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Abstract 

This work consists of two independent chapters: 

The first is a study of commuting countable Borel equivalence relations , where two 

equivalence relations R and 5 are said to commute if, as bina ry relations , they com

mute with respect to t he composition operator , i .e., R 0 5 = 50 R. T he primary 

problem considered is, to what extent does the complexity of E = R V 5 depend on 

the complexity of Rand 5 , if Rand 5 commute? This is considered both in the 

case where t he underlying space supports no E-invariant probability measure , and 

t he case where it supports at least one such measure. In the first case , t he answer is 

'not very much ': any such aperiodic equivalence relation E can be written as R V 5, 

where Rand 5 are smooth aperiodic. In t he second case, we frame our study within 

t he context of costs, a system of invariants for countable Borel equi valence relations 

with invariant probability measures , developed by G. Levitt [12] and D. Gaboriau [5]. 

One aspect of costs which is not well understood is t he extent to which 'commutativ

ity ' within an equivalence relation (in a more general sense t han t he definition given 

above) trivializes its cost. We have shown t hat, under certain conditions, t his is in 

fact t he case. One of t he consequences of these investigations is a new, elementary 

proof of the fact the group 5L2 (Z[t]) is anti-treeable. 

The second chapter is motivated by t he well known t heorem of descriptive set theory 

that every II~ subset of a Polish (separable, completely metrizable) space admits a 

II~ scale. We construct a II~ scale on t he set of differentiable functions with domain 

[0,1], which is a II~ subset of t he Polish space C([O, 1]) . This construction is based 

on the II~ rank of differentia ble functions given by Kechris and Woodin in [4], and, 

like this rank, is meant to reflect the intrinsic nature of DIFF, and so give a 'natural ' 

cri terion for determining whether the uniform limit of different iable functions is itself 

different iable . We t hen attempt to further analyze t his 'scale criterion ' for a sequence 
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of differentiable functions (J'-n) by comparing it to the criterion that t he sequence (f~) 

converges. 
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Chapter 1 Summary 

Chapter 2 is a study of certain types of countable Borel equi valence relations on 

standard Borel spaces. Here a space X is standard Borel if it has associated to it a 17-

algebra of subsets S which is generated by a Polish (seperable, completely metrizable) 

topology on X. An equivalence relation E on X is Borel if, when viewed as a subset of 

X X X, it is an element of the CT-algebra generated by S x S = {A x B E P(X2) lA, B E 

S}. E is countable if every equivalence class is countable. 

Definition 2.1.1. Let Rand S be equivalence relations on a set X. Rand S are 

said to commute, written ROS, if R 0 S = S 0 R, where 

R 0 S = {(x , y) E X2 I :J z E X ( (x, z) E R 1\ (z, y) E S)} 

z.e., R 0 S is the standard composition of relations. 

Definition 1.0.1. Let Rand S be equivalence relations on a set X. The join of R 

and S, written R V S, is the equivalence relation on X generated by Rand S. That 

is, R V S is the c;;,. -least equivalence relation K c;;,. X 2 such that R c;;,. K and S c;;,. K. 

The general motivating question for this chapter is: for a countable Borel equivalence 

relations Rand S on a standard Borel space X , how does R V S relate to Rand S, 

if Rand S commute? 

In Section 2 we introduce some standard terminology and review some known re

sults in the study of countable Borel equivalence relations, and examine the case of 

commuting equivalence relations Rand S, where at least one of them is finite, i .e ., 

each class is finite. It follows directly from the definition t hat if R is finite and R 

and S commute, then each R V S class contains only finitely many S classes (see 

Proposition 2.1.2(iii)). R V S is then said to have finite index over S. From this we 

get Proposition 2.2.8: 
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Proposition 2.2.8. Suppos e Rand S aTe commuting BOTel equivalence Telations on 

the standaTd BOTel space X. 

i) If Rand S aTe finite , then R V S is finite. 

ii) If R is finite and S is smooth, then R V S is smooth. 

iii) If R is finite and S is hypeTfinite, then R V S is hypeTfinite. 

It turns out that the converse of this finite index property is a lso true: 

Theorem 2.2.9. Suppos e E and FaTe apeTiodic countable BOTel equivalence r-ela

tions, F ~ E, and E has finite index oveT F. Then theTe is a finite equivalence 

Telation R ~ E such that ROF and R V F = E. 

(Here apeTiodic means that each class is infinite. This isn't a restriction , as the 

theorem is trivial when one of E or F is finite , since t hen both E and F must be 

finite , and we can just take R = E.) 

Theorem 2.2.9 was proved jointly with A. Kechris. 

Lastly in Section 2, we consider R V S, where ROS and each of Rand S are smooth ; 

in a sense which is made precise in the discussion preceding Theorem 2.2 .7, smooth 

aperiodic equivalence relations are the simplest among the aperiodic equivalence re

lations. Proposition 2.2.11 essentia lly shows that any countable Borel equivalence 

relation E which contains a smooth aperiodic equivalence relation can be written as 

the join of two commuting smooth aperiodic equi valence relations . Since the converse 

is clearly true , this gives a complete characterization of countable Borel equivalence 

relations which contain a smooth aperiodic equivalence relation, in terms of commu

tativity. 

Starting in Section 3 and continuing through Section 5, we consider countable Borel 

equivalence relations which do not contain a smooth aperiodic sub-equivalence rela

tion, and continue the investigaton of possible decompositions into the join of com

muting sub-equivalence relations. Section 3 reviews various known characterizations 

of countable Borel equivalence relations which do (resp., do not) contain an aperiodic 
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smooth equivalence relation. One characterization of t hose that do not is that they 

admit an invariant probability measure (defined in Section 3) on the underlying space. 

In Section 4 (and Section 6) we review a new system of invariants for countable 

Borel equivalence relations with invariant measures (and countable groups) developed 

by Levitt [12] and Gaboriau [5]. We frame our question of commutativity within 

the context of costs. This is relevant because t he extent to which 'commutativity ', 

in a more general sense than the definition given above, trivializes cost is not well 

understood. (For an aperiodic countable Borel equivalence relation E on X with 

invariant measure f-L , its cost CJ1. (E) is an extended positive real value, 1 ::s: CJ1.(E) ::s: 

00. By 'trivial ' we mean CJ1.(E) = 1.) As results we obtain: 

Theorem 2.5.7. Suppose that E is an aperiodic countable Borel equivalence relation 

on a Borel probability space (X, f-L) , and that f-L is an invariant measure for E. If 

E = R V S, where ROS and Rand S are aperiodic, then 

Therefore if one of CJ1.(R) or CJ1.(S) equals 1, then 

As a corollary, we have 

Theorem 2.4.12. Suppose that E is an aperiodic countable Borel equivalence rela

tion on a standard Borel probability space (X, f-L) and that f-L is an invariant measure 

for E. If E = R V S, where Rand S are hyperfinite and ROS, then CJ1. (E) = 1. In 

particular, if E is f-L -treeable, it is actually f-L -hyperfinite. 

Remark: S. Solecki has since shown that a modification of the proof of Theorem 2.5.7 

yields the stronger result 
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In the final section, we apply Theorem 2.5.7, along with previously known results of 

Gaboriau to obtain concrete examples of groups with trivial cost . As consequences 

of Theorem 2.5.7 we have: 

Theorem 2.6.12. If R is a countably infinite commutative ring and n ::::: 3, then 

C(SLn(R)) = l. 

Hence if SLn(R) is non-amenable (e.g., in the case where R has characteristic 0), it 

is anti-treeable. 

P roposition 2.6 .15. If K is any countable infinite fie ld, then GLn(K), the group of 

all invertible n x n matrices with entries in K , has cost 1. 

And as a consequence of previously known facts on costs we also obtain 

P roposition 2.6.13. If R is a countable commutative ring with unity which has 

infinitely many units, then C(E2 (R)) = 1. 

Here E 2 (R) is the subgroup of SL2 (R) generated by the elementary transvections. 

In the cases where R not only satisfies the hypotheses of Proposition 2.6 .13, but is 

additionally a Euclidean domain, a commutative semi-local ring , or a ring of integers 

of a real quadratic field extension Q( v'd), d E Z + , we have SL 2 (R) = E 2 (R) (see 

[6], 4.3.9), so SL2 (R) = 1. In particular, from 2.6.13 we obtain a new proof that 

SL2(Z[~]) is anti-treeable , which, aside from cost machinery, is entirely elementary. 

In Chapter 3, the general objects of study are Polish (separable, completely metriz

able) spaces, and II~ subsets of Polish spaces , where a subset A of a Polish space 

X is II~ if its complement X\A is :E ~ , i .e., the continuous image of a Borel set. In 

particular, we will be interested in the Polish space C([O, 1]) , the space of all real

valued continuous functions on [0,1]' topologized by the supnorm metric II f - g 1100= 

maxxE[O,l] If(x)-g(x)l, and its II ~ subset DIFF = {f E C([O, 1]) I f'(x) exists for all x E 

[0, In. 
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D efinition 3.1.1. A rank on a set A 2S any map from A into Ord ) the class of 

ordinals. 

Definition 3 .1.3. Let X be a Po lish space) and A ~ X. A scale on A is any count

able set of ranks { cPn : A ---+ Ord I n E N} with the fo llowing property: for any 

sequence of points (Xk) in A converging to a point x E X ) if "In E N, :Jan E Ord ) with 

limk--;oo cPn(Xk) = an) then x E A and "In E N, cPn (x ) ~ an· 

D efinition 1.0.2. Let X be a Polish space and A ~ X. A II~ -rank on the set A is a 

rank cP : A ---+ Ord whose initial segments are uniformly in II~ n ~~ ) in the following 

sense: there exist relations ~:) ~~ with ~:E II~ ) ~~E ~~ (as subsets of X x X ) 

such that Vy E A ) 

cP(x) ~ cP (y) ¢:} x ~: y ¢:} x ~! y. 

Definition 1.0.3 . A II~ -scale is one in which all the ranks are II~ -ranks. 

Definition 3.1.6. Let X be a Polish space) A ~ X ) and { cPn In E N} a scale on A. 

W e say that a sequence of points (Xk) of points in A converges in the scale { cPn In E N} 

if limk--;oo cPn(Xk) exists for all n E N. 

It is a well known theorem of descript ive set theory that every II~ set admits a II~ 

scale (see [3]' §36.D) . Since a scaled set is closed under sequences which converge 

both in the topology and in the scale, it is desirab le to find a scale which is explicit ly 

related to t he Polish topology, in the hopes that convergence in the scale can b e used 

to solve problems of an analytical or topological n ature. 

With this motivation, in Section 3 of Chapter 3 we define a countable set of 'natural ' 

II~ ranks {'l{;E,U } on DIFF (E, U are each elements of a countable parameter set) and 

show t hat it is in fact a scale. The ranks 'l{;E,U which a re used are based on a II~ rank 

I . IDIFF developed by Kechris and Woodin in [4]. 

Although {'l{;E,U } is intended to be a natural scale for DIFF, convergence in the scale 

{'l{;E,U } is a complicated property to check for an arbitrary sequence (j~). Hence 

in Section 4 we attempt to quantify convergence in the scale by asking whether it 
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implies that the sequence of deri vati ves U~) converges (under sui table hypotheses). If 

a sequence Un) converges in t he scale {1/J f, U}, then the sequence (lj',.,IDIFF) of Kechris

Woodin ranks is eventually constant . Thus it 's reasonable to assume that (IInIDIFF) 

is actually constant, and to split the problem into cases according to t his constant 

value. This is how we proceed. 

The minimal case, IInlDIFF = I , is also the simplest. In Proposition 3 .4 .2, we show 

that if In converges pointwise to f , Un) converges in t he scale {1/Jf,U } , and IInlDIFF = 1 

for all n , then I~ converges uniformly to f'. Proposition 3.4.3 is a partial converse 

to this: if fn converges uniformly to I E DIFF, j~ converges uniformly to f' , and 

IInlDIFF = 1 for all n , t hen limn--7oo1/Jf,u Un) exists for 'most ' n , in a sense to be made 

precise. An exact bicondit ional statement relating the t wo types of convergence is 

t hen given in Corollary 3.4.6. 

In the case where IfnlDIFF > I , the relation between the two types of convergence is 

no longer so direct . Using the characterization given in [4], that IflDIFF = 1 if and 

only if f E C 1 ([0 , 1]) , it is easy to find an example which illustrates this. Let f E 

DIFF be any function whose derivative isn 't continuous , say at t he point Xo E [0, 1). 

We can then find a sequence (En ) such that En -t a and limn--7oo f'( xo + En ) does not 

exist. If we then define In by fn(x) = f( x + En) (modifying this appropriately for 

x E (1 - En, 1]) , t hen j ',., -t f , and Un) converges in t he scale, but clearly j~ ft f' , 

since t he real sequence (j~ (xo)) has no limit . Since a set S ~ [0,1] can be the set of 

discontinuity points of a derivative f' if and only if it is a nowhere den se, countable 

union of closed sets (see [1], p . 34) , this suggests that we weaken t he question , and 

instead ask whether , for a given sequence Un), j ',., -t f , convergence in t he scale 

{1/Jn } implies that f~(x) -t f'( x ) for all x in some G6 (countable intersection of open 

subsets of [0,1]) which is dense in [0,1]. 

Without additional hypot heses, the answer is negative: 

Proposition 3.4.7. There exists a sequence Un) in DIFF with the following proper

ties: 

i) Un) converges in the scale {1/Jf,U l EE Q, U E U} , 
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ii) in -+ ° uniformly, 

iii) Vn E N, IfnlDIFF = 2, 

iv) V*x E [0,1]' limn--> oo f~(x) does not exist. 

(Here we write 'V*x E [0,1]' for ' for all x in a dense Go subset of [0,1]'.) 

The key property of this example seems to be t hat IflDIFF < Ij~IDIFF' When we 

add the additional hypothesis t hat, roughly speaking, IfIDIFF = IfnlDIFF on every 

neighborhood of [0,1], we get an affirmative answer , at least in the case that IfnlDIFF < 

00: 

Theorem 3 .4.12. Let (In) be a sequence in DIFF which converges in the scale and 

converges uniformly to the function f E G ([0 , 1]). Then, as {'0£ ,u} is a scale, f E 

DIFF. If there exists k < w such that f and each fn are everywhere rank k, then 

V*xf~(x) -+ f'(x). 

In the case where IfnlDIFF = 2, this can be given a more analytical characterization : 

Corollary 3. 4 .17. Let (j~) be a sequence in DIFF which converges in the scale and 

converges uniformly to the function f E G([O, 1]), and suppose that Ij~ ID[FF = 2 

for all n. Then, as {'0£,u} is a scale, f E DIFF. If, additionally, the set {x E 

[0,1]1 f' is discontinuous at x} is dense in [0,1], then V*x E [0, l],limn --> oof~(x) = 

f' (x). 

Question: Can Theorem 3.4.12 be generalized to the case in which each fn and f 

are everywhere rank 0:', for any given 0:' < WI? That is , if (In) is a sequence which 

converges in the scale and uniformly to f E G([O, 1]), and f and each j~ are everywhere 

rank 0:' , is it true that V*xf~(x) -+ f'( x)? 

Question: Is there an analogue to Corollary 3 .4.17 for a sequence (In) in DIFF whose 

elements have I . IDIFF-rank greater than 2? That is, if (In) is a sequence which 

converges in the scale and uniformly to f E G([O, 1]), and Ij~IDIFF = 0:', is t here an 

analytical condition GCt which would guarantee that V*x, limn -->oo f~(x) exists? 
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Chapter 2 Costs and Commuting 

Equivalence Relations 

2.1 Commuting Equivalence Relations 

D efinition 2.1.1. Let Rand S be equivalence relations on a set X. Rand S are 

said to commute, written ROS, if R 0 S = S 0 R , where 

RoS = {(x , y) E X 2 13z E X ((x,z) E R/\ (z , y) E S)}, 

i. e., R 0 S is the standard composition of relations. 

The fo llowing characterizations of commutati vi ty were shown in [1]: 

Proposition 2.1.2. Let Rand S be equivalence relations on a set X. Then the 

following are equivalent: 

i) ROS. 

ii) R 0 S = R V S, where R V S , the join of Rand S , is the ~- least equivalence 

relation K ~ X 2 such that R ~ K and S ~ K . 

iii) Within each R V S -class, every R -class meets every S -class. 

Proof. (i)=}(ii): We have 

so clearly R 0 S ~ ROS. Conversely, suppose (x, y) E R V S, ROS, and k is minimal 

for which t here exist Zl, .. . ,Z2k+1 with 
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T hen k = O. For suppose k 2:: 1, so t hat 

is a subformula of (*) . Since ROS, t here is w E X such that zl Rw and WSZ3. But 

t hen t he subformula 

(where u = Z4 or U = Y, as appropriate) can be replaced by 

xRw 1\ wSu 

which would contradict the minimality of k. 

(ii)=}(iii): Fix x E X , and let [X]RVS denote the R V S-class of x, i .e., [X]RVS = {y E 

X I x(R V S)y}. Let C ~ [X]RVS be any R-class , and let D ~ [X]RVS any S-class; fix 

Yl E C, Y2 E D . Since Yl (R V S)Y2 , by (ii) there exists w E X such that y1Rw and 

WSY2· But this just means that wEe n D =I- 0. 

(iii )=}(i): By the symmetry of the argument it will suffice to show t h at R 0 S ~ So R. 

Let (x, y) E Ro S be given; then (x , y) E R V S, so by (iii) there exists w E [x]s n [Y]R . 

Any such w witnesses that (x, y) E So R. 0 

Remark: For the subject of this chapter , criterion (iii) appears to b e t he most u seful 

characterization of commuting equiva lence relations. 

2.2 Countable Borel Equivalence Relations 

We now restrict our attention to t he case in which X is a standard Borel space; t hat 

is, X which has associated to it a O"-algebra of sets S which is generated by a Polish 

(seperable, completely metrizable) topology. In t he following definitions we assume 

that E is an equiva lence relation on a standard Borel space (X, S). By abuse of 

notation, we will usually write X instead of (X , S). 
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Definition 2.2.1. E is Borel if, when viewed as a subset of X x X, it is an element 

of the O"-algebra generated by S x S = {A x BE P (X2) I A,B E S}. 

Definition 2.2.2. E is finite (resp. countable) if each equivalence class of E is finit e 

(resp. countable). It is aperiodic if each class is infinite. 

For example, if G is a countable group acting on X, then the resulting orbit equiva

lence relation Eo, defined by 

xEoY ¢:? :3g E G(g . x = Y), 

is countable. It is a lso Borel provided the action is a Borel function , where the Borel 

structure of G is given by the discrete topology. A result by Feldman and Moore [4] 

shows that t he converse is also true. 

Theorem 2.2.3. (Feldman-Moore). If E is a countable Borel equivalence relation on 

the standard Borel space X , then there is a countable group G of Fjorel automorphisms 

of X for which E = Eo. Moreover, G can be chosen so that the invo lutions in G 

generate Eo, i.e., \/x,y E X (xEy ¢:?:3g E G(g2 = 1 and g. x = y)). 

There are two other classes of Borel equivalence relations which are important to our 

work here. As above, in the next two definitions E is a Borel equivalence relation on 

a standard Borel space X. 

Definition 2.2.4. E is smooth if there exists a Borel map f : X ---t lR such that 

\/x, y EX, xEy ¢:? f(x) = f(y)· 

Definition 2.2.5. E is hyperfinite if there exist finite Borel equivalence relations 

on X such that E = Un Fn . Equivalently (see, e.g., Dougherty-Jackson-Kechris /2j, 

5.2), E is hyperfinite if E = Ez for some Borel action of the group (Z, +) on X . 
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Clearly every hyperfinite equivalence relation is countable, but the converse is not 

true. 

If E is smooth and also countable, then in fact it has a Borel transversal, i.e., a set 

T s;::; X which meets each E-class in exactly one point. (This follows from the fact 

that any countable-to-one Borel function has a one-sided Borel inverse; see [3]' § 18. C.) 

Using this fact it is easy to see the following standard fact: 

Proposition 2.2.6. Every countable smooth equivalence relation is hyperfinite. 

Pmoj. Let E be a countable smooth equivalence relation on the Borel space X, and 

let X' = {x E X I [X]E is infinite}. If Erx ' is hyperfinite , t hen clearly E is too, so 

without loss of generality we assume that E is aperiodic. By Theorem 2.2 .3, E = Ec 

for some countable group G. Since E is aperiodic, G must be infinite; let {gnl n E N} 

be an enumeration of its elements . Let T s;::; X be a Borel transversal for E, and 

define the Borel function s : X --t X by 

s(x) = the unique yET such that xEy. 

We begin by defining a Borel map r : X --t N which uniformly enumerates the 

elements of each E-class, i.e. , for all x E X , rl[xlE will be a bijection. Set 

r(x) = 0 B s(x) = x 

r(x) = n + 1 B gi . s(x) = x, where i is minimal 

such that gi . s(x) ¢ r - 1
( {O , ' .. ,n}). 

Now for each n E N let Fn be the finite Borel equivalence relation given by 

xFnY B xEy and r(.x), r(y) ::; n. 

The Fn's form an increasing sequence of finite Borel equivalence relations and E = 

UnFn . 0 
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Remark: The converse of Proposition 2.2 .6 is not true. One example of a non-smooth 

hyperfinite equivalence relation is Eo, the equivalence relation on the space of all 

binary sequences 21\1, gi ven by 

xEoY {::} 3NVn ~ N(x(n) = y(n)). 

Note that this is essentially the Vitali equivalence relation Evon JR , given by xEvy {::} 

x - Y E Q. Just as Ev cannot have a Lebesgue measurable transversal , Eo cannot 

have a transversal which is measurable with respect to the (~,~) product measure on 

21\1. Thus we have 

countable smooth £:; hyperfinite £:; countable. 

A more general way of comparing Borel equivalence relations is via Borel reducibility. 

Let E and F be two equivalence relations on the Borel spaces X and Y , respectively. 

E is Borel reducible to F , written E <5.B F , if there exists a Borel function f : X --+ Y 

such that 

Vx,y E X, xEy {::} f(x)Ff(y). 

If X and Yare uncountable spaces (so that any countable equivalence relation has 

uncountably many classes) , it follows that if E is smooth and F is hyper fini te, then 

E <5.B F and if F is non-smooth then F i.B E. Also, if each of E and Fare non

smooth and hyperfinite, then they are bireducible, i .e., E <5.B F and F <5.B E (see [2], 

7.1) . A result by Harrington-Kechris-Louveau [7], known as the General Glimm-Effros 

Dichotomy, states that, in the sense of <5.B , the non-smooth hyperfinite equivalence 

relations are the immediate successors to the smooth ones . 

Theorem 2.2 .7. (Harrington-KechTis-Louveau) If E is a Borel equivalence relation 

on a standard Borel space X , then exactly one of the fo llowing holds: 

i) E is smooth. 

ii) Eo <5.B E . 

Moreover, if case (ii) holds, the function which witnesses the reduction can be taken 
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to be one-to-one. 

We now return to t he subject of commuting equivalence relations, and note a basic 

consequence of Proposit ion 2 .1.2: 

Proposition 2.2.8. Suppose Rand S are commuting Borel equivalence relations on 

the standard Borel space X. 

i) If Rand S are finit e, then R V S is finite . 

ii) If R is finit e and S is smooth, then R V S is smooth. 

iii) If R is finit e and S is hyperfinite, then R V S is hyperfinite. 

Proof. If ROS and R is finite, t hen it follows from Proposition 2.1.2(iii) t hat R V S 

has finite index over S, i. e., t here are only fini tely many S-classes contained in each 

R V S-class. Thus (i) is immediate. Also, it is a general fact that a finit e-by-smooth 

Borel equivalence relation is smooth , and a finit e-by-hyperfinite Borel equivalence 

relation is hyperfinite. (Here, by 'fini te-by-(*) ', we mean an equivalence rela tion E 

which has finite index over some equivalence relation F with property (*).) 

For a proof that a finite-by-smooth equivalence relation is smooth, let E and F be 

countable Borel equiva lence relations on X , with F smooth and E of finite index over 

F. If f : X -t IR witnesses t he smoothness of F , then g : X -t IR defined by 

g(x) = min(J(y) : xEy) 

witnesses the smoothness of E. 

For a proof that a finite-by-hyperfinite Borel equivalence relation is hyperfini te, see [8]' 

1.3. 0 

In the proof of Proposition 2.2.8 , we noted t hat if ROS and S is finite , t hen E = R v S 

has finite index over R. It t urns out that the converse is also true. This is a joint 

result with A. Kechris. 

Theorem 2.2.9. Suppose E and F are aperiodic countable Borel equivalence rela

tions, F s:;;; E , and E has finite index over F . Then there is a finit e equivalence 

relation R s:;;; E such that ROF and R V F = E. 
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In the proof of Theorem 2.2.9 we will use t he following result , which can be found 

in [8]. 

Proposition 2.2.10. (Marker Lemma) If E is an aperiodic countable Bord equiva

lence relation on a standard Borel space X J then there exists a sequence A o, AI, ... 

of Borel subsets of X such that 

i) Ao ~ Al ~ .. . and each Ak is a complete section for E . 

Proof of Theorem 2.2.9. Without loss of generality, by treating each subset 

Ui = {x E X I there are exactly iF-classes in [X]E } 

separately, we may assume t hat E has fixed index i over F, for some i 2: 1; following 

the notation of group theory, we will usually write [E : F] = i. Let G be a countable 

group and G x X -t X a Borel action such t hat E = E c , and such that E is generated 

by the involutions in G (see T heorem 2.2.3). Let {gn I n 2: I} be an enumeration of 

t he involutions. 

We begin with the case i = 2; t he analogous asser t ion for larger values of i will follow 

by an inductive argument. This base case argument is analogous to t he proof of 

Theorem 3.12 in [8]. 

i = 2. 

Claim 1: We can assume t hat F has the following form: for some complete sections 

A, B for E with An B = 0 and Au B = X, F is t he equivalence relation determined 

by A and B. That is , xFy if and only if xEy and either x, yEA or x, y E B. 

Proof of Claim 1: Define 

X l = {x E X I gl' X f x } 
n n 

Xn+l = {x E X I x E (X\ U X k) and gn+l ' X E (X\ U X k) and gn+l . X fx}. 
k = l k= l 
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Notice t hat x E Xn ~ gn . X E X n, because gn is an involution . Also, if x and yare 

both in X \ U :'=I X n, t hen xEy =? xFy : because E is generated by {gn In 2: I} , if 

xEy then there exists n for which gn . X = y. So suppose x, y E X \ U~= I X n, xEy, 

and xf'y, and let no be minimal for which gna . X = y. Then, as x, y ~ U k<na X k, we 

have x, y E X na, a contradiction . 

Now let 

00 

C = {x E X I [X] E\ U Xn i- 0} 
n = 1 

00 

D = {x E X I [X] E ~ U X n } . 

n = 1 

On D Theorem 2 .2.9 is true, since we can just define R by 

x Ry ~ :In(x, y E Xn and gn . X = y). 

Hence, for the purpose of proving the theorem, we may assume that X = C. So let 

00 

A = {x E X I [X]F\ U Xn i- 0} 
n = 1 

00 

B = {x E X I [X]F ~ U X n }. 

n = 1 

D (Claim 1) 

Thus without loss of generality, we may assume that X = Au B , where An B = 0, 

A and B are complete sections for E, and where F is determined by A and B. By 

assumption ErA' Er B are aperiodic , so by t he Marker Lemma fix complet e sections 

A = Ao ;:2 Al ;:2 A2 ;:2 ... for ErA and B = Bo ;:2 B I ;:2 B 2 ;:2 . . . for E r B such that 

nk Ak = nk Bk = 0. Also, for each (x, y) E E let 

l( x, y) = the least n E N such that gn . X = y. 

(Not ice that l(x, y) = l(y ,x) .) Call1 (x,y) t he label of t he pair (x, y). 
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Claim 2: There is a decreasing sequence of complete sections A = A~ ;;2 A~ ;;2 A~ ;;2 

... for ErA with nk A~ = 0 and the following additional property: 

For each n and each x E A \A~, there is a sequence x = Xo, Xl, ... ,X2m E A~ such 

that m :s; n 2 , and for each j, 1 :s; j :s; 2m, 

i) l(Xj- l, Xj) :s; n 2, 

ii) Xj E A if j is even, 

iii) Xj E B if j is odd. 

Similarly for E r B· 

Proof of Claim 2: Let A~ = A and for n 2: 1 let 

A~ = An U U {X E Ak \Ak+l I there is no sequence X = XO, Xl, ... X2m E Ak+l 
k<n 

for which m :s; n, and which satisfies (i), (ii) , 

and (iii) above.} 

Clearly A = A~ ;;2 A~ ;;2 A~ ;;2 ... is a sequence of markers for ErA. To see t hat 

nk A~ = 0, fix X E A and k with X E Ak \ Ak+l . Then find n > k sufficiently large 

that there is a sequence X = XO,Xl,X2 with Xl E B , X2 E A k+l , and l(Xj_l,Xj) :s; n2 

for j = 1,2 . Clearly X rf. A~. F inally, to verify the main property of Claim 2, let 

X E A\A~, and let k be such that X E Ak \Ak+l. Then k < n so, as x rf. A~ , there must 

be some sequence x = Xo, Xl, X2,··· ,X21 = X' E A k+l with l :s; n, l(Xj_l, Xj) :s; n 2 

for 1 :s; j :s; 2l, Xj E A for j even, and Xj E B for j odd. If x' E A~ we are done. 

Otherwise we repeat the process with x'. After at most n many steps we obtain a 

sequence X = XO,Xl,X2,··· ,X2m with m:S; n 2, X2m E A~, Xj E A for j even, X E B 

for j odd, and l(Xj_l, Xj) :s; n2 for 1 :s; j :s; 2m. 

D (Claim 2) 

For each n E N and each x E A \A~, fix a sequence x 
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guaranteed by Claim 2, and define the Borel function p~ : A -+ A~ by 

A { x2m' Pn = 
X, 

if xEA\A~ 

if x E A~. 

In a similar manner, define p~ : B -+ B~ for each n E N. Finally, define a bipartite 

graph G on A and B as follows: for each x E A , y E B, let 

(x ,y) E G ¢:> xEy and 3n E N,x' E A,y' E B 

such that p~(x') = x,p~(y') = y, and 

n 2 < l (x' , y') :s: (n + 1) 2 . 

Claim 3 : G is locally fini te, and the connected components of G are exactly the 

equivalence classes of E. 

Proof of Claim 3 : To check that G is locally finite, fix x E A (the argument for 

y E B being analogous), and let n be such that x E A~ \A~+l . If (x,y) E G (so 

Y E B), there is m :s: n and x' E A , y' E B , such that p:;;Jx') = x, p;;(y') = y, and 

m2 < l(x', y') :s: (m + 1)2. So there is a sequence x = xo, Xl,··· ,X2k+l = y of length 

at most 4n2 + 1 where l(xj, Xj+l ) :s: (n + 1)2 for each j :s: 2k . Since there are only 

fini tely many such sequences, there are only finitely many such y . 

For connectedness, it is enough to find a G-path between each x E A and y E B 

with xEy. We proceed by induction on l(x, y). If l(x, y) = 1, then (x, y) E G (in the 

notat ion used in the definition of G, this is witnessed by n = 0, x ' = x, and y' = y) . 

Now suppose l(x, y) 2: 2, and let n E N+ be such that n 2 < l(x , y) :S (n + 1)2 . 

If p~(x) = x', p~(y) = y' , then there are sequences x = XO,XI,··· ,X2l = x' and 

y = Yo , YI, .. . ,Y2m = y' with 0 :s: l , m :s: n2 as guaranteed by Claim 2. By definition, 

(x',y' ) E G, and by construction l(.'Ej - I ,Xj) ~ n 2 < l(x ,y) for each j :s: 2l; likewise 

I(Yk - l, Yk) :s: n 2 < l(x, y) for each k :s: 2m. So by induction hypothesis there is a 

G-path between each Xj - I, Xj and each Yk - l, Yk , and we are done . 

D (Claim 3) 
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The existence of the graph G allows us to define R as needed ; for each x E A, t here 

is at least one, but only finitely many, y E B for which (x , y) E G. Hence there is 

a finite-to-l Borel function f : A ---+ B such t hat for all x E A , (x, f(x)) E G. Let 

B ' = B\ ran(f) , and similarly fix a Borel function g : B' ---+ A such t h at (g (y) , y) E G 

for all y E B' . Now define R by: 

x Ry {::} x and yare in the same connected component 

of the graph G' which is generated by f and g . 

It is easily checked that R is finite. Because G' is bipartite over A and B , and each 

connected component contains at least 2 elements, RDF, and R V F = E. 

i>2. 

Define t he sequence X l, X 2 ,' .. exactly as in the previous case . As before, if x, y E 

X \ U:=l X n , t hen xEy =} x Fy , so if 

00 

A = {x E X I [X ]E \ U Xn ::/= 0} , 
n=l 

then C = {x E A I [X]F ~ U:=l Xn} is a set which contains exactly one F-class from 

each E -class in A . 

Claim I' : On the E-invariant set A , t he t heorem is t rue of E . 

Proof of Claim I': Because C contains exactly one F-class from each E-class in A, 

[E I A\C : F I A\cl = i- I . By induction hypothesis t here is a finite equivalence relation 

S' on A\C such t hat S'DFfA\c and S' V FfA\C = EfA\C' Let S = S ' EEl 6 c be the 

equivalence relation on A obtained by extending S' in t he trivial way to C, and let QO 

be t he standard Borel space whose elements are t he equivalence classes of S. Define 

equivalence relations E* and F* on QO by: 

[x ]sE*[y]s {::} [[x]s] E = [ [y]s] E 

[x]sF*[y] s {::} [[X]S] F = [[y]S]F 
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(so [xJsE*[yJs if and only if xEy, and [xlsF*[yls if and only if [xls and [Yls meet 

the same F-classes). [E* : F*l = 2, so by induction hypothesis there exis ts a finite 

equivalence relation R* on QO such that R*DF* and R* V F* = E*. Now define the 

Borel equivalence relation R on E by 

x Ry <=> [xlsR*[Yls 

Then R is as needed: it's finite because each of Sand R are; also R V F <:;;: E. To see 

t hat both RDF and R V F = E, let (x,y) E E be given; we 'll show that t here exists 

u E X for which xRuFy. 

Since E* is generated by t he commuting equivalence relations R* and F* , there exists 

z E X such that 

[x lsR* [z ls F* [y ls. 

Hence x R z' for all z' E [zls. Since [zlsF*[yls, either both z and yare in C, in which 

case xR zFy , or both z and yare in A\C. In this second case, because SIA\cDFIA\C, 

there exists z' E X such that zSz'Fy . But then xRz'Fy. 

D (Claim I ') 

By Claim 1' , without loss of generali ty we may assume that Un Xn = X. Let Rl be 

t he finite Borel equivalence relation defined on X by 

xRly <=> :3n (x, y E Xn and gn . X = y). 

Let pl be the standard Borel space whose elements are the equivalence classes of R l, 

and define the Borel equiva lence relations El and Fl by 

Just as we were able to obtain a 'pairing' between E-equi valent , non-F-equivalent 
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elements of X (gi ven by R1) , we now construct such a pairing of the elements of p I 

with respect to E1 and F1: let G1 be a countable group and G1 x p I -t p I a Borel 

action such that the involutions {g;; In 2: I} of G1 generate E1. Exactly as we defined 

the sequence Xl , X 2 , ° 0 0 , define 

n n 

k = l k = l 

Now suppose that U~=l P;; =I- pI Then 'l/p, q E pI , pE1q =} pF1q, so on the Borel 

set 

A l = {p E p I I lP]EI \ U P~ =I- 0}, 
n = l 

the Borel set C1 = {p E p I I lP] Fl \ U~=1 P;; =I- 0} contains exactly one F1-class from 

each E1-class . Now let 

A 1 = {x E X I [X]RI E AI} 

C1 = {x E X I [X]RI E C1} 

Then C1 is an F-invariant set which contains exactly two F-classes from each E-class 

in AI' Just as in the proof of Claim I' , we can use the induction hypothesis to find 

a finite equivalence relation R on A , such that RDF r AI' and R V F r Al = E r AI: 

Since [ErAI \GI : FrAI\GI] < i and [ErGI : FrGI] < i , there exist finite equivalence 

relations S1 on A 1 \C1 and S2 on C1 such that Sl commutes with F r AI \GI' and S1 V 

FrAI \GI = ErAI \GI' and similarly for S2, FrGI , ErGI ' Let S = Sl E9 S2 , and let Q1 be 

the standard Borel space whose elements are the equivalence classes of S. As before, 

define the 'quotient ' equivalence relations E*, F* by 

[x]sE*[y]s ¢:? [[x]s] E = [[yls] E 

[x]sF*[y]s ¢:? [[x]s] F = [[y]s] F O 
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[E* : F*] = 2 < i, so there is a finite equivalence relation R* on Q1 such t hat R* and 

F* commute, and their join is E* . Now define the equivalence relation Ron A1 by 

x Ry ~ [x]sR*[y]s. 

Then R commutes with FrAl' and their join is ErAl; the proof of this is entirely 

analogous to the argument given in Claim I' . Hence, without loss of generality, we 

may assume that U~= l p~ = pl. 

Now define R2 on X by 

Each R2 class contains four elements and meets at least three distinct F-cIasses. If 

R2 fJF, then iterate the above process, obtaining a n equivalence relation R3 such 

that each R3-class contains eight elements and meets at least four distinct F-cIasses. 

After at most i-I many steps, a fini te equivalence relation R is produced such that 

ROF and R V F = E. o 

From Proposition 2 .2.8 it appears that, at least under certain circumstances, if ROS 

t hen R V S is no more complicated t han R or S. This should be contrasted with 

the general case, where no commutativity is assumed . For example, it is known that 

any hyperfinite equivalence relation can b e described as R V S, where Rand S are 

finite Borel equivalence relations and each R-class and each S-cIass h ave size at most 

2 (see [8], 1.21) . We next investigate the case in which ROS, and each of Rand S are 

countable, Borel, and aperiodic. As noted in Theorem 2 .2 .7, the 'simplest' subcase is 

when Rand S are smooth . 

Notation: Given a Borel space Y , let J(Y) denote t he trivial Borel equivalence relation 

which has only one equivalence class , namely Y x Y. 

P roposition 2.2.11. If E is any countable Borel equivalence relation on a standard 

Borel space X , then there exist smooth aperiodic equivalence relations Rand S on 
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X x N such that ROS and R V S = E x J (N) . 

Proof. Using Theorem 2.2.3, fix a countable group G and an action G x X -7 X 

which generates E. Without loss of generality we may assume that G is infinite; let 

{gn : n E N} be an enumeration of its elements. Define equivalence relations Rand 

S on X x N by 

(x, m)R(y, n) <=> gm . X = gn . Y 

(x, m)S(y, n) <=> x = y 

Clearly each of Rand S are smooth , and each is contained in E x J(N). To see that 

Ex J(N) ~ R V S, let (x, m) and (y, n) be such that (x, m)E x J(N)(y, n), and let k 

be such t hat gk . x = y. Then 

(x, m)R(gk . x, l)S(gk . x, n) = (y, n) 

where l is chosen so that gl = gm . g-;;l This a lso shows that ROS, by Proposition 

2.1.2(ii) . o 

We will provide a context for Proposition 2.2.11 in the next section. 

2.3 Compressible Equivalence Relations . Nadkarni's 

Theorem 

We begin with some terminology. 

Notation: If E is a countable Borel equi valence relation on a Borel space X, let [[Ell 

denote the collection of all Borel bijections f : A -7 B, where A and B are Borel 

subsets of X and \;fx E A, f(x)Ex. 

Definition 2.3.1. A complete section oj a Borel equivalence relation E on X zs a 

Borel subset A ~ X which meets every E -class. 
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Definition 2.3.2. A countable Borel equivalence relation E on a standard Borel 

space X is compressible if there exists f E [[Ell such that f : X ---t A {i. e. , the 

domain of f is all of X} and X \ A is a complete section for E . 

So E is compressible if there is an injective Borel map f : X ---t X which m aps every 

E-class into a proper subset of itself. Clearly E can be compressible only if it is 

aperiodic. 

Definition 2.3.3. Let E be a countable Borel equivalence relation on a standard 

Borel space X, and let f-L be a O" -finit e Borel m easure on X. f-L is an invarianL measure 

for E if for all f E [[Ell, f : A ---t B , we have f-L(A) = f-L(B). 

That is, f-L is invariant for E if every Borel bijection which preser ves E also preserves 

f-L. 

Definition 2.3.4. Let E and F be countable Borel equivalence relations on the stan

dard Borel spaces X and Y , respectively. E and F are Borel isomorphi c, written 

E ~B F , if there exists a Borel bijection f : X ---t Y such that f or all x, y E X , 

x Ey ~ f( x )Ff(y). 

Proposition 2.3.5. Th e following are equivalent, for E a countable Bard equzva

lence relation on a standard Borel space X. 

i) E is compressible. 

ii) E ~B E x J(N). 

iii) There is a smooth aperiodic equivalence relation F ~ E. 

For a proof, see [2], 2.5. 

There is also the following characteriza t ion of compressible equi valence rela tions , due 

to M .G . Nadkarni [14], which we state here without proof. 

Theorem 2.3.6. {Nadkami}: A countable Borel equivalen ce relation E is compress

ible if and only if it has no invariant Borel probability m easure. 
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Via the characteristics given in Proposition 2.3.5 , the following is an immediate corol

lary of Propostion 2 .2 .11: 

Corollary 2.3.7. A countable Borel equivalence relation E on a standard Bard space 

X is compressible if and only if it is aperiodic and there exist countable smooth equiv

alence relations Rand S on X such that ROS and E = R V S. 

Proof. By Proposition 2.3.5 , if E is compressible then E ~B E x J (N), and the 

assertion holds for E x J(N) by Proposition 2.2.11. Now suppose E is ap eriodic and 

E = R V S, where ROS and each of Rand S are countable and smooth. Let 

X' = {x E X I [xl E contains infinitely many R -classes }. 

SiX' must be aperiodic, by Proposition 2.1.2(iii), and EIX\ X1 is smooth, smce on 

X\X', E has finite index over R. Thus E' = E I X\ X' EB Six' is a s moot h aperiodic 

equivalence relation contained in E, so by Proposition 2.1.2(iii) E is compressible. 0 

Compressible equivalence relations are cofinal in the partial order of countable Borel 

equivalence relations by '5:B , since for any countable Borel equiva lence re lation E, 

E '5:B E x J(N) and E x J(N) is compressible. Hence Corollary 2.3.7 shows that, 

in some sense, the join of commuting countable smooth equi valence relations can 

be arbitrarily complex. Another way to view t his is that compressible equivalence 

relations have a complete characterization in terms of commuting smooth equi valence 

relations. 

We now investigate the case in which E is countable and not compressible , i.e., 

has an invariant probability measure. Such E cannot contain a n aperiodi c smooth 

subrelation. We instead ask when E can b e written as the join of two commuting 

non-smooth hyperfinite equivalence relations. 
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2.4 Costs 

The notion of the cost of an equivalence relation was introduced by C. Levitt in [12], 

and developed by D.Caboriau in [5] . In this section X represents a standard Borel 

space and p, a Borel probability measure on X which has no point- masses. 

Notation: Let PAut(X, p,) denote the collection of all partial Borel bijections f : A ~ 

B , where A and B are Borel subsets of X , which preserve p, in the sense that for all 

U ~ A Borel, p,(U) = p,U[U]) . 

D efinit ion 2.4.1. A graphing on the m easur'e space (X , p,) is any countable subset 

of PAut(X, p,). If <I> = {¢i : Ai ~ B i liE I ~ N} is any graphing, its cost (with 

respect to p,) is defined to be 

R emark : Each graphing <I> generates a countable Borel equivalence relation E;p for 

which p, is invariant , namely 

x = y or 

:In E N :lk1 , . . . ,kn E N :lel, . .. ,en E {-I, I} such that 

x E dom(¢~~ 0··· 0 ¢~~ ) and ¢~~ 0' " 0 ¢~~ (x) = y. 

Conversely, by Theorem 2 .2 .3 , a ny countable Borel equivalence relation E for which 

p, is invariant is generated by some graphing <I>. Thus the following definit ion makes 

sense: 

Definition 2.4 .2. If E is a countable Borel equivalence relation on X for which p, is 

an invariant m easure, then the cost of E (with respect to p,) is 

C J.L (E) = inf (C J.L (<I» : <I> is a graphing which generates E). 
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Definition 2.4.3. A graphing <I> on X is a p,-treeing if for every reduced word w = 

¢~k . . . ¢~l with ¢i E <I> and ei E {-I, I}, the set 

is p,-null. 

Definition 2.4.4. A countable Borel equivalence relation E on X is p,-treeable if it 

is generated by a p,-treeing. It is p,-hyperfinite if there exists a p, -conull set X' S;;; X 

such that E I x' is hyperfinite. 

One of the most important theorems in the subject of costs is the following : 

Theorem 2.4.5. (Gaboriau [5}, Ill , IV.l ) If <I> is a graphing of E and CfL (<I» 

CfL(E) < 00, then <I> is a p,-treeing. Conversely, if E is p,-treeable and <I> is any 

p,-treeing of E, then CfL(<I» = CfL(E) . 

Thus, to determine the cost of a p,-treeable equivalence relation it suffices to find a 

single p,- treeing. 

Examples: 

1) If E is aperiodic and hyperfini te, then C fL (E) = 1. It is generated by a p,- treeing 

consisting of a single Borel automorphism f : X -7 X. 

2) If E is finite, with each class of cardinali ty n, then CfL(E) = 1 - ~. Again, E is 

generated by a p,-treeing consisting of a single mapping ¢ E PAut(X, p,) . The 

domain of ¢ is X\T, where T is a Borel tranversal for E. 

3) Let Fn = <al, ... ,an> denote the free group on n generators. If Fn : X -7 X is 

a free Borel action of Fn on X, then the corresponding equivalenc relation EFn 

has cost n. By abuse of notation, letting ai E Fn also denote the automorphism 

on (X, p,) corresponding to it via the above action, we see t h at <I> = {ai : X -7 

X I i = 1· .. n} is a treeing for E. This shows that if n =J m , then t he groups 

Fn and Fm cannot generate the same equivalence relation via free actions. 
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Definition 2.4.6. Let E and F be countable Borel equivalence r'elations on the stan

dard Borel probability spaces (X, f-L) and (Y, v), respectively. E and F are orbit 

equivalent if there are Borel conull sets X' ~ X and Y' ~ Y and a Borel bi

jection f : X' -+ Y' such that f f-L and v are equivalent and for all x, y E X' , 

xEy ¢:} f( x)Ff (y). 

We now list , without proof, a few more facts about cost due to Levitt and Gaboriau. 

For these we assume E is a countable Borel equivalence relation on a standard Borel 

probability space (X , f-L) , and that f-L is invariant for E. 

Theorem 2.4.7. (Levitt [12), 2) If E is aperiodic, then C/-, (E) > 1 and E zs f-L

hyperfinite if and only if it is f-L -treeable and C/-, (E) = 1. 

Theorem 2.4.8. (Gaboriau [S), II. 6) If U ~ X is a f-L-a . e. complet e section for E 

(i . e., f-L([U]E) = 1), then the cost of the equivalence relation Efu on U with respect to 

the measure ," = .l::1!L is 
r' /-, (U) 

C (Er ) = C/-, (E) - 1 + f-L(U) 
/-" u f-L(U)' 

Theorem 2.4.9. (Gaboriau [S), !II.S) Suppose F is a hyperfinite equivalence relation 

on X and F ~ E (and hence f-L is F -invariant). Let <I> be a f-L-treeing for F . Then for 

all E > 0 there exists a graphing WE for E such that <I> ~ WE and C/-,(WE ) :S C/-, (E) + E. 

Corollary 2.4.10. (Gaboriau [5), IV. 15, IV. S6) Suppos e that El and E2 are count

able Borel equivalence relations on X and f-L is Ei-invariant, i = 1,2 . If F ~ El n E2 

is hyperfinite, then 

In particular, if E l n E2 is aperiodic, then 



28 

Proof. By Theorem 2.4.9 , given E > 0 and a JL-treeing <1? of F , there exists a graphing 

Wi of Ei, i = 1,2, which contains <1? and such that CJ.L(Wi) :s; CJ.L(Ei) +~ . Then 

WI V (W2\<1?) is a graphing for El V E 2 , so 

CJ.L(EI V E2) :s; CJ.L(WI V (W2\<1?)) 

:s; CJ.L(Wl) + CJ.L(W2) - CJ.L(<1?) 

:s; CJ.L(E l ) + CJ.L(E2) - CJ.L(F) + E. 

The second assertion follows from the first, and the fact that every aperiodic count

able Borel equivalence relation contains an aperiodic hyperfini te one over the same 

underlying space (see [8], 3.25) . o 

Corollary 2.4.11. If E l , E2,'" ,Ei,' .. are countable Borel equivalence relations 

on X, JL is Ei invariant for each i, and n i Ei is aperiodic, then 

Proof. Let F <:;:;; n i Ei be an aperiodic hyperfinite equivalence relation on X and <1? a 

treeing for F. Given E > 0, for each i let Wi be a graphing of Ei with <1? <:;:;; Wi and 

CJ.L(wd :s; CJ.L(E) + f;. <1? V (VJ'lIi\ <1?)) is a graphing of E , so 

CJ.L(E) :s; CJ.L(<1?) + L CJ.L(Wi\<1?) 

:s; 1 + L (CJ.L(Ei) - 1) + E. 

o 

We now return to the question of which aperiodic countable Borel equivalence rela

tions with an invariant probability measure can be written as the join of two com

muting hyperfinite ones . By Theorem 2.4.7 the cost of such an equivalence relation 

is between 1 and 2. In fact , commutativity implies that the cost is exactly 1. (Of 

course the join of two non-commuting hyperfinite equivalence relations can have cost 



29 

exactly 2.) 

Theorem 2.4.12. Suppose that E is an aperiodic countable Borel equivalence rela

tion on a standard Borel probability space (X, p,) and that p, is an invariant measure 

for E . If E = R V B, where Rand Bare hyperjinite and ROB, then CJ.t(E) = l. In 

particular, if E is p,-treeable, it is actually p,-hyperjinite. 

We would like to thank D . Gaboriau for a useful suggestion which helped to complete 

the proof of Theorem 2.4.12. 

2.5 Proof of Theorem 2.4.12 

Definition 2.5.1. Let E be a Borel equivalence relation on a standard Borel space 

X. A set A ~ X is E-invariant if Vx, y E X(x E A and xEy) ::::;. (y E E) . Given any 

B ~ X, let [B]E = {y E X I :3x E B(xEy)}. Thus [B]E is the smallest E-invariant 

set containing B. 

Definition 2.5.2. Let E be a Borel equivalence relation on a standard Bord proba

bility space (X, p,). p, is E-ergodic if each E-invariant subset of X is either p,-null or 

p,-conull. 

We will first show that it suffices to prove the theorem in the case where p, is E

ergodic. For this we will use the Uniform Ergodic Decomposition Theorem, due 

independently to Farrell [3] and Varadarajan [16]' which relates E-invariant Borel 

probability measures on X to those which are additionally E-ergodic . 

Notation: Given a countable Borel equivalence relation E on a standard Borel space 

X, let I E be the set of all E-invariant Borel probability measures on X, and let EIE 

be the set of all measures in I E which are additionally E-ergodic. 

Theorem 2.5.3. (Farrell, Varadarajan) Let E be a countable Borel equivalence re

lation on a standard Borel space X , and suppose that I E # 0. Then EIE # 0, and 

there is a Borel surjection e : X ---+ EIE such that 



i) \Ix, y E X, xEy ==? e(x) = e(y) 

ii) \Iv E EIE , v(e- 1({v})) = 1 
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iii) \If-L E I E, f-L = Ixe(x)df-L(x). That is, for each bounded Borel fun ction f : X--t 

JR, Ix fdf-L = Ix (Jx fde(x)) df-L(x). 

Notation: For e and v as in the above theorem, let Xv = e- 1 
({ v} ). 

Theorem 2.5.4. Let E be a countable Borel equivalence relation on a standard Borel 

space X , and f-L E I E. Let f-L = Ix e(x)df-L( x ) be the ergodic decomposition of f-L with 

respect to E. Then 

CJ1.(E ) = l Ce(x) (E)df-L(x). 

Proof. First note that the analogous assertion is true for graphings , I. e., CJ1. (<I» = 

Ix Ce(x) (<I»df-L( x ) for any graphing <I> of E. This follows from the fact that, for any 

v E IE, Cv(<I» = ~ Ix vq,(x)dv, where vq,(x) is the valence of x in the combinatorial 

graph given by <I>. From this it fo llows easily that CJ1.(E) ~ Ix Ce(x) (E)df-L( x): given 

E > 0, if <I> is a graphing of E such that CJ1.(E) ~ CJ1.(<I» - E, then 

For the reverse inequality: let E ~ 0 be given. For each v E EIE , there is a graphing 

<I>v = {1>i : Ai --t By liE N} defined on Xv which generates Efxv and such that 

Cv(E) ~ Cv(<I>V) - E. We seek to choose the <I>v ,s in such a way that each (Pi, defined 

by 

is f-L-measurable. We begin with a few observations on graphings and cost calculations: 

First note that if <I> = {1> : A --t Bi liE N} is any graphing for E and <I>I is a graphing 

of the form <I> I = {1>/ : A~ --t B~ liE N}, where, for all i EN, v(A,0,AD = 0 and 

(A f A;nA' = ¢~ f A n A', then there exists an E-invariant v-conull set XI such t hat for all , ., 

(x , y) E XI X XI and all i E N, y = ¢i (X) ~ y = 1>~ (x) . (Hence Cv(<I» = Cv(<I>/) .) Call 

such a pair <I>, <I>I v-equivalent. Then when making cost calculations with respect to a 

measure v , we can always replace a graphing <I> by one to which it is v-equivalent . 
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Secondly, fix any countable group G = {gj IJ E N} and a Borel group action G x X --+ 

X which generates E, and view the elements of G as Borel bijections on X via this 

action. If <J? = { <Pi : Ai --+ Bi l iE N} is any graphing for E, then fo r each i and 

each x E Ai t here is j such that <Pi(X) = gj . x; thus Ai may b e par t itioned into 

countably many Borel sets A?, .. . , Ai, ... so t hat <P rA j = gj rA j for each j E N . , , 

Doing t his for each i, and then letting Aj = Ui Ai, it 's clear that <J?* = {g j rAj I j E N} 

and <J? have the same edgeset (i .e., for each pair (x, y) , :3i <Pi (X) = y if and only if 

:3j x E Aj and gj . x = y) and for any 1/ E I E CII (<J?*) :::; CII(<J?). When calculating 

the cost of E , we may take the infimum simply over the costs of a ll such graphings 

<J? = {gj r A . I j E N} which generate E. Note t hat any such graph is parametrized by 
J 

the sequence of Borel sets (Aj)jEN . 

Finally, fix a Polish topology T on X whose Borel o--algebra is S; let <J? = {gj r A. I) E N} 
J 

be a graphing which generates E. For each 1/ E I E we can replace <J? by t he 1/

equivalent graphing <J?I = {gj re i j EN}, where Cj = Uk Ci is the increasing union 
J 

of compact sets, cj ~ Aj , and I/(Aj \Cj ) = O. Thus when determining CII (E) , we 

only need to consider the graphings of E which are parametrized by elements of the 

Borel space 

K(X) NXN = {( Cnj,kEN I Vj, k Ci is a compact subset of X}. 

For ease of notation , we will denote a general element of K(X) NX N by 0, ra ther t h an 

(Ck)j,kEN' We will continue to use the notation cj = Uk Ci· 

Now consider the function j : EIE --+ JR. given by 

j(//) = CII(E) . 

Lemma 2.5.5. For' each r E JR., the set {1/ E EIE I j(//) ;::: r} is II~ . 

Proof Using the above remarks, we have , for each r E JR. , 
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f(v) 2: r ~ For all graphings <I:> of E, Gv(<I:» 2: r 

~ For all graphings <I:>* of E which have the form 

<I:>* = {gjrAJ IJ E N,Aj E S},Gv(<I:>*) 2: r 

~ ve E K(X) NXN (If {gj r cJ I j E N}is v-equivalent to a graphing 

of E) then L v( Gj ) 2: r). 
J 

The parenthetical part of the last condi t ion can b e written as 

v~X E XVj E N:3jl,'" ,jn E N:3El,'" ,En E {-I, I} 

(x E Gjl (El ) A gjl . x E Gl2(E2) A ... A gjn- I ... gjl . X E Gjn (En) 

A 9 jn .. . 9 JI . X = 9 j . X), 

where 'V~x ' means 'for v a.e. x', and Gji (Ei ) is Gji if Ei = 1 and is gji . Gji if Ei = -1. 

This is a Borel condition on (e, v), so the full condition is II~ on v. 

D 

By Lemma 2.5.5, f is ep,-measurable, where ep, is the image measure of p, under e, i.e., 

for each Borel set V ~ EIE , ,u(V) = p,( e- 1 (V)). Hence we can find a Borel function 

f : EIE ---t lR such that 

ep,( {v E EIE I j(v) =1= f(v)}) = o. 

Now define Q ~ EIE X K(X) NxN by 

(v, e ) E Q ~ <I:>c = {gj rCJ I j EN} is v-equivalent to a 

graphing of Erxv and L v(Gj) :s; j(v) + E. 

j 

Q is Borel (which follows from the proof of Lemma 2.5.5 above), and t he projection 
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of Q onto EIE , 

{v E EIE I :3C(v, C) E Q} 

is all of EIE . Hence, by t he Jankov - Von Neumann Theorem (see [3]' §18.A) there is 

a O"(E~)-measurable function s : EIE ~ K(X) NXN which uniformizes Q, i. e., for all 

v E EIE , (v, s(v)) E Q. 

Thus, denoting s(v) by the sequence (C;(II))jEN, iffor each j we define the set Aj ~ X 

by 

x E Aj {::?:3v E EIE (x E e- l({v}) n C;(II)) 

{::? x E thejth element of the sequence s(e(x)) , 

then Aj is in O"(E~), and hence is p,-measurable. Let Aj S;;; X be a Borel set such that 

p,(Aj,0.Aj) = O. If we then let cp = {gj f A' I j EN}, we have 
J 

CJ1.(E) :::; CJ1. (cp) = l:jp,(A~) = l:j p,(Aj ) 

= i l:je(x) (Aj)dp,( x) = i l:je(x)(Kj(e(x)))dp,( x ) 

:::; i Ce(x) (E) + Edp,(x) = i Ce(x) (E)dp,(x) + E, 

which establishes the reverse inequality. o 

Definition 2.5.6. Let p, be a Borel probability measure on a standard Borel space X , 

and E a Borel equivalence relation on X. p, is E-quasi-ergodic, or quasi-ergodic for 

E, if there exists a finite partition Xl U X 2 U ... Xn of X such that for each i, Xi is 

Borel and E-invariant, p,(Xi ) > 0, and J1.(li) · p,fXi is Efxi-ergodic. 

Notation : For Y a standard Borel space, let L).y denote the Borel equivalence relation 

which is simply equality on Y. 

Notation: When there is no room for confusion, given A S;;; X and F any equivalence 
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relation on X , we will denote the equivalence relation F r A EB 6. r X\A on X , which is 

defined by x(Fr A EB 6. r X\A)Y <=? x = y or x, yEA and xFy, simply by Fr A" 

Proof of Theorem 2.4.12. This theorem is a consequence of the followin g, more general 

formula for the cost of the join of commuting countable aperiodic Borel equivalence 

relations. 

Theorem 2.5.7. Suppose that E is an aperiodic countable Borel equivalence relation 

on a Borel probability space (X, f-L), and that f-L is an invariant measure for E. If 

E = R V S, where ROS and Rand S are aperiodic, then 

Therefore if one of CJ.L(R) or CJ.L(S) equals 1, then 

Proof. If one of CJ.L(R) or CJ.L(S) is infinite , then the assertion is trivial , so suppose 

otherwise. By Lemma 2.5 .5, we may assume that f-L is E-ergodic. 

We split t he proof into two cases; this is in fact redundant, because the first case is 

covered by the second, but we include it because it permits a much stronger result. 

Case 1: f-L is not quasi-ergodic for either of Rand S (and, as stated above, CJ.L(R) , 

CJ.L(S) are each finite). Then CJ.L(R V S) = 1. 

Proof of Case 1: When we restrict our attention to invariant sets , cost is 'additive ', 

in the sense t hat if A and B are any two disjoint , R-invariant sets, then 

Since CJ.L(R) < 00 and f-L isn 't quasi-ergodic for R, one can therefore find a sequence 

{Un In E N} of R-invariant sets of positive measure with CJ.L(Rr uJ -t O. Let E > 0 be 

given, and fix an R-invariant set U for which CJ.L( Rr u) < ~. By adding an E-invariant 
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null set to U (which will have no effect on cost calculations) , we may assume that 

[UJE = X. Similarly, fix an S-invariant set V such that Cp.(S) < ~, and such that 

[Vb = X. 

We claim that Ei uuv = RI u V SI v· Clearly EI uuv :2 RI u V S I v. For the other direc

tion, let x, y E U U V be given, with xEy. If x E U and y E V, then , because ROS, 

[X}Rn [y}s =f. 0, and so there exists z such that x(RI u )Z(SI v )y. Thus x (RI u V SI v) y. 

If x, Y E U, then, because V meets each E -class, there exists z such that xEz, yEz , 

and [z]s ~ V. By commutativity, [X]R n [z]s =f. 0, [Y]R n [z] s =f. 0, so there exist Zl, Z2 

such that 

x(R I u )Zl (S i v )z2 (RI u )y. 

Thus, again, x (Rlu V Slv) y. The case in which x,y E V is entirely analogous, so 

the claim is proven, and by Theorem 2.4.8, 

Cp.(E) = Cp.(Eiuuv) - f-L(U U V) + f-L(X) 

:::; Cp.(Rlu) + Cp.(Slv) - f-L(U U V) + f-L(X) 

< 1 + E. 

General Case: If R n S is f-L-a.e. aperiodic, then we are done by Corollary 2.4.10, so 

suppose that 

A = {x I [X]Rns is finite} 

has positive f-L-measure . Because f-L(A) > 0 and f-L is R-invariant , RIA must be f-L-a .e. 

aperiodic. Hence by Proposition 2.2.10, we can fix a countable sequence B l , B 2 ," . 

of Borel sets such that A :2 Bl :2 B2 :2 ... , each Bn is complete section for R, and 

nn Bn = 0 (in particular , f-L(Bn) -----+ 0). 

For each n = 1, 2 ... , let Rn = R V S i En' We claim that for each n , Rn n S is f-L-a.e. 

aperiodic. Let 

Cn = {x I [X]RnnS is finite }. 

Clearly Cn ~ A. Also, if x E Cn, then [X]RnnS contains only finite ly m any R n S 
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classes . We'll show that for f-L-a. e . x E A , [X]Rn ns contains infini tely many R n S 

classes, implying that f-L( Cn) = 0. 

Because f-L is S -invariant , Sf Bn must b e f-L-a .e. aperiodic (on B n); hence for f-L-a .e. 

x E A, we have 

Vy E B n, x Ry ::::;. [Y] S fBn is infinite. 

Fix any such x E A for which t he above statement is true , and fix Y E B n n [X]R. 

Because [Y]SfBn ~ B ~ A , [Y]SfBn must contain infini tely many R n S classes. Let 

21 , 22 '" be a sequence of elements in [Y]SfBn such that j i= k ::::;. Zj /RZk' By 

commutativity, [Zj] R n [x]s i= 0, so fix Uj E [Zj] R n [x]s. Clearly j i= k ::::;. Uj i= Uk ' 

But for each j , Uj E [X]Rn n [x ]s = [X]Rnns , showing that x tf. Cn. Thus f-L (Cn) = 0, 

and so by Corollary 2.4 .10, for each n we have 

CJl-(E) = CJl- (R V S) :s; CJl- (R) + CJl-(S) - 1 

:s; CJl-(R) + CJl-(SfBJ + CJl- (S) - 1 

= CJl- (R) + 2CJl- (S) - 2 + f-L(Bn), 

from which we achieve the desired result . 

o 

R emark: S. Solecki has shown that a modification of the above argument yields the 

stronger result 

given the same hypotheses as in Theorem 2.5.7. 

An application of Theorem 2.5 .7 is the following. 

Theorem 2.5.8. Let E be a countable Borel equivalence relation on the Borel proba

bility space (X, f-L) , and suppose f-L is E-invariant. Suppos e also that E = Vi Ei, where 

each Ei is an aperiodic countable Borel equivalence relation, CJl- (E i ) = 1, and for each 

i , EiDEi+1 ' Then CJl-(E) = 1. 

Proof. By Theorem 2.5.7, CJl- (E i V Ei+1 ) = 1 for each i. By induction, using Corollary 



37 

2.4.10, we can therefore show that Fn = V~l Ei has cost 1 for all n . The assertion 

is clearly true for the base cases n = 1 and n = 2; for the inductive step, note that 

Fn+1 = Fn V (En V En+1), where CJ1-(Fn) = CJ1-(En V En+l) = 1, and Fn n (En V En+l) = 

En is aperiodic . 

Thus E = Un Fn is the union of an increasing sequence of cost 1 equivalence relations . 

It follows that E must also have cost 1 (see [5], IV.25). Indeed , since nn Fn = E1 is 

aperiodic, it must contain an aperiodic hyperfinite equivalence relation E' ; let cP be a 

p,-treeing for E'. By Theorem 2 .4.9, for each E > 0 and each n there exists a graphing 

\lI n,£ of Fn such that cP ~ \lI n,£ and C J1- (\lI n,£) ::; 1 + 2~' But then cP V (V n (\lI n,£ \ cp)) is 

a graphing for E and 

< 1 + E. 

D 

Corollary 2.5.9. Suppose that E and F are countable Borel equivalence relations on 

(X, p,), with p, invariant for each. Further suppose that there are aperiodic hyperfinite 

equivalence relations E' ~ E and F' ~ F, and decompositions E = Vi Ei and F = 

Vi Fi, where each Ei and Fi are finite and such that E'DFi, F'DEi for all i. Then 

CJ1-(E V F) = 1. 

Proof. By Proposition 2.2.8 , E' V Fi and F' V Ei are hyperfinite for each i. Then, as in 

the proof of Theorem 2.5.8, we can use an inductive argument and Corollary 2.4.10 to 

show that CJ1-(E'V (V~= l Fi)) = CJ1-(F'V (V~= l Ei)) = 1 for all n. Consequently, as was 

also shown in Theorem 2.5.8 , CJ1-(E' V (V:1 Fi)) = CJ1-(F' V (V: 1 Ei)) = 1. Finally, 

since E = (E' V (V: 1 Fi)) V (F' V (V: 1 Ei)) and (E'V (V: 1 Fi)) n (F' V (V: 1 Ei)) 

is aperiodic, 

00 00 

i=l i=l 
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o 

Corollary 2.5.10. (Gaboriau [5), V.i) Let E and F be aperiodic countable Borel 

equivalence relations on the Bord probability spaces (X, f-L) and (Y, v), respectively, 

such that f-L is E -invariant and v is F -invariant. Then the product equivalence relation 

Ex F on (X x Y,f-L x v) has cost 1. 

Proof. Let G and H be countable groups of Borel automorphisms for X and Y 

respectively, such that E = Ec and F = E H . By Theorem 2.2.3, we may assume 

that E and F are, respectively, generated by the involutions of G and H. Thus, if 

we let {gi liE N} be an enumeration of the involutions of G, and for all i E N , 

let Ei = E<9i> , then Ei is a finite equivalence relation where each equivalence class 

contains at most 2 elements, and E = V i Ei . Analogously define Fi = E <hi> for each 

i E N, and let E' ~ E and F' ~ F be any aperiodic hyperfinite equi valence relations. 

Ex F = (E x ~y) V (~x x F), and the decompositions E x ~y = V i (Ei X ~y) and 

~x x F = Vi(~X x Fi ) are such t hat (Ei x ~y )O(~x x F'), (E' x ~y )O(~x x Fi ) 

for all i. Thus by Corollary 2.5.9, CJ.L(E x F) = 1. 0 

As a final remark in this section, we point out that the known examples of a countable 

Borel equivalence relation E with invariant measure p" such that CJ.L(E) > 1 and 

which can b e non-trivially decomposed into the join of two commuting aperiodic Borel 

equivalence relations, are rather limited. More precisely, suppose that E = R V S, 

where Rand S commute, and each of Rand S have infinite index in E. It is possible 

that CJ.L(E ) > 1 if at least one of Rand S have infinite cost . (One such example 

is the following: let E be any equivalence relation generated by a free f-L-invariant 

Borel action a of the free group F2 ; as noted in example (3) of §4 , CJ.L(E) = 2. Now 

let j : F2 ---+ Z be any surjective homomorphism, let N = ker j , and H =< x >, 

where x is any element of F2 with j(x) = 1. Then N ~ Fe"" H ~ ;:z = F l , and 

N H = H N = F2 . Thus if R is the equivalence relation generated by the restriction 

of the action a to N, and S is the equivalence relation generated by the restriction of 

a to H, t hen CJ.L(R) = 00, CJ.L(S) = 1, ROS, and E = R V S.) However , there is no 
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known example in which each of CJ.L(R) and CJ.L(S) are finite and CJ.L(E ) > 1. Does 

such an example exist , or can Theorem 2.5 .7 be further strengthened? 

2.6 Costs of Groups 

Gaboriau has also extended the notion of cost to countable groups. We present here 

an introduction to the subject, followed by an application of Theorem 2.4.12. 

Definition 2.6.1. An action of a countable group G on a J-finite m easure space 

(X, f-L) is invariant if for every g E G and every Borel set A <;:;:; X , f-L(A) = f-L(g . 

A). Equivalently, the action is invariant if f-L is an invariant m easure for the orbit 

equivalence relation Ec. 

Definition 2.6.2. If G is a countable group, then its cost is defin ed to be 

C(G) = inf(CJ.L(Ec )) 

where the infimum is taken over all free invariant actions of G on Borel probability 

spaces (X, f-L). 

Definition 2.6.3. A countable group G has fixed price if all orbit equivalen ce rela

tions Ec which result from a free invariant action of G on a Borel probability space 

have the same cost. 

Definition 2.6.4. A countable group G is treeable if every orbit equivalence r'elation 

Ec resulting from a free invariant action of G on a Borel probability space (X, f-L) 1,S 

f-L-treeable. G is anti-treeable if no such Ec is f-L-treeable. 

Current ly all known examples are fixed priced groups which are eit her treeable or 

anti-treeable. 

The following theorems simplify certain cost calculations: 

Proposition 2.6.5. (Gaboriau [5), VI. 21) If if> is a treeing for any orbit equivalence 

relation Ec induced by a free invariant action, then C (G) = C J.L ( if> ) . H ence any 
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treeable group is fixed price. Moreover for any group G there is a free invariant 

action such that the corresponding orbit equivalence relation Ec realizes the cost of 

G, i.e., C(G) = CJ1.(Ec ). 

Proposition 2.6.6. (Gaboriau [5), VI.24) If G is a countable group and H 2S any 

fixed price infinite normal subgroup of G , then C (G) ::; C(H) . 

Definition 2.6.7. A group G is amenable if it supports a finit ely additive probability 

measure defined on all of its subsets which is invariant under the action of G on itself 

by left multiplication. 

The class of amenable groups includes all solvable groups, and excludes all groups 

which have a subgroup isomorphic to F2 (see [17]). 

Theorem 2.6.8. Let G be a group, and suppose G acts freely and invariantly on a 

Borel probabability space (X, J-L) ; if the action generates a J-L-hyperfinite equivalence 

relation, then G is amenable. Any amenable group is treeable and has fixed price 1. 

The first assertion above is essentially folklore; for a reference , see [11]. In [15] Orstein 

and Weiss showed that amenable groups are treeable, and Levi tt established the cost 

of such groups (see [12]) . 

By Proposition 2.6.5 and Theorem 2.6.8, costs yield a method of determining whether 

a group is anti-treeable ; specifically, any cost 1 non-amenable group must be anti

treeable. In turn this provides a method of determining whether an equivalence 

relation can b e treeable . 

From Corollary 2.4.10 and Theorem 2.5 .7, we have the following consequences regard

ing the costs of groups. 

Corollary 2.6.9. If Hand K are any countable fixed price subgroups of a given 

group G and H n K is infinite, then 

C «H,K »::; C(H) + C (K) -1. 
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Proof Denote the group < H, K > by G' , and let G' X X -+ X be any free action of G' 

on a Borel probability space (X, f-L). Let ECI be the corresponding orbit equivalence 

relation, and let EH (resp. EK) be the equivalence relation obtained by restricting 

the action to H :s; G' (resp. K :s; G'). Since G' = < H, K >, EC I = EH V E K; since 

H n K is infinite, EHnK = EH n EK is aperiodic. Thus by Theorem 2.5.7, 

C( < H, K » :s; C/1(Ec/) :s; C/1(EH) + C/1(EK) - 1 

= C(H) + C(K) - 1 

since Hand K are fixed price. o 

Corollary 2.6.10. If Hand K are countably infinite fixed price subgroups of a given 

group G such that H K = K H , then 

C«H,K»:S; C(H) + 2C(K) - 2. 

Therefore, if one of Hand K has cost 1, then 

C«H,K»:S; max (C(H),C(K)) . 

In particular, if G = H K with H, K countably infinite subgroups of fixed price 1, then 

G also has fixed price 1. 

Proof. Using the same notation as in the proof of Corollary 2.6.9 , we have EC I 

EH V EK and, because HK = KH , EHOEK. Thus by Corollary??, 

C( < H , K » :s; C/1 (Ec/) :s; C/1(EH) + 2C/1(EK) - 2 

= C(H) + 2C(K) - 2 

since Hand K are fixed price. The second assertion follows similarly. o 

Definition 2.6.11. If R is any commutative ring with unity, then SLn(R), the spe

cial linear group over R of rank n, is the group of all n x n matrices with entries 
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in R which have determinant 1. (Here both the determinant function and matrix 

multiplication are defined in terms of the operations on R.) 

The next result generalizes example VI.26(b) of [5]; a proof can also be given using 

criterion VI.24(3) of the same work. 

Theorem 2.6.12. If R is a countably infinite commutative ring and n 2: 3, then 

C(SLn(R)) = 1. 

Hence if SLn(R) is non-amenable (e .g. , in the case where R has characteristic OJ, it 

is anti-treeable. 

Proof. Let En(R) be the subgroup of SLn(R) generated by the elementary transvec-

tions, i .e., 

where eij(r) denotes the element of SLn(R) with l 's along the diagonal , r in the 

ijth entry, and O's elsewhere. For n 2: 3, En(R) ::::! SLn(R) (see [6], 1.2.13) , so by 

Proposition 2.6.6 it will suffice to show that C(En (R)) = 1. For each pair i, j :::; n, i i:
j, let 

~j is infinite abelian, so it has cost 1. Now put the Tij ' S into a sequence so that 

for each (i,j) and (i',j'), if Tij and ~Ijl are adjacent in the sequence, then either 

i = i' or j = j'. If Tij and ~Ijl are an adjacent pair, then the commutator group 

[~j, Til)' ] = {I R } , so in particular T i jTi ljl = TiljlTij . For notational simplicity, denote 

these groups by their position in the sequence, rather than the matrix entry where 

their elements differ from In. Then we have a sequence of subgroups 

such that En(R) = < Ti Ii:::; n 2 
- n > , C(~) = 1, and Ti~+l = T i +1 T i for all i :::; 

n 2 
- n-l. By Theorem 2 .5 .8, C( < T i , Ti+l » = 1 for all i :::; n 2 - n-1. It then follows 
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by induction that C( <Ti Ii:::; k » = 1 for all k :::; n 2 - n: k = 1 is trivial and k = 2 is 

above. For the inductive step, note that <Tili :::; k+l > = <Tili :::; k> V <Tk, Tk+l >. 

By induction hypothesis and Theorem 2.5.8, C( <Ti Ii:::; k » = C( <Tk' Tk+l » = I , 

and <Ti Ii:::; k> n < Tk, Tk+1 > = Tk is infinite, so by Corollary 2.6. 9 , < Ti Ii:::; k + 1 > 

has cost 1 also . Hence C(En(R)) = C(SLn(R)) = 1. 0 

For n = 2 the above argument fails; in fact the analogous assertion for n = 2 is false: 

Gaboriau has shown that C(SL2(71)) > 1. Nevertheless, Corollary 2.6.9 can be used 

to give a partial result in the same direction. 

Proposition 2.6.13. If R is a countable commutative rzng with unity which has 

infinitely many units, then C(E2(R)) = 1. 

Proof. E2 (R) is generated by the subgroups U and L, where 

u ~ ( (~ :,) IUER',rER) 

L ~ ( (: ~- 1 ) I U E R', r E R) 
Clearly E2 (R) :::;< U, L >; that each of U and L are subgroups of E 2 (R) can be seen 

by the calculations 

(~ :-1 ) 
( 1 0). (1 -u ). (1 1). ( 1 0). (1 1). ( 

u - 1 1 0 1 0 1 -1 1 0 1 
1 u - 1(r - 1) 

o 1 
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Each of U and L have cost 1 (they are solvable); since UnL is infinite , C(E2(R)) = I , 

by Corollary 2.6.9. o 

In the case n = 2, it 's possible that En(R) may not be normal in SLn(R) (see [6]' 

p. 27). Also in [6] (4.3.9), several criteria are given which guarantee that SL2 (R) = 

E2(R) . These include the cases in which R is a Euclidean domain , R is a commutative 

semi-local ring, and all rings of integers of real quadratic field extensions Q( Vd), 

d E Z + . So the following generalizes example VI. 29 from [5]. 

Corollary 2.6.14. Let R be a commutative ring with unity which has infinitely many 

units. If, additionally, R satisfies one oJ the conditions listed above, then C (SL 2 (R)) = 

1. Hence iJ SL2 (R) is non-amenable (e.g., iJ the characteristic oj R is 0), it is anti

treeable. 

This includes the case in which R = Z [~] = {fz I k, l E Z} , the ring of dyadic integers 

(it is a Euclidean domain), and so gives a new proof that SL2(Z[~]) is anti-treeable, 

which, aside from the cost machinery, uses entirely elementary methods. For another 

proof, see [10], §3. 

We conclude this section with a proof that the general linear group GLn(K) has cost 

I, for any n ~ 1 and any countably infinite field K. Although this result follows 

from Theorem 2.6.12 and Corollary 2.6.14 (and also by a result of Gaboriau), the 

proof to follow illustrates a different technique. It also, in the case n = 2, yields an 

example of an equivalence relation which can be written as the join of two commuting 

hyperfinite equivalence relations, but is not itself hyperfinite. We would like to thank 

M. Aschbacher for the conversations which led to Proposition 2.6.15. 
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Question: Suppose E is a countable Borel equivalence relation on t he Borel proba

bility space (X, p,), p, is E-invariant , and CJ1-(E) = 1. Can E b e written as the join of 

two commuting p,-hyperfinite equivalence relations? 

Proposition 2.6.15. If K is any countable infinite field, then GLn(K) , the group of 

all invertible n x n matrices with entries in K, has cost 1. 

Proof. Let L be any nth degree field extension over K ; since the multiplicative group 

of units L* acts on the n-dimensional K-vector space (L, + ) by left multiplica tion, we 

can view L* as a subgroup of GLn(K) . Fix a basis (el,· .. , en) for (L , + ). Because 

L* acts transit ively on (L\ {O}, +) , we have GLn(K) = L* H , where 

H = the stabilizer of el 

o 

o 

Since each of L* and (Kn- l, + ) are infini te abelian groups, they are fixed price with 

cost 1; thus by using Corollary 2.6 .10 twice, we get C(GLn(K)) ~ C (GLn- l(K)). By 

induction , C(GLn(K)) = C(GLl(K)) = C(K*) = 1 for all n . D 

As mentioned above, in t he case n = 2 we have GL2(K) = L* ((K ,+ ) Xl K*). Each 

of L* and (K, +) Xl K* are amenable , but if K has characteristic 0 , then GL2(K) is 

not amenable . Thus if GL2 (K) acts freely and invariantly on t he Borel probability 

space (X, p,), then the result ing orbit equi valence relation E is not p,-hyperfinite (by 

Theorem 2.6.8), but E = Eu V E(K,+ )>4 K " where E u D E (K,+ )>4 K ' and each of these 

sub-equivalence relations is p,-hyperfinite (again by Theorem 2.6 .8). 



46 

Bibliography 

[1] P. Dubreil, M.L. Dubreil-Jacotin, Theone algebrique des relations d 'equivalence, 

J . Math. 18 (1939) , 63-95 . 

[2] R. Dougherty, S. Jackson, A.S. Kechris, The structure of hyperfinite Borel equiv

alence relations, Trans. Amer. Math. Soc. 341 (1994), 193-225. 

[3J R.H. Farrell, Representations of invariant measures, Ill. J. Math. 6 (1962), 447-

467. 

[4] J. Feldman, C. Moore, Ergodic equivalence relations, cohomology, and Von Neu

mann algebras, I, Trans . Amer. Math. Soc. 234 (1977) , 289-324. 

[5] D. Gaboriau, Cout des relations d 'equivalence et des groupes, Invent. Math . 139 

(2000), 41-98. 

[6J A .J. Hahn, O .T . O'Meara, The classical groups of K-theory, Springer-Verlag 

(1989) . 

[7J L.A . Harrington, A.S. Kechris , A. Louveau, A Glimm-Effros dichotomy for Borel 

equivalence relations, J. Amer. Math. Soc . 3 (1990) , 903-927. 

[8J S. Jackson, A.S. Kechris, A. Louveau, Countable Borel equivalence relations, 

preprint (2000) . 

[9] A.S. Kechris, Classical descriptive set theory, Springer-Verlag (1995). 

[10] A.S. Kechris, On the classification problem for rank 2 torsion-free abelian groups, 

J. London Math . Soc., to appear. 

[11] A.S. Kechris, Amenable equivalence relations and Turing degrees, J. Symb. Logic 

56 (1991), 182-194. 



47 

[12J G. Levitt , On the cost of generating an equivalence relation, Erg. T heory and 

Dynam. Syst. 15 (1995) , 1173-1181. 

[13J Y.N . Moschovakis, Descriptive set theory, North Holland (1980) . 

[14] M.G . Nadkarni, On the existence of a finite invariant m easure, Proc. Indian 

Acad. Soc. (Math. Sci .) 100 (1990) , 203-220. 

[15J D. Ornstein, B. Weiss , Ergodic theory of amenable group actions 1. The Rohlin 

lemma., Bull. Amer. Math. Soc . 2 (1980) , 161-164. 

[16J V .S. Varadarajan, Croups of automorphisms of Borel spaces, Trans. Amer. Math. 

Soc . 109 (1963), 191-220. 

[17] S. Wagon, The Banach-Tarski paradox, Cambridge Univ . P ress (1985). 



48 

Chapter 3 A Natural IIi Scale on DIFF 

3.1 Preliminaries 

Definition 3.1.1. A rank on a set S zs any map from S into Ord, the class of 

ordinals. 

Definition 3.1.2. Let r be a class of subsets of Polish spaces (e. g. , the closed sets, 

the Borel sets, etc.), and let t denote the complem ent class, i.e., the class of sets 

whose complements are in r. If X is a Polish space and A ~ X, a r -rank on the 

set A is a rank ¢ : A - Ord whose initial segments are uniformly in r n t, in 

the following sense: there exist relations ::;~, ::;~ with ::;~E r, ::; ~E t (as subsets of 

X xX) such that Vy E A , 

¢(x) ::; ¢(y) <=> x ::;~ y <=> x ::;~ y. 

r is called a ranked class if each A E r admits a r -rank. 

Definition 3.1.3. Let X be a Polish space, and A ~ X. A scale on A is any count

able set of ranks {¢n : A - Ord I n E N} with the following property: for any 

sequence of points (Xk) in A converging to a point x E X, ifVn E N , ::la n E Ord, with 

limk--+oo ¢n(Xk) = an, then x E A and Vn E N, ¢n(x) ::; limk--+ oo ¢n(Xk). 

Remark: When defining convergence in Ord , we use t he discrete topology, so limk--+oo ¢n(Xk) = 

an means that the sequence (¢n(Xk))k is eventually constant, with value an . 

Definition 3.1.4. A r-scale is one in which all the ranks are r -ranks. r is a scaled 

class if each A E r has a r -scale. 

Theorem 3.1.5. T he class rri is scaled; moreover, for each A E rri th ere is a rri
scale {¢n In E N} on A with the property that ran( ¢n) ::; WI for all n , with equality if 

and only if A is not Borel. 
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For a proof, see [3] § 36.D. 

Definition 3.1.6. Let X be a Polish space, A ~ X , and {¢n In E N} a scale on A. 

W e say that a sequence afpaints (Xk) afpaints in A converges in the scale {¢n\n E N} 

if limk->oo ¢n (Xk) exists for all n E N. 

If t here is no risk of ambiguity, we will simply use the term 'converges in the scale', 

without explicitly mentioning the part icular scale {¢n I n E N} . 

The proof of Theorem 3 .1.5 gives a general method for constru cting a scale for each 

II~ subset of Nf\!, the space of all infinite sequences of natural numbers, wit h the 

usual product topology. The general case can be reduced to this , because any two 

uncountable Polish spaces are indistinguishable up to Borel isomorphism (the theorem 

is t rivial for countable spaces). In most cases, however , even if a concrete scale for a 

given II~ set A can be obtained in this way, it will reflect very li tt le of the intrinsic 

nature of A. Since a scaled set is closed under sequences which converge both in t he 

topology and in the scale , it is desirable to find a scale which is explicit ly related to 

t he Polish topology, in t he hopes that convergence in t he scale can be used to solve 

problems of an analytical or topological nature . 

One general approach to finding a 'natural' II~ scale for a given II~ set is to find a 

single 'natural ' II~ rank, and then find a way to localize it with respect to a fixed 

countable basis of the underlying Polish space. That is t he approach taken here: we 

show t hat a natural II~ rank on the set of differentiable functions with domain [0,1], 

developed by Kechris and Woodin in [4], can be successfully 'localized ' to produce 

a scale. We t hen attempt to quantify the analytical strength of convergence in t his 

scale , by comparing, for a sequence of differentiable functions (j~ ) which converges 

in the supnorm to a differentiable function f , convergence in t he scale to pointwise 

convergence of t he derivatives (J~). 

3.2 A Natural IIi Rank on DIFF 

This section is a summary of results from [4], by Kechris and Woodin . 
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Let 

C([O, 1]) = {f I f a real-valued continuous function with domain [0, I]}, 

DIFF = {f E C([O, 1]) I J'( x ) exists for all x E [0 , I]} , 

where 1'(0) and 1'(1) are understood to be one-sided derivatives. C([O, 1]) is a Polish 

space with the usual supnorm metric II f - 9 11 00 = maxxE[o,l ]lf( x) - g( x )l. We'll see 

that DIFF is a rr~ subset of C([O , 1]) . 

Definition 3.2.1. Let X be a set and D a collection of subsets of X which is closed 

under non-empty intersections. A derivative on D is a map D : D -t D with the 

following properties: 

i) VA E D , D(A) ~ A . 

ii) VA , B E D , A ~ B:=;. D(A) ~ D(B). 

If D : D -t D is a derivative and A E D , then we can define , by t ransfini te recursion, 

t he iterated derivatives D Q(A) of A by 

DO(A) = A 

D /3+1 = D (D /3 (A)) 

DA(A) = n D /3 (A) , if A is a limi t ordina l. 
/3 <A 

There will be a least ordinal a < card(A)+ with the property that D o+ l(A ) = D Q(A) ; 

this is called the D-rank of A , and is denoted by lAID. The set D IAID (A) will be 

denoted by D OO (A). 

Theorem 3.2.2. Let X be a Polish space and let D = K(X ), the hyperspace of 

compact subsets of X (which is also Polish). Let Y be any standard Borel space, and 

let JD) : Y X D -t D be a Borel map with the property that for each y E Y , the section 

map JD)y : D -t D is a derivative. Then 

o~ = {(y , K) I JD);; (K) = 0} 
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is a Il~ set and the map (y, K) f----7 IKl lIJIy is a Il~ rank on DlIJI . 

(See [3], § 34.E.) 

Toward defining a Il~ rank on DIFF, let 

Q = (0,1) n Q, 

U = {U I U a [0, IJ-relatively open interval with rational endpoints } 

= {[O,r) IrE Q} U {(r,s) I r,s E Q} U {(r, IJI r E Q} U {[O, I]}, 

and define a map ~ : Q x C([O , 1]) x K([O , 1]) --+ K([O, 1]) by 

~(E,j,K) = {x E KIVU E U with x E U, ~p,q,r,s E Un Q , p < q, 

r < s, such that [p, qJ n [r, sJ n K 01 0 and 

l~f(P,q) - ~f(r,s)1 > E}, 

where ~ f(P, q) = f (q~=~(P). 

It 's not difficult to check that IlJ) is a Borel map, and that for each p air (E, f) E 

Q x C([O, 1]), ~E,/ : V --+ V is a derivative . Hence by Theorem 3.2.2, the set DlIJI = 

{(E,j,K) I ~~f(K) = 0} is Il~ , and the map (E,f,K) f----7IKl lIJIE,! is a Il~ rank on it. 

Theorem 3.2.3. (Kechris- Woodin) Vj E C([O , 1]) , 

j E DIFF ¢:? VE E Q, ~~f([O, 1]) = 0. 

Because DlIJI is IlL for each pair (E, K), the section 

DE,K = {j E C([O, 1]) I (E, j, K) E DlIJI } = {j E C([O, 1]) I ~~f (K) = 0} 

is also Il~ . The corresponding rank j f----7 IKl lIJIE,! is Il~ as well: if <5/, <5: P are relations 
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III (Q x C ([O, 1]) x K([O, 1]))2 which are, respectively, ~~ and II~ and witness t he 

definabi lity of the rank of O][]), then the section relations 5//" K' 5::'K will be, respec

t ively, ~~ and II~ in (C ([O, 1]))2 and will wit ness the definabili ty of the section rank 

on 0CE, K) . (Here f 5:&,K) g if and only if (E, f, K) :;,S (E, f , K) . :;'~ , I< ) is defined 

analogously. ) 

By Theorem 3.2.3, DIFF= n EEQ O E,[O,I ) ' But for each f E C([O, 1]) , K E K([O , 1]) , 

EI < E2 =? WEj ,J(K) 2 WE2,l (K) , so in fact we can write 

DIFF = n O~, [O,l ) ' 
n 

i .e. , we can take t he intersection over any sequence (Ei ) in Q which has a as a limi t 

point . Since the class II~ is closed under countable intersections and unions , t his 

shows that DIFF is II~ in C ([O , 1]) . Moreover , t he map 

f f-t sup I [0 , lll llJ) 1 
n n J 

is a II~ rank on DIFF (see [4]). 

Notation: In t he sequel , we will write IflDIFF for supn I [0 , l ll llJ) 1 . 
n ' ! 

To summarize, we have 

Theorem 3.2.4. (Kechris- Woodin) 

i) \:IE E Q, the map f f-t I [0, lll llJ)E,! is a II~ mnk on the II~ set O E, [O,l) ' 

ii) The map f f-t IflDIFF is a II~ mnk on the II~ set DIFF. 

Definition 3.2.5. Let X be a topological space, Y a m etric space with metric d, 

A ~ X , and f : A ----t Y any fu nction from A into Y . The oscillation of f at a point 

x E A is 

oscJ(x) = inf {diam(f[A n U]) I U an open neighborhood of x } 

= inf { sup {d(f(u), f( v )) I u, v E An u} I U an open n eighborhood of x} . 
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So j is continuous at x if and only if oscf(x) = 0. 

Proposition 3.2.6. If j E DIFFJ then for any E E QJ 

x E lIJ)( E, j , [0, 1]) => OSCfl(X) > E, 

x tj.lIJ)(E,j, [0, 1]) => oscf'(x):S:; 2E. 

Proof. The first assertion follows directly from the definition of lIJ)( E, j, [0, 1]) and the 

Mean Value Theorem. For the second, suppose that oscf'(x) > 2E, and for a given 

neighborhood U E U of x, let u, v E U be such that 11'(u) - 1'(v) I > 2E. Fix p, q, r, S E 

Un Q, p < q, r < s, such that p:S: u:S: q, r :s: v :s: S and l~f(P , q) - ~f(r,s )1 > 2E. 

If [p, q] n [r, s] =1= 0, then we 're done, so suppose otherwise, say p < q < r < s. Since 

there is a triple (a,b,c) E {(p,q,r), (q,r,s)} such that I~f(a,b) - ~f(b,c)1 > E, and 

trivially [a, b] n [b, c] =1= 0. Since U was arbitrary, this shows that x E lIJ)( E, j , [0, 1]). 0 

With Proposition 3.2 .6 and Theorem 3.2.4, we recover another property of the sets 

lIJ) ( E,j, [0, 1]), given in [4] : 

Theorem 3.2.7. (Kechris- Woodin) Vj E DIFFJ 

j E Gi([O, 1]) ¢:? VE E Q lIJ)(E, j, [0,1]) = 0, 

where Gi([O, 1]) = {j E DIFFI l' E G([O, I])}. 

Example: Let 

{ ° if x E [O,~], 
j(x) = 1 2 (1) 1 ] 

(x - 2) sin x - ~ if x E (2' 1 . 

j E DIFF, and l' has a single discontinuity, at x = ~. OSCf'(~) = 2, so for each 

E E Q, lIJ)(E, j, [0, 1]) = {n. For any E, for any differentiable function g, and any 

set K E K([O, 1]) with Cantor-Bendixson rank 1 (i.e., any set with no li mit points), 
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lIJ)( E, g, K) = 0. Hence lIJ)2( E, f, [0, 1]) = 0, I.e., I[O,IJI ]]])<, / 

IflDIFF = 2 as well . 

2 for each E E Q, so 

A method of inductively constructing funct ions of any rank a < W I is outlined in [4J 

(pp. 262-264). 

3.3 A Natural IIi Scale on DIFF 

In this section we will construct a countable collection of II~ ranks on DIFF, based 

largely on the ranks defined in the previous section, namely the ranks 

f r-t 1[0, IJ I]]])< .! 

on O £,[O,l), for each E E Q, and the rank 

f r-t If lDIFF = sup 1[0, IJ I]]]) l.,! 
n n 

on DIFF . However we will also require that these new ranks contain additional infor

mation, which will guarantee them to form a scale. 

D efinition 3.3.1. Let K E K([O, I]) , f E C([O,I]), and E E Q. A closed interval 

1 ~ [O,IJ is E - K good for f ifVp,q,r,s E int(I) n Q, p < q, r < s, 

where int(I) is the interior of 1 in the [0 , 1]-topology. 

R emark: If 1 is E - K good for f , then lIJ)( E, f , K) n int(I) = 0. It 's possible , however , 

t hat lIJ)( E, f, K) n 1 =j:. 0. For an example, let f be the funct ion from the example in 

the previous section, let K = [0,1], 1 = [0, nand E E (O,~) n Q . 

Definition 3.3.2. Let f E C([O, 1]) , K E K( [O, 1]) , E E Q, and m E N + . An E - m 

covering of K for f is a finite sequence la, . .. , In - 1 of closed intervals such that: 

i) Vj :s; n - 1, Ij is E - K good for f. 
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ii) Vj ::; n - 1, I j has length at least ~. 

iii) Vx E K,:3j ::; n - 1 such that B(x,~) = {y E [0, III Ix - yl < ~} C;;; I j . 

Lemma 3.3.3. For each j E C([O, 1]), K E K([O, 1]), E E Q, ID(E, j , K) = 0 if and 

only if for some m E N+ there is an E - m cover of K for j. 

Proof: 

~: If 10, ... ,In - 1 is an E - m cover of K for j, then each I j is E - K good for j and 

K C;;; U7~~ int(Ij ). As was noted in the above remark, ID(E, j, K) C;;; K \ U7~~ int(Ij ), 

so ID( E, j, K) = 0. 

=}-: By definition of the map ID, if x E K\ID( E, j, K) then there exists an open interval 

Ux containing x whose closure is E - K good for j. By compactness, K is covered 

by finitely many of these, Uxa , ... ,UXn _
1

; without loss of generality, omitting certain 

of these UXj if necessary, we may assume that no UXj is contained in any other. We 

claim that their closures form an E - m cover of K for j, for some m E N+. 

Toward determining a value m for which Uxa ," . ,UXn _
1 

is an E - m cover of K for j, 

let 

7]1 = min{bj - ak I j, k ::; n - 1 and UXj n UXk f. 0} 

7]2 = min{d(p, K) I j ::; n -1, p E {aj, bj } and prj. UXj n K}, 

where d(p, K) is defined to be min {Ip-qll q E K}. Let 7] = min {~ ,7]d . Then we claim 

that for each x E K there exists j such that B(x,7]) C;;; UXj ' Toward a contradiction, 

suppose otherwise, and fix a value x for which the assertion is false. We first note 

that it cannot be the case that x E U Xj n U Xk' for any pair j, k: otherwise, switching 

the roles of j and k if necessary, aj < ak < x < bj < bk. But then if x E (ak' ak;b
j

], 

B(X,7]l) C;;; UXk and similarly, if x E [ak;b
j

, bj ), then B(X,7]l) C;;; UX j , a contradiction. 

Hence there must be a unique j for which x E UXj ' If aj rj. UX j n K, then x - aj ~ 

d(aj, UXj n K) ~ 7]1 ' On the other hand, if aj E UXj n K, then there must be a 

k ::; n - 1 such that aj E UXk ' Since x rj. UXk , we must have x - aj ~ bk - bj ~ 7]2' 
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Thus in either case, x - aj > TJ, and we can similarly show that bj - x > TJ , so 

B(x, TJ) ~ UXj ' 

Thus if m is any integer greater than 

max {1, max {~}}, 
'T/ j :-::; n - l J aJ 

then UXQ '" • ,UXn - 1 is an E - m cover of K for I. 
o 

Before giving the next definition we note that, by compactness of the interval [0,1]' 

for any IE D E,[O,l j , K E K([O, 1]) and E E Q, the ordinal IKI ~€,j must b e a successor, 

since it is the least (J for which ]JJ),8 (E, I , K) = 0. 

Definition 3.3.4. Fix a bijection 8 : w2 
--+ w with the property that Jar all h, l2 ' mE 

w, II ::; l2 =? 8(ll' m) ::; 8(l2, m). For each E E Q, let PE,[O,l j : D E,[O,l j --+ Ord be the 

rank given by 

PE, [O,l j(f) = 1[0, 111 ~€ ,j - 1 

= the least a such that ]JJ)Q+ l(E, I, [0 , 1]) = 0, 

and let r E, [O,l j : D E,[O,l j --+ w be the rank given by 

rE,[O,l j (f) = 8(l, m) 

where 8(1, m) is least such that ]JJ)Q(E , I , [0,1]) has an E - m cover Jar I consisting oj 

l intervals, where a = PE,[O,l j (f) . 

Definition 3.3.5. For each E E Q, let cPE ,[O,l j : D E,[O,l j --+ Ord be the rank defined by 

cPd O,l j (f) = Pd O,l j (f) . W + r E, [O,l j (f) 



57 

Let ?j;E, [O,l j : DIFF -----> Ord be the rank defined by 

So <Pf, [O,I] (1) :S <Pd O,l ] (g) if and only if P d O,I] (1) < Pd O,I] (g) or P f, [O, lj (1) = Pd O,I ] (g) 

and rf, [O,I] (1) :S r f,[O,I ] (g). Likewise 7fJdO,lj has the lexicographical ordering of the pair 

(I . I DIFF, <Pf, [O,l j). 

Notation: We will denote <Pf, [O,I] by < P f, [O,I] (1), r f ,[O,l j (1) >, rather than Pd O,l ] (1) . W + 
rf, [O,l ] (1), to emphasize the lexicographical ordering . Similarly, we will denote 7fJf, [O,l ] 

by < IfIDIFF, <Pf ,[O,l ] (1) > . 

Lemma 3.3.6. For each E E Q, <Pf,[O,l ] is a II~ rank on O f ,[O, I ], and 7fJE,[O,l j is a II~ 

rank on DIFF. 

Proof: Let E E Q be given. Following the proof of Theorem (34.10) in [3]' we can fix 

an effective 'coding ' of the countable ordinals: as given in [3]' p. 273 , let WO* <;;;; 2NxN 

be the set of characteristic functions of countable well-orderings , and let x f--+ Ixl* be 

the map on WO* which takes a point to the order type that it represents. WO* is 

II~ , and 1 . 1* : WO* -----> WI is a II~ rank. 

Again following the principles of the proof of (34.10), in [3], we can find a ~i relation 

R(x,j) <;;;; X x G([O, 1]) such that for each f E O f,[O,I], 

R(x, j) {:} x E WO* and Ixl* :S Pf ,[O,l ] (1). 
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Then the relations ::;'; and ::;.~ on C([O, 1]) given by 

j ::;.; g {::} 

:3x (R(x, g) and ]]])lxl' +l (E, g , [0 , 1]) = 0 and ( either ]]]) Ixl' (E, j , [0, 1]) = 0 or 

j ::;.~ g {::} 

(]]]) lxl' +I(E, j , [0, 1]) = 0 and Vl, mEN, 

if there exists an E - m cover of ]]]) Ixl* (E, g, [0, 1]) for 

g consisting of l intervals, then there exist l' , m' E N 

such that B(l'm') ::;. B(l , m) and such that ther'e exists 

an E - m' cover of ]]]) Ixl' (E,f, [0, 1]) fo r j consisting 

of l' intervals)) ) . 

Vx ( (R(x, g) and ]]]) lxl' +l (E, g, [0 , 1]) = 0) ==;. (either ]]]) Ixl' (E,f, [0, 1]) = 0 or 

(]]])lxl' +l (E, j , [0 , 1]) = 0 and Vl, mEN, 

if there exists an E - m cover of ]]]) Ixl' (E, g , [0, 1]) for 

g consisting of l intervals, then there exists l' , m' E N 

such that B(l'm') ::;. B(l, m) and such that there exists 

an E - m' cover of ]]]) Ixl' (E, j , [0 , 1]) for j consisting 

of l' intervals) ) ) , 

are :E~ and II~ , respectively, and for g E n E,[a ,I] ' 

Hence <PE,[a ,l] is a II~ rank, for each E E Q, To see that each 7,UE, [a ,l] is as well , let ::;'~IFF 

and ::;'~IFF be :E~ and II~ be relations on C([O , 1]) (respectively) which witness the 
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fact that I . IDIFF is a Il~ rank, and let ::;: , ::;: be as above. Then the relations 

are :E~ and IlL respectively, and demonstrate the fact that -zPdO,l j is a Il~ rank. 0 

We now proceed to construct 'local ' versions of each <P€,[O,l j : 

Definition 3.3.7. For each V E U , let 

Uv = {W I W a V -relatively open interval with rational endpoints} 

= {W I W = Un V, for some U E U} , 

and define ]IJ)v : Q x C([O, 1]) x K(V) -t K(V) by 

]IJ)V(E, f, K) = { x E K I \fW E Uv with x E W, :3p, q, r, sEW n Q, p < q, 

r < s, such that [p, q] n [r, s] n K =J 0 and 

l6. f (p,q) - 6. f (r,s)1 > E}. 

Also, for each E E Q, V E U , let 

Ot,v = {f E C([O, 1]) I :3a E Ord, I!))~( E, f, V) = 0}. 

As in the case V = [0,1]' Ot,v is a Il~ subset of C([O, 1]) and f t------+ WI IIJ)< .J is a Il~ 

rank on Ot,v . Analogously, we have 

Definition 3.3.8. For each E E Q, V E U , let Pt,v : Ot,v -t Ord be the rank given 

by 

Pt,v (f) = IVl lIJ)v(t, J) - 1. 

As before , this makes sense because IVl lIJ)v(t ,!) will always be a successor. 
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Definition 3.3.9. Let V E U , K E K(lI), f E C([O,I]), and E E Q. A closed 

interval 1 ~ 11 is E - K good for f in 11 ifYp, q, r, s E inty(1) n Q, p < q, r < s , 

where inty (1) is the interior of 1 in the relative 11 -topology. 

Definition 3.3.10. Let V E U, K E K(lI), f E C( [O , 1]) , E E Q, and mE N+. An 

E - m covering of K for f in 11 is a finite sequence 10 , . . . ,ln ~l of closed intervals 

such that 

i) Y j ~ n - 1, 1j is E - K good for f in 11. 

ii) Yj ~ n - 1, 1j has length at least ~. 

iii) Yx E K, ~j ~ n - 1 such that B(x, ~) n 11 ~ 1j . 

Lemma 3.3.11. For each V E U , K E K(lI), f E C([O, 1]) , and E E Q, Tfj)v(E , f , K) = 

o if and only if for some m E N+ there is an E - m cover of K for f in 11. 

Definition 3.3.12. For each E E Q, V E U , define the rank r E,v : DE, v -+ w by 

r E,v(f) = B(l , m) 

where B : w2 
-+ w is the bijection fixed in Definition 3.3.4, and B (l , m) is least 

such that Tfj)~(E, f, K) has an E - m cover for f in 11 consisting of l intervals, for 

a = PE,v(f). 

As in the case 11 = [0,1]' cPE,v is a II~ rank on DE,v, and 'l/JE,V is a II~ rank on DIFF. 

Theorem 3.3.13. The set {cP E,V l E E Q, V E U} is a scale on DIFF. {'l/JE,V lEE 

Q, V E U} is a II~ scale on DIFF. 
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Before beginning the proof of Theorem 3.3.13, we introduce two lemmas which will 

be useful both in the proof and the sequel, along with a fact about the derived sets 

for which we currently have no application, but which appears potentially useful : 

Lemma 3.3.14. For each U, V E U with Un V # 0, for each E E Q, K E K(V), 

j E C([O , 1]) , (3 E Ord, 

Proof. The proof is by induction on (3. Fix U, V, E, K, j as above. 

For (3 = 0, the assertion becomes 

U n K ~ U n K ~ U n K , 

and so is clearly true. 

Suppose now that (3 is a successor, say (3 = I + 1. For each W E U , say that an 

interval I ~ [0,1] (open, half-open , or closed) satisfies condition Ch, W) if there 

exist p,q,r,s E In Q, p < q, r < s, such that 

[p,q] n [r,s] n IDJ'Zv( E, j,K n W) # 0 and I~J(p,q) - ~J(r,s)1 > E. 

For the leftmost relation , if x E U n IDJe (E, j, K) then, since each I E Uv with x E I 

satisfies condition Ch, V) , each l' E Uunv with x E I' does as well. So given 

I' E Uunv with x E I' , fixp,q , r,s E 1'nQ such that [p,q]n[r , s]nIDJ-z,. (E, j , K) # 0 and 

I~J(p, q) - ~J(r, s)1 > E. By induction hypothesis , Un IDJ-z,. (E, j , K) S;;; IDJ'irnv(E, j , K n 

U), so [p,q] n [r,s] n IDJ'irnv(E, j , K n U) # 0 as well , showing that I' in fact satisfies 

condition Ch, Un V). By definition, since I' was an arbitrary Uunv-neighborhood 
f3 -

of x, x E IDJunv(E, j , K n U). 

For the rightmost relation, if x E IDJ~nv (E, j , K n U) then certainly x E U, and for each 

IE Uunv , if x E I then I satisfies condition Ch, Un V) . Thus if l' E Uv contains x, 

it will satisfy condition Ch, U n V) because I" = Un I' E Uunv does . By induction 
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hypot hesis ID>l nv (E, i , K n 0 ) ~ ID>'Zr (E, i , K) , so in fact l' satisfies condi tion Ch, V) . 

Since the same argument works for any neighborhood of x in Uv , x EOn ID>~ ( E, i , K) . 

Finally, if (3 is a limit ordinal , then we have, from the defini t ion of ID>~ and the 

induction hypothesis, 

u nID>~ ( E,j , K) = n U nID>'Zr (E,j,K) 
7</3 

~ n ID>l nv(E, i , K n 0 ) 
7</3 

/3 -
= ID>unv( E, i , K n U ), 

and 

ID>~nv (E,j, K n 0 ) = n ID>l nv (E, i, K n 0) 
7</3 

~ n O nID>'Zr (E, i ,K) 
7</3 

- /3 
= U n ID>v (E, i , K ). 

D 

Lemma 3.3.15. Let i n E DIFF and E E Q . If limn --->oo ¢E,U (j~ ) exists f OT all U E U , 

then limn--->oo ID>[j (E, in, 0 ) exists in K([O , 1]) fO T each U E U and each a E O Td . 

PTOOj. Let U E U and a E OTd be given . It suffices to show t hat t he topological limit 

of t he sequence (ID>[j (E, i n, O)) n exist s , i .e., t hat 

Tlim sup ID>&(E, j~, 0 ) = {x E [0,1]1 for each n eighborhood W of x, 
n --->oo 

W n ID>& (E, in, 0 ) i- 0 f or infinitely many n} 
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is equal to 

TliminfW~(E,in,O) = {x E [0,1]1 for each neighborhood W of x, 
n-->oo 

W n W~ ( E, in , 0) 1= (/) for all but finite ly many n}. 

(See [3], § 4 .F, pp.24-28. ) Toward a contradiction, suppose 

x E Tlim sup W~ ( E, i n, 0 )\ Tliminf W~ (E, in, 0). 
n-->oo 

Then there exists W E U and subsequences (In k)' (Inl) such that 

while 

By Lemma 3.3.14, this implies 

for each k, while 

for each l . But from this it follows that for each k, PE, wnu (Ink) ~ C¥, while for each 

l , PE, wnu (Inl) < C¥ , i .e., limn-->oo PE, wnu(In) does not exist. Hence limn--> oo <A,wnu (In) 

does not exist either, a contradiction. o 

Proposition 3.3.16. Let (In) be a sequence in DIFF which converges in the scale 

{¢E,U l E E Q,U E U} ; let E E Q and U E U be given. If.A :::; limnPE,u(f',.,) is a limit 

ordinal, then 

lim Wt(E, i n, 0) = n lim W~(E, in, 0) , 
n~~ n~~ 

0:< >' 

't.e., we may switch the order of the limit and the intersection. 



64 

Proof. By Lemma 3.3.15, limn-tCXl j]J)u(17, in, V) exists for each 17 E Q, V E U , a E Ord . 

~: For all a < .\ and each n, j]J)&(E, in, 0) ~ j]J)U(E, in, 0). Hence, for all a < .\, 

limn-tCXl j]J)2,(E, in, 0) ~ limn-tCXl j]J)U(E, in, 0), i .e., 

lim j]J)t(E,in,O) ~ n lim j]J)~(E,in'O). 
n~~ n~~ 

a<A 

;2: Suppose x ¢ limn-tCXl j]J)2,(E, in, 0). By Lemma 3.3.14, there exis ts V E U , such 

that x E V and limn-tCXl j]J)~( E, in, V) 0; hence limn-tCXl P€,v(f'-n) < .\, denote it 

by av. Since limn-tCXl j]J)~v + l(E, in, V) 0, x ¢ limn-tCXl j]J)~v +l ( E, f '-n' 0 ), again by 

Lemma 3.3.14. So x ¢ n a<A limn-tCXl j]J)U(E, in, 0) . 0 

Proof of Theorem 3.3.13. To see that {¢€,v lEE Q, V E U} is a scale on DIFF, let 

Un) be a sequence in DIFF; suppose that limn-tCXl in = i and that limn-tCXl ¢€,v Un) 

exists for each E E Q and V E U. Since limn-t CXl ¢€,v Un) exists if and only if 

each of limn-tCXl P€,v Un) and limn-tCXl r€,v Un) exist , we can write li mn ¢€,v Un) = < 

By induction on a €, v, we'll show that j]J)~(E, i, V) = 0 for all E E Q and for all 

V E U ; hence, by Theorem 3.2.3, i E DIFF. Also in t he induction, we' ll show that 

for all E E Q and V E U , ¢€,vU) ::; < a €,v, B(lE,v, m E,v ) >, completing t he proof that 

{¢€,v lEE Q, V E U} is a scale. 

a E,v = O. 

Let N E,v E N be such that n ~ NE,v implies ¢E,vUn) = < 0, B(l€, v, m E,v) >; that 

is, for each n ~ NE,v, j]J)V(E, in, V) = 0 and V has an E - m E,v covering for in in 

V which consists of lE,v many intervals. Fix such a cover for each f'-n , and denote it 

by [a~, b~], .. . , [af- l' bf- ll (for ease of notation , in subscripts we will write l for l€,v). 



65 

Then fix a subsequence (nk) with the property that limk--;oo a~k and limk--;oo b~k exist 

for each i = 0,1, . . ·l, ,v - 1. Denote these limits by ai and bi, respectively, for each i . 

Claim: lao, bo], '" ,[aI- I, bl- I] is an E-m,,v cover of V for i in V. Hence lThv(E, i, V) = 

o and ¢" v(J) ~< 0, < l" v, m ,,v ». 

Proof of Claim: Firstly, it's clear that for each j , bj - aj ~ ~ and that for each x E V, 

there is j ::; l" v such that B(x , m~.v) s:;; raj, bj ]' because the analogous facts are true 

for each of the coverings [a~ k ,b~k], ... ,[a7.:\ , b7.:\] . So we need only show that each 

raj, bj] is E - V good for i in V. 

Toward this end, fix j ~ l,,v - 1 and suppose that p,q,r,5 E intv ([aj, bj ]) n Q are 

such that p < q, r < 5 , and [p, q] n [r,5] =/: 0. 

As a preliminary case , suppose additionally that aj < p, q, r, 5 < bj (which may 

fail if either of aj or bj is an endpoint of V). Then, because limk 00 a7k = aj and 

limk b7k = bj , for k sufficiently large we have p, q, r, 5 E [a7k, b7kJ; since [a?, b7k] is 

E - V good for ink in V, we then have, for infinitely many k, 

Since ink ~ i , it follows that l.6. f (p,q) - .6.f (r , 5)1 ~ E as well. By the continuity of 

i , this must also be true when aj ~ p, q, r, 5 ~ bj (i .e ., we can omit the preliminary 

constraint) . So raj, bj] is E - V good for i in V. O(Claim) 

Q,,v > 0: As in the previous case, let N ,,v E N be such that n ~ N ,,v im

plies ¢"V(Jn) = < Q, ,v , B(l,,v, m ,,v) >; for each n ~ N ,,v fix an E - m ,,v cover 

[a~,b~], .. . ,[ar- I,br- Il of ~~E.v(E,in'V) for in in V. (Again , for ease of notation , 

in subscripts we will write l for l, ,v.) Also fix a subsequence (nk) with the prop

er ty t hat for each i ~ l" v - 1 there exist ai and bi such that limk--;oo a~k = ai and 

limk--;oo b~k = bi. By Lemma 3.3 .15, limn--;oo lTh~E 'V (E, in, V) exists. 
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By definition of convergence in K([O , 1]) , for each 0 > 0 and all n suffi ciently large, 

where B(S,1J) = { x E [0,1]1 minYEs Ix - yl < 1J}. So for each x E D , there exists 

j ~ lE,v - 1 such that B (x, m~, v ) ~ [aj , bj ]' because the analogous fact is true for each 

x E ]]))~., V(E,fnk'V) , with respect to the covering [a~\ b~k], ... , [a~_\, b~"::l J . Also, for 

each j, the interval raj, bj ] has length at least ~ , because t he corresponding fact is 

t rue for each [a;k, b;k] . 

We complete the inductive step by verifying the following two facts: 

i) For each j , raj, bj ] is E - D good for f . Hence lao, bo],' " , [al- l, bl- 1] is a n E - m 

cover of D for f . 

ii) ]]))~" V ( E ,j, V) ~ D. 

Proof of (ii): Toward a contradiction , suppose x E ]]))~" V ( E, f , V)\D , and let W E U 

be such that x E W , W n D = 0. Then for n sufficiently large, we have W n 

]]))~" V ( E, fn ' V ) = 0 as well , so by Lemma 3.3.14, 

By induction hypothesis we should then have PE,vnw(J) < aE,v, but again by Lemma 3.3.14, 

W n ]]))~. ,v (E, f , V) =1= 0 implies PE, vnw(J) ~ a E,v, a contradiction. 

Proof of (i): We split t he argument into two cases. Denote the closed interval V by 

[u , v]. 

Case 1 : D ~ (u, v). 

Fix j ~ lE,v - 1, and suppose p, q, r, s E intv ([aj, bj ]) n Q are such t hat p < q, r < s, 

and [p, q] n [r, s] n D =1= 0. 

As a preliminary case , assume additionally t hat 

aj < p,q,r,s < bj and (p , q) n (r , s) n D =1= 0. 
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Then for k sufficiently large we 'll also have 

Since ink ---+ i, it follows that 

For the general Case 1, b ecause [P, q] n [r, s] n D ~ (aj, bj ), we can find sequences 

(Pn), (qn), (rn) , (sn) in intv ([aj, bj ]) n Q such that pn ---+ p, qn ---+ q, rn ---+ r, Sn ---+ S, 

and for each n, 

By the preliminary case, l~f(Pn ' qn) - ~f(rn' sn)1 :S E for each n , so by the continuity 

of i , l~f(P , q) - ~f(r, s)1 :S E as well . 

Case 2: {u,v} n D 1= 0. 

We begin by making a slight modification to the covering lao , boL . .. [ai - I, bl - I ]. If 

u E D , consider each [ai,bi] for which ai = u (there must be at least one) . If a~k = u 

for infinitely many k, then we leave ai unchanged (it remains the left endpoint of the 

ith interval). However, if a~k > u for all but finitely many k , then we replace ai, as 

t he left endpoint of the ith interval , by 

I • { 1 3 } a · = mIn a· + -- b· - --t t 2 ,t 
m E, v mE,v 

unless ai = bi - _3_ (i.e. , [ai, bi] = [u, u + _3_]), in which case we omit [ai, bi] from 
m t:,V m t:, V 

t he covering. Because for each k there exists i :S n - 1 such that a~k = u, there 
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must be at least one i such that ai = u and a~k = u for infinitely many k. Hence 

this modified cover still has the property that for each x ED , there is a j such that 

B(x, m~, v) S;;;; raj, bj ]. 

Similarly, if v E D , after modifying the a/ s as needed , we consider each raj, bj] for 

which bj = v. If bj = v but bjk < v for all but finitely many k , t hen we replace bj , as 

the right endpoint of the jth interval, by 

I { 1 3 } b · = max b·--- a·+ --
J J 2 ' J m E,v m E, v 

unless raj, bj] = [v - _3_, v], in which case we omit it from the covering. 
m E, V 

Now fix j ~ lEY - 1 and let p, q, r , S E intv ([aj , bj ]) n Q with p < q, r < sand 

[p, q] n [r, s] n D i- 0. If [p, q] n [r , s] n D S;;;; (aj, bj ), then the argument from Case 1 

applies, and we may conclude that I~J(p, q) - ~J(r, s) 1 ~ E. Otherwise {u , v} n [p, q] n 

[r, s] n D i- 0, since the only way that [p, q] n [r, s] n D ~ (aj , bj ) is if aj = p = r = u 

or bj = q = s = v . For concreteness, suppose t hat u E [p, q] n [r , s] n D , so that aj = 

p = r = u. Then ajk = u for infinitely many k . If bj i- v, then p, q, r, s < bj , so for 

all sufficiently large k with a? = u, we have p, q, r, s E intv([ajk, bjk ]). Also, because 

u E limk -->CX) IIJ)~' ,v (E, In k' if) = D , we must have [p, q] n [r, s] n IIJ)~" v (E, j~k' if) i- 0, if 

k is sufficiently large. 

Thus for infinitely many k we have I~Jn k(p,q) - ~Jnk(r,s)1 ~ E, so 

If bj = v, t hen possibly q = v or s = v, in which case there may not be infinitely 

many k for which p, q, r, s E intv([ajk, bjk]) (t here would be infini tely many k for 

which bjk = v, but they may not be the same k for which a? = u). But we can 

find sequences (qm), (sm) , qm -t q, Sm -t s , such that for each m there exist infinitely 

many k for whichp,qm,r,sm E intv([ajk,b?]). Using the above argument we get 
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so l,0.j(p, q) - ,0. j(r, s)1 ::; t as well. The case in which v E [p , q] n [r, s] n D is handled 

analogously. 

Thus each interval raj, bj ] must be t - D good for i in V. This completes both the 

inductive step and the proof t hat {<PE,v 1 t E Q, V E U } is a scale. 

As in Lemma 3.3.6, each 'l/JE,v is a II~ rank. Suppose (fn) is a sequence in DIFF, 

limn-+co in = i , and limn->CXl'l/JE,v (fn) exists for each t E Q and each V E U. Then 

limn-+oo <PE,v (fn) exists for all t E Q, V E U ; since {<PE,v 1 t E Q, V E U} is a scale, 

i E DI F F and <PE,v(f) ::; limn-+oo <PE,v(fn) for all t E Q, V E U . This implies that 

PE,v (f) ::; limn-+oo PE,v (f n) for all t E Q, V E U ; in particular, 

lilDIFF = sup(p~ ,[O , ll(f) + 1) 
m 

= lim linlDIFF 
n-+oo 

(which exists, by hypothesis) . Thus for all t E Q, V E U , 'l/JE,v(f) ::; limn 'l/JE ,v(fn), so 

{'l/JE,V I t E Q, V E U} is also a scale. 0 

3.4 Analytical Strength of Scale Convergence 

Here we attempt to quantify t he analytical strength of convergence in the scale 

{'l/JE,U I t E Q, U E U} , by investigating t he condit ions under which convergence 

in the scale implies pointwise convergence of the derivatives. As was shown at the 

end of the proof of Theorem 3.3.13, a sequence (fn) in DIFF converges in t he scale 

{<PE,U I t E Q, U E U } if it converges in the scale {'l/JE,U I t E Q, U E U} , so, out of 

convenience, we will generally work with {<PE,U It E Q, U E U } instead. 

To begin, we note that the proof of Theorem 3.3.13 shows that the full strength of the 

hypotheses was not used. This gives some indication of t he strength of convergence 
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in the scale. 

Corollary 3.4.1. Suppose f E C([O, l]) and there exists a sequence Un) in DIFF 

which converges in the scale {¢E,U l EE Q, U E U} and which converges pointwise to 

f· Then f E DIFF and ¢E,UU) ::; limn->CXJ ¢E,U Un) for each E E Q, U E U . Similarly 

for the scale {'l/JE,U l EE Q, U E U} . 

The subsequent results of this investigation of Un) in DIFF depend on (lfnIDIFF)' We 

begin with the simplest case, where IfnlDIFF = 1, i.e., each fn is in C 1([0, 1]). 

Proposition 3.4.2. Suppose Un) is a sequence of C 1 ([0, 1]) functions which con

verges in the scale 

{¢E,U lEE Q, U E U} 

and which converges pointwise to a function f E C([O , 1]) . Then f E DI F F and 

f~ ---t l' uniformly. 

Proof. By Corollary 3.4.1 and Theorem 3.2.7, f E DIFF and 

Again by Theorem 3.2.7, it follows that f E C1([0, 1]). 

Towards a contradiction, suppose that U~) fails to converge to l' uniformly, so that 

there exist 6 > 0, a subsequence UnJ, and a sequence of points (Xj) in [0,1] such that 

Ij:" j (xj) - f(xj)1 > 6 for each j. Fix such 6, UnJ, (Xj); without loss of generality, we 

may assume that Xj ---t x for some x E [0 , 1]. Also fix E > ~. Because limn->oo rE,[O,ljUn) 

exists, there is an interval [a , b] containing x in its [0, 1]-interior which is E - [0,1] good 

for all but finitely many fn . Indeed, say limn->CXJ rE,[O,ljUn) = B (l , m). For each fn with 

rE,[O,l jUn) = B(l , m) , f n has an E - m cover of [0, 1] . Hence there is an interval [an, bn] 

which is E - [0, 1] good for fn and with B(x , ~) ~ [an, bn]. Take [a, b] = n n[an, bn]. 

Let MEN be such that for all j ~ M , 

i) Xj E int([a, b]) , 

ii) [a, b] is E - [0,1] good for fn j ' 
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Now fix p, q E int([a , b]) such that 

p::; q and If'( x) - !:::'j(p , q)1 < ~, 

and for each j 2:: NI fix Pj , qj E int[O,l][a, b] such that 

P · < q. and If' (x ·) -!:::'f (p . q .)/ < ~. J - J nj J nj J ' J 2 

Then, for j sufficiently large, we have 

If~j (xj) - f'(xj)1 ::; Ifnj (Xj) - !:::.jnj(Pj,qj)1 + l!:::.jnj(Pj , qj) - !:::. jnj (p , q)1 + 

I!:::.jn j (p , q) - !:::.j(p , q)1 + I!:::. j(p , q) - f'( x)1 + If'( x ) - f'( xj) 1 

< I!:::.jn (p , q) - !:::' j(p , q)1 + If'( x) - f'(xj)1 + 2c: , 
J 

by our choice of p, q, pj, qj , and because [a , b] is c: - [0, 1] good for fj (noting that if 

j 2:: M is sufficiently large , then [p, q] n [Pj , qj] i= 0). Because f nj ---> f and because 

f' is continuous, the remaining two terms on the left-hand side tend to zero, hence 

lim suPj_oo If~/xj) - f'(xj)1 ::; 2c: < 6, a contradiction. 

o 

Proposition 3.4.3. Suppose Un) is a sequence in C 1([O, 1]) , f E DIFF, f n ---> f 

uniformly and f~ ---> f' uniformly. Then, for each U E U , there is a nowhere dense 

set Eu <;;;; Q such that limn _ oo ¢E,U Un) exists for each c: rt Eu· 

Lemma 3.4.4. Suppose Un) is a sequence in C 1 ([O , 1]), f E DIFF, fn ---> f uni

formly and f~ ---> f' uniformly. Let c: E Q, U E U be given. If [a , b] is c: - U good 

for f in U, then for each 'r/ > 0 there exists Nry such that for all n 2:: Nry , [a, b] is 

(1 + 'r/)c: - U good for fn in U. 

Proof. The proof is given for U = [0 , 1]; the same argument works for any choice of 

U E U. Let c: and [a, b] be as in t he hypothesis of the lemma, and let 'r/ > 0 b e given. 
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Because l' is cont inuous, t he function F : [0 , 1] x [0 , 1] ---t lR given by 

F(p, q) = { 1'(p) if p = q, 
flf(P,q) ifp =/= q 

is cont inuous (and hence uniformly cont inuous). Fix 6 such that for any (p , q) , (r, s) E 

[0, 1] x [0 , 1]' 

J (r - p)2 + (s - q)2 < 2V2 => IF (p, q) - F (r, s)1 <~E. 

Let Nf) E N be such t hat n ::::: N'f) implies both 

i) II f~ - l' 11=< ;E, 
ii ) Vu, v E [0 , 1]' if lu - vi::::: 6, t hen Ifl fn(u, v) - fl f(u , v)1 < T' 

Now let p , q, r, s E int([a, b]) n Q , [p, q] n [r, s] =/= O. We' ll show by cases that for all 

n::::: N'f), Iflfn(P , q) - fl fn(r, s) 1 < (1 + 7J )E. 

Case 1: q - p ::::: 6 and s - r ::::: 6. Then for all n ::::: N'f), 

Ifl fJp, q) - fl fn (r , s) I ~ Ifl JJp, q) - fl J(p, q) I + Ifl J(p, q) - fl J(r, s) I 

+ IflJ(r, s) - flJn(r, s)1 

<~ + E+ ~ 3 3 

« 1 + 7J )E. 

Case 2: q - p < 6 and s - r < 6. 

Using t he Mean Value T heorem , for each n ::::: N'f), fix Pn E (p, q), rn E (r, s) such t hat 
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f~(Pn) = 6. /n(p, q) , f~(rn) = 6. /n(r,s) . Then for all n 2:: N7"}' 

16./n(p , q) - 6. fn(r, s)1 = If~(Pn) - f~(rn)1 

::; If~(Pn) - f'(Pn) 1 + 1f'(Pn) - f' (rn)1 + If'(rn) - f~(rn)1 

The bound for the term 1f'(Pn) - f'(rn)1 comes from t he fact that ITn - Pnl < 26: 

then J(Tn - Pn)2 + (rn - Pn)2 < 2)26, so IF(Tn,rn) - F(Pn, Pn)1 < 1E. 

Case 3: q - P 2:: 6 and s - r < 6. 

For each n 2:: N7"} ' fix rn E (T,S) such that f~(rn) = 6.fn(r ,s). Then for all n 2:: N7"}' 

16. fn (p, q) - 6. /n (r, s) 1 ::; 16. fn (p, q) - 6. f(P, q) 1 + 16. f(P, q) - 6. f(r, s) I 

+ l6. f(T, s) - f'(rn)1 + If'(rn) - f~(Tn)1 

< 7"} E + E + 7"}E + 7"} E 
333 

The bound for t he second term comes from the fact that [a, b] is E - [0, 1] good for 

f. The bound for t he t hird term follows from the fact that J(r - Tn)2 + (s - rn)2 < 

)26, since t hen IF (r, s) - F(Tn, rn)1 < y. 
o 

Definition 3.4.5. Let E E Q, U E U , and let 9 E C 1 ([0, 1]) . We say that E is U-sharp 

for 9 if, for each E' < E, rE',u(g) > rE,u(g). 

Proof of Proposition 3.4.3. Let U E U be given. Because each f n is in C 1 ([0, 1]) , 

<PE,U(fn) =< 0, rE,u (fn) >= TE ,U(fn); that is , we need to determine the values E E Q 

for which limn -+oo TE,U(fn) exists . We first note that limn -+oo rE,u(fn) exists if E is not 

U-sharp for f. For suppose t hat E E Q isn't U-sharp for f , and fix E' E Q such t hat 

E' < E and rE',u(f) = rE,u(f) = B(l , m). If la , ... , Iz- 1 is an E' - m cover of 0' for f in 

0', then by Lemma 3.4.4, it will be an E - m cover of 0' for all but finitely many fn in 
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D. Hence lim sUPn->oo r€,u(f) and lim infn->oo r€,u (f) both exist and are bounded by 

r€,u(f). Moreover , it 's impossible to have liminfn->oo r€,u (f) < r €, u(f). If (fnJ were 

a subsequence with r€, u(fnj ) = B(l' , m') < B(l , m) for all j, then, as in the proof 

of Theorem 3.3.13 (i.e. , t he proof of the base case CY.€,u = 0), we could produce an 

E - m' cover of D for f in D consisting of I' many intervals, a contradiction. Hence 

lim infn->oo r €,U (f) = lim sUPn->oo r €,U (f) = r €,U (f) . Secondly, we note t hat for each 

fixed EO E Q, there are only finitely many points E E Q such t hat E > EO and E is 

U-sharp for f. This is because t he function E f---+ r€, u (f) is a decreasing map into N. 

Thus if Eu is the set of U -sharp points for f , it is as needed. 

o 

Corollary 3.4.6. Suppose (fn) is a sequence in Cl([O , 1]) , f E DIFF, and fn -7 f 

uniformly. Then f~ -7 l' uniformly if and only if for each U there is a dense set 

Qu ~ Q such that limn->oo ¢€,u (f n) exists for each E E Q u· 

Proof. 

¢=: This follows from t he proof of Proposition 3.4.2 , which shows t hat the proposi

t ion's hypothesis that (fn) converges in the scale {¢€,u lE E Q , U E U} can be replaced 

by t he weaker hypothesis that limn->oo r €,[O,lj(fn) exists for all E in some dense subset 

Q[O,lj of Q. 

=?: Proposition 3.4.3 

o 
Thus, where sequences of Cl([O, 1]) functions are concerned (in other words, funct ions 

with I . IDIFF-rank I), uniform convergence of the derivatives is roughly equivalent to 

convergence in the scale. However , once we allow limn->oo If nl DTFF ?: 2, the relat ion

ship between convergence in the scale and convergence of t he sequence (f~) is not 

as strong. As the following proposit ion shows, even if the funct ions fn are required 

to have I . IDIFF-rank 2, convergence in the scale no longer guarantees convergence of 

(f~) , even pointwise. 

Notation: We write "'I/*x E U" for "for all x in a comeager subset of U" (see [3], 

§8.G) . 
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Proposition 3.4.7. There exists a sequence (In) in DIFF with the following proper-

ties: 

i) (In) converges in the scale {<Pe,U l EE Q, U E U} , 

ii ) in -+ ° uniformly, 

iii) Vn E N, IfnlDIFF = 2, 

iv) V*x E [0,1], limn -+oo f~(x) does not exist. 

Proof. Define t he auxiliary function g : [0 , 1] -+ IR in the following manner: let 

g(O) = 0, for each k E N+ let g(i) = -1 , gO(i + k!I)) = 1, and on each of the 

intervals [k!I' ~(i + k!I)], [~(~ + k!I)'~], define 9 to be linear. 

1 

1 

- 1 

graph of g 

Thus 9 is a piecewise linear function which is discontinuous exactly at 0. Also, 9 is 

a derivative, i. e., the function f(x) = foX g(t)dt is differentiable , and f'(x) = g(x) 

for each x E [0 , 1] (see , e.g., [1], p . 27). Now, for each n E N, define the funct ion 

gn : [0, 1] -+ IR as follows: for each k E {O, ' .. , 3n - I} , let mn,k be the midpoint of 

t he interval [3kn ' k;3tl] and set 

. {I 3n -l } If X E 0, 3n, ... , ---:3'" 1 , 

'f (k k+l) 1 X E 3n, "3" . 
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1 
2" 

graph of 90 

• 1 
2 

graph of 91 

5 
6 

9n is discontinuous exactly on the set {mn,k I k = 0, .. . , 3n - 1} , and the funct ion 

In : [0 , 1] -+ lR given by 

is differentiable, and I~(x) = 9n(X) for all x E [0 , 1]. This sequence (j~) is the example 

which proves Proposition 3.4.7: 
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It is straightforward to check that fn -7 ° uniformly. To check t hat properties 

(i) and (iii) hold , we first note that for any n E N and any k E {O, '" , 3n 
- I} , 

asci:' (mn,k) = 2, so by Proposition 3.2.6, 

J[j)U(f, fn, U) = {mn,k 1 k = 0"" ,3n - I} n U 

for each f E Q and each U E U. In particular, for n sufficiently large, J[j)U(f , fn, U) 

will be finite and nonempty. Because the J[j)-derivative of a finite set is empty, 

J[j)b( f, fn , U) = 0, so limn -+oo Pf,U(fn) = 1 for each f E Q and each U E U ; also 

IfnlDIFF = 2 for each n E N. Thus (iii) holds, and to verify (i), we need only check 

that limn -+oo r f,U (f n) exists for each f E Q and each U E U. 

Lemma 3.4.B. Let (fn) be the sequence of functions defined above, and let no E N, 

f E Q, U E U be given. Suppose that [a , b] is f - J[j)U( f, f no, U) good for fno in U, and 

that into([a, b]) contains a discontinuity x of f~o ' If n ;::: no is sufficiently large that 

B(x, 2.1n) n U ~ [a , b]' then [a , b] is also f - J[j)U(f , fn, U) good for fn in U. 

Proof. Toward a contradiction, suppose that nl ;::: no is such that B (x , 2.in l) n U ~ 

[a, b], but [a , b] fails to be f - J[j)U(f, fnl' U) good for fnl in U. Witnessing this, let 

p, q, r, SEQ n intO([a, b]) , p < q, r < s, be such that 

[p, q] n [r , s] n J[j)U(f, fnl' U) i= ° and I~inl (p, q) - ~in l (r , s)1 > f. 

Essentially, we 'll show that if p, q, r , s exist as above, then there also exist pi, q' , r', s' E 

B(x , 2.inl ) n U which witness the failure of [a, b] to be f - J[j)u( f , fnl ' U) good for fnl in 
- . - 1 - 1 
U. Smce J[j)U(f, fn l> U)nB(x, 2.3nl) = J[j)U(f, fno' U)nB(x , 2.3nl) and fnl fB(x ' 2}'l )nO = 

fno f B(x 1 )nO, this leads to a contradiction. 
' 2.3"'T 

Because [p, q] n [r, s] n J[j)u( f, fnl' U) i= 0, there exists k ::; 3nl for which m nl,k E 

[p,q] n [r ,s]. In particular, r,p::; m nl and q,s;::: m nl . Because 
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we can find points p' , r' E [3~] , mn] ,k] and q', s' E [mn] , ;;;}] such that 

ii) if p E [3~] ,mn] ,k], then p' = p 

and similarly for q', r', s'. Thus Iq' - p'l ::; Iq - pi and Is' - r'l ::; Is - rl, so 

16jn] (p, q) - 6jn] (r , s)1 =16jn] (p, q)1 + 16jn] (r, s)1 

::;1 6jn] (p' , q')1 + 16 jn] (r' , s')1 

=16jn] (p' , q') - 6 jn] (r' , s') I, 

since then sgn6jn] (p' , q') = -sgn6jn](r' ,s') as well. Ifsgn6 jn](p,q) = sgn6 jn](r,s), 

then max(16jn] (p, q)I, 16jn] (r , s)l) > E; without loss of generality, suppose that 16jn] (p, q)1 > 

E. Because i~] (mn],k) = 0, we can find r", S" E Q such that r" < mn],k < S" and 

16jn] (p', q') - 6jn] (r", s")1 > E. In either case, if [a, b] isn 't U good for i n] in U, we 

are able to find points p*, q*, r*, s* in Q n B(mn] ,k, 2.in]) n U such that 

By the periodicity of in!' we would therefore also be able to find points in B (x ) 2 in] ) n 

U which witness the failure of [a, b] to be E - [})U(E, inll U) good for i n! in U. But , 

as noted above , in]IB(x ] )nO = inalB(x ] )nO and [})u(E,inl 'U ) n B(x )?in1 ) = 
1 2.J'f'IT ' 2.3TIT ... 

[})u(E,ino,U) n B(X'2.inl) = {x}, so this would imply that [a , b] fails to be E -

[})U(E, ina ' U) good for ina in U, a contradiction. 

o 
From Lemma 3.4.8 it follows that for each E E Q, and each U E U , limn->oo TE,U(fn) ex

ists. Clearly the lemma shows that the sequence (rE,u(fn)) n must be bounded. More

over, we cannot have subsequences (r E,U(fnk))k and (rE,U (fnl))1 with limk->oo rE,U(fnk ) < 
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limz---+oo r€,U(fnl)' because this would also contradict Lemma 3.4.8: in the notation of 

the lemma, set no to be any nko such that r€,u(fnko) = limk---+oor€,u(fnJ. Thus (fn) 

converges in the scale, i.e., property (i) holds. 

Finally, we verify property (iv). For each x E [0 , 1]' let 2::1 ti~~) denote the ternary 

expansion of x (so for each i , t i(x) E {O, 1, 2}) , and for each n E N+, let Xn = 
",, 00 ti(X) Th 
L i=n 3i. en 

f~(x) = gn(x) = g(lx - mn,kl) = g(lxn - 2 . ~n I) , 

where k E {O,·· · , 3n -I} is such that x E [3:' k31;;1]. Denote IXn - 2.~nl by x~ , and 

define, for each N E N, 

AN = {x E (0, 1]13nl , n2 ~ N such that g(x~J E [-1 , -~) and g(x~J E (~, In · 

Let A = n N AN. A ~ {x E [O,l]llimn---+oof~(x) does not exist } , and each AN is 

open; if we can additionally show that each AN is dense, then A, and hence { x E 

[0 , l]llimn---+oo f~(x) does not exist }, must be comeager. Toward this end , fix Nand 

let Y E [0, 1]' 6 > ° be given; we'll show that AN n B(y , 6) =1= 0. Let lVh ~ N be such 

that )11 < 6, so that if ti(x) = t i (y) for all i ::; M 1 , then Ix - yl < 6. Let kl E N+ be 

sufficiently large that ti ( ~1) = ° for all i ::; M 1, and define 

Then g(IXM1 - 2.3J1+ 1 1) = g(~) = -1. Now let M2 ~ Ml be such that for any TJ E ffi., 

(which is possible, because 9 is continuous at u = IXM1 - 2.3J1+ 1 I) , and let k2 E N+ 

be sufficiently large that ti(~(~2 + k2~1)) = ° for all i ::; lVh. Let 
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Then g(IXM2 - 2.3J2+ 1 1) = gO(~2 + k2~1)) = 1. If we let x E [0,1] be the point 

then clearly x E B(y , 5), and if nl = Ml + 1, n2 = M2 + 1, then g(X~l) E [- 1, -~), 

and g(X~2) = 1 E (~, 1] . So x E AN, as needed. 

D 

R emark: Motivated by an interest to strengthen property (iv) of Proposition 3.4.7 to 

iv') For co-countably many x E [0,1]' lim f~(x) does not exist, 
n-+oo 

we posed the following question to Z. Buczolich: 

Let S* S;;; [0 , 1] be the set of all points x which satisfy the following property: for 

infinitely many integers n, there is some positive integer k such t hat 

-- - -- - lk <--
I 
{3nx} 1 I 1 

3n 2 . 3n 6 . k 2 ' 

where {u} denotes the fractional part of u. Is S* co-countable? 

Buczolich has answered this question in the negative , showing that the Cantor set 

contains uncountably many points not in S* (see [2]). Although this neither proves 

nor refutes the truth of (iv'), it seems to suggest that (iv') may be false. 

Nevertheless, for any sequence (In) in DIFF, there is a general connection between 

convergence in the scale and pointwise convergence of the derivatives. The main fact 

which demonstrates this is the following: 

Proposition 3.4 .9. Suppose that (In) is a sequence in DIFF, f E C([O, 1]) , fn ---+ f 

pointwise, and (In) converges in the scale {¢e,U lEE Q, U E U}. Then f E DIFF and 

limn-+oo f~(x) = f'(x) for all x E n eEQ ([0, 1] \ liIDn-+oo ]]J)(E, fn, [0 , 1])). 
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Proof By Corollary 3.4.1 , i E DIFF. We show now that, for each E E Q, if x rt 

limn-->oo JD)( E, i n, [0, 1]) , then lim suPn-->oo li~(x ) - f'( x) 1 ~ 2E. 

Fix E E Q and suppose x rt limn-->oo JD)( E, in, [0, 1]); let V E U be such that x E V and 

VnJD)(E, in , [0 , 1]) = 0 for n sufficiently large . Then by Lemma 3.3.14, JD)V(E , i n, V) = 0 

for all such n, so limn-->oo <PE,v (fn) = < 0, B(l , m) > for some l , mEN. In particular , 

for each n sufficiently large, there exist a closed interval [an, bnJ s;;: 11 such that [an , bnJ 

is E - V good for i n in V and B(x,~ ) n V s;;: [an, bn]. If we let [a , bJ = n n[an, bn], t hen 

[a , bJ contains x in its V-interior and it is uniformly E - V good for each in in V, n 

sufficiently large (say n 2: NI) ' 

Fix p, q E intv([a, b]) such t hat P ~ x ~ q and l~f(P , q) - f'(x)1 < ~, and for each 

n 2: N I , fix Pn, qn E intv( [a, b]) , such that Pn ~ X ~ qn and l~fn (P, q) - i~(x)1 < ~ . 

Then for n 2: N I , we have 

li~ (x) - f'( x)1 <1 ~fn (Pn , qn) - ~f(P, q)1 + E 

~ I~fn (Pn, qn) - ~fn (p, q)1 + I~fn (p , q) - ~f (P, q) I + E. 

Because [a , bJ is E - V good for i n in V and lPn, qnJ n [p , qJ n V =1= 0, I~ fn (Pn, qn) -

~fn (P , q)1 ~ E; b ecause in(P) -t i(p) and i n(q) -t i(q) , l~fn(P , q) - ~f(P, q)1 -t 0. 

Hence it follows that 

limsupli~(x) - f'( x )1 ~ 2E 
n-->oo 

for each x E [0, IJ \ limn-->oo JD)(E , i n, [0 , 1]) , and so limn-->oo i~(x) = f' (x) for each x E 

nEEQ ([0, 1 J\ limn-->oo JD)( E, in , [0 , 1])). 

o 

R emark. If (fn) is the sequence discussed in Proposition 3.4.7, then we have, for each 

E E Q, 

lim JD)(E , in, [0, 1]) = lim { 22
ktnl I k = 0" " 3n - I} 

n-+<X) n-+oo 

=[O, IJ . 
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Thus this example shows that, at least in the sense of category, Proposition 3.4.9 is 

best possible. 

We next show that , under certain conditions on functions f n and f as in the hypothesis 

of Proposition 3.4.9, for each f E Q the set limn-->oo [})(f , f n, [0 , 1]) is nowhere dense , 

and hence f~(x) -.. f'(x) \I*x E [0 , 1]. We begin by stating a useful fact whose proof 

was given in the proof of Theorem 3.3.13: 

Proposition 3.4.10. Suppose that (fn) is a sequence in DIFF which converges in 

the scale and converges pointwise to a function f E C([O, 1]). Let f E Q, U E U 

be given, let Ct E,u = limn-->oo PE,U(fn), and let B(l , m) = limn-->oo r E,u (fn) . Th en there 

exists a subsequence (fnk) and a corresponding sequence (Ck ) such that 

i) \lk, Ck = {[a~ , b~], .. . , [aLl ' bLI]} is an f - m cover of [})~€,U (f, f nk' U) for f nk 

in U consisting of l intervals . 

ii) :Jao , bo, ... ,ai- I, bl - l E [0 , 1] such that for each i :s; l - 1, 

lim a7 = ai and lim b7 = bi. 
k-->oo k-->oo 

iii) By possibly shrinking or omitting certain of the intervals [ai, bi], we obtain an 

f - m cover [a~ , b~] , .. . , [a;' _ l' b;'_ l] of limn-->oo [})~€,u (f, f n, U) for f in U. 

In particular, 

[})U ( f' f, lim [})~€,U (f, fn, U)) = 0. 
n-->oo 

Definition 3.4.11. f E DIFF is everywhere p-rank Ct if: 

i) \If E Q, U E U PE,U(f):s; Ct 

ii) \lU E U :Jf E Q such that PE,U (f) = Ct (and hence, by monotonicity, PE',U (f) = Ct 

\I f ' :s; f). 

Theorem 3.4.12. Let (fn) be a sequence in DIFF which converges in the scale and 

converges pointwise to the function f E C([O , 1]). If there exists k < w such that f 

and each f n are everywhere rank k , then \I*xf~(x) -.. f'( x) . 

Lemma 3.4.13. Let (fn) be a sequence in DIFF which converges in the scale and 

converges pointwise to the function f E C([O, 1]) , and suppose that f and each f n are 
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everywhere rank k , for some k < w. Then for each U E U , and each E E Q for which 

P€,u(f) = k, 

JD)~(E, f , lim JD)U(E, f n, U)) = 0. 
n--->oo 

Hence limn--->oo JD)U(E, f n, D) of:- D. 

Proof. Let U E U be given , and fix E E Q for which P€,u (f) = k, as in the hypothesis 

of the lemma. If k = 1, t hen limn--->oo P€,u (fn) = 1 also, and so 

by Proposition 3.4.10. 

For the case k > 1, we use the following fact: 

Lemma 3.4.14. Let (fn) be a sequence in DIFF which converges in the scale and 

converges pointwise to the function f E C([O, 1]) . For each E E Q, U E U , let 

Ct€,u = limn--->oo P€,u (fn) ; then for any (3 ::; Ct€ ,u, we have 

f3 - f3+ 1 -
JD)U(E , f , lim JD) (E , f , U)) s:;;; lim JD)u (E, f , U) . 

n~~ n~~ 

Proof: If (3 = Ct€,u, then by Proposit ion 3.4.10, JD)U(E, f , lirn.".--->oo JD)~(E, fn, U)) 

0, so the assertion holds. Now suppose that (3 < Ct€ ,U; we first note that each 

of the sets JD)u(E , f , lirn.".--->oo JD) f3 (E,f,D)) and limn--->ooJD)~+l(E,f,U) are contained in 

limn--->oo JD)~(E , fn , D). SO let x E limn--->oo JD)~(E, f n, D) be given, and suppose that 

x rf- limn--->oo JD)~+l(E, f , D); we 'll show that x rf- JD)U(E, f , lirn.".--->oo JD)f3 (E , f, D)). Since 

x rf-lirn.".--->oo JD)~+l( E, fn , D), t here exists V E U , V s:;;; U, such t hat for all n sufficiently 

large, V n JD)~+l(E , f n, U) = 0. By Lemma 3.3.14, this implies that limn--->oo P€,v(fn ) = 

/3; but then by Proposition 3.4.10, 
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and this in turn implies that 

. (3 -
V n JD)U(E , i , hm JD)U(E, in, U)) = 0, n--+oo 

because, for all W E U , W ~ V , we have , by Lemma 3.3 .14 

(This last inequality follows because, for any W' E U , W ~ W' , W' ~ V , we have 

- (3 - (3-
W n lim JD)U(E , in , U)) ~ Wi n lim JD)U(E , i n, U)) 

n~CX) n--+oo 

- (3 -
~ lim (W' n JD)U( E, in, U)) n--+oo 

~ lim JD)WI(E, inW') n--+oo 

~ lim JD)v( E, in V).) n--+oo 

o 

Returning to the proof of Lemma 3.4.13, let E E Q be such that PE,U (f) = k. By 

Proposition 3.4.10 we have 

and by Lemma 3.4.14 we have 

for each of l = I , ... ,k. Hence repeated substitution yields 
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while, because f was chosen such that Pf,U(i) = k, IlJ)t(f, i, U) i- 0. Thus 

lim IlJ)u(f,in,U) i- U. n---. (X) 

D 

Lemma 3.4.15. Let (in) be a sequence in DIFF which converges in the scale {¢f,u l f E 

Q , U E U} , and let f E Q, U E U , K E K(U) , a E Ord be given. If V E U is such 

that V ~ limn---.(X) IlJ)~(f, in, K), then limn ---. (X) IlJ)~( f, in, V) = V. 

Proof. Using the fact that limn ---. (X) IlJ)~ ( f, in,K) = TlimsuPn---.(X) IlJ)~(f,jn,K) (see [3], 

§ 4 .F) we have 

V ~ lim IlJ)~(f , in , K) <::} n---.(X) 

\/x E V:3(xn) such that Xn --+ x and \/n Xn E IlJ)~( f, in, K) =}-

\/x E V:3(Xn) such that Xn --+ x and \/(X) n Xn E IlJ)~ ( f, in, K) n v=}

\/x E V:3(Xn) such that Xn --+ x and \/(X)n Xn E IlJ)~( f, in, K n V) =}

V ~ lim IlJ)~(f, in, K n V) ~ lim IlJ)~( f, in, V). 
n~oo n~oo 

D 

Proof of Theorem 3.4.12. We claim that for each f E Q, the set limn---.(X) IlJ)( f, in, [0, 1]) 

is nowhere dense. Toward a contradiction , suppose otherwise: let f O E Q and Uo E U 

be such that Uo ~ limn---.(X) IlJ)( fO, in, [0, 1]) ; by monotonicity, Uo ~ limn---.(X) IlJ)( f, in , [0, 1]) 

for each f ::; fO as well, so in particular , Uo ~ limn---.(X) IlJ)( f, in, [0,1]) for each f such 

that Pf,U (i) = k . But t hen by Lemma 3.4.15, limn---. (X) IlJ)uo(f, in, Uo) = Uo, which 

contradicts Lemma 3.4.13. 

D 

We conclude this section with a couple of related results which are specfic to the case 

linl ::; 2 for each n: 

Theorem 3.4.16. Suppose that (in) is a sequence in DIFF, i E C([O, 1]) , in --+ i 

pointwise, and (in) converges in the scale {¢f,U I f E Q , U E U}. Suppose also that 
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IJnIDIFF::; 2 for all n. Then there exists an open set 0 such that 

i) 'Y*x E int([O, 1]\0), limn->CXl f~(x) = 1'(x), 

ii) l' r 0 is continuous. 

Proof. Define 

0 = U int U~~ ID(E, fn, [0, 1])) 
EE Q 

CXl 

= U int (lim ID( l, fn, [0,1])) . 
n ----jo(X) m 

m=l 

By hypothesis, for each n, IfnlDIFF ::; 2, so for every E E Q, U E U, PE,U (f~) ::; 

1. If limn->CXl PE,[O,l j Un) = a for each E, then 0 = 0 and the assertion holds by 

Proposition 3.4.2 (in fact , l' is continuous on [0,1] and f~ ---+ l' uniformly on [0,1]). 

Hence we consider the case in which limn->CXl PE,[O,lj Un) = 1 for all E sufficiently 

small. Because n : =llimn->CXl ID(~, fn, [0,1]) is dense in int([O, 1]\0) , (i) holds by 

Lemma 3.4.9. It remains to verify (ii) . By Proposition 3.4.10 and Lemma 3.3 .14, 

ID(E, f, [0, 1]) n int U~~ ID( E, fn, [0, 1])) = 0. 

Hence by Proposition 3.2.6 and the fact that U : =llimn->oo ID( ~, fn, [0,1]) is an in-

creasing union, 

CXl 

x E U int (lim ID( l, fn, [0, 1])) '* 'Ym ~ 1, x (j. ID(~, j, [0, 1]) 
n ---+oo m 

m=l 

'* OSCfl(x) = 0, 

i.e., l' r 0 is continuous. 

o 

Corollary 3.4.17. Let Un) and f be as described in the hypotheses of Theorem 3·4 ·16. 

If, additionally, the set {x E [0 , 1]1 l' is discontinuous at x} is dense in [0,1], then 

'Y*x E [0,1]' limn->CXl f~(x) = f'(x). 
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Question: Is there an analogue to Corollary 3.4.17 for a sequence (fn) in DIFF whose 

elements have I . IDIFF-rank greater than 2? That is , if (fn) is a sequence which 

converges in the scale and limn->oo lin lDIFF = a > 2, is there an analytical condition 

Car. which would guarantee that U tEQ limn->oo ]]))(€, in, [0,1]) were nowhere dense, and 

hence that 't/*x, limn->oo i~(x) exists? 

Question: Can Theorem 3.4 .12 be generalized to the case in which each in and i are 

everywhere rank a, for any given a < WI? 
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