) The magnitude and phase of the demodulate centered at f = 8, 10, 13, 
18, and 23 Hz, filtered at W = f/4 (2WT=2; K=l) and averaged over a period of 4 cycles . 
The center time of the interval was t = 1.51 s (** in part a) . 
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frequencies (14 and 23 Hz; Fig. A.4b). 

A.3 Discussion 

The observed phase gradient for t he high frequency bands is likely to be mediated by intrinsic 

cortical connections since it lies orthogonal to the geniculo-cortical afferents. However, the 

known short- and long-range horizontal connections exhibit no obvious orientation (Cosans 

and Ulinski , 1990) . Thus t he direction of the gradient at high frequencies is likely to emerge 

from the dynamics of the underlying neuronal oscillators and their connections (Grannan 

et a!. , 1993; Ermentrout and Kopell , 1994) . 

The phase gradients seen here (Figs. A.3 , A.4) and t hose reported for other central 

structures (23-32) do not exceed 27r radians. This suggests that the oscillatory component 

of the spike train of different neurons in cortex have an unambiguous phase. Gradients with 

unambiguous phase provide a unique label that may be used to segment (von der Malsberg 

and Schneider, 1986) or categorize (Sompolinsky and T sodyks, 1994; Hopfield, 1995) the 

visual scene in the temporal domain. 

The wave phenomena reported here are likely to modulate the computations performed 

by the turtle 's visual system, although t here is present ly no evidence to relate such spa­

tiotemporal patterns to behavior in a causal fashion. A similar situation holds for the 

visually-induced slow (~ 0.1 Hz) waves of heat that propagate across rat cortex (Bouyer 

et a!., 1981) these report changes in metabolism and blood flow that are secondary to 

increases in neuronal activity, and for t he visually-induced "40 Hz" oscillat ions in the elec­

trical activity of cat and monkey cortex (Eckhorn et a!., 1988; Gray et a!., 1989; Kreiter 

and Singer , 1996). While the latter oscillations are believed to be spatially uniform, high 

resolution imaging may reveal features similar to those reported here (Figs. A.3, A.4) . 
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Appendix B: The role of nonlinear dynamics of the 

syrinx in the vocalizations of a songbird 

B.l Introduction 

Song is characterized by the modulation of sound properties over a wide range of times cales 

(Greenewalt , 1968) . Understanding the mechanisms by which the brain organizes this 

complex temporal behavior is a centra l mot ivation in the study of the song control and 

learning system (Nottebohm et al., 1976, 1982; McCasland, 1987; Scharff and Nottebohm, 

1991 ; Konishi, 1994; Vu et al., 1994; Yu and D. , 1996) . Here we present evidence that, in 

addition to central neural control, a further level of temporal organization is provided by 

nonlinear oscillatory dynamics intrinsic to the avian vocal organ. A detailed temporal and 

spectral examination of zebra finch (Taeniopygia guttata) song reveals a class of rapid song 

modulat ions consistent with t ransitions in the dynamical state of the syrinx. Furthermore, 

in vitro experiments demonstrate that the syrinx can produce a spectrally and temporally 

complex sequence of oscillatory states in response to t he slow variation of respiratory or 

syringeal parameters. As a consequence, simple variations in a small number of neural 

signals can result in a complex acoustic sequence. 

B.2 Methods 

B.2.! Isolated syrinx 

Adult male zebra finches (Canary Bird Farm, Old Bridge, NJ) were anesthetized and sac­

rificed by decapitation. The syrinx was removed, cleaned of excess connective t issue, and 

mounted in t he experimental chamber. The trachea was connected to an adjustable vac­

uum source, and one bronchial tube was connected to a source of humid air with adjustable 
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pressure. The other bronchial t ube was pinched closed and sealed with cyanoacrylate. The 

trachea and anterior portion of the syrinx was embedded in 3% agarose in O.lM phosphate 

buffer. Tracheal and bronchial pressures were recorded with electronic pressure sensors 

(Sensym, Inc.) . Above a threshold flow rate (~0.5 standard liters per minute), the labium 

internum (LI) and the medial tympaniform membrane (MTM) spontaneously oscillated over 

a wide range of flow rates (0.5- 2.5 SLPM) and pressure differentials between the trachea 

and bronchus (0.1- 1.0 kPa) . Oscillation at pressures or flow rates higher than this physio­

logical range resulted in rupture of the medial membranes. Acoustic signals generated by 

t he syrinx were recorded using either an electret microphone placed roughly 2 cm from the 

syrinx, or with a probe microphone placed into the trachea. 

B.2.2 Syrinx response to parameter changes 

Dependence of the oscillatory state of the excised syrinx on parameters was examined for 

variations in both tracheal pressure and membrane tension. To study pressure variations , 

the bronchial inlet was held at a constant pressure (0-0.5 kPa) while the tracheal outlet 

pressure was smoot hly ramped down 1- 2 kPa below atmospheric pressure, and then ramped 

back to atmospheric pressure. The control pressures were measured ~ 50 cm from the syrinx 

to reduce the sensitivity of t he pressure measurement to changes in syringeal resistance. The 

dependence of oscillatory state on the position of the external labium (LE) was examined 

during sustained syringeal oscillation at a constant tracheal pressure. The LE was manually 

forced with forceps into the bronchial lumen until the oscillation ceased . Simultaneous video 

recording of the preparation and the acoustic signal permitted later quantification of LE 

displacement and the associated acoustic modulat ions. Displacement of the LE produced 

no apparent d isplacement or tensioning of the LI or MTM, so the frequency changes were 

probably a result purely of constriction of the bronchial lumen, rather than tension changes. 
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B.2.3 Stroboscopic imaging 

Stroboscopic images of the oscillating syrinx were obtained in vitro to examine in deta il the 

motion of the labium internum (LI) and the medial tympaniform membrane (MTM). The 

syrinx was induced to oscillate as described above. Pulsed illumination (10 ms duration) 

from a cluster of four bright LEDs was synchronized with the fundamental oscillation period 

of the membrane as follows. The measured acoustic signal was rectified , band-pass filtered 

around the oscillation frequency (typically 500- 1000 Hz), and used to trigger a variable­

delay pulse generator. The pulse generator triggered the LEDs at a known time relative to 

the acoustic signal. The delay was slowly swept through several milliseconds to sample all 

phases of the oscillation ; the images were recorded with a CCD camera and video recorded 

with a Sony Betacam recorder for later analysis. 

B.2.4 Spectral analysis 

Spectrograms were computed with direct multitaper spectral estimates21 wit h time band­

width product TW=2. A sliding window of length 1 ms was employed. In Figure B.1c, 

superimposed on the spectrogram is the F-spectrum (Thomson, 1982). This quantity mea­

sures the goodness-of-fit to a sinusoid at any given frequency. The F -spectrum was computed 

with a moving window as above, and the results were threshholded at a fixed confidence 

level before being added to the displayed spectrogram. 

B.3 Results 

B.3.! Analysis of bird song 

Zebra finch songs are organized into short segments of sound, referred to as syllables, that 

often contain rapid sequences of whistled notes, harmonic st acks, and aperiodic signals 

(Immelman, 1969; Price, 1979). Sounds within a syllable are produced contiguously with 

no silent interval during the transitions between distinct signal types (Figure B.1a). This 

continuity allows one to observe changes in the oscillatory state of the syrinx during modu-
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lations of the acoustic signal. We recorded the directed song of male zebra finches (n=12) in 

a sound isolation chamber. Close examination of the song spectra and acoustic waveforms 

shows sudden transitions from periodic to aperiodic or chaotic dynamics, period doubling, 

and mode-locking transitions. We believe these features arise because the syrinx behaves 

as a low-dimensional nonlinear dynamical system. 

Nearly all (10 of 12) of the songs we recorded contained syllables exhibiting rapid « 10 

ms) transitions from periodic to chaotic, noisy, signals. Figure B.1(b) shows two examples 

of this behavior at an expanded time scale. These transitions sometimes occur in less than 

1 ms, and often appear to jump back and forth between the periodic and chaotic oscillation. 

Note that the transition from a nearly periodic signal to a noisy signal occurs in roughly 1 

ms. Another characteristic of nonlinear dynamical systems, period doubling, is character­

ized by a change in oscillation frequency such that spectral components appear at half the 

original frequency spacing. An example of period doubling in zebra finch song is shown in 

Figure B.1(c); at the time marked with the (*) , note the rapid onset of interspersed har­

monic components as described above. A rapid transition in oscillation frequency occurs 

at the point marked (2-3) such that the 3rd harmonic after t he transition has approxi­

mately the same frequency as the 2nd harmonic prior to the transition. Roughly 15 ms 

later, another transition occurs such that the 4th harmonic is suddenly shifted down to the 

frequency of the third harmonic. P eriod doubling transitions were seen in three of the zebra 

finch songs examined. 

Zebra finch song syllables can also exhibit modulations suggesting the presence of mode 

locking in the syringeal dynamics. Mode locking occurs when two components of a system 

are constrained by some nonlinear interaction to maintain a small integer ratio of oscillation 

frequencies. If the characteristic frequency of one component of the system is changed rela­

tive to the other, mode locking transitions may occur as the oscillation frequency suddenly 

jumps to achieve a new stable integer ratio with the fixed frequency (Fletcher, 1978; Jack­

son, 1992). In zebra finch song, for example, syllables often exhibit an overall downward 

sweep in fundamental frequency (Price, 1979). However , this downward frequency sweep 

may be punctuated by steps, or rapid transitions in fundamental frequency (Fig. B.lc). In 
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Figure B.l : Spectral and temporal characteristics of zebra finch song. a) The spectrogram 
of a syllable displaying the wide variety of spectral features common in zebra finch song. 
The pressure waveform is shown at the top. b) The rapid transitions between these signals 
are seen by expanding the pressure waveform around the regions marked 1 and 2 in (a). c) 
Spectrogram and harmonic analysis of a syllable recorded from a different bird . Note the 
rapid frequency doubling transition at the time marked with the (*) . The 2nd, 3rd and 4th 
harmonic in this sequence are all roughly aligned with the bright spectral band at 3200 Hz, 
indicated by the horizontal bar and arrow. 
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the example shown, the mode locking transitions occur such that the oscillation frequency 

maintains a ratio of two, three and four with respect to a common frequency at roughly 3 

kHz . Similar features were observed in 9 of the 12 zebra finch songs studied. 

B.3.2 Mechanism of song generation 

We wish to distinguish between two hypotheses for the origin of the song features described 

above: direct muscular manipulation during singing of the syringeal parameters by the song 

control system, or alternatively, intrinsic dynamics of the syrinx. To this end, we examined 

the acoustic signals generated by an in vitro preparation of the zebra finch syrinx (n= 6). 

The excised syrinx was induced to oscillate by applying low air pressure at the trachea and 

high pressure at the bronchial inlet. In vitro oscillations of the zebra finch syrinx were quite 

similar in oscillation frequency and amplitude to normal zebra finch song and occurred over 

a physiologically reasonable range of pressures and flow rates (Hartley and Suthers, 1989). 

Spectra of the sound signals measured outside the syrinx (Fig. B.2a) show an enhancement 

of lower harmonics compared to normal song spectra. The high harmonic components in 

song are thought to be produced by the rapid pressure fluctuations associated with closure 

of the bronchial lumen during syringeal oscillation; we expect that such rapid fluctuations 

would not be present in the sound signal measured outside the syrinx. 

Note that as a function of LE displacement , the fundament al frequency exhibits a series 

of discrete jumps such that the third harmonic, second harmonic, and fundamental are 

roughly aligned with a common frequency at ~ 2.2 kHz. 

A smooth ramp-down and ramp-up of air pressure applied at the tracheal outlet pro­

duced a sequence of oscillatory states, typically with jumps in oscillation frequency and, at 

higher pressures, transitions from periodic to aperiodic oscillation (Fig. B.2a). The precise 

sequence of acoustic signals produced during this manipulation was different for each prepa­

ration. The acoustic sequence was also sensitive to small changes in various experimental 

parameters, such as tension on the bronchus. Intrinsic differences in syringes and sensitiv­

ity to parameters may partially account, respectively, for song variations across individuals 

and variability within individuals. Another feature commonly observed was hysteresis in the 
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acoustic signal; the sequence of acoustic signals generated as the pressure was ramped up 

usually differed in a repeatable manner from the sequence as the pressure was ramped down. 

The transitions observed during this manipulation were usually abrupt, often occurring in 

roughly one period of t he acoustic signal (Fig. B.2b). 

Further evidence for nonlinear dynamics of the syrinx was seen during simple manip­

ulations of syringeal configuration. Deflection of the labium externum (LE) (see Fig. B.3) 

into the bronchial lumen constricts the flow of air through the syrinx, and is thought to 

be a normal articulation during song production. In all of the syringes tested (n= 3), this 

constriction resulted in a large increase in the fundamental oscillation frequency during 

in-vitro oscillation. In two syringes, however, the frequency was not a smooth function of 

LE displacement; rather the frequency exhibited sudden jumps at certain discrete displace­

ments (Fig. B.2c). Furthermore, the oscillation appears to be constrained to frequencies 

that are close to a small integer sub-harmonic of a common (higher) frequency. In the 

example shown, the frequency jumps from ~ 700 Hz to ~ 1100 Hz to ~ 2200 Hz, which 

have periods, approximately, of three, two, and one t imes the period of the common 2200 

Hz component. 

To understand the origin of the apparent strong nonlinearity in the syrinx, we used 

a stroboscopic imaging technique to visualize in vitro oscillations of the zebra finch syrinx 

(n=5) (Fig. B.3). In vitro, there was a threshold flow rate (~0.5 standard liters per minute) 

at which the labium internum (LI) and the medial tympaniform membrane (MTM) began to 

oscillate with large amplitude motion (~ 0.5mm). The motion of the these membranes was 

phase locked to each other and to the generated sound , suggesting that these membranes are 

in fact the source of the sound. In all syringes studied, the anatomical structure exhibiting 

the largest motion amplitude was the LI, rather than the much lighter MTM, in agreement 

with recent evidence that the LI plays a central role in syrinx function (Goller and Larsen, 

1997). Close examination of the strobed oscillation under a microscope indicated that the 

bronchial lumen is probably briefly closed by contact ofthe internal labium with the external 

labium during part of the oscillatory cycle; however, the wave-like motion of the medial 

membranes made it difficult to determine quantitatively the fraction of time during the 
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Figure B.2: Patterns of acoustic signals generated in the in-vitro syrinx preparation. a) 
As the tracheal pressure (top) is varied over a range of 2 kPa, the sound generated by 
syrinx exhibits a sequence of modulations, Bronchial pressure is held constant (0,2 kPa) . 
b) The pressure signal shows the transition occurs in roughly one oscillatory period. c) Dis­
placement of the external labium (LE), into the bronchial lumen, increases the fundamental 
oscillation frequency before the oscillation ceases. d) Acoust ic waveform measured at labial 
displacements indicated in (c) . The three waveform segments are shown at different scales, 
as indicated, 
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oscillation that the bronchial lumen was closed. Because the excursions of these membranes 

are comparable to the size of the bronchial lumen, the Bernoulli forces driving the oscillat ion 

(Fletcher, 1988) are a highly nonlinear function of membrane displacement. 

B.3.3 Syringeal modeling 

To determine if our stroboscopic and acoustic observations of in vitro syringeal oscillations 

were consistent with a view of the syrinx as a nonlinear dynamical system, we developed a 

biophysical model of the syrinx. We followed previous work on both human (Ishizaka and 

J.L ., 1972) and avian (Fletcher, 1988) vocalizations, as well as models of fluid flow through 

collapsible t ubes (Bertram and Pedley, 1982) . The model is constituted by a set of ordinary 

differential equations describing the mechanical motion of the syringeal membranes in the 

presence of airflow t hrough the bronchial tube. The essential nonlinearity in t he model is 

the nonlinear pressure-flow relation associated with t he Bernoulli force. The membranes 

were modeled as a two mass system. Membrane parameters were based on estimates of the 

resonant mode structure of the LI and the MTM. The essential result is that the model 

exhibits qualitatively similar behavior to in-vivo zebra finch song as well as the in-vitro 

syringeal oscillations. The model shows period doubling and transitions from periodic 

to chaotic dynamics (Fig. B.4), as well as mode locking transitions (not shown) . Our 

model results suggest a mechanism for the observed mode-locking, namely coupling of the 

basic Bernoulli oscillation to a higher vibrational mode in the membranes. An additional 

mechanism underlying mode-locking might be coupling of t he oscillatory mechanism to 

tracheal resonances. 

B.4 Discussion 

The generic signatures of nonlinear dynamics described here have a lso been described in 

models of human vocalizations (Berry et a!., 1994), and in patients with vocal disorders 

(Rertzel et a!. , 1994). A distinction with human vocalizations demonstrated by our model 

and the in vitro results is that detailed spectral shaping in zebra finch song arises in large 
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Figure B .3: Stroboscopic observation of in-vitro syringeal oscillations. a) Experimental 
setup . The syrinx is induced to oscillate in vitro by applying suction to the trachea and 
slight overpressure to one bronchial tube. The sound pressure measured ~ 2 cm from 
the syrinx is used to trigger an array of bright LEDs with a variable time delay. b) The 
configuration of the medial tympaniform membrane (MTM) and internal labium (LI) was 
visualized and recorded as the time delay was slowly swept t hrough several oscillation 
periods. The digitized video frames are shown at increments of 0.2 ms in the time delay. In 
t his case the oscillation frequency was ~ 700 Hz. Note t hat both the MTM and LI exhibit 
large motion amplitude. Also labelled are external labium (LE) and bronchi (B). 
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Figure B .4: Results of a simple numerical model of airflow through a compliant constric­
tion. The syringeal membranes are modeled as a system of coupled masses and springs. 
a) Spectrogram of the oscillatory membrane displacement. The parameter associated with 
bronchial pressure is ramped slowly and linearly up from zero. Note the onset of oscillation 
at a threshold pressure, the period doubling events (*), and the rapid transition to 'chaotic' 
dynamics. b) The membrane displacement shown expanded around the latter transition 
showing that the transition occurs rapidly, i.e ., in roughly one oscillatory period. 
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part from syringeal dynamics1 , as opposed to vocal tract filtering effects. 

We have demonstrat ed that the isolated syrinx behaves as classic nonlinear dynamical 

system, often exhibiting rapid transitions between distinct oscillatory states . The strongly 

nonlinear behavior of the zebra finch syrinx results from the la rge amplitude motion of the 

vibrating membranes and the involvement of the relatively heavy labium internum. As a 

consequence, simple trajectories in a small number of control parameters can result in a 

complex sequence of acoustic signals. Thus, in addition to the central song control system, 

the syrinx must also be viewed as an important component in the hierarchy of structures 

determining the temporal organization of birdsong. Furthermore, the result ing complexity 

of the mapping from articulators to acoustic output suggests that song learning may require 

a sophisticated internal model of syringeal dynamics. 
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Appendix C: List of abbreviations 

DPSS Discrete prolate spheroidal sequence. 

fMRI Functional magnetic resonance imaging. 

lSI Interspike interval. 

LFP Local field potential. 

LE External labium. 

LI Labium internum. 

LIP Lateral intra-parietal area. 

MEG Magnetoencephalography. 

MT Middle temporal area. 

MTM Medial tympaniform membrane. 

PC Principal component. 

PRR Parietal reach region. 

PSTH Peri-stimulus time histogram. 

SNR Signal-to-noise ratio. 

STA Spike-triggered average. 

SVD Singular value decomposition. 
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