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ABSTRACT
1. A numerical method was developed for smoothing thermody-
namic data with a digital computer.I As a feasibility study, data on
specific volume and enthalpy from the skeleton tables of the Sixth
International Conference on the Properties of Steam and from the
tables of Keenan and Keyes were smoothed and interpolated. Orthog=-
onal polynomials of temperature and pressure were used as the
smoothing functions. In order to maintain thermodynamic consistency
between the smoothed values of the two thermodynamic properties,
Lagrange multipliers were used in conjunction with least squares
techniques to accomplish the curve fitting. Excellent agreement was
obtained between tabulated and smoothed values of the above proper-
ties and their derivatives except near the critical region where data
were sparse. The method is recommended for the smoothing of the
above and other thermodynamic_properties which may be subj;—zct to

consistency restrictions.

11, Data on the Chapman~Cowling diffusion coefficients of liquid
hydrocarbons were expressed analytically in terms of the physical
properties of the liquid phase and the nature of the components. The
weight fraction of the light component, temperature, and the molecu=
lar weight of the heavy component served satisfactorily as independent
variables to describe the recent data of Sage for binary hydrocarbon
systems. The results permit the calculation of the Chapman-Cowling
diffusion coefficients in the liquid phase for saturated hydrocarbons

from methane through n-decane.



i

I1I, The above data were used in the testing and formulation of
correlations of diffusion coefficients of binary liquid mixtures. The
correlation methods which were tested were the following: empirical,
rate process theory, hole theory, and kinetic theory. The hole theory
was inadequate for describing the available data on mutual diffusion;
accurate empirical and rate-process expressions were developed for
calculating Chapman=-Cowling diffusion coefficients for binary mix-
tures of methane and ethane with heavier hydrocarbons through n-
decane and a heavier "'white oil; " although the expressions which
were tested from kinetic theory did not predict correctly the depend-~
ence of the data on temperature and composition, they presented good
approximations and appeared to be a promising area for future de-

velopment.
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I. A NUMERICAL METHOD FOR SMOOTHING

THERMODYNAMIC DATA
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INTRODUCTION

The use of programmed numerical methods to smooth and in-
terpolate tables of thermodynamic data is becoming increasingly
justified in terms of time, energy, and money required to do the
work. This work describes a feasibility study for such numerical
smoothing and interpolation of the recently published skeleton table of
the Sixth International Conference on the Properties of Steam (4).

In general, the easiest method to smooth data is to express the
data in a characteristic form which varies slowly within finite limits
(2). Keenan and Keyes (5) used such a procedure and approximated
the thermodynamic behavior of steam with equations. Then they
smoothed the residual values of the data graphically., Their technique
would be satisfactory for present purposes if the residual values
could be smoothed numerically. To accomplish this smoothing when
the behavior of the residual values is arbitrary and the independent
variables number more than one, a very convenient method us‘es
orthogonal polynomials in the manner of Pings and Sage (6). In fact,
Bright and Dawkins (1) found that the use of orthogonal polynomials
often produces curves which fit the data much better than would the
curves of conventional polynomials. However, to overcome the
necessity for data points at equally spaced intervals which accom-
panied the particular orthogonal polynomials used by Pings and Sage,
the generalized orthogonal polynomials of Forsythe (3) are preferred.

Thus, it should be possible to fit any reasonable function by a

least squares analysis and interpolate and smooth it with sums of

orthogonal polynomials,
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THEORY
Forsythe (3) suggested the following as a recursion formula to
generate a set of orthogonal polynomials for a set of I data points,

arbitrarily spaced.

Pl(x) = 1 (1)
Polx) = (x-0a,)P,(x) (2)
Pols) = (= - 0y)P,(x) = B,P (x) (3)
P x)=(x-al)P - B 1P, 2(x) (4)

The a's and PB's are found as follows. Multiply each side of
Equation 4 by Pn_l(x) and sum over the I data points, as
I

I
_ 2
P15 PR0) = =z %iFnaa oy Z

M =t

Z
Pn-1()

e
i

I

- Bt 12;1 PP olx). (5)

An orthogonal polynomial is defined by the equation for discrete

variables
I
iE:l Pj(xi)Pk(Xi) = Sjk X constant, (6)

Therefore, Equation 5 reduces to give

I > 1 2
@ = (izlxipn"l(xi)) (12 Pn-l(xi) (7)

: =1

Similarly, Bn-l is found to be

I 5
(.zlpn-z(xi)) - (8)
i=

I
Po1 = ( %P2t Py O)

n-1 i=1

However, from Equations 4 and 6, it is seen that
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I, I
Z PLx) = T xP (x)P_

x.) . (9)
= i=1

-1( i

Combining Equations 8 and 9 gives the expression for the calculation

of ﬁn_ 1

I > I 5
Fhat = (Elpn-l(xi)) ( L P = )) ' (10)
i= i=1

In least squares fitting with orthogonal polynomials, it is very
convenient to know the relative contributions of the individual poly~
nomials in the series. If it is known that the polynomials all range in
value from about 0.01 to 1.0, the relative size of the coefficient of
each polynomial gives directly the relative importance of the poly=-

nomial's contribution to the function. Therefore, it is very conveni-

ent to define an orthonormal polynomial by the equation

I
2 P(X)Pk(x) = &

. 11
s i (11)
From Equations 6 and 11, it is found that
1 I
<~ = constant = by P (x) (12)
i i=1
and
O -
Pj(Xi) = Pj(xi)Fj . (13)

Now Pjo(xi) will always be < 1. 0 and may be used to advantage as
described above in place of a polynomial which is only orthogonal.

A least squares fit of data by such polynomials would be of the
following form. Dependent variable y is a function of x, There-
fore, express y as

K
y = & APk(x) . {14)
k=1



Y

Given 1 data points of x and y , the K coefficients Ak can be de=~

termined by minimizing the sum S with respect to the Ak‘s .
I K
S = %[y, - ZAP()] (15)
i=1 k=1
5= ’:L: P(x)+ZI IgA PO(x, )PO(x,) = 0 (16)
Z o B R0 S

Combining Equations 16 and 11 gives the expression for the calcula-
tion of Ak .

I

Ak:ZVP(X) (17)
i=1

The complication of having more than one independent variable
can be handled by obtaining sets of orthonormal polynomials for each
independent variable and forming all of the cross~-products of them,
as illustrated here for two such variables. The polynomials will be

Po(x) and To(z) » where y = f(x,2z). y is expressed as
K L

y = 2x)TD(x) o (18)
- 1 z—lAM kKL

Again, a least squares manipulation gives the expression for the coef~

ficients

I K, L o o o . I . .
izl ;f‘ , Ay Pl )Tz )P ()T (2.} = iLﬂlwyj.gf’m(xi)Tn(zi) (19)
or
K, L 1 I

r A P (X )P (X )T (=, )T (z )= Z Y P (X )TO(Z ) . (20)
Kt < im ¢ o

Unlike Equation 17, this expression involves all of the coeffi-

cicnts Ak since an(xi) and Tg(zi) are not necessarily orthogonal to

1

each other, Thus, unless additional conditions are met by the data,
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K+ L simultaneous equations like Equation 20 would have to be solved
as in the normal multiple linear regression procedure. However, if
the data consist of a rectangular set -~ that is, there are data points
at the same set of x's for each value of z ~- the sum over i in the
left portion of Equation 20 can be replaced with a double sum over x
values and z values. The inner sum then covers the entire range of

its variable and results in the orthogonality relationship 11, giving
I I
- o o 20 20
A__ = <i§1yiPm(xi)Tn(zi))/(iEIPm(xi)Tn (z,)) . (21)

It can be shown that, for orthonormal polynomials of a rec-
tanglular set of data,

I
2o 20
iZ:lPk (Xi)T«t (Zi) =

Hh-d

, (22)

for any k or £ . Therefore, Equation 21 becomes

I

B o o
Amn = Iiglyipm(xi)Tn(zi) . (23)

When data for two different but related functions such as vol-
ume and enthalpy are being smoothed simultaneously, the least
squares fit may be forced to conform to the interrelation between the

functions. In the case of volume and enthalpy, the smoothed points

would have to satisfy the thermodynamic relation

oH ov
e = Ve T{=— o (24)
( or T (3T P

Up to this point, the fitting of data by least squares has not
involved inverting a matrix except when the data were not a rectan=-
gular set. Thus, unless the data were taken very close to a two-

phase boundary, they could be a rectangular set; if a rectangular set
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were used, a diagonal matrix would result and give the trivial inver-
sion solution of Equation 23. However, when restrictions such as
Equation 24 are placed on a fit of data, the least squares matrix is
always non-diagonal. It may be simplified to give a matrix of the
order of the number of restrictions only if the data are a rectangular
set. This matrix, of relatively low order, then should not be diffi-
cult to invert. The least squares coefficients could then be calculated
from the Lagrange multipliers which were obtained from the inverted
restriction matrix. As an example, the development will be given for
a least squares fit of PV/T and H/(T+a) in the gas phase, assuming

a rectangular set of data points.

Define
_ H
@ = Trz ~ b (25)
and
PV
Y = -—T~ - R . | (26)

In terms of a and y, Equation 24 becomes
Z
da, _ T ,0y
(T + a)(TP>T DR =2 (3T P ° (27)

v will be expressed in terms of the K temperature polynomials
le(T) , the L pressure polynomials PE(P) , and the coefficients
Ak«f, . o will be expressed in terms of the N temperature poly-
nomials UE(T) , the M pressure polynomials Q(:n(P) , and the coef=~

ficients B . Thus,
mn

K L o
v = % 3 A TATIPOP) (28)
k=1 g=1 ©F KT

and
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g B UYTIQC (P) 2
aTR? (P) . (29)

M
o = % mn
m=

1 n=1

Restriction 247 can be expressed at temperature Tr and pressure Pr

as
M, N o! o Trz K, L
=(T+a) £ B_ QO (P )JUAT )+& = Ak%Tk(T)P&(Pr): 0
m, n r k,4

(30)
with the associated Lagrange multiplier 7\1 . An additional restric-

tion on the fit may be that vy - 0 as P - 0 at Tr’ or
K, L
R=ZAT(T)P(0):O (31)

2 K, 4 kL 7k

with the associated Lagrange multiplier A, . Now, for convenience,
g g P 2

additional functions will be defined as

I
— (o]
q, = T(T JP(0) (33)
P, = Tg(TT)PE(PT) (34)
= g 2.Q° (P.)US(T.) (35)
gmn j=1j m>j n' 7]
_ ~O! o
h__ = Q (P )UXT ) (36)

The least squares sum for the simultaneous fits of y and o,
with the two restrictions 30 and 31 included by using the Lagrange

multipliers, is

I K, L : J M, N o 5 5
S= I [y,- I A TP(T)P(P,) +zra- £ B__UT.)Q° (P.)]
i=l ' k1 ke k L =1 ) m,n noyomey
o M. N o T %K, L o o
0T +a) & B Q° (P )UAT )+p- £ A T (T )PP )]+

m,n r k,4
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respect to the A's,

2
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K, L
L A
k, 2

3

k{,Tk(Tr)PJE,(O) :

(37)

The A's and B's are found by minimizing the sum S with

A's , and B'

5 .

Then o and y (or H and V) and

their derivatives may be determined at the point Tr’ P1~ . The mini-

mization of S gives

2
TI‘
T s ) P ) (38)
an = I Emn ~ Athn[Tr-Fa] ) (39)
where the L\'s are found from the solution of the matrix equation
K,L T® K, L I
X G - F P M
k, 2 k r k,2 Lk~
Tl K, L T:f K,L SMN =
I=— Z q,.,p I— Z p ,tJN(T_+a)” & h Y
Pr K, £, ke ke PZ K, 2 k4, r m, 1 mn L 2)
L T _
,_K, . -
kE . SR )
Y (40)
T]:' K, L M, N
1‘15-_ % fkf,pk&+J(Tr+a) Z grnnhmn
r k, 4 m,n
The derivatives of the polynomials are necessary to the above
analysis. Differentiation of Equation 4 gives
Pl(x) = P__ (x)+ (x-q )P _ (x) - B__ P! (x) (41)
1 - - - - - 1
Pl(x) = P__ (x)+(x-a JP__,(x)+[(x-a Mx-a _,)-B _,1P! (x)

- ﬁn- Z(X-an)Pn

_3(x) .

(42)

It is seen that the following recursion formula applies:



Puix) = E(Ei’l - E, ,IPi(x) (43)
where
1 7 Byrp, 1%5)
2 ° Bz, 1P
E;, =1
E; , = 0
74,1 = 0
Also,

P‘;'(X) = P:](X)FJ n (44)
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PROCEDURE

The step-by-step method for obtaining smoothed or interpo-

lated values of specific volumes and enthalpies from a set of data

points is as follows.

1.

Select a grid of data points of desired size in the range of
interest (either manually or by machine).

Generate the appropriate orthonormal polynomials in each
independent variable from the data.

Calculate the polynomials and their appropriate deriva-
tives at the point of interest (the latter if thermodynamic
restrictions are to be imposed).

Set up the thermodynamic restriction matrix and solve for
the Lagrange multipliers.

Calculate the least squares constants.,

Evaluate the least squares fit (optional).

Calculate the smoothed or interpolated properties at the

point of interest.

All of these steps except the first have been programmed by

the author in Fortran IV language for calculation on an IBM 7094 com-

puter. The first step is easily programmed as well,
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RESULTS

The data which were used in this feasibility study are given in
Tables 1 through 5. The data in the first four tables were converted
from data published by the Sixth International Conference on the
Properties of Steam (4); those in Table 5 were taken directly from the
smoothed tables of Keenan and Keyes (5).

When the smooth gas phase properties of Keenan and Keyes
given in Table 5 were fitted, the results were as shown in Table 6.
Fitting PV/T with no restrictions on the behavior of the function gave
an average absolute deviation from the input values for specific vol=-
ume of 0. 005 per cent. The same was true when that property was
described by a function with one restriction on it: that PV/T - R as
P - 0 at the temperature to bhe smoothed. The third case given in
Table 6 shows that the simultaneous fit of PV/T-R and H/(T+ 340)-
1. 200, with the above restriction and the additional restriction that
Equation 24 be satisfied, has greater deviation from the input da’ca
points than the other two cases. The average absolute deviations
from the input volume and. enthalpy data were about 0.02 and 0. 002
per cent, respectively. Good agreement was obtained in each case
with the smoothed values of Keenan and Keyes for values of volume,
enthalpy, and heat capacity, which was calculated by analytical dif-
ferentiation of the equation for enthalpy.

Table 7 was produced using gas phase data from the skeleton
table of the Sixth International Conference on the Properties of

Steam. Since the data covered a much wider range than did those

used in Table 6, the fit was considerably poorer than in the latter.
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Further, since the data points in the gas phase were few, a rectangu-
lar set was not used and matrix had to be inverted as described in the
THEORY section. However, the predicted values agreed to within
less than one per cent with the values given by Keenan and Keyes,
though the data used for the equation, Table 1, may not have been
completely compatible with those of Keenan and Keyes. The cases
with zero and one restrictions were analogous to those in Table 6, A
simultaneous fit of volumetric and enthalpy data was not made because
of the above mentioned necessity for inverting a matrix. In the latter
case, a non-diagonal matrix of the order of 18 or 20 would have to be
inverted to give little or no accuracy in results. It is therefore con-
cluded that, in the absence of enough data to comprise a rectangular
set, the volume and enthalpy data should be interpolated separately at
first. Then rectangular sets of more closely spaced points could be
smoothed simultaneously (without matrix inversion) to give a thermo-
dynamically consistent table, |

The interpolated points in Table 8 were located in the com~
pressed liquid and superheat regions of the skeleton table. The fits
with one restriction were simultaneous fits of specific volumes and
enthalpies restricted by Equation 24. Since the properties varied
rather slowly in the regions, the standard deviations from the input
data were small. Keenan and Keyes' tables did not extend far enough
for comparison of these intarpolated valnes.

The two interpolated points in Table 9 were also obtained
using skeleton table values as input data. The restriction was the

same as in Table 8. As would be expected, the fits were poorer in
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the critical region than in any other, The agreement with Keenan and
Keyes' values was quite poor, also. To obtain accurate interpolations
very near the critical point, it may be necessary to add additional
data from other sources or smooth functions other than those used in
this study.

In all probability, the functions which were used in the smooth-
ing ( PV/T and H/(T+a)=b ) were not the optimum ones. However,
the best fits of the skeleton table data were probably satisfactory in
each region except near the critical point, In fact, good values for
derivative properties in addition to the heat capacity were obtained
but not reported in most cases, There is room for improvement in

t he form of the functions which are smoothed, in the details of how
many temperature and pressure polynomials are used, and when to

apply restrictions in each region of the table,
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CONCLUSIONS AND RECOMMENDATIONS
1. Smoothing of thermodynamic data when the smoothed and
interpolated values must obey certain restrictions can be accom-~
plished accurately and efficiently by using least squares fits of or-
thogonal polynomials. Specifically, enthalpy and volumectric data
from the skeleton table of the Sixth International Conference on the

Properties of Steam may be smoothed in this way.

2. The function to be smoothed and the numbers of tempera-
ture and pressure polynomials to be used must be optimized in any

specific case of smoothing or curve fitting.
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NOMENCLATURE
A constant determined by a least squares fit of data
An _arbitrary constant
A constént determined by a least squares fit of data
An arbitrary constant
A matrix defined by Equation 43
A normalizing vector defined by Equation 12
A matrix defined by Equation 32
A matrix defined by Equation 35
Fathalpy, Btu/lb
A matrix defined by Equation 36
The limit of a sum on i
The limit of a sum on j
The limit of a sum on k
The limit of a sum on 4
The limit of a sum on m
The limit of a sum on n
Pressure, psi
The ith orthogonal polynomial P evaluated at x
A matrix defined by Equation 34
A set of polynomials
A matrix defined by Equation 33

The gas constant: R1 » restricting Equation 30;

R2 » restricting Equation 31
The sum to be minimized by a least squares fit of data

Temperature, degrees R; a set of polynomials
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A set of polynomials

Volume, ft3 /1b

b4 An arbitrary independent variable or data point

v An arbitrary dependent variable or data point

z . An arbitrary independent variable or data poinl

o Recursion vector defined by Equations 4 and 6; residual

variable defined by Equation 25

B Recursion vector defined by Equations 4 and 6
v Residual variable defined by Equation 28

6'1_]' The Kronecker delta

A Lagrange multiplier

Superscripts

o Indicates an orthonormal polynomial

! Indicates a derivative with respect to the independent variable

Subscripts

i, Indicate elements of a series
k, £
m,n

r Indicatcs a particular value of an independent variable at
which interpolation is desired
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TABLE 1.

Sixth International Conference on the Properties of Steam,

-19-

Thermodynamic Properties of Steam from the

Tcmperature

deg. F

482
482
482
482
572
572
572
572
572
572
662
662
662
662
662
662
662
662
662

Gas Phase

DPressure

psi

14, 5038
72,5190
145, 038
362, 595
14, 5038
12,5190
145, 038
362, 595
725.190
1087.785
14,5038
72,519
145,038
362. 595
725.190
1087.785
1450. 38
1812, 975
2175.57

Volume

ft3/lb

38. 5404
7.59916
3. 72750
1.39361

42, 2727
8.36965
4,13116
1.58423
0,726277
0. 427853

45, 9890
9.13213
4, 52361
1.75723
0.831839
0, 519639
0.359454
0. 258538
0. 184052
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TABLE 2. Thermodynamic Properties of Steam from the

Sixth International Conference on the Properties of Steam,

Liquid Phase

Temperature Pressure Volume Enthalpy
deg. F psi £t /1b Btu/1b
32 8702, 28 0. 0148539 25, 2794
32 9427, 47 0. 0155427 217. 3001
32 10152, 7 0. 0155091 292777
32 10877. 8 0. 0154770 31, 2554
32 11603, 0 0. 0154450 33. 2330
122 8702, 28 0.0158150 111.952
122 9427, 47 0. 0157846 113. 758
122 10152, 7 0.0157558 115, 563
122 10877. 8 0. 0157269 117. 369
122 11603. 0 0. 0156981 119. 132
212 8702. 28 0. 0162700 199. 742
212 9427, 47 0. 0162379 201. 376
212 10152, 7 0. 0162043 202. 966
212 10877. 8 0.0161722 204, 643
212 11603, 0 0. 0161402 206, 277
302 8702. 28 0. 0169091 288. 048
302 9428, 47 0.0168674 289,768
302 10152, 7 0.0168274 291. 187
302 10877. 8 0. 0167873 292. 648
302 11603, 0 0, 01067489 294. 069
392 8702. 28 0. 0177404 378. 805
392 9427, 47 0.0176844 379. 966
392 10152 7 0.0176299 381. 169
392 10877. 8 0.0175771 382,330
392 11603, 0 0.0175258 383, 577
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TABLE 3. Thermodynamic Properties of Steam from the

Sixth International Conference on the Properties of Steam,
Critical Region

Temperature Pressure Volume Enthalpy
deg. F psi £t /1b Btu/lb
707 2900. 76 0. 123022 1119.95
707 3263, 35 0. 0398860 851, 247
707 3625, 95 0.0317166 795. 357
707 3988. 54 0, 0298744 779. 880
707 4351, 14 0. 0287852 769.991
752 2900, 76 0. 159384 1211.95
752 3263.35 0,125905 1167, 24
752 3625, 95 0.0961108 1109. 20
752 3988. 54 0.0671174 1024, 51
752 4351, 14 0. 0451721 927.343
197 2900. 76 0. 183732 1270, 42
797 3263. 35 0. 152336 1240. 33
797 3625, 95 0.126386 1206.79
797 3988. 54 0, 104120 1168. 53
797 4351, 14 0, 0848658 1123, 82
842 2900, 76 0.203595 1316, 42
8472 3263. 35k 0. 172359 1293. 64
842 3625, 95 0. 146889 1269.13
842 3988, 54 0. 125745 1242, 48

842 4351. 14 0. 107900 1213, 24



-2 2

TABLE 4., Thermodynamic Properties of Steam {from the

Sixth International Conference on the Properties of Steam,

Superheat Region

Temperature Pressure Volume Enthalpy
deg. F psi ft3/1b Btu/1b
932 50706, 33 0.110976 1288. 91
932 5801. 52 0. 0900238 1429. 36
932 6526, 71 0.0741334 1209. 37
932 7251.90 0, 0622157 1170. 68
932 1977.09 0.0535337 1135, 43
1022 5076. 33 0, 133594 1382, 63
1022 5801. 52 0.111809 1355, 55
1022 ©526.71 0. 0950536 1327. 60
1022 7251, 90 0. 0819184 1299. 66
1022 7977, 09 0.0715064 1272, 57
1112 5076, 33 0. 152432 1460, 02
1112 5801. 52 0. 129525 1438. 95
1112 6526, 71 0.111841 1417, 88
1112 7251. 90 0. 0978408 1396, 82
1112 7977.09 0,0865638 1375.75
1202 5076. 33 0.169155 1529, 23
1202 5801, 52 0. 144983 1512, 47
1202 6526, 71 0. 125825 1495, 27
1202 7251. 90 0.111489 1478. 50
1202 7977. 09 0. 0994586 1461, 74
1292 5076. 33 0. 184533 1594. 15
1292 5801. 52 0. 159063 1580. 40
1292 6526.71 0, 139361 1566. 21
1292 7251, 90 0.123663 1552, 45

1292 7977.09 0.111008 1538. 69
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TABLE 5. Thermodynamic Properties of Steam from the

Tables of Keenan and Keyes, Gas Phase

Temperature Pressure Volume Enthalpy
deg. F psi £t3/lb Btu/lb
260 8 53.28 1175.7
260 9 47,32 1175. 4
260 10 42,56 1175, 1
260 11 38. 66 1174.9
260 12 35.41 1174, 6
260 13 32. 66 1174.3
280 8 54, 80 1185, 0
280 9 48. 67 1184, 8
280 10 43,76 1184. 5
280 11 39.77 1184, 3
280 12 36,43 1184.0
280 13 33,61 1183.8
300 8 56. 31 1194, 3
300 9 50, 03 1194, 1
300 10 45, 00 1193.9
300 11 40. 88 1193.6
300 12 37. 45 1193. 4
300 13 34. 55 1193.2
320 8 57, 82 1203, 6
320 9 51. 37 1203, 4
320 10 46, 21 1203, 2
320 11 41.99 1203.0
320 12 38. 47 1202, 8
320 13 35,49 1202, 6
340 8 59. 33 1212.9
340 9 52.71 1212.7
340 10 47. 42 1212, 5
340 11 43. 09 1212. 4
340 12 39.48 1212. 2
340 13 46, 43 1212, 0
360 8 60. 84 1222, 2
360 9 54, 06 1222.0
360 10 48, 63 1221.9
360 11 44. 19 1221, 7
360 12 40, 49 1221. 6

360 13 37.36 1221. 4
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TABLE 6. Fit of Keenan and Keyes' Smooth Values in
the Gas Phase

Smoothed point at Keenan and Keyes: V = 41,99 ft3/1b
o) . H=1203,0 Btu/lb
320°F and 11 psi C, = 0.47 Btu/Ib deg. F
Number of Smoothed Values Standard Deviation
Restrictions C of Fit
Vv H P A" H
0 41, 99 - 0. 00459 -
1 41,99 - 0. 00483 -
2 11. 99 1203, 0. 467 0.01441 0. 0427
Interpolated point at
310°F and 10. 5 psi
' Number of Smoothed Values Standard Dewviation
Restrictions C of Fit
Vv H P v H
0 43, 42 - 0. 00459 -
43, 42 - 0.00484 -

2 43. 42 1198. 0. 467 0.0157 0.0385

These predictions were made using the data in Table 5. Four
temperature polynomials and four pressure polynomials were used for
the volume fits; three temperature polynomials and three pressure

polynomials were used for the enthalpy fits.
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TABLE 7. Fit of Data of the Sixth International Conference

on the Properties of Steam in the Gas Phase

Interpolated point at 600°F and 150 psi

(Kcenan and Keyes: Vo= 4,113 £t3 /1b)

Number of Smoothed Values Standard Deviation of Fit
Restrictions Vv Vv
0 4,101 0, 0267
4,100 0,0141

Interpolated point at 600°F and 1000 psi

(Keenan and Keyes: V = 0.5140 ft3/1b)

Number of Smoothed Values Standard Deviation of Fit
Restrictions vV Vv

0 0, 5104 0. 0267

1 0.5103 0.0141

These predictions were made using the data in Table 1. Two

temperature polynomials and four pressure polynomials were used.
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TABLE 8. Fit of Data of the Sixth International Conference
on the Properties of Steam in the Liquid Phase and

Superheat Region

Interpolated point at 200°F and 10, 000 psi

(Keenan and Keyes extrapolated Cp = 0. 97 Btu/1b deg. F)

Number of Smoothed Values Standard Deviation of
Restric=- C Fit
tions \ H P A\ H

0 0.01612 - 4, 26x107° -

1 0.01599 190, 8 0.974 7. 68><10"4 0. 164

These predictions were made nsing the data in Table 2. Four
temperature polynomials and four pressure polynomials were used for

both the volume and enthalpy fits,

Interpolated point at 1100°F and 6500 psi

Number of Smoothed Values Standard Deviation of
Restric- C Fit ‘
tions Vi H P \4 H

0 0. 1104 - 1.38x10" % -

1 0.1111 1409, 0.952  4,20x107°  1.40

These predictions were made using the data in Table 4. Four
temperature polynomials and four pressure polynomials were used for

both the volumec and enthalpy fits,
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TABLE 9. Fit of Data of the Sixth International Conference

on the Properties of Steam near the Critical Point

Interpolated point at 750°F and 3400 psi

Keenan and Keyes: V =0,1129 ft3/1b
H=1143. 6 Btu/lb
c:p = 3,5 Btu/lb deg. F

Number of Smoothed Values Standard Deviation of
Restric=- C Fit
tions \4 H P \ H

0 0.1044 - b. 4:1><10"3 -

1 0. 0893 1103.6  4.98 3,3x10™ % 28. 1

Interpolated point at 825°F and 3400 psi

Estimated from Keenan and Keyes: V = 0, 1550 ft3/1b
H = 1266.6 Btu/lb

Number of Smoothed Values Standard Deviation of
Restric=- c Fit _
tions \ H P \4 H

0 0. 1599 - 6. 41x10™°> -

1 0.1604 1285.4 -0, 14 6. 89><10'3 28.1

These predictions were made using data in Table 3, Four
temperature polynomials and three pressure polynomials were used

for both the volume and enthalpy fits,
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II. DIFFUSION COEFFICIENTS IN BINARY

HYDROCARBON LIQUIDS

ate
b

This section is to be presented as a paper
by D.J. Graue and B. H. Sage at the meeting of
the American Petroleum Institute in Montreal,

Canada, May 10, 1965,
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A number of measurements of molecular transport in the lig-
uid phase were ma de by Lacey and co~workers some thirty years ago
(3,4,9). More recently, additional measurements involving binary
hydrocarbon liquids have been carried out and the results are avail-
able in a recent monograph (12). These later investigations indicated
a substantial influence of temperature and composition upon the mo~
lecular, material transport characteristics in a binary hydrocarbon
liquid phase. All of the measurements referred to above have been
carried out in heterogeneous systems where the surface of the liquid
phase is at bubble point. The effect of pressure upon the self-diffusion
characteristics of light paraffin hydrocarbons was found by McCall,
Douglass, and Anderson(7, 8) to be a change of about five per cent per
thousand pounds per square inch change in pressure, The influence of
the composition of the phase upon the material transport characteris=
tics is evident, as is the large effect of the nature of the hydrocarbon
components involved. Any analytical representation of these charac-
teristics should take into account the effects of temperature, concen=
tration, and the nature of the components and, therefore, is neces-
sarily somewhat complicated.

It is the purpose of this discussion to present the advantages
and limitations of several methods of describing the available experi-
mental data on diffusion for binary paraffin hydrocarbon systems at
temperatures between 40° and 400° F, and throughout a rather wide
range of concentration of the components, The results are presented

in analytical form with statistical measures of the agreement of the
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predictions with experimental values.

Diffusion Coefficients

Fick (2) was perhaps the first to relate the molecular trans-
port of a component to a potential gradient and a coefficient. The so-
called Fick coefficient is related to the component flux in the following
way:

rflk = 0pu = Dpy —— . (1)

The Chapman=~Cowling coefficient (1) is numerically equal for the two
components and is related to the material flux as follows:
Bnk

my = 0pu - Dij 0 == - (2)

It may be shown (6) that the Fick diffusion coefficient for each of the
components may be evaluated from the Chapman~Cowling coefficient
by:

Doy = DCkJ. (v/ VJ.) . (3}
Recently the several relationships among the molecular transport co-
efficients and fluxes have been reviewed (6). For this reason no ex-
tended discussion of the application of the diffusion coefficients will be
given., All of the results are presented here in terms of the Chapman-~
Cowling coefficient since it is symmetrical with respect to both com-
ponents and does not involve a singularity at states where the partial
volume of the component passes through zero, as is the case for the
Fick coefficient., Such behavior for the latter component is apparent
from consideration of Equation 3.

Sources of Data

Measurements of the molecular transport at bubble point have
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been made for a variety of binary systems (12). The range of con-
centrations, weight fractions, and temperatures for which experi-
mental information has been obtained is indicated in Table 1. These
data have been smoothed with respect to the state of the system by
graphical means (12) and the standard error of estimate of the experi-
mental data, together with the number of experimental points ob-
tained, have been included in Table 1. The standard error of esti~
mate affords a semiquantitative clue to the reproducibility of the
measurements. In some instances the reproducibility is rather poor
and contributes a significant basic unccrtainty to the analytical de-
scriptions of the results.

Analytical Descriptions

Two classes of analytical expressions were investigated: em-
pirical and quasi-theoretical. Of the many empirical forms which
were studied, the following gave the best agreement with the experi=
mental data for the nine binary systems described in Table 1: |

D.. = A+ B(T-D)+ Cn

Ckj (T-D) . (4)

k
The expression is linear in temperature and fortunately, in addition,
the constant D was found by least squares analysis to be remarkably
close to 460 for nearly all of the systems investigated. For simplici-
ty in calculation and ease of visualizing the contributions of the indi-
vidual terms, the following form of Equation 4 was chosen:

Dij = A+ (B+ an)(T - 459, 69) . (5)

It is apparent that the temperature expressed in° F may be substituted

for the last term, as is indicated in Equation 6:
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Dij = A+ (B+ an)t . (6)

The most useful quasi-theoretical expression which was stud-

ied is as follows:

D.,. = exp [A+ (7)

B + an
Ckj '

T
Equation 7 is based upon a quasi-theoretical expression developed by

Eyring (10). His basic rclationship was of thc form:
= - <&
D = gexp [ RT] . (8)

From Equation 8 it is apparent that the coefficients and exponents are

related to the constants of Equation 7 in the following way:
a = exp [A] , (9)

——R— = B+an ° (10)

The Eyring expression has been used to describe the Chapman-
Cowling diffusion coefficient by a number of investigators to extend or
to interpolate available experimental measurements, Ii is the only
one of the foregoing expressions that has any theoretical background,
For example, Equations 4, 5, and 6 are entirely empirical in nature.
There are a number of other quasi-theoretical expressions which pur=-
port to describe the effect of temperature and composition upon the
Chapman-Cowling diffusion coefficient. However, these are for the
most part more complicated than Equation 7 and require a larger num-
ber of coefficients than the three associated with the latter equation.
In Table 2 are shown the results obtained for six hydrocarbon
systems containing methane and three such systems involving ethane,

Each binary system was considered individually in the representation
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of Table 2 for each of two types of expressions. The first is Equation
6, which is linear in temperature and composition; the second is Equa~
tion 7, and involves an exponential term. The standard and the aver-
age deviations for each of the two expressions have been indicated for
each binary system along with the values of the coefficients. It should
be noted that the significance of the two measures of uncertainty loses
some statistical meaning in several instances because of the paucity
of experimental data, In some instances, such as for the ethane-n-
pentane system, there were insufficient data to make the evaluation of
the three coefficients significant. It should be noted further that there
is a limiting absolute uncertainty in the experimental measurements
amounting to approximately 0, 2 X 10"8 square foot per second, which
accounts for the much larger fractional deviation in the case of meas-
urements where the absolute value of the diffusion coefficient is small.
There is shown in Figure 1 the agreement of the ethane-n~-decane sys-
tem with Equations 6 and 7. The agreements shown in Table 2 and il-
lustrated for the ethane~n-decane system in Figure 1 are based upon
the application of least squares techniques to the data available.

In Figure 2 is depicted the effect of the molecular weight of the
less volatile component upon the Chapman-Cowling diffusion coefficient
for several different weight fractions of methane and of ethane at a
temperature of 160° F. It is apparent that the molecular weight of the
less volatile component exerts a pronounced influence on the Chapman-~
Cowling diffusion coefficient which, in some cases, overshadows the

effect of temperature and composition.
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Equalion 6 was modified to apply to all of the systems contain-
ing methane or ethane in the following forms:

(D + Enkt)

D .=A+(B+an)t+ Mj

cii (11)

(C + Dn )]
D = A+ |B+ k

CKj M

r (C+ an)"
Cki B +?—_-- t (13)
L 5 J

t {(12)

D

if
>
-+

In each case, the molecular weight of the less volatile component was
used as the additional variable. In a similar fashion, Equation 7 was

modified in the two following forms:

(B + CMJ.O' 25, Dn, )

Dij = exp |A + T (14)
(B + C/MJ. + an)

Dij = exp |A+ T (15)

The agreement of the predictions of Equations 12 and 15 with
the data for the ethane-n-decane system is shown in Figure 3. The
application of Equations 11, 12, 14, and 15 to the six binary systems
containing methane and of Equations 12, 13, 14, and 15 to the three
systems containing ethane is shown in Table 3. In the application of
these expressions, the uncertainty at the 95 per cent conficence level
(5) exceeds the value of the coefficients in some cases, It is apparent
that for both the methane and ethane systems a somewhat smaller de=
viation was obtained with the Eyring (10) type of expression shown in
Equations 14 and 15 than with linear expressions such as Equation 12,

It should be recognized that in using the molecular weight of
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the less volatile component as an independent variable, discreet val-
ues of this molecular weight corresponding to the values for the pure
components were employed in all cases except the '"white oil. "' If at-
tempts are made to employ the average molecular weight of several
components to describe the molecular transport behavior of a multi-
component system, an unknown uncertainty will be introduced.

It is probable that, when the range of molccular wcights in the
heavier components is not large, a reasonable approximation may be
obtained by treating the system as binary. Such an approximation was
done with the white o0il {11, 13). The variation in the characteristics
of the components of the white oil were not large when compared with
the molecular weight of methane and ethane. However, the symmetry
of application of the Chapman~Cowling diffusion coefficients is lost ex-~
cept as a gross approximation for the heavier components when a mul-
ticomponent system is treated as a restricted binary (14).

As a matter of convenience, there are tabulated in Tabie 4
values of the Chapman=Cowling diffusion coefficient (12) for the binary
systems listed in Table 1. The values of the coefficients have been
recorded as a function of temperature and weight fraction of the more
volatile component and were tabulated to at least one more significant
figure than is justified by the accuracy of the results, This action has
been taken to ensure ease of utilization of the values in graphical or

numerical operations.,
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NOMENCLATURE
A,B,C,D,E Coefficients used in equations
DCk' Chapman=~Cowling diffusion coefficient for components
J .
k and j, sq. ft. per sec.
DFk Fick diffusion coefficient for component k, sq. ft.
’ per sec.
D Diffusion coefficient in Equation 8, sq. ft. per sec.
M Molecular weight, 1b, per lb-mole
r§1k Material flux of component k, 1b. per (sec)(sq. ft. )
NC Number of equation constants
NP Number of experimental data points

Weight fraction of component k

PP

Universal gas constant, Btu per (}b-mole){° R)

s Average deviation, defined in Table 1

s! Average deviation, defined in Table 2

T Thermodynamic temperature, °R

t Temperature, ° F

u Liocal or momentum velocity, ft. per sec.

A% Specific volume, cu. ft. per lb.

v Partial specific volume, cu. ft. per 1b,

X Coordinate, ft.

o Coefficient defined by Equation 8, sq. ft. per sec.

€ Eyring activation energy defined by Equation 8, Btu
per lb-mole

o) Specific weight, 1b. per cu. ft.; standard error of

estimate, defined in Table 1

Oy Concentration of component k, 1b. per cu. ft.
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Standard deviation, defined in Table 2
Exponential
Partial differential operator

Summation operator

Subs criEts

J

k
av
sm
cal

ex

Component j, the less volatile or stagnant component
Component k , the more volatile or diffusing component
Average

Smoothed

Calculated

Experimental
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TABLE 2, Coefficients for Diffusion Correlations
for Individual Binary Systems

Coefficient Deviation
A B C G T
Standard Average
System x10® x10%  x10® xm%a

Equation 6

Methane-Propane 20,7 0,0531 -~1.14 0. 995 0. 0422
Methane~n~-Butane 12.1 0.0890 -0,411 1. 03 0. 0490
Methane-n-Pentane 7.45 0.0854 0,291 1. 76 0., 0652
Methane-n~-Heptane 5.99 0,0697 -0.157 1.70 0. 0954
Methane-n~Decane 1.07 0.0688 -0,115 0.878 0.0740
Methane-White Oil  -1.22 0.0306 -0.219 0.674 0. 267
Ethane-n-Pentane 7.90 0,0873 -0,131 2. 36 0.118
Ethane-n~Decane 1.45 0.0429 0,025 0. 806 0. 0747
Ethane-White Oil ~3.24 00,0225 0.321 1. 56 0, 268
Equation 7 A B C

Methane-Propane ~-16.4 664  -2800 2.18 0.110
Methane-n~Butane =-13.7 -916 -1500 1. 57 0.0717
Methane-n-Pentane -13.1 =-1450 -1130 2,15 0, 0908
Methane-n-Heptane =~13.1 -1500 -1010 1. 55 0.0912
Methane=n-Decane ~12.5 -2150 -1120 0. 944 0. 0689
Methane-White Oil =~12.0 =3270 ~-6390 0,512 0.130
Ethane-n~Pentane -13.2 =1330 -523 2.31 0,117
Ethane~n~Decane -13.3 ~1910 -190 0. 675 0, 0624
Ethane~-White Qil -11.9 =3610 5300 2. 04 0. 295

Standard deviation expressed in sq. tt. /sec. and defined by:
1

2

(N
P 2
1 ex cal
G = L
N, - NG
Avcrage devia—tion without regard to sign_was expressed as a frac-
tion and defined by:

N
P -
Z (Dij)ex (Dij)cal
1 (Dij)ex
N

ala ale
ek 8

Coeflicientls for Equalion 7 are nol X 107 .

st =
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III, CORRELATION OF DIFFUSION COEFFICIENTS

OF LIQUID HYDROCARBONS
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INTRODUCTION

Attempts to correlate or predict liquid phase transport be-
havior date from the last century. Since that time the theoretical and
commercial importance of this undertaking has been evidenced by the
many diverse methods which have been used to describe transport
pbroperties. The purpose of this work was to investigate the use of
s ome of these methods of prediction and correlation with recent data
on binary hydrocérbon systems to give an accurate method of calcu=~
lating diffusion coefficients for engineering use.

The next section will survey a spectrum of prediction and
correlation techniques ranging from the simple, semi-empirical re-
lation of Einstein to the very sophisticated and complicated work of
Kirkwood. Since the efforts to describe transport properties of lig-
uids often are closely tied to those aimed at describing equilibrium
properties of liquids, the success of the latter is sometimes a nec~
essary condition for the success of the former. It is notable
that, although progress is being made at the present time in the the-
ory of transport in liquids, the improvements to date in the descrip-
tion of diffusion properties of liquids have been indecisive., That is,
although there are several expressions which have had some success
in correlating diffusion coefficients for liquids, none has yet had such
outstanding success as to be clearly indicated as having the correct
approach, Of the many relations reported, a number of the more
promising were tested in this study, The availability of time and

auxiliary data limited the extent of the testing. The scope of this



w52

work was confined also to binary mixtures of light, normal, paraffin
hydrocarbons for two reasons: other authors have correlated data for
widely differing systems; and the extensive data of Sage permitted the
more detailed study of a particular homologous series of compounds.

Part II of this work presents results which were part of the
following investigation; therefore, there is some duplication in the
two parts. However, the results reported in the two sections are not
duplicated.

In the Appendix are presented two examples of uses of a cor=
relation of diffusion coefficients in solving problems involving diffu-

sion.
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METHODS OF PREDICTION AND CORRELATION OF
LIQUID PHASE DIFFUSION COEFFICIENTS

General

‘I'he earliest relation which was used to correlate liquid dif-
fusion coefficients was the Stokes-Einstein equation (23). The liquid
model for which this equation was derived was that of a sphere of
solute moving through a continuum of solvent. The drag on a mole=

cule of solute was calculated from Equation 1.

D, = kT/& (1)

Einstein's substitution of the Stokes' Law drag for £ in Equation 1
resulted in the Stokes~IEinstein relation:

kT

Dk=m1—<n—j-. (Z)

Thus, the diffusion coefficient for the solute k was considered to be
dependent on the viscosity of the pure solvent j .
Quite closely related to the Stokes-Einstein equation and the

Exner rule (2), which is

1
DnM?2 = C, (3)
was an empirical relation developed by Wilke and Chang (71):
1
C'(XMJ.)Z‘T
Dok = s (4)

Their relation gave the most accurate results of any equation de~-
veloped for dilute binary liquid systems in general. In Equation 4,
the variable x is the association factor which has a value of unity

for nonassociated solvents. In this equation, the viscosity is that
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of the salution, the molecular weight is that of the solvent, and the
diffusion coefficient is the volumetric coefficient for the solute as de-
fined by Longwell (36),
By 7 %% - POk (5)

Thakar and Othmer (67) have reported a relation which is
somewhat like that of Wilke and Chang. The relation used water as a
reference substance and was more complicated and less accurate
than that of Wilke and Chang. Sitaraman (64) also modified the Wilke-
Chang equation so that latent heats of vaporization instead of the fac-
tor x accounted for association.

Sutherland (66) suggested another modification of the Stokes-
Einstein relation which included a correction for '"slip" at the parti~

cle - solvent interface:

kT [3ﬂj + Ykka] ) (6)

Pr T BT | 20 T Vg
Li and Chang (34) used this new equation to predict self-diffusion co=
efficients for a number of substances. It is obvious that his modifi-
cation is not a large one, because as ﬁkj varies from a value of zero
to infinity, the bracketed factor only varies from 3/2 to one.

Hill (26) attempted with fair success to predict liquid diffusion
coefficients from a model based on relaxation of a polar molecule in
a non-polar solvent. Her equation resembled Equation 2

o . kT { % V5 Y } )

Fk 7 0 | BV T MY By T By

and involved only molecular and volumetric parameters besides the
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viscosity and diffusion coefficient. Of the relations mentioned thus
far, hers was the only one to take composition into account.
Arnold in an early work (2) combined the kinetic theory of

gases, the Stokes-Einstein equation, and the Exncr rulc to give the

relatwn . . 1/2
Bl *ar)
D, = J 5 . (8)
1/2 1/3 1/3

However, his equation lacks generality because of his inclusion of
the abnormality factors Ak and Aj » wWhich are not easily predictable.
An interestingly different approach to the problem of corre=-
lating diffusion coefficients was taken by Olson and Walton (43) who
related diffusion coefficients of binary liquid systems to the lowering
of their surface tensions upon mixing. They related the quantity
Dn/T to Ay/o to give quite good results in the limited systems for
which they had data. Their model involved the balancing of surface

tension with a concentration gradient at the liquid surface.

Corresponding States

Bird (8) has suggested a corresponding states approach for
correlation of self-diffusion coefficients., Naghizadeh and Rice (41)
and Gaven and co-workers (22) have tested the theory for a few sim=-
ple substances. Their work indicated that only very nearly spherical

molecules behave according to a corresponding states law.

Irreversible Thermodynamics

Bearman (3) and several others (4, 14, 24, 31) have derived
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from non-equilibrium thermodynamics expressions relating self-
diffusion coefficients to a mutual diffusion coefficient. One widely

obtained expression is_

oin V.
D = Dk aIk)[n _k +n.] (9)

a/f,l’l {lk ° k -'V-'j ° J

where now the variation of the diffusion coefficient with composition
is approximated. Equation 9 states that the diffusion coeifficient
divided by the term containing the activity of species k should be a
simple function of the mole fraction of component k and the viscosity.
Some authors (27) have had good results using these expressions to
describe the effect of composition on the diffusion behavior in liquids.
Others such as Kozicki (30) and Dullien and Shemilt (19) found that the
activity correction did not improve significantly the description of
that transport property. By contrast, Longwell and Sage (36) have
shown that simply the use of the Chapman-Cowling diffusion coeffi-
cient instead of the Fick coefficient improves the linearity of the
variation of that transport property with composition, at least for
light hydrocarbon systems.

A very simple method of correlation was suggested by Van
Geet and Adamson (70). They proposed that for liguid paraffins

having five or more carbon atoms the following relation would hold:

DFCN Ve n; D, Vs

(10)

TR

N =1
where the average chain length N was related to the chain length of

the components in the mixture by
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MB

N = fliNi . {11)

1

1

i
Roughly speaking, their theory states that systems (regular solutions)
of the same average molecular weight have the same sum of Equation
10. Because their work was very recent, their ideas have not been

confirmed by the data from investigations other than their own.

Non-equilibrium Statistical Mechanics

The prediction of factor £ of Equation 1 has been the subject
of extensive work by Kirkwood (57) and others from a statistical me=
chanical approach. They have attempted to approximate non-equilib-
rium radial distribution functions in highly complicated expressions
to predict diffusion coefficients., The work is in a state of develop-
ment which is not easily used by engineers.,

Kamal and Canjar (28) used an equation of Davis and Rice (15)
to obtain diffusion coefficients for a large number of systems, but at
infinite dilution of the solutes. Their equations were quite compli-
cated, involving thermodynamic properties of the solute and solvent
and the quantity vf/v which represents the ratio of the occupied vol-
ume to the total volume per molecule, Rice and Davis used a dense

rigid sphere approximation for the derivation of their equations.

Hole Theory

Some transport properties have been described well (1, 10)
over a large range of temperatures and pressures as functions of the

volume of the fluid only. It has, therefore, been supposed that what
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would hold for viscosity and thermal conductivity would also hold for
diffusion coefficients.,

The rate frocess approach of Eyring (23, 56) has been impres-
sively successful for correlating diffusion data. That is not to say
that his theory is able to predict diffusion behavior from molecular
prop.erties, however; the model which he used has been criticized for
this lack. But, the success of the final equations cannot be discounted
(18, 39, 40).

Eyring proposed that diffusion occurred in liquids by a mech-
anism of molecules jumping into vacancies, or holes, at adjacent lo-
cations in a semi~crystalline structure. In the process of this move-
ment the diffusing molecules attain activated energy states before
reaching the hole position. The rate of motion of the molecules to
and from the activated states was described by kinetic-type rate ex-
pressions which yielded temperature dependencies of the Arrhenius

form. Examples of his resultant equations follow:

\PKT -AFYRT

D = T (12)
o oo M kT \/2 _AE/RT (13)
= =175 \Zmm € g
N
£
and
D = Ae-E/RT . (14)

Equations 12 and 13 are different expressions of the same idea, ac~-
cording to the derivation of Eyring. To obtain Equation 14 from

Equation 13, one assumes, as Eyring suggested, that the variation of

()LZ/V 1/3)T1/2 and AE with temperature compensate to give a result
£ g
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which has temperature appearing only once. In addition, when Equa-
tion 12 is combined with a corresponding expression for viscosity,
Equation 15 is obtained which resembles very closely the Stokes=
Einstein equation. His factor £ is

Dn . K

T - IR (15)
numerically about 5, 6, and his jumping frequencies for viscosity and
diffusion, k' and k", respectively, are not necessarily equal (42).
However, they are usually assumed to be so.

Naghizadeh (41} has successfully predicted the same tempera-
ture dependence for diffusion as Eyring did without resorting to an
activation energy concept. One other factor associated with the Eyr-
ing theory is the fact that the activation energy is sometimes (21) a
strong function of temperature itself. Chu (13) has suggested raising

the temperature to a power greater than unity to compensate.

Kinetic Theory

Enskog (12) derived several expressions which were based
solely upon molecular and thermodynamic parameters for a dense
fluid of hard spheres. However, the theory has had difficulty (8),
reportedly because it only considered binary collisions.

More recently, Longuet-Higgine and Poplc (35) have derived
a similar and relatively simple expression for describing self-diffu-

sion in liquids. They started from the equation for Brownian motion

D = <r®>/6p (16)
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and estimated <r2> by assuming that the velocity autocorrelation
function for a molecule decayed exponentially with time. Their re-
sult was

(”RT %"Tf-- 1)—1 . (17)
Equation 16 is similar in some respects to the results of Enskog, who
suggested using the '"thermal pressure'' instead of P in the relation to
compensate for using a hard sphere model fluid. McCall and co=
workers (39, 40) have had quite good results using Equation 16. It is
probable that this technique may be able to be improved in the near
future,

Activity in the subject area was reported in the recent results
of Rahman (45) who simulated liquid argon at 94. 4° K by calculating an
864 body problem on a digital computer, He used a Lennard-Jones
potential for the molecules, and calculated the self-diffusion coeffi-
cient, velocity autocorrelation function, and other characteristic
properties. Two interesting results were the remarkable agreement
with the diffusion coefficients measured by Naghizadeh and Rice (41)
and the fact that the velocity autocorrelation function did not decay ex-
ponentially. Rather, it decreased less slowly, but went negative be=-

fore approaching zero asymptotically with time. Douglass, McCall,

in a derivation similar to that of Equation 17 to give the two-parame-

ter equation

D = (1-+ - ) e~ (18)



-

where the value of the temperature~dependent parameter 8§ indicates

the importance of the oscillation, When Equation 17 is combined with

a similar expression for viscosity derived by Longuet-Higgins and

Pople, the familiar~looking expression results:

Dny _ 2.2
RT = —5-a. " (19)
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DATA

Most of the data on diffusion in binary liquid-paraffin hydro-
carbon systems have been obtained by Sage and co-workers (46-55).
Nearly all of these data are also published in smoothed form (59).
Undoubtedly, the reason why more data are not available is the diffi-
culty of determining quantitatively the changes in composition which a
liquid undergoes under conditions of clevated pressurc, The perti-
nent data which have been obtained to date by Sage are listed in Table
1 in the form of Chapman-Cowling diffusion coefficients. All of the
data in Tablec 1 werc obtaincd for liquids very close to the bubble
point., Therefore, only two of the variables ~- temperature, pres-
sure, and composition -- were independent.

Fishman (20) obtained self-diffusion coefficients for n~pentane
and n-heptane over a wide range of temperatures. McCall and co-
workers (18, 39, 40) measured self-diffusion coefficients for those and
several other normal paraffin liquids. IHowever, even though they
varied conditions of temperature and pressure, the latter authors only
reported explicitly their data at one condition. Van Geet and Adamson
{70) measured diffusion coefficients of a somewhat heavy binary sys-
tem, n~octane-n~dodecane. Trevoy and Drickamer (68) also meas=-
ured diffusion coefficients for a series of relatively heavy binary
systems, but only at a single composition of each system. They
covered mixtures of n-heptane with four longer hydrocarbons. Bid-
lack and Anderson (6, 7) obtained data for three heavy binary systems.

The self-diffusion coefficients of liquid methane (22, 38, 41, 58) and

liquid ethane (21) have been measured but not considered here because
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their liquid states exist at temperatures far from the region of inter=-
est. The only other data found on binary mixtures of very light hy-
drocarbons were obtained at low temperatures also. They were the
measurements by Manzhelii and Verkin (37) for the methane-
propylene system at 90. 2° K in an apparatus using the same principle
as fhat of Sage.

Auxiliary data consisted largely of viscosity data and volu-
metric data. The viscosities of the methane~white 0il and ethane-
white oil systems were those of Sage (60, 61); viscosities for the
methane-propane and methane-n~butane systems were estimatedfrom
the corrclation of Lcec (33) and the data of Bichcr and Katz (5} Volu-
metric data were those of Sage (62, 63).

The values used for molecular weights in this study were as

follows:

methane 16. 04
ethane 30. 07
propane 44, 09
n~-butane 58.12
n~pentane 72,15
n-heptane 100. 20
n-decane 142, 28
"white oil"! 337.

Although the ''white 0il'' was not a single straight-chain hydrocarbon,
it approximated one and was assigned its average estimated molecu-

lar weight.



b4~

EVALUATION OF DIFFUSION COEFFICIENTS

Derivation of Equations

The calculation of diffusion coefficients from the laboratory
data of Sage (59) requires a knowledge of the rate of addition of ma-
terial to a transient diffusion cell and oi the volumetric properties of
the binary system in the cell. Although the transient diffusion pro-
cess which is used has been described analytically earlier (48, 59), a
somewhat more complete analysis will be developed here.

Figure 1 shows a diagram of the unsteady state diffusion cell
used for liquid phase studies in the Chemical Engineering Laboratory
(50}, It is an isochoric, isothermal pressure vessel which, before a
diffusion measurement, contains a binary liquid system of light hy-
drocarbons in physical equilibrium with its vapor phase in the region
R . To begin a measurement, the pressure is raised a predeter=-
mined amount by the addition of a quantity of the lighter of the two
components through the small diameter tubing S. Then, the amount
of the lighter component which is required to maintain the system
under isobaric conditions at the higher pressure is determined as a
function of time.

It is assumed that diffusion in the gas phase is sufficiently
more rapid than that in the liquid phase to justify the assumption of
equilibrium in the gas phase. It is further assumed, after the analy-
sis of Drickamer (69), that there is no resistance to transport at the
interface and that the liguid at that point is in equilibrium with the

gas phase,
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In addition, it is assumed that the temperature of the fluid at
the interface is the same as that of the rest of the fluid in the cell.
This assumption is justified by two factors. First, the rate of diffu-
sion is slow, and, therefore, the rate of generation of heat due to
condensation at the interface is slow. Secondly, in practice, a num-=-
ber of small-diameter copper tubes stand vertically inside the cell
and pass through the two-phase interface and provide excellent means
for conducting away the heat of condensation. The presence of the
many vertical tubes within the cell also justifies the assumptions of a
negligible velocity gradient across the diameter of the cell and of
negligible convection in the liquid phase.

The concentration changes imposed within the cell are as-~
sumed to be sufficiently small to allow the partial specific volumes of
the components in the liquid phase to be approximated over the entire
run by their values at the equilibrium conditions at the interface.

The Chapman~Cowling diffusion coefficient is also assumed constant
over the small concentration range used during an experiment and
thus independent of position within the liquid phase. As a further aid
to the theoretical analysis of the diffusion process, the liquid phase
is treated as being infinitely deep; this approximation is applicable
during the initial part of a run.

T"he total rate of introduction of the lighter component, k, to
the cell may be related to the rate at which it enters the liquid and
gas phases by:

r?lkc = th , +th (1)
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A similar relationship applies for component j :

., =0=rth., +m. . 2
Mic T Mg (2)

Since the vessel is isochoric, it follows that

H
<
+
<

V=0 (3)

The gas phase composition is constant, so that

— —_— »

rnjg = 'Ujd:\-f«t = -(Ujde{ka + dovj&mj,{’,) (4)
and

y = - = - Vv T V. o .

m ) V, (O‘kg My + ckgvyﬂm_]/{;) (5)
where the partial specific volumes are assumed constant throughout
the change of state associated with the measurement. Combining

Equations 1 and 5 and rearranging results in

o, V.
0 . s kg ki
thy, = 1+ — . (6)

1- V., -0. V,
Okg 'kt = 95V 50

This is the flux of component k into the liquid phase; therefore, it is
the flux across the interface, referred to a coordinate system there.
A similar manipulation yields the expression for component j at the

interface:

) V., o,
2 . o k/?/ Jg (7)
1 -

kg1t " %igju
The velocity of the interface related to the cell is

U T Vi T Mg Vi (8)
where the subscripts "i" denote reference to the interface. Com-

bining Equations 6, 7, and 8 results in



(9)

u. -
1 e —
1l - cyknglt - OngjL

The flux at the interface with respect to a fixed frame of reference is

related to that with respect to the interface by
my, = My + u.,op - (10)

A combination of Equations 9 and 10 with some rearrangement results

in
. Vit O = %xd)
m = m | . (L1)
kb ke 1-0,.7,, -0..7
“%d Ykt " %5a 750

Similarly, for component j,
V.
ke o
2 thy, (12)

Since the partial volumes are assumed to be con~

at the interface.
stant, Equation 12 holds true throughout the liquid phase.

The flux of components k and j relative to the diffusion cell

may be expressed in terms of the Chapman~-Cowling diffusion coeffi=-

cient by the relationships {36):
Oy
Myy = 0% " Doy B (13)
and
3nj ank
n., = ocu=-0D., . .— = 0, L m—
m,]{ oJu o Ckj Bx GJu +oDCkJ 5= (14)
Combining Equations 12, 13, and 14 gives
on
@ — 2"" k

From the definition of ny s
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o = ok/c (16)
and the relation
V = 1/oc = nka& + njvj)(, , (17)
the simplifying relation results:
do
k 2=
o = o) V. » (18)
Snk hL?

When Equations 15 and 18 are combined, a very simple relation de-

scribing the material flux in the liquid phase is produced:
Bck
e - Pekj e - (19)

The equation of continuity is

_aj‘;.li = - _a_rfl.l.s (20)
08 ox : .
If it is assumed that Dij is independent of position, the equation
that results is
80, 8%,
= D, . . o (21)
08 Ckj 952

The initial and boundary conditions which apply in fixed coordinates

are
O 0) = oy,
ok(oo,ﬁ) = Oy, (22)
O (2 8) = opy,
where 5
x, = x_+ Bruide . (23)

The coordinates will be transformed by setting
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6
X' = X = X, = Iuide . (24)
0

After substitution for u. Equation 21 in the new coordinate system

becomes
2
kg Tt Pk ok (25)
96 ke leo. .V ,eq. .7 ox! Ckj 4,12 °
“Pkd 'ktVid 4 X

The variables are now normalized in terms of dimensionless

variables
0, =0
S = kngko
kb “ko
t
X = e (26)
4Dy
v
M = - rhkc: = = & WD :
If M is assumed independent of X , Equation 25 is given as
2
S x+mEs = 0. (27)
dX
The straightforward solution of Equation 27 with Equations 22 as
boundary conditions is
S = erfc (X + M)/erfc M . (28)

From Equations 17, 19, and 28, the relation for evaluating the

quantity M is found to be

2 A2 Oy = O
'\Fr_MeM erfc M = - kl;[ kb ko:| . (29)

5 0., = C.
VJL ib jd

The value of M satisfying Equation 29 can be found quite easily by an
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iterative method or by plotting it as a function of the volumetric termn
in the equation. Now that the value of M is known, rearrangement of

Equation 26 yields the Chapman-Cowling diffusion coefficient:

n.,qv—ez v 2
Dij:(kfxl ) =

. (30)

1-01aViey™%5a V54

It is seen from Equations 29 and 30 that the information which
is necessary to evaluate the Chapman-~Cowling diffusion coefficient
from an experiment is: the concentrations of the two components in
each phase at the interface conditions, their partial volumes in the
liquid phase, the initial concentration of the lighter component in the
liquid phase, and the product ﬁ'lkc 8 . The volumetric properties
are taken from previous measurements (62, 63), and the value of
ﬁ'lkc 5 is determined by fitting the following equation to laboratory
data for weight added to the cell, m

ke ? versus time after initiation

of the measurement, 0 :
my = mo+b‘\/€ . (31)
The desired product is then, simply, 3b . With this last substitution,

Equation 30 is

2 7 2
D. .= -2 L4 . (32)

Cki am? 1'Okdvk&'cjdvj4;

The Approximate Description of the Diffusion Process

The equation which was used recently (48, 59) to calculate the
Chapman-Cowling diffusion coefficients from the above experiments

is:
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. 2
rh 0 V., (o, ~c, .)
D _ W( kc’\/_ > 1. kt'YKkb"Crd

Ckj C13.70 T .
kb ko l“gdekL'doVH%

(33)

In the derivation of Equation 33, a small effect due to the movement
of the two=phase interface was neglected. However, the error which
was thus introduced is small, as will be shown now by consideration
of Equations 29 and 30.

The following relation is obtained when Equation 29 is solved

for 1/M and the exponential and error functions are given by infinite

series:
L= eMie ML )M ML) J*’( i Jd) . (34)
Vk{, kb~ k
Thus, l/M‘2 becomes
2
1 2 ,f,
— = w(1-2M+3M°+.. ) ] (35)
M- ( ) ( kb'gk

It is obvious that a combination of Equations 17, 30, and 35 results in
Equation 33 if the infinite series in Equation 35 is truncated at the
first term. The systematic error which is introduced by this trunca-
tion is of the order of -200XM per cent, since M is usually much less
than unity.

Table 3 compares data for the methane-n-pentane and the
methane-n~decane systems which were calculated from Equations 30
and 33, Table 3 also gives the value of M for each experiment., The
values of the diffusion coefficients in Table 3 which were calculated
from the truncated formula differ very slightly from those in Table 1
because the two tables were calculated at different times with two

different people reading graphs of volumetric properties, rounding
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off numbers, etc. The truncation after the first term of the infinite
series in Equation 35 introduced an error of about five per cent for a
typical value of 0. 025 for M in the table; this error is probably with-~-

in the uncertainty of the measurement.

Analysis of Calculation Uncertainties

The general formula for estimating the uncertainty in a cal-

culated function
'y’ = Y(Xl, ngoo-,Xn) (36)

is given (16) as
2
2 i oy 2
cy - 2__ (ax. ) %, (37)
i=1 i i

where the gquantities o, are the estimated uncertainties in each of
the variables X; Suchla,n analysis of Equations 17, 29, and 32 shows
that the variance of the calculated diffusion coefficient may be esti=-
matcd if the uncertainties in the variables 91b? Tko’® cjb’ vj»’,’ and b
are known or can be approximated. The variable Vk{ is not included
above because it is not independent of the other variables, as seen in
Equations 16 and 17. The guantities Ujd and Ord &¥€ neglected in the
error analysis because they are very small and contribute little to the
overall propagation of uncertainty.

When the manipulation in Equation 37 is carried out on Equa-

tion 32, the following equation results:
g 2 2

D ki cbZ oM 0 =049 2
“411<DCJ_)=(T)+(M)+ 7 () oy
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5 5 1-V.,0.4.\2
* ( ) J& 9% t < c Jd) Cq (38)
1-V. j k °
J{GJb jb kb b
The contribution due to the uncertainty in M is found from a similar

treatment of Equation 29.

— 0'__
("M)Z Y T Y T Y A W Vit 2
M - v kb~ %ko V. (1-V. 0. )
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= 2 o] 2
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In Table 4 are given the values and estimated uncertainties of
the Chapman~Cowling diffusion coefficients for the methane~n-
pentane system and the methane-n-decane system and the estimated
uncertainties of the quantities in Equations 38 and 39. Figure 2
shows the relative uncertainties which were calculated for the diffu=-
sion coefficients of the methane-n-decane system at 100°F along with
the Chapman-Cowling coefficients calculated from the truncatcd and
untruncated formulas. The uncertainties for the diffusion coefficients
are probably high, because the estimates of the uncertainties in the
contributing terms were estimated as quite large. However, wilhin
the set of calculations, the error estimates for individual points pro-
vide a method for comparing them even if the estimates are not exact
on an absolute basis.,

Equations 38 and 39 and Table 4 demonstrate that calculated
properties,such as the diffusion coefficient,which are dependent on a
knowledge of a number of other properties, all of which have finite

uncertainties, may have uncertainties appreciably greater than those
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in the laboratory measurements.
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RESULTS

Comparison of Data

Since na other investigators have reported data for the same
substances under the same conditions as Sage, the data cannot be
compared directly. It would therefore be hoped that the mutual diffu-
sion coefficients of Sagc could be compared, probably by cxtrapola-
tion, to the self-diffusion coefficients measured by Fishman (20) and
Douglass and McCall (18). However, Figure 3 shows that the above
extrapolated mutual diffusion coefficients for n-pentane and n-heptane
differ both in magnitude and in dependence on temperature from the
self-diffusion coefficients for those substances.

The same can be said for a comparison of the limiting values
of the mutual diffusion coefficients of Bidlack and Anderson (6), which
do not agree well with measured self-diffusion coefficients. Their
value of 1. 911><10"8 sq. ft. per sec., for pure n-heptane in the n-
heptane-n-hexadecane system compares very poorly with McCall's
value of 3. 36><10-8 for self-diffusion on n-~heptane and Sage's value of
10, OX 10-8 for pure heptane in the methane-n~heptane system at T° F.
It is obvious from Figure 3 that the values of Sage for pure n~pentane
for the methane-n-pentane and the ethane-n~pentane systems differ
by about twenty per cent over the entire temperature range covered
by the data. However, in this case the slopes of the data for these
two systems in Figure 3 are very nearly the same.

Similarly, Bidlack and Anderson's limiting values given in

Table 2 for n-hexane differ between the n-hexane-n-dodecane, the
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systems. Those values of 2.94x10™ ~, 4. 15X10_8, and 2.36x10°°,

respectively, all differed significantly from McCall's value of

4, 54x10°3

sq. ft. /sec. for the self-diffusion of n~hexane.

What has been said of the data for the systems involving n-
pentane can be said of a comparison of the mutual diffusion coeffi-
ciehts of the methane-n~decane, the ethane~n-decane, and the n-
butane-n-decane systems shown in Figure 3 extrapolated to pure n-
decane. Also, there is a large disagreement between the limit of
1. 561x 10-8 for pure n-dodecane in the n-hexane-n-dodecane system
of Bidlack and Anderson and the value of about 1. 26X 10—8 for the same
substance in the n-octane-n-dodecane system of Van Geet and Ander-
son. The data of Van Geet and Anderson showed explicitly that the
limit of a mutual diffusion coefficient was always different from the
self-diffusion coefficient of the pure component at that limit.

In short, there is no basis for comparing diffusion data unless
it is known that the compared quantities truly represent the same phe=-
nomenon in each case, In particular, extrapolated mutual diffusion
coefficients do not compare with measured self-diffusion coefficients.
Therefore, the present correlative study was limited to the data of
Sage, except for purposes of comparison.

One distinctive difference between the composition dependence
evidenced by the data of Sage and those of Van Geet and Anderson and
of Bidlack and Anderson is the fact that the latter data show an in=-
crease in diffusion coefficients with mole fraction of the light com-

ponent, while the data of nine of the ten binary systems in the former

data do the opposite. The ethane-white oil system, the exception,
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behaves similar to the heavy hydrocarbon systems of the other au-
thors above and shows an increase in the Chapman-Cowling diffusion
coefficient with mole fraction of ethane, It should be remembered
that the data of the other authors were presented at isothermal, iso-
baric conditions, and the data of Sage were presented at isothermal
conditions only, since they were measured on the two-phase envelope.
Thus, Sage's data show the combined effect of pressure and composi-
tion at constant temperature. A further factor contributing to the dif-
ference in behavior could be the considerable difference between the
characteristics of the very light hydrocarbons used by Sage and the
heavier ones used by the other investigators. His data for the ethane=~
white o0il system support this idea.

Throughout the rest of this section are discussed tests and
uses of the theories and correlations mentioned in the INTRODUC-
TION. Those theories and correlations were chosen for testing which
appeared to have promise, which were of theoretical interest, or for
which the needed auxiliary data were available. Such auxiliary data
consisted, for example, of partial volumetric data, viscosity data for
two component systems, etc. Any numerical fitting of equations to
data was carried out using‘standard linear (29) or nonlinear (16, 72)

least squares techniques on a digital computer.

Empirical
The development of an empirical equation for predicting dif-

fusion coefficients in liquid binary hydrocarbon mixtures was govern-

ed by three considerations: ease of use, graphical trends of the data,
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and theories.,

As stated earlier, all of the diffusion data used in the correla-
tions were obtained very near to the bubble point in the liquid phase.
Therefore, only two of the variables temperature, pressure, or
composition were needed to completely specify the state or a state
function, such as a mutual diffusion coefficient, Although Sage (59)
presented the data in smoothed form using temperature and pressure
as the independent variables, the work of McCall (39, 40) indicated
that pressure had an effect on the diffusion properties of liquids
(about five per cent change per thousand pounds per square inch
change in pressure) which was less than the variation indicated in the
data in Table 1 (as much as thirty per cent change per 0.1 change in
weight fraction for the methane~-n-pentane system at 280° F, for ex-
ample). Therefore, it was convenient both from a theoretical stand-~
point and for calculations to use composition as an independent vari-
able in addition to temperature. Specifically, the weight :Eract.ion of
the lighter component, its mole fraction, and its concentration were
employed at different times. The first of those named above was
used largely because, although the correlation would not pretend uni-
versality, those who might use the empirical relations might know
the weight fractions of various components more accurately than their
mole fractions.

Fortunately, the composition dependence of the Chapman-
Cowling diffusion coefficient was easily described by an equation
which was linear in weight fraction of the light component. A statis-

tical analysis showed only a first-order dependence on composition to
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be significant. As indicated by Kozicki (30), this was not true of
either the Fick diffusion coefficient or the activity=-corrected Fick
coeificient in Equation 9 of METHODS, contrary to Bearman's rela~-
tion. In fact, Bidlack and Anderson (7), among others, have found the
activity-corrected Fick coefficient to be "over=corrected. "

In Table 5 are given most of the empirical equations which
were tested for the ten individual systems in Table 1. In the equa-
tions the variable X stands for any of the three composition variables
mentioned above, and the temperatures were expressed in Fahren-
heit, as explained below.

It is worthy of note that Equation III of Table 5 resembles
very closely the empirical Nernst equation (2)

D = D[1+Db(T - 459.69)] (1)

which has been used to correlate data over relatively smal
ture ranges. Table 6 presents the values of the term which is sub-
tracted from the absolute temperature T in Equation 1 as deter-
mined from the constants in Equation IIl for various binary systems.
As pointed out in Part II of this work, the convenient and centrally
located value of 459, 69 was used for the subtractive term in further
generalization of the correlation.

The temperature dependence was also tested in another way,
by fitting the equation

o . P
D = C1t (C,+Cyn, (T-T ) (2)
for varying values of the subtractive terms TS and the power P .

Figure 4 shows the standard deviation of the methane-n~butane sys-
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tem, which was typical, as a function of Ts and P. Again, the val=~
ue of 459. 69 was indicated for TS ,» and the power P was taken as

1.0, 1.5, or 2.0 for the equations in Table 5; the standard deviations
8

2

in Figure 4 which correspond to these powers are 10, 2x10"

8, and 8. Ox 10-8, respectively, for the methane-n-butane

6. 9x10°
system.

Table 7 gives the standard deviations of the least squares fits
of the equations in Table 5 for the ten systems. The system n~butane-
n-decane was not tested for every equation, since it was not available
until the last part of the study.

The first point to be noted from Table 7 is that the use of the
mole fraction of the light component usually gave a lower standard de-
viation than the use of the weight fraction or the concentration. This
difference was as much as five to ten per cent in the methane-propane
and ethane~-white 0il systems. A second characteristic is that four-
term equations did no better job of describing the behavior of the dif-
fusion coefficient than the three~-term Equations V and VI, Although
the trends in standard deviations were not extremely sharply defined,
Fquations V and VI produced the lowest standard deviations in three
systems and two systems, respectively, and were equally low in an-
other; Equation VIII was best in two systems, A choice does not have
to be made between these three equations at this time, because they
all can be generalized to apply to sets of systems such as the methane-~
hydrocarbon systems. However, for example, Equation VI resulted
in average per cent deviations from the experimental values of 3,2

per cent for the methane~n-butane system to 15. 0 per cent for the
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ethane-white oil system.

Obviously, such an expression as temperature in degrees
Fahrenheit raised to a power can only be empirical, but it results be~-
cause of the lack of proper theoretical form in the Equations of Table
5 in the first place. The fact that the above equations provided the
best fits to the data shows that the temperature dependence of the
Chapman~Cowling diffusion coefficients for the hydrocarbons tested
here is stronger than linear in the region of the data. Also, the suc-
cess of the three~-term equations over the four-term equations indi-
catcs that the term depending on concentration only was not needed
and only the cross-product term involving concentration of the light
component and temperature was necessary to describe the variation
of the Chapman~Cowling diffusion coefficient with state,

In Table 8 are listed the equations which were tested for gen-
eralizing the correlation of diffusion properties. Table 9 then gives
the standard deviations of their fits to the sets of data for the.meth—
ane~hydrocarbon systems, ethane-hydrocarbon systems, or combined
methane~ and ethane~hydrocarbon systems. It is interesting that al=-
though many of the equations seem to have equivalent fits to the data,
those containing the very empirical term with temperature expressed
in degrees Fahrenheit to the power 1.5 were again consistently some~
what better than others. Not only is this difficult to explain on theo-
retical grounds, but it also prevents using the equation for extrapola-
tion to temperatures below zero degrees Fahrenheit.

Table 9 shows that for the methane-hydrocarbon systems the

weight fraction of methane as the composition variable consistently
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provided from five to fifteen per cent lower standard deviatione from
the data. For example, Equation IX,when fitted to concentration,
weight fraction, and mole fraction of methane, resulted in standard

8, 1.71x10'8, and 1.89x10™% 5q.

deviations from the data of 1.80x10"
ft, per sec., respectively. In the ethane~hydrocarbon systems,
where the dependence of the diffusion coefficients on composition was
less than in the methane~hydrocarbon systems, there was less differ-
ence between the standard deviations obtained using the various com-~
position variables. The greatest difference between the standard

8, 1.89x10"8, and

deviations occurred for Equation III (2,39X10"
2, 33X 10-8, respectively), although that equation was one of the poorer
ones in the table, Thus, the weight fraction of ethane was favored
somewhat. The behavior of the standard deviations for the general-
ized equations with respect to composition variables is in contrast to
the behavior for the equations in Table 5 in that the latter favored the
use of the mole fraction of the light component. |
Empirically, Equation IX of Table 8 was indicated as giving
the best description of the Chapman-Cowling diffusion coefficient for
methane~hydrocarbon systems -~ it resulted in a standard deviation

from the data of all of the six methane systems of 1. 71><10"8

sq.ft. /
sec. when weight fraction of methane was used as the composition
variable, Equations III and XIII were alternates to number IX, giving

standard deviations of 1. 89X 10"8

and 1, 96X10-8, respectively. The
power of 3 for the molecular weight of the heavy component was

prominent in these equations, reminiscent of the Exner rule.

For the ethane~-hydrocarbon systems, the choice was again
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more difficult, but Equations II, VI, and VII produced the lowest
standard deviations from the data, 1. 35><10"8, 1. 33x10'8, and 1, 33X
1078 sq. ft., per sec., respectively.

The single attempt to describe both the methane~ and ethane=
hydrocarbon systems by one equation, Equation XXI, resulted in poor
agreement between the equation and the data (a standard deviation of
5. 11X10‘8 sq. ft, /sec. for weight fraction of the light component).

The constants and their 95 per cent uncertainties for the six
generalized equations which were named above are found in Table 10
with weight fraction of the light component as an independent variable.
The 95 per cent uncertainties indicate qualitatively which terms in the
equation are significant statistically. For example, Equation III re-
vealed a strong dependence on all variables in the equation; the least
strong dependence was on the last two, composition and composition
combined with molecular weight of the heavy component. Thus, it is
seen from the 95 per cent uncertainties in Table 10 that, as sté.ted
earlier from graphical observations, the ethane~hydrocarbon systems
exhibited less dependence of diffusion coefficients on composition than
did the methane~hydrocarbon systems.,

The empirical equations which were presented in Part II of
this work were chosen because of their accuracy, simplicity, and ac-

ceptability with reference to the temperature dependence.

Abas-Zade
Figure 5 shows the relation between the Chapman~Cowling dif-

fusion coefficient and total concentration of material in the liquid phase
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for a typical binary system. From the figure, it is apparent that
there exists a definite relation between the above two quantities; how-
ever, the relation is seen to be a strong function of temperature as a
second independent variable, This behavior is markedly different
from the dependence of thermal conductivity and viscosity of pure
components, although Starling and Ellington (65) found a slight addi-
tional dependence of residual viscosity on temperature. Probably
self-diffusion coefficients would behave much like viscosity and ther-
mal conductivity. Unfortunately, the only data noted for liquid hydro-
carbons over wide ranges of temperature and pressurc in the single
phase region have been reported very incompletely by Douglass and
McCall (18).

As a quantitative measure of how well defined the relation was
between the mutual diffusion coefficient and the total concentration,
the equation

Dij = C;+C,tt (C

51C tlo o (3)
was fitted to the data at hand. The resulting standard deviations of
the fits and the equation constants are presented in Table 11. Obvi-
ously, the goodness of fit was less than was obtained for the empiri-
cal equations in Table 5 (as an example, for the methane~n-pentane
system, Equation 3 produced a standard deviation of 2. 40)(10-8 as
compared to 1. 31X 1078 for Equation V in Table 5).

The interpretation of these results would be that a transport

property of a two-component system on the two-phase envelope is not

a function of just the specific volume of the phase., This is in agree-

ment with the findings of Lee, Starling, et al. (33) for viscosity of
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binary liquid system. Going a step further, one can infer from the
preceding information that the availability of '"holes, ' or space, in
binary liquids, depending on their specific volumes, is not the sole
determining factor for their transport behavior. In addition, the
distribution of the available energy over the various modes of the two

species becomes important,

Wilke and Stokes-Einstein

Since neither the expressions of Wilke nor of Stokes-Einstein
are significantly different from that of Eyring, Equation 15 of METH-
ODS, they were not considered individually to an extent worthy of re-
porting., Their major lack was in their ability to describe the varia-
tion of diffusion coefficients with composition. Additional comments
on these expressions will be made in the section dealing with the the-

ory of Eyring.

Eyring

In addition to those equations reported in Part 1l of this work,
Table 12 gives more equations of the Eyring types, and Table 13 gives
the standard deviations of their fits to the data. It is apparent from
Table 13 that the various forms given by Eyring are roughly equiv=-
alent in that they all may fit the available data equally well (the spread
in standard deviations between Equations I, IV, and V was only about
five per cent or less in the table), This result is reasonable, since
the small change caused by multiplying the exponential by the absolute
temperature merely counteracts a small part of the exponential of the

reciprocal absolute temperature, and the function remains basically
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the same.

The standard devialions of the fits of these equations in gener-
al compare favorably with the best of the empirical equations, In
particular, the four-constant equation, number III in Table 12, usual-
ly gave the best fit for the methane~-n-butane and methane-n-decane
systems; for example, it resulted in standard deviations of 0. 87)(10"8
and O. 98X10—8, respectively, as compared with 0. 65X10~8 and 1, 03x%
10-8 for the empirical Equation VI of Table 5 for the same systems.
This result indicates that concentration dependence has a significant
component which is independent of temperature.

Equations I and II of Table 12 and Equation 7 of Table 2, Part
II, compare the effect of using mole fraction, concentration, or
weight fraction of the lighter component as an independent variable.
Although the different forms were almost equivalent, the mole frac~-
tion form was favored slightly (its standard deviations were about
four per cent lower than those for concentration and cven closer to
those for weight fraction).

It is more interesting to compare the individual terms of the
equations, since in this case they have some theoretical significance.
Table 14 lists the energies of activation as defined in Equation 14 in
METHODS; they were calculated from the constants of the indicated
cquations of Table 13 at zero mole fraction of the lighl component.
Also listed for comparison are the values of the energy of activation
found by Douglass and McCall (18) for self-diffusion of the same
heavy coumponents. In every case the calculated values were greater

than those reported for the case of self diffusion. That is, the tem-
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perature dependence was more pronounced for mutual diffusion than
for self diffusion. For example, the activation for n-decane was 7. 6
kcal/gmole and 6.9 kcal/gmole for the methane~n-decane and ethane-
n-decane systems, respectively, as compared with 3.6 kcal/gmole for
its self diffusion. The trends of the activation energies with molecu-
lar weight were the same in each case, however, with the activation
energies increasing substantially with molecular weight of the heavy
component. The order of magnitude of the activation energies fell be-
tween the Lennard-Jones e for the compounds (0.6 kcal/gmole) (9)
and the carbon~carbon bond energies (80 kcal/gmole) (44), roughly at
the geometric mean of these two energies.

In Table 15 is listed the pertinent information on two equations
which were generalized to apply to the methane-hydrocarbon systems
and the ethane~hydrocarbon systems of binary mixtures. In the table,
Equations 1 and 2 are generalizations of Equations I and III in Table 12,
respectively, When the two white-0il systems were left out of .the cor-
relations, the fits of the equations to the data sometimes were im-
proved and sometimes were not. Also, the shorter Equation 1 was
found to be better than thelonger one in the case of the ethane series;
thie merely indicates that the empirical parts of thc cquations -~ the
composition and molecular weight dependencies =- were constructed
to describe more closely one series or the other.

Equation 2 resulted in a standard deviationfor the methane
series of 2, 03X 10"8 as compared with the best empirical equation's
1. 71><10"8 sq. ft. /sec.; for the ethane systems, Equation 1 compared

well with the empirical fits also, with a standard deviation of
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1. 49)(10-8 compared to 1, 33><10-8 sq. ft. /sec. for the best empirical
equation for ethane.

The limited data on the viscosities of ligquid mixtures of par-
affin hydrocarbons were used to calculate the molecular radii ac-
cording to Equation 15 where the k's were assumed equal. These
radii are presented in Table 16 and Figure 6 and show immediately
that the trend with molecular wecight is just the reverse of what it
should be. Unlike the radii calculated by the formula of Longuet=
Higgins and Pople in the next section, Eyring's radii increase with
decreasing average molecular weight. He apparently ignored this ef-
fect which was obvious in the correlations which he presented (56) for
toluene and n-heptane diffusing in a series of normal paraffins. The
Stokes-Einstein equation also has this problem of the inverted depend-
ence of radius on molecular weight.

The major point to be noted in this section dealing with Eyr-
ing's work is the fact that he predicted the form of the temperature
dependence of the diffusion coefficient better thaun anyone had previ-
ously.

A logical technique to use in generalizing the Eyring equations
for the several binary systems presented here would be to use reduced
temperatures in his equation. However, others (18, 40) have not had
great success with this technique for self-diffusion coefficients, and
for a binary system the task of devising pseudo-critical temperatures

would probably be more trouble than it was worth.
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Longuet-Higgins and Pople

Even though the equation derived by Longuet-Higgins and
Pople to predict dense phase diffusion coefficients was intended for
self-diffusion, it was tested here as a matter of interest.

In order to carry out the required calculations, the thermal
preSsure, Pt » had to be estimated. Since data were not available di=-
rectly for this quantity, it was estimated from the correlations of
Seader and Chao (11) which used Hildebrand's (25) solubility parame-~
ter & = (AEV/Y)%: . Their tables of 6 and molar volume are reported

in Table 17. According to Seader and Chao, the quantity & for a bi-

nary mixture can be estimated by the relation

T = Ynv.58./Zn.v. . (4)
P A S A

Then this property is used to calculate the following thermodynamic

property:
52 - Dov _ (3E, - 5)
v OV p
From thermodynamics,
oP 9 OE
Tem) = T(3%) = (32) +P . (6)
\' T T

Thus, the thermal pressure can be estimated directly from the equa=-
tion
2

Pt=6+P. (7)

Figure 7 shows a check of this estimate for the ethane-n-decane sys=
tem which was made using volumetric data which were available from
the Chemical Engineering Laboratory. The agreement is not perfect,

but adequate for a test of an admittedly very approximate relation.
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In Table 18 are reported the results of calculating a molecular
radius by Equation 17 of METHODS for eight of the binary systems.
One of the :systems is shown in graphical form in Figure 8, The
dashed line indicates the molal average value of the Lennard-Jones ©
(9). The agreement between the calculated solid lines and the dashed
linés is close, all around five Angstroms, but obviously not perfect.
They could be adjusted by including a constant multiplying factor such
as in Equation 18 of METHODS. In fact, if Longuet-Higgins and Pople
had used the function e-pscosﬁﬁs as the velocity autocorrelation func-
tion, the multiplicative factor would have been 1+62 o Then, if & de=
creased with temperature as Douglass (17) said it should as the im-
portance of oscillations (characteristic of solids) decreased as the
system moved away [rom the melting lemperature, the curves in Fig-
ure 8 could presumably be made to coincide. Thus, the form of the re=
sults in these figures is qualitatively correct, with the molecular ra~
dius increasing with increasing average molecular weight of the
system.

The available data on viscosities of the systems methane-
propane and methane-n~butane in the form of the correlation by Lee
(33) were used to compile part of Table 16 and Figure 9. These cal-
culated molecular radii are different from those in Table 18, of
course, because of the gross approximations in the theory. However,
the trend of the radii with molecular weight is logical, less dependent
on temperature, and in qualitative agreement with a molal average
Lennard-Jones ¢ . The characteristic of Figure 9 which is markedly

different from that in Figure 8 is the temperature dependence. In
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Fignres 15 and 16 the calculated molecular radius decreases very
definitely with increasing temperature. This confirms a comment of
Douglass, et al. (17) that the temperature dependences for diffusion
and viscosity are poorly understood and that major temperature ef=-

fects are being left out of the derivations.
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CONCLUSIONS
i. Several analytical expressions have been developed with which
one can interpolate the Chapman=~Cowling diffusion coefficient for binary
mixtures of light hydrocarbons in the liquid phase over a wide range
of temperature and composition. The values of the diffusion coeffi=
cient thus calculated are within the scatter of the experimental data.
These expressions should be valuable for interpolating the diffusion
data and for analytical representation of diffusion coefficients for ma=-

chine calculations.

2, The va;'iation of the Chapman=-Cowling diffusion coefficient
with composition was found to be linear with weight fraction or mole
fraction of the light component. This variation was more pronounced
for methane~hydrocarbon systems than for ethane-hydrocarbon sys-
tems. The data were not of sufficient precision to reveal more com-
plicated bchavior which has becn predicted from nonequilibrium

thermodynamics.

3. The temperature dependence of the Chapman-Cowling diffusion
coefficient of binary, liquid, light hydrocarbons is best described by
the exponent of the reciprocal absolute temperature, as proposed by

Eyring.

4, The Chapman~-Cowling diffusion coeificient of the above sys~-
tems cannot be determined solely from a knowledge of the specific

volume of the system.
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5. It is recommended that future calculations ot the Chapman-
Cowling diffusion coefficient from the experiment described above

employ the untruncated formula which was derived in this work.

6. The theory of Longuet-Higgins and Pople is useful for approx-
imating diffusion coefficients for binary liquid mixtures. However, it
does not predict the correct composition or temperature dependence

of the coefficients.
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NOMENCLATURE
A constant; area, sq. ft.; abnormality factor
Molecular radius, Angstroms; a constant; chemical activity
A constant
A constant

A constant; concentration variable, 1b. /cu. ft.; symbol for a
hydrocarbon; C', a constant

Diffusion coefficient, sq. ft. /sec.

Energy of activation, kcal/gmole

Free energy of activation, kcal/gmole

Acceleration of gravity, ft./sec. 2

Distance increment, ft.; Planck's constant, erg sec.

Boltzmann's constant, erg/o K; k', k", Eyring's jump fre-
quencies for viscosity and diffusion, respectively

Length of phase, ft.

Dimensionless weight flux variable; mole weight, 1b. /1b.-mole
Weight of material, 1b, /sq. ft. ; molecular weight, grarﬁs
Moles of material, 1b. -mole/sq. ft.

Number of carbon atoms per molecule

Weight Fraction

Mole fraction

Pressure, lb. /sq. in.; power

The gas constant, Btu/lb.°R

Mean distance of travel in Brownian motion, Angstroms
Dimensionless concentration variable; entropy, Btu/lb.° R
Factor in theory of Longuet=-Higgins and Pople

Thermodynamic temperature, °RrR
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Temperature, °r
Velocity, ft. /sec.

Specific volume, cu. ft. /1b.; V , partial specific volume,
cu. ft. /b,

Specific molal volume, cu. ft. /1b. -mole
Total volume, cu. ft.

Molal volume, cu. ft. /1b. =mole
Dimensionless coordinate

Coordinate, ft.; independent variable; association factor; x! ,
coordinate, ft.

Dependent variable

Factor in theory of Longuet-Higgins and Pople; slip factor
Molecular radius, Angstroms; surface tension, dynes/cm.
Vibration factor; solubility parameter, lb.%/in.

Viscosity, 1b. sec. /sq. ft.

Time, sec. or hr.

Jump distance or molecular dimension of Eyring, Angstroms
Drag on a molecule, lb.sec. /ft.; Eyring's constant of 5.6
Concentration, 1b. /cu. ft. ; uncertainty in a variable

Molar concentration, lb. ~mole/cu. ft,

Composition variable, lb. /cu. ft., mole fraction, or weight
fraction

Subsc riE ts

b

C

Bubble point
Chapman~Cowling; symbol for a hydrocarbon
Into cell

Diffusion coefficient
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d Dew point

F Fick

f Free ‘
g Gas phase

i . Referred to interface or of interface; component i
j Component j, heavy component

k Component k , light component

L Liquid phase

m Time increment number

N Carbon number

n Distance increment number

o Initial value

P Constant pressure

s Subtracted term

T Constant temperature

t Thermal

\ Constant volume; V , partial volume

\% Volumetric property

v Dependent variable

(o] Concentration

1,2,3... Component number; end of increment in from boundary;
number of carbon atoms in molecule; the number of a constant
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TABLE 1. Diffusion Data of Sage for Liquid Hydrocarbons

Chapman- Temp. Concentration Mole Fraction Pressure
Cowling of Light Com~ of Light Com-~
Diffusion deg. F  ponent ponent psi
Coefficient Ib/cu ft
sqft/secxl0
Methane-Propane

19. 48 40 1. 909 0. 1550 419. 4
17. 23 40 3.100 0. 2474 621, 1
17. 15 40 3.690 0. 2925 721.5
21. 21 70 1. 148 0. 0994 360. 8
19. 67 70 1. 657 0, 1425 463, 2
18. 84 70 2,147 0.1838 563. 1
14, 64 70 3. 656 0.3101 863, 4
17.62 100 1.610 0.1482 565. 0
17.01 100 2,213 0.2044 706. 6
14. 17 100 2,640 0. 2446 807.1
11.19 100 3.076 0. 2866 907.0

8. 04 100 3.338 0.3325 1069. 0
24,59 130 0.790 0.0793 484, 4
16, 42 130 1. 599 0.1622 701.9

Methane-n-Butane
13. 40 10 1.311 0. 1174 284, 5
13. 91 10 2.360 0.2020 499. 4
13. 64 10 3.363 0, 2765 700, 1
14. 51 40 1. 221 0,1128 301. 4
13.71 40 2. 580 0.2262 603.0
14. 64 40 3.912 0.3275 903, 4
12. 42 40 5. 441 0. 4349 1220, 6
16. 49 100 1.970 0. 1888 598, 5
15, 95 100 3.070 0. 2843 894, 0
16,51 100 3.090 0. 2858 899. 7
14. 37 100 4, 208 0. 3791 1135. 4
14. 84 100 4. 206 0.3793 1193.7
23,58 160 0.949 0.1029 446, 1
20. 10 160 2,756 0. 2864 1048. 3
18. 23 160 3.367 0.3491 1249, 5
16. 67 160 3.975 0. 4158 1450, 2
30.33 220 0.929 0.1149 615, 6
21.23 220 2.460 0. 3076 1218. 8
Methane~-n~-Pentane

10. 57 40 1. 219 0.1274 342, 2
10. 14 40 5. 408 0. 4669 1484. 8
13.71 100 3.218 0.3221 1053. 5
13.48 100 1.187 0.1316 409. 3

i2.61 100 5. 340 0. 4920 1702, 7
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TABLE 1 {(cont'd. )

Chapman- Temper- Concentration Mole Fraction Pressure
Cowling ature of Light Com~ of Light Com-
Diffusion ponent ponent
Coefficient
sqft/secx108 deg, F  1b/cu ft psi
18, 57 160 0.830 0.0999 377. 2
17. 63 160 2.074 0. 2337 849. 8
15,85 160 3.361 0. 3584 1338. 8
14,32 160 3,627 0. 4170 1784, 1
25,04 220 0,782 0.1019 452, 7
21, 54 220 1. 636 0. 2075 823.5
17,01 220 3. 270 0. 3888 1529. 7
31. 24 280 1. 449 0, 2059 918.1
23, 64 280 1. 881 0. 2660 1123, 2
Methane-n~-Heptane
10, 64 40 1. 139 0. 1453 410. 6
8,74 40 2. 147 0. 2524 761. 8
7.91 40 3. 180 0. 3454 1114. 0
8. 06 40 4,217 0. 4256 1465, 3
7. 68 40 5. 240 0, 4943 1816. 6
8. 97 100 0.751 0. 1049 335, 7
13, 26 100 2,459 0, 2953 1062, 4
12, 53 100 3. 347 0, 3754 1426, 3
11, 68 100 4, 222 0.4371 1777. 6
15. 24 160 1. 489 0. 2029 766, 2
13. 22 160 3.682 0. 4186 1822.1
13.10 160 4. 518 0. 5015 2535, 3
21.173 220 1. 890 0. 2585 1104.9
Methane-n~-Decane
4. 50 40 0. 674 0.1187 345, 3
4,12 40 4, 820 0. 5431 2483. 8
2. 87 40 6. 461 0. 6396 3357.9
6, 42 100 0.904 0. 1571 522.9
6. 54 100 1. 569 0. 2515 924, 3
7. 51 100 2. 245 0. 3336 1333.7
6. 68 100 4,039 0, 5023 2377.4
5. 64 100 5.922 0. 6280 3416, 1
15.76 220 1.071 0. 1963 810, 6
16, 24 220 2, 157 0. 3452 1603, 1
13.59 220 4, 748 0. 5897 3326, 7
11.55 220 5,792 0.6614 3870.6
20, 26 280 0. 389 0.0818 333.0
19. 55 280 0. 977 0.1884 816.6
18. 38 280 1.984 0.3365 1600. 4
15,66 280 3,111 0. 4667 2422, 3

17. 69 280 3.370 0. 4927 2602, 9
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TABLE 1 (cont'd.)

Chapman- Temper- Concentration Mole Fraction Pressure
Cowling ature of Light Com- of Light Com=-

Diffusion ponent ponent

Coefficient

sqft/secx108 deg. F  1b/cu ft psi

Methane~-White Oil

0. 43 40 0. 538 0.1730 513. 4
0. 55 40 0. 573 0.1823 546, 7
1. 41 100 0. 520 0. 1685 553, 2
1. 51 100 1. 002 0. 2883 1054, 9
1. 21 100 1. 526 0. 3858 1556. 6
1.78 160 1, 855 0.4422 2053, 7
1. 74 160 2. 949 0. 5661 3061, 0
4,13 220 0.419 0. 1486 548, 7
3. 81 220 0.815 0. 2562 1050. 4
2, 66 220 1. 980 0. 4659 2427, 0
Z, 98 2420 L, 889 0. 5678 3431, 2
6. 83 280 0.373 0. 1379 540, 8
7,51 280 0.732 0.2413 1042, 8
4, 88 280 2. 271 0.,5131 3071.5
9.31 340 0,413 0.1552 641, 6
7. 87 340 0. 748 0. 2514 1145, 5
Ethane~n-Pentane
11. 56 40 2. 86 0.1615 56. 6
8.32 40 6, 20 0. 3268 112, 9
11.76 40 9. 29 0, 4626 160, 4
17. 55 100 1.17 0,0731 56, 4
12,81 100 11.63 0.5798 375.9
14, 40 160 5. 52 0. 3278 329.0
15,48 160 9. 08 0, 5229 533. 4
28, 45 280 3.69 0. 2822 597. 6
Ethane~-n-Decane
4,10 40 5. 82 0. 4275 164. 3
4, 45 40 12. 05 0. 6802 262, 2
5.35 100 0.78 0.0782 47.4
5.67 100 1,185 0.1160 72.6
5.79 100 4, 825 0. 3829 251.3
5. 80 100 7. 165 0. 5086 345, 6
5. 46 100 10. 30 0, 6382 448, 6
7.82 160 1. 70 0.1667 150. 8
6, b2 160 3.53 0,3108 294,17
7. 85 160 4. 96 0, 4046 398, 2
7.62 160 6. 78 0. 5070 522, 0
6. 52 160 8. 54 0. 5899 629, 2
6. 21 160 11.08 0. 6920 770.0

9. 22 220 0. 875 0. 0940 111.1
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TABLE 1 (cont'd. )

Chapman- Temper~ Concentration Mole Fraction Pressure
Cowling ature of Light Com~ of Light Com-~
Diffusion ponent ponent
Coefficient
sqft/secx10® deg. F  Ib/cu ft psi
9. 99 220 2,083 0. 2067 254, 5
9.76 220 4, 875 0. 4147 549, 5
9. 47 220 6, 48 0. 5092 706, 1
9. 15 220 10, 45 0. 6959 1070, 0
13.09 280 1. 610 0.1719 254, 6
13, 47 280 2, 483 0. 2513 383. 5
12,43 280 3, 202 0.3108 489. 3
13,66 280 3.911 0.3648 590. 2
13,14 280 4, 589 0. 4135 687.0
15,01 340 0.737 0.0874 159. 4
16, 55 340 1. 490 0.1683 302, 1
15. 34 340 2,248 0, 2423 439, 7
15,43 340 2, 291 0. 2536 555.9
19. 22 400 2,120 0. 2438 516. 9
18. 96 400 2, 650 0. 2954 629, 2
17.03 400 3.222 0.3484 746, 4
Ethane-White Oil
1.94 100 2. 34 0. 3440 218, 4
1. 94 100 3.98 0. 4867 330.0
2.18 100 5. 94 0. 6053 451. 2
3. 51 100 8. 53 0.7140 596. 5
2,05 220 0.70 0. 1352 142. 6
4.41 220 2,25 0.3531 453. 4
7.92 220 4, 07 0.5119 802, 4
5, 80 280 1. 15 0,2117 288, 7
5. 62 340 0. 88 0.1731 264. 0
11.90 340 1. 95 0.3200 600. 0
6. 49 400 0. 94 0. 1865 319.0
n~-Butane~-n-Decane
7. 33 220 11.61 0.516 112.5
9. 24 220 17. 74 0.714 158, 4
12,92 280 6.32 0.331 115.5
11. 84 280 14.09 0. 633 232.5
11, 65 280 16, 24 0. 704 265, 4
19,51 340 4. 27 0. 249 130. 6
21.65 340 8.13 0. 433 230.0

19. 83 340 11. 87 0.593 326, 2
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TABLE 2. Liquid Hydrocarbon Diffusion Data
Author System Temp- Diffusion Mole Fraction
erature  Coefficient = Light Com-
deg. F Sqft/secX108 ponent
Fishman  n-Pentane 96, 0 6.76
77.0 6. 05
32.0 4, 45
-9, 25 3,20
~109. 5 1. 485
n-Heptane 204.5 7. 06
176. 4 6. 31
143, 8 4, 54
90. 5 3. 47
32.0 2,24
-9.25 1. 64
-109.5 0. 446
McCall n-Pentane 77.0 5. 87
n-Hexane 77.0 4, 54
n-Heptane 77,0 3.36
n~=Octane 77.0 2.15
n-Nonanc 77. 0 1.83
n=Decane 7.0 1. 41
n=0Octadecane 122.0 0. 495
n-Dicetyl 212.0 0. 323
Trevoy nC.7--nC12 77 1. 69 0.5
113 2. 30 0.5
149 2., 88 0.5
nC7-nC14 77 1.38 0.5
nC,~-nC 77 1. 08 0.5
716 113 1. 55 0. 5
149 2. 20 0.5
nC7—n618 77 0.99 0.5
Bidlack nC..{.—nC] 6 77 0.818 0. 0239
77 0. 965 0. 2080
T7 1,147 0.4179
77 1. 331 0. 6066
77 1. 562 0.7976
77 1. 698 0. 8936
77 1.911 0. 9944
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TABLE 2 {cont'd.)

Author System Temp- Ditfusion Mole Fraction
erature Coefficient Light Com~
deg. F sqft/sec x108 ponent

Bidlack nC6--nC12 77 1. 561 0.0245

77 1. 740 0. 2091
77 1. 935 0.4019
77 2. 22 0. 6377
77 2.51 0.8011
77 2.72 0. 8987
77 2.94 0. 9942
nC6-nC16 77 0. 935 0. 0146
77 1.191 0. 2578
77 1. 350 0. 3975
77 1. 610 0. 6076
77 1.793 0. 7496
77 1. 960 0. 8469
77 2,082 0. 9047
77 2.360 0. 9958
nC6—CCf?,4 77 4. 15 0.9958
Van Geet nCS-nC12 77 1. 297 0. 1412
77 1. 422 0. 3892
77 1. 547 0. 5980
77 1.675 0. 7763
77 1. 791 0.9302
140 2.23 0. 1412
140 2o 42 0. 3892
140 2. 56 0. 5980
140 2.71 0. 7763
140 2.83 0. 9302
n=Octane 77 2. 54
140 3. T2
n-Dodecane 77 0. 875 -
140 1.598 -
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TABLE 3, Comparison of Diffusion Coefficients Evaluated with
Truncated and Untruncated Formulas
Pressure Temperature Chapman-Cowling Diffusion -M
psi deg, F Coefficient, sqft/sec x10%
Truncated Untruncaited
Formula Formula
Methane~-n-Pentane
342, 2 40 10. 58 11,81 0. 0478
1484, 8 40 9, 68 12, 47 0, 1081
409, 3 100 13.54 14,78 0. 0384
1053, 5 100 14, 23 15.96 0. 0498
1702, 7 100 12.62 15,39 0. 0856
377. 2 160 18. 68 20, 06 0.0313
849, 8 160 17.71 19, 55 0.0431
1338, 8 160 18,61 18, 07 3. 0635
1784.1 160 14,17 18,08 0.1042
452, 7 220 25. 06 27. 25 0. 0367
823,56 220 21,772 24, 66 0. 0552
1529, 7 220 16.93 21,22 0. 0970
918.1 280 31.81 39.13 0. 0891
1123, 2 280 24,19 32.27 0.1227
Methane-n-Decane

345.3 40 4,39 4, 57 0.0174
2483.8 40 4,51 5. 03 0. 0472
3357.9 40 3,83 4, 48 0. 0682
522.9 100 6. 39 6. 81 0. 0280
924, 3 100 6. 62 6. 97 0,0225
1333, 7 100 7. 66 8. 00 0, 0190
2377, 4 100 7.16 7. 59 0,0261
3416. 1 100 7.25 7. 88 0. 0364
810, 6 220 15.79 16, 39 0, 0164
1601.3 220 16,13 16. 84 0,0191
3326, 7 220 17.32 19. 07 0.0419
3870, 6 220 17.05 19.61 0. 0608
332.9 280 20.11 20. 69 0,0124
816.6 280 19. 38 20,10 0.0162
1600, 4 2390 18. 36 19,22 0. D201
2422.3 280 16. 07 17. 44 0. 0357
2602, 9 280 18. 40 20. 50 U. 0470
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Equation

=
"

5.

Empirical Equations for Individual
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Binary Systems

+

+

+

+

2
C,

2
Czt + C3

2

t +C3X+C4tx

X+ C4tx

CZt + C3X + C4tx

: 2
C,t+ 63X+ Ct7x

2

2
GZt + GSt X

1.5
Czt + C3

2
C?_t + C3t X

C,t+ Cytx

t

1.5

X

Number

I

I

11

Iv

Vi

Vil

VI
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TABLE 6. Value to Be Subtiracted from Absolute Temperature

System
Methane-Propane
Methane-n-Butane
Met‘hane -n-Pentane
Methane-n-Heptane
Methane~-n-Decane
Methane-White Oil
Ethane-n-Pentane
Ethane-n-Decane

Ethane-White Oil

Subtracted Temperature, deg. R

461. 8
464, 0
527.0
42,
472. 4
290,
521. 6
586,

531.8
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TABLE 7. Standard Deviation for Empirical Equations for

Individual Binary Systems

Equation Standard Deviation X 108, sq ft/sec Average
Number Per Cent
X = Concen= Weight Mole Frac=- Deviation,
tration of Fraction tion C Mole Frac.
1
c 1 cl Cl

Methane-Propane

T 1. 16 0. 94 0. 85 3.8
II 1. 66 1. 43 1. 36 6.1
111 1. 54 1.26 1. 15 5.3
v 0. 90 0.76 0.72 2.8
A% 1.18 0. 94 0. 90 4, 2
Vi 1. 29 1. 05 0. 96 4.6
VII 0. 86 0.73 0.71 2.8
VIII 1. 27 0. 93 4, 4
Methane=-n~-Butane
I 1. 07 0.812 0.77 3.2
II 1.54 1. 28 1,31 5.4
111 0. 96 1,07 1,02 4,8
Iv 1. 37 1,44 1. 47 6.4
Vv 1.05 0. 80 0,76 3.4
Vi 0. 86 0.70 0. 65 3.2
VII 1. 54 1,74 1, 86 8.8
VIII 0.97 0. 98 4,8
Methane=-n-Pentane
I 1. 65 1,42 1. 34 5.2
II 2. 10 1,93 1. 92 8.4
I 1. 64 1. 59 1. 62 5.5
v 1. 83 1.93 2,11 7.9
Vv 1. 57 1, 38 1,31 5.5
Vi 1. 54 1. 40 1.37 4,9
VI 1.77 1. 84 2,03 7.8
VI 1, 84 1. 76 6. 4
Methane-n-Heptane
I 1. 67 1. 65 1. 68 9.8
I 1. 67 1. 65 1, 68 10,0
III 2. 17 2.15 2. 18 11.2
v 2. 09 2. 06 1. 99 10. 8
Vv 1. 62 1. 62 1. 63 10. 6
Vi 1.78 1.77 1. 80 10.7
VII 2,11 2. 11 2. 07 11. 2

VII1 1.72 1.75 10.0
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TABLE 7 (cont'd. )

Equation Standard Deviation X 108, sq ft/sec Average
Number Per Cent
X = Concen~ Weight Mole Frac~ Deviation,
tration of Fraction tion C Mole Frac.
C, C 1 C
1 1
Methane=-n~Decane
I 1. 34 1. 34 1.34 10. 6
II 1,39 1. 38 1. 40 11.0
Il 0.92 0.91 0. 94 8.2
Iv 0.93 0.92 0. 99 9.0
Vv 1. 36 1. 35 1. 34 11.3
Vi 1. 03 1.01 1. 03 8.0
VII 0,91 0. 90 0. 99 9.7
VI 0. 89 0.91 8.0
Methane-White Oil
I 0. 54 0. 54 0.52 12.8
II 0. 56 0. 56 0. 55 15,9
I11 0. 68 0. 69 0. 67 23,8
Iv 0.70 0. 70 0. 67 22, 2
A\ 0. 52 0. 52 0. 50 12,1
Vi 0. 51 0.52 0. 50 13,0
VI 0,78 0. 80 0, 86 41,9
V1II1 0. 66 0, 66 25,5
Ethane-n-Pentane
1 3.36 3. 26 2. 95 13,3
II 3.87 3,83 3.59 16. 2
111 2. 67 2. 65 2. 34 10.5
Iv 2, 50 2. 91 3. 00 1i.1
Vv 3. 13 3.02 2.75 13,3
Vi 2.75 2. 68 2. 33 11.6
VII 2,35 2.70 2. 85 11.9
VIII 2.23 2, 26 11.3
Ethanc~-n-Dccanc I
I 0. 83 0. 83 0. 85 6.7
II 0. 81 0. 82 0.82 6.2
II1 0,73 0.75 0. 80 7. 1
v 0. 86 0. 87 0.90 8.5
Vv 0. 85 0. 84 0. 85 7.1
Vi 0. 64 0. 63 0. 65 4,8
v 0. 85 0. 86 0. 89 8.5
VI 0. 80 0. 83 7.9

e

Values for Ethane are for C2 instead of C1 .
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TABLE 7 {cont'd, )

Equation Standard Deviation X 108, sq ft/sec Average

Number Per Cent
X = Concen~- Weight Mole Frac- Deviation,
tration of Fraction tion C Mole Frac.

c C 2 C
2 2 2
Ethane=-White Oil

I 0, 94 1. 00 0, 87 12,5

I1 1,27 1.31 1. 15 15,0

I1I 1.31 1,35 1. 17 15,7

Iv 0. 94 1. 00 0. 93 14, 0

v 0. 95 1,00 0.82 13. 4

Vi 1. 20 1. 26 0. 96 15,0

VII 0.93 0. 99 0, 88 14, 3

Viii 1. 51 1.17 17.4

n-Butane~n-Decane
VIII 1. 66 8.7

* Values for n-Butane-n-Decane are for C4 instead of CZo
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TABLE 8. Generalized Empirical Equations

Equation Number
_ 2, -.1.5
Dij = C  + CZ/Mj + [CB/MJ. + (C4 + C5/Mj Mt I
_ 9.1.5
Dij = G + cZ/Mj + [03/Mj +(Cy t CS/Mj)x]L i}
S 0.5 0.5 0.5 1.5
Dij = C, + CZ/Mj + [Csle +{C,+ C5/Mj It III
~ 1.5
Dij = [C + (c2 + C3X)t ]/Mj 1v
~ .5
Dij = (cl + Czt )/\/1 + c /MJ A%
Dij = C1 + [C2 + (C3 + C4x)t ]/Mj VI
_ 1.5 0.5
Dij = C + (C,+C t )/M +C4»( /MJ. VI
D..=(C,+Ct Mm% ;¢ 5/m,2 VIII
Ckj 1 2 j 3X i
_ 1.5 0.5 1.5 2
Dij = Cl F (C‘2 I C3t )/Mj + C4xt /Mj X
D = (C +Ct )/M +CXt1 5/1\/1‘2 X
Ckj J
D = C, + (C +Ct')/M +Cxtl'5/M2 XI
Ckj 1 2 3 J 4 j
~ 1.5 0.5
Dij = [C +(C, + Cyxlt ]/MJ. XII
B 1.5 0.5
Dij = C 4+ 7C,+(Cy+ C it ]/MJ. XIII
_ 1.5
Dij = C, +(C,+ C,t )/MJ. X1V
_ 2 1.5
Dckj = G, + CZ/Mj + [03/M3‘ +(Cy+ CS/Mj wJ]T XV
2 1.5
DCkJ. = G+ CZ/Mj + [Cy + C4/MJ..+ (Cg + Cé/MJ. 1t XVI
3
Dij = C +(C+ Cx)t+(Cy + C5xt)/Mj XVII

3.
Doy = G +[C,+(Cyt C4X)/Mj Jt X VIII
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TABLE 8 {cont'd, )

Egua‘cion Number
2
Dij C1 + (c2 + C3x)t + (C4 + C5xt)/MJ. XIX
_ 2
Dij Cyt[C, +(Cy# c4_><)/1v:{j Tt XX
D. . = C, 4+ [C,+(C,+C e 3T/M, +1/M 5+ vt ® xx1
CKj 1 AT My ; 5X
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Standard Deviations for Generalized

Empirical Equations

Equation Standard Deviation X 108, sq ft/sec Average
Number Per Cent
x = Concen=  Weight Mole Frac= Deviation,
tration of Fraction tion C Mole Frac.
1
C C C
1 1 1
Methane-Hydrocarbon

T 2.11 1.98 2.29 30.2
II 2. 55 2, 26 2.87 40. 0
oI 2,03 1. 89 2.19 15. 8
v 2. 90 2. 54 2. 98 28.7
\' 3.01 2,91 3.01 29. 6
VI 2.83 2, 51 2,88 42.7
Vi1 2. 93 2. 83 2.94 42,5
VIII 3.63 3.61 3.63 68. 1
IX 1. 80 1.71 1.89 24, 4
X 2.19 2,10 2,14 31. 2
Xl 2. 21 1. 98 2.29 33.0
X1 3.58 3.59 3. 40 64. 1
XIII 2. 06 1,96 2,18 15. 8
XV 2,98 2,66 2. 78 36. 6
XVI1 2.11 1. 98 2. 30 30.9
XVIL 5.09 78. 2
XVIII 4, 80 97. 5
XIX 4,69 4, 52 57.2
XX 4.33 -
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TABLE 9 (cont'd. )

Equation Standard DeviationX 108, sq ft/sec Avcrage
Number Per Cent
X = Concen= Weight Mole Frac- Deviation
tration of Fraction tion C Mole Frac,
C C 2 C
2 2 2
Ethane-Hydrocarbon

I 1.35 1. 36 1. 57 12. 8
1 1.54 1. 35 1.74 14. 2
11 2. 39 1. 89 2,33 21. 8
Iv 1. 59 1.61 1. 60 15,7
A\ 1. 58 1. 59 1. 39 14,5
Vi 1.32 1. 33 .34 11. 8
VI 1. 33 1.33 1.36 11. 8
Vil 2, 47 2. 40 2,41 27, 4
IX 1. 89 1. 86 1. 88 17. 8
X 1. 62 1. 62 1. 62 16, 0
XI 1.34 1. 36 1. 35 12,2
XII 2.81 2,76 2. 82 34,1
X1 1. 91 1. 91 1.91 18.7
X1V 1. 60 13,2
XV 1.71 1.72 1. 64 15,7
XVL 1. 36 L. 37 1,77 14. 4
X VIII 2,44 29.1
XIX 2,35
XX 2,07

Both Methane and Ethane Hydrocarbon
XX1 5. 26 5. 11 5. 00 89.0
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TABLE 10. Constants for the Best Generalized
Empirical Equations

Eqguation Constants and 95 Per Cent Uncertainties X 108
Number Cl C2 C3 C4 C5
Methane-Hydrocarbon Systems
I - -12,17 191. 1 0. 0388 0.062031 ~0. 3138
2.0 17. 4 0. 0040 0.0143 0. 145
X -13.29 203, 7 0. 04058 -105.9
1. 60 14. 6 0. 00330 22,6
XIII -10. 40 174.6 0.03851 -0. 1166
1.58 13.5 0. 00414 0. 0452
Ethane-Hydrocarbon Systems
I -1, 463 819.9 0. 2734 0.0001906 =0.2172
1. 367 164, 2 0. 0295 0. 00469 0. 5518
Vi -1. 426 815, 8 0. 2735 ~0. 1970
1.011 127. 4 0.0290 0. 2349
VII -1,262 796. 6 0, 2742 -0.01916

0,977 118.8 0.0292 0.02244
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TABLE 11. Constants and Standard Deviations for Equations

Relating Diffusion Coefficient and Total Concentration

System Standard Constant Constant Est, Uncertainty
Dev1a1élon Number v 108 on Constant X 108
x 10
sq ft/sec

C,-C, 1.81 1 -33.9 52.1

2 - 0,107 0. 54

3 1. 57 1. 85

4 0.0081 0.0199
Cl-nC4 1. 65 1 -31.1 20.3

2 0, 159 0. 103

3 1. 20 0. 579

4 - 0.00163 0. 00324
Cl-nc5 2. 40 1 ~16.6 30.8

2 0. 107 0. 152

3 0.621 0. 896

4 - 0.000491 0. 00493
Cl-nC,7 1.78 1 -40, 3 43,3

2 0.325 0.301

3 .13 1. 08

4 - 0.00643 0. 00798
Cl--nC10 1. 00 1 - 2,98 17.0

2 0.00137 0. 0879

3 0. 0691 0. 415 .

4 0.00179 0. 00226
Cl-WO 0.72 1 -65.3 32,3

2 0. 170 0. 100

3 1. 18 0. 591

4 - 0,00247 0, 00203
CZ-nC5 4. 02 1 -50, 2 78. 0

2 0.198 0. 343

3 1. 49 2.15

4 - 0,00182 0.0108
CZ-nClo 0. 81 1 - 9.67 8. 73

2 0. 0822 0, 0340

3 . 0,275 0.219

4 - 0.00105 0. 000922
CZ-WO 2. 42 1 37.9 104. 0

2 - 0,0744 0. 588"

3 - 0.752 2,13

4 0.00189 0.0122




Ckj

~-134-

TABLE 12, Equations of Eyring Form for

Individual Binary Systems

Equation

It

exp[C) + (C, + G5 1y )/T)
exp[C; + (C, + Cg Gk)/T]
exp[Cy + C, oy * (Cy + Cy Gk)/T]
T exp[Cl + (C‘2 + C3 ?k)/T]

70 3 exp[C, +(C, + C3nk)/T]

Number

—

1I

III

Iv
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TABLE 13, Standard Deviation for Equations of Table 12

Equation Standard Deviation X 108 Average Per Cent
No. sq. ft. /sec. Deviation

Methane~-Propane

I 2,12 10.9

I 2. 46

IIT . 1. 58

iv 2,11 10,9

Vv 2,17 11.0
Methane~n-Butane

1 1. 55 7.1

IT 1. 80

IIT 0. 87

Iv 1. 49 6. 7

Vv 1.55 7.0
Methane-n-Pentane

I 2.10 8.8

II 2. 26

a1 1. 48

v 2, 04 8.6

vV 2.12 3.0
Methane-n~Heptane

I 1. 60 9.1

I 1. 59

II1 1,93

IV 1. 57 9.1

v 1, 54 9.1

Methane~-n~Decane

I 0. 98 7.9

II 0. 96

III 0. 98

Iv 1,02 8.1

Vv 0. 96 7. 0
Methane-White Oil

I 0. 51 12, 4

I 0.51

Iv 0.52 13,1

A% 0. 52 13.5
Ethane~Pentane

I 2,24 11.2

II 2,31

v 2,17 11. 2
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TABLE 13 (cont'd. )

2. 27
Ethane-Decane

0. 69
0. 68
0. 67
0, 66

Ethane-White Oil

1, 53
2,02
1. 57
2,05

Butane~Decane

1. 30
1. 29

11. 7

L]

O~ =3
O O
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TABLE 14. Activation Energies for Diffusion at

Infinite Dilution of Light Component

Activation Energy, kcal/gmole

Eqguation Calculated McCallls Self-
Number at n, = 0 Diffusion Value

Methane-Propane

I -2.60
II -3.37
III 3.72
v -4, 55
A\ -3.34

Methane-n-Butane

I 3.16
II 2.75
111 5. 44
Iv 1.15
v 2.27

Methane -n-Pentane

I 5.19 1.5
II 5. 00
III 7.83
Iv 2.92
v 4.08

Methane-n-Heptane

I 5.33 2.2
II 5.22
III 5.58
IV 3.26
Vv 4,32
Methane~-n-Decane
I 7.61 3.6
II 7.50
111 7.94
v 5.36
Vv 6.55
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TABLE 14 {cont'd)

Activation Energy, kcal/gmole

Equation Calculated McCall's Self-
Number at n, = 0 Diffusion Value
Methane-White Oil
I 11.42
II 11.50
111 11.48
Iv 8. 96
v 10. 43
Ethane-n-Pentane
I 4.75 1.5
II 4.54
111 7.176
IV 2.56
Vv 3.68
Ethane-n-Decane
I 6. 86 3.6
II 6. 83
III 7.36
Iv 4. 36
Vv 5.58
Ethane~-White Oil
I 17.17
II 13.32
111 8. 94
Iv 14. 65
Vv 11.60
n-Butane-n-Decane
I 15. 42 3.6
v

12.78
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TABLE 15, Constants for Generalized Equations of
Eyring Form
Equation Constant Constant Est. Uncertainty Standard
No. * No. on Constant DeviationX10
sq. ft. /sec.
Methane-Hydrocarbon
with white oil
1 1 -13.6 0. 37 2.98
2 -1480,0 312,
3 -445.0 224
4 24900, 0 6280
without white oil
1 1 -13.5 0. 30 2, 42
2 -1400 255
3 -512 184
4 20, 500 5240
with white oil
2 1 -13.4 0. 493 2,03
2 -, 670 1. 85
3 -‘846. O 2'910
4 -4. 30 . 701
5 121. 1240.
6 -18100. 22,000,
without white oil
2 1 ~13.4 . 554 Z, 20
2 -.721 2. 06
3 -818. 320.
4 "4. 76 1. 48
5 288. 1450,
6 -27100, 32,400,
Ethane-Hydrocarbon
with whitc oil
1 1 -13.3 . 278 1. 49
2 -2460, 265,
3 -154, 168.
4 81300, 8480,

ate
oL

Equation 1: Dij

2: Dij

11

f

exp [Cl+(CZ+C31}k+C4/MJ.)/T]

exp[C1+C21}k+(C3+C4Mj+C51_1k+ Cér}k/Mj)/T}
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Equation Constant Constant Est. Uncertainty Standard 8
No. No. on Constant Deviationx 10
sq. ft. /sec.
without white oil
1 1 -13.3 . 227 1. 14
2 ~2420. 220,
3 -209, 136,
4 79400, 7490.
with white oil
2 1 ~14.8 . 963 2. 29
2 3.67 3,22
3 -387. 589.
4 -2.29 1,16
5 -3420. 2230.
6 96400. 53900,
without white oil
2 1 -12.17 . 595 1. 04
2 "1. 56 ]-Q 84
3 -854, 292,
4 -9. 95 1,66
5 1440. 1460,
6 -66000. 45200,
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TABLE 16, Molecular Radii of Eyring and of Longuet-

Higgins and Pople Determined from Viscosity and

Diffusion Coefficients

Temp - Mole Frac- ViecosityX 107 Molecular Radius,
erature, tion, Light 1b. sec. /sq. ft. Angstroms,
Deg. F Component of Eyring of Pople
Methane-Propane System
40 0. 1550 20. 52 12,5 3.96
40 0, 2474 17.71 16.3 3,43
40 0.2925 16,39 17,8 3. 28
70 0. 0994 18.54 13. 4 3.94
70 0. 1425 17. 39 15, 4 3. 66
70 0.1838 16, 27 17.3 3. 46
70 0.3101 13.09 27.6 2,72
100 0. 1482 14,15 22. 4 3. 14
100 0.2044 12, 74 25,6 2.94
100 0. 2446 11.83 33,4 2,59
100 0. 2866 10, 90 45, 8 2,21
100 0.3325 8.78 79.5 1.74
130 0.0793 12,69 18.9 3,58
130 0.1622 10, 96 32,8 2.73
Methane-n~-Butane System
10 0.1174 42,38 8. 28 5.11
10 0.2020 38. 65 8.75 4, 86
10 0. 2765 35.15 9.79 4,50
40 0.1128 36,18 9. 50 4, 84
40 0. 2262 31,11 11.7 4,25
40 0. 3275 26. 59 12, 8 3.96
40 0. 4349 21. 85 18. 4 3,24
100 0.1888 24.10 14.1 4,05
100 0. 2843 20,78 16.9 3. 64
100 0. 2858 20,77 16,3 3.70
100 0.3791 17. 40 22,4 3.12
100 0.3793 17. 34 21,8 3.16
160 0. 1029 19, 62 13. 4 4,42
160 0. 2864 14. 69 21.0 3. 46
160 0. 3491 12, 88 26, 4 3.08
160 0. 4158 10. 96 33.9 2,73
220 0.1149 13, 40 16,7 4,22
220 0.3076 9. 45 33.9 2. 98
Methane-White Oil System
100 0.1685 2090, 1.90 20.3
100 0. 2883 1107, 3.33 14. 4

100 0. 3858 860. 5. 36 10, 8



100
100
100
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TABLE 16 {(cont'd. )

Ethane-White Oil System

0. 3440 955. 3,02
0. 4867 580. 4,96
0. 6053 255, 10. 07
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TABLE 17. Solubility Parameters and Molar Volumes

Hydrocarbon Solubility Parameier, Molar Volume
(PSi)llZ ml/gmole
Methane 140. 0 52
Ethane 149. 1 68
Propane 157, 7 84
n-Butane 165. 8 101. 4
n-Pentane 173,0 116.1
n-Heptane 183.1 147, 5

n-Decane 190, 2 196, 0
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TABLE 18. Molecular Radii of Longuet-Higgins and
Pople Calculated from Diffusion Coefficients and

Estimated Thermal Pressures

Temperature Mole Fraction Estimated Molecular
Lt, Component Thermal Pres- Radius,
Deg. ¥ sure x 10”2, psi  Angstroms
_ Methane~-Propane
40 0. 1550 24,7 4,24
40 0. 2474 24, 6 3.52
40 0. 2925 24. 5 3. 40
70 0. 0994 24,9 4, 64
70 0. 1425 24,8 4. 19
70 0.1838 24, 8 3.92
70 0.3101 24. 5 2, 84
100 0. 1482 24,3 3,62
100 0. 2044 24,8 3.52
100 0. 2446 24,8 2,89
100 0. 2866 23.8 2.15
100 0.3325 23.6 1. 63
130 0. 0793 25,1 5. 44
130 0.1622 25,0 3,56
130 0. 2025 24,9 2,52
Methane-n-Butane
10 0.1174 27, 2 4.70
10 0.2020 27.0 4,43
10 0. 2765 26.8 3.98
40 0.1128 27.3 4,78
40 0.2262 27.0 4,01
40 0. 3275 26,7 2.86
40 0. 4349 26.3 2,86
100 0. 1888 27, 2 4. 54
100 0. 2843 27,0 4. 00
100 0. 2858 27.0 4,13
100 0.3791 26.7 3.30
100 0.3793 26.7 3.41
160 0.1029 27.5 6.63
160 0. 2864 27,1 4. 90
160 0. 3491 27.0 4, 27
160 0. 4158 26,7 3.78
220 0.1149 27.6 8.51
220 0. 3076 27.1 5. 46
Methane-n~-Pentane
40 0.1274 29. 6 4,85
40 0. 4669 28,3 2.99
100 0.3221 29.0 4. 44

100 0.1316 29. 6 5. 50



100
160
160
160

160

220
220
220
280
280

40
40
40
40
40
100
100
100
100
160
160
160
220
220

40

40

40
100
100
100
100
100
220
220
220
220
280
280
280
280
280

0. 4920
0. 0999
0. 2337
0. 3584
0. 4170
0, 1019
0. 2075
0. 3888
0. 2059
0. 2660

0. 1453
0. 2524
0. 3454
0. 4256
0. 4943
0. 1049
0. 2953
0. 3754
0. 4371
0. 2029
0. 4186
0. 5015
0. 2585
0.3947

0.1187
0. 5431
0. 6396
0. 1571
0. 2515
0. 3336
0. 5023
0. 6280
0.1963
0. 3452
0. 5897
0. 6614
0. 0818
0. 1884
0. 3365
0. 4667
0. 4927
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TABLE 18 (cont'd.)

28.3
29. 8
29. 4
29.0
29.0
29.8
29. 6
29.0
29.17
29. 4

Methane~-n-Heptane

33.0
32,6
32,2
31.8
31. 4
33.2
32,6
342, 2
32,0
33.0
32,2
32,1
32.9
32. 4

Methane~n~-Decane

35.9
34, 2
33,17
35,8
35.5
35,3
34,6
33.9
35.8
35,5
34.4
33.8
36. 1
35,9
35,5
35.1
35.0

3,27
7.17
5,87
4, 58
4,36
9.12
7.18
4.70
10. 37
7.53

7.99
5. bl
4, 36
3.84
3.19
6.37
7.09
5,86
4,76
8. 48
5. 17
4.69
10. 14
8.63

6. 27
2,57
1.39
7.23
6, 37
6.38
4,06
2.51
13,59
10. 96
5. 56
3.93
18.92
15.67
11, 64
7.81
8.38



40
40
40

100

100
160
160
160
280
280

40

40
100
100
100
100
100
160
160
160
160
160
160
220
220
220
220
220
280
280
280
280
280
340
340
340
340
400
400
400

0.1615
0.3268
0. 4626
0.0731
0. 5798
0. 0865
0. 3278
0. 5229
0. 1478
0, 2822

0. 4275
0. 6802
0. 0782
0.1160
0. 3829
0.5086
0. 6382
0. 1667
0.3108
0. 4046
0. 5070
0. 5899
0. 6920
0. 0940
0. 2067
0.4147
0. 5092
0. 6959
0.1719
0. 2513
0.3108
0.3648
0. 4135
0. 0874
0.1683
0. 2423
0. 2536
0. 2438
0. 2954
0. 3484
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TABLE 18 (cont'd. )

Ethane=-n=Pentane

29, 2
28, 2
27, 4
29,6
26,7
29. 6
28, 4
27.3
29.6
29.0

Ethane~n~Decane

33,2
30.1
35,8
35, 6
33.7
32,5
30.9
35.3
34, 4
33.7
32,7
31. 8
30.4
35.7
35.1
33.7
32,9
30,7
35.4
34.9
34, 6
34,2
33.9
35.8
35.5
35.1
35.1
35,1
34,8
34,5

5.31
3.22
3.91
7.85
3,27
10. 36
4. 52
4.15
13, 26
9. 27

3. 48
2,13
6. 83
6.91
4,66
3.68
2.57
7.90
5.31
5. 46
4. 39
3.15
2,35
9.28
8,59
6. 11
4. 99
3,22
10. 96
10. 11
8. 56
8.65
7.70
13,09
13.07
10. 99
11.32
13.19
12,15
10. 16



220
220

280

280
280
340
340
340

0.516
0.714
0. 331
0. 633
0. 704
0. 249
0. 433
0. 592
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TABLE 18 {cont'd. )

n=-Butane-n=Decane

33,1
31.3
34. 4
32,2
31.5
35,0
33.8
32.6

4.61
4.48
9.56
6.07
5. 42
14,98
13.62
10. 42
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APPENDIX

This appendix will serve to demonstrate the use of correla-
tions of diffusion coefficients in real situations, Specifically, two
problems invalving diffusion will be treated in which non-idealities
occur, such as when the diffusion coefficient varies with composition
or the. partial volumes of the two components are constant but unequal.
The two illustrative situations will be (1) diffusion into a stagnant lig=
uid layer and (2) diffusion through a U~tube when one component is

non=-volatile.

Stagnant Liquid Layer

The prediction of the molecular flux in a binary system under
isobaric, isothermal conditions was described earlier in this work.
If the solution obtained there is applied to the flux of one component

crossing the interface into the 1iquid phase, the result is

(1)

( Ck) jdvj&
k&
with the coordinates measured from the interface and M dete rmined
from Equation 29 of EVALUATION. The extended equation for the
transient solution of the above problem, but with the diffusion coeffi-

cient variable is

Bck _ mkin/{,J ack o Sck 2)
05 - Bx ' Bx < Ckj ox >
l-g.,V.
jd " je

als
=

The material for this appendix was presented in a talk given by
Professor B. H, Sage at the April 7, 1964, meeting of the American
Chemical Society in Philadelphia.
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from Equation 25 of EVALUATION. When the variation of the Chap-

man~Cowling diffusion coefficient with composition is taken as

Dckj = atbo , (3)
Equation 2 becomes
- 2
" 8o th, .V 3o 9o, 2 9 o
k _ ki ki k k k
55 = - == == +b(5=) * (atbo ) — . (4)
1-0.,V. ox
jd jb

In finite difference form, Equation 4 can be expressed (32) as

_ ki Ykt Ag bAD
C = -C )+ —
m+l, n m,n = 2Ax m, n+l m, n-1 2
1-Ojde& 4(Ax)

(5)

2 Ag
)+ (a+bcm, n) W (cm, ntl "~ Zcm, n+cm, n-l)

(Cm, n+l—Cm, n-1

where the subscript m denotes the time interval, n denotes the dis-
tance interval, and C denotes O ° The weight flux of component k

across the interface is found from

D.. . l-0. V. 9
= - I ( ﬁk) . (6)
ki = 0., =C. ox
Vi’f/ jb jd i

This equation in finite difference form is

(a+bC_ ) (1-0,.V..)
th, = - s 8K (25 +a8C
1245V, ib™%a ™M, O m,

1-360m, >

+16Cm’3-3Cm’ 4) . (7)

Figure Al shows the results of numerical solution of Equa~-
tions 5 and 7 for the ethane-white oil system at 160°F (a = 8, SXIO'IO,
b = 1.155X% 10-8) over a typical time period for the above experiment.

The characteristics of the process shown are as follows:
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ke 0.0389 cu. ft. /lb. do = 0. Ib. /cu. ft.
Vj{; = 0.0183 cu. ft./1b. ko = 0. 1b. /cu. ft.
Gjb = 40.57 1b. /cu. ft. oy = 6.41 1b, /cu. ft.

The solid curve gives the numerically determined value of the flux of
ethane at the interface as a function of time; the upper and lower
dashed curves are the analytical approximation of the solid curve when
the diffusion coefficient is determined at surface conditions and at the
average of surface and initial conditions, respectively. The dashed
curves are obviously reasonable approximations of the solid curve,
yet they are both in error by as much as twenty per cent over the time
period shown. Therefore, for precise work they would be inadequate
descriptions of the process. It is very interesting to note that in this
time period the numerical flux could have been characterized very ac-
curately by a very nearly constant diffusion coefficient calculated
from a weighted average concentration of 0.7 time s the surface con-
centration of component k plus 0.3 times the initial concentration of

that component,

U-tube

Another problem of interest deals with a one=dimensional sys=
tem of constant cross section with a liquid-gas interface at each end
{a U-tube of ligquid described in onc dimcnsion). A transient process
involving this configuration might be the compression of a gas phase
composed of a volatile component at one end of the tube and a reduc~-
tion in pressurc at the other end. If the second liguid-phase com-~-

ponent were non-volatile, the result would be diffusion of the light
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component through the tnbe and a consequent migration of the heavy
component toward the end with the reduced pressure., The initial con-
ditions of a transient process of interest might be the following for an

ethane-white oil mixture at 160° F:

nCZ(O’X) = 0.5 ncz(oa o) = 0.9
Vké = 0,0390 cu. ft. /1b. Lo = 3,0 ft,
V. = 0,0180 cu. ft. /1b.

it
The above problem would be difficult to solve analytically if
the partial volume of component k were zero; having it non-zero and
letting the diffusion coefficient be variable complicate the situation a
great deal more. However, the problem can be handled in a straight=
forward manner numerically,

The differential equation describing the transport process was

taken as
Dkl g 2 e, 10 (Pag My .
99 kox - Y Bx % ox o ox
it

while the equation of continuity was expressed in the following way:
\Z 9o 9o
du _ _l( kL ( k k
ox cl'.\—/. )“ax+ae)° (9)
it

When Equations 3, 8, and 9 were combined, the equation to be solved

for the concentration of component k was

2 — —
Bck o dc + (arbo. ) ] O . a.(Vk%-Vj&Hb (aok )2 (10)
28 ~ T " Tx k I — ox :
0 ox 10 (V, V. )
k' ke it

The variation in pressure along the diffusion path may be evaluated

from the conservation of momentum in the following way when
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viscosity is neglected:
o T 0w ouy (11)

v 8

Finally, since the partial volumes were taken as constant, the overall

change in volume may be simply evaluated from

q5 T KT T Mko™™kn! Vky ¢ (

Equations 9, 10, and 11 will now be expressed in finite differ-
ence form, but with a variable value for the size of the distance incre-
ment. This modification was necessitated since the system grows in
length during the process and the moving end must be allowed to
move, numerically, any fraction of a distance increment during a
time step, as determined from Equation 12. Therefore, the symbol
h denotes the distance from point n to point ntl ; hn denotes the

n+l

distance from point n~1 to point n. Now Equation 10 can be expres-

sed as
o - c L 2(a.+me’ n)Ae ‘. AB §

m+l, n m,n hnhn+l m, n+l (hn+hn+1 )

2(a+me’ n) AD 2(a+me, n)

—% "¢ Pl B T )| R tu

n m,n ? n ntl n+tl m,
Al a.(Vk%-VjL)+b 2

* 2 = s (Cm, ntl Cm, n-l) (13)

(hn+hn+l) 1-cm’ n(Vk&-Vj%)

Similarly, Equation 9 becomes
(ka,'vjfa) m+1, 1~ Cmtl, n)

1- Cm, n(vk&_vj%)

(C

U’rn+l, ntl ~ U'm+1,n 1+

+
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h v,,-V.
m,n' ki jb

+

Equation 11 then is

- 1 T T
Pt ot Pm+1, n o7 [1 = Crn, n(vk&'vy;)]

h
(u -u ) otl u (u -u ) .
m+l, nt+l m, ntl’ Af | m+l, n' m+i, ntl “m+l.n

The flux of component k at the ends was determined from the evalua-

tion of the following equation:

2 2 2 2

s atbC, 5 Con, ilPy =Py #h )7 I+C Lty +h,)7-C By
ki c_ v h B (R, ¥ b))

m, i (16)

Now that the problem has been formulated, the solution is easy
to obtain; the main point where care must be exercised is in the proper
adding on of increments during the growth process of the liquid phasc.

In Figures A2 and A3 are presented some of the more inter~-
esting results of solutions for the U-tube problem which has been set

up. The dashed lines apply to a solution with constant diffusion coef-

4

ficient (8.345x10" ~ sq. ft. /hr. ), and the solid lines apply to a solution

with variable diffusion coefficient (a = 3. 165)(10-6

5

sq. ft. /hr., b=
4, 157x1077 £°/1b. hr. ).

Figure A2 shows that the flux of ethane into the tube looks
very much like diffusion into a semi~infinite layer of liquid until the
outward flux of ethane makes itself feit and the two fluxes converge to

a steady state situation. The approach to steady state is also evident

in the slowing of the growth rate of the liquid phase. It is of interest
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to note from Figure A3 the large amount of white oil which has been
transported to the downstream end of the tube. Only some twenty-
four per cent of the white oil is present in the original length of the
phase as steady state is approached(8280 hr, } even though the new
length is little more than double the original. The solutions of this
particular problem with and without a variable diffusion coefficient
show again that the assumption of constancy of the coefficient intro=-
duces errors which can be tolerated in some situations and which can-

not in others,
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Fig, Al, Transport Rate of Ethane into a Liquid Film.
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PROPOSITIONS



PROPOSITION I

It is proposed that a concentric cylinder viscometer which is
operated as a transient device be used in industry as a replacement
of the widely-used rolling-ball type viscometer in high pressure work.
The cylindrical viscometer would have the characteristics of low cost
and ease of operation with the additional advantage that it would give
results which could be related to hydrodynamic theory and which
would differentiate non-Newtonian fluids from Newtonian fluids.

The excellent viscometers in use for very precise work at
high pressures are either too expensive (4) or too limited in range (1)
for practical use in many industries. Falling cylinder viscometers
constitute another alternative which is constantly being improved (2).

The proposed viscometer consists of an outer, stainless steel,
pressure cylinder which is geared to a small electrical motor. One
or more small loops of copper wire are imbedded in the inner wall of
the cylinder where they are insulated from the steel; their leads con-
nect, through pressure seals, with slip rings on the outside of the
cylinder., An inner cylinder of desired radius and moment of inertia
is suspended within the pressure cylinder on bearings which are as
friction-free as possible. Built into the inner cylinder is a small,
permanent magnet which induces current in the copper coils with each
relative rotation of the cylinders.

In operation, the outer cylinder would be accelerated quickly
to a constant speed by the motor, and the impulses from the copper

loops would be recorded as a function of time. As shown by the fol-



~-160~

lowing analysis, the viscosity would be a function of § and Ay .

The reduced Navier-Stokes equation which is applicable to the

situation is (3)

ou 8211 du

1 Yy ¢ .1y
VI T 52 TT e "z (1)

with the initial and boundary conditions

uw = 0 at 0 = 0
u‘l’ = W T at ro=or (2)
u, = W.r at r = r
Lp 11 1
where
do,  ,,  2mr’L
‘&é'=T=‘“T_Tr¢' (3)
But, for a Newtonian fluid, the shear is
ou u
— ki
TrqI - ﬂ( or —fqr_) ) (4)

Combining Equations 1, 3, and 4 gives

2
Zwri4Ln r@ 9 u

dg . (5)

uw ) ZTrri4Lp-I L(J) 81‘2 r
An exact solution to Equation 1 would give the viscosity as a
complicated, implicit function of the cell parameters, elapsed time,
8 » and measured velocity, w, . To permit a simpler solution to be
found, the conditions will be determined under which the ins’cé,ntaneous

flow pattern between the cylinders can be approximated by its steady

state form, Equation 6.

u, = [w.+r-ri (w -w.):lr . (6)
i o i
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This approximation will be accurate if the cell parameters are re-
stricted so that the steady-state flow pattern is approached much
more rapidly than the inner cylinder is accelerated.
Using the steady-state flow pattern approximation, a combinaw

tion of Equations 4 and 6 gives the relation

U)O - wi
Ty :nr(r—r.)' (7)
1 o 1
Then, Equation 3 becomes
dwi 2.1Tri3L
ds - I(r -z} (wo-wi) (8)
o i
at r =1, . The solution to Equation? is
211'111.L L
Mgy
Ay = W =p. = p_e . (9)

This expression is only as valid as the assumption of a steady-state
flow pattern in the space between the cylinders. The circumstances
for which the assumption is valid will now be determined.

The space between the cylinders can be approximated as that
between two infinite, parallel plates. In the case where one of the
plates is suddenly accelerated to a steady velocity, the expression
describing the flow of the fluid in the space is easily determined to be

ZT\_Z
o v 0

[0 0] n
T ("rll) e ¢ sinard . (10)
-1

u y 2
— T da'=

o}

Equation 10 includes the assumption that one surface does not move.
Now, it will be required that when the speed of the inner cyl-
inder reaches a low fraction, F.1 ; of its steady state value, the ve-

locity of the fluid at a point midway between the two cylinders be
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equal to or greater than a large fraction, ¥, of its steady state val-

t
ue. In equation form, from Equation 9,

, 3

d'rrri L

Iiro-r. ) ne

1-F, = ¢ t . (11)

The first term of the summation in Equation 10 will be taken as ade-

quate to describe the behavior of the fluid velocity, Then, from Equa-

tion 10,

1 1 2

7F = 2-37° (12)
at y = 3d. If the approximation in Equation 10 can be used for the
space belween the concentric cylinders,

ro- T = d . {13)

Equations 11, 12, and 13 can be combined to give the equation
w hich expresses the criteria for the validity of Equation 9.

T
wl én[z(l"Ff)

s . (14)
2pr, Ld *n (1 - F)

If, for example, the values of the parameters in Equation 14

were chosen as

_ - _ bpmrlL, 4
F, = 0.99 F, = 0.05 I = —-%———r. , (15)

1
where the inner cylinder was approximated as a right, circular cylin-
der five times as dense as the fluid, Equation 14 becomes

5w’ i > An m/400

4 d in 0.95 : (16)

The restricting criterion is, approximately,
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ro-ri=dS0.l3ri, (17)
Thus, if condition 14 is satisfied, Equation 9 can be soulved to
give the expression for the viscosity of the fluid in terms of the cell
parameters and the experimentally measured quantities Ay and 9§ .
1(1'0—1'1) Ln Wy = An Ay

= r 1. (18)
Zwri3L 0

Equation 18 shows that by making measurements at different
values of § one can distinguish a non-Newtonian fluid from a New=~

tonian one by the dependence of its viscosity, n, on 8 .
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NOMENCLATURE
Symbols
D Substantive derivative
Distance between parallel plates, ft.
F Fraction of steady state value attained
I | Moment of inertia of inner cylinder, ft.1b. sec:.Z
T, Length of the inner cylinder, ft.
M Moment, 1lb. ft.
bt Potential, 1b. /sq, ft,
r Radial coordinate, [l., measured from center of cylinders
u Velocity, ft. /sec.
v Linear coordinate between parallel plates, ft.
n Viscosity, 1lb. sec., /sq. ft.
8 Elapsed time, sec.
Vv Kinematic viscosity, sq.ft. /sec.
p Density of fluid, 1b. sec.zlft4
T Shear, lb. /sq. ft,
i Angular coordinate
w Angular velocity, sec.—1

Subscrigts

f Fluid

i Inner cylinder

0 Outer cylinder

T Radial direction

I Angular direction
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PROPOSITION II

Calculations are presented which favor one side of the contro-
versy over the cvivrcumsta.nces surrounding the deaths of frozen woolly
mammoths.

A number of woolly mammoths (elephas primigenius), notably
the Berezovka and Mamutava mammoths, have been found in excep-
tionally good states of preservation due to freezing (9). Controversies
have arisen over two factors concerning the frozen remains: 1, the
reason for the location of such an herbivorous animal as far north as
Siberia (3, 7), and 2, the reasons for the excellent condition of some
specimens (2, 5). This proposition deals with the second controversy.

Farrand (2), Pavlovsky (7), and Tolmachoff (9) have proposed
methods of the death of the animals by drowning or suffocation fol-
lowed by slow freezing. Lippman (5) argucd that the statc of the
flesh and the undigested contents of the stomach required extremely
rapid solidification by freezing. Some of the alternative methods
which were suggested involved natural catastrophies such as wide-
spread volcanic eruptions and raining liquid air. It was argued that
without such novel mechanisms for quick-freezing, the animal re=
mains would have decayed to a much greater extent than they did, A
further factor which supports the catastrophy argument is the simul-
taneous deaths of many of the beasts (4)., Tolmachoff proposed that
the lack of bacteria in the arctic climate permitted slow freezing
without decay.

An analysis was made by the author of the unsteady-state heat
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transfer in a freezing woolly mammoth to evaluate the various argu-
ments that have been presented. Data on the size of mammoths were
taken from Farrand (2) apd estimated from information on elephants
(1). Data on the thermal properties of animal tissue were not avail-
able and were estimated from data on water (8), A summary of the
data used is given in Table I. A numerical method similar to the
graphical method of Longwell (6) was used to solve the mathematical
problem; in it the animals were approximated as infinitely long cyl-
inders.

The results of the study are given in Figure I which shows the
time required to freeze a mammoth's center and to cool it to 5¢° F,
Figure I shows that the time required to freeze one of these animals
with any outside temperature so far proposed, no matter how extreme,
is probably greater than the time required to cause considerable in-
terior decay. Further, the time required to cool the center of an ani-
mal to 50° F is also greater than the time required for considerable
decay. The temperature 50° F was chosen as representative of the
lower point at which bacteria are active. This heat transfer study has
shown, therefore, that it is not possible to freeze the center of a
mammoth rapidly enough to satisfy the requirements of the 'quick-
freeze' theory. It is proposed that the more reasonable method of
preservation is that of slow freezing accompanied by even slower de-
cay due to a lack of bacteria, as suggested by Tolmachoff and sup-

ported by Farrand.
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TABLE 1. Data Used in Analysis of Heat Transfer

in a Woolly Mammoth

Body Temperature 97. 5°F

Weight 8100 Ib,

Girth 15, 4 ft,

Length from Rear to Brow 16, 0 ft.

Thermal Conductivity of

Tissue
Unfrozen 0.35 Btu/ft. hr.° F
Frozen 1,28 Btu/ft. hr.° F

Heat Capacity of Tissue

Unfrozen 1. 0 Btu/1b.
Frozen - 0.5 Btu/lb.
Density of Tissue 62,4 1o, [it. >

Heat of Fusion of Tissue 143, 6 Btu/1lb.
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PROPOSITION III

An explanation is proposed for the seemingly paradoxical be-
havior of forced convective heat transfer under certain conditions of
acoustical vibration., It is further proposed that the behavior is worthy
of further experimental study as a method for controlling heat transfer
coefficients.

Recent research on the effect on heat transfer of pulsation or
vibration of the heat transfer fluid and vibration of heat transfer sur-
faces has shown that substantial increases in heat transfer coefficients
may be obtained (3). In free convective heat transfer,vibration of the
heat transfer surface at any frequency generally produces increased
heat transfer (2). Lemlich (4) has shown that vibrating forced con-
vective heat transfer equipment at resonant frequencies and parallel
to the direction of flow produced heat transfer coefficients which were
significantly greater than those at non-resonant frcquencies. He also
has stated that decreases in heat transfer coefficients were possible
and that Romie (5) has attenpted to explain such a decrease., The lat-
ter author blamed fluctuations in wall temperature for decreases in
heat transfer coefficients when the fluid was pulsed. In a slightly dif=
ferent area, Scanlan (6) found increases in heat transfer coefficients to
be a very marked function of frequency when he vibrated a surface
normal to a fluid which was in laminar flow.

The general theory is that longitudinal vibration of a heat
transfer surface reduces the thickness of a laminar boundary layer

when the fluid is in turbulent flow and thus increases the eddy conduc-
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tivity. When the fluid is in laminar flow, longitudinal vibration of the
surface is supposed to stimulate turbulence and to partially change the
transfer mechanism from molecular conductivity to include some eddy
conductivity.,

A short study by the author at the University of Colorado on the
effect of vibration on forced convective heat transfer resulted in the
curve shown in Figure 1. The data were obtained for sixty-cycle
longitudinal vibrations of a condensing steam~-water heat exchanger.
No attempt was made to obtain resonance within the heat exchanger.
Figure 1 shows that, in agreement with theory, heat transfer coeffi-
cients were increased by vibration of the heat exchanger when the
water was in turbulent flow. However, contrary to the usual reports
and predictions, in the laminar region the opposite occurred -- heat
transfer coefficients were reduced by vibration. The [ollowing ex-
planation is proposed to explé.in the behavior.

The heat transfer equation for forced convection is

dq/ds = hA AT . (1)

A correlation for the heat transfer coefficient is given in Equation 2,

1/3 u . 14
_—=1.86(Re-Pr-—-) (f) . (2)
This equation is an empirical modification (7) of the Graetz solution
(1) for heat transfer in fully developed laminar flow with constant wall
temperature. Considering all quantities except the instantaneous
bulk velocity to be constant,and considering the bulk velocity to vary

sinusoidally with time, the heat transfer coefficient at a point in a
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vibrating heat exchanger would vary as

h = h (1+asin w6)1/3 . (3)

The temperature drop variation is then given as

AT = AT_(1+b sin ) . (4)

After substitution from Equations 3 and 4, Equation 1 becomes

dg _ - . 1/3
el ho A ATO(l + b sin w81 + a sin wH) . (5)

If Equation 5 is integrated over one period of vibration and d,
is taken as the heat which would have been transferred in the absence

of vibration, Equation 6 results:

a3 5b 10a

Lib a,, 3
gt (gt (6)

= 1+ a(=
9

b
3
This equation states that if the mechanism of heat transfer in laminar
flow remains the same with or without vibration, the he at which is
transferred can decrease due to vibration of the exchanger if
b < a/3 . (T

The inequality 7 can be satisfied in laminar flow, since the relative
magnitude of the periodic variation in the bulk velocity, a , can be
much greater than the relative magnitude of the periodic variation in
temperature drop at a point along the exchanger. This is true be-
cause the temperature change with axial position is not large when the
fluid is in laminar flow, whereas the variation in the bulk velocity due
to vibration can be an appreciable fraction of the average bulk velocity
under those conditions,

Presumably, at a resonant frequency in the heat exchanger,

the acoustic energy would be used to more advantage to give the in=-
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creases in heat transfer which have been reported (3). The secondary
proposition is, then, that hcat transfcr cocfficicnts to fluids in lami-
nar flow could be controlled as desired by varying the frequency of

acoustic oscillations of the heat exchanger.
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NOMENCLATURE
Symbols
A Heat exchange area, sq. ft.
a Approximate relative amplitude of vibration of exchanger
b Relative amplitude of variation of temperature drop
D Diameter of tube, ft.
h Heat transfer coefficient, Btu/ft. 2h:t'.O F
k Thermal conductivity of fluid, Btu/ft.hr.°F
L Length of heat exchange tube, ft.
q Heat transferred, Btiu
el Time, hr,
W Period of vibration of exchanger, hr.-l
Subscripts
o Without vibration or mean value
vib With vibration
Groups
Nu Nusselt number
Re Reynolds number

Pr Prandtl number
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PROPOSITION 1V

A scheme is proposed for choosing the constant diffusion coef~
ficient which best describes diffusion into a liguid layer when the dif-
fusion coefficient is a known function of composition.

When the diffusion coefficient is a known function of composi-
tion, the most accurate way of calculating diffusion into a semi=-
infinite liquid layer is a numerical one. Since for relatively short
times even a thin layer of liquid can be approximated as semi=-
infinite, the above problem for machine calculation can be important
for a wide variety of diffusion problems. An often unsatisfactory ap-
proximation of the process is sometimes made by calculating the dif-
fusion coefficient from the surface, equilibrium composition and
using that in an analytical expression. However, an incidental result
found in the Appendix of Part III of this thesis which concerned char-
acterizing the diffusion process by a single, constant diffusion coeffi~-
cient can be generalized to apply to diffusion in liquid layers .in
general., The constant diffusion coefficients which are thus estimated
can be used in analytical expressions for predicting diffusion pro=-
cesses.

The result found in the Appendix was that a weighted average
composition of the liquid phase could be used to calculate the diffusion
coefficient which would correctly predict the interfacial flux of ma-
terial at a particular time. To determine whether the weighted aver~
age composition found above was general, numerical calculations
similar to thosc in thc Appcndiz were carricd out for the three diffu-

sion situations listed below, each with two expressions describing the



~179-

behavior of the ditfusion coetficient with composition.

I. Ethane-white oil at 160° F, liquid depth 0. 1144 ft.

Ore = 0. ng = 0.
Orpi = 6. 41 1b, /cu. ft V‘J.& = 0.0183 cu. ft. /1b.
V‘u = 0. 0389 cu. ft. /1b.
Dy = 8 8x1071% + 1. 155x107° o
or Dij = 2.582x10" 7 + 5. 339x1o'7 oy

II. Methane-n-butane at 100° F, liquid depth 0. 12 ft,

0o = 0. ng = 1,236 1b. /cu. ft.
Opp = 1o 601 Ib. /cu. ft VJ.& = 0,0279 cu. ft. /1b.
vk/& = 0,73 cu. ft. /1b.
Deye; = L. 954x1077 - 1.138x107° o

or Dy =7.071x107° - 2.973x10™" n_

UL, Methane-n-butane at 100° F, liguid depth 0. 12 ft,

Q
i

1‘. 6 o -] o - : L ] L] L ] 3 i ]
ko 01 1b, /cu. ft ng 4, 74 1b, fcu. it

1l

Oy = 5v 346 b, [cu, it V., = 0.0204 cu. it. /Ib.

2 .= 0, 1045 1b, /cu. ft.

k
1. 954x10" 7 ~ 1,138x10"% ¢
ckj = Lt - L K

7.071x10°8 - 2, 973x10~" n,

i

D
D

i

or Ckj

The results of the calculations showed for the three situations

listed above that the processes could be described well by a diffusion

coefficient which was evaluated by a weighted average composition

from the equation

+ (1-w) X,

X -V Xsurfa,ce initial

characteristic
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The variable y could be either weight fraction or concentration of
the light component. Over the time periods used in the calculations,
the weights w for the three tests for the above composition variables
were, respectively: I. 0,67 - 0.64 and 0. 69 ~ 0. 66; II, 0.74 - 0, 67
and 0.75 - 0.68; III. 0.75 - 0.71 and 0.69 . Both the constancy and
generality of the value of 0. 7 for the variable w are evident from
these results. In the numerical calculations for the above three
cases, the first behaved as though it were semi-infinite; the other
two as though they were of finite length. It is therefore proposed that
this value be used in the above equation to permit calculation of a
more accurate value for a characteristic, constant diffusion coeffi-

cient for use in analytical expressions describing diffusion processes.
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NOMENCLATURE

Dij Chapman~Cowling diffusion coefficient, sq.ft. per sec.
Weight fraction

v Partial volume, cu. ft. /1b.

W Weighting factor

o Concentration, 1b. /cu. ft,

X Composition variable, either concentration or weight frac-
tion of the light component

Subscripts

b Bubble point

g Gas phase

i Value at two-phase interface, in liquid

J Heavy component

k Light component

z Liquid phase

o Initial value
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PROPOSITION V

An improved method is proposed for treating data on material
addition to a transient liquid diffusion cell,

The method which I;as been used in the past for determining
the characteristic quantity for a diffusion experiment m, g was
described (2) in Part III of this thesis. It involved fitting a straight
line to data for weight of material added to the cell versus the square
root of the time after the initiation of the diffusion run. This method
introduces unnecessary errors due to the choice of the zero point of
time,

Figure 1 shows data for a typical diffusion experiment (1) with
the transient liquid diffusion apparatus. The solid line through the
data points shows the trend of thedata as taken. In the past, the ini-

tial weight of material, m _ , wae allowed to be arbitrarily determined

from the data by a least squares fit of the following equation
m = m_ +b Ve . (1)

But this equation forced the constant b to depend on the zero point
which was chosen for the variable 8 . If that zero point was chaosen
too early, as in Figure 1, the initial data points would curve down to=-
ward the 9 axis and could not be used safely to give a fit of Equation
1. This ill is easily cured by allowing the zero point of the variable §

to be determined also by a least squares fit of the data to the equation
m - m =b'\/e-—eo . (2)

Equation 2 can be rearranged to the following form

2

2 2 .2
m -2m0m+(b eo-f-rno)—be . (3)
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The characteristic quantity is then simply

m, \fe-8_ = bi2. {4)

ke
Equation 3 can be fitted easily to data by a nonlinear least squares
technique (3).

For the example situation in Figure 1 (diffusion into methane-
n-pentane at 40° F and 1484. 8 psi), Equation 1 gave a value for bz of
101. 2x107 1% 15.%/sec. (1), while Equation 3 yielded a value of

77.15x1071% 4+ 7. 9gx 10712

1b.2/sec. > where the last quantity indicates
the 95 per cent confidence limits on ‘b2 . As shown in Part III of this
thesis, the Chapman-Cowling diffusion coefficient is directly propor=
tional to bz ; therefore, the differcnces notced above for the value of
this quantity would cause differences in the finally calculated coeffi-

c lents of 24 per cent. This difference is larger than that between co-
efficients calculated with truncated and untruncated formulas and un~
doubtedly contributes to scatter and uncertainties in the data.

The asymptote in Figure 1, which has the slope b, shows that
if an cxperiment were carried out long enough, the effect of a wrong
choice for the zero for time in a diffusion experiment would approach
zero. However, because the experiments are carried out in a cell
which is not semi=-infinite, as assumed in the derivation of the equa-
tions for the calculation of the diffusion coefficients, the effect of the
semi-infinite approximation nullifies any advantages of long experi=-
ments. Therefore, the necessity of using Equation 3 for determining
the value of b is at least as great as the necessity for using the un-

truncated formula for the calculation of coefficients as described in



~184-
this thesis,
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NOMENCLATURE
Symbol
b Characteristic product flor a diffusion experiment, defined
by Equation 4, lb.sec. 2
m Weight of material added to transient liquid diffusion cell,
1b. -
8 Time, sec.

Subsc riEts

c Into cell
k The light component

o) Initial or zero value
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