
Quantum Monte Carlo:
Quest to Get Bigger, Faster,

and Cheaper

Thesis by
Michael Todd Feldmann

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, CA

2002
(Defended May 20, 2002)

11

@2002

Michael Todd Feldmann

All Rights Reserved

III

Preface
This dissertation describes work undertaken between August 1998 and

May 2002 in the Materials Simulation Center at the California Institute of

Technology under the supervision of Professor William A. Goddard III. This

dissertation describes a major portion of the work I did with Dr. Goddard,

Dr. Richard P. Muller, and David R. Kent IV developing efficient methods

for high accuracy methods for quantum mechanics.

IV

Acknowledgements
The research in t his dissertation was the result of many factors coming

together in a positive way. It is my pleasure to acknowledge those who have

supported me during this work.

I would first like to thank my advisor, Dr. William A. Goddard III. He

sold me on the idea of Caltech as a place where exciting science is done. He

was correct. The knowledge I take away from t he last four years of seeing

the research machine in motion is priceless.

During this same period Dr. Richard P. Muller acted both as a scientific

mentor and mot ivator. When research was going poorly, Dr. Muller was

always the one to come to the table wit h a smile on his face and get me

excited about the work again. I truly thank Dr. Muller for all of his positive

words and creative insight.

David "Chip" R. Kent IV was a critical member in making this research

become a reality. His insights and strong will kept this work on focus and

truly made the QMcBeaver software a success. He is one of the brightest

people I know and I feel privileged to have worked with him. I have no

doubt that the QMcBeaver project will be led by good hands in the fut ure.

The Krell Instit ute ran the Department of Energy Computational Science

Graduate Fellowship (DOE-CSGF) which supported me during my studies

at Caltech. Their vision for the future of computional science just about put

me in tears as I satisfied their rigorous (and I often thought painful) course

requirements. In hindsight, however, accepting the DOE-CSG F has been one

of the most pivotal decisions in my young career in computational science. It

has changed my focus and vision for the future of this field . I am grateful to

v

both the Krell Institute and the Department of Energy for support ing this

excellent program.

The R. J. McElroy foundation also supported my research during the first

three years of my graduate work. Their goal of getting rural Iowa liberal arts

students on their way to a Ph.D. is a nobel one and I feel privileged to have

been selected by them to represent young Iowa scholars.

I saved the most important for last. I would like to thank my wife , Rachel,

and our families for their unconditional support. Rachel has learned what

it means to be married to a Cal tech graduate student who works insane

hours, yet she has always been supportive of me completing this doctoral

degree. I would also like to thank my family for their guidance and giving

me the opportunity to pursue these interests. Without t he support of t hese

important people I would not be where I am today.

VI

Abstract
We reexamine some fundamental Quantum Monte Carlo (QMC) algo­

rithms with the goal of making QMC more mainstream and efficient. Two

major themes exist: (1) Make QMC faster and cheaper, and (2) Make QMC

more robust and easier to use. A fast "on-the-fly" algorithm to extract

uncorrelated estimators from serially correlated data on a huge network

is presented, DDDA. A very efficient manager-worker algorithm for QMC

parallelization is presented, QMC-MW. Reduced expense VMC optimiza­

tion proced ure is presented to better guess initial J astrow parameter sets

for hydrocarbons, GJ. I also examine the formation and decomposition of

aminomethanol using a variety of methods including a test of the hydrocar­

bon GJ set on these oxygen- and nitrogen-containing systems. The QMC

program suite QMcBeaver is available from the authors in its entirety while

a user's and developer's manual is attached as supplementary material.

VIl

Contents

1 Summary 1

1.1 Future of Supercomputing 3

1.2 Introduction to Quantum Monte Carlo 3

1.3 Efficient Algorithm for "On-the-Ily" Error Analysis of Local

or Distributed Serially Correlated Data

1.4 Manager-Worker-Based Model for the Parallelization of Quan­

tum Monte Carlo on Heterogeneous and Homogeneous Net-

works

1.5 Generic Jastrow Functions for Quantum Monte Carlo Calcu-

4

5

lations on Hydrocarbons .. 6

1.6 Aminomethanol Water Elimination: Theoretical Examination 6

1. 7 QMcBeaver

2 Future of Supercomputing

2.1 Current State of Supercomputing

2.2 What is Coming Next?

2.3 What Should We Do? .

2.3.1 How Should We Design Hardware?

2.3.2 How Should We Design Software? .

7

8

8

9

10

10

11

viii

2.3.3 How Coupled Should Software and Hardware Become? 11

2.4 Mission of This Work 12

3 Introduction to Quantum Monte Carlo 13

3.1 Introduction 13

3.2 Theory . .. 15

3.2.1 Variational Quantum Monte Carlo 16

3.2.2 Diffusion Quantum Monte Carlo. 18

3.3 Conclusion. , . , .. 19

4 Efficient A lgorithm for "On-the-fly" Error Analysis of Local

or Distributed Serially Correlated Data

4.1 Int roduction

4.2 Motivation and Background

4.3 Theory

20

20

21

24

4.3.1 Computational Cost of Flyvbjerg-Peterson Algorithm 26

4.3.2 Dynamic Dist ributable Decorrelation Algorithm (DDDA) 27

4.3.3 Computational Cost of DDDA .

4.4 Computational Experiments

29

31

4.4.1 Variational QMC on One-Dimensional Particle-in-a-Box 31

4.4.2 Finite All-Electron Variational QMC on RDX

4.5 Conclusions

4.6 Statistic Class Pseudocode

35

40

42

4.6.1 Pseudocode for Statistic.initiaiizeO 42

4.6.2 Pseudocode for Statistic.add_Data(new _sample) 44

4.6.3 Pseudocode for Statistic.addition(A, B) 44

4.7 Decorrelation Class Pseudocode 45

ix

4.7. 1 Pseudocode for Decorrelation.initializeO 45

4.7.2 Pseudocode for Decorrelation.add...Data(new_sample) 45

4.7.3 Pseudocode for Decorrelation.addition(A, B)

4.8 Simple Example Calculation Pseudocode

46

50

5 Manager -Worker-Based Model for the Parallelization of Quan­

tum Monte Carlo on Heterogeneous and Homogeneous Net-

works 52

5.1 Introduction 52

5.2 T heory... 54

5.2.1 Pure Iterative Parallelization Algorit hm 56

5.3

5.2.2 Manager-Worker-Parallelization Algorithm .

5.2.3 Init ialization Catastrophe

Experiment ..

5.3.1 Experiment: Varying Levels of Het erogeneity.

5.3.2 Experiment: Heterogeneous Network Size.

5.3.3 Experiment: Homogeneous Network ..

5.3.4 Experiment: Init ialization Catastrophe

5.4 Conclusion

5.5 Pure Iterative Algorithm (QMC-PI)

5.6 Manager- Worker Algorithm (QMC-MW)

6 G en eric Jastrow Functions for Quantum Monte Carlo Cal-

culations on Hydrocarbons

6.1 Introduction

6.2 Theory ...

6.2.1 Variational Quantum Monte Carlo

58

61

62

63

66

69

73

75

76

77

78

78

80

81

x

6.2.2 Diffusion Quantum Monte Carlo.

6.3 Experiment

6.3.1 Motivate Generic Jastrow for Hydrocarbons

6.3.2 Experiment: Hydrocarbons Test Set.

6.3.3 Generic Jastrow for DMC

6.3.4 Test Case: 10-Annulene

6.4 Conclusion... .

82

83

83

84

86

89

90

7 Aminomethanol Water Elimination: Theoretical Examina-

tion 92

7.1 Introduction 92

7.2 Theory ... 95

7.3 Experiment 96

7.3.1 Experiment Setup. 96

7.3.2 Data 98

7.4 Concl usion . 99

8 QMcBeaver 107

Xl

List of Figures

4.1 The energy expectation value standard deviation, evaluated with Eq. 4.6,

as a funct ion of block size for a VMC "particle-in-a-box" calculation

using Method 1 to generate uncorrelated data points. The Flyvbjerg­

Peterson algorithm and DDDA yield exactly the same results. The

error bars represent one standard deviation in the calculated standard

deviation estimator. .. 34

4.2 The energy expectation value standard deviation, evaluated with Eq. 4.6,

versus block size for a VMC "particle-in-a-box" calculation using Method

2 to generate correlated data points. The Fl yvbjerg-Peterson algo­

rithm and DDDA yield exactly the same results. The error bars rep­

resent one standard deviation in the calculated standard deviation

estimator

4.3 The RDX molecule, cyclic [CH2-N (N02)h.

4.4 The evolution ofthe energy-standard-deviation-estimator for the ground

state of RDX with block size. Shown here are the results for five cases

with 62122, 2l37179, 6283647, 14566309, and 31163746 total QMC

steps. The energies are in Hartree (1 Hartree = 27.2116 eV). This

35

36

shows that a block size of 28 = 256 is sufficient for this calculation. 40

Xli

4.5 The evolution of the energy-standard-deviation-estimator for the tran­

sition state for N-N02 bond dissociation in RDX with block size.

Shown here are the resul ts for five cases wi th 72899 , 1113737, 5284068,

13601739, and 30176694 total QMC steps. The energies are in Hartree

(1 Hartree = 27.2116 eV). This shows that a block size of 28 = 256

is sufficient for this calculation.

4.6 The evolution with block size ofthe energy-standard-deviation-estimator

for the transition state for concerted symmetric ring decomposition of

RDX. Shown here are the results for fi ve cases with 38848, 2110471,

6260482, 14545368, and 31126145 total QMC steps. The energies

are in Hartree (1 Hartree = 27.2116 eV). This shows that a block size

41

of 213 = 8192 is sufficient for this ca lculation 42

4.7 The evolution of the standard-deviation-estimate for the energy of the

three states of RDX whose results were shown in Fig. 4.4, 4.5, and 4.6.

A block size of 28 was used for the ground state and the transition

state for N-N02 dissociation while a block size of 213 was used for

the symmetric concerted transition state. The energies are in Hartree

(1 Hartree = 27.2116 eV).. .. 43

5.1 Time required to complete an 8 processor variationa l QMC calcula­

tion of Ne using the manager-worker (QMC-MW) and pure iterative

(QMC-PI) algorithms. The 8 processors are a mixture of Pentium Pro

200 MHz and Pentium III 866 MHz Intel processors connected by 100

Mb/s networking. The theoretical optimal performance for a given

configuration of processors is provided by the curve. 64

Xlii

5 .2 Number of variat ional QMC steps completed during an 8 processor ca l­

culation of Ne using the manager-worker (QMC- MW) and pure itera­

ti ve (QMC-PI) parallelization algorithms . The pure ite rative algorithm

always calculates the same number of steps , but the manager-worker

a lgorithm dynamically determines how many steps to take. The 8

processors are a mixture of Pentium Pro 200 MHz and Pentium III

866 MHz Intel processors connected by 100 Mb j s networking. . .. 66

5.3 Percentage of total calculation time devoted to each component in

the pure iterative parallelization a lgorithm (QMC-P I) during an 8 pro­

cessor variational QMC calcu lation of N e. The 8 processors are a

mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel

processors connected by 100 Mb j s networking

5.4 Percentage of total calculation time devoted to each component in

the manager-worker-parallelizati on algorithm (QMC-MW) during an

8 processor variational QMC calculation of N e. The 8 processors are

a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel

processors connected by 100 Mbjs networking . ..

5.5 Wall time required to complete a variationa l QMC calculation of N e

using the manager-worker (QMC-MW) and pure iterative (QMC-PI)

algorithms on a heterogeneous linux cluster. The theoretical optimal

performance for a given configuration of processors is provided by the

line.

67

68

69

XIV

5.6 Wall time required to complete a variational QMC calculation of N e

using the manager-worker (QMC-MW) and pure iterative (QMC-PI)

algorithms on the ASCI Blue Pacific homogeneous supercomputer.

The theoretical optimal performance for a given configuration of pro-

cessors is provided by the line.

5.7 Wall time in nonpropagation and non-initialization overhead expenses

for QMC-PI and QMC-MW on ASCI Blue Pacific.

5.8 Ratio of wall time for QMC-MW /QMC-PI on ASCI Blue Pacific.

5.9 Efficiency of a variational QMC calculation of RDX as a function

of the number of processors used. The calculations were performed

using the manager-worker-parallelization algorithm (QMC-MW) on

the ASCI-Blue Mountain supercomputer, which has 250 MHz MIPS

10000 processors connected by HIPPI networking. A similar result is

produced by the Pure Iterative parallelization algorithm. The data is

fit to E(NProcc"o,,) = a/(a + NProcc"or,) with a = 104.203.

70

71

72

74

6.1 Correlation energy (Hartree) recovered divided by total nuclear charge. 86

6.2 Reduction ofthe QMC variance for a wavefunction containing a Generic

Jastrow compared to a Hartree-Fock wavefunction.

6.3 Generic Jastrow correlation functions. bt,.[= 3.0 ..

6.4 Convergence (cr2 in Hartree2 units) of methane DMC runs over time

87

88

for various wavefunctions .. 89

6.5 Convergence (cr2 in Hartree2 units) of acetylene DMC runs over time

for various wavefunctions .. 90

7.1 Mechanism for reaction of formaldehyde and ammonia. 94

xv

7.2 Full mechanism of aminomethanol formation from NH3 and CH20

and decomposition to CH2N H and H20. Geometries determined

with Jaguar [1] b3Iyp/cc- pVTZ 97

XVI

List of Tables

4.1 Comparison of computational costs. Here N is the number of data

points analyzed. In evaluating the costs, N is assumed to be a multiple

of two. This represents the worst-case scenario.

4.2 Total energies (Hartree) for the various calculations on ROX. The HF

and OFT [2] results were obtained from Jaguar 4.1 with the 6-31G**

basis set [1, 3, 4, 5, 6, 7, 8]. Variational Quantum Monte Carlo based

30

on 3 X 107 points. 39

6.1 Absolute energies (Hartree) for various conformations of 10-annulene

methods with and without explicit electron correlation from the Generic

Jastrow (basis: cc-pVOZ) ..

7.1 Absolute energies (Hartree) for various methods (basis: cc-pVTZ) .

* Jaguar, **Molpro, ***QMcBeaver

91

98

7.2 Absolute energies (Hartree) for various methods (basis: cc-pVT Z++/aug­

cc-pVTZ). * Jaguar, **Molpro, ***QMcBeaver 99

7.3 Relative free energies !:lG (kcal/mol) for various methods with cc-

pVTZ basis with Jaguar b3Iyp/cc-pVT Z{-f) zero point and thermo­

chemical corrections at 2.63E-5 atm and 300K. * Jaguar, ** Molpro,

***QMcBeaver . 100

XVll

7.4 Relative free energies !e.G (kcal/mol) for various methods with cc­

pVTZ++/aug-cc-pVTZ basis with Jaguar b3Iyp/cc-pVTZ(-f) zero

point and thermochemical corrections at 2.63E-5 atm and 300K. * Jaguar,

Molpro, *QMcBeaver 101

7.5 Relative free energies !e.G (kcal/mol) at 2.63E-5 atm for various tem­

peratures with zero point and thermochemical corrections from Jaguar

(b3Iyp/cc-pVTZ(-f)) on energetics from MolPro (QCI(T)/cc-pVTZ) .. 102

7.6 Relative free energies !e.G (kcal/mol) at 1.32E-8 atm for various tem­

peratures with zero point and thermochemical corrections from Jaguar

(b3Iyp/cc-pVTZ(-f)) on energetics from MolPro (QCI(T)/cc-pVTZ) .. 103

7.7 Geometry for N H3 . 103

7.8 Geometry for CH2O. 104

7.9 Geometry for TkH3+CH20' 104

7.10 Geometry for CH2(OH)NH2 .. 105

7.11 Geometry for Tk,o+CH2N H' . 105

7.12 Geometry for H2O. .. 106

7.13 Geometry for CH2NH. 106

1

Chapter 1

Summary

Quantum Monte Carlo (QMC) is a very exciting method for calculating elec­

tronic structure in chemical systems. QMC can achieve very high accuracy

and has several other computationally attractive features. When we first

started this type of work, we asked some very basic questions about QMC.

• Why is QMC interesting to others?

• Why is QMC not in more common use?

• What does someone need to use QMC? (software, computational re­

sources, QMC expertise?)

• Is QMC the method of future in computational chemistry and material

science?

• What have others done in the field?

• What are others currently focussed on?

• What can I do to help the effort of making QMC practical?

2

These seem like fairly simple questions yet they led to a surprising rich­

ness in research. Current ly, QMC is a very exciting area of research with

many great minds working hard to make QMC fast, robust , and easy to use

(Chapter 3). Many interest ing fronts exist in QMC, including higher accu­

racy methods, released node QMC, QMC calculation of forces, and better

single processor computational complexity of QMC to just name a few. To

provide the reader with a (by no means exhaustive) list of good references

to get a feel for current methods and trends in QMC, many references are

included in the bibliography though not explicitely referenced herein.

QMC is a high-accuracy electron structure method, which scales roughly

as O(n3) while competing met hods scale as O(n6
) to O(n!) [20J . In addition,

QMC is very easy to parallelize, which means you can furt her reduce the time

it takes to compute. Unfortunately, the prefactor on QMC is very large, so it

t akes too much time to do except on supercomputers for the large majority

of interesting chemical and materials problems.

This is where this work begins. QMC is very expensive both in the user 's

time and in the computational resources it takes to accomplish a QMC job.

T he goal of this work is to make QMC run on cheaper machines and do

it in less time while improving t he ease of use for t he end user. All of

these will bring QMC one step closer to being a commonly used method in

computational electronic structure studies.

In presenting this work, I have chosen to make each chapter as self­

contained as possible. I hope the reader can read any chapter with only

minimal reference to other chapters. This, of course, comes at the expense of

being somewhat redundant in the introductory sections of each chapter but

I feel most readers will appreciate this as they implement or write their own

3

QMC related software.

1.1 Future of Supercomputing

Current trends and a projection of what t he future of supercomputing will

become are examined. Computational modeling is becoming a very impor­

tant part of basic research and the needs of researchers must be met with

economical computing solutions. There are two major sides of this issue.

The first is the building of computational infrastructure which provides the

most computing power per unit of expense. The second is the development

of algorithms and software which can effectively utilize these resources. We

also explore the correlated nature of these two points.

1.2 Introduction to Quantum Monte Carlo

A brief background on the popular forms of Quantum Monte Carlo (QMC)

are given. The first of these is variation QMC (VMC), and a second popular

met hod is diffusion or fixed node QMC (DMC). VMC and DMC are t he two

major forms of QMC employed by research scientists and form the basis for

other forms of QMC. Any improvements one can make on these base methods

will likely have far reaching impact.

4

1.3 Efficient Algorithm for "On-the-fly" Er-

ror Analysis of Local or Distributed Se­

rially Correlated Data

A significant impediment to applying Monte Carlo methods to the compu­

tation of physically important systems is the efficient decorrelation of data

generated by Markov chains "on-the-fly" and in parallel for the extremely

large amount of sampling required to achieve convergence of a given es­

timator. We describe the Dynamic Distributable Decorrelation Algorithm

(DDDA) that eliminates this difficulty by efficiently calculating the true sta­

tistical error of an expectation value obtained from serially correlated data.

DDDA is an improvement on the Flyvbjerg-Peterson renormalization group

method [49], but allowing the statistical error to be evaluated "on-the-fly."

This "on-the-fly" determination of statistical quantities allows dynamic ter­

mination of Monte Carlo calculations once a specified level of convergence is

attained. This is highly desirable, for example, for Quantum Monte Carlo

(QM C) calculations where the desired precision might require days or months

to compute, but cannot be estimated prior to the calculation .

Furthermore, DDDA allows a very efficient parallel implementation. For

t he example of predicting the activation energy for decomposition of RDX

discussed herein, we estimate that Na = 1012 global data points are required

to attain 0.1 kcal/mol precision in the calculated VMC energy estimators.

Thus with M = 103 processing units, the original algorit hm requires local

processor storage scaling as O(N), N "" !f:f or roughly 109 numbers which

may be difficult to accommodate with local storage and is often very difficult

5

to transfer efficiently between processors. The local processor storage require­

ment for DDDA scales as 0(log2(N)) or roughly 120 doubles for Na = 10'2

and M = 103 with an average update computational complexity for each new

sample of 0(1). This small amount of data can easily be communicated and

combined with data from other processors, making parallel processing very

efficient.

1.4 Manager-Worker-Based Model for the Par­

allelization of Quantum Monte Carlo on

Heterogeneous and Homogeneous Networks

A manager- worker-based parallelization algorithm for Quantum Monte Carlo

(QMC-MW) is presented and compared to the pure iterative parallelization

algorithm, which is in common use. The new manager-worker algorithm per­

forms automatic load balancing, allowing it to perform near the theoretical

maximal speed on heterogeneous parallel computers. Furthermore, the new

algorithm performs as well as the pure iterative algorithm on homogeneous

parallel computers. When combined with the Dynamic Distributable Decor­

relation Algorithm (DDDA) [50], the new manager-worker algorithm allows

QMC calculations to be terminated when a desired level of convergence is ob­

tained and not when a given number of steps are performed as is the common

practice. Additionally, a derivation and experimental verification are given

to show that standard QMC implementations are not "perfectly parallel" as

is often claimed.

6

1.5 Generic Jastrow Functions for Quantum

Monte Carlo Calculations on Hydrocar­

bons

A Generic Jastrow (GJ) is examined that can be used for all-electron Quan­

tum Monte Carlo across a large range of small hydrocarbons. This simple GJ

captures some of the missing electron correlation of Hartree Fock (HF) the­

ory for Variational Quantum Monte Carlo (VMC) while reducing the ELoc• l

variance a substantial amount. This implies Diffusion Quantum Monte Carlo

(DMC) may be accomplished with greatly reduced VMC Jastrow optimiza­

tion expense.

1.6 Aminomethanol Water Elimination: The­

oretical Examination

The mechanism for the formation of hexamethylenetetraamine predicts the

formation of aminomethanol from the addition of ammonia to formalde­

hyde. This molecule subsequently undergoes water loss to form methanimine.

Aminomethanol is t he predicted precursor to interstellar glycine, and is there­

fore of great interest for laboratory spectroscopic study, which would serve

as the basis for observational searches. The height of the water loss barrier

is therefore useful in determination of an appropriate experimental approach

for spectroscopic characterization of aminomet hanol. We have determined

t he height of this barrier to be 55 kcal/ mol at ambient temperatures using

QCI(T)/cc-p VTZ. Therefore, spectroscopic characterization of this molecule

7

should be straightforward under typical laboratory conditions.

1.7 QMcBeaver

The software package developed is called QMcBeaver. The user's and devel­

oper's manual is added as supplementary material. This is useful for both

those developing QMcBeaver and those developing their own QMC package.

8

Chapter 2

Future of Supercomputing

2.1 Current State of Supercomputing

A current trend III large scale supercomputing [51] is assembling "cheap

supercomputers" with commodity components using a Beowolf-type frame­

work. These clusters have proven to be very powerful for high-performance

scientific computing applications [52]. Clusters can be constructed as ho­

mogeneous supercomputers if the hardware for each node is equivalent, or

as heterogeneous supercomputers if various generations of hardware are in­

cluded.

Another interesting development is the use of loosely coupled, distributed

grids of computational resources [53] with components that can even be lo­

cated in different geographic locations in the world. Such "grids" are up­

graded by adding new nodes to the existing grid resulting in continuously

upgradable supercomputers, which are inevitably heterogeneous.

9

2.2 What is Coming Next?

This is by far t he most speculative port ion of this work. At the same t ime, I

fear t his section will date this work worse than any other . What is Coming

Next ? is the question we all wish we knew to answer to. I do want to take

a little t ime to map out what I believe will happen in computing.

The trend of going to larger parallelizat ion is one that I believe is here

to stay with t he current technology in hardware. The essential parts of

a current computer are very inexpensive. We, of course, have no idea of

fu ture processing unit technology, but with t he current trends , large scale

parallelization is here and will only get bigger.

Homogeneous supercomputers will become less and less dominant. Build­

ing a huge machine all at once is not generally the best economic model. T he

demand for a computational resource increases over time and this solution

does not scale because the technology used in this machine will become ob­

solete in a very short amount of time.

Heterogeneous frameworks are the fu ture of supercomputing. A hetero­

geneous framework is always expandable and the parts of the framework

become noneconomical more slowly. Some parts of t he framework will be­

come obsolete since the hardware may not be wort h t he real estate it occupies

and the electricity that powers t he machine may cost more than the utility

the machine gives to the user. We should also note that the current homo­

geneous machines fit into this model but only as smaller components of a

larger heterogeneous framework.

These heterogeneous frameworks will become so large that it will become

necessary for loosely coupled interconnects for the majority of the peer to peer

10

communications. This means that algorithms built for very large frameworks

need to make small enough tasks be accomplished on these relatively smaller

tightly coupled machines or tasks must be able to run efficiently on very

loosely coupled networks.

2.3 What Should We Do?

This is yet another speculative section on the proper course of computational

science but there are some rather solid statements that can be made. The

question How should we design hardware/software? is very interesting. The

ultimate goal of doing a computation is to obtain a certain result with the

least expense. The certain result is naturally the result from a given model.

This is dependent on the software used yet the level of the calculation can

be limited by the hardware. The least expense refers to both the expense

of renting a computational resource and the amount of the user 's time the

calculation takes. The utility function used will be a combination of compu­

tational resource expense and user defined utility as a function of wall clock

time to complete the task.

2.3.1 How Should We Design Hardware?

Clearly we want the most cost effective solution for building machines t hat are

inexpensive, long lasting, and easy for software engineers to design software

for. This is very difficult to accomplish . The cheapest scalable machines to

build are heterogeneous frameworks, yet the easiest to build software for is

tightly coupled homogeneous machines.

11

2.3.2 How Should We Design Software?

Software should be designed to run as efficiently as possible on a general

framework of computers . This is also difficult to achieve. If we are to effi­

ciently use a heterogeneous network of computers, we need t o find algorit hms

which allow good load balancing. This often comes at the expense of perform­

ing worse than the theoretical optimum because of additional bookkeeping

in keeping t he network load balanced. Also, completely different algorit hms

may be the most efficient on different networks. A slower loosely coupled

algorit hm may perform poorly compared to a t ightly coupled algorithm on

a t ight ly coupled homogeneous network. At t he same t ime, t he tight ly cou­

pled algorit hm will likely perform poorly on a loosely coupled heterogeneous

network.

2.3.3 How Coupled Should Software and Hardware Be­

come?

T his leads to some interesting ideas. Different algorithms can perform better

or worse on different hardware. The different hardware have different assets

and liabilit ies including maintainability, scala bility, ease of use, etc. T his

clearly tells us t hat t he designs of software and hardware are inherently

coupled. This coupled nature makes the design of software highly dependent

on the frameworks it will be running on.

12

2.4 Mission of This Work

To efficiently utilize t he next generation of supercomputer (heterogeneous

cluster or grid) , a parallelization algorithm must require li ttle communication

between processors and must be able to efficiently use processors that are

running at different speeds. We propose a number of algorithms which will

allow a particular application, Quantum Monte Carlo (QMC), to run faster

and on more general networks of computers. This work was inspired by the

authors of our software package, QMcBeaver [54], working on other QMC

packages which had some deficiencies we wished to remedy to take QMC from

a tightly coupled homogeneous application to a loosely coupled heterogeneous

application.

13

Chapter 3

Introduction to Quantum

Monte Carlo

3.1 Introduction

Quantum Monte Carlo (QMC) is becoming a very important member of

the electron correlation correction methods in quantum chemistry. Many

flavors of QMC exist; Variational (VMC, 3.2.1) and Diffusion (DMC, 3.2.2)

Quantum Monte Carlo are two of the more popular methods employed. VMC

requires the explicit use of a variational wavefunction, while DMC has the

property that it can sample the ground state fixed node solution for a given

trial wavefunction.

Experience and tradition have defined a fairly efficient method of obtain­

ing very accurate calculations for molecules and materials using QMC [10,

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows:

1. Obtain a fair trial wavefunction, lJiTrial, from some quantum mechanical

method, like Density Functional Theory (DFT) or Hartree Fock (HF).

14

2. Guess Jastrow particle-particle correlation functions that have some

variational form which maintains the antisymmetry of the total wave­

function. (This may only be a nearly antisymmetric wavefunction.

Umrigar gives a discussion of this topic [13].)

3. Choose variational parameters such that any Hamiltonian singularities

are satisfied with the "cusp condition" in the Jastrow form.

4. Generate an initial "walker(s)" approximately with respect to the par­

ticle probability distribution.

5. Equilibrate this "walker(s)" to verify it represents the particle proba­

bility distribution.

6. Generate configurations with the Metropolis algorithm in a VMC run.

7. Perturb and evaluate the Jastrow parameters using these configura­

tions. (Repeat this correlated sampling optimization [10] until satis­

factory convergence.)

8. Generate (or reuse from a VMC run) initial "walkers" for a DMC run.

9. Equilibrate these "walkers" to verify they represent the proper particle

probability distribution.

10. Use the optimized Jastrow for a DMC run to obtain a very accurate

result.

Typically the equilibration and generation of the configurations in the

VMC and DMC runs are the most expensive parts of this protocol so one

would like to minimize the effort in these sections. The main purpose of the

15

VMC optimization phase is to obtain a good description of the wavefunction.

The better this wavefunction is, the quicker the DMC run will converge. This

motivates one to optimize the J astrow very well but not at t he expense of

marginal returns.

Experience has shown that the VMC Jastrow optimization involves a

very difficult objective function. One must reduce the energy and/or vari­

ance some but without over-optimizing. The method of correlated sampling

is a useful method of optimization yet once it finds a flat region of the objec­

tive function (typically a (]"2(ELocal) based objective function), it can falsely

encourage over-optimization since it likely reached a point of diminishing re­

turns. Experience has shown that if one can obtain roughly a factor of three

reduction in the variance over the HF wavefunction alone, one has done

a sufficient job of optimizing and that further optimization may give only

marginal returns. Typically, one might spend from 5% to 50% of the one's

total effort optimizing the Jastrow in the VMC phase of the calculation.

3.2 Theory

QMC has many flavors, each with certain assets and liabilities. The two

particular types of QMC we will examine are VMC (Section 3.2.1) and DMC

(Section 3.2.2). These two methods are widely used for production level

calculations. Any impact one can make to improve the speed at which one

can accomplish these two types of QMC will have far-reaching consequences

for many researchers in computational chemistry and materials science.

16

3.2.1 Variational Quantum Monte Carlo

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful

method for examining correlated quantum wavefunctions. If one examines

the basic energy expectation integral and reformulates it in terms of an elec­

tron probability density, p, and a local energy, Eloca/, one finds a very simple

description of the energy expectation (3.1). However, this integral can not

be solved exactly except for a very few cases. Instead, the integral can be

numerically evaluated. This numerical integration is doomed to fail on a reg­

ular grid since the dimensionality of the integral can be very high. Instead,

the integration can be accomplished with a Monte Carlo algorithm described

by Metropolis [55], which can effectively numerically evaluate integrals in

many dimensions.

(E) J tJi(i)HtJi(i)dx3n

J (tJi(i))2 (H~~~)) dx3n

J p(i)ElocaM)dx3n (3.1)

One must now determine what this tJi should be. Typically, one can use a

method like Hartree Fock theory or Density Functional Theory [56, 57, 58, 59,

1, 3, 4, 5, 6, 7, 8J to obtain an antisymmetric wavefunction in a determinant

form. These wavefunctions contain no explicit particle correlations other

than the Pauli-exclusion of fermions.

This wavefunction is then augmented with a product of symmetric terms

which contain the explicit particle correlations. These particle correlation

functions will allow each particle to observe the positions of their neighboring

17

particles and will allow additional variational freedom in the wavefunction .

(3.2)

To construct the entire trial wavefunct ion, WTrial , from an HF type initial

guess wavefunction, WHF, one uses the following expression (3.2). A WTrial

constructed from a DFT type wavefunction is similar.

The building unit of this type of description is a Uij function for particles

i and j which are of particle types A and B, respectively (3.3).

(3.3)

This particular form of Uij is commonly referred to as the Pade-J astrow

correlation function for finite systems [13] or simply "Jastrow" in this doc-

ument. We notice that this form contains a CUSPAB , which removes singu-

larities which arise as two charged particles approach each other. The cusp

condition puts a singularity in t he kinetic energy part of the two-particle

Hamiltonian which exactly removes the singularity in the potential energy

part [60].

One must now determine how to optimize t he parameters in the U ij func-

tions as well as how many parameters to maintain in the expression. Allowing

only the cusp condition parameter in the numerator and the first parame-

ter in the denominator is common practice, though the more parameters

one optimizes, the better the result will likely be because of the additional

variational freedom. The common optimization procedure is the method of

correlated sampling optimization described by Umrigar [10].

18

3.2.2 Diffusion Quantum Monte Carlo

Examining the time-dependent Schrodinger equation (6.4) in atomic units,

we observe that one can make a transformation from real time into imaginary

time to produce a diffusion equation (6 .6).

i [)<J! = if <J!
[)t

t = - iT

(3.4)

(3.5)

(3.6)

Expanding <J! in the eigenstates of the time-independent Schrodinger equa­

tion, we observe the following.

(3.7)

Here the <Pi's are the eigenstates and the c;'s are the eigenvalues of the

time-independent Schrodinger equation.

(3.8)

We can now write the formal solution of the imaginary-time Schrodinger

equation (Equation 6.6).

(3.9)

19

If the init ial w(Td IS expanded in the eigenstates (Equation 3.7), we

observe the following.

00

W(OT) = L e;e-Eo5r 4>i (3.10)

Therefore, any initial state, which is not orthogonal to the ground state,

4>0, will exponentially evolve to the ground state over time.

lim W(T) = coe- Eor 4>0
T-tOO

(3.11)

The end result of this type of method is a sampling of the ground state 4>0

distribution with respect to the original WTrial nodes. In practice the results

obtained from a fixed node DMC calculation are typically on the same order

of accuracy as couple-cluster and higher order methods which come at a much

higher expense in many cases (O(nD -t n!))[20].

3.3 Conclusion

Quantum Monte Carlo is a very simple yet powerful method for examining

correlated electron structure. VMC and DMC form the basis of this very

powerful class of methods and provide a good starting point for improving

all QMC based applications.

20

Chapter 4

Efficient Algorithm for

"On-the-fly" Error Analysis of

Local or Distributed Serially

Correlated Data

4.1 Introduction

Monte Carlo methods are becoming increasingly important in calculating

the properties of chemical, biological, and materials systems. An exam­

ple discussed below shows that using the all-electron Variational Quantum

Monte Carlo (VMC) method to calculate t he barriers to decomposition of

the high-energy material RDX (with 21 atoms and 114 electrons) requires

approximately 1012 Monte Carlo steps to converge the energy estimator to

roughly 0.1 kcal/mol precision.

However , there is a serious difficulty in t he practical implementation of

21

such Monte Carlo calculations. The underlying algorithms of Monte Carlo

simulations generally involve Markov chains, which produce serially corre­

lated data sets. This means that for the data set D, the value Di+j is highly

correlated to Di for a value of j small compared to the correlation time, Ko.

Flyvbjerg and Peterson described a fairly efficient blocking algorithm for

post-processing error analysis of serially correlated data on a single proces­

sor [49J. However, rather than waiting until after the run is terminated to

analyze the precision, it is desirable to specify in advance the desired preci­

sion after which the program can terminate. This requires the computation

of the true variance of serially correlated data, as the Monte Carlo calculation

is evolving, "on-the-fly."

We propose a new blocking algorithm, Dynamic Distributable Decorre­

lation Algorithm (DDDA), which gives the same results as the Flyvbjerg­

Peterson algorithm but allows the underlying variance of the serially corre­

lated data to be analyzed "on-the-fly" with negligible additional computa­

tional expense. DDDA is ideally suited for parallel computations because

only a small amount of data must be communicated between processors to

obtain the global results. Furthermore, we present an efficient method for

combining results from individual processors in a parallel calculation that

allows "on-the-fly" result analysis for parallel calculations.

4.2 Motivation and Background

Although Monte Carlo algorithms are useful for a large range of scientific

problems, t he convergence to a desired precision often requires very large

samplings, making it computationally expensive. In order to reduce the

22

total time to obtain a precise and accurate solut ion, it is highly desirable

to use parallel computing. The availability of low cost clusters and multiple

processor computers makes it possible to efficiently parallelize Monte Carlo

algorithms, allowing very large samplings to be probed in reasonable time.

In order for Monte Carlo algorithms to continue to take full advantage of the

advances and availability of massively parallel computers, it is essential that

the algorithms evolve to make these methods maximally efficient.

A significant improvement for applying quantum Monte Carlo methods to

the computation of chemically important systems was provided by Flyvbjerg

and Peterson, who showed that simple blocking of the data (averaging blocks

of data together and treating these averages as new data sets) can extract the

correct sample variance from a set of serially correlated data [49, 12]. These

new "blocked" data points are less correlated than the original data points

and are virtually uncorrelated for block sizes larger than the correlation time

of the data. Flyvbjerg and Peterson described a fairly efficient blocking

algori thm for post-processing error analysis of serially correlated data on a

single processor.

Although we are not certain of the historical origins of such data block­

ing techniques, at least partial credit should be given to Wilson [61], Whit­

mer [62], and Gottlieb [63]. However, Flyvbjerg and Peterson were the first

to formally analyze the technique [49].

We should also note that currently some methods exist which can im­

prove the particular implementation described. If we have some idea of the

correlation time, Ko, we can block the data in these size blocks ignoring the

smaller block sizes. We will refer to this method of pre-blocked data blocking

as PB-blocking. What PB-blocking can effectively do is reduce the number

23

of global data points from NG = 1012 to N~ = Z;;-, where m is the predefined

block sizes which will be considered the fundamental unit of data.

If one implements the PB-blocking method, several points need to be

considered. The correlation time, I<o, is highly dependent on the Monte

Carlo t ime step, dt, we use for t he simulation. This implies the user will

need to intelligently determine which m to implement.

Blocking the initial data into m sized data blocks initially still requires the

user to implement a furt her blocking algorithm to verify that m was chosen

large enough. If m was chosen too small, the Flyvberg-Peterson algorithm

can still be implemented on this pre-blocked data with correct results. What

this does to the overall scaling of the storage is nothing, however. The order

of the global data points one needs to store is reduced by a constant factor

of m, while the global storage is still O(NG }.

Another unattractive feature of PB-blocking is the additional book-keeping

and programming needed to block the raw data. This is really a two-phase

algorithm, in which the initial blocking into blocks of size m feeds a Flyvberg­

Peterson type algorithm to verify properly uncorrelated data.

We have also found that although the small blocked data (which is still

correlated) underestimates the variance, it can still playa role in determin­

ing an extrapolation of the variance since these underestimates generally

converge to their respective values fairly well. The PB-blocking algorithm

essentially throws the small data blocking (blocks smaller than m) away to

reduce the storage and communication expenses. This can be useful infor­

mation when determining the level of correlation which is present at differing

block sizes and seeing how this drops off over block size.

The overall reduction of statist ics and communication phase for the PB-

24

blocking algori thm still scales as G (Ne). As we probe larger and larger

samplings, t his can be a prohibit ive expense. What is potentially very useful

for those who still wish t o implement the PB-blocking algori thm is t he use

of the pre-blocking with the DDDA algorithm. Although t he large sample

scaling will be the same as using the pure DDDA algorit hm, t his can further

reduce the tot al expense if a good guess m value can be determined. We

chose not to implement the pre-blocking step since it is additional effort to

implement and it gains us so lit tle when we can simply use DDDA which

effectively makes the storage and communications expense negligible.

Inst ead, we aim to improve upon both the PB-blocking and the pure

Flyvberg-Peterson algorithm. We wish to simultaneously reduce the amount

of user input into the method by eliminating the pre-blocking step requiring

some level of user expert ise to determine m, reduce the global storage, and

reduce expenses rigorously to G(log2(Ne)) from G(N e), and to accomplish

a reduction of the global statistics "on-t he-fly" with minimal expense.

In this paper, we reformulate the same mathematical results of Flyvbjerg

and Peterson to allow efficient decorrelation of serially correlated data "on­

the-fly" and in parallel fo r the extremely large amount of sampling required in

Markov chain based calculations such as Quantum Monte Carlo calculations

of electronic wavefunctions.

4.3 Theory

Computer simulations of physical systems often involve t he calculat ion of an

expectation value, (f) , with respect to a complicated probability distribution

function, p(x).

25

(f) == J p(x)f(x)dx (4.1)

This expression is simple and elegant, but in many physical systems, p(x)

is too complex for Equation 4.1 to be useful computationally. Commonly,

computer simulations involve calculation of the average of samples over some

number of Monte Carlo steps (or molecular dynamics times).

_ 1 n

f == - Lf(Xi)
n i= l

(4.2)

Here Xi is sampled from the distribution p(x) using a Monte Carlo or

molecular dynamics simulation; i is related to the Monte Carlo step number

or molecular dynamics time. Assuming ergodicity, then

(f) = limn-tooJ = limn-tooJ.. t f(Xi)
n i = l

(4.3)

Modern computing machines allow the very large samplings required to

approach this limit. However, since such sampling is necessarily always finite,

J will fluctuate requiring the determination of its variance in order to evaluate

the results. The variance, a 2 , of J can be expressed as

1 n

a 2U) = n2 L ((f(xi)f(xj») - (f(Xi») (f(Xj»)) , (4.4)
i,j=l

which is valid for the analysis of correlated data. For uncorrelated data this

red uces to the typical variance relation

(4.5)

26

Applying Equation 4.5 to systems with correlated data leads to a lower

bound of the true variance, which is obtained from Equation 4.4.

Flyvbjerg and Peterson show formally that uncorrelated variance est i-

mates can be extracted from serially correlated data by applying a "block-

ing" transformation. The "blocking" transformation begins by partit ioning

the serially correlated data into equal-sized, nonoverlapping "blocks" of data.

An average is performed over each block to obtain a new reduced set of data.

With a sufficiently large block size, the resulting data will be uncorrelated

and its variance can be calculated as

block, (blOck') 2
(J2(f) = 1 '""' (Jblock.4ve) 2 __ 1_ '""' fblock.4ve ,

blocks ~ • block2 ~ •
i= l i = l

(4.6)

where f;"'ock.4ve is the average of f(xi) over block i. In practical terms, the

correct block size can be determined by finding the block size after which

equation Equation 4.6 plateaus as shown in Figure 4.2.

4.3.1 Computational Cost of Flyvbjerg-Peterson AI-

gorithm

When serially correlated data is collected from a Markov chain-based sim-

ulation, the average and variance of the average are the most commonly

calculated quantities. The Flyvbjerg-Peterson blocking algorithm requires

storing all of the collected data. This has two negative consequences:

• It cannot be performed "on-the-fly,"

• It requires G(N) storage.

If N is assumed to be a power of two and all block sizes are taken to be

powers of two, this algorithm requires 5N - 3 floating point additions, 3N - 2

27

floating point multiplicat ions, and 2N - 1 integer additions t o calculate the

average and variance of the data with all possible block sizes. Often, the

data must be read in from a file to be analyzed, adding an additional slow

O(N) operation to the computational cost .

4.3.2 Dynamic Distributable Decorrelation Algorithm

(DDDA)

Our new algorithm involves two classes:

Statistic Class

{P seudocode is listed in Supplement 4.6}

The Statistic class stores t he number of samples, running sum of X i , and

running sum of xl for the data that is entered into it. This allows straight­

forward calculation of the average (Equation 4.7)

and variance (Equation 4.8)

1 n

X == - L Xi
n i = l

I ",n 2 I ",n 2
-2() n ~i- l Xi - ~ L...,.i-l Xi a x =)

n- l

(4.7)

(4.8)

where n is the number of samples in the Statistic object, and the Xi are t he

data elements added to the object. This variance estimator only returns the

true variance if the data is uncorrelat ed.

Decorrelation Class

{Pseudocode is listed in Supplement 4. 7}

28

The Decorrelation class stores a vector of Statistics (BlockedDataStatistics),

where BlockedDataStatistics[i) corresponds to data that has been partitioned

into blocks 2; long. As new data is collected during a computation, it is added

to a Decorrelation object using the add_Data(x) function. This function de­

termines when enough data samples exist to create new data blocks and then

adds the data from the new blocks to the correct elements of BlockedDataS­

tatistics. An operation is also presented to combine Decorrelation objects

generated from independent Markov chains t hat are produced in parallel

computations.

Sample pseudocode for applying t he algori thm is presented in Supplement

4.8. This simple code demonstrates t he ease of implementation for the new

algorithm. This code can be easily modified to include any special features

of a particular application including convergence-based termination.

This construction is well suited for parallel computations where mult iple,

distributed Decorrelation objects will be generated. To combine these objects

efficiently, when analyzing the global results for a distributed calculation, it

is necessary to efficiently add the data from a number of Decorrelation objects

to form a new composite Decorrelation object. The addition operation listed

in Supplement 4.7 provides this functionality.

The equations implemented by DDDA are exactly the same as t hose

presented by Flyvbjerg and Peterson. Our implementation, however, is more

efficient. This allows new data to be added "on-the-fly" and allowing all

current data to be analyzed "on-the-fly" with negligible additional cost. The

results obtained from the original Flyvbjerg-Peterson algorithm and DDDA

are identical because t hey are mathematically equivalent.

29

Summary of Algorithm

The DDDA algorithm is very simple and relies only on the Statistic (4.3.2)

and Decorrelation (4.3.2) classes. A Decorrelation object is just an array

of Statistics objects. The Decorrelation array element zero corresponds to a

block size of one (or block size 2°), array element one corresponds with a

block size of two (or block size 21), and array element i corresponds with a

block size of 2i.

When we observe a new sample, we place the sample into the Decorrela­

tion structure at level zero. This gets added to this Statistic and then gets

propagated up one level to level one. If a sample is waiting to construct a

new block, this new sample and the waiting sample are averaged and added

to this level as a new sample. This new composite sample is then recursively

sent down the structure constructing new blocks of data. If a sample gets

propagated a level and no waiting sample exists to form a new block, this

sample becomes the waiting sample which is followed by the termination of

this round of updating the Decorrelation structure.

4.3.3 Computational Cost of DDDA

Analysis of DDDA (Table 4.1) shows that it requires 5N - 3 floating-point

additions, 3N - 2 floating-point multiplications, and 2N - 1 integer addi­

tions, which is identical to the Flyvbjerg-Peterson algorithm. However, in

contrast with the Flyvbjerg-Peterson algorithm, DDDA requires storage of

only O(lOg2(N)) numbers and requires no time to read data from a file be­

cause the data is added to a Decorrelation object "on-the-fly."

We should note that a storage unit in DDDA is roughly three times as

30

Expense Flyvb jerg -Peterson Dynamic Distributable

Algorithm Decorrelation

Algorithm (DDDA)

Floating Point

Mult iplications 3N - 2 3N-2

Floating Point

Addit ions 5N-3 5N-3

Integer Additions 2N -1 2N -1

Read-in Data Cost O(N) None

Storage Cost O(N) 0(I092N)

"On-the-fly"

Calculation not practical negligible

Table 4.1: Comparison of computational costs. Here N is the number of data points

ana lyzed. In evaluating the costs, N is assumed to be a multiple of two. This represents

the worst-case scenario .

large as the storage unit in the original algorithm. This factor of three results

from t he class Statistic having three data members. If we assume that the

data type used for each data point and the data members of a Statistic object

have roughly the same number of bits, the storage cost of DDDA is 3Io92(N)

which scales as 0(1092(N)).

If the correlat ion time for the data is known approximately, then block

sizes significantly larger than this are not required ; therefore, it is not neces­

sary for them to be saved or calculated. This reduces the storage cost to 0(1).

If a sufficiently large block size is not allowed, t he calculated variance will be

incorrect because the largest data blocks used to calculate t he variance will

31

still be correlated. (This is just a special instance where the computational

complexity and costs can be managed if the approximate correlation time is

known a priori.)

To provide an idea of the impact of DDDA, consider the example of

predicting the activation energy for decomposition of the RDX molecule dis­

cussed below. We estimate that Na = 1012 global data points are required.

Thus with M = 103 processing units, the original algorithm requires local

processor storage of O(N), N"" IXf = 109 numbers, which may be difficult

to accommodate on the local memory and may be very difficult to transfer

efficiently between processors. In contrast for Na = 1012 and M = 103 , t he

local processor storage requirement for DDDA is 3Iog2 (N) = 120, which is

much easier to accommodate than 109

4.4 Computational Experiments

4.4.1 Variational QMC on One-Dimensional Particle­

in-a-Box

Details of the calculations

To illustrate DDDA, we consider using Variational Quantum Monte Carlo

(VMC) [13] to calculate t he energy for a one-dimensional particle-in-a-box

32

of length one. The expected energy of the system is given by Equation 4.9

(E) = 11 WTHWTdx

_ [(wd (~:T) dx

11 PT(x)Edx)dx, (4.9)

where WT is a normalized, approximate wavefunction, H is the Hamiltonian

for the system, EL(X) is the local energy, and PT(X) is the approximate

probability distribution of the particle. Equation 4.9 can be evaluated in two

ways:

• One option (Method 1) is to perform a Monte Carlo integral using

uniform random numbers to sample EL(X) with weight PT(X). Because

the uniform random numbers are not serially correlated, the sampled

values of pT(x)Edx) are not serially correlated .

• A second option (Method 2) is to generate points distributed with

respect to PT(X) using the Metropolis algorithm [55] and use these

points to sample Edx). Because the Metropolis algorithm employs a

Markov chain, this method will produce serially correlated data.

For our illustration, we chose

(4.10)

This trial wavefunction is a good approximation to the exact ground state

wavefunction, WExact = V2sin(1Tx). Since the WT is not an eigenfunction for

this system, the local energy will not be constant and the calculated energy

expectation value will fluctuate.

33

Results

DDDA produces the same results as the Flyvbjerg-Peterson algorithm but

is a more efficient implementation. The analytic expectation value of the

energy is (E) = 5.0. The uncorrelated estimate of the energy, calculated by

Method 1, is (E) = 5.0014(22) and the correlated estimate, calculated by

Method 2, is (E) = 5.0018(59) .

The noncorrelated VMC "particle-in-a-box" calculation (Method 1) pro­

duces a nearly flat standard deviation estimation for blocks of 2° to 2'2 points

(Figure 4.1). This is the expected behavior for noncorrelated data because

Equation 4.5 provides a correct prediction of the variance. The poor perfor­

mance for large block sizes results because t hey have very few data points

leading to less stability in estimating the standard deviation.

The correlated VMC "particle-in-a-box" calculation (Method 2) leads to

a nearly monotonic increasing estimate of the standard deviation that levels

off for blocks of 28 to 2'2 points (Figure 4.2). The plateau in the standard

deviation estimation corresponds to the correct standard deviation of the

calculated expectation value. Furthermore, the plateau indicates t hat blocks

of 28 points are essentially uncorrelated so that Equation 4.6 provides an

appropriate estimate of the variance.

We should note that using Equation 4.5 on correlated data without data

blocking yields an estimate of the standard deviation that is much too small.

This corresponds to a block size of one (the y-axis intercept) in Figure 4.2.

This illustrates the potential dangers in reporting error estimates of data

without accounting for the serial correlation that may exist.

We should also note that the error estimates of the correlated and un cor-

34

Uncorrelated VMC "Particle-in-a-Box·

0.003

0.0025

0.002

" 0,0015

0.001

0.0005

0
0 2 4 6 8 10 12 14 16 18

Figure 4.1: The energy expectation value standard deviation, evaluated with Eq. 4.6,

as a function of block size for a VMC "particle-in-a-box" calculation using Method 1

to generate uncorrelated data points . The Fl yvbjerg-Peterson algorithm and DDDA

yield exactly the same results. The error bars represent one standard deviation in the

calculated standard devi ation estimator.

related "particle-in-a-box" calculations are different. T hese error estimates

illustrate that serially correlated data does not provide as much informa­

tion as uncorrelated data, resulting in a larger standard deviation for the

correlated case than the uncorrelated case when using t he same nu mber of

samples.

35

Correlated VMC ·Particle-in-a-Box·

0.011

0.01

0.009

0.008

0.007
0

0.006

0.005

0.004

0.003

0.002
0 2 4 6 8 10 12 14 16 18

tog2(Block Size)

Figure 4.2: The energy expectati on va lue sta nd ard deviation , eva luated with Eq. 4.6,

versus block size for a VMC "partide-in-a-b ox" calculation using Method 2 to generate

correlated data points. The Flyvbjerg-Peterson algorithm a nd DDDA yield exactly the

same results . The error bars represent one standard deviation in the calculated standard

deviation estimator.

4.4.2 Finite All-Electron Variational QMC on RDX

Introduction

For a more realistic test of t hese algorithms, we consider a practical problem

of using Variational Quantum Monte Carlo (VMC) to determine the barrier

height for the unimolecular decomposition of the high explosive molecule,

RDX (see Fig. 4.3) , cyclic [CH2 - N(N02)h-

The best available DFT calculations [2] indicate an activation barrier of

39.0 kcal for NN dissociation, 39.2 kcal/mol for HONO elimination, and

36

Figure 4.3: The RDX molecule, cyclic [CH2-N(N02)h-

59.4 kcal/mol for concerted decomposition. Various choices of high-quality

basis sets with various choices of high-quali ty density functionals (generalized

gradient approximations) lead to changes in these activation energies by ~ 5

kcal/ mol. These uncertainties pertain to t he underlying assumptions about

DFT so that we cannot improve this accuracy by just additional computing.

Thus with current DFT methodology we are stuck with uncertainties of ~ 5

kcal/mol. In order to properly model combustion processes involving RDX, it

would be desirable to know these energies to 0.1 kcal/mol. On the other hand,

using various flavors of QMC the calculated energy can be systematically

improved. If we have a way to gauge the uncertainty that can be applied

while the calculation is underway, then we can continue running until this

level of convergence is achieved. Numerous calculations with various flavors

of DFT indicate that with good basis sets and good generalized gradient

approximations, the geometries generally agree to better than D.DIA with

each other and with experiment. Thus a practical procedure would be to

determine the geometries (including transitions states) using DFT theory,

then start the QMC with this wavefunction and optimize the correlation

functions until the results will allow a DMC run to converge to the designed

accuracy. To illustrate this process for a general serially correlated Monte

37

Carlo application, we carried out some initial VMC calculations for RDX.

RDX = cyclic - [CH 2 - N(N02)h is composed of 21 atoms with 114

electrons, making an all-electron VMC calculation nontrivial but tractable.

To demonstrate the robustness of DDDA, we used VMC to calculate the

energies of the ground state and two transition state intermediates. In these

calculations, we use the structures from the DFT calculations [2].

Details of the VMC Calculations

VMC calculations were performed using QMcBeaver [54], which implements

DDDA. Though much work has been done on proper wavefunction optimiza­

t ion techniques [10, 13, 14, 15, 16, 18, 19, 20, 21, 22], we examine a very

simple form of the VMC wavefunction as written in Equation 4.11.

\Ii trial = \Ii H F J C orr

JCorr = exp (2: 2: Ui,j)
t)<l

(4.11)

This is the product of a Hartree-Fock wavefunction, (HF), calculated us-

ing Jaguar [1 , 3] , with a Pade-Jastrow correlation function (Equations 4.11 , 4.12, 4.13),

JCorr . The particular form of the Pade-Jastrow correlation function is in

Equation 4.1 2.

(4 .12)

This was chosen to remove singularities in the local energy while maintain-

ing the structure of the original wavefunction everywhere except where two

particles closely approach each other. Thus for the electron-nuclear terms, we

38

set cusp = -Z and b = 100. Similarly for the electron-electron terms we use

the analytically derived values of cusp = 0.25 for same spin and cusp = 0.50

for opposite spin electrons. For same spin electrons, we use b = 100; while for

the opposite spin electrons, we use b = 3.5, which we have found works fairly

well for the ground state of a number of small molecules containing carbon,

hydrogen, oxygen, and nitrogen. These are displayed in Equations 4.13.

lr ..
u - u _ 4 tJ
tt - .w. - 1 + 100rij

-Tij
Ut,H = U .,H = c:----=--:":--

1 + 100rij
- 6rij

Ut,e = U .,e = c:----=--:?!:-
1 + 100rij

- 7rij
Ut,N = U.,N = c:----::--:?!:-

1 + 100rij
- 8rij

Ut,o = u. ,o = _ _ ...2_

1 + 100rij
(4 .13)

Such correlation functions with fixed parameters provide a crude but

"generic" approach to determining a portion of the correlation energy missing

in the Hartree-Fock wavefunction.

Of the three calculations, two were run to completion while the third cal-

culation was stopped a fraction of the way through the run and restarted from

checkpoints to verify the ease and efficiency with which these new structures

allow for checkpointing of the program state variables. The calculations were

performed on the ASCI-BLUE Mountain supercomputer at the Los Alamos

National Laboratory using 1024 MIPS 10000 processors running at 250 MHz.

Energies for the Jaguar Hartree Fock (HF), Jaguar density functional

theory (DFT-B3LYP) [1, 3,4, 5,6,7,8]' and QMcBeaver variational quantum

39

Species Hartree Fock Variational Quantum Monte Carlo

Ground state -892.491 -893.35(4)

Concerted dissociation -892 .369 -893.29(5)

N - N02 bond fission -892.259 -893.20(4)

Table 4.2: Total energies (Hartree) for the various calculations on ROX. The HF and

OFT [2J results were obtained from Jaguar 4.1 with the 6-31G** basis set [1, 3, 4, 5,

6, 7, 8J. Variational Qua ntum Monte Carlo based on 3 X 107 points.

Monte Carlo (VMC) [54] calculations are presented in Table 4.2.

Results

T he RDX calculations successfull y completed independent of whether they

were run to completion or checkpointed and restarted.

Figures 4.4, 4.5, and 4.6 show t he evolution of the energy standard devia­

tion estimate as the number of Monte Carlo steps is increased for calculations

on the t hree different RDX species. The standard deviation in t he VMC

energy expectation value decreases with the number of samples, roughly fol­

lowing the form IN. Here we see that the plateau in the plot of standard

deviation vs. l092(block_size) is reached for a block size of roughly 28 to 2'3.

The dependence of t he standard deviation on t he number of steps is

shown in Fig. 4.7. Based on these results, we estimate that 1010 steps are

required for 1 kcal/mol uncertainty in the calculated energy estimator, while

10' 2 steps are required for 0.1 kcal/ mol uncertainty in the calculated energy

estimator.

Another important observat ion from these calculations is t hat these crude

0.1

b

0.01

40

Time Evolution of ADX Energy E)(peclation Value Standard Deviation

31163746 Steps --+-
14566309 Steps -----w-
6283647 Steps ____
2137179 Steps ----t3--

62122 Steps-

0.001 '-____ -'-_ ___ --L. ____ ---' _____ -'-____I

o 5 10 15 20 25

Figure 4.4: The evolution of the energy-standard-deviation-estimator for the grou nd

state of RDX with block size. Shown here are the results for five cases with 62122,

2137179, 6283647, 14566309, and 31163746 total QMC steps. The energies are in

Hartree (1 Hartree = 27.2116 eV). This shows that a block size of28 = 256 is sufficient

for this calculation.

"generic" Pade-Jastrow correlation functions appear somewhat effective III

improving the Hartree-Fock wavefunctions.

4.5 Conclusions

The primary goal here was to show t he robustness and efficiency of DDDA.

This method can eliminate computationally expensive I/ O operations and re­

duce the overall storage requirement to 0(1092(N)) from O(N) . Furthermore,

t his method allows the variance of the calculated quantity to be evaluated

41

Time Evolution of RDX Energy Expectation Value Standard Deviation

10 r---------,----------r--------~----------~~------.
30176694 Steps _
13601739 Steps ___
5264068 Steps ---
111 3737 Steps -e-

72899 Steps ___

b 0 .1

0 .0 1

0.001 '--________ -'-________ -':: ________ -''--________ :':-________ ...1

o 5 10 15 20 25

F igure 4.5: The evolution of the energy-standard-deviation-estimator for the t ransi-

tion state for N-N02 bond dissociation in RDX with block size. Shown here are the

results for five cases with 72899, 1113737, 5284068, 13601739, and 30176694 total

QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV) . This shows that

a block size of 28 = 256 is sufficient for this calculation.

"on-the-fly." This a llows a calculation to be terminated when the calcu-

lated quantities are converged instead of having to pre-specify t he number of

simulation steps to be performed.

Variance estimation for parallel simulations is easily and efficiently per-

formed with DDDA . While the Flyvbjerg-Peterson algorithm requires O(N)

data points to be communicated over a network connection to evaluate the

variance of the global calculation , DDDA requires only 0(1) to 0(1092(N))

data points to be communicated. This is a great benefit when large amounts

of data are generated or when calculations are performed on a "grid" or

42

Time Evolution of RDX Energy Expectation Value Standard Deviation

0.1

0.01

31126145 Steps -----+--
14545368 Steps ----M-

6260482 Steps ~
2110471 Steps -----e--

38848 Steps ____
0.001 '--------'--------'------'-----'--'-'-'-=---

o 5 10 15 20 25
I092(BloCk Size)

Figure 4.6: The evolution with block size of the energy-standard-deviation-estimator

for the transition state for concerted symmetric ring decomposition of RDX. Shown

here are the results for five cases with 38848, 2110471, 6260482, 14545368, and

31126145 total QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV).

This shows that a block size of 213 = 8192 is sufficient for this calculation.

other computational network with potentially limited bandwidth. Further-

more, the Flyvbjerg-Peterson algorithm is typically implemented so that all

calculations are performed on one processor. DDDA efficiently partitions the

calculation between all available processors.

4.6 Statistic Class Pseudocode

4.6.1 Pseudocode for Statistic.initializeO

Statistic. initial ize ()

43

Time Evolution of RDX Energy Expectation Value Standard Deviation

c 0.1

100000 1 • .os
Total QMC Steps

Ground Stale --+­
N0 2 Elemination ----l+­
Symmetric Break __

1e+07 1.+08

Figure 4.7: The evolution of the standard-deviation-estimate for the energy of the

three states of RDX whose results were shown in Fig. 4.4, 4.5, and 4.6. A block size

of 28 was used for the ground state and the transition state for N-N02 dissociation

while a block size of 213 was used for the symmetric concerted transition state. The

energies are in Hartree (1 Hartree = 27.2116 eV) .

When a new instance of t he Statistic class is created

init ialize its attributes

NSamples = 0.0

Sum = 0.0

SumSq = 0.0

44

4.6.2 Pseudocode for Statistic.add_Data(new_sample)

Statistic. add_Data(new _sample)

Add a new data element to the Statistic object and update

the object's attributes

NSamples = NSamples + 1

Sum = Sum + new_sample

SumSq = SumSq + new_sample * new_sample

4.6.3 Pseudocode for Statistic.addition(A, B)

Statistic.addition(A, B)

Add two Statistics to create a new composite statistic

C=A+B (so C is the resulting Statistic object)

C = new Statistic()

C.NSamples = A.NSamples + B.NSamples

C.Sum = A.Sum + B.Sum

C.SumSq = A.SumSq + B.SumSq

returnC

45

4.7 Decorrelation Class Pseudocode

4 .7 .1 P seudocode for Decorrelation.initialize()

Decorrelation.initializeO :

When a new instance of the Decorrelation class is

created, init ialize its attributes

Size = 0

NSamples = 0

BlockedDataStatistics = [new StatisticO]

waiting_sample = [0]

waiting_sample_exists = [false]

4.7.2 Pseudocode for Decorrelation.add_Data(new_sample)

Decorrelation.addJJata(new_sample) :

Add a new data element to the Decorrelation object

and update t he object's attributes

NSamples = NSamples + 1

T his will dynamically make the Decorrelation arrays

longer to fit in all the data

if NSamples >= 2.0Size :

Size = Size + 1

BlockedDataStatistics =

B I ockedDataStatistics. append (new Statistic()

waiting_sample = waiting_sample.append(O)

46

waiting_sample_exists = waiting_sample_exists . append (f al se)

B lockedDataStatistics [OJ .add_Data(new_sample)

carry = new_sample

i = 1

done = false

Propagate the new sample up through the

BlockedDataStatistics structure

while(not done) :

if waiting_sample_exists[iJ :

new_sample = (waiting_sample[i] + carry)/2.0

carry = new_sample

B lockedDaiaStatistics [i].addData(new _sample)

waiting_sample_exists[i] = false

else:

waiting_sample_exists[i] = true

waiting_sample [i] = carry

done = true

i = i+l

if i > Size:

done = 1

4.7.3 Pseudocode for Decorrelation.addition(A, B)

Decorrelation.addition(A, B) :

Add two Decorrelation objects to create a new

47

composite Decorrelation object

C=A+B (so C is the resulting Decorrelation object)

C = newDecorrelationO

C.NSamples = A.NSamples + B.NSamples

Make C big enough to hold all the data from A and B

while C.NSamples >= 2.0C.Size :

C.Size = C.Size + 1

C. BlockedDataStatistics =

C.BlockedDataStatistics .append(newStatisticO)

C.waiting_sample = C.waiting_sample.append(O)

C. waiting ...sample-.exists =

C. waiting_sample_exists .append(j alse)

carry_exists = false

carry = 0

for i in range(C.Size) :

if i <= A .S ize :

StatA = A.BlockedDataStatistics[i]

waiting_sampleA = A.waiting_sample[i]

waiting_sample_existsA = A.waiting...sample_exists[i]

else :

Stat A = new StatisticO

waiting_sampleA = 0

waiting_sample-exists A = fals e

if i <= B.Size :

StatB = B.BlockedDataStatistics[i]

48

waiting_sampleB = B.waiting_sample[i]

waiting_sample_existsB = B.waiting_sample_exists[i]

else:

StatB = new StatisticO

waiting_sampleA = 0

waiting_sample_existsA = fals e

C.BlockedDataStatistics[i] =

C.BlockedDataStatistics[i] .addition(StatA, S tatB)

if(carry_exists == true & waiting_sample _existsA == true &

waiting_sample_existsB == true) :

We have three samples to handle

C.BlockedDataStatistics [i].addData(

(waiting_sampleA + waiting_sampleB)/2.0)

C.waiting_sample[i] = carry

C.waiting_sample_exists [i] = true

carry_exists = true

carry = (waiting_sampleA + waiting_sampleB)/2.0

else if(carry_exists == false & waiting_sample_existsA == true &

waiting_sample_existsB == true) :

We have two samples to handle

C.B lockedDataStatistics [i] .addData(

(waiting_sampleA + waiting_sampleB)/2.0)

C.waiting_sample[i] = 0

C.waiting-Bample_exists[i] = fal se

carry_exists = true

49

carry = (waiting_sampleA + waiting_sampleB) / 2.0

else if (carry_exist s == true & waiting_sample_existsA == false &

waiting_sample_existsB == true) :

We have two samples to handle

C.B lockedDataStatistics [i].addData(

(carry + waiting_sampleB)/2.0)

C.waiting_sample[i] = 0

C. waiting_sample_exists [i] = false

carry_exists = true

carry = (carry + waiting_sampleB) / 2.0

else i f(carry-.e.xists == true & waiting_sample_existsA == true &

waiting_sample_existsB == false) :

We have two samples to handle

C.B lockedDataStatistics [i].addData(

(carry + waiting_sampleA)/2. 0)

C.waiting_sample[i] = 0

C. waiting_sample_exists[i] = false

carry _exists = true

carry = (carry + waiting_sampleA)/2.0

else if (carry_exists == true or waiting_sample_existsA == true or

waiting_sample_existsB == true) :

To get to this code we must only have one sample to handle

C.waiting_sample[i] = carry+

waiting_sampleA + waiting_sampleB

C.waiting_samplLexists [i] = true

carry_exists = false

carry = 0

50

else:

returnC

There are no samples to handle here

C.waiting_sample[i] = 0

C. waiting_sample_exists[i] = fal se

carry_exists = false

carry = 0

4.8 Simple Example Calculation Pseudocode

for all processors:

Initialize the error analysis data structure for each processor

LocalError AnalysisDataStructure = newDecorrelationO

while generating new data points:

Generate new data and add it to the local error

analysis data structure

new_data = generateNewDataPointO

LocalError AnalysisDataStructure.addJ)ata(new_data)

if not rooLnode :

Send data to the root processor to evaluate t he global

expectation value and Variance

send LocalError AnalysisDataStructure to rooLnode

else:

51

Generate the global error analysis data structure by

adding the local error

GlobalError AnalysisDataStructure =

LocalError AnalysisDataStructure

Analysis data structures form each processor

for processor in all processors excluding the root node:

receive(LocalError AnalysisDataStructureprocessor)

GlobalError AnalysisDataStructure = Decorrelation.add(

GlobalError AnalysisDataStructure,

LocalError AnalysisDataStructureprocessor)

52

Chapter 5

Manager-Worker-Based Model

for the Parallelization of

Quantum Monte Carlo on

Heterogeneous and

Homogeneous Networks

5.1 Introduction

There is currently a great deal of interest in making Quantum Monte Carlo

(QMC) methods practical for everyday use by chemists, physicists, and ma­

terial scientists. Since protocols exist using QMC methods, such as varia­

tional QMC, diffusion QMC, and Green's function QMC, to calculate the

energy of an atomic or molecular system to within chemical accuracy « 2

kcal/mol), this makes their everyday application very attractive. High accu-

53

racy quantum mechanical methods generally scale very poorly with problem

size, typically O(N6 to N!) , while QMC scales fairly well , O(N3
), but with

a large prefactor. Current research efforts exist to improve QMC's scaling

further [45]. Density Funct ional Theory (DFT) scales well, O(N3), and could

potentially provide highly accurate solutions, but DFT typically has an ac­

curacy of 5 kcal/mol or more with the current generation of functionals and

the results cannot be systematically improved.

The primary issue facing the QMC community is that, although QMC

scales well with problem size , the prefactor of the method is generally very

large, often requiring CPU months to calculate moderately sized systems.

The Monte Carlo nat ure of QMC allows it to be easily parallelized , t hus ,

reducing the prefactor , with respect to the wall clock.

Application of QMC to physically interesting systems almost always re­

quires the use of supercomputers to enable calculations to complete in a rea­

sonable amount of time. Currently, however, supercomputing resources are

very expensive and can be difficult to gain access to . To make QMC more

useful for an average practitioner, algorithms must become more efficient,

and/ or large inexpensive supercomputers must be produced.

A current trend in large scale supercomputing [51] is assembling "cheap

supercomputers" with commodity components using a Beowolf-type frame­

work. These clusters have proven to be very powerful for high-performance

scientific computing applications [52]. Clusters can be constructed as ho­

mogeneous supercomputers if the hardware for each node is equivalent or

as heterogeneous supercomputers if various generations of hardware are in­

cluded.

Another interesting development is the use of loosely coupled, distributed

54

grids of computational resources [53] with components t hat can even reside

in different geographic locations in the world. Such "grids" are upgraded

by adding new compute nodes to the existing grid resulting in continuously

upgradable supercomputers, which are inevitably heterogeneous.

To efficiently utilize the next generation of supercomputer (heterogeneous

cluster or grid), a parallelization algorithm must require little communication

between processors and must be able to efficiently use processors that are

running at different speeds. We propose a manager-worker-parallelization

algorithm for QMC (QMC-MW) that is designed for just such systems. This

algorithm is compared against the pure iterative parallelization algorithm

(QMC-PI), which is most commonly used in QMC implementations [64, 65,

66].

5.2 Theory

Because QMC is a Monte Carlo method and thus stochastic in nature, it is

one of the easiest algorithms to parallelize and can be scaled to large numbers

of processors. In a parallel calculation, an independent QMC calculation is

performed on each processor, and the resulting statistics from all the proces­

sors are combined t o produce the global result.

QMC calculations can typically be broken into two major computationally

expensive phases: initialization and statistics gathering. Points distributed

with respect to a complicated probability distribution, in this case the square

of the wavefunction amplitude, are required during a QMC calculation. In

efficient implementations, this is almost always done using the Metropolis

algorithm [55].

55

The first points generated by the Metropolis algorithm are not generated

with respect to the desired probability distribution so they must be discarded.

Additionally, points generated for diffusion QMC and Green's function QMC

must be discarded if t here are significant excited state contributions which

have not yet decayed. This represents the initialization phase. Once the

algorithm begins to generate points with respect to the desired distribution ,

the points are said to be "equilibrated" and can be used to generate valid

statistical information for the QMC calculation. This represents the statistics

gathering phase and is the phase where useful data is generated.

To obtain statistically independent data, each processor, in a parallel

calculation, must perform its own initia lization procedure which is the same

length as the initialization procedure on a single processor. When large

numbers of processors are used, the fraction of the t ime devoted to initializing

the calculation can be very large and will eventually limit the number of

processors that can be effectively used in parallel (Section 5.2.3).

Sections 5.2. 1 and 5.2.2 theoretically analyze the pure iterative (QMC­

PI) and manager- worker (QMC-MW) parallelization algorithms for QMC.

The analyses assume that an O(log2(NprocessOTs)) method, where Nprocessors

is t he total number of processors, is used to gather t he statistical data from

all processors and return it to the root processor [50]. To simplify analysis of

the algorithms, the analysis is performed for variational QMC (VMC) with

the same number of walkers on each processor, but it is possible to extend

the results to other QMC methods.

56

5.2.1 Pure Iterative Parallelization Algorithm

The pure iterative parallelization algorithm (QMC-PI) is the most commonly

implemented parallelization algorithm for QMC (Algorithm 5.5) [64,65,66].

This algorithm has its origins on homogeneous parallel machines and simply

allocates an equal fraction of the total work to each processor. The processors

execute their required tasks and percolate the resultant statistics to the root

node once every processor has finished its work.

In this algorithm, the number of QMC steps taken by each processor

during the statistics gathering phase, StepsPI,i, is equal to the total number

of QMC steps taken for the calculation, StepsRequiredTotal, divided by the

total number of processors, Nprocessors'

StepsRequiredTotal
Steps P I i = --':-;,....-----

, N Processors
(5.1)

The number of QMC steps required to initialize each walker during the

init ialization, StepsInitialize, is taken to be a constant. An optimally efficient

initialization algorithm would determine how many QMC steps are required

to equilibrate each walker, but in current practice, each walker is generally

equilibrated for the same number of steps.

The wall clock time required for a QMC calculation using the QMC-PI

algorithm, tPJ , can be expressed as

t - tlnitialize + tPropagate + tSynchronize + tCommunicate
PI - PI,i PI,i PI,i PI , (5.2)

where t~''i',;ialize is the time required to initialize the calculation on proces­

sor i, t~;7agate is the time used in gathering useful statistics on processor i,

t~~~Chronize is the amount of time processor i has to wait for other proces­

sors to complete their tasks, and t~~mmunicate is the wall clock time required

57

to communicate all results to the root node. These components can be ex-

pressed in terms of quantities that can be measured for each processor and

the network connecting them.

(5.3)

t~~~fagate = (StepsReQUiredTotal) {~MC
N Pr ocessors t

(5.4)

t Communicate - log (N) (tLatency + f3L) P I - 2 Processors (5.5)

Here N w is the number of walkers per processor, tfenerateWalker is the time

required to construct a walker on processor i, t7MC is the time required

for a QMC step on processor i, tLatency is the latency of the network, f3 is

t he inverse bandwidth of the network, and L is the amount of data being

transmitted between pairs of processors when data is percolated to the root

node.

The way t his algorithm is constructed , all processors must wait for the

slowest processor to complete all of its tasks before the program can term i-

t Th C tSynchronize 0 d h II I k . I h na e. ere,ore P I ,slowest = ,an t e wa c oc tlme to comp ete t e

QMC-PI calculation is

tpI = tlnitia'ize + tPropagate + tComm1.l.nicate
PI,slowest PI ,slowest PI' (5 .6)

Furthermore,

t Synchroniz e _ (tlnitialize + tPropagate) _ (tlnit.ializ e + tPropagate) (5.7)
PI,i - PI,slowest PI ,stowest PI ,t PI,i .

58

Similarly, the total time required for a QMC calculation using the QMC-

PI algorithm, T PI, can be expressed as

Tp1 = T~1itializ e + T:;opagute + T;jnchronize + T~ImmtJ.nicate, (5.8)

where TJ]itialize is the total time required to initialize the calculation, T[:;opagate

is the total time used in gathering useful statistics, T;rchronize is the total

time used in synchronizing the processors, and Tj{fmmunicate is the total time

used to communicate all results to the root node. These components can be

expressed in terms of quantities that can be measured for each processor and

the network connecting them.

5.2.2

T lnitialize _
PI -

T Propagate _
PI -

T 5ynchronize _
PI -

tlnitialize
PI,i

tPropagate
PI,i

tSynchronize
PI,i

TCommunicote - (N - 1) (tLotency + f3L)
PI - Processors

Manager- Worker-Parallelization Algorithm

(5.9)

(5.10)

(5.11)

(5.12)

The manager-worker paradigm (QMC-MW) offers an entirely new method

for performing parallel QMC calculations (Algorithm 5.6). This algorithm

makes the root node a "manager" and all of the other nodes "workers." The

worker nodes compute until they receive a command from the manager node.

The command either tells the worker to 1) percolate its results to the manager

node and continue working or 2) percolate its results to the manager node

59

and terminate. The manager periodically collects the statist ics that have

been calculated. If the statistics are sufficiently converged , the manager

commands the workers to send all their data and terminate; otherwise, the

manager will do some of its own work and repeat the process again later.

Unlike QMC-PI, QMC-MW dynamically determines how much work each

processor performs. This allows faster processors to do more work so the

calculat ion is automatically load balanced.

The wall clock time required to perform a QMC-MW calculation can be

broken into the same terms as were used for a QMC-PI calculation (Equa-

tion 5.3).

t - e nitialize + tPropagate + tSynchronize + tCommunicate
M W - MW,i MW,i MW,i MW,i (5.13)

Because MW dynamically determines how many steps are performed by each

processor, each of the constituent terms has a more complicated form than

in QMC-PI. Allowing l' to be the minimum wall clock needed to achieve

convergence on a given network and 7 to be the approximate wall clock

time during the run, one can easily derive t he following expressions. Once 7

becomes l' the QMC-MW algorithm will terminate.

enitia:lize ::::: N t~enerateWalker + Stepslniti~lize(1')t9MC
MW,l W t MW,t 1

tCommunicate _
MW,i -

tPropagate _ St Propagate (-)tQMC
MW,i - epsMW,i T i

cps MW a 7" I (N) (tLatency f3L) 1St Tolal (0) l
NwStep,Ji,du," Og2 Processors + +

r Step8rtt;J,~(f) l tPoll
I NwStepsPoli i

tSynchronize < /II Ste s PoUtPoU MW,O

r
StepsTotat (f) 1

MW,\ - W P slowest NwStepsReduce)

(5 .14)

(5 .15)

(5.16)

(5.17)

where

and

60

eps MW,O 'T Latency

1
St Total () l

tMW - N
w

Steps Reduce log2(NproceHor,)(t + f3L)

t _ tSynchronize _ tCommunicate
~ MW MW,i MW,i

t l nitialize + tPropagate
MW,i MW,i

St Initialize () . (St Tolal () N St) epsMW,i T = mIn epsMW,i T, w epSl nitinlize,

StepsProp~gate (r) = StepsTotal .(r) _ Stepslnitialize(r)
MW,t MW,~ MW,t J

(5.18)

(5.19)

(5.20)

(5.21)

StepsRequiredTotal is the minimum number of steps that are required to obtain

the desired level of convergence, Steps Poll is the number of QMC steps that

take place on a worker processor between checking for a message from t he

manager, and StepsReduce is the number of QMC steps t hat take place on the

manager processor between sending commands to the workers. Unlike tPJ,

tMW cannot be simply expressed in terms of individual processor speeds.

The total time required for the MW algorithm, TMW , can be expressed

as

T - Tlnitialize + TPropagate + TSynchronize + T Communicate
MW - MW MW MW MW ,

which contains the same components as Equation 5.9.

NProceuor~
Tlnitialize _ ~ tlnitialize

MW - ~ MW,i

(5.23)

(5 .24)

61

Nproc eu or iJ

TPropagate _ " tPropagate
MW - L.... MW,i

N Proce ~iJ or iJ
rSynchranize _ " tSynchronize

MW - L.... MW,i

T Communicate _
MW -

r StepsI;tv,h 1 (N) (Latency f3L) I NwStep,R,d." Proc",w", - 1 t + +

~~PToceuors r Stepsrrtv~(f) l tfoll
L...Jl I NwSteps oil ~

5.2.3 Initialization Catastrophe

(5.25)

(5.26)

(5.27)

QMC algorithms are described as being "embarrassingly parallel" and lin-

early scaling with respect to the number of processors used. These statements

are true for a large fraction of Monte Carlo calculations but are not true for

QMC calculations which employ the Metropolis algorithm [55]. To obtain

independent statistical data from each processor, at least one independent

Markov chain must be initialized on each processor (Section 5.2). This gives

an init ialization cost, TInitialize, which scales as O(NProcessors). The t ime de-

voted to generating useful statistical data during the calculation , TPropagate,

scales as 0(1) because a given number of independent Monte Carlo samples

are required to obtain a desired statistical accuracy no matter how many pro-

cessors are used. From this, the efficiency, or fraction of the total calculation

time devoted to useful work, E is

Tlnitialize + TPropag ate + TSynchronize + TCommunicate

TPropagate

(5.28)

0(1)
(5.29)

This result clearly demonstrates t hat QMC calculations using the Metropo-

lis algorithm as described above are not linearly scaling for large numbers

62

of processors as is often claimed. This results from the initialization of the

Metropolis algorithm and not the parallelization algorithm used.

We should note t hat different init ia lization schemes exist which could po­

tentially reduce t he expense of t he equilihration phase. If it takes longer to

get a guess walker to become equilibrated than it takes to trust that a par­

ticular walker has been moved to an un correlated configuration from some

previously equilibrated configuration, one could make QMC a two-phase al­

gorithm with an initial phase on a single processor which makes uncorrelated

configurations from a single equilibrated configuration to start a full QMC

run on. This could also be done on mUltiple processors in a broadcast tree

manner where each new uncorrelated configuration seeds a new branch of

the tree to generate configurat ions. Trivially, however, we note that these

and any algorithm, which requires the generation of an uncorrelated set of

walkers requires computational effort which grows linearly with the number

of total global walkers. Therefore , we will continue to analyze the current

method of generating each walker from a guess configuration which we man­

ually equilibrate since t he total computational complexity will be the same.

5.3 Experiment

Computational experiments comparing QMC-PI and QMC-MW paralleliza­

tion algorithms were performed using QMcBeaver [54, 50], a finite all-electron

QMC software package we developed. Variational QMC was chosen as the

particular QMC flavor to allow direct comparison with t he theoretical results

in Section 5.2.

QMcBeaver percolates statistical results from all nodes to the root node

63

using the Dynamic Distributable Decorrelation Algorithm (DDDA) [50J and

the MPLReduce command from MPI [67J. This combination provides an

O(log2(Nprocessors)) method for gathering the statistical data from all pro­

cessors , decorrelating the statistical data, and returning it to t he root node.

The time spent initializing, propagating, synchronizing, and communicat-

ing during a calculation was obtained from t imers inserted into the relevant

sections of QMcBeaver. During a parallel calculation, each node has its own

set of t imers which provide information on how that particular processor is

performing. At the completion of a calculat ion, the results from all processors

are combined to yield the total CPU time devoted to each class of task.

5.3.1 Experiment: Varying Levels of Heterogeneity

For t his experiment, a combination of Intel Pentium Pro 200 MHz and In-

tel Pentium III 866 MHz computers connected with a 100 Mb/sec network

was used. The t otal number of processors was kept constant at 8, but the

number of each type of processor was varied over the whole range. This

setup provided a series of 8 processor parallel computers wit h a spectrum of

heterogeneous configurations. For our calculations with t he current version

of QMcBeaver, the Pentium III is roughly 4.4 t imes faster than t he Pentium

Pro at performing QMcBeaver on these test systems.

The N e atom was the particular chemical system t he computational ex­

periments were performed on. A Hartree-Fock/TZV [lJ wavefunction calcu­

lated using GAMESS [68, 56J was used as the trial wavefunction. For the par-

allelization algorithms, the following values were used: StepsR.equire<fTotal =

2 5 X 106 Steps Initialize = 1 x 103 StepsPoll = 1 StepsR.educe = 1 x 103 and .,)' ,

130000

120000

110000

100000

" 90000
§.

~
;= 80000

~

@ 70000

" ;: 60000

50000

40000

30000

20000
0 2

64

3 4 s
Number of Pentium III 866 MHz CPUs

ManagerIWor1<er t---+--i

Pure Iterative I----lo(---I

Theoretical Limit - -

6 7 8

Figure 5.1: Time required to com plete an 8 processor va riational QMC calculation of

N e using the manager-worker (QMC-MW) and pure iterative (QMC-P I) algorithms.

The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel

processors connected by 100 Mb/ s networking. The theoretical optimal performance

for a given configuration of processors is provided by the curve.

N w = 2.

The time required to complete the QMC calculation for the QMC-PI and

QMC-MW parallelization algorithms is shown in Figure 5.1. Each dat a point

was calculated five t imes and averaged to provide statistically relevant data.

One should note StepsRequiredTotol is not known before a calculation.

Therefore , the QMC-MW model here is very representative of a real-world

implementation with its dynamic termination. However, allowing someone

using the QMC-PI method to know exactly StepsR.equiretfTotal before a calcu-

lation begins is the best-case scenario. Typically, one either under or over-

65

estimates StepsRequ;redTotal when using the QMC-PI method. If one over­

estimates StepsRequ;redTotal some amount of computational resources will be

wasted over converging the calculation. If one underestimates StepsRequiredTotal,

t he job must be resubmitted to the queue with its last checkpoint state file.

Both cases waste the user's time and/or computational resources.

The time required for the QMC-PI algorithm to complete is determined

by the slowest processor. When between 1 and 8 Pentium Pro processors

are used, the calculat ion takes the same time as when 8 Pentium Pro pro­

cessors are used; yet , when 8 Pentium III processors are used (homogeneous

network), the calculation completes much faster. This matches the behavior

predicted by Equation 5.6. This figure also shows that MW performs near

the theoretical speed limit for each of the heterogeneous configurations. This

is a result of the dynamic load balancing inherent in QMC-MW.

The total number of QMC steps performed during a calculation is shown

III Figure 5.2. The QMC-PI method executes the same number of steps

regardless of the particular network because the number of steps performed

by each processor is determined a priori. On the other hand, QMC-MW

executes a different number of steps for each network configuration. This

results from the dynamic determination of t he number of steps performed by

each processor. The total number of steps is always greater than or equal to

the number of steps needed to obtain a desired precision, StepsRequiredTotal.

Figures 5.3 and 5.4 break the total calculation time down into its con­

stituent components (Equations 5.8 and 5.23). QMC-MW spends essentially

all of its time initializing walkers or generating useful QMC data. Synchro­

nization and communication costs are minimal. On the other hand, QMC-PI

devotes a huge portion of the total calculation time to synchronizing proces-

66

350000
ManagerNlorker 1--1---1

Pure Iterative I------*---l

300000
~ ~

250000

m
~

ill
200000 ()

" a
a
;;; 150000 ~

E
0 z

100000

50000

o
o 2 3 4 s 6 7 8

Number of Pentium III 866 MHz CPUs

Figure 5.2: Number of variational QMC steps completed during an 8 processor cal­

culation of Ne using the manager-worker (QMC-MW) and pure iterative (QMC-PI)

parallelization algorithms. The pure iterative algorithm always calculates the same

number of steps, but the manager-worker algorithm dynamically determines how many

steps to take. The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium

III 866 MHz Intel processors connected by 100 Mb/s networking.

sors on heterogeneous networks. This is very inefficient and wasteful.

5.3.2 Experiment: Heterogeneous Network Size

The N e atom was the particular chemical system the computational ex-

periments were performed on. A Hartree-Fock/TZV [1] wavefunction cal­

culated using GAMESS [68, 56] was used as the trial function. The net-

work of machines used was a heterogeneous cluster of linux boxes. A unit

of five machines goes as follows. Three different sized networks were ex-

• ••
0
.2

~
.0 • U

" ;§
15 ..

67

l00r-----~----_.----_.----_,------r_----._~=_~----_,
Innilization --+­

Propagation __
Synchronization __________
Communication ---e---

80

80

40

Number 01 Pentium III 866 MHz CPUs

Figure 5.3: Percentage of total calculation time devoted to each component in the

pure iterative parallelization algorithm (QMC-PI) during an 8 processor variational

QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200 MHz and

Pentium III 866 MHz Intel processors connected by 100 Mb/s networking.

amined each with either one, two, or four of each of these respective pro-

cessors. For t he parallelization algorithms, the following values were used:

StepsRequire<lI'ota, = 2.5 x 106 , Stepslnitialize = 1 x 103 , StepsPott = 1, Steps Reduce =

1 X 103 , and Nw = 2.

• Intel Pentium Pro 200 MHz

• Intel Pentium II 450 MHz

• Intel Pentium III Xeon 550MHz

• Intel Pent ium III 600 MHz

68

100r-----,------r-----,-----,,-----,-----,------r-----,

80 Initilization --t-
Propagation ----K--

Synchronization --IE------

Communication --e---
w
E
;=
0 60
~
.§
Ll

~ 40
15 .,

20

Number of Pentium III 866 MHz CPUs

Figure 5.4: Percentage of total calculation time devoted to each component in th e

manager-worker-parallelization algorithm (QMC-MW) during an 8 processor varia-

tional QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200

MHz and Pentium III 866 MHz Intel processors connected by 100 Mb/s networking .

• Intel Pentium III 866 MHz

Implementing QMC-PI and QMC-MW exactly as was done in Section 5.3.1

for this network we observe the results in F igure 5.5. This shows that even

as the network size increases, the QMC-MW model does an excellent job of

running near the theoretical optimal time for this network. However, the

QMC-PI method struggles to compete.

We, of course, could improve the efficiency of the QMC-PI method if we

knew the machine was devoted to our QMC-PI program and we had pre-

viously bench-marked t he QMC job on each machine. However, this would

require the effort of bench-marking, trusting that the machine is t ruly de-

69

le+~r-------------------~----~------------~~~------. Pure Iterative I---+-t

Manager Worker t--JI----t

Theoretical Limit ---

'oooo L-----~--~----~----~--~------------------~----J
,0

Number of Processors

Figure 5.5: Wall time required to complete a variational QMC calculation of N e

using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on a

heterogeneous linux cluster. The theoretical optimal performance for a given configu-

ration of processors is provided by the line.

voted to our task, and the extra bookkeeping needed to match up the number

of tasks with each machine's predicted effectiveness. This all could be ac-

complished with no assumptions on t he network by simply implementing the

QMC-MW method which already pushes the boundary of perfect efficiency.

5.3.3 Experiment: Homogeneous Network

The QMC-PI algorithm was originally designed to work on homogeneous su­

percomputers with fast communication while the QMC-MW algorithm was

designed to work on heterogeneous supercomputers with slow communica-

tion. To test the QMC-MW algorithm on the QMC-PI algorithm's native

~
• E
;=

" 3

70

1e+07r-----------~--~----------~--~~--------~----~<
Pure Iterative ~

Manager Worker f----l+---1
Theoretical Limit ---

1e+06

100000

10000

Number of Processors

Figure 5.6: Wall time required to complete a variational QMC calculation of Ne

using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on the

ASCI Blue Pacific homogeneous supercomputer. The theoretical optimal performance

for a given configuration of processors is provided by the line.

architecture, a QMC scaling calculation (Figure 5.6) was performed on the

ASCI-Blue Pacific supercomputer at Lawrence Livermore National Labora-

tory. This machine is a homogeneous supercomputer composed of 332 MHz

PowerPC 604e processors connected by HIPPI networking.

N e atom was the particular chemical system the computational experi-

ments were performed on. A Hartree-Fock/TZV [1] wavefunction calculated

using GAMESS [68, 56] was used as the trial function. For the paralleliza-

tion algorithms, the following values were used: StepsRequiredTotal = 1 x 106 ,

Stepslni'ialize = 2 x 103 , StepsPoll = 1, StepsReduce = 1 x 103 , and N w = 2.

Figure 5.6 shows that the QMC-MW and QMC-PI algorithms perform

71

le~7r-----~r-----------------~'-~--~~~~~~--~
Manager Worker Overhead ----

Pure Iterative Overhe ~

l~OOL---____ L-____ ~ ____________ ~ __________________ ~_

10 100 1000

Number of Processors

Figure 5.7: Wall time in nonpropagation and non-initialization overhead expenses

for QMC-PI and QMC- MW on ASCI Blue Pacific.

nearly ident ically on Blue Pacific. The QMC-MW calculation is consistently

slightly slower t han the QMC-PI algorithm because the QMC-MW calcula­

t ion performed more QMC steps. This results because the QMC-PI calcula-

t ion performs a predetermined number of steps while the QMC-MW calcu-

lation performs at least a predetermined number of steps. The discrepancy

can be reduced by decreasing Steps Reduce .

Two useful figures show how these two methods really differ. Observing

the overhead expense (all nonpropagation or initialization clock time) for

running both methods we observe that the QMC-PI actually has a slightly

higher overhead expense t han QMC-MW in Figure 5.7. (The growth of

both of these for large numbers of processors is relic of the Initialization

Catastrophe 5.3.4.)

72

1.02
(MW/PI) total time ratio ---+------

1.015

1.01

g
ro
a:
• E 1.005
F
]I
0
>-

0.995

0.99 '-_~~:':c-____ ~~~_~"""' __ ~_~ __ ~_-'
10 100 1000

Number of Processors

Figure 5.8: Ratio of wall time for QMC-MW jQMC-PI on ASCI Blue Pacific.

If one observes the total computational resources used over a given time

and takes a ratio of the two methods total run time, we observe (Figure 5.8)

that both methods use roughly the same amount of resources. Since they

are within a couple of percent of each other, they can be considered to take

roughly the same time and expense on this homogeneous machine.

To resolve the seemingly contradictory results from Figures 5.7 and 5.S,

we must remember than the QMC-MW method may actually do more QMC

steps than the QMC-PI in these experiments. This shows that even if one

can exactly guess the correct number of QMC steps needed to converge a

given QMC-PI run, both QMC-PI and QMC-MW perform roughly the same

with respect to wall clock. However, in reality, rarely does the user know

how many steps they should require and the QMC-PI will perform poorly

compared to this idealized result whereas the QMC-MW will always perform

73

near this level since it dynamically determines convergence and termination.

Both algorit hms do not perform near the linear scaling limit for large

numbers of processors. This is a result of t he initialization catastrophe dis­

cussed in Sections 5.2.3 and 5.3.4.

5.3.4 Experiment: Initialization Catastrophe

To demonstrate the "init ialization catastrophe" described in Section 5.2.3,

a scaling experiment was performed on the ASCI-Blue Mountain supercom­

puter at Los Alamos National Laboratory (Figure 5.9). This machine is

a homogeneous supercomputer composed of MIPS 10000 processors run­

ning at 250 MHz connected by HIPPI networking. Variational QMC cal­

culat ions of RDX, cyclic-[CH2N N02], using the QMC-MW algorithm with

StepSRequired:Total = 1 x 105 , Step s l nitialize = 1 x 103 , Steps Poll = 1, Steps Reduce =

1 X 102, and Nw = 1 were performed. Jaguar 4.0 [1] was used to generate a

HF / 6-31G** trial wavefunction.

The efficiency of the scaling experiments were calculated usmg Equa­

tion 5.28, and the results were fit to

a
€ = - ---::-::-- -­

a ~ iVProcessors
(5.30)

with a = 104.203. The efficiency at 2048 processors is better than the value

predicted from t he fit equation. This is an artifact of the QMC-MW algo­

rithm which resulted from this calculation taking significantly more steps

than StepsRequired:Total. Decreasing t he value of Steps Reduce would reduce this

problem.

The excellent fi t of the data to Equation 5.30 clearly shows t hat QMC

calculations using the Metropolis algorithm are not linearly scaling for large

74

0 .9

0.8

0.7

0.6

OJ 0.5

0.4

0.3

0.2

0.' +

'0 100 1000 10000
Number 01 Processors

Figure 5.9: Efficiency of a variational QMC calculation of RDX as a function of

the number of processors used. The calculations were performed using the manager-

worker-parallelization algorithm CQMC-MW) on the ASCI-Blue Mountain supercom-

puter, which has 250 MHz MIPS 10000 processors connected by HIPPI networking.

A similar result is prod uced by the Pure Iterative parallelization algorithm. The data

is fit to €CNprocessors) = a / {a + Nprocessors) with a = 104.203 .

numbers of processors. This result holds t rue for both QMC-MW and QMC-

PI because it results from the init ialization of the Metropolis algorithm and

not the paralielization of the statistics gathering propagation phase. Fur-

thermore, longer statistics gathering calculations have better efficiencies and

thus better scaling than short statistics gathering calculations. This can be

seen by examining Equation 5.28.

75

5.4 Conclusion

The new QMC manager-worker-parallelization algorithm clearly outperforms

the commonly used Pure Iterative parallelization algorithm on heterogeneous

parallel computers and performs near the theoretical speed limit. Further­

more, both algorithms perform essent ially equally well on a homogeneous

supercomputer with high speed networking.

When combined with DDDA, QMC-MW is able to determine, "on-the­

fly," how well a calculation is converging, allowing convergence-based termi­

nation. This is opposed to the standard practice of having QMC calculations

run for a predefined number of steps. If the predefined number of steps is

too long, computer time is wasted, and if too short , the job will not have the

required convergence and must be resubmitted to the queue lengthening the

total time for the calculation to complete. Additionally, specifying a calcula­

tion precision (2 kcal/mol for example) is more natural for the applications

user than specifying a number of QMC steps.

QMC-MW allows very low cost QMC specific parallel computers to be

built . These machines can use commodity processors, commodity network­

ing, and no hard disks. Because the algorithm efficient ly handles loosely cou­

pled heterogeneous machines, such a computer is continuously upgradeable

and can have new nodes added as resources become available. This greatly

reduces the cost of the resources the average practitioner needs access to,

bringing QMC closer to becoming a mainstream method.

It is possible to use QMC-PI on a heterogeneous computer with good

efficiency if the speed of each processor is known. Determining and effectively

using this information can be a great deal of work. If the user has little or

76

inaccurate information about the computer, this approach will fail. QMC-

MW overcomes these shortfalls with no work or input on the users part. Also,

when new nodes are added to the computer, QMC-MW can immediately

take advantage of t hem while the modified QMC-PI must have benchmark

information recorded before t hey can be efficiently used. The benefits and

displayed ease of implementation of QMC-MW clearly outweigh t hose of

QMC-PI supporting its adoption as the method of choice for making QMC

parallel.

The prediction and verification of t he initialization catastrophe clearly

highlights the need for efficient initialization schemes if QMC is to be scaled

to tens of t housands or more processors. Producing such algorithms must be

a focus of future work.

5.5 Pure Iterative Algorithm (QMC-PI)

for ProcessoTi; i = 0 to Nprocessors - 1

St St RequiredTotal/N epsPI,i = eps Processors

Generate Nw walkers

for Stepslnitilize steps

Equili brate walkers

for StepsPI ,i steps

Generate QM C statistics

Percolate statistics to Processoro

77

5.6 Manager-Worker Algorithm (QMC-MW)

for Processori; i = 0 to NProcessors - 1

done = false

counter = 0

Generate Nw walkers

while not done:

if counter < Stepslnitialize :

Equilibrate all local walkers 1 step

else:

Propagate all local walkers 1 step and collect QMC statistics

if i = 0:

else:

if statistics are converged:

done = true

Tell workers to percolate stat istics to Processoro and

set done = true

else if counter mod StepsReduce = 0:

Tell workers to percolate statistics to P rocessoro

if counter mod StepsPoli = 0:

Check for commands from the manager and

execute the commands.

counter = counter + 1

78

Chapter 6

Generic J astrow Functions for

Quantum Monte Carlo

Calculations on Hydrocarbons

6.1 Introduction

Quantum Monte Carlo (QMC) is becoming a very important member of the

electron correlation correction methods in quantum chemistry. Many flavors

of QMC exist while Variational (VMC, 6.2.1) and Diffusion (DMC, 6.2.2)

Quant um Monte Carlo are two of the more popular methods employed . VMC

requires the explicit use of a variational wavefunction while DMC has the

property that it can sample the ground state fixed node solution for a given

trial wavefunction.

Experience and tradition have defined a fairly efficient method of obtain­

ing very accurate calculations for molecules and materials using QMC [10,

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows:

79

l. Obtain a fair trial wavefunction, IJrTrial , from some quantum mechanical

method, like Density Functional Theory (DFT) or Hartree Fock (HF) .

2. Guess J astrow particle-particle correlation functions t hat have some

variational form which maintains t he antisymmetry of the total wave­

function. (This may only be a nearly antisymmetric wavefunction .

Umrigar gives a discussion of this topic [13J.)

3. Choose variat ional parameters such that any Hamiltonian singularities

are satisfied with the "cusp condition" in the Jastrow form.

4. Generate an initial "walker(s)" approximately with respect to the par­

ticle probability distribution.

5. Equilibrate t his "walker(s)" to verify it represents the part icle proba­

bility distribution.

6. Generate configurations wit h t he Metropolis a lgorit hm in a YMC run.

7. Perturb and evaluate the Jastrow parameters using these configura­

tions. (Repeat this correlated sampling optimization [10J until satis­

factory convergence.)

8. Generate (or reuse from a YMC run) initial "walkers" for a DMC run.

9. Equilibrate these "walkers" to verify t hey represent t he proper particle

probability distribut ion.

10. Use the optimized Jastrow for a DMC run to obtain a very accurate

result.

80

Typically the equilibration and generation of the configurations in the

VMC and DMC runs are the most expensive parts of this protocol so one

would like to minimize the effort in these sections. The main purpose of the

VMC optimization phase is to obtain a good description of the wavefunction.

The better this wavefunction is, the quicker the DMC run will converge. This

motivates a very well optimized Jastrow but not at the expense of marginal

returns.

Experience has shown that the VMC J astrow optimization involves a very

difficult objective function. What one should generally try to do is reduce

the energy and/or variance a fair amount but not try t o overoptimize. The

method of correlated sampling is a useful method of optimization yet once

it finds a flat region of the objective function (typically a (]"2(ELoca/) based

objective function), it can falsely encourage you to overoptimize since you

have already likely reached a point of diminishing returns. Experience has

shown that if you can get roughly a factor of three reduction in the variance

over the HF wavefunction alone, you have done a fair job of optimizing and

that fu rther optimization may give only marginal returns. Typically, one

might spend 5% to 50% of the one's total effort optimizing the Jastrow in

the VMC phase of the calculation.

6.2 Theory

QMC has many flavors each with certain assets and liabilities. The two

particular types of QMC we will examine are VMC (Section 6.2.1) and DMC

(Section 6.2.2). These two methods are widely used and in general use for

production level calculations. Any impact we can make to improve the speed

81

at which one can accomplish these two types of QMC will have far-reaching

consequences for many researchers in computational chemistry and materials

sClence.

6.2.1 Variational Quantum Monte Carlo

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful

method for examining correlated quantum wavefunctions. If one examines

the basic energy expectation integral and reformulates it in terms of an elec-

tron probability density, p, and a local energy, Elocal, one finds a very simple

description of the energy expectation (6.1).

(E) J tJi(x)HtJi(x)dx3n

J (tJi(X))2 (H:r~~)) dx3n

J p(x)Elocal(x)dx3n (6.1)

We must now determine what this tJi should be. Typically, we can use

a method like Hartree Fock theory or Density Functional Theory [68, 56,

57, 58, 59, 1, 3, 4, 5, 6, 7, 8] to obtain an antisymmetric wavefunction in a

determinant form.

This wavefunction is then augmented with a product of symmetric terms

which contain the explicit particle correlations. These particle correlation

functions will allow each particle to observe the positions of their neighboring

particles and will allow addition variational freedom in the wavefunction.

To construct the entire trial wavefunction, tJiTr;al, from a HF type type

initial guess wavefunction, tJiHF , involves the use of the following expression

82

(6.2). A IJtTrial constructed from a DFT type wavefunction is similar.

(6.2)

The building unit of this type of description is a Uij function for particles

i and j which are of particle types A and E, respectively (6.3).

CUSPABTij + aABTtj + .. .
1 + bABTij + CABTtj + .. .

(6.3)

This particular form of Uij is commonly referred to as the Pade-J astrow for

finite syst ems [13]. CUSPAB removes singularities which arise as two charged

particles approach each other.

We must now det ermine how to optimize the parameters in t he Uij func-

tions as well as determining how many parameters to maintain in the expres-

sion. Allowing only the cusp condition parameter in the numerator and the

first parameter in the denominator is common practice, though the more pa-

rameters we optimizes the better t he result will likely be with t he additional

variational freedom. The common optimization procedure is t he method of

correlated sampling optimization described by Umrigar [10].

6.2.2 Diffusion Quantum Monte Carlo

Examining t he time-dependent Schriidinger equation (6.4) in atomic units we

observe that one can make a transformat ion from real time into imaginary

time to produce a diffusion equation (6.6) .

i 81Jt = HIJt
8t

(6.4)

83

t = -iT (6.5)

E}l]t = _ Hif/ = (~\72 - V) if/
&T 2

(6.6)

Techniques exist which allow one to sample the ground state with respect

to the original if/Thal nodes. Many excellent in-depth descriptions of this

method exist [20, 11, 34, 48].

6.3 Experiment

6.3.1 Motivate Generic Jastrow for Hydrocarbons

A significant part of the computational expense from taking a task from

conception to completion using QMC is to optimize the Jastrow parameters

with correlated sampled VMC. This resulting optimized wavefunction is then

generally a good starting wavefunction for DMC. We would like to minimize

the time spent in these expensive parts of the program to make the QMC

method faster and cheaper.

Breaking with traditional methods, we searched for physically motivated

parameters for the J astrows. The dominant part of the electron correlation

we wish to regain is thought to be in the spatially similar electrons which

do not actively avoid each other. The parallel spin electrons do avoid each

other by being described by a determinant which goes to zero as two par-

allel spin electrons approach each other. Experience has also shown that

the most fruitful particle-particle interactions will likely be in opposite spin

electrons which are not correlated with the determinant description of the

wavefunction.

84

For the other particle-particle interactions, we have found the original

wavefunction does a fair job of describing their interactions and that any bU

relaxation will not need too large of a relaxation of the bt,t,b~.~,bt.H ,b~.H ,bt.c ,

and b~.c parameters in a hydrocarbon type molecule (6.3.2). Therefore, a

b parameter of 100 was chosen for these Jastrow parameters which allows

the cusp condition to satisfy the removal of the singularities but makes the U

functions have a very short range effect. The opposite spin electrons will have

a free bt ~ parameter which we will examine in the computational experiments.

lr ..
u-u - 4~J

tt - 4 - 1 + 100r,j

- Tij
Ut.H = U •• H = ,,-----:-7':-

1 + 100rij

- 6r,j
Ut.c = u •. c = ---,-"'--

1 + 100rij

6.3.2 Experiment: Hydrocarbons Test Set

(6.7)

(6.8)

(6.9)

(6.10)

Several types of hydrocarbons are examined. Simple single-bonded systems,

double-bonded, triple-bonded, and 7r - conjugated systems are examined. A

complete list follows:

• benzene

85

• trans-butadiene

• cis-butadiene

• ethylene

• ethane

• allene

• acetylene

• methane

Optimal geometries and wavefunctions were obtained using HF /6-31G**

t heory and the Jaguar quantum mechanical program suite [1]. The use of HF

wavefunctions is attractive since it gives a variational bound on the energy

expectation which we must strive to improve. This is very useful in deter­

mining if a set of GJ parameters is doing a good job of describing the system.

(We will refer to a Hartree Fock wavefunction with the Generic Jast row type

correlation function as a HF-GJ type wavefunction.)

The results of varying the bH parameter for t hese simple hydrocarbons

are shown in the following figures (Figures 6.1 and 6.2). Figure 6.1 shows

the correlation energy gained with t he use of t he HF -GJ over the HF energy.

This result is scaled by the total charge on the nuclei to give a consistent

correlation energy gained per carbon and hydrogen and a consistent minimum

for all hydrocarbons in the range of 2.0 to 4.0.

Figure 6.2 shows the remaining variance after implementing the GJ. This

is the ratio of the variance in the energy estimator from a pure HF only type

wavefunction over the variance in the energy estimator of t he HF-GJ type

0.005

I z

~ -
"1 -0.005

!
c
.2

86

~
.3

methane f------+---l

ethane f---++---!
ethylene ~

ethyne I-------B--<
allene ~

trans-butadiene 1---9---1
cis-butadiene 1---+--1

benzene ~ .0.01 '-___ ~ ___ ~~_~_-':-___ ~_~_..c.:.="'__~J

1 10 100
b for opposite spin electrons

Figure 6.1: Correlation energy (Hartree) recovered divided by total nuclear charge.

wavefunction for various values of the bH parameter. We observe a dramatic

reduction of the variance for the VMC runs and a consistent minimum again

in the range of 2.0 to 4.0.

The resulting Generic Jastrow for these systems is the form gIven in

equations (Equations 6.7, 6.8, 6.9, and 6.10) with bH = 3.0. These functions

are plotted in Figure 6.3. What we notice is that all the correlation functions

have a fairly short range while the opposite spin correlation function has a

longer range.

6.3.3 Generic Jastrow for DMC

To demonstrate the utility of the GJ parameters for DMC, we ran methane

and acetylene with various Jastrow parameters. A HF only type wavefunction

0.8

[L
I 0.6

I
~
? ~ 0.4

0.2

o

~
~
~

1

87

methane ---+--
ethane ~

ethylene-
ethyne ---e--
aliene __

trans-butadiene -e--
cis-butadiene __________

benzene -----

~

10 100
b for opposite spin electrons

Figure 6.2: Reduction of the QMC variance for a wavefunction containing a Generic

Jastrow compared to a Hartree-Fock wavefunction.

was used in a DMC run and was extremely unstable. The other four sets of

parameters resulted in stable DMC runs. Figure 6.4 shows that the GJ does

an outstanding job of reducing the variance in the DMC calculation while the

other bH do an inferior job. We also notice that the VMC variance optimized

wavefunction does not even match the GJ performance. The optimization

procedure used was a variance optimization as described by Umrigar [10]

with 4000 statistically independent configurations. This implies that for this

methane wavefunction that the optimization procedure actually resulted in

a slightly worse wavefunction than the GJ wavefunction. This is possible

since the objective function being optimized and gradients on the objective

function are inherently inaccurate because of a finite VMC sampling in the

correlated sampling procedure.

0.'

0.05

88

Opposite Spin Electrons ---t­
Same Spin Electrons ______

e lectron-Hydrogen ____
Electron-Garbon ---e--

0t========t
~. , ~----------~----------~----------~~----------" o 0.5 1.5 2

Interparticle Separation

Figure 6.3: Generic Jastrow correlation functions. bt,t = 3.0

Figure 6.5 shows that the GJ again does a great job at reducing the

variance in the DMC calculation and nearly matches the VMC variance op-

timized wavefunction. In this case t he optimized parameters did result in

the nearly best DMC variance yet its improvement over the GJ paramet er

set was negligible.

What t his shows is the Generic Jastrow does a very good job at accel-

erating t he convergence of a DMC run. It appears that t he generic form

proposed for all hydrocarbons is very near t he optimal for these methane

and acetylene test cases.

..
r
" B
0

.~
>

89

0 .1 r---~~-~.....,r---~~--....,---~~--....,------.

0.Q1

0.001

0.0001

CH4 Generic Jastrow 1>=1 ------t-­
CH4 Generic Jastrow 1>=3 ____

CH4 Generic Jastrow b:: 1 00 _____
CH4 Optimized Jastrow ---e--

1 • . 05 '-____ ~~~L_ _____ ~~':_--~~-~~~--'

1 10 100 1000

DMC time unit

Figure 6.4: Convergence (a 2 in Hartree2 units) of methane DMC runs over time for

various wavefunctions

6.3.4 Test Case: lO-Annulene

To test the transferability of these generic Jastrow parameters, we examined

two different conformations of lO-Annulene studied by Scheafer 's group [69].

This molecule has some interesting electron correlation issues and provides

a slightly larger yet interesting test case for t he proposed Generic Jastrow.

The HF wavefunction as well as t he HF-GJ type wavefunction are exam­

ined. The HF energies are from Jaguar[1] while t he VMC(HF-GJ) results

are from QMcBeaver[54].

Comparing the results from Table 6.1 wit h the results in basic hydro car-

bons in Figure 6.1 , we notice a consistent correlation energy gain per atom.

90

0.1 r---~~~~--~r---~----~~~r---------~~~r---,

0.01

• 0 •
~
~
rn

• 0.001
u
0
rn
·0

;;;

0.0001

acetylene Generic Jastrow b=1 ---+-­
acetylene Generic Jastrow b=3 ~

acetylene Generic Jastrow b=1 00 ________
acetylene Optimized Jastrow -e---

DMC lime unit

Figure 6.5: Convergence (0-2 in Hartree2 units) of acetylene DMC runs over time for

various wavefunctions

6.4 Conclusion

The idea of using a GJ parameter set is fairly crude, yet we show that the

VMC energy and variance are reduced over a purely HF wavefunction in each

case. The clearest impact of this work is on the initial guess J astrow used

in the VMC optimization procedure. Using a generic Jastrow as an initial

guess allows these generally good parameter sets to be further optimized to

meet the user's needs.

If further work shows these generic J astrows provide good enough start-

ing points for DMC, the VMC optimization procedure's expense may not

only be reduced but may be eliminated. This is a significant fraction of the

computational expense which may be saved.

91

conformation EHF Ev MC,GenericJastrow b.E t>E
totalZ

napth -383.07 -383.46 ± 0.03 0.39 0.0056

twist -383.06 -383.48 ± 0.03 0.42 0.0060

Table 6.1: Absolute energies (Hartree) for various conformations of lO-annulene

methods with and without explicit electron correlation from the Generic Jastrow (basis:

cc-pVDZ).

We grant that for all-electron calculations the majority of the correlation

gotten by these methods is core electron correlation and will be very trans-

ferable between similar species. This is clearly seen in the various types of

hydrocarbons including the larger test case of 10-annulene. This is imp or-

tant information for these types of QMC calculations which have proven to

be very difficult in the past.

This work supports further studies to find trends in optimal J astrow

parameters. A database may be formed which could allow for good initial

guess Jastrow parameters for QMC calculations.

92

Chapter 7

Aminomethanol Water

Elimination: Theoretical

Examination

7.1 Introduction

Presently there are over one hundred known interstellar molecules , the great

majority of which are organic [70]. Theoretical models of grain surface chem­

istry predict precursors to the more complex compounds, such as simple

alcohols and amino alcohols [71 , 72, 73]. Many potential grain surface reac­

tion pathways are eliminated by the conditions imposed on these models,

greatly simplifying the possible products of grain synthesis and eliminating

the possibility for much larger organics to form on the grain surfaces. Gas­

phase theoretical models of the chemistry in hot protostellar cores involv­

ing the products of grain surface reactions are therefore required to explain

the formation of substantially larger organics under interstellar conditions.

93

In these models, the temperature of the so-called hot cores (~300 K) near

young stars leads to thermal evaporation of simple molecules, such as alco­

hols and amino alcohols, from the grain surface. These molecules can then

undergo gas-phase reactions to form more complex species such as amino

acids, sugars, and other biologically important molecules.

The recent detection of glycolaldehyde (CHOCH2 0H), the simplest sugar,

in the hot core Sagitarrius B2(N-LMH) [74] has confirmed the need for fur­

ther experimental and observational investigation of these models. One pro­

posed pathway involves both grain surface and hot core gas-phase chemistry

for the formation of amino acids. In this pathway, the protonated forms

of amino methanol (NH2 CH2 0H) and amino ethanol (NH2CH2CH2 0H) react

with formic acid (HCOOH) to yield the protonated forms of glycine and

alanine, respectively [72]. However, laboratory and observational data sup­

porting the presence of these aminoalcohols remains incomplete. Therefore,

the first step in the evaluation of this model is the complete spectroscopic

characterization of aminomethanol and amino ethanol in order to search for

them astronomically.

Aminoethanol is commercially available and the gas-phase species is eas­

ily attainable. Its laboratory characterization has been completed [75, 76],

and observational searches are underway. In contrast, aminomethanol has

not been isolated, and little is known about the stability of this molecule. It

is proposed to form from the addition of ammonia to formaldehyde, and the

energy barrier for this reaction is calculated (MP2/6-311 ++G**) to be 34.1

kcal mol- 1 [77J. However, the hexamethylenetetraamine formation mecha­

nism shows that amino methanol (1) forms upon the addition of ammonia to

formaldehyde in aqueous solution (Figure 7.1, [78]). Aminomethanol then

94

H H

II ~
(Ni
~

(Ni
~ N"-./N N"-./N

'(N:J '(N:J
H CHzNH

Figure 7.1: Mechanism for reaction of formaldehyde and ammonia.

undergoes a water loss and converts to the highly reactive species metha-

nimine (2). Further reactions lead to the formation of a stable intermediate

cyclotrimethylenetriamine (3), with eventual conversion to the stable end

product hexamethylenetetraamine (4).

Laboratory exploration of the gas-phase reaction of formaldehyde and

ammonia is the most promising route for production of aminomethanol. Re-

action of this molecule with other species can be minimized by quenching the

formaldehyde + ammonia reaction in a molecular beam. Characterization

of amino methanol is therefore possible if the barrier to the loss of water and

conversion to methanimine is sufficiently high. The major route for destruc-

tion of aminomethanol in the interstellar medium is also through this water

loss and conversion to methanimine. Therefore, determination of this barrier

95

height will indicate the feasibility of laboratory production of amino methanol

as well as this molecule's stability in a hot core environment .

7.2 Theory

The most simple methods one can employ for examining t he quantum proper­

ties of small molecules are Hartree Fock Theory (HF) and Density Functional

Theory (DFT: B3LYP, BLYP, BP86). These are implemented using the

Jaguar (1) package. Corrections to HF theory methods can take many forms,

though we will focus on HF, MP2, MP4, CCSD, CCSD(T) , and QCI(T)

implemented in t he MolPro package [57, 58, 59, 79, 80, 81, 81 , 82).

Quantum Monte Carlo (QMC) is another family of methods which have

proven themselves to be very powerful for obtaining very accurate electronic

structure energies. The two flavors employed in this paper are Variat ional

QMC (VMC) and Diffusion QMC (DMC). These will be implemented with

the QMcBeaver [54) package to test the "Generic Jastrow" (GJ) parameter

set.

For QMC one must pick a Jastrow form and variationally determine t he

parameters in t he correlation functions. The Generic J astrow for hydrocar­

bons is used in this study with the following form (7.1)

96

IT' .
UH=

2 'J

1 + 3.0Tij

le r ··
Utt = u.f.I =

4 ' J

1 + lOOTij

Ut,H = U+,H =
-ri j

1 + 100Tij

Ut ,C = u+,c =
- 6Tij

1 + 100Tij

Ut,N = U+,N =
-hij

1 + 100Tij

Ut,o = Ut,o =
- STij

(7.1)
1 + lOOTij

This set of "Generic Jastrows" is very similar to the hydrocarbon GJ set.

This work aims at examining the validity of this generic set of parameters to

a larger body of simple molecules.

7.3 Experiment

7.3.1 Experiment Setup

Full geometry optimizations and transition state searches were completed

using b3Iyp/cc-pVTZ level of theory with Jaguar, as experience has shown

that this level determines geometries well. T hese geometries were then fixed

and single point energy calculations were completed using a variety of meth-

ods. Thermodynamic calculations were not able to be completed at this

level of theory with Jaguar because the basis contained "f" type functions.

Transition states were verified with the analytic Hessian calculations. These

geometries are in Figure 7.2.

We used Jaguar to do full thermodynamic calculations using b3Iyp/cc-

pVTZ(-f). This basis is very similar to the full cc-pVTZ used to obtain

97

1.413
H---------Q

1.188/ 96.7 11.336

! cj·
H\\\·~N C~'I/IH
~ 1.584 ~

H H

/

1.282 .,.\\\\H
H- --------O·

1287/ scI 1892

"",.. N C'-"'I/H
H 1.340 ~

H

+

Figure 7.2: Full mechanism of aminomethanol formation from NH3 and CH20

and decomposition to CH2NH and H20. Geometries determined with Jaguar [1]

b3Iyp/cc-pVTZ.

the electronic energy but the "f" type orbitals are removed since Jaguar is

unable to analytically take derivatives of these functions. These calculations

provided a zero point energy correction to t he electronic energy as well as

free energy corrections.

A larger cc-p VTZ++ [1] and aug-cc-p VTZ [57] basis sets were used to

determine the importance of diffuse functions in this mechanism. This larger

basis set is ideal to use since it may describe the lower electron density regions

better, particularly in the transition states. This basis set, however , was too

large to run for all methods on our current computational resources. Where

possible, the energies for this basis are given.

The b3Iyp/ cc-pVTZ(-f) thermodynamic corrections were used through-

98

method NH3 CHzO T' NH3+GHZO
CH2(OH)NHz T' H').O +C H').NH H2O CHzNH

b31yp* -114.5494 -56.5847 -171.0856 -171.1537 - 171.0634 -76.4599 -94.6694

blyp* -114.5228 -56.5569 -171.0313 -171.0936 -171.0139 -76.4413 -94.6325

bp86* -114.5472 -56.5827 -171.0916 -171.1513 -171.0717 -76.4596 -94.6655

HF' -113.9120 -56.2178 -170.0584 -170.1464 -170.0266 - 76.0569 -94.0677

HF** -113.9120 -56.2177 -170.0585 -170.1464 -170.0266 -76.0568 -94.0677

MP2** -114.3070 -56.4529 -170.7153 -170.7841 -170.6896 -76.3186 -94.4386

MP4** -114.3367 -56.4734 -170.7624 -170.8314 -170.7382 -76.3330 -94.4733

CCSD** -114.3173 -56.4655 -170.7309 -170.8052 -170.7034 -76.3245 -94.4560

CCSD(T)" -114.3337 -56.4732 -170.7584 -170.8292 -170.7336 -76.3322 -94.4725

QCI(T)H -114.3343 -56.4733 -170.7593 -170.8297 -170.7347 -76.3323 -94.4729

VMC NA NA NA -170.2987 -170.181 -76.1803 -94.2183

(HF-GJ)**~ ± 0.0055 ±0.014 ±0.0055 ±0.0047

Table 7.1: Absolute energies (Hartree) for various methods (basis: cc-pVTZ).

* Jaguar, **Molpro, ***QMcBeaver

out for the other methods with the other basis sets.

7.3.2 Data

Electronic energies were obtained with various methods using the cc-p VTZ

basis. These results are found in Table 7.1.

To verify the absence of diffuse functions was a valid assumption to

make these calculations less expensive several methods are given with the

cc-p VTZ++ [1] and aug-cc-p VTZ [57] basis sets.

These electronic energies in Tables 7.1 and 7.2 are corrected with the zero

point and thermochemical corrections at 300K and 2.63E-5 atm in Tables 7.3

and 7.4.

The free energies based on QCI(T)/cc-pVTZ base energies are given in

Tables 7.5 and 7.6 for various temperatures. These allow for comparison of

kinetics for different temperatures and pressures.

99

method N H3 C H 2 0 rk H 3+ C H 2 0
O H 2 (OH)NH2 T' H 20+C H 2N H H2O C H 2NH

b3lyp* - 114.5520 -56.5887 ·171.0922 - 171.1594 -171 .0698 -76.4660 -94 .6719

blyp- -114.5259 -56.5619 · 171.0390 - 171. 1009 -171.02 14 -76.4489 -94 .6355

bp86' -114 .5497 -56.5868 -171.0983 -171.1576 -171.0779 -76.4658 -94.6680

HF' - 113.9140 -56.2201 - 170.0633 -170.1503 -170.0313 -76.0600 -94.0696

HF*" -113.9142 -56.2202 NA NA NA -76.0603 -94.0697

MP2·" -114.3161 -56.4605 NA NA NA -76.3290 -94.4466

MP4** -114.3460 -56.4810 NA NA NA -76.3437 NA

CCSD** -114.3254 -56.4722 NA NA NA -76.3337 NA

CCSD(T)" - 114.3427 -56.4806 NA NA NA -76.3423 NA

QCI(T)" -1l4.3433 ·56.4807 NA NA NA -76 .3426 NA

Table 7.2: Absolute energies (Hartree) for various methods (basis: cc-pVTZ++/ aug-

cc-pVTZ). * Jaguar. **Molpro. ***QMcBeaver

7.4 Conclusion

All methods in Table 7.3 are in fair agreement excluding the [H20 & CH2NH]

for VMC(HF-GJ). This can be observed in Table 7.1, where the two smaller

molecules gain more correlation energy relative to molecular size than the

two larger molecules.

T he QMC jobs show that the Generic Jastrow regains some of the miss-

ing correlation energy in the HF description. The Generic Jastrows found

for hydrocarbons is transferable to t hese electronically similar molecules for

obtaining some of the correlation. At t he same time, the results obtained

from the pure VMC calculations are of little value when compared to the

other high-level methods. This supports the use of Generic Jastrows for

t hese types of systems for initial guess parameter sets which regain some of

the missing correlation but does not support the use of this type of parameter

set for final VM C calculations.

The verification of the formation mechanism provides little new insight.

100

method N H3 & C H 20 T k H 3 + C H 2 0 CH2(O fl)N H 2 r' H20+ CH2NH H 20 & C HzNH

b3lyp* -8.47 39.25 0 51.74 -5.33

blyp* -12.06 35.56 0 45.04 -8.25

bp86* -7.29 33.96 0 45.01 -4.21

HF* -lO.28 51.72 0 70.30 -6.91

HF** -lO.28 51.67 0 70.28 -6.91

MP2** -5.58 39.67 0 54.40 -3.75

MP4** -7.39 39.76 0 53.55 -4.88

CCSD** -6.62 43.17 0 59.01 -5.09

CCSD(T)** -6.73 40.91 0 55.07 -5.28

QCI(T)** -6.84 40.72 0 54.69 -5.24

VMC(HF-GJ)'" NA NA 0 68.94±9.4 -83.32±5.7

Table 7.3: Relative free energies .6.G (kcal / mol) for various methods with cc-pVTZ

basis with Jaguar b3Iyp/cc-pVTZ(-f) zero poi nt and thermochemical corrections at

2.63E-5 atm and 300K. * Jaguar, **Molpro, ***Q McBeaver

The results obtained from the traditional higher level methods provide similar

results to those obtained in previous work [77].

The barrier to eliminat ion of water is 55 kcalj mol at ambient tempera-

tures, indicating that the conversion to methanimine is highly unfavored un-

der typical laboratory conditions. Therefore, loss of amino methanol through

this and other pathways can be virt ually eliminated by minimizing reactions

with other species in a molecular beam experiment. Spectroscopic charac-

terization of aminomethanol should therefore be a straightforward process .

In addition, these results indicate that aminomethanol could indeed be

a stable species in hot core environments , which are typically near ambient

temperatures. Aminomethanol is predicted to be at densities similar to those

for observed alcohols in hot cores. Once the laboratory characterization is

101

method NHa & C H zO TlvH3 + C H 2 0 C H 2(O H)NH2 T ' H20 + C H 2N H H20 &. C H zNH

b31yp* -8.99 38.70 0 51.34 -7.08

blyp' -12.49 35.36 0 44.96 -10.30

bp86* -7.47 33.75 0 45.09 -5.65

HF* -10.57 51.05 0 69.76 -7.66

Table 7.4: Relative free energies t;.C (kcal / mol) for vanous methods with cc-

pVTZ++/aug-cc-pVTZ basis with Jaguar b3Iyp/cc-pVTZ(-f) zero point and ther-

mochemical corrections at 2.63E-5 atm and 300K. * J aguar, **Molpro, ***QMcBeaver

complete, aminomethanol will therefore be an ideal target for observational

searches.

102

temp NH, & CH20 Tt
NH3+CH20 C H2(O H)N1I2 T k 20+CH2NH H20 & CH2NH

0 8.84 40.58 0 54.74 10.14

100 4.37 40.59 0 54.71 5.76

200 -1.12 40.62 0 54.69 0.38

300 -6.84 40.72 0 54.69 -5.24

400 -12.63 40.87 0 54.69 -10.94

500 -18.43 41.07 0 54.69 -16.64

600 -24.21 41.30 0 54.69 -22.33

700 -29.95 41.55 0 54.69 -28.00

800 -35.66 41.82 0 54.69 -33.63

900 -41.34 42.11 0 54.69 -39.23

1000 -46.98 42.41 0 54.70 -44.80

1100 -52.59 42.71 0 54.71 -50.34

Table 7.5: Relative free energies!:;'G (kcal / mol) at 2.63E-5 atm for various tempera-

tures with zero point and thermochemical corrections from Jaguar (b3Iyp/ cc-pVTZ(-

f» on energetics from MolPro (QCI(T) / cc-pVTZ).

103

temp NH3 & CH20 TJ., H 3+ CH ,)O CH2(OH)NH2 Th ,) o + CH,)NH H20 & CH2NH

0 8.84 40.58 0 54.74 10.14

100 2.86 40.59 0 54.71 4.25

200 -4.14 40.62 0 54.69 -2.64

300 -11.37 40.72 0 54.69 -9.77

400 -18.67 40.87 0 54.69 -16.98

500 -25.98 41.07 0 54.69 -24.19

600 -33.27 41.30 0 54.69 -31.39

700 -40.53 41.55 0 54.69 -38.57

800 -47.75 41.82 0 54.69 -45.71

900 -54.93 42.11 0 54.69 -52.82

1000 -62.08 42.41 0 54.70 -59.91

1100 -69.20 42.71 0 54.71 -66.96

Table 7.6: Relative free energies 1:.G (kcal/mol) at 1.32E-8 atm for various tempera­

tures with zero point and thermochemical corrections from Jaguar (b3Iyp/cc-pVTZ(­

f)) on energetics from MolPro (QCI(T)/cc-pVTZ).

atom x y z

N 0.0000000000000 0.0000000000000 0.0000000000000

H 0.0000000000000 0.0000000000000 1.0141884635000

H 0.9722262947221 0.0000000000000 -0.2877117192551

H -0.3866564451307 -0.8920318164661 -0.2877117192551

Table 7.7: Geometry for NH3 .

104

atom x y z

0 0.0000000000000 0.0000000000000 0.0000000000000

c 0.0000000000000 0.0000000000000 1.1998577370000

H 0.9369230569270 0.0000000000000 1.7885795046292

H -0.9369230569270 0.0000000000000 1. 7885795046292

Table 7.8: Geometry for CH20.

atom x y z

N 0.0000000000000 0.0000000000000 0.0000000000000

C 0.0000000000000 0.0000000000000 1.5843876532000

0 1.3268837112519 0.0000000000000 1.7410676408991

H -0.3691539435124 -0.8336901130763 -0.4490956442016

H -0.3631605001333 0.8366888213139 -0.4483032152738

H -0.5594636703232 0.8984852223094 1.9001385714186

H -0.5591343872703 -0.8994665053243 1.8988541274420

H 1.1378517202149 -0.0018988097578 0.3412417016124

Table 7.9: Geometry for ThH 3+CH20.

105

atom x y z

N 0.0000000000000 0.0000000000000 0.0000000000000

C 0.0000000000000 0.0000000000000 1.4380669284000

0 1.2820747992013 0.0000000000000 2.0740189979613

H 0.5657837377401 -0.7566646507275 -0 .3638314440938

H 0.3496459707302 0.8701754653024 -0.3813217278531

H -0.5942959853476 0.8530557152119 1.7775757584241

H -0.4769046620119 -0.9139223538174 1.7883090361815

H 1.6911105284372 0.8608638484430 1.9389453497317

Table 7.10: Geometry for CH2(OH)NH2.

atom x y z

0 0.0000000000000 0.0000000000000 0.0000000000000

H 0.0000000000000 0.0000000000000 1.2824478194000

N 1.0290406695545 0.0000000000000 2.0554527257564

C 1.6155874630923 -0.3760963838510 0.9109052611784

H 1.2502580267367 0.9677093577925 2.2725286174727

H 2.3722912575875 0.2198389043536 0.4068337595816

H 1.6216229675463 -1.4327932210215 0.6660865869843

H -0.4382033110516 -0.7395829315353 -0.4448633375480

Table 7. 11: Geometry for Tt,O+CH,NH"

106

atom x y z

0 0.0000000000000 0.0000000000000 0.0000000000000

H 0.0000000000000 0.0000000000000 0.9616229062000

H 0.9304177983672 0.0000000000000 -0.2429842262576

Table 7.12: Geometry for H 20.

at om x y z

N 0.0000000000000 0.0000000000000 0.0000000000000

C 0.0000000000000 0.0000000000000 1.2640707739000

H 0.9536983299391 0.0000000000000 -0.3660720458042

H 0.8975274435092 0.0002654608506 1.8902959237014

H -0.9530880382316 0.0000011614524 1.7921749554776

Table 7.13: Geometry for CH2NH.

107

Chapter 8

QMcBeaver

I contemplated adding the entire QMcBeaver source code to this thesis unt il

I came to the harsh realization that it was several hundred pages single

spaced. The actual source can be obtained by contacting t he William A.

Goddard group or by searching online. We are current ly attempting to get

a gnu public license, but at the t ime of this writing it is not secure and no

devoted uri exists for its distribution. Hopefully, in the near future t his will

be accomplished.

I did include the current version of t he user 's and developer's manual. It

is attached as a supplement to the t hesis. It will serve both the developers of

QMcBeaver and those developing their own QMC package well. QMcBeaver

is still very much an academic code and many parts need serious engineering

to become optimally efficient. At the same time, this version of QMcBeaver

has some novel features and provides a good framework from which to ex­

tend. We hope those who obtain QMcBeaver will find it provides insight on

developing better distributed algorithms as well as better QMC codes.

108

Bibliography

[1] Murco N. Ringnalda, Jean-Marc Langlois, Robert B. Murphy, Burn­

ham H. Greeley, Christian Cortis, Thomas V. Russo, Bryan Marten,

Robert E. Donnelly, Jr., W. Thomas Pollard, Yixiang Cao, Richard P.

Muller, Daniel T. Mainz, Julie R. Wright, Gregory H. Miller, William A.

Goddard III , and Richard A. Friesner. Jaguar v4.0, 2001.

[2] Chakraborty, R. P. Muller, S. Dasgupta, and W.A. Goddard III. The

mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-

triazine), an ab initio study. Journal of Physcial Chemistry, 104: 2261-

2272,2000.

[3] Burnham H. Greeley, Thomas V. Russo, Daniel T. Mainz, Richard A.

Friesner, William A. Goddard III, Robert E. Donnelly, Jr., and Murco N.

Ringnalda. New pseudospectral algorithms for electronic structure cal­

culations: Length-scale separation and analytical two-electron integral

calculations. Journal of Chemical Physics, 101:4028, 1994.

[4] J. C. Slater. The Self-Consistent Field for Molecules and Solids.

McGraw-Hill, New York, 1974.

[5] Axel D. Becke. Density functional thermochemistry III: The role of

exact exchange. Journal of Chemical Physics, 98:5648, 1993.

109

[6J Axel D. Becke. Density-functional exchange-energy approximation with

correct asymptotic behavior. Physical Review A, 38:3098, 1988.

[7J S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron

liquid correlation energies for local spin density calculations: A crit ical

analysis. Canadian Journal of Physics, 58:1200, 1980.

[8J C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti cor­

relation energy formula into a functional of the electron density. Physical

Review B , 37:785, 1988.

[9J J. B. Anderson, C. A. Traynor, and B. M. Boghosian. Quantum­

chemistry by random-walk-exact treatment of many-electron systems.

Journal of Chemical Physics, 95(10):7418-7425, 1991.

[10J C. J. Umrigar, K. G. Wilson, and J. W. Wilkins. Optimized trial wave­

functions for Quantum Monte Carlo calculations. Physical Review Let­

ters, 60(17):1719- 1722, 1988.

[I1J Lubos Mitas. Diffusion Monte Carlo. In M. P. Nightingale and C. J.

Umrigar, editors, Quantum Monte Carlo Methods in Physics and Chem­

istry, volume 525 of Nato Science Series C: Mathematical and Physi­

cal Sciences, pages 247-261, Dordrecht, The Netherlands, 1999. Kluwer

Academic Publishers.

[12J C. J. Umrigar. Basics, Quantum Monte Carlo and statistical mechanics.

In M. P. Night ingale and C. J. Umrigar, editors, Quantum Monte Carlo

Methods in Physics and Chemistry, volume 525 of Nato Science Series

C: Mathematical and Physical Sciences, pages 1- 36, Dordrecht, The

Netherlands, 1999. Kluwer Academic Publishers.

110

[13J C. J. Umrigar. Variational Monte Carlo basics and applications to atoms

and molecules. In M. P. Nightingale and C. J. Umrigar, editors, Quan­

tum Monte Carlo Methods in Physics and Chemistry, volume 525 of Nato

Science Series C: Mathematical and Physical Sciences, pages 129- 160,

Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

[14J L. Mitas and J. C. Grossman. Quantum Monte Carlo for electronic

structure of clusters and solids. Abstracts of Papers of the American

Chemical Society, 211(1):21- COMP, 1996.

[15J L. Mitas. Electronic structure calculations by quantum monte carlo

methods. Physica E, 237:318-320, 1997.

[16J J. C. Grossman and L. Mitas. High accuracy molecular heats of forma­

tion and reaction barriers: Essential role of electron correlation. Physical

Review Letters, 79(22):4353-4356, 1997.

[17J J. C. Grossman and L. Mitas. Quantum Monte Carlo as a high-accuracy

method for treating chemical reactions. Abstracts of Papers of the Amer­

ican Chemical Society, 213(2):I71-PHYS, 1997.

[18J W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum

Monte Carlo simulations of solids. Reviews of Modern Physics, 73(1):33-

83, 2001.

[19] Y. Kwon, D. M. Ceperley, and R. M. Martin. Transient-estimate

Monte Carlo in the two-dimensional electron gas. Physical Review E,

53(11):7376-7382, 1996.

III

[20J David M. Ceperley and Lubos Mitas. Quantum Monte Carlo methods

in chemistry. In I. Prigogine and Stuart A. Rice, editors, Advances in

Chemical Physics, volume XCIII . John Wiley and Sons, Inc., 1996.

[21J S. Fahy, X. W. Wang, and S. G. Louie. Variational Quantum Monte

Carlo nonlocal pseudopotential approach to solids-formulation and

app lication to diamond, graphite, and silicon. Physical Review B,

42(6):3503-3522, 1990.

[22J S. Fahy, X. W. Wang, and S. G. Louie. Variational Quantum

Monte Carlo nonlocal pseudopotential approach to solids-cohesive and

structural-properties of diamond. Physical Review Letters, 61(14):1631 -

1634, 1988.

[23J Malvin H. Kalos and Francesco Pederiva. Fermion Monte Carlo. In

M. P. Nightingale and C. J. Umrigar, editors, Quantum Monte Carlo

Methods in Physics and Chemistry, volume 525 of Nato Science Series

C: Mathematical and Physical Sciences , pages 263-286, Dordrecht, The

Netherlands, 1999 . Kluwer Academic Publishers.

[24J M. H. Kalos and F. Pederiva. Exact Monte Carlo method for continuum

fermion systems. Physical Review Letters, 85(17):3547-3551, 2000.

[25J M. H. Kalos and F. Pederiva. Fermion Monte Carlo for continuum

systems. Physica A , 279(1-4) :236- 243, 2000.

[26J M. H. Kalos. Exact Monte Carlo for few-fermion systems. Journal of

Statistical Physics, 63(5-6):1269-1281 , 1991.

112

[27) M. H. Kalos. Monte Carlo methods for the many-fermion problem.

Physica A , 1 24 (1-3):427~427, 1984.

[28J M. H. Kalos. The Green-Function Monte Carlo method. Bulletin of the

American Physical Society, 25(7):725~725 , 1980.

[29J M. H. Kalos. Monte Carlo methods in quantum many-body problems.

Nuclear Physics A, 328(1-2):153~168, 1979.

[30J B. J. Alder, K. J. Runge, and R. T. Scalettar. Variational Monte Carlo

study of an interacting electron-phonon model. Physical Review Letters,

79(l6):3022~3025, 1997.

[31J J. B. Anderson. An exact Quantum Monte Carlo calculation of t he

helium-helium intermolecular potential. ii. Journal of Chemical Physics,

11 5(10):4546~4548, 2001.

[32J J. B. Anderson. Quantum Monte Carlo: Direct calculation of corrections

to trial wave functions and their energies. Journal of Chemical Physics,

112(22):9699~9702 , 2000.

[33J J . B. Anderson. Quantum Monte Carlo. From a few electrons to a

few t housand. Abstracts of P apers of the American Chemical Society,

216(2):U776~U776, 1998.

[34J J. B. Anderson. Fixed-node Quantum Monte Carlo. International Re­

views in Physical Chemistry, 1 4(1): 85~1l2 , 1995.

[35J D. Bressanini and P. J. Reynolds. Spatial-partitioning-based accel­

eration for variational Monte Carlo. Journal of Chemical Physics,

111 (14) :6180~6189, 1999.

113

[36] D. Bressanini and P. J. Reynolds. Between classical and Quantum Monte

Carlo methods: "variational" QMC. Monte Carlo Methods in Chemical

Physics, 105:37-64, 1999.

[37] C. Chakravarty, M. C. Gordillo, and D. M. Ceperley. A comparison

of the efficiency of fourier-and discrete time-path integral Monte Carlo.

Journal of Chemical Physics, 109(6):2123- 2134, 1998.

[38] C. Filippi and C. J. Umrigar. Correlated sampling in Quantum Monte

Carlo: A route to forces. Physical Review E, 61(24):R16291-R16294,

2000.

[39] C. Filippi and S. Fahy. Optimal orbitals from energy fluctuations in

correlated wave functions. Journal of Chemical Physics, 112(8):3523-

3531, 2000.

[40] C. J . Huang, C. J. Umrigar, and M. P. Nightingale. Accuracy of elec­

tronic wave functions in quantum Monte Carlo: The effect of high-order

correlations. Journal of Chemical Physics, 107(8):3007-3013,1997.

[41] A. Luchow and J. B. Anderson. Monte Carlo methods in electronic struc­

tures for large systems. Annual Review of Physical Chemistry, 51:501-

526, 2000.

[42J L. Mitas. Electronic structure by Quantum Monte Carlo: Atoms,

molecules and solids. Computer Physics Communications, 96(2-3):107-

117, 1996.

[43] F. Pederiva and M. H. Kalos. Fermion Monte Carlo. Computer Physics

Communications, 122(S1):440-445, 1999.

114

[44J T. Torelli and L. Mitas. Recent developments in t he Quantum Monte

Carlo method: Evaluation of interatomic forces. Progress of Theoretical

Physics Supplement, (138):78- 83, 2000.

[45J A. J. Williamson, R. Q. Hood, and J. C. Grossman. Linear-scaling Quan­

tum Monte Carlo calculations. Physical Review Letters, 8724(24) :6406-

+, 2001.

[46] A. J. Williamson, S. D. Kenny, G. Rajagopal , A. J. James, R. J. Needs,

L. M. Fraser, W. M. C. Foulkes, and P. Maccullum. Optimized wave

functions for Quantum Monte Carlo studies of atoms and solids. Physical

Review E, 53(15):9640-9648, 1996.

[47] F. H. Zong and D. !vi. Ceperley. Path integral Monte Carlo calculation

of electronic forces. Physical Review E, 58(4):5123-5130, 1998.

[48] P. J. Reynolds, D. M. Ceperley, 8. J. Alder, and W. A. Lester. Fixed­

node Quantum Monte Carlo for molecules. Journal of Chemical Physics,

77(11):5593-5603, 1982.

[49] H. Flyvberg and H. Peterson. Error estimates on averages of correlated

data. Journal of Chemical Physics, 91:461- 466, 1989.

[50] M.T. Feldmann, D.R. Kent IV, R.P. Muller, and W.A. Goddard III.

Efficient algorithm for "on-the-fly" error analysis of local or distributed

serially-correlated data. Journal of Chemical Physics, submitted, 2002.

[51] O. Yaser. New trends in high performance computing. Parallel Com­

puting, 27:1-2, 2001.

115

[52J Y. Deng and A. Korobka. The performance of a supercomputer built

with commodity components. Parallel Computing, 27:91-108, 2001.

[53J 1. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En­

abling scalable virtual organizations. The International Journal of High

Performance Computing Applications, 15:200- 222, 2001.

[54J M.T. Feldmann and D.R. Kent IV. QMcBeaver v2002.01.09 ©, 2001.

[55J N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equation of state calculations by fast computing machines.

Journal of Chemical Physics, 21:1087, 1953.

[56J M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.

Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su,

T. L. Windus, M. Dupuis, and J. A. Montgomery. Gamess, a package

of ab initio programs, version 2000, 2000.

[57J R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper,

M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J.

Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R.

Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer,

G. Rauhut, M. Schiitz, U. Schumann, H. Stoll, A. J. Stone, R . Tarroni,

T. Thorsteinsson, and H.-J. Werner. Molpro, a package of ab initio

programs designed by H.-J. Werner and P. J. Knowles, version 2000.1,

2000.

[58J Roland Lindh. Molpro modual: SEWARD (gaussian integral code),

2000.

116

[59) W. Meyer and H.-J . Werner. Molpro modual: RHF-SCF, 2000.

[60) T. Kato. On the eigenfunctions of many-particle systems in quantum

mechanics. Communication on Pure Applied Mathematics, 10:151- 177,

1957.

[61) K. Wilson. Recent developments in guage theories, 1979.

[62) C. Whitmer. Over-relaxation methods for monte-carlo simulations of

quadratic and multi quadratic actions. Physical Review D, 29:306- 311 ,

1984.

[63) S. Gottlieb, P. Mackenzie, H. Thacker, and D. Weingarten. Hadronic

coupling-constants in lattice gauge-theory. Nuclear Physics B, 263:704-

730, 1986.

[64) R. P. Muller, M. T. Feldmann, R. N. Barnett, B. L. Hammond, P. J.

Reynold, L. Terray, and W. A. Lester Jr. California Institute of Tech­

nology Material Simulation Center parallel QMAGIC, version 1.1.0p,

2000.

[65) R. Needs, G. Rajagopal, M. D. Towler , P. R. C. Kent, and A.Williamson.

CASINO, t he Cambridge Quantum Monte Carlo code, version 1.1.0,

2000.

[66) L. Smith and P. Kent. Development and performance of mixed

OpenMP /MPI Quantum Monte Carlo code. Concurrency: Practice and

Experience, 12:1121-1129, 2000.

117

[67) M. Snir, S. Otto, S. Huss-Lederman, D. Walker , and J. Dongarra. MPf

- The Complete Reference Volume 1, The MPf Core. The MIT Press,

Cambridge, Massachusetts, second edit ion, 1998.

[68) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.

Gordon, J. H. Jensen, S. Koseki , N. Matsunaga, K. A. Nguyen, S. Su,

T. L. Windus, M. Dupuis, and J. A. Montgomery. General atomic

and molecular electronic structure system. Journal of Computational

Chemistry, 14:1347-1363, 1993.

[69) Rollin A. King, T. Daniel Crawford , John F. Stanton, and Henry

F . Schaefer III. Conformations of [10)annulene: More bad news for den­

sity functional theory and second-order perturbation theory. Journal of

the American Chemical Society, 121:10788- 10793, 1999.

[70) Ohishi M. Observations of hot cores. In E.F. van Dishoeck, editor, fA U

Symposium No. 178: Molecules in Astrophysics, pages 61 - 74. Kluwer;

Dordrecht, 1997.

[71) Charnley S. Interstellar alcohols. Astrophysics Journal, 448:232, 1995.

[72) Charnley S. Interst ellar organic chemistry. In The Bridge Between the

Big Bang and Biology. Consiglio Nazionale delle Ricerche, Italy, 1999.

[73J S. Charnley. On the nature of interstellar organic chemistry. In C. B.

Cosmovici, S. Bowyer, and D. Werthimer, editors, Astronomical and

Biochemical Origins and the Search for Life in the Universe, page 89.

Editrice Compositori ; Bologna , 1997.

ll8

[74) J. M. Hollis, F. J. Lovas, and P. R. Jewell. Interstellar glycolaldehyde:

The first sugar. Astrophysics Journal, 540:L107-LllO, 2000.

[75] R. E. Penn and R. F. Curl. Microwave spectrum of 2-aminoethanol:

Structural effects of the hydrogen bond. Journal Chemical Physics,

53:651 - 658, 1971.

[76) S. L. Widicus, B. J. Drouin, K. A. Dyl, and G. A. Blake. Title in prep.

in prep., 2002.

[77] Minyaev R. M. and Lepin E. A. Gradient line reaction path of ammonia

addition to formaldehyde. Mendeleev Communications, 5:189-191, 1997.

[78] A. T. Nielsen, D. W. Moore, M. D. Ogan, and R. L. Atkins. Structure

and chemistry of the aldehyde ammonias .3. formaldehyde-ammonia re­

action - 1,3,5-hexahydrotriazine. Journal Organic Chemistry, 44:1678 -

1684, 1979.

[79] C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod­

ual: MP2, 2000 .

[80] C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod­

ual: MP4, 2000.

[81] C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod­

ual: CCSD, 2000.

[82] C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod­

ual: QCI, 2000.

QMcBeaver Reference Manual

Generated by Doxygen l.2.15

Wed May 1 11:34:37 2002

CONTENTS

Contents

1 QMcBeaver Hierarchical Index

2 QMcBeaver Compound Index

3 QMcBeaver Class Documentation

4 QMcBeaver File Documentation

1 QMcBeaver Hierarchical Index

1.1 QMcBeaver Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

1

3

8

164

Array1D< T > 8

Array2D< T > 11

Array3D< T > 15

Array4D< T > 18

Complex 23

Exception 37

XMLParseException 161

FunctionRltoR1 40

CubicSpline 28

CubicSpline WithGeometricProgressionGrid 32

Polynomial 45

QMCPolynomial 108

PararneterScorePair 43

QMCBasisFunction 49

QMCBasisFunctionCoefficients 53

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

1

1.1 QMcBeaver Class Hierarchy 2

QMCCopyright 56

QMCCorrelatedSaIllplingVMCOptimization 56

QMCCorrelationFunction 57

FixedCuspPadeCorrelationFunction 38

PadeCorrelationFunction 42

ZeroCorrelationFunction 162

QMCCorrelationFunctionFactory 58

QMCCorrelationFunctionParameters 59

QMCDerivativeProperties 64
QMCflags

QMCFunctions 67

QMCInitializeWalker 72

QM CMikesJ acked Walker Initialization 95

QMCInitialize Walker Factory 73
QMCInput

QMCJastrow 74

QMCJastrowElectronElectron 77

QMCJastrowElectronNuclear 80

QMCJ astrow Parameters 83

QMCLineSearchStepLengthSelectionAlgorithm 90

QMCMikesBracketingStepLengthSelector 94

QMCLineSearchStepLengthSelectionFactory 91

QMCManager 92

QMCMolecule 97

QMCObjectiveFunction 99

QMCObjectiveFunctionResult 102

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

2 QMcBeaver Compound Index

QMCOptimizationAlgorithm

CKGeneticAlgorithml

QMCLineSearch

QMCSteepestDescent

QMCOptimizationFactory

QMCPotentiaLEnergy

QMCproperties

QMCproperty

QMC ReadAndEvaluateConfigs

QMCrun

QMC Slater

QMCstatistic

QMCStopwatches

QMCwalker

QMCWavefunction

SortedPararneterScorePair List

Stopwatch

StringManipulation

XMLElement

2 QMcBeaver Compound Index

2.1 QMcBeaver Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

106

21

88

129

107

113

114

116

119

121

124

127

131

134

139

142

144

146

150

ArraylD< T > (A I-dimensional template for making arrays) 8

Array2D< T > (A 2-dimensional template for making arrays) 11

Generated on W ed M ay 1 11:34:48 2002 for QMcBeaver by Doxygen

3

2.1 QMcBeaver Compound List

Array3D< T > (A 3-dimensional template for making arrays) 15

Array4D< T > (A 4-dimensional template for making arrays) 18

CKGeneticAlgorithml (A moderately greedy genetic algorithm
for trying to globally optimize a function dreamed up by
David Randall (Chip) Kent IV) 21

Complex (An implementation of a complex nUIllber with the
associated basic functions) 23

CubicSpline (A I-dimensional (R' -+ R') cubic spline interpo-
lation) 28

Cubic Spline WithGeometricProgressionGrid (A I-dimensional
(R 1 --)- R 1) cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship
for faster evaluation) 32

Exception (An Exception is thrown when an error occurs) 37

FixedCuspPadeCorrelationFunction
which uses a Pade expansion to
interactions)

(Correlation function
describe particle-particle

38

FunctionRltoRl (An interface for a function from R' -+ R') 40

PadeCorrelationFunction (Correlation function which uses a
Pade expansion to describe particle-particle interactions) 42

ParameterScorePair (A container which holds a set of parame-
ters and an associated scalar score value) 43

Polynomial (A one dilllensional real polynolllial) 45

QMCBasisFunction (This class stores all of the parameters that
a gaussian basis set is constructed from for a MOLECULE) 49

QMCBasisFunctionCoefficients (This class stores all of the pa­
rameters that a gaussian basis set is constructed from for an
ATOM) 53

QMCCopyright (Central localtion for all copyright information
relevant to QMcBeaver) 56

QMCCorrelatedSamplingVMCOptimization (Optimize the pa­
rameters in a variational QMC (VMC) calculation using the
correlated sampling lllethod) 56

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4

2.1 QMcBeaver Compound List

QMCCorrelationFunction (Interface for a parameterized func-
tion describing the interaction of two particles) 57

QMCCorrelationFunctionFactory (Object factory which re­
turns the correct QMCCorrelationFunction (p.57) when a
string keyword describing the correlation function is pro-
vided) 58

QMCCorrelationFunctionParameters (This is a collection ofpa­
rameters and related functions which describe the interac-
tion of two particles of specific types) 59

QMCDerivativeProperties (All of the calculated quantities and
properties that are derived from quantities and properties
evaluated during a calculation) 64

QMCFunctions (This class calculates the value of the wave­
function, it's first two derivatives, and any other properties
which are calculated from the wave function (local energy,
etc.)) 67

QMCInitialize Walker (Interface to algorithms which generate
new walkers for a QMC calculation) 72

QMCInitializeWalkerFactory (Object factory which returns the
correct QMCInitialize walker when a string keyword describ-
ing the correlation function is provided) 73

QMCJastrow (This class calculates the value of the Jastrow
function and it's first two derivatives) 74

QMCJastrowElectronElectron (This class calculates the value
of the electron-electron part of the J astrow function and it ' s
first two derivatives) 77

QMCJastrowElectronNuclear (This class calculates the value
of the electron-nuclear part of the J astrow function and it's
first two derivatives) 80

QMCJastrowParameters (This class contains all of the parame­
ters and corelation functons from which the Jastrow function
is composed) 83

QMCLineSearch (Abstract implementation of a line search nu-
merical optimization algorithm) 88

QMCLineSearchStepLengthSelectionAlgorithm (Interface to

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

5

2.1 QMcBeaver Compound List

algorithms which de termine the proper step length to use
during a line search optiITlization (QMCLineSearch (p.88))) 90

QMCLineSearchStepLengthSe lectionFactory (Object factory
which returns the correct QMCLineSearchStepLength­
SelectionAlgorithm (p. 90) when a string keyword describing
the correlat ion function is provided) 91

QMCManager (Controls the major sections of a QMC calcula-
tion) 92

QMCMikesBracketingStepLengthSe lector (Algorithm to deter­
mine the step length for a line search optimization developed
by Michael Todd Feldmann) 94

QMCMikesJackedWalkerInitialization (This is
m ade to initialize walkers)

the algorithm
95

QMCMolecule (Describes a part icula r m o lecular geometry) 97

QMCObjectiveFnnction (Objective function optimized during
a variational QMC (VMC) calcula tion to find the optimal
wave function parameters) 99

QMCObjectiveFnnctionResult (Results from the evaluation of
an objective function during a QMC calculation) 102

QMCOptitnizationAlgorithm (Interface for numerical optimiza-
tion algorithms) 106

QMCOptimizationFactory (Object factory which returns the
correct QMCOptirnizationAlgorithm (p. 106) specified in the
calculation input data) 107

QMCPolynomial (An extension of Polynomial (p. 45) which adds
QMC specific functionality) 108

QMCPotentiaLEnergy (The potential energy of the system) 113

QMCproperties (All of the quantities and properties evaluated
during a calculation) 114

QMCproperty (All of the statistical information used in calcu-
lating a quantity or property during a calculation) 116

QMCReadAndEvaluateConfigs (Calculates properties (QM­
Cproperties (p. 114» from walkers and r elated data saved to
a file during a QMC calculation) 119

Generated on Wed May 1 11:34:48 2002 for Q MeBeaver by Doxygen

6

3 QMcBeaver Class Documentation

QMCrun (Collection of walkers (QMCwalker (p.134)) with the
functionality to do the basic operations from which a QMC
algorithm is built) 121

QMCSlater (A Slater determinant describing like spin electrons
from a 3N dimensional wavefunction) 124

QMCstatistic (Statistical information on a set of data) 127

QMCSteep estDescent (Steepest descent line search numerical
optimization algorithm) 129

QMCStopwatches (A collection of Stopwatch (p.144) objects
used to record information relevant to the timing of a QMC
calculation) 131

QMC walker (An instantaneous snapshot of all 3N electronic
corrdinates for a system) 134

QMCWavefunction (The coefficients a nd parameters describing
the trial wavefunction for the system) 139

SortedPararneterScorePairList (A sorted list of Parameter­
ScorePair (p.43) objects where t h e objects are or dered in
an increasing order) 142

Stopwatch (An accurate software stopwatch) 144

S tringManipulation (A set of functions to manipulate strings) 146

XMLElement (XMLElement is a r epr esent a tion of an XML ob-
j ect) 150

XMLParseException (An XMLParseException is thrown when
an error occures while parsing an XML stream) 161

ZeroCorrelationFunction (Correlation function which describes
noninteracting particles) 162

3 QMcBeaver Class Documentation

3 .1 Array1D< T > Class Template R eference

A I-dimensional template for making arrays.

Generated on Wed May 1 11:34:48 2002 for QMcBeave r by Doxygen

7

3.1 Array1D< T > Class Template Reference

Public Methods

• int dim1 ()
Gets the number of elements in the array's first dimension.

• int size 0
Gets the total number of elements in the array.

• T * array ()
Gets a pointer to an army containing the array elements.

• void allocate (int i)

Allocates memory for the array.

• void deallocate ()
Deallocates memory for the array.

• void operator= (canst ArraylD &rhs)

Sets two arrays equal.

• void operator= (canst T C)

Sets all of the elements in an array equal to the same value.

• T operator * (canst ArraylD &rhs)

Returns the dot product of two arrays.

• ArraylD operator * (canst double rhs)

Returns the product of an array and a double.

• ArraylD operator+ (canst ArraylD &rhs)

Returns the sum of two arrays.

• ArraylD operator- (canst ArraylD &rhs)

Returns the difference of two arrays.

• void operator *= (const T C)

Sets this array equal to itself times a scalar value.

• void operator/= (canst T C)
Sets this array equal to itself divided by a scalar value.

• Array1D ()
Creates an array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

8

3.1 Array1D< T > Class Template Reference

• ArraylD (int i)

Creates an array and allocates memory.

• ArraylD (const Array lD &rhs)

Creates an array an¢. sets it equal to another array.

• -ArraylD 0
Destroy's the array and cleans up the memory.

• T & operatorO (int i)

Accesses element (i) of the array .

Friends

• ostream & operator« (ostream &strm, const ArraylD < T > &rhs)

Prints the array to a stream.

3.1.1 D etailed Description

template< class T > class Array1D < T >

A I-dimensional template for making arrays.

All of the memory allocation and deallocation details are dealt with by the class.

Definition at line 26 of file ArraylD.h.

3 .1.2 Constructor & Destructor Documentation

3.1.2 .1 template < class T > Array1D < T >: :Array1D (int i)
[inline]

Creates an array and allocates memory.

Parameters:
i size of the array's first dimension.

Definition at line 256 of file ArraylD.h.

Gen e rated on Wed May 1 11:34:48 2002 fo r Q McBeaver by Doxygen

9

3.1 Array1D< T > Class Template Reference

3.1.2.2 template<class T> Array1D< T >::Array1D (const
Array1D< T > & rhs) [inlineJ

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Definition at line 265 of file ArraylD.h.

3.1.3 Member Function Documentation

3.1.3.1 template<class T> void Array1D< T >::allocate (int i)
[inline]

Allocates memory for the array.

Parameters:
i size of the array's first dimension.

Definition at line 69 of file ArraylD.h.

Referenced by ArraylD< QMCBasisFunctionCoefficients >::ArraylDO ,
Q M CJ astrow Parameters: :getP arameters 0, Array ID < QM CBasisFunction·
Coefficients > ::operator=O, QMCReadAndEvaluateConfigs: :rootCalculate­
PropertiesO, QMCJastrowParameters::setParameterVectorO, and QMCRead­
AndEval uateConfigs: :wor kerCalculateProperties O.

3.1.3.2 template<class T> T. ArraylD< T >::array 0 [inlineJ

Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 61 of file ArraylD.h.

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO.

3.1.3.3 template<class T> int ArraylD< T >::diml 0 [inline]

Gets the number of elements in the array's first dimension.

Returns:
number of elements in the array's first dimension.

Definition at line 48 of file ArraylD.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

10

3.2 Array2D< T > Class Template Reference

Referenced by QMCJastrowElectronNuc!ear::evaluateO, QMCJastrow­
Parameters: :getParametersO, QM CPolynomial: :hasN onN egati veZeroes (),
P adeCorrelationFunction: :ini tializeParameters 0) Fixed CuspP adeCorrelation­
FUnction: :initializeP arameters (), eu bicSpline: :ini tialize Wi thDerivative Values (),
CubicSpline: :initialize Wi thFunction Values 0, QM CLineSearch: :optimizeO,
QMCCorrelatedSamplingVMCOptimization::optimize(), QMCCorrelation­
FunctionParameters: :setParameters (), QM CJ astrow Parameters: :setParameter­
Vector 0, and QM CReadAndEval uateConfigs: :wor kerCalculateProperties O.

3.1.3.4 template<class T> iut ArraylD< T > ::size 0 [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 55 of file ArraylD.h.

3.2 Array2D< T > Class Template Reference

A 2-dimensional template for making arrays.

Public Methods

• int diml 0
Gets the number of elements in the array's first dimension.

• int dim2 0
Gets the number of elements in the army's second dimension.

• int size 0
Gets the total number of elements in the array.

• T * array 0
Gets a pointer to an array containing the array elements.

• void allocate (int i, int j)
Allocates memory for the array.

• void deallocate 0
Deallocates memory for the array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

11

3.2 Array2D < T > Class Template Reference

• void operator= (const Array2D &rhs)

Sets two arrays equal.

• void operator= (const T 0)

Sets all of the element.s in an array equal to the same value.

• Array2D operator * (const Array2D &rhs)

Returns the matrix product 0/ two arrays.

• Array2D operator * (const T 0)

Returns the product of an array and a scalar.

• void operator *= (const T 0)

Sets this array equal to itself times a scalar value.

• void operator I = (const T 0)

Sets this array equal to its elf divided by a scalar 'Valu e.

• Array2D 0
Creates an array.

• Array2D (int i, int j)
Creates an array and allocates memory.

• Array2D (const Array2D < T > &rhs)

Creates an array and sets it equal to another array.

• -Array2D 0
D estroy's the array and cleans up the m emory.

• T & operatorO (int i, int j)

Accesses element (i,j) of the army.

Friends

• ostream & operator« (ostream &strm, const Array2D< T > &rhs)

Prints the array to a stream.

Generated on W e d May 1 11:34:48 2002 for QMc:::Be aver by Doxyge n

12

3.2 Array2D < T > Class Template Reference

3.2.1 Detailed Description

template< class T > class Array2D < T >

A 2-dimensional template for making arrays .

All of the memory allocation and deallocation details are dealt with by the class.

Definition at line 27 of file Array2D.h.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 template< class T > Array2D< T > ::Array2D (int " int J)
[inline]

Creates an array and allocates memory.

Parameters:
i size of the array's first dimension.

j size of the array's second dimension.

Definition at line 242 of file Array2D.h.

3.2.2.2 t emplate< class T > Array2D< T > ::Array2D (const
Array2D < T > & rhs) [inline]

Creates an array and sets it equal to another array.

Paramete rs:
rhs array to set this array equal to.

Definition at line 251 of fi le Array2D.h.

3.2.3 Member Function Docume ntation

3.2.3.1 t empla te<class T > void Array2D< T > ::allocate (int i, int J)
[inline]

Allocates memory for the array.

Parameters:
i size of the array's first dimension.

j size of the array's second dimension.

Generated on Wed May 1 11 :34:48 2002 for QMc Beaver by Doxygen

13

3.2 Array2D< T > Class Template Reference

Definition at Jine 84 of file Array2D.h.

Referenced by Array2D<
>::Array2DO, and Array2D<
>: :operator=O·

CuhicSpline Wi thGeometricProgression Grid
CubicSpline With GeometricProgression Grid

3.2.3.2 template<ciass T> T. Array2D< T >::array 0 [inline)

. Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 75 of file Array2D.h.

3.2.3.3 t e mplate < ciass T > int Array2D < T >: :diml 0 [inline)

Gets the number of elements in the array's first dimension.

Returns:
number of elements in the array's first dimension.

Definition at line 55 of file Array2D.h.

Referenced by QMCJastrowElectronNuc!ear::evaluateO, QMCJastrowElectron­
Electron::evaluateO, and QMCJastrow::evaluateO.

3.2.3.4 template<ciass T > int Array2D < T > ::dim2 0 [inline)

Gets the number of elements in the array's second dimension.

Returns:
number of elements in the array's second dimension.

Definition at line 62 of file Array2D.h.

Referenced by QMCJastrow::evaluateO .

3.2.3 .5 template < ciass T > int Array2D< T > ::size 0 [inline)

Gets t he total number of elements in the array.

Returns:
total number of elements in the array_

Definition at line 69 of file Array2D.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

14

3.3 Array3D < T > Class Template Reference

3.3 Array3D < T > Class Template Reference

A 3-dimensional template for making arrays.

Public Methods

• int dim 1 0
Gets the number of elements in the array's first dimension.

• int dim2 0
Gets the number of elements in the army's second dimension.

• int dim3 0
Gets the number of elements in the arrayls third dimension.

• int size 0
Gets the total number of elements in the array.

• T * array 0
Gets a pointer to an array containing the array elements.

• void allocate (int i, int j, int k)

Allocates memonj for the array.

• void deallocate 0
Deallocates memory for the array.

• void operator= (const Array3D &rhs)

Sets two arrays equal.

• Array3D 0
Creates an array.

• Array3D (int i, int i, int k)

Creates an array and allocates memory.

• Array3D (const Array3D< T > &rhs)

Creates an array and sets it equal to another array.

• -Array3D 0
Destroy 's the array and cleans up the memory.

G e n e rate d on W e d M ay 1 11:34:48 2002 fa l" QMc B eaver by Daxygen

15

3.3 Array3D< T > Class Template Reference

• T & operatorO (int i, int j , int k)
Accesses element (i. j . k) of the array.

3.3.1 Detailed Description

template < class T > class Array3D < T >

A 3-dimensional template for making arrays.

All of the memory allocation and deallocation details are dealt with by the class.

Definition at line 23 of file Array3D.h.

3.3.2 Constructor & Destructor Documentat ion

3.3.2.1 template<class T> Array3D < T > ::Array3D (int i , int j, int
k) [inline)

Creates an array and allocates memory.

Parameters:
i size of the array's first dimension.

j size of the array's second dimension.

k size of the array's third dimension.

Definition at line 175 of file Array3D.h.

3.3.2.2 template<class T> Array3D < T > ::Array3D (const
Array3D < T > & rhs) [inline)

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Definition at line 185 of file Array3D .h.

3.3.3

3.3.3.1
int k)

Member Function Documentation

template < class T> void Array3D < T > ::allocate (int i, int j,
[inline)

Allocates memory for the array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

16

3.3 Array3D < T > Class Template Reference

Parameters:
i size of the array's first dimension.

j size of the array's second dimension.

k size of the array 's third dimension.

Definition at line 97 of file Array3D.h.

Referenced by Array3D< double >::Array3DO. and Array3D < double
> ::operator= O·

3.3.3.2 t emplate<class T > T. Array3D< T > ::array 0 [inline]

Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 87 of file Array3D.h.

3.3.3.3 template< class T > int Array3D< T > ::diml 0 [inline]

Gets the number of elements in the array's first dimension.

Returns:
number of elements in the array's first dimension.

Definition at line 60 of file Array3D,h .

3.3.3.4 template<class T > int Array3D< T > ::dim2 0 [inline]

Gets the number of elements in the array's second dimension.

Returns:
number of elements in the array's second dimension.

Definition at line 67 of file Array3D.h.

3.3.3.5 template<class T > int Array3D< T > ::dim3 0 [inline]

Gets the number of elements in the array's third dimension.

Returns:
number of elements in the array's third dimension.

Definition at line 74 of file Array3D.h.

Generated o n W ed May I 11:34:48 2002 fo r QMcBeave:r by Oox ygen

17

3.4 Array4D < T > Class Template Reference

3.3.3.6 t emplate< ciass T > int Array3D< T > ::size 0 [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 81 of file Array3D.h.

3.4 Array4D< T > Class Template R eference

A 4-dimensional template for making arrays.

Public Methods

• int dim 1 0
Gets the number of elements in the array's first dimension.

• int dim2 0
Gets the number of elements in the array's second dimension.

• int dim3 0
Gets the number of elements in the array's third dimension.

• int dim4 0
Gets the number of elements in the array's fourth dimension.

• int size 0
Gets the total number of elements in the array.

• T * array 0
Gets a pointer to an array containing the array elements.

• void allocate (iot i , iot j, iot k, int I)

Allocates memory for the array.

• void deallocate 0
Deallocates memory for the array.

• void operator= (const Array4D &rhs)

Sets two arrays equal.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

18

3.4 Array4D < T > Class Template R eference

• Array4D 0
Creates an array.

• Array4D (int i , int j , int k, int I)

Creates an array and allocates memory.

• Array4D (const Array4D &rOO)

Crrotes an array and sets it equal to another array.

• -Array4D ()
Destroy's th e array and cleans up the memory.

• T & operatorO (int i, int j, int k, int I)

Accesses element (i,j ,k.l) of the array.

3.4.1 Detailed Description

template< class T > class Array4D < T >

A 4-dimensional template for making arrays.

All of the memory allocation and dealiocation details are dealt wit h by the class.

Defini tion at line 23 of file Array4D.h.

3 .4 .2 Constructor & Destructor Documentation

3.4.2.1
k, int C)

template<class T> Array4D < T > ::Array4D (int i, int j, int
[inline]

Creates an array and allocates memory.

P arameters:
i size of the array's first dimension.

j size of the array's second dimension.

k size of the array's third dimension.

1 size of the array's fourth dimension.

Definition at line 205 of file Array4D.h .

References Array4D< T >::aliocate().

Gen erated o n Wed May 1 11:34:48 2002 for Q McBoave r by Doxygen

19

3.4 Array4D < T > Class Template Reference

3.4.2.2 template< class T > Array4D< T > ::Array4D (const
Array4D < T > & rhs) [inline]

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Defini t ion at line 215 of file Array4D.h.

References Array4D< T > ::allocateO, Array4D< T >::n_l , Array4D< T >::n_2,
Array4D < T > ::n_3, Array4D < T > ::nA, and Array4D< T > ::pArray.

3.4.3 Member Function Documentation

3.4.3.1 template< class T > void Array4D < T > ::allocate (int i, int j,
int k, int I) [i nline]

Allocates memory for the array.

Parameters:
i size of the array 's first dimension.

j size of the array's second dimension.

k size of the array's third dimension.

I size of the array's fourth dimension.

Definition at line 112 of file Array4D.h.

References Array4D < T >::deallocateO.

Referenced by Array4D< T > ::Array4DO, and Array4D < T > ::operator= O.

3 .4.3.2 template< class T > T . Array4D < T > ::array 0 [inline]

Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 101 of file Array4D.h.

3.4.3.3 t emplate < class T > int Array4D< T > ::dim1 0 [inline]

Gets the number of elements in the array's first dimension.

Returns:
number of elements in the array's first dimension .

Definition at line 67 of file Array4D.h.

Generated on W e d May 1 11:34:48 2002 for Q McBeave r by Doxygen

20

3.5 CKGe neticAIgorithm1 Class Reference

3.4.3.4 template< ciass T > int Array4D< T > ::dim2 0 [inline]

Gets the number of elements in the array's second dimension .

Returns:
number of elements in the array's second dimension.

Defini t ion at line 74 of file Array4D.h .

3.4.3.5 template< ciass T > int Array4D< T > ::dim3 0 [inline]

Gets the number of elements in the array's third dimension.

Returns:
number of elements in the array's third dimension.

Defini tion at line 81 of file Array4D.h.

3.4.3.6 template<class T> int Array4D< T > ::dim4 0 [inline]

Gets the number of elements in the array's fourth dimension.

Returns:
number of elements in the array's fourth dimension.

Definition at line 88 of file Array4D.h.

3 .4.3.7 template< class T > int Array4D< T > ::s ize 0 [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 95 of file Array4D .h.

3.5 CKGeneticAlgorithml Class Reference

A moderately greedy genetic algorithm for trying to globally optimize a function
dreamed up by David Randall (Chip) Kent IV.

Inheritance diagram for CKGeneticAlgorithml::

G e nerated o n W ed May 1 11:34:4 8 2002 for QMcBeaver by Doxygen

21

3.5 CKGeneticAIgorithm1 Class Reference

QMCOptimizationAlgorithm

CKGeneticAlgorithml

Public Methods

• CKGeneticAIgorithIIl1 (QMCObjectiveFunction .function, int
populationsize, double mutationrate, double distributionwidth)

Constructs and inializes this optimization algorithm .

• Array1D < double> optiIIlize (Array1D < double > &initialGuess)

Optimize the ju.nction starting from the provided initial guess parameters.

3.5.1 Detailed Description

A moderately greedy genetic algorithm for trying to globally optimize a function
dreamed up by David Randall (Chip) Kent IV.

As is standard in the field , optimization means minimization.

Mutation is accomplished by adding a N-dimensional gaussian random variable
to the populat ion member.

The amount of each parent contributed to a child is determined by a uniform
random variable.

A linear probability distribution is used to select which population member will
be a parent. The best members have better probabilities of being selected.

Definition at line 38 of file CKGeneticAlgorithml.h.

3.5.2 Constructor & Destructor Documentation

3.5.2.1 CKGeneticAlgorithIIl1: :CKGeneticAIgorithIIl1
(QMCObjectiveFunction • junction, iut populationsize, double
mutationmte, double distributionwidth)

Constructs and inializes this optimization algorithm.

Parameters:
function function to optimize.

populationsize number of members in the population used to optimize
the function. This is a positive number.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver b y Doxygen

22

3.6 COInplex C lass Refere nce

mutationrate a positive number describing how much mutation is intro­
duced into the population. Larger numbers correspond to more mu­
tation.

distribution width a positive number describing how far the initial popu­
lation members spread from the initial guess.

Definit ion at line 15 of file CKGeneticAlgorithml.cpp.

3.5.3 Member Function Documentation

3.5.3.1 Array1D<
(Array1D < double>

double > CKGeneticAlgorithm1: :optimize
& initia/Guess) [virtual]

Optimize the function starting from the provided initial guess parameters.

ParaIneters:
initial Guess initial guess parameters for the optimization.

Returns:
optimized parameters.

Implements QMCOptimizationAlgorithm (p. 107).

Definition at line 136 of file CKGeneticAlgorithml.cpp.

References SortedParameterScorePairList: :getO, ParameterScorePair: :get·
ParametersO, and ParametefScorePaif::getScoreO.

3.6 Complex Class Reference

An implementation of a complex number with the associated basic functions.

Public Methods

• Complex ()
Creates an object and initializes it to (0,0).

• Comple x (double fe , double im)
Creates and initializes this object.

• Complex (const Complex &rhs)
Creates an new instance of this object which is equal to another instance.

• double r eal ()

Generated o n W ed Ma.y 1 11:34:48 2002 fo r QMc Beaver by Doxyg e n

23

3.6 Complex Class Reference

Real part of this number.

• double imaginary 0
Imaginary part of this number.

• void operator= (const Complex &rhs)

Sets two complex numbers equal.

• void operator= (const double &rhs)

Sets a complex number and a real number equal.

• Complex operator+ (const Complex &rhs)

Adds two complex numbers.

• Complex operator+ (const double &rhs)

Adds a complex and a real number.

• Complex operator- (const Complex &rhs)

Subtracts two complex numbers.

• Complex operator- (const double &rhs)

Subtracts a complex and a real number.

• Complex operator * (const Complex &rhs)

Multipl ies two complex number.

• Complex operator * (const double &rhs)

Multiplies a complex and a real number.

• Complex operator/ (const Complex &rhs)

Divides two complex numbers.

• Complex conjugate 0
Calculates the complex conjugate of this number.

• double abs 0
Calculates the magniutde of this complex number.

• Complex squareroot 0
Calculates the square TOot of this complex number.

Generated on Wed May 1 11 :34:48 2002 for QMc B eaver by Doxygen

24

3.6 Complex Class Refere nce

Friends

• ostream & operator« (ostream &strm, Complex &c)

Write the number to an output stream.

3.6.1 Detailed Description

An implementation of a complex number with the associated basic functions.

Definition at line 23 of file Complex.h.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 Complex::Complex (double re, double im)

Creates and initializes this object.

Parameters:
re real part of this number.

im imaginary part of this number.

Definition at line 21 of file Complex.cpp.

3.6.2.2 Complex::Complex (const Complex & rhs)

Creates an new instance of this object which is equal to another instance.

Parameters:
rhs object this new object will be set equal to.

Definition at line 27 of file Complex.cpp.

3.6.3 M ember Function Documentation

3.6.3.1 double Cornplex::abs 0
Calculates the magniutde of this complex number.

c.absO = v'(c.r e02 + c.im(2)

Returns:
magnitude of this complex number.

Definition at line 146 of file Complex.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

25

3.6 Complex Class Reference

3.6.3.2 Complex Complex::conjugate 0
Calculates the complex conjugate of this number.

Returns:
complex conjugate of this number.

Definition at line 136 of file Complex.cpp.

References im, and reo

3.6.3.3 double Complex::imaginary 0
Imaginary part of this number.

Returns:
imaginary part of this number.

Definition at line 37 of file Complex.cpp.

3.6.3.4 Complex Complex::operator * (const double & rhs)

Multiplies a complex and a real number.

Returns:
product of the arguments.

Definition at line 104 of file Complex.cpp.

References im, and reo

3.6.3.5 Complex Complex::operator * (const Complex & rhs)

Multiplies two complex number.

Returns:
product of the arguments.

Definition at line 94 of file Complex.cpp.

References im, and reo

3.6.3.6 Complex Complex::operator+ (const double & rhs)

Adds a complex and a real number.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

26

3.6 C01TIplex Class Reference

Returns:
sum of the arguments.

Definition at line 64 of file Complex.cpp.

References im , and reo

3.6.3.7 Complex Complex::operator+ (const Complex & rhs)

Adds two complex numbers.

Returns:
sum of the arguments .

Definition at line 54 of file Complex.cpp.

References im, and reo

3.6.3.8 Complex Complex::operator- (const double & rhs)

Subtracts a complex and a real number.

Returns:
difference of the arguments.

Definition at line 84 of file Complex.cpp.

References im, and reo

3.6.3.9 Complex Complex::operator- (const Complex & rhs)

Subtracts two complex numbers.

Returns:
difference of the arguments.

Definition at line 74 of file Complex.cpp.

References im, and reo

3.6.3.10 Complex Complex::operator/ (const Complex & rhs)

Divides two complex numbers.

Returns:
result of the division.

Definition at line 114 of file Complex.cpp.

References im, and re.

Generated. on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

27

3.1 CubicSpline Class Reference

3.6.3.11 void Coroplex::operator= (const double & rhs)

Sets a complex number and a real number equal.

@rhs number to set this one equal to.

Definition at line 48 of file Complex.cpp .

3.6.3.12 void Complex::operator= (const Complex & rhs)

Sets two complex numbers equal.

@rhs number to set this one equal to.

Definition at line 42 of file Complex.cpp.

References im, and reo

3.6.3.13 double Coroplex::real 0
Real part of this number.

Returns:
real part of t his number.

Defini tion at line 32 of file Complex.cpp.

3.6.3.14 Complex Complex::squareroot 0
Calculates the square root of this complex number.

Returns:
square root of this complex number.

Definition at line 174 of file Complex.cpp.

References im, and reo

3.7 CubicSpline Class Refere nce

A I -dimensional (R ' -+ R') cubic spline interpolation.

Inheritance diagram for CubicSpline::

Generated on Wed May 1 11:34:48 2002 for QMc B enver by Doxy gen

28

3 .7 CubicSpline Class Reference

FunctionRl toR I

CubicSpline

CubicSplineWithGeometricProgressionGrid

Public Methods

• CubicSpline ()

Creates an instan ce of this class.

• void opera tor= (const CubicSpline &rhs)

Sets two CubicSpline objects equal.

• void initialize WithFunction Values (Array lD< double> &xInput ,
ArraylD< double > &ylnput, double yPrimeFirst, double yP rime­
Last)

Initializes the spline with the function values at given points plus the deriva­
tive values at the end points.

• void initia lize WithDerivative Values (ArraylD < double > &xlnput,
ArraylD< double> &yPrimelnput, double yFirst)

Initializes the spline with the derivative values at ,given points plus the func­
tion value at the first point .

• void evaluate (double x)

Evaluates the fu nction at x.

• double getFunction Value ()

Gets the Junction value at the la.s t evaluated point.

• double ge tFirstDerivative Value 0
Gets the functi on's first dent/iate at the last evaluated point.

• double getSecondDerivative Value 0
Gets the function's second deriviative at the last evaluated point.

• void toXML (ostream &strm)

Writes the state of this object to an XML stream.

Gen erated o n Wed May 1 11:34:48 2002 fo r Q McBeav er by D oxygen

29

3.7 Cubic Spline Class Reference

Protected Methods

• void evaluate (double x, int index)

Evaluate the function at x when the index 0/ the box o/the domain containing
x is known.

3.7.1 Detailed Description

A I-dimensional (R' --+ R ') cubic spline interpolation.

Definition at line 30 of file CubicSpline.h.

3.7.2 Member Function Documentation

3.7.2.1 void CubicSpline::evaluate (double x, int index) [protected)

Evaluate the function at x when the index of the box of the domain containing
x is known.

Parameters:
x point to evaluate the function.

index index of the box of the domain containing x.

Definition at line 404 of file CubicSpline.cpp.

3.7.2.2 void CubicSpline::evaluate (double x) [virtual)

Evaluates the function at x.

Parameters:
x point to evaluate the function.

Implements FunctionRltoR1 (p.41).

Reimplemented in CubicSplineWithGeornetricProgressionGrid (p. 34).

Definition at line 375 of file CubicSpline.cpp.

Referenced by CubicSpline WithGeometricProgressionGrid: :eval uate ().

3.7.2.3 double CubicSpline::getFirstDerivativeValue 0 [virtual]

Gets the function's first deriviate at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

30

3.7 CubicSpline Class Reference

Returns:
function's deriviative value.

Implements FunctionRltoRI (p.41).

Definition at line 439 of file CubicSpline.cpp.

3 .7.2.4 double C ubicSpline::getFunctionValue 0 [virtual]

Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionRltoRI (p.41).

Definition at line 434 of file CubicSpline.cpp.

3.7.2.5 double CubicSpline::getSecondDerivativeValue 0 [virtual]

Gets the function's second deriviative at the last evaluated point.

Returns:
function's second derivative value.

Implements FunctionRltoRI (p.41).

Definition at line 444 of file CubicSpline.cpp.

3.7.2.6 void
(ArrayID< double >
Input, double yFirst)

CubicS pline: :initialize WithDerivative Values
& ",Input, ArraylD < double > & yPrime-

Initializes the spline with the derivative values at given points plus the function
value at the first point.

Parameters:
xInput x values of the given points.

yPrimelnput derivative values of the given points.

yFirst funct ion value at the first point.

Definition at line 165 of file CubicSpline.cpp.

References ArraylD< double >::allocateO, and ArraylD < T > ::diml0.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by D oxygen

31

3.8 CubicSpline WithGeometricProgressionGrid Class Reference

3.1.2.1 void CubicSpline::initialize WithFunction Values (ArraylD<
double > & xInput, ArraylD< double > & yInput, double yPrime­
Fir8t, double yPrimeLa8t)

Initializes the spline with the function values at given points plus the derivative
values at the end points.

Parameters:
xlnput x values of the given points.

yInput y values of the given points.

yPrimeFirst derivative value at the first point.

yPrimeLast derivative value at the last point.

Definition at line 37 of file CubicSpline.cpp.

References ArraylD< double >::allocateO, and ArraylD< T >::dimIO.

3.1.2.8 void CUbicSpline::operator= (const Cubic Spline & rh8)

Sets two CubicSpline objects equal.

Parameters:
rh8 object to set this object equal to

Definition at line 18 of file CubicSpline.cpp.

References aOJ.ist, aIJ.ist, a2J.ist, a3J.ist, ddfddx, dfdx, f, n, xJ.ist, y J.ist, ypO,
ypJ.ist, and ypend.

Referenced by CubicSpline With GeometricProgressionGrid: :operator= O.

3.1.2.9 void CubicSpline::toXML (ostream & 8trm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 449 of file CubicSpline.cpp.

References ArraylD< double >::diml().

3.8 CubicSpline WithGeometricProgressionGrid
Reference

Class

A I-dimensional (Rl -+ R l) cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship for faster evaluation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

32

3.8 Cubic Spline WithGeometricProgressionGrid Class Reference

Inheritance diagram for CubicSplineWithGeometricProgressionGrid::

FunctionRItoRI

CubicSpline

CubicSplineWithGeometricProgressionGrid

Public Methods

• CubicSpline WithGeometricProgressionGrid ()

Constructs an uninitialized spline.

• void setGridParameters (double beta, double xO)

Sets the value for f3 and Xo used in generating this grid.

• void evaluate (double x)

Evaluates the function at x.

• void operator= (const CubicSpline WithGeometricProgressionGrid
&rhs)

Sets two CubicSpline WithGeometricProgressionGrid objects equal.

• void initialize WithFunction Values (ArraylD< double > &xInput,
ArraylD< double > &ylnput, double yPrimeFirst, double yPrime­
Last)

Initializes the spline with the function values at given points plus the deriva­
tive values at the end points.

• void initialize WithDerivative Values (ArraylD< double> &xInput,
ArraylD< double> &yPrimelnput, double yFirst)

Initializes the spline with the derivative values at given points plus the func­
tion value at the first point.

• double get Function Value ()

Gets the function value at the last evaluated point.

• double getFirstDerivative Value 0
Gets the junction's first deriviate at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

33

3.8 Cubic Spline WithGeometricProgressionGrid Class Reference

• double getSecondDerivative Value 0
Gets the function's second deriviative at the last evaluated point.

• void toXML (ostream &strm)
Writes the state of this object to an XML stream.

Protected Methods

• void evaluate (double X, int index)

Evaluate the function at x when the index of the box of the domain containing
x is known.

3.8.1 Detailed Description

A I-dimensional (R' --7 R') cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship for faster evaluation.

(J is a user provided parameter and Xo is set equal to the first datum used to
initialize the spline.

Definition at line 30 of file CubicSplineWithG eometricProgressionGrid.h.

3.8.2 Member Function Documentation

3.8.2.1 void CubicSpline::evaluate (double x, int index) [protected,
inherited]

Evaluate the function at x when the index of the box of the domain containing
x is known.

Parameters:
x point to evaluate the function.

index index of t he box of t he domain containing x.

Definition at line 404 of file CubicSpline.cpp.

3 .8.2.2 void CubicSpline WithGeometricProgressionGrid: :evaluate
(double x) [virtual]

Evaluates the function at x.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

34

3.8 CubicSpline WithGeometricProgressionGrid Class Reference

Parameters:
x point to evaluate the function.

Reimplemented from CubicSpline (p.30).

Definition at line 29 of file CubicSplineWithGeometricProgressionGrid.cpp.

References CubicSpline::evaluateO.

3.8.2.3 double CubicSpline::getFirstDerivativeValue 0 [virtual,
inherited]

Gets the function's first deriviate at the last evaluated point.

Returns:
function's deriviative value.

Implements FunctionRltoRl (p.41).

Definition at line 439 of file CubicSpline.cpp.

3.8.2.4 double
inherited]

CUbicSpline: :getFunction Value

Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionRltoRl (p.41).

Definition at line 434 of file CubicSpline.cpp.

o [virtual,

3.8.2.5 double CubicSpline::getSecondDerivativeValue 0 [virtual,
inherited]

Gets the function's second deriviative at the last evaluated point.

Returns:
function's second derivative value.

Implements FunctionRltoRl (p. 41).

Definition at line 444 of file CubicSpline.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

35

3.8 Cubic Spline WithGeollletricProgressionGrid Class Reference

3.8.2.6 void
(ArraylD< double >
Input, double yFirst)

CubicSpline::initialize WithDerivative Values
& xInput, ArraylD< double > & yPrime­
[inherited]

Initializes the spline with the derivative values at given points plus the function
value at the first point.

Parallleters:
xlnput x values of the given points.

yPrimelnput derivative values of the given points.

yFirst function value at the first point .

Definition at line 165 of file CubicSpline.cpp.

References ArraylD< double >::allocateO, and ArraylD< T >::dimlO.

3.8.2.7 void CUbicSpline::initializeWithFunctionValues (ArraylD<
double > & xInput, ArraylD< double > & yInput, double yPrime­
First, double yPrimeLast) [inherited]

Initializes the spline with the function values at given points plus the derivative
values at the end points.

Parallleters:
xlnput x values of the given points.

ylnput y values of the given points.

yPrimeFirst derivative value at the first point.

yPrimeLast derivative value at the last point.

Definition at line 37 of file CubicSpline.cpp.

References ArraylD< double >::allocateO, and ArraylD< T >::diml0.

3.8.2.8 void
Grid::operator=
& rhs)

Cubic Spline WithGeollletricProgression­
(const CubicSpline WithGeornetricProgressionGrid

Sets two CubicSplineWithGeometricProgressionGrid objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 38 of file CubicSplineWithGeometricProgressionGrid.cpp.

References beta, CubicSpline::operator=O, and xO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

36

3.9 Exception Class Reference

3.8.2.9 void CUbicSpline WithGeometricProgressionGrid::setGrid­
Parameters (double beta, double xO)

Sets the value for !3 and Xo used in generating this grid.

Parameters:
beta the parameter used in generating the grid Xi+l = j3xi .

xO the first point in the grid Xi+l = j3Xi.

Definition at line 22 of file CubicSplineWithGeometricProgressionGrid.cpp.

3.8.2.10 void CubicSpline::toXML (ostream & strm) [inherited]

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 449 of file CubicSpline.cpp.

References ArraylD< double >::dimlO.

3.9 Exception Class Reference

An Exception is thrown when an error occurs.

Inheritance diagram for Exception::

Public Methods

• Exception 0
Creates an exception .

• Exception (string message)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

37

3.10 FixedCuspPadeCorrelationFunction Class Reference

Creates an exception .

• void set Message (string message)

Sets the error message for the exception .

• string get Message 0
Gets the error message for the exception.

3.9.1 Detailed Description

An Exception is thrown when an error occurs.

This can be extended to deal with special types of errors.

Definition at line 23 of file Exception.h.

3.9.2 Constructor & Destructor DocUlllentation

3.9.2.1 Exception::Exception (string message)

Creates an exception.

Parallleters:
me88age A message describing what went wrong.

Definition at line 19 of file Exception.cpp.

References setMessage().

3.10 Fixed CuspPadeCorrelationFunction Class Reference

Correlation function which uses a Pade expansion to describe particle-particle
interactions.

Inheritance diagram for FixedCuspPadeCorrelationFunction::

QMCCorrelationFunction

FixedCuspPadeCorrelationFunction

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

38

3.10 FixedCuspPadeCorrelationFunction Class Reference

Public M e thods

• void initializeParameters (ArraylD< int > &BeginninglndexOf­
P arameterType, ArraylD< double> &Para meters, ArraylD< int >
&BeginninglndexOfConstantType, ArraylD < double > &Constants)

Initializes the correlation function with a specified set of parameters.

• void evaluate (double r)

E valuates the correlation funct ion and it IS first two derivatives at r.

• bool isSingular ()

Returns true if the correlation junction has a singularity in the domain r ;::: 0,
and false otherwise.

• double getFunction Value ()

Gets the value of the correlation junction for the last evaluated r.

• double getFirstDerivativeValue ()

Gets the value of the first derivative of the correlation Junction for the last
evaluated r.

• double getSecondDerivative Value ()

Gets the value of the second derivative of the correlation function for the last
evaluated r.

3.10.1 Detailed Description

Correlation function which uses a Pade expansion t o describe particle-particle
interactions.

The cusp condition is a fixed constant, and all other parameters will be adjusted
during an optimization.

Definition at line 26 of file FixedCuspPadeCorrelationFunction.h .

3.10.2 M ember Function Documentation

3.10.2.1 void FixedCuspPadeCorrelationFunction::initialize­
Parameters (ArraylD< int > & B eginninglndexOfParameterType,
Array1D < double > & Parameters, Array1D < int > & Beginning­
Index Of Constant Type, ArraylD< double> & Constants) [virtual]

Initializes the correlation function with a specified set of parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

39

3.11 FunctionRltoR1 Class Reference

This must be called every time the parameters are changed.

Implements QMCCorrelationFunction (p.58).

Definition at line 15 of file FixedCuspPadeCorrelationFunction.cpp.

References ArraylD< T >::diml O, a nd Polynomial::initializeO.

3.11 FunctionRltoRl Class Reference

An interface for a function from R 1 -t R l.

Inheritance diagram for FunctionRltoRl::

FunctionRltoRl

CubicSpline

CubicSplineWithGeometricProgress ionGrid

Public Methods

• virtual -FunctionRltoR1 0
Virtu.al destructor.

• virtual void evaluate (double x) =0
Evaluates the fu nction at x.

• virtual double getFunction Value () = O
Gets the function value at the last evaluated point.

• virtual double getFirstDerivativeValue ()=O

Polynomial

QMCPolynomial

Gets the function's first denviate at the last evaluated point.

• virtual double getSecondDerivativeValue 0 =0
Gets the function's second dent/iative at the last evaluated point.

3.11.1 Detailed Description

An interface for a function from R 1
-)- R 1 .

Definition at line 24 of file FunctionRltoRl. h.

Gener-ated on Wed May 1 11:34:48 2002 for QMeBeaver by Doxygen

40

3.11 FunctionR1toR1 Class Reference

3.11.2 Member Function Documentation

3.11.2.1 virtual void FunctionRltoRl::evaluate (double x) [pure
virtual]

Evaluates the function at x.

Parameters:
x point to evaluate the function.

Implemented in CubicSpline (p. 30), Cubic Spline WithGeometric­
ProgressionGrid (p. 34), and Polynomial (p.47).

3.11.2.2 virtual double FunctionRltoRl::getFirstDerivativeValue 0
[pure virtual]

Gets the function's first deriviate at the last evaluated point.

Returns:
function's deriviative value.

Implemented in CubicSpline (p. 30), and Polynomial (p.47).

3.11.2.3 virtual double FunctionRltoRl::getFunctionValue 0
[pure virtual]

Gets the function value at the last evaluated point.

Returns:
function value.

Implemented in CubicSpline (p. 31), and Polynomial (p.48).

3.11.2.4 virtual double FunctionRltoRl::getSecondDerivativeValue
o [pure virtual]

Gets the function's second deriviative at the last evaluated point.

Returns:
function's second derivative value.

Implemented in CubicSpline (p. 31), and Polynomial (p.48).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

41

3.12 PadeCorrelationFunction Class Reference

3.12 PadeCorrelationFunction Class Reference

Correlation function which uses a Pade expansion to describe particle-particle
interactions.

Inheritance diagram for PadeCorrelationFunction::

QMCCorrelationFunction

PadeCorrelationFunction

Public Metbods

• void initializeParaIDeters (Array1D< int > &BeginninglndexOf­
ParameterType, Array1D< double> &Parameters, Array1D< int >
&BeginninglndexOfConstantType, ArraylD< double> &Constants)

Initializes the correlation funct ion with a specified set of parameters.

• void evaluate (double r)

Evaluates the correlation function an d it's first two derivatives at r.

• bool isSingular 0
Returns true if the correlation function has a singularity in the domain r 2: 0,
and false otherwise.

• double get Function Value 0
Gets the value of the correlation function for the last evaluated r.

• double getFirstDerivative Value 0
Gets the value of the first derivative of the correlation function for the last
evaluated T.

• double getSecondDerivative Value 0
Gets the value of the second derivative of the correlation function for the last
evaluated r.

3.12.1 Detailed Description

Correlation function which uses a Pade expansion to describe particle-particle
interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

42

3.13 ParameterScorePair Class Reference

All parameters will be adjusted during an optimization.

Definition at line 26 of file PadeCorrelationFunction.h.

3.12.2 Member Function Documentation

3.12.2.1 void PadeCorrelationFunction::initializeParameters
(ArraylD< int > & BeginninglndexOfParameterType, ArraylD<
double > & Parameters, Array1D< int > & BeginninglndexOf­
Constant Type, ArraylD< double> & Constants) [virtual]

Initializes the correlation function with a specified set of parameters.

This must be called every time the parameters are changed.

Implements QMCCorrelationFunction (p. 58).

Definition at line 15 of file PadeCorrelationFunction.cpp.

R.eferences ArraylD< T >::diml0, and Polynomial::initializeO.

3.13 ParameterScorePair Class Reference

A container which holds a set of parameters and an associated scalar score value.

Public Methods

• ParameterScorePair ()

Creates an uninitialized instance of this class with no allocated memory.

• ParameterScorePair (double score, Array1D< double> ¶me­
ters)

Creates an uninitialized instance of this class and sets the score and param­
eter values.

• ParameterScorePair (const ParameterScorePair &PSP)

Creates an instance of this class which is equal to another instance.

• double getS core 0

Gets the score.

• ArraylD< double> * getParameters 0

Gets the parameters.

• void operator= (const ParameterScorePair &rhs)

Set two ParameterScorePair objects equal.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

43

3.13 ParameterScorePair Class Reference

• bool operator< (ParameterScorePair &PSP)

An operator which orders ParameterScorePair objects based on their scores.

3.13.1 Detailed Description

A container which holds a set of parameters and an associated scalar score value.

Definition at line 23 of file ParameterScorePaiLh.

3.13.2 Constructor & Destructor Documentation

3.13.2.1 ParallleterScorePair::ParameterScorePair (double score,
Array1D< double> & parameters)

Creates an uninitialized instance of this class and sets the score and parameter
values.

Parameters:
score Score.

parameters Parameters.

Definition at line 19 of file ParameterScorePaiLcpp.

3.13.3 Melllber Function Doclllllentation

3.13.3.1 Array1D< double> * ParallleterScorePair::getParameters

o
Gets the parameters.

Returns:
paramters.

Definition at line 57 of file ParameterScorePaiLcpp.

Referenced by CKGeneticAIgorithml::optimize().

3.13.3.2 double PararneterScorePair::getScore 0
Gets the score.

Returns:
score.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

44

3.14 Polynomial Class Reference

Definition at line 52 of file ParameterScorePair.cpp.

Referenced by CKGeneticAlgorithml::optimizeO.

3.13.3.3 void ParameterScorePair::operator= (const Parameter­
ScorePair & rhs)

Set two ParameterScorePair objects equal.

Parameters:
rhs object to set this object equal to.

Definition at line 31 of file ParameterScorePair.cpp.

References Parameters, and Score.

3.14 Polynomial Class Reference

A one dimensional real polynomial.

Inheritance diagram for Polynomial::

Public Methods

• Polynomial 0
Constructs an uninitialized instance of this class.

• Polynomial (ArraylD< double> &coeffs)

Constructs and initializes an intance of this class.

• void initialize (ArraylD< double> &coeffs)

Initializes this object.

• void evaluate (double x)

Evaluates the function at x.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

45

3.14 Polynomial Class Refere nce

• double getFunction Value 0
Gets the function value at the last evaluated point.

• double getFirstDerivative Value 0
Gets the fu nction's first deriviate at the last evaluated poin t.

• double getSecondDerivative Value 0
Gets the function's second derivia.tive at the last eva.luated point.

• Array1D< Complex> get R oots 0
Gets the roots of the polynomial.

Protected Methods

• int getNulllberCoefficients 0
Gets the number of coefficients in the polynomial.

• double getCoefficient (int i)

Gets the ith coefficient of the polynomial.

3.14.1 Detailed Description

A one dimensional real polynomial.

n

P (x) = L Ci x i

i=O

Definit ion at line 28 of file Polynomial.h.

3 .14.2 Constructor & Destructor Doc umentation

3.14.2.1 Polynomial::Polynomial (Array1D < double> & Coeff8)

Constructs and initializes an intance of this class.

Parameters:
coeff8 set of polynomial coefficients to use for the polynomial.

Definiti on at line 20 of file Polynomial.cpp.

References initialize O.

Gen e rate d o n Wed May 1 11:34:48 2002 for QMc B eover by Doxygen

46

3.14 Polynomial Class Reference

3.14.3 Member FUnction Documentation

3.14.3.1 void Polynornial::evaluate (double x) [virtual]

Evaluates the function at x.

Parameters:
x point to evaluate the function.

Implements FunctionRltoRl (p. 41).

Definition at line 61 of file Polynomial.cpp.

Referenced by PadeCorrelationFunction::evaluateO, FixedCuspPade­
CorrelationFunction: :evaluate() l getFirstDeri vative Val ue () l getFunction­
ValueO, and getSecondDerivativeValueO·

3.14.3.2 double Polynornial::getCoefficient (int i) [protected]

Gets the ith coefficient of the polynomial.

Where the polynomial is defined such that
n

P(x) = LCiXi
i=O

where n is the order of the polynomial and Ci is the ith coefficient.

Parameters:
i index of the coefficient to return.

Returns:
ith coefficient of the polynomial.

Definition at line 122 of file Polynomial.cpp.

3.14.3.3 double Polynornial::getFirstDerivativeValue 0 [virtual]

Gets the function's first deriviate at the last evaluated point.

Returns:
function's deriviative value.

Implements FunctionRltoRl (p.41).

Definition at line 97 of file Polynomial.cpp.

References evaluateO.

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

47

3.14 Polynomial Class Reference

3.14.3.4 double Polynomial::getFunctionValue 0 [virtual]

Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionRltoRI (p.4I).

Definition at line 87 of file Polynomial.cpp.

References evaluateO.

Referenced by PadeCorrelationFunction::evaluateO , and FixedCuspPade­
CorrelationFunction: :eval uateO.

3.14.3.5 int Polynomial::getNumberCoefficients 0 [protected]

Gets the number of coefficients in the polynomial.

This is one larger than the order of the polynomial.

Returns:
number of coefficients in the polynomial.

Definition at line 117 of file Polynomial.cpp.

References ArraylD< double >::dimlO.

3 .14.3.6 ArraylD< Complex> Polynomial::getRoots 0
Gets the roots of the polynomial.

Returns:
roots of the polynomial.

Exceptions:
Exception (p.37) if problems were encounted during the foot calculation.

Definition at line 127 of file Polynomial.cpp.

References ArraylD< double >::dimIO.

Referenced by QMCPolynomial::hasNonNegativeZeroesO.

3 .14.3.7 double
[virtual]

Polynomial:: getSecondDerivati ve Value

Gets the function's second deriviative at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

o

48

3.15 QMCBasisFunction Class Reference

Returns:
function's second derivative value.

Implements FunctionRltoR1 (p.4I).

Definition at line 107 of file Polynomial. cpp.

References evaluateO .

Referenced by PadeCorrelationF\mction: :evaluateO. a nd F ixedCuspPade­
CorrelationFunction: :evaluateO.

3.14.3.8 void Polynornial::initialize (Array1D < double> & coeffs)

Initializes this object.

Parameters:
coeffs set of polynomial coefficients to use for the polynomial.

Definition at line 39 of file Polynomial.cpp.

References ArraylD< double >::allocateO . and ArraylD< double >::dimI O.

Referenced by PadeCorrelationFunction::initializeParametersO. FixedCusp­
PadeCorrelationFunction: :initializeP arametersO. and PolynomialO.

3.15 QMCBasisFunction Class Reference

This class stores all of the parameters that a gaussian basis set is constructed
from for a MOLECULE.

Public Methods

• QMCBasisFunction 0
Creates an instance of th e class,

• void initialize (QMCfiags .flags. QMCMolecule .molecule)

Initializes the class with dat a input to control the calcu.lation and provide the
molecular geometry.

• double getPsi (int whichBF. Array2D< double> &X. int elNumber)

Calculates the value of a basis functi on .

• Array1D < double> getGradPsi (int whichBF . Array2D< double>
&X. int elN umber)

Calculates the gradient of a basis function.

Generated on W ed May 1 11:34:46 2002 fo r QMcBeaver by Doxygen

49

3.15 QMCBasisFunction Class Refe rence

• double getLaplacianPsi (int whichBF, Array2D < double> &X, int
elNumber)

Calculates the laplacian of a basis function.

• void operator= (canst QMCBasisFunctian &rhs)

Sets two QMCBasisFunctions objects equal.

• void r ead (string runfile)

Loads the state of the object from a file .

• int getNumberBasisFunctions (int i)

Returns how many basis junctions are located on a specific atom.

Friends

• istream & operator» (istream &strm, QMCBasisFunction &rhs)
Loads the state of the object from an input stream.

• astream & operator« (ostream &strm, QMCBasisFunctian &rhs)

Writes the state of the object to an output stream.

3.15.1 D etailed Description

This class stores all of the parameters that a gaussian basis set is constructed
from for a MOLECULE.

This contains a QMCBasisFunctianCaeflicent for each atom type.

Defini t ion at line 36 of file QMCBasisFunctian.h.

3.15 .2 M ember Function Doc umentation

3.15.2.1 Array1D < double > QMCBasisFunction::getGradPsi (int
whichBF, Array2D < double > & X, int elNumber)

Calculates the gradient of a basis function.

Parameters:
whichBF which basis function to evaluate

X 3N dimensional configuration of electrons represented by a N x 3 matrix

elNumber which electron in X to calculate the basis function for

Generated on Wed May 1 11:34:48 2002 for QMc Beaver by D oxygen

50

3.15 QMCBasisFunction Class Reference

Returns:
basis function gradient value

Definition at line 361 of file QMCBasisFunction.cpp.

References QMCMolecule::Atom_Positions.

3.15.2.2 double QMCBasisFunction::getLaplacianPsi (int whichBF,
Array2D< double> & X, int elNumber)

Calculates the laplacian of a basis function.

Parameters:
whichBF which basis function to evaluate

X 3N dimensional configuration of electrons represented by a N x 3 matrix

elNumber which electron in X to calculate the basis function for

Returns:
basis function laplacian value

Definition at line 377 of file QMCBasisFunction.cpp.

References QMCMolecule::Atom-Positions.

3.15.2.3 int QMCBasisFunction::getNurnberBasisFunctions (int i)

Returns how many basis functions are located on a specific atom.

This can probably be depricated once we have a good initialization scheme and
not MikesJ acked one.

Parameters:
i index of atom

Returns:
number of basis functions on the atom

Definition at line 128 of file QMCBasisFunction.cpp.

References QM CBasisFunction Coefficients: :getN umber BasisFunctionsO.

3.15.2.4 double QMCBasisFunction::getPsi (int whichBF,
Array2D< double> & X, int elNumber)

Calculates the value of a basis function.

Parameters:
whichBF which basis function to evaluate

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

51

3.15 QMCBasisFunction Class Reference

X 3N dimensional configuration of electrons represented by a N x 3 matrix

elNumber which electron in X to calculate the basis function for

Returns:
basis function value

Definition at line 346 of file QMCBasisFunction.cpp.

References QMCMolecule::AtomJ'ositions.

3.15.2.5 void QMCBasisFunction::initialize (QMCflags * flags, QM­
CMolecule * molecule)

Initializes the class with data input to control the calculation and provide the
molecular geometry.

Parameters:
flags input control information

molecule information about the specific molecule

Definition at line 19 of file QMCBasisFunction.cpp.

References Array1D< double >::allocateO.

3.15.2.6 void QMCBasisFunction::operator= (const QMCBasis­
Function & rhs)

Sets two QMCBasisFunctions objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 116 of file QMCBasisFunction.cpp.

References BFCoeffs, BFLookupTable, flags, Molecule, N-BasisFunctions,
Splines, use....splines, and Xcalc.

3.15.2.7 void QMCBasisFunction::read (string runfile)

Loads the state of the object from a file.

Parameters:
runfile file to load

Definition at line 175 of file QMCBasisFunction.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

52

3.16 QMCBasisFunctionCoefficients Class Reference

3.16 QMCBasisFunctionCoefficients Class Reference

This class stores all of the parameters that a gaussian basis set is constructed
from for an ATOM.

Public Methods

• QMCBasisFunctionCoefficients 0
Creates an instance of the class.

• int getNurnberBasisFunctions 0
Gets the number of basis functions.

• void operator= (const QMCBasisFunctionCoefficients &rhs)

Sets two QMCBasisFunctionCoefficients ob}ects equal.

• void read (string runfile)

Loads the state of the object from a file.

Public Attributes

• Array3D< double> Coeffs

Array containing the parameters for the basis junctions where CoefJs[bf
#j[Gau55ian #j[O=exp,l=contractj.

• Array2D< int > xyz_powers

Array containing the k,l,m parameters which indicate the '1angular momen­
tum state" of the basis junction (b1 = x kylzm * RadialFunction(r)) where
xyz{bf # j[O=k, 1 = 1, 2=mj.

• Array1D< int > N _Gauss

Array containing the number of gau8sians that need to be contracted for the
radial portion of the basis function (bf = xkyl zm *RadiaIFunction(r)) where
N-Gau55[bj #j. .

• Array1D< string> Type

Array containing the type of the basis function where Type[bJ #).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

53

3.16 QMCBasisFunctionCoefficients Class Reference

Friends

• istream & operator> > (istream &strm, QMCBasisFunctionCoefficients
&rhs)

Loads the state of the object from an input stream .

• ostream & operator« (ostream &strm, QMCBasisFunctionCoefficients
&rhs)

Writes the state of the object to an output stream.

3.16.1 Detailed Description

This class stores all of t he parameters that a gaussian basis set is constructed
from for an ATOM.

For example, a gaussian basis function is

Ngaussians-l

Gbf(x,y,z)::::: xkylzm L aie- b;r
2

i=Q

where k,l,m are determined by the type of basis function , ai is the contraction
parameter, and bi is t he exponential parameter. The particular contraction pa­
rameter is chosen so that the basis fUDction is normalized. This is slightly dif­
ferent than what is common with linear algebra quantum mechanics programs.
The contraction parameters used here can be obtained using the contraction
and exponential parameters and k, l,m from a linear algebra basis file. You will
have to look up the formula for doing this.

This reads in basis function coefficients in the following format ...

Ngaussians Type
exp_param Gontraction_param

Ngaussians Type
exp_param contractioD_param

etc ...

Definition at line 49 of file QMCBasisFunctionCoefficients.h.

Generated on Wed May 1 11:34:48 2002 ro r QMcBeaver by Doxygen

54

3.16 QMCBasisFunctionCoefficients Class Reference

3.16.2 Melllber Function Doclllllentation

3.16.2.1 int
Functions 0

QMCBasisFunctionCoefficients::getNulllberBasis-

Gets the number of basis functions.

Returns:
number of basis functions

Definition at line 20 of file QMCBasisFunctionCoefficients.cpp.

Referenced by QMCBasisFnnction::getNumberBasisFnnctions().

3.16.2.2 void QMCBasisFunctionCoefficients::operator=
QMCBasisFunctionCoeflicients & rh8)

Sets two QMCBasisFnnctionCoefficients objects equal.

Parameters:
rh8 object to set this object equal to

Definition at line 25 of file QMCBasisFnnctionCoefficients.cpp.

(const

References Coeffs, Label. Max_Gaussians, N_Gauss, N_Orbitals, Type, and xyz_­
powers.

3.16.3 Member Data Doclllllentation

3.16.3.1 Array1D<string> QMCBasisFunctionCoeflicients::Type

Array containing the type of the basis function where Type[bf #].

The type is a string representation of the II angular momentum state." For ex­
ample, "px", II dxy" , and II fxxx" are all types of basis functions.

Definition at line 101 of file QMCBasisFnnctionCoefficients.h.

Referenced by operator= ().

3.16.3.2 Array2D<int> QMCBasisFunctionCoeflicients::xyz_powers

Array containing the k,l,m parameters which indicate the" angular momentum
state" of the basis function (bf = xkylzm * RadiaIFunction(r») where xyz[bf
lIO= k, 1=1,2=m].

For example, a "px" orbital would have (k,l,m) = (1,0,0).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Do:x:ygen

55

3.17 QMCCopyright Class Reference

Definition at line 83 of file QMCBasisFunctionCoefficients.h.

Referenced by operator=().

3.17 QMCCopyright Class Reference

Central localtion for all copyright information relevant to QMcBeaver.

Friends

• ostream & operator« (ostream &strm, QMCCopyright &rhs)

Writes the copyright information to a stream in a human readable format.

3.17.1 Detailed Description

Central localtion for all copyright information relevant to QMcBeaver.

Definition at line 25 of file QMCCopyright.h.

3.18 QMCCorrelatedSampling VMCOptimization
Reference

Class

Optimize the parameters in a variational QMC (VMC) calculation using the
correlated sampling method.

Static Public Methods

• void optimize (QMClnput 'input)

Optimizes the parameters in a variational QMC (VMC) calculation using
the correlated sampling method.

3.18.1 Detailed Description

Optimize the parameters in a variational QMC (VMC) calculation using the
correlated sampling method.

Definition at line 26 of file QMCCorrelatedSamplingVMCOptimization.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

56

3.19 QMCCorrelationFunction Class Reference

3.18.2 Member Function Documentation

3.18.2.1 void QMCCorrelatedSamplingVMCOptimization::optimize
(QMCInput * input) [static]

Optimizes the parameters in a variational QMC (VMC) calculation using the
correlated sampling method.

Parameters:
input data input to control the calculation.

Definition at line 15 of file QMCCorrelatedSamplingVMCOptimization.cpp.

References ArraylD< T >::arrayO, ArraylD< T >::diml0, QMCObjective­
Function::initialize(), QMCOptimizationFactory::optimizationAlgorithm­
FactoryO, QMCOptimizationAlgorithm::optimizeO, and QMCReadAnd­
EvaluateConfigs:: workerCalculateProperties().

Referenced by QMCManager::optimizeO.

3.19 QMCCorrelationFunction Class Reference

Interface for a parameterized function describing the interaction of two particles.

Inheritance diagram for QMCCorrelationF\mction::

QMCCorreiationFunction

FixedCuspPadeCorrelationFunction PadeCorrelationFunction

Public Methods

• virtual ~QMCCorrelationFunction 0

Virtual destructor.

ZeroCorrelationFullction

• virtual void initializeParameters (ArraylD< int > &Beginning­
IndexOfParameterType, ArraylD< double> &Parameters, ArraylD<
int > &BeginninglndexOfConstantType, Array1D< double > &Con­
stants)=O

Initializes the correlation junction with a specified set of parameters.

• virtual bool isSingular 0 =0

Returns true if the correlation junction has a singularity in the domain r ~ 0,
and false otherwise.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

57

3.20 QMCCorrelationFunctionFact or y Class R eference

• vir t ual void evaluate (double r)=O

Evaluates the correlation junction and it 's firs t two derivatives at r.

• virtual double get Function Value 0=0

Gets the value of the correlation function for the last evaluated r.

• virtual double getFirstDerivative Value 0 =0
Gets the value of the first derivative of the correlation junction fo r the last
evaluated r.

• virtual double getSecondDerivativeValue 0 = 0

Gets the value of the second derivative oj the correlation Junction Jor the last
evaluated r.

3.19.1 D et a iled Description

Interface for a parameterized function describing t he interaction of two part icles.

T he t rial wavefunction for QMC is ~QMC = ~Tdal J where J =
exp(L;ui,j(r i,j)) . Uij(rij) are the QMCCorrelationFunctions describing the in­
teract ions of particles i and j.

Definit ion at line 27 of file QMCCorrelationFunction.h .

3.19. 2 M ember Function Documen tation

3 .19. 2 .1 virtual void QMC C orrela tionFunction::initiaIize­
Par a m et er s (Ar rayID< int > & B eginnin glndexOfParameterType,
ArraylD< double > & Parameters, ArraylD< int > & B eginning­
IndexOfConstantType, ArraylD< d o uble > & Constants) [pure
v i r t ua l]

Init ializes the correlation function with a specified set of parameters .

T his must be called every time t he parameters are changed .

Implemented in FixedCuspPadeCorrelat ionFunction (p .39), Pade­
C orrelationFunction (p . 43), and ZeroC orr ela tionFunction (p.164).

3 .20 QMCCorrelationFunctionFactory Class Reference

Object factory which returns the correct QMC C orr elationFunction (p.57)
when a string keyword describing the correlation function is provided.

Generat ed on Wed M ay 1 1 1:34 :48 200 2 fo r Q McB eaver b y D oxygen

58

3.21 QMCCorrelationFunctionPararneters Class Reference

Static Public Methods

• QMCCorrelationFunction * correlationFunctionFactory (string
&Type)

Returns the correct QMCCorrelationFunction (p.57) when a string key~
word describing the correlation function is provided.

3.20.1 Detailed Description

Object factory which returns the correct QMCCorrelationFunction (p.57)
when a string keyword describing the correlation function is provided.

Definition at line 31 of file QMCCorrelationFunctionFactory.h.

3.21 QMCCorrelationFunctionParameters Class Refer­
ence

This is a collection of parameters and related functions which describe the in­
teraction of two particles of specific types.

Public Methods

• QMCCorrelationFunctionParameters ()

Creates an instance of the class.

• QMCCorrelationFunctionPararneters
FunctionParameters &rhs)

(const QMCCorrelation-

Creates an instance of the class that is identical to another instance of the
class.

• rvQMCCorrelationFunctionPararneters ()

Deallocates all of the memory used by the object and prepares it to be de~

strayed.

• Array1D< double> getParameters ()

Gets the parameters describing the particle~particle interactions.

• string getParticlel Type ()

Gets the first particle type in a particlel~particle2 interaction described by
this object.

• string getParticle2Type ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

59

3.21 QMCCorrelationFunctionParaITleters Class Reference

Gets the second particle type in a particlel-particle2 interaction described by
this object.

• int getTotalNumberOfParameters 0
Gets the total number of parameters used to describe the particle-particle
interaction.

• QMCCorrelationFunction * getCorrelationFunction 0
Gets the parameterized QMCCorrelationFunction (p.57) used in QMC­
Jastrow (p.74) to describe the particular particle-particle interaction when
calculating the Jastrow /unction.

• void set Parameters (ArraylD< double> ¶ms)

Sets the parameters describing the particle-particle interaction.

• void setParticiel Type (string val)

Sets the type of particle1 for the particular particle-particle interaction de­
scribed by this obJ·ect.

• void setParticle2Type (string val)

Sets the type of particle2 for the particular particle-particle interaction de­
scribed by this object.

• bool isSingular 0
Returns true if the parameterized correlation function described by this object
is singular on the positive real axis and false otherwise.

• void operator= (const QMCCorrelationFunctionParameters &rhs)

Sets two QMCCorrelationFunctionParameters objects equal.

• void read (istream &strm)

Loads the state of the object from an input stream.

Friends

• ostream & operator« (ostream &strm, QMCCorrelationFunction­
Parameters &rhs)

Writes the state of the object to an output stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

60

3.21 QMCCorrelationFunctionParameters Class Reference

3.21.1 Detailed Description

This is a collection of parameters and related functions which describe the in­
teraction of two particles of specific types.

For example, an instance of this class could hold the information describing the
interaction of an up spin electron and a hydrogen nucleus or two down spin
electrons.

The interactions are parameterized in terms of "parameters" and "constants."
"parameters" are modified during optimizations, and "constants" are not.

Definition at line 36 of file QMCCorrelationFunctionParameters.h.

3.21.2 Constructor & Destructor Documentation

3.21.2.1 QMCCorrelationFunctionParameters::QMCCorrelation­
FunctionParameters (const QMCCorrelationFunctionParameters &
rhs)

Creates an instance of the class that is identical to another instance of the class.

Parameters:
rhs object to copy

Definition at line 250 of file QMCCorrelationFunctionParameters.cpp.

3.21.3 Member Function Documentation

3.21.3.1 QMCCorrelationFunction *
Parameters::getCorrelationFunction ()

QMCCorrelationFunction-

Gets the parameterized QMCCorrelationFunction (p.57) used in QMC­
Jastrow (p.74) to describe the particular particle-particle interaction when
calculating the J astrow function.

Returns:
function describing getParticle1 TypeO (p.62) -getParticle2TypeO
(p.62) interactions

Definition at line 307 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMCJastrowElectronElectron::evaluateO.

3.21.3.2 Array1D< double > QMCCorrelationFunction-
Parameters::getParameters 0
Gets the parameters describing the particle-particle interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

61

3.21 QMCCorrelationFunctionParameters Class Reference

Returns:
parameters describing particle-particle interactions.

Definition at line 15 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMCJastrowParameters::getParametersO.

3.21.3.3 string
Particle! Type 0

QMCCorrelationFunctionParameters::get-

Gets the first particle type in a particlel-particle2 interaction described by this
object .

Returns:
particle type

Definition at line 257 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMCJastrowParameters::readO.

3.21.3.4 string
Particle2Type 0

QM C CorrelationFunctionParameters: :get-

Gets the second particle type in a particlel-particle2 interaction described by
this object.

Returns:
particle type

Definition at line 262 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMCJastrowParameters::readO.

3.21.3.5 int QMCCorrelationFunctionPararneters::getTotal-
NurnberOfPararneters 0
Gets the total number of parameters used to describe the particle-particle in­
teraction.

Returns:
total number of parameters

Definition at line 267 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMCJastrowParameters::getParametersO, and QMCJastrow­
Parameters: :setParameter Vector O.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

62

3.21 QMCCorrelationFunctionParameters Class Reference

3.21.3.6 bool QMCCorrelationFunctionPararneters::isSingular 0
Returns true if the parameterized correlation function described by this object
is singular on the positive real axis and false otherwise.

Returns:
true if the current parameterization of the correlation function is singular
on the positive real axis and false otherwise

Definition at line 326 of file QMCCorrelationFunctionParameters.cpp.

References QM CCorrelationFunction: :isSingularO.

3.21.3.7 void QMCCorrelationFunctionParameters: :operator=
(const QMCCorrelationFunctionParameters & rhs)

Sets two QMCCorrelationFunctionParameters objects equal.

Parameters:
rhs object to set this object eqal to

Definition at line 20 of file QMCCorrelationFunctionParameters.cpp.

References BeginningIndexOfConstantType, BeginningIndexOfParameter­
Type, Constants, CorrelationFunctionType, NumberOfConstants, NumberOf­
ConstantTypes, NumberOfParameters, NumberOfParameterTypes, Parame­
ters, Partic1eTypes, TotalNumberOfConstants, and TotalNumberOfParameters.

3.21.3.8 void QMCCorrelationFunctionParallleters::read (istream &
strm)

Loads the state of the object from an input stream.

Parallleters:
strm input stream

Definition at line 54 of file QMCCorrelationFunctionParameters.cpp.

References ArraylD< double >::allocateO, ArraylD< int >::allocateO,
ArraylD< string >::allocateO, ArraylD< double >::deallocateO, ArraylD<
int >::deallocateO, and StringManipulation::toFirstUpperRestLower().

Referenced by QMCJastrowParameters::read().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

63

3.22 QMCDerivativeProperties Class Reference

3.21 .3.9 void QMCCorrelationFunctionParameters::setPararnete rs
(ArraylD< double > & params)

Sets the parameters describing the particle-particle interaction.

Parameters:
params new set of parameters

Definit ion a t line 272 of file QMCCorrelationFunctionPa ra meters.cpp .

References ArraylD < double > ::dimI O, and ArraylD < T >: :diml O.

Referenced by QMCJ astrow Parameters::setParameter VectorO.

3.22 QMCDerivativeProperties Class Reference

All of the calculated quantities and properties that are derived from quant it ies
and properties evaluated during a calculation.

Public Methods

• QMCDerivativeProperties (QMCproperties . properties, double
dt)

Creates and init i!2lizes an instance of this class.

• double getEffectiveTimeStep 0
Gets the effective time step for the calculation.

• double ge t Effective Time Step Variance 0
Gets the variance oj the calculated effective time s tep for the calculation.

• double ge tEffectiveTimeStepStandardDeviation 0
Gets the standard deviation of the calcu.lated effective time step /0 1' the cal­
culation.

• double ge t VirialRatio 0
Gets the virial ratio fo r the calculation.

• double getVirialRatioVariance 0
Gets the variance of the calcu.lated vinal ratio for the calculation.

• double getVirialRatioStandardDeviation ()

Gets the s tandard deviation of the calculated virial ratio for the calculation.

Generated on W e d May 1 11:34:48 2002 fo l" Q M cBeave r by D o x y g e n

64

3.22 QMCDerivativeProperties Class R eference

Friends

• ostream & operator « (ostream &strm, QMCDerivativeProperties
&rhs)

Formats and prints the properti.es to a stream in human readable /romat .

3.22.1 D etailed Description

All of the calculated quantities and properties that are derived from quantities
and properties evaluated during a calculation.

Definition at line 23 of file QMCDerivativeProperties.h.

3.22 .2 Constructor & Destructor Documentation

3.22.2.1 QMCDerivativeProperties::QMCDerivativeProperties
(QMCproperties * properties, double dt)

Creates and initializes an instance of this class.

Parameters :
properties calculated properties for the system.

dt time step for the calculation.

Definition at line 16 of file QMCDerivativeProperties.cpp .

3.22.3 Member Function Documentation

3.22.3.1 double QMCDerivativeProperties::getEffectiveTirneStep 0

Gets the effective time step for the calculation.

R eturns:
effective time step for the calculation.

Definition at line 23 of file QMCDerivativeProperties.cpp.

References QMCproperties::distanceMovedAccepted, QMCproperties::distance­
MovedTrial, and QMCproperty::getAverageO.

Generated o n Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

65

3.22 QMCDerivativeProperties Class Reference

3 .22.3.2 double QMCDerivativeProperties::getEffectiveTimeStep­
Standard Deviation ()

Gets the standard deviation of the calculated effective time step for the calcu­
lation.

Returns:
standard deviation of the effective time step for the calculation.

Definition at line 51 of file QMCDerivativeProperties.cpp.

References getEffectiveTimeStep VarianceO ·

3.22.3.3 double QMCDerivativePr oper t ies::getEffectiveTimeStep­
Varia nce ()

Gets the variance of the calculated effective time step for the calculation.

Returns:
variance of the effective time step for the calculation.

Definit ion a t line 31 of file QMCDerivativePropert ies.cpp.

References QMCproperties::distanceMovedAccepted, QMCproperties::distance­
MovedTtial, QMCproperty::get AverageO, and QMCproperty::getVarianceO .

Referenced by getEffectiveTimeStepStandardDeviationO .

3.22.3.4 double QMCDerivativeProperties::getViriaIRatio ()

Gets the virial ratio for the calculation.

The virial ratio is - (V) / (T) where (V) is the expectation value of the potential
energy and (T) is the expectation value of t he kinetic energy.

Returns:
virial ratio.

Defini t ion at line 56 of file QMCDerivativePropert ies.cpp.

References QMCproperty ::getAverageO, QMCproperties::kineticEnergy, and
Q MCproperties: :potentiaIEnergy.

3.22.3.5 double
StandardDe viation ()

QM CDerivativeProperties: :get VirialRatio-

Gets the standard deviation of the calculated virial ratio for the calculation.

G e n e rated o n W e d May 1 11:34:48 2002 for Q McB e over by D o:xygen

66

3.23 QMCFunctions Class R eference

Returns:
standard deviation of the virial ratio.

Definition at line 81 of file QMCDerivativeProperties.cpp.

References get ViriaiRatio VarianceO.

3 .22.3.6 double QMCDerivativeProperties::ge t VirialRatio Variance

o
Gets the variance of the calculated vidal ratio for the calculation.

Returns:
variance of the virial ratio.

Definition at line 64 of file QMCDerivativeProperties.cpp.

References QMCproperty: :getA verageO, QMCproperty::get VarianceO,
QMCproperties: :kineticEnergy, and QMCproperties::potentiaIEnergy.

Referenced by get VirialRatioStandardDeviationO.

3.23 QMCFunctions Class Reference

This class calculates the value of the wavefunction, it's first two derivatives, and
any other properties which are calculated from the wavefunction (local energy,
etc.) .

Public Metho ds

• QMCFunctions 0
Creates a new ins tance of the class.

• QMCFunctions (QMClnput _input)

Creates a new instance of th e class and initializes it with the data controling
the Q Me calculation.

• QMCFunctions (const QMCFunctions &rhs)

Creates a new instance of the class that is identical to another instance of
QMCFu.nctions.

• void ini t ialize (QMClnput *input)

Initializes the object with the data contro ling the QMe calculation.

• void evaluate (Array2D < double> &X)

Generated o n W ed May 1 11:34:48 2002 fo r QMcBe aver by Doxygen

67

3.23 QMCFunctions Class Reference

Evaluates all of the calculated properties at X.

• double getPsi ()

Gets the value of the wavefunction at the last evaluated electronic configura­
tion.

• double getLocalEnergy ()

Gets the local energy at the last evaluated electronic configuration.

• double getKineticEnergy ()

Gets the kinetic energy at the last evaluated electronic configuration.

• double getPotentialEnergy ()

Gets the potential energy at the last evaluated electronic configuration.

• Array2D< double> * getGradPsiRatio ()

Gets the ratio of the wavefunction gradient to the wavefunction value at the
last evaluated electronic configuration.

• Array2D< double> * getModifiedGradPsiRatio ()

Gets a modified version a/the ratio afthe wavefunction gradient to the wav€­
function value at the last evaluated electronic configuration.

• boo! isSingular ()

Returns true if the last evaluated electronic configuration gives a singular
Slater matrix and false otherwise.

• void operator= (const QMCFunctions &rhs)

Sets two QMCFunctions objects equal.

• void writeCorrelatedSaIDplingConfignration (ostream &strm)

Writes the state of this object to a stream for use in correlated sampling
calculations.

3.23.1 Detailed Description

This class calculates the value of the wavefunction, it's first two derivatives, and
any other properties which are calculated from the wavefunction (local energy,
etc.).

The wavefunction is assumed to be of the form

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

68

3.23 QMCFunctions Class Reference

where
J = eXP(L Ui,j(r;,j))

is a J as trow type correlation function, and Dt and D ~ are Slater determinants
for the up and down electrons respectively.

Definition at line 45 of file QMCFunctions,h,

3.23.2 Constructor & Destructor Documentation

3.23.2.1 QMCFunctions::QMCFunctions (QMClnput * input)

Creates a new instance of the class and initializes it with the data controling
the QMC calculation.

Parameters:
input input data for the calculation

Definition at line 19 of file QMCFunctions,cpp.

References initialize().

3.23.2.2 QMCFunctions::QMCFunctions (const QMCFunctions &
rhs)

Creates a new instance of the class that is identical to another instance of
QMCFunctions.

Parameters:
rhs object to make a copy of

Definition at line 24 of file QMCFunctions.cpp.

3.23.3 Member Function Docurnentation

3.23.3.1 void QMCFunctions::evaluate (Array2D< double> & X)

Evaluates all of the calculated properties at X.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 60 of file QMCFunctions.cpp.

References QMCPotentiaLEnergy::evaluateO, QMCJastrow::evaluateO, and
QMCSlater::evaluate() .

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

69

3.23 QMCFunctions Class Reference

3.23.3.2 Array2D< double > • QMCFunctions::ge tGradPsiRatio 0

Gets the ratio of the wavefunction gradient to the wavefunction value at the
last evaluated electronic configuration.

T his is also known as the quantum force.

Returns:
wavefunction gradient ratio (quantum force)

Definition at line 290 of file QMCFunctions.cpp.

3.23.3.3 double QMCFunctions::getKine ticEnergy 0
Gets the kinetic energy at the last evaluated electronic configuration.

Returns :
kinetic energy.

Definition at line 280 of file QMCFunctions.cpp .

3.23.3.4 double QMCFunctions: :getLocaiEnergy 0
Gets the local energy at the last evaluated electronic configuration.

Returns:
local energy

Definition at line 275 of file QMCFunctions.cpp.

Referenced by QMCwalker::toXMLO.

3.23.3.5 Array2D< double > • QMCFunctions::ge tModifiedGrad­
PsiRatio 0
Gets a modified version of the ratio of the wavefunction gradient to the wave­
function value at the last evaluated electronic configuration.

The modifications typically help deal with singulari ties near nodes, and the par­
t icular type of modification can be selected. This is also known as the modified
quantum force.

R eturns:
modified wavefunction gradient ratio (modified quantum force)

Definition at line 295 of file QMCFunctions.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeave r by D oxygen

70

3.23 QMCFunctions Class Reference

3.23.3.6 double QMCFunctions::getPotentiaIEnergy 0
Gets the potential energy at the last evaluated electronic configuration.

Returns:
potential energy_

Definition at line 285 of file QMCFunctions.cpp.

References QM CPotentiaLEnergy: :getEnergy O.

3.23.3.7 double QMCFunctions::getPsi 0
Gets the value of the wavefunction at the last evaluated electronic configuration.

The returned value is not normalized to one.

Returns:
wavefunction value

Definition at line 270 of file QMCFunctions.cpp.

3.23.3.8 void QMCFunctions::initialize (QMClnput * input)

Initializes the object with the data controling the QMC calculation.

Param.eters:
input input data for the calculation

Definition at line 46 of file QMCFunctions.cpp.

References Array2D< double >::allocateO, QMCJastrow::initializeO, QMCPo­
tentiaLEnergy: :initializeO, and QMCSlater: :initializeO.

Referenced by QMCwalker::initializeO, and QMCFunctionsO.

3.23.3.9 bool QMCFunctions::isSingular 0
Returns true if the last evaluated electronic configuration gives a singular Slater
matrix and false otherwise.

Returns:
true if the Slater matrix is singular and false otherwise

Definition at line 335 of file QMCFunctions.cpp.

References QMCSlater::isSingularO.

Referenced by QMCwalker::isSingularO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

71

3.24 QMClnitialize Walker Class Reference

3.23.3.10 void QMCFunctions::operator= (const QMCFunctions &
rhs)

Sets two QMCFunctions objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 29 of file QMCFunctions.cpp.

References Alpha, Beta, E_Local, Grad--PsiRatio, Input, Jastrow, Laplacian_­
PsiRatio, Modified_Grad_PsiRatio, PE, and Psi.

3.23.3.11 void QMCFunctions::writeCorrelatedSampling-
Configuration (ostream & strm)

Writes the state of this object to a stream for use in correlated sampling calcu­
lations.

Parameters:
stNn output stream

Definition at line 300 of file QMCFunctions.cpp.

References QM CPotentiaLEnergy: :getEnergyO, Q M CSlater: :getGradPsi­
RatioO, QMCJastrow: :getJ astrowO, and QMCSlater::getLaplacianPsiRatioO.

Referenced by QMCwalker::writeCorrelatedSamplingConfigurationO.

3.24 QMCInitializeWalker Class Reference

Interface to algorithms which generate new walkers for a QMC calculation.

Inheritance diagram for QMCInitializeWalker::

QMCInitializeWalker

QMCMikesJackedWalkerlnitialization

Public Methods

• virtual ~QMClnitialize Walker 0
Virtual destructor.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

12

3.25 QMClnitializeWalkerFactory Class Reference

• virtual Array2D< double> initializeWalkerPosition 0=0

Generates a new walker.

3.24.1 Detailed Description

Interface to algorithms which generate new walkers for a QMC calculation.

A good algorithm will generate walkers which require little time for the Metropo­
lis algorithm to be equilibrated.

Definition at line 25 of file QMCInitializeWalker.h.

3.24.2 Member Function Documentation

3.24.2.1 virtual Array2D<double> QMClnitializeWalker::initialize­
Walker Position 0 [pure virtual)

Generates a new walker.

Returns:
new walker configuration represented by a N x 3 matrix

Implemented in QMCMikesJackedWalkerlnitialization (p.96).

Referenced by QMCwalker::initialize WalkerPositionO.

3.25 QMCInitializeWalkerFactory Class Reference

Object factory which returns the correct QMCInitialize walker when a string
keyword describing the correlation function is provided.

Static Public Methods

• QMClnitializeWalker • initializeWalkerFactory (QMCInput
.input, string &type)

Returns the correct QMCInitializeWalker (p.72) when a string keyword
describing the initialization method is provided.

3.25.1 Detailed Description

Object factory which returns the correct QMClnitialize walker when a string
keyword describing the correlation function is provided.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

73

3.26 QMCJastrow Class Reference

Definition at line 28 of file QMClnitializeWalkerFactory.h.

3.25.2 Member Function Documentation

3.25.2.1 QMCInitializeWalker
Factory::initialize Walker Factory
type) [static)

* QMCInitialize Walker-
(QMCInput * input, string &

Returns the correct QMCInitialize Walker (p. 72) when a string keyword de­
scribing the initialization method is provided.

Parameters:
input input input data for the calculation

type string describing which initialization algorithm to choose

Returns:
the selected QMCInitialize Walker (p. 72) method.

Definition at line 16 of file QMCInitializeWalkerFactory.cpp.

Referenced by QM Cwalker: :ini tialize Walker Position () .

3.26 QMCJastrow Class Reference

This class calculates the value of the Jastrow function and it's first two deriva­
tives.

Public Methods

• void initialize (QMClnput ,input)

Initializes the class with the data controling the calcu.lation.

• void evaluate (Array2D< double> &X)

Evaluates the lastrow function and it 's derivatives at X using the
QMCJastrowParameters (p.83) stored in the QMClnput class.

• void evaluate (QMCJastrowPararneters &JP, Array2D< double>
&X)

Evaluates the Jastrow function and it's derivatives at X using a given set of
QMCJastrowParallleters (p.83).

• double getJastrow 0
Gets the value of the Jastrow function for the last evaluated electronic con­
figuration and parameter set.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

74

3.26 QMCJastrow Class Reference

• double getLnJ astrow ()

Gets the value of the natural log of the Jastmw function jar the lasi evaluated
electronic configuration and parameter set.

• Array2D< double> * getGradientLnJastrow ()

Gets the gradient a/ihe natural log a/the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

• double getLaplacianLnJ astrow ()

Gets the laplacian ajihe natural log a/ihe Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

3 .26.1 Detailed Description

This class calculates the value of the Jastrow function and it's first two deriva­
tives.

The wavefunction is assumed to be of the form

WQMC = WTria/J

where WTrial is a wavefunction calculated using a standard QM method and

J = exp(:Z= Ui,j(r;,j))

is a Jastrow type correlation function. Uij(rij) are QMCCorrelationFunction
(p.57) describing the interactions of particles i and j.

Definition at line 46 of file QMCJastrow.h.

3.26.2 Member Function Documentation

3.26.2.1 void QMCJastrow::evaluate (QMCJastrowParameters &
JP, Array2D< double> & X)

Evaluates the Jastrow function and it's derivatives at X using a given set of
QMCJastrowParameters (p.83).

Parameters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

75

3.26 QMCJastrow Class Reference

Definition at line 48 of file QMCJastrow.cpp.

References Array2D< double >::allocateO, Array2D< T >::dimlO, Array2D<
T >::dim20, QMCJastrowElectronElectron::evaluateO, QMCJastrowElectron­
Nuclear: :eval uateO, QM CJ astrow ElectronElectron: :getGradientLnJ astrow() ,
QM CJ astrow ElectronN uclear: :getGradientLnJ astrowO, QM CJ astrow Electron­
Electron::getLaplacianLnJ astrowO, QMCJ astrow ElectronN uclear::get­
LaplacianLnJ astrow() , QMCJ astrowElectronElectron::getLnJ astrowO, and
QMCJastrowElectronNuclear::getLnJastrowO·

3.26.2.2 void QMCJastrow::evaluate (Array2D< double> & X)

Evaluates the Jastrow function and it's derivatives at X using the
QMCJastrowParameters (p.83) stored in the QMClnput class.

ParalTIeters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 43 of file QMCJastrow.cpp.

Referenced by QMCFunctions::evaluateO.

3.26.2.3 Array2D< double> * QMCJastrow::getGradientLnJastrow

o
Gets the gradient of the natural log of the J astrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

V'ln(J) = V'L;Ui,j(r"j)

Returns:
gradient natural log of the J astrow function (V'ln(J) = V' L; Ui,j (ri,j))

Definition at line 33 of file QMCJastrow.cpp.

3.26.2.4 double QMCJastrow::getJastrow 0
Gets the value of the Jastrow function for the last evaluated electronic configu­
ration and parameter set.

J = exp(L; Ui,j(ri,j))

Returns:
Jastrow function value (J = exp(L;ui,j(ri,j)))'

Definition at line 23 of file QMCJastrow.cpp.

Referenced by QMCFunctions::writeCorrelatedSamplingConfigurationO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

76

3.27 QMCJastrowElectronElectron Class Reference

3.26.2.5 double QMCJastrow::getLaplacianLnJastrow 0
Gets the laplacian of the natural log of the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

\7'ln(J) = \7' L::Ui.j(Ti,j)

Returns:
gradient natural log of the Jastrow function (\72 In(J) = \7 2 L:: Ui,j h,j))

Definition at line 38 of file QMCJastrow.cpp.

3.26.2.6 double QMCJastrow::getLnJastrow 0
Gets the value of the natural log of the Jastrow function for the last evaluated
electronic configuration and parameter set.

In(J) = "u' '(T ' .) U 1 , j t,j

Returns:
natural log of the Jastrow function (In(J) = L:: ui,jh, j))

Definition at line 28 of file QMCJastrow.cpp.

3.26.2.7 void QMCJastrow::initialize (QMClnput * input)

Initializes the class with the data controling the calculation.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCJastrow.cpp.

References QMCJastrowElectronElectron::initializeO, and QMCJ astrow­
ElectronN uclear: :ini tialize O.

Referenced by QMCReadAndEvaluateConfigs::initializeO, and QMCFunc­
tions::initializeO·

3.27 QMCJastrowElectronElectron Class Reference

This class calculates the value of the electron-electron part of the J astrow func­
tion and it's first two derivatives.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

77

3.27 QMCJastrowElectronElectron Class Reference

Public Methods

• void initialize (QMClnput ,input)

Initializes the class with the data controling the calculation.

• void evaluate (QMCJastrowPararneters &JP, Array2D< double>
&X)

Evaluates the electron-electron Jastrow function and it's derivatives at X
using a given set of QMCJastrowParameters (p.83).

• double getLnJastrow ()

Gets the value of the natural log of the electron-electron Jastrow function for
the last evaluated electronic configuration and parameter set.

• Array2D< double> , getGradientLnJastrow ()

Gets the gradient of the natural Jog of the electron-electron Jastrow func ­
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set.

• double getLaplacianLnJastrow ()

Gets the laplacian of the natural log of the electron-electron Jastrow func­
tion with respect to the cartesian electronic coordinates jor the last evaluated
electronic configuration and parameter set.

3.27.1 Detailed Description

This class calculates the value of the electron-electron part of the Jastrow func­
tion and it 's first two derivatives.

The wavefunction is assumed to be of the form

where WTrial is a wavefunction calculated using a standard QM method and

J = exp(L Ui ,j(ri.j))

is a J astrow type correlation function. Uij (ri j) are QMCCorrelationFunction
(p.57) describing the interactions of particles i and j. Th~ sum can be broken
up into electron-electron and electron-nuclear components.

Definition at line 41 of file QMCJastrowElectronElectron.h.

Generated on Wed May 1 11:34:48 2002 for QMcBoaver by Doxygen

78

3.27 QMCJastrowElectronElectron Class Reference

3.27.2 Member Function Documentation

3.27.2.1 void QMCJastrowElectronElectron::evaluate
(QMCJastrowParallleters & JP, Array2D< double> & X)

Evaluates the electron-electron Jastrow function and it's derivatives at X using
a given set of QMCJastrowParallleters (p.83).

Param.eters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 60 of file QMCJastrowElectronElectron.cpp.

References Array2D< double >::allocateO, Array2D< T >::dim10,
QMCCorrelationFunction::evaluateO, QMCCorrelationFunction­
Parameters: :getCorrelationFunction(), QM CJ astrow Parameters: :getElectron-
DownElectronDownP arameters 0 , QM CJ astrow Parameters: :getElectron-
U pElectronDownParametersO, QM CJ astrow Parameters: :getElectron U p-
Electron U pParameters 0, QM C CorrelationFunction: :getFirstDerivati ve-
Value(), QMCCorrelationFunction::getFunction Value() , and QMCCorrelation­
Function: :getSecondDerivative Value ().

Referenced by QMCJastrow::evaluate().

3.27.2.2 Array2D< double> * QMCJastrowElectronElectron::get­
GradientLnJastrow 0
Gets the gradient of the natural log of the electron-electron Jastrow function
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set.

'Vln(J) = 'VL:Ui,j(Ti,j)

Returns:
gradient natural log of the electron-electron Jastrow function ('V In(J)
'V L: Ui,j(Ti,j»

Definition at line 50 of file QMCJastrowElectronElectron.cpp.

Referenced by QMCJastrow::evaluate().

3.27.2.3 double
Jastrow 0

QMCJastrowElectronElectron::getLaplacianLn-

Gets the laplacian of the natural log of the electron-electron J astrow function
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

79

3.28 QMCJastrowElectronNuclear Class Reference

'\7' In(J) = '\7 2 " U - -(r - -) L...- ~,) 1,)

Returns:
gradient natural log of the electron-electron J astrow function ('\72 In(J) =
'\7' "u- -(r- -)) ~ l,J ~,J

Definition at line 45 of file QMCJastrowElectronElectron.cpp.

Referenced by QMCJastrow::evaluateO.

3.27.2.4 double QMCJastrowElectronElectron::getLnJastrow 0
Gets the value of the natural log of the electron-electron J astrow function for
the last evaluated electronic configuration and parameter set.

In(J) = "u- ·(r- -) L...- t,) t,J

Returns:
natural log of the electron-electron Jastrow function (In(J) = L: Ui,j(ri,j))

Definition at line 55 of file QMCJastrowElectronElectron.cpp.

Referenced by QMCJastrow::evaluateO.

3.27.2.5 void QMCJastrowElectronElectron::initialize (QMClnput *
input)

Initializes the class with the data controling the calculation.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCJastrowElectronElectron.cpp.

Referenced by QMCJastrow::initializeO.

3.28 QMCJastrowElectronNuciear Class Reference

This class calculates the value of the electron-nuclear part of the Jastrow func­
tion and it's first two derivatives.

Public Methods

• void initialize (QMClnput .input)

Initializes the class with the data controling the calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

80

3.28 QMCJastrowElectronNuciear C lass R eference

• void e valuate (QMCJastrowPara m e t er s &J P, Array2D < double>
&X)

Evaluates the electron· nuclear Jastrow funct ion and it's derivatives at X 'US­

ing a given set oj Q M CJast r o wPar a m e t e r s (p.83).

• double getLnJastrow 0
Gets the value of the natural log of the electron-nuclear Jastrow junction for
the last evaluated electronic configuration and parameter set.

• Array2D < double> * getGradien t LnJastrow 0
Gets the gradient of the natural log of the electron -nuclear Jastrow fu nc­
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set.

• double getLaplacianLnJastrow 0
Gets the lapladan of the natural log of the electron-nuclear Jastrow /unc­
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set .

3 .28 .1 D et a iled Descript ion

This class calculates t he value of t he electron-nuclear part of t he J astrow func­
t ion and it's first two derivatives.

The wavefunction is assumed to be of t he form

WQ MC = WTr ial J

where WTria l is a wavefunction calculated using a standard QM method and

J = exp(L ui.j(ri ,j »

is a J astrow type correlation function. Uij(rij) are QMC Correla tionFunction
(p .57) describing t he interactions of particles i and j. T he sum can be broken
up into electron-electron and electron-nuclear components.

Defini t ion at line 44 of file QMCJ astrowElectronNuclear.h.

3.28.2 M ember Function Docume nt a t ion

3.28.2.1 void QMCJastrowElectronNuciear::evaluate
(QMCJastr owParameters & JP, Array2D < double > & X)

Evaluates the electron-nuclear J astrow function and it's derivatives at X using
a given set of QMCJastrowParameter s (p.83).

G ener8ted on W e d May 1 11:34:48 200 2 for Q McB eaver by Dox y g e n

81

3.28 QMCJastrowElectronNuclear Class Reference

Parameters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 62 of file QMCJastrowElectronNuclear.cpp.

References Array2D< double >::allocate(), ArraylD< T >::diml(),
Array2D< T >::diml(), QMCCorrelationFunction::evaluate(), QMCJastrow-
Parameters: :getElectronDownN uclear Parameters (), QM CJ astrow-
Parameters: :getElectron U pN uclear Parameters () , QM CCorrelation-
Function: :getFirstDeri vati ve Val ue() l QM CCorrelationFunction: :getFunction­
Value(), QMCJastrowParameters::getNucleiTypes(), and QMCCorrelation­
Function: :getSecondDerivative Value().

Referenced by QMCJastrow::evaluate().

3.28.2.2 Array2D< double > * QMCJastrowElectronNuclear::get­
GradientLnJ astrow 0
Gets the gradient of the natural log of the electron-nuclear J astrow function with
respect to the cartesian electronic coordinates for the last evaluated electronic
configuration and parameter set.

'\lln(J) = '\l'L,ui,j(ri,j)

Returns:
gradient natural log of the electron-nuclear Jastrow function ('\lln(J)
'\l 'L, Ui,j(ri,j»

Definition at line 52 of file QMCJastrowElectronNuclear.cpp.

Referenced by QMCJastrow::evaluate().

3.28.2.3 double
Jastrow 0

QM CJ astrow ElectronN uclear: :getLaplacianLn-

Gets the laplacian of the natural log of the electron-nuclear Jastrow function
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set.

Returns:
gradient natural log of the electron-nuclear Jastrow function ('\l2In(J)
'\l2" U· ·(r· .» o ~ ,J Z,J

Definition at line 47 of file QMCJastrowElectronNuclear.cpp.

Referenced by QMCJastrow::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

82

3.29 QMCJastrowParameters Class Reference

3.28.2.4 double QMCJastrowElectronNuciear::getLnJastrow 0
Gets the value of the natural log of the electron-nuclear Jastrow function for
the last evaluated electronic configuration and parameter set.

In(J) = 2: Ui,j(ri, ;)

Returns:
natural log of the electron-nuclear Jastrow function (In(J) = 2: ui,;(ri,;))

Definition at line 57 of file QMCJastrowElectronNucleaLcpp.

Referenced by QMCJastrow::evaluateO.

3,28.2.5 void QMCJastrowElectronNuciear::initialize (QMCInput *
input)

Initializes the class with the data controling the calculation.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCJastrowElectronNucleaLcpp.

Referenced by QMCJastrow::initializeO.

3.29 QMCJastrowParameters Class Reference

This class contains all of the parameters and corelation functons from which the
J astrow function is composed.

Public Methods

• QMCJastrowParameters 0
Creates an instance of the class.

• QMCJastrowParameters (const QMCJastrowParameters &rhs)

Creates an instance of the class that is identical to another instance of the
class.

• void set Parameter Vector (ArraylD< double> ¶ms)

Sets the parameters describing the particle-particle interactions.

• ArraylD< double> getParameters 0
Gets the param eters describing the particle-particle interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

83

3.29 QMCJastrowParallleters Class Reference

• QMCCorrelationFunctionParameters * getElectronUpElectron­
DownParameters ()

Gets the QMCCorrelationFunctionParameters (p.59) describing up­
down electron interactions.

• QMCCorrelationFunctionParameters * getElectronUpElectron­
U pParallleters ()

Gets the QMCCorrelationFunctionParameters (p. 59) describing up~up
electron interactions.

• QMCCorrelationFunctionParameters
ElectronDownParameters 0 * getElectronDown-

Gets the QMCCorrelationFunctionParameters (p.59) describing down­
down electron interactions.

• ArraylD< QMCCorrelationFunctionParameters > * get­
Electron U pN ucIear Parallleters ()

Gets an array of QMCCorrelationFunctionParameters (p.59) describ­
ing up electron-nuclear interactions.

• ArraylD< QMCCorrelationFunctionParameters > * get­
ElectronDownN uclear Parameters 0

Gets an array of QMCCorrelationFunctionParameters (p.59) describ­
ing down electron-nuclear interactions.

• ArraylD< string> * getNucleiTypes 0
Gets an array which is a list of all the different types of nuclei in the molecule
being calculated.

• void operator= (const QMCJastrowParameters &rhs)

Sets two QMCJastrowParameters ob}ects equal.

• void read (ArrayID< string> &nucleitypes, boollinkparams, int nelup,
int neldn, string runfile)

Loads the state of the object from a file.

Friends

• ostream & operator« (ostream &strm, QMCJastrowParameters &rhs)

Writes the state of the ob}ect to an output stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

84

3.29 QMCJastrowParallleters Class Reference

3.29.1 Detailed Description

This class contains all of the parameters and corelation functons from which the
Jastrow function is composed.

The wavefunction is assumed to be of the form

where WTrial is a wavefunction calculated using a standard QM method and

is a Jastrow type correlation function. Uij (r ij) are QMCCorrelationFunction
(p. 57) describing the interactions of particles i and j. The correlation functions
are parameterized to allow optimization. This class contains the functions and
their specific parameterizations. The interactions are parameterized in terms of
"parameters" and "constants." "parameters" are modified during optimizations,
and" constants" are not.

Definition at line 48 of file QMCJastrowParameters.h.

3.29.2 Constructor & Destructor Documentation

3.29.2.1 QMCJastrowParameters::QMCJastrowParameters (const
QMCJastrowParallleters & rhs)

Creates an instance of the class that is identical to another instance of the class.

Parameters:
rhs object to copy

Definition at line 614 of file QMCJastrowParameters.cpp.

3.29.3 Member Function Documentation

3.29.3.1 QMCCorrelationFunctionParallleters * QMCJastrow-
Parameters: :getElectronDownElectronDownParameters ()

Gets the QMCCorrelationFunctionPararneters (p.59) describing down­
down electron interactions.

Returns:
down-down electron interaction parameters

Definition at line 588 of file QMCJastrowParameters.cpp.

Referenced by QMCJastrowElectronElectron::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

85

3.29 QMCJastrowParameters Class Reference

3.29.3.2 ArraylD< QMCCorrelationFunctionParameters > *
QMCJ astrowParameters: :getElectronDownN uclear Parameters ()

Gets an array of QMCCorrelationFunctionParameters (p.59) describing
down electron-nuclear interactions.

Returns:
down electron-nuclear interaction parameters

Definition at line 600 of file QMCJastrowParameters.cpp.

Referenced by QMCJastrowElectronN uclear::evaluate().

3.29.3.3 QMCCorrelationFunctionParameters *
P arameters::getElectronUpElectronDownParameters

QMCJastrow-

o
Gets the QMCCorrelationFunctionParameters (p. 59) describing up-down
electron interactions.

Returns :
up-down electron interaction parameters

Definition at line 576 of file QMCJastrowP·arameters.cpp.

Referenced by QM CJ astrow ElectronElectron: :eval uate ().

3.29.3.4 QMCCorrelationFunctionParameters * QMCJastrow-
Parameters: :getElectronUpElectronUpParameters ()

Gets the QMCCorrelationFunctionParameters (p.59) describing up-up
electron interactions.

Returns:
up-up electron interaction parameters

Definition at line 582 of file QMCJastrowParameters.cpp.

Referenced by QMCJastrowElectronElectron::evaluate().

3.29.3.5 ArraylD< QMCCorrelationFunctionParameters > *
QM CJ as trow Parameters: :getElectron U pN uclear Parameters 0
Gets an array of QMCCorrelationFunctionParameters (p.59) describing
up electron-nuclear interactions.

Returns:
up electron-nuclear interaction parameters

Generated o n Wed May 1 11:34:48 2002 for QMcBcaver by Doxygen

86

3.29 QMCJastrowParameters Class Reference

Definition at line 594 of file QMCJastrowParameters.cpp.

Referenced by QMCJ astrowElectronN uclear::evaluateO.

3.29.3.6 ArraylD<
Parameters 0

double > QMCJastrowParameters::get-

Gets the parameters describing the particle-particle interactions.

Returns:
parameters describing particle-particle interactions.

Definition at line 206 of file QMCJastrowParameters.cpp.

References ArraylD< T >::allocateO, ArraylD< T >::diml0, ArraylD<
QMCCorrelationFunctionParameters >::diml0, QMCCorrelationFunction­
Parameters: :getP ar ameters (), and QM CCorrelationFunctionP arameters: :get­
TotalN umberOfParametersO.

3.29.3.7 void QMCJastrowParameters::operator= (const
QMCJastrowParameters & rhs)

Sets two QMCJastrowParameters objects equal.

Parameters:
rhs object to set this object. eqal to

Definition at line 15 of file QMCJastrowParameters.cpp.

References EdnEdn, EdnNuclear, EquivalentElectronUpDownParams, Eup­
Edn, EupEup, EupNuclear, NucleiTypes, NumberOfElectronsDown, Number­
OfElectronsUp, and NumberOfParameters.

3.29.3.8 void QMCJastrowParameters::read (ArraylD< string> &
nucleitypes, bool linkparams, int nelup, int neldn, string runfile)

Loads the state of the object from a file.

Parameters:
nUcleitypes list of the different kinds of nuclei

linkparams true if nuclear-electron interactions are strictly the same and
false otherwise

nelup number of up spin electrons

neldn numer of down spin electrons

runfile name of the file to be loaded

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

87

3.30 QMCLineSearch Class Reference

Definition at line 385 of file QMCJastrowParameters.cpp.

References Array lD< QMCCorrelationFunctionParameters >: :allocate(),
ArraylD< QMCCorrelationFunctionParameters >::dimlO, ArraylD<
string > ::diml 0, QMCCorrelationFunctionParameters::getParticlel Type 0 ,
Q M CCorrelationFunctionParameters: :getParticle2Type(), QM C Co~relation­
FunctionParameters: :read (), QM C CorrelationFunctionP arameters: :set­
Particlel TypeO, and QMCCorrelationFunctionParameters: :setParticle2TypeO.

3.29.3.9 void QMCJastrowParameters::setParameterVector
(ArraylD< double> & pamm8)

Sets the parameters describing the particle-particle interactions.

Parameters:
params new set of parameters

Definition at line 29 of file QMCJastrowParameters.cpp.

References ArraylD< T >::allocateO, ArraylD< QMCCorrelation­
FunctionParameters >::dimlO, ArraylD< T >::dimlO , QMCCorrelation­
F\mctionParameters: :getTotalN umberOfParameters 0, QM C Correlation­
FunctionP arameters: :setP arameters(), QM CCorrelationFunction­
Parameters: :setParticle 1 TypeO, and QM C CorrelationFunctionP arameters: :set­
Particle2TypeO·

3.30 QMCLineSearch Class Reference

Abstract implementation of a line search numerical optimization algorithm.

Inheritance diagram for QMCLineSearch::

QMCOptirnizationAlgorithm

QMCLineSearch

QMCSteepestDescent

Public Methods

• QMCLineSearch (QMCObjectiveFunction *function, QMCLine-

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

88

3.30 QMCLineSearch Class Reference

SearchStepLengthSelectionAlgorithm *stepAIg, int maxSteps, dou­
ble tol)

Constructs and initializes an instance of this class.

• virtual ~QMCLineSearch ()

Virtual destructor.

• Array1D< double> optimize (Array1D< double> &initiaIGuess)

Optimize the function starting from the provided initial guess parameters.

Protected Methods

• QMCObjectiveFunction * getObjectiveFunction 0
Gets the objective function for the calculation.

3.30.1 Detailed Description

Abstract implementation of a line search numerical optimization algorithm.

As is standard in the field, the optimization is a minimization.

Definition at line 27 of file QMCLineSearch.h.

3.30.2 Constructor & Destructor Documentation

3.30.2.1 QMCLineSearch::QMCLineSearch (QMCObjective­
Function * function, QMCLineSearchStepLengthSelectionAlgorithm
* stepAlg, int maxSteps, double tol)

Constructs and initializes an instance of this class.

Parameters:
function objective function to optimize.

stepAlg algorithm to use claculate the step length.

maxSteps maximum number of steps to be performed during the line
search.

tol tolerance to converge the solution to. Calculation is converged when

11 - ~I < to!. f(x;)

Definition at line 15 of file QMCLineSearch.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

89

3.31 QMCLineSearchStepLengthSelectionAlgorithrn Class Reference

3.30.3 MeIDber Function Documentation

3.30.3.1 Array1D< double> QMCLineSearch::optimize (Array1D<
double> & initial Guess) [virtual]

Optimize the function starting from the provided initial guess parameters.

Parameters:
initialGues8 initial guess parameters for the optimization.

Returns:
optimized parameters.

Implements QMCOptirnizationAlgorithrn (p.107).

Definition at line 31 of file QMCLineSearch.cpp.

References Array1D< T >::dim10. QMCObjectiveFunction::evaluateO, and
QM COb jecti veFunctionResul t: :getScore O.

3.31 QMCLineSearchStepLengthSelectionAlgorithm
Class Reference

Interface to algorithms which determine the proper step length to use during a
line search optimization (QMCLineSearch (p. 88)).

Inheritance diagram for QMCLineSearchStepLengthSelectionAlgorithm::

QMCLineSearchStepLengthSelectionAlgorithm

QMCMikesBracketingStepLengthSelector

Public Methods

• virtual ~QMCLineSearchStepLengthSelectionAlgorithrn 0

Virtual destructor .

• virtual double stepLength (QMCObjectiveFunction .function,
Array1D< double > &position, Array1D< double > &search­
Direction)=O

Calculates the step length to use when performing a line search optimization.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

90

3.32 QMCLineSearchStepLengthSelectionFactory Class Reference

3.31.1 Detailed Description

Interface to algorithms which determine the proper step length to use during a
line search optimization (QMCLineSearch (p. 88)).

Definition at line 23 of file QMCLineSearchStepLengthSelectionAlgorithm.h.

3.31.2 Member Function Documentation

3.31.2.1 virtual double QMCLineSearcbStepLengthSelection­
Algorithlll::stepLength (QMCObjectiveFunction * junction,
Array1D< double > & position, Array1D< double > & search­
Direction) [pure virtual]

Calculates the step length to use when performing a line search optimization.

Parameters:
function objective function being optimized.

position current location of the optimization.

searchDirection direction to optimize along.

Implemented in QMCMikesBracketingStepLengthSelector (p.95).

3.32 QMCLineSearchStepLengthSelectionFactory
Reference

Class

Object factory which returns the correct QMCLineSearchStepLength­
SelectionAlgorithrn (p. 90) when a string keyword describing the correlation
function is provided.

Static Public Methods

• QMCLineSearchStepLengthSelectionAlgorithm * factory (string
&Type)

Returns the correct QMCLineSearchStepLengthSelectionAlgorithm
(p.90) when a string keyword describing the correlation function is provided.

3.32.1 Detailed Description

Object factory which returns the correct QMCLineSearchStepLength­
SelectionAlgorithrn (p. 90) when a string keyword describing the correlation
function is provided.

Definition at line 29 of file QMCLineSearchStepLengthSelectionFactory.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

91

3.33 QMCManager Class Reference

3.33 QMCManager Class Reference

Controls the major sections of a QMC calculation.

Public Methods

• QMCManager ()

Creates an uniniiialized instance of this class.

• ~QMCManager ()

Destroys this object, cleans up the memory! and closes all open streams.

• void initialize (int argc, char **argv)

Initializes this object and loads the input data for the calculation.

• void finalize ()

Prepares the calculation to terminate.

• void run ()
Performs a QMC calculation.

• void optimize 0
Optimizes the parameters in a variational QMC (VMC) calculation using
the correlated sampling method.

• void zeroOut 0
Zeroes out all of the statistical data calculated by this object.

• void writeRestart 0
Writes the restart file for the calculation.

• void writeThningData (ostream &strm)

Writes the timing data to a stream.

• QMClnput * getlnputData 0
Gets the input data for the calculation.

• ostream * getResultsOutputStream 0
Gets the stream for outputting results from a calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

92

3.33 QMCManager Class Reference

Friends

• ostream & operator« (ostream &strm, QMCManager &rhs)

Writes the current QMC results calculated by this object to an output stream
in a human readable fo rmat.

3.33.1 Detailed Description

Controls the major sections of a QMC calculation.

This allows a QMC calculation to be run and parameters to be optimized.

Definition at line 41 of file QMCManager.h.

3.33.2 Member Function Documentation

3.33.2.1 QMClnput * QMCManager::getInputData 0
Gets the input data for the calculation.

Returns:
input data for the calculation .

. Defini tion at line 769 of file QMCManager. cpp.

3.33.2.2 ostrealll * QMCManager::ge tResuitsOutputStrealll 0
Gets the stream for outputting results from a calculation.

Returns:
output stream for results.

Definition at line 775 of file QMCManager. cpp.

3.33.2.3 void QMCManager::initialize (int arge, char ** argv)

Init ializes t his object and loads the input data for t he calculation.

Parameters:
arge number of command line arguments.

argv command line arguments.

Definition at line 25 of file QMCManager.cpp .

References QMCrun::initializeO.

Generated on Wed May 1 11:34:48 2002 for QMcBcaver by Doxygen

93

3.34 QMCMikesBracketingStepLengthSe lector Class Reference

3.33.2.4 void QMCManager::run 0
Performs a QMC calculation.

The specifics of the calculation are prescribed in the input.

Defini t ion at line 241 of file QMCManager.cpp.

References QM CStopwatches: :getlni tializationS topwatchO,
Q M CS topwatches: :getPropagationStopwatch 0, QM Crun: :getPropert ies 0,
Stopwatch::start(), QMCrun::step(), Stopwatch::st op(), QMCrun::write­
CorrelatedSamplingConfigurations (), Q MCrun:: wri teEnergies(),
QMCrun::zeroOut(), and QMCproperties::zeroOut().

3.33.2.5 void QMCManager::writeTimingData (ostream & strm)

Writes the t iming data to a stream.

This is only valid after finalize is called and only on the root node.

Param eters:
strm stream to write timing information to.

Definition at line 541 of file QMCManager.cpp.

3.34 QMCMikesBracketingStepLengthSelector Class Ref­
erence

Algorithm t o determine the step lengt.h for a line search optimization developed
by Michael Todd Feldmann.

Inheritance diagram for QMCMikesBracketingStepLengthSelector::

QMCLineSearchStepLengthSelectionAlgorithm

QMCMikesBracketingStepLengthSelector

Public Methods

• double stepLength (QMCObjectiveFunction .function, ArraylD<
double> &position, ArraylD< double> &searchDirection)

Calculates the step length to use when performing a line search optimization.

Generated on W e d May 1 11:34:48 2002 for QMcBeaver by Doxygen

94

3.35 QMCMikesJackedWalkerInitialization Class Reference

3.34.1 Detailed Description

Algorithm to determine the step length for a line search optimization developed
by Michael Todd Feldmann.

This algorithm is purely huristic and does not insure the Wolfe conditions or
other such properties. Again, much work could be done to do this part of a line
search better.

Definition at line 29 of file QMCMikesBracketingStepLengthSelector.h.

3.34.2 Member Function Documentation

3.34.2.1 double QMCMikesBracketingStepLengthSelector::step­
Length (QMCObjectiveFunction , function, Array1D< double> &
position, Array1D< double> & searchDirection) [virtual]

Calculates the step length to use when performing a line search optimization.

Parameters:
function objective function being optimized.

position current location of the optimization.

searchDirection direction to optimize along.

Implements QMCLineSearchStepLengthSelectionAlgorithrn (p. 91).

Definition at line 15 of file QMCMikesBracketingStepLengthSelector.cpp.

3.35 QMCMikesJackedWalkerInitialization Class Refer­
ence

This is the algorithm made to initialize walkers.

Inheritance diagram for QMCMikesJackedWalkerlnitialization::

QMCInitializeWalker

QMCMikesJ ackedW alkerinitialization

Public Methods

• QMCMikesJackedWalkerlnitialization (QMCInput ,input)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

95

3.35 QMCMikesJackedWalkerInitialization Class Reference

Create an instance of the clas and initializes it .

• Array2D< double> initializeWalkerPosition 0
Generates a new walker.

3.35.1 Detailed Description

This is the algorithm made to initialize walkers.

It is based on figuring out how many electrons should be on each atom followed
by putting them in a gaussian around the atom. This is by far a method which
needs a serious overhaul. This was a quick fix to initializing the walkers and
the ideas are borrowed from CASINO. This method of initializing is probably
very inefficient. This goes without mentioning how ugly the code is. This is
a great place for further future work. A huge dent will likely be made on the
"Initialization Catastrophe" problem here.

Definition at line 35 of file QMCMikesJackedWalkerInitialization.h.

3.35.2 Constructor & Destructor Documentation

3.35.2 .1 QMCMikesJackedWalkerlnitialization::QMCMikesJacked­
WalkerInitialization (QMCInput * input)

Create an instance of the das and initializes it.

Parameters:
input input data for the calculation

Definition at line 19 of file QMCMikesJackedWalkerInitialization.cpp.

3.35.3 Member Function Documentation

3.35.3.1 Array2D< double >
Initialization::initialize Walker Position 0
Generates a new walker.

Returns:

QMCMikesJ ackedWalker­
[virtual]

new walker configuration represented by a N x 3 matrix

Implements QMCInitializeWalker (p. 73).

Definition at line 24 of file QMCMikesJackedWalkerInitialization.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

96

3.36 QMCMolecule Class Reference

3.36 QMCMolecule Class Reference

Describes a particular molecular geometry.

Public Methods

• QMCMolecule 0
Creates an instance of the class.

• void initialize (iut nAtoms)

Initializes the object.

• int getNumberAtoms 0
Gets the number of atoms in the molecule.

• QMCMolecule operator= (const QMCMolecule &rhs)

Sets two QMCMolecule objects equal.

• void read (string runfile)

Loads the state of the object from a file.

Public Attributes

• ArraylD< string> Atom..Labels

Array containing the labels for the atoms.

• Array2D< double> Atom-Positions

Array contain ing the 3-dimensional cartesian posit ion s fo r the atoms.

• ArraylD< int > Z

Array containing the nuclear charges for the atoms.

• ArraylD< string> NucleiTypes

A rray containing all of the different atom labels used in the molecule.

Friends

• istream & operator» (istream &strm, QMCMolecule &rhs)

Loads the state of the object from an input stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

97

3.36 QMCMolecule Class Reference

• ostream & operator« (ostream &strm, QMCMolecule &rhs)

Writes the state 0/ the object to an output stream.

3.36.1 Detailed Description

Describes a particular molecular geometry.

The geometry is defined by 3-dimensional cartesian coordinates for each atom,
with specified charges and types.

Definition at line 34 of file QMCMolecule.h.

3.36.2 Member Function Documentation

3.36.2.1 int QMCMolecule::getNumberAtoms 0
Gets the number of atoms in the molecule.

Returns:
number of atoms in the molecule.

Definition at line 25 of file QMCMolecule.cpp.

3.36.2.2 void QMCMolecule::initialize (int nAtoms)

Initializes the object.

Parameters:
nAtom8 number of atoms in the molecule.

Definition at line 20 of file QMCMolecule.cpp.

3.36.2.3 QMCMolecule QMCMolecule: :operator= (canst QMC­
Molecule & rhs)

Sets two QMCMolecule objects equal.

Parameters:
rhs object to set this object equal to.

Definit ion at line 31 of file QMCMolecule.cpp.

References Atom...Labels, Atom_Positions, Natoms, and Z.

Generated on Wed May 1 11:34:48 2002 for QMcBeever by Doxygen

98

3.37 QMCObjectiveFunction Class Reference

3.36.2.4 void QMCMolecule::read (string runfile)

Loads the state of the object from a file.

Parameters:
runfile file to load the object state from.

Definition at line 60 of file QMCMolecule.cpp.

References ArraylD< string >::allocateO, Atom-Labels, ArraylD< string
>::dimlO, and NucleiTypes.

3.36.3 Member Data Documentation

3.36.3.1 ArraylD<string> QMCMolecule::Atom-Labels

Array containing the labels for the atoms.

The ith element is the label for the ith atom.

Definition at line 66 of file QMCMolecule.h .

Referenced by operator=O, and readO.

3.36.3.2 Array2D< double> QMCMolecule::AtomJ>ositions

Array containing the 3-dimensional cartesian positions for the atoms.

The ith element is the position for the ith atom.

Definition at line 74 of file QMCMolecule.h.

Referenced by QMCBasisFunction::getGradPsiO, QMCBasisFunction::get­
LaplacianPsiO, QMCBasisFunction::getPsiO, and operator=O .

3.36.3.3 ArraylD<int> QMCMolecule: :Z

Array containing the nuclear charges for the atoms.

The ith element is the charge for the ith atom.

Definition at line 82 of file QMCMolecule.h.

Referenced by operator=O.

3.37 QMCObjectiveFunction Class Reference

Objective function optimized during a variational QMC (VMC) calculation to
find the optimal wavefunction parameters.

Generated on Wed May 1 11:34:48 2002 fOr QMeBeo.ver by Doxygen

99

3.37 QMCObjectiveFunction Class R efer ence

Public Methods

• void initialize (QMClnput *input)

Initializes this object.

• QMCObjectiveFunctionResuit evaluate (ArraylD< double >
¶ms)

Evaluates and returns the result oj the objective junction evaluated with a
single set of parameters.

• ArraylD< QMCObjectiveFunctionResult > evaluate (ArraylD<
ArraylD< double> > ¶ms)

Evaluates and returns the result 0/ the objective junction evaluated with m ul­
t iple single sets of parameters.

• Array1D< double> grad (ArraylD< double> ¶ms)

Evaluates and returns the gradient of the objective junction fo r one set of
parameters.

• Array1D < Array1D < double> > grad (Array1D < Array1D < dou­
ble > > ¶ms)

Evaluates and returns the gradient of the objective function /01' multiple sets
0/ parameters.

3.37.1 D etailed Description

Objective function optimized during a variational QMC (VMC) calculation to
find the optimal wavefunction parameters.

As is standard in the field of numerical optimization, optimization means min­
imization. The particular form of the objective function is determined by pa­
rameters in the input file.

Definition at line 35 of file QMCObjectiveFunction.h.

3.37.2 Member Function Documentation

3.37.2.1 Array1D < QMCObjectiveFunctionResuit >
QMCObjectiveFunction::evaluate (Array1D < Array1D< double
> > & params)

Evaluates and returns the result of the objective function evaluated with mul­
tiple single sets of parameters.

Ge n e rated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

100

3.37 QMCObjectiveFunction Class Refere n ce

Parameters:
params sets of parameters to evaluate the objective function with .

Returns:
resul ts of t he objective function evaluations. The index of the input pa­
rameters corresponds to t he index of the returned values.

Definition at line 21 of file QMCObjectiveFunction.cpp .

References QM CReadAndEval uateConfigs: : rootCalculateProperties ().

3.37.2.2 QMCObjectiveFunctionResuIt QMCObjective-
Function::evaluate (Array1D< double > & params)

Evaluates and returns the result of the objective function evaluated with a single
set of parameters.

Parameters:
params set of parameters to evaluate the objective function with.

Returns:
result of t he objective function evaluation .

Defini tion at line 46 of fi le QMCObjectiveFunction.cpp.

Referenced by QMCLineSearch::optimizeO.

3.37.2.3 ArraylD< ArraylD< double > >
Function::grad (ArraylD< Array1D < double >

QMCObjective­
> & params)

Evaluates and returns the gradient of the objective function for multiple sets of
paramet ers,

Parameters:
params sets of parameters to evaluate the gradient with.

Returns:
gradients of the objective function. The index of the input parameters
corresponds to the index of t he returned values .

Defini t ion at line 60 of file QMCObjectiveFunction.cpp.

G e n e rate d o n Wed May 1 11:34:48 2002 for QMc B e aver by Doxygen

101

3.38 QMCObjectiveFunctionResult Class Reference

3.37.2.4 Array1D < double > QMCObjectiveFunction::grad
(Array1D< double> & params)

Evaluates and returns the gradient of the objective function for one set of pa-
rameters.

Parameters:
params sets of parameters to evaluate the gradient with.

Returns:
gradient of the objective function.

Definition at line 71 of file QMCObjectiveFunction.cpp.

3.37.2.5 void QMCObjectiveFunction::initialize (QMCInput * in­
put)

Initializes this object.

This must be called before any other functions in this object are called.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCObjectiveFunction.cpp.

References QMCReadAndEvaluateConfigs::initialize().

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO.

3.38 QMCObjectiveFunctionResult Class Reference

Results from the evaluation of an objective function during a QMC calculation.

Public Methods

• QMCObjectiveFunctionResult 0
Creates a new uninitialized instance of this class.

• QMCObjectiveFunctionResult (QMCInput . input, double energy­
Ave, double energyVar, double logWeightAve, double logWeightVar)

Creates and initializes a new instance of this class.

• QMCObjectiveFunctionResult
&rhs)

(QMCObjectiveFunctionResult

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

102

3.38 QMC ObjectiveFunction Result Class R efer ence

Creates a new instance of this class and makes it equivalent to another in­
stance of this class .

• double getLogW eightsAve 0
Gets the average value of the natural log of the statistical weights for the
configurations used in this fun ction evaluation.

• double getLogWeightsVar 0
Gets the variance of the natural log of the statistical weights for the configu­
rations used in this junction evaluation.

• double getEnergy Ave 0
Gets the calculated average energy value.

• double get E n er gyVar 0
Gets the calculated energy variance.

• double get S cor e 0
Gets a score fo r this function evaluation .

• double getDerivativeScore 0
Gets a score for this function evaluation that is to be used in calculating the
derivative in a numerical optimization.

• void oper ator= (QMCObjectiveFunctionResult &rhs)

Sets two QMCObjectiveFunctionResult objects equal.

Friends

• ostream & operator « (ostream &strm, const QMCObjectiveF\ mction­
Resul t &rhs)

Prints the contents of this object in a human readable format.

3.38.1 D etailed Description

Results from the evaluation of an objective function during a QMC calculation .

T hese resul ts can t hen be used for numerical optimization or other functions.

Definition at line 28 of file QMCObjectiveFunctionResult.h .

G e n e rate d o n Wed May 1 11:34:4 8 2 002 fo r Q McBeaver by D oxygen

103

3.38 QMCObjectiveFundionResult Class R efe r e nce

3.38.2 Constructor & D estruc tor Documentat ion

3.38.2.1 QMC ObjectiveFunct ionResult::QMC ObjectiveFunction­
Result (QMClnput * input, d ouble energyAve, d ouble energyVar,
double logWeightAve, double logWeightVar)

Creates and initializes a new instance of this class.

Parameters :
input data input to control the calculation.

energyAve calculated energy value

energy Var calculated energy variance

logWeightAve average value of t he natural log of the statistical weights
of t he configurations.

logWeightVar variance in the above quantity.

Defini t ion at line 19 of file QMCObjectiveFunctionResul t.cpp.

3.38.2.2 QMC ObjediveFunctionResult::QMCObjectiveFunction­
Result (QMCObjectiveFunctionResult & rhs)

Creates a new instance of this class and makes it equivalent to another instance
of this class.

Parameters:
rhs object to set t his equal to.

Definition at line 36 of file QMCObjectiveFunctionResul t.cpp.

3 .38.3 M ember Function Docume ntation

3.38.3.1 doub le QMCObjediveFunct ionResult::getDerivativeScore
o
Gets a score for this function evaluation that is to be used in calculating the
derivative in a numerical optimization.

The algorithm used for arriving at this score is determined by the input data.
The convergence of a numerical optimization can be modified by changing the
score functions.

Returns:
score for the derivative evaluation.

Definition at line 67 of file QMCObjectiveFunctionResul t.cpp.

Genera ted o n W ed May 1 11:3 4 :48 2 0 02 for QMc Beaver b y Doxygen

104

3.38 QMCObjectiveFunctionResult Class Reference

3.38.3.2 double QMCObjectiveFunctionResu1t::getEnergyAve 0
Gets the calcuJated average energy value.

Returns:
calculated average energy value.

Definition at line 52 of file QMCObjectiveFunctionResult.cpp.

3.38.3.3 double QMCObjectiveFunctionResu1t::getEnergyVar 0
Gets the calculated energy variance.

Returns:
calculated energy variance.

Definition at line 57 of file QMCObjectiveFunctionResult.cpp.

3.38.3.4 double QMCObjectiveFunctionResu1t::getLogWeightsAve

o
Gets the average value of the natural log of the statistical weights for the con­
figurations used in this function evaluation.

Returns:
average value of the natural log of the statistical weights.

Definition at line 42 of file QMCObjectiveFunctionResult.cpp.

3.38.3.5 double QMCObjectiveFunctionResu1t::getLogWeightsVar
o
Gets the variance of the natural log of the statistical weights for the configura­
tions used in this function evaluation.

Returns:
variance of the natural log of the statistical weights.

Definition at line 47 of file QMCObjectiveFunctionResult.cpp.

3.38.3.6 double QMCObjectiveFunctionResult::getScore 0
Gets a score for this function evaluation.

Better scores have lower values. The algorithm used for arriving at the searis
is determined by the input data. The convergence of a numerical optimization
can be modified by changing the score functions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

105

3.39 QMCOptiInizationAlgorithm Class Reference

Returns:
score for the function evaluation.

Definition at line 62 of file QMCObjectiveFunctionResult.cpp.

Referenced by QMCLineSearch::optimizeO.

3.38.3.7 void QMCObjectiveFunctionResult::operator=
(QMCObjectiveFunctionResult & rlts)

Sets two QMCObjectiveFunctionResult objects equal.

Parameters:
rlts object to set this object equal to.

Definition at line 144 of file QMCObjectiveFunctionResult.cpp.

References energY-fLv€, energy_var, Input, log_weights-av€, log_weights_var,
score, and score.ior_derivative.

3.39 QMCOptimizationAlgorithm Class Reference

Interface for numerical optimization algorithms.

Inheritance diagram for QMCOptimizationAlgorithm::

QMCOptimizationAlgorithm

CKGeneticAlgorithml QMCLineSearch

QMCSteepestDescent

Public Methods

• virtual -QMCOptimizationAlgorithm 0
Virtual destructor .

• virtual ArraylD< double> optimize (ArraylD< double> &initial­
Guess)=O

Optimize the function starting from the provided initial guess parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

106

3.40 QMCOptirnizationFactory Class R e fe rence

3.39.1 Detailed Description

Interface for numerical optimization algorithms.

Definition at line 22 of file QMCOptimizationAlgorithm.h.

3.39.2 Member Function Documentation

3.39.2.1 virtual Array1D < double>
Algorithm::optitnize (Array1D < double >
virtual]

QMCOptirnization­
& initialGuess) [pure

Optimize the function starting from the provided initial guess parameters.

Parameters:
initial Guess initial guess parameters for the optimization.

Returns:
optimized parameters.

Implemented in CKGeneticAigorithm1 (p.23), a nd QMCLineSearch
(p.90).

Referenced by QMCCorrelatedSamplingYMCOptimization::optimizeO.

3.40 QMCOptimizationFactory Class Reference

Object factory which returns the correct QMCOptirnizationAlgorithrn
(p.106) specified in the calculation input data.

Static Public Methods

• QMCOptimizationAlgorithlll * optimizationAlgorithrnFactory
(QMCObjectiveFunction &objFunc, QMCInput ,input)

Returns the correct QMCOptimizationAlgorithm (p. 106) specified in the
calculation input data.

3.40.1 Detailed Description

Object factory which returns the correct QMCOptirnizationAlgorithrn
(p. 106) specified in the calculation input data.

Optimization assumed to mean minimization, as is standard in the field.

Definition at line 30 of file QMCOptimizationFactory. h.

Generated on Wed May 1 11:34:48 2002 for QMcBoaver by Doxygen

107

3.41 QMCPolynolllial Class Reference

3.40.2 Member Function Documentation

3 .40.2.1 QMCOptirnizationAlgorithlll
Factory::optirnizationAlgorithrnFactory
& objFunc, QMCInput • input) [stat i c)

• QMCOptilllization­
(QMCObjediveFunction

Returns the correct QMCOptilllizat ionAlgorithm (p . 106) specified in the
calculation input data.

Parameters:
objFunc object function to optimize.

input input data to control the calculation.

Definition at line 16 of file QMCOptimizationFactory.cpp.

References QMCLineSearchStepLengthSelectionFactory::factoryO.

Referenced by QMCCorrelatedSarnplingVMCOptimization::optimizeO.

3.41 QMCPolynomial Class Reference

An extension of Polynomial (p. 45) which adds QMC specific functionality.

Inheritance diagram for QMCPolynomiai::

Public M ethods

• QMCPolynomial 0
Constructs an uninitialized instance of this class.

• QMCPolynomial (Array1D < double> &coeffs)

Constructs and initializes an intance of this class.

• bool hasNonNegativeZeroes 0
Determines if this polynomial has any nonvnegative real zeroes.

Sel1eiated 0 .. Vled Ufay 1 11.34.48 Z602 fo[" Q McB eover b y D oxygen

108

3.41 QMCPolynomial Class Reference

• void initialize (Array1D< double> &coeffs)

Initializes this object.

• void evaluate (double x)
Evaluates the function at x.

• double get Function Value 0
Gets the junction value at the last evaluated point.

• double getFirstDerivative Value 0
Gets the function's first deriviate at the last evaluated point.

• double getSecondDerivativeValue 0
Gets the junction's second deriviative at the last evaluated point.

• Array1D< COlllplex > get Roots 0
Gets the roots of the polynomial.

Protected Methods

• int getN UlllberCoefficients 0
Gets the number of coefficients in the polynomial.'

• double get Coefficient (int i)

Gets the ith coefficient of the polynomial.

3.41.1 Detailed Description

An extension of Polynomial (p.45) which adds QMC specific functionality.

Definition at line 22 of file QMCPolynomial.h.

3.41.2 Constructor & Destructor DOClllllentation

3.41.2.1 QMCPolynomial::QMCPolynomial (Array1D< double> &
coeffs)

Constructs and initializes an intance of this class.

ParaIlleters:

coeffs set of polynomial coefficients to use for the polynomial.

Definition at line 19 of file QMCPolynomial.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

109

3.41 QMCPolynOlllial Class Reference

3.41.3 Member Function Documentation

3.41.3.1 void PolynOlllial::evaluate (double x) [virtual, inherited]

Evaluates the function at x.

Parameters:
x point to evaluate the function.

Implements FunctionRltoRI (p.41).

Definition at line 61 of file Polynomial.cpp.

Referenced by PadeCorrelationFunction::evaluateO, FixedCuspPade­
CorrelationFunction: :eval uateO, Polynomial: :getFirstDerivati ve Val ueO)
Polynomial::getFunction ValueO, and Polynomial::getSecondDerivative ValueO.

3.41.3.2 double Polynomial::getCoefficient (int i) [protected,
inherited]

Gets the ith coefficient of the polynomial.

Where the polynomial is defined such that

n

P(x) = LCiXi
i=O

where n is the order of the polynomial and Ci is the ith coefficient.

Parameters:
i index of the coefficient to return.

Returns:
ith coefficient of the polynomial.

Definition at line 122 of file Polynomial.cpp.

3.41.3.3 double Polynornial::getFirstDerivativeValue 0 [virtual,
inherited]

Gets the function's first deriviate at the last evaluated point.

Returns:
function's deriviative value.

Generated on Wed May 1 11:34l48 2002 for QMcBeaver by Doxygen

110

3.41 QMCPolynomial Class Reference

Implements FunctionRltoRl (p.41).

Definition at line 97 of file Polynomial.cpp.

References Polynomial::evaluateO.

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate O.

3.41.3.4 double
inherited]

Polynomial: : get Function Value

Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionRltoRl (p.41).

Definition at line 87 of file Polynomial.cpp.

References Polynomial::evaluateO.

o [vi rtual,

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate O.

3.41.3.5 int Polynomial::getNurnberCoefliciehts 0 [protected,
inherited]

Gets the number of coefficients in the polynomial.

This is Oile larger than the order of the polynomial.

Returns:
number of coefficients in the polynomial.

Definition at line 117 of file Polynomial.cpp.

References ArraylD< double >::diml0.

3.41.3.6 ArraylD<
[inheri ted]

COIDplex

Gets the roots of the polynomial.

Returns:
roots of the polynomial.

Exceptions:

> Polynornial::getRoots o

Exception (p.37) if problems were encounted during the root calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

III

3.41 QMCPolynomial Cia •• Reference

Definition at line 127 of file P olynomial.cpp.

References ArraylD < double >::diml O.

Referenced by hasNonNegativeZeroesO.

3.41.3.7 double
[virtual, inherited]

Polynomial: :getSecondDerivative Value

Gets the function 's second deriviative at the last evaluated point.

Returns:
function's second derivative value.

Implement. FunctionRltoRl (p.41).

Definition at line 107 of file Polynomial.cpp.

References Polynomial::evaluateO·

o

Referenced by PadeCorrelationFunction ::evaluateO, and FixedCuspPade­
CorrelationFunction::evaluate() .

3.41.3.8 bool QMCPolynomial::hasN onNegativeZeroes 0
Determines if this polynomial has any non-negative real zeroes.

R eturns:
true if the polynomial has a non-negative real zeros and false otherwise.

Exce ptions:
Exception (p.37) if problems were encounted during the calculation.

Definition at line 23 of file QMCPolynomial.cpp.

References ArraylD < T >::diml 0, and Polynomial::getRootsO.

Referenced by PadeCorrelationFunction ::i. Singular O, and FixedCu' pPade­
CorrelationFunction: :isSingular O.

3.41.3.9 void Polynornial::initialize (Array1D < double > & coeffs)
[inheri ted)

Init ializes this object.

P arame ters:
coeffs set of polynomial coefficients to use for the polynomial.

G enerated on Wed May 1 11:34:48 2002 for QMcBeav e r by Doxygen

112

3.42 QMCPotentiaLEnergy Class Reference

Definition a t line 39 of file Polynomial.cpp.

References ArraylD < double >: :allotateO , and ArraylD < double >::dim l O.

Referenced by PadeCorrelationFunction::initializeP arametersO, Fixed-
CuspPadeCorrelationFunction: :initiaIizeParametersO, and Polyno-
mial::PolynomiaIO·

3.42 QMCPotentiaLEnergy Class Reference

The potential energy of the system.

Public Metbods

• QMCPotentiaLEnergy 0
Creates an instance of the class.

• void initia lize (QMClnput _input)
Initialize the object.

• void evaluate (Array2D < double > &X)

Evalu.ates the pot ential energy /01' the given electronic configuration.

• double getEnergy 0
Gets the potential energy of the las t configuration evaluated.

• void opera tor= (const QMCPotentiaLEnergy &rhs)
Sets two QMCPotentiaLEnergy objects equal.

3.42.1 Detailed Description

The potent ial energy of the syst em.

Definition at line 29 of file QMCPotentiaLEnergy.h.

3.42.2 Member Function Documentation

3.42.2.1 void QMCPotential..Energy::evaluate (Array2D < double >
&X)

Evaluates the potential energy for the given electronic configuration.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Generated on W ed. May 1 11:34:48 2002 for QMcBeaver by Doxygen

113

3.43 QMCproperties Class Reference

Definition at line 35 of file QMCPotentiaLEnergy.cpp.

Referenced by QMCFunctions::evaluateO.

3.42.2.2 void QMCPotentiaLEnergy::initialize (QMClnput * input)

Initialize the object.

Parameters:
input data input to control the calculation

Definition at line 29 of file QMCPotentiaI..Energy.cpp.

Referenced by QMCFunctions::initializeO·

3.42.2.3 void QMCPotential..Energy::operator= (const QMCPoten­
tial..Energy & rhs)

Sets two QMCPotentiaLEnergy objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 19 of file QMCPotentiaLEnergy.cpp.

References Energy_total, Input, P _ee, P _en, and P _nn.

3.43 QMCproperties Class Reference

All of the quantities and properties evaluated during a calculation.

Public Methods

• QMCproperties 0
Creates a zeroed out instance oj the class and generates the MPI types iJthey
have not been done.

• void zeroOut 0
Sets all oj the data in the object to zero.

• QMCproperties operator+ (QMCproperties &rhs)

Returns the sum oj two QMCproperties.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Do:x:ygen

114

3.43 QMCproperties Class Reference

• void toXML (ostream &strm)

Writes the state of this object to an XML stream.

• void readXML (istream &strm)

Loads the state of this object from an XML stream.

Public Attributes

• QMCproperty energy

Total energy of the system.

• QMCproperty kineticEnergy

Kinetic energy of the system.

• QMCproperty potentialEnergy

Potential energy of the system.

• QMCproperty log Weights

Log of the weights on the walkers.

• QMCproperty acceptanceProbability

Probability a trial move is accepted.

• QMCproperty distanceMovedAccepted

Average distance an accepted move travels.

• QMCproperty distanceMovedTrial

A verage distance for a trial move.

Static Public Attributes

• MPLDatatype MPLTYPE

The MPI data type for a QMCproperties.

• MPLOp MPLREDUCE

The MPI operation for performing MPLRedu.ce on QMCproperties.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

115

3.44 QMCproperty Class Reference

Friends

• ostream & operator« (ostream &strm, QMCproperties &rhs)

Formats and prints the properties to a stream.

3.43.1 Detailed Description

All of the quantities and properties evaluated during a calculation.

Definition at line 32 of file QMCproperties.h.

3.43.2 Member Function Docurnentation

3.43.2.1 void QMCproperties::readXML (istream & strm)

Loads the state of this object from an XML stream.

Parameters:
stnn XML stream

Definition at line 102 of file QMCproperties.cpp.

References acceptanceProbability,
MovedTrial, energy, kineticEnergy,
Q M Cproperty: :readXML O.

Referenced by QMCrun::readXMLO.

distanceMovedAccepted, distance­
logWeights, I potentialEnergy, and

3.43.2.2 void QMCproperties::toXML (ostream & strm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 58 of file QMCproperties.cpp.

References acceptanceProbability,
MovedTrial, energy, kineticEnergy,
QMCproperty::toXMLO·

Referenced by QMCrun::toXMLO.

distanceMovedAccepted, distance­
logWeights, potentialEnergy, and

3.44 QMCproperty Class Reference

All of the statistical information used in calculating a quantity or property
during a calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

116

3.44 QMCproperty Class Reference

Public Methods

• QMCproperty ()
Creates a zeroed out instance of the class and generates the MP I types if they
have not been done.

• void zero Out ()

Sets all of the data in the object to zero.

• void newSalllple (double s, double weight)

Adds a new daia sample to the object.

• long getN ulllberSalllples ()

Gets the number of data samples entered into the object.

• double get A verage ()

Gets the average of the data entered into the object.

• double get Variance ()

Gets the variance of the data entered into the object.

• double getSeriallyCorrelatedVariance ()

Gets the serially correlated variance of the data e~tered into the object.

• double getStandardDeviation ()

Gets the standard deviation of the data entered into the object.

• double getSeriallyCorrelatedStandardDeviation ()

Gets the serially correlated standard deviation of the data entered into the
object.

• QMCproperty operator+ (QMCproperty &rhs)

Returns the sum of two QMCproperties (p.114).

• void toXML (ostream &strm)

Writes the state of this object to an XML stream.

• void readXML (istream &strm)

Loads the state of this object from an XML stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

117

3.44 QMCproperty Class Reference

Static Public Attributes

• MPLDatatype MPLTYPE
The MPI data type for a QMCproperty.

• MPLOp MPLREDUCE

Friends

The MPI operation for performing MPLReduce on QMCproperties
(po 114) 0

• ostream & operator« (ostream &strm, QMCproperty &rhs)

Formats and prints the property to a stream.

3.44.1 Detailed Description

All of the statistical information used in calculating a quantity or property
during a calculation.

Definition at line 40 of file QMCproperty.h.

3.44.2 Member Function Documentation

3.44.2.1 void QMCproperty::newSalllple (double s, double weight)

Adds a new data sample to the object.

Parameters:
8 new sample data

weight statistical weight of the sample

Definition at line 94 of file QMCproperty.cpp.

References QMCstatistic::newSample().

Referenced by QMCwalker::calculateObservables().

3.44.2.2 void QMCproperty::readXML (istrealll & strm)

Loads the state of this object from an XML stream.

Parameters:
strm XML stream

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

118

3.45 QMCReadAndEvaluateConfigs Class Reference

Definition at line 299 of file QMCproperty.cpp.

References QMCstatistic::readXMLO·

Referenced by QMCproperties::readXMLO.

3.44.2.3 void QMCproperty::toXML (ostream & strm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 250 of file QMCproperty.cpp.

References QMCstatistic::toXMLO.

Referenced by QMCproperties::toXMLO.

3.45 QMCReadAndEvaluateConfigs Class Reference

Calculates properties (QMCproperties (p. 114)) from walkers and related data
saved to a file during a QMC calculation.

Public Methods

• QMCReadAndEvaluateConfigs 0
Creates an instance of the class.

• QMCReadAndEvaluateConfigs (QMClnput ,input)

Creates an instance of the class and initializes it.

• void initialize (QMClnput ,input)

Initializes the object.

• void rootCaiculateProperties (ArraylD< ArraylD< double> >
¶ms, ArraylD< QMCproperties > &properties)

Calculates properties (QMCpl"operties (p.114)) for different parameter
sets from walkers and related data saved to a file during a QMC calcula­
tion.

• void workerCalculateProperties 0
Calculates properties (QMCproperties (p.114)) for different parameter
sets from walkers and related data saved to a file during a QMC calcula­
tion.

Generllted on Wed May 1 11:34:48 2002 for QMcBenver by Doxygcn

119

3.45 QMCReadAndEvaluateConfigs Class Reference

3.45.1 Detailed Description

Calculates properties (QMCproperties (p.114)) from walkers and related data
saved to a file during a QMC calculation.

Definition at line 36 of file QMCReadAndEvaluateConfigs.h.

3.45.2 Constructor & Destructor Documentation

3.45.2.1 QMCReadAndEvaluateConfigs::QMCReadAndEvaluate­
Configs (QMClnput * input)

Creates an instance of the class and initializes it.

Parameters:
input data input to control the calculation.

Definition at line 19 of file QMCReadAndEvaluateConfigs.cpp.

References initializeO.

3.45.3 Member Function Documentation

3.45.3.1 void QMCReadAndEvaluateConfigs::initialize (QMClnput
* input)

Initializes the object.

Parameters:
input data input to control the calculation.

Definition at line 24 of file QMCReadAndEvaluateConfigs.cpp.

References Array2D< double >::allocateO, and QMCJastrow::initializeO.

Referenced by QMCObjectiveFunction::initializeO, and QMCReadAnd­
EvaluateConfigsO·

3.45.3.2 void QMCReadAndEvaluateConfigs::rootCalculate­
Properties (ArraylD< ArraylD< double> > & params, ArraylD<
QMCproperties > & properties)

Calculates properties (QMCproperties (p.114)) for different parameter sets
from walkers and related data saved to a file during a QMC calculation.

This function is called only by the root node. The non-root nodes should call
workerCalculatePropertiesO (p.121).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

120

3.46 QMCrun Class Reference

Parallleters:
params array of parameters which parameterize the wavefunction.

properties properties calculated from params and the saved configura­
tions.

Definition at line 87 of file QMCReadAndEvaluateConfigs.cpp.

References Array ID < T >: :allocateO.

Referenced by QMCObjectiveFunction::evaluateO.

3.45.3.3 void
Properties 0

QMCReadAndEvaluateConfigs::workerCalculate-

Calculates properties (QMCproperties (p.114)) for different parameter sets
from walkers and related data saved to a file during a QMC calculation.

This function is called only by the nOll-foot nodes. The root node should call
rootCalculateProperties(params, properties).

Definition at line 155 of file QMCReadAndEvaluateConfigs.cpp.

References ArraylD< T >::allocateO, and ArraylD< T >::diml0.

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO.

3.46 QMCrun Class Reference

Collection of walkers (QMCwalker (p.134)) with the functionality to do the
basic operations from which a QMC algorithm is built.

Public Methods

• QMCrun 0
Creates an uninitialized instance of this class.

• void initialize (QMClnput .input)

Initializes this object.

• void zero Out 0

Sets all of the data in the object to zero.

• void step 0
Propagate the QMC calculation one time step forward.

• QMCproperties. get Properties 0

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

121

3.46 QMCrun Class Reference

Gets the statistics for the properties that have been calculated.

• double get Weights ()

Gets the total statistical weights for all the current living walkers.

• int getNurnberOfWalkers ()

Gets the current number of walkers.

• void randomlyInitialize Walkers 0
Generates all of the walkers by initializing the electronic configurations
for the walkers using an algorithm from QMCInitializeWalkerFactory
(p.73).

• void writeEnergies (ostream &strm)

Writes the energies of all the walkers to a stream.

• void writeCorrelatedSamplingConfigurations (ostream &strm)

Writes the state of this group of walkers to a siream in a fo rmat that is
suitable for correlated sampling calculations.

• void toXML (ostream &strm)

Writes the state of this object to an XML stream.

• void readXML (istream &strm)

Reads the state of this object from an XML stream.

3.46.1 Detailed Description

Collection of walkers {QMCwalker (p.134)) with the functionality to do the
basic operations from which a QMC algorithm is built.

Definition at line 30 of file QMCrun.h.

3.46.2 Member Function Documentation

3.46.2.1 int QMCrun::getNurnberOfWalkers 0
Gets the current number of walkers.

Returns:
number of walkers.

Definition at line 355 of file QMCrun.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

122

3.46 QMCrun Class Reference

3.46.2.2 QMCproperties * QMCrun::getProperties 0
Gets the statistics for the properties that have been calculated.

Returns:
statistics for the properties that have been calculated .

Defini tion at line 350 of file QMCrun.cpp.

Referenced by QMCManager::runO·

3.46.2.3 double QMCrun::get Weights 0
Gets the total statistical weights for all the current living walkers.

Returns:
total weights for current walkers.

Defini tion at line 303 of file QMCrun.cpp.

3.46.2.4 void QMCrun::initialize (QMCInput * input)

Initializes this object.

Parameters:
input input data for the calculation

Definition at line 69 of file QMCrun.cpp.

References QMCproperties::zeroOutO.

Referenced by QMCManager::initializeO.

3.46.2.5 void QMCrun::readXML (istream & strm)

Reads the state of this object from a n XML stream.

Paramete rs:
strm XML stream

Definition at line 332 of file QMCrun.cpp.

References QMCwalker::initializeO , QMCwalker::readXMLO,
QMCproperties::readXMLO·

Generated on Wed May 1 11:34:48 2002 for QMcBenver by Doxygen

123

and

3.47 QMCSlater Class Reference

3.46.2.6 void QMCrun::toXML (ostrearn & Btrm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 316 of file QMCrun.cpp.

References QMCproperties::toXMLO·

3.46.2.7 void QMCrun::writeCorrelatedSamplingConfigurations
(ostrearn & Btrm)

Writes the state of this group of walkers to a stream in a format that is suitable
for correlated sampling calculations.

This writes out more information than toXML so that parts of the wavefunc­
tion do not have to be reevaluated every time properties are calculated using
correlated sampling.

Parameters:
stnn stream to write correlated sampling information to.

Definition at line 149 of file QMCrun.cpp.

Referenced by QMCManager::runO.

3.46.2.8 void QMCrun::writeEnergies (ostrearn & Btrm)

Writes the energies of all the walkers to a stream.

Parameters:
strm stream to write energies to.

Definition at line 139 of file QMCrun.cpp.

Referenced by QMCManager::runO.

3.47 QMCSlater Class Reference

A Slater determinant describing like spin electrons from a 3N dimensional wave­
function.

Public Methods

• void initialize (QMClnput *input, iut startEl, int stopEI)

Generated on Wed Ma.y 1 11:34:48 2002 for QMcBeaver by Doxygen

124

3.47 QMCSlater Class Reference

Initializes the class and sets which region of the 3N dimensional electronic
configuration corresponds to electrons in this Slaier determinant.

• void evaluate (Array2D< double> &X)

Evaluates the slater determinant and it's first two derivatives at X.

• double get Psi 0
Gets the value of the Slaier determinant for the last evaluated electronic
configuration.

• Array2D< double> * getGradPsiRatio 0
Gets the ratio of the Slaier determinant gradient over the Slater determinant
for the last evaluated electronic configuration .

• double getLaplacianPsiRatio 0
Gets the ratio of the Slaier determinant laplacian over the Slaier determinant
for the last evaluated electronic configuration.

• bool isSingular 0
Returns true if the S laier determinant is singular and false otherwise.

• void operator= (const QMCSlater &rhs)

Sets two QMCSlaier objects equal.

3.47.1 Detailed Description

A Slater determinant describing like spin electrons from a 3N dimensional wave­
function.

This class allows the function, it's gradient, and it's laplacian to be calculated.

Definition at line 33 of file QMCSlater.h.

3.47.2 Member Function Documentation

3.47.2.1 void QMCSlater::evaluate (Array2D< double> & X)

Evaluates the slater determinant and it's first two derivatives at X.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 66 of file QMCSlater.cpp.

References isSingularO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

125

3.47 QMCSlater Class Reference

Referenced by QMCFunctions::evaluate() .

3.47.2.2 Array2D< double> * QMCSlater::getGradPsiRatio 0
Gets the ratio of the Slater determinant gradient over the Slater determinant
for the last evaluated electronic configuration.

This value does not depend on the normalization of the Slater determinant.

Definition at line 223 of file QMCSlateLcpp.

Referenced by QM CFunctions: :wri teCorrelatedSamplingConfiguration().

3.47.2.3 double QMCSlater::getLaplacianPsiRatio 0
Gets the ratio of the Slater determinant laplacian over the Slater determinant
for the last evaluated electronic configuration.

This value does not depend on the normalization of the Slater determinant .

Definition at line 218 of file QMCSlateLcpp.

Referenced by QM CFunctions:: wri teCorrelatedSamplingConfiguration().

3.47.2.4 double QMCSlater::getPsi 0
Gets the value of the Slater determinant for the last evaluated electronic con­
figuration.

The returned value is not normalized to one. Assuming the basis functions
ued to make the determinant are normalized 1 this value can be normalized by
dividing it by VM!) where M is the number of electrons in this determinant.

Definition at line 213 of file QMCSlateLcpp.

3.47.2.5 void QMCSlater::initialize (QMCInput * input, int startEI,
int stopEI)

Initializes the class and sets which region of the 3N dimensional electronic con­
figuration corresponds to electrons in this Slater determinant.

It is assumed that all electrons in a determinant are grouped together in the
configuration.

Parameters:
input input data for the calculation

startEl first particle in this determinant.

stopEl last particle in this determinant.

Definition at line 38 of file QMCSlateLcpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

126

3.48 QMCstatistic Class Reference

Referenced by QMCFunctions::initializeO·

3.47.2.6 void QMCSlater::operator= (canst QMCSlater & rhs)

Sets two QMCSlater objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 15 of file QMCSlateLcpp.

References BF, D, Array2D< double >::dimIO, GradJ>siRatio, Input, Lapla­
cian--PsiRatio, Psi, Singular, Start, Stop, and WF.

3.48 QMCstatistic Class Reference

Statistical information on a set of data.

Public Methods

• QMCstatistic 0
Creates a zeroed ou.t instance of the class and ger;emtes the MPI type if it
has not been done.

• void zero Out 0
Sets all of the data in the object to zero.

• long getNumberSamples 0
Gets the number of data samples entered into the object.

• double getA verage 0
Gets the average of the data entered into the object.

• double get Variance 0
Gets the variance of the data entered into the object.

• double getStandardDeviation 0
Gets the standard deviation of the data entered into the object.

• void newSarnple (double s, double weight)

Adds a new data sample to the object.

• QMCstatistic operator+ (canst QMCstatistic &rhs)

Generated on Wed May 1 11;34:48 2002 for QMcBeaver by Doxygen

127

3.48 QMCstatistic Class Reference

Returns the sum of two QMCstatistics.

• void toXML (ostream &strm)

Wri tes the state of this object to an XML stream.

• void readXML (istream &strm)

Loads the sta te of this object from an X ML stream.

Sta tic Public Attributes

• MPLDatatype MPLTYPE

The MPI data type for a QMCstatistic .

• MPLOp MPLREDUCE

The MPI operation for performing MPLReduce on QM Cstatistics .

Friends

• ostream & operator« (ostream &strm, QMCstatistic &rhs)

Formats and prints th e statistic to a stream. J

3.48.1 Detailed Description

Statis tical information on a set of data.

Defini t ion at line 31 of file QMCstatistic.h.

3.48.2 Member Function Documentation

3.48.2.1 void QMCstatistic::newSample (double ., double weight)

Adds a new data sample to the object.

Parame ters:
8 new sample data

weight st atistical weight of the sample

Definition at line 58 of file QMCstatistic.cpp.

Referenced by QMCproperty::newSampleO, and QMCproperty::operator+O .

G e n e ra t e d on Wed May 1 11:34:48 2002 for QMc B e ave r by D o xygen

128

3.49 QMCSteepestDescent Class Reference

3.48.2.2 void QMCstatistic::readXML (istream & strm)

Loads the state of this object from an XML stream.

Parameters:
strm XML stream

Definition at line 97 of file QMCstatistic.cpp.

Referenced by QMCproperty::readXMLO.

3 .48.2.3 void QMCstatistic::toXML (ostream & strm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 76 of file QMCstatistic.cpp.

Referenced by QMCproperty::toXMLO.

3.49 QMCSteepestDescent Class Reference

Steepest descent line search numerical optimization algprithm.

Inheritance diagram for QMCSteepestDescent::

QMCOptimizationAlgorithm

QMCLineSearch

QMCSteepestDescent

Public Methods

• QMCSteepestDescent (QMCObjectiveFunction *functioTI ,
QMCLineSearchStepLengthSelectionAlgorithm *stepAIg, int
maxSteps, double tol)

Constructs and initializes an instance of this class .

• ArraylD< double> optimize (ArraylD < double> &initiaIGuess)
Optimize the function starting from the provided initial guess parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeave r by Doxygen

129

3.49 QMCSteepestDescent Class Reference

Protected Methods

• QMCObjectiveFunction * getObjectiveFunction 0
Gets the objective function for the calculation.

3.49.1 Detailed Description

Steepest descent line search numerical optimization algorithm.

As is standard in the field, the optimization is a minimization.

Definition at line 23 of file QMCSteepestDescent.h.

3.49.2 Constructor & Destructor Documentation

3.49.2.1 QMCSteepestDescent::QMCSteepestDescent
(QMCObjectiveFunction * function, QMCLineSearchStepLength­
SelectionAlgorithm * .tepAlg, int maxStep., double toll

Constructs and initializes an instance of this class.

Parameters:
function objective function to optimize.

stepAlg algorithm to use in determining the line search step length.

maxSteps maximum number of steps to be performed during the line
search.

tol tolerance to converge the solution to. Calculation is converged when

1 1 -~1 <tol. 1(",)

Definition at line 15 of file QMCSteepestDescent.cpp.

3.49.3 Member Function Documentation

3.49.3.1 ArraylD< double> QMCLineSearch::optimize (ArraylD<
double> & initial Guess) [virtual, inherited]

Optimize the function starting from the provided initial guess parameters.

Parameters:
initial Guess initial guess parameters for the optimization.

Returns:
optimized parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

130

3.50 QMCStopwatches Class Reference

Implements QMCOptirnizationAlgorithm (p.107) .

Definition at line 31 of file QMCLineSearch. cpp.

References ArraylD< T >::dimI O, QMCObjectiveFunction::evaluateO, and
QMCO b jectiveFunctionResui t: :getScoreO·

3.50 QMCStopwatches Class Reference

A collection of Stopwatch (p. 144) objects used to record information relevant
to the timing of a QMC calculation.

Public Methods

• QMCStopwatches 0
Creates a new instance of this class with all timers stopped.

• void stop 0
Stops all stopwatches in this object which are running.

• void reset 0
Resets all stopwatches in this object and leatJes the stopwatches stopped.

• Stopwatch * getInitializationStopwatch 0
Gets the stopwatch which times the initialization of the calculation.

• Stopwatch * getPropagationStopwatch 0
Gets the stopwatch which times the 'Us eful propagation of walkers.

• Stopwatch * getSendCornrnandStopwatch 0
Gets the stopwatch which times the sending of commands between processors.

• Stopwatch * get Gather Properties Stopwatch 0
Gets the s topwatch which times the gathering of QMCproperties (p. 114)
from all processors.

• Stopwatch * getCommunicationSynchronizationStopwatch 0
Gets the stopwatch which times the synchronization of all the processors.

• Stopwatch * getCornrnandPollingStopwatch ()
Gets the stopwatch which times how long is devo ted to seeing if a processor
has a command waiting for it.

• Stopwatch * getOptirnizationStopwatch ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

131

3.50 QMCStopwatches Class Reference

Gets the stopwatch which times the VMC optimization.

• Stopwatch . getTotalTirneStopwatch 0
Gets the stopwatch which records the total time of the calculation.

• QMCStopwatches operator+ (QMCStopwatches &rhs)

Returns a QMCStopwatches which is the sum of two QMCStopwatches ob·
jects.

Static Public Attributes

• MPLDatatype MPLTYPE
The MPI data type for a QMCStopwatches .

• MPLOp MPLREDUCE

The MPI operation for per/onning MPLReduce on QMCStopwutches objects.

Friends

• ostream & operator« (ostream &strm , QMCStopwatches &rhs) ,
Writes the timing results of this class to a human readable stream.

3 .50.1 D etailed Description

A collection of Stopwatch (p. 144) objects used to record information relevant
to the timing of a QMC calculation.

Defini tion at line 29 of file QMCStopwatches.h.

3 .50 .2 Member Function Documentat ion

3.50.2.1 Stopwatch
Stopwatch 0

• QMCStopwatch es: :getCornrnandPolling-

Gets the stopwatch which t imes how long is devoted to seeing if a processor has
a command waiting for it.

R eturns :
the stopwatch.

Definition at line 78 of file QMCStopwatches.cpp.

Generated on Wed May 1 11:34:48 2002 fo r QMc Beaver by Doxygen

132

3.50 QMCStopwatches Class R eferenc e

3.50.2.2 Stopwatch * QMCStopwatches::getCornrnunication-
SynchronizationStopwatch 0
Gets the stopwatch which times the synchronization of all the processors.

Returns:
t he stopwatch.

Definition at line 73 of file QMCStopwatches.cpp.

3.50.2.3 Stopwatch
Stopwatch 0 * QMCStopwatches::getGatherProperties-

Gets the stopwatch which times the gathering of QMCproperties (p. 114) from
all processors.

Returns:
the stopwatch.

Defini tion at line 68 of file QMCStopwatches.cpp.

3.50.2.4 Stopwatch * QMCStopwatches::getOptirnizationStopwatch
o
Gets the stopwatch which times the VMC optimization.

Returns:
the stopwatch.

Definition at line 83 of file QMCStopwatches.cpp.

Referenced by QMCManager::optimizeO.

3.50.2.5 Stopwatch * QMCStopwatches::getPropagationStopwatch

o
Gets the stopwatch which times the useful propagation of walkers.

The time required to initialize the walkers is not included.

Returns:
the stopwatch.

Definition at line 58 of file QMCStopwatches.cpp.

Referenced by QMCManager::runO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

133

3.51 QMCwalker Class R eference

3.50.2.6 Stopwatch
Stopwatch 0 * QMCStopwatches::getSendCommand-

Gets the stopwatch which times the sending of commands between processors.

Returns:
the stopwatch ,

Definition at line 63 of file QMCStopwatches,cpp,

3.50.2.7 Stopwatch - QMCStopwatches::getTotalTimeStopwatch 0

Gets the stopwatch which records the total t ime of the calculation,

Returns:
the stopwatch,

Definition at line 88 of file QMCStopwatches,cpp,

Referenced by QMCManager::QMCManagerO ,

3.51 QMCwalker Class Reference

An instantaneous snapshot of all 3N electronic corrdinates for a system.

Public Methods

• QMCwalker 0
Creates a new uninitialized instance of this class.

• QMCwalker (const QMCwalker &rhs)

Creates a new instance of this class and makes it equi1Jalent to another in­
stance of this class.

• -QMCwalker 0
Dcallocates the memory alloca.ted by this object.

• void initialize (QMClnput _input)

Initializes and allocates memory for the walker.

• void initialize Walker Position 0
Initializes the electronic configuration for this walker using an algorithm from
QMClnitializeWalke rFactory (p.73).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

134

3 .51 QMCwalker C lass R eference

• void propagate Walker 0
Proposes a trial walker move and accepts or rejects it.

• void calculateObservables (QMCproper t ies &props)

Calculates the observables for this walker and adds them to the input QM­
Cproperties (p. 114).

• void oper ator= (const QMCwalker &rhs)

S ets two QMCwalker objects equal.

• double getWeigbt 0
Gets the weight fOT this walker.

• void set Weigh t (double val)

Sets the weight for this walker.

• bool isSingular 0
Determines if the trial wave/unction is singular for this walker.

• void toXML (ostream &strm)

Writes the state of this object to an XML stream. j

• void readXML (istream &strm)

Loads the state of this object from an XML stream.

• void writeCorrelatedSamplingConfigura tion (ostream &strm)

Writes the state of this walker to a stream in a format that is suitable for
correlated sampling.

• double getLocalEnergyEstirnator 0
Gets the value of the local energy estimator for this walker.

3.51.1 Detailed D escription

An instantaneous snapshot of all 3N electronic corrdinates for a system.

This is the same as the "walker" or "psip" discussed in QMC literature.

Definition at line 29 of file QMCwalker.h.

Generated on Wed May 1 11:34:48 2002 for QMc Beaver by Doxygcn

135

3.51 QMCwalker Class Reference

3.51.2 Constructor & Destructor Documentation

3.51.2.1 QMCwalker::QMCwalker (const QMCwalker & rhs)

Creates a new instance of this class and makes it equivalent to another instance
of this class.

Parameters:
rhs object to set this equal to.

Definition at line 24 of file QMCwalker.cpp.

3.51.3 Member Function Documentation

3.51.3.1 void QMCwalker::ca1culateObservables (QMCproperties &
props)

Calculates the observables for this walker and adds them to the input QM­
Cproperties (p. 114).

Parameters:
props properties to which this walkers current observable values are added.

Definition at line 650 of file QMCwalker.cpp.

References QMCproperties::acceptanceProbability, QMCproperties::distance­
MovedAccepted, QMCproperties::distanceMovedTrial, QMCproperties::energy,
getWeightO, QMCproperties::kineticEnergy, QMCproperties::logWeights,
QMCproperty::newSample(), and QMCproperties: :potentiaIEnergy.

Referenced by propagate Walker ().

3.51.3.2 double QMCwaIker::getWeight 0
Gets the weight for this walker.

Returns:
weight for this walker.

Definition at line 587 of file QMCwaiker.cpp.

Referenced by caiculateObservables(), and toXMLO .

3.51.3.3 void QMCwalker::initialize (QMClnput * input)

Initializes and allocates memory for the walker.

Generated on Wed May 1 11:34:48 2002 for QMcBeave r by Doxygcn

136

3.51 QMCwalker Class Reference

The electronic configuration for the walker is not set. To do this initialize­
WalkerPosition must be used to generate a new walker, or read must be used
to read this walkers state from a stream.

Parameters:
input data input to control the calculation.

Definit ion at line 470 of file QMCwalker.cpp.

References Array2D< double >::allocateO, and QMCFunctions::initializeO·

Referenced by QMCrun::randomlyInitializeWalkersO, and QMCrun::read­
XMLO·

3.51.3.4 void QMCwalker::initializeWalkerPosition 0
Initializes the electronic configuration for this walker using an algorithm from
QMClnitializeWalkerFactory (p. 73).

If a singular walker is generated, upto 100 configurations are generated until
one is not singular.

Definition at line 557 of file QMCwalker.cpp.

References QM Clni tialize Walker Factory: :initialize Walker FactoryO,
QMCInitializeWalker::initialize WalkerPositionO, and isSingularO.

J

Referenced by propagate Walker 0 , and QMCrun: :randomly Initialize Walkers 0 .

3.51.3.5 bool QMCwalker::isSingular 0
Determines if the trial wavefunction is singular for this walker.

Returns:
true if the trial wavefunction is singular for this walker, and false other­
wise.

Definition at line 678 of file QMCwalker.cpp.

References QMCFunctions::isSingularO.

Referenced by initializeWalkerPositionO, and propagateWalkerO.

3.51.3.6 void QMCwalker::operator= (const QMCwalker & rhs)

Sets two QMCwalker objects equal.

Parameters:
rhs object to set this object equal to.

Gener-ate d on Wed May 1 11:34:48 2002 for- QMc Beaver- by Doxygen

137

3.51 QMCwalker Class Reference

Definition at line 45 of file QMCwalker.cpp.

References AcceptaneeProbability, age, distanceMovedAccepted, dR2, Input,
kineticEnergy, localEnergy, move..accepted, potentialEnergy, QMF, R, and
weight.

3.51.3.7 void QMCwalker::readXML (istream & strm)

Loads the state of this object from an XML stream.

The input stream must be formatted exactly like the output from toXML because
it is not intelligent.

Parameters:
strm XML stream

Definition at line 524 of file QMCwalker.epp.

Referenced by QMCrun::readXMLO.

3.51.3.8 void QMCwalker::setWeight (double val)

Sets the weight for this walker.

Parameters:
val value to set t he weight equal to.

Definition at line 592 of file QMCwalker.epp.

3.51.3.9 void QMCwalker::toXML (ostream & strm)

Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 503 of file QMCwalker.cpp.

References QMCFunctions::getLocalEnergyO , and getWeightO.

3.51.3.10 void QMCwalker::writeCorrelatedSatnplingConfiguration
(ostream & strm)

Writes the state of this walker to a stream in a format that is suitable for
correlated sampling.

This writes out more information than toXML so that parts of the wavefunc­
tion do not have to be reevaluated every time properties are calculated using
correlated sampling.

Generated on Wed May 1 11:34:48 2002 for QMc Benver by Doxygen

138

3.52 QMCWavefunction Class Refer e n ce

Parameters:
stnn stream to writ e correlated sampling information t o.

Defini t ion at line 483 of file Q MCwalker.cpp.

References Array2D < double > ::diml O, a nd QMCFunctions::writeCorrelated­
Sa mplingConfigurat ion O·

3.52 QMCWavefunction Class Reference

The coefficients and parameters describing the trial wavefunction for the system.

Public Methods

• QMCWavefunction 0
Creates an instance of the class.

• int getNumberOrbitals 0
Gets the number of orbitals.

• int getNumberBasisFunctions 0
Gets the number of baJts [unctions.

• int getNumber AlphaElectrons ()

Gets the num ber of a: spin electrons.

• int getNumberBetaElectrons 0
Gets the number of f3 spin electrons.

• int ge tN umber Electrons 0
Gets the total number of electrons.

• QMCWavefunction operator= (const QMCWavefunction &rhs)

Sets two QMCWavefun ction objects equal.

• void r ead (int numberOrbita ls , int number Basis Functions, string run­
fi le)

Loads the state of the object from a file.

G e n e rated o n Wed May 1 11:34:48 2002 fo r Q Mc:B c ove r b y D oxyge n

139

3.52 QMCWavefunction Class Reference

Public Attributes

• Array2D < double> Coelfs
Array containing the coefficients used to construct the orbitals.

• Array1D < int > AlphaOccupation

A rray which indirotes how m any Q' spin electron are in each orbital for the
wave/unction.

• ArraylD < int > BetaOccupation

Friends

Army which indicates how many {3 spin electron are in each orbital for the
wavefunction.

• istream & operator> > (istream &strm, QMCWavefunction &rhs)

Loads the state of the object from an inpu.t stream.

• ostream & operator« (ostream &strm, QMCWavefunction &rhs)

Writes the state of the object to an output stream.

3.52.1 D etailed Description

The coefficients and parameters describing the trial wavefunction for the system.

These are the coefficients for a wavefunction obtained through standard means
(HF, DFT, etc.).

Definition at line 33 of file QMCWavefunction.h.

3 .52.2 Member Function Documentation

3 .52.2.1 int QMCWavefunction::getNumberAlphaElectrons 0
Gets the number of Q spin electrons.

Returns :
number of a spin electrons.

Definition at line 34 of file QMCWavefunction.cpp.

Generated o n Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

140

3.52 QMCWavefunction Class Reference

3.52.2.2 int QMCWavefunction::getNumberBasisFunctions 0
Gets the number of basis functions.

Returns:
number of basis functions.

Definition at line 29 of file QMCWavefunction.cpp .

3 .52.2.3 int QMCWavefunction::getNumberBetaElectrons 0
Gets the number of (3 spin electrons.

Returns:
number of f3 spin electrons.

Definition at line 39 of file QMCWavefunction.cpp.

3.52.2.4 int QMCWavefunction::getNumberElectrons 0
Gets the total number of electrons.

Returns:
total number of electrons.

Definition at line 44 of file QMCWavefunction.cpp.

3.52.2.5 int QMCWavefunction::getNumberOrbitals 0
Gets the number of orbitals.

Returns:
number of orbitals.

Definition at line 24 of file QMCWavefunction. cpp.

3.52.2.6 QMCWavefunction QMCWavefunction::operator= (canst
QMCWavefunction & rhs)

Sets two QMCWavefunction objects equal.

Parameters:
rhs object to set this object equal to.

Definition at line 50 of file QMCWavefunction.cpp.

References AlphaOccupation, BetaOccupatioil, Coeffs, Nalpha, Nbasisfunc,
Nbeta, Nelectrons, and Norbitals.

Generated on Wed May 1 11 :34:48 2002 for QMcBeaver by Doxygen

141

3.53 SortedParameterScorePairList Class Reference

3.52.2.7 void QMCWavefunction::read (int number Orbitals, int
numberBasisFunctions, string runfile)

Loads the state of the object from a file.

Parameters:
numberOrbitals number of orbitals.

numberBasisFunctions number of basis functions.

runfile file to load the object state from.

Definition at line 93 of file QMCWavefunction.cpp.

3.52.3 Member Data Documentation

3.52.3.1 Array2D< double> QMCWavefunction::Coeffs

Array containing the coefficients used to construct the orbitals.

For example, orbitals are constructed so that

NumbcrBasisFunctions - l

Orbitali(x, y, z) = L Coej jSi,jBasisFunctionj(x, y, z)
j=O

where the the BasisFunctianj(x,y, z) are from QMCBasisFunction (p.49).
It is assumed that the ordering of the coefficients is the same as the basisfunc­
tions in the input file.

Definition at line 108 of file QMCWavefunction.h .

Referenced by operator= ().

3.53 SortedParameterScorePairList Class Reference

A sorted list of PararneterScorePair (p.43) objects where the objects are
ordered in an increasing order.

Public Methods

• SortedParameterScorePair List ()

Creates an empty instance of this class.

• SortedParameterScorePair List
&SPSL)

(SortedParameterScorePairList

Createsan instance of this class which is equal to another instance.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

142

3 .53 SortedParameterScorePairList Class R eference

• int size 0
Gets the nu.mber of elements in this list.

• void add (const PararneterScoreP a ir &PSP)

Add.s a new Parame t e rScore Pair (p.43) to this list .

• Para m eterScorePair get (int i)

Gets the ith clement.

• void clear 0
Remove all elements from this list.

• void operator= (canst SortedParameterScorePairList &SPSL)

Sets two objects equal to one ano ther.

3 .53.1 D etailed Description

A sorted list of ParameterScorePair (p.43) objects where t he objects are
ordered in an increasing order.

Defini tion at line 27 of file SortedParameterScorePairList.h.

3.53.2 Constructor & Destructor Documentation

3 .53.2 .1 SortedParameterScorePairList::SortedParameterScore­
P a ir List (SortedParameterScorePairLis t & SPSL)

Createsan instance of this class which is equal to another instance.

Parame ters:
SPSL this object to which this one will be made equal.

Definition at line 19 of file SortedParameterScorePairList.cpp.

References PSPList.

3.53.3 M ember Function Docume ntation

3 .53.3.1 void SortedParameterScoreP airLis t::add (const Parameter­
ScoreP air & PSP)

Adds a new ParameterScorePair (p . 43) to t his list .

Gen erated o n W e d May 1 11:34:48 2002 for QMc B eaver b y D oxygen

143

3.54 Stopwatch Class Reference

Parameters:
P SP new element to add to this list.

Definition at line 29 of file SortedParameterScorePairList.cpp.

3.53.3.2 ParameterScorePair
(int i)

SortedParameterScorePairList::get

Gets the ith element.

Parameters:
i index of the element to return.

Returns:
the ith element of the list.

Definition at line 35 of file SortedParameterScorePairList.cpp.

Referenced by CKGeneticAlgorithml::optimizeO.

3.53.3.3 void SortedParameterScorePairList::operator=
SortedParameterScorePairList & SPSL)

Sets two objects equal to one another.

Parameters:
SPSL object to set this object equal to.

Definition at line 60 of file SortedParameterScorePairList.cpp.

References PSPList.

3.53.3.4 int SortedPararneterScorePairList::size 0
Gets the number of elements in this list.

R e turns:
number of elements in this list.

Definition at line 24 of file SortedParameterScorePair List.cpp.

3.54 Stopwatch Class Reference

An accurate software stopwatch.

Generated on Wed May 1 11:34:48 2002 for QMcBenver by Doxygen

(const

144

3.54 Stopwatch Class Reference

Public Methods

• Stopwatch ()
Creates an instance of the stopwatch that is zeroed and not running.

• void reset ()
Resets and stops the stopwatch.

• void start ()
Starts the stopwatch.

• void stop ()
Stops the stopwatch.

• long timeMS ()

Gets the time in milliseconds.

• bool isRunning ()

Returns true if the stopwatch is running and false otherwise.

• string to String ()

Gets the time formatted as a string.

• Stopwatch operator+ (Stopwatch &rhs)

Returns a stopwatch which contains the total time from two stopwatch ob­
Jects.

Static Public Attributes

• MPLDatatype MPLTYPE

The MPI data type for a Stopwatch.

• MPLOp MPLREDUCE

The MPI operation JOT performing MPLReduce on Stopwatch objects.

Friends

• ostream & operator« (ostream &strm, Stopwatch &watch)

Formats and prints the time to a stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeavc l" by Doxygen

145

3.55 StringManipulation Class Reference

3.54.1 Detailed Description

An accurate software stopwatch.

Definition at line 31 of file Stopwatch.h.

3.55 String Manipulation Class Reference

A set of functions to manipulate strings.

Static Public Methods

• string toAllUpper (stdng &s)

Converts a string to all upper case.

• string toAllLower (string &s)

Converts a string to all lower case.

• string toFirstUpperRestLower (string &s)

Capitalizes the first letter and lowers all others in a string.

• char toUpperChar (char c)
Makes a character upper case.

• char toLowerChar (char c)

Makes a character lower case .

• string intToString (int i)
Returns a string representation of an integer.

• string intToHexString (int i)

Returns a hexadecimal string representation of an integer.

• string doubleToString (double d)

Returns a string representation of a double.

• int stringTolnt (string &s)

Returns an int representation of a string .

• int hexstringTolnt (string &s)

Returns an representation of a hexadecimal string.

• double stringToDouble (string &s)

Generated o n Wed May 1 11:34:48 2002 for QMcBeavcr by Doxygcn

146

3.55 StringManipulation Class Reference

Returns an double representation of a string.

3.55.1 Detailed Description

A set of functions to manipulate strings.

Definition a t line 26 of file StringManipulation.h.

3.55.2 Member Function Documentation

3.55.2.1 string StringManipulation::doubleToString (double d)
[static]

Returns a string representation of a double.

Parameters:
d a double.

Definition a t line 163 of file StringManipulation.cpp.

Referenced by XMLElement:: set AttributeO .

I

3.55.2.2 int StringManipulation::hexstringTolnt (s tring & s)
[static]

Returns an representation of a hexadecimal string.

Parameters:
s a string.

Definition at line 183 of file StringMa nipulation.cpp.

3.55.2.3 string
[static)

StringManipulation::intToHexString

Returns a hexadecimal string representation of an integer.

Parameters:
i an integer.

Definition at line 151 of file StringManipulation.cpp.

Generated on W e d May 1 11:34:48 2002 for QMcBeaver by D oxyge n

(int i)

147

3.55 StringManipulation Class Reference

3.55.2.4 string StringManipulation::intToString (int i) [static]

Returns a string representation of an integer.

Parameters:
i an integer.

Definition at line 139 of file StringManipulation.cpp.

Referenced by XMLElement::setAttributeO,
Exception: :XMLParseExceptionO.

and XMLParse-

3.55.2.5 double StringManipulation::stringToDouble (string & 8)
[static]

Returns an double representation of a string.

Parameters:
s a string.

Definition at line 191 of file StringManipulation.cpp.

Referenced by XMLElement::getDoubleAttributeO.

,
3.55.2.6 int StringManipulation::stringToInt (string & s) [static]

Returns an int representation of a string.

Parameters:
s a string.

Definition at line 175 of file StringManipulation.cpp.

Referenced by XMLElement::getIntAttributeO.

3.55.2.7 string StringManipulation::toAllLower (string & s)
[static]

Converts a string to all lower case.

Parameters:
8 a string

Definition at line 31 of file StringManipulation.cpp.

References toLowerCharO.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

148

3.55 StringManipulation Class Reference

3.55.2.8 string StringManipulation::toAIIUpper (string & s)
[static]

Converts a string to all upper case.

Parameters:
8 a string

Definition at line 16 of file StringManipulation.cpp.

References toUpperCharO·

3.55.2.9 string StringManipulation::toFirstUpperRestLower (string
& s) [static]

Capitalizes the first letter and lowers all ot hers in a string.

Parameters:
8 a string

Definition at line 47 of file StringManipulation.cpp.

References toLowerCharO, and toUpperCharO.

Referenced by QMCCorrelationFunctionParameters: :readO.

3.55.2.10 char StringManipulation::toLowerChar (char c) [static]

Makes a character lower case.

Parameters:
c a character

Definition at line 105 of file StringManipulation.cpp.

Referenced by toAllLowerO, and toFirstUpperRestLowerO.

3.55.2.11 char StringManipulation::toUpperChar (char c) [static]

Makes a character upper case.

Parameters:
c a character

Definition at line 70 of file StringManipulation.cpp.

Referenced by toAllUpperO, and toFirstUpperRestLowerO.

Gene rated on Wed May 1 11:34:48 2002 for QMc Beaver by Doxygen

149

3.56 XMLElement Class Reference

3.56 XMLElernent Class Reference

XMLElement is a representation of an XML object.

Public Methods

• XMLElement ()

Creates and initializes a new XML element.

• XMLElement (map< string, string> .entities)

Creates and initializes a new XML element.

• XMLElement (bool skipLeadingWhitespace)

Creates and initializes a new XML element.

• XMLElement (map< string, string > *entities, bool skipLeading­
Whitespace)

Creates and initializes a new XML element.

• int count Children ()

Returns the number of child elements of the element.

• void add Child (XMLElement &child)

Adds a child element.

• void set Attribute (string &name, string &value)

Adds or modifies an attrih1Lte.

• void set Attribute (string &name, int value)

Adds or modifies an attribute.

• void setAttribute (string &name, double value)

Adds or modifies an attribute.

• void parse (string &file)

Reads one XML element from a file and parses it.

• void parse (istream &reader)

Reads one XML element from a stream and parses it.

• void removeChild (XMLElement &child)

Removes a child element.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygcn

150

3.56 XMLElement Class Reference

• list< XMLElement > * get Children 0
Returns the child element.s as a Vector.

• string getStringAttribute (string &name)

Returns an attribu.te of the element.

• string getStringAttribute (string &name, string &default Value)

Returns an attribute of the element.

• int getIntAttribute (string &name)

Retu.rns an attribute of the element.

• int getIntAttribute (string &name, int default Value)

Returns an attribute of the element.

• double getDoubleAttribute (string &name)

Returns an attribute of the element.

• double getDoubleAttribute (string &name, double default Value)

Returns an attribute of the element.

I

• boo} ge tBooleanAttribute (string &name, string &trueValue, string
&falseValue, bool defaultValue)

R eturns an attribute of the element.

• void removeAttribute (string &name)

R em oves an attribute.

• void setContent (string &content)

Changes the content string.

• string get Content 0
Returns the PCDATA content of the object.

• string getN arne 0
Returns the nam e of the elem ent .

• void setName (string &name)

Changes the name of the elem ent.

• int getLineN r ()

Generated on Wed May 1 11:34:48 2002 fo r QMcBeaver by Ooxyge n

151

3.56 XMLElement Class Reference

Returns the line number in the source data on which the element is found.

• void singleLineWriter (ostream &writer)

Writ es the XML element to an output stream as a single line.

• void write (string &file)
Writ es the XML element to a file using a pretty jormat.

• void prettyWriter (ostream &writer)
Writ es the XML element to an output stream using a pretty format.

• void operator= (XMLElement &rhs)

Sets two objects equal to one another.

• bool operator== (XMLElement &rhs)

Determines if two objects equal to one another.

3.56.1 Detailed Description

XMLElement is a representation of an XML object.

The object is able to parse and write XML code.

Definition at line 32 of file XMLElement.h.

3.56.2 Constructor & Destructor Documentation

3.56.2.1 XMLElement::XMLElement 0
Creates and initializes a new XML element.

A basic entity ("&" , etc.) conversion table is used and leading whitespace is
not skipped.

Definition at line 15 of file XMLElement .cpp .

3.56.2.2 XMLElement::XMLElement (map< string, string> * enti­
ties)

Creates and initializes a new XML element.

A basic entity C'&", etc.) conversion table and the provided entity conversion
table are used and leading whitespace is not skipped.

Parameters:
entities The entity conversion table.

Genera.ted o n Wed May 1 11:34:48 2002 for QMcBcavcr by DoxyS<,ln

152

3.56 XMLElernent Class Reference

Definition at line 21 of file XMLElement.cpp.

3.56.2.3 XMLElernent::XMLElernent (bool skipLeading Whitespace)

Creates and initializes a new XML element.

A basic entity (" &", etc.) conversion table is used and skipping of leading
whitespace is controled by skipLeadingWhi tespace.

Parameters:
skipLeading Whitespace true if leading and trailing whitespace in PC­

DATA content has to be removed.

Definition at line 27 of file XMLElement.cpp.

3.56.2.4 XMLElernent::XMLElernent (rnap< string, string> * enti­
ties, bool skipLeading Whitespace)

Creates and initializes a new XML element.

A basic entity (" &", etc.) conversion table and the provided entity con­
version table are used and leading whitespace is controled by skipLeading­
Whi tespace.

Parameters:
entities The entity conversion table.

skipLeading Whitespace true if leading and trailing whitespace in PC­
DATA content has to be removed.

Definition at line 33 of file XMLElement.cpp.

3.56.3 Member Function Documentation

3.56.3.1 void XMLElernent::addChild (XMLElernent & child)

Adds a child element.

Parameters:
child The child element to add.

Definition at line 93 of file XMLElement.cpp.

3.56.3.2 int XMLElelllent::countChildren 0
Returns the number of child elements of the element.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

153

3.56 XMLElement Class Reference

Returns:
number of child elements.

Definition at line 88 of file XMLElement.cpp.

3.56.3.3 bool XMLElement::getBooleanAttribute (string & name,
string & true Value, string & false Value, bool default Value)

Returns an attribute of the element.

If the attribute doesn't exist, defaultValue is returned. If the value of the
attribute is equal to trueValue, true is returned. If the value of the attribute
is equal to falseValue, false is returned. If the value doesn't match true­
Value or falseValue, an exception is thrown.

ParaIlleters:
name The name of the attribute.

true Value The value associated with true.

false Value The value associated with true.

default Value Value to use if the attribute is missing.

Returns:
The value of the attribute.

Exceptions:
XMLParseException (p.161) If the value doesn't match trueValue or

falseValue.

Definition at line 274 of file XMLElement.cpp.

3.56.3.4 list< XMLElement > • XMLElement::getChildren 0
Returns the child elements as a Vector.

It is safe to modify this Vector.

Returns:
The child elements of this element.

Definition at line 202 of file XMLElement.cpp.

3.56.3.5 string XMLElelllent::getContent 0
Returns the PCDATA content of the object.

If there is no such content, an empty string is returned.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

154

3.56 XMLElement Class Reference

Returns:
PCDATA content.

Definition at line 182 of file XMLElement.cpp .

3.56.3.6 double XMLElement::getDoubleAttribute (string & name,
double default Value)

Returns an attribute of the element.

If the attribute doesn't exist, defaul tValue is returned.

Parameters:
name The name of the attribute.

default Value Key to use if the attribute is missing.

Returns:
Tbe value of the attribute.

Definition at line 258 of file XMLElement.cpp.

References S tringManipulation: :stringToDouble().

3.56.3.7 double XMLElement: :getDoubleAttriJ)ute (string & name)

Returns an attribute of the element.

If the attribute doesn't exist, 0.0 is returned.

Parameters:
name The name of the attribute.

Returns:
The value of the attribute.

Definition at line 252 of file XMLElement.cpp.

3 .56.3.8 int XMLElernent::getIntAttribute (string & name, int
default Value)

Returns an attribute of the element.

If the attribute doesn't exist, default Value is returned.

Parameters:
name The name of the attribute.

Genel"ated on W e d M ay 1 11:34:48 2002 fo r Q McBeave r by D oxygen

155

3.56 XMLElernent Class Reference

default Value Key to use if the attribute is missing.

Returns:
The value of the attribute.

Definition at line 236 of file XMLElement.cpp.

References StringMani pulation: :stringTolntO.

3.56.3.9 int XMLElernent::getIntAttribute (string & name)

Returns an attribute of the element.

If the attribute doesnlt exist) 0 is returned.

Parameters:
name The name of the attribute.

Returns:
The value of the attribute .

Definit ion at line 230 of file XMLElement.cpp.

3.56.3.10 int XMLElernent::getLineNr 0
Returns the line number in the source data on which the element is found.

This method returns 0 there is no associated source data.

Returns:
Line number in the source data on which the element is found.

Definition at line 197 of file XMLElement.cpp.

3.56.3.11 string XMLElernent::getNarne 0
Returns the name of the element.

R e turns:
name of the element .

Definition at line 187 of file XMLElement.cpp.

Generated on Wed May 1 11:34:48 2002 for QMc:Beo.ve r by D oxygen

156

3.56 XMLElement Class Reference

3.56.3.12 string XMLElement::getStringAttribute (string & name,
string & default Value)

Returns an attribute of the element.

If the attribute doesn't exist, default Value is returned.

Parameters:
name The name of the attribute.

default Value Key to use if the attribute is missing.

Returns:
The value of the attribute.

Definition at line 216 of file XMLElement.cpp.

3.56.3.13 string XMLElement::getStringAttribute (string & name)

Returns an attribute of the element.

If the attribute doesn't exist, an empty string is returned.

Parameters:
name The name of the attribute.

Returns:
The value of the attribute.

Definition at line 209 of file XMLElement.cpp.

3.56.3.14 void XMLEleIllent::operator= (XMLElement & rhs)

Sets two objects equal to one another.

Parameters:
rhs object to set this object equal to.

Definition at line 1037 of file XMLElement.cpp.

References attributes, children, contents, entities, ignoreWhitespace, lineNr, and
name.

3.56.3.15 bool XMLElell1ent::operator== (XMLElement & rhs)

Determines if two objects equal to Oile another.

Generate d on Wed May 1 11:34:48 2002 for QMcBeavcr by Doxygen

157

3 .56 XMLElement Class Reference

Parame ters:
rh8 object to determine if this one is equal to.

R e turns:
true if both objects are equal and fal s e otherwise.

Definition at line 1063 of file XMLElement.epp.

References attributes, children, contents, and name.

3.56.3.16 void XMLElement ::parse (istream & reader)

Reads one XML element from a stream and parses it.

Parame ters:
reader The stream from which to retrieve the XML data.

Exceptions:
XMLParseException (p. 161) If an error oeeured while parsing the read

data.

Definition at line 124 of fi le XMLElement.cpp.

References parseO.

3.56.3.17 void XMLElement::parse (string & file)

Reads one XML element from a file and parses it.

Parameters:
file The file from which t o retrieve the XML data.

E x ceptions:
XMLParseException (p . 161) If an error oecured while pa rsing the read

data.

Definit ion at line 116 of file XMLElement.cpp.

Referenced by parseO.

3.56.3.18 void XMLElernent: :prettyWriter (ostream & writer)

Writes the XML element to an output stream using a pretty format.

Parameters:
writer The stream to write the XML data to.

Definition at line 929 of file XMLElement.epp.

Referenced by wri te () .

G e n e ra ted on W e d May 1 11:34:48 2002 for QMcBe ovc r by Doxygen

158

3.56 XMLElement Class Reference

3.56.3.19 void XMLElement::re moveAttribute (string & name)

Removes an attribute.

Parameters:
name The name of the attribute.

Definition at line 172 of file XMLElement.cpp.

3.56.3.20 void XMLElernent ::rernoveChild (XMLElernent & child)

Removes a child element.

Paratneters:
child The child element to remove.

Definition a t line 159 of file XMLElement.cpp.

3.56.3.21 void XMLElernent::setAttribute (string & name, double
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Definition at line III of file XMLElement. cpp.

References StringManipulation::doubleToString().

3.56.3.22 void XMLElement ::setAttribute (string & name, int
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Definition at line 105 of file XMLElement.cpp.

References StringManipulation: :intToStringO.

Generated on W ed May 1 11:34:48 2002 for QMcBeaver by Doxyge n

159

3.56 XMLElement Class Reference

3 .56.3.23 void XMLElement::setAttribute (string & name, string &
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Defini t ion at line 99 of file XMLElement.cpp.

3.56.3.24 void XMLEleIllent::setContent (string & content)

Changes the content string.

Parameters:
content The new content string.

Definition at line 177 of file XMLElement.cpp.

3.56.3.25 void XMLElernent::setName (string & name)

Changes the name of the element.

Parameters:
name The new name.

Definition at line 192 of file XMLElement.cpp.

3.56.3.26 void XMLEleITlent::singleLineWriter (ostreaITl & writer)

Writes the XML element to an output stream as a single line.

Parameters:
writer The stream to write the XML data to.

Definition at line 858 of file XMLElement.cpp.

3.56.3.27 void XMLElement::write (string & file)

Writes the XML element to a file using a pretty format.

Parameters:
file The file to write the XML data to.

Definition at line 922 of file XMLElement.cpp.

References prettyWriter().

Generated on Wed May 1 11:34:48 2002 for QMc:Bco.ver by Doxygen

160

3.57 XMLParseException Class Reference

3.57 XMLParseException Class Reference

An XMLParseException is thrown when an error occures while parsing an XML
stream.

Inheritance diagram for XMLParseException::

Public Methods

• XMLParseException (string name, string message)

Creates an exception.

• XMLParseException (string name, int lineNr, string message)

Creates an exception.

• int getLineNr 0 ,
Where the error occurred, or NO _LINE if the line nu.mber is unknown.

• void setMessage (string message)

Sets the error message for the exception.

• string get Message 0
Gets the error message for the exception.

Static Public Attributes

• int NO..LINE = -1

Indicates that no line number has been associated with this exception.

3.57.1 Detailed Description

An XMLParseException is thrown when an error Occures while parsing an XML
stream.

Definition at line 28 of file XMLParseException .h.

Generated on Wed May 1 11:34:48 2002 for QMcBenver by Doxygen

161

3.58 ZeroCorrelationFunction Class Reference

3.57.2 Constructor & Destructor Documentation

3.57.2.1 XMLParseException::XMLParseException (string name,
string message)

Creates an exception.

Parameters:
name The name of the element where the error is located.

message A message describing what went wrong.

Definition at line 18 of file XMLParseException.cpp.

References NO-LINE, and Exception::setMessageO.

3.57.2.2 XMLParseException::XMLParseException (string name,
int lineNr, string message)

Creates an exception.

Parameters:
name The name of the element where the error is located.

lineNr The number of the line in the input.

message A message describing what went wrong.)

Definition at line 29 of file XMLParseException.cpp.

References StringManipulation: :intToStringO, and Exception: :setMessageO.

3.57.3 Member Function Documentation

3.57.3.1 int XMLParseException::getLineNr 0
Where the error occurred, or NO-LINE if the line number is unknown.

Returns:
Line number where the error occurred.

Definition at line 41 of file XMLParseException.cpp.

3.58 ZeroCorrelationFunction Class Reference

Correlation function which describes noninteracting particles.

Inheritance diagram for ZeroCorrelationFunction::

Generated on Wed May 1 11:34:48 2002 for QMcBcaver by Do:x:ygcn

162

3 .58 ZeroCorrelationFunction C lass Reference

QMCCorrelationFunction

ZeroCorrelat ionFunction

Public Methods

• void initializePararneters (ArraylD< int > &BeginninglndexOf­
ParameterType, ArraylD< double> &Parameters, ArraylD < int >
&BeginninglndexOfConstantType, ArraylD< double> &Constants)

Initializes the correlation junction with a specified set of parameters .

• void evaluate (double r)

Evaluates the correlation junction and it's first two derivatives at r.

• bool isSingular 0
Returns true if the correlation junction has a singularity in the domain r ~ 0,
and false otherwise.

• double get Function Va lue ()

Gets the value of the correlation function for the rest evaluated r.

• double getFirstDerivative Value 0
Gets the value of the first derivative of the correlation function for the last
evaluated r.

• double getSecondDerivativeValue 0
Gets the value of the second derivative of the correlation junction for the last
evaluated r.

3.58.1 D etailed Description

Correlation function which describes noninteracting particles.

Definition at line 24 of file ZeroCorrelationFunction.h.

3.58.2 Member FUnction Documentation

3.58.2.1 void
(ArraylD< int

ZeroCorrelationFunction: :initializeParameters
> & BeginninglndexOfParameterType, ArraylD<

Generated o n W ed May 1 11:34:48 2002 for QMcBcaver by Doxyg en

163

4 QMcBeaver File Doculllentation

double > & Parameters, Array1D < int > & BeginninglndexOf­
ConstantTlJpe, Array1D< double > & Constants) [virtual]

Initializes the correlation function with a specified set of parameters.

This must be called every time the parameters are changed.

Implements QMCCorrelationFunction (p. 58).

Definition at line 16 of file ZeroCorrelationFunction.cpp.

4 QMcBeaver File Documentation

4.1 ckfastfunctions.h File Reference

This is a fast function library originally intended to speed up QMcBeaver a
Quantum Monte Carlo program.

Functions

• double fastPower (double x, int n)

Fast power function fO T use when the exponent is a small integer.

4.1.1 Detailed Description

This is a fast function library originally intended to speed up QMcBeaver a
Quantum Monte Carlo program.

Definition in file ckfastfunctions.h .

4.1.2 function Documentation

4.1.2.1 double fastPower (double x, int n)

Fast power function for use when the exponent is a small integer.

Parameters:
x base

n exponent

Returns:
xn

Definition at line 15 of file ckfastfunctions.cpp.

Generated on W e d May 1 11:34:48 2002 fo r QMc Beaver by Doxygen

164

4.2 LV.h File Reference

4.2 LU.h File Reference

Library of matrix functions which involve LV decompositions.

Functions

• void ludcrnp (Array2D< double> &a, int *indx, double *d, bool *calc­
OK)

L U decomposition using the algorithm in numerical recipes for a dense ma­
trix.

• void lubksb (Array2D< double> &a, int *indx, Array1D< double>
&b)

L U backsubstitution using the algorithm in numerical recipes for a dense
matrix.

• double determinant (Array2D< double> a, bool *calcOK)

Calculates a determinant of a matrix using a dense LU solver.

• Array2D< double> inverse (Array2D< double> a, bool *calcOK)

Calculates the inverse of a matrix using a dense LU solver.

• void deterrninant-3.nd~nverse (Array2D< d£)uble > a, Array2D<
double> &inv, double &det, bool *calcOK)

Calculates the inverse and determinant of a matrix using a dense L U solver.

• void linearsolver (Array2D< double> &a, Array1D< double> &b,
bool *calcOK)

Solves a system of linear equations using a dense L U solver.

4.2.1 Detailed Description

Library of matrix functions which involve LU decompositions.

Definition in file LV.h.

4.2.2 Function Documentation

4.2.2.1 double determinant (Array2D< double> a, bool * calc OK)

Calculates a determinant of a matrix using a dense LU solver.

This method scales as O(tN').

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

165

4.2 LU.h File R eference

Parameters:
a a N x N matrix

calc OK returns false if the calculation is singular and true otherwise

Returns:
the determinant of a

Definition at line 115 of file LU.cpp.

4.2.2.2 void determinanLand_inverse (Array2D< double > a,
Array2D< double> & inv, double & det , bool * ealeOK)

Calculates the inverse and determinant of a matrix using a dense LV solver.

This method scales as O(I N 3).

Parameters:
a a N x N matrix

inv inverse of a is returned here

det determinant of a is returned here

ealeOK returns false if the calculation is singular and true otherwise

Definition at line 161 of file LU.cpp.

4.2.2.3 Array2D < double> inverse (Array2D < double > a, bool *
ealeOK)

Calculates the inverse of a matrix using a dense L U solver.

This method scales as O(IN3).

ParaD1.eters:
aaNxNmatrix

calcOK returns false if the calculation is singular and true otherwise

Returns:
the inverse of a

Definition at line 134 of file LU. cpp.

4.2.2.4 void linearsolver (Array2D< double > & a , ArraylD< double
> & b, bool * calcOK)

Solves a system of linear equations using a dense L U solver.

this method scales as O(~N3) .

Generatad on Wed May 1 11:34:48 2002 for QMcBcaver by Doxygen

166

4.3 mfrandom.h File Reference

Parameters:
a a N x N matrix. This matrix is destroyed in the calculation.

b the N dimensional right hand side to solve for. Result is returned here
and the original values are destroyed.

calc OK returns false if the calculation is singular and true otherwise

Definition at line 191 of file LU.cpp.

4.2.2.5 void lubksb (Array2D < double > & a, int * indx, Array1D <
double > & b)

LV backsubstitution using the algorithm in numerical recipes for a dense matrix.

Parameters:
a the LU decomposition of a matrix produced by ludcmp

indx a N dimensional array which records the row permutation from par­
tial pivoting generated by ludcmp

b the N dimensional array right hand side of the system of equations to
solve

Definition at line 90 of file LU.cpp.

4.2.2.6 void ludcmp (Array2D < double > & a, int * indx, double *
d, bool • calc OK)

LV decomposition using the algorithm in numerical recipes for a dense matrix.

Parameters:
a a N x N matrix which is destroyed during the operation. The resulting

LU decompositon is placed here.

indx a N dimensional array which records the row permutation from par­
t ial pivoting.

d used to give det(a) the correct sign

calc OK returns false if the calculation is singular and true otherwise

Definition at line 23 of file LU.cpp.

4.3 mfrandom.h File Reference

Library of functions for generating random numbers.

Gene rated o n Wed May 1 11:34:48 2002 for QMcBeave r by Doxygcn

167

4.3 mfrandom.h File Reference

Functions

• double gasdev (long *idum)

Generates a gaussian distributed random number with unit variance using
the gasdev algorithm /rom numerical recipes .

• double ranI (long *idum)

Generates a uniform random number on [0, 1] using the ranl algorithm from
numerical recipes .

4 .3.1 Detailed Description

Library of functions for generating random numbers.

Definition in file mfrandorn.h.

4.3.2 Function Docurnentation

4 .3.2 .1 double gasdev (long * idum)

Generates a gaussian distributed random number with unit variance using t he
gasdev algorithm from numerical recipes.

Parameters:
idum random number seed

R eturns:
gaussian random number with uni t variance

Definition at line 16 of file mfrandom.cpp.

4.3.2.2 double ranI (long * idum)

Generates a uniform random number on [0, 1] using the ranI algorithm from
numerical recipes.

Pararneters :
idum random number seed

R e turns:
uniform random number on [0,1].

Definition at line 55 of file mfrandom.cpp.

Gene rated on Wed May 1 11:34:48 2002 for Q McBeaver by Doxygen

168

Index
-ArraylD Array4D, 25

ArraylD, 14 AlphaOccupation
-Array2D QMCWavefunction, 145

Array2D, 17 a rray
-Array3D ArraylD, 15

Array3D, 20 Array2D, 19
-Array4D Array3D, 22

Array4D, 24 Array4D, 25
-FunctionRltoRI ArraylD , 13

FunctionRltoRl, 45 -Array lD , 14
-QMCCorrelationFunction allocate, 15

QMCCorrelationFunction, 62 array, 15
-QMCCorrelationFunctionParameters ArraylD, 14, 15

QMCCorrelationFunction- deallocate, 13
Parameters, 64 diml , 15

-QMClnitia lizeWalker operator *, 13
QMClnitializeWalker, 77 operator *=, 13

-QMCLineSearch operatorO, 14
QMCLineSearch, 94 operator+ , 13

-QMCLineSearchStepLengthSelectionAlgorithrmperator- , 13
QMCLineSearchStepLength- operat(i)r/ =, 14

SelectionAlgorithm,95 operator«,14
-QMCManager operator=, 13

QMCManager, 97 size, 16
-QMCOptimizationAlgorithm Array2D , 16

QMCOptimizationAlgorithm, -Array2D, 17
III allocate, 18

-QMCwalker array, 19
QMCwalker , 139 Array2D, 17, 18

abs
Complex, 30

acceptanceProbability
QMCproperties, 120

add
SortedParameterScorePair­

List, 148
addChild

XMLElement, 158
allocate

Array1D, 15
Array2D, 18
Array3D, 21

deallocate, 17
diml , 19
dim2 , 19
operator * I 17
operator *=, 17
operator O, 17
operator/=, 17
operator< <, 17
operator= , 17
size, 19

Array3D,20
-Array3D, 20
a llocate, 21
array, 22

INDEX

Array3D, 20, 21
deallocate, 20
diml, 22
dim2, 22
dim3, 22
operatorO, 21
operator=1 20
size, 22

Array4D, 23
~Array4D, 24
allocate , 25
array, 25
Array4D,24
deallocate, 23
diml , 25
dim2, 25
dim3,26
dim4,26
operatorO , 24
operator=, 23
size, 26

Atom-Labels
QMCMolecule, 104

AtomJlositions
QMCMolecule, 104

BetaOccupation
QMCWavefunction, 145

calculateObservables
QMCwalker, 141

ckfastfunctions.h, 169
fastPower, 169

CKGeneticAIgorithml
CKGeneticAlgorithml,27

CKGeneticAlgorithml,26
CKGeneticAlgorithml, 27
optimize, 28

clear
SortedParameterScorePair­

List, 148
Coeffs

QMCBasisFunction­
Coefficients, 58

QMCWavefunction, 147
Complex, 28

ahs , 30
Complex, 28, 30
conjugate, 30
imaginary) 31
operator *, 31
operator+, 31, 32
operator-, 32
operator /, 32
operator«,30
operator=, 32, 33
real, 33
squareroot, 33

conjugate
Complex, 30

correlationFunctionFactory
QMCCorrelationFunction­

Factory, 64
count Children

XMLElement, 158
CubicSpline

CubicSpline, 34
CubicSpline, 33

evaluate, 35
getFirstDerivativeValue,35
getFunction Value, 36
getSecondDerivativeValue, 36
ini tialize WithDerivative Val-

ues, 36
initialize WithFunction Values,

36
operator= , 37
toXML,37

Cu bicSpline With GeometricProgressionGrid
Cu bicSpline Wi thGeometric­

Progression Grid, 38
CubicSplineWithGeometric-

ProgressionGrid, 37
evaluate, 39
getFirstDerivativeValue,40
getFunctionValue,40
getSecondDerivativeValue,40
initialize Wi thDerivative Val-

ues, 40
initialize WithFunction Values,

41
operator= , 41

Generated on Wed May 1 11:34:48 2002 for QMcBe aver by Doxygen

170

INDEX

setGridParameters, 41
toXML,42

deallocate
ArraylD,13
Array2D , 17
Array3D , 20
Array4D,23

determinant
LV.h, 170

determinanLand_inverse
LV.h,l71

dim 1
ArraylD , 15
Array2D, 19
Array3D , 22
Array4D,25

dim2
Array2D , 19
Array3D,22
Array4D,25

dim3
Array3D , 22
Array4D , 26

dim4
Array4D, 26

distanceMovedAccepted
QMCproperties, 120

distanceMovedTrial
QMCproperties, 120

doubleToString
StringManipulation , 152

energy
QMCproperties, 120

evaluate
CubicSpline, 35
Cu bicSpline Wi thGeometric­

ProgressionGrid, 39
FixedCuspPadeCorrelation-

Function, 44
FunctionRltoRl, 46
PadeCorrelationFunction, 47
Polynomial, 52
QMCCorrelationFunction, 63
QMCFunctions, 74

QMCJastrow, 80, 81
QMCJastrowElectronElectron,

84
QM CJ astrow ElectronN uelear,

86
QMCObjectiveFunction, 105,

106
QMCPolynomial, 115
QMCPotential-Energy, 118
QMCSlater, 130
ZeroCorrelationFunctioll , 168

Exception, 42
Exception , 42, 43
getMessage, 43
setMessage, 43

factory
QMCLineSearchStepLength­

SelectionFactory, 96
fastPower

ckfastfunctions.h, 169
finalize

QMCManager,97
FixedCuspPa deCorreiationFunction

eval uate, 44
getFirstDerivativeValue,44
getFunction Value, 44
getSecondDerivativeValue,44
isSingular 1 44

FixedCuspPadeCorrelation­
Function, 43

initializeParameters, 44
FunctionRI toRI

-FunctionRltoRl ,45
FunctionRltoRl, 45

evaluate, 46
getFirstDerivativeValu€,46
getFunctionValue,46
getSecondDerivative Value, 46

gasdev

get
mfrandom.h, 173

SortedParameterScorePair­
List , 149

getAverage

Generated on W e d May 1 11:34:48 2002 for QMcBeaver by Doxygen

171

INDEX 172

QMCproperty, 122 QMCObjectiveFunction-
QMCstatistic, 132 Result, 110

getBooleanA ttribute getFirstDeri vative Value
XMLElement, 159 CubicSpline, 35

getChildren CubicSpline Wi thGeometric-
XMLElement, 159 Progression Grid, 40

get Coefficient FixedCuspPadeCorrelation-
Polynomial, 52 Function, 44
QMCPolynomial, 115 FunctionRltoR1, 46

getCommandPollingStopwatch PadeCorrelationFunction, 47
QMCStopwatches, 137 Polynomial, 52

getCommunicationSynchronizationStopwatch QMCCorrelationFunction, 63
QMCStopwatches, 137 QMCPolynomial, 115

getContent ZeroCorrelationFunctioll, 168
XMLElement, 159 getFunction Value

getCorrelationFunction CubicSpline, 36
QM CCorrelationFunction - CubicSpline Wi thGeometric-

Parameters, 66 ProgressionGrid, 40
getDerivativeScore FixedCuspPadeCorrelation-

QMCObjectiveFunction- Function, 44
Result, 109 FunctionRltoR1, 46

getDoubleAttribute PadeCorrelationFunction, 47
XMLElement, 160 Polynomial, 52

getEffectiveTimeStep QMCC~rrelationFunction, 63
QMCDerivativeProperties, 70 QMCPolynomial, 116

getEffectiveTimeStepStandardDeviation ZeroCorrelationFunctioll, 168
QMCDerivativeProperties, 70 getGatherPropertiesStopwatch

getEffectiveTimeStep Variance QMCStopwatches, 138
QMCDerivativeProperties, 71 getGradientLnJastrow

getElectronDownElectronDownParameters QMCJastrow,81
QMCJastrowParameters,90 QMCJastrowElectronElectron,

getElectronDownN uclear Parameters 84
QMCJastrowParameters,90 QMCJastrowElectronNuclear,

getElectronUpElectronDownParameters 87
QMCJastrowParameters,91 getGradPsi

getElectronUpElectronUpParameters QMCBasisFunction, 55
QMCJastrowParameters,91 getGradPsiRatio

getElectronUpNuclearParameters QMCFunctions, 74
QMCJastrowParameters,91 QMCSlater, 131

getEnergy getInitializationStopwatch
QMCPotentiaLEnergy, 118 QMCStopwatches, 136

getEnergy A ve getlnputData
QMCObjectiveFunction- QMCManager,98

Result, 109 getlntAttribute
getEnergyVar XMLElement, 160, 161

getJastrow

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

QMCJastrow,81
getKineticEnergy

QMCFunctions, 75
getLaplacianLnJastrow

QMCJastrow,81
QMCJastrowElectronElectron,

84
QMCJastrowElectronNuclear ,

87
getLaplacianPsi

QMCBasisFunction, 56
getLaplacianPsiRatio

QMCSlater, 131
getLineNr

XMLElement, 161
XMLParseException, 167

getLnJastrow
QMCJast row,82
QMCJastrowElectronElectron,

85
QMCJastrowElectronNuclear,

87
getLocalEnergy

QMCFunctions, 75
getLocalEnergy Estimator

QMCwalker, 140
getLogWeightsAve

QMCObjectiveFunction­
Result , 110

getLogWeightsVar
QMCObjectiveFunction­

Result, 110
getMessage

Exception , 43
XMLParseException, 166

getModifiedGradPsiRatio
QMCFunctions, 75

getName
XMLElement, 161

getNucleiTypes
QMCJastrowParameters, 89

getN umber AlphaElectrons
QMCWavefunction, 145

getNumberAtoms
QMCMolecule, 103

getN umber BasisFunctions

QMCBasisFunction, 56
QMCBasisFunction­

Coefficients, 60
QMCWavefunction, 145

getNumberBetaElectrons
QMCWavefunction, 146

getNumberCoefficients
Polynomial, 53
QMCPolynomial, 116

getNumberElectrons
QMCWavefunction, 146

getN umberO fW alkers
QMCrun,127

getNumberOrbitals
QMCWavefunction, 146

getNumberSamples
QMCproperty , 122
QMCstatistic, 132

getObjectiveFunction
QMCLineSearch, 94
QMCSteepestDescent, 135

getOptimiza}ionStopwatch
QMCStopwatches, 138

getParameters
ParameterScorePair, 49
QMCCorrelationFunction­

Parameters, 66
QMCJastrowParameters,92

getParticlel Type
QMCCorrelationFunction­

Parameters, 67
getParticle2Type

QMCCorrelationFunction­
Parameters, 67

getPotentialEnergy
QMCFunctions, 75

getPropagationStopwatch
QMCStopwatches, 138

getProperties
QMCrun, 127

getPsi
QMCBasisFunction, 56
QMCFunctions, 76
QMCSlater, 131

getResultsOutputStream
QMCManager,98

Generated on W e d May 1 11:34:48 2002 for QMcBeaver by D oxygen

173

INDEX

getRoots
Polynomial, 53
QMCPolynomial, 116

getS core
ParameterScorePair,49
Q M COb jectiveFunction­

Result, 110
getSecondDerivative Value

CubicSpline, 36
CubicSpline Wi thGeometric­

Progression Grid, 40
FixedCuspPadeCorrelation-

Function, 44
FunctionRltoRl, 46
PadeCorrelationFunction,47
Polynomial, 53
QMCCorrelationFunction, 63
QMCPolynomial, 117
ZeroCorrelationFunction, 168

getSendCommandStopwatch
QMCStopwatches, 138

getSeriallyCorrelatedStandardDeviation
QMCproperty, 122

getSeriallyCorrelatedVariance
QMCproperty, 122

getStandardDeviation
QMCproperty, 122
QMCstatistic, 132

getStringAttribute
XMLElement, 161, 162

getTotalNumberOfParameters
QMCCorrelationFunction­

Parameters, 67
getTotalTimeStopwatch

QMCStopwatches, 139
get Variance

QMCproperty, 122
QMCstatistic, 132

get ViriaIRatio
QMCDerivativeProperties, 71

get VirialRatioStandardDeviation
QMCDerivativeProperties, 71

get VirialRatio Variance
QMCDerivativeProperties, 72

getWeight
QMCwalker, 141

get Weights
QMCrun,128

grad
QMCObjectiveFunction, 106

hasNonNegativeZeroes
QMCPolynomial, 117

hexstringToInt
StringManipulation, 152

imaginary
Complex, 31

initialize
Polynomial, 54
QMCBasisFunction, 57
QMCFunctions, 76
QMCJastrow,82
QMCJastrowElectronElectron

85 '
QMCJastrowElectronNuc1ear

88 '

QMCManager,98
QMCMolecule, 103
QMCObjectiveFunction, 107
QMCPolynomial, 117
QMCPotentiaLEnergy, 119
QMCReadAndEvaluate-

Configs, 125
QMCrun,128
QMCSlater, 131
QMCwalker, 141

ini tializeP arameters
FixedCuspPadeCorrelation-

Function, 44
PadeCorrelationFunction, 48
QMCCorrelationFunction, 63
ZeroCorrelationFunction, 168

initialize Walker Factory
QM Clnitialize Walker Factory,

79
ini tialize Walker Position

QlvIClnitializeWalker, 78
QMCMikesJackedWalker­

Initialization) 101
QMCwalker, 142

initialize Wi thDeri vative Values

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

174

INDEX

CubicSpline, 36
CubicSplineWithGeometric­

Progression Grid, 40
initialize WithFunction Values

CubicSpline, 36
CubicSpline With Geometric­

ProgressionGrici, 41
intToHexString

String Manipulation, 152
intToString

StringManipulation, 152
inverse

LU.h,171
isRunning

Stopwatch, 150
isSingular

FixedCuspPadeCorrelation-
Function , 44

PadeCorrelationFunction,47
QMCCorrelationFunction, 62
QMCCorrelationFunction-

Parameters, 67
QMCFunctions, 76
QMCSlater , 130
QMCwaiker, 142
ZeroCorrelationFunction, 168

kineticEnergy
QMCproperties, 120

linearsolver
LV.h, l71

logWeights
QMCproperties, 120

LU.h, 170
determinant, 170
determinant_and.inverse, 171
inverse , 171
linearsolver, 171
lubksb, 172
ludcmp, l72

lubksb
LU.h , l72

ludcmp
LU.h, 172

mfrandom.h, 172

gasdev, 173
ranI , 173

MPLREDUCE
QMCproperties, 120
QMCproperty, 123
QMCstatistic, 133
QMCStopwatches, 137
Stopwatch , 150

MPLTYPE
QMCproperties, 120
QMCproperty, 123
QMCstatistic, 133
QMCStopwa tches, 137
Stopwatch, 150

N_Gauss
QMCBasisFunction­

Coefficients, 58
newSample

QMCproperty, 123
QMCstatistic, 133

NO_LINE '
XMLParseException, 166

N ucIeiTypes
QMCMolecule, 102

operator *
ArraylD , 13
Array2D , 17
Complex , 31

operator *=
ArraylD, 13
Array2D, 17

operatorO
ArraylD, 14
Array2D,17
Array3D, 21
Array4D,24

operator+
ArraylD, 13
Complex, 31, 32
QMCproperties, 119
QMCproperty, 122
QMCstatistic, 132
QMCStopwatches, 137
Stopwatch, 150

Generated on W ed May 1 11:34:48 2002 fo r QMcBeaver by Doxygen

175

INDEX

operator­
ArraylD,13
Complex, 32

operator/
Complex, 32

operator/=
ArraylD,14
Array2D,17

operator<
ParameterScorePair, 49

operator«
ArraylD, 14
Array2D,17
Complex, 30
QMCBasisFunction, 55
QMCBasisFunction-

Coefficients, 59
QMCCopyright, 61
QMCCorrelationFunction-

Parameters, 65
QMCDerivativeProperties, 70
QMCJastrowParametets,89
QMCManager,98
QMCMolecule, 103
QMCObjectiveFunction-

Result, 108
QMCproperties, 121
QMCproperty, 123
QMCstatistic, 133
QMCStopwatches, 137
QMCWavefunction, 145
Stopwatch, 150

operator=
ArraylD, 13
Array2D,17
Array3D,20
Array4D , 23
Complex, 32 , 33
CubicSpline, 37
CubicSplineWithGeometric-

Progression Grid, 41
ParameterScorePair, 50
QMCBasisFunction, 57
QMCBasisFunction-

Coefficients, 60

QMCCorrelationFunction-
Parameters, 68

QMCFunctions, 76
QMCJastrowParameters, 92
QMCMolecule, 103
QMCObjectiveFunction-

Result, 111
QMCPotentiaLEnergy, 119
QMCSlater, 132
QMCwalker, 142
QMCWavefunction, 146
SortedParameterScorePair-

List, 149
XMLElement, 162

operator==
XMLElement, 162

operator»
QMCBasisFunction, 55
QMCBasisFunction­

Coefficients, 59
QMCMolecule, 102
QMCWavefunction, 145

optimizationAlgorithmFactory
QM COptimizationFactory,

113
optimize

CKGeneticAlgorithml , 28
QMCCorrelatedSampling-

VMCOptimization, 62
QMCLineSearch, 95
QMCManager, 97
QMCOptimizationAlgorithm,

112
QMCSteepestDescent, 135

PadeCorrelationF\mction
eval uate, 47
getFirstDerivativeValue,47
getFunctionValue, 47
getSecondDerivativeValue,47
isSingular, 47

PadeCorrelationFunction, 47
initializeParameters, 48

ParameterScorePair
operator < , 49
ParameterScorePair J 48, 49

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

176

INDEX

ParameterScorePair, 48
getParameters, 49
getScore, 49
operator=, 50
ParameterScorePair, 49

parse
XMLElement, 163

Polynomial , 50
evaluate, 52
getCoefficient, 52
getFirstDerivativeValue, 52
getFunction Value, 52
getNumberCoefficients, 53
getRoots, 53
getSecondDerivativeValue, 53
initialize, 54
Polynomial, 50, 51

potentialEnergy
QMCproperties, 120

pretty Writer
XMLElement, 163

propagate Walker
QMCwalker, 140

QMCBasisFunction
operator< <, 55
operator> > I 55
QMCBasisFunction, 54

QMCBasisFunction, 54
getGradPsi, 55
getLaplacianPsi, 56
getNumberBasisFunctions, 56
getPsi, 56
initialize, 57
operator=, 57
read, 57

QMCBasisFunctionCoefficients
Coeffs,58
N_Gauss,58
operator< <, 59
operator> >, 59
QMCBasisFunction-

Coefficients, 58
read, 58

QMCBasisFunctionCoefficients, 58
getNumberBasisFunctions, 60

operator= , 60
Type, 60
xyz_powers, 60

QMCCopyright, 61
operator< < 1 61

Q M CCorrelatedSampling­
VMCOptimization, 61

optimize, 62
QMCCorrelationFunction

-QMCCorrelationFunction,
62

evaluate, 63
getFirstDerivative Value, 63
getFunction Value, 63
getSecondDerivativeValue, 63
isSingular, 62

QMCCorrelationFunction, 62
initializeParameters, 63

QMCCorrelationFunctionFactory
correlationFunctionFactory 1 64

QM CCorrelationFunctionFactory,
63

QMCCorrelationFunctionParameters
-QMCCorrelationFunction­

Parameters, 64
operator< <, 65
QMCCorrelationFunction­

Parameters, 64, 66
setParticle1 Type, 65
setParticle2Type, 65

QMCCorrelationFunction-
Parameters, 64

getCorrelationFunctioll, 66
getParameters, 66
getParticle1 Type, 67
getParticle2Type, 67
getTotalNumberOlParame-

ters, 67
isSingular, 67
operator=, 68
QMCCorrelationFunctionPa-

rameters, 66
read ,68
setParameters, 68

QMCDerivativeProperties
operator< <, 70

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

177

INDEX

QMCDerivativeProperties, 70
QMCDerivativeProperties, 69

getEffectiveTimeStep, 70
getEffectiveTimeStepStan­

dardDeviation, 70
getEffectiveTimeStep Variance,

71
get VirialRatio, 71
get VirialRatioS tandardDevia­

tion, 71
get VirialRatio Variance, 72
QMCDerivativeProperties, 70

QMCFunctions, 72
evaluate, 74
getGradPsiRatio, 74
getKineticEnergy, 75
getLocalEnergy, 75
getModifiedGradPsiRatio, 75
getPotentialEnergy, 75
getPsi, 76
initialize, 76
isSingular, 76
operator=, 76
QMCFunctions, 72, 74
writeCorrelatedSamplingCon-

figuration , 77
QMClnitializeWalker

~QMClnitializeWalker, 77
QMClnitializeWalker, 77

initializeWalkerPosition, 78
QMClnitializeWalkerFactory, 78

initialize Walker Factory 1 79
QMCJastrow, 79

evaluate, 80, 81
getGradientLnJastrow,81
getJastrow, 81
getLaplacianLnJastrow, 81
getLnJastrow,82
initialize, 82

QMCJastrowElectronElectron,82
evaluate , 84
getGradientLnJastrow,84
getLaplacianLnJastrow 1 84
getLnJastrow,85
initialize, 85

QMCJ astrow ElectronNuclear , 85

evaluate, 86
getGradientLnJastrow, 87
getLaplacianLnJ astrow, 87
getLnJastrow, 87
initialize, 88

QMCJastrowParameters
getNucleiTypes, 89
operator< < I 89
QMCJastrowParameters , 88,

90
QMCJastrowParameters, 88

getElectronDownElectron­
DownParameters, 90

getElectronDownN uclear Pa­
rameters, 90

getElectronUpElectronDown­
Parameters, 91

getElectronUpElectronUpPa­
rameters, 91

getElectron U pN uclear Parame-
ters, 91

getParameters, 92
operator=, 92
QMCJastrowParameters, 90
read, 92
setParameter Vector) 93

QMCLineSearch
~QMCLineSearch, 94
getObjectiveFunction, 94
QMCLineSearch, 94

QMCLineSearch, 93
optimize, 95
QMCLineSearch, 94

QMCLineSearchStepLengthSelectionAlgorithm
~QMCLineSearchStepLength-

Selection Algorithm, 95
QMCLineSearchStepLength­

SelectionAlgorithm, 95
step Length, 96

QMCLineSearchStepLengthSelectionFactory
factory, 96

QM CLineSearchS tepLength­
SelectionFactory 1 96

QMCManager, 97
~QMCManager, 97
finalize, 97

Generated on Wed May 1 11 :34:48 2002 for QMcBeaver by Doxygen

178

INDEX

getInputData, 98
getResultsOutputStream, 98
init ialize, 98
operator«,98
optimize, 97
QMCManager, 97
run, 98
writeRestart, 97
writeTimingData, 99
zeroOut ,97

QMCMikesBracketingStepLength­
Selector, 99

stepLength , 100
QMCMikesJ ackedWalkerInitializat ion

QMCMikesJ ackedWalker­
Initialization, 101

QMCMikesJ ackedWalker­
Initialization, 100

initializeWalkerPosition, 101
QMCMikesJ ackedWalkerIni­

tialization, 101
QMCMolecule, 102

Atom-Labels, 104
Atom-Positions, 104
getNumberAtoms, 103
initialize, 103
NucleiTypes, 102
operator«,103
operator=, 103
operator», 102
QMCMolecule, 102
read , 103
Z, 104

QMCObjectiveFlmction, 104
evaluate, 105, 106
grad, 106
initialize , 107

QMCObjectiveFunctionResult
operator< <, 108
QMCObjectiveFunction­

Result , 107, 109
QMCObjectiveFunctionResult, 107

getDerivativeScore, 109
getEnergy Ave, 109
getEnergy Var, 110
getLogWeightsAve, 110

getLogWeightsVar , 110
getScore, 110
operator=, 111
QM CO b jecti veFunctionRe­

suit , 109
QMCOptimizationAlgorithm

~QMCOptimization­

Algorithm, 111
QMCOptimizationAlgorithm, 111

optimize, 112
QMCOpt imizationFactory, 112

optimizationAlgorithmFac­
tory, 113

QMCPolynomial, 113
evaluate, 115
getCoefficient, 115
getFirstDerivative Value, 115
getFunction Value, 116
getNumberCoefficients, 116
getRoots, 116
getSecondDerivativeValue, 117
hasNonNegativeZeroes, 117
initialize, 117
QMCPolynomial, 113, 114

QMCPotential.Energy, 118
evaluate, 118
getEnergy, 118
initialize, 119
operator=, 119
QMCPotential.Energy, 118

QMCproperties, 119
acceptanceProbability , 120
distance Moved Accepted, 120
distanceMovedTrial, 120
energy, 120
kineticEnergy, 120
10gWeights, 120
MPLREDUCE, 120
MPLTYPE, 120
operator+ , 119
operator< <, 121
potent ialEnergy, 120
QMCproperties, 119
readXML, 121
toXML,121
zeroOut, 119

Generated o n W ed May 1 11:34 :48 2002 for QMcBeaver by Doxyge n

179

INDEX

QMCproperty, 121
getAverage, 122
getNumberSamples, 122
getSeriallyCorrelated-

StandardDeviation,
122

getSeriallyCorrelatedVariance,
122

getStandardDeviation, 122
getVariance, 122
MPLREDUCE, 123
MPLTYPE, 123
newSample, 123
operator+ 1 122
operator«, 123
QMCproperty, 122
readXML, 123
toXML,124
zeroOut, 122

QMCReadAndEvaluateConfigs
QMCReadAndEvaluate­

Configs, 124, 125c
QMCReadAndEvaluateConfigs,

124
initialize, 125
QMCReadAndEvaluateCon­

figs, 125
rootCaicuiateProperties, 125
workerCalculateProperties,

126
QMCrun, 126

getNumberOfWalkers, 127
getProperties, 127
getWeights, 128
initialize, 128
QMCrun, 126
randomly Initialize Walkers, 127
readXML, 128
step, 126
toXML,128
writeCorrelatedSamplingCon-

figurations, 129
writeEnergies, 129
zeroOut, 126

QMCSlater, 129
evaluate, 130

getGradPsiRatio, 131
getLaplacianPsiRatio, 131
getPsi, 131
initialize, 131
isSingular, 130
operator=, 132

QMCstatistic, 132
getAverage, 132
getNumberSamples, 132
getStandardDeviation, 132
get Variance , 132
MPLREDUCE, 133
MPLTYPE, 133
newSample, 133
operator+, 132
operator< <, 133
QMCstatistic, 132
readXML, 133
toXML,134
zeroOut, 132

QMCSteepestDescent
getObjectiveFunction, 135
QMCSteepestDescent, 135

QMCSteepestDescent, 134
optimize, 135
QMCSteepestDescent, 135

QMCStopwatches, 136
getCommandPollingStop­

watch,137
getCommunicationSynchro­

nizationStopwatch, 137
getGatherPropertiesStop­

watch,138
getInitializationStopwatch,

136
getOptimizationStopwatch,

138
getPropagationStopwatch, 138
getSendCommandStopwatch,

138
getTotalTimeStopwatch, 139
MPLREDUCE, 137
MPLTYPE, 137
operator+, 137
operator«, 137
QMCStopwatches, 136

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

180

INDEX

reset, 136
stop, 136

QMCwalker, 139
-QMCwalker, 139
calculateObservables, 141
getLocalEnergy Estimator, 140
getWeight, 141
initialize, 141
initializeWalkerPosition, 142
isSingular, 142
operator=, 142
propagate Walker, 140
QMCwalker, 139, 141
readXML, 143
set Weight, 143
toXML,143
writeCorrelatedSamplingCon-

figuration, 143
QMCWavefunction, 144

AlphaOccupation, 145
BetaOccupation , 145 '
Coeffs, 147
getNumberAlphaElectrons,

ranI

145
getNumberBasisFunctions, 145
getN umber BetaElectrons, 146
getNumberElectrons, 146
getNumberOrbitals, 146
operator«, 145
operator=, 146
operator», 145
QMCWavefunction, 144
read, 146

mfrandom.h, 173
randomlylnitializeWalkers

QMCrun, 127
read

QMCBasisFunction, 57
QMCBasisFunction­

Coefficients, 58
QMCCorrelationFunction­

Parameters, 68
QMCJastrowParameters,92
QMCMolecule, 103

QMCWavefunction, 146
readXML

QMCproperties, 121
QMCproperty, 123
QMCrun, 128
QMCstatistic, 133
QMCwaiker, 143

real
Complex, 33

removeAttribute
XMLElement, 163

removeChild
XMLElement, 164

reset
QMCStopwatches, 136
Stopwatch, 150

rootCaicuiateProperties
QMCReadAndEvaluate­

Configs, 125
run

QMCManager, 98

setAttribute
XMLElement, 164

setContent
XMLElement, 165

setGridParameters
CubicSplineWithGeometric­

Progression Grid, 41
setMessage

Exception, 43
XMLParseException, 166

setName
XMLElement, 165

setP arameters
QMCCorrelationFunction­

Parameters , 68
setParameter Vector

QMCJastrowParameters ,93
setParticlel Type

QMCCorrelationFunction­
Parameters, 65

setParticle2Type
QMCCorrelationFunction­

Parameters, 65
setWeight

Generated on Wed May 1 11 :34:48 2002 for QMcBeaver by Doxygen

181

INDEX

QMCwaiker, 143
singleLine Writer

XMLElement, 165
size

Array1D, 16
Array2D, 19
Array3D,22
Array4D,26
SortedParameterScorePair-

List, 149
SortedParameterScorePairList

clear, 148
SortedParameterScorePair­

List, 147, 148
SortedParameterScorePairList, 147

add, 148
get, 149
operator=, 149
size, 149
SortedParameterScore-

Pair List, 148
squareroot

Complex, 33
start

Stopwatch, 150
step

QMCrun,126
stepLength

QMCLineSearchStepLength­
SelectionAlgorithm, 96

QMCMikesBracketingStep­
LengthSelector, 100

stop
QMCStopwatches, 136
Stopwatch, 150

Stopwatch, 149
isRunning, 150
MPLREDUCE, 150
MPLTYPE, 150
operator+, 150
operator«, 150
reset, 150
start, 150
stop, 150
Stopwatch, 150
timeMS,150

toString, 150
StringManipulation, 151

doubleToString, 152
hexstringTolnt, 152
intToHexString, 152
intToString, 152
stringToDouble, 153
stringTolnt, 153
toAllLower, 153
toAllUpper, 153
toFirstUpperRestLower, 154
toLowerChar, 154
toUpperChar, 154

stringToDouble
StringManipulation, 153

stringTolnt
StringManipulation, 153

timeMS
Stopwatch, 150

toAllLower
StringManipulation, 153

toAllUpper
StringManipulation, 153

toFirst UpperRestLower
String Manipulation, 154

toLowerChar
StringManipulation, 154

toString
Stopwatch, 150

toUpperChar
StringManipulation, 154

toXML
CubicSpline, 37
CubicSpline Wi thGeometric-

ProgressionGrid, 42
QMCproperties, 121
QMCproperty, 124
QMCrun,128
QMCstatistic, 134
QMCwalker, 143

Type
QMCBasisFunction­

Coefficients, 60

workerCalculateProperties

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

182

INDEX

QMCReadAndEvaluate­
Configs, 126

write
XMLElement, 165

writeCorrelatedSamplingConfiguration
QMCFunctions, 77
QMCwalker, 143

writeCorrelatedSamplingConfigurations
QMCrun,129

writeEnergies
QMCrun,129

writeRestart
QMCManager,97

writeTimingData
QMCManager,99

XMLElement, 155
addChild , 158
countChiidren, 158
getBooleanAttribute, 159
getChiidren, 159
get Content, 159
getDoubleAttribute, 160
getlntAttribute, 160, 161
getLineNr, 161
getName, 161
getStringAttribute, 161, 162
operator= , 162
operator= = , 162
parse, 163
prettyWriter, 163
removeAttribute, 163
removeChild, 164
setAttribute, 164
setContent, 165
setName, 165
singleLineWriter, 165
write, 165
XMLElement, 157, 158

XMLP arseException
getMessage, 166
NO-LINE, 166
setMessage, 166
XMLParseException, 167

XMLParseException, 166
getLineNr, 167

XMLParseException, 167
xyz_powers

QMCBasisFunction­
Coefficients, 60

z
QMCMolecule, 104

ZeroCorrelationFunction
evaluate, 168
getFirstDerivativeValue, 168
getFunction Value, 168
getSecondDerivativeValue, 168
isSingular, 168

ZeroCorrelationFunction, 167
initializeParameters) 168

zeroOut
QMCManager, 97
QMCproperties, 119
QMCproperty, 122
QMCrun,126
QMCstatistic, 132

Generated on Wed May 1 11:34:48 2002 for Q McBeaver by D oxygen

183

