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Preface 
This dissertation describes work undertaken between August 1998 and 

May 2002 in the Materials Simulation Center at the California Institute of 

Technology under the supervision of Professor William A. Goddard III. This 

dissertation describes a major portion of the work I did with Dr. Goddard, 

Dr. Richard P. Muller, and David R. Kent IV developing efficient methods 

for high accuracy methods for quantum mechanics. 
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Abstract 
We reexamine some fundamental Quantum Monte Carlo (QMC) algo­

rithms with the goal of making QMC more mainstream and efficient. Two 

major themes exist: (1) Make QMC faster and cheaper, and (2) Make QMC 

more robust and easier to use. A fast "on-the-fly" algorithm to extract 

uncorrelated estimators from serially correlated data on a huge network 

is presented, DDDA. A very efficient manager-worker algorithm for QMC 

parallelization is presented, QMC-MW. Reduced expense VMC optimiza­

tion proced ure is presented to better guess initial J astrow parameter sets 

for hydrocarbons, GJ. I also examine the formation and decomposition of 

aminomethanol using a variety of methods including a test of the hydrocar­

bon GJ set on these oxygen- and nitrogen-containing systems. The QMC 

program suite QMcBeaver is available from the authors in its entirety while 

a user's and developer's manual is attached as supplementary material. 
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Chapter 1 

Summary 

Quantum Monte Carlo (QMC) is a very exciting method for calculating elec­

tronic structure in chemical systems. QMC can achieve very high accuracy 

and has several other computationally attractive features. When we first 

started this type of work, we asked some very basic questions about QMC. 

• Why is QMC interesting to others? 

• Why is QMC not in more common use? 

• What does someone need to use QMC? (software, computational re­

sources, QMC expertise?) 

• Is QMC the method of future in computational chemistry and material 

science? 

• What have others done in the field? 

• What are others currently focussed on? 

• What can I do to help the effort of making QMC practical? 
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These seem like fairly simple questions yet they led to a surprising rich­

ness in research. Current ly, QMC is a very exciting area of research with 

many great minds working hard to make QMC fast, robust , and easy to use 

(Chapter 3). Many interest ing fronts exist in QMC, including higher accu­

racy methods, released node QMC, QMC calculation of forces, and better 

single processor computational complexity of QMC to just name a few. To 

provide the reader with a (by no means exhaustive) list of good references 

to get a feel for current methods and trends in QMC, many references are 

included in the bibliography though not explicitely referenced herein. 

QMC is a high-accuracy electron structure method, which scales roughly 

as O(n3 ) while competing met hods scale as O(n6
) to O(n!) [20J . In addition, 

QMC is very easy to parallelize, which means you can furt her reduce the time 

it takes to compute. Unfortunately, the prefactor on QMC is very large, so it 

t akes too much time to do except on supercomputers for the large majority 

of interesting chemical and materials problems. 

This is where this work begins. QMC is very expensive both in the user 's 

time and in the computational resources it takes to accomplish a QMC job. 

T he goal of this work is to make QMC run on cheaper machines and do 

it in less time while improving t he ease of use for t he end user. All of 

these will bring QMC one step closer to being a commonly used method in 

computational electronic structure studies. 

In presenting this work, I have chosen to make each chapter as self­

contained as possible. I hope the reader can read any chapter with only 

minimal reference to other chapters. This, of course, comes at the expense of 

being somewhat redundant in the introductory sections of each chapter but 

I feel most readers will appreciate this as they implement or write their own 
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QMC related software. 

1.1 Future of Supercomputing 

Current trends and a projection of what t he future of supercomputing will 

become are examined. Computational modeling is becoming a very impor­

tant part of basic research and the needs of researchers must be met with 

economical computing solutions. There are two major sides of this issue. 

The first is the building of computational infrastructure which provides the 

most computing power per unit of expense. The second is the development 

of algorithms and software which can effectively utilize these resources. We 

also explore the correlated nature of these two points. 

1.2 Introduction to Quantum Monte Carlo 

A brief background on the popular forms of Quantum Monte Carlo (QMC) 

are given. The first of these is variation QMC (VMC), and a second popular 

met hod is diffusion or fixed node QMC (DMC). VMC and DMC are t he two 

major forms of QMC employed by research scientists and form the basis for 

other forms of QMC. Any improvements one can make on these base methods 

will likely have far reaching impact. 
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1.3 Efficient Algorithm for "On-the-fly" Er-

ror Analysis of Local or Distributed Se­

rially Correlated Data 

A significant impediment to applying Monte Carlo methods to the compu­

tation of physically important systems is the efficient decorrelation of data 

generated by Markov chains "on-the-fly" and in parallel for the extremely 

large amount of sampling required to achieve convergence of a given es­

timator. We describe the Dynamic Distributable Decorrelation Algorithm 

(DDDA) that eliminates this difficulty by efficiently calculating the true sta­

tistical error of an expectation value obtained from serially correlated data. 

DDDA is an improvement on the Flyvbjerg-Peterson renormalization group 

method [49], but allowing the statistical error to be evaluated "on-the-fly." 

This "on-the-fly" determination of statistical quantities allows dynamic ter­

mination of Monte Carlo calculations once a specified level of convergence is 

attained. This is highly desirable, for example, for Quantum Monte Carlo 

(QM C) calculations where the desired precision might require days or months 

to compute, but cannot be estimated prior to the calculation . 

Furthermore, DDDA allows a very efficient parallel implementation. For 

t he example of predicting the activation energy for decomposition of RDX 

discussed herein, we estimate that Na = 1012 global data points are required 

to attain 0.1 kcal/mol precision in the calculated VMC energy estimators. 

Thus with M = 103 processing units, the original algorit hm requires local 

processor storage scaling as O(N), N "" !f:f or roughly 109 numbers which 

may be difficult to accommodate with local storage and is often very difficult 
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to transfer efficiently between processors. The local processor storage require­

ment for DDDA scales as 0(log2(N)) or roughly 120 doubles for Na = 10'2 

and M = 103 with an average update computational complexity for each new 

sample of 0(1). This small amount of data can easily be communicated and 

combined with data from other processors, making parallel processing very 

efficient. 

1.4 Manager-Worker-Based Model for the Par­

allelization of Quantum Monte Carlo on 

Heterogeneous and Homogeneous Networks 

A manager- worker-based parallelization algorithm for Quantum Monte Carlo 

(QMC-MW) is presented and compared to the pure iterative parallelization 

algorithm, which is in common use. The new manager-worker algorithm per­

forms automatic load balancing, allowing it to perform near the theoretical 

maximal speed on heterogeneous parallel computers. Furthermore, the new 

algorithm performs as well as the pure iterative algorithm on homogeneous 

parallel computers. When combined with the Dynamic Distributable Decor­

relation Algorithm (DDDA) [50], the new manager-worker algorithm allows 

QMC calculations to be terminated when a desired level of convergence is ob­

tained and not when a given number of steps are performed as is the common 

practice. Additionally, a derivation and experimental verification are given 

to show that standard QMC implementations are not "perfectly parallel" as 

is often claimed. 
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1.5 Generic Jastrow Functions for Quantum 

Monte Carlo Calculations on Hydrocar­

bons 

A Generic Jastrow (GJ) is examined that can be used for all-electron Quan­

tum Monte Carlo across a large range of small hydrocarbons. This simple GJ 

captures some of the missing electron correlation of Hartree Fock (HF) the­

ory for Variational Quantum Monte Carlo (VMC) while reducing the ELoc• l 

variance a substantial amount. This implies Diffusion Quantum Monte Carlo 

(DMC) may be accomplished with greatly reduced VMC Jastrow optimiza­

tion expense. 

1.6 Aminomethanol Water Elimination: The­

oretical Examination 

The mechanism for the formation of hexamethylenetetraamine predicts the 

formation of aminomethanol from the addition of ammonia to formalde­

hyde. This molecule subsequently undergoes water loss to form methanimine. 

Aminomethanol is t he predicted precursor to interstellar glycine, and is there­

fore of great interest for laboratory spectroscopic study, which would serve 

as the basis for observational searches. The height of the water loss barrier 

is therefore useful in determination of an appropriate experimental approach 

for spectroscopic characterization of aminomet hanol. We have determined 

t he height of this barrier to be 55 kcal/ mol at ambient temperatures using 

QCI(T)/cc-p VTZ. Therefore, spectroscopic characterization of this molecule 
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should be straightforward under typical laboratory conditions. 

1.7 QMcBeaver 

The software package developed is called QMcBeaver. The user's and devel­

oper's manual is added as supplementary material. This is useful for both 

those developing QMcBeaver and those developing their own QMC package. 
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Chapter 2 

Future of Supercomputing 

2.1 Current State of Supercomputing 

A current trend III large scale supercomputing [51] is assembling "cheap 

supercomputers" with commodity components using a Beowolf-type frame­

work. These clusters have proven to be very powerful for high-performance 

scientific computing applications [52]. Clusters can be constructed as ho­

mogeneous supercomputers if the hardware for each node is equivalent, or 

as heterogeneous supercomputers if various generations of hardware are in­

cluded. 

Another interesting development is the use of loosely coupled, distributed 

grids of computational resources [53] with components that can even be lo­

cated in different geographic locations in the world. Such "grids" are up­

graded by adding new nodes to the existing grid resulting in continuously 

upgradable supercomputers, which are inevitably heterogeneous. 
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2.2 What is Coming Next? 

This is by far t he most speculative port ion of this work. At the same t ime, I 

fear t his section will date this work worse than any other . What is Coming 

Next ? is the question we all wish we knew to answer to. I do want to take 

a little t ime to map out what I believe will happen in computing. 

The trend of going to larger parallelizat ion is one that I believe is here 

to stay with t he current technology in hardware. The essential parts of 

a current computer are very inexpensive. We, of course, have no idea of 

fu ture processing unit technology, but with t he current trends , large scale 

parallelization is here and will only get bigger. 

Homogeneous supercomputers will become less and less dominant. Build­

ing a huge machine all at once is not generally the best economic model. T he 

demand for a computational resource increases over time and this solution 

does not scale because the technology used in this machine will become ob­

solete in a very short amount of time. 

Heterogeneous frameworks are the fu ture of supercomputing. A hetero­

geneous framework is always expandable and the parts of the framework 

become noneconomical more slowly. Some parts of t he framework will be­

come obsolete since the hardware may not be wort h t he real estate it occupies 

and the electricity that powers t he machine may cost more than the utility 

the machine gives to the user. We should also note that the current homo­

geneous machines fit into this model but only as smaller components of a 

larger heterogeneous framework. 

These heterogeneous frameworks will become so large that it will become 

necessary for loosely coupled interconnects for the majority of the peer to peer 
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communications. This means that algorithms built for very large frameworks 

need to make small enough tasks be accomplished on these relatively smaller 

tightly coupled machines or tasks must be able to run efficiently on very 

loosely coupled networks. 

2.3 What Should We Do? 

This is yet another speculative section on the proper course of computational 

science but there are some rather solid statements that can be made. The 

question How should we design hardware/software? is very interesting. The 

ultimate goal of doing a computation is to obtain a certain result with the 

least expense. The certain result is naturally the result from a given model. 

This is dependent on the software used yet the level of the calculation can 

be limited by the hardware. The least expense refers to both the expense 

of renting a computational resource and the amount of the user 's time the 

calculation takes. The utility function used will be a combination of compu­

tational resource expense and user defined utility as a function of wall clock 

time to complete the task. 

2.3.1 How Should We Design Hardware? 

Clearly we want the most cost effective solution for building machines t hat are 

inexpensive, long lasting, and easy for software engineers to design software 

for. This is very difficult to accomplish . The cheapest scalable machines to 

build are heterogeneous frameworks, yet the easiest to build software for is 

tightly coupled homogeneous machines. 
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2.3.2 How Should We Design Software? 

Software should be designed to run as efficiently as possible on a general 

framework of computers . This is also difficult to achieve. If we are to effi­

ciently use a heterogeneous network of computers, we need t o find algorit hms 

which allow good load balancing. This often comes at the expense of perform­

ing worse than the theoretical optimum because of additional bookkeeping 

in keeping t he network load balanced. Also, completely different algorit hms 

may be the most efficient on different networks. A slower loosely coupled 

algorit hm may perform poorly compared to a t ightly coupled algorithm on 

a t ight ly coupled homogeneous network. At t he same t ime, t he tight ly cou­

pled algorit hm will likely perform poorly on a loosely coupled heterogeneous 

network. 

2.3.3 How Coupled Should Software and Hardware Be­

come? 

T his leads to some interesting ideas. Different algorithms can perform better 

or worse on different hardware. The different hardware have different assets 

and liabilit ies including maintainability, scala bility, ease of use, etc. T his 

clearly tells us t hat t he designs of software and hardware are inherently 

coupled. This coupled nature makes the design of software highly dependent 

on the frameworks it will be running on. 
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2.4 Mission of This Work 

To efficiently utilize t he next generation of supercomputer (heterogeneous 

cluster or grid) , a parallelization algorithm must require li ttle communication 

between processors and must be able to efficiently use processors that are 

running at different speeds. We propose a number of algorithms which will 

allow a particular application, Quantum Monte Carlo (QMC), to run faster 

and on more general networks of computers. This work was inspired by the 

authors of our software package, QMcBeaver [54], working on other QMC 

packages which had some deficiencies we wished to remedy to take QMC from 

a tightly coupled homogeneous application to a loosely coupled heterogeneous 

application. 
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Chapter 3 

Introduction to Quantum 

Monte Carlo 

3.1 Introduction 

Quantum Monte Carlo (QMC) is becoming a very important member of 

the electron correlation correction methods in quantum chemistry. Many 

flavors of QMC exist; Variational (VMC, 3.2.1) and Diffusion (DMC, 3.2.2) 

Quantum Monte Carlo are two of the more popular methods employed. VMC 

requires the explicit use of a variational wavefunction, while DMC has the 

property that it can sample the ground state fixed node solution for a given 

trial wavefunction. 

Experience and tradition have defined a fairly efficient method of obtain­

ing very accurate calculations for molecules and materials using QMC [10, 

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows: 

1. Obtain a fair trial wavefunction, lJiTrial, from some quantum mechanical 

method, like Density Functional Theory (DFT) or Hartree Fock (HF). 
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2. Guess Jastrow particle-particle correlation functions that have some 

variational form which maintains the antisymmetry of the total wave­

function. (This may only be a nearly antisymmetric wavefunction. 

Umrigar gives a discussion of this topic [13]. ) 

3. Choose variational parameters such that any Hamiltonian singularities 

are satisfied with the "cusp condition" in the Jastrow form. 

4. Generate an initial "walker(s)" approximately with respect to the par­

ticle probability distribution. 

5. Equilibrate this "walker(s)" to verify it represents the particle proba­

bility distribution. 

6. Generate configurations with the Metropolis algorithm in a VMC run. 

7. Perturb and evaluate the Jastrow parameters using these configura­

tions. (Repeat this correlated sampling optimization [10] until satis­

factory convergence.) 

8. Generate (or reuse from a VMC run) initial "walkers" for a DMC run. 

9. Equilibrate these "walkers" to verify they represent the proper particle 

probability distribution. 

10. Use the optimized Jastrow for a DMC run to obtain a very accurate 

result. 

Typically the equilibration and generation of the configurations in the 

VMC and DMC runs are the most expensive parts of this protocol so one 

would like to minimize the effort in these sections. The main purpose of the 
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VMC optimization phase is to obtain a good description of the wavefunction. 

The better this wavefunction is, the quicker the DMC run will converge. This 

motivates one to optimize the J astrow very well but not at t he expense of 

marginal returns. 

Experience has shown that the VMC Jastrow optimization involves a 

very difficult objective function. One must reduce the energy and/or vari­

ance some but without over-optimizing. The method of correlated sampling 

is a useful method of optimization yet once it finds a flat region of the objec­

tive function (typically a (]"2(ELocal) based objective function), it can falsely 

encourage over-optimization since it likely reached a point of diminishing re­

turns. Experience has shown that if one can obtain roughly a factor of three 

reduction in the variance over the HF wavefunction alone, one has done 

a sufficient job of optimizing and that further optimization may give only 

marginal returns. Typically, one might spend from 5% to 50% of the one's 

total effort optimizing the Jastrow in the VMC phase of the calculation. 

3.2 Theory 

QMC has many flavors, each with certain assets and liabilities. The two 

particular types of QMC we will examine are VMC (Section 3.2.1) and DMC 

(Section 3.2.2). These two methods are widely used for production level 

calculations. Any impact one can make to improve the speed at which one 

can accomplish these two types of QMC will have far-reaching consequences 

for many researchers in computational chemistry and materials science. 



16 

3.2.1 Variational Quantum Monte Carlo 

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful 

method for examining correlated quantum wavefunctions. If one examines 

the basic energy expectation integral and reformulates it in terms of an elec­

tron probability density, p, and a local energy, Eloca/, one finds a very simple 

description of the energy expectation (3.1). However, this integral can not 

be solved exactly except for a very few cases. Instead, the integral can be 

numerically evaluated. This numerical integration is doomed to fail on a reg­

ular grid since the dimensionality of the integral can be very high. Instead, 

the integration can be accomplished with a Monte Carlo algorithm described 

by Metropolis [55], which can effectively numerically evaluate integrals in 

many dimensions. 

(E) J tJi(i)HtJi(i)dx3n 

J (tJi(i))2 ( H~~~) ) dx3n 

J p(i)ElocaM)dx3n (3.1) 

One must now determine what this tJi should be. Typically, one can use a 

method like Hartree Fock theory or Density Functional Theory [56, 57, 58, 59, 

1, 3, 4, 5, 6, 7, 8J to obtain an antisymmetric wavefunction in a determinant 

form. These wavefunctions contain no explicit particle correlations other 

than the Pauli-exclusion of fermions. 

This wavefunction is then augmented with a product of symmetric terms 

which contain the explicit particle correlations. These particle correlation 

functions will allow each particle to observe the positions of their neighboring 
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particles and will allow additional variational freedom in the wavefunction . 

(3.2) 

To construct the entire trial wavefunct ion, WTrial , from an HF type initial 

guess wavefunction, WHF, one uses the following expression (3.2). A WTrial 

constructed from a DFT type wavefunction is similar. 

The building unit of this type of description is a Uij function for particles 

i and j which are of particle types A and B, respectively (3.3). 

(3.3) 

This particular form of Uij is commonly referred to as the Pade-J astrow 

correlation function for finite systems [13] or simply "Jastrow" in this doc-

ument. We notice that this form contains a CUSPAB , which removes singu-

larities which arise as two charged particles approach each other. The cusp 

condition puts a singularity in t he kinetic energy part of the two-particle 

Hamiltonian which exactly removes the singularity in the potential energy 

part [60]. 

One must now determine how to optimize t he parameters in the U ij func-

tions as well as how many parameters to maintain in the expression. Allowing 

only the cusp condition parameter in the numerator and the first parame-

ter in the denominator is common practice, though the more parameters 

one optimizes, the better the result will likely be because of the additional 

variational freedom. The common optimization procedure is the method of 

correlated sampling optimization described by Umrigar [10]. 



18 

3.2.2 Diffusion Quantum Monte Carlo 

Examining the time-dependent Schrodinger equation (6.4) in atomic units, 

we observe that one can make a transformation from real time into imaginary 

time to produce a diffusion equation (6 .6). 

i [)<J! = if <J! 
[)t 

t = - iT 

(3.4) 

(3.5) 

(3.6) 

Expanding <J! in the eigenstates of the time-independent Schrodinger equa­

tion, we observe the following. 

(3.7) 

Here the <Pi's are the eigenstates and the c;'s are the eigenvalues of the 

time-independent Schrodinger equation. 

(3.8) 

We can now write the formal solution of the imaginary-time Schrodinger 

equation (Equation 6.6). 

(3.9) 
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If the init ial w(Td IS expanded in the eigenstates (Equation 3.7), we 

observe the following. 

00 

W(OT) = L e;e-Eo5r 4>i (3.10) 

Therefore, any initial state, which is not orthogonal to the ground state, 

4>0, will exponentially evolve to the ground state over time. 

lim W(T) = coe- Eor 4>0 
T-tOO 

(3.11) 

The end result of this type of method is a sampling of the ground state 4>0 

distribution with respect to the original WTrial nodes. In practice the results 

obtained from a fixed node DMC calculation are typically on the same order 

of accuracy as couple-cluster and higher order methods which come at a much 

higher expense in many cases (O(nD -t n!))[20]. 

3.3 Conclusion 

Quantum Monte Carlo is a very simple yet powerful method for examining 

correlated electron structure. VMC and DMC form the basis of this very 

powerful class of methods and provide a good starting point for improving 

all QMC based applications. 
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Chapter 4 

Efficient Algorithm for 

"On-the-fly" Error Analysis of 

Local or Distributed Serially 

Correlated Data 

4.1 Introduction 

Monte Carlo methods are becoming increasingly important in calculating 

the properties of chemical, biological, and materials systems. An exam­

ple discussed below shows that using the all-electron Variational Quantum 

Monte Carlo (VMC) method to calculate t he barriers to decomposition of 

the high-energy material RDX (with 21 atoms and 114 electrons) requires 

approximately 1012 Monte Carlo steps to converge the energy estimator to 

roughly 0.1 kcal/mol precision. 

However , there is a serious difficulty in t he practical implementation of 
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such Monte Carlo calculations. The underlying algorithms of Monte Carlo 

simulations generally involve Markov chains, which produce serially corre­

lated data sets. This means that for the data set D, the value Di+j is highly 

correlated to Di for a value of j small compared to the correlation time, Ko. 

Flyvbjerg and Peterson described a fairly efficient blocking algorithm for 

post-processing error analysis of serially correlated data on a single proces­

sor [49J. However, rather than waiting until after the run is terminated to 

analyze the precision, it is desirable to specify in advance the desired preci­

sion after which the program can terminate. This requires the computation 

of the true variance of serially correlated data, as the Monte Carlo calculation 

is evolving, "on-the-fly." 

We propose a new blocking algorithm, Dynamic Distributable Decorre­

lation Algorithm (DDDA), which gives the same results as the Flyvbjerg­

Peterson algorithm but allows the underlying variance of the serially corre­

lated data to be analyzed "on-the-fly" with negligible additional computa­

tional expense. DDDA is ideally suited for parallel computations because 

only a small amount of data must be communicated between processors to 

obtain the global results. Furthermore, we present an efficient method for 

combining results from individual processors in a parallel calculation that 

allows "on-the-fly" result analysis for parallel calculations. 

4.2 Motivation and Background 

Although Monte Carlo algorithms are useful for a large range of scientific 

problems, t he convergence to a desired precision often requires very large 

samplings, making it computationally expensive. In order to reduce the 
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total time to obtain a precise and accurate solut ion, it is highly desirable 

to use parallel computing. The availability of low cost clusters and multiple 

processor computers makes it possible to efficiently parallelize Monte Carlo 

algorithms, allowing very large samplings to be probed in reasonable time. 

In order for Monte Carlo algorithms to continue to take full advantage of the 

advances and availability of massively parallel computers, it is essential that 

the algorithms evolve to make these methods maximally efficient. 

A significant improvement for applying quantum Monte Carlo methods to 

the computation of chemically important systems was provided by Flyvbjerg 

and Peterson, who showed that simple blocking of the data (averaging blocks 

of data together and treating these averages as new data sets) can extract the 

correct sample variance from a set of serially correlated data [49, 12]. These 

new "blocked" data points are less correlated than the original data points 

and are virtually uncorrelated for block sizes larger than the correlation time 

of the data. Flyvbjerg and Peterson described a fairly efficient blocking 

algori thm for post-processing error analysis of serially correlated data on a 

single processor. 

Although we are not certain of the historical origins of such data block­

ing techniques, at least partial credit should be given to Wilson [61], Whit­

mer [62], and Gottlieb [63]. However, Flyvbjerg and Peterson were the first 

to formally analyze the technique [49]. 

We should also note that currently some methods exist which can im­

prove the particular implementation described. If we have some idea of the 

correlation time, Ko, we can block the data in these size blocks ignoring the 

smaller block sizes. We will refer to this method of pre-blocked data blocking 

as PB-blocking. What PB-blocking can effectively do is reduce the number 
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of global data points from NG = 1012 to N~ = Z;;-, where m is the predefined 

block sizes which will be considered the fundamental unit of data. 

If one implements the PB-blocking method, several points need to be 

considered. The correlation time, I<o, is highly dependent on the Monte 

Carlo t ime step, dt, we use for t he simulation. This implies the user will 

need to intelligently determine which m to implement. 

Blocking the initial data into m sized data blocks initially still requires the 

user to implement a furt her blocking algorithm to verify that m was chosen 

large enough. If m was chosen too small, the Flyvberg-Peterson algorithm 

can still be implemented on this pre-blocked data with correct results. What 

this does to the overall scaling of the storage is nothing, however. The order 

of the global data points one needs to store is reduced by a constant factor 

of m, while the global storage is still O(NG }. 

Another unattractive feature of PB-blocking is the additional book-keeping 

and programming needed to block the raw data. This is really a two-phase 

algorithm, in which the initial blocking into blocks of size m feeds a Flyvberg­

Peterson type algorithm to verify properly uncorrelated data. 

We have also found that although the small blocked data (which is still 

correlated) underestimates the variance, it can still playa role in determin­

ing an extrapolation of the variance since these underestimates generally 

converge to their respective values fairly well. The PB-blocking algorithm 

essentially throws the small data blocking (blocks smaller than m) away to 

reduce the storage and communication expenses. This can be useful infor­

mation when determining the level of correlation which is present at differing 

block sizes and seeing how this drops off over block size. 

The overall reduction of statist ics and communication phase for the PB-
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blocking algori thm still scales as G (Ne ). As we probe larger and larger 

samplings, t his can be a prohibit ive expense. What is potentially very useful 

for those who still wish t o implement the PB-blocking algori thm is t he use 

of the pre-blocking with the DDDA algorithm. Although t he large sample 

scaling will be the same as using the pure DDDA algorit hm, t his can further 

reduce the tot al expense if a good guess m value can be determined. We 

chose not to implement the pre-blocking step since it is additional effort to 

implement and it gains us so lit tle when we can simply use DDDA which 

effectively makes the storage and communications expense negligible. 

Inst ead, we aim to improve upon both the PB-blocking and the pure 

Flyvberg-Peterson algorithm. We wish to simultaneously reduce the amount 

of user input into the method by eliminating the pre-blocking step requiring 

some level of user expert ise to determine m, reduce the global storage, and 

reduce expenses rigorously to G(log2(Ne)) from G( N e ), and to accomplish 

a reduction of the global statistics "on-t he-fly" with minimal expense. 

In this paper, we reformulate the same mathematical results of Flyvbjerg 

and Peterson to allow efficient decorrelation of serially correlated data "on­

the-fly" and in parallel fo r the extremely large amount of sampling required in 

Markov chain based calculations such as Quantum Monte Carlo calculations 

of electronic wavefunctions. 

4.3 Theory 

Computer simulations of physical systems often involve t he calculat ion of an 

expectation value, (f) , with respect to a complicated probability distribution 

function, p(x). 
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(f) == J p(x)f(x)dx (4.1) 

This expression is simple and elegant, but in many physical systems, p(x) 

is too complex for Equation 4.1 to be useful computationally. Commonly, 

computer simulations involve calculation of the average of samples over some 

number of Monte Carlo steps (or molecular dynamics times). 

_ 1 n 

f == - Lf(Xi) 
n i= l 

(4.2) 

Here Xi is sampled from the distribution p(x) using a Monte Carlo or 

molecular dynamics simulation; i is related to the Monte Carlo step number 

or molecular dynamics time. Assuming ergodicity, then 

(f) = limn-tooJ = limn-tooJ.. t f(Xi ) 
n i = l 

(4.3) 

Modern computing machines allow the very large samplings required to 

approach this limit. However, since such sampling is necessarily always finite, 

J will fluctuate requiring the determination of its variance in order to evaluate 

the results. The variance, a 2 , of J can be expressed as 

1 n 

a 2U) = n2 L ((f(xi)f(xj») - (f(Xi») (f(Xj»)) , (4.4) 
i,j=l 

which is valid for the analysis of correlated data. For uncorrelated data this 

red uces to the typical variance relation 

(4.5) 
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Applying Equation 4.5 to systems with correlated data leads to a lower 

bound of the true variance, which is obtained from Equation 4.4. 

Flyvbjerg and Peterson show formally that uncorrelated variance est i-

mates can be extracted from serially correlated data by applying a "block-

ing" transformation. The "blocking" transformation begins by partit ioning 

the serially correlated data into equal-sized, nonoverlapping "blocks" of data. 

An average is performed over each block to obtain a new reduced set of data. 

With a sufficiently large block size, the resulting data will be uncorrelated 

and its variance can be calculated as 

block, (blOck' ) 2 
(J2(f) = 1 '""' (Jblock.4ve) 2 __ 1_ '""' fblock.4ve , 

blocks ~ • block2 ~ • 
i= l i = l 

(4.6) 

where f;"'ock.4ve is the average of f(xi) over block i. In practical terms, the 

correct block size can be determined by finding the block size after which 

equation Equation 4.6 plateaus as shown in Figure 4.2. 

4.3.1 Computational Cost of Flyvbjerg-Peterson AI-

gorithm 

When serially correlated data is collected from a Markov chain-based sim-

ulation, the average and variance of the average are the most commonly 

calculated quantities. The Flyvbjerg-Peterson blocking algorithm requires 

storing all of the collected data. This has two negative consequences: 

• It cannot be performed "on-the-fly," 

• It requires G(N) storage. 

If N is assumed to be a power of two and all block sizes are taken to be 

powers of two, this algorithm requires 5N - 3 floating point additions, 3N - 2 
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floating point multiplicat ions, and 2N - 1 integer additions t o calculate the 

average and variance of the data with all possible block sizes. Often, the 

data must be read in from a file to be analyzed, adding an additional slow 

O(N) operation to the computational cost . 

4.3.2 Dynamic Distributable Decorrelation Algorithm 

(DDDA) 

Our new algorithm involves two classes: 

Statistic Class 

{P seudocode is listed in Supplement 4.6} 

The Statistic class stores t he number of samples, running sum of X i , and 

running sum of xl for the data that is entered into it. This allows straight­

forward calculation of the average (Equation 4.7) 

and variance (Equation 4.8) 

1 n 

X == - L Xi 
n i = l 

I ",n 2 I ",n 2 
-2() n ~i- l Xi - ~ L...,.i-l Xi a x = ) 

n- l 

(4.7) 

(4.8) 

where n is the number of samples in the Statistic object, and the Xi are t he 

data elements added to the object. This variance estimator only returns the 

true variance if the data is uncorrelat ed. 

Decorrelation Class 

{Pseudocode is listed in Supplement 4. 7} 
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The Decorrelation class stores a vector of Statistics (BlockedDataStatistics), 

where BlockedDataStatistics[i) corresponds to data that has been partitioned 

into blocks 2; long. As new data is collected during a computation, it is added 

to a Decorrelation object using the add_Data(x) function. This function de­

termines when enough data samples exist to create new data blocks and then 

adds the data from the new blocks to the correct elements of BlockedDataS­

tatistics. An operation is also presented to combine Decorrelation objects 

generated from independent Markov chains t hat are produced in parallel 

computations. 

Sample pseudocode for applying t he algori thm is presented in Supplement 

4.8. This simple code demonstrates t he ease of implementation for the new 

algorithm. This code can be easily modified to include any special features 

of a particular application including convergence-based termination. 

This construction is well suited for parallel computations where mult iple, 

distributed Decorrelation objects will be generated. To combine these objects 

efficiently, when analyzing the global results for a distributed calculation, it 

is necessary to efficiently add the data from a number of Decorrelation objects 

to form a new composite Decorrelation object. The addition operation listed 

in Supplement 4.7 provides this functionality. 

The equations implemented by DDDA are exactly the same as t hose 

presented by Flyvbjerg and Peterson. Our implementation, however, is more 

efficient. This allows new data to be added "on-the-fly" and allowing all 

current data to be analyzed "on-the-fly" with negligible additional cost. The 

results obtained from the original Flyvbjerg-Peterson algorithm and DDDA 

are identical because t hey are mathematically equivalent. 
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Summary of Algorithm 

The DDDA algorithm is very simple and relies only on the Statistic ( 4.3.2) 

and Decorrelation ( 4.3.2) classes. A Decorrelation object is just an array 

of Statistics objects. The Decorrelation array element zero corresponds to a 

block size of one (or block size 2°), array element one corresponds with a 

block size of two (or block size 21), and array element i corresponds with a 

block size of 2i. 

When we observe a new sample, we place the sample into the Decorrela­

tion structure at level zero. This gets added to this Statistic and then gets 

propagated up one level to level one. If a sample is waiting to construct a 

new block, this new sample and the waiting sample are averaged and added 

to this level as a new sample. This new composite sample is then recursively 

sent down the structure constructing new blocks of data. If a sample gets 

propagated a level and no waiting sample exists to form a new block, this 

sample becomes the waiting sample which is followed by the termination of 

this round of updating the Decorrelation structure. 

4.3.3 Computational Cost of DDDA 

Analysis of DDDA (Table 4.1) shows that it requires 5N - 3 floating-point 

additions, 3N - 2 floating-point multiplications, and 2N - 1 integer addi­

tions, which is identical to the Flyvbjerg-Peterson algorithm. However, in 

contrast with the Flyvbjerg-Peterson algorithm, DDDA requires storage of 

only O(lOg2(N)) numbers and requires no time to read data from a file be­

cause the data is added to a Decorrelation object "on-the-fly." 

We should note that a storage unit in DDDA is roughly three times as 
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Expense Flyvb jerg -Peterson Dynamic Distributable 

Algorithm Decorrelation 

Algorithm (DDDA) 

Floating Point 

Mult iplications 3N - 2 3N-2 

Floating Point 

Addit ions 5N-3 5N-3 

Integer Additions 2N -1 2N -1 

Read-in Data Cost O(N) None 

Storage Cost O(N) 0(I092N) 

"On-the-fly" 

Calculation not practical negligible 

Table 4.1: Comparison of computational costs. Here N is the number of data points 

ana lyzed. In evaluating the costs, N is assumed to be a multiple of two. This represents 

the worst-case scenario . 

large as the storage unit in the original algorithm. This factor of three results 

from t he class Statistic having three data members. If we assume that the 

data type used for each data point and the data members of a Statistic object 

have roughly the same number of bits, the storage cost of DDDA is 3Io92(N) 

which scales as 0(1092(N)). 

If the correlat ion time for the data is known approximately, then block 

sizes significantly larger than this are not required ; therefore, it is not neces­

sary for them to be saved or calculated. This reduces the storage cost to 0(1). 

If a sufficiently large block size is not allowed, t he calculated variance will be 

incorrect because the largest data blocks used to calculate t he variance will 
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still be correlated. (This is just a special instance where the computational 

complexity and costs can be managed if the approximate correlation time is 

known a priori.) 

To provide an idea of the impact of DDDA, consider the example of 

predicting the activation energy for decomposition of the RDX molecule dis­

cussed below. We estimate that Na = 1012 global data points are required. 

Thus with M = 103 processing units, the original algorithm requires local 

processor storage of O(N), N"" IXf = 109 numbers, which may be difficult 

to accommodate on the local memory and may be very difficult to transfer 

efficiently between processors. In contrast for Na = 1012 and M = 103 , t he 

local processor storage requirement for DDDA is 3Iog2 (N) = 120, which is 

much easier to accommodate than 109 

4.4 Computational Experiments 

4.4.1 Variational QMC on One-Dimensional Particle­

in-a-Box 

Details of the calculations 

To illustrate DDDA, we consider using Variational Quantum Monte Carlo 

(VMC) [13] to calculate t he energy for a one-dimensional particle-in-a-box 
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of length one. The expected energy of the system is given by Equation 4.9 

(E) = 11 WTHWTdx 

_ [(wd ( ~:T ) dx 

11 PT(x)Edx)dx, (4.9) 

where WT is a normalized, approximate wavefunction, H is the Hamiltonian 

for the system, EL(X) is the local energy, and PT(X) is the approximate 

probability distribution of the particle. Equation 4.9 can be evaluated in two 

ways: 

• One option (Method 1) is to perform a Monte Carlo integral using 

uniform random numbers to sample EL(X) with weight PT(X). Because 

the uniform random numbers are not serially correlated, the sampled 

values of pT(x)Edx) are not serially correlated . 

• A second option (Method 2) is to generate points distributed with 

respect to PT(X) using the Metropolis algorithm [55] and use these 

points to sample Edx). Because the Metropolis algorithm employs a 

Markov chain, this method will produce serially correlated data. 

For our illustration, we chose 

(4.10) 

This trial wavefunction is a good approximation to the exact ground state 

wavefunction, WExact = V2sin(1Tx). Since the WT is not an eigenfunction for 

this system, the local energy will not be constant and the calculated energy 

expectation value will fluctuate. 
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Results 

DDDA produces the same results as the Flyvbjerg-Peterson algorithm but 

is a more efficient implementation. The analytic expectation value of the 

energy is (E) = 5.0. The uncorrelated estimate of the energy, calculated by 

Method 1, is (E) = 5.0014(22) and the correlated estimate, calculated by 

Method 2, is (E) = 5.0018(59) . 

The noncorrelated VMC "particle-in-a-box" calculation (Method 1) pro­

duces a nearly flat standard deviation estimation for blocks of 2° to 2'2 points 

(Figure 4.1). This is the expected behavior for noncorrelated data because 

Equation 4.5 provides a correct prediction of the variance. The poor perfor­

mance for large block sizes results because t hey have very few data points 

leading to less stability in estimating the standard deviation. 

The correlated VMC "particle-in-a-box" calculation (Method 2) leads to 

a nearly monotonic increasing estimate of the standard deviation that levels 

off for blocks of 28 to 2'2 points (Figure 4.2). The plateau in the standard 

deviation estimation corresponds to the correct standard deviation of the 

calculated expectation value. Furthermore, the plateau indicates t hat blocks 

of 28 points are essentially uncorrelated so that Equation 4.6 provides an 

appropriate estimate of the variance. 

We should note that using Equation 4.5 on correlated data without data 

blocking yields an estimate of the standard deviation that is much too small. 

This corresponds to a block size of one (the y-axis intercept) in Figure 4.2. 

This illustrates the potential dangers in reporting error estimates of data 

without accounting for the serial correlation that may exist. 

We should also note that the error estimates of the correlated and un cor-
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Uncorrelated VMC "Particle-in-a-Box· 
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Figure 4.1: The energy expectation value standard deviation, evaluated with Eq. 4.6, 

as a function of block size for a VMC "particle-in-a-box" calculation using Method 1 

to generate uncorrelated data points . The Fl yvbjerg-Peterson algorithm and DDDA 

yield exactly the same results. The error bars represent one standard deviation in the 

calculated standard devi ation estimator. 

related "particle-in-a-box" calculations are different. T hese error estimates 

illustrate that serially correlated data does not provide as much informa­

tion as uncorrelated data, resulting in a larger standard deviation for the 

correlated case than the uncorrelated case when using t he same nu mber of 

samples. 
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Figure 4.2: The energy expectati on va lue sta nd ard deviation , eva luated with Eq. 4.6, 

versus block size for a VMC "partide-in-a-b ox" calculation using Method 2 to generate 

correlated data points. The Flyvbjerg-Peterson algorithm a nd DDDA yield exactly the 

same results . The error bars represent one standard deviation in the calculated standard 

deviation estimator. 

4.4.2 Finite All-Electron Variational QMC on RDX 

Introduction 

For a more realistic test of t hese algorithms, we consider a practical problem 

of using Variational Quantum Monte Carlo (VMC) to determine the barrier 

height for the unimolecular decomposition of the high explosive molecule, 

RDX (see Fig. 4.3) , cyclic [CH2 - N(N02 )h-

The best available DFT calculations [2] indicate an activation barrier of 

39.0 kcal for NN dissociation, 39.2 kcal/mol for HONO elimination, and 
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Figure 4.3: The RDX molecule, cyclic [CH2-N(N02 )h-

59.4 kcal/mol for concerted decomposition. Various choices of high-quality 

basis sets with various choices of high-quali ty density functionals (generalized 

gradient approximations) lead to changes in these activation energies by ~ 5 

kcal/ mol. These uncertainties pertain to t he underlying assumptions about 

DFT so that we cannot improve this accuracy by just additional computing. 

Thus with current DFT methodology we are stuck with uncertainties of ~ 5 

kcal/mol. In order to properly model combustion processes involving RDX, it 

would be desirable to know these energies to 0.1 kcal/mol. On the other hand, 

using various flavors of QMC the calculated energy can be systematically 

improved. If we have a way to gauge the uncertainty that can be applied 

while the calculation is underway, then we can continue running until this 

level of convergence is achieved. Numerous calculations with various flavors 

of DFT indicate that with good basis sets and good generalized gradient 

approximations, the geometries generally agree to better than D.DIA with 

each other and with experiment. Thus a practical procedure would be to 

determine the geometries (including transitions states) using DFT theory, 

then start the QMC with this wavefunction and optimize the correlation 

functions until the results will allow a DMC run to converge to the designed 

accuracy. To illustrate this process for a general serially correlated Monte 
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Carlo application, we carried out some initial VMC calculations for RDX. 

RDX = cyclic - [CH 2 - N(N02 )h is composed of 21 atoms with 114 

electrons, making an all-electron VMC calculation nontrivial but tractable. 

To demonstrate the robustness of DDDA, we used VMC to calculate the 

energies of the ground state and two transition state intermediates. In these 

calculations, we use the structures from the DFT calculations [2]. 

Details of the VMC Calculations 

VMC calculations were performed using QMcBeaver [54], which implements 

DDDA. Though much work has been done on proper wavefunction optimiza­

t ion techniques [10, 13, 14, 15, 16, 18, 19, 20, 21, 22], we examine a very 

simple form of the VMC wavefunction as written in Equation 4.11. 

\Ii trial = \Ii H F J C orr 

JCorr = exp (2: 2: Ui,j ) 
t )<l 

(4.11) 

This is the product of a Hartree-Fock wavefunction, (HF), calculated us-

ing Jaguar [1 , 3] , with a Pade-Jastrow correlation function (Equations 4.11 , 4.12, 4.13), 

JCorr . The particular form of the Pade-Jastrow correlation function is in 

Equation 4.1 2. 

(4 .12) 

This was chosen to remove singularities in the local energy while maintain-

ing the structure of the original wavefunction everywhere except where two 

particles closely approach each other. Thus for the electron-nuclear terms, we 



38 

set cusp = -Z and b = 100. Similarly for the electron-electron terms we use 

the analytically derived values of cusp = 0.25 for same spin and cusp = 0.50 

for opposite spin electrons. For same spin electrons, we use b = 100; while for 

the opposite spin electrons, we use b = 3.5, which we have found works fairly 

well for the ground state of a number of small molecules containing carbon, 

hydrogen, oxygen, and nitrogen. These are displayed in Equations 4.13. 

lr .. 
u - u _ 4 tJ 
tt - .w. - 1 + 100rij 

-Tij 
Ut,H = U .,H = c:----=--:":--

1 + 100rij 
- 6rij 

Ut,e = U .,e = c:----=--:?!:-
1 + 100rij 

- 7rij 
Ut,N = U.,N = c:----::--:?!:-

1 + 100rij 
- 8rij 

Ut,o = u. ,o = _ _ ...2_ 

1 + 100rij 
(4 .13) 

Such correlation functions with fixed parameters provide a crude but 

"generic" approach to determining a portion of the correlation energy missing 

in the Hartree-Fock wavefunction. 

Of the three calculations, two were run to completion while the third cal-

culation was stopped a fraction of the way through the run and restarted from 

checkpoints to verify the ease and efficiency with which these new structures 

allow for checkpointing of the program state variables. The calculations were 

performed on the ASCI-BLUE Mountain supercomputer at the Los Alamos 

National Laboratory using 1024 MIPS 10000 processors running at 250 MHz. 

Energies for the Jaguar Hartree Fock (HF), Jaguar density functional 

theory (DFT-B3LYP) [1, 3,4, 5,6,7,8]' and QMcBeaver variational quantum 
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Species Hartree Fock Variational Quantum Monte Carlo 

Ground state -892.491 -893.35(4) 

Concerted dissociation -892 .369 -893.29(5) 

N - N02 bond fission -892.259 -893.20( 4) 

Table 4.2: Total energies (Hartree) for the various calculations on ROX. The HF and 

OFT [2J results were obtained from Jaguar 4.1 with the 6-31G** basis set [1, 3, 4, 5, 

6, 7, 8J. Variational Qua ntum Monte Carlo based on 3 X 107 points. 

Monte Carlo (VMC) [54] calculations are presented in Table 4.2. 

Results 

T he RDX calculations successfull y completed independent of whether they 

were run to completion or checkpointed and restarted. 

Figures 4.4, 4.5, and 4.6 show t he evolution of the energy standard devia­

tion estimate as the number of Monte Carlo steps is increased for calculations 

on the t hree different RDX species. The standard deviation in t he VMC 

energy expectation value decreases with the number of samples, roughly fol­

lowing the form IN. Here we see that the plateau in the plot of standard 

deviation vs. l092(block_size) is reached for a block size of roughly 28 to 2'3. 

The dependence of t he standard deviation on t he number of steps is 

shown in Fig. 4.7. Based on these results, we estimate that 1010 steps are 

required for 1 kcal/mol uncertainty in the calculated energy estimator, while 

10' 2 steps are required for 0.1 kcal/ mol uncertainty in the calculated energy 

estimator. 

Another important observat ion from these calculations is t hat these crude 
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Time Evolution of ADX Energy E)(peclation Value Standard Deviation 
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Figure 4.4: The evolution of the energy-standard-deviation-estimator for the grou nd 

state of RDX with block size. Shown here are the results for five cases with 62122, 

2137179, 6283647, 14566309, and 31163746 total QMC steps. The energies are in 

Hartree (1 Hartree = 27.2116 eV). This shows that a block size of28 = 256 is sufficient 

for this calculation. 

"generic" Pade-Jastrow correlation functions appear somewhat effective III 

improving the Hartree-Fock wavefunctions. 

4.5 Conclusions 

The primary goal here was to show t he robustness and efficiency of DDDA. 

This method can eliminate computationally expensive I/ O operations and re­

duce the overall storage requirement to 0(1092(N)) from O(N) . Furthermore, 

t his method allows the variance of the calculated quantity to be evaluated 
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Time Evolution of RDX Energy Expectation Value Standard Deviation 
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F igure 4.5: The evolution of the energy-standard-deviation-estimator for the t ransi-

tion state for N-N02 bond dissociation in RDX with block size. Shown here are the 

results for five cases with 72899, 1113737, 5284068, 13601739, and 30176694 total 

QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV) . This shows that 

a block size of 28 = 256 is sufficient for this calculation. 

"on-the-fly." This a llows a calculation to be terminated when the calcu-

lated quantities are converged instead of having to pre-specify t he number of 

simulation steps to be performed. 

Variance estimation for parallel simulations is easily and efficiently per-

formed with DDDA . While the Flyvbjerg-Peterson algorithm requires O(N) 

data points to be communicated over a network connection to evaluate the 

variance of the global calculation , DDDA requires only 0(1) to 0(1092(N)) 

data points to be communicated. This is a great benefit when large amounts 

of data are generated or when calculations are performed on a "grid" or 
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Time Evolution of RDX Energy Expectation Value Standard Deviation 
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Figure 4.6: The evolution with block size of the energy-standard-deviation-estimator 

for the transition state for concerted symmetric ring decomposition of RDX. Shown 

here are the results for five cases with 38848, 2110471, 6260482, 14545368, and 

31126145 total QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV). 

This shows that a block size of 213 = 8192 is sufficient for this calculation. 

other computational network with potentially limited bandwidth. Further-

more, the Flyvbjerg-Peterson algorithm is typically implemented so that all 

calculations are performed on one processor. DDDA efficiently partitions the 

calculation between all available processors. 

4.6 Statistic Class Pseudocode 

4.6.1 Pseudocode for Statistic.initializeO 

Statistic. initial ize () 
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Time Evolution of RDX Energy Expectation Value Standard Deviation 

c 0.1 

100000 1 • .os 
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Figure 4.7: The evolution of the standard-deviation-estimate for the energy of the 

three states of RDX whose results were shown in Fig. 4.4, 4.5, and 4.6. A block size 

of 28 was used for the ground state and the transition state for N-N02 dissociation 

while a block size of 213 was used for the symmetric concerted transition state. The 

energies are in Hartree (1 Hartree = 27.2116 eV) . 

# When a new instance of t he Statistic class is created 

init ialize its attributes 

NSamples = 0.0 

Sum = 0.0 

SumSq = 0.0 
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4.6.2 Pseudocode for Statistic.add_Data( new_sample) 

Statistic. add_Data( new _sample) 

# Add a new data element to the Statistic object and update 

the object's attributes 

NSamples = NSamples + 1 

Sum = Sum + new_sample 

SumSq = SumSq + new_sample * new_sample 

4.6.3 Pseudocode for Statistic.addition(A, B) 

Statistic.addition(A, B) 

# Add two Statistics to create a new composite statistic 

# C=A+B (so C is the resulting Statistic object) 

C = new Statistic() 

C.NSamples = A.NSamples + B.NSamples 

C.Sum = A.Sum + B.Sum 

C.SumSq = A.SumSq + B.SumSq 

returnC 
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4.7 Decorrelation Class Pseudocode 

4 .7 .1 P seudocode for Decorrelation.initialize() 

Decorrelation.initializeO : 

# When a new instance of the Decorrelation class is 

created, init ialize its attributes 

Size = 0 

NSamples = 0 

BlockedDataStatistics = [new StatisticO ] 

waiting_sample = [0] 

waiting_sample_exists = [false] 

4.7.2 Pseudocode for Decorrelation.add_Data( new_sample) 

Decorrelation.addJJata( new_sample) : 

# Add a new data element to the Decorrelation object 

and update t he object's attributes 

NSamples = NSamples + 1 

# T his will dynamically make the Decorrelation arrays 

longer to fit in all the data 

if NSamples >= 2.0Size : 

Size = Size + 1 

BlockedDataStatistics = 

B I ockedDataStatistics. append ( new Statistic() 

waiting_sample = waiting_sample.append(O) 
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waiting_sample_exists = waiting_sample_exists . append (f al se) 

B lockedDataStatistics [OJ .add_Data( new_sample) 

carry = new_sample 

i = 1 

done = false 

# Propagate the new sample up through the 

BlockedDataStatistics structure 

while(not done) : 

if waiting_sample_exists[iJ : 

new_sample = (waiting_sample[i] + carry)/2.0 

carry = new_sample 

B lockedDaiaStatistics [i].addData( new _sample) 

waiting_sample_exists[i] = false 

else: 

waiting_sample_exists[i] = true 

waiting_sample [i] = carry 

done = true 

i = i+l 

if i > Size: 

done = 1 

4.7.3 Pseudocode for Decorrelation.addition(A, B) 

Decorrelation.addition(A, B) : 

# Add two Decorrelation objects to create a new 
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composite Decorrelation object 

# C=A+B (so C is the resulting Decorrelation object) 

C = newDecorrelationO 

C.NSamples = A.NSamples + B.NSamples 

# Make C big enough to hold all the data from A and B 

while C.NSamples >= 2.0C.Size : 

C.Size = C.Size + 1 

C. BlockedDataStatistics = 

C.BlockedDataStatistics .append( newStatisticO) 

C.waiting_sample = C.waiting_sample.append(O) 

C. waiting ...sample-.exists = 

C. waiting_sample_exists .append(j alse) 

carry_exists = false 

carry = 0 

for i in range(C.Size) : 

if i <= A .S ize : 

StatA = A.BlockedDataStatistics[i] 

waiting_sampleA = A.waiting_sample[i] 

waiting_sample_existsA = A.waiting...sample_exists[i] 

else : 

Stat A = new StatisticO 

waiting_sampleA = 0 

waiting_sample-exists A = fals e 

if i <= B.Size : 

StatB = B.BlockedDataStatistics[i] 
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waiting_sampleB = B.waiting_sample[i] 

waiting_sample_existsB = B.waiting_sample_exists[i] 

else: 

StatB = new StatisticO 

waiting_sampleA = 0 

waiting_sample_existsA = fals e 

C.BlockedDataStatistics[i] = 

C.BlockedDataStatistics[i] .addition( StatA, S tatB) 

if(carry_exists == true & waiting_sample _existsA == true & 

waiting_sample_existsB == true) : 

# We have three samples to handle 

C.BlockedDataStatistics [i].addData( 

(waiting_sampleA + waiting_sampleB)/2.0 ) 

C.waiting_sample[i] = carry 

C.waiting_sample_exists [i] = true 

carry_exists = true 

carry = (waiting_sampleA + waiting_sampleB)/2.0 

else if(carry_exists == false & waiting_sample_existsA == true & 

waiting_sample_existsB == true) : 

# We have two samples to handle 

C.B lockedDataStatistics [i] .addData( 

(waiting_sampleA + waiting_sampleB)/2.0) 

C.waiting_sample[i] = 0 

C.waiting-Bample_exists[i] = fal se 

carry_exists = true 
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carry = (waiting_sampleA + waiting_sampleB) / 2.0 

else if (carry_exist s == true & waiting_sample_existsA == false & 

waiting_sample_existsB == true) : 

# We have two samples to handle 

C.B lockedDataStatistics [i].addData( 

(carry + waiting_sampleB)/2.0) 

C.waiting_sample[i] = 0 

C. waiting_sample_exists [i] = false 

carry_exists = true 

carry = (carry + waiting_sampleB) / 2.0 

else i f(carry-.e.xists == true & waiting_sample_existsA == true & 

waiting_sample_existsB == false) : 

# We have two samples to handle 

C.B lockedDataStatistics [i].addData( 

(carry + waiting_sampleA)/2. 0) 

C.waiting_sample[i] = 0 

C. waiting_sample_exists[i] = false 

carry _exists = true 

carry = (carry + waiting_sampleA)/2.0 

else if (carry_exists == true or waiting_sample_existsA == true or 

waiting_sample_existsB == true) : 

# To get to this code we must only have one sample to handle 

C.waiting_sample[i] = carry+ 

waiting_sampleA + waiting_sampleB 

C.waiting_samplLexists [i] = true 



carry_exists = false 

carry = 0 
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else: 

returnC 

# There are no samples to handle here 

C.waiting_sample[i] = 0 

C. waiting_sample_exists[i] = fal se 

carry_exists = false 

carry = 0 

4.8 Simple Example Calculation Pseudocode 

for all processors: 

# Initialize the error analysis data structure for each processor 

LocalError AnalysisDataStructure = newDecorrelationO 

while generating new data points: 

# Generate new data and add it to the local error 

analysis data structure 

new_data = generateNewDataPointO 

LocalError AnalysisDataStructure.addJ)ata(new_data) 

if not rooLnode : 

# Send data to the root processor to evaluate t he global 

expectation value and Variance 

send LocalError AnalysisDataStructure to rooLnode 

else: 
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# Generate the global error analysis data structure by 

adding the local error 

GlobalError AnalysisDataStructure = 

LocalError AnalysisDataStructure 

# Analysis data structures form each processor 

for processor in all processors excluding the root node: 

receive(LocalError AnalysisDataStructureprocessor) 

GlobalError AnalysisDataStructure = Decorrelation.add( 

GlobalError AnalysisDataStructure, 

LocalError AnalysisDataStructureprocessor) 
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Chapter 5 

Manager-Worker-Based Model 

for the Parallelization of 

Quantum Monte Carlo on 

Heterogeneous and 

Homogeneous Networks 

5.1 Introduction 

There is currently a great deal of interest in making Quantum Monte Carlo 

(QMC) methods practical for everyday use by chemists, physicists, and ma­

terial scientists. Since protocols exist using QMC methods, such as varia­

tional QMC, diffusion QMC, and Green's function QMC, to calculate the 

energy of an atomic or molecular system to within chemical accuracy « 2 

kcal/mol), this makes their everyday application very attractive. High accu-
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racy quantum mechanical methods generally scale very poorly with problem 

size, typically O(N6 to N!) , while QMC scales fairly well , O(N3
), but with 

a large prefactor. Current research efforts exist to improve QMC's scaling 

further [45]. Density Funct ional Theory (DFT) scales well, O(N3), and could 

potentially provide highly accurate solutions, but DFT typically has an ac­

curacy of 5 kcal/mol or more with the current generation of functionals and 

the results cannot be systematically improved. 

The primary issue facing the QMC community is that, although QMC 

scales well with problem size , the prefactor of the method is generally very 

large, often requiring CPU months to calculate moderately sized systems. 

The Monte Carlo nat ure of QMC allows it to be easily parallelized , t hus , 

reducing the prefactor , with respect to the wall clock. 

Application of QMC to physically interesting systems almost always re­

quires the use of supercomputers to enable calculations to complete in a rea­

sonable amount of time. Currently, however, supercomputing resources are 

very expensive and can be difficult to gain access to . To make QMC more 

useful for an average practitioner, algorithms must become more efficient, 

and/ or large inexpensive supercomputers must be produced. 

A current trend in large scale supercomputing [51] is assembling "cheap 

supercomputers" with commodity components using a Beowolf-type frame­

work. These clusters have proven to be very powerful for high-performance 

scientific computing applications [52]. Clusters can be constructed as ho­

mogeneous supercomputers if the hardware for each node is equivalent or 

as heterogeneous supercomputers if various generations of hardware are in­

cluded. 

Another interesting development is the use of loosely coupled, distributed 
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grids of computational resources [53] with components t hat can even reside 

in different geographic locations in the world. Such "grids" are upgraded 

by adding new compute nodes to the existing grid resulting in continuously 

upgradable supercomputers, which are inevitably heterogeneous. 

To efficiently utilize the next generation of supercomputer (heterogeneous 

cluster or grid), a parallelization algorithm must require little communication 

between processors and must be able to efficiently use processors that are 

running at different speeds. We propose a manager-worker-parallelization 

algorithm for QMC (QMC-MW) that is designed for just such systems. This 

algorithm is compared against the pure iterative parallelization algorithm 

(QMC-PI), which is most commonly used in QMC implementations [64, 65, 

66]. 

5.2 Theory 

Because QMC is a Monte Carlo method and thus stochastic in nature, it is 

one of the easiest algorithms to parallelize and can be scaled to large numbers 

of processors. In a parallel calculation, an independent QMC calculation is 

performed on each processor, and the resulting statistics from all the proces­

sors are combined t o produce the global result. 

QMC calculations can typically be broken into two major computationally 

expensive phases: initialization and statistics gathering. Points distributed 

with respect to a complicated probability distribution, in this case the square 

of the wavefunction amplitude, are required during a QMC calculation. In 

efficient implementations, this is almost always done using the Metropolis 

algorithm [55]. 
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The first points generated by the Metropolis algorithm are not generated 

with respect to the desired probability distribution so they must be discarded. 

Additionally, points generated for diffusion QMC and Green's function QMC 

must be discarded if t here are significant excited state contributions which 

have not yet decayed. This represents the initialization phase. Once the 

algorithm begins to generate points with respect to the desired distribution , 

the points are said to be "equilibrated" and can be used to generate valid 

statistical information for the QMC calculation. This represents the statistics 

gathering phase and is the phase where useful data is generated. 

To obtain statistically independent data, each processor, in a parallel 

calculation, must perform its own initia lization procedure which is the same 

length as the initialization procedure on a single processor. When large 

numbers of processors are used, the fraction of the t ime devoted to initializing 

the calculation can be very large and will eventually limit the number of 

processors that can be effectively used in parallel (Section 5.2.3). 

Sections 5.2. 1 and 5.2.2 theoretically analyze the pure iterative (QMC­

PI) and manager- worker (QMC-MW) parallelization algorithms for QMC. 

The analyses assume that an O(log2(NprocessOTs )) method, where Nprocessors 

is t he total number of processors, is used to gather t he statistical data from 

all processors and return it to the root processor [50]. To simplify analysis of 

the algorithms, the analysis is performed for variational QMC (VMC) with 

the same number of walkers on each processor, but it is possible to extend 

the results to other QMC methods. 
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5.2.1 Pure Iterative Parallelization Algorithm 

The pure iterative parallelization algorithm (QMC-PI) is the most commonly 

implemented parallelization algorithm for QMC (Algorithm 5.5) [64,65,66]. 

This algorithm has its origins on homogeneous parallel machines and simply 

allocates an equal fraction of the total work to each processor. The processors 

execute their required tasks and percolate the resultant statistics to the root 

node once every processor has finished its work. 

In this algorithm, the number of QMC steps taken by each processor 

during the statistics gathering phase, StepsPI,i, is equal to the total number 

of QMC steps taken for the calculation, StepsRequiredTotal, divided by the 

total number of processors, Nprocessors' 

StepsRequiredTotal 
Steps P I i = --':-;,....-----

, N Processors 
(5.1) 

The number of QMC steps required to initialize each walker during the 

init ialization, StepsInitialize, is taken to be a constant. An optimally efficient 

initialization algorithm would determine how many QMC steps are required 

to equilibrate each walker, but in current practice, each walker is generally 

equilibrated for the same number of steps. 

The wall clock time required for a QMC calculation using the QMC-PI 

algorithm, tPJ , can be expressed as 

t - tlnitialize + tPropagate + tSynchronize + tCommunicate 
PI - PI,i PI,i PI,i PI , (5.2) 

where t~''i',;ialize is the time required to initialize the calculation on proces­

sor i, t~;7agate is the time used in gathering useful statistics on processor i, 

t~~~Chronize is the amount of time processor i has to wait for other proces­

sors to complete their tasks, and t~~mmunicate is the wall clock time required 
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to communicate all results to the root node. These components can be ex-

pressed in terms of quantities that can be measured for each processor and 

the network connecting them. 

(5.3) 

t~~~fagate = (StepsReQUiredTotal) {~MC 
N Pr ocessors t 

(5.4) 

t Communicate - log (N ) (tLatency + f3L ) P I - 2 Processors (5.5) 

Here N w is the number of walkers per processor, tfenerateWalker is the time 

required to construct a walker on processor i, t7MC is the time required 

for a QMC step on processor i, tLatency is the latency of the network, f3 is 

t he inverse bandwidth of the network, and L is the amount of data being 

transmitted between pairs of processors when data is percolated to the root 

node. 

The way t his algorithm is constructed , all processors must wait for the 

slowest processor to complete all of its tasks before the program can term i-

t Th C tSynchronize 0 d h II I k . I h na e. ere,ore P I ,slowest = ,an t e wa c oc tlme to comp ete t e 

QMC-PI calculation is 

tpI = tlnitia'ize + tPropagate + tComm1.l.nicate 
PI,slowest PI ,slowest PI' (5 .6) 

Furthermore, 

t Synchroniz e _ (tlnitialize + tPropagate ) _ (tlnit.ializ e + tPropagate) (5.7) 
PI,i - PI,slowest PI ,stowest PI ,t PI,i . 
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Similarly, the total time required for a QMC calculation using the QMC-

PI algorithm, T PI, can be expressed as 

Tp1 = T~1itializ e + T:;opagute + T;jnchronize + T~ImmtJ.nicate, (5.8) 

where TJ]itialize is the total time required to initialize the calculation, T[:;opagate 

is the total time used in gathering useful statistics, T;rchronize is the total 

time used in synchronizing the processors, and Tj{fmmunicate is the total time 

used to communicate all results to the root node. These components can be 

expressed in terms of quantities that can be measured for each processor and 

the network connecting them. 

5.2.2 

T lnitialize _ 
PI -

T Propagate _ 
PI -

T 5ynchronize _ 
PI -

tlnitialize 
PI,i 

tPropagate 
PI,i 

tSynchronize 
PI,i 

TCommunicote - (N - 1) (tLotency + f3L) 
PI - Processors 

Manager- Worker-Parallelization Algorithm 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The manager-worker paradigm (QMC-MW) offers an entirely new method 

for performing parallel QMC calculations (Algorithm 5.6). This algorithm 

makes the root node a "manager" and all of the other nodes "workers." The 

worker nodes compute until they receive a command from the manager node. 

The command either tells the worker to 1) percolate its results to the manager 

node and continue working or 2) percolate its results to the manager node 
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and terminate. The manager periodically collects the statist ics that have 

been calculated. If the statistics are sufficiently converged , the manager 

commands the workers to send all their data and terminate; otherwise, the 

manager will do some of its own work and repeat the process again later. 

Unlike QMC-PI, QMC-MW dynamically determines how much work each 

processor performs. This allows faster processors to do more work so the 

calculat ion is automatically load balanced. 

The wall clock time required to perform a QMC-MW calculation can be 

broken into the same terms as were used for a QMC-PI calculation (Equa-

tion 5.3). 

t - e nitialize + tPropagate + tSynchronize + tCommunicate 
M W - MW,i MW,i MW,i MW,i (5.13) 

Because MW dynamically determines how many steps are performed by each 

processor, each of the constituent terms has a more complicated form than 

in QMC-PI. Allowing l' to be the minimum wall clock needed to achieve 

convergence on a given network and 7 to be the approximate wall clock 

time during the run, one can easily derive t he following expressions. Once 7 

becomes l' the QMC-MW algorithm will terminate. 

enitia:lize ::::: N t~enerateWalker + Stepslniti~lize(1')t9MC 
MW,l W t MW,t 1 

tCommunicate _ 
MW,i -

tPropagate _ St Propagate (- )tQMC 
MW,i - epsMW,i T i 

cps MW a 7" I (N ) (tLatency f3L) 1St Tolal (0) l 
NwStep,Ji,du," Og2 Processors + + 

r Step8rtt;J,~(f) l tPoll 
I NwStepsPoli i 

tSynchronize < /II Ste s PoUtPoU MW,O 

r 
StepsTotat (f) 1 

MW,\ - W P slowest NwStepsReduce ) 

(5 .14) 

(5 .15) 

(5.16) 

(5.17) 
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eps MW,O 'T Latency 

1
St Total ( ) l 

tMW - N
w 

Steps Reduce log2(NproceHor,)(t + f3L) 

t _ tSynchronize _ tCommunicate 
~ MW MW,i MW,i 

t l nitialize + tPropagate 
MW,i MW,i 

St Initialize ( ) . (St Tolal ( ) N St ) epsMW,i T = mIn epsMW,i T, w epSl nitinlize, 

StepsProp~gate (r) = StepsTotal .(r) _ Stepslnitialize(r) 
MW,t MW,~ MW,t J 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

StepsRequiredTotal is the minimum number of steps that are required to obtain 

the desired level of convergence, Steps Poll is the number of QMC steps that 

take place on a worker processor between checking for a message from t he 

manager, and StepsReduce is the number of QMC steps t hat take place on the 

manager processor between sending commands to the workers. Unlike tPJ, 

tMW cannot be simply expressed in terms of individual processor speeds. 

The total time required for the MW algorithm, TMW , can be expressed 

as 

T - Tlnitialize + TPropagate + TSynchronize + T Communicate 
MW - MW MW MW MW , 

which contains the same components as Equation 5.9. 

NProceuor~ 
Tlnitialize _ ~ tlnitialize 

MW - ~ MW,i 

(5.23) 

(5 .24) 
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Nproc eu or iJ 

TPropagate _ " tPropagate 
MW - L.... MW,i 

N Proce ~iJ or iJ 
rSynchranize _ " tSynchronize 

MW - L.... MW,i 

T Communicate _ 
MW -

r StepsI;tv,h 1 (N ) (Latency f3L) I NwStep,R,d." Proc",w", - 1 t + + 

~~PToceuors r Stepsrrtv~(f) l tfoll 
L...Jl I NwSteps oil ~ 

5.2.3 Initialization Catastrophe 

(5.25) 

(5.26) 

(5.27) 

QMC algorithms are described as being "embarrassingly parallel" and lin-

early scaling with respect to the number of processors used. These statements 

are true for a large fraction of Monte Carlo calculations but are not true for 

QMC calculations which employ the Metropolis algorithm [55]. To obtain 

independent statistical data from each processor, at least one independent 

Markov chain must be initialized on each processor (Section 5.2). This gives 

an init ialization cost, TInitialize, which scales as O(NProcessors). The t ime de-

voted to generating useful statistical data during the calculation , TPropagate, 

scales as 0(1) because a given number of independent Monte Carlo samples 

are required to obtain a desired statistical accuracy no matter how many pro-

cessors are used. From this, the efficiency, or fraction of the total calculation 

time devoted to useful work, E is 

Tlnitialize + TPropag ate + TSynchronize + TCommunicate 

TPropagate 

(5.28) 

0(1) 
(5.29) 

This result clearly demonstrates t hat QMC calculations using the Metropo-

lis algorithm as described above are not linearly scaling for large numbers 
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of processors as is often claimed. This results from the initialization of the 

Metropolis algorithm and not the parallelization algorithm used. 

We should note t hat different init ia lization schemes exist which could po­

tentially reduce t he expense of t he equilihration phase. If it takes longer to 

get a guess walker to become equilibrated than it takes to trust that a par­

ticular walker has been moved to an un correlated configuration from some 

previously equilibrated configuration, one could make QMC a two-phase al­

gorithm with an initial phase on a single processor which makes uncorrelated 

configurations from a single equilibrated configuration to start a full QMC 

run on. This could also be done on mUltiple processors in a broadcast tree 

manner where each new uncorrelated configuration seeds a new branch of 

the tree to generate configurat ions. Trivially, however, we note that these 

and any algorithm, which requires the generation of an uncorrelated set of 

walkers requires computational effort which grows linearly with the number 

of total global walkers. Therefore , we will continue to analyze the current 

method of generating each walker from a guess configuration which we man­

ually equilibrate since t he total computational complexity will be the same. 

5.3 Experiment 

Computational experiments comparing QMC-PI and QMC-MW paralleliza­

tion algorithms were performed using QMcBeaver [54, 50], a finite all-electron 

QMC software package we developed. Variational QMC was chosen as the 

particular QMC flavor to allow direct comparison with t he theoretical results 

in Section 5.2. 

QMcBeaver percolates statistical results from all nodes to the root node 
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using the Dynamic Distributable Decorrelation Algorithm (DDDA) [50J and 

the MPLReduce command from MPI [67J. This combination provides an 

O(log2(Nprocessors)) method for gathering the statistical data from all pro­

cessors , decorrelating the statistical data, and returning it to t he root node. 

The time spent initializing, propagating, synchronizing, and communicat-

ing during a calculation was obtained from t imers inserted into the relevant 

sections of QMcBeaver. During a parallel calculation, each node has its own 

set of t imers which provide information on how that particular processor is 

performing. At the completion of a calculat ion, the results from all processors 

are combined to yield the total CPU time devoted to each class of task. 

5.3.1 Experiment: Varying Levels of Heterogeneity 

For t his experiment, a combination of Intel Pentium Pro 200 MHz and In-

tel Pentium III 866 MHz computers connected with a 100 Mb/sec network 

was used. The t otal number of processors was kept constant at 8, but the 

number of each type of processor was varied over the whole range. This 

setup provided a series of 8 processor parallel computers wit h a spectrum of 

heterogeneous configurations. For our calculations with t he current version 

of QMcBeaver, the Pentium III is roughly 4.4 t imes faster than t he Pentium 

Pro at performing QMcBeaver on these test systems. 

The N e atom was the particular chemical system t he computational ex­

periments were performed on. A Hartree-Fock/TZV [lJ wavefunction calcu­

lated using GAMESS [68, 56J was used as the trial wavefunction. For the par-

allelization algorithms, the following values were used: StepsR.equire<fTotal = 

2 5 X 106 Steps Initialize = 1 x 103 StepsPoll = 1 StepsR.educe = 1 x 103 and ., )' , 
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Figure 5.1: Time required to com plete an 8 processor va riational QMC calculation of 

N e using the manager-worker (QMC-MW) and pure iterative (QMC-P I) algorithms. 

The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel 

processors connected by 100 Mb/ s networking. The theoretical optimal performance 

for a given configuration of processors is provided by the curve. 

N w = 2. 

The time required to complete the QMC calculation for the QMC-PI and 

QMC-MW parallelization algorithms is shown in Figure 5.1. Each dat a point 

was calculated five t imes and averaged to provide statistically relevant data. 

One should note StepsRequiredTotol is not known before a calculation. 

Therefore , the QMC-MW model here is very representative of a real-world 

implementation with its dynamic termination. However, allowing someone 

using the QMC-PI method to know exactly StepsR.equiretfTotal before a calcu-

lation begins is the best-case scenario. Typically, one either under or over-
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estimates StepsRequ;redTotal when using the QMC-PI method. If one over­

estimates StepsRequ;redTotal some amount of computational resources will be 

wasted over converging the calculation. If one underestimates StepsRequiredTotal, 

t he job must be resubmitted to the queue with its last checkpoint state file. 

Both cases waste the user's time and/or computational resources. 

The time required for the QMC-PI algorithm to complete is determined 

by the slowest processor. When between 1 and 8 Pentium Pro processors 

are used, the calculat ion takes the same time as when 8 Pentium Pro pro­

cessors are used; yet , when 8 Pentium III processors are used (homogeneous 

network), the calculation completes much faster. This matches the behavior 

predicted by Equation 5.6. This figure also shows that MW performs near 

the theoretical speed limit for each of the heterogeneous configurations. This 

is a result of the dynamic load balancing inherent in QMC-MW. 

The total number of QMC steps performed during a calculation is shown 

III Figure 5.2. The QMC-PI method executes the same number of steps 

regardless of the particular network because the number of steps performed 

by each processor is determined a priori. On the other hand, QMC-MW 

executes a different number of steps for each network configuration. This 

results from the dynamic determination of t he number of steps performed by 

each processor. The total number of steps is always greater than or equal to 

the number of steps needed to obtain a desired precision, StepsRequiredTotal. 

Figures 5.3 and 5.4 break the total calculation time down into its con­

stituent components (Equations 5.8 and 5.23). QMC-MW spends essentially 

all of its time initializing walkers or generating useful QMC data. Synchro­

nization and communication costs are minimal. On the other hand, QMC-PI 

devotes a huge portion of the total calculation time to synchronizing proces-
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Figure 5.2: Number of variational QMC steps completed during an 8 processor cal­

culation of Ne using the manager-worker (QMC-MW) and pure iterative (QMC-PI) 

parallelization algorithms. The pure iterative algorithm always calculates the same 

number of steps, but the manager-worker algorithm dynamically determines how many 

steps to take. The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium 

III 866 MHz Intel processors connected by 100 Mb/s networking. 

sors on heterogeneous networks. This is very inefficient and wasteful. 

5.3.2 Experiment: Heterogeneous Network Size 

The N e atom was the particular chemical system the computational ex-

periments were performed on. A Hartree-Fock/TZV [1] wavefunction cal­

culated using GAMESS [68, 56] was used as the trial function. The net-

work of machines used was a heterogeneous cluster of linux boxes. A unit 

of five machines goes as follows. Three different sized networks were ex-
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Figure 5.3: Percentage of total calculation time devoted to each component in the 

pure iterative parallelization algorithm (QMC-PI) during an 8 processor variational 

QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200 MHz and 

Pentium III 866 MHz Intel processors connected by 100 Mb/s networking. 

amined each with either one, two, or four of each of these respective pro-

cessors. For t he parallelization algorithms, the following values were used: 

StepsRequire<lI'ota, = 2.5 x 106 , Stepslnitialize = 1 x 103 , StepsPott = 1, Steps Reduce = 

1 X 103 , and Nw = 2. 

• Intel Pentium Pro 200 MHz 

• Intel Pentium II 450 MHz 

• Intel Pentium III Xeon 550MHz 

• Intel Pent ium III 600 MHz 
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Figure 5.4: Percentage of total calculation time devoted to each component in th e 

manager-worker-parallelization algorithm (QMC-MW) during an 8 processor varia-

tional QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200 

MHz and Pentium III 866 MHz Intel processors connected by 100 Mb/s networking . 

• Intel Pentium III 866 MHz 

Implementing QMC-PI and QMC-MW exactly as was done in Section 5.3.1 

for this network we observe the results in F igure 5.5. This shows that even 

as the network size increases, the QMC-MW model does an excellent job of 

running near the theoretical optimal time for this network. However, the 

QMC-PI method struggles to compete. 

We, of course, could improve the efficiency of the QMC-PI method if we 

knew the machine was devoted to our QMC-PI program and we had pre-

viously bench-marked t he QMC job on each machine. However, this would 

require the effort of bench-marking, trusting that the machine is t ruly de-
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Figure 5.5: Wall time required to complete a variational QMC calculation of N e 

using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on a 

heterogeneous linux cluster. The theoretical optimal performance for a given configu-

ration of processors is provided by the line. 

voted to our task, and the extra bookkeeping needed to match up the number 

of tasks with each machine's predicted effectiveness. This all could be ac-

complished with no assumptions on t he network by simply implementing the 

QMC-MW method which already pushes the boundary of perfect efficiency. 

5.3.3 Experiment: Homogeneous Network 

The QMC-PI algorithm was originally designed to work on homogeneous su­

percomputers with fast communication while the QMC-MW algorithm was 

designed to work on heterogeneous supercomputers with slow communica-

tion. To test the QMC-MW algorithm on the QMC-PI algorithm's native 
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Figure 5.6: Wall time required to complete a variational QMC calculation of Ne 

using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on the 

ASCI Blue Pacific homogeneous supercomputer. The theoretical optimal performance 

for a given configuration of processors is provided by the line. 

architecture, a QMC scaling calculation (Figure 5.6) was performed on the 

ASCI-Blue Pacific supercomputer at Lawrence Livermore National Labora-

tory. This machine is a homogeneous supercomputer composed of 332 MHz 

PowerPC 604e processors connected by HIPPI networking. 

N e atom was the particular chemical system the computational experi-

ments were performed on. A Hartree-Fock/TZV [1] wavefunction calculated 

using GAMESS [68, 56] was used as the trial function. For the paralleliza-

tion algorithms, the following values were used: StepsRequiredTotal = 1 x 106 , 

Stepslni'ialize = 2 x 103 , StepsPoll = 1, StepsReduce = 1 x 103 , and N w = 2. 

Figure 5.6 shows that the QMC-MW and QMC-PI algorithms perform 
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Figure 5.7: Wall time in nonpropagation and non-initialization overhead expenses 

for QMC-PI and QMC- MW on ASCI Blue Pacific. 

nearly ident ically on Blue Pacific. The QMC-MW calculation is consistently 

slightly slower t han the QMC-PI algorithm because the QMC-MW calcula­

t ion performed more QMC steps. This results because the QMC-PI calcula-

t ion performs a predetermined number of steps while the QMC-MW calcu-

lation performs at least a predetermined number of steps. The discrepancy 

can be reduced by decreasing Steps Reduce . 

Two useful figures show how these two methods really differ. Observing 

the overhead expense (all nonpropagation or initialization clock time) for 

running both methods we observe that the QMC-PI actually has a slightly 

higher overhead expense t han QMC-MW in Figure 5.7. (The growth of 

both of these for large numbers of processors is relic of the Initialization 

Catastrophe 5.3.4.) 
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Figure 5.8: Ratio of wall time for QMC-MW jQMC-PI on ASCI Blue Pacific. 

If one observes the total computational resources used over a given time 

and takes a ratio of the two methods total run time, we observe (Figure 5.8) 

that both methods use roughly the same amount of resources. Since they 

are within a couple of percent of each other, they can be considered to take 

roughly the same time and expense on this homogeneous machine. 

To resolve the seemingly contradictory results from Figures 5.7 and 5.S, 

we must remember than the QMC-MW method may actually do more QMC 

steps than the QMC-PI in these experiments. This shows that even if one 

can exactly guess the correct number of QMC steps needed to converge a 

given QMC-PI run, both QMC-PI and QMC-MW perform roughly the same 

with respect to wall clock. However, in reality, rarely does the user know 

how many steps they should require and the QMC-PI will perform poorly 

compared to this idealized result whereas the QMC-MW will always perform 
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near this level since it dynamically determines convergence and termination. 

Both algorit hms do not perform near the linear scaling limit for large 

numbers of processors. This is a result of t he initialization catastrophe dis­

cussed in Sections 5.2.3 and 5.3.4. 

5.3.4 Experiment: Initialization Catastrophe 

To demonstrate the "init ialization catastrophe" described in Section 5.2.3, 

a scaling experiment was performed on the ASCI-Blue Mountain supercom­

puter at Los Alamos National Laboratory (Figure 5.9). This machine is 

a homogeneous supercomputer composed of MIPS 10000 processors run­

ning at 250 MHz connected by HIPPI networking. Variational QMC cal­

culat ions of RDX, cyclic-[CH2N N02 ], using the QMC-MW algorithm with 

StepSRequired:Total = 1 x 105 , Step s l nitialize = 1 x 103 , Steps Poll = 1, Steps Reduce = 

1 X 102, and Nw = 1 were performed. Jaguar 4.0 [1] was used to generate a 

HF / 6-31G** trial wavefunction. 

The efficiency of the scaling experiments were calculated usmg Equa­

tion 5.28, and the results were fit to 

a 
€ = - ---::-::-- -­

a ~ iVProcessors 
(5.30) 

with a = 104.203. The efficiency at 2048 processors is better than the value 

predicted from t he fit equation. This is an artifact of the QMC-MW algo­

rithm which resulted from this calculation taking significantly more steps 

than StepsRequired:Total. Decreasing t he value of Steps Reduce would reduce this 

problem. 

The excellent fi t of the data to Equation 5.30 clearly shows t hat QMC 

calculations using the Metropolis algorithm are not linearly scaling for large 
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Figure 5.9: Efficiency of a variational QMC calculation of RDX as a function of 

the number of processors used. The calculations were performed using the manager-

worker-parallelization algorithm CQMC-MW) on the ASCI-Blue Mountain supercom-

puter, which has 250 MHz MIPS 10000 processors connected by HIPPI networking. 

A similar result is prod uced by the Pure Iterative parallelization algorithm. The data 

is fit to €CNprocessors) = a / {a + Nprocessors) with a = 104.203 . 

numbers of processors. This result holds t rue for both QMC-MW and QMC-

PI because it results from the init ialization of the Metropolis algorithm and 

not the paralielization of the statistics gathering propagation phase. Fur-

thermore, longer statistics gathering calculations have better efficiencies and 

thus better scaling than short statistics gathering calculations. This can be 

seen by examining Equation 5.28. 
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5.4 Conclusion 

The new QMC manager-worker-parallelization algorithm clearly outperforms 

the commonly used Pure Iterative parallelization algorithm on heterogeneous 

parallel computers and performs near the theoretical speed limit. Further­

more, both algorithms perform essent ially equally well on a homogeneous 

supercomputer with high speed networking. 

When combined with DDDA, QMC-MW is able to determine, "on-the­

fly," how well a calculation is converging, allowing convergence-based termi­

nation. This is opposed to the standard practice of having QMC calculations 

run for a predefined number of steps. If the predefined number of steps is 

too long, computer time is wasted, and if too short , the job will not have the 

required convergence and must be resubmitted to the queue lengthening the 

total time for the calculation to complete. Additionally, specifying a calcula­

tion precision (2 kcal/mol for example) is more natural for the applications 

user than specifying a number of QMC steps. 

QMC-MW allows very low cost QMC specific parallel computers to be 

built . These machines can use commodity processors, commodity network­

ing, and no hard disks. Because the algorithm efficient ly handles loosely cou­

pled heterogeneous machines, such a computer is continuously upgradeable 

and can have new nodes added as resources become available. This greatly 

reduces the cost of the resources the average practitioner needs access to, 

bringing QMC closer to becoming a mainstream method. 

It is possible to use QMC-PI on a heterogeneous computer with good 

efficiency if the speed of each processor is known. Determining and effectively 

using this information can be a great deal of work. If the user has little or 
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inaccurate information about the computer, this approach will fail. QMC-

MW overcomes these shortfalls with no work or input on the users part. Also, 

when new nodes are added to the computer, QMC-MW can immediately 

take advantage of t hem while the modified QMC-PI must have benchmark 

information recorded before t hey can be efficiently used. The benefits and 

displayed ease of implementation of QMC-MW clearly outweigh t hose of 

QMC-PI supporting its adoption as the method of choice for making QMC 

parallel. 

The prediction and verification of t he initialization catastrophe clearly 

highlights the need for efficient initialization schemes if QMC is to be scaled 

to tens of t housands or more processors. Producing such algorithms must be 

a focus of future work. 

5.5 Pure Iterative Algorithm (QMC-PI) 

for ProcessoTi; i = 0 to Nprocessors - 1 

St St RequiredTotal/N epsPI,i = eps Processors 

Generate Nw walkers 

for Stepslnitilize steps 

Equili brate walkers 

for StepsPI ,i steps 

Generate QM C statistics 

Percolate statistics to Processoro 



77 

5.6 Manager-Worker Algorithm (QMC-MW) 

for Processori; i = 0 to NProcessors - 1 

done = false 

counter = 0 

Generate Nw walkers 

while not done: 

if counter < Stepslnitialize : 

Equilibrate all local walkers 1 step 

else: 

Propagate all local walkers 1 step and collect QMC statistics 

if i = 0: 

else: 

if statistics are converged: 

done = true 

Tell workers to percolate stat istics to Processoro and 

set done = true 

else if counter mod StepsReduce = 0: 

Tell workers to percolate statistics to P rocessoro 

if counter mod StepsPoli = 0: 

Check for commands from the manager and 

execute the commands. 

counter = counter + 1 



78 

Chapter 6 

Generic J astrow Functions for 

Quantum Monte Carlo 

Calculations on Hydrocarbons 

6.1 Introduction 

Quantum Monte Carlo (QMC) is becoming a very important member of the 

electron correlation correction methods in quantum chemistry. Many flavors 

of QMC exist while Variational (VMC, 6.2.1) and Diffusion (DMC, 6.2.2) 

Quant um Monte Carlo are two of the more popular methods employed . VMC 

requires the explicit use of a variational wavefunction while DMC has the 

property that it can sample the ground state fixed node solution for a given 

trial wavefunction. 

Experience and tradition have defined a fairly efficient method of obtain­

ing very accurate calculations for molecules and materials using QMC [10, 

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows: 
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l. Obtain a fair trial wavefunction, IJrTrial , from some quantum mechanical 

method, like Density Functional Theory (DFT) or Hartree Fock (HF) . 

2. Guess J astrow particle-particle correlation functions t hat have some 

variational form which maintains t he antisymmetry of the total wave­

function. (This may only be a nearly antisymmetric wavefunction . 

Umrigar gives a discussion of this topic [13J. ) 

3. Choose variat ional parameters such that any Hamiltonian singularities 

are satisfied with the "cusp condition" in the Jastrow form. 

4. Generate an initial "walker(s)" approximately with respect to the par­

ticle probability distribution. 

5. Equilibrate t his "walker(s)" to verify it represents the part icle proba­

bility distribution. 

6. Generate configurations wit h t he Metropolis a lgorit hm in a YMC run. 

7. Perturb and evaluate the Jastrow parameters using these configura­

tions. (Repeat this correlated sampling optimization [10J until satis­

factory convergence.) 

8. Generate (or reuse from a YMC run) initial "walkers" for a DMC run. 

9. Equilibrate these "walkers" to verify t hey represent t he proper particle 

probability distribut ion. 

10. Use the optimized Jastrow for a DMC run to obtain a very accurate 

result. 
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Typically the equilibration and generation of the configurations in the 

VMC and DMC runs are the most expensive parts of this protocol so one 

would like to minimize the effort in these sections. The main purpose of the 

VMC optimization phase is to obtain a good description of the wavefunction. 

The better this wavefunction is, the quicker the DMC run will converge. This 

motivates a very well optimized Jastrow but not at the expense of marginal 

returns. 

Experience has shown that the VMC J astrow optimization involves a very 

difficult objective function. What one should generally try to do is reduce 

the energy and/or variance a fair amount but not try t o overoptimize. The 

method of correlated sampling is a useful method of optimization yet once 

it finds a flat region of the objective function (typically a (]"2(ELoca/) based 

objective function ), it can falsely encourage you to overoptimize since you 

have already likely reached a point of diminishing returns. Experience has 

shown that if you can get roughly a factor of three reduction in the variance 

over the HF wavefunction alone, you have done a fair job of optimizing and 

that fu rther optimization may give only marginal returns. Typically, one 

might spend 5% to 50% of the one's total effort optimizing the Jastrow in 

the VMC phase of the calculation. 

6.2 Theory 

QMC has many flavors each with certain assets and liabilities. The two 

particular types of QMC we will examine are VMC (Section 6.2.1) and DMC 

(Section 6.2.2). These two methods are widely used and in general use for 

production level calculations. Any impact we can make to improve the speed 
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at which one can accomplish these two types of QMC will have far-reaching 

consequences for many researchers in computational chemistry and materials 

sClence. 

6.2.1 Variational Quantum Monte Carlo 

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful 

method for examining correlated quantum wavefunctions. If one examines 

the basic energy expectation integral and reformulates it in terms of an elec-

tron probability density, p, and a local energy, Elocal, one finds a very simple 

description of the energy expectation (6.1). 

(E) J tJi(x)HtJi(x)dx3n 

J (tJi(X))2 ( H:r~~) ) dx3n 

J p(x)Elocal(x)dx3n (6.1) 

We must now determine what this tJi should be. Typically, we can use 

a method like Hartree Fock theory or Density Functional Theory [68, 56, 

57, 58, 59, 1, 3, 4, 5, 6, 7, 8] to obtain an antisymmetric wavefunction in a 

determinant form. 

This wavefunction is then augmented with a product of symmetric terms 

which contain the explicit particle correlations. These particle correlation 

functions will allow each particle to observe the positions of their neighboring 

particles and will allow addition variational freedom in the wavefunction. 

To construct the entire trial wavefunction, tJiTr;al, from a HF type type 

initial guess wavefunction, tJiHF , involves the use of the following expression 
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(6.2). A IJtTrial constructed from a DFT type wavefunction is similar. 

(6.2) 

The building unit of this type of description is a Uij function for particles 

i and j which are of particle types A and E, respectively (6.3). 

CUSPABTij + aABTtj + .. . 
1 + bABTij + CABTtj + .. . 

(6.3) 

This particular form of Uij is commonly referred to as the Pade-J astrow for 

finite syst ems [13]. CUSPAB removes singularities which arise as two charged 

particles approach each other. 

We must now det ermine how to optimize the parameters in t he Uij func-

tions as well as determining how many parameters to maintain in the expres-

sion. Allowing only the cusp condition parameter in the numerator and the 

first parameter in the denominator is common practice, though the more pa-

rameters we optimizes the better t he result will likely be with t he additional 

variational freedom. The common optimization procedure is t he method of 

correlated sampling optimization described by Umrigar [10]. 

6.2.2 Diffusion Quantum Monte Carlo 

Examining t he time-dependent Schriidinger equation (6.4) in atomic units we 

observe that one can make a transformat ion from real time into imaginary 

time to produce a diffusion equation (6.6) . 

i 81Jt = HIJt 
8t 

(6.4) 
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t = -iT (6.5) 

E}l]t = _ Hif/ = (~\72 - V) if/ 
&T 2 

(6.6) 

Techniques exist which allow one to sample the ground state with respect 

to the original if/Thal nodes. Many excellent in-depth descriptions of this 

method exist [20, 11, 34, 48]. 

6.3 Experiment 

6.3.1 Motivate Generic Jastrow for Hydrocarbons 

A significant part of the computational expense from taking a task from 

conception to completion using QMC is to optimize the Jastrow parameters 

with correlated sampled VMC. This resulting optimized wavefunction is then 

generally a good starting wavefunction for DMC. We would like to minimize 

the time spent in these expensive parts of the program to make the QMC 

method faster and cheaper. 

Breaking with traditional methods, we searched for physically motivated 

parameters for the J astrows. The dominant part of the electron correlation 

we wish to regain is thought to be in the spatially similar electrons which 

do not actively avoid each other. The parallel spin electrons do avoid each 

other by being described by a determinant which goes to zero as two par-

allel spin electrons approach each other. Experience has also shown that 

the most fruitful particle-particle interactions will likely be in opposite spin 

electrons which are not correlated with the determinant description of the 

wavefunction. 
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For the other particle-particle interactions, we have found the original 

wavefunction does a fair job of describing their interactions and that any bU 

relaxation will not need too large of a relaxation of the bt,t,b~.~,bt.H ,b~.H ,bt.c , 

and b~.c parameters in a hydrocarbon type molecule (6.3.2). Therefore, a 

b parameter of 100 was chosen for these Jastrow parameters which allows 

the cusp condition to satisfy the removal of the singularities but makes the U 

functions have a very short range effect. The opposite spin electrons will have 

a free bt ~ parameter which we will examine in the computational experiments. 

lr .. 
u-u - 4~J 

tt - 4 - 1 + 100r,j 

- Tij 
Ut.H = U •• H = ,,-----:-7':-

1 + 100rij 

- 6r,j 
Ut.c = u •. c = ---,-"'--

1 + 100rij 

6.3.2 Experiment: Hydrocarbons Test Set 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

Several types of hydrocarbons are examined. Simple single-bonded systems, 

double-bonded, triple-bonded, and 7r - conjugated systems are examined. A 

complete list follows: 

• benzene 
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• trans-butadiene 

• cis-butadiene 

• ethylene 

• ethane 

• allene 

• acetylene 

• methane 

Optimal geometries and wavefunctions were obtained using HF /6-31G** 

t heory and the Jaguar quantum mechanical program suite [1]. The use of HF 

wavefunctions is attractive since it gives a variational bound on the energy 

expectation which we must strive to improve. This is very useful in deter­

mining if a set of GJ parameters is doing a good job of describing the system. 

(We will refer to a Hartree Fock wavefunction with the Generic Jast row type 

correlation function as a HF-GJ type wavefunction. ) 

The results of varying the bH parameter for t hese simple hydrocarbons 

are shown in the following figures (Figures 6.1 and 6.2). Figure 6.1 shows 

the correlation energy gained with t he use of t he HF -GJ over the HF energy. 

This result is scaled by the total charge on the nuclei to give a consistent 

correlation energy gained per carbon and hydrogen and a consistent minimum 

for all hydrocarbons in the range of 2.0 to 4.0. 

Figure 6.2 shows the remaining variance after implementing the GJ. This 

is the ratio of the variance in the energy estimator from a pure HF only type 

wavefunction over the variance in the energy estimator of t he HF-GJ type 
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Figure 6.1: Correlation energy (Hartree) recovered divided by total nuclear charge. 

wavefunction for various values of the bH parameter. We observe a dramatic 

reduction of the variance for the VMC runs and a consistent minimum again 

in the range of 2.0 to 4.0. 

The resulting Generic Jastrow for these systems is the form gIven in 

equations (Equations 6.7, 6.8, 6.9, and 6.10) with bH = 3.0. These functions 

are plotted in Figure 6.3. What we notice is that all the correlation functions 

have a fairly short range while the opposite spin correlation function has a 

longer range. 

6.3.3 Generic Jastrow for DMC 

To demonstrate the utility of the GJ parameters for DMC, we ran methane 

and acetylene with various Jastrow parameters. A HF only type wavefunction 
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Figure 6.2: Reduction of the QMC variance for a wavefunction containing a Generic 

Jastrow compared to a Hartree-Fock wavefunction. 

was used in a DMC run and was extremely unstable. The other four sets of 

parameters resulted in stable DMC runs. Figure 6.4 shows that the GJ does 

an outstanding job of reducing the variance in the DMC calculation while the 

other bH do an inferior job. We also notice that the VMC variance optimized 

wavefunction does not even match the GJ performance. The optimization 

procedure used was a variance optimization as described by Umrigar [10] 

with 4000 statistically independent configurations. This implies that for this 

methane wavefunction that the optimization procedure actually resulted in 

a slightly worse wavefunction than the GJ wavefunction. This is possible 

since the objective function being optimized and gradients on the objective 

function are inherently inaccurate because of a finite VMC sampling in the 

correlated sampling procedure. 
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Figure 6.3: Generic Jastrow correlation functions. bt,t = 3.0 

Figure 6.5 shows that the GJ again does a great job at reducing the 

variance in the DMC calculation and nearly matches the VMC variance op-

timized wavefunction. In this case t he optimized parameters did result in 

the nearly best DMC variance yet its improvement over the GJ paramet er 

set was negligible. 

What t his shows is the Generic Jastrow does a very good job at accel-

erating t he convergence of a DMC run. It appears that t he generic form 

proposed for all hydrocarbons is very near t he optimal for these methane 

and acetylene test cases. 
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Figure 6.4: Convergence (a 2 in Hartree2 units) of methane DMC runs over time for 

various wavefunctions 

6.3.4 Test Case: lO-Annulene 

To test the transferability of these generic Jastrow parameters, we examined 

two different conformations of lO-Annulene studied by Scheafer 's group [69]. 

This molecule has some interesting electron correlation issues and provides 

a slightly larger yet interesting test case for t he proposed Generic Jastrow. 

The HF wavefunction as well as t he HF-GJ type wavefunction are exam­

ined. The HF energies are from Jaguar[1] while t he VMC(HF-GJ) results 

are from QMcBeaver[54]. 

Comparing the results from Table 6.1 wit h the results in basic hydro car-

bons in Figure 6.1 , we notice a consistent correlation energy gain per atom. 
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6.4 Conclusion 

The idea of using a GJ parameter set is fairly crude, yet we show that the 

VMC energy and variance are reduced over a purely HF wavefunction in each 

case. The clearest impact of this work is on the initial guess J astrow used 

in the VMC optimization procedure. Using a generic Jastrow as an initial 

guess allows these generally good parameter sets to be further optimized to 

meet the user's needs. 

If further work shows these generic J astrows provide good enough start-

ing points for DMC, the VMC optimization procedure's expense may not 

only be reduced but may be eliminated. This is a significant fraction of the 

computational expense which may be saved. 
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conformation EHF Ev MC,GenericJastrow b.E t>E 
totalZ 

napth -383.07 -383.46 ± 0.03 0.39 0.0056 

twist -383.06 -383.48 ± 0.03 0.42 0.0060 

Table 6.1: Absolute energies (Hartree) for various conformations of lO-annulene 

methods with and without explicit electron correlation from the Generic Jastrow (basis: 

cc-pVDZ). 

We grant that for all-electron calculations the majority of the correlation 

gotten by these methods is core electron correlation and will be very trans-

ferable between similar species. This is clearly seen in the various types of 

hydrocarbons including the larger test case of 10-annulene. This is imp or-

tant information for these types of QMC calculations which have proven to 

be very difficult in the past. 

This work supports further studies to find trends in optimal J astrow 

parameters. A database may be formed which could allow for good initial 

guess Jastrow parameters for QMC calculations. 
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Chapter 7 

Aminomethanol Water 

Elimination: Theoretical 

Examination 

7.1 Introduction 

Presently there are over one hundred known interstellar molecules , the great 

majority of which are organic [70]. Theoretical models of grain surface chem­

istry predict precursors to the more complex compounds, such as simple 

alcohols and amino alcohols [71 , 72, 73]. Many potential grain surface reac­

tion pathways are eliminated by the conditions imposed on these models, 

greatly simplifying the possible products of grain synthesis and eliminating 

the possibility for much larger organics to form on the grain surfaces. Gas­

phase theoretical models of the chemistry in hot protostellar cores involv­

ing the products of grain surface reactions are therefore required to explain 

the formation of substantially larger organics under interstellar conditions. 
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In these models, the temperature of the so-called hot cores (~300 K) near 

young stars leads to thermal evaporation of simple molecules, such as alco­

hols and amino alcohols, from the grain surface. These molecules can then 

undergo gas-phase reactions to form more complex species such as amino 

acids, sugars, and other biologically important molecules. 

The recent detection of glycolaldehyde (CHOCH2 0H), the simplest sugar, 

in the hot core Sagitarrius B2(N-LMH) [74] has confirmed the need for fur­

ther experimental and observational investigation of these models. One pro­

posed pathway involves both grain surface and hot core gas-phase chemistry 

for the formation of amino acids. In this pathway, the protonated forms 

of amino methanol (NH2 CH2 0H) and amino ethanol (NH2CH2CH2 0H) react 

with formic acid (HCOOH) to yield the protonated forms of glycine and 

alanine, respectively [72]. However, laboratory and observational data sup­

porting the presence of these aminoalcohols remains incomplete. Therefore, 

the first step in the evaluation of this model is the complete spectroscopic 

characterization of aminomethanol and amino ethanol in order to search for 

them astronomically. 

Aminoethanol is commercially available and the gas-phase species is eas­

ily attainable. Its laboratory characterization has been completed [75, 76], 

and observational searches are underway. In contrast, aminomethanol has 

not been isolated, and little is known about the stability of this molecule. It 

is proposed to form from the addition of ammonia to formaldehyde, and the 

energy barrier for this reaction is calculated (MP2/6-311 ++G**) to be 34.1 

kcal mol- 1 [77J. However, the hexamethylenetetraamine formation mecha­

nism shows that amino methanol (1) forms upon the addition of ammonia to 

formaldehyde in aqueous solution (Figure 7.1, [78]). Aminomethanol then 
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Figure 7.1: Mechanism for reaction of formaldehyde and ammonia. 

undergoes a water loss and converts to the highly reactive species metha-

nimine (2). Further reactions lead to the formation of a stable intermediate 

cyclotrimethylenetriamine (3), with eventual conversion to the stable end 

product hexamethylenetetraamine (4). 

Laboratory exploration of the gas-phase reaction of formaldehyde and 

ammonia is the most promising route for production of aminomethanol. Re-

action of this molecule with other species can be minimized by quenching the 

formaldehyde + ammonia reaction in a molecular beam. Characterization 

of amino methanol is therefore possible if the barrier to the loss of water and 

conversion to methanimine is sufficiently high. The major route for destruc-

tion of aminomethanol in the interstellar medium is also through this water 

loss and conversion to methanimine. Therefore, determination of this barrier 
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height will indicate the feasibility of laboratory production of amino methanol 

as well as this molecule's stability in a hot core environment . 

7.2 Theory 

The most simple methods one can employ for examining t he quantum proper­

ties of small molecules are Hartree Fock Theory (HF) and Density Functional 

Theory (DFT: B3LYP, BLYP, BP86). These are implemented using the 

Jaguar (1) package. Corrections to HF theory methods can take many forms, 

though we will focus on HF, MP2, MP4, CCSD, CCSD(T) , and QCI(T) 

implemented in t he MolPro package [57, 58, 59, 79, 80, 81, 81 , 82). 

Quantum Monte Carlo (QMC) is another family of methods which have 

proven themselves to be very powerful for obtaining very accurate electronic 

structure energies. The two flavors employed in this paper are Variat ional 

QMC (VMC) and Diffusion QMC (DMC). These will be implemented with 

the QMcBeaver [54) package to test the "Generic Jastrow" (GJ ) parameter 

set. 

For QMC one must pick a Jastrow form and variationally determine t he 

parameters in t he correlation functions. The Generic J astrow for hydrocar­

bons is used in this study with the following form ( 7.1) 
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IT' . 
UH= 

2 'J 

1 + 3.0Tij 

le r ·· 
Utt = u.f.I = 

4 ' J 

1 + lOOTij 

Ut,H = U+,H = 
-ri j 

1 + 100Tij 

Ut ,C = u+,c = 
- 6Tij 

1 + 100Tij 

Ut,N = U+,N = 
-hij 

1 + 100Tij 

Ut,o = Ut,o = 
- STij 

(7.1) 
1 + lOOTij 

This set of "Generic Jastrows" is very similar to the hydrocarbon GJ set. 

This work aims at examining the validity of this generic set of parameters to 

a larger body of simple molecules. 

7.3 Experiment 

7.3.1 Experiment Setup 

Full geometry optimizations and transition state searches were completed 

using b3Iyp/cc-pVTZ level of theory with Jaguar, as experience has shown 

that this level determines geometries well. T hese geometries were then fixed 

and single point energy calculations were completed using a variety of meth-

ods. Thermodynamic calculations were not able to be completed at this 

level of theory with Jaguar because the basis contained "f" type functions. 

Transition states were verified with the analytic Hessian calculations. These 

geometries are in Figure 7.2. 

We used Jaguar to do full thermodynamic calculations using b3Iyp/cc-

pVTZ(-f). This basis is very similar to the full cc-pVTZ used to obtain 
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Figure 7.2: Full mechanism of aminomethanol formation from NH3 and CH20 

and decomposition to CH2NH and H20. Geometries determined with Jaguar [1] 

b3Iyp/cc-pVTZ. 

the electronic energy but the "f" type orbitals are removed since Jaguar is 

unable to analytically take derivatives of these functions. These calculations 

provided a zero point energy correction to t he electronic energy as well as 

free energy corrections. 

A larger cc-p VTZ++ [1] and aug-cc-p VTZ [57] basis sets were used to 

determine the importance of diffuse functions in this mechanism. This larger 

basis set is ideal to use since it may describe the lower electron density regions 

better, particularly in the transition states. This basis set, however , was too 

large to run for all methods on our current computational resources. Where 

possible, the energies for this basis are given. 

The b3Iyp/ cc-pVTZ(-f) thermodynamic corrections were used through-
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method NH3 CHzO T' NH3+GHZO 
CH2(OH)NHz T' H').O +C H').NH H2O CHzNH 

b31yp* -114.5494 -56.5847 -171.0856 -171.1537 - 171.0634 -76.4599 -94.6694 

blyp* -114.5228 -56.5569 -171.0313 -171.0936 -171.0139 -76.4413 -94.6325 

bp86* -114.5472 -56.5827 -171.0916 -171.1513 -171.0717 -76.4596 -94.6655 

HF' -113.9120 -56.2178 -170.0584 -170.1464 -170.0266 - 76.0569 -94.0677 

HF** -113.9120 -56.2177 -170.0585 -170.1464 -170.0266 -76.0568 -94.0677 

MP2** -114.3070 -56.4529 -170.7153 -170.7841 -170.6896 -76.3186 -94.4386 

MP4** -114.3367 -56.4734 -170.7624 -170.8314 -170.7382 -76.3330 -94.4733 

CCSD** -114.3173 -56.4655 -170.7309 -170.8052 -170.7034 -76.3245 -94.4560 

CCSD(T)" -114.3337 -56.4732 -170.7584 -170.8292 -170.7336 -76.3322 -94.4725 

QCI(T)H -114.3343 -56.4733 -170.7593 -170.8297 -170.7347 -76.3323 -94.4729 

VMC NA NA NA -170.2987 -170.181 -76.1803 -94.2183 

(HF-GJ)**~ ± 0.0055 ±0.014 ±0.0055 ±0.0047 

Table 7.1: Absolute energies (Hartree) for various methods (basis: cc-pVTZ). 

* Jaguar, **Molpro, ***QMcBeaver 

out for the other methods with the other basis sets. 

7.3.2 Data 

Electronic energies were obtained with various methods using the cc-p VTZ 

basis. These results are found in Table 7.1. 

To verify the absence of diffuse functions was a valid assumption to 

make these calculations less expensive several methods are given with the 

cc-p VTZ++ [1] and aug-cc-p VTZ [57] basis sets. 

These electronic energies in Tables 7.1 and 7.2 are corrected with the zero 

point and thermochemical corrections at 300K and 2.63E-5 atm in Tables 7.3 

and 7.4. 

The free energies based on QCI(T)/cc-pVTZ base energies are given in 

Tables 7.5 and 7.6 for various temperatures. These allow for comparison of 

kinetics for different temperatures and pressures. 



99 

method N H3 C H 2 0 rk H 3+ C H 2 0 
O H 2 (OH)NH2 T' H 20+C H 2N H H2O C H 2NH 

b3lyp* - 114.5520 -56.5887 ·171.0922 - 171.1594 -171 .0698 -76.4660 -94 .6719 

blyp- -114.5259 -56.5619 · 171.0390 - 171. 1009 -171.02 14 -76.4489 -94 .6355 

bp86' -114 .5497 -56.5868 -171.0983 -171.1576 -171.0779 -76.4658 -94.6680 

HF' - 113.9140 -56.2201 - 170.0633 -170.1503 -170.0313 -76.0600 -94.0696 

HF*" -113.9142 -56.2202 NA NA NA -76.0603 -94.0697 

MP2·" -114.3161 -56.4605 NA NA NA -76.3290 -94.4466 

MP4** -114.3460 -56.4810 NA NA NA -76.3437 NA 

CCSD** -114.3254 -56.4722 NA NA NA -76.3337 NA 

CCSD(T)" - 114.3427 -56.4806 NA NA NA -76.3423 NA 

QCI(T)" -1l4.3433 ·56.4807 NA NA NA -76 .3426 NA 

Table 7.2: Absolute energies (Hartree) for various methods (basis: cc-pVTZ++/ aug-

cc-pVTZ). * Jaguar. **Molpro. ***QMcBeaver 

7.4 Conclusion 

All methods in Table 7.3 are in fair agreement excluding the [H20 & CH2NH] 

for VMC(HF-GJ). This can be observed in Table 7.1, where the two smaller 

molecules gain more correlation energy relative to molecular size than the 

two larger molecules. 

T he QMC jobs show that the Generic Jastrow regains some of the miss-

ing correlation energy in the HF description. The Generic Jastrows found 

for hydrocarbons is transferable to t hese electronically similar molecules for 

obtaining some of the correlation. At t he same time, the results obtained 

from the pure VMC calculations are of little value when compared to the 

other high-level methods. This supports the use of Generic Jastrows for 

t hese types of systems for initial guess parameter sets which regain some of 

the missing correlation but does not support the use of this type of parameter 

set for final VM C calculations. 

The verification of the formation mechanism provides little new insight. 
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method N H3 & C H 20 T k H 3 + C H 2 0 CH2(O fl )N H 2 r' H20+ CH2NH H 20 & C HzNH 

b3lyp* -8.47 39.25 0 51.74 -5.33 

blyp* -12.06 35.56 0 45.04 -8.25 

bp86* -7.29 33.96 0 45.01 -4.21 

HF* -lO.28 51.72 0 70.30 -6.91 

HF** -lO.28 51.67 0 70.28 -6.91 

MP2** -5.58 39.67 0 54.40 -3.75 

MP4** -7.39 39.76 0 53.55 -4.88 

CCSD** -6.62 43.17 0 59.01 -5.09 

CCSD(T)** -6.73 40.91 0 55.07 -5.28 

QCI(T)** -6.84 40.72 0 54.69 -5.24 

VMC(HF-GJ)'" NA NA 0 68.94±9.4 -83.32±5.7 

Table 7.3: Relative free energies .6.G (kcal / mol) for various methods with cc-pVTZ 

basis with Jaguar b3Iyp/cc-pVTZ(-f) zero poi nt and thermochemical corrections at 

2.63E-5 atm and 300K. * Jaguar, **Molpro, ***Q McBeaver 

The results obtained from the traditional higher level methods provide similar 

results to those obtained in previous work [77]. 

The barrier to eliminat ion of water is 55 kcalj mol at ambient tempera-

tures, indicating that the conversion to methanimine is highly unfavored un-

der typical laboratory conditions. Therefore, loss of amino methanol through 

this and other pathways can be virt ually eliminated by minimizing reactions 

with other species in a molecular beam experiment. Spectroscopic charac-

terization of aminomethanol should therefore be a straightforward process . 

In addition, these results indicate that aminomethanol could indeed be 

a stable species in hot core environments , which are typically near ambient 

temperatures. Aminomethanol is predicted to be at densities similar to those 

for observed alcohols in hot cores. Once the laboratory characterization is 
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method NHa & C H zO TlvH3 + C H 2 0 C H 2(O H )NH2 T ' H20 + C H 2N H H20 &. C H zNH 

b31yp* -8.99 38.70 0 51.34 -7.08 

blyp' -12.49 35.36 0 44.96 -10.30 

bp86* -7.47 33.75 0 45.09 -5.65 

HF* -10.57 51.05 0 69.76 -7.66 

Table 7.4: Relative free energies t;.C (kcal / mol) for vanous methods with cc-

pVTZ++/aug-cc-pVTZ basis with Jaguar b3Iyp/cc-pVTZ(-f) zero point and ther-

mochemical corrections at 2.63E-5 atm and 300K. * J aguar, **Molpro, ***QMcBeaver 

complete, aminomethanol will therefore be an ideal target for observational 

searches. 
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temp NH, & CH20 Tt 
NH3+CH20 C H2( O H )N1I2 T k 20+CH2NH H20 & CH2NH 

0 8.84 40.58 0 54.74 10.14 

100 4.37 40.59 0 54.71 5.76 

200 -1.12 40.62 0 54.69 0.38 

300 -6.84 40.72 0 54.69 -5.24 

400 -12.63 40.87 0 54.69 -10.94 

500 -18.43 41.07 0 54.69 -16.64 

600 -24.21 41.30 0 54.69 -22.33 

700 -29.95 41.55 0 54.69 -28.00 

800 -35.66 41.82 0 54.69 -33.63 

900 -41.34 42.11 0 54.69 -39.23 

1000 -46.98 42.41 0 54.70 -44.80 

1100 -52.59 42.71 0 54.71 -50.34 

Table 7.5: Relative free energies!:;'G (kcal / mol) at 2.63E-5 atm for various tempera-

tures with zero point and thermochemical corrections from Jaguar (b3Iyp/ cc-pVTZ(-

f» on energetics from MolPro (QCI(T) / cc-pVTZ). 
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temp NH3 & CH20 TJ., H 3+ CH ,)O CH2(OH)NH2 Th ,) o + CH,)NH H20 & CH2NH 

0 8.84 40.58 0 54.74 10.14 

100 2.86 40.59 0 54.71 4.25 

200 -4.14 40.62 0 54.69 -2.64 

300 -11.37 40.72 0 54.69 -9.77 

400 -18.67 40.87 0 54.69 -16.98 

500 -25.98 41.07 0 54.69 -24.19 

600 -33.27 41.30 0 54.69 -31.39 

700 -40.53 41.55 0 54.69 -38.57 

800 -47.75 41.82 0 54.69 -45.71 

900 -54.93 42.11 0 54.69 -52.82 

1000 -62.08 42.41 0 54.70 -59.91 

1100 -69.20 42.71 0 54.71 -66.96 

Table 7.6: Relative free energies 1:.G (kcal/mol) at 1.32E-8 atm for various tempera­

tures with zero point and thermochemical corrections from Jaguar (b3Iyp/cc-pVTZ(­

f)) on energetics from MolPro (QCI(T)/cc-pVTZ). 

atom x y z 

N 0.0000000000000 0.0000000000000 0.0000000000000 

H 0.0000000000000 0.0000000000000 1.0141884635000 

H 0.9722262947221 0.0000000000000 -0.2877117192551 

H -0.3866564451307 -0.8920318164661 -0.2877117192551 

Table 7.7: Geometry for NH3 . 
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atom x y z 

0 0.0000000000000 0.0000000000000 0.0000000000000 

c 0.0000000000000 0.0000000000000 1.1998577370000 

H 0.9369230569270 0.0000000000000 1.7885795046292 

H -0.9369230569270 0.0000000000000 1. 7885795046292 

Table 7.8: Geometry for CH20. 

atom x y z 

N 0.0000000000000 0.0000000000000 0.0000000000000 

C 0.0000000000000 0.0000000000000 1.5843876532000 

0 1.3268837112519 0.0000000000000 1.7410676408991 

H -0.3691539435124 -0.8336901130763 -0.4490956442016 

H -0.3631605001333 0.8366888213139 -0.4483032152738 

H -0.5594636703232 0.8984852223094 1.9001385714186 

H -0.5591343872703 -0.8994665053243 1.8988541274420 

H 1.1378517202149 -0.0018988097578 0.3412417016124 

Table 7.9: Geometry for ThH 3+CH20. 
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atom x y z 

N 0.0000000000000 0.0000000000000 0.0000000000000 

C 0.0000000000000 0.0000000000000 1.4380669284000 

0 1.2820747992013 0.0000000000000 2.0740189979613 

H 0.5657837377401 -0.7566646507275 -0 .3638314440938 

H 0.3496459707302 0.8701754653024 -0.3813217278531 

H -0.5942959853476 0.8530557152119 1.7775757584241 

H -0.4769046620119 -0.9139223538174 1.7883090361815 

H 1.6911105284372 0.8608638484430 1.9389453497317 

Table 7.10: Geometry for CH2(OH)NH2. 

atom x y z 

0 0.0000000000000 0.0000000000000 0.0000000000000 

H 0.0000000000000 0.0000000000000 1.2824478194000 

N 1.0290406695545 0.0000000000000 2.0554527257564 

C 1.6155874630923 -0.3760963838510 0.9109052611784 

H 1.2502580267367 0.9677093577925 2.2725286174727 

H 2.3722912575875 0.2198389043536 0.4068337595816 

H 1.6216229675463 -1.4327932210215 0.6660865869843 

H -0.4382033110516 -0.7395829315353 -0.4448633375480 

Table 7. 11: Geometry for Tt,O+CH,NH" 
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atom x y z 

0 0.0000000000000 0.0000000000000 0.0000000000000 

H 0.0000000000000 0.0000000000000 0.9616229062000 

H 0.9304177983672 0.0000000000000 -0.2429842262576 

Table 7.12: Geometry for H 20. 

at om x y z 

N 0.0000000000000 0.0000000000000 0.0000000000000 

C 0.0000000000000 0.0000000000000 1.2640707739000 

H 0.9536983299391 0.0000000000000 -0.3660720458042 

H 0.8975274435092 0.0002654608506 1.8902959237014 

H -0.9530880382316 0.0000011614524 1.7921749554776 

Table 7.13: Geometry for CH2NH. 
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Chapter 8 

QMcBeaver 

I contemplated adding the entire QMcBeaver source code to this thesis unt il 

I came to the harsh realization that it was several hundred pages single 

spaced. The actual source can be obtained by contacting t he William A. 

Goddard group or by searching online. We are current ly attempting to get 

a gnu public license, but at the t ime of this writing it is not secure and no 

devoted uri exists for its distribution. Hopefully, in the near future t his will 

be accomplished. 

I did include the current version of t he user 's and developer's manual. It 

is attached as a supplement to the t hesis. It will serve both the developers of 

QMcBeaver and those developing their own QMC package well. QMcBeaver 

is still very much an academic code and many parts need serious engineering 

to become optimally efficient. At the same time, this version of QMcBeaver 

has some novel features and provides a good framework from which to ex­

tend. We hope those who obtain QMcBeaver will find it provides insight on 

developing better distributed algorithms as well as better QMC codes. 
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CubicSpline (A I-dimensional (R' -+ R') cubic spline interpo-
lation) 28 

Cubic Spline WithGeometricProgressionGrid (A I-dimensional 
(R 1 --)- R 1 ) cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship 
for faster evaluation) 32 

Exception (An Exception is thrown when an error occurs) 37 

FixedCuspPadeCorrelationFunction 
which uses a Pade expansion to 
interactions) 

(Correlation function 
describe particle-particle 

38 

FunctionRltoRl (An interface for a function from R' -+ R') 40 

PadeCorrelationFunction (Correlation function which uses a 
Pade expansion to describe particle-particle interactions) 42 

ParameterScorePair (A container which holds a set of parame-
ters and an associated scalar score value) 43 

Polynomial (A one dilllensional real polynolllial) 45 

QMCBasisFunction (This class stores all of the parameters that 
a gaussian basis set is constructed from for a MOLECULE) 49 

QMCBasisFunctionCoefficients (This class stores all of the pa­
rameters that a gaussian basis set is constructed from for an 
ATOM) 53 

QMCCopyright (Central localtion for all copyright information 
relevant to QMcBeaver) 56 

QMCCorrelatedSamplingVMCOptimization (Optimize the pa­
rameters in a variational QMC (VMC) calculation using the 
correlated sampling lllethod) 56 
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2.1 QMcBeaver Compound List 

QMCCorrelationFunction (Interface for a parameterized func-
tion describing the interaction of two particles) 57 

QMCCorrelationFunctionFactory (Object factory which re­
turns the correct QMCCorrelationFunction (p.57) when a 
string keyword describing the correlation function is pro-
vided) 58 

QMCCorrelationFunctionParameters (This is a collection ofpa­
rameters and related functions which describe the interac-
tion of two particles of specific types) 59 

QMCDerivativeProperties (All of the calculated quantities and 
properties that are derived from quantities and properties 
evaluated during a calculation) 64 

QMCFunctions (This class calculates the value of the wave­
function, it's first two derivatives, and any other properties 
which are calculated from the wave function (local energy, 
etc.)) 67 

QMCInitialize Walker (Interface to algorithms which generate 
new walkers for a QMC calculation) 72 

QMCInitializeWalkerFactory (Object factory which returns the 
correct QMCInitialize walker when a string keyword describ-
ing the correlation function is provided) 73 

QMCJastrow (This class calculates the value of the Jastrow 
function and it's first two derivatives) 74 

QMCJastrowElectronElectron (This class calculates the value 
of the electron-electron part of the J astrow function and it ' s 
first two derivatives) 77 

QMCJastrowElectronNuclear (This class calculates the value 
of the electron-nuclear part of the J astrow function and it's 
first two derivatives) 80 

QMCJastrowParameters (This class contains all of the parame­
ters and corelation functons from which the Jastrow function 
is composed) 83 

QMCLineSearch (Abstract implementation of a line search nu-
merical optimization algorithm) 88 

QMCLineSearchStepLengthSelectionAlgorithm (Interface to 
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2.1 QMcBeaver Compound List 

algorithms which de termine the proper step length to use 
during a line search optiITlization (QMCLineSearch (p.88))) 90 

QMCLineSearchStepLengthSe lectionFactory (Object factory 
which returns the correct QMCLineSearchStepLength­
SelectionAlgorithm (p. 90) when a string keyword describing 
the correlat ion function is provided) 91 

QMCManager (Controls the major sections of a QMC calcula-
tion) 92 

QMCMikesBracketingStepLengthSe lector (Algorithm to deter­
mine the step length for a line search optimization developed 
by Michael Todd Feldmann) 94 

QMCMikesJackedWalkerInitialization (This is 
m ade to initialize walkers) 

the algorithm 
95 

QMCMolecule (Describes a part icula r m o lecular geometry) 97 

QMCObjectiveFnnction (Objective function optimized during 
a variational QMC (VMC) calcula tion to find the optimal 
wave function parameters) 99 

QMCObjectiveFnnctionResult (Results from the evaluation of 
an objective function during a QMC calculation) 102 

QMCOptitnizationAlgorithm (Interface for numerical optimiza-
tion algorithms) 106 

QMCOptimizationFactory (Object factory which returns the 
correct QMCOptirnizationAlgorithm (p. 106) specified in the 
calculation input data) 107 

QMCPolynomial (An extension of Polynomial (p. 45) which adds 
QMC specific functionality) 108 

QMCPotentiaLEnergy (The potential energy of the system) 113 

QMCproperties (All of the quantities and properties evaluated 
during a calculation) 114 

QMCproperty (All of the statistical information used in calcu-
lating a quantity or property during a calculation) 116 

QMCReadAndEvaluateConfigs (Calculates properties (QM­
Cproperties (p. 114» from walkers and r elated data saved to 
a file during a QMC calculation) 119 
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3 QMcBeaver Class Documentation 

QMCrun (Collection of walkers (QMCwalker (p.134)) with the 
functionality to do the basic operations from which a QMC 
algorithm is built) 121 

QMCSlater (A Slater determinant describing like spin electrons 
from a 3N dimensional wavefunction) 124 

QMCstatistic (Statistical information on a set of data) 127 

QMCSteep estDescent (Steepest descent line search numerical 
optimization algorithm) 129 

QMCStopwatches (A collection of Stopwatch (p.144) objects 
used to record information relevant to the timing of a QMC 
calculation) 131 

QMC walker (An instantaneous snapshot of all 3N electronic 
corrdinates for a system) 134 

QMCWavefunction (The coefficients a nd parameters describing 
the trial wavefunction for the system) 139 

SortedPararneterScorePairList (A sorted list of Parameter­
ScorePair (p.43) objects where t h e objects are or dered in 
an increasing order) 142 

Stopwatch (An accurate software stopwatch) 144 

S tringManipulation (A set of functions to manipulate strings) 146 

XMLElement (XMLElement is a r epr esent a tion of an XML ob-
j ect) 150 

XMLParseException (An XMLParseException is thrown when 
an error occures while parsing an XML stream) 161 

ZeroCorrelationFunction (Correlation function which describes 
noninteracting particles) 162 

3 QMcBeaver Class Documentation 

3 .1 Array1D< T > Class Template R eference 

A I-dimensional template for making arrays. 
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3.1 Array1D< T > Class Template Reference 

Public Methods 

• int dim1 () 
Gets the number of elements in the array's first dimension. 

• int size 0 
Gets the total number of elements in the array. 

• T * array () 
Gets a pointer to an army containing the array elements. 

• void allocate (int i) 

Allocates memory for the array. 

• void deallocate () 
Deallocates memory for the array. 

• void operator= (canst ArraylD &rhs) 

Sets two arrays equal. 

• void operator= (canst T C) 

Sets all of the elements in an array equal to the same value. 

• T operator * (canst ArraylD &rhs) 

Returns the dot product of two arrays. 

• ArraylD operator * (canst double rhs) 

Returns the product of an array and a double. 

• ArraylD operator+ (canst ArraylD &rhs) 

Returns the sum of two arrays. 

• ArraylD operator- (canst ArraylD &rhs) 

Returns the difference of two arrays. 

• void operator *= (const T C) 

Sets this array equal to itself times a scalar value. 

• void operator/= (canst T C) 
Sets this array equal to itself divided by a scalar value. 

• Array1D () 
Creates an array. 
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3.1 Array1D< T > Class Template Reference 

• ArraylD (int i) 

Creates an array and allocates memory. 

• ArraylD (const Array lD &rhs) 

Creates an array an¢. sets it equal to another array. 

• -ArraylD 0 
Destroy's the array and cleans up the memory. 

• T & operatorO (int i) 

Accesses element (i) of the array . 

Friends 

• ostream & operator« (ostream &strm, const ArraylD < T > &rhs) 

Prints the array to a stream. 

3.1.1 D etailed Description 

template< class T > class Array1D < T > 

A I-dimensional template for making arrays. 

All of the memory allocation and deallocation details are dealt with by the class. 

Definition at line 26 of file ArraylD.h. 

3 .1.2 Constructor & Destructor Documentation 

3.1.2 .1 template < class T > Array1D < T >: :Array1D (int i) 
[inline] 

Creates an array and allocates memory. 

Parameters: 
i size of the array's first dimension. 

Definition at line 256 of file ArraylD.h. 
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3.1 Array1D< T > Class Template Reference 

3.1.2.2 template<class T> Array1D< T >::Array1D (const 
Array1D< T > & rhs) [inlineJ 

Creates an array and sets it equal to another array. 

Parameters: 
rhs array to set this array equal to. 

Definition at line 265 of file ArraylD.h. 

3.1.3 Member Function Documentation 

3.1.3.1 template<class T> void Array1D< T >::allocate (int i) 
[inline] 

Allocates memory for the array. 

Parameters: 
i size of the array's first dimension. 

Definition at line 69 of file ArraylD.h. 

Referenced by ArraylD< QMCBasisFunctionCoefficients >::ArraylDO , 
Q M CJ astrow Parameters: :getP arameters 0, Array ID < QM CBasisFunction· 
Coefficients > ::operator=O, QMCReadAndEvaluateConfigs: :rootCalculate­
PropertiesO, QMCJastrowParameters::setParameterVectorO, and QMCRead­
AndEval uateConfigs: :wor kerCalculateProperties O. 

3.1.3.2 template<class T> T. ArraylD< T >::array 0 [inlineJ 

Gets a pointer to an array containing the array elements. 

The ordering of this array is NOT specified. 

Definition at line 61 of file ArraylD.h. 

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO. 

3.1.3.3 template<class T> int ArraylD< T >::diml 0 [inline] 

Gets the number of elements in the array's first dimension. 

Returns: 
number of elements in the array's first dimension. 

Definition at line 48 of file ArraylD.h. 
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3.2 Array2D< T > Class Template Reference 

Referenced by QMCJastrowElectronNuc!ear::evaluateO, QMCJastrow­
Parameters: :getParametersO, QM CPolynomial: :hasN onN egati veZeroes (), 
P adeCorrelationFunction: :ini tializeParameters 0) Fixed CuspP adeCorrelation­
FUnction: :initializeP arameters (), eu bicSpline: :ini tialize Wi thDerivative Values (), 
CubicSpline: :initialize Wi thFunction Values 0, QM CLineSearch: :optimizeO, 
QMCCorrelatedSamplingVMCOptimization::optimize(), QMCCorrelation­
FunctionParameters: :setParameters (), QM CJ astrow Parameters: :setParameter­
Vector 0, and QM CReadAndEval uateConfigs: :wor kerCalculateProperties O. 

3.1.3.4 template<class T> iut ArraylD< T > ::size 0 [inline] 

Gets the total number of elements in the array. 

Returns: 
total number of elements in the array. 

Definition at line 55 of file ArraylD.h. 

3.2 Array2D< T > Class Template Reference 

A 2-dimensional template for making arrays. 

Public Methods 

• int diml 0 
Gets the number of elements in the array's first dimension. 

• int dim2 0 
Gets the number of elements in the army's second dimension. 

• int size 0 
Gets the total number of elements in the array. 

• T * array 0 
Gets a pointer to an array containing the array elements. 

• void allocate (int i, int j) 
Allocates memory for the array. 

• void deallocate 0 
Deallocates memory for the array. 
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3.2 Array2D < T > Class Template Reference 

• void operator= (const Array2D &rhs) 

Sets two arrays equal. 

• void operator= (const T 0) 

Sets all of the element.s in an array equal to the same value. 

• Array2D operator * (const Array2D &rhs) 

Returns the matrix product 0/ two arrays. 

• Array2D operator * (const T 0) 

Returns the product of an array and a scalar. 

• void operator *= (const T 0) 

Sets this array equal to itself times a scalar value. 

• void operator I = (const T 0 ) 

Sets this array equal to its elf divided by a scalar 'Valu e. 

• Array2D 0 
Creates an array. 

• Array2D (int i, int j ) 
Creates an array and allocates memory. 

• Array2D (const Array2D < T > &rhs) 

Creates an array and sets it equal to another array. 

• -Array2D 0 
D estroy's the array and cleans up the m emory. 

• T & operatorO (int i, int j) 

Accesses element (i,j) of the army. 

Friends 

• ostream & operator« (ostream &strm, const Array2D< T > &rhs) 

Prints the array to a stream. 
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3.2 Array2D < T > Class Template Reference 

3.2.1 Detailed Description 

template< class T > class Array2D < T > 

A 2-dimensional template for making arrays . 

All of the memory allocation and deallocation details are dealt with by the class. 

Definition at line 27 of file Array2D.h. 

3.2.2 Constructor & Destructor Documentation 

3.2.2.1 template< class T > Array2D< T > ::Array2D (int " int J) 
[inline] 

Creates an array and allocates memory. 

Parameters: 
i size of the array's first dimension. 

j size of the array's second dimension. 

Definition at line 242 of file Array2D.h. 

3.2.2.2 t emplate< class T > Array2D< T > ::Array2D (const 
Array2D < T > & rhs) [inline ] 

Creates an array and sets it equal to another array. 

Paramete rs: 
rhs array to set this array equal to. 

Definition at line 251 of fi le Array2D.h. 

3.2.3 Member Function Docume ntation 

3.2.3.1 t empla te<class T > void Array2D< T > ::allocate (int i, int J) 
[inline] 

Allocates memory for the array. 

Parameters: 
i size of the array's first dimension. 

j size of the array's second dimension. 
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3.2 Array2D< T > Class Template Reference 

Definition at Jine 84 of file Array2D.h. 

Referenced by Array2D< 
>::Array2DO, and Array2D< 
>: :operator=O· 

CuhicSpline Wi thGeometricProgression Grid 
CubicSpline With GeometricProgression Grid 

3.2.3.2 template<ciass T> T. Array2D< T >::array 0 [inline) 

. Gets a pointer to an array containing the array elements. 

The ordering of this array is NOT specified. 

Definition at line 75 of file Array2D.h. 

3.2.3.3 t e mplate < ciass T > int Array2D < T >: :diml 0 [inline) 

Gets the number of elements in the array's first dimension. 

Returns: 
number of elements in the array's first dimension. 

Definition at line 55 of file Array2D.h. 

Referenced by QMCJastrowElectronNuc!ear::evaluateO, QMCJastrowElectron­
Electron::evaluateO, and QMCJastrow::evaluateO. 

3.2.3.4 template<ciass T > int Array2D < T > ::dim2 0 [inline) 

Gets the number of elements in the array's second dimension. 

Returns: 
number of elements in the array's second dimension. 

Definition at line 62 of file Array2D.h. 

Referenced by QMCJastrow::evaluateO . 

3.2.3 .5 template < ciass T > int Array2D< T > ::size 0 [inline) 

Gets t he total number of elements in the array. 

Returns: 
total number of elements in the array_ 

Definition at line 69 of file Array2D.h. 
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3.3 Array3D < T > Class Template Reference 

3.3 Array3D < T > Class Template Reference 

A 3-dimensional template for making arrays. 

Public Methods 

• int dim 1 0 
Gets the number of elements in the array's first dimension. 

• int dim2 0 
Gets the number of elements in the army's second dimension. 

• int dim3 0 
Gets the number of elements in the arrayls third dimension. 

• int size 0 
Gets the total number of elements in the array. 

• T * array 0 
Gets a pointer to an array containing the array elements. 

• void allocate (int i, int j, int k) 

Allocates memonj for the array. 

• void deallocate 0 
Deallocates memory for the array. 

• void operator= (const Array3D &rhs) 

Sets two arrays equal. 

• Array3D 0 
Creates an array. 

• Array3D (int i, int i, int k) 

Creates an array and allocates memory. 

• Array3D (const Array3D< T > &rhs) 

Creates an array and sets it equal to another array. 

• -Array3D 0 
Destroy 's the array and cleans up the memory. 
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3.3 Array3D< T > Class Template Reference 

• T & operatorO (int i, int j , int k) 
Accesses element (i. j . k) of the array. 

3.3.1 Detailed Description 

template < class T > class Array3D < T > 

A 3-dimensional template for making arrays. 

All of the memory allocation and deallocation details are dealt with by the class. 

Definition at line 23 of file Array3D.h. 

3.3.2 Constructor & Destructor Documentat ion 

3.3.2.1 template<class T> Array3D < T > ::Array3D (int i , int j, int 
k) [inline) 

Creates an array and allocates memory. 

Parameters: 
i size of the array's first dimension. 

j size of the array's second dimension. 

k size of the array's third dimension. 

Definition at line 175 of file Array3D.h. 

3.3.2.2 template<class T> Array3D < T > ::Array3D (const 
Array3D < T > & rhs) [inline) 

Creates an array and sets it equal to another array. 

Parameters: 
rhs array to set this array equal to. 

Definition at line 185 of file Array3D .h. 

3.3.3 

3.3.3.1 
int k) 

Member Function Documentation 

template < class T> void Array3D < T > ::allocate (int i, int j, 
[inline) 

Allocates memory for the array. 
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3.3 Array3D < T > Class Template Reference 

Parameters: 
i size of the array's first dimension. 

j size of the array's second dimension. 

k size of the array 's third dimension. 

Definition at line 97 of file Array3D.h. 

Referenced by Array3D< double >::Array3DO. and Array3D < double 
> ::operator= O· 

3.3.3.2 t emplate<class T > T. Array3D< T > ::array 0 [inline] 

Gets a pointer to an array containing the array elements. 

The ordering of this array is NOT specified. 

Definition at line 87 of file Array3D.h. 

3.3.3.3 template< class T > int Array3D< T > ::diml 0 [inline] 

Gets the number of elements in the array's first dimension. 

Returns: 
number of elements in the array's first dimension. 

Definition at line 60 of file Array3D,h . 

3.3.3.4 template<class T > int Array3D< T > ::dim2 0 [inline] 

Gets the number of elements in the array's second dimension. 

Returns: 
number of elements in the array's second dimension. 

Definition at line 67 of file Array3D.h. 

3.3.3.5 template<class T > int Array3D< T > ::dim3 0 [inline] 

Gets the number of elements in the array's third dimension. 

Returns: 
number of elements in the array's third dimension. 

Definition at line 74 of file Array3D.h. 
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3.4 Array4D < T > Class Template Reference 

3.3.3.6 t emplate< ciass T > int Array3D< T > ::size 0 [inline] 

Gets the total number of elements in the array. 

Returns: 
total number of elements in the array. 

Definition at line 81 of file Array3D.h. 

3.4 Array4D< T > Class Template R eference 

A 4-dimensional template for making arrays. 

Public Methods 

• int dim 1 0 
Gets the number of elements in the array's first dimension. 

• int dim2 0 
Gets the number of elements in the array's second dimension. 

• int dim3 0 
Gets the number of elements in the array's third dimension. 

• int dim4 0 
Gets the number of elements in the array's fourth dimension. 

• int size 0 
Gets the total number of elements in the array. 

• T * array 0 
Gets a pointer to an array containing the array elements. 

• void allocate (iot i , iot j, iot k, int I) 

Allocates memory for the array. 

• void deallocate 0 
Deallocates memory for the array. 

• void operator= (const Array4D &rhs) 

Sets two arrays equal. 
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3.4 Array4D < T > Class Template R eference 

• Array4D 0 
Creates an array. 

• Array4D (int i , int j , int k, int I) 

Creates an array and allocates memory. 

• Array4D (const Array4D &rOO) 

Crrotes an array and sets it equal to another array. 

• -Array4D () 
Destroy's th e array and cleans up the memory. 

• T & operatorO (int i, int j, int k, int I) 

Accesses element (i,j ,k.l) of the array. 

3.4.1 Detailed Description 

template< class T > class Array4D < T > 

A 4-dimensional template for making arrays. 

All of the memory allocation and dealiocation details are dealt wit h by the class. 

Defini tion at line 23 of file Array4D.h. 

3 .4 .2 Constructor & Destructor Documentation 

3.4.2.1 
k, int C) 

template<class T> Array4D < T > ::Array4D (int i, int j, int 
[inline] 

Creates an array and allocates memory. 

P arameters: 
i size of the array's first dimension. 

j size of the array's second dimension. 

k size of the array's third dimension. 

1 size of the array's fourth dimension. 

Definition at line 205 of file Array4D.h . 

References Array4D< T >::aliocate(). 
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3.4 Array4D < T > Class Template Reference 

3.4.2.2 template< class T > Array4D< T > ::Array4D (const 
Array4D < T > & rhs) [inline] 

Creates an array and sets it equal to another array. 

Parameters: 
rhs array to set this array equal to. 

Defini t ion at line 215 of file Array4D.h. 

References Array4D< T > ::allocateO, Array4D< T >::n_l , Array4D< T >::n_2, 
Array4D < T > ::n_3, Array4D < T > ::nA, and Array4D< T > ::pArray. 

3.4.3 Member Function Documentation 

3.4.3.1 template< class T > void Array4D < T > ::allocate (int i, int j, 
int k, int I) [ i nline] 

Allocates memory for the array. 

Parameters: 
i size of the array 's first dimension. 

j size of the array's second dimension. 

k size of the array's third dimension. 

I size of the array's fourth dimension. 

Definition at line 112 of file Array4D.h. 

References Array4D < T >::deallocateO. 

Referenced by Array4D< T > ::Array4DO, and Array4D < T > ::operator= O. 

3 .4.3.2 template< class T > T . Array4D < T > ::array 0 [inline] 

Gets a pointer to an array containing the array elements. 

The ordering of this array is NOT specified. 

Definition at line 101 of file Array4D.h. 

3.4.3.3 t emplate < class T > int Array4D< T > ::dim1 0 [inline] 

Gets the number of elements in the array's first dimension. 

Returns: 
number of elements in the array's first dimension . 

Definition at line 67 of file Array4D.h. 
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3.5 CKGe neticAIgorithm1 Class Reference 

3.4.3.4 template< ciass T > int Array4D< T > ::dim2 0 [inline] 

Gets the number of elements in the array's second dimension . 

Returns: 
number of elements in the array's second dimension. 

Defini t ion at line 74 of file Array4D.h . 

3.4.3.5 template< ciass T > int Array4D< T > ::dim3 0 [ inline] 

Gets the number of elements in the array's third dimension. 

Returns: 
number of elements in the array's third dimension. 

Defini tion at line 81 of file Array4D.h. 

3.4.3.6 template<class T> int Array4D< T > ::dim4 0 [inline] 

Gets the number of elements in the array's fourth dimension. 

Returns: 
number of elements in the array's fourth dimension. 

Definition at line 88 of file Array4D.h. 

3 .4.3.7 template< class T > int Array4D< T > ::s ize 0 [inline] 

Gets the total number of elements in the array. 

Returns: 
total number of elements in the array. 

Definition at line 95 of file Array4D .h. 

3.5 CKGeneticAlgorithml Class Reference 

A moderately greedy genetic algorithm for trying to globally optimize a function 
dreamed up by David Randall (Chip) Kent IV. 

Inheritance diagram for CKGeneticAlgorithml:: 
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3.5 CKGeneticAIgorithm1 Class Reference 

QMCOptimizationAlgorithm 

CKGeneticAlgorithml 

Public Methods 

• CKGeneticAIgorithIIl1 (QMCObjectiveFunction .function, int 
populationsize, double mutationrate, double distributionwidth) 

Constructs and inializes this optimization algorithm . 

• Array1D < double> optiIIlize (Array1D < double > &initialGuess) 

Optimize the ju.nction starting from the provided initial guess parameters. 

3.5.1 Detailed Description 

A moderately greedy genetic algorithm for trying to globally optimize a function 
dreamed up by David Randall (Chip) Kent IV. 

As is standard in the field , optimization means minimization. 

Mutation is accomplished by adding a N-dimensional gaussian random variable 
to the populat ion member. 

The amount of each parent contributed to a child is determined by a uniform 
random variable. 

A linear probability distribution is used to select which population member will 
be a parent. The best members have better probabilities of being selected. 

Definition at line 38 of file CKGeneticAlgorithml.h. 

3.5.2 Constructor & Destructor Documentation 

3.5.2.1 CKGeneticAlgorithIIl1: :CKGeneticAIgorithIIl1 
(QMCObjectiveFunction • junction, iut populationsize, double 
mutationmte, double distributionwidth) 

Constructs and inializes this optimization algorithm. 

Parameters: 
function function to optimize. 

populationsize number of members in the population used to optimize 
the function. This is a positive number. 
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3.6 COInplex C lass Refere nce 

mutationrate a positive number describing how much mutation is intro­
duced into the population. Larger numbers correspond to more mu­
tation. 

distribution width a positive number describing how far the initial popu­
lation members spread from the initial guess. 

Definit ion at line 15 of file CKGeneticAlgorithml.cpp. 

3.5.3 Member Function Documentation 

3.5.3.1 Array1D< 
(Array1D < double> 

double > CKGeneticAlgorithm1: :optimize 
& initia/Guess) [virtual] 

Optimize the function starting from the provided initial guess parameters. 

ParaIneters: 
initial Guess initial guess parameters for the optimization. 

Returns: 
optimized parameters. 

Implements QMCOptimizationAlgorithm (p. 107). 

Definition at line 136 of file CKGeneticAlgorithml.cpp. 

References SortedParameterScorePairList: :getO, ParameterScorePair: :get· 
ParametersO, and ParametefScorePaif::getScoreO. 

3.6 Complex Class Reference 

An implementation of a complex number with the associated basic functions. 

Public Methods 

• Complex () 
Creates an object and initializes it to (0,0). 

• Comple x (double fe , double im) 
Creates and initializes this object. 

• Complex (const Complex &rhs) 
Creates an new instance of this object which is equal to another instance. 

• double r eal () 
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3.6 Complex Class Reference 

Real part of this number. 

• double imaginary 0 
Imaginary part of this number. 

• void operator= (const Complex &rhs) 

Sets two complex numbers equal. 

• void operator= (const double &rhs) 

Sets a complex number and a real number equal. 

• Complex operator+ (const Complex &rhs) 

Adds two complex numbers. 

• Complex operator+ (const double &rhs) 

Adds a complex and a real number. 

• Complex operator- (const Complex &rhs) 

Subtracts two complex numbers. 

• Complex operator- (const double &rhs) 

Subtracts a complex and a real number. 

• Complex operator * (const Complex &rhs) 

Multipl ies two complex number. 

• Complex operator * (const double &rhs) 

Multiplies a complex and a real number. 

• Complex operator/ (const Complex &rhs) 

Divides two complex numbers. 

• Complex conjugate 0 
Calculates the complex conjugate of this number. 

• double abs 0 
Calculates the magniutde of this complex number. 

• Complex squareroot 0 
Calculates the square TOot of this complex number. 
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3.6 Complex Class Refere nce 

Friends 

• ostream & operator« (ostream &strm, Complex &c) 

Write the number to an output stream. 

3.6.1 Detailed Description 

An implementation of a complex number with the associated basic functions. 

Definition at line 23 of file Complex.h. 

3.6.2 Constructor & Destructor Documentation 

3.6.2.1 Complex::Complex (double re, double im) 

Creates and initializes this object. 

Parameters: 
re real part of this number. 

im imaginary part of this number. 

Definition at line 21 of file Complex.cpp. 

3.6.2.2 Complex::Complex (const Complex & rhs) 

Creates an new instance of this object which is equal to another instance. 

Parameters: 
rhs object this new object will be set equal to. 

Definition at line 27 of file Complex.cpp. 

3.6.3 M ember Function Documentation 

3.6.3.1 double Cornplex::abs 0 
Calculates the magniutde of this complex number. 

c.absO = v'(c.r e02 + c.im(2) 

Returns: 
magnitude of this complex number. 

Definition at line 146 of file Complex.cpp. 
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3.6 Complex Class Reference 

3.6.3.2 Complex Complex::conjugate 0 
Calculates the complex conjugate of this number. 

Returns: 
complex conjugate of this number. 

Definition at line 136 of file Complex.cpp. 

References im, and reo 

3.6.3.3 double Complex::imaginary 0 
Imaginary part of this number. 

Returns: 
imaginary part of this number. 

Definition at line 37 of file Complex.cpp. 

3.6.3.4 Complex Complex::operator * (const double & rhs) 

Multiplies a complex and a real number. 

Returns: 
product of the arguments. 

Definition at line 104 of file Complex.cpp. 

References im, and reo 

3.6.3.5 Complex Complex::operator * (const Complex & rhs) 

Multiplies two complex number. 

Returns: 
product of the arguments. 

Definition at line 94 of file Complex.cpp. 

References im, and reo 

3.6.3.6 Complex Complex::operator+ (const double & rhs) 

Adds a complex and a real number. 
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3.6 C01TIplex Class Reference 

Returns: 
sum of the arguments. 

Definition at line 64 of file Complex.cpp. 

References im , and reo 

3.6.3.7 Complex Complex::operator+ (const Complex & rhs) 

Adds two complex numbers. 

Returns: 
sum of the arguments . 

Definition at line 54 of file Complex.cpp. 

References im, and reo 

3.6.3.8 Complex Complex::operator- (const double & rhs) 

Subtracts a complex and a real number. 

Returns: 
difference of the arguments. 

Definition at line 84 of file Complex.cpp. 

References im, and reo 

3.6.3.9 Complex Complex::operator- (const Complex & rhs) 

Subtracts two complex numbers. 

Returns: 
difference of the arguments. 

Definition at line 74 of file Complex.cpp. 

References im, and reo 

3.6.3.10 Complex Complex::operator/ (const Complex & rhs) 

Divides two complex numbers. 

Returns: 
result of the division. 

Definition at line 114 of file Complex.cpp. 

References im, and re. 
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3.1 CubicSpline Class Reference 

3.6.3.11 void Coroplex::operator= (const double & rhs) 

Sets a complex number and a real number equal. 

@rhs number to set this one equal to. 

Definition at line 48 of file Complex.cpp . 

3.6.3.12 void Complex::operator= (const Complex & rhs) 

Sets two complex numbers equal. 

@rhs number to set this one equal to. 

Definition at line 42 of file Complex.cpp. 

References im, and reo 

3.6.3.13 double Coroplex::real 0 
Real part of this number. 

Returns: 
real part of t his number. 

Defini tion at line 32 of file Complex.cpp. 

3.6.3.14 Complex Complex::squareroot 0 
Calculates the square root of this complex number. 

Returns: 
square root of this complex number. 

Definition at line 174 of file Complex.cpp. 

References im, and reo 

3.7 CubicSpline Class Refere nce 

A I -dimensional (R ' -+ R' ) cubic spline interpolation. 

Inheritance diagram for CubicSpline:: 
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3 .7 CubicSpline Class Reference 

FunctionRl toR I 

CubicSpline 

CubicSplineWithGeometricProgressionGrid 

Public Methods 

• CubicSpline () 

Creates an instan ce of this class. 

• void opera tor= (const CubicSpline &rhs) 

Sets two CubicSpline objects equal. 

• void initialize WithFunction Values (Array lD< double> &xInput , 
ArraylD< double > &ylnput, double yPrimeFirst, double yP rime­
Last) 

Initializes the spline with the function values at given points plus the deriva­
tive values at the end points. 

• void initia lize WithDerivative Values (ArraylD < double > &xlnput, 
ArraylD< double> &yPrimelnput, double yFirst) 

Initializes the spline with the derivative values at ,given points plus the func­
tion value at the first point . 

• void evaluate (double x) 

Evaluates the fu nction at x. 

• double getFunction Value () 

Gets the Junction value at the la.s t evaluated point. 

• double ge tFirstDerivative Value 0 
Gets the functi on's first dent/iate at the last evaluated point. 

• double getSecondDerivative Value 0 
Gets the function's second deriviative at the last evaluated point. 

• void toXML (ostream &strm) 

Writes the state of this object to an XML stream. 
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3.7 Cubic Spline Class Reference 

Protected Methods 

• void evaluate (double x, int index) 

Evaluate the function at x when the index 0/ the box o/the domain containing 
x is known. 

3.7.1 Detailed Description 

A I-dimensional (R' --+ R ' ) cubic spline interpolation. 

Definition at line 30 of file CubicSpline.h. 

3.7.2 Member Function Documentation 

3.7.2.1 void CubicSpline::evaluate (double x, int index) [protected) 

Evaluate the function at x when the index of the box of the domain containing 
x is known. 

Parameters: 
x point to evaluate the function. 

index index of the box of the domain containing x. 

Definition at line 404 of file CubicSpline.cpp. 

3.7.2.2 void CubicSpline::evaluate (double x) [virtual) 

Evaluates the function at x. 

Parameters: 
x point to evaluate the function. 

Implements FunctionRltoR1 (p.41). 

Reimplemented in CubicSplineWithGeornetricProgressionGrid (p. 34). 

Definition at line 375 of file CubicSpline.cpp. 

Referenced by CubicSpline WithGeometricProgressionGrid: :eval uate (). 

3.7.2.3 double CubicSpline::getFirstDerivativeValue 0 [virtual] 

Gets the function's first deriviate at the last evaluated point. 
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3.7 CubicSpline Class Reference 

Returns: 
function's deriviative value. 

Implements FunctionRltoRI (p.41). 

Definition at line 439 of file CubicSpline.cpp. 

3 .7.2.4 double C ubicSpline::getFunctionValue 0 [virtual] 

Gets the function value at the last evaluated point. 

Returns: 
function value. 

Implements FunctionRltoRI (p.41). 

Definition at line 434 of file CubicSpline.cpp. 

3.7.2.5 double CubicSpline::getSecondDerivativeValue 0 [virtual] 

Gets the function's second deriviative at the last evaluated point. 

Returns: 
function's second derivative value. 

Implements FunctionRltoRI (p.41). 

Definition at line 444 of file CubicSpline.cpp. 

3.7.2.6 void 
(ArrayID< double > 
Input, double yFirst) 

CubicS pline: :initialize WithDerivative Values 
& ",Input, ArraylD < double > & yPrime-

Initializes the spline with the derivative values at given points plus the function 
value at the first point. 

Parameters: 
xInput x values of the given points. 

yPrimelnput derivative values of the given points. 

yFirst funct ion value at the first point. 

Definition at line 165 of file CubicSpline.cpp. 

References ArraylD< double >::allocateO, and ArraylD < T > ::diml0. 
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3.8 CubicSpline WithGeometricProgressionGrid Class Reference 

3.1.2.1 void CubicSpline::initialize WithFunction Values (ArraylD< 
double > & xInput, ArraylD< double > & yInput, double yPrime­
Fir8t, double yPrimeLa8t) 

Initializes the spline with the function values at given points plus the derivative 
values at the end points. 

Parameters: 
xlnput x values of the given points. 

yInput y values of the given points. 

yPrimeFirst derivative value at the first point. 

yPrimeLast derivative value at the last point. 

Definition at line 37 of file CubicSpline.cpp. 

References ArraylD< double >::allocateO, and ArraylD< T >::dimIO. 

3.1.2.8 void CUbicSpline::operator= (const Cubic Spline & rh8) 

Sets two CubicSpline objects equal. 

Parameters: 
rh8 object to set this object equal to 

Definition at line 18 of file CubicSpline.cpp. 

References aOJ.ist, aIJ.ist, a2J.ist, a3J.ist, ddfddx, dfdx, f, n, xJ.ist, y J.ist, ypO, 
ypJ.ist, and ypend. 

Referenced by CubicSpline With GeometricProgressionGrid: :operator= O. 

3.1.2.9 void CubicSpline::toXML (ostream & 8trm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 449 of file CubicSpline.cpp. 

References ArraylD< double >::diml(). 

3.8 CubicSpline WithGeometricProgressionGrid 
Reference 

Class 

A I-dimensional (Rl -+ R l ) cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship for faster evaluation. 
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3.8 Cubic Spline WithGeometricProgressionGrid Class Reference 

Inheritance diagram for CubicSplineWithGeometricProgressionGrid:: 

FunctionRItoRI 

CubicSpline 

CubicSplineWithGeometricProgressionGrid 

Public Methods 

• CubicSpline WithGeometricProgressionGrid () 

Constructs an uninitialized spline. 

• void setGridParameters (double beta, double xO) 

Sets the value for f3 and Xo used in generating this grid. 

• void evaluate (double x) 

Evaluates the function at x. 

• void operator= (const CubicSpline WithGeometricProgressionGrid 
&rhs) 

Sets two CubicSpline WithGeometricProgressionGrid objects equal. 

• void initialize WithFunction Values (ArraylD< double > &xInput, 
ArraylD< double > &ylnput, double yPrimeFirst, double yPrime­
Last) 

Initializes the spline with the function values at given points plus the deriva­
tive values at the end points. 

• void initialize WithDerivative Values (ArraylD< double> &xInput, 
ArraylD< double> &yPrimelnput, double yFirst) 

Initializes the spline with the derivative values at given points plus the func­
tion value at the first point. 

• double get Function Value () 

Gets the function value at the last evaluated point. 

• double getFirstDerivative Value 0 
Gets the junction's first deriviate at the last evaluated point. 
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3.8 Cubic Spline WithGeometricProgressionGrid Class Reference 

• double getSecondDerivative Value 0 
Gets the function's second deriviative at the last evaluated point. 

• void toXML (ostream &strm) 
Writes the state of this object to an XML stream. 

Protected Methods 

• void evaluate (double X, int index) 

Evaluate the function at x when the index of the box of the domain containing 
x is known. 

3.8.1 Detailed Description 

A I-dimensional (R' --7 R' ) cubic spline interpolation with a grid that is as­
sumed to be spaced according to a geometric relationship for faster evaluation. 

(J is a user provided parameter and Xo is set equal to the first datum used to 
initialize the spline. 

Definition at line 30 of file CubicSplineWithG eometricProgressionGrid.h. 

3.8.2 Member Function Documentation 

3.8.2.1 void CubicSpline::evaluate (double x, int index) [protected, 
inherited] 

Evaluate the function at x when the index of the box of the domain containing 
x is known. 

Parameters: 
x point to evaluate the function. 

index index of t he box of t he domain containing x. 

Definition at line 404 of file CubicSpline.cpp. 

3 .8.2.2 void CubicSpline WithGeometricProgressionGrid: :evaluate 
(double x) [virtual] 

Evaluates the function at x. 
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3.8 CubicSpline WithGeometricProgressionGrid Class Reference 

Parameters: 
x point to evaluate the function. 

Reimplemented from CubicSpline (p.30). 

Definition at line 29 of file CubicSplineWithGeometricProgressionGrid.cpp. 

References CubicSpline::evaluateO. 

3.8.2.3 double CubicSpline::getFirstDerivativeValue 0 [virtual, 
inherited] 

Gets the function's first deriviate at the last evaluated point. 

Returns: 
function's deriviative value. 

Implements FunctionRltoRl (p.41). 

Definition at line 439 of file CubicSpline.cpp. 

3.8.2.4 double 
inherited] 

CUbicSpline: :getFunction Value 

Gets the function value at the last evaluated point. 

Returns: 
function value. 

Implements FunctionRltoRl (p.41). 

Definition at line 434 of file CubicSpline.cpp. 

o [virtual, 

3.8.2.5 double CubicSpline::getSecondDerivativeValue 0 [virtual, 
inherited] 

Gets the function's second deriviative at the last evaluated point. 

Returns: 
function's second derivative value. 

Implements FunctionRltoRl (p. 41). 

Definition at line 444 of file CubicSpline.cpp. 
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3.8 Cubic Spline WithGeollletricProgressionGrid Class Reference 

3.8.2.6 void 
(ArraylD< double > 
Input, double yFirst) 

CubicSpline::initialize WithDerivative Values 
& xInput, ArraylD< double > & yPrime­
[inherited] 

Initializes the spline with the derivative values at given points plus the function 
value at the first point. 

Parallleters: 
xlnput x values of the given points. 

yPrimelnput derivative values of the given points. 

yFirst function value at the first point . 

Definition at line 165 of file CubicSpline.cpp. 

References ArraylD< double >::allocateO, and ArraylD< T >::dimlO. 

3.8.2.7 void CUbicSpline::initializeWithFunctionValues (ArraylD< 
double > & xInput, ArraylD< double > & yInput, double yPrime­
First, double yPrimeLast) [inherited] 

Initializes the spline with the function values at given points plus the derivative 
values at the end points. 

Parallleters: 
xlnput x values of the given points. 

ylnput y values of the given points. 

yPrimeFirst derivative value at the first point. 

yPrimeLast derivative value at the last point. 

Definition at line 37 of file CubicSpline.cpp. 

References ArraylD< double >::allocateO, and ArraylD< T >::diml0. 

3.8.2.8 void 
Grid::operator= 
& rhs) 

Cubic Spline WithGeollletricProgression­
(const CubicSpline WithGeornetricProgressionGrid 

Sets two CubicSplineWithGeometricProgressionGrid objects equal. 

Parameters: 
rhs object to set this object equal to 

Definition at line 38 of file CubicSplineWithGeometricProgressionGrid.cpp. 

References beta, CubicSpline::operator=O, and xO. 
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3.9 Exception Class Reference 

3.8.2.9 void CUbicSpline WithGeometricProgressionGrid::setGrid­
Parameters (double beta, double xO) 

Sets the value for !3 and Xo used in generating this grid. 

Parameters: 
beta the parameter used in generating the grid Xi+l = j3xi . 

xO the first point in the grid Xi+l = j3Xi. 

Definition at line 22 of file CubicSplineWithGeometricProgressionGrid.cpp. 

3.8.2.10 void CubicSpline::toXML (ostream & strm) [inherited] 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 449 of file CubicSpline.cpp. 

References ArraylD< double >::dimlO. 

3.9 Exception Class Reference 

An Exception is thrown when an error occurs. 

Inheritance diagram for Exception:: 

Public Methods 

• Exception 0 
Creates an exception . 

• Exception (string message) 
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3.10 FixedCuspPadeCorrelationFunction Class Reference 

Creates an exception . 

• void set Message (string message) 

Sets the error message for the exception . 

• string get Message 0 
Gets the error message for the exception. 

3.9.1 Detailed Description 

An Exception is thrown when an error occurs. 

This can be extended to deal with special types of errors. 

Definition at line 23 of file Exception.h. 

3.9.2 Constructor & Destructor DocUlllentation 

3.9.2.1 Exception::Exception (string message) 

Creates an exception. 

Parallleters: 
me88age A message describing what went wrong. 

Definition at line 19 of file Exception.cpp. 

References setMessage(). 

3.10 Fixed CuspPadeCorrelationFunction Class Reference 

Correlation function which uses a Pade expansion to describe particle-particle 
interactions. 

Inheritance diagram for FixedCuspPadeCorrelationFunction:: 

QMCCorrelationFunction 

FixedCuspPadeCorrelationFunction 
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3.10 FixedCuspPadeCorrelationFunction Class Reference 

Public M e thods 

• void initializeParameters (ArraylD< int > &BeginninglndexOf­
P arameterType, ArraylD< double> &Para meters, ArraylD< int > 
&BeginninglndexOfConstantType, ArraylD < double > &Constants) 

Initializes the correlation function with a specified set of parameters. 

• void evaluate (double r ) 

E valuates the correlation funct ion and it IS first two derivatives at r. 

• bool isSingular () 

Returns true if the correlation junction has a singularity in the domain r ;::: 0, 
and false otherwise. 

• double getFunction Value () 

Gets the value of the correlation junction for the last evaluated r. 

• double getFirstDerivativeValue () 

Gets the value of the first derivative of the correlation Junction for the last 
evaluated r. 

• double getSecondDerivative Value () 

Gets the value of the second derivative of the correlation function for the last 
evaluated r. 

3.10.1 Detailed Description 

Correlation function which uses a Pade expansion t o describe particle-particle 
interactions. 

The cusp condition is a fixed constant, and all other parameters will be adjusted 
during an optimization. 

Definition at line 26 of file FixedCuspPadeCorrelationFunction.h . 

3.10.2 M ember Function Documentation 

3.10.2.1 void FixedCuspPadeCorrelationFunction::initialize­
Parameters (ArraylD< int > & B eginninglndexOfParameterType, 
Array1D < double > & Parameters, Array1D < int > & Beginning­
Index Of Constant Type, ArraylD< double> & Constants) [virtual] 

Initializes the correlation function with a specified set of parameters. 
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3.11 FunctionRltoR1 Class Reference 

This must be called every time the parameters are changed. 

Implements QMCCorrelationFunction (p.58). 

Definition at line 15 of file FixedCuspPadeCorrelationFunction.cpp. 

References ArraylD< T >::diml O, a nd Polynomial::initializeO. 

3.11 FunctionRltoRl Class Reference 

An interface for a function from R 1 -t R l. 

Inheritance diagram for FunctionRltoRl:: 

FunctionRltoRl 

CubicSpline 

CubicSplineWithGeometricProgress ionGrid 

Public Methods 

• virtual -FunctionRltoR1 0 
Virtu.al destructor. 

• virtual void evaluate (double x) =0 
Evaluates the fu nction at x. 

• virtual double getFunction Value () = O 
Gets the function value at the last evaluated point. 

• virtual double getFirstDerivativeValue ()=O 

Polynomial 

QMCPolynomial 

Gets the function's first denviate at the last evaluated point. 

• virtual double getSecondDerivativeValue 0 =0 
Gets the function's second dent/iative at the last evaluated point. 

3.11.1 Detailed Description 

An interface for a function from R 1 
-)- R 1 . 

Definition at line 24 of file FunctionRltoRl. h. 
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3.11 FunctionR1toR1 Class Reference 

3.11.2 Member Function Documentation 

3.11.2.1 virtual void FunctionRltoRl::evaluate (double x) [pure 
virtual] 

Evaluates the function at x. 

Parameters: 
x point to evaluate the function. 

Implemented in CubicSpline (p. 30), Cubic Spline WithGeometric­
ProgressionGrid (p. 34), and Polynomial (p.47). 

3.11.2.2 virtual double FunctionRltoRl::getFirstDerivativeValue 0 
[pure virtual] 

Gets the function's first deriviate at the last evaluated point. 

Returns: 
function's deriviative value. 

Implemented in CubicSpline (p. 30), and Polynomial (p.47). 

3.11.2.3 virtual double FunctionRltoRl::getFunctionValue 0 
[pure virtual] 

Gets the function value at the last evaluated point. 

Returns: 
function value. 

Implemented in CubicSpline (p. 31), and Polynomial (p.48). 

3.11.2.4 virtual double FunctionRltoRl::getSecondDerivativeValue 
o [pure virtual] 

Gets the function's second deriviative at the last evaluated point. 

Returns: 
function's second derivative value. 

Implemented in CubicSpline (p. 31), and Polynomial (p.48). 
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3.12 PadeCorrelationFunction Class Reference 

3.12 PadeCorrelationFunction Class Reference 

Correlation function which uses a Pade expansion to describe particle-particle 
interactions. 

Inheritance diagram for PadeCorrelationFunction:: 

QMCCorrelationFunction 

PadeCorrelationFunction 

Public Metbods 

• void initializeParaIDeters (Array1D< int > &BeginninglndexOf­
ParameterType, Array1D< double> &Parameters, Array1D< int > 
&BeginninglndexOfConstantType, ArraylD< double> &Constants) 

Initializes the correlation funct ion with a specified set of parameters. 

• void evaluate (double r) 

Evaluates the correlation function an d it's first two derivatives at r. 

• bool isSingular 0 
Returns true if the correlation function has a singularity in the domain r 2: 0, 
and false otherwise. 

• double get Function Value 0 
Gets the value of the correlation function for the last evaluated r. 

• double getFirstDerivative Value 0 
Gets the value of the first derivative of the correlation function for the last 
evaluated T. 

• double getSecondDerivative Value 0 
Gets the value of the second derivative of the correlation function for the last 
evaluated r. 

3.12.1 Detailed Description 

Correlation function which uses a Pade expansion to describe particle-particle 
interactions. 
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3.13 ParameterScorePair Class Reference 

All parameters will be adjusted during an optimization. 

Definition at line 26 of file PadeCorrelationFunction.h. 

3.12.2 Member Function Documentation 

3.12.2.1 void PadeCorrelationFunction::initializeParameters 
(ArraylD< int > & BeginninglndexOfParameterType, ArraylD< 
double > & Parameters, Array1D< int > & BeginninglndexOf­
Constant Type, ArraylD< double> & Constants) [virtual] 

Initializes the correlation function with a specified set of parameters. 

This must be called every time the parameters are changed. 

Implements QMCCorrelationFunction (p. 58). 

Definition at line 15 of file PadeCorrelationFunction.cpp. 

R.eferences ArraylD< T >::diml0, and Polynomial::initializeO. 

3.13 ParameterScorePair Class Reference 

A container which holds a set of parameters and an associated scalar score value. 

Public Methods 

• ParameterScorePair () 

Creates an uninitialized instance of this class with no allocated memory. 

• ParameterScorePair (double score, Array1D< double> &parame­
ters) 

Creates an uninitialized instance of this class and sets the score and param­
eter values. 

• ParameterScorePair (const ParameterScorePair &PSP) 

Creates an instance of this class which is equal to another instance. 

• double getS core 0 

Gets the score. 

• ArraylD< double> * getParameters 0 

Gets the parameters. 

• void operator= (const ParameterScorePair &rhs) 

Set two ParameterScorePair objects equal. 
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3.13 ParameterScorePair Class Reference 

• bool operator< (ParameterScorePair &PSP) 

An operator which orders ParameterScorePair objects based on their scores. 

3.13.1 Detailed Description 

A container which holds a set of parameters and an associated scalar score value. 

Definition at line 23 of file ParameterScorePaiLh. 

3.13.2 Constructor & Destructor Documentation 

3.13.2.1 ParallleterScorePair::ParameterScorePair (double score, 
Array1D< double> & parameters) 

Creates an uninitialized instance of this class and sets the score and parameter 
values. 

Parameters: 
score Score. 

parameters Parameters. 

Definition at line 19 of file ParameterScorePaiLcpp. 

3.13.3 Melllber Function Doclllllentation 

3.13.3.1 Array1D< double> * ParallleterScorePair::getParameters 

o 
Gets the parameters. 

Returns: 
paramters. 

Definition at line 57 of file ParameterScorePaiLcpp. 

Referenced by CKGeneticAIgorithml::optimize(). 

3.13.3.2 double PararneterScorePair::getScore 0 
Gets the score. 

Returns: 
score. 
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3.14 Polynomial Class Reference 

Definition at line 52 of file ParameterScorePair.cpp. 

Referenced by CKGeneticAlgorithml::optimizeO. 

3.13.3.3 void ParameterScorePair::operator= (const Parameter­
ScorePair & rhs) 

Set two ParameterScorePair objects equal. 

Parameters: 
rhs object to set this object equal to. 

Definition at line 31 of file ParameterScorePair.cpp. 

References Parameters, and Score. 

3.14 Polynomial Class Reference 

A one dimensional real polynomial. 

Inheritance diagram for Polynomial:: 

Public Methods 

• Polynomial 0 
Constructs an uninitialized instance of this class. 

• Polynomial (ArraylD< double> &coeffs) 

Constructs and initializes an intance of this class. 

• void initialize (ArraylD< double> &coeffs) 

Initializes this object. 

• void evaluate (double x) 

Evaluates the function at x. 
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3.14 Polynomial Class Refere nce 

• double getFunction Value 0 
Gets the function value at the last evaluated point. 

• double getFirstDerivative Value 0 
Gets the fu nction's first deriviate at the last evaluated poin t. 

• double getSecondDerivative Value 0 
Gets the function's second derivia.tive at the last eva.luated point. 

• Array1D< Complex> get R oots 0 
Gets the roots of the polynomial. 

Protected Methods 

• int getNulllberCoefficients 0 
Gets the number of coefficients in the polynomial. 

• double getCoefficient (int i) 

Gets the ith coefficient of the polynomial. 

3.14.1 Detailed Description 

A one dimensional real polynomial. 

n 

P (x) = L Ci x i 

i=O 

Definit ion at line 28 of file Polynomial.h. 

3 .14.2 Constructor & Destructor Doc umentation 

3.14.2.1 Polynomial::Polynomial (Array1D < double> & Coeff8) 

Constructs and initializes an intance of this class. 

Parameters: 
coeff8 set of polynomial coefficients to use for the polynomial. 

Definiti on at line 20 of file Polynomial.cpp. 

References initialize O. 

Gen e rate d o n Wed May 1 11:34:48 2002 for QMc B eover by Doxygen 

46 



3.14 Polynomial Class Reference 

3.14.3 Member FUnction Documentation 

3.14.3.1 void Polynornial::evaluate (double x) [virtual] 

Evaluates the function at x. 

Parameters: 
x point to evaluate the function. 

Implements FunctionRltoRl (p. 41). 

Definition at line 61 of file Polynomial.cpp. 

Referenced by PadeCorrelationFunction::evaluateO, FixedCuspPade­
CorrelationFunction: :evaluate() l getFirstDeri vative Val ue () l getFunction­
ValueO, and getSecondDerivativeValueO· 

3.14.3.2 double Polynornial::getCoefficient (int i) [protected] 

Gets the ith coefficient of the polynomial. 

Where the polynomial is defined such that 
n 

P(x) = LCiXi 
i=O 

where n is the order of the polynomial and Ci is the ith coefficient. 

Parameters: 
i index of the coefficient to return. 

Returns: 
ith coefficient of the polynomial. 

Definition at line 122 of file Polynomial.cpp. 

3.14.3.3 double Polynornial::getFirstDerivativeValue 0 [virtual] 

Gets the function's first deriviate at the last evaluated point. 

Returns: 
function's deriviative value. 

Implements FunctionRltoRl (p.41). 

Definition at line 97 of file Polynomial.cpp. 

References evaluateO. 

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate(). 
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3.14 Polynomial Class Reference 

3.14.3.4 double Polynomial::getFunctionValue 0 [virtual] 

Gets the function value at the last evaluated point. 

Returns: 
function value. 

Implements FunctionRltoRI (p.4I). 

Definition at line 87 of file Polynomial.cpp. 

References evaluateO. 

Referenced by PadeCorrelationFunction::evaluateO , and FixedCuspPade­
CorrelationFunction: :eval uateO. 

3.14.3.5 int Polynomial::getNumberCoefficients 0 [protected] 

Gets the number of coefficients in the polynomial. 

This is one larger than the order of the polynomial. 

Returns: 
number of coefficients in the polynomial. 

Definition at line 117 of file Polynomial.cpp. 

References ArraylD< double >::dimlO. 

3 .14.3.6 ArraylD< Complex> Polynomial::getRoots 0 
Gets the roots of the polynomial. 

Returns: 
roots of the polynomial. 

Exceptions: 
Exception (p.37) if problems were encounted during the foot calculation. 

Definition at line 127 of file Polynomial.cpp. 

References ArraylD< double >::dimIO. 

Referenced by QMCPolynomial::hasNonNegativeZeroesO. 

3 .14.3.7 double 
[virtual] 

Polynomial:: getSecondDerivati ve Value 

Gets the function's second deriviative at the last evaluated point. 
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3.15 QMCBasisFunction Class Reference 

Returns: 
function's second derivative value. 

Implements FunctionRltoR1 (p.4I). 

Definition at line 107 of file Polynomial. cpp. 

References evaluateO . 

Referenced by PadeCorrelationF\mction: :evaluateO. a nd F ixedCuspPade­
CorrelationFunction: :evaluateO. 

3.14.3.8 void Polynornial::initialize (Array1D < double> & coeffs) 

Initializes this object. 

Parameters: 
coeffs set of polynomial coefficients to use for the polynomial. 

Definition at line 39 of file Polynomial.cpp. 

References ArraylD< double >::allocateO . and ArraylD< double >::dimI O. 

Referenced by PadeCorrelationFunction::initializeParametersO. FixedCusp­
PadeCorrelationFunction: :initializeP arametersO. and PolynomialO. 

3.15 QMCBasisFunction Class Reference 

This class stores all of the parameters that a gaussian basis set is constructed 
from for a MOLECULE. 

Public Methods 

• QMCBasisFunction 0 
Creates an instance of th e class, 

• void initialize (QMCfiags .flags. QMCMolecule .molecule) 

Initializes the class with dat a input to control the calcu.lation and provide the 
molecular geometry. 

• double getPsi (int whichBF. Array2D< double> &X. int elNumber) 

Calculates the value of a basis functi on . 

• Array1D < double> getGradPsi (int whichBF . Array2D< double> 
&X. int elN umber) 

Calculates the gradient of a basis function. 
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3.15 QMCBasisFunction Class Refe rence 

• double getLaplacianPsi (int whichBF, Array2D < double> &X, int 
elNumber) 

Calculates the laplacian of a basis function. 

• void operator= (canst QMCBasisFunctian &rhs) 

Sets two QMCBasisFunctions objects equal. 

• void r ead (string runfile) 

Loads the state of the object from a file . 

• int getNumberBasisFunctions (int i) 

Returns how many basis junctions are located on a specific atom. 

Friends 

• istream & operator» (istream &strm, QMCBasisFunction &rhs) 
Loads the state of the object from an input stream. 

• astream & operator« (ostream &strm, QMCBasisFunctian &rhs) 

Writes the state of the object to an output stream. 

3.15.1 D etailed Description 

This class stores all of the parameters that a gaussian basis set is constructed 
from for a MOLECULE. 

This contains a QMCBasisFunctianCaeflicent for each atom type. 

Defini t ion at line 36 of file QMCBasisFunctian.h. 

3.15 .2 M ember Function Doc umentation 

3.15.2.1 Array1D < double > QMCBasisFunction::getGradPsi (int 
whichBF, Array2D < double > & X, int elNumber) 

Calculates the gradient of a basis function. 

Parameters: 
whichBF which basis function to evaluate 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 

elNumber which electron in X to calculate the basis function for 
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3.15 QMCBasisFunction Class Reference 

Returns: 
basis function gradient value 

Definition at line 361 of file QMCBasisFunction.cpp. 

References QMCMolecule::Atom_Positions. 

3.15.2.2 double QMCBasisFunction::getLaplacianPsi (int whichBF, 
Array2D< double> & X, int elNumber) 

Calculates the laplacian of a basis function. 

Parameters: 
whichBF which basis function to evaluate 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 

elNumber which electron in X to calculate the basis function for 

Returns: 
basis function laplacian value 

Definition at line 377 of file QMCBasisFunction.cpp. 

References QMCMolecule::Atom-Positions. 

3.15.2.3 int QMCBasisFunction::getNurnberBasisFunctions (int i) 

Returns how many basis functions are located on a specific atom. 

This can probably be depricated once we have a good initialization scheme and 
not MikesJ acked one. 

Parameters: 
i index of atom 

Returns: 
number of basis functions on the atom 

Definition at line 128 of file QMCBasisFunction.cpp. 

References QM CBasisFunction Coefficients: :getN umber BasisFunctionsO. 

3.15.2.4 double QMCBasisFunction::getPsi (int whichBF, 
Array2D< double> & X, int elNumber) 

Calculates the value of a basis function. 

Parameters: 
whichBF which basis function to evaluate 
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3.15 QMCBasisFunction Class Reference 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 

elNumber which electron in X to calculate the basis function for 

Returns: 
basis function value 

Definition at line 346 of file QMCBasisFunction.cpp. 

References QMCMolecule::AtomJ'ositions. 

3.15.2.5 void QMCBasisFunction::initialize (QMCflags * flags, QM­
CMolecule * molecule) 

Initializes the class with data input to control the calculation and provide the 
molecular geometry. 

Parameters: 
flags input control information 

molecule information about the specific molecule 

Definition at line 19 of file QMCBasisFunction.cpp. 

References Array1D< double >::allocateO. 

3.15.2.6 void QMCBasisFunction::operator= (const QMCBasis­
Function & rhs) 

Sets two QMCBasisFunctions objects equal. 

Parameters: 
rhs object to set this object equal to 

Definition at line 116 of file QMCBasisFunction.cpp. 

References BFCoeffs, BFLookupTable, flags, Molecule, N-BasisFunctions, 
Splines, use....splines, and Xcalc. 

3.15.2.7 void QMCBasisFunction::read (string runfile) 

Loads the state of the object from a file. 

Parameters: 
runfile file to load 

Definition at line 175 of file QMCBasisFunction.cpp. 
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3.16 QMCBasisFunctionCoefficients Class Reference 

3.16 QMCBasisFunctionCoefficients Class Reference 

This class stores all of the parameters that a gaussian basis set is constructed 
from for an ATOM. 

Public Methods 

• QMCBasisFunctionCoefficients 0 
Creates an instance of the class. 

• int getNurnberBasisFunctions 0 
Gets the number of basis functions. 

• void operator= (const QMCBasisFunctionCoefficients &rhs) 

Sets two QMCBasisFunctionCoefficients ob}ects equal. 

• void read (string runfile) 

Loads the state of the object from a file. 

Public Attributes 

• Array3D< double> Coeffs 

Array containing the parameters for the basis junctions where CoefJs[bf 
#j[Gau55ian #j[O=exp,l=contractj. 

• Array2D< int > xyz_powers 

Array containing the k,l,m parameters which indicate the '1angular momen­
tum state" of the basis junction (b1 = x kylzm * RadialFunction(r)) where 
xyz{bf # j[O=k, 1 = 1, 2=mj. 

• Array1D< int > N _Gauss 

Array containing the number of gau8sians that need to be contracted for the 
radial portion of the basis function (bf = xkyl zm *RadiaIFunction( r)) where 
N-Gau55[bj #j. . 

• Array1D< string> Type 

Array containing the type of the basis function where Type[bJ #). 
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3.16 QMCBasisFunctionCoefficients Class Reference 

Friends 

• istream & operator> > (istream &strm, QMCBasisFunctionCoefficients 
&rhs) 

Loads the state of the object from an input stream . 

• ostream & operator« (ostream &strm, QMCBasisFunctionCoefficients 
&rhs) 

Writes the state of the object to an output stream. 

3.16.1 Detailed Description 

This class stores all of t he parameters that a gaussian basis set is constructed 
from for an ATOM. 

For example, a gaussian basis function is 

Ngaussians-l 

Gbf(x,y,z)::::: xkylzm L aie- b;r
2 

i=Q 

where k,l,m are determined by the type of basis function , ai is the contraction 
parameter, and bi is t he exponential parameter. The particular contraction pa­
rameter is chosen so that the basis fUDction is normalized. This is slightly dif­
ferent than what is common with linear algebra quantum mechanics programs. 
The contraction parameters used here can be obtained using the contraction 
and exponential parameters and k, l,m from a linear algebra basis file. You will 
have to look up the formula for doing this. 

This reads in basis function coefficients in the following format ... 

Ngaussians Type 
exp_param Gontraction_param 

Ngaussians Type 
exp_param contractioD_param 

etc ... 

Definition at line 49 of file QMCBasisFunctionCoefficients.h. 
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3.16 QMCBasisFunctionCoefficients Class Reference 

3.16.2 Melllber Function Doclllllentation 

3.16.2.1 int 
Functions 0 

QMCBasisFunctionCoefficients::getNulllberBasis-

Gets the number of basis functions. 

Returns: 
number of basis functions 

Definition at line 20 of file QMCBasisFunctionCoefficients.cpp. 

Referenced by QMCBasisFnnction::getNumberBasisFnnctions(). 

3.16.2.2 void QMCBasisFunctionCoefficients::operator= 
QMCBasisFunctionCoeflicients & rh8) 

Sets two QMCBasisFnnctionCoefficients objects equal. 

Parameters: 
rh8 object to set this object equal to 

Definition at line 25 of file QMCBasisFnnctionCoefficients.cpp. 

(const 

References Coeffs, Label. Max_Gaussians, N_Gauss, N_Orbitals, Type, and xyz_­
powers. 

3.16.3 Member Data Doclllllentation 

3.16.3.1 Array1D<string> QMCBasisFunctionCoeflicients::Type 

Array containing the type of the basis function where Type[bf #]. 

The type is a string representation of the II angular momentum state." For ex­
ample, "px", II dxy" , and II fxxx" are all types of basis functions. 

Definition at line 101 of file QMCBasisFnnctionCoefficients.h. 

Referenced by operator= (). 

3.16.3.2 Array2D<int> QMCBasisFunctionCoeflicients::xyz_powers 

Array containing the k,l,m parameters which indicate the" angular momentum 
state" of the basis function (bf = xkylzm * RadiaIFunction(r») where xyz[bf 
# lIO= k, 1=1,2=m]. 

For example, a "px" orbital would have (k,l,m) = (1,0,0). 
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3.17 QMCCopyright Class Reference 

Definition at line 83 of file QMCBasisFunctionCoefficients.h. 

Referenced by operator=(). 

3.17 QMCCopyright Class Reference 

Central localtion for all copyright information relevant to QMcBeaver. 

Friends 

• ostream & operator« (ostream &strm, QMCCopyright &rhs) 

Writes the copyright information to a stream in a human readable format. 

3.17.1 Detailed Description 

Central localtion for all copyright information relevant to QMcBeaver. 

Definition at line 25 of file QMCCopyright.h. 

3.18 QMCCorrelatedSampling VMCOptimization 
Reference 

Class 

Optimize the parameters in a variational QMC (VMC) calculation using the 
correlated sampling method. 

Static Public Methods 

• void optimize (QMClnput 'input) 

Optimizes the parameters in a variational QMC (VMC) calculation using 
the correlated sampling method. 

3.18.1 Detailed Description 

Optimize the parameters in a variational QMC (VMC) calculation using the 
correlated sampling method. 

Definition at line 26 of file QMCCorrelatedSamplingVMCOptimization.h. 
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3.19 QMCCorrelationFunction Class Reference 

3.18.2 Member Function Documentation 

3.18.2.1 void QMCCorrelatedSamplingVMCOptimization::optimize 
(QMCInput * input) [static] 

Optimizes the parameters in a variational QMC (VMC) calculation using the 
correlated sampling method. 

Parameters: 
input data input to control the calculation. 

Definition at line 15 of file QMCCorrelatedSamplingVMCOptimization.cpp. 

References ArraylD< T >::arrayO, ArraylD< T >::diml0, QMCObjective­
Function::initialize(), QMCOptimizationFactory::optimizationAlgorithm­
FactoryO, QMCOptimizationAlgorithm::optimizeO, and QMCReadAnd­
EvaluateConfigs:: workerCalculateProperties(). 

Referenced by QMCManager::optimizeO. 

3.19 QMCCorrelationFunction Class Reference 

Interface for a parameterized function describing the interaction of two particles. 

Inheritance diagram for QMCCorrelationF\mction:: 

QMCCorreiationFunction 

FixedCuspPadeCorrelationFunction PadeCorrelationFunction 

Public Methods 

• virtual ~QMCCorrelationFunction 0 

Virtual destructor. 

ZeroCorrelationFullction 

• virtual void initializeParameters (ArraylD< int > &Beginning­
IndexOfParameterType, ArraylD< double> &Parameters, ArraylD< 
int > &BeginninglndexOfConstantType, Array1D< double > &Con­
stants)=O 

Initializes the correlation junction with a specified set of parameters. 

• virtual bool isSingular 0 =0 

Returns true if the correlation junction has a singularity in the domain r ~ 0, 
and false otherwise. 
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3.20 QMCCorrelationFunctionFact or y Class R eference 

• vir t ual void evaluate (double r)=O 

Evaluates the correlation junction and it 's firs t two derivatives at r. 

• virtual double get Function Value 0=0 

Gets the value of the correlation function for the last evaluated r. 

• virtual double getFirstDerivative Value 0 =0 
Gets the value of the first derivative of the correlation junction fo r the last 
evaluated r. 

• virtual double getSecondDerivativeValue 0 = 0 

Gets the value of the second derivative oj the correlation Junction Jor the last 
evaluated r. 

3.19.1 D et a iled Description 

Interface for a parameterized function describing t he interaction of two part icles. 

T he t rial wavefunction for QMC is ~QMC = ~Tdal J where J = 
exp(L;ui,j(r i,j)) . Uij(rij) are the QMCCorrelationFunctions describing the in­
teract ions of particles i and j. 

Definit ion at line 27 of file QMCCorrelationFunction.h . 

3.19. 2 M ember Function Documen tation 

3 .19. 2 .1 virtual void QMC C orrela tionFunction::initiaIize­
Par a m et er s (Ar rayID< int > & B eginnin glndexOfParameterType, 
ArraylD< double > & Parameters, ArraylD< int > & B eginning­
IndexOfConstantType, ArraylD< d o uble > & Constants) [pure 
v i r t ua l] 

Init ializes the correlation function with a specified set of parameters . 

T his must be called every time t he parameters are changed . 

Implemented in FixedCuspPadeCorrelat ionFunction (p .39), Pade­
C orrelationFunction (p . 43), and ZeroC orr ela tionFunction (p.164). 

3 .20 QMCCorrelationFunctionFactory Class Reference 

Object factory which returns the correct QMC C orr elationFunction (p.57) 
when a string keyword describing the correlation function is provided. 
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3.21 QMCCorrelationFunctionPararneters Class Reference 

Static Public Methods 

• QMCCorrelationFunction * correlationFunctionFactory (string 
&Type) 

Returns the correct QMCCorrelationFunction (p.57) when a string key~ 
word describing the correlation function is provided. 

3.20.1 Detailed Description 

Object factory which returns the correct QMCCorrelationFunction (p.57) 
when a string keyword describing the correlation function is provided. 

Definition at line 31 of file QMCCorrelationFunctionFactory.h. 

3.21 QMCCorrelationFunctionParameters Class Refer­
ence 

This is a collection of parameters and related functions which describe the in­
teraction of two particles of specific types. 

Public Methods 

• QMCCorrelationFunctionParameters () 

Creates an instance of the class. 

• QMCCorrelationFunctionPararneters 
FunctionParameters &rhs) 

( const QMCCorrelation-

Creates an instance of the class that is identical to another instance of the 
class. 

• rvQMCCorrelationFunctionPararneters () 

Deallocates all of the memory used by the object and prepares it to be de~ 

strayed. 

• Array1D< double> getParameters () 

Gets the parameters describing the particle~particle interactions. 

• string getParticlel Type () 

Gets the first particle type in a particlel~particle2 interaction described by 
this object. 

• string getParticle2Type () 
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3.21 QMCCorrelationFunctionParaITleters Class Reference 

Gets the second particle type in a particlel-particle2 interaction described by 
this object. 

• int getTotalNumberOfParameters 0 
Gets the total number of parameters used to describe the particle-particle 
interaction. 

• QMCCorrelationFunction * getCorrelationFunction 0 
Gets the parameterized QMCCorrelationFunction (p.57) used in QMC­
Jastrow (p.74) to describe the particular particle-particle interaction when 
calculating the Jastrow /unction. 

• void set Parameters (ArraylD< double> &params) 

Sets the parameters describing the particle-particle interaction. 

• void setParticiel Type (string val) 

Sets the type of particle1 for the particular particle-particle interaction de­
scribed by this obJ·ect. 

• void setParticle2Type (string val) 

Sets the type of particle2 for the particular particle-particle interaction de­
scribed by this object. 

• bool isSingular 0 
Returns true if the parameterized correlation function described by this object 
is singular on the positive real axis and false otherwise. 

• void operator= (const QMCCorrelationFunctionParameters &rhs) 

Sets two QMCCorrelationFunctionParameters objects equal. 

• void read (istream &strm) 

Loads the state of the object from an input stream. 

Friends 

• ostream & operator« (ostream &strm, QMCCorrelationFunction­
Parameters &rhs) 

Writes the state of the object to an output stream. 
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3.21 QMCCorrelationFunctionParameters Class Reference 

3.21.1 Detailed Description 

This is a collection of parameters and related functions which describe the in­
teraction of two particles of specific types. 

For example, an instance of this class could hold the information describing the 
interaction of an up spin electron and a hydrogen nucleus or two down spin 
electrons. 

The interactions are parameterized in terms of "parameters" and "constants." 
"parameters" are modified during optimizations, and "constants" are not. 

Definition at line 36 of file QMCCorrelationFunctionParameters.h. 

3.21.2 Constructor & Destructor Documentation 

3.21.2.1 QMCCorrelationFunctionParameters::QMCCorrelation­
FunctionParameters (const QMCCorrelationFunctionParameters & 
rhs) 

Creates an instance of the class that is identical to another instance of the class. 

Parameters: 
rhs object to copy 

Definition at line 250 of file QMCCorrelationFunctionParameters.cpp. 

3.21.3 Member Function Documentation 

3.21.3.1 QMCCorrelationFunction * 
Parameters::getCorrelationFunction () 

QMCCorrelationFunction-

Gets the parameterized QMCCorrelationFunction (p.57) used in QMC­
Jastrow (p.74) to describe the particular particle-particle interaction when 
calculating the J astrow function. 

Returns: 
function describing getParticle1 TypeO (p.62) -getParticle2TypeO 
(p.62) interactions 

Definition at line 307 of file QMCCorrelationFunctionParameters.cpp. 

Referenced by QMCJastrowElectronElectron::evaluateO. 

3.21.3.2 Array1D< double > QMCCorrelationFunction-
Parameters::getParameters 0 
Gets the parameters describing the particle-particle interactions. 
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3.21 QMCCorrelationFunctionParameters Class Reference 

Returns: 
parameters describing particle-particle interactions. 

Definition at line 15 of file QMCCorrelationFunctionParameters.cpp. 

Referenced by QMCJastrowParameters::getParametersO. 

3.21.3.3 string 
Particle! Type 0 

QMCCorrelationFunctionParameters::get-

Gets the first particle type in a particlel-particle2 interaction described by this 
object . 

Returns: 
particle type 

Definition at line 257 of file QMCCorrelationFunctionParameters.cpp. 

Referenced by QMCJastrowParameters::readO. 

3.21.3.4 string 
Particle2Type 0 

QM C CorrelationFunctionParameters: :get-

Gets the second particle type in a particlel-particle2 interaction described by 
this object. 

Returns: 
particle type 

Definition at line 262 of file QMCCorrelationFunctionParameters.cpp. 

Referenced by QMCJastrowParameters::readO. 

3.21.3.5 int QMCCorrelationFunctionPararneters::getTotal-
NurnberOfPararneters 0 
Gets the total number of parameters used to describe the particle-particle in­
teraction. 

Returns: 
total number of parameters 

Definition at line 267 of file QMCCorrelationFunctionParameters.cpp. 

Referenced by QMCJastrowParameters::getParametersO, and QMCJastrow­
Parameters: :setParameter Vector O. 
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3.21 QMCCorrelationFunctionParameters Class Reference 

3.21.3.6 bool QMCCorrelationFunctionPararneters::isSingular 0 
Returns true if the parameterized correlation function described by this object 
is singular on the positive real axis and false otherwise. 

Returns: 
true if the current parameterization of the correlation function is singular 
on the positive real axis and false otherwise 

Definition at line 326 of file QMCCorrelationFunctionParameters.cpp. 

References QM CCorrelationFunction: :isSingularO. 

3.21.3.7 void QMCCorrelationFunctionParameters: :operator= 
(const QMCCorrelationFunctionParameters & rhs) 

Sets two QMCCorrelationFunctionParameters objects equal. 

Parameters: 
rhs object to set this object eqal to 

Definition at line 20 of file QMCCorrelationFunctionParameters.cpp. 

References BeginningIndexOfConstantType, BeginningIndexOfParameter­
Type, Constants, CorrelationFunctionType, NumberOfConstants, NumberOf­
ConstantTypes, NumberOfParameters, NumberOfParameterTypes, Parame­
ters, Partic1eTypes, TotalNumberOfConstants, and TotalNumberOfParameters. 

3.21.3.8 void QMCCorrelationFunctionParallleters::read (istream & 
strm) 

Loads the state of the object from an input stream. 

Parallleters: 
strm input stream 

Definition at line 54 of file QMCCorrelationFunctionParameters.cpp. 

References ArraylD< double >::allocateO, ArraylD< int >::allocateO, 
ArraylD< string >::allocateO, ArraylD< double >::deallocateO, ArraylD< 
int >::deallocateO, and StringManipulation::toFirstUpperRestLower(). 

Referenced by QMCJastrowParameters::read(). 
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3.22 QMCDerivativeProperties Class Reference 

3.21 .3.9 void QMCCorrelationFunctionParameters::setPararnete rs 
(ArraylD< double > & params) 

Sets the parameters describing the particle-particle interaction. 

Parameters: 
params new set of parameters 

Definit ion a t line 272 of file QMCCorrelationFunctionPa ra meters.cpp . 

References ArraylD < double > ::dimI O, and ArraylD < T >: :diml O. 

Referenced by QMCJ astrow Parameters::setParameter VectorO. 

3.22 QMCDerivativeProperties Class Reference 

All of the calculated quantities and properties that are derived from quant it ies 
and properties evaluated during a calculation. 

Public Methods 

• QMCDerivativeProperties (QMCproperties . properties, double 
dt) 

Creates and init i!2lizes an instance of this class. 

• double getEffectiveTimeStep 0 
Gets the effective time step for the calculation. 

• double ge t Effective Time Step Variance 0 
Gets the variance oj the calculated effective time s tep for the calculation. 

• double ge tEffectiveTimeStepStandardDeviation 0 
Gets the standard deviation of the calcu.lated effective time step /0 1' the cal­
culation. 

• double ge t VirialRatio 0 
Gets the virial ratio fo r the calculation. 

• double getVirialRatioVariance 0 
Gets the variance of the calcu.lated vinal ratio for the calculation. 

• double getVirialRatioStandardDeviation () 

Gets the s tandard deviation of the calculated virial ratio for the calculation. 

Generated on W e d May 1 11:34:48 2002 fo l" Q M cBeave r by D o x y g e n 

64 



3.22 QMCDerivativeProperties Class R eference 

Friends 

• ostream & operator « (ostream &strm, QMCDerivativeProperties 
&rhs) 

Formats and prints the properti.es to a stream in human readable /romat . 

3.22.1 D etailed Description 

All of the calculated quantities and properties that are derived from quantities 
and properties evaluated during a calculation. 

Definition at line 23 of file QMCDerivativeProperties.h. 

3.22 .2 Constructor & Destructor Documentation 

3.22.2.1 QMCDerivativeProperties::QMCDerivativeProperties 
(QMCproperties * properties, double dt) 

Creates and initializes an instance of this class. 

Parameters : 
properties calculated properties for the system. 

dt time step for the calculation. 

Definition at line 16 of file QMCDerivativeProperties.cpp . 

3.22.3 Member Function Documentation 

3.22.3.1 double QMCDerivativeProperties::getEffectiveTirneStep 0 

Gets the effective time step for the calculation. 

R eturns: 
effective time step for the calculation. 

Definition at line 23 of file QMCDerivativeProperties.cpp. 

References QMCproperties::distanceMovedAccepted, QMCproperties::distance­
MovedTrial, and QMCproperty::getAverageO. 
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3.22 QMCDerivativeProperties Class Reference 

3 .22.3.2 double QMCDerivativeProperties::getEffectiveTimeStep­
Standard Deviation () 

Gets the standard deviation of the calculated effective time step for the calcu­
lation. 

Returns: 
standard deviation of the effective time step for the calculation. 

Definition at line 51 of file QMCDerivativeProperties.cpp. 

References getEffectiveTimeStep VarianceO · 

3.22.3.3 double QMCDerivativePr oper t ies::getEffectiveTimeStep­
Varia nce () 

Gets the variance of the calculated effective time step for the calculation. 

Returns: 
variance of the effective time step for the calculation. 

Definit ion a t line 31 of file QMCDerivativePropert ies.cpp. 

References QMCproperties::distanceMovedAccepted, QMCproperties::distance­
MovedTtial, QMCproperty::get AverageO, and QMCproperty::getVarianceO . 

Referenced by getEffectiveTimeStepStandardDeviationO . 

3.22.3.4 double QMCDerivativeProperties::getViriaIRatio () 

Gets the virial ratio for the calculation. 

The virial ratio is - (V) / (T) where (V) is the expectation value of the potential 
energy and (T) is the expectation value of t he kinetic energy. 

Returns: 
virial ratio. 

Defini t ion at line 56 of file QMCDerivativePropert ies.cpp. 

References QMCproperty ::getAverageO, QMCproperties::kineticEnergy, and 
Q MCproperties: :potentiaIEnergy. 

3.22.3.5 double 
StandardDe viation () 

QM CDerivativeProperties: :get VirialRatio-

Gets the standard deviation of the calculated virial ratio for the calculation. 

G e n e rated o n W e d May 1 11:34:48 2002 for Q McB e over by D o:xygen 

66 



3.23 QMCFunctions Class R eference 

Returns: 
standard deviation of the virial ratio. 

Definition at line 81 of file QMCDerivativeProperties.cpp. 

References get ViriaiRatio VarianceO. 

3 .22.3.6 double QMCDerivativeProperties::ge t VirialRatio Variance 

o 
Gets the variance of the calculated vidal ratio for the calculation. 

Returns: 
variance of the virial ratio. 

Definition at line 64 of file QMCDerivativeProperties.cpp. 

References QMCproperty: :getA verageO, QMCproperty::get VarianceO, 
QMCproperties: :kineticEnergy, and QMCproperties::potentiaIEnergy. 

Referenced by get VirialRatioStandardDeviationO. 

3.23 QMCFunctions Class Reference 

This class calculates the value of the wavefunction, it's first two derivatives, and 
any other properties which are calculated from the wavefunction (local energy, 
etc.) . 

Public Metho ds 

• QMCFunctions 0 
Creates a new ins tance of the class. 

• QMCFunctions (QMClnput _input) 

Creates a new instance of th e class and initializes it with the data controling 
the Q Me calculation. 

• QMCFunctions (const QMCFunctions &rhs) 

Creates a new instance of the class that is identical to another instance of 
QMCFu.nctions. 

• void ini t ialize (QMClnput *input) 

Initializes the object with the data contro ling the QMe calculation. 

• void evaluate (Array2D < double> &X) 
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3.23 QMCFunctions Class Reference 

Evaluates all of the calculated properties at X. 

• double getPsi () 

Gets the value of the wavefunction at the last evaluated electronic configura­
tion. 

• double getLocalEnergy () 

Gets the local energy at the last evaluated electronic configuration. 

• double getKineticEnergy () 

Gets the kinetic energy at the last evaluated electronic configuration. 

• double getPotentialEnergy () 

Gets the potential energy at the last evaluated electronic configuration. 

• Array2D< double> * getGradPsiRatio () 

Gets the ratio of the wavefunction gradient to the wavefunction value at the 
last evaluated electronic configuration. 

• Array2D< double> * getModifiedGradPsiRatio () 

Gets a modified version a/the ratio afthe wavefunction gradient to the wav€­
function value at the last evaluated electronic configuration. 

• boo! isSingular () 

Returns true if the last evaluated electronic configuration gives a singular 
Slater matrix and false otherwise. 

• void operator= (const QMCFunctions &rhs) 

Sets two QMCFunctions objects equal. 

• void writeCorrelatedSaIDplingConfignration (ostream &strm) 

Writes the state of this object to a stream for use in correlated sampling 
calculations. 

3.23.1 Detailed Description 

This class calculates the value of the wavefunction, it's first two derivatives, and 
any other properties which are calculated from the wavefunction (local energy, 
etc.). 

The wavefunction is assumed to be of the form 
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3.23 QMCFunctions Class Reference 

where 
J = eXP(L Ui,j(r;,j)) 

is a J as trow type correlation function, and Dt and D ~ are Slater determinants 
for the up and down electrons respectively. 

Definition at line 45 of file QMCFunctions,h, 

3.23.2 Constructor & Destructor Documentation 

3.23.2.1 QMCFunctions::QMCFunctions (QMClnput * input) 

Creates a new instance of the class and initializes it with the data controling 
the QMC calculation. 

Parameters: 
input input data for the calculation 

Definition at line 19 of file QMCFunctions,cpp. 

References initialize(). 

3.23.2.2 QMCFunctions::QMCFunctions (const QMCFunctions & 
rhs) 

Creates a new instance of the class that is identical to another instance of 
QMCFunctions. 

Parameters: 
rhs object to make a copy of 

Definition at line 24 of file QMCFunctions.cpp. 

3.23.3 Member Function Docurnentation 

3.23.3.1 void QMCFunctions::evaluate (Array2D< double> & X) 

Evaluates all of the calculated properties at X. 

Parameters: 
X 3N dimensional configuration of electrons represented by a N x 3 matrix 

Definition at line 60 of file QMCFunctions.cpp. 

References QMCPotentiaLEnergy::evaluateO, QMCJastrow::evaluateO, and 
QMCSlater::evaluate() . 
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3.23 QMCFunctions Class Reference 

3.23.3.2 Array2D< double > • QMCFunctions::ge tGradPsiRatio 0 

Gets the ratio of the wavefunction gradient to the wavefunction value at the 
last evaluated electronic configuration. 

T his is also known as the quantum force. 

Returns: 
wavefunction gradient ratio (quantum force) 

Definition at line 290 of file QMCFunctions.cpp. 

3.23.3.3 double QMCFunctions::getKine ticEnergy 0 
Gets the kinetic energy at the last evaluated electronic configuration. 

Returns : 
kinetic energy. 

Definition at line 280 of file QMCFunctions.cpp . 

3.23.3.4 double QMCFunctions: :getLocaiEnergy 0 
Gets the local energy at the last evaluated electronic configuration. 

Returns: 
local energy 

Definition at line 275 of file QMCFunctions.cpp. 

Referenced by QMCwalker::toXMLO. 

3.23.3.5 Array2D< double > • QMCFunctions::ge tModifiedGrad­
PsiRatio 0 
Gets a modified version of the ratio of the wavefunction gradient to the wave­
function value at the last evaluated electronic configuration. 

The modifications typically help deal with singulari ties near nodes, and the par­
t icular type of modification can be selected. This is also known as the modified 
quantum force. 

R eturns: 
modified wavefunction gradient ratio (modified quantum force) 

Definition at line 295 of file QMCFunctions.cpp. 
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3.23 QMCFunctions Class Reference 

3.23.3.6 double QMCFunctions::getPotentiaIEnergy 0 
Gets the potential energy at the last evaluated electronic configuration. 

Returns: 
potential energy_ 

Definition at line 285 of file QMCFunctions.cpp. 

References QM CPotentiaLEnergy: :getEnergy O. 

3.23.3.7 double QMCFunctions::getPsi 0 
Gets the value of the wavefunction at the last evaluated electronic configuration. 

The returned value is not normalized to one. 

Returns: 
wavefunction value 

Definition at line 270 of file QMCFunctions.cpp. 

3.23.3.8 void QMCFunctions::initialize (QMClnput * input) 

Initializes the object with the data controling the QMC calculation. 

Param.eters: 
input input data for the calculation 

Definition at line 46 of file QMCFunctions.cpp. 

References Array2D< double >::allocateO, QMCJastrow::initializeO, QMCPo­
tentiaLEnergy: :initializeO, and QMCSlater: :initializeO. 

Referenced by QMCwalker::initializeO, and QMCFunctionsO. 

3.23.3.9 bool QMCFunctions::isSingular 0 
Returns true if the last evaluated electronic configuration gives a singular Slater 
matrix and false otherwise. 

Returns: 
true if the Slater matrix is singular and false otherwise 

Definition at line 335 of file QMCFunctions.cpp. 

References QMCSlater::isSingularO. 

Referenced by QMCwalker::isSingularO. 
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3.24 QMClnitialize Walker Class Reference 

3.23.3.10 void QMCFunctions::operator= (const QMCFunctions & 
rhs) 

Sets two QMCFunctions objects equal. 

Parameters: 
rhs object to set this object equal to 

Definition at line 29 of file QMCFunctions.cpp. 

References Alpha, Beta, E_Local, Grad--PsiRatio, Input, Jastrow, Laplacian_­
PsiRatio, Modified_Grad_PsiRatio, PE, and Psi. 

3.23.3.11 void QMCFunctions::writeCorrelatedSampling-
Configuration (ostream & strm) 

Writes the state of this object to a stream for use in correlated sampling calcu­
lations. 

Parameters: 
stNn output stream 

Definition at line 300 of file QMCFunctions.cpp. 

References QM CPotentiaLEnergy: :getEnergyO, Q M CSlater: :getGradPsi­
RatioO, QMCJastrow: :getJ astrowO, and QMCSlater::getLaplacianPsiRatioO. 

Referenced by QMCwalker::writeCorrelatedSamplingConfigurationO. 

3.24 QMCInitializeWalker Class Reference 

Interface to algorithms which generate new walkers for a QMC calculation. 

Inheritance diagram for QMCInitializeWalker:: 

QMCInitializeWalker 

QMCMikesJackedWalkerlnitialization 

Public Methods 

• virtual ~QMClnitialize Walker 0 
Virtual destructor. 
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3.25 QMClnitializeWalkerFactory Class Reference 

• virtual Array2D< double> initializeWalkerPosition 0=0 

Generates a new walker. 

3.24.1 Detailed Description 

Interface to algorithms which generate new walkers for a QMC calculation. 

A good algorithm will generate walkers which require little time for the Metropo­
lis algorithm to be equilibrated. 

Definition at line 25 of file QMCInitializeWalker.h. 

3.24.2 Member Function Documentation 

3.24.2.1 virtual Array2D<double> QMClnitializeWalker::initialize­
Walker Position 0 [pure virtual) 

Generates a new walker. 

Returns: 
new walker configuration represented by a N x 3 matrix 

Implemented in QMCMikesJackedWalkerlnitialization (p.96). 

Referenced by QMCwalker::initialize WalkerPositionO. 

3.25 QMCInitializeWalkerFactory Class Reference 

Object factory which returns the correct QMCInitialize walker when a string 
keyword describing the correlation function is provided. 

Static Public Methods 

• QMClnitializeWalker • initializeWalkerFactory (QMCInput 
.input, string &type) 

Returns the correct QMCInitializeWalker (p.72) when a string keyword 
describing the initialization method is provided. 

3.25.1 Detailed Description 

Object factory which returns the correct QMClnitialize walker when a string 
keyword describing the correlation function is provided. 
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3.26 QMCJastrow Class Reference 

Definition at line 28 of file QMClnitializeWalkerFactory.h. 

3.25.2 Member Function Documentation 

3.25.2.1 QMCInitializeWalker 
Factory::initialize Walker Factory 
type) [static) 

* QMCInitialize Walker-
(QMCInput * input, string & 

Returns the correct QMCInitialize Walker (p. 72) when a string keyword de­
scribing the initialization method is provided. 

Parameters: 
input input input data for the calculation 

type string describing which initialization algorithm to choose 

Returns: 
the selected QMCInitialize Walker (p. 72) method. 

Definition at line 16 of file QMCInitializeWalkerFactory.cpp. 

Referenced by QM Cwalker: :ini tialize Walker Position () . 

3.26 QMCJastrow Class Reference 

This class calculates the value of the Jastrow function and it's first two deriva­
tives. 

Public Methods 

• void initialize (QMClnput ,input) 

Initializes the class with the data controling the calcu.lation. 

• void evaluate (Array2D< double> &X) 

Evaluates the lastrow function and it 's derivatives at X using the 
QMCJastrowParameters (p.83) stored in the QMClnput class. 

• void evaluate (QMCJastrowPararneters &JP, Array2D< double> 
&X) 

Evaluates the Jastrow function and it's derivatives at X using a given set of 
QMCJastrowParallleters (p.83). 

• double getJastrow 0 
Gets the value of the Jastrow function for the last evaluated electronic con­
figuration and parameter set. 
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3.26 QMCJastrow Class Reference 

• double getLnJ astrow () 

Gets the value of the natural log of the Jastmw function jar the lasi evaluated 
electronic configuration and parameter set. 

• Array2D< double> * getGradientLnJastrow () 

Gets the gradient a/ihe natural log a/the Jastrow function with respect to the 
cartesian electronic coordinates for the last evaluated electronic configuration 
and parameter set. 

• double getLaplacianLnJ astrow () 

Gets the laplacian ajihe natural log a/ihe Jastrow function with respect to the 
cartesian electronic coordinates for the last evaluated electronic configuration 
and parameter set. 

3 .26.1 Detailed Description 

This class calculates the value of the Jastrow function and it's first two deriva­
tives. 

The wavefunction is assumed to be of the form 

WQMC = WTria/J 

where WTrial is a wavefunction calculated using a standard QM method and 

J = exp(:Z= Ui,j(r;,j)) 

is a Jastrow type correlation function. Uij(rij) are QMCCorrelationFunction 
(p.57) describing the interactions of particles i and j. 

Definition at line 46 of file QMCJastrow.h. 

3.26.2 Member Function Documentation 

3.26.2.1 void QMCJastrow::evaluate (QMCJastrowParameters & 
JP, Array2D< double> & X) 

Evaluates the Jastrow function and it's derivatives at X using a given set of 
QMCJastrowParameters (p.83). 

Parameters: 
JP Jastrow parameters to use during the evaluation 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 
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3.26 QMCJastrow Class Reference 

Definition at line 48 of file QMCJastrow.cpp. 

References Array2D< double >::allocateO, Array2D< T >::dimlO, Array2D< 
T >::dim20, QMCJastrowElectronElectron::evaluateO, QMCJastrowElectron­
Nuclear: :eval uateO, QM CJ astrow ElectronElectron: :getGradientLnJ astrow() , 
QM CJ astrow ElectronN uclear: :getGradientLnJ astrowO, QM CJ astrow Electron­
Electron::getLaplacianLnJ astrowO, QMCJ astrow ElectronN uclear::get­
LaplacianLnJ astrow() , QMCJ astrowElectronElectron::getLnJ astrowO, and 
QMCJastrowElectronNuclear::getLnJastrowO· 

3.26.2.2 void QMCJastrow::evaluate (Array2D< double> & X) 

Evaluates the Jastrow function and it's derivatives at X using the 
QMCJastrowParameters (p.83) stored in the QMClnput class. 

ParalTIeters: 
X 3N dimensional configuration of electrons represented by a N x 3 matrix 

Definition at line 43 of file QMCJastrow.cpp. 

Referenced by QMCFunctions::evaluateO. 

3.26.2.3 Array2D< double> * QMCJastrow::getGradientLnJastrow 

o 
Gets the gradient of the natural log of the J astrow function with respect to the 
cartesian electronic coordinates for the last evaluated electronic configuration 
and parameter set. 

V'ln(J) = V'L;Ui,j(r"j) 

Returns: 
gradient natural log of the J astrow function (V'ln( J) = V' L; Ui,j (ri,j)) 

Definition at line 33 of file QMCJastrow.cpp. 

3.26.2.4 double QMCJastrow::getJastrow 0 
Gets the value of the Jastrow function for the last evaluated electronic configu­
ration and parameter set. 

J = exp(L; Ui,j(ri,j)) 

Returns: 
Jastrow function value (J = exp(L;ui,j(ri,j)))' 

Definition at line 23 of file QMCJastrow.cpp. 

Referenced by QMCFunctions::writeCorrelatedSamplingConfigurationO. 
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3.26.2.5 double QMCJastrow::getLaplacianLnJastrow 0 
Gets the laplacian of the natural log of the Jastrow function with respect to the 
cartesian electronic coordinates for the last evaluated electronic configuration 
and parameter set. 

\7'ln(J) = \7' L::Ui.j(Ti,j) 

Returns: 
gradient natural log of the Jastrow function (\72 In( J) = \7 2 L:: Ui,j h,j)) 

Definition at line 38 of file QMCJastrow.cpp. 

3.26.2.6 double QMCJastrow::getLnJastrow 0 
Gets the value of the natural log of the Jastrow function for the last evaluated 
electronic configuration and parameter set. 

In(J) = "u' '(T ' .) U 1 , j t,j 

Returns: 
natural log of the Jastrow function (In(J) = L:: ui,jh, j )) 

Definition at line 28 of file QMCJastrow.cpp. 

3.26.2.7 void QMCJastrow::initialize (QMClnput * input) 

Initializes the class with the data controling the calculation. 

Parameters: 
input input data for the calculation 

Definition at line 15 of file QMCJastrow.cpp. 

References QMCJastrowElectronElectron::initializeO, and QMCJ astrow­
ElectronN uclear: :ini tialize O. 

Referenced by QMCReadAndEvaluateConfigs::initializeO, and QMCFunc­
tions::initializeO· 

3.27 QMCJastrowElectronElectron Class Reference 

This class calculates the value of the electron-electron part of the J astrow func­
tion and it's first two derivatives. 
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3.27 QMCJastrowElectronElectron Class Reference 

Public Methods 

• void initialize (QMClnput ,input) 

Initializes the class with the data controling the calculation. 

• void evaluate (QMCJastrowPararneters &JP, Array2D< double> 
&X) 

Evaluates the electron-electron Jastrow function and it's derivatives at X 
using a given set of QMCJastrowParameters (p.83). 

• double getLnJastrow () 

Gets the value of the natural log of the electron-electron Jastrow function for 
the last evaluated electronic configuration and parameter set. 

• Array2D< double> , getGradientLnJastrow () 

Gets the gradient of the natural Jog of the electron-electron Jastrow func ­
tion with respect to the cartesian electronic coordinates for the last evaluated 
electronic configuration and parameter set. 

• double getLaplacianLnJastrow () 

Gets the laplacian of the natural log of the electron-electron Jastrow func­
tion with respect to the cartesian electronic coordinates jor the last evaluated 
electronic configuration and parameter set. 

3.27.1 Detailed Description 

This class calculates the value of the electron-electron part of the Jastrow func­
tion and it 's first two derivatives. 

The wavefunction is assumed to be of the form 

where WTrial is a wavefunction calculated using a standard QM method and 

J = exp( L Ui ,j(ri.j)) 

is a J astrow type correlation function. Uij (ri j) are QMCCorrelationFunction 
(p.57) describing the interactions of particles i and j. Th~ sum can be broken 
up into electron-electron and electron-nuclear components. 

Definition at line 41 of file QMCJastrowElectronElectron.h. 
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3.27 QMCJastrowElectronElectron Class Reference 

3.27.2 Member Function Documentation 

3.27.2.1 void QMCJastrowElectronElectron::evaluate 
(QMCJastrowParallleters & JP, Array2D< double> & X) 

Evaluates the electron-electron Jastrow function and it's derivatives at X using 
a given set of QMCJastrowParallleters (p.83). 

Param.eters: 
JP Jastrow parameters to use during the evaluation 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 

Definition at line 60 of file QMCJastrowElectronElectron.cpp. 

References Array2D< double >::allocateO, Array2D< T >::dim10, 
QMCCorrelationFunction::evaluateO, QMCCorrelationFunction­
Parameters: :getCorrelationFunction(), QM CJ astrow Parameters: :getElectron-
DownElectronDownP arameters 0 , QM CJ astrow Parameters: :getElectron-
U pElectronDownParametersO, QM CJ astrow Parameters: :getElectron U p-
Electron U pParameters 0, QM C CorrelationFunction: :getFirstDerivati ve-
Value(), QMCCorrelationFunction::getFunction Value() , and QMCCorrelation­
Function: :getSecondDerivative Value (). 

Referenced by QMCJastrow::evaluate(). 

3.27.2.2 Array2D< double> * QMCJastrowElectronElectron::get­
GradientLnJastrow 0 
Gets the gradient of the natural log of the electron-electron Jastrow function 
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set. 

'Vln(J) = 'VL:Ui,j(Ti,j) 

Returns: 
gradient natural log of the electron-electron Jastrow function ('V In(J) 
'V L: Ui,j(Ti,j» 

Definition at line 50 of file QMCJastrowElectronElectron.cpp. 

Referenced by QMCJastrow::evaluate(). 

3.27.2.3 double 
Jastrow 0 

QMCJastrowElectronElectron::getLaplacianLn-

Gets the laplacian of the natural log of the electron-electron J astrow function 
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set. 
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3.28 QMCJastrowElectronNuclear Class Reference 

'\7' In(J) = '\7 2 " U - -(r - -) L...- ~,) 1,) 

Returns: 
gradient natural log of the electron-electron J astrow function ('\72 In( J) = 
'\7' "u- -(r- -)) ~ l,J ~,J 

Definition at line 45 of file QMCJastrowElectronElectron.cpp. 

Referenced by QMCJastrow::evaluateO. 

3.27.2.4 double QMCJastrowElectronElectron::getLnJastrow 0 
Gets the value of the natural log of the electron-electron J astrow function for 
the last evaluated electronic configuration and parameter set. 

In(J) = "u- ·(r- -) L...- t,) t,J 

Returns: 
natural log of the electron-electron Jastrow function (In(J) = L: Ui,j(ri,j)) 

Definition at line 55 of file QMCJastrowElectronElectron.cpp. 

Referenced by QMCJastrow::evaluateO. 

3.27.2.5 void QMCJastrowElectronElectron::initialize (QMClnput * 
input) 

Initializes the class with the data controling the calculation. 

Parameters: 
input input data for the calculation 

Definition at line 15 of file QMCJastrowElectronElectron.cpp. 

Referenced by QMCJastrow::initializeO. 

3.28 QMCJastrowElectronNuciear Class Reference 

This class calculates the value of the electron-nuclear part of the Jastrow func­
tion and it's first two derivatives. 

Public Methods 

• void initialize (QMClnput .input) 

Initializes the class with the data controling the calculation. 
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3.28 QMCJastrowElectronNuciear C lass R eference 

• void e valuate (QMCJastrowPara m e t er s &J P, Array2D < double> 
&X) 

Evaluates the electron· nuclear Jastrow funct ion and it's derivatives at X 'US­

ing a given set oj Q M CJast r o wPar a m e t e r s (p.83). 

• double getLnJastrow 0 
Gets the value of the natural log of the electron-nuclear Jastrow junction for 
the last evaluated electronic configuration and parameter set. 

• Array2D < double> * getGradien t LnJastrow 0 
Gets the gradient of the natural log of the electron -nuclear Jastrow fu nc­
tion with respect to the cartesian electronic coordinates for the last evaluated 
electronic configuration and parameter set. 

• double getLaplacianLnJastrow 0 
Gets the lapladan of the natural log of the electron-nuclear Jastrow /unc­
tion with respect to the cartesian electronic coordinates for the last evaluated 
electronic configuration and parameter set . 

3 .28 .1 D et a iled Descript ion 

This class calculates t he value of t he electron-nuclear part of t he J astrow func­
t ion and it's first two derivatives. 

The wavefunction is assumed to be of t he form 

WQ MC = WTr ial J 

where WTria l is a wavefunction calculated using a standard QM method and 

J = exp(L ui.j(ri ,j » 

is a J astrow type correlation function. Uij(rij) are QMC Correla tionFunction 
(p .57) describing t he interactions of particles i and j. T he sum can be broken 
up into electron-electron and electron-nuclear components. 

Defini t ion at line 44 of file QMCJ astrowElectronNuclear.h. 

3.28.2 M ember Function Docume nt a t ion 

3.28.2.1 void QMCJastrowElectronNuciear::evaluate 
(QMCJastr owParameters & JP, Array2D < double > & X) 

Evaluates the electron-nuclear J astrow function and it's derivatives at X using 
a given set of QMCJastrowParameter s (p.83). 
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3.28 QMCJastrowElectronNuclear Class Reference 

Parameters: 
JP Jastrow parameters to use during the evaluation 

X 3N dimensional configuration of electrons represented by a N x 3 matrix 

Definition at line 62 of file QMCJastrowElectronNuclear.cpp. 

References Array2D< double >::allocate(), ArraylD< T >::diml(), 
Array2D< T >::diml(), QMCCorrelationFunction::evaluate(), QMCJastrow-
Parameters: :getElectronDownN uclear Parameters (), QM CJ astrow-
Parameters: :getElectron U pN uclear Parameters () , QM CCorrelation-
Function: :getFirstDeri vati ve Val ue() l QM CCorrelationFunction: :getFunction­
Value(), QMCJastrowParameters::getNucleiTypes(), and QMCCorrelation­
Function: :getSecondDerivative Value(). 

Referenced by QMCJastrow::evaluate(). 

3.28.2.2 Array2D< double > * QMCJastrowElectronNuclear::get­
GradientLnJ astrow 0 
Gets the gradient of the natural log of the electron-nuclear J astrow function with 
respect to the cartesian electronic coordinates for the last evaluated electronic 
configuration and parameter set. 

'\lln(J) = '\l'L,ui,j(ri,j) 

Returns: 
gradient natural log of the electron-nuclear Jastrow function ('\lln(J) 
'\l 'L, Ui,j(ri,j» 

Definition at line 52 of file QMCJastrowElectronNuclear.cpp. 

Referenced by QMCJastrow::evaluate(). 

3.28.2.3 double 
Jastrow 0 

QM CJ astrow ElectronN uclear: :getLaplacianLn-

Gets the laplacian of the natural log of the electron-nuclear Jastrow function 
with respect to the cartesian electronic coordinates for the last evaluated elec­
tronic configuration and parameter set. 

Returns: 
gradient natural log of the electron-nuclear Jastrow function ('\l2In(J) 
'\l2" U· ·(r· .» o ~ ,J Z,J 

Definition at line 47 of file QMCJastrowElectronNuclear.cpp. 

Referenced by QMCJastrow::evaluate(). 
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3.29 QMCJastrowParameters Class Reference 

3.28.2.4 double QMCJastrowElectronNuciear::getLnJastrow 0 
Gets the value of the natural log of the electron-nuclear Jastrow function for 
the last evaluated electronic configuration and parameter set. 

In(J) = 2: Ui,j(ri, ;) 

Returns: 
natural log of the electron-nuclear Jastrow function (In(J) = 2: ui,;(ri,;)) 

Definition at line 57 of file QMCJastrowElectronNucleaLcpp. 

Referenced by QMCJastrow::evaluateO. 

3,28.2.5 void QMCJastrowElectronNuciear::initialize (QMCInput * 
input) 

Initializes the class with the data controling the calculation. 

Parameters: 
input input data for the calculation 

Definition at line 15 of file QMCJastrowElectronNucleaLcpp. 

Referenced by QMCJastrow::initializeO. 

3.29 QMCJastrowParameters Class Reference 

This class contains all of the parameters and corelation functons from which the 
J astrow function is composed. 

Public Methods 

• QMCJastrowParameters 0 
Creates an instance of the class. 

• QMCJastrowParameters (const QMCJastrowParameters &rhs) 

Creates an instance of the class that is identical to another instance of the 
class. 

• void set Parameter Vector (ArraylD< double> &params) 

Sets the parameters describing the particle-particle interactions. 

• ArraylD< double> getParameters 0 
Gets the param eters describing the particle-particle interactions. 
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3.29 QMCJastrowParallleters Class Reference 

• QMCCorrelationFunctionParameters * getElectronUpElectron­
DownParameters () 

Gets the QMCCorrelationFunctionParameters (p.59) describing up­
down electron interactions. 

• QMCCorrelationFunctionParameters * getElectronUpElectron­
U pParallleters () 

Gets the QMCCorrelationFunctionParameters (p. 59) describing up~up 
electron interactions. 

• QMCCorrelationFunctionParameters 
ElectronDownParameters 0 * getElectronDown-

Gets the QMCCorrelationFunctionParameters (p.59) describing down­
down electron interactions. 

• ArraylD< QMCCorrelationFunctionParameters > * get­
Electron U pN ucIear Parallleters () 

Gets an array of QMCCorrelationFunctionParameters (p.59) describ­
ing up electron-nuclear interactions. 

• ArraylD< QMCCorrelationFunctionParameters > * get­
ElectronDownN uclear Parameters 0 

Gets an array of QMCCorrelationFunctionParameters (p.59) describ­
ing down electron-nuclear interactions. 

• ArraylD< string> * getNucleiTypes 0 
Gets an array which is a list of all the different types of nuclei in the molecule 
being calculated. 

• void operator= (const QMCJastrowParameters &rhs) 

Sets two QMCJastrowParameters ob}ects equal. 

• void read (ArrayID< string> &nucleitypes, boollinkparams, int nelup, 
int neldn, string runfile) 

Loads the state of the object from a file. 

Friends 

• ostream & operator« (ostream &strm, QMCJastrowParameters &rhs) 

Writes the state of the ob}ect to an output stream. 
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3.29 QMCJastrowParallleters Class Reference 

3.29.1 Detailed Description 

This class contains all of the parameters and corelation functons from which the 
Jastrow function is composed. 

The wavefunction is assumed to be of the form 

where WTrial is a wavefunction calculated using a standard QM method and 

is a Jastrow type correlation function. Uij (r ij) are QMCCorrelationFunction 
(p. 57) describing the interactions of particles i and j. The correlation functions 
are parameterized to allow optimization. This class contains the functions and 
their specific parameterizations. The interactions are parameterized in terms of 
"parameters" and "constants." "parameters" are modified during optimizations, 
and" constants" are not. 

Definition at line 48 of file QMCJastrowParameters.h. 

3.29.2 Constructor & Destructor Documentation 

3.29.2.1 QMCJastrowParameters::QMCJastrowParameters (const 
QMCJastrowParallleters & rhs) 

Creates an instance of the class that is identical to another instance of the class. 

Parameters: 
rhs object to copy 

Definition at line 614 of file QMCJastrowParameters.cpp. 

3.29.3 Member Function Documentation 

3.29.3.1 QMCCorrelationFunctionParallleters * QMCJastrow-
Parameters: :getElectronDownElectronDownParameters () 

Gets the QMCCorrelationFunctionPararneters (p.59) describing down­
down electron interactions. 

Returns: 
down-down electron interaction parameters 

Definition at line 588 of file QMCJastrowParameters.cpp. 

Referenced by QMCJastrowElectronElectron::evaluate(). 
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3.29 QMCJastrowParameters Class Reference 

3.29.3.2 ArraylD< QMCCorrelationFunctionParameters > * 
QMCJ astrowParameters: :getElectronDownN uclear Parameters () 

Gets an array of QMCCorrelationFunctionParameters (p.59) describing 
down electron-nuclear interactions. 

Returns: 
down electron-nuclear interaction parameters 

Definition at line 600 of file QMCJastrowParameters.cpp. 

Referenced by QMCJastrowElectronN uclear::evaluate(). 

3.29.3.3 QMCCorrelationFunctionParameters * 
P arameters::getElectronUpElectronDownParameters 

QMCJastrow-

o 
Gets the QMCCorrelationFunctionParameters (p. 59) describing up-down 
electron interactions. 

Returns : 
up-down electron interaction parameters 

Definition at line 576 of file QMCJastrowP·arameters.cpp. 

Referenced by QM CJ astrow ElectronElectron: :eval uate (). 

3.29.3.4 QMCCorrelationFunctionParameters * QMCJastrow-
Parameters: :getElectronUpElectronUpParameters () 

Gets the QMCCorrelationFunctionParameters (p.59) describing up-up 
electron interactions. 

Returns: 
up-up electron interaction parameters 

Definition at line 582 of file QMCJastrowParameters.cpp. 

Referenced by QMCJastrowElectronElectron::evaluate(). 

3.29.3.5 ArraylD< QMCCorrelationFunctionParameters > * 
QM CJ as trow Parameters: :getElectron U pN uclear Parameters 0 
Gets an array of QMCCorrelationFunctionParameters (p.59) describing 
up electron-nuclear interactions. 

Returns: 
up electron-nuclear interaction parameters 
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3.29 QMCJastrowParameters Class Reference 

Definition at line 594 of file QMCJastrowParameters.cpp. 

Referenced by QMCJ astrowElectronN uclear::evaluateO. 

3.29.3.6 ArraylD< 
Parameters 0 

double > QMCJastrowParameters::get-

Gets the parameters describing the particle-particle interactions. 

Returns: 
parameters describing particle-particle interactions. 

Definition at line 206 of file QMCJastrowParameters.cpp. 

References ArraylD< T >::allocateO, ArraylD< T >::diml0, ArraylD< 
QMCCorrelationFunctionParameters >::diml0, QMCCorrelationFunction­
Parameters: :getP ar ameters (), and QM CCorrelationFunctionP arameters: :get­
TotalN umberOfParametersO. 

3.29.3.7 void QMCJastrowParameters::operator= (const 
QMCJastrowParameters & rhs) 

Sets two QMCJastrowParameters objects equal. 

Parameters: 
rhs object to set this object. eqal to 

Definition at line 15 of file QMCJastrowParameters.cpp. 

References EdnEdn, EdnNuclear, EquivalentElectronUpDownParams, Eup­
Edn, EupEup, EupNuclear, NucleiTypes, NumberOfElectronsDown, Number­
OfElectronsUp, and NumberOfParameters. 

3.29.3.8 void QMCJastrowParameters::read (ArraylD< string> & 
nucleitypes, bool linkparams, int nelup, int neldn, string runfile) 

Loads the state of the object from a file. 

Parameters: 
nUcleitypes list of the different kinds of nuclei 

linkparams true if nuclear-electron interactions are strictly the same and 
false otherwise 

nelup number of up spin electrons 

neldn numer of down spin electrons 

runfile name of the file to be loaded 
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3.30 QMCLineSearch Class Reference 

Definition at line 385 of file QMCJastrowParameters.cpp. 

References Array lD< QMCCorrelationFunctionParameters >: :allocate(), 
ArraylD< QMCCorrelationFunctionParameters >::dimlO, ArraylD< 
string > ::diml 0, QMCCorrelationFunctionParameters::getParticlel Type 0 , 
Q M CCorrelationFunctionParameters: :getParticle2Type(), QM C Co~relation­
FunctionParameters: :read (), QM C CorrelationFunctionP arameters: :set­
Particlel TypeO, and QMCCorrelationFunctionParameters: :setParticle2TypeO. 

3.29.3.9 void QMCJastrowParameters::setParameterVector 
(ArraylD< double> & pamm8) 

Sets the parameters describing the particle-particle interactions. 

Parameters: 
params new set of parameters 

Definition at line 29 of file QMCJastrowParameters.cpp. 

References ArraylD< T >::allocateO, ArraylD< QMCCorrelation­
FunctionParameters >::dimlO, ArraylD< T >::dimlO , QMCCorrelation­
F\mctionParameters: :getTotalN umberOfParameters 0, QM C Correlation­
FunctionP arameters: :setP arameters(), QM CCorrelationFunction­
Parameters: :setParticle 1 TypeO, and QM C CorrelationFunctionP arameters: :set­
Particle2TypeO· 

3.30 QMCLineSearch Class Reference 

Abstract implementation of a line search numerical optimization algorithm. 

Inheritance diagram for QMCLineSearch:: 

QMCOptirnizationAlgorithm 

QMCLineSearch 

QMCSteepestDescent 

Public Methods 

• QMCLineSearch (QMCObjectiveFunction *function, QMCLine-
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3.30 QMCLineSearch Class Reference 

SearchStepLengthSelectionAlgorithm *stepAIg, int maxSteps, dou­
ble tol) 

Constructs and initializes an instance of this class. 

• virtual ~QMCLineSearch () 

Virtual destructor. 

• Array1D< double> optimize (Array1D< double> &initiaIGuess) 

Optimize the function starting from the provided initial guess parameters. 

Protected Methods 

• QMCObjectiveFunction * getObjectiveFunction 0 
Gets the objective function for the calculation. 

3.30.1 Detailed Description 

Abstract implementation of a line search numerical optimization algorithm. 

As is standard in the field, the optimization is a minimization. 

Definition at line 27 of file QMCLineSearch.h. 

3.30.2 Constructor & Destructor Documentation 

3.30.2.1 QMCLineSearch::QMCLineSearch (QMCObjective­
Function * function, QMCLineSearchStepLengthSelectionAlgorithm 
* stepAlg, int maxSteps, double tol) 

Constructs and initializes an instance of this class. 

Parameters: 
function objective function to optimize. 

stepAlg algorithm to use claculate the step length. 

maxSteps maximum number of steps to be performed during the line 
search. 

tol tolerance to converge the solution to. Calculation is converged when 

11 - ~I < to!. f(x;) 

Definition at line 15 of file QMCLineSearch.cpp. 
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3.31 QMCLineSearchStepLengthSelectionAlgorithrn Class Reference 

3.30.3 MeIDber Function Documentation 

3.30.3.1 Array1D< double> QMCLineSearch::optimize (Array1D< 
double> & initial Guess) [virtual] 

Optimize the function starting from the provided initial guess parameters. 

Parameters: 
initialGues8 initial guess parameters for the optimization. 

Returns: 
optimized parameters. 

Implements QMCOptirnizationAlgorithrn (p.107). 

Definition at line 31 of file QMCLineSearch.cpp. 

References Array1D< T >::dim10. QMCObjectiveFunction::evaluateO, and 
QM COb jecti veFunctionResul t: :getScore O. 

3.31 QMCLineSearchStepLengthSelectionAlgorithm 
Class Reference 

Interface to algorithms which determine the proper step length to use during a 
line search optimization (QMCLineSearch (p. 88)). 

Inheritance diagram for QMCLineSearchStepLengthSelectionAlgorithm:: 

QMCLineSearchStepLengthSelectionAlgorithm 

QMCMikesBracketingStepLengthSelector 

Public Methods 

• virtual ~QMCLineSearchStepLengthSelectionAlgorithrn 0 

Virtual destructor . 

• virtual double stepLength (QMCObjectiveFunction .function, 
Array1D< double > &position, Array1D< double > &search­
Direction)=O 

Calculates the step length to use when performing a line search optimization. 
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3.32 QMCLineSearchStepLengthSelectionFactory Class Reference 

3.31.1 Detailed Description 

Interface to algorithms which determine the proper step length to use during a 
line search optimization (QMCLineSearch (p. 88)). 

Definition at line 23 of file QMCLineSearchStepLengthSelectionAlgorithm.h. 

3.31.2 Member Function Documentation 

3.31.2.1 virtual double QMCLineSearcbStepLengthSelection­
Algorithlll::stepLength (QMCObjectiveFunction * junction, 
Array1D< double > & position, Array1D< double > & search­
Direction) [pure virtual] 

Calculates the step length to use when performing a line search optimization. 

Parameters: 
function objective function being optimized. 

position current location of the optimization. 

searchDirection direction to optimize along. 

Implemented in QMCMikesBracketingStepLengthSelector (p.95). 

3.32 QMCLineSearchStepLengthSelectionFactory 
Reference 

Class 

Object factory which returns the correct QMCLineSearchStepLength­
SelectionAlgorithrn (p. 90) when a string keyword describing the correlation 
function is provided. 

Static Public Methods 

• QMCLineSearchStepLengthSelectionAlgorithm * factory (string 
&Type) 

Returns the correct QMCLineSearchStepLengthSelectionAlgorithm 
(p.90) when a string keyword describing the correlation function is provided. 

3.32.1 Detailed Description 

Object factory which returns the correct QMCLineSearchStepLength­
SelectionAlgorithrn (p. 90) when a string keyword describing the correlation 
function is provided. 

Definition at line 29 of file QMCLineSearchStepLengthSelectionFactory.h. 
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3.33 QMCManager Class Reference 

3.33 QMCManager Class Reference 

Controls the major sections of a QMC calculation. 

Public Methods 

• QMCManager () 

Creates an uniniiialized instance of this class. 

• ~QMCManager () 

Destroys this object, cleans up the memory! and closes all open streams. 

• void initialize (int argc, char **argv) 

Initializes this object and loads the input data for the calculation. 

• void finalize () 

Prepares the calculation to terminate. 

• void run () 
Performs a QMC calculation. 

• void optimize 0 
Optimizes the parameters in a variational QMC (VMC) calculation using 
the correlated sampling method. 

• void zeroOut 0 
Zeroes out all of the statistical data calculated by this object. 

• void writeRestart 0 
Writes the restart file for the calculation. 

• void writeThningData (ostream &strm) 

Writes the timing data to a stream. 

• QMClnput * getlnputData 0 
Gets the input data for the calculation. 

• ostream * getResultsOutputStream 0 
Gets the stream for outputting results from a calculation. 
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3.33 QMCManager Class Reference 

Friends 

• ostream & operator« (ostream &strm, QMCManager &rhs) 

Writes the current QMC results calculated by this object to an output stream 
in a human readable fo rmat. 

3.33.1 Detailed Description 

Controls the major sections of a QMC calculation. 

This allows a QMC calculation to be run and parameters to be optimized. 

Definition at line 41 of file QMCManager.h. 

3.33.2 Member Function Documentation 

3.33.2.1 QMClnput * QMCManager::getInputData 0 
Gets the input data for the calculation. 

Returns: 
input data for the calculation . 

. Defini tion at line 769 of file QMCManager. cpp. 

3.33.2.2 ostrealll * QMCManager::ge tResuitsOutputStrealll 0 
Gets the stream for outputting results from a calculation. 

Returns: 
output stream for results. 

Definition at line 775 of file QMCManager. cpp. 

3.33.2.3 void QMCManager::initialize (int arge, char ** argv) 

Init ializes t his object and loads the input data for t he calculation. 

Parameters: 
arge number of command line arguments. 

argv command line arguments. 

Definition at line 25 of file QMCManager.cpp . 

References QMCrun::initializeO. 
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3.34 QMCMikesBracketingStepLengthSe lector Class Reference 

3.33.2.4 void QMCManager::run 0 
Performs a QMC calculation. 

The specifics of the calculation are prescribed in the input. 

Defini t ion at line 241 of file QMCManager.cpp. 

References QM CStopwatches: :getlni tializationS topwatchO, 
Q M CS topwatches: :getPropagationStopwatch 0, QM Crun: :getPropert ies 0, 
Stopwatch::start(), QMCrun::step(), Stopwatch::st op(), QMCrun::write­
CorrelatedSamplingConfigurations (), Q MCrun:: wri teEnergies(), 
QMCrun::zeroOut(), and QMCproperties::zeroOut(). 

3.33.2.5 void QMCManager::writeTimingData (ostream & strm) 

Writes the t iming data to a stream. 

This is only valid after finalize is called and only on the root node. 

Param eters: 
strm stream to write timing information to. 

Definition at line 541 of file QMCManager.cpp. 

3.34 QMCMikesBracketingStepLengthSelector Class Ref­
erence 

Algorithm t o determine the step lengt.h for a line search optimization developed 
by Michael Todd Feldmann. 

Inheritance diagram for QMCMikesBracketingStepLengthSelector:: 

QMCLineSearchStepLengthSelectionAlgorithm 

QMCMikesBracketingStepLengthSelector 

Public Methods 

• double stepLength (QMCObjectiveFunction .function, ArraylD< 
double> &position, ArraylD< double> &searchDirection) 

Calculates the step length to use when performing a line search optimization. 
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3.35 QMCMikesJackedWalkerInitialization Class Reference 

3.34.1 Detailed Description 

Algorithm to determine the step length for a line search optimization developed 
by Michael Todd Feldmann. 

This algorithm is purely huristic and does not insure the Wolfe conditions or 
other such properties. Again, much work could be done to do this part of a line 
search better. 

Definition at line 29 of file QMCMikesBracketingStepLengthSelector.h. 

3.34.2 Member Function Documentation 

3.34.2.1 double QMCMikesBracketingStepLengthSelector::step­
Length (QMCObjectiveFunction , function, Array1D< double> & 
position, Array1D< double> & searchDirection) [virtual] 

Calculates the step length to use when performing a line search optimization. 

Parameters: 
function objective function being optimized. 

position current location of the optimization. 

searchDirection direction to optimize along. 

Implements QMCLineSearchStepLengthSelectionAlgorithrn (p. 91). 

Definition at line 15 of file QMCMikesBracketingStepLengthSelector.cpp. 

3.35 QMCMikesJackedWalkerInitialization Class Refer­
ence 

This is the algorithm made to initialize walkers. 

Inheritance diagram for QMCMikesJackedWalkerlnitialization:: 

QMCInitializeWalker 

QMCMikesJ ackedW alkerinitialization 

Public Methods 

• QMCMikesJackedWalkerlnitialization (QMCInput ,input) 
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3.35 QMCMikesJackedWalkerInitialization Class Reference 

Create an instance of the clas and initializes it . 

• Array2D< double> initializeWalkerPosition 0 
Generates a new walker. 

3.35.1 Detailed Description 

This is the algorithm made to initialize walkers. 

It is based on figuring out how many electrons should be on each atom followed 
by putting them in a gaussian around the atom. This is by far a method which 
needs a serious overhaul. This was a quick fix to initializing the walkers and 
the ideas are borrowed from CASINO. This method of initializing is probably 
very inefficient. This goes without mentioning how ugly the code is. This is 
a great place for further future work. A huge dent will likely be made on the 
"Initialization Catastrophe" problem here. 

Definition at line 35 of file QMCMikesJackedWalkerInitialization.h. 

3.35.2 Constructor & Destructor Documentation 

3.35.2 .1 QMCMikesJackedWalkerlnitialization::QMCMikesJacked­
WalkerInitialization (QMCInput * input) 

Create an instance of the das and initializes it. 

Parameters: 
input input data for the calculation 

Definition at line 19 of file QMCMikesJackedWalkerInitialization.cpp. 

3.35.3 Member Function Documentation 

3.35.3.1 Array2D< double > 
Initialization::initialize Walker Position 0 
Generates a new walker. 

Returns: 

QMCMikesJ ackedWalker­
[virtual] 

new walker configuration represented by a N x 3 matrix 

Implements QMCInitializeWalker (p. 73). 

Definition at line 24 of file QMCMikesJackedWalkerInitialization.cpp. 
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3.36 QMCMolecule Class Reference 

3.36 QMCMolecule Class Reference 

Describes a particular molecular geometry. 

Public Methods 

• QMCMolecule 0 
Creates an instance of the class. 

• void initialize (iut nAtoms) 

Initializes the object. 

• int getNumberAtoms 0 
Gets the number of atoms in the molecule. 

• QMCMolecule operator= (const QMCMolecule &rhs) 

Sets two QMCMolecule objects equal. 

• void read (string runfile) 

Loads the state of the object from a file. 

Public Attributes 

• ArraylD< string> Atom..Labels 

Array containing the labels for the atoms. 

• Array2D< double> Atom-Positions 

Array contain ing the 3-dimensional cartesian posit ion s fo r the atoms. 

• ArraylD< int > Z 

Array containing the nuclear charges for the atoms. 

• ArraylD< string> NucleiTypes 

A rray containing all of the different atom labels used in the molecule. 

Friends 

• istream & operator» (istream &strm, QMCMolecule &rhs) 

Loads the state of the object from an input stream. 
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3.36 QMCMolecule Class Reference 

• ostream & operator« (ostream &strm, QMCMolecule &rhs) 

Writes the state 0/ the object to an output stream. 

3.36.1 Detailed Description 

Describes a particular molecular geometry. 

The geometry is defined by 3-dimensional cartesian coordinates for each atom, 
with specified charges and types. 

Definition at line 34 of file QMCMolecule.h. 

3.36.2 Member Function Documentation 

3.36.2.1 int QMCMolecule::getNumberAtoms 0 
Gets the number of atoms in the molecule. 

Returns: 
number of atoms in the molecule. 

Definition at line 25 of file QMCMolecule.cpp. 

3.36.2.2 void QMCMolecule::initialize (int nAtoms) 

Initializes the object. 

Parameters: 
nAtom8 number of atoms in the molecule. 

Definition at line 20 of file QMCMolecule.cpp. 

3.36.2.3 QMCMolecule QMCMolecule: :operator= (canst QMC­
Molecule & rhs) 

Sets two QMCMolecule objects equal. 

Parameters: 
rhs object to set this object equal to. 

Definit ion at line 31 of file QMCMolecule.cpp. 

References Atom...Labels, Atom_Positions, Natoms, and Z. 
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3.37 QMCObjectiveFunction Class Reference 

3.36.2.4 void QMCMolecule::read (string runfile) 

Loads the state of the object from a file. 

Parameters: 
runfile file to load the object state from. 

Definition at line 60 of file QMCMolecule.cpp. 

References ArraylD< string >::allocateO, Atom-Labels, ArraylD< string 
>::dimlO, and NucleiTypes. 

3.36.3 Member Data Documentation 

3.36.3.1 ArraylD<string> QMCMolecule::Atom-Labels 

Array containing the labels for the atoms. 

The ith element is the label for the ith atom. 

Definition at line 66 of file QMCMolecule.h . 

Referenced by operator=O, and readO. 

3.36.3.2 Array2D< double> QMCMolecule::AtomJ>ositions 

Array containing the 3-dimensional cartesian positions for the atoms. 

The ith element is the position for the ith atom. 

Definition at line 74 of file QMCMolecule.h. 

Referenced by QMCBasisFunction::getGradPsiO, QMCBasisFunction::get­
LaplacianPsiO, QMCBasisFunction::getPsiO, and operator=O . 

3.36.3.3 ArraylD<int> QMCMolecule: :Z 

Array containing the nuclear charges for the atoms. 

The ith element is the charge for the ith atom. 

Definition at line 82 of file QMCMolecule.h. 

Referenced by operator=O. 

3.37 QMCObjectiveFunction Class Reference 

Objective function optimized during a variational QMC (VMC) calculation to 
find the optimal wavefunction parameters. 

Generated on Wed May 1 11:34:48 2002 fOr QMeBeo.ver by Doxygen 

99 



3.37 QMCObjectiveFunction Class R efer ence 

Public Methods 

• void initialize (QMClnput *input) 

Initializes this object. 

• QMCObjectiveFunctionResuit evaluate (ArraylD< double > 
&params) 

Evaluates and returns the result oj the objective junction evaluated with a 
single set of parameters. 

• ArraylD< QMCObjectiveFunctionResult > evaluate (ArraylD< 
ArraylD< double> > &params) 

Evaluates and returns the result 0/ the objective junction evaluated with m ul­
t iple single sets of parameters. 

• Array1D< double> grad (ArraylD< double> &params) 

Evaluates and returns the gradient of the objective junction fo r one set of 
parameters. 

• Array1D < Array1D < double> > grad (Array1D < Array1D < dou­
ble > > &params) 

Evaluates and returns the gradient of the objective function /01' multiple sets 
0/ parameters. 

3.37.1 D etailed Description 

Objective function optimized during a variational QMC (VMC) calculation to 
find the optimal wavefunction parameters. 

As is standard in the field of numerical optimization, optimization means min­
imization. The particular form of the objective function is determined by pa­
rameters in the input file. 

Definition at line 35 of file QMCObjectiveFunction.h. 

3.37.2 Member Function Documentation 

3.37.2.1 Array1D < QMCObjectiveFunctionResuit > 
QMCObjectiveFunction::evaluate (Array1D < Array1D< double 
> > & params) 

Evaluates and returns the result of the objective function evaluated with mul­
tiple single sets of parameters. 
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3.37 QMCObjectiveFunction Class Refere n ce 

Parameters: 
params sets of parameters to evaluate the objective function with . 

Returns: 
resul ts of t he objective function evaluations. The index of the input pa­
rameters corresponds to t he index of the returned values. 

Definition at line 21 of file QMCObjectiveFunction.cpp . 

References QM CReadAndEval uateConfigs: : rootCalculateProperties (). 

3.37.2.2 QMCObjectiveFunctionResuIt QMCObjective-
Function::evaluate (Array1D< double > & params) 

Evaluates and returns the result of the objective function evaluated with a single 
set of parameters. 

Parameters: 
params set of parameters to evaluate the objective function with. 

Returns: 
result of t he objective function evaluation . 

Defini tion at line 46 of fi le QMCObjectiveFunction.cpp. 

Referenced by QMCLineSearch::optimizeO. 

3.37.2.3 ArraylD< ArraylD< double > > 
Function::grad (ArraylD< Array1D < double > 

QMCObjective­
> & params) 

Evaluates and returns the gradient of the objective function for multiple sets of 
paramet ers, 

Parameters: 
params sets of parameters to evaluate the gradient with. 

Returns: 
gradients of the objective function. The index of the input parameters 
corresponds to the index of t he returned values . 

Defini t ion at line 60 of file QMCObjectiveFunction.cpp. 
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3.38 QMCObjectiveFunctionResult Class Reference 

3.37.2.4 Array1D < double > QMCObjectiveFunction::grad 
(Array1D< double> & params) 

Evaluates and returns the gradient of the objective function for one set of pa-
rameters. 

Parameters: 
params sets of parameters to evaluate the gradient with. 

Returns: 
gradient of the objective function. 

Definition at line 71 of file QMCObjectiveFunction.cpp. 

3.37.2.5 void QMCObjectiveFunction::initialize (QMCInput * in­
put) 

Initializes this object. 

This must be called before any other functions in this object are called. 

Parameters: 
input input data for the calculation 

Definition at line 15 of file QMCObjectiveFunction.cpp. 

References QMCReadAndEvaluateConfigs::initialize(). 

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO. 

3.38 QMCObjectiveFunctionResult Class Reference 

Results from the evaluation of an objective function during a QMC calculation. 

Public Methods 

• QMCObjectiveFunctionResult 0 
Creates a new uninitialized instance of this class. 

• QMCObjectiveFunctionResult (QMCInput . input, double energy­
Ave, double energyVar, double logWeightAve, double logWeightVar) 

Creates and initializes a new instance of this class. 

• QMCObjectiveFunctionResult 
&rhs) 

(QMCObjectiveFunctionResult 
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3.38 QMC ObjectiveFunction Result Class R efer ence 

Creates a new instance of this class and makes it equivalent to another in­
stance of this class . 

• double getLogW eightsAve 0 
Gets the average value of the natural log of the statistical weights for the 
configurations used in this fun ction evaluation. 

• double getLogWeightsVar 0 
Gets the variance of the natural log of the statistical weights for the configu­
rations used in this junction evaluation. 

• double getEnergy Ave 0 
Gets the calculated average energy value. 

• double get E n er gyVar 0 
Gets the calculated energy variance. 

• double get S cor e 0 
Gets a score fo r this function evaluation . 

• double getDerivativeScore 0 
Gets a score for this function evaluation that is to be used in calculating the 
derivative in a numerical optimization. 

• void oper ator= (QMCObjectiveFunctionResult &rhs) 

Sets two QMCObjectiveFunctionResult objects equal. 

Friends 

• ostream & operator « (ostream &strm, const QMCObjectiveF\ mction­
Resul t &rhs) 

Prints the contents of this object in a human readable format. 

3.38.1 D etailed Description 

Results from the evaluation of an objective function during a QMC calculation . 

T hese resul ts can t hen be used for numerical optimization or other functions. 

Definition at line 28 of file QMCObjectiveFunctionResult.h . 
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3.38 QMCObjectiveFundionResult Class R efe r e nce 

3.38.2 Constructor & D estruc tor Documentat ion 

3.38.2.1 QMC ObjectiveFunct ionResult::QMC ObjectiveFunction­
Result (QMClnput * input, d ouble energyAve, d ouble energyVar, 
double logWeightAve, double logWeightVar) 

Creates and initializes a new instance of this class. 

Parameters : 
input data input to control the calculation. 

energyAve calculated energy value 

energy Var calculated energy variance 

logWeightAve average value of t he natural log of the statistical weights 
of t he configurations. 

logWeightVar variance in the above quantity. 

Defini t ion at line 19 of file QMCObjectiveFunctionResul t.cpp. 

3.38.2.2 QMC ObjediveFunctionResult::QMCObjectiveFunction­
Result (QMCObjectiveFunctionResult & rhs) 

Creates a new instance of this class and makes it equivalent to another instance 
of this class. 

Parameters: 
rhs object to set t his equal to. 

Definition at line 36 of file QMCObjectiveFunctionResul t.cpp. 

3 .38.3 M ember Function Docume ntation 

3.38.3.1 doub le QMCObjediveFunct ionResult::getDerivativeScore 
o 
Gets a score for this function evaluation that is to be used in calculating the 
derivative in a numerical optimization. 

The algorithm used for arriving at this score is determined by the input data. 
The convergence of a numerical optimization can be modified by changing the 
score functions. 

Returns: 
score for the derivative evaluation. 

Definition at line 67 of file QMCObjectiveFunctionResul t.cpp. 

Genera ted o n W ed May 1 11:3 4 :48 2 0 02 for QMc Beaver b y Doxygen 

104 



3.38 QMCObjectiveFunctionResult Class Reference 

3.38.3.2 double QMCObjectiveFunctionResu1t::getEnergyAve 0 
Gets the calcuJated average energy value. 

Returns: 
calculated average energy value. 

Definition at line 52 of file QMCObjectiveFunctionResult.cpp. 

3.38.3.3 double QMCObjectiveFunctionResu1t::getEnergyVar 0 
Gets the calculated energy variance. 

Returns: 
calculated energy variance. 

Definition at line 57 of file QMCObjectiveFunctionResult.cpp. 

3.38.3.4 double QMCObjectiveFunctionResu1t::getLogWeightsAve 

o 
Gets the average value of the natural log of the statistical weights for the con­
figurations used in this function evaluation. 

Returns: 
average value of the natural log of the statistical weights. 

Definition at line 42 of file QMCObjectiveFunctionResult.cpp. 

3.38.3.5 double QMCObjectiveFunctionResu1t::getLogWeightsVar 
o 
Gets the variance of the natural log of the statistical weights for the configura­
tions used in this function evaluation. 

Returns: 
variance of the natural log of the statistical weights. 

Definition at line 47 of file QMCObjectiveFunctionResult.cpp. 

3.38.3.6 double QMCObjectiveFunctionResult::getScore 0 
Gets a score for this function evaluation. 

Better scores have lower values. The algorithm used for arriving at the searis 
is determined by the input data. The convergence of a numerical optimization 
can be modified by changing the score functions. 
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3.39 QMCOptiInizationAlgorithm Class Reference 

Returns: 
score for the function evaluation. 

Definition at line 62 of file QMCObjectiveFunctionResult.cpp. 

Referenced by QMCLineSearch::optimizeO. 

3.38.3.7 void QMCObjectiveFunctionResult::operator= 
(QMCObjectiveFunctionResult & rlts) 

Sets two QMCObjectiveFunctionResult objects equal. 

Parameters: 
rlts object to set this object equal to. 

Definition at line 144 of file QMCObjectiveFunctionResult.cpp. 

References energY-fLv€, energy_var, Input, log_weights-av€, log_weights_var, 
score, and score.ior_derivative. 

3.39 QMCOptimizationAlgorithm Class Reference 

Interface for numerical optimization algorithms. 

Inheritance diagram for QMCOptimizationAlgorithm:: 

QMCOptimizationAlgorithm 

CKGeneticAlgorithml QMCLineSearch 

QMCSteepestDescent 

Public Methods 

• virtual -QMCOptimizationAlgorithm 0 
Virtual destructor . 

• virtual ArraylD< double> optimize (ArraylD< double> &initial­
Guess)=O 

Optimize the function starting from the provided initial guess parameters. 
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3.40 QMCOptirnizationFactory Class R e fe rence 

3.39.1 Detailed Description 

Interface for numerical optimization algorithms. 

Definition at line 22 of file QMCOptimizationAlgorithm.h. 

3.39.2 Member Function Documentation 

3.39.2.1 virtual Array1D < double> 
Algorithm::optitnize (Array1D < double > 
virtual] 

QMCOptirnization­
& initialGuess) [pure 

Optimize the function starting from the provided initial guess parameters. 

Parameters: 
initial Guess initial guess parameters for the optimization. 

Returns: 
optimized parameters. 

Implemented in CKGeneticAigorithm1 (p.23), a nd QMCLineSearch 
(p.90). 

Referenced by QMCCorrelatedSamplingYMCOptimization::optimizeO. 

3.40 QMCOptimizationFactory Class Reference 

Object factory which returns the correct QMCOptirnizationAlgorithrn 
(p.106) specified in the calculation input data. 

Static Public Methods 

• QMCOptimizationAlgorithlll * optimizationAlgorithrnFactory 
(QMCObjectiveFunction &objFunc, QMCInput ,input) 

Returns the correct QMCOptimizationAlgorithm (p. 106) specified in the 
calculation input data. 

3.40.1 Detailed Description 

Object factory which returns the correct QMCOptirnizationAlgorithrn 
(p. 106) specified in the calculation input data. 

Optimization assumed to mean minimization, as is standard in the field. 

Definition at line 30 of file QMCOptimizationFactory. h. 
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3.41 QMCPolynolllial Class Reference 

3.40.2 Member Function Documentation 

3 .40.2.1 QMCOptirnizationAlgorithlll 
Factory::optirnizationAlgorithrnFactory 
& objFunc, QMCInput • input) [stat i c) 

• QMCOptilllization­
(QMCObjediveFunction 

Returns the correct QMCOptilllizat ionAlgorithm (p . 106) specified in the 
calculation input data. 

Parameters: 
objFunc object function to optimize. 

input input data to control the calculation. 

Definition at line 16 of file QMCOptimizationFactory.cpp. 

References QMCLineSearchStepLengthSelectionFactory::factoryO. 

Referenced by QMCCorrelatedSarnplingVMCOptimization::optimizeO. 

3.41 QMCPolynomial Class Reference 

An extension of Polynomial (p. 45) which adds QMC specific functionality. 

Inheritance diagram for QMCPolynomiai:: 

Public M ethods 

• QMCPolynomial 0 
Constructs an uninitialized instance of this class. 

• QMCPolynomial (Array1D < double> &coeffs) 

Constructs and initializes an intance of this class. 

• bool hasNonNegativeZeroes 0 
Determines if this polynomial has any nonvnegative real zeroes. 
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3.41 QMCPolynomial Class Reference 

• void initialize (Array1D< double> &coeffs) 

Initializes this object. 

• void evaluate (double x) 
Evaluates the function at x. 

• double get Function Value 0 
Gets the junction value at the last evaluated point. 

• double getFirstDerivative Value 0 
Gets the function's first deriviate at the last evaluated point. 

• double getSecondDerivativeValue 0 
Gets the junction's second deriviative at the last evaluated point. 

• Array1D< COlllplex > get Roots 0 
Gets the roots of the polynomial. 

Protected Methods 

• int getN UlllberCoefficients 0 
Gets the number of coefficients in the polynomial.' 

• double get Coefficient (int i) 

Gets the ith coefficient of the polynomial. 

3.41.1 Detailed Description 

An extension of Polynomial (p.45) which adds QMC specific functionality. 

Definition at line 22 of file QMCPolynomial.h. 

3.41.2 Constructor & Destructor DOClllllentation 

3.41.2.1 QMCPolynomial::QMCPolynomial (Array1D< double> & 
coeffs) 

Constructs and initializes an intance of this class. 

ParaIlleters: 

coeffs set of polynomial coefficients to use for the polynomial. 

Definition at line 19 of file QMCPolynomial.cpp. 
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3.41 QMCPolynOlllial Class Reference 

3.41.3 Member Function Documentation 

3.41.3.1 void PolynOlllial::evaluate (double x) [virtual, inherited] 

Evaluates the function at x. 

Parameters: 
x point to evaluate the function. 

Implements FunctionRltoRI (p.41). 

Definition at line 61 of file Polynomial.cpp. 

Referenced by PadeCorrelationFunction::evaluateO, FixedCuspPade­
CorrelationFunction: :eval uateO, Polynomial: :getFirstDerivati ve Val ueO) 
Polynomial::getFunction ValueO, and Polynomial::getSecondDerivative ValueO. 

3.41.3.2 double Polynomial::getCoefficient (int i) [protected, 
inherited] 

Gets the ith coefficient of the polynomial. 

Where the polynomial is defined such that 

n 

P(x) = LCiXi 
i=O 

where n is the order of the polynomial and Ci is the ith coefficient. 

Parameters: 
i index of the coefficient to return. 

Returns: 
ith coefficient of the polynomial. 

Definition at line 122 of file Polynomial.cpp. 

3.41.3.3 double Polynornial::getFirstDerivativeValue 0 [virtual, 
inherited] 

Gets the function's first deriviate at the last evaluated point. 

Returns: 
function's deriviative value. 
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3.41 QMCPolynomial Class Reference 

Implements FunctionRltoRl (p.41). 

Definition at line 97 of file Polynomial.cpp. 

References Polynomial::evaluateO. 

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate O. 

3.41.3.4 double 
inherited] 

Polynomial: : get Function Value 

Gets the function value at the last evaluated point. 

Returns: 
function value. 

Implements FunctionRltoRl (p.41). 

Definition at line 87 of file Polynomial.cpp. 

References Polynomial::evaluateO. 

o [vi rtual, 

Referenced by PadeCorrelationFunction::evaluateO, and FixedCuspPade­
CorrelationFunction: :eval uate O. 

3.41.3.5 int Polynomial::getNurnberCoefliciehts 0 [protected, 
inherited] 

Gets the number of coefficients in the polynomial. 

This is Oile larger than the order of the polynomial. 

Returns: 
number of coefficients in the polynomial. 

Definition at line 117 of file Polynomial.cpp. 

References ArraylD< double >::diml0. 

3.41.3.6 ArraylD< 
[inheri ted] 

COIDplex 

Gets the roots of the polynomial. 

Returns: 
roots of the polynomial. 

Exceptions: 

> Polynornial::getRoots o 

Exception (p.37) if problems were encounted during the root calculation. 
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3.41 QMCPolynomial Cia •• Reference 

Definition at line 127 of file P olynomial.cpp. 

References ArraylD < double >::diml O. 

Referenced by hasNonNegativeZeroesO. 

3.41.3.7 double 
[virtual, inherited] 

Polynomial: :getSecondDerivative Value 

Gets the function 's second deriviative at the last evaluated point. 

Returns: 
function's second derivative value. 

Implement. FunctionRltoRl (p.41). 

Definition at line 107 of file Polynomial.cpp. 

References Polynomial::evaluateO· 

o 

Referenced by PadeCorrelationFunction ::evaluateO, and FixedCuspPade­
CorrelationFunction::evaluate() . 

3.41.3.8 bool QMCPolynomial::hasN onNegativeZeroes 0 
Determines if this polynomial has any non-negative real zeroes. 

R eturns: 
true if the polynomial has a non-negative real zeros and false otherwise. 

Exce ptions: 
Exception (p.37) if problems were encounted during the calculation. 

Definition at line 23 of file QMCPolynomial.cpp. 

References ArraylD < T >::diml 0, and Polynomial::getRootsO. 

Referenced by PadeCorrelationFunction ::i. Singular O, and FixedCu' pPade­
CorrelationFunction: :isSingular O. 

3.41.3.9 void Polynornial::initialize (Array1D < double > & coeffs) 
[inheri ted) 

Init ializes this object. 

P arame ters: 
coeffs set of polynomial coefficients to use for the polynomial. 
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3.42 QMCPotentiaLEnergy Class Reference 

Definition a t line 39 of file Polynomial.cpp. 

References ArraylD < double >: :allotateO , and ArraylD < double >::dim l O. 

Referenced by PadeCorrelationFunction::initializeP arametersO, Fixed-
CuspPadeCorrelationFunction: :initiaIizeParametersO, and Polyno-
mial::PolynomiaIO· 

3.42 QMCPotentiaLEnergy Class Reference 

The potential energy of the system. 

Public Metbods 

• QMCPotentiaLEnergy 0 
Creates an instance of the class. 

• void initia lize (QMClnput _input) 
Initialize the object. 

• void evaluate (Array2D < double > &X) 

Evalu.ates the pot ential energy /01' the given electronic configuration. 

• double getEnergy 0 
Gets the potential energy of the las t configuration evaluated. 

• void opera tor= (const QMCPotentiaLEnergy &rhs) 
Sets two QMCPotentiaLEnergy objects equal. 

3.42.1 Detailed Description 

The potent ial energy of the syst em. 

Definition at line 29 of file QMCPotentiaLEnergy.h. 

3.42.2 Member Function Documentation 

3.42.2.1 void QMCPotential..Energy::evaluate (Array2D < double > 
&X) 

Evaluates the potential energy for the given electronic configuration. 

Parameters: 
X 3N dimensional configuration of electrons represented by a N x 3 matrix 
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3.43 QMCproperties Class Reference 

Definition at line 35 of file QMCPotentiaLEnergy.cpp. 

Referenced by QMCFunctions::evaluateO. 

3.42.2.2 void QMCPotentiaLEnergy::initialize (QMClnput * input) 

Initialize the object. 

Parameters: 
input data input to control the calculation 

Definition at line 29 of file QMCPotentiaI..Energy.cpp. 

Referenced by QMCFunctions::initializeO· 

3.42.2.3 void QMCPotential..Energy::operator= (const QMCPoten­
tial..Energy & rhs) 

Sets two QMCPotentiaLEnergy objects equal. 

Parameters: 
rhs object to set this object equal to 

Definition at line 19 of file QMCPotentiaLEnergy.cpp. 

References Energy_total, Input, P _ee, P _en, and P _nn. 

3.43 QMCproperties Class Reference 

All of the quantities and properties evaluated during a calculation. 

Public Methods 

• QMCproperties 0 
Creates a zeroed out instance oj the class and generates the MPI types iJthey 
have not been done. 

• void zeroOut 0 
Sets all oj the data in the object to zero. 

• QMCproperties operator+ (QMCproperties &rhs) 

Returns the sum oj two QMCproperties. 
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3.43 QMCproperties Class Reference 

• void toXML (ostream &strm) 

Writes the state of this object to an XML stream. 

• void readXML (istream &strm) 

Loads the state of this object from an XML stream. 

Public Attributes 

• QMCproperty energy 

Total energy of the system. 

• QMCproperty kineticEnergy 

Kinetic energy of the system. 

• QMCproperty potentialEnergy 

Potential energy of the system. 

• QMCproperty log Weights 

Log of the weights on the walkers. 

• QMCproperty acceptanceProbability 

Probability a trial move is accepted. 

• QMCproperty distanceMovedAccepted 

Average distance an accepted move travels. 

• QMCproperty distanceMovedTrial 

A verage distance for a trial move. 

Static Public Attributes 

• MPLDatatype MPLTYPE 

The MPI data type for a QMCproperties. 

• MPLOp MPLREDUCE 

The MPI operation for performing MPLRedu.ce on QMCproperties. 
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3.44 QMCproperty Class Reference 

Friends 

• ostream & operator« (ostream &strm, QMCproperties &rhs) 

Formats and prints the properties to a stream. 

3.43.1 Detailed Description 

All of the quantities and properties evaluated during a calculation. 

Definition at line 32 of file QMCproperties.h. 

3.43.2 Member Function Docurnentation 

3.43.2.1 void QMCproperties::readXML (istream & strm) 

Loads the state of this object from an XML stream. 

Parameters: 
stnn XML stream 

Definition at line 102 of file QMCproperties.cpp. 

References acceptanceProbability, 
MovedTrial, energy, kineticEnergy, 
Q M Cproperty: :readXML O. 

Referenced by QMCrun::readXMLO. 

distanceMovedAccepted, distance­
logWeights, I potentialEnergy, and 

3.43.2.2 void QMCproperties::toXML (ostream & strm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 58 of file QMCproperties.cpp. 

References acceptanceProbability, 
MovedTrial, energy, kineticEnergy, 
QMCproperty::toXMLO· 

Referenced by QMCrun::toXMLO. 

distanceMovedAccepted, distance­
logWeights, potentialEnergy, and 

3.44 QMCproperty Class Reference 

All of the statistical information used in calculating a quantity or property 
during a calculation. 
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3.44 QMCproperty Class Reference 

Public Methods 

• QMCproperty () 
Creates a zeroed out instance of the class and generates the MP I types if they 
have not been done. 

• void zero Out () 

Sets all of the data in the object to zero. 

• void newSalllple (double s, double weight) 

Adds a new daia sample to the object. 

• long getN ulllberSalllples () 

Gets the number of data samples entered into the object. 

• double get A verage () 

Gets the average of the data entered into the object. 

• double get Variance () 

Gets the variance of the data entered into the object. 

• double getSeriallyCorrelatedVariance () 

Gets the serially correlated variance of the data e~tered into the object. 

• double getStandardDeviation () 

Gets the standard deviation of the data entered into the object. 

• double getSeriallyCorrelatedStandardDeviation () 

Gets the serially correlated standard deviation of the data entered into the 
object. 

• QMCproperty operator+ (QMCproperty &rhs) 

Returns the sum of two QMCproperties (p.114). 

• void toXML (ostream &strm) 

Writes the state of this object to an XML stream. 

• void readXML (istream &strm) 

Loads the state of this object from an XML stream. 
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3.44 QMCproperty Class Reference 

Static Public Attributes 

• MPLDatatype MPLTYPE 
The MPI data type for a QMCproperty. 

• MPLOp MPLREDUCE 

Friends 

The MPI operation for performing MPLReduce on QMCproperties 
(po 114) 0 

• ostream & operator« (ostream &strm, QMCproperty &rhs) 

Formats and prints the property to a stream. 

3.44.1 Detailed Description 

All of the statistical information used in calculating a quantity or property 
during a calculation. 

Definition at line 40 of file QMCproperty.h. 

3.44.2 Member Function Documentation 

3.44.2.1 void QMCproperty::newSalllple (double s, double weight) 

Adds a new data sample to the object. 

Parameters: 
8 new sample data 

weight statistical weight of the sample 

Definition at line 94 of file QMCproperty.cpp. 

References QMCstatistic::newSample(). 

Referenced by QMCwalker::calculateObservables(). 

3.44.2.2 void QMCproperty::readXML (istrealll & strm) 

Loads the state of this object from an XML stream. 

Parameters: 
strm XML stream 
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3.45 QMCReadAndEvaluateConfigs Class Reference 

Definition at line 299 of file QMCproperty.cpp. 

References QMCstatistic::readXMLO· 

Referenced by QMCproperties::readXMLO. 

3.44.2.3 void QMCproperty::toXML (ostream & strm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 250 of file QMCproperty.cpp. 

References QMCstatistic::toXMLO. 

Referenced by QMCproperties::toXMLO. 

3.45 QMCReadAndEvaluateConfigs Class Reference 

Calculates properties (QMCproperties (p. 114)) from walkers and related data 
saved to a file during a QMC calculation. 

Public Methods 

• QMCReadAndEvaluateConfigs 0 
Creates an instance of the class. 

• QMCReadAndEvaluateConfigs (QMClnput ,input) 

Creates an instance of the class and initializes it. 

• void initialize (QMClnput ,input) 

Initializes the object. 

• void rootCaiculateProperties (ArraylD< ArraylD< double> > 
&params, ArraylD< QMCproperties > &properties) 

Calculates properties (QMCpl"operties (p.114)) for different parameter 
sets from walkers and related data saved to a file during a QMC calcula­
tion. 

• void workerCalculateProperties 0 
Calculates properties (QMCproperties (p.114)) for different parameter 
sets from walkers and related data saved to a file during a QMC calcula­
tion. 
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3.45 QMCReadAndEvaluateConfigs Class Reference 

3.45.1 Detailed Description 

Calculates properties (QMCproperties (p.114)) from walkers and related data 
saved to a file during a QMC calculation. 

Definition at line 36 of file QMCReadAndEvaluateConfigs.h. 

3.45.2 Constructor & Destructor Documentation 

3.45.2.1 QMCReadAndEvaluateConfigs::QMCReadAndEvaluate­
Configs (QMClnput * input) 

Creates an instance of the class and initializes it. 

Parameters: 
input data input to control the calculation. 

Definition at line 19 of file QMCReadAndEvaluateConfigs.cpp. 

References initializeO. 

3.45.3 Member Function Documentation 

3.45.3.1 void QMCReadAndEvaluateConfigs::initialize (QMClnput 
* input) 

Initializes the object. 

Parameters: 
input data input to control the calculation. 

Definition at line 24 of file QMCReadAndEvaluateConfigs.cpp. 

References Array2D< double >::allocateO, and QMCJastrow::initializeO. 

Referenced by QMCObjectiveFunction::initializeO, and QMCReadAnd­
EvaluateConfigsO· 

3.45.3.2 void QMCReadAndEvaluateConfigs::rootCalculate­
Properties (ArraylD< ArraylD< double> > & params, ArraylD< 
QMCproperties > & properties) 

Calculates properties (QMCproperties (p.114)) for different parameter sets 
from walkers and related data saved to a file during a QMC calculation. 

This function is called only by the root node. The non-root nodes should call 
workerCalculatePropertiesO (p.121). 
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3.46 QMCrun Class Reference 

Parallleters: 
params array of parameters which parameterize the wavefunction. 

properties properties calculated from params and the saved configura­
tions. 

Definition at line 87 of file QMCReadAndEvaluateConfigs.cpp. 

References Array ID < T >: :allocateO. 

Referenced by QMCObjectiveFunction::evaluateO. 

3.45.3.3 void 
Properties 0 

QMCReadAndEvaluateConfigs::workerCalculate-

Calculates properties (QMCproperties (p.114)) for different parameter sets 
from walkers and related data saved to a file during a QMC calculation. 

This function is called only by the nOll-foot nodes. The root node should call 
rootCalculateProperties(params, properties). 

Definition at line 155 of file QMCReadAndEvaluateConfigs.cpp. 

References ArraylD< T >::allocateO, and ArraylD< T >::diml0. 

Referenced by QMCCorrelatedSamplingVMCOptimization::optimizeO. 

3.46 QMCrun Class Reference 

Collection of walkers (QMCwalker (p.134)) with the functionality to do the 
basic operations from which a QMC algorithm is built. 

Public Methods 

• QMCrun 0 
Creates an uninitialized instance of this class. 

• void initialize (QMClnput .input) 

Initializes this object. 

• void zero Out 0 

Sets all of the data in the object to zero. 

• void step 0 
Propagate the QMC calculation one time step forward. 

• QMCproperties. get Properties 0 
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3.46 QMCrun Class Reference 

Gets the statistics for the properties that have been calculated. 

• double get Weights () 

Gets the total statistical weights for all the current living walkers. 

• int getNurnberOfWalkers () 

Gets the current number of walkers. 

• void randomlyInitialize Walkers 0 
Generates all of the walkers by initializing the electronic configurations 
for the walkers using an algorithm from QMCInitializeWalkerFactory 
(p.73). 

• void writeEnergies (ostream &strm) 

Writes the energies of all the walkers to a stream. 

• void writeCorrelatedSamplingConfigurations (ostream &strm) 

Writes the state of this group of walkers to a siream in a fo rmat that is 
suitable for correlated sampling calculations. 

• void toXML (ostream &strm) 

Writes the state of this object to an XML stream. 

• void readXML (istream &strm) 

Reads the state of this object from an XML stream. 

3.46.1 Detailed Description 

Collection of walkers {QMCwalker (p.134)) with the functionality to do the 
basic operations from which a QMC algorithm is built. 

Definition at line 30 of file QMCrun.h. 

3.46.2 Member Function Documentation 

3.46.2.1 int QMCrun::getNurnberOfWalkers 0 
Gets the current number of walkers. 

Returns: 
number of walkers. 

Definition at line 355 of file QMCrun.cpp. 
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3.46 QMCrun Class Reference 

3.46.2.2 QMCproperties * QMCrun::getProperties 0 
Gets the statistics for the properties that have been calculated. 

Returns: 
statistics for the properties that have been calculated . 

Defini tion at line 350 of file QMCrun.cpp. 

Referenced by QMCManager::runO· 

3.46.2.3 double QMCrun::get Weights 0 
Gets the total statistical weights for all the current living walkers. 

Returns: 
total weights for current walkers. 

Defini tion at line 303 of file QMCrun.cpp. 

3.46.2.4 void QMCrun::initialize (QMCInput * input) 

Initializes this object. 

Parameters: 
input input data for the calculation 

Definition at line 69 of file QMCrun.cpp. 

References QMCproperties::zeroOutO. 

Referenced by QMCManager::initializeO. 

3.46.2.5 void QMCrun::readXML (istream & strm) 

Reads the state of this object from a n XML stream. 

Paramete rs: 
strm XML stream 

Definition at line 332 of file QMCrun.cpp. 

References QMCwalker::initializeO , QMCwalker::readXMLO, 
QMCproperties::readXMLO· 
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3.47 QMCSlater Class Reference 

3.46.2.6 void QMCrun::toXML (ostrearn & Btrm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 316 of file QMCrun.cpp. 

References QMCproperties::toXMLO· 

3.46.2.7 void QMCrun::writeCorrelatedSamplingConfigurations 
(ostrearn & Btrm) 

Writes the state of this group of walkers to a stream in a format that is suitable 
for correlated sampling calculations. 

This writes out more information than toXML so that parts of the wavefunc­
tion do not have to be reevaluated every time properties are calculated using 
correlated sampling. 

Parameters: 
stnn stream to write correlated sampling information to. 

Definition at line 149 of file QMCrun.cpp. 

Referenced by QMCManager::runO. 

3.46.2.8 void QMCrun::writeEnergies (ostrearn & Btrm) 

Writes the energies of all the walkers to a stream. 

Parameters: 
strm stream to write energies to. 

Definition at line 139 of file QMCrun.cpp. 

Referenced by QMCManager::runO. 

3.47 QMCSlater Class Reference 

A Slater determinant describing like spin electrons from a 3N dimensional wave­
function. 

Public Methods 

• void initialize (QMClnput *input, iut startEl, int stopEI) 
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3.47 QMCSlater Class Reference 

Initializes the class and sets which region of the 3N dimensional electronic 
configuration corresponds to electrons in this Slaier determinant. 

• void evaluate (Array2D< double> &X) 

Evaluates the slater determinant and it's first two derivatives at X. 

• double get Psi 0 
Gets the value of the Slaier determinant for the last evaluated electronic 
configuration. 

• Array2D< double> * getGradPsiRatio 0 
Gets the ratio of the Slaier determinant gradient over the Slater determinant 
for the last evaluated electronic configuration . 

• double getLaplacianPsiRatio 0 
Gets the ratio of the Slaier determinant laplacian over the Slaier determinant 
for the last evaluated electronic configuration. 

• bool isSingular 0 
Returns true if the S laier determinant is singular and false otherwise. 

• void operator= (const QMCSlater &rhs) 

Sets two QMCSlaier objects equal. 

3.47.1 Detailed Description 

A Slater determinant describing like spin electrons from a 3N dimensional wave­
function. 

This class allows the function, it's gradient, and it's laplacian to be calculated. 

Definition at line 33 of file QMCSlater.h. 

3.47.2 Member Function Documentation 

3.47.2.1 void QMCSlater::evaluate (Array2D< double> & X) 

Evaluates the slater determinant and it's first two derivatives at X. 

Parameters: 
X 3N dimensional configuration of electrons represented by a N x 3 matrix 

Definition at line 66 of file QMCSlater.cpp. 

References isSingularO. 
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3.47 QMCSlater Class Reference 

Referenced by QMCFunctions::evaluate() . 

3.47.2.2 Array2D< double> * QMCSlater::getGradPsiRatio 0 
Gets the ratio of the Slater determinant gradient over the Slater determinant 
for the last evaluated electronic configuration. 

This value does not depend on the normalization of the Slater determinant. 

Definition at line 223 of file QMCSlateLcpp. 

Referenced by QM CFunctions: :wri teCorrelatedSamplingConfiguration(). 

3.47.2.3 double QMCSlater::getLaplacianPsiRatio 0 
Gets the ratio of the Slater determinant laplacian over the Slater determinant 
for the last evaluated electronic configuration. 

This value does not depend on the normalization of the Slater determinant . 

Definition at line 218 of file QMCSlateLcpp. 

Referenced by QM CFunctions:: wri teCorrelatedSamplingConfiguration(). 

3.47.2.4 double QMCSlater::getPsi 0 
Gets the value of the Slater determinant for the last evaluated electronic con­
figuration. 

The returned value is not normalized to one. Assuming the basis functions 
ued to make the determinant are normalized 1 this value can be normalized by 
dividing it by VM!) where M is the number of electrons in this determinant. 

Definition at line 213 of file QMCSlateLcpp. 

3.47.2.5 void QMCSlater::initialize (QMCInput * input, int startEI, 
int stopEI) 

Initializes the class and sets which region of the 3N dimensional electronic con­
figuration corresponds to electrons in this Slater determinant. 

It is assumed that all electrons in a determinant are grouped together in the 
configuration. 

Parameters: 
input input data for the calculation 

startEl first particle in this determinant. 

stopEl last particle in this determinant. 

Definition at line 38 of file QMCSlateLcpp. 
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3.48 QMCstatistic Class Reference 

Referenced by QMCFunctions::initializeO· 

3.47.2.6 void QMCSlater::operator= (canst QMCSlater & rhs) 

Sets two QMCSlater objects equal. 

Parameters: 
rhs object to set this object equal to 

Definition at line 15 of file QMCSlateLcpp. 

References BF, D, Array2D< double >::dimIO, GradJ>siRatio, Input, Lapla­
cian--PsiRatio, Psi, Singular, Start, Stop, and WF. 

3.48 QMCstatistic Class Reference 

Statistical information on a set of data. 

Public Methods 

• QMCstatistic 0 
Creates a zeroed ou.t instance of the class and ger;emtes the MPI type if it 
has not been done. 

• void zero Out 0 
Sets all of the data in the object to zero. 

• long getNumberSamples 0 
Gets the number of data samples entered into the object. 

• double getA verage 0 
Gets the average of the data entered into the object. 

• double get Variance 0 
Gets the variance of the data entered into the object. 

• double getStandardDeviation 0 
Gets the standard deviation of the data entered into the object. 

• void newSarnple (double s, double weight) 

Adds a new data sample to the object. 

• QMCstatistic operator+ (canst QMCstatistic &rhs) 
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3.48 QMCstatistic Class Reference 

Returns the sum of two QMCstatistics. 

• void toXML (ostream &strm) 

Wri tes the state of this object to an XML stream. 

• void readXML (istream &strm) 

Loads the sta te of this object from an X ML stream. 

Sta tic Public Attributes 

• MPLDatatype MPLTYPE 

The MPI data type for a QMCstatistic . 

• MPLOp MPLREDUCE 

The MPI operation for performing MPLReduce on QM Cstatistics . 

Friends 

• ostream & operator« (ostream &strm, QMCstatistic &rhs) 

Formats and prints th e statistic to a stream. J 

3.48.1 Detailed Description 

Statis tical information on a set of data. 

Defini t ion at line 31 of file QMCstatistic.h. 

3.48.2 Member Function Documentation 

3.48.2.1 void QMCstatistic::newSample (double ., double weight) 

Adds a new data sample to the object. 

Parame ters: 
8 new sample data 

weight st atistical weight of the sample 

Definition at line 58 of file QMCstatistic.cpp. 

Referenced by QMCproperty::newSampleO, and QMCproperty::operator+O . 
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3.49 QMCSteepestDescent Class Reference 

3.48.2.2 void QMCstatistic::readXML (istream & strm) 

Loads the state of this object from an XML stream. 

Parameters: 
strm XML stream 

Definition at line 97 of file QMCstatistic.cpp. 

Referenced by QMCproperty::readXMLO. 

3 .48.2.3 void QMCstatistic::toXML (ostream & strm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 76 of file QMCstatistic.cpp. 

Referenced by QMCproperty::toXMLO. 

3.49 QMCSteepestDescent Class Reference 

Steepest descent line search numerical optimization algprithm. 

Inheritance diagram for QMCSteepestDescent:: 

QMCOptimizationAlgorithm 

QMCLineSearch 

QMCSteepestDescent 

Public Methods 

• QMCSteepestDescent (QMCObjectiveFunction *functioTI , 
QMCLineSearchStepLengthSelectionAlgorithm *stepAIg, int 
maxSteps, double tol) 

Constructs and initializes an instance of this class . 

• ArraylD< double> optimize (ArraylD < double> &initiaIGuess) 
Optimize the function starting from the provided initial guess parameters. 
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3.49 QMCSteepestDescent Class Reference 

Protected Methods 

• QMCObjectiveFunction * getObjectiveFunction 0 
Gets the objective function for the calculation. 

3.49.1 Detailed Description 

Steepest descent line search numerical optimization algorithm. 

As is standard in the field, the optimization is a minimization. 

Definition at line 23 of file QMCSteepestDescent.h. 

3.49.2 Constructor & Destructor Documentation 

3.49.2.1 QMCSteepestDescent::QMCSteepestDescent 
(QMCObjectiveFunction * function, QMCLineSearchStepLength­
SelectionAlgorithm * .tepAlg, int maxStep., double toll 

Constructs and initializes an instance of this class. 

Parameters: 
function objective function to optimize. 

stepAlg algorithm to use in determining the line search step length. 

maxSteps maximum number of steps to be performed during the line 
search. 

tol tolerance to converge the solution to. Calculation is converged when 

1 1 -~1 <tol. 1(", ) 

Definition at line 15 of file QMCSteepestDescent.cpp. 

3.49.3 Member Function Documentation 

3.49.3.1 ArraylD< double> QMCLineSearch::optimize (ArraylD< 
double> & initial Guess) [virtual, inherited] 

Optimize the function starting from the provided initial guess parameters. 

Parameters: 
initial Guess initial guess parameters for the optimization. 

Returns: 
optimized parameters. 
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3.50 QMCStopwatches Class Reference 

Implements QMCOptirnizationAlgorithm (p.107) . 

Definition at line 31 of file QMCLineSearch. cpp. 

References ArraylD< T >::dimI O, QMCObjectiveFunction::evaluateO, and 
QMCO b jectiveFunctionResui t: :getScoreO· 

3.50 QMCStopwatches Class Reference 

A collection of Stopwatch (p. 144) objects used to record information relevant 
to the timing of a QMC calculation. 

Public Methods 

• QMCStopwatches 0 
Creates a new instance of this class with all timers stopped. 

• void stop 0 
Stops all stopwatches in this object which are running. 

• void reset 0 
Resets all stopwatches in this object and leatJes the stopwatches stopped. 

• Stopwatch * getInitializationStopwatch 0 
Gets the stopwatch which times the initialization of the calculation. 

• Stopwatch * getPropagationStopwatch 0 
Gets the stopwatch which times the 'Us eful propagation of walkers. 

• Stopwatch * getSendCornrnandStopwatch 0 
Gets the stopwatch which times the sending of commands between processors. 

• Stopwatch * get Gather Properties Stopwatch 0 
Gets the s topwatch which times the gathering of QMCproperties (p. 114) 
from all processors. 

• Stopwatch * getCommunicationSynchronizationStopwatch 0 
Gets the stopwatch which times the synchronization of all the processors. 

• Stopwatch * getCornrnandPollingStopwatch () 
Gets the stopwatch which times how long is devo ted to seeing if a processor 
has a command waiting for it. 

• Stopwatch * getOptirnizationStopwatch () 
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3.50 QMCStopwatches Class Reference 

Gets the stopwatch which times the VMC optimization. 

• Stopwatch . getTotalTirneStopwatch 0 
Gets the stopwatch which records the total time of the calculation. 

• QMCStopwatches operator+ (QMCStopwatches &rhs) 

Returns a QMCStopwatches which is the sum of two QMCStopwatches ob· 
jects. 

Static Public Attributes 

• MPLDatatype MPLTYPE 
The MPI data type for a QMCStopwatches . 

• MPLOp MPLREDUCE 

The MPI operation for per/onning MPLReduce on QMCStopwutches objects. 

Friends 

• ostream & operator« (ostream &strm , QMCStopwatches &rhs) , 
Writes the timing results of this class to a human readable stream. 

3 .50.1 D etailed Description 

A collection of Stopwatch (p. 144) objects used to record information relevant 
to the timing of a QMC calculation. 

Defini tion at line 29 of file QMCStopwatches.h. 

3 .50 .2 Member Function Documentat ion 

3.50.2.1 Stopwatch 
Stopwatch 0 

• QMCStopwatch es: :getCornrnandPolling-

Gets the stopwatch which t imes how long is devoted to seeing if a processor has 
a command waiting for it. 

R eturns : 
the stopwatch. 

Definition at line 78 of file QMCStopwatches.cpp. 
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3.50 QMCStopwatches Class R eferenc e 

3.50.2.2 Stopwatch * QMCStopwatches::getCornrnunication-
SynchronizationStopwatch 0 
Gets the stopwatch which times the synchronization of all the processors. 

Returns: 
t he stopwatch. 

Definition at line 73 of file QMCStopwatches.cpp. 

3.50.2.3 Stopwatch 
Stopwatch 0 * QMCStopwatches::getGatherProperties-

Gets the stopwatch which times the gathering of QMCproperties (p. 114) from 
all processors. 

Returns: 
the stopwatch. 

Defini tion at line 68 of file QMCStopwatches.cpp. 

3.50.2.4 Stopwatch * QMCStopwatches::getOptirnizationStopwatch 
o 
Gets the stopwatch which times the VMC optimization. 

Returns: 
the stopwatch. 

Definition at line 83 of file QMCStopwatches.cpp. 

Referenced by QMCManager::optimizeO. 

3.50.2.5 Stopwatch * QMCStopwatches::getPropagationStopwatch 

o 
Gets the stopwatch which times the useful propagation of walkers. 

The time required to initialize the walkers is not included. 

Returns: 
the stopwatch. 

Definition at line 58 of file QMCStopwatches.cpp. 

Referenced by QMCManager::runO. 
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3.51 QMCwalker Class R eference 

3.50.2.6 Stopwatch 
Stopwatch 0 * QMCStopwatches::getSendCommand-

Gets the stopwatch which times the sending of commands between processors. 

Returns: 
the stopwatch , 

Definition at line 63 of file QMCStopwatches,cpp, 

3.50.2.7 Stopwatch - QMCStopwatches::getTotalTimeStopwatch 0 

Gets the stopwatch which records the total t ime of the calculation, 

Returns: 
the stopwatch, 

Definition at line 88 of file QMCStopwatches,cpp, 

Referenced by QMCManager::QMCManagerO , 

3.51 QMCwalker Class Reference 

An instantaneous snapshot of all 3N electronic corrdinates for a system. 

Public Methods 

• QMCwalker 0 
Creates a new uninitialized instance of this class. 

• QMCwalker (const QMCwalker &rhs) 

Creates a new instance of this class and makes it equi1Jalent to another in­
stance of this class. 

• -QMCwalker 0 
Dcallocates the memory alloca.ted by this object. 

• void initialize (QMClnput _input) 

Initializes and allocates memory for the walker. 

• void initialize Walker Position 0 
Initializes the electronic configuration for this walker using an algorithm from 
QMClnitializeWalke rFactory (p.73). 
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3 .51 QMCwalker C lass R eference 

• void propagate Walker 0 
Proposes a trial walker move and accepts or rejects it. 

• void calculateObservables (QMCproper t ies &props) 

Calculates the observables for this walker and adds them to the input QM­
Cproperties (p. 114). 

• void oper ator= (const QMCwalker &rhs) 

S ets two QMCwalker objects equal. 

• double getWeigbt 0 
Gets the weight fOT this walker. 

• void set Weigh t (double val) 

Sets the weight for this walker. 

• bool isSingular 0 
Determines if the trial wave/unction is singular for this walker. 

• void toXML (ostream &strm) 

Writes the state of this object to an XML stream. j 

• void readXML (istream &strm) 

Loads the state of this object from an XML stream. 

• void writeCorrelatedSamplingConfigura tion (ostream &strm) 

Writes the state of this walker to a stream in a format that is suitable for 
correlated sampling. 

• double getLocalEnergyEstirnator 0 
Gets the value of the local energy estimator for this walker. 

3.51.1 Detailed D escription 

An instantaneous snapshot of all 3N electronic corrdinates for a system. 

This is the same as the "walker" or "psip" discussed in QMC literature. 

Definition at line 29 of file QMCwalker.h. 
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3.51 QMCwalker Class Reference 

3.51.2 Constructor & Destructor Documentation 

3.51.2.1 QMCwalker::QMCwalker (const QMCwalker & rhs) 

Creates a new instance of this class and makes it equivalent to another instance 
of this class. 

Parameters: 
rhs object to set this equal to. 

Definition at line 24 of file QMCwalker.cpp. 

3.51.3 Member Function Documentation 

3.51.3.1 void QMCwalker::ca1culateObservables (QMCproperties & 
props) 

Calculates the observables for this walker and adds them to the input QM­
Cproperties (p. 114). 

Parameters: 
props properties to which this walkers current observable values are added. 

Definition at line 650 of file QMCwalker.cpp. 

References QMCproperties::acceptanceProbability, QMCproperties::distance­
MovedAccepted, QMCproperties::distanceMovedTrial, QMCproperties::energy, 
getWeightO, QMCproperties::kineticEnergy, QMCproperties::logWeights, 
QMCproperty::newSample(), and QMCproperties: :potentiaIEnergy. 

Referenced by propagate Walker (). 

3.51.3.2 double QMCwaIker::getWeight 0 
Gets the weight for this walker. 

Returns: 
weight for this walker. 

Definition at line 587 of file QMCwaiker.cpp. 

Referenced by caiculateObservables(), and toXMLO . 

3.51.3.3 void QMCwalker::initialize (QMClnput * input) 

Initializes and allocates memory for the walker. 
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3.51 QMCwalker Class Reference 

The electronic configuration for the walker is not set. To do this initialize­
WalkerPosition must be used to generate a new walker, or read must be used 
to read this walkers state from a stream. 

Parameters: 
input data input to control the calculation. 

Definit ion at line 470 of file QMCwalker.cpp. 

References Array2D< double >::allocateO, and QMCFunctions::initializeO· 

Referenced by QMCrun::randomlyInitializeWalkersO, and QMCrun::read­
XMLO· 

3.51.3.4 void QMCwalker::initializeWalkerPosition 0 
Initializes the electronic configuration for this walker using an algorithm from 
QMClnitializeWalkerFactory (p. 73). 

If a singular walker is generated, upto 100 configurations are generated until 
one is not singular. 

Definition at line 557 of file QMCwalker.cpp. 

References QM Clni tialize Walker Factory: :initialize Walker FactoryO, 
QMCInitializeWalker::initialize WalkerPositionO, and isSingularO. 

J 

Referenced by propagate Walker 0 , and QMCrun: :randomly Initialize Walkers 0 . 

3.51.3.5 bool QMCwalker::isSingular 0 
Determines if the trial wavefunction is singular for this walker. 

Returns: 
true if the trial wavefunction is singular for this walker, and false other­
wise. 

Definition at line 678 of file QMCwalker.cpp. 

References QMCFunctions::isSingularO. 

Referenced by initializeWalkerPositionO, and propagateWalkerO. 

3.51.3.6 void QMCwalker::operator= (const QMCwalker & rhs) 

Sets two QMCwalker objects equal. 

Parameters: 
rhs object to set this object equal to. 
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3.51 QMCwalker Class Reference 

Definition at line 45 of file QMCwalker.cpp. 

References AcceptaneeProbability, age, distanceMovedAccepted, dR2, Input, 
kineticEnergy, localEnergy, move..accepted, potentialEnergy, QMF, R, and 
weight. 

3.51.3.7 void QMCwalker::readXML (istream & strm) 

Loads the state of this object from an XML stream. 

The input stream must be formatted exactly like the output from toXML because 
it is not intelligent. 

Parameters: 
strm XML stream 

Definition at line 524 of file QMCwalker.epp. 

Referenced by QMCrun::readXMLO. 

3.51.3.8 void QMCwalker::setWeight (double val) 

Sets the weight for this walker. 

Parameters: 
val value to set t he weight equal to. 

Definition at line 592 of file QMCwalker.epp. 

3.51.3.9 void QMCwalker::toXML (ostream & strm) 

Writes the state of this object to an XML stream. 

Parameters: 
strm XML stream 

Definition at line 503 of file QMCwalker.cpp. 

References QMCFunctions::getLocalEnergyO , and getWeightO. 

3.51.3.10 void QMCwalker::writeCorrelatedSatnplingConfiguration 
(ostream & strm) 

Writes the state of this walker to a stream in a format that is suitable for 
correlated sampling. 

This writes out more information than toXML so that parts of the wavefunc­
tion do not have to be reevaluated every time properties are calculated using 
correlated sampling. 
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3.52 QMCWavefunction Class Refer e n ce 

Parameters: 
stnn stream to writ e correlated sampling information t o. 

Defini t ion at line 483 of file Q MCwalker.cpp. 

References Array2D < double > ::diml O, a nd QMCFunctions::writeCorrelated­
Sa mplingConfigurat ion O· 

3.52 QMCWavefunction Class Reference 

The coefficients and parameters describing the trial wavefunction for the system. 

Public Methods 

• QMCWavefunction 0 
Creates an instance of the class. 

• int getNumberOrbitals 0 
Gets the number of orbitals. 

• int getNumberBasisFunctions 0 
Gets the number of baJts [unctions. 

• int getNumber AlphaElectrons () 

Gets the num ber of a: spin electrons. 

• int getNumberBetaElectrons 0 
Gets the number of f3 spin electrons. 

• int ge tN umber Electrons 0 
Gets the total number of electrons. 

• QMCWavefunction operator= (const QMCWavefunction &rhs) 

Sets two QMCWavefun ction objects equal. 

• void r ead (int numberOrbita ls , int number Basis Functions, string run­
fi le) 

Loads the state of the object from a file. 
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3.52 QMCWavefunction Class Reference 

Public Attributes 

• Array2D < double> Coelfs 
Array containing the coefficients used to construct the orbitals. 

• Array1D < int > AlphaOccupation 

A rray which indirotes how m any Q' spin electron are in each orbital for the 
wave/unction. 

• ArraylD < int > BetaOccupation 

Friends 

Army which indicates how many {3 spin electron are in each orbital for the 
wavefunction. 

• istream & operator> > (istream &strm, QMCWavefunction &rhs) 

Loads the state of the object from an inpu.t stream. 

• ostream & operator« (ostream &strm, QMCWavefunction &rhs) 

Writes the state of the object to an output stream. 

3.52.1 D etailed Description 

The coefficients and parameters describing the trial wavefunction for the system. 

These are the coefficients for a wavefunction obtained through standard means 
(HF, DFT, etc.). 

Definition at line 33 of file QMCWavefunction.h. 

3 .52.2 Member Function Documentation 

3 .52.2.1 int QMCWavefunction::getNumberAlphaElectrons 0 
Gets the number of Q spin electrons. 

Returns : 
number of a spin electrons. 

Definition at line 34 of file QMCWavefunction.cpp. 
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3.52 QMCWavefunction Class Reference 

3.52.2.2 int QMCWavefunction::getNumberBasisFunctions 0 
Gets the number of basis functions. 

Returns: 
number of basis functions. 

Definition at line 29 of file QMCWavefunction.cpp . 

3 .52.2.3 int QMCWavefunction::getNumberBetaElectrons 0 
Gets the number of (3 spin electrons. 

Returns: 
number of f3 spin electrons. 

Definition at line 39 of file QMCWavefunction.cpp. 

3.52.2.4 int QMCWavefunction::getNumberElectrons 0 
Gets the total number of electrons. 

Returns: 
total number of electrons. 

Definition at line 44 of file QMCWavefunction.cpp. 

3.52.2.5 int QMCWavefunction::getNumberOrbitals 0 
Gets the number of orbitals. 

Returns: 
number of orbitals. 

Definition at line 24 of file QMCWavefunction. cpp. 

3.52.2.6 QMCWavefunction QMCWavefunction::operator= (canst 
QMCWavefunction & rhs) 

Sets two QMCWavefunction objects equal. 

Parameters: 
rhs object to set this object equal to. 

Definition at line 50 of file QMCWavefunction.cpp. 

References AlphaOccupation, BetaOccupatioil, Coeffs, Nalpha, Nbasisfunc, 
Nbeta, Nelectrons, and Norbitals. 
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3.52.2.7 void QMCWavefunction::read (int number Orbitals, int 
numberBasisFunctions, string runfile) 

Loads the state of the object from a file. 

Parameters: 
numberOrbitals number of orbitals. 

numberBasisFunctions number of basis functions. 

runfile file to load the object state from. 

Definition at line 93 of file QMCWavefunction.cpp. 

3.52.3 Member Data Documentation 

3.52.3.1 Array2D< double> QMCWavefunction::Coeffs 

Array containing the coefficients used to construct the orbitals. 

For example, orbitals are constructed so that 

NumbcrBasisFunctions - l 

Orbitali(x, y, z) = L Coej jSi,jBasisFunctionj(x, y, z) 
j=O 

where the the BasisFunctianj(x,y, z) are from QMCBasisFunction (p.49). 
It is assumed that the ordering of the coefficients is the same as the basisfunc­
tions in the input file. 

Definition at line 108 of file QMCWavefunction.h . 

Referenced by operator= (). 

3.53 SortedParameterScorePairList Class Reference 

A sorted list of PararneterScorePair (p.43) objects where the objects are 
ordered in an increasing order. 

Public Methods 

• SortedParameterScorePair List () 

Creates an empty instance of this class. 

• SortedParameterScorePair List 
&SPSL) 

(SortedParameterScorePairList 

Createsan instance of this class which is equal to another instance. 
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• int size 0 
Gets the nu.mber of elements in this list. 

• void add (const PararneterScoreP a ir &PSP) 

Add.s a new Parame t e rScore Pair (p.43) to this list . 

• Para m eterScorePair get (int i) 

Gets the ith clement. 

• void clear 0 
Remove all elements from this list. 

• void operator= (canst SortedParameterScorePairList &SPSL) 

Sets two objects equal to one ano ther. 

3 .53.1 D etailed Description 

A sorted list of ParameterScorePair (p.43) objects where t he objects are 
ordered in an increasing order. 

Defini tion at line 27 of file SortedParameterScorePairList.h. 

3.53.2 Constructor & Destructor Documentation 

3 .53.2 .1 SortedParameterScorePairList::SortedParameterScore­
P a ir List (SortedParameterScorePairLis t & SPSL) 

Createsan instance of this class which is equal to another instance. 

Parame ters: 
SPSL this object to which this one will be made equal. 

Definition at line 19 of file SortedParameterScorePairList.cpp. 

References PSPList. 

3.53.3 M ember Function Docume ntation 

3 .53.3.1 void SortedParameterScoreP airLis t::add (const Parameter­
ScoreP air & PSP) 

Adds a new ParameterScorePair (p . 43) to t his list . 
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Parameters: 
P SP new element to add to this list. 

Definition at line 29 of file SortedParameterScorePairList.cpp. 

3.53.3.2 ParameterScorePair 
(int i) 

SortedParameterScorePairList::get 

Gets the ith element. 

Parameters: 
i index of the element to return. 

Returns: 
the ith element of the list. 

Definition at line 35 of file SortedParameterScorePairList.cpp. 

Referenced by CKGeneticAlgorithml::optimizeO. 

3.53.3.3 void SortedParameterScorePairList::operator= 
SortedParameterScorePairList & SPSL) 

Sets two objects equal to one another. 

Parameters: 
SPSL object to set this object equal to. 

Definition at line 60 of file SortedParameterScorePairList.cpp. 

References PSPList. 

3.53.3.4 int SortedPararneterScorePairList::size 0 
Gets the number of elements in this list. 

R e turns: 
number of elements in this list. 

Definition at line 24 of file SortedParameterScorePair List.cpp. 

3.54 Stopwatch Class Reference 

An accurate software stopwatch. 
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3.54 Stopwatch Class Reference 

Public Methods 

• Stopwatch () 
Creates an instance of the stopwatch that is zeroed and not running. 

• void reset () 
Resets and stops the stopwatch. 

• void start () 
Starts the stopwatch. 

• void stop () 
Stops the stopwatch. 

• long timeMS () 

Gets the time in milliseconds. 

• bool isRunning () 

Returns true if the stopwatch is running and false otherwise. 

• string to String () 

Gets the time formatted as a string. 

• Stopwatch operator+ (Stopwatch &rhs) 

Returns a stopwatch which contains the total time from two stopwatch ob­
Jects. 

Static Public Attributes 

• MPLDatatype MPLTYPE 

The MPI data type for a Stopwatch. 

• MPLOp MPLREDUCE 

The MPI operation JOT performing MPLReduce on Stopwatch objects. 

Friends 

• ostream & operator« (ostream &strm, Stopwatch &watch) 

Formats and prints the time to a stream. 

Generated on Wed May 1 11:34:48 2002 for QMcBeavc l" by Doxygen 

145 



3.55 StringManipulation Class Reference 

3.54.1 Detailed Description 

An accurate software stopwatch. 

Definition at line 31 of file Stopwatch.h. 

3.55 String Manipulation Class Reference 

A set of functions to manipulate strings. 

Static Public Methods 

• string toAllUpper (stdng &s) 

Converts a string to all upper case. 

• string toAllLower (string &s) 

Converts a string to all lower case. 

• string toFirstUpperRestLower (string &s) 

Capitalizes the first letter and lowers all others in a string. 

• char toUpperChar (char c) 
Makes a character upper case. 

• char toLowerChar (char c) 

Makes a character lower case . 

• string intToString (int i) 
Returns a string representation of an integer. 

• string intToHexString (int i) 

Returns a hexadecimal string representation of an integer. 

• string doubleToString (double d) 

Returns a string representation of a double. 

• int stringTolnt (string &s) 

Returns an int representation of a string . 

• int hexstringTolnt (string &s) 

Returns an representation of a hexadecimal string. 

• double stringToDouble (string &s) 
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Returns an double representation of a string. 

3.55.1 Detailed Description 

A set of functions to manipulate strings. 

Definition a t line 26 of file StringManipulation.h. 

3.55.2 Member Function Documentation 

3.55.2.1 string StringManipulation::doubleToString (double d) 
[static] 

Returns a string representation of a double. 

Parameters: 
d a double. 

Definition a t line 163 of file StringManipulation.cpp. 

Referenced by XMLElement:: set AttributeO . 

I 

3.55.2.2 int StringManipulation::hexstringTolnt (s tring & s) 
[static] 

Returns an representation of a hexadecimal string. 

Parameters: 
s a string. 

Definition at line 183 of file StringMa nipulation.cpp. 

3.55.2.3 string 
[static) 

StringManipulation::intToHexString 

Returns a hexadecimal string representation of an integer. 

Parameters: 
i an integer. 

Definition at line 151 of file StringManipulation.cpp. 
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3.55.2.4 string StringManipulation::intToString (int i) [static] 

Returns a string representation of an integer. 

Parameters: 
i an integer. 

Definition at line 139 of file StringManipulation.cpp. 

Referenced by XMLElement::setAttributeO, 
Exception: :XMLParseExceptionO. 

and XMLParse-

3.55.2.5 double StringManipulation::stringToDouble (string & 8) 
[static] 

Returns an double representation of a string. 

Parameters: 
s a string. 

Definition at line 191 of file StringManipulation.cpp. 

Referenced by XMLElement::getDoubleAttributeO. 

, 
3.55.2.6 int StringManipulation::stringToInt (string & s) [static] 

Returns an int representation of a string. 

Parameters: 
s a string. 

Definition at line 175 of file StringManipulation.cpp. 

Referenced by XMLElement::getIntAttributeO. 

3.55.2.7 string StringManipulation::toAllLower (string & s) 
[static] 

Converts a string to all lower case. 

Parameters: 
8 a string 

Definition at line 31 of file StringManipulation.cpp. 

References toLowerCharO. 
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3.55.2.8 string StringManipulation::toAIIUpper (string & s) 
[static] 

Converts a string to all upper case. 

Parameters: 
8 a string 

Definition at line 16 of file StringManipulation.cpp. 

References toUpperCharO· 

3.55.2.9 string StringManipulation::toFirstUpperRestLower (string 
& s) [static] 

Capitalizes the first letter and lowers all ot hers in a string. 

Parameters: 
8 a string 

Definition at line 47 of file StringManipulation.cpp. 

References toLowerCharO, and toUpperCharO. 

Referenced by QMCCorrelationFunctionParameters: :readO. 

3.55.2.10 char StringManipulation::toLowerChar (char c) [static] 

Makes a character lower case. 

Parameters: 
c a character 

Definition at line 105 of file StringManipulation.cpp. 

Referenced by toAllLowerO, and toFirstUpperRestLowerO. 

3.55.2.11 char StringManipulation::toUpperChar (char c) [static] 

Makes a character upper case. 

Parameters: 
c a character 

Definition at line 70 of file StringManipulation.cpp. 

Referenced by toAllUpperO, and toFirstUpperRestLowerO. 
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3.56 XMLElement Class Reference 

3.56 XMLElernent Class Reference 

XMLElement is a representation of an XML object. 

Public Methods 

• XMLElement () 

Creates and initializes a new XML element. 

• XMLElement (map< string, string> .entities) 

Creates and initializes a new XML element. 

• XMLElement (bool skipLeadingWhitespace) 

Creates and initializes a new XML element. 

• XMLElement (map< string, string > *entities, bool skipLeading­
Whitespace) 

Creates and initializes a new XML element. 

• int count Children () 

Returns the number of child elements of the element. 

• void add Child (XMLElement &child) 

Adds a child element. 

• void set Attribute (string &name, string &value) 

Adds or modifies an attrih1Lte. 

• void set Attribute (string &name, int value) 

Adds or modifies an attribute. 

• void setAttribute (string &name, double value) 

Adds or modifies an attribute. 

• void parse (string &file) 

Reads one XML element from a file and parses it. 

• void parse (istream &reader) 

Reads one XML element from a stream and parses it. 

• void removeChild (XMLElement &child) 

Removes a child element. 
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3.56 XMLElement Class Reference 

• list< XMLElement > * get Children 0 
Returns the child element.s as a Vector. 

• string getStringAttribute (string &name) 

Returns an attribu.te of the element. 

• string getStringAttribute (string &name, string &default Value) 

Returns an attribute of the element. 

• int getIntAttribute (string &name) 

Retu.rns an attribute of the element. 

• int getIntAttribute (string &name, int default Value) 

Returns an attribute of the element. 

• double getDoubleAttribute (string &name) 

Returns an attribute of the element. 

• double getDoubleAttribute (string &name, double default Value) 

Returns an attribute of the element. 

I 

• boo} ge tBooleanAttribute (string &name, string &trueValue, string 
&falseValue, bool defaultValue) 

R eturns an attribute of the element. 

• void removeAttribute (string &name) 

R em oves an attribute. 

• void setContent (string &content) 

Changes the content string. 

• string get Content 0 
Returns the PCDATA content of the object. 

• string getN arne 0 
Returns the nam e of the elem ent . 

• void setName (string &name) 

Changes the name of the elem ent. 

• int getLineN r () 
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3.56 XMLElement Class Reference 

Returns the line number in the source data on which the element is found. 

• void singleLineWriter (ostream &writer) 

Writ es the XML element to an output stream as a single line. 

• void write (string &file) 
Writ es the XML element to a file using a pretty jormat. 

• void prettyWriter (ostream &writer) 
Writ es the XML element to an output stream using a pretty format. 

• void operator= (XMLElement &rhs) 

Sets two objects equal to one another. 

• bool operator== (XMLElement &rhs) 

Determines if two objects equal to one another. 

3.56.1 Detailed Description 

XMLElement is a representation of an XML object. 

The object is able to parse and write XML code. 

Definition at line 32 of file XMLElement.h. 

3.56.2 Constructor & Destructor Documentation 

3.56.2.1 XMLElement::XMLElement 0 
Creates and initializes a new XML element. 

A basic entity ("&" , etc.) conversion table is used and leading whitespace is 
not skipped. 

Definition at line 15 of file XMLElement .cpp . 

3.56.2.2 XMLElement::XMLElement (map< string, string> * enti­
ties) 

Creates and initializes a new XML element. 

A basic entity C'&", etc.) conversion table and the provided entity conversion 
table are used and leading whitespace is not skipped. 

Parameters: 
entities The entity conversion table. 
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3.56 XMLElernent Class Reference 

Definition at line 21 of file XMLElement.cpp. 

3.56.2.3 XMLElernent::XMLElernent (bool skipLeading Whitespace) 

Creates and initializes a new XML element. 

A basic entity (" &", etc.) conversion table is used and skipping of leading 
whitespace is controled by skipLeadingWhi tespace. 

Parameters: 
skipLeading Whitespace true if leading and trailing whitespace in PC­

DATA content has to be removed. 

Definition at line 27 of file XMLElement.cpp. 

3.56.2.4 XMLElernent::XMLElernent (rnap< string, string> * enti­
ties, bool skipLeading Whitespace) 

Creates and initializes a new XML element. 

A basic entity (" &", etc.) conversion table and the provided entity con­
version table are used and leading whitespace is controled by skipLeading­
Whi tespace. 

Parameters: 
entities The entity conversion table. 

skipLeading Whitespace true if leading and trailing whitespace in PC­
DATA content has to be removed. 

Definition at line 33 of file XMLElement.cpp. 

3.56.3 Member Function Documentation 

3.56.3.1 void XMLElernent::addChild (XMLElernent & child) 

Adds a child element. 

Parameters: 
child The child element to add. 

Definition at line 93 of file XMLElement.cpp. 

3.56.3.2 int XMLElelllent::countChildren 0 
Returns the number of child elements of the element. 
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Returns: 
number of child elements. 

Definition at line 88 of file XMLElement.cpp. 

3.56.3.3 bool XMLElement::getBooleanAttribute (string & name, 
string & true Value, string & false Value, bool default Value) 

Returns an attribute of the element. 

If the attribute doesn't exist, defaultValue is returned. If the value of the 
attribute is equal to trueValue, true is returned. If the value of the attribute 
is equal to falseValue, false is returned. If the value doesn't match true­
Value or falseValue, an exception is thrown. 

ParaIlleters: 
name The name of the attribute. 

true Value The value associated with true. 

false Value The value associated with true. 

default Value Value to use if the attribute is missing. 

Returns: 
The value of the attribute. 

Exceptions: 
XMLParseException (p.161) If the value doesn't match trueValue or 

falseValue. 

Definition at line 274 of file XMLElement.cpp. 

3.56.3.4 list< XMLElement > • XMLElement::getChildren 0 
Returns the child elements as a Vector. 

It is safe to modify this Vector. 

Returns: 
The child elements of this element. 

Definition at line 202 of file XMLElement.cpp. 

3.56.3.5 string XMLElelllent::getContent 0 
Returns the PCDATA content of the object. 

If there is no such content, an empty string is returned. 
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Returns: 
PCDATA content. 

Definition at line 182 of file XMLElement.cpp . 

3.56.3.6 double XMLElement::getDoubleAttribute (string & name, 
double default Value) 

Returns an attribute of the element. 

If the attribute doesn't exist, defaul tValue is returned. 

Parameters: 
name The name of the attribute. 

default Value Key to use if the attribute is missing. 

Returns: 
Tbe value of the attribute. 

Definition at line 258 of file XMLElement.cpp. 

References S tringManipulation: :stringToDouble( ). 

3.56.3.7 double XMLElement: :getDoubleAttriJ)ute (string & name) 

Returns an attribute of the element. 

If the attribute doesn't exist, 0.0 is returned. 

Parameters: 
name The name of the attribute. 

Returns: 
The value of the attribute. 

Definition at line 252 of file XMLElement.cpp. 

3 .56.3.8 int XMLElernent::getIntAttribute (string & name, int 
default Value) 

Returns an attribute of the element. 

If the attribute doesn't exist, default Value is returned. 

Parameters: 
name The name of the attribute. 
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3.56 XMLElernent Class Reference 

default Value Key to use if the attribute is missing. 

Returns: 
The value of the attribute. 

Definition at line 236 of file XMLElement.cpp. 

References StringMani pulation: :stringTolntO. 

3.56.3.9 int XMLElernent::getIntAttribute (string & name) 

Returns an attribute of the element. 

If the attribute doesnlt exist) 0 is returned. 

Parameters: 
name The name of the attribute. 

Returns: 
The value of the attribute . 

Definit ion at line 230 of file XMLElement.cpp. 

3.56.3.10 int XMLElernent::getLineNr 0 
Returns the line number in the source data on which the element is found. 

This method returns 0 there is no associated source data. 

Returns: 
Line number in the source data on which the element is found. 

Definition at line 197 of file XMLElement.cpp. 

3.56.3.11 string XMLElernent::getNarne 0 
Returns the name of the element. 

R e turns: 
name of the element . 

Definition at line 187 of file XMLElement.cpp. 
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3.56.3.12 string XMLElement::getStringAttribute (string & name, 
string & default Value) 

Returns an attribute of the element. 

If the attribute doesn't exist, default Value is returned. 

Parameters: 
name The name of the attribute. 

default Value Key to use if the attribute is missing. 

Returns: 
The value of the attribute. 

Definition at line 216 of file XMLElement.cpp. 

3.56.3.13 string XMLElement::getStringAttribute (string & name) 

Returns an attribute of the element. 

If the attribute doesn't exist, an empty string is returned. 

Parameters: 
name The name of the attribute. 

Returns: 
The value of the attribute. 

Definition at line 209 of file XMLElement.cpp. 

3.56.3.14 void XMLEleIllent::operator= (XMLElement & rhs) 

Sets two objects equal to one another. 

Parameters: 
rhs object to set this object equal to. 

Definition at line 1037 of file XMLElement.cpp. 

References attributes, children, contents, entities, ignoreWhitespace, lineNr, and 
name. 

3.56.3.15 bool XMLElell1ent::operator== (XMLElement & rhs) 

Determines if two objects equal to Oile another. 
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Parame ters: 
rh8 object to determine if this one is equal to. 

R e turns: 
true if both objects are equal and fal s e otherwise. 

Definition at line 1063 of file XMLElement.epp. 

References attributes, children, contents, and name. 

3.56.3.16 void XMLElement ::parse (istream & reader) 

Reads one XML element from a stream and parses it. 

Parame ters: 
reader The stream from which to retrieve the XML data. 

Exceptions: 
XMLParseException (p. 161) If an error oeeured while parsing the read 

data. 

Definition at line 124 of fi le XMLElement.cpp. 

References parseO. 

3.56.3.17 void XMLElement::parse (string & file) 

Reads one XML element from a file and parses it. 

Parameters: 
file The file from which t o retrieve the XML data. 

E x ceptions: 
XMLParseException (p . 161) If an error oecured while pa rsing the read 

data. 

Definit ion at line 116 of file XMLElement.cpp. 

Referenced by parseO. 

3.56.3.18 void XMLElernent: :prettyWriter (ostream & writer) 

Writes the XML element to an output stream using a pretty format. 

Parameters: 
writer The stream to write the XML data to. 

Definition at line 929 of file XMLElement.epp. 

Referenced by wri te () . 
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3.56 XMLElement Class Reference 

3.56.3.19 void XMLElement::re moveAttribute (string & name) 

Removes an attribute. 

Parameters: 
name The name of the attribute. 

Definition at line 172 of file XMLElement.cpp. 

3.56.3.20 void XMLElernent ::rernoveChild (XMLElernent & child) 

Removes a child element. 

Paratneters: 
child The child element to remove. 

Definition a t line 159 of file XMLElement.cpp. 

3.56.3.21 void XMLElernent::setAttribute (string & name, double 
value) 

Adds or modifies an attribute. 

Parameters: 
name The name of the attribute. 

value The value of the attribute. 

Definition at line III of file XMLElement. cpp. 

References StringManipulation::doubleToString(). 

3.56.3.22 void XMLElement ::setAttribute (string & name, int 
value) 

Adds or modifies an attribute. 

Parameters: 
name The name of the attribute. 

value The value of the attribute. 

Definition at line 105 of file XMLElement.cpp. 

References StringManipulation: :intToStringO. 
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3 .56.3.23 void XMLElement::setAttribute (string & name, string & 
value) 

Adds or modifies an attribute. 

Parameters: 
name The name of the attribute. 

value The value of the attribute. 

Defini t ion at line 99 of file XMLElement.cpp. 

3.56.3.24 void XMLEleIllent::setContent (string & content) 

Changes the content string. 

Parameters: 
content The new content string. 

Definition at line 177 of file XMLElement.cpp. 

3.56.3.25 void XMLElernent::setName (string & name) 

Changes the name of the element. 

Parameters: 
name The new name. 

Definition at line 192 of file XMLElement.cpp. 

3.56.3.26 void XMLEleITlent::singleLineWriter (ostreaITl & writer) 

Writes the XML element to an output stream as a single line. 

Parameters: 
writer The stream to write the XML data to. 

Definition at line 858 of file XMLElement.cpp. 

3.56.3.27 void XMLElement::write (string & file) 

Writes the XML element to a file using a pretty format. 

Parameters: 
file The file to write the XML data to. 

Definition at line 922 of file XMLElement.cpp. 

References prettyWriter(). 
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3.57 XMLParseException Class Reference 

3.57 XMLParseException Class Reference 

An XMLParseException is thrown when an error occures while parsing an XML 
stream. 

Inheritance diagram for XMLParseException:: 

Public Methods 

• XMLParseException (string name, string message) 

Creates an exception. 

• XMLParseException (string name, int lineNr, string message) 

Creates an exception. 

• int getLineNr 0 , 
Where the error occurred, or NO _LINE if the line nu.mber is unknown. 

• void setMessage (string message) 

Sets the error message for the exception. 

• string get Message 0 
Gets the error message for the exception. 

Static Public Attributes 

• int NO..LINE = -1 

Indicates that no line number has been associated with this exception. 

3.57.1 Detailed Description 

An XMLParseException is thrown when an error Occures while parsing an XML 
stream. 

Definition at line 28 of file XMLParseException .h. 
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3.58 ZeroCorrelationFunction Class Reference 

3.57.2 Constructor & Destructor Documentation 

3.57.2.1 XMLParseException::XMLParseException (string name, 
string message) 

Creates an exception. 

Parameters: 
name The name of the element where the error is located. 

message A message describing what went wrong. 

Definition at line 18 of file XMLParseException.cpp. 

References NO-LINE, and Exception::setMessageO. 

3.57.2.2 XMLParseException::XMLParseException (string name, 
int lineNr, string message) 

Creates an exception. 

Parameters: 
name The name of the element where the error is located. 

lineNr The number of the line in the input. 

message A message describing what went wrong.) 

Definition at line 29 of file XMLParseException.cpp. 

References StringManipulation: :intToStringO, and Exception: :setMessageO. 

3.57.3 Member Function Documentation 

3.57.3.1 int XMLParseException::getLineNr 0 
Where the error occurred, or NO-LINE if the line number is unknown. 

Returns: 
Line number where the error occurred. 

Definition at line 41 of file XMLParseException.cpp. 

3.58 ZeroCorrelationFunction Class Reference 

Correlation function which describes noninteracting particles. 

Inheritance diagram for ZeroCorrelationFunction:: 
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3 .58 ZeroCorrelationFunction C lass Reference 

QMCCorrelationFunction 

ZeroCorrelat ionFunction 

Public Methods 

• void initializePararneters (ArraylD< int > &BeginninglndexOf­
ParameterType, ArraylD< double> &Parameters, ArraylD < int > 
&BeginninglndexOfConstantType, ArraylD< double> &Constants) 

Initializes the correlation junction with a specified set of parameters . 

• void evaluate (double r ) 

Evaluates the correlation junction and it's first two derivatives at r. 

• bool isSingular 0 
Returns true if the correlation junction has a singularity in the domain r ~ 0, 
and false otherwise. 

• double get Function Va lue () 

Gets the value of the correlation function for the rest evaluated r. 

• double getFirstDerivative Value 0 
Gets the value of the first derivative of the correlation function for the last 
evaluated r. 

• double getSecondDerivativeValue 0 
Gets the value of the second derivative of the correlation junction for the last 
evaluated r. 

3.58.1 D etailed Description 

Correlation function which describes noninteracting particles. 

Definition at line 24 of file ZeroCorrelationFunction.h. 

3.58.2 Member FUnction Documentation 

3.58.2.1 void 
(ArraylD< int 

ZeroCorrelationFunction: :initializeParameters 
> & BeginninglndexOfParameterType, ArraylD< 
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4 QMcBeaver File Doculllentation 

double > & Parameters, Array1D < int > & BeginninglndexOf­
ConstantTlJpe, Array1D< double > & Constants) [virtual] 

Initializes the correlation function with a specified set of parameters. 

This must be called every time the parameters are changed. 

Implements QMCCorrelationFunction (p. 58). 

Definition at line 16 of file ZeroCorrelationFunction.cpp. 

4 QMcBeaver File Documentation 

4.1 ckfastfunctions.h File Reference 

This is a fast function library originally intended to speed up QMcBeaver a 
Quantum Monte Carlo program. 

Functions 

• double fastPower (double x, int n) 

Fast power function fO T use when the exponent is a small integer. 

4.1.1 Detailed Description 

This is a fast function library originally intended to speed up QMcBeaver a 
Quantum Monte Carlo program. 

Definition in file ckfastfunctions.h . 

4.1.2 function Documentation 

4.1.2.1 double fastPower (double x, int n) 

Fast power function for use when the exponent is a small integer. 

Parameters: 
x base 

n exponent 

Returns: 
xn 

Definition at line 15 of file ckfastfunctions.cpp. 
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4.2 LV.h File Reference 

4.2 LU.h File Reference 

Library of matrix functions which involve LV decompositions. 

Functions 

• void ludcrnp (Array2D< double> &a, int *indx, double *d, bool *calc­
OK) 

L U decomposition using the algorithm in numerical recipes for a dense ma­
trix. 

• void lubksb (Array2D< double> &a, int *indx, Array1D< double> 
&b) 

L U backsubstitution using the algorithm in numerical recipes for a dense 
matrix. 

• double determinant (Array2D< double> a, bool *calcOK) 

Calculates a determinant of a matrix using a dense LU solver. 

• Array2D< double> inverse (Array2D< double> a, bool *calcOK) 

Calculates the inverse of a matrix using a dense LU solver. 

• void deterrninant-3.nd~nverse (Array2D< d£)uble > a, Array2D< 
double> &inv, double &det, bool *calcOK) 

Calculates the inverse and determinant of a matrix using a dense L U solver. 

• void linearsolver (Array2D< double> &a, Array1D< double> &b, 
bool *calcOK) 

Solves a system of linear equations using a dense L U solver. 

4.2.1 Detailed Description 

Library of matrix functions which involve LU decompositions. 

Definition in file LV.h. 

4.2.2 Function Documentation 

4.2.2.1 double determinant (Array2D< double> a, bool * calc OK) 

Calculates a determinant of a matrix using a dense LU solver. 

This method scales as O(tN'). 

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen 

165 



4.2 LU.h File R eference 

Parameters: 
a a N x N matrix 

calc OK returns false if the calculation is singular and true otherwise 

Returns: 
the determinant of a 

Definition at line 115 of file LU.cpp. 

4.2.2.2 void determinanLand_inverse (Array2D< double > a, 
Array2D< double> & inv, double & det , bool * ealeOK) 

Calculates the inverse and determinant of a matrix using a dense LV solver. 

This method scales as O( I N 3 ). 

Parameters: 
a a N x N matrix 

inv inverse of a is returned here 

det determinant of a is returned here 

ealeOK returns false if the calculation is singular and true otherwise 

Definition at line 161 of file LU.cpp. 

4.2.2.3 Array2D < double> inverse (Array2D < double > a, bool * 
ealeOK) 

Calculates the inverse of a matrix using a dense L U solver. 

This method scales as O( IN3). 

ParaD1.eters: 
aaNxNmatrix 

calcOK returns false if the calculation is singular and true otherwise 

Returns: 
the inverse of a 

Definition at line 134 of file LU. cpp. 

4.2.2.4 void linearsolver (Array2D< double > & a , ArraylD< double 
> & b, bool * calcOK) 

Solves a system of linear equations using a dense L U solver. 

this method scales as O(~N3) . 
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4.3 mfrandom.h File Reference 

Parameters: 
a a N x N matrix. This matrix is destroyed in the calculation. 

b the N dimensional right hand side to solve for. Result is returned here 
and the original values are destroyed. 

calc OK returns false if the calculation is singular and true otherwise 

Definition at line 191 of file LU.cpp. 

4.2.2.5 void lubksb (Array2D < double > & a, int * indx, Array1D < 
double > & b) 

LV backsubstitution using the algorithm in numerical recipes for a dense matrix. 

Parameters: 
a the LU decomposition of a matrix produced by ludcmp 

indx a N dimensional array which records the row permutation from par­
tial pivoting generated by ludcmp 

b the N dimensional array right hand side of the system of equations to 
solve 

Definition at line 90 of file LU.cpp. 

4.2.2.6 void ludcmp (Array2D < double > & a, int * indx, double * 
d, bool • calc OK) 

LV decomposition using the algorithm in numerical recipes for a dense matrix. 

Parameters: 
a a N x N matrix which is destroyed during the operation. The resulting 

LU decompositon is placed here. 

indx a N dimensional array which records the row permutation from par­
t ial pivoting. 

d used to give det( a) the correct sign 

calc OK returns false if the calculation is singular and true otherwise 

Definition at line 23 of file LU.cpp. 

4.3 mfrandom.h File Reference 

Library of functions for generating random numbers. 
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4.3 mfrandom.h File Reference 

Functions 

• double gasdev (long *idum) 

Generates a gaussian distributed random number with unit variance using 
the gasdev algorithm /rom numerical recipes . 

• double ranI (long *idum) 

Generates a uniform random number on [0, 1] using the ranl algorithm from 
numerical recipes . 

4 .3.1 Detailed Description 

Library of functions for generating random numbers. 

Definition in file mfrandorn.h. 

4.3.2 Function Docurnentation 

4 .3.2 .1 double gasdev (long * idum) 

Generates a gaussian distributed random number with unit variance using t he 
gasdev algorithm from numerical recipes. 

Parameters: 
idum random number seed 

R eturns: 
gaussian random number with uni t variance 

Definition at line 16 of file mfrandom.cpp. 

4.3.2.2 double ranI (long * idum) 

Generates a uniform random number on [0, 1] using the ranI algorithm from 
numerical recipes. 

Pararneters : 
idum random number seed 

R e turns: 
uniform random number on [0,1]. 

Definition at line 55 of file mfrandom.cpp. 
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