Quantum Monte Carlo:
Quest to Get Bigger, Faster,
and Cheaper

Thesis by
Michael Todd Feldmann

In Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, CA
2002
(Defended May 20, 2002)

i

©2002
Michael Todd Feldmann
All Rights Reserved

iii
Preface
This dissertation describes work undertaken between August 1998 and
May 2002 in the Materials Simulation Center at the California Institute of
Technology under the supervision of Professor William A. Goddard III. This
dissertation describes a major portion of the work I did with Dr. Goddard,
Dr. Richard P. Muller, and David R. Kent IV developing efficient methods

for high accuracy methods for quantum mechanics.

iv

Acknowledgements

The research in this dissertation was the result of many factors coming
together in a positive way. It is my pleasure to acknowledge those who have
supported me during this work.

I would first like to thank my advisor, Dr. William A. Goddard IIl. He
sold me on the idea of Caltech as a place where exciting science is done. He
was correct. The knowledge I take away from the last four years of seeing
the research machine in motion is priceless.

During this same period Dr. Richard P. Muller acted both as a scientific
mentor and motivator. When research was going poorly, Dr. Muller was
always the one to come to the table with a smile on his face and get me
excited about the work again. I truly thank Dr. Muller for all of his positive
words and creative insight.

David “Chip” R. Kent IV was a critical member in making this research
become a reality. His insights and strong will kept this work on focus and
truly made the QMcBeaver software a success. He is one of the brightest
people I know and I feel privileged to have worked with him. I have no
doubt that the QMcBeaver project will be led by good hands in the future.

The Krell Institute ran the Department of Energy Computational Science
Graduate Fellowship (DOE-CSGF) which supported me during my studies
at Caltech. Their vision for the future of computional science just about put
me in tears as I satisfied their rigorous (and I often thought painful) course
requirements. In hindsight, however, accepting the DOE-CSGF has been one
of the most pivotal decisions in my young career in computational science. It

has changed my focus and vision for the future of this field. I am grateful to

v

both the Krell Institute and the Department of Energy for supporting this
excellent program.

The R. J. McElroy foundation also supported my research during the first
three years of my graduate work. Their goal of getting rural Iowa liberal arts
students on their way to a Ph.D. is a nobel one and I feel privileged to have
been selected by them to represent young Iowa scholars.

I saved the most important for last. I would like to thank my wife, Rachel,
and our families for their unconditional support. Rachel has learned what
it means to be married to a Caltech graduate student who works insane
hours, yet she has always been supportive of me completing this doctoral
degree. T would also like to thank my family for their guidance and giving
me the opportunity to pursue these interests. Without the support of these

important people I would not be where I am today.

vi

Abstract

We reexamine some fundamental Quantum Monte Carlo (QMC) algo-
rithms with the goal of making QMC more mainstream and efficient. Two
major themes exist: (1) Make QMC faster and cheaper, and (2) Make QMC
more robust and easier to use. A fast “on-the-fly” algorithm to extract
uncorrelated estimators from serially correlated data on a huge network
is presented, DDDA. A very efficient manager-worker algorithm for QMC
parallelization is presented, QMC-MW. Reduced expense VMC optimiza-
tion procedure is presented to better guess initial Jastrow parameter sets
for hydrocarbons, GJ. I also examine the formation and decomposition of
aminomethanol using a variety of methods including a test of the hydrocar-
bon GJ set on these oxygen- and nitrogen-containing systems. The QMC
program suite QMcBeaver is available from the authors in its entirety while

a user’s and developer’s manual is attached as supplementary material.

vii

Contents

1 Summary 1
1.1 Future of Supercomputing 3
1.2 Introduction to Quantum Monte Carlo 3

1.3 Efficient Algorithm for “On-the-fly” Error Analysis of Local
or Distributed Serially Correlated Data 4
1.4 Manager—Worker-Based Model for the Parallelization of Quan-
tum Monte Carlo on Heterogeneous and Homogeneous Net-
WOREE ok s 8 o BB B 5§ 4§ 8 §EE S § S EEE TS EE 5
1.5 Generic Jastrow Functions for Quantum Monte Carlo Calcu-
lations on Hydrocarbons 6

1.6 Aminomethanol Water Elimination: Theoretical Examination 6

1T (MMeBear .::p 0% 3ot iidbEEiesggdindm: 7

2 Future of Supercomputing 8
2.1 Current State of Supercomputing 8
22 WhatisContfing Nest? « . v o 5+ s v o v e s e mw e s powi o 9
29 WhatBhonld WeDo?, . : s v v ¢ s v vt 068 ¢ a5 %5 4 10
2.3.1 How Should We Design Hardware? 10

viil

2.3.3 How Coupled Should Software and Hardware Become? 11

2.4 Mission of This Work 12
Introduction to Quantum Monte Carlo 13
Fl Tolrodueliim - « « « ww s s 5w m kB R E K S B FE E RS W g 13
B2 THEOEY : von 5 s # ¢ v & 5 6 Gk € 6 5 0 B OB G5 W B R EF WiE ¢ 15

3.2.1 Variational Quantum Monte Carlo 16

3.2.2 Diffusion Quantum Monte Carlo. 18
Fh DoEliBieg - c z s 6.5 s R EEF E RE FE BB I EE 19

Efficient Algorithm for “On-the-fly” Error Analysis of Local

or Distributed Serially Correlated Data 20
A1 Intrednelion : : « o s s p e B FE B mT EE BEaE s E wE S 20
4.2 Motivation and Background 21
iy THOOEW o w0 2 6 0 816 & § 8 6 8 6 6 & 5 Wb & 5 6@ & & § & & 24

4.4

4.5
4.6

4.7

4.3.1 Computational Cost of Flyvbjerg-Peterson Algorithm . 26
4.3.2 Dynamic Distributable Decorrelation Algorithm (DDDA) 27
4.3.3 Computational Cost of DDDA 29
Computational Experiments 31

4.4.1 Variational QMC on One-Dimensional Particle-in-a-Box 31

4.4.2 Finite All-Electron Variational QMC on RDX 35
COBeluBloNE & & 5 5w 4 0 5 5 S # 8 6 & S U AT F A BB E 5 E T 40
Statistie Cloes Poendoetts & o o s s s s s s s v s 6 558 © 55 42
4.6.1 Pseudocode for Statistic.initialize() 42
4.6.2 Pseudocode for Statistic.add-Data(new_sample) . .. 44
4.6.3 Pseudocode for Statistic.addition(A,B) 44
Decorrelation Class Pseudocode 45

ix
4.7.1 Pseudocode for Decorrelation.initialize() 45
4.7.2 Pseudocode for Decorrelation.add_Data(new_sample) 45
4.7.3 Pseudocode for Decorrelation.addition(A,B) 46

4.8 Simple Example Calculation Pseudocode 50

Manager—Worker-Based Model for the Parallelization of Quan-

tum Monte Carlo on Heterogeneous and Homogeneous Net-

works 52
B.] ToErORUBEION o o ¢ o 5 &w 5 5 8 50 E 55 $@ 6§ § FRE LB § B G 52
9% OO : ¢ v 5 s B M iR R RS B B mm D s s 54
5.2.1 Pure Iterative Parallelization Algorithm 56
5.2.2 Manager—Worker-Parallelization Algorithm o8
5.2.3 Initialization Catastrophe 61
5 Experimmnt o o ¢ s o o s 5 5 9w 6 83 v Bw € i 5 B & O 62
5.3.1 Experiment: Varying Levels of Heterogeneity 63
5.3.2 Experiment: Heterogeneous Network Size 66
5.3.3 Experiment: Homogeneous Network 69
5.3.4 Experiment: Initialization Catastrophe 73
G54 Coneludiom « « « ¢ s s s me s s www s 4 8 6w & 4 4 o BB B & e 75
5.5 Pure Iterative Algorithm (QMC-PI) 76
5.6 Manager—-Worker Algorithm (QMC-MW) i

Generic Jastrow Functions for Quantum Monte Carlo Cal-

culations on Hydrocarbons 78
Bl Ibroduofion - 55 ¢ cnw e 25 2 h B § Y H S B d e E s 6 s 78
6.2 Themty : c vsns is o misss aw €56 PEd oo saswn 80

6.2.1 Variational Quantum Monte Carlo 81

6.3

6.4

X

6.2.2 Diffusion Quantum Monte Carlo. &2
FRporiefil < = o ¢ s o 94 5 58 6 S @ w85 b Bos 5 s mm sk F b 83
6.3.1 Motivate Generic Jastrow for Hydrocarbons 83
6.3.2 Experiment: Hydrocarbons Test Set. 84
6.3.3 Generic Jastrow for DMC 86
6.3.4 Test Case: 10-Annulene 89
EETOIUEION = mm 2 2 s P 5 2 8 Bawmd 5 5 6 v B b5 ML 2 sh 5 90

Aminomethanol Water Elimination: Theoretical Examina-

tion
Tl
T2
Tn)

7.4

92
IRErGdMEtIOn « o v o 5 3 w6 5 8w e ¢ 3 8 BE s o e B 8o 92
EHEEIY & ¢ 5o 5 0 6 6 58 8 5 5 B8 8 5 68 S5 ¥ 9 5 808 § 5 § & 9 95
EpEiiieil w o4 5 5 @ 89 % & @ 8 € 5 6 M s s s mie n b b W 96
7.3.1 Experiment Setup 96
T 1Bl o i :sopetis9n s :@e i odsssde 98
KA o 2 2 5 0 5 2 v 2 3 5 W ok B 35 EE 8k F L YA 99

8 QMcBeaver 107

xi

List of Figures

4.1

4.2

4.3
4.4

The energy expectation value standard deviation, evaluated with Eq. 4.6,
as a function of block size for a VMC “particle-in-a-box” calculation
using Method 1 to generate uncorrelated data points. The Flyvbjerg-
Peterson algorithm and DDDA yield exactly the same results. The
error bars represent one standard deviation in the calculated standard
deviation estimator. e
The energy expectation value standard deviation, evaluated with Eq. 4.6,
versus block size for a VMC “particle-in-a-box” calculation using Method
2 to generate correlated data points. The Flyvbjerg-Peterson algo-
rithm and DDDA vyield exactly the same results. The error bars rep-
resent one standard deviation in the calculated standard deviation
GSHMATOE & 5 2 @ = 58 ¢ 28 @@ & ¥ § 6 ¥ % .5 5 5 9 06 55 9@ & 8
The RDX molecule, eyclic [CH-N(NO2)]3. - « -« « = o o v o v .
The evolution of the energy-standard-deviation-estimator for the ground
state of RDX with block size. Shown here are the results for five cases
with 62122, 2137179, 6283647, 14566309, and 31163746 total QMC
steps. The energies are in Hartree (1 Hartree = 27.2116 eV). This

shows that a block size of 28 = 256 is sufficient for this calculation.

34

35
36

40

4.5

4.6

4.7

5.1

xii
The evolution of the energy-standard-deviation-estimator for the tran-
sition state for N-NO2 bond dissociation in RDX with block size.
Shown here are the results for five cases with 72899, 1113737, 5284068,
13601739, and 30176694 total QMC steps. The energies are in Hartree
(1 Hartree = 27.2116 eV). This shows that a block size of 2® = 256
is sufficient for this calculation.
The evolution with block size of the energy-standard-deviation-estimator
for the transition state for concerted symmetric ring decomposition of
RDX. Shown here are the results for five cases with 38848, 2110471,
6260482, 14545368, and 31126145 total QMC steps. The energies
are in Hartree (1 Hartree = 27.2116 eV). This shows that a block size
of 213 = 8192 is sufficient for this calculation.
The evolution of the standard-deviation-estimate for the energy of the
three states of RDX whose results were shown in Fig. 4.4, 4.5, and 4.6.
A block size of 2% was used for the ground state and the transition
state for N-NO2 dissociation while a block size of 2!% was used for
the symmetric concerted transition state. The energies are in Hartree

(1 Hartree = 27.2116 eV)

.......................

Time required to complete an 8 processor variational QMC calcula-
tion of Ne using the manager-worker (QMC-MW) and pure iterative
(QMC-PI) algorithms. The 8 processors are a mixture of Pentium Pro
200 MHz and Pentium Il 866 MHz Intel processors connected by 100
Mb/s networking. The theoretical optimal performance for a given

configuration of processors is provided by the curve.

5.2

5.3

5.4

5.5

xiii

Number of variational QMC steps completed during an 8 processor cal-
culation of Ne using the manager—worker (QMC-MW) and pure itera-
tive (QMC-PI1) parallelization algorithms. The pure iterative algorithm
always calculates the same number of steps, but the manager—worker
algorithm dynamically determines how many steps to take. The 8
processors are a mixture of Pentium Pro 200 MHz and Pentium Il
866 MHz Intel processors connected by 100 Mb/s networking.
Percentage of total calculation time devoted to each component in
the pure iterative parallelization algorithm (QMC-PI) during an 8 pro-
cessor variational QMC calculation of Ne. The 8 processors are a
mixture of Pentium Pro 200 MHz and Pentium Ill 866 MHz Intel
processors connected by 100 Mb/s networking.
Percentage of total calculation time devoted to each component in
the manager—worker-parallelization algorithm (QMC-MW) during an
8 processor variational QMC calculation of Ne. The 8 processors are
a mixture of Pentium Pro 200 MHz and Pentium [ll 866 MHz Intel
processors connected by 100 Mb/s networking.
Wall time required to complete a variational QMC calculation of Ne
using the manager—worker (QMC-MW) and pure iterative (QMC-PI)
algorithms on a heterogeneous linux cluster. The theoretical optimal
performance for a given configuration of processors is provided by the

e, s o fame s o 8N A AEES 850 S0 8 & Bl 5 5 4

66

5.6

0.7

5.8
5.9

6.1
6.2

6.3
6.4

6.9

7l

xiv

Wall time required to complete a variational QMC calculation of Ne
using the manager—worker (QMC-MW) and pure iterative (QMC-PI)
algorithms on the ASC| Blue Pacific homogeneous supercomputer.
The theoretical optimal performance for a given configuration of pro-
cessors is provided by theline.
Wall time in nonpropagation and non-initialization overhead expenses
for QMC-PI and @MC-MW on ASCI Blue Pacific.
Ratio of wall time for QMC-MW/QMC-PI on ASCI Blue Pacific.
Efficiency of a variational QMC calculation of RDX as a function
of the number of processors used. The calculations were performed
using the manager-worker-parallelization algorithm (QMC-MW) on
the ASCI-Blue Mountain supercomputer, which has 250 MHz MIPS
10000 processors connected by HIPPI networking. A similar result is
produced by the Pure Iterative parallelization algorithm. The data is

fit to e(Nproasors) = G/ 81 Npsseessors) With-w = 104.203.

Correlation energy (Hartree) recovered divided by total nuclear charge.
Reduction of the QMC variance for a wavefunction containing a Generic
Jastrow compared to a Hartree-Fock wavefunction.
Generic Jastrow correlation functions. by =3.0
Convergence (o2 in Hartree? units) of methane DMC runs over time

for various wavefunctions
Convergence (o2 in Hartree? units) of acetylene DMC runs over time

for various wavefunctions L . o0 e e

74

xv
7.2 Full mechanism of aminomethanol formation from NH3 and CH>O

and decomposition to CHyNH and H,O. Geometries determined

with Jagiir [T DAVBICEBNVTL. : s 5 s6% 4 ¢ 6 55 5 8 5 5 ¢ 4 4

xvi

List of Tables

4.1

4.2

6.1

7.1

V.2

7.3

Comparison of computational costs. Here N is the number of data
points analyzed. In evaluating the costs, N is assumed to be a multiple
of two. This represents the worst-case scenario. 30
Total energies (Hartree) for the various calculations on RDX. The HF
and DFT [2] results were obtained from Jaguar 4.1 with the 6-31G**
basis set [1, 3, 4, 5, 6, 7, 8]. Variational Quantum Monte Carlo based

o BT pointe. s & ¢ 6 5 6 B B 8 8 8 M B & B Wk B R0 8 @ 8 s 39

Absolute energies (Hartree) for various conformations of 10-annulene
methods with and without explicit electron correlation from the Generic

Jastrow (basis: cc-pVDZ).o e 01

Absolute energies (Hartree) for various methods (basis:r ce-pVTZ).
*Jaguar, *Molpro, **QMcBeavero 98
Absolute energies (Hartree) for various methods (basis: cc-pVTZ++/aug-
cc-pVTZ). *Jaguar, ™Molpro, **QMcBeaver 99
Relative free energies AG (kcal/mol) for various methods with cc-
pVTZ basis with Jaguar b3lyp/cc-pVTZ(-f) zero point and thermo-
chemical corrections at 2.63E-5 atm and 300K. *Jaguar, **Molpro,

HEOMCBEAVEE & 4 4 5 ¢ G o £ 3o E R WE o 3 WE % & R W ¥ 3 100

7.4

7.5

7.6

Ced
7.8
7.9
7.10
Tl
7.12

7.13

xvil

Relative free energies AG (kcal/mol) for various methods with cc-
pVTZ++/aug-cc-pVTZ basis with Jaguar b3lyp/cc-pVTZ(-f) zero

point and thermochemical corrections at 2.63E-5 atm and 300K. *Jaguar,
woillalpro, ™ OMBESVEr . . ¢ ¢ w2 8 5w me b s Bt b e os W o 101
Relative free energies AG (kcal/mol) at 2.63E-5 atm for various tem-
peratures with zero point and thermochemical corrections from Jaguar
(b3lyp/cc-pVTZ(-f)) on energetics from MolPro (QCI(T)/cc-pVTZ). . 102
Relative free energies AG (kcal/mol) at 1.32E-8 atm for various tem-
peratures with zero point and thermochemical corrections from Jaguar

(b3lyp/cc-pVTZ(-f)) on energetics from MolPro (QCI(T)/cc-pVTZ). . 103

Geometry for NHy. e 103
Geometey fori@H0: « o o v 4w wosm o v w w s s x4 B w6 s a a 104
Geometry for T;{,HHCHZO. 104
Geometty for CHy(OH)NHo: - « wow ¢ 2 5 8 w 6 8 8 8 % w8 & & % a 105
Geometry for T;I20+CH2NH 105
Geometry for HoO. e 106

Geometry for CHoNH. o o i it 106

Chapter 1

Summary

Quantum Monte Carlo (QMC) is a very exciting method for calculating elec-
tronic structure in chemical systems. QMC can achieve very high accuracy
and has several other computationally attractive features. When we first

started this type of work, we asked some very basic questions about QMC.

e Why is QMC interesting to others?
e Why is QMC not in more common use?

e What does someone need to use QMC? (software, computational re-

sources, QMC expertise?)

e Is QMC the method of future in computational chemistry and material

science?
e What have others done in the field?
e What are others currently focussed on?

e What can I do to help the effort of making QMC practical?

2

These seem like fairly simple questions yet they led to a surprising rich-
ness in research. Currently, QMC is a very exciting area of research with
many great minds working hard to make QMC fast, robust, and easy to use
(Chapter 3). Many interesting fronts exist in QMC, including higher accu-
racy methods, released node QMC, QMC calculation of forces, and better
single processor computational complexity of QMC to just name a few. To
provide the reader with a (by no means exhaustive) list of good references
to get a feel for current methods and trends in QMC, many references are
included in the bibliography though not explicitely referenced herein.

QMC is a high-accuracy electron structure method, which scales roughly
as O(n®) while competing methods scale as O(n®) to O(n!) [20]. In addition,
QMC is very easy to parallelize, which means you can further reduce the time
it takes to compute. Unfortunately, the prefactor on QMC is very large, so it
takes too much time to do except on supercomputers for the large majority
of interesting chemical and materials problems.

This is where this work begins. QMC is very expensive both in the user’s
time and in the computational resources it takes to accomplish a QMC job.
The goal of this work is to make QMC run on cheaper machines and do
it in less time while improving the ease of use for the end user. All of
these will bring QMC one step closer to being a commonly used method in
computational electronic structure studies.

In presenting this work, I have chosen to make each chapter as self-
contained as possible. I hope the reader can read any chapter with only
minimal reference to other chapters. This, of course, comes at the expense of
being somewhat redundant in the introductory sections of each chapter but

I feel most readers will appreciate this as they implement or write their own

QMC related software.

1.1 Future of Supercomputing

Current trends and a projection of what the future of supercomputing will
become are examined. Computational modeling is becoming a very impor-
tant part of basic research and the needs of researchers must be met with
economical computing solutions. There are two major sides of this issue.
The first is the building of computational infrastructure which provides the
most computing power per unit of expense. The second is the development
of algorithms and software which can effectively utilize these resources. We

also explore the correlated nature of these two points.

1.2 Introduction to Quantum Monte Carlo

A brief background on the popular forms of Quantum Monte Carlo (QMC)
are given. The first of these is variation QMC (VMC), and a second popular
method is diffusion or fixed node QMC (DMC). VMC and DMC are the two
major forms of QMC employed by research scientists and form the basis for
other forms of QMC. Any improvements one can make on these base methods

will likely have far reaching impact.

4

1.3 Efficient Algorithm for “On-the-fly” Er-
ror Analysis of Local or Distributed Se-

rially Correlated Data

A significant impediment to applying Monte Carlo methods to the compu-
tation of physically important systems is the efficient decorrelation of data
generated by Markov chains “on-the-fly” and in parallel for the extremely
large amount of sampling required to achieve convergence of a given es-
timator. We describe the Dynamic Distributable Decorrelation Algorithm
(DDDA) that eliminates this difficulty by efficiently calculating the true sta-
tistical error of an expectation value obtained from serially correlated data.
DDDA is an improvement on the Flyvbjerg-Peterson renormalization group
method [49], but allowing the statistical error to be evaluated “on-the-fly.”
This “on-the-fly” determination of statistical quantities allows dynamic ter-
mination of Monte Carlo calculations once a specified level of convergence is
attained. This is highly desirable, for example, for Quantum Monte Carlo
(QMC) calculations where the desired precision might require days or months
to compute, but cannot be estimated prior to the calculation.

Furthermore, DDDA allows a very efficient parallel implementation. For
the example of predicting the activation energy for decomposition of RDX
discussed herein, we estimate that Ng = 10'? global data points are required
to attain 0.1 kcal/mol precision in the calculated VMC energy estimators.
Thus with M = 10% processing units, the original algorithm requires local
processor storage scaling as O(N), N a £¢ or roughly 10° numbers which

may be difficult to accommodate with local storage and is often very difficult

5

to transfer efficiently between processors. The local processor storage require-
ment for DDDA scales as O(loga(N)) or roughly 120 doubles for Ng = 10
and M = 10® with an average update computational complexity for each new
sample of O(1). This small amount of data can easily be communicated and
combined with data from other processors, making parallel processing very

efficient.

1.4 Manager—Worker-Based Model for the Par-
allelization of Quantum Monte Carlo on
Heterogeneous and Homogeneous Networks

A manager—worker-based parallelization algorithm for Quantum Monte Carlo
(QMC-MW) is presented and compared to the pure iterative parallelization
algorithm, which is in common use. The new manager—worker algorithm per-
forms automatic load balancing, allowing it to perform near the theoretical
maximal speed on heterogeneous parallel computers. Furthermore, the new
algorithm performs as well as the pure iterative algorithm on homogeneous
parallel computers. When combined with the Dynamic Distributable Decor-
relation Algorithm (DDDA) [50], the new manager—worker algorithm allows
QMC calculations to be terminated when a desired level of convergence is ob-
tained and not when a given number of steps are performed as is the common
practice. Additionally, a derivation and experimental verification are given
to show that standard QMC implementations are not “perfectly parallel” as

is often claimed.

6

1.5 Generic Jastrow Functions for Quantum
Monte Carlo Calculations on Hydrocar-
bons

A Generic Jastrow (GJ) is examined that can be used for all-electron Quan-
tum Monte Carlo across a large range of small hydrocarbons. This simple GJ
captures some of the missing electron correlation of Hartree Fock (HF) the-
ory for Variational Quantum Monte Carlo (VMC) while reducing the E}oeq
variance a substantial amount. This implies Diffusion Quantum Monte Carlo
(DMC) may be accomplished with greatly reduced VMC Jastrow optimiza-

tion expense.

1.6 Aminomethanol Water Elimination: The-
oretical Examination

The mechanism for the formation of hexamethylenetetraamine predicts the
formation of aminomethanol from the addition of ammonia to formalde-
hyde. This molecule subsequently undergoes water loss to form methanimine.
Aminomethanol is the predicted precursor to interstellar glycine, and is there-
fore of great interest for laboratory spectroscopic study, which would serve
as the basis for observational searches. The height of the water loss barrier
is therefore useful in determination of an appropriate experimental approach
for spectroscopic characterization of aminomethanol. We have determined
the height of this barrier to be 55 kcal/mol at ambient temperatures using

QCI(T)/cc-pVTZ. Therefore, spectroscopic characterization of this molecule

7

should be straightforward under typical laboratory conditions.

1.7 QMcBeaver

The software package developed is called QMcBeaver. The user’s and devel-
oper’s manual is added as supplementary material. This is useful for both

those developing QMcBeaver and those developing their own QMC package.

Chapter 2

Future of Supercomputing

2.1 Current State of Supercomputing

A current trend in large scale supercomputing [51] is assembling “cheap
supercomputers” with commodity components using a Beowolf-type frame-
work. These clusters have proven to be very powerful for high-performance
scientific computing applications [52|. Clusters can be constructed as ho-
mogeneous supercomputers if the hardware for each node is equivalent, or
as heterogeneous supercomputers if various generations of hardware are in-
cluded.

Another interesting development is the use of loosely coupled, distributed
grids of computational resources [53] with components that can even be lo-
cated in different geographic locations in the world. Such “grids” are up-
graded by adding new nodes to the existing grid resulting in continuously

upgradable supercomputers, which are inevitably heterogeneous.

9
2.2 What is Coming Next?

This is by far the most speculative portion of this work. At the same time, I
fear this section will date this work worse than any other. What is Coming
Next? is the question we all wish we knew to answer to. I do want to take
a little time to map out what I believe will happen in computing.

The trend of going to larger parallelization is one that I believe is here
to stay with the current technology in hardware. The essential parts of
a current computer are very inexpensive. We, of course, have no idea of
future processing unit technology, but with the current trends, large scale
parallelization is here and will only get bigger.

Homogeneous supercomputers will become less and less dominant. Build-
ing a huge machine all at once is not generally the best economic model. The
demand for a computational resource increases over time and this solution
does not scale because the technology used in this machine will become ob-
solete in a very short amount of time.

Heterogeneous frameworks are the future of supercomputing. A hetero-
geneous framework is always expandable and the parts of the framework
become noneconomical more slowly. Some parts of the framework will be-
come obsolete since the hardware may not be worth the real estate it occupies
and the electricity that powers the machine may cost more than the utility
the machine gives to the user. We should also note that the current homo-
geneous machines fit into this model but only as smaller components of a
larger heterogeneous framework.

These heterogeneous frameworks will become so large that it will become

necessary for loosely coupled interconnects for the majority of the peer to peer

10

communications. This means that algorithms built for very large frameworks
need to make small enough tasks be accomplished on these relatively smaller
tightly coupled machines or tasks must be able to run efficiently on very

loosely coupled networks.

2.3 What Should We Do?

This is yet another speculative section on the proper course of computational
science but there are some rather solid statements that can be made. The
question How should we design hardware/software? is very interesting. The
ultimate goal of doing a computation is to obtain a certain result with the
least expense. The certain result is naturally the result from a given model.
This is dependent on the software used yet the level of the calculation can
be limited by the hardware. The least ezpense refers to both the expense
of renting a computational resource and the amount of the user’s time the
calculation takes. The utility function used will be a combination of compu-
tational resource expense and user defined utility as a function of wall clock

time to complete the task.

2.3.1 How Should We Design Hardware?

Clearly we want the most cost effective solution for building machines that are
inexpensive, long lasting, and easy for software engineers to design software
for. This is very difficult to accomplish. The cheapest scalable machines to
build are heterogeneous frameworks, yet the easiest to build software for is

tightly coupled homogeneous machines.

11

2.3.2 How Should We Design Software?

Software should be designed to run as efficiently as possible on a general
framework of computers. This is also difficult to achieve. If we are to effi-
ciently use a heterogeneous network of computers, we need to find algorithms
which allow good load balancing. This often comes at the expense of perform-
ing worse than the theoretical optimum because of additional bookkeeping
in keeping the network load balanced. Also, completely different algorithms
may be the most efficient on different networks. A slower loosely coupled
algorithm may perform poorly compared to a tightly coupled algorithm on
a tightly coupled homogeneous network. At the same time, the tightly cou-
pled algorithm will likely perform poorly on a loosely coupled heterogeneous

network.

2.3.3 How Coupled Should Software and Hardware Be-

come?

This leads to some interesting ideas. Different algorithms can perform better
or worse on different hardware. The different hardware have different assets
and liabilities including maintainability, scalability, ease of use, etc. This
clearly tells us that the designs of software and hardware are inherently
coupled. This coupled nature makes the design of software highly dependent

on the frameworks it will be running on.

12
2.4 Mission of This Work

To efficiently utilize the next generation of supercomputer (heterogeneous
cluster or grid), a parallelization algorithm must require little communication
between processors and must be able to efficiently use processors that are
running at different speeds. We propose a number of algorithms which will
allow a particular application, Quantum Monte Carlo (QMC), to run faster
and on more general networks of computers. This work was inspired by the
authors of our software package, QMcBeaver [54], working on other QMC
packages which had some deficiencies we wished to remedy to take QMC from
a tightly coupled homogeneous application to a loosely coupled heterogeneous

application.

13

Chapter 3

Introduction to Quantum

Monte Carlo

3.1 Introduction

Quantum Monte Carlo (QMC) is becoming a very important member of
the electron correlation correction methods in quantum chemistry. Many
flavors of QMC exist; Variational (VMC, 3.2.1) and Diffusion (DMC, 3.2.2)
Quantum Monte Carlo are two of the more popular methods employed. VMC
requires the explicit use of a variational wavefunction, while DMC has the
property that it can sample the ground state fixed node solution for a given
trial wavefunction.

Experience and tradition have defined a fairly efficient method of obtain-
ing very accurate calculations for molecules and materials using QMC [10,

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows:

1. Obtain a fair trial wavefunction, ¥r,iq, from some quantum mechanical

method, like Density Functional Theory (DFT) or Hartree Fock (HF).

14

2. Guess Jastrow particle-particle correlation functions that have some
variational form which maintains the antisymmetry of the total wave-
function. (This may only be a nearly antisymmetric wavefunction.

Umrigar gives a discussion of this topic [13].)

3. Choose variational parameters such that any Hamiltonian singularities

are satisfied with the “cusp condition” in the Jastrow form.

4. Generate an initial “walker(s)” approximately with respect to the par-

ticle probability distribution.

5. Equilibrate this “walker(s)” to verify it represents the particle proba-

bility distribution.
6. Generate configurations with the Metropolis algorithm in a VMC run.

7. Perturb and evaluate the Jastrow parameters using these configura-
tions. (Repeat this correlated sampling optimization [10] until satis-

factory convergence.)
8. Generate (or reuse from a VMC run) initial “walkers” for a DMC run.

9. Equilibrate these “walkers” to verify they represent the proper particle

probability distribution.

10. Use the optimized Jastrow for a DMC run to obtain a very accurate

result.

Typically the equilibration and generation of the configurations in the
VMC and DMC runs are the most expensive parts of this protocol so one

would like to minimize the effort in these sections. The main purpose of the

15

VMC optimization phase is to obtain a good description of the wavefunction.
The better this wavefunction is, the quicker the DMC run will converge. This
motivates one to optimize the Jastrow very well but not at the expense of
marginal returns.

Experience has shown that the VMC Jastrow optimization involves a
very difficult objective function. One must reduce the energy and/or vari-
ance some but without over-optimizing. The method of correlated sampling
is a useful method of optimization yet once it finds a flat region of the objec-
tive function (typically a o?(Frea) based objective function), it can falsely
encourage over-optimization since it likely reached a point of diminishing re-
turns. Experience has shown that if one can obtain roughly a factor of three
reduction in the variance over the HF wavefunction alone, one has done
a sufficient job of optimizing and that further optimization may give only
marginal returns. Typically, one might spend from 5% to 50% of the one’s

total effort optimizing the Jastrow in the VMC phase of the calculation.

3.2 Theory

QMC has many flavors, each with certain assets and liabilities. The two
particular types of QMC we will examine are VMC (Section 3.2.1) and DMC
(Section 3.2.2). These two methods are widely used for production level
calculations. Any impact one can make to improve the speed at which one
can accomplish these two types of QMC will have far-reaching consequences

for many researchers in computational chemistry and materials science.

16

3.2.1 Variational Quantum Monte Carlo

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful
method for examining correlated quantum wavefunctions. If one examines
the basic energy expectation integral and reformulates it in terms of an elec-
tron probability density, p, and a local energy, Ejscq, one finds a very simple
description of the energy expectation (3.1). However, this integral can not
be solved exactly except for a very few cases. Instead, the integral can be
numerically evaluated. This numerical integration is doomed to fail on a reg-
ular grid since the dimensionality of the integral can be very high. Instead,
the integration can be accomplished with a Monte Carlo algorithm described
by Metropolis [55], which can effectively numerically evaluate integrals in

many dimensions.

(E) — f (&) B9 (&) da™
e /(W(_’)) H!p(_') den
U(Z)
- f (%) Eigeat (Z)dz® (3.1)

One must now determine what this & should be. Typically, one can use a
method like Hartree Fock theory or Density Functional Theory [56, 57, 58, 59,
1, 3, 4, 5, 6, 7, 8] to obtain an antisymmetric wavefunction in a determinant
form. These wavefunctions contain no explicit particle correlations other
than the Pauli-exclusion of fermions.

This wavefunction is then augmented with a product of symmetric terms
which contain the explicit particle correlations. These particle correlation

functions will allow each particle to observe the positions of their neighboring

17

particles and will allow additional variational freedom in the wavefunction.

i3

Urpiat = Uyrezp (Z > uz’j) (3:2)

ioj<i

To construct the entire trial wavefunction, ¥p,q, from an HF type initial
guess wavefunction, Wyp, one uses the following expression (3.2). A Wp.u
constructed from a DFT type wavefunction is similar.

The building unit of this type of description is a u;; function for particles

i and j which are of particle types A and B, respectively (3.3).

2

_ CUSpaBTij +AaBT;; + -

W 1 = biar S
+ 0aBTi; + CABT}; +

(3.3)

This particular form of u;; is commonly referred to as the Padé-Jastrow
correlation function for finite systems [13] or simply “Jastrow” in this doc-
ument. We notice that this form contains a cuspap, which removes singu-
larities which arise as two charged particles approach each other. The cusp
condition puts a singularity in the kinetic energy part of the two-particle
Hamiltonian which exactly removes the singularity in the potential energy
part [60].

One must now determine how to optimize the parameters in the u;; func-
tions as well as how many parameters to maintain in the expression. Allowing
only the cusp condition parameter in the numerator and the first parame-
ter in the denominator is common practice, though the more parameters
one optimizes, the better the result will likely be because of the additional
variational freedom. The common optimization procedure is the method of

correlated sampling optimization described by Umrigar [10].

18
3.2.2 Diffusion Quantum Monte Carlo
Examining the time-dependent Schrédinger equation (6.4) in atomic units,

we observe that one can make a transformation from real time into imaginary

time to produce a diffusion equation (6.6).

or .
t = —ir (3.5)
= =-H0= (EV - v) w (3.6)

Expanding ¥ in the eigenstates of the time-independent Schrédinger equa-

tion, we observe the following.

T =>"cid (3.7)

Here the ¢;’s are the eigenstates and the g;’s are the eigenvalues of the

time-independent Schrodinger equation.

He; = ey (3.8)

We can now write the formal solution of the imaginary-time Schrédinger

equation (Equation 6.6).

(1, + 67) = e B W (1) (3.9)

19

If the initial ¥(7;) is expanded in the eigenstates (Equation 3.7), we

observe the following.

oo

w(6T) =Y cie ™ g (3.10)

i
Therefore, any initial state, which is not orthogonal to the ground state,

¢g, will exponentially evolve to the ground state over time.

lim (1) = coe ™" ¢ho (3.11)

T—0Q

The end result of this type of method is a sampling of the ground state ¢
distribution with respect to the original Yr,;, nodes. In practice the results
obtained from a fixed node DMC calculation are typically on the same order
of accuracy as couple-cluster and higher order methods which come at a much

higher expense in many cases (O(n® — n!))[20].

3.3 Conclusion

Quantum Monte Carlo is a very simple yet powerful method for examining
correlated electron structure. VMC and DMC form the basis of this very
powerful class of methods and provide a good starting point for improving

all QMC based applications.

20

Chapter 4

Efficient Algorithm for
“On-the-fly” Error Analysis of

Local or Distributed Serially

Correlated Data

4.1 Introduction

Monte Carlo methods are becoming increasingly important in calculating
the properties of chemical, biological, and materials systems. An exam-
ple discussed below shows that using the all-electron Variational Quantum
Monte Carlo (VMC) method to calculate the barriers to decomposition of
the high-energy material RDX (with 21 atoms and 114 electrons) requires
approximately 10'? Monte Carlo steps to converge the energy estimator to
roughly 0.1 kcal/mol precision.

However, there is a serious difficulty in the practical implementation of

21

such Monte Carlo calculations. The underlying algorithms of Monte Carlo
simulations generally involve Markov chains, which produce serially corre-
lated data sets. This means that for the data set D, the value D;; is highly
correlated to D; for a value of j small compared to the correlation time, K.

Flyvbjerg and Peterson described a fairly efficient blocking algorithm for
post-processing error analysis of serially correlated data on a single proces-
sor [49]. However, rather than waiting until after the run is terminated to
analyze the precision, it is desirable to specify in advance the desired preci-
sion after which the program can terminate. This requires the computation
of the true variance of serially correlated data, as the Monte Carlo calculation
is evolving, “on-the-fly.”

We propose a new blocking algorithm, Dynamic Distributable Decorre-
lation Algorithm (DDDA), which gives the same results as the Flyvbjerg-
Peterson algorithm but allows the underlying variance of the serially corre-
lated data to be analyzed “on-the-fly” with negligible additional computa-
tional expense. DDDA is ideally suited for parallel computations because
only a small amount of data must be communicated between processors to
obtain the global results. Furthermore, we present an efficient method for
combining results from individual processors in a parallel calculation that

allows “on-the-fly” result analysis for parallel calculations.

4.2 Motivation and Background

Although Monte Carlo algorithms are useful for a large range of scientific
problems, the convergence to a desired precision often requires very large

samplings, making it computationally expensive. In order to reduce the

22

total time to obtain a precise and accurate solution, it is highly desirable
to use parallel computing. The availability of low cost clusters and multiple
processor computers makes it possible to efficiently parallelize Monte Carlo
algorithms, allowing very large samplings to be probed in reasonable time.
In order for Monte Carlo algorithms to continue to take full advantage of the
advances and availability of massively parallel computers, it is essential that
the algorithms evolve to make these methods maximally efficient.

A significant improvement for applying quantum Monte Carlo methods to
the computation of chemically important systems was provided by Flyvbjerg
and Peterson, who showed that simple blocking of the data (averaging blocks
of data together and treating these averages as new data sets) can extract the
correct sample variance from a set of serially correlated data [49, 12]. These
new “blocked” data points are less correlated than the original data points
and are virtually uncorrelated for block sizes larger than the correlation time
of the data. Flyvbjerg and Peterson described a fairly efficient blocking
algorithm for post-processing error analysis of serially correlated data on a
single processor.

Although we are not certain of the historical origins of such data block-
ing techniques, at least partial credit should be given to Wilson [61], Whit-
mer [62], and Gottlieb [63]. However, Flyvbjerg and Peterson were the first
to formally analyze the technique [49].

We should also note that currently some methods exist which can im-
prove the particular implementation described. If we have some idea of the
correlation time, Ky, we can block the data in these size blocks ignoring the
smaller block sizes. We will refer to this method of pre-blocked data blocking

as PB-blocking. What PB-blocking can effectively do is reduce the number

23

of global data points from Ng = 10*? to Ng = 22, where m is the predefined
block sizes which will be considered the fundamental unit of data.

If one implements the PB-blocking method, several points need to be
considered. The correlation time, Ky, is highly dependent on the Monte
Carlo time step, dt, we use for the simulation. This implies the user will
need to intelligently determine which m to implement.

Blocking the initial data into m sized data blocks initially still requires the
user to implement a further blocking algorithm to verify that m was chosen
large enough. If m was chosen too small, the Flyvberg-Peterson algorithm
can still be implemented on this pre-blocked data with correct results. What
this does to the overall scaling of the storage is nothing, however. The order
of the global data points one needs to store is reduced by a constant factor
of m, while the global storage is still O(Ng).

Another unattractive feature of PB-blocking is the additional book-keeping
and programming needed to block the raw data. This is really a two-phase
algorithm, in which the initial blocking into blocks of size m feeds a Flyvberg-
Peterson type algorithm to verify properly uncorrelated data.

We have also found that although the small blocked data (which is still
correlated) underestimates the variance, it can still play a role in determin-
ing an extrapolation of the variance since these underestimates generally
converge to their respective values fairly well. The PB-blocking algorithm
essentially throws the small data blocking (blocks smaller than m) away to
reduce the storage and communication expenses. This can be useful infor-
mation when determining the level of correlation which is present at differing
block sizes and seeing how this drops off over block size.

The overall reduction of statistics and communication phase for the PB-

24

blocking algorithm still scales as O(Ng). As we probe larger and larger
samplings, this can be a prohibitive expense. What is potentially very useful
for those who still wish to implement the PB-blocking algorithm is the use
of the pre-blocking with the DDDA algorithm. Although the large sample
scaling will be the same as using the pure DDDA algorithm, this can further
reduce the total expense if a good guess m value can be determined. We
chose not to implement the pre-blocking step since it is additional effort to
implement and it gains us so little when we can simply use DDDA which
effectively makes the storage and communications expense negligible.

Instead, we aim to improve upon both the PB-blocking and the pure
Flyvberg-Peterson algorithm. We wish to simultaneously reduce the amount
of user input into the method by eliminating the pre-blocking step requiring
some level of user expertise to determine m, reduce the global storage, and
reduce expenses rigorously to O(log:(Ng)) from O(Ng), and to accomplish
a reduction of the global statistics “on-the-fly” with minimal expense.

In this paper, we reformulate the same mathematical results of Flyvbjerg
and Peterson to allow efficient decorrelation of serially correlated data “on-
the-fly” and in parallel for the extremely large amount of sampling required in
Markov chain based calculations such as Quantum Monte Carlo calculations

of electronic wavefunctions.

4.3 Theory

Computer simulations of physical systems often involve the calculation of an
expectation value, (f), with respect to a complicated probability distribution

function, p(z).

25

(f) = / o) f (@)de (4.1)

This expression is simple and elegant, but in many physical systems, p(z)
is too complex for Equation 4.1 to be useful computationally. Commonly,
computer simulations involve calculation of the average of samples over some

number of Monte Carlo steps (or molecular dynamics times).

3 (@) (4.2)

=1

=

f=

Here z; is sampled from the distribution p(z) using a Monte Carlo or
molecular dynamics simulation; ¢ is related to the Monte Carlo step number

or molecular dynamics time. Assuming ergodicity, then

. % = 1
(f) = limp oo f = Lm0~ ZI f(z;) (4.3)

Modern computing machines allow the very large samplings required to
approach this limit. However, since such sampling is necessarily always finite,
f will fluctuate requiring the determination of its variance in order to evaluate
the results. The variance, o2, of f can be expressed as

*(f)=— Z(fz5)) — (F(@:)){f(x5))) (4.4)

t,J=1

which is valid for the analysis of correlated data. For uncorrelated data this

reduces to the typical variance relation

(f2) = (f)°

mn

o*(f) = (4.5)

26

Applying Equation 4.5 to systems with correlated data leads to a lower
bound of the true variance, which is obtained from Equation 4.4.

Flyvbjerg and Peterson show formally that uncorrelated variance esti-
mates can be extracted from serially correlated data by applying a “block-
ing” transformation. The “blocking” transformation begins by partitioning
the serially correlated data into equal-sized, nonoverlapping “blocks” of data.
An average is performed over each block to obtain a new reduced set of data.
With a sufficiently large block size, the resulting data will be uncorrelated

and its variance can be calculated as

1 blocks , 1 blocks 2
F ock_ave ock_ave
#(fl= blocks Z (fibi ‘) block? (Z £t) ’ (4.6)

=

where flock-ave ig the average of f(z;) over block i. In practical terms, the
correct block size can be determined by finding the block size after which

equation Equation 4.6 plateaus as shown in Figure 4.2.

4.3.1 Computational Cost of Flyvbjerg-Peterson Al-

gorithm

When serially correlated data is collected from a Markov chain-based sim-
ulation, the average and variance of the average are the most commonly
calculated quantities. The Flyvbjerg-Peterson blocking algorithm requires

storing all of the collected data. This has two negative consequences:
e It cannot be performed “on-the-fly,”
e It requires O(N) storage.

If N is assumed to be a power of two and all block sizes are taken to be

powers of two, this algorithm requires 5N — 3 floating point additions, 3N —2

27

floating point multiplications, and 2N — 1 integer additions to calculate the
average and variance of the data with all possible block sizes. Often, the
data must be read in from a file to be analyzed, adding an additional slow

O(N) operation to the computational cost.

4.3.2 Dynamic Distributable Decorrelation Algorithm
(DDDA)

Our new algorithm involves two classes:

Statistic Class

(Pseudocode is listed in Supplement 4.6)
The Statistic class stores the number of samples, running sum of z;, and
running sum of z? for the data that is entered into it. This allows straight-

forward calculation of the average (Equation 4.7)
= - T; (47)
and variance (Equation 4.8)

1 2
&2(:6) _ % :‘1=1 :I‘? — FZ?:l L
n—1

; (4.8)

where n is the number of samples in the Statistic object, and the z; are the
data elements added to the object. This variance estimator only returns the
true variance if the data is uncorrelated.

Decorrelation Class

(Pseudocode 1is listed in Supplement 4.7)

28

The Decorrelation class stores a vector of Statistics (BlockedDataStatistics),
where BlockedDataStatistics[i] corresponds to data that has been partitioned
into blocks 2¢ long. As new data is collected during a computation, it is added
to a Decorrelation object using the add_Data(z) function. This function de-
termines when enough data samples exist to create new data blocks and then
adds the data from the new blocks to the correct elements of BlockedDataS-
tatistics. An operation is also presented to combine Decorrelation objects
generated from independent Markov chains that are produced in parallel
computations.

Sample pseudocode for applying the algorithm is presented in Supplement
4.8. This simple code demonstrates the ease of implementation for the new
algorithm. This code can be easily modified to include any special features
of a particular application including convergence-based termination.

This construction is well suited for parallel computations where multiple,
distributed Decorrelation objects will be generated. To combine these objects
efficiently, when analyzing the global results for a distributed calculation, it
is necessary to efficiently add the data from a number of Decorrelation objects
to form a new composite Decorrelation object. The addition operation listed
in Supplement 4.7 provides this functionality.

The equations implemented by DDDA are exactly the same as those
presented by Flyvbjerg and Peterson. Our implementation, however, is more
efficient. This allows new data to be added “on-the-fly” and allowing all
current data to be analyzed “on-the-fly” with negligible additional cost. The
results obtained from the original Flyvbjerg-Peterson algorithm and DDDA

are identical because they are mathematically equivalent.

29

Summary of Algorithm

The DDDA algorithm is very simple and relies only on the Statistic (4.3.2)
and Decorrelation (4.3.2) classes. A Decorrelation object is just an array
of Statistics objects. The Decorrelation array element zero corresponds to a
block size of one (or block size 2°), array element one corresponds with a
block size of two (or block size 2'), and array element 7 corresponds with a
block size of 2°.

When we observe a new sample, we place the sample into the Decorrela-
tion structure at level zero. This gets added to this Statistic and then gets
propagated up one level to level one. If a sample is waiting to construct a
new block, this new sample and the waiting sample are averaged and added
to this level as a new sample. This new composite sample is then recursively
sent down the structure constructing new blocks of data. If a sample gets
propagated a level and no waiting sample exists to form a new block, this
sample becomes the waiting sample which is followed by the termination of

this round of updating the Decorrelation structure.

4.3.3 Computational Cost of DDDA

Analysis of DDDA (Table 4.1) shows that it requires 5N — 3 floating-point
additions, 3N — 2 floating-point multiplications, and 2N — 1 integer addi-
tions, which is identical to the Flyvbjerg-Peterson algorithm. However, in
contrast with the Flyvbjerg-Peterson algorithm, DDDA requires storage of
only O(loga(N)) numbers and requires no time to read data from a file be-
cause the data is added to a Decorrelation object “on-the-fly.”

We should note that a storage unit in DDDA is roughly three times as

30

Expense Flyvbjerg-Peterson | Dynamic Distributable
Algorithm Decorrelation

Algorithm (DDDA)

Floating Point

Multiplications 3N -2 3N -2

Floating Point

Additions 5N —3 5N —3
Integer Additions 2N -1 2N -1
Read-in Data Cost O(N) None
Storage Cost O(N) O(logaN)
“On-the-fly”

Calculation not practical negligible

Table 4.1: Comparison of computational costs. Here N is the number of data points
analyzed. In evaluating the costs, N is assumed to be a multiple of two. This represents

the worst-case scenario.

large as the storage unit in the original algorithm. This factor of three results
from the class Statistic having three data members. If we assume that the
data type used for each data point and the data members of a Statistic object
have roughly the same number of bits, the storage cost of DDDA is 3loga(N)
which scales as O(loga(N)).

If the correlation time for the data is known approximately, then block
sizes significantly larger than this are not required; therefore, it is not neces-
sary for them to be saved or calculated. This reduces the storage cost to O(1).
If a sufficiently large block size is not allowed, the calculated variance will be

incorrect because the largest data blocks used to calculate the variance will

31

still be correlated. (This is just a special instance where the computational
complexity and costs can be managed if the approximate correlation time is
known a priori.)

To provide an idea of the impact of DDDA, consider the example of
predicting the activation energy for decomposition of the RDX molecule dis-
cussed below. We estimate that Ng = 10'? global data points are required.
Thus with M = 10® processing units, the original algorithm requires local
processor storage of O(N), N = %f} = 10° numbers, which may be difficult
to accommodate on the local memory and may be very difficult to transfer
efficiently between processors. In contrast for Ng = 10*? and M = 103, the
local processor storage requirement for DDDA is 3logs(N) = 120, which is

much easier to accommodate than 10°.

4.4 Computational Experiments

4.4.1 Variational QMC on One-Dimensional Particle-
in-a-Box
Details of the calculations

To illustrate DDDA, we consider using Variational Quantum Monte Carlo

(VMC) [13] to calculate the energy for a one-dimensional particle-in-a-box

32

of length one. The expected energy of the system is given by Equation 4.9

9
(B) = f U HUpda
0

_ fo el B (e, (4.9)

where ¥t is a normalized, approximate wavefunction, H is the Hamiltonian
for the system, Ep(z) is the local energy, and pr(z) is the approximate
probability distribution of the particle. Equation 4.9 can be evaluated in two

ways:

e One option (Method 1) is to perform a Monte Carlo integral using
uniform random numbers to sample E;(z) with weight pr(x). Because
the uniform random numbers are not serially correlated, the sampled

values of pr(z)FEr(z) are not serially correlated.

e A second option (Method 2) is to generate points distributed with
respect to py(z) using the Metropolis algorithm [55] and use these
points to sample Fy(z). Because the Metropolis algorithm employs a

Markov chain, this method will produce serially correlated data.

For our illustration, we chose

U =30 (z — z?) (4.10)

This trial wavefunction is a good approximation to the exact ground state
wavefunction, ¥ gy = v2sin(rz). Since the ¥y is not an eigenfunction for
this system, the local energy will not be constant and the calculated energy

expectation value will fluctuate.

33

Results

DDDA produces the same results as the Flyvbjerg-Peterson algorithm but
is a more efficient implementation. The analytic expectation value of the
energy is (E) = 5.0. The uncorrelated estimate of the energy, calculated by
Method 1, is (E) = 5.0014(22) and the correlated estimate, calculated by
Method 2, is (E) = 5.0018(59).

The noncorrelated VMC “particle-in-a-box” calculation (Method 1) pro-
duces a nearly flat standard deviation estimation for blocks of 2° to 2!2 points
(Figure 4.1). This is the expected behavior for noncorrelated data because
Equation 4.5 provides a correct prediction of the variance. The poor perfor-
mance for large block sizes results because they have very few data points
leading to less stability in estimating the standard deviation.

The correlated VMC “particle-in-a-box” calculation (Method 2) leads to
a nearly monotonic increasing estimate of the standard deviation that levels
off for blocks of 2* to 2! points (Figure 4.2). The plateau in the standard
deviation estimation corresponds to the correct standard deviation of the
calculated expectation value. Furthermore, the plateau indicates that blocks
of 2% points are essentially uncorrelated so that Equation 4.6 provides an
appropriate estimate of the variance.

We should nofe that using Equation 4.5 on correlated data without data
blocking yields an estimate of the standard deviation that is much too small.
This corresponds to a block size of one (the y-axis intercept) in Figure 4.2.
This illustrates the potential dangers in reporting error estimates of data
without accounting for the serial correlation that may exist.

We should also note that the error estimates of the correlated and uncor-

34

Uncorrelated VMC "Particle-in-a-Box"
0.003 T T T T T T T T

0.0025 .

0.002

v 0.0015

0.001

0.0005

0 1 1 1 1 1 L 1 1

0 2 4 6 8 10 12 14 16 18
logs(Block Size}

Figure 4.1: The energy expectation value standard deviation, evaluated with Eq. 4.6,
as a function of block size for a VMC “particle-in-a-box" calculation using Method 1
to generate uncorrelated data points. The Flyvbjerg-Peterson algorithm and DDDA
yield exactly the same results. The error bars represent one standard deviation in the

calculated standard deviation estimator.

related “particle-in-a-box” calculations are different. These error estimates
illustrate that serially correlated data does not provide as much informa-
tion as uncorrelated data, resulting in a larger standard deviation for the
correlated case than the uncorrelated case when using the same number of

samples.

35

Correlated VMC "Particle-in-a-Box"
0.011 T T T T T T T T

0.01 -

0.009 -

0.008

0.007

0.008

0.005

0.004

0.003

0_002' 1] I I ! I 1 L
0 2 4 6 8 10 12 14 16 18

log,(Block Size)

Figure 4.2: The energy expectation value standard deviation, evaluated with Eq. 4.6,
versus block size for a VMC “particle-in-a-box” calculation using Method 2 to generate
correlated data points. The Flyvbjerg-Peterson algorithm and DDDA yield exactly the
same results. The error bars represent one standard deviation in the calculated standard

deviation estimator.
4.4.2 Finite All-Electron Variational QMC on RDX
Introduction

For a more realistic test of these algorithms, we consider a practical problem
of using Variational Quantum Monte Carlo (VMC) to determine the barrier
height for the unimolecular decomposition of the high explosive molecule,
RDX (see Fig. 4.3), cyclic [CH; — N(NO3)]s-

The best available DFT calculations [2] indicate an activation barrier of

39.0 kcal for NN dissociation, 39.2 kcal/mol for HONQO elimination, and

Figure 4.3: The RDX molecule, cyclic [CHy-N(NOs)]s.

59.4 kcal/mol for concerted decomposition. Various choices of high-quality
basis sets with various choices of high-quality density functionals (generalized
gradient approximations) lead to changes in these activation energies by ~ 5
kcal/mol. These uncertainties pertain to the underlying assumptions about
DFT so that we cannot improve this accuracy by just additional computing.
Thus with current DF'T methodology we are stuck with uncertainties of ~ 5
keal/mol. In order to properly model combustion processes involving RDX,, it
would be desirable to know these energies to 0.1 keal /mol. On the other hand,
using various flavors of QMC the calculated energy can be systematically
improved. If we have a way to gauge the uncertainty that can be applied
while the calculation is underway, then we can continue running until this
level of convergence is achieved. Numerous calculations with various flavors
of DFT indicate that with good basis sets and good generalized gradient
approximations, the geometries generally agree to better than 0.01A with
each other and with experiment. Thus a practical procedure would be to
determine the geometries (including transitions states) using DFT theory,
then start the QMC with this wavefunction and optimize the correlation
functions until the results will allow a DMC run to converge to the designed

accuracy. To illustrate this process for a general serially correlated Monte

37

Carlo application, we carried out some initial VMC calculations for RDX.
RDX = cyclic — [CH; — N(NO,)]; is composed of 21 atoms with 114
electrons, making an all-electron VMC calculation nontrivial but tractable.
To demonstrate the robustness of DDDA, we used VMC to calculate the
energies of the ground state and two transition state intermediates. In these

calculations, we use the structures from the DFT calculations [2].

Details of the VMC Calculations

VMC calculations were performed using QMcBeaver [54], which implements
DDDA. Though much work has been done on proper wavefunction optimiza-
tion techniques [10, 13, 14, 15, 16, 18, 19, 20, 21, 22], we examine a very

simple form of the VMC wavefunction as written in Equation 4.11.

\Pt'ria[— \IJHF JCOTT

St = BXD (ZZu”) (4.11)

i j<i

This is the product of a Hartree-Fock wavefunction, (HF), calculated us-
ing Jaguar [1, 3], with a Pade-Jastrow correlation function (Equations 4.11, 4.12, 4.13),
Jcor-. The particular form of the Pade-Jastrow correlation function is in

Equation 4.12.

Cuspsp”
= 4.12
S 1+ bapr ()

This was chosen to remove singularities in the local energy while maintain-
ing the structure of the original wavefunction everywhere except where two

particles closely approach each other. Thus for the electron-nuclear terms, we

38

set cusp = —Z and b = 100. Similarly for the electron-electron terms we use
the analytically derived values of cusp = 0.25 for same spin and cusp = 0.50
for opposite spin electrons. For same spin electrons, we use b = 100; while for
the opposite spin electrons, we use b = 3.5, which we have found works fairly
well for the ground state of a number of small molecules containing carbon,

hydrogen, oxygen, and nitrogen. These are displayed in Equations 4.13.

1

__ 2l
UM T 35y
1
.. .
Ut = U0 = 1+].OOTI'J'
u =Uu = —_Tij
Lobb 1 + 100?".,;3'
u = U = —_67.1;:;
L c 14 100?"1'_7
U = U = _TTij
L A T
—87"1'3'
= Hie————— 4.13
0 = o = T 100r; (4.18)

Such correlation functions with fixed parameters provide a crude but
“generic” approach to determining a portion of the correlation energy missing
in the Hartree-Fock wavefunction.

Of the three calculations, two were run to completion while the third cal-
culation was stopped a fraction of the way through the run and restarted from
checkpoints to verify the ease and efficiency with which these new structures
allow for checkpointing of the program state variables. The calculations were
performed on the ASCI-BLUE Mountain supercomputer at the Los Alamos
National Laboratory using 1024 MIPS 10000 processors running at 250 MHz.

Energies for the Jaguar Hartree Fock (HF), Jaguar density functional

theory (DFT-B3LYP) [1, 3, 4, 5, 6, 7, 8], and QMcBeaver variational quantum

39

Species Hartree Fock | Variational Quantum Monte Carlo
Ground state -892.491 -893.35(4)
Concerted dissociation -892.369 -893.29(5)
N — NO, bond fission -892.259 -893.20(4)

Table 4.2: Total energies (Hartree) for the various calculations on RDX. The HF and
DFT [2] results were obtained from Jaguar 4.1 with the 6-31G** basis set [1, 3, 4, 5,

6, 7, 8]. Variational Quantum Monte Carlo based on 3 x 107 points.

Monte Carlo (VMC) [54] calculations are presented in Table 4.2.

Results

The RDX calculations successfully completed independent of whether they
were run to completion or checkpointed and restarted.

Figures 4.4, 4.5, and 4.6 show the evolution of the energy standard devia-
tion estimate as the number of Monte Carlo steps is increased for calculations
on the three different RDX species. The standard deviation in the VMC
energy expectation value decreases with the number of samples, roughly fol-
lowing the form ﬁ Here we see that the plateau in the plot of standard
deviation vs. logs(block_size) is reached for a block size of roughly 28 to 2!

The dependence of the standard deviation on the number of steps is
shown in Fig. 4.7. Based on these results, we estimate that 100 steps are
required for 1 kcal/mol uncertainty in the calculated energy estimator, while
10'2 steps are required for 0.1 kcal/mol uncertainty in the calculated energy

estimator.

Another important observation from these calculations is that these crude

40

Time Evolution of RDX Energy Expectation Value Standard Deviation
1 T T T

T 4
31163746 Steps —+—
14566308 Steps —x—]
6283647 Steps —%— 4
2137179 Steps —&— 4

62122 Steps —=—

aaaaal

0.001 L L L I
o] 5 10 15 20 25

log,(Block Size)

Figure 4.4: The evolution of the energy-standard-deviation-estimator for the ground
state of RDX with block size. Shown here are the results for five cases with 62122,
2137179, 6283647, 14566309, and 31163746 total QMC steps. The energies are in
Hartree (1 Hartree = 27.2116 eV). This shows that a block size of 2% = 256 is sufficient

for this calculation.

“generic” Pade-Jastrow correlation functions appear somewhat effective in

improving the Hartree-Fock wavefunctions.

4.5 Conclusions

The primary goal here was to show the robustness and efficiency of DDDA.
This method can eliminate computationally expensive I/O operations and re-
duce the overall storage requirement to O(logy(N)) from O(N). Furthermore,

this method allows the variance of the calculated quantity to be evaluated

41

Time Evolution of RDX Energy Expectation Value Standard Deviation
10 T T T

T 3
30176694 Steps —+—
13601739 Steps —»—

5284068 Steps —*—
1113737 Steps —&—
72899 Steps —=— |

0.01

0.001 : - ! -
0 5 10 15 20 25

log,{Block Size)

Figure 4.5: The evolution of the energy-standard-deviation-estimator for the transi-
tion state for N-NO2 bond dissociation in RDX with block size. Shown here are the
results for five cases with 72899, 1113737, 5284068, 13601739, and 30176694 total
QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV). This shows that

a block size of 28 = 256 is sufficient for this calculation.

“on-the-fly.” This allows a calculation to be terminated when the calcu-
lated quantities are converged instead of having to pre-specify the number of
simulation steps to be performed.

Variance estimation for parallel simulations is easily and efficiently per-
formed with DDDA. While the Flyvbjerg-Peterson algorithm requires O(N)
data points to be communicated over a network connection to evaluate the
variance of the global calculation, DDDA requires only O(1) to O(logz(N))
data points to be communicated. This is a great benefit when large amounts

of data are generated or when calculations are performed on a “grid” or

42

Time Evoluticn of RDX Energy Expectation Value Standard Deviation

1 T T i T

31126145 Steps —+— |
14545368 Steps ——
6260482 Steps —*— 1
2110471 Steps —&—
38848 Steps —=—
0.001 - . : .
0

5 10 15 20 25
log,(Block Size)

Figure 4.6: The evolution with block size of the energy-standard-deviation-estimator
for the transition state for concerted symmetric ring decomposition of RDX. Shown
here are the results for five cases with 38848, 2110471, 6260482, 14545368, and
31126145 total QMC steps. The energies are in Hartree (1 Hartree = 27.2116 eV).

This shows that a block size of 213 = 8192 is sufficient for this calculation.

other computational network with potentially limited bandwidth. Further-
more, the Flyvbjerg-Peterson algorithm is typically implemented so that all
calculations are performed on one processor. DDDA efficiently partitions the

calculation between all available processors.

4.6 Statistic Class Pseudocode

4.6.1 Pseudocode for Statistic.initialize()

Statistic.initialize()

43

Time Evolution of RDX Energy Expectation Value Standard Deviation

1 T T —

' Grounrq State ——]
NO, Elemination —e—]

Symmetric Break —»—

0~01 1 1 e | PR
10000 100000 1e+06 1e+07 1e+08

Total QMC Steps

Figure 4.7: The evolution of the standard-deviation-estimate for the energy of the
three states of RDX whose results were shown in Fig. 4.4, 4.5, and 4.6. A block size
of 28 was used for the ground state and the transition state for N-NO2 dissociation
while a block size of 2!3 was used for the symmetric concerted transition state. The

energies are in Hartree (1 Hartree = 27.2116 eV).

When a new instance of the Statistic class is created
initialize its attributes

NSamples = 0.0

Sum = 0.0

SumSq = 0.0

44

4.6.2 Pseudocode for Statistic.add_Data(new_sample)

Statistic.add_Data(new_sample)
Add a new data element to the Statistic object and update
the object’s attributes
NSamples = NSamples + 1
Sum = Sum + new_sample

SumSq = SumSq + new_sample ¥ new_sample

4.6.3 Pseudocode for Statistic.addition(A, B)

Statistic.addition(A, B)
Add two Statistics to create a new composite statistic
C=A+B (so C is the resulting Statistic object)
C = new Statistic()
C.NSamples = A NSamples + B.NSamples
C.Sum = A.Sum + B.Sum
C.SumSq = A.SumSq + B.SumSyq

returnC

45

4.7 Decorrelation Class Pseudocode

4.7.1 Pseudocode for Decorrelation.initialize()

Decorrelation.initialize() :
When a new instance of the Decorrelation class is
created, initialize its attributes
Size =0
NSamples =0
BlockedDataStatistics = [new Statistic()]
waiting-sample = (0]

waiting-sample_exists = [false]

4.7.2 Pseudocode for Decorrelation.add_Data(new_sample)

Decorrelation.add_Data(new_sample) :

Add a new data element to the Decorrelation object
and update the object’s attributes

NSamples = NSamples + 1

This will dynamically make the Decorrelation arrays
longer to fit in all the data

if NSamples >= 2.05%¢
Size = Size+1
BlockedDataStatistics =

Blocked DataStatistics.append(newStatistic()

waiting_sample = waiting_sample.append(0)

46

waiting_sample_exists = waiting_sample_exists.append(false)
Blocked DataStatistics[0].add_Data(new_sample)
carry = new_sample
=]
done = false
Propagate the new sample up through the
BlockedDataStatistics structure
while(not done) :
if waiting_sample_exists[i] :
new_sample = (waiting_sampleli] + carry)/2.0
carry = new_sample
Blocked DataStatistics[i].add Data(new_sample)

waiting_sample_exists[i] = false

else :
waiting_sample_exists[i| = true
waiting_sampleli] = carry
done = true
)= el
if ¢ > Bize
done =1

4.7.3 Pseudocode for Decorrelation.addition(A, B)

Decorrelation.addition(A, B) :

Add two Decorrelation objects to create a new

47

composite Decorrelation object
C=A+B (so C is the resulting Decorrelation object)
C = newDecorrelation()
C.NSamples = A.NSamples + B.NSamples
Make C big enough to hold all the data from A and B
while C.NSamples >= 2.0¢-5%¢ .
C.Size = C.Size + 1
C.BlockedDataStatistics =
C.BlockedDataStatistics.append(newStatistic())
C.waiting_sample = C.waiting_sample.append(0)
C.waiting_sample_exists =
C.waiting_sample_exists.append(false)
carry-exists = false
carry =0
for i in range(C.Size) :
if 1 <= A.8ize:
StatA = A.Blocked DataStatistics|]
waiting-sample A = A.waiting_sampleli
waiting-sample_exists A = A.waiting_sample_existsi]
else :
StatA = new Statistic()
waiting-sampleA = 0
waiting-sample_existsA = false
if i <= B.Nize:
StatB = B.BlockedDataStatistics|t]

48

waiting_sample B = B.waiting_sampleli]
waiting-sample_existsB = B.waiting_sample_exists|i|
else :
StatB = new Statistic()
watting-sample A = 0
waiting-sample_existsA = false
C.BlockedDataStatistics|i] =
C.BlockedDataStatistics[i].addition(Stat A, StatB)
if (carry_ezxists == true & waiting_sample_existsA == true &
waiting_sample_exists B == true) :
We have three samples to handle
C.BlockedDataStatistics|i].add Data(
(waiting_sample A + waiting_sampleB)/2.0)
C.waiting-sampleli] = carry
C.waiting_sample_exists[i] = true
carry-exists = true
carry = (waiting_sample A + waiting_sampleB) /2.0
else if (carry_exists == false & waiting_sample_exists A == true &
waiting-sample_exists B == true) :
We have two samples to handle
C.BlockedDataStatistics|i].add Data(
(waiting_sample A + waiting_sampleB) /2.0)
C.waiting_sample[i] = 0
C.waiting-sample_exists[i]| = false

carry-exists = true

49

carry = (waiting_sample A + waiting_sampleB) /2.0
else if (carry-exists == true & waiting_sample_existsA == false &
waiting_sample_existsB == true) :
We have two samples to handle
C.BlockedDataStatistics|i].addData(
(carry + waiting sampleB) /2.0)
C.waiting_sample[i] = 0
C.waiting_sample_exists(i| = false
carry-exists = true
carry = (carry + waiting_sampleB) /2.0
else if(carry_exists == true & waiting_sample_exists A == true &
waiting-sample_existsB == false) :
We have two samples to handle
C.BlockedDataStatistics[i].add Data(
(carry + waiting_sample A) /2.0)
C.waiting_sample[i] = 0
C.waiting_sample_exists[i| = false
carry_exists = true
carry = (carry + waiting_sampleA) /2.0
else if (carry-exists == true or waiting_sample_existsA == true or
waiting-sample_exists B == true) :
To get to this code we must only have one sample to handle
C.wasting_sample[i] = carry+
waiting_sample A + waiting_-sampleB

C.waiting_sample_exists(i| = true

50

carry-exists = false
carry =0

else:
There are no samples to handle here
C.waiting_sample[i] = 0
C.waiting_sample_exists(i| = false
carry-exists = false
carry = 0

returnC

4.8 Simple Example Calculation Pseudocode

for all processors :
Initialize the error analysis data structure for each processor
Local Error AnalysisDataStructure = newDecorrelation()
while generating new data points :
Generate new data and add it to the local error
analysis data structure
new_data = generateNewDataPoint()
Local Error AnalysisDataStructure.add_Data(new_data)
1f not root_node :
Send data to the root processor to evaluate the global
expectation value and Variance
send Local Error AnalysisDataStructure to root_node

else :

ol

Generate the global error analysis data structure by
adding the local error

Global Error Analysis DataStructure =
Local Error AnalysisDataStructure

Analysis data structures form each processor

for processor in all processors excluding the root node :
receive(Local Error Analysis DataStructureprocessor)
Global Error AnalysisDataStructure = Decorrelation.add(

Global Error AnalysisDataStructure,

Local Error Analysis DataStructureprocessor)

52

Chapter 5

Manager—Worker-Based Model

for the Parallelization of
Quantum Monte Carlo on
Heterogeneous and

Homogeneous Networks

5.1 Introduction

There is currently a great deal of interest in making Quantum Monte Carlo
(QMC) methods practical for everyday use by chemists, physicists, and ma-
terial scientists. Since protocols exist using QMC methods, such as varia-
tional QMC, diffusion QMC, and Green’s function QMC, to calculate the
energy of an atomic or molecular system to within chemical accuracy (< 2

kcal/mol), this makes their everyday application very attractive. High accu-

53

racy quantum mechanical methods generally scale very poorly with problem
size, typically O(N® to N!), while QMC scales fairly well, O(N?), but with
a large prefactor. Current research efforts exist to improve QMC’s scaling
further [45]. Density Functional Theory (DFT) scales well, O(N?), and could
potentially provide highly accurate solutions, but DFT typically has an ac-
curacy of 5 kcal/mol or more with the current generation of functionals and
the results cannot be systematically improved.

The primary issue facing the QMC community is that, although QMC
scales well with problem size, the prefactor of the method is generally very
large, often requiring CPU months to calculate moderately sized systems.
The Monte Carlo nature of QMC allows it to be easily parallelized, thus,
reducing the prefactor, with respect to the wall clock.

Application of QMC to physically interesting systems almost always re-
quires the use of supercomputers to enable calculations to complete in a rea-
sonable amount of time. Currently, however, supercomputing resources are
very expensive and can be difficult to gain access to. To make QMC more
useful for an average practitioner, algorithms must become more efficient,
and/or large inexpensive supercomputers must be produced.

A current trend in large scale supercomputing [51] is assembling “cheap
supercomputers” with commodity components using a Beowolf-type frame-
work. These clusters have proven to be very powerful for high-performance
scientific computing applications [52]. Clusters can be constructed as ho-
mogeneous supercomputers if the hardware for each node is equivalent or
as heterogeneous supercomputers if various generations of hardware are in-
cluded.

Another interesting development is the use of loosely coupled, distributed

o4

grids of computational resources [53| with components that can even reside
in different geographic locations in the world. Such “grids” are upgraded
by adding new compute nodes to the existing grid resulting in continuously
upgradable supercomputers, which are inevitably heterogeneous.

To efficiently utilize the next generation of supercomputer (heterogeneous
cluster or grid), a parallelization algorithm must require little communication
between processors and must be able to efficiently use processors that are
running at different speeds. We propose a manager—worker-parallelization
algorithm for QMC (QMC-MW) that is designed for just such systems. This
algorithm is compared against the pure iterative parallelization algorithm
(QMC-PI), which is most commonly used in QMC implementations [64, 65,
66].

5.2 Theory

Because QMC is a Monte Carlo method and thus stochastic in nature, it is
one of the easiest algorithms to parallelize and can be scaled to large numbers
of processors. In a parallel calculation, an independent QMC calculation is
performed on each processor, and the resulting statistics from all the proces-
sors are combined to produce the global result.

QMC calculations can typically be broken into two major computationally
expensive phases: initialization and statistics gathering. Points distributed
with respect to a complicated probability distribution, in this case the square
of the wavefunction amplitude, are required during a QMC calculation. In
efficient implementations, this is almost always done using the Metropolis

algorithm [55].

95

The first points generated by the Metropolis algorithm are not generated
with respect to the desired probability distribution so they must be discarded.
Additionally, points generated for diffusion QMC and Green’s function QMC
must be discarded if there are significant excited state contributions which
have not yet decayed. This represents the initialization phase. Once the
algorithm begins to generate points with respect to the desired distribution,
the points are said to be “equilibrated” and can be used to generate valid
statistical information for the QMC calculation. This represents the statistics
gathering phase and is the phase where useful data is generated.

To obtain statistically independent data, each processor, in a parallel
calculation, must perform its own initialization procedure which is the same
length as the initialization procedure on a single processor. When large
numbers of processors are used, the fraction of the time devoted to initializing
the calculation can be very large and will eventually limit the number of
processors that can be effectively used in parallel (Section 5.2.3).

Sections 5.2.1 and 5.2.2 theoretically analyze the pure iterative (QMC-
PI) and manager—worker (QMC-MW) parallelization algorithms for QMC.
The analyses assume that an O(log,(Nprocessors)) method, where Np,ocessors
is the total number of processors, is used to gather the statistical data from
all processors and return it to the root processor [50]. To simplify analysis of
the algorithms, the analysis is performed for variational QMC (VMC) with
the same number of walkers on each processor, but it is possible to extend

the results to other QMC methods.

o6

5.2.1 Pure Iterative Parallelization Algorithm

The pure iterative parallelization algorithm (QMC-PI) is the most commonly
implemented parallelization algorithm for QMC (Algorithm 5.5) [64, 65, 66].
This algorithm has its origins on homogeneous parallel machines and simply
allocates an equal fraction of the total work to each processor. The processors
execute their required tasks and percolate the resultant statistics to the root
node once every processor has finished its work.

In this algorithm, the number of QMC steps taken by each processor
during the statistics gathering phase, Stepspr i, is equal to the total number
of QMC steps taken for the calculation, StepsfiequiredTotal divided by the

total number of processors, Np;ocessors-

Ste SRequiredTotai
SthSp_r,i —_ P (5.1)
NProcessors

The number of QMC steps required to initialize each walker during the
initialization, Steps!™#a!z¢ js taken to be a constant. An optimally efficient
initialization algorithm would determine how many QMC steps are required
to equilibrate each walker, but in current practice, each walker is generally
equilibrated for the same number of steps.

The wall clock time required for a QMC calculation using the QMC-PI

algorithm, £p7, can be expressed as
_ Initialize Propagate Synchronize Communicate
tpr = tpp, Fipry pal +ipr ; (5.2)

where 57%%*¢ is the time required to initialize the calculation on proces-

sor 1, t?}‘?’“g“‘“’ is the time used in gathering useful statistics on processor 1,

t}s,%':hmmze is the amount of time processor 7 has to wait for other proces-

sors to complete their tasks, and ¢§gmmunicate ig the wall clock time required

o7

to communicate all results to the root node. These components can be ex-
pressed in terms of quantities that can be measured for each processor and

the network connecting them.

t;r}i’tiiatize = N, (tfenerateWalker 4 Stepslnitializet?MC) (5‘3)
4Propagate _ (StepsﬂequiredTomﬂ) QMO (5.4)

i NProcessors ‘
tCmnmummte logz(NProcessors) (tLateﬂ.cy M E 'BL) (55)

Here N, is the number of walkers per processor, tFenerateWalker ig the time

i . L,QMC
required to construct a walker on processor i, t?

is the time required
for a QMC step on processor i, tL%€"e¥ jg the latency of the network, 3 is
the inverse bandwidth of the network, and L is the amount of data being
transmitted between pairs of processors when data is percolated to the root
node.

The way this algorithm is constructed, all processors must wait for the
slowest processor to complete all of its tasks before the program can termi-

Synchronize

nate. Therefore 137 e = 0, and the wall clock time to complete the

QMC-PI calculation is

_ Initialize Propagate Communicate
tPf == tPI,stowesc <3 tPI,.sEowest + tPI . (56)
Furthermore,
Synch.romze __ (¢Initialize Propagate _ Iﬂitiu!ize Propagate
tp1 = (tPT stowest T tP1.stowest) — (tP1s) (5.7)

58

Similarly, the total time required for a QMC calculation using the QMC-

PI algorithm, Tpy, can be expressed as

- Initialize Propagate Synchrontze Communicate
Tpr = Tpy + Tpr +Tpr + Ty , (5.8)

itiali : . . T T . P :
where TE7#e2¢ i the total time required to initialize the calculation, T #*9**

is the total time used in gathering useful statistics, 7p¢"""*"*¢ is the total
time used in synchronizing the processors, and 75¢™menicate jg the total time
used to communicate all results to the root node. These components can be
expressed in terms of quantities that can be measured for each processor and

the network connecting them.

Nprocessors
Initialize __ § Initialize
TPI - tPI,i (59)
)
NProceasors
Propagate __ 2 : Prepagate
TPI - tPI,z' (510)
)
N.Processors
Synchronize Synchronize
TPI — E : tPI,z' (511)
i
TCommunz'cate = (N 1 tLatency 7
PI = (Processors —)(4 ﬂ) (512)

5.2.2 Manager—Worker-Parallelization Algorithm

The manager—worker paradigm (QMC-MW) offers an entirely new method
for performing parallel QMC calculations (Algorithm 5.6). This algorithm
makes the root node a “manager” and all of the other nodes “workers.” The
worker nodes compute until they receive a command from the manager node.
The command either tells the worker to 1) percolate its results to the manager

node and continue working or 2) percolate its results to the manager node

99

and terminate. The manager periodically collects the statistics that have
been calculated. If the statistics are sufficiently converged, the manager
commands the workers to send all their data and terminate; otherwise, the
manager will do some of its own work and repeat the process again later.
Unlike QMC-PI, QMC-MW dynamically determines how much work each
processor performs. This allows faster processors to do more work so the
calculation is automatically load balanced.

The wall clock time required to perform a QMC-MW calculation can be
broken into the same terms as were used for a QMC-PI calculation (Equa-

tion 5.3).

t Imtmlt ze 4 tPropngn.te + tS ynchronize tCommum'cate (5.1 3)

tmMw = MW,i MW,i MW,i

Because MW dynamically determines how many steps are performed by each
processor, each of the constituent terms has a more complicated form than
in QMC-PI. Allowing 7 to be the minimum wall clock needed to achieve
convergence on a given network and 7 to be the approximate wall clock
time during the run, one can easily derive the following expressions. Once 7

becomes 7 the QMC-MW algorithm will terminate.

ti}tﬁi?tize e Nwt?enerateWalker + Stepsf‘?ﬁf‘%iize(%)t?Mc (514)
tf;‘;gggate StepsP'ropagate ()tQMC (5 1 5)
; StepsTotal (7
tfffwgmmcate = [m%%] log, (NProcesscM)(tLatemy + BL) +
StepsT"““‘i{%) Poll
| Tty | 1 (5.16)

(5.17)

: Stepsioa (7)
Synchronize Poll 4 Poll MW,0
tMW,z’ S NwStepS tslawest [’

Nw Step g Reduce

60

where
Steps%ﬁ#ﬂ() Lat
oo lVNwStepsREduce IOgﬂ(NPfoceSSOTS)(t R ﬁL) (5-18)
~ tuw — tf},’;fc’?mm‘ze _ t%bgvn;nunicate
e ti}lwghze % tl’ﬂ}ryﬂgggate
Stepsifi(7) = ["ﬁ—gmw ; (5.19)
’ Nyt
StepsImtmlzze(q-) o mjn(Stepqu}’ﬁ“}f,— (T), NwStepsIm;tmﬁze), (520)
Stepsirmi?®e(r) = Stepsiiith(r) — Stepsinisatize(r), (5.21)
and

1

F=min7 3 . 15.22)
7/(StepsRedueeiIMOY T

N TOCE T t j
Z' Processors St@psg.;;p?ga 3(7_) 2 StepsReqmredTatal

RequiredTotal jg the minimum number of steps that are required to obtain

Steps
the desired level of convergence, Steps™® is the number of QMC steps that
take place on a worker processor between checking for a message from the
manager, and Stepsfd e js the number of QMC steps that take place on the
manager processor between sending commands to the workers. Unlike tp;,
tyw cannot be simply expressed in terms of individual processor speeds.

The total time required for the MW algorithm, Th/w, can be expressed

as

_ mnitialize Propagate Synchronize Communicate

which contains the same components as Equation 5.9.

Nprocessors

Tj{}z&ﬁmlize - Z tfnﬁ;ahze (524)

.2

61

Nprocessors
Propagate __ Propagate
T = Y thrws (5.25)
)
Nproceasors
Synchronize __ Synchronize
e = ¥ L (5.26)

Total

Tﬁwxmunicate — ’V Stepsifw o “ (NProcessors - 1)(tLatency o ﬁL) 0

NwStepsREd”ce
Total f2
ZNFwaca.ssors StepsM'oVPar'i(T) tPO“ (5 27)
i NwSteps'] oll 2 .

5.2.3 Initialization Catastrophe

QMC algorithms are described as being “embarrassingly parallel” and lin-
early scaling with respect to the number of processors used. These statements
are true for a large fracticn of Monte Carlo calculations but are not true for
QMC calculations which employ the Metropolis algorithm [55]. To obtain
independent statistical data from each processor, at least one independent
Markov chain must be initialized on each processor (Section 5.2). This gives
an initialization cost, T/"#alize which scales as O(Npypocessors)- Lhe time de-
voted to generating useful statistical data during the calculation, T°Froresate
scales as O(1) because a given number of independent Monte Carlo samples
are required to obtain a desired statistical accuracy no matter how many pro-
cessors are used. From this, the efficiency, or fraction of the total calculation

time devoted to useful work, ¢ is

T Propagate

L T Initialize -+ T Propagate + TSynchranize + T Communicate (528)

B oQ)
- O(Nprocessors) + O(1) ' (5.29)

This result clearly demonstrates that QMC calculations using the Metropo-

lis algorithm as described above are not linearly scaling for large numbers

62

of processors as is often claimed. This results from the initialization of the
Metropolis algorithm and not the parallelization algorithm used.

We should note that different initialization schemes exist which could po-
tentially reduce the expense of the equilibration phase. If it takes longer to
get a guess walker to become equilibrated than it takes to trust that a par-
ticular walker has been moved to an uncorrelated configuration from some
previously equilibrated configuration, one could make QMC a two-phase al-
gorithm with an initial phase on a single processor which makes uncorrelated
configurations from a single equilibrated configuration to start a full QMC
run on. This could also be done on multiple processors in a broadcast tree
manner where each new uncorrelated configuration seeds a new branch of
the tree to generate configurations. Trivially, however, we note that these
and any algorithm, which requires the generation of an uncorrelated set of
walkers requires computational effort which grows linearly with the number
of total global walkers. Therefore, we will continue to analyze the current
method of generating each walker from a guess configuration which we man-

ually equilibrate since the total computational complexity will be the same.

5.3 Experiment

Computational experiments comparing QMC-PI and QMC-MW paralleliza-
tion algorithms were performed using @McBeaver [54, 50|, a finite all-electron
QMC software package we developed. Variational QMC was chosen as the
particular QMC flavor to allow direct comparison with the theoretical results
in Section 5.2.

QMcBeaver percolates statistical results from all nodes to the root node

63

using the Dynamic Distributable Decorrelation Algorithm (DDDA) [50] and
the MPI_Reduce command from MPI [67]. This combination provides an
O(logy(Nprocessors)) method for gathering the statistical data from all pro-
cessors, decorrelating the statistical data, and returning it to the root node.

The time spent initializing, propagating, synchronizing, and communicat-
ing during a calculation was obtained from timers inserted into the relevant
sections of McBeaver. During a parallel calculation, each node has its own
set of timers which provide information on how that particular processor is
performing. At the completion of a calculation, the results from all processors

are combined to yield the total CPU time devoted to each class of task.

5.3.1 Experiment: Varying Levels of Heterogeneity

For this experiment, a combination of Intel Pentium Pro 200 MHz and In-
tel Pentium III 866 MHz computers connected with a 100 Mb/sec network
was used. The total number of processors was kept constant at 8, but the
number of each type of processor was varied over the whole range. This
setup provided a series of 8 processor parallel computers with a spectrum of
heterogeneous configurations. For our calculations with the current version
of MecBeaver, the Pentium III is roughly 4.4 times faster than the Pentium
Pro at performing QMcBeaver on these test systems.

The Ne atom was the particular chemical system the computational ex-
periments were performed on. A Hartree-Fock/TZV [1] wavefunction calcu-
lated using GAMESS [68, 56] was used as the trial wavefunction. For the par-
allelization algorithms, the following values were used: StepsfiequiredTotal _

9.5 % 109, Steps™miolize — 1 x 10%, Bileps™H = 1, Stepa™de® =1 x 107, and

64

1 0

S . ' ' ! ' Ma‘nagerchrk:ar ——
Pure lterative +—»x—i

120000 T Theoretical Limit b

110000 .,

100000 5

90000 + 7

80000 - 1

70000 | 1

Wall Clock Time (ms)

60000 b
50000 | 1
40000 a

30000 -

20000 1 L 1 1 1 1 i
0 1 2 3 4 5 6 7 8

Number of Pentium Il 866 MHz CPUs

Figure 5.1: Time required to complete an 8 processor variational QMC calculation of
Ne using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms.
The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium 1l 866 MHz Intel
processors connected by 100 Mb/s networking. The theoretical optimal performance

for a given configuration of processors is provided by the curve.

Na= 2

The time required to complete the QMC calculation for the QMC-PI and
QMC-MW parallelization algorithms is shown in Figure 5.1. Each data point
was calculated five times and averaged to provide statistically relevant data.

One should note StepsfiequiredTotal i ot known before a calculation.
Therefore, the QMC-MW model here is very representative of a real-world
implementation with its dynamic termination. However, allowing someone
using the QMC-PI method to know exactly StepsfequiredTotal hofare g calcu-

lation begins is the best-case scenario. Typically, one either under or over-

65

estimates StepsfequiredTotal when using the QMC-PI method. If one over-
estimates Stepsfequiredlotal some amount of computational resources will be
wasted over converging the calculation. If one underestimates Steps®equiredTotal
the job must be resubmitted to the queue with its last checkpoint state file.
Both cases waste the user’s time and/or computational resources.

The time required for the QMC-PI algorithm to complete is determined
by the slowest processor. When between 1 and 8 Pentium Pro processors
are used, the calculation takes the same time as when 8 Pentium Pro pro-
cessors are used; yet, when 8 Pentium III processors are used (homogeneous
network), the calculation completes much faster. This matches the behavior
predicted by Equation 5.6. This figure also shows that MW performs near
the theoretical speed limit for each of the heterogeneous configurations. This
is a result of the dynamic load balancing inherent in QMC-MW.

The total number of QMC steps performed during a calculation is shown
in Figure 5.2. The QMC-PI method executes the same number of steps
regardless of the particular network because the number of steps performed
by each processor is determined a priori. On the other hand, QMC-MW
executes a different number of steps for each network configuration. This
results from the dynamic determination of the number of steps performed by
each processor. The total number of steps is always greater than or equal to
the number of steps needed to obtain a desired precision, StepsfequiredTotal

Figures 5.3 and 5.4 break the total calculation time down into its con-
stituent components (Equations 5.8 and 5.23). QMC-MW spends essentially
all of its time initializing walkers or generating useful QMC data. Synchro-
nization and communication costs are minimal. On the other hand, QMC-PI

devotes a huge portion of the total calculation time to synchronizing proces-

66

350000 T T T T T

Ma'nager."Work'er pt—
Pure Iterative ——»—

300000 b

250000 3 "

200000 B

150000 B

Number of QMC Steps

100000 + -

50000 =~

0 I 1 1 1 1 L 1
0 1 2 3 4 5

Number of Pentium Il 866 MHz CPUs

[+2]
~
o

Figure 5.2: Number of variational QMC steps completed during an 8 processor cal-
culation of Ne using the manager-worker (QMC-MW) and pure iterative (QMC-PI)
parallelization algorithms. The pure iterative algorithm always calculates the same
number of steps, but the manager—worker algorithm dynamically determines how many
steps to take. The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium

[1l 866 MHz Intel processors connected by 100 Mb/s networking.

sors on heterogeneous networks. This is very inefficient and wasteful.

5.3.2 Experiment: Heterogeneous Network Size

The Ne atom was the particular chemical system the computational ex-
periments were performed on. A Hartree-Fock/TZV [1] wavefunction cal-
culated using GAMESS [68, 56] was used as the trial function. The net-
work of machines used was a heterogeneous cluster of linux boxes. A unit

of five machines goes as follows. Three different sized networks were ex-

67

100 T T T T T - T
Initilization —+—
Propagation ——
Synchronization —«— f
Communication —s—
80
]
E
=]
§ 60
s
=
o
S
g ol
]
B
20 |+
0 = 5— = =
0 1 2 3 4 5 6 # 8

Number of Pentium Il 866 MHz CPUs

Figure 5.3: Percentage of total calculation time devoted to each component in the
pure iterative parallelization algorithm (QMC-PI) during an 8 processor variational
QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200 MHz and

Pentium Il 866 MHz Intel processors connected by 100 Mb/s networking.

amined each with either one, two, or four of each of these respective pro-
cessors. For the parallelization algorithms, the following values were used:
StepsRequiredTotal = 2.5% 106, Stepslnitiahze = 1)(103, Stepsp"“ - 1, StepsReduce =

1 % 10%, and N, = 2.

Intel Pentium Pro 200 MHz

Intel Pentium II 450 MHz

Intel Pentium III Xeon 550MHz

Intel Pentium III 600 MHz

68

100 T T T T T T T
80 F Initilization —+——+
Propagation —»—
Synchronization —%—
& Communication —&—
E
=
§ eof .
=
2
=2
S
B
2 40 | .
‘B
ES
20 F b
._--—-—_""—_;J'; - — . T
oW = = 1= % e - = J
0 1 2 3 4 5 6 7 B

Number of Pentium 11l 866 MHz CPUs

Figure 5.4: Percentage of total calculation time devoted to each component in the
manager-worker-parallelization algorithm (QMC-MW) during an 8 processor varia-
tional QMC calculation of Ne. The 8 processors are a mixture of Pentium Pro 200

MHz and Pentium [l 866 MHz Intel processors connected by 100 Mb/s networking.

e Intel Pentium IIT 866 MHz

Implementing QMC-PI and QMC-MW exactly as was done in Section 5.3.1
for this network we observe the results in Figure 5.5. This shows that even
as the network size increases, the QMC-MW model does an excellent job of
running near the theoretical optimal time for this network. However, the
QMC-PI method struggles to compete.

We, of course, could improve the efficiency of the QMC-PI method if we
knew the machine was devoted to our QMC-PI program and we had pre-
viously bench-marked the QMC job on each machine. However, this would

require the effort of bench-marking, trusting that the machine is truly de-

69

1e+06 - .
r ' Pure Iterative —— 7
r Manager Worker —s—]
Theoretical Limit
w
E
©
E 100000
=
=
=
.
10000 5

10
Number of Processors

Figure 5.5: Wall time required to complete a variational QMC calculation of Ne
using the manager—-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on a
heterogeneous linux cluster. The theoretical optimal performance for a given configu-

ration of processors is provided by the line.

voted to our task, and the extra bookkeeping needed to match up the number
of tasks with each machine’s predicted effectiveness. This all could be ac-
complished with no assumptions on the network by simply implementing the

QMC-MW method which already pushes the boundary of perfect efficiency.

5.3.3 Experiment: Homogeneous Network

The QMC-PI algorithm was originally designed to work on homogeneous su-
percomputers with fast communication while the QMC-MW algorithm was
designed to work on heterogeneous supercomputers with slow communica-

tion. To test the QMC-MW algorithm on the QMC-PI algorithm’s native

70

1e+07 ¢ —r—r—r— T — ‘ -
r Pure iterative —+— 1
Manager Worker —— |
Theoretical Limit ——
1e+06 |- 4
)
E
Q
£ 100000 | 4
[F]
= i
=]
10000 | 7
]
1000 el e . S '
1 10 100 1000

Number of Processors

Figure 5.6: Wall time required to complete a variational QMC calculation of Ne
using the manager-worker (QMC-MW) and pure iterative (QMC-PI) algorithms on the
ASCI Blue Pacific homogeneous supercomputer. The theoretical optimal performance

for a given configuration of processors is provided by the line.

architecture, a QMC scaling calculation (Figure 5.6) was performed on the
ASCI-Blue Pacific supercomputer at Lawrence Livermore National Labora-
tory. This machine is a homogeneous supercomputer composed of 332 MHz
PowerPC 604e processors connected by HIPPI networking.

Ne atom was the particular chemical system the computational experi-
ments were performed on. A Hartree-Fock/TZV [1| wavefunction calculated
using GAMESS [68, 56] was used as the trial function. For the paralleliza-
tion algorithms, the following values were used: StepsfiequiredTotal — 1 » 108,
Stepgtoitiolize — 9w 1013, Stepsf™ = 1, Stepeteivee = 1 % 10°, and N, = 2.

Figure 5.6 shows that the QMC-MW and QMC-PI algorithms perform

i)

1e+07 r - — v
Manager Worker Overhead —+—]
Pure Iterative Overhegd —»—

1e+06 |

Total Time (ms)

100000 L A . -
10 100 1000

Number of Processors

Figure 5.7: Wall time in nonpropagation and non-initialization overhead expenses

for QMC-PI and QMC-MW on ASCI| Blue Pacific.

nearly identically on Blue Pacific. The QMC-MW calculation is consistently
slightly slower than the QMC-PI algorithm because the QMC-MW calcula-
tion performed more QMC steps. This results because the QMC-PI calcula-
tion performs a predetermined number of steps while the QMC-MW calcu-
lation performs at least a predetermined number of steps. The discrepancy
can be reduced by decreasing Stepsfteduce,

Two useful figures show how these two methods really differ. Observing
the overhead expense (all nonpropagation or initialization clock time) for
running both methods we observe that the QMC-PI actually has a slightly
higher overhead expense than QMC-MW in Figure 5.7. (The growth of
both of these for large numbers of processors is relic of the Initialization

Catastrophe 5.3.4.)

72

1.02 T T T X VI
(MW/PI) total time ratio —+—

1.015

T

1.01 | -

1.005 T

Total Time Ratio

0.995 G

0.99 ! .
10 100 1000

Number of Processors

Figure 5.8: Ratio of wall time for QMC-MW/QMC-PI on ASCI Blue Pacific.

If one observes the total computational resources used over a given time
and takes a ratio of the two methods total run time, we observe (Figure 5.8)
that both methods use roughly the same amount of resources. Since they
are within a couple of percent of each other, they can be considered to take
roughly the same time and expense on this homogeneous machine.

To resolve the seemingly contradictory results from Figures 5.7 and 5.8,
we must remember than the QMC-MW method may actually do more QMC
steps than the QMC-PI in these experiments. This shows that even if one
can exactly guess the correct number of QMC steps needed to converge a
given QMC-PI run, both QMC-PT and QMC-MW perform roughly the same
with respect to wall clock. However, in reality, rarely does the user know
how many steps they should require and the QMC-PI will perform poorly

compared to this idealized result whereas the QMC-MW will always perform

73

near this level since it dynamically determines convergence and termination.
Both algorithms do not perform near the linear scaling limit for large
numbers of processors. This is a result of the initialization catastrophe dis-

cussed in Sections 5.2.3 and 5.3.4.

5.3.4 Experiment: Initialization Catastrophe

To demonstrate the “initialization catastrophe” described in Section 5.2.3,
a scaling experiment was performed on the ASCI-Blue Mountain supercom-
puter at Los Alamos National Laboratory (Figure 5.9). This machine is
a homogeneous supercomputer composed of MIPS 10000 processors run-
ning at 250 MHz connected by HIPPI networking. Variational QMC cal-
culations of RDX, cyclic-[C HoNNQOs], using the QMC-MW algorithm with
StepsReauiredTotal — 1103 Stepsimitialize — 1x103, StepsPol = 1, Stepsheduce —
1 x 10%, and N, = 1 were performed. Jaguar 4.0 [1] was used to generate a
HF/6-31G** trial wavefunction.

The efficiency of the scaling experiments were calculated using Equa-

tion 5.28, and the results were fit to

a
s 5.30
a—+ NProcessors ()

with @ = 104.203. The efficiency at 2048 processors is better than the value
predicted from the fit equation. This is an artifact of the QMC-MW algo-
rithm which resulted from this calculation taking significantly more steps
than StepsfequiredTotal Decreasing the value of Steps®e e would reduce this
problem.

The excellent fit of the data to Equation 5.30 clearly shows that QMC

calculations using the Metropolis algorithm are not linearly scaling for large

74

0 1 L 1 i
1 10 100 1000 10000

Number of Processors

Figure 5.9: Efficiency of a variational QMC calculation of RDX as a function of
the number of processors used. The calculations were performed using the manager—
worker-parallelization algorithm (QMC-MW) on the ASCI-Blue Mountain supercom-
puter, which has 250 MHz MIPS 10000 processors connected by HIPPI networking.
A similar result is produced by the Pure lterative parallelization algorithm. The data

is fit to €(Nprocessors) = a/(@ + Nprocessors) With a = 104.203.

numbers of processors. This result holds true for both QMC-MW and QMC-
PI because it results from the initialization of the Metropolis algorithm and
not the parallelization of the statistics gathering propagation phase. Fur-
thermore, longer statistics gathering calculations have better efficiencies and
thus better scaling than short statistics gathering calculations. This can be

seen by examining Equation 5.28.

75

5.4 Conclusion

The new QMC manager—worker-parallelization algorithm clearly outperforms
the commonly used Pure lterative parallelization algorithm on heterogeneous
parallel computers and performs near the theoretical speed limit. Further-
more, both algorithms perform essentially equally well on a homogeneous
supercomputer with high speed networking.

When combined with DDDA, QMC-MW is able to determine, “on-the-
fly,” how well a calculation is converging, allowing convergence-based termi-
nation. This is opposed to the standard practice of having QMC calculations
run for a predefined number of steps. If the predefined number of steps is
too long, computer time is wasted, and if too short, the job will not have the
required convergence and must be resubmitted to the queue lengthening the
total time for the calculation to complete. Additionally, specifying a calcula-
tion precision (2 kecal/mol for example) is more natural for the applications
user than specifying a number of QMC steps.

QMC-MW allows very low cost QMC specific parallel computers to be
built. These machines can use commodity processors, commodity network-
ing, and no hard disks. Because the algorithm efficiently handles loosely cou-
pled heterogeneous machines, such a computer is continuously upgradeable
and can have new nodes added as resources become available. This greatly
reduces the cost of the resources the average practitioner needs access to,
bringing QMC closer to becoming a mainstream method.

It is possible to use QMC-PI on a heterogeneous computer with good
efficiency if the speed of each processor is known. Determining and effectively

using this information can be a great deal of work. If the user has little or

76

inaccurate information about the computer, this approach will fail. QMC-
MW overcomes these shortfalls with no work or input on the users part. Also,
when new nodes are added to the computer, QMC-MW can immediately
take advantage of them while the modified QMC-PI must have benchmark
information recorded before they can be efficiently used. The benefits and
displayed ease of implementation of QMC-MW clearly outweigh those of
QMC-PI supporting its adoption as the method of choice for making QMC
parallel.

The prediction and verification of the initialization catastrophe clearly
highlights the need for efficient initialization schemes if QMC is to be scaled
to tens of thousands or more processors. Producing such algorithms must be

a focus of future work.

5.5 Pure Iterative Algorithm (QMC-PI)

for Processor;; 1 = 0 t0 Nprocessors — 1
Stepspr; = StepsReriredlont Ny, essors
Generate N,, walkers
for Stepsnitilize gtaps

Equilibrate walkers
for Stepspr; steps
Generate QMC statistics

Percolate statistics to Processory

77

5.6 Manager—Worker Algorithm (QMC-MW)

for Processori; i = 0 to Nprocessors — 1
done = false
counter =0

Generate N, walkers

while not done:
if counter < Steps!nitiatize,
Equilibrate all local walkers 1 step
else:

Propagate all local walkers 1 step and collect QMC statistics

if = 0
if statistics are converged:
done = true
Tell workers to percolate statistics to Processory and
set done = true
else if counter mod Stepsfedice = (.
Tell workers to percolate statistics to Processory
else:
if counter mod StepsT = 0:
Check for commands from the manager and

execute the commands.

counter = counter + 1

78

Chapter 6

Generic Jastrow Functions for
Quantum Monte Carlo

Calculations on Hydrocarbons

6.1 Introduction

Quantum Monte Carlo (QMC) is becoming a very important member of the
electron correlation correction methods in quantum chemistry. Many flavors
of QMC exist while Variational (VMC, 6.2.1) and Diffusion (DMC, 6.2.2)
Quantum Monte Carlo are two of the more popular methods employed. VMC
requires the explicit use of a variational wavefunction while DMC has the
property that it can sample the ground state fixed node solution for a given
trial wavefunction.

Experience and tradition have defined a fairly efficient method of obtain-
ing very accurate calculations for molecules and materials using QMC [10,

13, 14, 15, 16, 18, 19, 20, 21, 22]. This protocol follows:

10.

79

Obtain a fair trial wavefunction, ¥ryq, from some quantum mechanical

method, like Density Functional Theory (DFT) or Hartree Fock (HF).

Guess Jastrow particle-particle correlation functions that have some
variational form which maintains the antisymmetry of the total wave-
function. (This may only be a nearly antisymmetric wavefunction.

Umrigar gives a discussion of this topic [13].)

Choose variational parameters such that any Hamiltonian singularities

are satisfied with the “cusp condition” in the Jastrow form.

»

Generate an initial “walker(s)” approximately with respect to the par-

ticle probability distribution.

Equilibrate this “walker(s)” to verify it represents the particle proba-

bility distribution.
Generate configurations with the Metropolis algorithm in a VMC run.

Perturb and evaluate the Jastrow parameters using these configura-
tions. (Repeat this correlated sampling optimization [10] until satis-

factory convergence.)
Generate (or reuse from a VMC run) initial “walkers” for a DMC run.

Equilibrate these “walkers” to verify they represent the proper particle

probability distribution.

Use the optimized Jastrow for a DMC run to obtain a very accurate

result.

80

Typically the equilibration and generation of the configurations in the
VMC and DMC runs are the most expensive parts of this protocol so one
would like to minimize the effort in these sections. The main purpose of the
VMC optimization phase is to obtain a good description of the wavefunction.
The better this wavefunction is, the quicker the DMC run will converge. This
motivates a very well optimized Jastrow but not at the expense of marginal
returns.

Experience has shown that the VMC Jastrow optimization involves a very
difficult objective function. What one should generally try to do is reduce
the energy and/or variance a fair amount but not try to overoptimize. The
method of correlated sampling is a useful method of optimization yet once
it finds a flat region of the objective function (typically a o?(Ep.cq) based
objective function), it can falsely encourage you to overoptimize since you
have already likely reached a point of diminishing returns. Experience has
shown that if you can get roughly a factor of three reduction in the variance
over the HF wavefunction alone, you have done a fair job of optimizing and
that further optimization may give only marginal returns. Typically, one
might spend 5% to 50% of the one’s total effort optimizing the Jastrow in

the VMC phase of the calculation.

6.2 Theory

QMC has many flavors each with certain assets and liabilities. The two
particular types of QMC we will examine are VMC (Section 6.2.1) and DMC
(Section 6.2.2). These two methods are widely used and in general use for

production level calculations. Any impact we can make to improve the speed

81

at which one can accomplish these two types of QMC will have far-reaching
consequences for many researchers in computational chemistry and materials

science.

6.2.1 Variational Quantum Monte Carlo

Variational Quantum Monte Carlo (VMC) is a very simple yet powerful
method for examining correlated quantum wavefunctions. If one examines
the basic energy expectation integral and reformulates it in terms of an elec-
tron probability density, p, and a local energy, Ej,cq, one finds a very simple

description of the energy expectation (6.1).

B = / W (F) (&) da

= /(J/(f))? (iﬁ?) da™

=]p(f)Elocai(f)d‘Tgn (61)

We must now determine what this ¥ should be. Typically, we can use
a method like Hartree Fock theory or Density Functional Theory [68, 56,
57, 58, 59, 1, 3, 4, 5, 6, 7, 8] to obtain an antisymmetric wavefunction in a
determinant form.

This wavefunction is then augmented with a product of symmetric terms
which contain the explicit particle correlations. These particle correlation
functions will allow each particle to observe the positions of their neighboring
particles and will allow addition variational freedom in the wavefunction.

To construct the entire trial wavefunction, Wy, from a HE type type

initial guess wavefunction, Yy, involves the use of the following expression

82

(6.2). A Wr, constructed from a DFT type wavefunction is similar.

Wppiar = ppeds Liciti (6.2)

The building unit of this type of description is a u;; function for particles

¢+ and 7 which are of particle types A and B, respectively (6.3).

2
CUSPABTi; + aABT}; ~f= 4
Usi =
ki 1+bABT1'j+CABT1‘2j+"'

(6.3)

This particular form of u;; is commonly referred to as the Padé-Jastrow for
finite systems [13]. cuspsp removes singularities which arise as two charged
particles approach each other.

We must now determine how to optimize the parameters in the wu;; func-
tions as well as determining how many parameters to maintain in the expres-
sion. Allowing only the cusp condition parameter in the numerator and the
first parameter in the denominator is common practice, though the more pa-
rameters we optimizes the better the result will likely be with the additional
variational freedom. The common optimization procedure is the method of

correlated sampling optimization described by Umrigar [10].

6.2.2 Diffusion Quantum Monte Carlo

Examining the time-dependent Schrédinger equation (6.4) in atomic units we
observe that one can make a transformation from real time into imaginary

time to produce a diffusion equation (6.6).

ov -
—— = HW 4
7 5 (6.4)

b= —ir (6.5)

o - 1

— =—Hy=(=V'-V |V 6.6
or (2) (8.8)
Techniques exist which allow one to sample the ground state with respect

to the original ¥r,;,; nodes. Many excellent in-depth descriptions of this

method exist [20, 11, 34, 48].

6.3 Experiment

6.3.1 Motivate Generic Jastrow for Hydrocarbons

A significant part of the computational expense from taking a task from
conception to completion using QMC is to optimize the Jastrow parameters
with correlated sampled VMC. This resulting optimized wavefunction is then
generally a good starting wavefunction for DMC. We would like to minimize
the time spent in these expensive parts of the program to make the QMC
method faster and cheaper.

Breaking with traditional methods, we searched for physically motivated
parameters for the Jastrows. The dominant part of the electron correlation
we wish to regain is thought to be in the spatially similar electrons which
do not actively avoid each other. The parallel spin electrons do avoid each
other by being described by a determinant which goes to zero as two par-
allel spin electrons approach each other. Experience has also shown that
the most fruitful particle-particle interactions will likely be in opposite spin
electrons which are not correlated with the determinant description of the

wavefunction.

84

For the other particle-particle interactions, we have found the original
wavefunction does a fair job of describing their interactions and that any by
relaxation will not need too large of a relaxation of the by ,by 1,0+ by 7,010,
and b, parameters in a hydrocarbon type molecule (6.3.2). Therefore, a
b parameter of 100 was chosen for these Jastrow parameters which allows
the cusp condition to satisfy the removal of the singularities but makes the «
functions have a very short range effect. The opposite spin electrons will have

a free by, parameter which we will examine in the computational experiments.

1

e DY (6.7)
N 1+ bﬂ.rij ’
1
-T.'i, .
e B (6.8)

Wt = ’LL,N_ - 1+ 1007‘,;_:,'

= - "M
Und = U = T 00r; 15:9)
—6?‘ij
= = S i !
Ue =tiLo =7 T 100r (6.10)

6.3.2 Experiment: Hydrocarbons Test Set

Several types of hydrocarbons are examined. Simple single-bonded systems,
double-bonded, triple-bonded, and 7 - conjugated systems are examined. A

complete list follows:

e benzene

85

e trans-butadiene
e cis-butadiene

e ethylene

e ethane

e allene

e acetylene

e methane

Optimal geometries and wavefunctions were obtained using HF /6-31G**
theory and the Jaguar quantum mechanical program suite [1]. The use of HF
wavefunctions is attractive since it gives a variational bound on the energy
expectation which we must strive to improve. This is very useful in deter-
mining if a set of GJ parameters is doing a good job of describing the system.
(We will refer to a Hartree Fock wavefunction with the Generic Jastrow type
correlation function as a HF-GJ type wavefunction.)

The results of varying the b+ parameter for these simple hydrocarbons
are shown in the following figures (Figures 6.1 and 6.2). Figure 6.1 shows
the correlation energy gained with the use of the HF-GJ over the HF energy.
This result is scaled by the total charge on the nuclei to give a consistent
correlation energy gained per carbon and hydrogen and a consistent minimum
for all hydrocarbons in the range of 2.0 to 4.0.

Figure 6.2 shows the remaining variance after implementing the GJ. This
is the ratio of the variance in the energy estimator from a pure HF only type

wavefunction over the variance in the energy estimator of the HF-GJ type

86

B

£ 0.01 E J

£

©

&

o

=

L

(5]

B

5 0005 | -
z

o

o

&

5

5 1
@

= 0

g

-~

o

o

[

8

© -0.005 [methane —+— o
o ethane —x¢—
B ethylene +—x—
o ethyne —=—
w allene —=—i
5 trans-butadiene —e—
= cis-butadiene —e—
° - . benzene +—&—i
5 10 100
O

b for opposite spin electrons

Figure 6.1: Correlation energy (Hartree) recovered divided by total nuclear charge.

wavefunction for various values of the by parameter. We observe a dramatic
reduction of the variance for the VMC runs and a consistent minimum again
in the range of 2.0 to 4.0.

The resulting Generic Jastrow for these systems is the form given in
equations (Equations 6.7, 6.8, 6.9, and 6.10) with b;; = 3.0. These functions
are plotted in Figure 6.3. What we notice is that all the correlation functions
have a fairly short range while the opposite spin correlation function has a

longer range.

6.3.3 Generic Jastrow for DMC

To demonstrate the utility of the GJ parameters for DMC, we ran methane

and acetylene with various Jastrow parameters. A HF only type wavefunction

87

methane —+—
ethane —»¢—
ethylene —x%—
ethyne —=—

allene —=—
trans-butadiene —e— |
cis-butadiene —e—
benzene —a&—

Var(HF-GJ)/Var(HF)

1 10 100
b for opposite spin electrons

Figure 6.2: Reduction of the QMC variance for a wavefunction containing a Generic

Jastrow compared to a Hartree-Fock wavefunction.

was used in a DMC run and was extremely unstable. The other four sets of
parameters resulted in stable DMC runs. Figure 6.4 shows that the GJ does
an outstanding job of reducing the variance in the DMC calculation while the
other b4 do an inferior job. We also notice that the VMC variance optimized
wavefunction does not even match the GJ performance. The optimization
procedure used was a variance optimization as described by Umrigar [10]
with 4000 statistically independent configurations. This implies that for this
methane wavefunction that the optimization procedure actually resulted in
a slightly worse wavefunction than the GJ wavefunction. This is possible
since the objective function being optimized and gradients on the objective
function are inherently inaccurate because of a finite VMC sampling in the

correlated sampling procedure.

88

0.15

0.1

0.05

Opposite Spin Electrons —— -
Same Spin Electrons —«—
Electron-Hydrogen —=—
Electron-Carbon —&—

Correlation Function

-0.06

Interparticle Separation

Figure 6.3: Generic Jastrow correlation functions. by, = 3.0

Figure 6.5 shows that the GJ again does a great job at reducing the

variance in

timized wavefunction. In this case the optimized parameters did result in

the nearly best DMC variance yet its improvement over the GJ parameter

the DMC calculation and nearly matches the VMC variance op-

set was negligible.

What this shows is the Generic Jastrow does a very good job at accel-
erating the convergence of a DMC run. It appears that the generic form

proposed for all hydrocarbons is very near the optimal for these methane

and acetylene test cases.

89

0.1
b ' " CH4 Generic Jastrow b=1 —+—
CH4 Generic Jastrow b=3 —»— |
CH4 Generic Jastrow b=100 —%—
CH4 Optimized Jastrow —e—
001 | X
=
T
(&)
g o001} .
5
>
0.0001 J
1e-05 YR e U | i 1 i 1
1 10 100 1000
DMC time unit

Figure 6.4: Convergence (o2 in Hartree? units) of methane DMC runs over time for

various wavefunctions
6.3.4 Test Case: 10-Annulene

To test the transferability of these generic Jastrow parameters, we examined
two different conformations of 10-Annulene studied by Scheafer’s group [69].
This molecule has some interesting electron correlation issues and provides
a slightly larger yet interesting test case for the proposed Generic Jastrow.

The HF wavefunction as well as the HF-GJ type wavefunction are exam-
ined. The HF energies are from Jaguar[l] while the VMC(HF-GJ) results
are from QMcBeaver|54].

Comparing the results from Table 6.1 with the results in basic hydrocar-

bons in Figure 6.1, we notice a consistent correlation energy gain per atom.

90

0.1 v !
I ' acétylene Generic Jastrow b=1 L -
acetylene Generic Jastrow b=3 —x—
acetylene Generic Jastrow b=100 —%—
acetylene Optimized Jastrow —&—
0.01 |]
a
=
KT}
=
[0
&
o oot -]
o
ot
(1]
=
o
>
0.0001 -
1e-05 1 " PERI SN G Y i T | L . P 1
1 10 100 1000

DMC time unit

Figure 6.5: Convergence (o2 in Hartree? units) of acetylene DMC runs over time for

various wavefunctions

6.4 Conclusion

The idea of using a GJ parameter set is fairly crude, yet we show that the
VMC energy and variance are reduced over a purely HF wavefunction in each
case. The clearest impact of this work is on the initial guess Jastrow used
in the VMC optimization procedure. Using a generic Jastrow as an initial
guess allows these generally good parameter sets to be further optimized to
meet the user’s needs.

If further work shows these generic Jastrows provide good enough start-
ing points for DMC, the VMC optimization procedure’s expense may not
only be reduced but may be eliminated. This is a significant fraction of the

computational expense which may be saved.

91

conformation | Eur | Evmc genericiastron | AE | 722
napth -383.07 -383.46 + 0.03 | 0.39 | 0.0056
twist -383.06 -383.48 & 0.03 | 0.42 | 0.0060

Table 6.1: Absolute energies (Hartree) for various conformations of 10-annulene
methods with and without explicit electron correlation from the Generic Jastrow (basis:

cc-pVDZ).

We grant that for all-electron calculations the majority of the correlation
gotten by these methods is core electron correlation and will be very trans-
ferable between similar species. This is clearly seen in the various types of
hydrocarbons including the larger test case of 10-annulene. This is impor-
tant information for these types of QMC calculations which have proven to
be very difficult in the past.

This work supports further studies to find trends in optimal Jastrow
parameters. A database may be formed which could allow for good initial

guess Jastrow parameters for QMC calculations.

92

Chapter 7

Aminomethanol Water
Elimination: Theoretical

Examination

7.1 Introduction

Presently there are over one hundred known interstellar molecules, the great
majority of which are organic [70]. Theoretical models of grain surface chem-
istry predict precursors to the more complex compounds, such as simple
alcohols and aminoalcohols [71, 72, 73]. Many potential grain surface reac-
tion pathways are eliminated by the conditions imposed on these models,
greatly simplifying the possible products of grain synthesis and eliminating
the possibility for much larger organics to form on the grain surfaces. Gas-
phase theoretical models of the chemistry in hot protostellar cores involv-
ing the products of grain surface reactions are therefore required to explain

the formation of substantially larger organics under interstellar conditions.

93

In these models, the temperature of the so-called hot cores (~300 K) near
young stars leads to thermal evaporation of simple molecules, such as alco-
hols and aminoalcohols, from the grain surface. These molecules can then
undergo gas-phase reactions to form more complex species such as amino
acids, sugars, and other biologically important molecules.

The recent detection of glycolaldehyde (CHOCH,OH), the simplest sugar,
in the hot core Sagitarrius B2(N-LMH) [74] has confirmed the need for fur-
ther experimental and observational investigation of these models. One pro-
posed pathway involves both grain surface and hot core gas-phase chemistry
for the formation of amino acids. In this pathway, the protonated forms
of aminomethanol (NH,CH,OH) and aminoethanol (NH,CH,CH,OH) react
with formic acid (HCOOH) to yield the protonated forms of glycine and
alanine, respectively [72]. However, laboratory and observational data sup-
porting the presence of these aminoalcohols remains incomplete. Therefore,
the first step in the evaluation of this model is the complete spectroscopic
characterization of aminomethanol and aminoethanol in order to search for
them astronomically.

Aminoethanol is commercially available and the gas-phase species is eas-
ily attainable. Its laboratory characterization has been completed [75, 76],
and observational searches are underway. In contrast, aminomethanol has
not been isclated, and little is known about the stability of this molecule. Tt
is proposed to form from the addition of ammonia to formaldehyde, and the
energy barrier for this reaction is calculated (MP2/6-311++G**) to be 34.1
kcal mol™! [77]. However, the hexamethylenetetraamine formation mecha-
nism shows that aminomethanol (1) forms upon the addition of ammonia to

formaldehyde in aqueous solution (Figure 7.1, [78]). Aminomethanol then

OH r0}-1
(CHoNH_ HeN NH
HN HN o
W w \——~NH N\— o
OH NH,
CH;O\ %HENH NH,
NH;)
OH r HN
-H:0 NH CHNH CH.NH
CH,0 + NH; - CH,NH .._._3._--.HzN,/\‘NH2 e HN bl
NH, NH
1 2 NH;
HNT 1
BN ONH HN/\NCH;_NHZ HZNHQCN/\NCHQNHZ
NH;) CH.NH L) CH,NH
1 e S ——
N N
H H H II
3
H
N R N
N/
-NH; ‘/ W CH>NH r \| -NH3
I —a REl S
KNJ kNJ N\/N
H CH,NH 4

Figure 7.1: Mechanism for reaction of formaldehyde and ammonia.

undergoes a water loss and converts to the highly reactive species metha-
nimine (2}. Further reactions lead to the formation of a stable intermediate
cyclotrimethylenetriamine (3), with eventual conversion to the stable end
product hexamethylenetetraamine (4).

Laboratory exploration of the gas-phase reaction of formaldehyde and
ammonia is the most promising route for production of aminomethanol. Re-
action of this molecule with other species can be minimized by quenching the
formaldehyde + ammonia reaction in a molecular beam. Characterization
of aminomethanol is therefore possible if the barrier to the loss of water and
conversion to methanimine is sufficiently high. The major route for destruc-
tion of aminomethanol in the interstellar medium is also through this water

loss and conversion to methanimine. Therefore, determination of this barrier

95

height will indicate the feasibility of laboratory production of aminomethanol

as well as this molecule’s stability in a hot core environment.

7.2 Theory

The most simple methods one can employ for examining the quantum proper-
ties of small molecules are Hartree Fock Theory (HF') and Density Functional
Theory (DFT: B3LYP, BLYP, BP86). These are implemented using the
Jaguar [1] package. Corrections to HF theory methods can take many forms,
though we will focus on HF, MP2, MP4, CCSD, CCSD(T), and QCI(T)
implemented in the MolPro package [57, 58, 59, 79, 80, 81, 81, 82].

Quantum Monte Carlo (QMC) is another family of methods which have
proven themselves to be very powerful for obtaining very accurate electronic
structure energies. The two flavors employed in this paper are Variational
QMC (VMC) and Diffusion QMC (DMC). These will be implemented with
the QMcBeaver [54] package to test the “Generic Jastrow” (GJ) parameter
set.

For QMC one must pick a Jastrow form and variationally determine the
parameters in the correlation functions. The Generic Jastrow for hydrocar-

bons is used in this study with the following form (7.1)

96

Uty = .

14 307y
iTij

U T T 100y
iy

URE = UL 7 00r;,
_ . —6?"1'3'

e = e = T 100r;
_ . —7?"1':,:

N = LN 100r;

o= o= 1o 7

This set of “Generic Jastrows” is very similar to the hydrocarbon GJ set.
This work aims at examining the validity of this generic set of parameters to

a larger body of simple molecules.

7.3 Experiment

7.3.1 Experiment Setup

Full geometry optimizations and transition state searches were completed
using b3lyp/ce-pVTZ level of theory with Jaguar, as experience has shown
that this level determines geometries well. These geometries were then fixed
and single point energy calculations were completed using a variety of meth-
ods. Thermodynamic calculations were not able to be completed at this
level of theory with Jaguar because the basis contained “f” type functions.
Transition states were verified with the analytic Hessian calculations. These
geometries are in Figure 7.2.

We used Jaguar to do full thermodynamic calculations using b3lyp/cc-

pVTZ(-f). This basis is very similar to the full cc-pVTZ used to obtain

L2 i3

1188 967 /1.336
¢ -

ooy —
gy e
N, W \H H' 1584 \":“

e

116.4 1.431
H’fn,, [

N -
u” 143 NH

o]
.

H

Figure 7.2: Full mechanism of aminomethanol formation from NH; and CHO
and decomposition to CHoNH and HyO. Geometries determined with Jaguar [1]

b3lyp/cc-pVTZ.

the electronic energy but the “f” type orbitals are removed since Jaguar is
unable to analytically take derivatives of these functions. These calculations
provided a zero point energy correction to the electronic energy as well as
free energy corrections.

A larger cc-pVTZ++ [1] and aug-cc-pVTZ [57] basis sets were used to
determine the importance of diffuse functions in this mechanism. This larger
basis set is ideal to use since it may describe the lower electron density regions
better, particularly in the transition states. This basis set, however, was too
large to run for all methods on our current computational resources. Where
possible, the energies for this basis are given.

The b3lyp/cc-pVTZ(-f) thermodynamic corrections were used through-

98

method NH3 CH20 | Thu,ysengo | CH2OHWNH: | Th oicnnu HyO | CHyNH
b3lyp* -114.5494 | -56.5847 -171.0856 -171.1537 -171.0634 | -76.4599 | -94.6694
blyp* -114.5228 | -56.5569 -171.0313 -171.0936 -171.0139 | -76.4413 | -94.6325
bp86* -114.5472 | -56.5827 -171.0916 -171.1513 -171.0717 | -76.4596 | -94.6655
HF* -113.9120 | -56.2178 -170.0584 -170.1464 -170.0266 | -76.0569 | -94.0677
HF** -113.9120 | -56.2177 -170.0585 -170.1464 -170.0266 | -76.0568 | -94.0677
MP2** -114.3070 | -56.4529 -170.7153 -170.7841 -170.6896 | -76.3186 | -94.4386
MP4** -114.3367 | -56.4734 ~170.7624 -170.8314 -170.7382 | -76.3330 | -94.4733
COSD** -114.3173 | -56.4655 -170.7309 -170.8052 -170.7034 | -76.3245 | -94.4560
COSD(T)** || -114.3337 | -56.4732 -170.7584 -170.8292 -170.7336 | -76.3322 | -94.4725
QCI(T)** -114.3343 | -56.4733 -170.7593 -170.8297 -170.7347 | -76.3323 | -94.4729
vMC NA NA NA -170.2987 -170.181 | -76.1803 | -94.2183
(HF-GIY*** +0.0055 £0.014 | £0.0055 | +0.0047
Table 7.1: Absolute energies (Hartree) for various methods (basis: cc-pVTZ).

*Jaguar, *Molpro, **QMcBeaver

out for the other methods with the other basis sets.

7.3.2 Data

Electronic energies were obtained with various methods using the cc-pVTZ

basis. These results are found in Table 7.1.

To verify the absence of diffuse functions was a valid assumption to

make these calculations less expensive several methods are given with the

ce-pVIZ++ (1] and aug-cc-pVTZ [57] basis sets.

These electronic energies in Tables 7.1 and 7.2 are corrected with the zero

point and thermochemical corrections at 300K and 2.63E-5 atm in Tables 7.3

and 7.4,

The free energies based on QCI(T)/cc-pVTZ base energies are given in

Tables 7.5 and 7.6 for various temperatures. These allow for comparison of

kinetics for different temperatures and pressures.

99

method NH;3 CH20 | Thyu,ycnso | FH2(OHWHz | Th oicn,nu H30 | CH2NH
b3lyp* -114.5520 | -56.5887 -171.0922 -171.1594 -171.0698 | -76.4660 -94.6719
blyp* -114.5259 | -56.5619 -171.03%0 -171.1009 -171.0214 | -76.4489 -94.6355
bp86* -114.5497 | -56.5868 -171.0983 -171.1576 -171.0779 | -76.4658 -94.6680
HF* -113.9140 | -56.2201 -170.0633 -170.1503 -170.0313 | -76.0600 -94.0696
HEF** -113.9142 | -56.2202 NA NA NA | -76.0603 -94.0697
MP2** -114.3161 | -56.4605 NA NA NA | -76.3290 -94,4466
MP4** -114.3460 | -56.4810 NA NA NA | -76.3437 NA
CCsD** -114.3254 | -56.4722 NA NA NA | -76.3337 NA
cosp(T)y** -114.3427 | -56.4806 NA NA NA | -76.3423 NA
QCI{T)** -114.3433 | -56.4807 NA NA NA | -76.3426 NA

Table 7.2: Absolute energies (Hartree) for various methods (basis: cc-pVTZ++ /aug-

cc-pVTZ). *Jaguar, **Molpro, **QMcBeaver

7.4 Conclusion

All methods in Table 7.3 are in fair agreement excluding the [H,O & C H,N H]
for VMC(HF-GJ). This can be observed in Table 7.1, where the two smaller
molecules gain more correlation energy relative to molecular size than the
two larger molecules.

The QMC jobs show that the Generic Jastrow regains some of the miss-
ing correlation energy in the HF description. The Generic Jastrows found
for hydrocarbons is transferable to these electronically similar molecules for
obtaining some of the correlation. At the same time, the results obtained
from the pure VMC calculations are of little value when compared to the
other high-level methods. This supports the use of Generic Jastrows for
these types of systems for initial guess parameter sets which regain some of
the missing correlation but does not support the use of this type of parameter

set for final VMC calculations.

The verification of the formation mechanism provides little new insight.

100

method NH3 & CH20 | Thy.yomso | CH200HNH2 | Th o cpynn | H20 & CH2NH
b3lyp* -8.47 39.25 0 51.74 -5.33
blyp* -12.06 35.56 0 45.04 -8.25
bp86* -7.29 33.96 0 45.01 -4.21
HF™* -10.28 51.72 0 70.30 -6.91
HE* -10.28 51.67 0 70.28 -6.91
MPpP2** -5.58 39.67 0 54.40 -3.75
MP4** -7.39 39.76 0 53.55 -4.88
CCSD** -6.62 43.17 0 59.01 -5.09
CCSD(T)** -6.73 40.91 0 55.07 -5.28
QCI(T)** -6.84 40.72 0 54.69 -5.24
VMC(HF-GJ)*** NA NA 0 68.94+9.4 -83.32%5.7

Table 7.3: Relative free energies AG (kcal/mol) for various methods with cc-pVTZ
basis with Jaguar b3lyp/cc-pVTZ(-f) zero point and thermochemical corrections at

2.63E-5 atm and 300K. *Jaguar, **Molpro, "**QMcBeaver

The results obtained from the traditional higher level methods provide similar
results to those obtained in previous work [77].

The barrier to elimination of water is 55 kcal/mol at ambient tempera-
tures, indicating that the conversion to methanimine is highly unfavored un-
der typical laboratory conditions. Therefore, loss of aminomethanol through
this and other pathways can be virtually eliminated by minimizing reactions
with other species in a molecular beam experiment. Spectroscopic charac-
terization of aminomethanol should therefore be a straightforward process.

In addition, these results indicate that aminomethanol could indeed be
a stable species in hot core environments, which are typically near ambient
temperatures. Aminomethanol is predicted to be at densities similar to those

for observed alcohols in hot cores. Once the laboratory characterization is

101

method | NHs & CH20 | Thy iouo | CHAOHWH: | Tl oicunn | H20 & CH:NH
b3lyp* -8.99 38.70 0 51.34 -7.08
blyp* -12.49 35.36 0 44.96 -10.30
bp86* -7.47 33.75 0 45.09 -5.65
HF* -10.57 51.05 0 69.76 -7.66

Table 7.4: Relative free energies AG (kcal/mol) for various methods with cc-
pVTZ++/aug-cc-pVTZ basis with Jaguar b3lyp/cc-pVTZ(-f) zero point and ther-

mochemical corrections at 2.63E-5 atm and 300K. *Jaguar, **Molpro, **QMcBeaver

complete, aminomethanol will therefore be an ideal target for observational

searches.

102

temp || NHs & CH20 | Ty icmyo | CHAOHWH2 | Thooicu,nn | H20 & CHaNH
0 8.84 40.58 0 54.74 10.14
100 4.37 40.59 0 54.71 5.76
200 -1.12 40.62 0 54.69 0.38
300 -6.84 40.72 0 54.69 -5.24
400 -12.63 40.87 0 54.69 -10.94
500 -18.43 41.07 0 54.69 -16.64
600 -24.21 41.30 0 54.69 -22.33
700 -29.95 41.55 0 54.69 -28.00
800 -35.66 41.82 0 54.69 -33.63
900 -41.34 42.11 0 54.69 -39.23
1000 -46.98 42.41 0 54.70 -44.80
1100 -52.59 42.71 0 54.71 -50.34

Table 7.5: Relative free energies AG (kcal/mol) at 2.63E-5 atm for various tempera-
tures with zero point and thermochemical corrections from Jaguar (b3lyp/cc-pVTZ(-

f)) on energetics from MolPro (QCI(T)/cc-pVTZ).

103

temp || NHs & CH20 | Thy. icu,0 | CH2AOHNH2 | Th o iom,wn | H20 & CHaNH
0 8.84 40.58 0 54.74 10.14
100 2.86 40.59 0 54.71 4.25
200 -4.14 40.62 0 54.69 -2.64
300 -11.37 40.72 0 54.69 97T
400 -18.67 40.87 0 54.69 -16.98
500 -25.98 41.07 0 54.69 -24.19
600 -33.27 41.30 0 54.69 -31.39
700 -40.53 41.55 0 54.69 -38.57
800 -47.75 41.82 0 54.69 -45.71
900 -54.93 42.11 0 54.69 -52.82
1000 -62.08 42.41 0 54.70 -59.91
1100 -69.20 42.71 0 54.71 -66.96

Table 7.6: Relative free energies AG (kcal/mol) at 1.32E-8 atm for various tempera-
tures with zero point and thermochemical corrections from Jaguar (b3lyp/cc-pVTZ(-

f)) on energetics from MolPro (QCI(T)/cc-pVTZ).

atom X y Z

0.0000000000000

0.0000000000000

0.0000000000000

H 0.0000000000000 | 0.0000000000000 | 1.0141884635000
o 0.9722262947221 | 0.0000000000000 | -0.2877117192551
H -0.3866564451307 | -0.8920318164661 | -0.2877117192551

Table 7.7: Geometry for N Hj.

104

atom

X

J

Z

=z = O

0.0000000000000
0.0000000000000
0.9369230569270

-0.9369230569270

0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000000

0.0000000000000
1.1998577370000
1.7885795046292

1.7885795046292

Table 7.8: Geometry for C'H,0.

2
=+
o)
=

X

¥

Z

T o ©- =T = O Q =

0.0000000000000
0.0000000000000
1.3268837112519
-0.3691539435124
-0.3631605001333
-0.5594636703232
-0.5591343872703

1.1378517202149

0.0000000000000
0.0000000000000
0.0000000000000
-0.8336901130763
0.8366888213139
0.8984852223094
-0.8994665053243

-0.0018988097578

0.0000000000000
1.5843876532000
1.7410676408991
-0.4490956442016
-0.4483032152738
1.9001385714186
1.8988541274420

0.3412417016124

Table 7.9: Geometry for TthHs-o-CHzo-

105

atom X ¥y Z

N 0.0000000000000 | 0.0000000000000 | 0.0000000000000
C 0.0000000000000 | 0.0000000000000 | 1.4380669284000
O 1.2820747992013 | 0.0000000000000 | 2.0740189979613
H 0.5657837377401 | -0.7566646507275 | -0.3638314440938
H 0.3496459707302 | 0.8701754653024 | -0.3813217278531
H -0.5942959853476 | 0.8530557152119 | 1.7775757584241
H -0.4769046620119 | -0.9139223538174 | 1.7883090361815
H 1.6911105284372 | 0.8608638484430 | 1.9389453497317

Table 7.10: Geometry for CHy(OH)N Hs.

atom X y Z

O 0.0000000000000 | 0.0000000000000 | 0.0000000000000
H 0.0000000000000 | 0.0000000000000 | 1.2824478194000
N 1.0290406695545 | 0.0000000000000 | 2.0554527257564
C 1.6155874630923 | -0.3760963838510 | 0.9109052611784
H 1.2502580267367 | 0.9677093577925 | 2.2725286174727
H 2.3722912575875 | 0.2198389043536 | 0.4068337595816
H 1.6216229675463 | -1.4327932210215 | 0.6660865869843
H -0.4382033110516 | -0.7395829315353 | -0.4448633375480

Table 7.11: Geometry for TLZO_I_GHzNH.

106

atom X ¥ Z

O 0.0000000000000 | 0.0000000000000 | 0.0000000000000
H 0.0000000000000 | 0.0000000000000 | 0.9616229062000
H 0.9304177983672 | 0.0000000000000 | -0.2429842262576

Table 7.12: Geometry for HyO.

atom X y i/

N 0.0000000000000 | 0.0000000000000 | 0.0000000000000
€ 0.0000000000000 | 0.0000000000000 | 1.2640707739000
H 0.9536983299391 | 0.0000000000000 | -0.3660720458042
H 0.8975274435092 | 0.0002654608506 | 1.8902959237014
H -0.9530880382316 | 0.0000011614524 | 1.7921749554776

Table 7.13:

Geometry for CHa N H.

107

Chapter 8

QMcBeaver

I contemplated adding the entire QMcBeaver source code to this thesis until
I came to the harsh realization that it was several hundred pages single
spaced. The actual source can be obtained by contacting the William A.
Goddard group or by searching online. We are currently attempting to get
a gnu public license, but at the time of this writing it is not secure and no
devoted url exists for its distribution. Hopefully, in the near future this will
be accomplished.

I did include the current version of the user’s and developer’s manual. It
is attached as a supplement to the thesis. It will serve both the developers of
QMcBeaver and those developing their own QMC package well. QMcBeaver
is still very much an academic code and many parts need serious engineering
to become optimally efficient. At the same time, this version of QMcBeaver
has some novel features and provides a good framework from which to ex-
tend. We hope those who obtain QMcBeaver will find it provides insight on

developing better distributed algorithms as well as better QMC codes.

108

Bibliography

[1]

[2]

[4]

[5]

Murco N. Ringnalda, Jean-Marc Langlois, Robert B. Murphy, Burn-
ham H. Greeley, Christian Cortis, Thomas V. Russo, Bryan Marten,
Robert E. Donnelly, Jr., W. Thomas Pollard, Yixiang Cao, Richard P.
Muller, Daniel T. Mainz, Julie R. Wright, Gregory H. Miller, William A.
Goddard III, and Richard A. Friesner. Jaguar v4.0, 2001.

Chakraborty, R. P. Muller, S. Dasgupta, and W.A. Goddard III. The
mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-
triazine), an ab initio study. Journal of Physcial Chemistry, 104:2261—
2272, 2000.

Burnham H. Greeley, Thomas V. Russo, Daniel T. Mainz, Richard A.
Friesner, William A. Goddard III, Robert E. Donnelly, Jr., and Murco N.
Ringnalda. New pseudospectral algorithms for electronic structure cal-

culations: Length-scale separation and analytical two-electron integral

calculations. Journal of Chemical Physics, 101:4028, 1994.

J. C. Slater. The Self-Consistent Field for Molecules and Solids.
McGraw-Hill, New York, 1974.

Axel D. Becke. Density functional thermochemistry III: The role of

exact exchange. Journal of Chemical Physics, 98:5648, 1993.

[6]

[7]

8]

[9]

[10]

[11]

[12]

109

Axel D. Becke. Density-functional exchange-energy approximation with

correct asymptotic behavior. Physical Review A, 38:3098, 1988.

S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron
liquid correlation energies for local spin density calculations: A critical

analysis. Canadian Journal of Physics, 58:1200, 1980.

C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti cor-
relation energy formula into a functional of the electron density. Physical

Rewiew B, 37:785, 1988.

J. B. Anderson, C. A. Traynor, and B. M. Boghosian. Quantum-
chemistry by random-walk-exact treatment of many-electron systems.

Journal of Chemical Physics, 95(10):7418-7425, 1991.

C. J. Umrigar, K. G. Wilson, and J. W. Wilkins. Optimized trial wave-
functions for Quantum Monte Carlo calculations. Physical Review Let-

ters, 60(17):1719-1722, 1988.

Lubos Mitas. Diffusion Monte Carlo. In M. P. Nightingale and C. J.
Umrigar, editors, Quantum Monte Carlo Methods in Physics and Chem-
tstry, volume 525 of Nato Science Series C: Mathematical and Physi-
cal Sciences, pages 247-261, Dordrecht, The Netherlands, 1999. Kluwer

Academic Publishers.

C. J. Umrigar. Basics, Quantum Monte Carlo and statistical mechanics.
In M. P. Nightingale and C. J. Umrigar, editors, Quantum Monte Carlo
Methods in Physics and Chemistry, volume 525 of Nato Science Series
C: Mathematical and Physical Sciences, pages 1-36, Dordrecht, The
Netherlands, 1999. Kluwer Academic Publishers.

[13]

[14]

[15]

[16]

[17]

[19]

110

C. J. Umrigar. Variational Monte Carlo basics and applications to atoms
and molecules. In M. P. Nightingale and C. J. Umrigar, editors, Quan-
tum Monte Carlo Methods in Physics and Chemistry, volume 525 of Nato
Science Series C: Mathematical and Physical Sciences, pages 129-160,

Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

L. Mitas and J. C. Grossman. Quantum Monte Carlo for electronic
structure of clusters and solids. Abstracts of Papers of the American

Chemical Society, 211(1):21-COMP, 1996.

L. Mitas. Electronic structure calculations by quantum monte carlo

methods. Physica B, 237:318-320, 1997.

J. C. Grossman and L. Mitas. High accuracy molecular heats of forma-
tion and reaction barriers: Essential role of electron correlation. Physical

Review Letters, 79(22):4353-4356, 1997.

J. C. Grossman and L. Mitas. Quantum Monte Carlo as a high-accuracy
method for treating chemical reactions. Abstracts of Papers of the Amer-

ican Chemical Society, 213(2):171-PHYS, 1997.

W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum
Monte Carlo simulations of solids. Reviews of Modern Physics, 73(1):33—

83, 2001,

Y. Kwon, D. M. Ceperley, and R. M. Martin. Transient-estimate
Monte Carlo in the two-dimensional electron gas. Physical Review B,

53(11):7376-7382, 1996.

111

(20] David M. Ceperley and Lubos Mitas. Quantum Monte Carlo methods

[21]

[22]

[24]

[25]

[26]

in chemistry. In I. Prigogine and Stuart A. Rice, editors, Advances in

Chemical Physics, volume XCIII. John Wiley and Sons, Inc., 1996.

S. Fahy, X. W. Wang, and S. G. Louie. Variational Quantum Monte
Carlo nonlocal pseudopotential approach to solids-formulation and

application to diamond, graphite, and silicon. Physical Review B,

42(6):3503-3522, 1990.

S. Fahy, X. W. Wang, and S. G. Louie. Variational Quantum
Monte Carlo nonlocal pseudopotential approach to solids-cohesive and

structural-properties of diamond. Physical Review Letters, 61(14):1631—
1634, 1988.

Malvin H. Kalos and Francesco Pederiva. Fermion Monte Carlo. In
M. P. Nightingale and C. J. Umrigar, editors, Quantum Monte Carlo
Methods in Physics and Chemistry, volume 525 of Nato Science Series
C: Mathematical and Physical Sciences, pages 263-286, Dordrecht, The
Netherlands, 1999. Kluwer Academic Publishers.

M. H. Kalos and F. Pederiva. Exact Monte Carlo method for continuum

fermion systems. Physical Review Letters, 85(17):3547-3551, 2000.

M. H. Kalos and F. Pederiva. Fermion Monte Carlo for continuum

systems. Physica A, 279(1-4):236-243, 2000.

M. H. Kalos. Exact Monte Carlo for few-fermion systems. Journal of

Statistical Physics, 63(5-6):1269-1281, 1991.

[27]

28]

[29]

[30]

[31]

[33]

[34]

[35]

112

M. H. Kalos. Monte Carlo methods for the many-fermion problem.

Physica A, 124(1-3):427-427, 1984.

M. H. Kalos. The Green-Function Monte Carlo method. Bulletin of the
American Physical Society, 25(7):725-725, 1980.

M. H. Kalos. Monte Carlo methods in quantum many-body problems.
Nuclear Physics A, 328(1-2):153-168, 1979.

B. J. Alder, K. J. Runge, and R. T. Scalettar. Variational Monte Carlo
study of an interacting electron-phonon model. Physical Review Letters,

79(16):3022-3025, 1997.

J. B. Anderson. An exact Quantum Monte Carlo calculation of the

helium-helium intermolecular potential. ii. Journal of Chemical Physics,

115(10):4546-4548, 2001.

J. B. Anderson. Quantum Monte Carlo: Direct calculation of corrections
to trial wave functions and their energies. Journal of Chemical Physics,

112(22):9699-9702, 2000.

J. B. Anderson. Quantum Monte Carlo. From a few electrons to a
few thousand. Abstracts of Papers of the American Chemical Society,

216(2):U776-U776, 1998,

J. B. Anderson. Fixed-node Quantum Monte Carlo. International Re-

views in Physical Chemistry, 14(1):85-112, 1995.

D. Bressanini and P. J. Reynolds. Spatial-partitioning-based accel-
eration for variational Monte Carlo. Journal of Chemical Physics,

111(14):6180-6189, 1999.

36]

[37]

[38]

[39]

[41]

[42]

[43]

113

D. Bressanini and P. J. Reynolds. Between classical and Quantum Monte
Carlo methods: “variational” QMC. Monte Carlo Methods in Chemical

Physics, 105:37-64, 1999

C. Chakravarty, M. C. Gordillo, and D. M. Ceperley. A comparison
of the efliciency of fourier-and discrete time-path integral Monte Carlo.

Journal of Chemical Physics, 109(6):2123-2134, 1998.

C. Filippi and C. J. Umrigar. Correlated sampling in Quantum Monte
Carlo: A route to forces. Physical Review B, 61(24):R16291-R16294,
2000.

C. Filippi and S. Fahy. Optimal orbitals from energy fluctuations in
correlated wave functions. Journal of Chemical Physics, 112(8):3523—
3531, 2000.

C. J. Huang, C. J. Umrigar, and M. P. Nightingale. Accuracy of elec-
tronic wave functions in quantum Monte Carlo: The effect of high-order

correlations. Journal of Chemical Physics, 107(8):3007-3013, 1997.

A. Luchow and J. B. Anderson. Monte Carlo methods in electronic struc-
tures for large systems. Annual Review of Physical Chemistry, 51:501—
526, 2000.

L. Mitas. Electronic structure by Quantum Monte Carlo: Atoms,
molecules and solids. Computer Physics Communications, 96(2-3):107—

117, 1996.

F. Pederiva and M. H. Kalos. Fermion Monte Carlo. Computer Physics
Communications, 122(SI):440-445, 1999.

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

114

T. Torelli and L. Mitas. Recent developments in the Quantum Monte
Carlo method: Evaluation of interatomic forces. Progress of Theoretical

Physics Supplement, (138):78-83, 2000.

A. J. Williamson, R. Q. Hood, and J. C. Grossman. Linear-scaling Quan-
tum Monte Carlo calculations. Physical Review Letters, 8724(24):6406—

+, 2001.

A. J. Williamson, S. D. Kenny, G. Rajagopal, A. J. James, R. J. Needs,
L. M. Fraser, W. M. C. Foulkes, and P. Maccullum. Optimized wave

functions for Quantum Monte Carlo studies of atoms and solids. Physical

Review B, 53(15):9640-9648, 1996.

F. H. Zong and D. M. Ceperley. Path integral Monte Carlo calculation
of electronic forces. Physical Review E, 58(4):5123-5130, 1998.

P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester. Fixed-
node Quantum Monte Carlo for molecules. Journal of Chemical Physics,

77(11):5593-5603, 1982.

H. Flyvberg and H. Peterson. Error estimates on averages of correlated

data. Journal of Chemical Physics, 91:461-466, 19809.

M.T. Feldmann, D.R. Kent IV, R.P. Muller, and W.A. Goddard III.
Efficient algorithm for “on-the-fly” error analysis of local or distributed

serially-correlated data. Journal of Chemical Physics, submitted, 2002.

O. Yaser. New trends in high performance computing. Parallel Com-

puting, 27:1-2, 2001.

[52]

[53]

[57]

58]

115

Y. Deng and A. Korobka. The performance of a supercomputer built

with commodity components. Parallel Computing, 27:91-108, 2001.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. The International Journal of High

Performance Computing Applications, 15:200-222, 2001.
M.T. Feldmann and D.R. Kent IV. QMCBeaver v2002.01.09 (©), 2001.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.

Journal of Chemical Physics, 21:1087, 1953.

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su,
T. L. Windus, M. Dupuis, and J. A. Montgomery. Gamess, a package

of ab initio programs, version 2000, 2000.

R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper,
M. J. O. Deegan, A. J. Dobhyn, F. Eckert, C. Hampel, G. Hetzer, P. J.
Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R.
Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer,
G. Rauhut, M. Schiitz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni,
T. Thorsteinsson, and H.-J. Werner. Molpro, a package of ab initio
programs designed by IH.-J. Werner and P. J. Knowles, version 2000.1,
2000.

Roland Lindh. Molpro modual: SEWARD (gaussian integral code),

2000,

116

[59] W. Meyer and H.-J. Werner. Molpro modual: RHF-SCF, 2000.

[60]

[61]

[62]

[63]

[64]

[66]

T. Kato. On the eigenfunctions of many-particle systems in quantum
mechanics. Communication on Pure Applied Mathematics, 10:151-177,

1957.
K. Wilson. Recent developments in guage theories, 1979.

C. Whitmer. Over-relaxation methods for monte-carlo simulations of
quadratic and multiquadratic actions. Physical Review D, 29:306-311,
1984.

S. Gottlieb, P. Mackenzie, H. Thacker, and D. Weingarten. Hadronic
coupling-constants in lattice gauge-theory. Nuclear Physics B, 263:704—
730, 1986.

R. P. Muller, M. T. Feldmann, R. N. Barnett, B. L. Hammond, P. J.
Reynold, L. Terray, and W. A. Lester Jr. California Institute of Tech-
nology Material Simulation Center parallel QMAGIC, version 1.1.0p,
2000.

R. Needs, G. Rajagopal, M. D. Towler, P. R. C. Kent, and A.Williamson.
CASINO, the Cambridge Quantum Monte Carlo code, version 1.1.0,

2000.

L. Smith and P. Kent. Development and performance of mixed
OpenMP/MPI Quantum Monte Carlo code. Concurrency: Practice and
Ezxperience, 12:1121-1129, 2000.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

117

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI
- The Complete Reference Volume 1, The MPI Core. The MIT Press,

Cambridge, Massachusetts, second edition, 1998.

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su,
T. L. Windus, M. Dupuis, and J. A. Montgomery. General atomic
and molecular electronic structure system. Journal of Computational

Chemistry, 14:1347-1363, 1993.

Rollin A. King, T. Daniel Crawford, John F. Stanton, and Henry
F. Schaefer I1I. Conformations of [10]annulene: More bad news for den-
sity functional theory and second-order perturbation theory. Journal of

the American Chemical Society, 121:10788-10793, 1999.

Ohishi M. Observations of hot cores. In E.F. van Dishoeck, editor, JAU
Symposium No. 178: Molecules in Astrophysics, pages 61 — 74. Kluwer;
Dordrecht, 1997.

Charnley S. Interstellar alcohols. Astrophysics Journal, 448:232, 1995.

Charnley S. Interstellar organic chemistry. In The Bridge Between the

Big Bang and Biology. Consiglio Nazionale delle Ricerche, Italy, 1999.

S. Charnley. On the nature of interstellar organic chemistry. In C. B.
Cosmovici, S. Bowyer, and D. Werthimer, editors, Astronomical and
Biochemical Origins and the Search for Life in the Universe, page 89.

Editrice Compositori; Bologna, 1997.

(74]

[79]

[80]

[81]

(82]

118

J. M. Hollis, F. J. Lovas, and P. R. Jewell. Interstellar glycolaldehyde:
The first sugar. Astrophysics Journal, 540:L107-1110, 2000.

R. E. Penn and R. F. Curl. Microwave spectrum of 2-aminoethanol:
Structural effects of the hydrogen bond. Journal Chemical Physics,
53:651 — 658, 1971.

S. L. Widicus, B. J. Drouin, K. A. Dyl, and G. A. Blake. Title in prep.

i prep., 2002.

Minyaev R. M. and Lepin E. A. Gradient line reaction path of ammonia

addition to formaldehyde. Mendeleev Communications, 5:189-191, 1997.

A. T. Nielsen, D. W. Moore, M. D. Ogan, and R. L. Atkins. Structure
and chemistry of the aldehyde ammonias .3. formaldehyde-ammonia re-
action - 1,3,5-hexahydrotriazine. Journal Organic Chemistry, 44:1678 —
1684, 1979.

C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod-
ual: MP2, 2000.

C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod-
ual: MP4, 2000.

C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod-
ual: CCSD, 2000.

C. Hampel, H.-J. Werner, M. Deegan, and P. J. Knowles. Molpro mod-
ual: QCI, 2000.

QMcBeaver Reference Manual

Generated by Doxygen 1.2.15

Wed May 1 11:34:37 2002

CONTENTS

Contents

1 QMcBeaver Hierarchical Index 1
2 QMcBeaver Compound Index 3
3 QMcBeaver Class Documentation 8
4 QMcBeaver File Documentation 164

1 QMcBeaver Hierarchical Index

1.1 QMcBeaver Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ArraylD< T > 8
Array2D< T > 11
Array3D< T > _ 15
ArraydD< T > 18
Complex 23
Exception 37
XMLParseException 161
FunctionR1toR1 40
CubicSpline 28
CubicSplineWithGeometricProgressionGrid 32
Polynomial 45
QMCPolynomial 108
ParameterScorePair 43
QMCBasisFunction 49
QMCBasisFunctionCoeflicients 53

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

1.1 QMcBeaver Class Hierarchy

QMCCopyright 56
QMCCorrelatedSamplingVMCOptimization 56
QMCCorrelationFunction 57
FixedCuspPadeCorrelationFunction 38
PadeCorrelationFunction 42
ZeroCorrelationFunction 162
QMCCorrelationFunctionFactory 58
QMCCorrelationFunctionParameters 59
QMCDerivativeProperties 64
QMCHlags
QMCFunctions 67
QMClInitializeWalker 7o
QMCMikesJacked WalkerInitialization 95
QMClInitializeWalkerFactory 73
QMCInput
QMCJastrow 74
QMCJastrowElectronElectron 77
QMCJastrowElectronNuclear 80
QMCJastrowParameters 83
QMCLineSearchStepLengthSelectionAlgorithm 90
QMCMikesBracketingStepLengthSelector 94
QMCLineSearchStepLengthSelectionFactory 91
QMCManager 92
QMCMolecule 97
QMCObjectiveFunction 99
QMCObjectiveFunctionResult 102

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

2 QMcBeaver Compound Index

QMCOptimizationAlgorithm 106
CKGeneticAlgorithml 21
QMCLineSearch 88

QMCSteepestDescent 129

QMCOptimizationFactory 107

QMCPotential Energy 113

QMCproperties 114

QMCproperty 116

QMCRead AndEvaluateConfigs 119

QMCrun 121

QMCSlater 124

QMCstatistic 127

QMCStopwatches 131

QMCwalker 134

QMCWavefunction 139

SortedParameterScorePairList 142

Stopwatch 144

StringManipulation 146

XMLElement 150

2 QMcBeaver Compound Index

2.1 QMcBeaver Compound List
Here are the classes, structs, unions and interfaces with brief descriptions:
ArraylD< T > (A 1-dimensional template for making arrays) 8

Array2D< T > (A 2-dimensional template for making arrays) 11

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

2.1 QMcBeaver Compound List

Array3D< T > (A 3-dimensional template for making arrays) 15
Array4dD< T > (A 4-dimensional template for making arrays) 18

CKGeneticAlgorithml (A moderately greedy genetic algorithm
for trying to globally optimize a function dreamed up by
David Randall (Chip) Kent IV) 21

Complex (An implementation of a complex number with the
associated basic functions) 23

CubicSpline (A 1-dimensional {(R? — R!) cubic spline interpo-
lation) 28

CubicSplineWithGeometricProgressionGrid (A 1-dimensional
(R! — R!) cubic spline interpolation with a grid that is as-
sumed to be spaced according to a geometric relationship
for faster evaluation) 32

Exception (An Exception is thrown when an error occurs) 37

FixedCuspPadeCorrelationFunction (Correlation function
which uses a Pade expansion to describe particle-particle
interactions) 38

FunctionR1toR1 (An interface for a function from R! —+ R!) 40

PadeCorrelationFfunction (Correlation function which uses a
Pade expansion to describe particle-particle interactions) 42

ParameterScorePair (A container which holds a set of parame-
ters and an associated scalar score value) 43

Polynomial (A one dimensional real polynomial) 45

QMCBasisFunction (This class stores all of the parameters that
a gaussian basis set is constructed from for a MOLECULE) 49

QMCBasisFunctionCoefficients (This class stores all of the pa-
rameters that a gaussian basis set is constructed from for an
ATOM) 53

QMCCopyright (Central localtion for all copyright information
relevant to QMcBeaver) 56

QMCCorrelatedSampling VMCOptimization (Optimize the pa-
rameters in a variational QMC (VMC) calculation using the
correlated sampling method) 56

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

2.1

QMcBeaver Compound List

QMCCorrelationFunction (Interface for a parameterized func-
tion describing the interaction of two particles)

QMCCorrelationFunctionFactory (Object factory which re-
turns the correct QMCCorrelationFunction (p.57) when a
string keyword describing the correlation function is pro-

vided)

QMCCorrelationFunctionParameters (This is a collection of pa-
rameters and related functions which describe the interac-
tion of two particles of specific types)

QMCDerivativeProperties (All of the calculated quantities and
properties that are derived from quantities and properties
evaluated during a calculation)

QMCFunctions (This class calculates the value of the wave-
function, it’s first two derivatives, and any other properties
which are calculated from the wavefunction (local energy,
etc.))

QMC ClInitializeWalker (Interface to algorithms which generate
new walkers for a QMC calculation)

QMCInitializeWalkerFactory (Object factory which returns the
correct QMClnitialize walker when a string keyword describ-
ing the correlation function is provided)

QMCJastrow (This class calculates the value of the Jastrow
function and it’s first two derivatives)

QMCJastrowElectronElectron (This class calculates the value
of the electron-electron part of the Jastrow function and it’s
first two derivatives)

QMCJastrowElectronNuclear (This class calculates the value
of the electron-nuclear part of the Jastrow function and it’s
first two derivatives)

QMCJastrowParameters (This class contains all of the parame-
ters and corelation functons from which the Jastrow function
is composed)

QMCLineSearch (Abstract implementation of a line search nu-
merical optimization algorithm)

QMCLineSearchStepLengthSelectionAlgorithm (Interface to

57

58

59

64

67

T2

73

74

77

80

83

88

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

2.1 QMcBeaver Compound List

algorithms which determine the proper step length to use
during a line search optimization (QMCLineSearch (p.88))) 90

QMCLineSearchStepLengthSelectionFactory (Object factory
which returns the correct (QMCLineSearchStepLength-
SelectionAlgorithm (p. 90) when a string keyword describing
the correlation function is provided) 91

QMCManager (Controls the major sections of a QMC calcula-
tion) 92

QMCMikesBracketingStepLengthSelector (Algorithm to deter-
mine the step length for a line search optimization developed
by Michael Todd Feldmann) 94

QMCMikesJackedWalkerInitialization (This is the algorithm
made to initialize walkers) 95

QMCMolecule (Describes a particular molecular geometry) 97

QMCObjectiveFunction (Objective function optimized during
a variational QMC (VMC) calculation to find the optimal
wavefunction parameters) 99

QMCObjectiveFunctionResult (Results from the evaluation of
an objective function during a QMC calculation) 102

QMCOptimizationAlgorithm (Interface for numerical optimiza-
tion algorithms) 106

QMCOptimizationFactory (Object factory which returns the
correct QMCOptimizationAlgorithm (p. 106) specified in the
calculation input data) 107

QMCPolynomial (An extension of Polynomial (p. 45) which adds
QMC specific functionality) 108

QMCPotential Energy (The potential energy of the system) 113

QMCproperties (All of the quantities and properties evaluated
during a calculation) 114

QMCproperty (All of the statistical information used in calcu-
lating a quantity or property during a calculation) 116

QMCRead AndEvaluateConfigs (Calculates properties (QM-
Cproperties (p.114)) from walkers and related data saved to
a file during a QMC calculation) 119

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3 QMcBeaver Class Documentation

QMCrun (Collection of walkers (QMCwalker (p.134)) with the
functionality to do the basic operations from which a QMC

algorithm is built) 121
QMCSlater (A Slater determinant describing like spin electrons

from a 3N dimensional wavefunction) 124
QMCstatistic (Statistical information on a set of data) 127

QMCSteepestDescent (Steepest descent line search numerical
optimization algorithm) 129

QMCStopwatches (A collection of Stopwatch (p.144) objects
used to record information relevant to the timing of a QMC
calculation) 131

QMCwalker (An instantaneous snapshot of all 3N electronic
corrdinates for a system) 134

QMCWavefunction (The coefficients and parameters describing
the trial wavefunction for the system) 139

SortedParameterScorePairList (A sorted list of Parameter-
ScorePair (p.43) objects where the objects are ordered in
an increasing order) 142

Stopwatch (An accurate software stopwatch) 144
StringManipulation (A set of functions to manipulate strings) 146

XMLElement (XMLElement is a representation of an XML ob-
Ject) 150

XMLParseException (An XMLParseException is thrown when
an error occures while parsing an XML stream) 161

ZeroCorrelationFunction (Correlation function which describes
noninteracting particles) 162

3 QMcBeaver Class Documentation

3.1 ArraylD< T > Class Template Reference

A 1-dimensional template for making arrays.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.1 ArraylD< T > Class Template Reference

Public Methods

e int dim1 ()

Gets the number of elements in the array’s first dimension.

s int size ()

Gets the total number of elements in the array.

e T+ array ()

Gets a poinier to en array containing the array elements.

e void allocate (int i)

Allocates memory for the array.

e void deallocate ()

Deallocates memory for the array.

e void operator= (const ArraylD &rhs)

Sets two arrays equal.

e void operator—= (const T C)

Sets all of the elements in an array equal to the same value.

e T operator * {const Array1D &rhs)

Returns the dot product of two arrays.

e ArraylD operator * (const double rhs)

Returns the product of an array and a double.

e ArraylD operator+ (const ArraylD &rhs)

Returns the sum of two arrays.

e ArraylD operator- (const ArraylD &rhs)

Returns the difference of two arrays.

e void operator = (const T C)

Sets this array equal to itself times a scalar value.

» void operator/= (const T C)

Sets this array equal to dtself divided by o scalar value.

e ArraylD ()

Creates an array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.1 ArraylD< T > Class Template Reference

ArraylD (int i)

Creates an erray and allocates memory.

ArraylD (const ArraylD &rhs)

Creates an array and sets it equal to another array.

~ArraylD ()

Destroy’s the arrey and cleans up the memory.

T & operator() (int i)

Accesses element (1) of the array.

Friends

e ostream & operator<< (ostream &strm, const ArraylD< T > &rhs)

Prints the array to a stream.

3.1.1 Detailed Description
template<class T> class ArraylD< T >

A 1-dimensional template for making arrays.
All of the memory allocation and deallocation details are dealt with by the class.
Definition at line 26 of file ArraylD.h.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 template<class T> ArraylD< T >::ArraylD (int 1)
[inline]

Creates an array and allocates memory.

Parameters:
1 size of the array’s first dimension.

Definition at line 256 of file ArraylD.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.1 ArraylD< T > Class Template Reference 10

3.1.2.2 template<class T> ArraylD< T >:i:ArraylD (const
ArraylD< T > & rhs) [inline]

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Definition at line 265 of file Arrayl1D.h.

3.1.3 Member Function Documentation

3.1.3.1 template<class T> void ArraylD< T >:allocate (int 1)
[inline]

Allocates memory for the array.

Parameters:
1 size of the array’s first dimension.

Definition at line 69 of file Arrayl1D.h.

Referenced by ArraylD< QMCBasisFunctionCoefficients >::ArraylD(),
QMCJastrowParameters::getParameters(), ArraylD< QMCBasisFunction-
Coefficients >::operator=(), QMCReadAndEvaluateConfigs::rootCalculate-
Properties(), QMCJastrowParameters::setParameterVector(), and QMCRead-
AndEvaluateConfigs::workerCalculateProperties().

3.1.3.2 template<class T> T#% ArraylD< T >::array () [inline]
Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 61 of file Arrayl1D.h.

Referenced by QMCCorrelatedSampling VMCOptimization::optimize().

3.1.3.3 template<class T> int ArraylD< T >::diml () [inline]

Gets the number of elements in the array’s first dimension.

Returns:
number of elements in the array’s first dimension.

Definition at line 48 of file Array1D.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.2 Array2D< T > Class Template Reference 11

Referenced by QMCJastrowElectronNuclear::evaluate(), QMCJastrow-
Parameters::getParameters(), QMCPolynomial::hasNonNegativeZeroes(),
PadeCorrelationFunction::initializeParameters(), FixedCuspPadeCorrelation-
Function::initializeParameters(), CubicSpline::initialize WithDerivative Values(),
CubicSpline::initialize WithFunctionValues(), QMCLineSearch::optimize(),
QMCCorrelatedSamplingVMCOptimization::optimize(), QMCCorrelation-
FunctionParameters::setParameters(), QMCJastrowParameters:setParameter-
Vector(), and QMCReadAndEvaluateConfigs::workerCalculateProperties(}.

3.1.3.4 template<class T> int ArraylD< T >usize () [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 55 of file Array1D.h.

3.2 Array2D< T > Class Template Reference

A 2-dimensional template for making arrays.

Public Methods

int dim1 ()

Gets the number of elements in the array’s firsi dimension.

int dim?2 ()

Gets the number of elements in the array’s second dimension.

int size ()

Gets the total number of elements in the array.

T * array ()

Gets o pointer to an arroy containing the array elements.

void allocate {int i, int j)

Allocates memory for the array.

void deallocate ()

Deallocates memory for the array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.2 Array2D< T > Class Template Reference 12

e void operator= (const Array2D &rhs)

Sets two arrays egqual.

s void operator= (const T C)

Sets all of the elements in an array equal to the same value.

e Array2D operator * (const Array2D &rhs)

Returns the matriz product of two arrays.

e Array2D operator * (const T C)

Returns the product of an array and o scalar.

e void operator *= (const T C)

Sets this array equal to itself times a scalar value.

e void operator/= (const T C)

Sets this array equal to itself divided by a scalar value.

e Array2D ()

Creates an array.

e Array2D (int i, int j)

Creates an array and allocates memory.

e Array2D (const Array2D< T > &rhs)

Creates an array and sets it equal to another array.

s ~Array2D ()

Destroy’s the array end cleans up the memory.

T & operator() (int i, int j)

Accesses element (i,3j) of the array.

Friends

e ostream & operator<< (ostream &strm, const Array2D< T > &rhs)

Prints the array to a stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.2 Array2D< T > Class Template Reference 13

3.2.1 Detailed Description
template<class T> class Array2D< T >

A 2-dimensional template for making arrays.
All of the memory allocation and deallocation details are dealt with by the class.
Definition at line 27 of file Array2D.h.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 template<class T> Array2D< T >::Array2D (int %, int j)
[inline]

Creates an array and allocates memory.

Parameters:
i size of the array’s first dimension.

j size of the array’s second dimension.

Definition at line 242 of file Array2D.h.

3.2.2.2 template<class T> Array2D< T >::Array2D (const
Array2D< T > & rhs) [inline]

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Definition at line 251 of file Array2D.h.

3.2.3 Member Function Documentation

3.2.3.1 template<class T> void Array2D< T >::allocate (int %, int j)
[inline]

Allocates memory for the array.

Parameters:
i size of the array’s first dimension.

J size of the array’s second dimension.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.2 Array2D< T > Class Template Reference 14

Definition at line 84 of file Array2D.h.

Referenced by Array2D< CubicSplineWithGeometricProgressionGrid
>:Array2D(), and Array2D< CubicSplineWithGeometricProgressionGrid
>:operator=().

3.2.3.2 template<class T> Tx Array2D< T >::array () [inline]
" Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 75 of file Array2D.h.

3.2.3.3 template<class T> int Array2D< T >::diml () [inline]
Gets the number of elements in the array’s first dimension.

Returns:
number of elements in the array’s first dimension.

Definition at line 55 of file Array2D.h.

Referenced by QMCJastrowElectronNuclear::evaluate(), QMCJastrowElectron-
Electron::evaluate(), and QMCJastrow::evaluate().

3.2.3.4 template<class T> int Array2D< T >::dim2 () [inline]
Gets the number of elements in the array’s second dimension.

Returns:
number of elements in the array’s second dimension.

Definition at line 62 of file Array2D.h.
Referenced by QMCJastrow::evaluate().

3.2.3.5 template<class T> int Array2D< T >:usize () [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 69 of file Array2D.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.3 Array3D< T > Class Template Reference

15

3.3 Array3D< T > Class Template Reference

A 3-dimensional template for making arrays.

Public Methods

e int diml ()

Gets the number of elements in the array’s first dimension.

e int dim?2 ()

Gets the number of elements in the array’s second dimension.

e int dim3 ()

Gets the number of elements in the array’s third dimension.

e int size ()

Gets the total number of elements in the array.

o T x array ()

Gets a pointer to an erray conteining the array elements.

e void allocate (int i, int j, int k)

Allocates memory for the array.

e void deallocate ()

Deallocates memory for the array.

e void operator= (const Array3D &rhs)

Sets two arrays equal.

e Array3D ()

Creates an array.

e Array3D (int i, int j, int k)

Creates an array and allocates memory.

e Array3D (const Array3D< T > &rhs)

Creates an array end sets it equal to another array.

e ~Array3D ()

Destroy’s the array end cleans up the memory.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.3 Array3D< T > Class Template Reference

16

e T & operator() (int i, int j, int k)

Accesses element (i,j,k) of the array.

3.3.1 Detailed Description
template<class T> class Array3D< T >

A 3-dimensional template for making arrays.

All of the memory allocation and deallocation details are dealt with by the class.

Definition at line 23 of file Array3D.h.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 template<class T> Array3D< T >::Array3D (int i, int j, int

k) [inline]

Creates an array and allocates memory.

Parameters:
i size of the array’s first dimension.

Jj size of the array’s second dimension.

k size of the array’s third dimension.

Definition at line 175 of file Array3D.h.

3.3.2.2 template<class T> Array3D< T >::Array3D
Array3D< T > & rhs) [inline]

Creates an array and sets it equal to another array.

Parameters:
rhs array to set this array equal to.

Definition at line 185 of file Array3D.h.

3.3.3 Member Function Documentation

(const

3.3.3.1 template<class T> void Array3D< T >::allocate (int i, int j,

int k) [inline]

Allocates memory for the array.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.3 Array3D< T > Class Template Reference

17

Parameters:
i size of the array’s first dimension.

j size of the array’s second dimension.

k size of the array’s third dimension.

Definition at line 97 of file Array3D.h.

Referenced by Array3D< double >:Array3D(), and Array3D< double

>:operator=().

3.3.3.2 template<class T> Tx Array3D< T >:array ()
Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 87 of file Array3D.h.

3.3.3.3 template<class T> int Array3D< T >::diml ()
Gets the number of elements in the array’s first dimension.

Returns:
number of elements in the array’s first dimension.

Definition at line 60 of file Array3D.h.
3.3.3.4 template<class T> int Array3D< T >::dim2 ()
Gets the number of elements in the array’s second dimension.

Returns:
number of elements in the array’s second dimension.

Definition at line 67 of file Array3D.h.

3.3.3.5 template<class T> int Array3D< T >::dim3 ()

Gets the number of elements in the array’s third dimension.

Returns:
number of elements in the array’s third dimension.

Definition at line 74 of file Array3D.h.

[inline]

[inline]

[inline]

[inline]

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.4 Array4D< T > Class Template Reference 18

3.3.3.6 template<class T> int Array3D< T >:usize () [inline]

Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 81 of file Array3D.h.

3.4 Array4dD< T > Class Template Reference

A 4-dimensional template for making arrays.

Public Methods

e int diml ()

Gets the number of elements in the array’s first dimension.

e int dim2 ()

Gets the number of elements in the array’s second dimension.

e int dim3 ()

Gets the number of elements in the array’s third dimension.

e int dim4 ()

Gets the number of elements in the array’s fourth dimension.

e int size ()

Gets the total number of elements in the array.

e T & array ()

Gets a pointer to an array containing the array elements.

e void allocate (int i, int j, int k, int 1)

Allocates memory for the array.

» void deallocate ()

Deallocates memory for the array.

s void operator= (const Array4D &rhs)

Sets two arrays equal.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.4 ArraydD< T > Class Template Reference 19

Array4D ()

Creates an array.

Array4D (int i, int j, int k, int 1)

Creates an array and allocates memory.

Array4D (const Array4D &rhs)

Creates an array and sets it equal to another array.

~ArraydD ()

Destroy’s the array and cleans up the memory.

T & operator() (int i, int j, int k, int 1)

Accesses element (i,j,k,1) of the array.

3.4.1 Detailed Description
template<class T> class Array4dD< T >

A 4-dimensional template for making arrays.
All of the memory allocation and deallocation details are dealt with by the class.

Definition at line 23 of file Array4D.h.

3.4.2 Constructor & Destructor Documentation
3.4.2.1 template<class T> Array4dD< T >::Array4D (int i, int 3, int
k,int §) [inline]

Creates an array and allocates memory.

Parameters:
1 size of the array’s first dimension.

4 size of the array’s second dimension.
k size of the array’s third dimension.

1 size of the array’s fourth dimension.

Definition at line 205 of file Array4D.h.
References ArraydD< T >:allocate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.4 Array4D< T > Class Template Reference 20

3.4.2.2 template<class T> Array4D< T >::Array4dD (const
ArraydD< T > & rhs) [inline]

Creates an array and sets it equal to another array.
Parameters:
rhs array to set this array equal to.

Definition at line 215 of file Array4D.h.

References Array4D< T >::allocate(), Array4D< T >:n.1, ArraydD< T >:n. 2,
ArraydD< T >:n.3, ArraydD< T >:un4, and ArraydD< T >:pArray.

3.4.3 Member Function Documentation
3.4.3.1 template<class T> void Array4D< T >::allocate (int %, int j,
int &k, int I) [inline]

Allocates memory for the array.

Parameters:
i size of the array’s first dimension.

7 size of the array’s second dimension.
k size of the array’s third dimension.
[size of the array’s fourth dimension.

Definition at line 112 of file Array4D.h.
References Array4D< T >::deallocate().
Referenced by Array4D< T >:Array4D(), and Array4D< T >::operator=().

3.4.3.2 template<class T> Tx Array4D< T >::array () [inline]
Gets a pointer to an array containing the array elements.

The ordering of this array is NOT specified.

Definition at line 101 of file Array4D.h.

3.4.3.3 template<class T> int Array4D< T >::diml () [inline]

Gets the number of elements in the array’s first dimension.

Returns:
number of elements in the array’s first dimension.

Definition at line 67 of file Array4D.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.5 CKGeneticAlgorithml Class Reference 21

3.4.3.4 template<class T> int Array4dD< T >::dim2 () [inline]

Gets the number of elements in the array’s second dimension.

Returns:
number of elements in the array’s second dimension.

Definition at line 74 of file Array4D.h.

3.4.3.5 template<class T> int Array4D< T >::dim3 () [inline]

Gets the number of elements in the array’s third dimension.

Returns:
number of elements in the array’s third dimension.

Definition at line 81 of file Array4D.h.
3.4.3.6 template<class T> int Array4D< T >::dimd4 () [inline]
Gets the number of elements in the array’s fourth dimension.

Returns:
number of elements in the array’s fourth dimension.

Definition at line 88 of file Array4D.h.
3.4.3.7 template<class T> int ArraydD< T >:usize () [inline]
Gets the total number of elements in the array.

Returns:
total number of elements in the array.

Definition at line 95 of file Array4D.h.

3.5 CKGeneticAlgorithml Class Reference

A moderately greedy genetic algorithm for trying to globally optimize a function
dreamed up by David Randall (Chip) Kent IV.

Inheritance diagram for CKGeneticAlgorithm1::

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.5 CKGeneticAlgorithml Class Reference

22

I QMCOptimizationAlgorithm |

| CKGeneticAlgorithm1]

Public Methods

s CKGeneticAlgorithml (QMCObjectiveFunction =function, int
populationsize, double mutationrate, double distributionwidth)

Constructs and inializes this optimization algorithm.

e ArraylD< double > optimize (ArraylD< double > &initialGuess)

Optimize the function starting from the provided iniiial guess parameters.

3.5.1 Detailed Description

A moderately greedy genetic algorithm for trying to globally optimize a function
dreamed up by David Randall (Chip) Kent IV.

As is standard in the field, optimization means minimization.

Mutation is accomplished by adding a N-dimensional gaussian random variable
to the population member.

The amount of each parent contributed to a child is determined by a uniform
random variable.

A linear probability distribution is used to select which population member will
be a parent. The best members have better probabilities of being selected.

Definition at line 38 of file CKGeneticAlgorithml1.h.

3.5.2 Constructor & Destructor Documentation

3.5.2.1 CKGeneticAlgorithml::CKGeneticAlgorithml
(QMCObjectiveFunction # function, int populationsize, double
mutationrate, double distributionwidih)

Constructs and inializes this optimization algorithm.

Parameters:
Junection function to optimize.

populationsize number of members in the population used to optimize
the function. This is a positive number.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.6 Complex Class Reference

23

mutationrate a positive number describing how much mutation is intro-
duced into the population. Larger numbers correspond to more mu-
tation.

distributionwidth a positive number describing how far the initial popu-
lation members spread from the initial guess.

Definition at line 15 of file CKGeneticAlgorithm1.cpp.

3.5.3 Member Function Documentation

3.5.3.1 ArraylD< double > CKGeneticAlgorithml::optimize
(ArraylD< double > & initialGuess) [virtual]

Optimize the function starting from the provided initial guess parameters.

Parameters:
tnittal Guess initial guess parameters for the optimization.

Returns:
optimized parameters.

Implements QMCOptimizationAlgorithm (p. 107).
Definition at line 136 of file CKGeneticAlgorithm1.cpp.

References SortedParameterScorePairList::get(), ParameterScorePair::get-
Parameters(), and ParameterScorePair::getScore().

3.6 Complex Class Reference

An implementation of a complex number with the associated basic functions.

Public Methods

* Complex ()

Creates an object and initializes it to (0,0).

e Complex (double re, double im)

Creates and initializes this object.

* Complex (const Complex &rhs)

Creates an new instance of this object which is equal to another instance.

e double real ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.6 Complex Class Reference

24

Real part of this number.

e double imaginary ()

Imaginary part of this number.

¢ void operator= (const Complex &rhs)

Sets two comples numbers equal.

e void operator= (const double &rhs)

Sets a complez number and a real number equal.

e Complex operator+ (const Complex &rhs)

Adds two complex numbers.

» Complex operator+ (const double &rhs)

Adds a compler and a real number.

e Complex operator- (const Complex &rhs)

Subtracts two compler numbers.

s Complex operator- (const double &rhs)

Subtracts o complex and a real number.

e Complex operator * (const Complex &ths)

Multiplies two complez number.

e Complex operator # (const double &rhs)

Multiplies a compler and a real number.

e Complex operator/ (const Complex &rhs)

Divides two complex numbers.

e Complex conjugate ()

Calculates the complex conjugate of this number.

e double abs ()

Cealculates the magniutde of this compler number.

o Complex squareroot ()

Cualculates the square root of this complex number.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.6 Complex Class Reference 25

Friends

s ostream & operator<< (ostream &strm, Complex &c)

Write the number to an output stream.

3.6.1 Detailed Description

An implementation of a complex number with the associated basic functions.

Definition at line 23 of file Complex.h.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 Complex::Complex (double re, double im)

Creates and initializes this object.

Parameters:
re real part of this number.

im imaginary part of this number.
Definition at line 21 of file Complex.cpp.

3.6.2.2 Complex::Complex (const Complex & rhs)

Creates an new instance of this object which is equal to another instance.

Parameters:
rhs object this new object will be set equal to.

Definition at line 27 of file Complex.cpp.

3.6.3 Member Function Documentation

3.6.3.1 double Complex::abs ()

Calculates the magniutde of this complex number.

c.abs() = v/(c.re()? + c.im()?)

Returns:
magnitude of this complex number.

Definition at line 146 of file Complex.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.6 Complex Class Reference

26

3.6.3.2 Complex Complex::conjugate ()

Calculates the complex conjugate of this number.

Returns:
complex conjugate of this number.

Definition at line 136 of file Complex.cpp.

References im, and re.

3.6.3.3 double Complex::imaginary ()

Imaginary part of this number.

Returns:
imaginary part of this number.

Definition at line 37 of file Complex.cpp.

3.6.3.4 Complex Complex::operator * (const double & rhs)

Multiplies a complex and a real number.

Returns:
product of the arguments.

Definition at line 104 of file Complex.cpp.

References im, and re.

3.6.3.5 Complex Complex::operator * (const Complex & rhs)

Multiplies two complex number.

Returns:
product of the arguments.

Definition at line 94 of file Complex.cpp.

References im, and re.

3.6.3.6 Complex Complex::operator+ (const double & rhs)

Adds a complex and a real number.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.6 Complex Class Reference 27

Returns:
sum of the arguments.

Definition at line 64 of file Complex.cpp.

References im, and re.

3.6.3.7 Complex Complex::operator+ (const Complex & rhas)

Adds two complex numbers.

Returns:
sum of the arguments.

Definition at line 54 of file Complex.cpp.

References im, and re.

3.6.3.8 Complex Complex::operator- (const double & rhs)

Subtracts a complex and a real number.

Returns:
difference of the arguments.

Definition at line 84 of file Complex.cpp.

References im, and re.

3.6.3.9 Complex Complex::operator- (const Complex & rhs)

Subtracts two complex numbers.

Returns:
difference of the arguments.

Definition at line 74 of file Complex.cpp.

References im, and re.

3.6.3.10 Complex Complex::operator/ (const Complex & rhs)

Divides two complex numbers.

Returns:
result of the division.

Definition at line 114 of file Complex.cpp.

References im, and re.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.7 CubicSpline Class Reference

28

3.6.3.11 void Complex::operator= (const double & rhs)
Sets a complex number and a real number equal.

@rhs number to set this one equal to.

Definition at line 48 of file Complex.cpp.

3.6.3.12 void Complex::operator= (const Complex & rhs)
Sets two complex numbers equal.

@rhs number to set this one equal to.

Definition at line 42 of file Complex.cpp.

References im, and re.
3.6.3.13 double Complex::real ()
Real part of this number.

Returns:
real part of this number.

Definition at line 32 of file Complex.cpp.
3.6.3.14 Complex Complex::squareroot ()
Calculates the square root of this complex number.

Returns:
square root of this complex number.

Definition at line 174 of file Complex.cpp.

References im, and re.

3.7 CubicSpline Class Reference

A 1-dimensional (R! — R!) cubic spline interpolation.

Inheritance diagram for CubicSpline::

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.7 CubicSpline Class Reference

29

| FunctionR 1toR 1 —|

I
| CubicSpline |
I

[CubicSplineWithGeometricProgressionGrid |

Public Methods

e CubicSpline ()

Creates an instance of this class.

e void operator= (const CubicSpline &rhs)
Sets two CubicSpline objects equal.

¢ void initializeWithFunctionValues (ArraylD< double > &xInput,
ArraylD< double > &yInput, double yPrimeFirst, double yPrime-
Last)

Initializes the spline with the function values at given points plus the deriva-
tive values at the end points.

e void initializeWithDerivativeValues (ArraylD< double > &xInput,
Arrayl1D< double > &yPrimelnput, double yFirst)

Initializes the spline with the derivative values at given points plus the fune-
tion value at the first point.

e void evaluate (double x)

EBualuates the function atf x.

e double getFunctionValue ()

Gets the function value at the last evaluated point.

e double getFirstDerivativeValue ()
Gets the function’s first deriviate at the last evaluated point.

e double getSecondDerivativeValue ()

Gets the function’s second deriviative af the last evaluated point.

e void toXML (ostream &strm)
Writes the state of this object to an XML stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.7 CubicSpline Class Reference 30

Protected Methods

e void evaluate (double x, int index)

Euvaluate the function at & when the index of the box of the domain containing
T is known.

3.7.1 Detailed Description

A 1-dimensional (R! — R*) cubic spline interpolation.

Definition at line 30 of file CubicSpline.h.

3.7.2 Member Function Documentation

3.7.2.1 void CubicSpline::evaluate (double =z, int index) [protected]

Evaluate the function at x when the index of the box of the domain containing
z is known.

Parameters:
x point to evaluate the function.

index index of the box of the domain containing x.

Definition at line 404 of file CubicSpline.cpp.

3.7.2.2 void CubicSpline::evaluate (double z) [virtuall
Evaluates the function at z.

Parameters:
x point to evaluate the function.

Implements FunctionR1toR1 (p.41).

Reimplemented in CubicSplineWithGeometricProgressionGrid (p. 34).
Definition at line 375 of file CubicSpline.cpp.

Referenced by CubicSplineWithGeometricProgressionGrid::evaluate().

3.7.2.3 double CubicSpline::getFirstDerivativeValue () [virtual]

Gets the function’s first deriviate at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.7 CubicSpline Class Reference 31

Returns:
function’s deriviative value.

Implements FunctionR1toR1 (p.41).
Definition at line 439 of file CubicSpline.cpp.

3.7.2.4 double CubicSpline::getFunctionValue () [virtuall
Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionR1toR1 (p.41).
Definition at line 434 of file CubicSpline.cpp.

3.7.2.5 double CubicSpline::getSecondDerivativeValue () [virtual]

Gets the function’s second deriviative at the last evaluated point.

Returns:
function’s second derivative value.

Implements FunctionR1toR1 (p. 41).
Definition at line 444 of file CubicSpline.cpp.

3.7.2.6 void CubicSpline::initializeWithDerivative Values
(ArraylD< double > & zInput, ArraylD< double > & yPrime-
Input, double yFirst)

Initializes the spline with the derivative values at given points plus the function
value at the first point.

Parameters:
zInput x values of the given points.

yPrimelnput derivative values of the given points.

yFirst function value at the first point.

Definition at line 165 of file CubicSpline.cpp.
References ArraylD< double >::allocate(), and ArraylD< T >::diml().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.8 CubicSplineWithGeometricProgressionGrid Class Reference 32

3.7.2.7 wvoid CubicSpline::initialize WithFunctionValues (ArraylD<
double > & zInput, ArraylD< double > & yInput, double yPrime-
First, double yPrimelLast)

Initializes the spline with the function values at given points plus the derivative
values at the end points.

Parameters:
zInput x values of the given points.

yInput y values of the given points.
yPrimeFirst derivative value at the first point.
yPrimeLast derivative value at the last point.

Definition at line 37 of file CubicSpline.cpp.
References ArraylD< double >::allocate(), and ArraylD< T >:diml().

3.7.2.8 void CubicSpline::operator= (const CubicSpline & rhs)
Sets two CubicSpline objects equal.

Parameters:
rhs object to set this object equal to
Definition at line 18 of file CubicSpline.cpp.

References a0 list, al list, a2list, a3list, ddfddx, dfdx, f, n, xlist, ylist, yp0,
ypdist, and ypend.

Referenced by CubicSplineWithGeometricProgressionGrid::operator=().

3.7.2.9 void CubicSpline::toXML (ostream & strm)
Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 449 of file CubicSpline.cpp.
References ArraylD< double >i:dim1().

3.8 CubicSplineWithGeometricProgressionGrid Class
Reference

A 1-dimensional (R' — R!) cubic spline interpolation with a grid that is as-
sumed to be spaced according to a geometric relationship for faster evaluation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.8 CubicSplineWithGeometricProgressionGrid Class Reference

33

Inheritance diagram for CubicSplineWithGeometricProgressionGrid::

| FunctionR1toR 1 |

I

| CubicSpline |

T

| CubicSplineWithGeometricProgressionGrid |

Public Methods

¢ CubicSplineWithGeometricProgressionGrid ()

Constructs an uninitialized spline.

e void setGridParameters (double beta, double x0)

Sets the value for f and zo used in generating this grid.

e void evaluate (double x)

Eualuates the function al x.

e void operator= (const CubicSplineWithGeometricProgressionGrid

&rhs)
Sets two CubicSpline WithGeometricProgressionGrid objects equal.

e void imitializeWithFunctionValues (Array1D< double > &xInput,
ArraylD< double > &ylnput, double yPrimeFirst, double yPrime-

Last)

Initializes the spline with the function values of given points plus the deriva-

tive values ot the end points.

¢ void initializeWithDerivativeValues (Array1D< double > &xInput,

ArraylD< double > &yPrimelnput, double yFirst)

Initializes the spline with the derivative values at given poinis plus the func-

tion velue at the first point.

s double getFunctionValue ()

Gets the function volue at the last evaluated point.

e double getFirstDerivativeValue ()
Gets the function’s first deriviate at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.8 CubicSplineWithGeometricProgressionGrid Class Reference 34

e double getSecondDerivative Value ()

Gets the function’s second deriviative at the last evaluated point.

e void toXML (ostream &strm)
Writes the state of this object to an XML stream.

Protected Methods

» void evaluate (double x, int index)

Evaluate the function at x when the index of the box of the domain containing
x is known.

3.8.1 Detailed Description

A 1-dimensional (R* — R!) cubic spline interpolation with a grid that is as-
sumed to be spaced according to a geometric relationship for faster evaluation.

Ti+1 = ﬁl'i

B is a user provided parameter and zp is set equal to the first datum used to
initialize the spline.

Definition at line 30 of file CubicSplineWithGeometricProgressionGrid.h.

3.8.2 Member Function Documentation

3.8.2.1 void CubicSpline::evaluate (double z, int index) [protected,
inherited]

Evaluate the function at z when the index of the box of the domain containing

z is known.

Parameters:
z point to evaluate the function.

index index of the box of the domain containing x.

Definition at line 404 of file CubicSpline.cpp.

3.8.2.2 wvoid CubicSplineWithGeometricProgressionGrid::evaluate
(double z) [virtuall

Evaluates the function at .

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.8 CubicSplineWithGeometricProgressionGrid Class Reference

35

Parameters:
x point to evaluate the function.

Reimplemented from CubicSpline (p. 30).

Definition at line 29 of file CubicSplineWithGeometricProgressionGrid.cpp.

References CubicSpline::evaluate().

3.8.2.3 double CubicSpline::getFirstDerivativeValue () [virtual,

inherited]

Gets the function’s first deriviate at the last evaluated point.

Returns:
function’s deriviative value.

Implements FunctionR1toR1 (p.41).
Definition at line 439 of file CubicSpline.cpp.

3.8.2.4 double CubicSpline::getFunctionValue
inherited]

Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionR1toR1 (p.41).
Definition at line 434 of file CubicSpline.cpp.

(} [virtual,

3.8.2.5 double CubicSpline::getSecondDerivativeValue () [virtual,

inherited]

Gets the function’s second deriviative at the last evaluated point.

Returns:
function’s second derivative value.

Implements FunctionR1toR1 (p.41).
Definition at line 444 of file CubicSpline.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.8 CubicSplineWithGeometricProgressionGrid Class Reference

36

3.8.2.6 wvoid CubicSpline::initialize WithDerivative Values
(ArraylD< double > & zInput, ArraylD< double > & yPrime-
Input, double yFirst) [inherited]

Initializes the spline with the derivative values at given points plus the function
value at the first point.

Parameters:
xInput x values of the given points.

yPrimelnput derivative values of the given points.

yFirst function value at the first point.

Definition at line 165 of file CubicSpline.cpp.
References ArraylD< double >:allocate(), and ArraylD< T >:diml().

3.8.2.7 void CubicSpline::initializeWithFunctionValues (ArraylD<
double > & zlnput, ArraylD< double > & yInpuit, double yPrime-
First, double yPrimeLast) [inherited]

Initializes the spline with the function values at given points plus the derivative
values at the end points.

Parameters:
zInput x values of the given points.

yInput y values of the given points.
yPrimeFirst derivative value at the first point.

yPrimeLast derivative value at the last point.

Definition at line 37 of file CubicSpline.cpp.
References ArraylD< double >:allocate(), and ArraylD< T >:diml().

3.8.2.8 wvoid CubicSplineWithGeometricProgression-
Grid::operator= (const CubicSplineWithGeometricProgressionGrid
& rhs)

Sets two CubicSplineWithGeometricProgressionGrid objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 38 of file CubicSplineWithGeometricProgressionGrid.cpp.

References beta, CubicSpline::operator=(), and x0.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.9 Exception Class Reference 37

3.8.2.9 void CubicSplineWithGeometricProgressionGrid::setGrid-
Parameters (double beta, double z0)

Sets the value for § and zp used in generating this grid.

Tir1 = Py

Parameters:
bete the parameter used in generating the grid z;,, = Bz;.

0 the first point in the grid z;41 = Bzi.

Definition at line 22 of file CubicSplineWithGeometricProgressionGrid.cpp.

3.8.2.10 void CubicSpline::to XML (ostream & strm) [inherited]
Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 449 of file CubicSpline.cpp.
References ArraylD< double >::dim1{).
3.9 Exception Class Reference

An Exception is thrown when an error occurs.

Inheritance diagram for Exception::

| Exception I

I

| XMLParseException I

Public Methods

e Exception ()

Creates an exception.

¢ Exception (string message)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.10 FixedCuspPadeCorrelationFunction Class Reference

38

Creates an exception.

e void setMessage (string message)

Sets the error message for the esception.

e string getMessage ()

Gets the error message for the exception.

3.9.1 Detailed Description

An Exception is thrown when an error occurs.
This can be extended to deal with special types of errors.

Definition at line 23 of file Exception.h.

3.9.2 Constructor & Destructor Documentation

3.9.2.1 Exception::Exception (string message)

Creates an exception.

Parameters:
message A message describing what went wrong.

Definition at line 19 of file Exception.cpp.

References setMessage().

3.10 FixedCuspPadeCorrelationFunction Class Reference

Correlation function which uses a Pade expansion to describe particle-particle

interactions.

Inheritance diagram for FixedCuspPadeCorrelationFunction::

| QMCCorrelationFunction |

| FixedCuspPadeCorrelationFunction I

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.10 FixedCuspPadeCorrelationFunction Class Reference

39

Public Methods

e void initializeParameters (ArraylD< int > &BeginningIndexOf-
ParameterType, ArraylD< double > &Parameters, ArraylD< int >
&BeginningIndexOfConstantType, ArraylD< double > &Constants)

Initializes the correlation function with a specified set of parameters.

e void evaluate (double r)

Evaluates the correlation function and it’s first two derivatives at r.

e bool isSingular ()

Returns true if the correlation function has a singularity in the domainr > 0,
and false otherwise.

double getFunctionValue ()

Gets the value of the correlation function for the last evaluated 7.

e double getFirstDerivativeValue ()

Gets the value of the first derivative of the correlation function for the last
evaluated 7.

double getSecondDerivativeValue ()

Gets the value of the second derivative of the correlation function for the last
evaluated 7.

3.10.1 Detailed Description
Correlation function which uses a Pade expansion to describe particle-particle
interactions.

The cusp condition is a fixed constant, and all other parameters will be adjusted
during an optimization.

Definition at line 26 of file Fixed CuspPadeCorrelationFunction.h.

3.10.2 Member Function Documentation

3.10.2.1 wvoid FixedCuspPadeCorrelationFunction::initialize-
Parameters (ArraylD< int > & BeginningIndezOfParameterType,
ArraylD< double > & Parameters, ArraylD< int > & Beginning-
IndexOfConstantType, ArraylD< double > & Constants) [virtuall

Initializes the correlation function with a specified set of parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.11 FunctionR1toR1 Class Reference

40

This must be called every time the parameters are changed.
Implements QMCCorrelationFunction (p. 58).

Definition at line 15 of file FixedCuspPadeCorrelationFunction.cpp.
References ArraylD< T >::diml(), and Polynomial:initialize().

3.11 FunctionR1toR1 Class Reference

An interface for a function from R! — R!.

Inheritance diagram for FunctionR1toR1::

| FunctionR1toR1 |
f
[|
] CubicSpline | [Polynomial
| CubicSplineWithGeometricProgressionGrid | | QMCPolynomial

Public Methods

¢ virtual ~FunctionR1toR1 ()

Virtual destructor.

e virtual void evaluate {double x)=0

Eualuates the function at x.

e virtual double getFunctionValue (}=0

Gets the function velue ot the last evaluated point.

e virtual double getFirstDerivativeValue ()=0
Gets the function’s first deriviate at the last evaluated point.

e virtual double getSecondDerivativeValue ()=0

Gets the function’s second deriviative at the last evaluated poini.

3.11.1 Detailed Description

An interface for a function from R! — R!.

Definition at line 24 of file FunctionR1toR1.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.11 FunctionR1toR1 Class Reference

41

3.11.2 Member Function Documentation

3.11.2.1 virtual void FunctionR1ltoRl::evaluate (double z) [pure
virtuall

Evaluates the function at z.

Parameters:
x point to evaluate the function.

Implemented in CubicSpline (p.30), CubicSplineWithGeometric-
ProgressionGrid (p. 34), and Polynomial (p. 47).

3.11.2.2 virtual double FunctionR1toR1::getFirstDerivativeValue ()

[pure virtuall

Gets the function’s first deriviate at the last evaluated point.

Returns:
function’s deriviative value.

Implemented in CubicSpline (p. 30), and Polynomial (p.47).

3.11.2.3 virtual double FunctionR1toR1::getFunctionValue ()
[pure virtual]

Gets the function value at the last evaluated point.

Returns:
function value.

Implemented in CubicSpline (p. 31), and Polynomial (p. 48).

3.11.2.4 virtual double FunctionR1toR1::getSecondDerivativeValue
() [pure virtual]

Gets the function’s second deriviative at the last evaluated point.

Returns:
function’s second derivative value.

Implemented in CubieSpline (p. 31), and Polynomial (p. 48).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.12 PadeCorrelationFunction Class Reference

42

3.12 PadeCorrelationFunction Class Reference

Correlation function which uses a Pade expansion to describe particle-particle
interactions.

Inheritance diagram for PadeCorrelationFunction::

| QMCCorrelationFunction |

T

| PadeCorrelationFunction |

Public Methods

» void initializeParameters (ArraylD< int > &BeginninglndexOf-
ParameterType, ArraylD< double > &Parameters, ArraylD< int >
&BeginningIndexOfConstantType, Arrayl1D< double > &Constants)

Initializes the correlation function with a specified set of parameters.

e void evaluate (double r)

Evaluates the correlation function and it’s first two derivatives at r.

* bool isSingular ()

Returns true if the correlation function has a singularity in the domainr > 0,
and false otherwise.

¢ double getFunctionValue ()

Gets the value of the correlation function for the last evaluated r.

e double getFirstDerivativeValue ()

Gets the value of the first derivative of the correlation function for the last
evaluated 7.

e double getSecondDerivativeValue ()

Gets the value of the second derivative of the correlation function for the losi
evaluated r.

3.12.1 Detailed Description

Correlation function which uses a Pade expansion to describe particle-particle
interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.13 ParameterScorePair Class Reference

43

All parameters will be adjusted during an optimization.

Definition at line 26 of file PadeCorrelationFunction.h.

3.12.2 Member Function Documentation

3.12.2.1 void PadeCorrelationFunction::initializeParameters
(ArraylD< int > & BeginningIndexzOfParameterType, ArraylD<
double > & Parameters, ArraylD< int > & BeginningIndezOf-
ConstantType, ArraylD< double > & Constants) [virtuall

Initializes the correlation function with a specified set of parameters.
This must be called every time the parameters are changed.
Implements QMCCorrelationFunction (p. 58).

Definition at line 15 of file PadeCorrelationFunction.cpp.

References ArraylD< T >::diml(), and Polynomial::initialize().

3.13 ParameterScorePair Class Reference

A container which holds a set of parameters and an associated scalar score value.

Public Methods

s ParameterScorePair ()

Creates an uninitialized instance of this class with no allocated memory.

e ParameterScorePair (double score, ArraylD< double > ¶me-
ters)

Creates an uninitialized instance of this class and sets the score and param-
eter values.

e ParameterScorePair (const ParameterScorePair &PSP)

Creates an instence of this class which is equal to another instance.

» double getScore ()

Gets the score.

s ArraylD< double > * getParameters ()

Gets the parameters.

s void operator= (const ParameterScorePair &rhs)

Set two ParameterScorePair objects equal.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.13 ParameterScorePair Class Reference

44

e hool operator< (ParameterScorePair &PSP)

An operator which orders ParameterScorePair objects based on their scores.

3.13.1 Detailed Description

A container which holds a set of parameters and an associated scalar score value.

Definition at line 23 of file ParameterScorePair.h.

3.13.2 Constructor & Destructor Documentation

3.13.2.1 ParameterScorePair::ParameterScorePair (double score,
ArraylD< double > & parameters)

Creates an uninitialized instance of this class and sets the score and parameter
values.

Parameters:
score Score.

parameters Parameters.

Definition at line 19 of file ParameterScorePair.cpp.

3.13.3 Member Function Documentation

3.13.3.1 ArraylD< double > x ParameterScorePair::getParameters

0

Gets the parameters.

Returns:
paramters.

Definition at line 57 of file ParameterScorePair.cpp.

Referenced by CKGeneticAlgorithm1::optimize().

3.13.3.2 double ParameterScorePair::getScore ()

Gets the score.

Returns:
score.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.14 Polynomial Class Reference

45

Definition at line 52 of file ParameterScorePair.cpp.

Referenced by CKGeneticAlgorithmI::optimize().

3.13.3.3 void ParameterScorePair::operator= (const Parameter-
ScorePair & rhs)

Set two ParameterScorePair objects equal.

Parameters:
rhs object to set this object equal to.

Definition at line 31 of file ParameterScorePair.cpp.
References Parameters, and Score.
3.14 Polynomial Class Reference

A one dimensional real polynomial.

Inheritance diagram for Polynomial:

| FunctionR1toR1 |

I

| Polynomial I

T

[QMCPolynomial]

Public Methods

e Polynomial ()

Constructs an uninitiolized instance of this class.

¢ Polynomial (Array1D< double > &coefls)

Constructs and initializes an intance of this class.

e void initialize (ArraylD< double > &coefls)

Initializes this object.

s void evaluate (double x)

EBualuates the function at z.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.14 Polynomial Class Reference

46

double getFunctionValue ()

Gets the function value at the last evaluated point.

e double getFirstDerivativeValue ()

Gets the funciion's first deriviate at the last evaluated point.

double getSecondDerivativeValue ()

Gets the function’s second deriviaiive at the last evaluated point.

ArraylD< Complex > getRoots ()
Gets the roots of the polynomial.

Protected Methods

e int getNumberCoeflicients ()
Gets the number of coefficients in the polynomial.

e double getCoefficient (int i)
Gets the ith coefficient of the polynomial.

3.14.1 Detailed Description
A one dimensional real polynomial.
L2 .
P(z) = Z cizt
i=0

Definition at line 28 of file Polynomial.h.

3.14.2 Constructor & Destructor Documentation
3.14.2.1 Polynomial::Polynomial (ArraylD< double > & coeffs)
Constructs and initializes an intance of this class.

Parameters:
coeffs set of polynomial coefficients to use for the polynomial.

Definition at line 20 of file Polynomial.cpp.

References initialize().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.14 Polynomial Class Reference 47

3.14.3 Member Function Documentation

3.14.3.1 void Polynomial:;:evaluate (double z) [virtual]
Evaluates the function at 2.

Parameters:
x point to evaluate the function.

Implements FunctionR1toR1 (p.41).
Definition at line 61 of file Polynomial.cpp.

Referenced by PadeCorrelationFunction::evaluate(), FixedCuspPade-
CorrelationFunction::evaluate(), getFirstDerivativeValue(), getFunction-
Value{), and getSecondDerivativeValue().

3.14.3.2 double Polynomial::getCoefficient (int i) [protected]
Gets the ith coefficient of the polynomial.
Where the polynomial is defined such that
T
Plx)= Z iz
=0

where n is the order of the polynomial and ¢; is the ith coefficient.

Parameters:
% index of the coefficient to return.

Returns:
ith coefficient of the polynomial.

Definition at line 122 of file Polynomial.cpp.
3.14.3.3 double Polynomial::getFirstDerivativeValue () [virtuall

Gets the function’s first deriviate at the last evaluated point.

Returns:

function’s deriviative value.
Implements FunctionR1toR1 (p.41).
Definition at line 97 of file Polynomial.cpp.
References evaluate().

Referenced by PadeCorrelationFunction::evaluate(), and FixedCuspPade-
CorrelationFunction::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.14 Polynomial Class Reference 48

3.14.3.4 double Polynomial::getFunctionValue () [virtuall
Gets the function value at the last evaluated point.

Returns:
function value.

Implements FunctionR1toR1 (p.41).
Definition at line 87 of file Polynomial.cpp.
References evaluate().

Referenced by PadeCorrelationFunction::evaluate{), and FixedCuspPade-
CorrelationFunction::evaluate().

3.14.3.5 int Polynomial::getNumberCoefficients () [protected]
Gets the number of coeflicients in the polynomial.
This is one larger than the order of the polynomial.

Returns:
number of coefficients in the polynomial.

Definition at line 117 of file Polynomial.cpp.
References ArraylD< double >::diml().

3.14.3.6 ArraylD< Complex > Polynomial::getRoots ()
Gets the roots of the polynomial.

Returns:
roots of the polynomial.

Exceptions:
Exception (p.37) if problems were encounted during the root calculation.

Definition at line 127 of file Polynomial.cpp.
References ArraylD< double >::dim1().
Referenced by QMCPolynomial::hasNonNegativeZeroes().

3.14.3.7 double Polynomial::getSecondDerivative Value 0
[virtuall

Gets the function’s second deriviative at the last evaluated point.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.15 QMCBasisFunction Class Reference

49

Returns:
function’s second derivative value.

Implements FunctionR1toR1 (p.41).
Definition at line 107 of file Polynomial.cpp.
References evaluate().

Referenced by PadeCorrelationFunction::evaluate(), and FixedCuspPade-
CorrelationFunction::evaluate().

3.14.3.8 void Polynomial::initialize (ArraylD< double > & coeffs)
Initializes this object.

Parameters:
coeffs set of polynomial coeflicients to use for the polynomial.

Definition at line 39 of file Polynomial.cpp.
References ArraylD< double >::allocate(), and ArraylD< double >::diml1().

Referenced by PadeCorrelationFunction::initializeParameters(), FixedCusp-
PadeCorrelationFunction::initializeParameters(), and Polynomial().

3.15 QMCBasisFunction Class Reference

This class stores all of the parameters that a gaussian basis set is constructed
from for a MOLECULE.

Public Methods

¢ QMCBasisFunction ()

Creates an instance of the class.

o void initialize (QMCflags *flags, QMCMolecule *xmolecule)

Initializes the class with data input to control the calculation and provide the
molecular geometry.

e double getPsi (int whichBF, Array2D< double > &X, int elNumber)

Calculates the value of a basis function.

e ArraylD< double > getGradPsi (int whichBF, Array2D< double >
&X, int elNumber)

Caleulates the gradient of a basis function.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.15 QMCBasisFunction Class Reference 50

e double getLaplacianPsi (int whichBF, Array2D< double > &X, int
elNumber)

Calculates the laplacian of a basts function.

¢ void operator= (const QMCBasisFunction &rhs)
Sets two QMCBasisFunctions objects equal.

s void read (string runfile)
Loads the state of the object from a file.

¢ int getNumberBasisFunctions (int i)

Returns how many basis functions are located on a specific atom.

Friends

e istream & operator>> (istream &strm, QMCBasisFunction &rhs)

Loads the state of the object from an input stream.

e ostream & operator<< (ostream &strm, QMCBasisFunction &rhs)

Writes the state of the object to an output stream.

3.15.1 Detailed Description

This class stores all of the parameters that a gaussian basis set is constructed
from for a MOLECULE.

This contains a QMCBasisFunctionCoefficent for each atom type.

Definition at line 36 of file QMCBasisFunction.h.

3.15.2 Member Function Documentation

3.15.2.1 ArraylD< double > QMCBasisFunction::getGradPsi (int
whichBF, Array2D< double > & X, int elNumber)

Calculates the gradient of a basis function.

Parameters:
whichBF which basis function to evaluate

X 3N dimensional configuration of electrons represented by a /N x 3 matrix
elNumber which electron in X to calculate the basis function for

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.15 QMCBasisFunction Class Reference

51

Returns:
basis function gradient value

Definition at line 361 of file QMCBasisFunction.cpp.
References QMCMolecule::Atom_Positions.

3.15.2.2 double QMCBasisFunction::getLaplacianPsi (int whichBF,
Array2D< double > & X, int elNumber)

Calculates the laplacian of a basis function.

Parameters:
whichBF which basis function to evaluate

X 3N dimensional configuration of electrons represented by a NV x 3 matrix
elNumber which electron in X to calculate the basis function for

Returns:

basis function laplacian value
Definition at line 377 of file QMCBasisFunction.cpp.
References QMCMolecule:: Atom_Positions.

3.15.2.3 int QMCBasisFunction::getNumberBasisFunctions (int %)
Returns how many basis functions are located on a specific atom.

This can probably be depricated once we have a good initialization scheme and
not MikesJacked one.

Parameters:
t index of atom

Returns:
number of basis functions on the atom

Definition at line 128 of file QMCBasisFunction.cpp.

References QMCBasisFunctionCoefficients::getNumberBasisFunctions().

3.15.2.4 double QMCBasisFunction::getPsi (int whichBPF,
Array2D< double > & X, int elNumber)

Calculates the value of a basis function.

Parameters:
whichBF which basis function to evaluate

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.15 QMCBasisFunction Class Reference

52

X 3N dimensional configuration of electrons represented by a NN x 3 matrix

elNumber which electron in X to calculate the basis function for

Returns:
basis function value

Definition at line 346 of file QMCBasisFunction.cpp.
References QMCMolecule:; Atom_Positions.

3.15.2.5 void QMCBasisFunction::initialize (QMCflags * flags, QM-
CMolecule * molecule)

Initializes the class with data input to control the calculation and provide the
molecular geometry.

Parameters:
flags input control information

molecule information about the specific molecule

Definition at line 19 of file QMCBasisFunction.cpp.
References ArraylD< double >::allocate().

3.15.2.6 void QMCBasisFunction::operator= (const QMCBasis-
Function & rhs)

Sets two QMCBasisFunctions objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 116 of file QMCBasisFunction.cpp.

References BFCoeffs, BFLookupTable, flags, Molecule, N._BasisFunctions,
Splines, use_splines, and Xcalc.

3.15.2.7 void QMCBasisFunction::read (string runfile)
Loads the state of the object from a file.

Parameters:
runfile file to load

Definition at line 175 of file QMCBasisFunction.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.16 QMCBasisFunctionCoefficients Class Reference

53

3.16 QMCBasisFunctionCoeflicients Class Reference

This class stores all of the parameters that a gaussian basis set is constructed
from for an ATOM.

Public Methods

s QMCBasisFunctionCoefficients ()

Creates an instance of the class.

s int getNumberBasisFunctions ()

Gets the number of basis functions.

e void operator= (const QMCBasisFunctionCoefficients &rhs)
Sets two @QMCBasisFunctionCoefficients objects equal.

e void read (string runfile)
Loads the state of the object from a file.

Public Attributes

e Array3D< double > Coefls

Array containing the parameters for the basis functions where Coeffs/bf
#J[Gaussian #[[0=ezp,1=contract].

e Array2D< int > xyz_powers

Array conteining the k,l,m parameters which indicate the "angular momen-
tum state” of the basis function (bf = z*y'z™ * Radial Function(r)) where

zyz{bf #][0=k,1=I,2=m].

e ArraylD< int > IN_Gauss

Array containing the number of goussians that need to be contracted for the
radial portion of the basis function (bf = a:kylzm*RadialFunction(r)) where

N_Gauss{bf #].

e ArraylD< string > Type
Array containing the type of the basis funciion where Typefbf #].

CGenerated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.16 QMCBasisFunctionCoefficients Class Reference

54

Friends

e istream & operator>> (istream &strm, QMCBasisFunctionCoefficients
&rhs)

Loads the state of the object from an input stream.

e ostream & operator<< (ostream &strm, QMCBasisFunctionCoefficients
&rhs)

Writes the state of the object to an outlpul stream.

3.16.1 Detailed Description

This class stores all of the parameters that a gaussian basis set is constructed
from for an ATOM.

For example, a gaussian basis function is

Ngaussians—1

Gbf(z,y,z) = a*ylz™ Z aje b’
i=0

where k,1,m are determined by the type of basis function, a; is the contraction
parameter, and b; is the exponential parameter. The particular contraction pa-
rameter is chosen so that the basis function is normalized. This is slightly dif-
ferent than what is common with linear algebra quantum mechanics programs.
The contraction parameters used here can be obtained using the contraction
and exponential parameters and k,l,m from a linear algebra basis file. You will
have to look up the formula for doing this.

This reads in basis function coefficients in the following format...

AtomLabel Number_of_orbitals Maximum_Gaussians
Ngaussians Type

exp_param contraction_param

Ngaussians Type
exp_param contraction_param

etc...

Definition at line 49 of file QMCBasisFunctionCoefficients.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.16 QMCBasisFunctionCoefficients Class Reference

3.16.2 Member Function Documentation

3.16.2.1 int QMCBasisFunctionCoefficients::getNumberBasis-
Functions ()
Gets the number of basis functions.

Returns:
number of basis functions

Definition at line 20 of file QMCBasisFunctionCoefficients.cpp.
Referenced by QMCBasisFunction::getNumberBasisFunctions().

3.16.2.2 void QMO BasisFunctionCoefficients::operator= (const
QMCBasisFunctionCoeflicients & rhas)

Sets two QMCBasisFunctionCoeflicients objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 25 of file QMCBasisFunctionCoefficients.cpp.

References Coefls, Label, Max_Gaussians, N_Gauss, N_Orbitals, Type, and xyz_-
powers.

3.16.3 Member Data Documentation

3.16.3.1 ArraylD<string> QMCBasisFunctionCoefficients:: Type
Array containing the type of the basis function where Type[bf #].

The type is a string representation of the ”angular momentum state.” For ex-
ample, "px”, "dxy”, and "fxxx” are all types of basis functions.

Definition at line 101 of file QMCBasisFunctionCoeflicients.h.
Referenced by operator={().

3.16.3.2 Array2D<int> QMCBasisFunctionCoefficients::xyz_powers

Array containing the k,1,m parameters which indicate the ”angular momentum
state” of the basis function (bf = z*y'z™ * Radial Function(r)) where xyz[bf
#][0=k,1=1,2=m].

For example, a "px” orbital would have (k,[,m) = (1,0,0).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.17 QMCCopyright Class Reference

56

Definition at line 83 of file QMCBasisFunctionCoefficients.h.
Referenced by operator=().

3.17 QMCCopyright Class Reference

Central localtion for all copyright information relevant to QMcBeaver.

Friends

e ostream & operator<< (ostream &strm, QMCCopyright &rhs)

Writes the copyright information to a stream in o human readable format.

3.17.1 Detailed Description

Central localtion for all copyright information relevant to QMcBeaver.

Definition at line 25 of file QMCCopyright.h.
3.18 QMCCorrelatedSamplingVMCOptimization Class
Reference

Optimize the parameters in a variational QMC (VMC) calculation using the
correlated sampling method.

Static Public Methods

¢ void optimize (QMCTnput *input)

Optimizes the parameters in o variotional QMC (VMC) caleulotion using
the correloted sampling method.

3.18.1 Detailed Description

Optimize the parameters in a variational QMC (VMC) calculation using the
correlated sampling method.

Definition at line 26 of file QMCCorrelatedSamplingVMCOptimization.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.19 QMCCorrelationFunction Class Reference

57

3.18.2 Member Function Documentation

3.18.2.1 void QMCCorrelatedSamplingVMCOptimization::optimize
(QMClInput * input) [static]

Optimizes the parameters in a variational QMC (VMC) calculation using the

correlated sampling method.

Parameters:
input data input to control the calculation.

Definition at line 15 of file QMCCorrelatedSampling VMCOptimization.cpp.

References ArraylD< T >:uarray(), ArraylD< T >::diml(}, QMCObjective-
Function:initialize(), QMCOptimizationFactory::optimizationAlgorithm-
Factory{), QMCOptimizationAlgorithm::optimize({), and QMCReadAnd-
EvaluateConfigs::workerCalculateProperties().

Referenced by QMCManager::optimize().

3.19 QMCCorrelationFunction Class Reference

Interface for a parameterized function describing the interaction of two particles.

Inheritance diagram for QMCCorrelationFunction::

I QMCCorrelationFunction |
i

[FixedCuspPadeCorrelationFunctionI | PadeCorrelationFunction I | ZeroCorrelationFunction

Public Methods

e virtual ~QMCCorrelationFunction ()

Virtual destructor.

e virtual void initializeParameters (ArraylD< int > &Beginning-
IndexOfParameterType, ArraylD< double > &Parameters, ArraylD<
int > &BeginningIndexQfConstantType, ArraylD< double > &Con-
stants)=0

Imitializes the correlation function with a specified set of parameters.

e virtual bool isSingular ()=0

Returns true if the correlation function has a singularity in the domainr > 0,
and false otherwise.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.20 QMCCorrelationFunctionFactory Class Reference

58

virtual void evaluate (double r)=0

Euvaluates the correlation function end it’s first two derivatives at r.

virtual double getFunctionValue ()=0

Gets the value of the correlation function for the last eveluated r.

virtual double getFirstDerivativeValue ()=0

Gets the value of the first derivative of the correlation function for the last
evaluated 7.

virtual double getSecondDerivativeValue ()=0

Gets the value of the second derivative of the correlation function for the last
evaluated r.

3.19.1 Detailed Description

Interface for a parameterized function describing the interaction of two particles.

The trial wavefunction for QMC is Yoyme = ¥Yrrigd where J =
exp(3" ui j(ri ;). uij(ri;) are the QMCCorrelationFunctions describing the in-
teractions of particles 7 and j.

Definition at line 27 of file QMCCorrelationFunction.h.

3.19.2 Member Function Documentation

3.19.2.1 virtual void QMCCorrelationFunction::initialize-
Parameters (ArraylD< int > & BeginningIndexOfParameterType,
ArraylD< double > & Parameters, ArraylD< int > & Beginning-
IndexOfConstantType, ArraylD< double > & Constants) [pure
virtual]

Initializes the correlation function with a specified set of parameters.
This must be called every time the parameters are changed.

Implemented in FixedCuspPadeCorrelationFunction (p.39), Pade-
CorrelationFunction (p.43), and ZeroCorrelationFunction (p. 164).

3.20 QMCCorrelationFunctionFactory Class Reference

Object factory which returns the correct QMCCorrelationFunction (p.57)
when a string keyword describing the correlation function is provided.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.21 QMCCorrelationFunctionParameters Class Reference

59

Static Public Methods
e QMCCorrelationFunction * correlationFunctionFactory (string

&Type)

Returns the correct QMC CorrelationFunction (p.57) when a string key-
word deseribing the correlation function is provided.

3.20.1 Detailed Description
Object factory which returns the correct QMCCorrelationFunction (p. 57)
when a string keyword describing the correlation function is provided.

Definition at line 31 of file QMCCorrelationFunctionFactory.h.

3.21 QMCCorrelationFunctionParameters Class Refer-
ence

This is a collection of parameters and related functions which describe the in-
teraction of two particles of specific types.

Public Methods

s QMCCorrelationFunctionParameters ()

Creates an instance of the class.

¢ QMCCorrelationFunctionParameters (const QMCCorrelation-
FunctionParameters &rhs)

Creates an instance of the class that is identical to another instance of the
class.

e ~QMCCorrelationFunctionParameters ()

Deallocates all of the memory used by the object and prepares it to be de-
stroyed.

e ArraylD< double > getParameters ()

Gets the parameters describing the particle-particle interactions.

o string getParticlelType ()

Gets the first particle type in a particlel-particle interaction deseribed by
this object.

e string getParticle2Type ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.21 QMCCorrelationFunctionParameters Class Reference 60
Gels the second particle type in o particlel-particle? interaction described by
this object.

¢ int getTotalNumberOfParameters ()
Gets the total number of poremeters used to describe the particle-particle
interaction.

« QMCCorrelationFunction = getCorrelationFunction ()
Gets the parameterized QMCCorrelationFunction (p.57) used in QMC-
Jastrow (p.74) to describe the particular particle-particle interaction when
calculating the Jastrow function.

e void setParameters (ArraylD< double > ¶ms)
Sets the parameters describing the particle-particle interaction.

¢ void setParticlel Type (string val)
Sets the type of particlel for the particular particle-particle interaction de-
seribed by this object.

e void setParticle2Type (string val)
Sets the type of particle? for the particular particle-particle interaction de-
seribed by this object.

» bool isSingular {)
Returns true if the parameterized correlation function described by this object
is singulor on the positive real azis and false otherwise.

e void operator= (const QMCCorrelationFunctionParameters &rhs)
Sets two QMCCorrelationFunctionParameters objects equal.

s void read (istream &strm)
Loads the state of the object from an input stream.

Friends
e ostream & operator<< (ostream &strm, QMCCorrelationFunction-

Parameters &rhs)

Writes the state of the object to an output stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.21 QMCCorrelationFunctionParameters Class Reference 61

3.21.1 Detailed Description

This is a collection of parameters and related functions which describe the in-
teraction of two particles of specific types.

For example, an instance of this class could hold the information describing the
interaction of an up spin electron and a hydrogen nucleus or two down spin
electrons.

The interactions are parameterized in terms of ” parameters” and ”constants.”
”parameters” are modified during optimizations, and ” constants” are not.

Definition at line 36 of file QMCCorrelationFunctionParameters.h.

3.21.2 Constructor & Destructor Docurnentation

3.21.2.1 QMCCorrelationFunctionParameters::QMCCorrelation-
FunctionParameters {const QMCCorrelationFunctionParameters &
rhs)

Creates an instance of the class that is identical to another instance of the class.

Parameters:
rhs object to copy

Definition at line 250 of file QMCCorrelationFunctionParameters.cpp.

3.21.3 Member Function Documentation

3.21.3.1 QMCCorrelationFunction x QMCCorrelationFunction-
Parameters::getCorrelationFunction ()

Gets the parameterized QMCCorrelationFunction (p.57) used in QMC-
Jastrow (p.74) to describe the particular particle-particle interaction when
calculating the Jastrow function.

Returns:
function describing getParticlelType() (p.62)-getParticle2Type()
(p. 62) interactions
Definition at line 307 of file QMCCorrelationFunctionParameters.cpp.
Referenced by QMCJastrowElectronElectron::evaluate().

3.21.3.2 ArraylD< double > QMCCorrelationFunction-
Parameters::getParameters ()

(Gets the parameters describing the particle-particle interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.21 QMCCorrelationFunctionParameters Class Reference

62

Returns:
parameters describing particle-particle interactions.

Definition at line 15 of file QMCCorrelationFunctionParameters.cpp.
Referenced by QMCJastrowParameters::getParameters().

3.21.3.3 string QMCCorrelationFunctionParameters::get-
ParticlelType ()

Gets the first particle type in a particlel-particle2 interaction described by this
object.

Returns:
particle type

Definition at line 257 of file QMCCorrelationFunctionParameters.cpp.
Referenced by QMCJastrowParameters::read().

3.21.3.4 string QMCCorrelationFunctionParameters::get-
Particle2Type ()

Gets the second particle type in a particlel-particle2 interaction described by
this object.

Returns:
particle type

Definition at line 262 of file QMCCorrelationFunctionParameters.cpp.
Referenced by QMCJastrowParameters::read().

3.21.3.5 int QMCCorrelationFunctionParameters::getTotal-
NumberOfParameters ()

Gets the total number of parameters used to describe the particle-particle in-

teraction.

Returns:
total number of parameters

Definition at line 267 of file QMCCorrelationFunctionParameters.cpp.

Referenced by QMOCJastrowParameters::getParameters(), and QMCJastrow-
Parameters::setParameter Vector().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.21 QMCCorrelationFunctionParameters Class Reference 63

3.21.3.6 bool QMCCorrelationFunctionParameters::isSingular ()

Returns true if the parameterized correlation function described by this object
is singular on the positive real axis and false otherwise.

Returns:
true if the current parameterization of the correlation function is singular
on the positive real axis and false otherwise

Definition at line 326 of file QMCCorrelationFunctionParameters.cpp.
References QMCCorrelationFunction::isSingular().

3.21.3.7 wvoid QMCCorrelationFunctionParameters::operator=
{const QMCCorrelationFunctionParameters & rhs)

Sets two QMCCorrelationFunctionParameters objects equal.

Parameters:
rhs object to set this object eqal to

Definition at line 20 of file QMCCorrelationFunctionParameters.cpp.

References BeginningIndexOfConstantType, BeginninglndexOfParameter-
Type, Constants, CorrelationFunctionType, NumberOfConstants, NumberOf-
ConstantTypes, NumberOfParameters, NumberOfParameterTypes, Parame-
ters, ParticleTypes, TotalNumberOfConstants, and TotalNumberOfParameters.

3.21.3.8 void QMCCorrelationFunctionParameters::read (istream &
strm)

Loads the state of the object from an input stream.

Parameters:
strm input stream

Definition at line 54 of file QMCCorrelationFunctionParameters.cpp.

References ArraylD< double >:allocate(), ArraylD< int >:uallocate(),
ArraylD< string >:allocate(), ArraylD< double >:deallocate(), ArraylD<
int >::deallocate(), and StringManipulation::toFirstUpperRestLower().

Referenced by QMCJastrowParameters::read().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.22 QMCDerivativeProperties Class Reference 64

3.21.3.9 void QMCCorrelationFunctionParameters::setParameters
(ArraylD< double > & params)

Sets the parameters describing the particle-particle interaction.

Parameters:
params new set of parameters

Definition at line 272 of file QMCCorrelationFunctionParameters.cpp.
References ArraylD< double >::diml(), and ArraylD< T >:diml().

Referenced by QMCJastrowParameters::setParameterVector().

3.22 QMCDerivativeProperties Class Reference

All of the calculated quantities and properties that are derived from quantities
and properties evaluated during a calculation.

Public Methods

e QMCDerivativeProperties (QMCproperties s*properties, double
dt)

Creates and initializes an instance of this class.

e double getEffectiveTimeStep ()

Gets the effective time step for the calculution.

¢ double getEffectiveTimeStepVariance ()

Gets the variance of the calculated effective time step for the calculation.

double getEffectiveTimeStepStandardDeviation ()

Gets the standard deviation of the calculated effective time step for the cal-
culation.

double getVirialRatio ()

Gets the virial ratio for the calculation.

double getVirialRatioVariance ()

Gets the variance of the calculated virial ratio for the calculation.

double getVirialRatioStandardDeviation ()

Gets the standard deviation of the calculated virial ratio for the calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.22 QMCDerivativeProperties Class Reference 65

Friends

e ostream & operator<< (ostream &strm, QMCDerivativeProperties
&rhs)

Formais end prints the properties to a stream in human readeble fromat.

3.22.1 Detailed Description

All of the calculated quantities and properties that are derived from quantities
and properties evaluated during a calculation.

Definition at line 23 of file QMCDerivativeProperties.h.

3.22.2 Constructor & Destructor Documentation

3.22.2.1 QMCDerivativeProperties::QMCDerivativeProperties
(QMCproperties * properties, double dt)

Creates and initializes an instance of this class.

Parameters:
properties calculated properties for the system.

dt time step for the calculation.

Definition at line 16 of file QMCDerivativeProperties.cpp.

3.22.3 Member Function Documentation

3.22.3.1 double QMCDerivativeProperties::getEffectiveTimeStep ()

Gets the effective time step for the calculation.

Returns:
effective time step for the calculation.

Definition at line 23 of file QMCDerivativeProperties.cpp.

References QMCproperties::distanceMoved A ccepted, QMCproperties::distance-
MovedTrial, and QMCproperty::getAverage().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.22 QMCDerivativeProperties Class Reference

66

3.22.3.2 double QMCDerivativeProperties::getEffectiveTimeStep-
StandardDeviation ()

Gets the standard deviation of the calculated effective time step for the calcu-
lation.

Returns:
standard deviation of the effective time step for the calculation.

Definition at line 51 of file QMCDerivativeProperties.cpp.

References getEffectiveTimeStep Variance().

3.22.3.3 double QMCDerivativeProperties::getEffectiveTimeStep-
Variance ()

Gets the variance of the calculated effective time step for the calculation.

Returns:
variance of the effective time step for the calculation.

Definition at line 31 of file QMCDerivativeProperties.cpp.

References QMCproperties::distanceMoved Accepted, QMCproperties::distance-
MovedTrial, QMCproperty::getAverage(), and QMCproperty::getVariance().

Referenced by getEffectiveTimeStepStandardDeviation().

3.22.3.4 double QMCDerivativeProperties::get VirialRatio ()
Gets the virial ratio for the calculation.

The virial ratio is — (V') / (T) where (V') is the expectation value of the potential
energy and (T} is the expectation value of the kinetic energy.

Returns:
virial ratio.

Definition at line 56 of file QMCDerivativeProperties.cpp.

References QMCproperty::getAverage(), QMCproperties::kineticEnergy, and
QMCproperties::potentialEnergy.

3.22.3.5 double QMCDerivativeProperties::get VirialRatio-
StandardDeviation ()

Gets the standard deviation of the calculated virial ratio for the calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.23 QMCFunctions Class Reference

67

Returns:
standard deviation of the virial ratio.

Definition at line 81 of file QMCDerivativeProperties.cpp.

References getVirialRatioVariance().

3.22.3.6 double QMCDerivativeProperties::getVirialRatioVariance
0

Gets the variance of the calculated virial ratio for the calculation.

Returns:
variance of the virial ratio.

Definition at line 64 of file QMCDerivativeProperties.cpp.

References QMCproperty::getAverage(), QMCproperty::getVariance(),
QMCproperties::kineticEnergy, and QMCproperties::potentialEnergy.

Referenced by getVirialRatioStandardDeviation().

3.23 QMCFunctions Class Reference

This class calculates the value of the wavefunction, it’s first two derivatives, and
any other properties which are calculated from the wavefunction (local energy,
etc.).

Public Methods

» QMCFunctions ()

Creates a new instance of the class.

e QMCFunctions (QMCInput *input)

Creates o new instance of the cless and initializes it with the data controling
the QMC calculation.

¢ QMCFunctions (const QMCFunctions &rhs)

Creates a new instance of the class thet is identical to another instance of
QMCFunctions.

e void initialize (QMCInput *input)
Initializes the object with the daia coniroling the QMC calculation.

void evaluate (Array2D< double > &X)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.23

QMCFunctions Class Reference

Euvaluates all of the calculated properties at X,

double getPsi ()

Gets the value of the wavefunction at the last evaluated electronic configura-
tion.

double getLocalEnergy ()

Gets the local energy at the last evaluated electronic configuration.

double getKineticEnergy ()

Gets the kinetic energy ot the last evaluated electronic configuration.

double getPotentialEnergy ()

Gets the potential energy at the last evaluated electronic configuration.

Array2D< double > * getGradPsiRatio ()

Gets the ratio of the wavefunction gradient to the wavefunction value at the
last evaluated electronic configuration.

Array2D< double > * getModified GradPsiRatio ()

Gets a modified version of the ratio of the wavefunction gradient o the wave-
Junction vaelue at the last evaluated electronic configuration.

bool isSingular ()

Returns true if the last evaluated electronic configuration gives o singular
Slater matriz and false otherwise.

void operator= {const QMCFunctions &rhs)
Sets two QMCFunctions objects equal.

void writeCorrelatedSamplingConfiguration (ostream &strm)

Writes the state of this object to a stream for use in correlated sampling
calculations.

3.23.1 Detailed Description

This class calculates the value of the wavefunction, it’s first two derivatives, and
any other properties which are calculated from the wavefunction (local energy,

etc.}.

The wavefunction is assumed to be of the form

Youme = DyDyJ

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.23 QMCFunctions Class Reference

69

where
J =ewply_ warag))

is a Jastrow type correlation function, and Dy and [J; are Slater determinants
for the up and down electrons respectively.

Definition at line 45 of file QMCFunctions.h.

3.23.2 Constructor & Destructor Documentation

3.23.2.1 QMCFunctions::QMCFunctions (QMCInput * input)

Creates a new instance of the class and initializes it with the data controling
the QMC calculation.

Parameters:
wnput input data for the calculation

Definition at line 19 of file QMCFunctions.cpp.

References initialize().

3.23.2.2 QMCFunctions::QMCFunctions (const QMCFunctions &
rhas)

Creates a new instance of the class that is identical to another instance of
QMCFunctions.

Parameters:
rhs object to make a copy of

Definition at line 24 of file QMCFunctions.cpp.

3.23.3 Member Function Documentation

3.23.3.1 void QMCFunctions::evaluate (Array2D< double > & X)
Evaluates all of the calculated properties at X.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 60 of file QMCFunctions.cpp.

References QMCPotential Energy::evaluate(), QMCJastrow::evaluate{), and
QMCSlater::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.23 QMCFunctions Class Reference 70

3.23.3.2 Array2D< double > *+ QMCFunctions::getGradPsiRatio ()

Gets the ratio of the wavefunction gradient to the wavefunction value at the
last evaluated electronic configuration.

This is also known as the quantum force.

Returns:
wavefunction gradient ratio (quantum force)

Definition at line 290 of file QMCFunctions.cpp.

3.23.3.3 double QMCFunctions::getKineticEnergy ()
Gets the kinetic energy at the last evaluated electronic configuration.

Returns:
kinetic energy.

Definition at line 280 of file QMCFunctions.cpp.

3.23.3.4 double QMCFunctions::getLocalEnergy ()
Gets the local energy at the last evaluated electronic configuration.

Returns:
local energy

Definition at line 275 of file QMCFunctions.cpp.
Referenced by QMCwalker::toXML().

3.23.3.5 Array2D< double > % QMCFunctions::getModifiedGrad-
PsiRatio ()

Gets a modified version of the ratio of the wavefunction gradient to the wave-
function value at the last evaluated electronic configuration.

The modifications typically help deal with singularities near nodes, and the par-
ticular type of modification can be selected. This is also known as the modified
quantum force.

Returns:
modified wavefunction gradient ratio (modified quantum force)

Definition at line 295 of file QMCFunctions.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

5.23 QMCFunctions Class Reference 71

3.23.3.6 double QMCFunctions::getPotentialEnergy ()
Geets the potential energy at the last evaluated electronic configuration.
Returns:

potential energy.

Definition at line 285 of file QMCFunctions.cpp.
References QMCPotential Energy::getEnergy().

3.23.3.7 double QMCFunctions::getPsi ()
Gets the value of the wavefunction at the last evaluated electronic configuration.

The returned value is not normalized to one.

Returns:
wavefunction value

Definition at line 270 of file QMCFunctions.cpp.

3.23.3.8 void QMCFunctions::initialize (QMCInput * input)
Initializes the object with the data controling the QMC calculation.

Parameters:
snputl input data for the calculation

Definition at line 46 of file QMCFunctions.cpp.

References Array2D< double >::allocate(), QMCJastrow::initialize(), QMCPo-
tential_Energy::initialize(), and QMCSlater::initialize().

Referenced by QMCwalker::initialize(), and QMCFunctions().

3.23.3.9 bool QMCFunctions::isSingular ()

Returns true if the last evaluated electronic configuration gives a singular Slater
matrix and false otherwise.

Returns:
true if the Slater matrix is singular and false otherwise

Definition at line 335 of file QMCFunctions.cpp.
References QMCSlater::isSingular().
Referenced by QMCwalker::isSingular().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.24 QMClunitializeWalker Class Reference

72

3.23.3.10 void QMCFunctions::operator= (const QMCFunctions &
rhas)

Sets two QMCFunctions objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 29 of file QMCFunctions.cpp.

References Alpha, Beta, E_Local, Grad_PsiRatio, Input, Jastrow, Laplacian_-
PsiRatio, Modified_Grad_PsiRatio, PE, and Psi.

3.23.3.11 wvoid QMCFunctions::writeCorrelatedSampling-
Configuration (ostream & strm)

Writes the state of this object to a stream for use in correlated sampling calcu-

lations.

Parameters:
strm output stream

Definition at line 300 of file QMCFunctions.cpp.

References QMCPotential Energy::getEnergy(), QMCSlater::getGradPsi-
Ratio(), QMCJastrow::getJastrow(), and QMCSlater::getLaplacianPsiRatio().

Referenced by QMCwalker::writeCorrelatedSamplingConfiguration().

3.24 QMClInitializeWalker Class Reference

Interface to algorithms which generate new walkers for a QMC calculation.

Inheritance diagram for QMClInitializeWalker::

| QMClnitializeWalker |

T

| QMCMikesJackedWalkerInitialization |

Public Methods

e virtual ~QMCInitialize Walker ()

Virtual destructor.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.25 QMCInitializeWalkerFactory Class Reference 73

e virtual Array2D< double > initialize WalkerPosition ()=0

Generates o new walker.

3.24.1 Detailed Description

Interface to algorithms which generate new walkers for a QMC calculation.

A good algorithm will generate walkers which require little time for the Metropo-
lis algorithm ta be equilibrated.

Definition at line 25 of file QMCInitializeWalker.h.

3.24.2 Member Function Documentation

3.24.2.1 virtual Array2D<double> QMCInitializeWalker::initialize-
WalkerPosition () [pure virtuall]

Generates a new walker.

Returns:
new walker configuration represented by a N x 3 matrix

Implemented in QMCMikesJacked WalkerInitialization (p. 96).
Referenced by QMCwalker::initialize WalkerPosition().

3.25 QMClInitializeWalkerFactory Class Reference

Object factory which returns the correct QMCInitialize walker when a string
keyword describing the correlation function is provided.

Static Public Methods

e QMCInitializeWalker =+ initializeWalkerFactory (QMCInput
¥input, string &type)

Returns the correct QMClnitializeWalker (p.72) when a string keyword
describing the initialization method is provided.

3.25.1 Detailed Description

Object factory which returns the correct QMCInitialize walker when a string
keyword describing the correlation function is provided.

Generated on 'Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.26 QMCJastrow Class Reference

74

Definition at line 28 of file QMCInitialize WalkerFactory.h.

3.25.2 Member Function Documentation

3.25.2.1 QMClInitializeWalker * QMClInitialize Walker-
Factory::initializeWalkerFactory (QMCInput x input, string &
type) [static]

Returns the correct QMCInitializeWalker (p. 72) when a string keyword de-
scribing the initialization method is provided.

Parameters:
input input input data for the calculation

type string describing which initialization algorithm to choose

Returns:
the selected QMClInitializeWalker (p. 72) method.

Definition at line 16 of file QMClInitializeWalkerFactory.cpp.
Referenced by QMCwalker::initializeWalkerPosition().

3.26 QMCJastrow Class Reference

This class calculates the value of the Jastrow function and it’s first two deriva-
tives.

Public Methods

e void initialize (QMCInput *input)

Initializes the class with the data controling the calculation.

e void evaluate (Array2D< double > &X)

Evaluates the Jastrow function and it’s derivatives at X wusing the
QMCJastrowParameters (p. 83) stored in the QMCInput class.

e void evaluate (QMCJastrowParameters &JP, Array2D< double >
&X)

Evaluates the Jastrow function and it’s derivatives ai X using o given set of
QMCJastrowParameters (p. 83).

* double getJastrow ()

Gets the value of the Jastrow function for the last evaluated electronic con-
figuration and parameter set.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.26 QMCJastrow Class Reference

75

e double getLnJastrow ()

Gets the value of the natural log of the Jastrow function for the last evaluated
electronic configuration and parameter set.

e Array2D< double > * getGradientLnJastrow ()

Gets the gradient of the natural log of the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and paremeter set.

e double getLaplacianImJastrow ()

Gets the laplacian of the natural log of the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

3.26.1 Detailed Description

This class calculates the value of the Jastrow function and it’s first two deriva-
tives.

The wavefunction is assumed to be of the form
Yorme = Urripd

where Wr,;, is a wavefunction calculated using a standard QM method and

J = ezp(D vii(ri))
is a Jastrow type correlation function. w;;(r;;) are QMCCorrelationFunction
(p.57) describing the interactions of particles i and j.
Definition at line 46 of file QMCJastrow.h.

3.26.2 Member Function Documentation

3.26.2.1 void QMCJastrow::evaluate (QMCJastrowParameters &
JP, Array2D< double > & X)

Evaluates the Jastrow function and it’s derivatives at X using a given set of
QMCJastrowParameters (p. 83).

Parameters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.26 QMCJastrow Class Reference

76

Definition at line 48 of file QMCJastrow.cpp.

References Array2D < double >::allocate(), Array2D< T >::dim1(), Array2D<
T >::dim2(), QMCJastrowElectronElectron::evaluate(), QMCJastrowElectron-
Nuclear::evaluate(), QMCJastrowElectronElectron::getGradientLnJastrow(),
QMCJastrowElectronNuclear::getGradientLnJastrow(), QMCJastrowElectron-
Electron::getLaplacianLnJastrow(), QMCJastrowElectronNuclear::get-
LaplacianLnJastrow(), QMCJastrowElectronElectron::getLnJastrow(), and
QMCJastrowElectronNuclear::getLnJastrow().

3.26.2.2 void QMCJastrow::evaluate (Array2D< double > & X)

Evaluates the Jastrow function and it’s derivatives at X using the
QMCJastrowParameters (p. 83) stored in the QMCInput class.

Parameters:

X 3N dimensional configuration of electrons represented by a NV x 3 matrix
Definition at line 43 of file QMCJastrow.cpp.
Referenced by QMCFunctions::evaluate().

3.26.2.3 Array2D< double > + QMCJastrow::getGradientLnJastrow

0

Gets the gradient of the natural log of the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

Vin(J) =V 3w (r; ;)

Returns:
gradient natural log of the Jastrow function (VIn(J) = V 3~ u; j(rs;))

Definition at line 33 of file QMCJastrow.cpp.

3.26.2.4 double QMCJastrow::getJastrow ()

Gets the value of the Jastrow function for the last evaluated electronic configu-
ration and parameter set.

J = exp(3> ui j(rs;))

Returns:
Jastrow function value (J = exp(3 ui j{ri;))).

Definition at line 23 of file QMCJastrow.cpp.
Referenced by QMCFunctions:writeCorrelatedSamplingConfiguration().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.27 QMCJastrowElectronElectron Class Reference

77

3.26.2.5 double QMCJastrow::getLaplacianLnJastrow ()

Gets the laplacian of the natural log of the Jastrow function with respect to the
cartesian electronic coordinates for the last evaluated electronic configuration
and parameter set.

V2In(J) = V2T wi (i)

Returns:
gradient natural log of the Jastrow function (V?In(J) = V23w, ;(ri ;)

Definition at line 38 of file QMCJastrow.cpp.

3.26.2.6 double QMCJastrow::getLnJastrow ()

Gets the value of the natural log of the Jastrow function for the last evaluated
electronic configuration and parameter set.

In(J) = 3 i (riy)

Returns:
natural log of the Jastrow function (In(J) = 3 u; ;(r: ;)

Definition at line 28 of file QMCJastrow.cpp.

3.26.2.7 void QMCJastrow::initialize (QMCInput * input)
Initializes the class with the data controling the calculation.

Parameters:
tnput input data for the calculation

Definition at line 15 of file QMCJastrow.cpp.

References QMCJastrowElectronElectronzinitialize(), and QMCJastrow-
ElectronNuclear::initialize().

Referenced by QMCReadAndEvaluateConfigs:initialize(), and QMCFunc-
tions::initialize().

3.27 QMCJastrowElectronElectron Class Reference

This class calculates the value of the electron-electron part of the Jastrow func-
tion and it’s first two derivatives.

Generated on 'Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.27 QMCJastrowElectronElectron Class Reference

78

Public Methods

e void initialize (QMCInput *input)

Initializes the class with the date controling the calculation.

void evaluate (QMCJastrowParameters &JP, Array2D< double >
&X)

Evaluates the electron-electron Jastrow function and it’s deriveiives at X
using a given set of QMCJastrowParameters (p. 83).

double getLnJastrow ()

Gets the value of the natural log of the electron-electron Jastrow function for
the last evaluated electromic configuration and parameter set.

Array2D< double > * getGradientLnJastrow ()

Gets the gradient of the natural log of the electron-eleciron Jastrow func-
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set.

double getLaplacianLnJastrow ()

Gets the laplacian of the natural log of the electron-electron Jastrow fune-
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set.

3.27.1 Detailed Description

This class calculates the value of the electron-electron part of the Jastrow func-
tion and it’s first two derivatives.

The wavefunction is assumed to be of the form
Youme = VUrriad

where Wr,i,; is a wavefunction calculated using a standard QM method and
I =exp() i i(riy))

is a Jastrow type correlation function. u;(ri;) are QMCCorrelationFunction
(p.57) describing the interactions of particles ¢ and j. The sum can be broken
up into electron-electron and electron-nuclear components.

Definition at line 41 of file QMCJastrowElectronElectron.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.27 QMCJIastrowElectronElectron Class Reference

79

3.27.2 Member Function Documentation

3.27.2.1 void QMCJastrowElectronElectron::evaluate
(QMCJastrowParameters & JP, Array2D< double > & X)

Evaluates the electron-electron Jastrow function and it’s derivatives at X using
a given set of QMCJastrowParameters (p. 83).

Parameters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 60 of file QMCJastrowElectronElectron.cpp.

References Array2D< double >:uallocate{), Array2D< T >:diml(),
QMCCorrelationFunction::evaluate(), QMCCorrelationFunction-
Parameters::getCorrelationFunction(), QMCJastrowParameters::getElectron-
DownElectronDownParameters(), QMCJastrowParameters::getElectron-
UpElectronDownParameters(), QMCJastrowParameters::getElectronUp-
ElectronUpParameters(), QMCCorrelationFunction::getFirstDerivative-
Value(), QMCCorrelationFunction::getFunctionValue(), and QMCCorrelation-
Function::getSecondDerivativeValue().

Referenced by QMCJastrow::evaluate().

3.27.2.2 Array2D< double > x QMCJastrowElectronElectron::get-
GradientLnJastrow ()

Gets the gradient of the natural log of the electron-electron Jastrow function
with respect to the cartesian electronic coordinates for the last evaluated elec-
tronic configuration and parameter set.

Vin(J) = V¥ i ;(rs)

Returns:
gradient natural log of the electron-electron Jastrow function (VIn(J) =

V2 wi(ris)
Definition at line 50 of file QMCJastrowElectronElectron.cpp.
Referenced by QMCJastrow::evaluate().

3.27.2.3 double QMCJastrowElectronElectron::getLaplacianl.n-
Jastrow ()

Gets the laplacian of the natural log of the electron-electron Jastrow function
with respect to the cartesian electronic coordinates for the last evaluated elec-
tronic configuration and parameter set.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.28 QMCJastrowElectronNuclear Class Reference

80

V2 In(J) = V* 3 ni 5lri,5)

Returns:
gradient natural log of the electron-electron Jastrow function (V?In(J) =

V2 3w j(rig))

Definition at line 45 of file QMCJastrowElectronElectron.cpp.
Referenced by QMCJastrow::evaluate().

3.27.2.4 double QMCJastrowElectronElectron::getLnJastrow ()

Gets the value of the natural log of the electron-electron Jastrow function for
the last evaluated electronic configuration and parameter set.

In(J) = 3 wi,j(ri ;)

Returns:
natural log of the electron-electron Jastrow function (In(J} = 3~ ws ;(rs,;))

Definition at line 55 of file QMCJastrowElectronElectron.cpp.
Referenced by QMCJastrow::evaluate().

3.27.2.5 void QMCJastrowElectronElectron::initialize (QMCInput *
input)

Initializes the class with the data controling the calculation.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCJastrowElectronElectron.cpp.
Referenced by QMCJastrow::initialize().

3.28 QMCJastrowElectronNuclear Class Reference

This class calculates the value of the electron-nuclear part of the Jastrow func-
tion and it’s first two derivatives.

Public Methods

s void initialize (QMCInput *input)

Initializes the class with the data controling the calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.28 QMCJastrowElectronNuclear Class Reference

81

void evaluate (QMCJastrowParameters &JP, Array2D< double >
&X)

Bualuates the eleciron-nuclear Jastrow function and it’s derivaetives ot X us-
ing a given set of QMCJastrowParameters (p. 83).

double getLnJastrow ()

Gets the value of the natural log of the eleciron-nuclear Jastrow funciion for
the last evaluated electronic configuration and parameter set.

Array2D< double > * getGradientLnJastrow ()

Gets the gradient of the natural log of the electron-nuclear Jastrow func-
tion with respect to the cartesian electronic coordinates for the last evaluated
electronic configuration and parameter set.

double getLaplacianLnJastrow ()

Gets the laplacian of the natural log of the electron-nuclear Jastrow func-
tion with respect to the cartesian elecironic coordinates for the last evaluated
electronic configuration and parameter set.

3.28.1 Detailed Description

This class calculates the value of the electron-nuclear part of the Jastrow func-
tion and it’s first two derivatives.

The wavefunction is assumed to be of the form
Yomo = Yreiard

where Wrpq is a wavefunction calculated using a standard QM method and
I =exp(y " wii(res))

is a Jastrow type correlation function. u;(ri;) are QMCCorrelationFunction
(p. 57) describing the interactions of particles ¢ and j. The sum can be broken
up into electron-electron and electron-nuclear components.

Definition at line 44 of file QMCJastrowElectronNuclear.h.

3.28.2 Member Function Documentation
3.28.2.1 void QMCJastrowElectronNuclear::evaluate
(QMCJastrowParameters & JP, Array2D< double > & X)

Evaluates the electron-nuclear Jastrow function and it’s derivatives at X using
a given set of QM CJastrowParameters (p. 83).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.28 QMCJastrowElectronNuclear Class Reference

82

Parameters:
JP Jastrow parameters to use during the evaluation

X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 62 of file QMCJastrowElectronNuclear.cpp.

References Array2D< double >:allocate(), ArraylD< T >:udiml(),
Array2D< T >:diml(), QMCCorrelationFunction::evaluate(), QMCJastrow-
Parameters::getElectronDownNuclearParameters(), QMCJastrow-
Parameters::getElectronUpNuclearParameters(), QMCCaorrelation-
Function::getFirstDerivativeValue(), QMCCorrelationFunction::getFunction-
Value(), QMCJastrowParameters::getNucleiTypes(), and QMCCorrelation-
Function::getSecondDerivativeValue().

Referenced by QMCJastrow::evaluate().

3.28.2.2 Array2D< double > * QMCJastrowElectronNuclear::get-
GradientLnJastrow ()

Gets the gradient of the natural log of the electron-nuclear Jastrow function with
respect to the cartesian electronic coordinates for the last evaluated electronic
configuration and parameter set.

Vin(J) =V 3 i (ri;)

Returns:
gradient natural log of the electron-nuclear Jastrow function (VIn{J) =

V2 i i(ri)
Definition at line 52 of file QMCJastrowElectronNuclear.cpp.
Referenced by QMCJastrow::evaluate().

3.28.2.3 double QMCJastrowElectronNuclear::get LaplacianLn-
Jastrow ()

Gets the laplacian of the natural log of the electron-nuclear Jastrow function
with respect to the cartesian electronic coordinates for the last evaluated elec-
tronic configuration and parameter set.

VEIn(J) = V2 3w s(reg)

Returns:
gradient natural log of the electron-nuclear Jastrow function (V2 In(J) =

V2 T uiglrigd)

Definition at line 47 of file QMCJastrowElectronNuclear.cpp.
Referenced by QMCJastrow::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.29 QMCJastrowParameters Class Reference

83

3.28.2.4 double QMCJastrowElectronNuclear::getLnJastrow ()

Gets the value of the natural log of the electron-nuclear Jastrow function for
the last evaluated electronic configuration and parameter set.

() = 3 wa3lri)

Returns:
natural log of the electron-nuclear Jastrow function (In{J) = 3 u; ;(r: ;)

Definition at line 57 of file QMCJastrowElectronNuclear.cpp.
Referenced by QMCJastrow::evaluate().

3.28.2.5 wvoid QMClJastrowElectronNuclear::initialize (QMCInput *
input)

Initializes the class with the data controling the calculation.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCJastrowElectronNuclear.cpp.
Referenced by QMCJastrow::initialize().

3.29 QMCJastrowParameters Class Reference

This class contains all of the parameters and corelation functons from which the
Jastrow function is composed.

Public Methods

e QMCJastrowParameters ()

Creates an instance of the class.

s QMCJastrowParameters (const QMCJastrowParameters &rhs)

Creates an instance of the class that is identical to another instance of the
class.

e void setParameterVector {Arrayl1D< double > ¶ms)

Sets the parameters deseribing the particle-particle interactions.

s ArraylD< double > getParameters ()

Gets the parometers describing the particle-particle interactions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.29 QMCJastrowParameters Class Reference 84
¢ QMCCorrelationFunctionParameters * getElectronUpElectron-
DownParameters ()
Gets the QMCCorrelationFunctionParameters (p.5%) describing up-
down electron interaciions.
o QMCCorrelationFunctionParameters * getElectronUpElectron-
UpParameters ()
Gets the QMCCorrelationFunctionParameters (p. 59) describing up-up
electron interactions.
o QMCCorrelationFunctionParameters #* getElectronDown-
ElectronDownParameters ()
Gets the QMC CorrelationFunctionParameters (p. 59) describing down-
down electron interactions.
o ArraylD< QMCCorrelationFunctionParameters > x get-
FElectronUpNuclearParameters ()
Gets an array of QMCCorrelationFunctionParameters (p. 59) describ-
ing up electron-nuclear interactions.
e ArraylD< QMCCorrelationFunctionParameters > * get-
ElectronDownNuclearParameters ()
Gets an array of QMCCorrelationFunctionParameters (p.59) describ-
ing down electron-nuclear interactions.
e ArraylD< string > * getNucleiTypes ()
Gets an array which is a list of all the different types of nuclei in the molecule
being calculated.
¢ void operator= (const QMCJastrowParameters &rhs)
Sets two QMCJastrowParameters objects egual.
¢ void read (Arrayl1D< string > &nucleitypes, bool linkparams, int nelup,
int neldn, string runfile)
Loads the state of the object from a file.
Friends

e ostream & operator<< (ostream &strm, QMCJastrowParameters &rhs)

Writes the state of the object to an ouiput stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.29 QMCJastrowParameters Class Reference 85

3.29.1 Detailed Description
This class contains all of the parameters and corelation functons from which the
Jastrow function is composed.

The wavefunction is assumed to be of the form
Yomc = ¥Yrriad

where Po,.;, is a wavefunction calculated using a standard QM method and

J= e:cp(z 5,5(74,5))

is a Jastrow type correlation function. wg;(r;;) are QMCCorrelationFunction
(p.57) describing the interactions of particles i and j. The correlation functions
are parameterized to allow optimization. This class contains the functions and
their specific parameterizations. The interactions are parameterized in terms of
”parameters” and ”constants.” ”parameters” are modified during optimizations,
and "constants” are not.

Definition at line 48 of file QMCJastrowParameters.h.

3.29.2 Constructor & Destructor Documentation

3.29.2.1 QMCJastrowParameters::QMCJastrowParameters (const
QMCJastrowParameters & rhs)

Creates an instance of the class that is identical to another instance of the class.

Parameters:
Ths object to copy

Definition at line 614 of file QMCJastrowParameters.cpp.

3.29.3 Member Function Documentation

3.29.3.1 QMCCorrelationFunctionParameters * QMCJastrow-
Parameters::getElectronDownElectronDownParameters ()

Gets the QMCCorrelationFunctionParameters (p.59) describing down-

down electron interactions.

Returns:
down-down electron interaction parameters

Definition at line 588 of file QMCJastrowParameters.cpp.
Referenced by QMCJastrowElectronElectron::evaluate().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.29 QMCJastrowParameters Class Reference

86

3.29.3.2 ArraylD< QMCCorrelationFunctionParameters > %
QMCJastrowParameters::getElectronDownNuclearParameters ()

Gets an array of QMCCorrelationFunctionParameters (p.59) describing
down electron-nuclear interactions.

Returns:
down electron-nuclear interaction parameters

Definition at line 600 of file QMCJastrowParameters.cpp.
Referenced by QMCJastrowElectronNuclear::evaluate().

3.29.3.3 QMCCorrelationFunctionParameters x QMCJastrow-
Parameters::getElectronUpElectronDownParameters ()

Gets the QMCCorrelationFunctionParameters (p. 59) describing up-down
electron interactions.

Returns:
up-down electron interaction parameters

Definition at line 576 of file QMCJastrowParameters.cpp.
Referenced by QMCJastrowElectronElectron::evaluate().

3.29.3.4 QMCCorrelationFunctionParameters = QMCJastrow-
Parameters::getElectronUpElectronUpParameters ()

Gets the QMCCorrelationFunctionParameters (p.59) describing up-up
electron interactions.

Returns:
up-up electron interaction parameters

Definition at line 582 of file QMCJastrowParameters.cpp.
Referenced by QMCJastrowElectronElectron::evaluate().

3.29.3.5 ArraylD< QMCCorrelationFunctionParameters >
QMCJastrowParameters::getElectronUpNuclearParameters ()

Gets an array of QMCCorrelationFunctionParameters (p.59) describing

up electron-nuclear interactions.

Returns:
up electron-nuclear interaction parameters

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.29 QMCJastrowParameters Class Reference

Definition at line 594 of file QMCJastrowParameters.cpp.
Referenced by QMCJastrowElectronNuclear::evaluate().

3.29.3.6 ArraylD< double > QOMCJastrowParameters::get-
Parameters ()

Gets the parameters describing the particle-particle interactions.

Returns:
parameters describing particle-particle interactions.

Definition at line 206 of file QMCJastrowParameters.cpp.

References ArraylD< T >:allocate(), ArraylD< T >:udiml(), ArraylD<
QMCCorrelationFunctionParameters >::diml(), QMCCorrelationFunction-
Parameters::getParameters(), and QMCCorrelationFunctionParameters::get-
TotalNumber OfParameters().

3.29.3.7 wvoid QMCJastrowParameters::operator= (const
QMCJastrowParameters & rhas)

Sets two QMCJastrowParameters objects equal.

Parameters:
rhs object to set this object eqal to

Definition at line 15 of file QMCJastrowParameters.cpp.

References EdnEdn, EdnNuclear, EquivalentElectronUpDownParams, Eup-
Edn, EupFEup, EupNuclear, NucleiTypes, NumberOfElectronsDown, Number-
OfElectronsUp, and NumberOfParameters.

3.29.3.8 void QMCJastrowParameters::read (ArraylD< string > &
nucleitypes, bool linkparams, int nelup, int neldn, string runfile)

Loads the state of the object from a file.

Parameters:
nucleitypes list of the different kinds of nuclei

linkparams true if nuclear-electron interactions are strictly the same and
false otherwise

nelup number of up spin electrons
neldn numer of down spin electrons

runfile name of the file to be loaded

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.30 QMCLineSearch Class Reference

88

Definition at line 385 of file QMCJastrowParameters.cpp.

References ArraylD< QMCCorrelationFunctionParameters >::allocate(),
ArraylD< QMCCorrelationFunctionParameters >:diml(), ArraylD<
string >::diml(), QMCCorrelationFunctionParameters::getParticlel Type(),
QMCCorrelationFunctionParameters::getParticle2Type(), QMCCorrelation-
FunctionParameters::read(), QMCCorrelationFfunctionParameters::set-
ParticlelType(), and QMCCorrelationFunctionParameters::setParticle2Type().

3.29.3.9 void QMCJastrowParameters::setParameterVector
{ArraylD< double > & params)

Sets the parameters describing the particle-particle interactions.

Parameters:
params new set of parameters

Definition at line 29 of file QMCJastrowParameters.cpp.

References ArraylD< T >:uallocate(), ArraylD< QMCCorrelation-
FunctionParameters >::diml(), ArraylD< T >:diml(), QMCCorrelation-
FunctionParameters::getTotalNumberQfParameters(), QMCCorrelation-
FunctionParameters::setParameters(), QMCCorrelationFunction-
Parameters::setParticlelType(), and QMCCorrelationFunctionParameters::set-
Particle2Type().

3.30 QMCLineSearch Class Reference

Abstract implementation of a line search numerical optimization algorithm.

Inheritance diagram for QMCLineSearch::

| @QMCOptimizationAlgorithm |

I

| QMCLineSearch |

I

| QMCSteepestDescent |

Public Methods

¢ QMCLineSearch (QMCObjectiveFunction *function, QMCLine-

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.30 QMCLineSearch Class Reference 89

SearchStepLengthSelectionAlgorithm xstepAlg, int maxSteps, dou-
ble tol)

Constructs and initiolizes an instance of this class.

e virtual ~QMCLineSearch ()

Virtual destructor.

e ArraylD< double > optimize (ArraylD< double > &initialGuess)

Optimize the function starting from the provided initial guess parameters.

Protected Methods

¢ QMCODbjectiveFunction * getObjectiveFunction ()

Gets the objective function for the calculation.

3.30.1 Detailed Description

Abstract implementation of a line search numerical optimization algorithm.
As is standard in the field, the optimization is a minimization.

Definition at line 27 of file QMCLineSearch.h.

3.30.2 Constructor & Destructor Documentation

3.30.2.1 QMCLineSearch::QMCLineSearch (QMCObjective-
Function * function, QMCLineSearchStepLengthSelectionAlgorithm
* stepAlg, int mazSteps, double tol)

Constructs and initializes an instance of this class.

Parameters:
Function objective function to optimize.

stepAlg algorithm to use claculate the step length.

mazxSteps maximum number of steps to be performed during the line
search.

tol tolerance to converge the solution to. Calculation is converged when

'1 . %%*’T‘ll £ tol,

Definition at line 15 of file QMCLineSearch.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.31 QMCLineSearchStepLengthSelection Algorithm Class Reference

90

3.30.3 Member Function Documentation

3.30.3.1 ArraylD< double > QMCLineSearch::optimize (ArraylD<
double > & initialGuess) [virtuall

Optimize the function starting from the provided initial guess parameters.

Parameters:
initial Guess initial guess parameters for the optimization.

Returns:
optimized parameters.

Implements QMCOptimizationAlgorithm (p. 107).
Definition at line 31 of file QMCLineSearch.cpp.

References ArraylD< T >:diml(), QMCObjectiveFunction::evaluate(), and
QMCObjectiveFunctionResult::getScore().

3.31 QMCLineSearchStepLengthSelectionAlgorithm
Class Reference

Interface to algorithms which determine the proper step length to use during a
line search optimization (QMCLineSearch (p. 88)).

Inheritance diagram for QMCLineSearchStepLengthSelectionAlgorithm::

| QMCLineSearchSteplengthSelectionAlgorithm |

I

| QMCMikesBracketingStepLengthSelector |

Public Methods

e virtual ~QMCLineSearchStepLengthSelectionAlgorithm ()

Virtual destructor.

e virtual double stepLength (QMCObjectiveFunction xfunction,
ArraylD< double > &position, ArraylD< double > &search-
Direction)=0

Calculates the step length to use when performing a line search optimization.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.32 QMCLineSearchStepLengthSelectionFactory Class Reference

91

3.31.1 Detailed Description

Interface to algorithms which determine the proper step length to use during a
line search optimization (QMCLineSearch (p. 88)).

Definition at line 23 of file QMCLineSearchStepLengthSelectionAlgorithm.h.

3.31.2 Member Function Documentation

3.31.2.1 wvirtual double QMCLineSearchStepLengthSelection-
Alpgorithm::stepLength (QMCObjectiveFunction * Function,
ArraylD< double > & position, ArraylD< double > & search-
Direction) [pure virtuall

Calculates the step length to use when performing a line search optimization.
Parameters:

Function objective function being optimized.

position current location of the optimization.

searchDirection direction to optimize along.

Implemented in QM CMikesBracketingStepLengthSelector (p. 95).

3.32 QMCLineSearchStepLengthSelectionFactory Class
Reference

Object factory which returns the correct QMCLineSearchStepLength-
SelectionAlgorithm (p. 90) when a string keyword describing the correlation
function is provided.

Static Public Methods
o QMCLineSearchStepLengthSelectionAlgorithm * factory (string
&Type)

Returns the correct QMCLineSearchStepLengthSelectionAlgorithm
(p. 90) when & string keyword describing the correlation funclion is provided.

3.32.1 Detailed Description

Object factory which returns the correct QMCLineSearchStepLength-
SelectionAlgorithm (p. 90) when a string keyword describing the correlation
function is provided.

Definition at line 29 of file QMCLineSearchStepLengthSelectionFactory.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.33 QMCManager Class Reference

92

3.33 QMCManager Class Reference

Controls the major sections of a QMC calculation.

Public Methods

s QMCManager ()

Creates an uninitiolized instance of this class.

e ~QMCManager ()

Destroys this object, cleans up the memory, and closes all open streams.

e void initialize (int arge, char **argv)

Initializes this object and loads the inpui data for the calculation.

¢ void finalize ()

Prepares the calculation to terminate.

e void run ()
Performs ¢ QMC calculation.

e void optimize ()
Optimizes the parameters in o veriational QMC (VMC) caleulation using
the correlated sempling method.

e void zeroOut ()

Zeroes out all of the statistical dota calculated by this object.

¢ void writeRestart ()
Writes the restart file for the calculation.

s void writeTimingData (ostream &strm)

Writes the timing data to a stream.

e QMCInput * getInputData ()
Gets the input data for the calculation.

e ostream * getResultsOutputStream ()

Gets the stream for outputling results from a calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.33 QMCManager Class Reference 93

Friends

e ostream & operator<< {ostream &strm, QMCManager &rhs)

Writes the current QMC resulis calculated by this object to an outpui siream
in ¢ human readable format.

3.33.1 Detailed Description

Controls the major sections of a QMC calculation.
This allows a QMC calculation to be run and parameters to be optimized.

Definition at line 41 of file QMCManager.h.

3.33.2 Member Function Documentation

3.33.2.1 QMCInput *+ QMCManager::getInputData ()
Gets the input data for the calculation.

Returns:
input data for the calculation.

" Definition at line 769 of file QMCManager.cpp.
3.33.2.2 ostream * QMCManager::get ResultsOutputStream ()
Gets the stream for outputting results from a calculation.

Returns:
output stream for results.

Definition at line 775 of file QMCManager.cpp.

3.33.2.3 void QMCManager::initialize (int arge, char ** argv)
Initializes this object and loads the input data for the calculation.

Parameters:
arge number of command line arguments.

argv command line arguments.

Definition at line 25 of file QMCManager.cpp.

References QMCrun::initialize().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.34 QMCMikesBracketingStepLengthSelector Class Reference

94

3.33.2.4 void QMCManager::run ()

Performs a QMC calculation.

The specifics of the calculation are prescribed in the input.
Definition at line 241 of file QMCManager.cpp.

References QMCStopwatches::getInitializationStopwatch(),
QMCStopwatches::getPropagationStopwatch(), QMCrun::getProperties(),
Stopwatch::start(), QMCrun:step(), Stopwatch:stop(), QMCrun:write-
CorrelatedSamplingConfigurations(), QMCrun::writeEnergies(),
QMCrun::zeroOut(), and QMCproperties::zeroOut().

3.33.2.5 void QMCManager::writeTimingData (ostream & strm)
Writes the timing data to a stream.

This is only valid after finalize is called and only on the root node.

Parameters:
strm stream to write timing information to.

Definition at line 541 of file QMCManager.cpp.

3.34 QMCMikesBracketingStepLengthSelector Class Ref-
erence

Algorithm to determine the step length for a line search optimization developed
by Michael Todd Feldmann.

Inheritance diagram for QMCMikesBracketingStepLengthSelector::

| QMCLineSearchStepLengthSelectionAlgorithm |

| QMCMikesBracketingStepLengthSelector I

Public Methods

e double stepLength (QMCObjectiveFunction *function, ArraylD<
double > &position, ArraylD< double > &searchDirection)

Calculates the step length to use when performing a line search optimization.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.35 QMCMikesJackedWalkerInitialization Class Reference

95

3.34.1 Detailed Description
Algorithm to determine the step length for a line search optimization developed
by Michael Todd Feldmann.

This algorithm is purely huristic and does not insure the Wolfe conditions or
other such properties. Again, much work could be done to do this part of a line
search better.

Definition at line 29 of file QMCMikesBracketingStepLengthSelector.h.

3.34.2 Member Function Documentation

3.34.2.1 double QMCMikesBracketingStepLengthSelector::step-
Length (QMCObjectiveFunction * function, ArraylD< double > &
position, ArraylD< double > & searchDirection) [virtuall

Calculates the step length to use when performing a line search optimization.

Parameters:
function objective function being optimized.

position current location of the optimization.

searchDirection direction to optimize along.

Implements QMCLineSearchStepLengthSelectionAlgorithm (p. 91).
Definition at line 15 of file QMCMikesBracketingStepLengthSelector.cpp.

3.35 QMCMikesJackedWalkerlInitialization Class Refer-
ence

This is the algorithm made to initialize walkers.

Inheritance diagram for QMCMikesJacked WalkerInitialization::

| QMClnitializeWalker T

l QMCMikesJackedWalkerInitialization I

Public Methods

o QMCMikesJackedWalkerInitialization {QMCInput =input)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.35 QMCMikesJacked Walkerlnitialization Class Reference

96

Create an instance of the clas and indtializes it.

e Array2D< double > initialize WalkerPosition ()

Generates o new walker.

3.35.1 Detailed Description

This is the algorithm made to initialize walkers.

It is based on figuring out how many electrons should be on each atom followed
by putting them in a gaussian around the atom. This is by far a method which
needs a serious overhaul. This was a quick fix to initializing the walkers and
the ideas are borrowed from CASINQ. This method of initializing is probably
very inefficient. This goes without mentioning how ugly the code is. This is
a great place for further future work. A huge dent will likely be made on the
"Initialization Catastrophe” problem here.

Definition at line 35 of file QMCMikesJacked WalkerInitialization.h.

3.35.2 Constructor & Destructor Documentation

3.35.2.1 QMCMikesJackedWalkerInitialization::QMCMikesJacked-
WalkerInitialization (QMCInput * input)

Create an instance of the clas and initializes it.

Parameters:
input input data for the calculation

Definition at line 19 of file QMCMikesJacked WalkerInitialization.cpp.

3.35.3 Member Function Documentation

3.35.3.1 Array2D< double > QMCMikesJacked Walker-
Initialization::initialize WalkerPosition () [virtuall
Generates a new walker.

Returns:
new walker configuration represented by a N x 3 matrix

Implements QMCInitialize Walker (p. 73).
Definition at line 24 of file QMCMikesJackedWalkerInitialization.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.36 QMCMolecule Class Reference

97

3.36 QNMCMolecule Class Reference

Describes a particular molecular geometry.

Public Methods

s« QMCMolecule ()

Creates an instance of the class.

e void initialize (int nAtoms)

Initializes the object.

e int getNumberAtoms ()

Gets the number of atoms in the molecule.

o QMCMolecule operator= (const QMCMolecule &rhs)
Sets two QMCMolecule objects equal.

void read (string runfile)
Loads the state of the object from a file.

Public Attributes

e ArraylD< string > Atom Labels

Array containing the labels for the atoms.

s Array2D< double > Atom_Positions

Array containing the 3-dimensional cartesian positions for the atoms.

e ArraylD< int > Z

Array conteining the nuclear charges for the atoms.

e ArraylD< string > NucleiTypes

Array containing oll of the different atom labels used in the molecule.

Friends

¢ istream & operator>> (istream &strm, QMCMolecule &rhs)

Loads the state of the object from an input stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.36 QMCMolecule Class Reference 98

e ostream & operator<< (ostream &strm, QMCMolecule &rhs)

Writes the state of the object to an output stream.

3.36.1 Detailed Description

Describes a particular molecular geometry.

The geometry is defined by 3-dimensional cartesian coordinates for each atom,
with specified charges and types.

Definition at line 34 of file QMCMolecule.h.

3.36.2 Member Function Documentation

3.36.2.1 int QMCMolecule::getNumberAtoms ()

Gets the number of atoms in the molecule.

Returns:
number of atoms in the molecule.

Definition at line 25 of file QMCMolecule.cpp.

3.36.2.2 void QMCMolecule::initialize (int nAtoms)
Initializes the object.

Parameters:
nAtoms number of atoms in the molecule.

Definition at line 20 of file QMCMolecule.cpp.

3.36.2.3 QMCMolecule QMCMolecule::operator= (const QMC-
Molecule & rhs)

Sets two QMCMolecule objects equal.

Parameters:
rhs object to set this object equal to.

Definition at line 31 of file QMCMolecule.cpp.

References Atom.Labels, Atom.Positions, Natoms, and Z.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.37 QMCObjectiveFunction Class Reference 99

3.36.2.4 void QMCMolecule::read (string runfile)
Loads the state of the object from a file.

Parameters:
runfile file to load the object state from.

Definition at line 60 of file QMCMolecule.cpp.

References ArraylD< string >:allocate(), Atom_Labels, ArraylD< string
>::diml{), and NucleiTypes.

3.36.3 Member Data Documentation

3.36.3.1 ArraylD<string> QMCMolecule:: Atom_Labels
Array containing the labels for the atoms.

The ith element is the label for the ith atom.

Definition at line 66 of file QMCMolecule.h.

Referenced by operator=(), and read().

3.36.3.2 Array2D<double> QMCMolecule::Atom_Positions
Array containing the 3-dimensional cartesian positions for the atoms.
The ith element is the position for the ith atom.

Definition at line 74 of file QMCMolecule.h.

Referenced by QMCBasisFunction::getGradPsi(), QMCBasisFunction::get-
LaplacianPsi(), QMCBasisFunction::getPsi(), and operator=().

3.36.3.3 ArraylD<int> QMCMolecule::Z
Array containing the nuclear charges for the atoms.
The ith element is the charge for the ith atom.
Definition at line 82 of file QMCMolecule.h.

Referenced by operator=().

3.37 QMCObjectiveFunction Class Reference

Objective function optimized during a variational QMC (VMC) calculation to
find the optimal wavefunction parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.37 QMCObjectiveFunction Class Reference

100

Public Methods

e void initialize (QMCInput *input)

Initializes this object.

e QMCObjectiveFunctionResult evaluate (ArraylD< double >
¶ms)

Evaluates and returns the result of the objective function evaluated with a
single set of parameters.

ArraylD< QMCObjectiveFunctionResult > evaluate (ArraylD<
ArraylD< double > > ¶ms)

Fualuates and returns the result of the objective function evaluoted with mul-
tiple single sets of parameters.

ArraylD< double > grad (ArraylD< double > ¶ms)

Euvaluates and returns the gradient of the objective function for one set of
parameters.

L]

ArraylD< ArraylD< double > > grad (ArraylD< Arrayl1D< dou-
ble > > ¶ms)

Eualuates and returns the gradient of the objective function for multiple sets
of parameters.

3.37.1 Detailed Description

Objective function optimized during a variational QMC (VMC) calculation to
find the optimal wavefunction parameters.

As is standard in the field of numerical optimization, optimization means min-
imization. The particular form of the objective function is determined by pa-
rameters in the input file.

Definition at line 35 of file QMCObjectiveFunction.h.

3.37.2 Member Function Documentation

3.37.2.1 ArraylD< QMCObjectiveFunctionResult >
QMCObjectiveFunction::evaluate (ArraylD< ArraylD< double
> > & params)

Evaluates and returns the result of the objective function evaluated with mul-
tiple single sets of parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.37 QMCObjectiveFunction Class Reference

101

Parameters:
params sets of parameters to evaluate the objective function with.

Returns:
results of the objective function evaluations. The index of the input pa-
rameters corresponds to the index of the returned values.

Definition at line 21 of file QMCODbjectiveFunction.cpp.
References QMCRead AndEvaluateConfigs::rootCalculateProperties().

3.37.2.2 QMCODbjectiveFunctionResult QMCObjective-
Function::evaluate (ArraylD< double > & params)

Evaluates and returns the result of the objective function evaluated with a single
set of parameters.

Parameters:
params set of parameters to evaluate the objective function with.

Returns:
result of the objective function evaluation.

Definition at line 46 of file QMCObjectiveFunction.cpp.
Referenced by QMCLineSearch::optimize().

3.37.2.3 ArraylD< ArraylD< double > > QMCObjective-
Function::grad (ArraylD< ArraylD< double > > & params)

Evaluates and returns the gradient of the objective function for multiple sets of
parameters.

Parameters:
params sets of parameters to evaluate the gradient with.

Returns:

gradients of the objective function. The index of the input parameters
corresponds to the index of the returned values.

Definition at line 60 of file QMCObjectiveFunction.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.38 QMCObjectiveFunctionResult Class Reference

102

3.37.2.4 ArraylD< double > QMCObjectiveFunction::grad
(ArraylD< double > & params)

Evaluates and returns the gradient of the objective function for one set of pa-
rameters.

Parameters:
params sets of parameters to evaluate the gradient with.

Returns:
gradient of the objective function.

Definition at line 71 of file QMCODbjectiveFunction.cpp.

3.37.2.5 wvoid QMCObjectiveFunction::initialize (QMCInput * in-
put)

Initializes this object.

This must be called before any other functions in this object are called.

Parameters:
input input data for the calculation

Definition at line 15 of file QMCObjectiveFunction.cpp.
References QMCRead AndEvaluateConfigs:initialize().
Referenced by QMCCorrelatedSamplingVMCOptimization::optimize().

3.38 QMCODbjectiveFunctionResult Class Reference

Results from the evaluation of an objective function during a QMC calculation.

Public Methods

e QMCObjectiveFunctionResult ()

Creates a new uniniticlized instance of this class.

» QMCObjectiveFunctionResult (QMCInput *input, double energy-
Ave, double energy Var, double logWeightAve, double logWeightVar)

Creates and initializes a new instance of this class.

* QMCObjectiveFunctionResult (QMCObjectiveFunctionResult
&rhs)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.38 QMCObjectiveFunctionResult Class Reference

103

Creates a new instance of this class and makes it equivalent to another in-
stance of this class.

double getLogWeightsAve ()

Gets the average value of the natural log of the statistical weights for the
configurations used in this funciion evaluation.

double getLogWeightsVar ()

Gets the variance of the natural log of the statistical weighis for the configu-
rations used in this function evaluation.

double getEnergyAve ()

Gets the calculoted average energy value.

double getEnergyVar ()

Gets the calculated energy variance.

double getScore ()

Gets o score for this function evaluation.

double getDerivativeScore ()

Gets a score for this function evaluation that is to be used in calculating the
derivative in a numerical optimization.

void operator= (QMCObjectiveFunctionResult &rhs)
Sets two QMCObjectiveFunctionResult objects equal.

Friends

e ostream & operator<< (ostream &strm, const QMCObjectiveFunction-
Result &rhs)

Prints the contents of this object in a human readable format.

3.38.1 Detailed Description

Results from the evaluation of an objective function during a QMC calculation.
These results can then be used for numerical optimization or other functions.
Definition at line 28 of file QMCObjectiveFunctionResult.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.38 QMCObjectiveFunctionResult Class Reference 104

3.38.2 Constructor & Destructor Documentation

3.38.2.1 QMCODbjectiveFunctionResult:: QMCODbjectiveFunction-
Result (QMClInput * input, double energyAve, double energyVar,
double logWeightAve, double logWeight Var)

Creates and initializes a new instance of this class.

Parameters:
input data input to control the calculation.

energyAve calculated energy value
energy Var calculated energy variance

logWeightAve average value of the natural log of the statistical weights
of the configurations.

logWeight Var variance in the above quantity.

Definition at line 19 of file QMCObjectiveFunctionResult.cpp.

3.38.2.2 QMCObjectiveFunctionResult::QMCObjectiveFunction-
Result (QMCObjectiveFunctionResult & rhas)

Creates a new instance of this class and makes it equivalent to another instance
of this class.

Parameters:
rhs object to set this equal to.

Definition at line 36 of file QMCObjectiveFunctionResult.cpp.

3.38.3 Member Function Documentation

3.38.3.1 double QMCObjectiveFunctionResult::getDerivativeScore
0

Gets a score for this function evaluation that is to be used in calculating the
derivative in a numerical optimization.

The algorithm used for arriving at this score is determined by the input data.
The convergence of a numerical optimization can be modified by changing the
score functions.

Returns:
score for the derivative evaluation.

Definition at line 67 of file QMCObjectiveFunctionResult.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.38 QMCObjectiveFunctionResult Class Reference 105

3.38.3.2 double QMCObjectiveFunctionResult::getEnergyAve ()

Gets the calculated average energy value.

Returns:
calculated average energy value.

Definition at line 52 of file QMCObjectiveFunctionResult.cpp.

3.38.3.3 double QMCObjectiveFunctionResult::getEnergyVar ()

Gets the calculated energy variance.

Returns:
calculated energy variance.

Definition at line 57 of file QMCObjectiveFunctionResult.cpp.

3.38.3.4 double QMCODbjectiveFunctionResult::getLogWeightsAve

0

Gets the average value of the natural log of the statistical weights for the con-
figurations used in this function evaluation.

Returns:
average value of the natural log of the statistical weights.

Definition at line 42 of file QMCObjectiveFunctionResult.cpp.

3.38.3.5 double QMCObjectiveFunctionResult::getLogWeightsVar

0

Gets the variance of the natural log of the statistical weights for the configura-
tions used in this function evaluation.

Returns:
variance of the natural log of the statistical weights.

Definition at line 47 of file QMCObjectiveFunctionResult.cpp.

3.38.3.6 double QMCObjectiveFunctionResult::getScore ()
Gets a score for this function evaluation.

Better scores have lower values. The algorithm used for arriving at the scoris
is determined by the input data. The convergence of a numerical optimization
can be modified by changing the score functions.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.39 QMCOptimizationAlgorithm Class Reference 106

Returns:
score for the function evaluation.

Definition at line 62 of file QMCObjectiveFunctionResult.cpp.
Referenced by QMCLineSearch::optimize().

3.38.3.7 woid QMCODbjectiveFunctionResult::operator=
(QMCObjectiveFunctionResult & rhs)

Sets two QMCODbjectiveFunctionResult objects equal.

Parameters:
rhs object to set this object equal to.

Definition at line 144 of file QMCObjectiveFunctionResult.cpp.

References energy_ave, energy_var, Input, log_weights_ave, log_ weights_var,
score, and score_for_derivative.

3.39 QMOCOptimizationAlgorithm Class Reference

Interface for numerical optimization algorithms.

Inheritance diagram for QMCOptimizationAlgorithm::

I QMCOptimizationAlgorithm l

T
[-
CKGeneticAlgorithm!] | QMCLineSearch |

T

| QMCSteepestDescent |

Public Methods

e virtual ~QMCOptimizationAlgorithm ()

Virtual destructor.

e virtual ArraylD< double > optimize (Array1D< double > &initial-
Guess)=0

Optimize the function starting from the provided initial guess parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.40 QMCOptimizationFactory Class Reference 107

3.39.1 Detailed Description

Interface for numerical optimization algorithms.

Definition at line 22 of file QMCOptimizationAlgorithm.h.

3.39.2 Member Function Documentation

3.39.2.1 vwvirtual ArraylD<double> QMCOptimization-
Algorithm::optimize (ArraylD< double > & initialGuess) [pure
virtuall

Optimize the function starting from the provided initial guess parameters.

Parameters:
initialGuess initial guess parameters for the optimization.

Returns:
optimized parameters.

Implemented in CKGeneticAlgorithm1 (p.23), and QMCLineSearch
(p. 90).

Referenced by QMCCorrelatedSamplingVMCOptimization::optimize().

Es

3.40 QMCOptimizationFactory Class Reference

Object factory which returns the correct QMCOptimizationAlgorithm
(p. 106) specified in the calculation input data.

Static Public Methods

e QMCOptimizationAlgorithm * optimizationAlgorithmFactory
(QMCObjectiveFunction &objFunc, QMClInput *input)

Returns the correct QMCOptimizationAlgorithm (p. 106) specified in the
calculation input data.

3.40.1 Detailed Description

Object factory which returns the correct QMOCOptimizationAlgorithm
(p.106) specified in the calculation input data.

Optimization assumed to mean minimization, as is standard in the field.

Definition at line 30 of file QMCOptimizationFactory.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.41 QMCPolynomial Class Reference 108

3.40.2 Member Function Documentation

3.40.2.1 QMCOptimizationAlgorithm * QMCOptimization-
Factory::optimizationAlgorithmFactory (QMCObjectiveFunction
& objFunc, QMClInput * tnput) [static]

Returns the correct QMCOptimizationAlgorithm (p. 106) specified in the
calculation input data.

Parameters:
objFunc object function to optimize.

input input data to control the calculation.

Definition at line 16 of file QMCOptimizationFactory.cpp.
References QMCLineSearchStepLengthSelectionFactory::factory().
Referenced by QMCCorrelatedSamplingVMCOptimization::optimize().

3.41 QMCPolynomial Class Reference

An extension of Polynomial (p. 45) which adds QMC specific functionality.
Inheritance diagram for QMCPolynomial::

I FunctionR1toR 1 I

| Polynomial !

| @MCPolynomial |

Public Methods

e QMCPolynomial ()

Constructs an uninitielized instance of this class.

e QMCPolynomial {Array1D< double > &coeffs)

Constructs and initializes an intance of this class.

¢ bool hasNonNegativeZeroes ()

Determines if this polynomial has any non-negative real zeroes.

— Generatedoor Wed vay T T1:34+48 2002 for QMcBeaver by Doxygen

3.41 QMCPolynomial Class Reference 109

void initialize (Array1D< double > &coeffs)

Initializes this object.

vold evaluate (double x)

Evaluates the function ot .

double getFunctionValue ()

Gets the function value of the last evaluated point.

double getFirstDerivativeValue ()

Gets the function’s first deriviate at the last evaluated point.

double getSecondDerivativeValue ()

Gets the function’s second deriviative ai the last evaluated point.

ArraylD< Complex > getRoots ()
Gets the roots of the polynomial.

Protected Methods

e int getNumberCoefficients ()

Gets the number of coefficients in the polynomial.?

e double getCoefficient (int i)
Gets the ith coefficient of the polynomial.

3.41.1 Detailed Description

An extension of Polynomial (p. 45) which adds QMC specific functionality.
Definition at line 22 of file QMCPolynomial.h.

3.41.2 Constructor & Destructor Documentation

3.41.2.1 QMCPolynomial::QMCPolynomial (ArraylD< double > &
coejfs)

Constructs and initializes an intance of this class.

Parameters:
coeffs set of polynomial coefficients to use for the polynomial.

Definition at line 19 of file QMCPolynomial.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.41 QMCPolynomial Class Reference 110

3.41.3 Member Function Documentation

3.41.3.1 void Polynomial::evaluate (double x} [virtual, inherited]

Evaluates the function at z.

Parameters:
@ point to evaluate the function.

Implements FunctionR1toR1 (p.41}.
Definition at line 61 of file Polynomial.cpp.

Referenced by PadeCorrelationFunction::evaluate(), FixedCuspPade-
CorrelationFunction::evaluate(), Polynomial::getFirstDerivativeValue(),
Polynomial::getFunctionValue(), and Polynomial::getSecondDerivativeValue().

3.41.3.2 double Polynomial::getCoefficient (int) [protected,
inherited]

Gets the ith coefficient of the polynomial.
‘Where the polynomial is defined such that
s .
Plz) = z:cia:z
i=0

where n is the order of the polynomial and ¢; is the ith coefficient.

Parameters:
1 index of the coefficient to return.

Returns:
ith coefficient of the polynomial.

Definition at line 122 of file Polynomial.cpp.
3.41.3.3 double Polynomial::getFirstDerivativeValue () [virtual,
inherited]

Gets the function’s first deriviate at the last evaluated point.

Returns:
function’s deriviative value.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.41 QMCPolynomial Class Reference 111

Implements FunctionR1toR1 (p.41).
Definition at line 97 of file Polynomial.cpp.
References Polynomial::evaluate().

Referenced by PadeCorrelationFunction::evaluate(), and FixedCuspPade-
CorrelationFunction::evaluate().

3.41.3.4 double Polynomial::getFunctionValue () [virtual,
inherited]

Gets the function value at the last evaluated point.
Returns:

function value.
Implements FunctionR1toR1 (p.41).
Definition at line 87 of file Polynomial.cpp.
References Polynomial::evaluate().

Referenced by PadeCorrelationFunction::evaluate(), and FixedCuspPade-
CorrelationFunction::evaluate().

3.41.3.5 int Polynomial::getNumberCoeflicients () [protected,
inherited]

Gets the number of coefficients in the polynomial.
This is one larger than the order of the polynomial.

Returns:
number of coefficients in the polynomial.

Definition at line 117 of file Polynomial.cpp.
References ArraylD< double >::diml().

3.41.3.6 ArraylD< Complex > Polynomial::get Roots 0
[inherited]

Gets the roots of the polynomial.

Returns:
roots of the polynomial.

Exceptions:
Exception (p.37) if problems were encounted during the root calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.41 QMCPolynomial Class Reference

112

Definition at line 127 of file Polynomial.cpp.
References Array1D< double >::diml().
Referenced by hasNonNegativeZeroes().

3.41.3.7 double Polynomial::getSecondDerivative Value 0
[virtual, inherited]

Gets the function’s second deriviative at the last evaluated point.

Returns:
function’s second derivative value.

Implements FunctionR1toR1 (p. 41).
Definition at line 107 of file Polynomial.cpp.
References Polynomial::evaluate().

Referenced by PadeCorrelationFunction::evaluate(), and FixedCuspPade-
CorrelationFunction::evaluate().

3.41.3.8 bool QMCPolynomial::hasNonNegativeZeroes ()
Determines if this polynomial has any non-negative real zeroes.

Returns:
true if the polynomial has a non-negative real zeros and false otherwise.

Exceptions:
Exception (p.37) if problems were encounted during the calculation.

Definition at line 23 of file QMCPolynomial.cpp.
References ArraylD< T >::diml1(), and Polynomial::getRoots().

Referenced by PadeCorrelationFunction::isSingular(), and FixedCuspPade-
CorrelationFunction::isSingular().

3.41.3.9 void Polynomial::initialize (ArraylD< double > & coeffs)
[inherited]

Initializes this object.

Parameters:
coeffs set of polynomial coefficients to use for the polynomial.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.42 QMCPotential_ Energy Class Reference

113

Definition at line 39 of file Polynomial.cpp.
References ArraylD< double >::allocate(), and ArraylD< double >::diml().

Referenced by PadeCorrelationFunction:initializeParameters(), Fixed-
CuspPadeCorrelationFunction::initializeParameters(), and Polyno-
mial::Polynomial().

3.42 QMCPotential Energy Class Reference

The potential energy of the system.

Public Methods

s QMCPotential Energy ()

Creates an instance of the class.

void initialize (QMCInput *input)

Initialize the object.

void evaluate (Array2D< double > &X)
Euvaluates the potential energy for the given electronic configuration.

i

double getEnergy ()

Gets the potential energy of the last configuration evaluated.

e void operator= (const QMCPotential Energy &rhs)
Sets two QMCPotential_Energy objects equal.

3.42.1 Detailed Description

The potential energy of the system.
Definition at line 29 of file QMCPotential Energy.h.

3.42.2 Member Function Documentation

3.42.2.1 void QMCPotential Energy::evaluate (Array2D< double >
& X)
Evaluates the potential energy for the given electronic configuration.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.43 QMCproperties Class Reference 114

Definition at line 35 of file QMCPotential Energy.cpp.
Referenced by QMCFunctions::evaluate().

3.42.2.2 void QMCPotential Energy::initialize (QMCInput * input)

Initialize the object.

Parameters:
tnput data input to control the calculation

Definition at line 29 of file QMCPotential .Energy.cpp.
Referenced by QMCFunctions:initialize{).

3.42.2.3 wvoid QMCPotential Energy::operator= (const QMCPoten-
tial_ Energy & rhs)

Sets two QMCPotential Energy objects equal.

Parameters:
rhs object to set this object equal to

ES

Definition at line 19 of file QMCPotential Energy.cpp.

References Energy_total, Input, P_ee, P_en, and P nn.

3.43 QMCproperties Class Reference

All of the quantities and properties evaluated during a calculation.

Public Methods

e QMCproperties ()

Creates a zeroed out instance of the class and generates the MPI types if they
have not been done.

e void zeroOut ()

Sets all of the data in the object to zero.

e QMCproperties operator-+ (QMCproperties &rhs)
Returns the sum of two @MCproperties.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.43 QMCproperties Class Reference

115

» void toXML (ostream &strm)
Writes the state of this object to an XML stream.

» void read XML (istream &strm)

Loads the state of this object from an XML stream.

Public Attributes

¢ QMCproperty energy
Total energy of the system.

QMCproperty kineticEnergy

Kinetic energy of the system.

QMCproperty potentialEnergy
Potential energy of the system.

QMCproperty logWeights
Log of the weights on the walkers.

QMCproperty acceptanceProbability

Probability o trial move is accepted.

QMCproperty distanceMoved Accepted

Average distance an accepted move travels.

QMCproperty distanceMovedTrial

Average distance for a trial mouve.

Static Public Attributes

o MPI.Datatype MPI.TYPE
The MPI date type for o QMCproperties.

e MPI.Op MPI._REDUCE

The MPI operation for performing MPI_Reduce on QM Cproperties.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.44 QMCproperty Class Reference

116

Friends

e ostream & operator<< (ostream &strm, QMCproperties &rhs)

Formats and prints the properiies to a siream.

3.43.1 Detailed Description

All of the quantities and properties evaluated during a calculation.

Definition at line 32 of file QMCproperties.h.

3.43.2 Member Function Documentation

3.43.2.1 void QMCproperties:iread XML (istream & sirm)
Loads the state of this object from an XML stream.

Parameters:
gtrm XML stream
Definition at line 102 of file QMCproperties.cpp.

References acceptanceProbability, distanceMoved Accepted, distance-
MovedTrial, energy, kineticEnergy, logWeights, :potentialEnergy, and
QMCproperty::read XML().

Referenced by QMCrun::read XML().

3.43.2.2 void QMCproperties::toXML (ostream & asirm)
Writes the state of this object to an XML stream.

Parameters:
strm XML stream
Definition at line 58 of file QMCproperties.cpp.

References acceptanceProbability, distanceMoved Accepted, distance-
MovedTrial, energy, kineticEnergy, logWeights, potentialEnergy, and
QMCproperty::toXML().

Referenced by QMCrun::toXML().
3.44 QMCproperty Class Reference

All of the statistical information used in calculating a quantity or property
during a calculation.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.44 QMCproperty Class Reference 117

Public Methods

¢ QMCproperty ()

Creates a zeroed out instance of the class and generates the MPI types if they
have not been done.

s void zeroOut ()
Sets all of the date in the object to zero.

e void newSample (double s, double weight)

Adds o new data sample to the object.

¢ long getNumberSamples ()

Gets the number of data samples entered into the object.

» double get Average ()
Gets the average of the dota entered into the object.

s double getVariance ()

Gets the variance of the data entered into the object.

double getSeriallyCorrelated Variance ()

Gets the serially correlated variance of the data eﬁtered into the object.

e double getStandardDeviation ()
Gets the siondard deviation of the data entered into the object.

e double getSeriallyCorrelatedStandardDeviation ()

Gets the serially correlated standard deviation of the data entered into the
object.

s QMCproperty operator+ (QMCproperty &rhs)
Returns the sum of two QMCproperties (p.114).

e void toXML (ostream &strm)
Writes the state of this object to an XML stream.

e void read XML (istream &strm)
Loads the state of this object from an XML stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.44 QMCproperty Class Reference 118

Static Public Attributes

o« MPI Datatype MPI_TYPE
The MPI data type for a QMCproperty.

¢ MPI Op MPI_REDUCE

The MPI operation for performing MPI_Reduce on QMCproperties
(p.114).

Friends

s ostream & operator<< (ostream &strm, QMCproperty &rhs)

Formats and prints the property to a stream.

3.44.1 Detailed Description

All of the statistical information used in calculating a quantity or property
during a calculation.

Definition at line 40 of file QMCproperty.h.

3.44.2 Member Function Documentation

3.44.2.1 void QMCproperty:inewSample (double s, double weight)

Adds a new data sample to the object.

Parameters:
s new sample data

weight statistical weight of the sample

Definition at line 94 of file QMCproperty.cpp.
References QMCstatistic::newSample().
Referenced by QMCwalker::calculateObservables().

3.44.2.2 void QMCproperty::read XML (istream & strm)

Loads the state of this cbject from an XML stream.

Parameters:
strm XML stream

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.45 QMCReadAndEvaluateConfigs Class Reference 119

Definition at line 299 of file QMCproperty.cpp.
References QMCstatistic:read XML().
Referenced by QMCproperties::read XML().

3.44.2.3 void QMCproperty::toXML (ostream & strm)
Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 250 of file QMCproperty.cpp.
References QMCstatistic::toXML().
Referenced by QMCproperties::toXML().

3.45 QMCReadAndEvaluateConfigs Class Reference

Calculates properties (QMCproperties (p. 114)) from walkers and related data
saved to a file during a QMC calculation.

Public Methods

e QMCReadAndEvaluateConfigs ()

Creates an instance of the class.

QMCRead AndEvaluateConfigs (QMCInput *input)

Creates an instance of the class and initializes it.

void initialize (QMCInput *input)

Initializes the object.

void rootCalculateProperties (ArraylD< ArraylD< double > >
¶ms, ArraylD< QMCproperties > &properties)
Calculates properties (QMCproperties (p.114)) for different parameter

sets from walkers and related data saved to a file during o QMC calcula-
tion.

e void workerCalculateProperties ()

Calculates properties (QMCproperties (p.114)) for different parameter
sets from walkers and related data seved to a file during a QMC caleula-
tion.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.45 QMCReadAndEvaluateConfigs Class Reference 120

3.45.1 Detailed Description
Calculates properties (QMCproperties (p. 114)) from walkers and related data

saved to a file during a QMC calculation.
Definition at line 36 of file QMCRead AndEvaluateConfigs.h.

3.45.2 Constructor & Destructor Documentation

3.45.2.1 QMCReadAndEvaluateConfigs::QMCRead AndEvaluate-
Configs (QMClInput * input)

Creates an instance of the class and initializes it.

Parameters:
tnput data input to control the calculation.

Definition at line 19 of file QMCReadAndEvaluateConfigs.cpp.

References initialize().

3.45.3 Member Function Documentation
3.45.3.1 void QMCReadAndEvaluateConfigs::initialize (QMCInput
* input)

Initializes the object.

Parameters:
inpuf data input to control the calculation.

Definition at line 24 of file QMCRead AndEvaluateConfigs.cpp.
References Array2D< double >::allocate(), and QMCJastrow::initialize().

Referenced by QMCODbjectiveFunction::initialize(), and QMCReadAnd-
EvaluateConfigs().

3.45.3.2 void QMCRead AndEvaluateConfigs::rootCalculate-
Properties (ArraylD< ArraylD< double > > & params, ArraylD<
QMCproperties > & properties)

Calculates properties (QMCproperties (p. 114)) for different parameter sets
from walkers and related data saved to a file during a QMC calculation.

This function is called only by the root node. The non-root nodes should call
workerCalculateProperties() (p.121).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.46 QMCrun Class Reference

121

Parameters:
params array of parameters which parameterize the wavefunction.

properties properties calculated from params and the saved configura-
tions.

Definition at line 87 of file QMCReadAndEvaluateConfigs.cpp.
References Array1D< T >::allocate().
Referenced by QMCObjectiveFunction::evaluate{).

3.45.3.3 wvoid QMCRead AndEvaluateConfigs::workerCalculate-
Properties ()

Calculates properties (QMCproperties (p.114)) for different parameter sets
from walkers and related data saved to a file during a QMC calculation.

This function is called only by the non-root nodes. The root node should call
rootCalculateProperties(params, properties).

Definition at line 155 of file QMCReadAndEvaluateConfigs.cpp.
References ArraylD< T >:allocate(), and ArraylD< T >::diml().
Referenced by QMCCorrelatedSampling VY MCOptimization::optimize().

3.46 QMCrun Class Reference

Collection of walkers (QMCwalker (p.134)) with the functionality to do the
basic operations from which a QMC algorithm is built.

Public Methods

e QMCrun ()

Creates an uninitialized instance of this class.

void initialize (QMCInput xinput)

Initializes this object.

e void zeroOut ()
Sets all of the daota in the object to zero.

void step ()
Propagate the QMC calculation one lime step forward.

QMCproperties * getProperties ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.46 QMCrun Class Reference

122

Gets the statistics for the properties that have been calculated.

¢ double get Weights ()

Geis the total statistical weights for all the current lhiving walkers.

e int getNumberOfWalkers ()

Gets the current number of walkers.

¢ void randomlyInitialize Walkers ()

Generates all of the walkers by initializing the electronic configurations
for the walkers using an algorithm from QMCInitializeWalkerFactory

{p.73).

e void writeEnergies (ostream &strm)

Writes the energies of all the walkers to o stream.

» void writeCorrelatedSamplingConfigurations (ostream &strm)

Writes the state of this group of walkers to a stream in o format that s
suitable for correlated sampling calculations.

e void to XML (ostream &strm)

Writes the state of this object to an XML stream.
:

o void read XML (istream &strm)
Reads the state of this object from an XML stream.

3.46.1 Detailed Description

Collection of walkers (QMCwalker (p.134)) with the functionality to do the
basic operations from which a QMC algorithm is built.

Definition at line 30 of file QMCrun.h.

3.46.2 Member Function Documentation

3.46.2.1 int QMCrun::getNumberOfWalkers ()

Gets the current number of walkers.

Returns:
number of walkers.

Definition at line 355 of file QMCrun.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.46 QMCrun Class Reference 123

3.46.2.2 QMCproperties + QMCrun::getProperties ()

Gets the statistics for the properties that have been calculated.

Returns:
statistics for the properties that have been calculated.

Definition at line 350 of file QMCrun.cpp.
Referenced by QMCManager::run().

3.46.2.3 double QMCrun::get Weights ()

Gets the total statistical weights for all the current living walkers.

Returns:
total weights for current walkers.

Definition at line 303 of file QMCrun.cpp.

3.46.2.4 void QMCrun::initialize (QMCInput * input)
Initializes this object.

Parameters:
input input data for the calculation

Definition at line 69 of file QMCrun.cpp.
References QMCproperties:zeroQut().
Referenced by QMCManager::initialize().

3.46.2.5 void QMCrun::read XML (istream & strm)
Reads the state of this object from an XML stream.

Parameters:
strm XML stream

Definition at line 332 of file QMCrun.cpp.

References QMCwalker::initialize(), QMCwalker::read XML(), and
QMCproperties::read XML{().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.47 QMCSlater Class Reference

124

3.46.2.6 void QMCrun::toXML (ostream & strm)
Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 316 of file QMCrun.cpp.
References QMCproperties::toXML().

3.46.2.7 wvoid QMCrun::writeCorrelatedSampling Configurations
{ostream & strm)

Writes the state of this group of walkers to a stream in a format that is suitable
for correlated sampling calculations.

This writes out more information than toXML so that parts of the wavefunc-
tion do not have to be reevaluated every time properties are calculated using
correlated sampling.

Parameters:
strm stream to write correlated sampling information to.

Definition at line 149 of file QMCrun.cpp.
Referenced by QMCManager:xun().

3.46.2.8 void QMCrun::writeEnergies (ostream & strm)
Writes the energies of all the walkers to a stream.

Parameters:
strm stream to write energies to.

Definition at line 139 of file QMCrun.cpp.
Referenced by QMCManager::run().
3.47 QMCSlater Class Reference

A Slater determinant describing like spin electrons from a 3N dimensional wave-
function.

Public Methods

void initialize (QMCInput *input, int startEl, int stopEl)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.47 QMCSlater Class Reference 125

Initializes the class and sets which region of the 3N dimensional electronic
configuration corresponds to electrons in this Slater determinant.

void evaluate (Array2D< double > &X)

Evaluates the sloter determinant and it’s first two derivatives at X.

double getPsi ()

Gets the value of the Slater determinant for the last evaluated electronic
configuration.

Array2D< double > * getGradPsiRatio ()

Gets the ratio of the Slater determinant gradient over the Slater determinant
for the last evaluated elecironic configuration.

double getLaplacianPsiRatio ()

Gets the ratio of the Slater determinant laplacian over the Slater determinant
for the last evaluated electronic configuration.

bool isSingular ()

Returns true if the Slater determinant is singular and false otherwise.

¢ void operator—= (const QMCSlater &rhs)
Sets two QMCSlater objects equal. g

3.47.1 Detailed Description

A Slater determinant describing like spin electrons from a 3N dimensional wave-
function.

This class allows the function, it’s gradient, and it’s laplacian to be calculated.
Definition at line 33 of file QMCSlater.h.

3.47.2 Member Function Documentation

3.47.2.1 void QMCSlater::evaluate (Array2D< double > & X)

Evaluates the slater determinant and it’s first two derivatives at X.

Parameters:
X 3N dimensional configuration of electrons represented by a N x 3 matrix

Definition at line 66 of file QMCSlater.cpp.

References isSingular().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.47 QMCSlater Class Reference 126

Referenced by QMCFunctions::evaluate().

3.47.2.2 Array2D< double > * QMCSlater::getGradPsiRatio ()

Gets the ratio of the Slater determinant gradient over the Slater determinant
for the last evaluated electronic configuration.

This value does not depend on the normalization of the Slater determinant.
Definition at line 223 of file QMCSlater.cpp.
Referenced by QMCFunctions::writeCorrelatedSamplingConfiguration().

3.47.2.3 double QMCSlater::getLaplacianPsiRatio ()

Gets the ratio of the Slater determinant laplacian over the Slater determinant
for the last evaluated electronic configuration.

This value does not depend on the normalization of the Slater determinant.
Definition at line 218 of file QMCSlater.cpp.
Referenced by QMCFunctions:writeCorrelatedSamplingConfiguration().

3.47.2.4 double QMCSlater::getPsi ()

Gets the value of the Slater determinant for the last ewaluated electronic con-
figuration.

The returned value is not normalized to one. Assuming the basis functions
ued to make the determinant are normalized, this value can be normalized by
dividing it by v/ M!, where M is the number of electrons in this determinant.

Definition at line 213 of file QMCSlater.cpp.

3.47.2.5 wvoid QMCSIlater::initialize (QMCInput *x input, int startEl,
int stopEl)

Initializes the class and sets which region of the 3N dimensional electronic con-
figuration corresponds to electrons in this Slater determinant.

Tt is assumed that all electrons in a determinant are grouped together in the
configuration.
Parameters:

input input data for the calculation

startEl first particle in this determinant.

stopEl last particle in this determinant.

Definition at line 38 of file QMCSlater.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.48 QMCstatistic Class Reference 127

Referenced by QMCFunctions::initialize().

3.47.2.6 void QMCSlater:;:operator= (const QMCSlater & rhs)
Sets two QMCSlater objects equal.

Parameters:
rhs object to set this object equal to

Definition at line 15 of file QMCSlater.cpp.

References BF, D, Array2D< double >::diml(), Grad_PsiRatio, Input, Lapla-
cian_PsiRatio, Psi, Singular, Start, Stop, and WF.

3.48 QMCstatistic Class Reference

Statistical information on a set of data.

Public Methods

e QMCstatistic ()

Creates a zeroed out instance of the class and generates the MPI type if it
has not been done.

» void zeroOut ()
Sets all of the dote in the object to zero.

e long getNumberSamples ()

Gets the number of data samples entered into the object.

e double get Average ()
Gets the average of the data entered into the object.

e double getVariance ()

Gets the variance of the daia entered into the object.

e double getStandardDeviation {)
Gets the standard deviation of the dota entered into the object.

» void newSample (double s, double weight)

Adds a new date sample to the object.

QMCstatistic operator+ (const QMCstatistic &rhs)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.48 QMCstatistic Class Reference 128

Returns the sum of two QMCstatistics.

e void toXML (ostream &strm)
Writes the state of this object to an XML stream.

e void read XML (istream &strm)
Loads the state of this object from an XML stream.

Static Public Attributes

e MPI_Datatype MPI_TYPE
The MPI data type for a QMCstatistic.

e MPI Op MPI_ REDUCE
The MPI operation for performing MPI_Reduce on QM Cstatistics.

Friends

s ostream & operator<< (ostream &strm, QMCstatistic &rhs)

Formats and prints the statistic to a stream. i

3.48.1 Detailed Description

Statistical information on a set of data.

Definition at line 31 of file QMCstatistic.h.

3.48.2 Member Function Documentation

3.48.2.1 void QMCstatistic::newSample (double s, double weight)
Adds a new data sample to the object.

Parameters:
8 new sample data

weight statistical weight of the sample

Definition at line 58 of file QMCstatistic.cpp.
Referenced by QMCproperty::newSample(), and QMCproperty::operator+().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.49 QMCSteepestDescent Class Reference

129

3.48.2.2 void QMCstatistic::read XML (istream & strm)
Loads the state of this object from an XML stream.

Parameters:
strm XML stream

Definition at line 97 of file QMCstatistic.cpp.
Referenced by QMCproperty::read XML().

3.48.2.3 void QMCstatistic::toXML (ostream & strm)
Writes the state of this object to an XML stream.

Parameters:
strmm XML stream

Definition at line 76 of file QMCstatistic.cpp.
Referenced by QMCproperty::toXML().

3.49 QMCSteepestDescent Class Reference

Steepest descent line search numerical optimization algprithm.

Inheritance diagram for QMCSteepestDescent.::

| QMCOptimizationAlgorithm |

I

] QMCLineSearch l

1

| QMCSteepestDescent |

Public Methods

e QMCSteepestDescent (QMCObjectiveFunction *function,
QMCLineSearchStepLengthSelectionAlgorithm *stepAlg, int
maxSteps, double tol)

Constructs and initializes an instance of this class.

e ArraylD< double > optimize {ArraylD< double > &initialGuess)

Optimize the function starting from the provided initial guess parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.49 QMCSteepestDescent Class Reference 130

Protected Methods

s QMCObjectiveFunction * getObjectiveFunction ()

Gets the objective function for the colculation.

3.49.1 Detailed Description

Steepest descent line search numerical optimization algorithm.
As is standard in the field, the optimization is a minimization.

Definition at line 23 of file QMCSteepestDescent.h.

3.49.2 Constructor & Destructor Documentation

3.49.2.1 QMCSteepestDescent::QMCSteepestDescent
(QMCObjectiveFunction =* function, QMCLineSearchStepLength-
SelectionAlgorithm * stepAlg, int maxSteps, double tol)

Constructs and initializes an instance of this class.

Parameters:
SFunction objective function to optimize.

stepAlg algorithm to use in determining the line search step length.

mazSteps maximum number of steps to be performed during the line
search.

tol tolerance to converge the solution to. Calculation is converged when
]1 — ﬂf%%l‘ < tol.

Definition at line 15 of file QMCSteepestDescent.cpp.

3.49.3 Member Function Documentation

3.49.3.1 ArraylD< double > QMCLineSearch::optimize (ArraylD<
double > & initialGuess) [virtual, inherited]
Optimize the function starting from the provided initial guess parameters.

Parameters:
initialGuess initial guess parameters for the optimization.

Returns:
optimized parameters.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.50

QMCStopwatches Class Reference

131

Implements QMCOptimizationAlgorithm (p. 107).
Definition at line 31 of file QMCLineSearch.cpp.

References ArraylD< T >:diml(), QMCObjectiveFunction::evaluate(), and
QMCObjectiveFunctionResult::getScore().

3.50

QMCStopwatches Class Reference

A collection of Stopwatch (p. 144) objects used to record information relevant
to the timing of a QMC calculation.

Public Methods

QMCStopwatches ()

Creates a new instance of this class with all timers stopped.

void stop ()

Stops all stopwatches in this object which are running.

void reset ()
Resets all stopwaiches in this object and leaves the stopwaiches stopped.

i

Stopwatch * getInitializationStopwatch ()

Gets the stopwatch which times the initialization of the calculation.

Stopwatch * getPropagationStopwatch ()

Gets the stopwatch which times the useful propagation of walkers.

Stopwatch * getSendCommandStopwatch ()

Gets the stopwatch which times the sending of commands between processors.

Stopwatch * getGatherPropertiesStopwatch ()

Gets the stopwatch which times the gathering of QMCproperties (p.114)
from all processors.

Stopwatch * getCommunicationSynchronizationStopwatch {)

Gets the stopwatch which times the synchronization of all the processors.
Stopwatch * getCommandPollingStopwatch ()
Gets the stopwatch which times how long is devoted to seeing if a processor

has a command waiting for .

Stopwatch * getOptimizationStopwatch ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.50 QMCStopwatches Class Reference 132

Gets the stopwatch which times the VMC optimization.

e Stopwatch * getTotalTimeStopwatch ()

Gets the stopwatch which records the total time of the calculation.

e QMCStopwatches operator+ (QMCStopwatches &rhs)

Returns a QMCStopwatches which is the sum of two QMCStopwatches ob-
jects.

Static Public Attributes

e MPI Datatype MPI_TYPE
The MPI daota type for a QMCStopwatches.

e MPI_.Op MPI_ REDUCE
The MPFI operation for performing MPI_Reduce on QMCStopwatches objects.

Friends

e ostream & operator<< (ostream &strm, QMCStopwatches &rhs)

Writes the timing results of this class to a human readable stream.

3.50.1 Detailed Description

A collection of Stopwatch (p. 144) objects used to record information relevant
to the timing of a QMC calculation.

Definition at line 29 of file QMCStopwatches.h.

3.50.2 Member Function Documentation

3.50.2.1 Stopwatch x QMCStopwatches:getCommandPolling-
Stopwatch ()

Gets the stopwatch which times how long is devoted to seeing if a processor has
a command waiting for it.

Returns:
the stopwatch.

Definition at line 78 of file QMCStopwatches.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.50 QMCStopwatches Class Reference

133

3.50.2.2 Stopwatch * QMCStopwatches::getCommunication-
SynchronizationStopwatch ()

Gets the stopwatch which times the synchronization of all the processors.

Returns:
the stopwatch.

Definition at line 73 of file QMCStopwatches.cpp.

3.50.2.3 Stopwatch * QMCStopwatches::getGatherProperties-
Stopwatch ()

Gets the stopwatch which times the gathering of QMCproperties (p. 114) from
all processors.

Returns:
the stopwatch.

Definition at line 68 of file QMCStopwatches.cpp.

3.50.2.4 Stopwatch * QMCStopwatches::getOptimizationStopwatch

0

Gets the stopwatch which times the VMC optimization.

2

Returns:
the stopwatch.

Definition at line 83 of file QMCStopwatches.cpp.
Referenced by QMCManager::optimize().

3.50.2.5 Stopwatch * QMCStopwatches::getPropagationStopwatch

0

Gets the stopwatch which times the useful propagation of walkers.

The time required to initialize the walkers is not included.

Returns:
the stopwatch.

Definition at line 58 of file QMCStopwatches.cpp.
Referenced by QMCManager::run().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.51 QMCwalker Class Reference

134

3.50.2.6 Stopwatch * QMCStopwatches::getSendCommand-
Stopwatch ()

Gets the stopwatch which times the sending of commands between processors.

Returns:
the stopwatch.

Definition at line 63 of file QMCStopwatches.cpp.

3.50.2.7 Stopwatch ¥ QMCStopwatches::getTotalTimeStopwatch ()

Gets the stopwatch which records the total time of the calculation.

Returns:
the stopwatch.

Definition at line 88 of file QMCStopwatches.cpp.
Referenced by QMCManager::QMCManager().

3.51 QMCwalker Class Reference

i

An instantaneous snapshot of all 3N electronic corrdinates for a system.

Public Methods

* QMCwalker ()

Creates a new uninitialized instance of this class.

QMCwalker (const QMCwalker &rhs)

Creates a new instance of this class and makes it equivelent to another in-
stance of this class.

~QMCwalker ()
Deallocates the memory allocated by this object.

void initialize (QMCInput *input)

Initializes and allocates memory for the walker.

void initializeWalkerPosition ()

Initializes the electronic configuration for this walker using an algorithm from
QMClInitializeWalkerFactory (p.73).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.51 QMCwalker Class Reference

135

e void propagateWalker ()

Proposes a trial walker move and accepts or rejects it.

» void calculateObservables (QMCproperties &props)

Calculates the observables for this walker and adds them to the input QM-
Cproperties (p.114).

e void operator= (const QMCwalker &rhs)
Sets two QM Cwalker objects equal.

o double get Weight ()
Gets the weight for this walker.

s void setWeight (double val)
Sets the weight for this walker.

e bool isSingular ()

Determines if the trial wavefunction is singular for this walker.

o void toXML (ostream &strm)
Writes the state of this object to an XML stream.

e void readXML (istream &strm)
Loads the state of this object from an XML stream.

¢ void writeCorrelatedSamplingConfiguration (ostream &strm)

Writes the state of this walker to a stream in a format that is suitable for
correlated sampling.

e double getLocalEnergyEstimator ()

Gets the value of the local energy estimator for this walker.

3.51.1 Detailed Description

An instantaneous snapshot of all 3N electronic corrdinates for a system.
This is the same as the "walker” or "psip” discussed in QMC literature.
Definition at line 29 of file QMCwalker.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.51 QMCwalker Class Reference 136

3.51.2 Constructor & Destructor Documentation

3.51.2.1 QMCwalker::QMCwalker (const QMCwalker & rhas)
Creates a new instance of this class and makes it equivalent to another instance

of this class.

Parameters:
rhs object to set this equal to.

Definition at line 24 of file QMCwalker.cpp.

3.51.3 Member Function Documentation

3.51.3.1 void QMCwalker::calculateObservables (QMCproperties &
props)

Calculates the observables for this walker and adds them to the input QM-
Cproperties (p. 114).

Parameters:
props properties to which this walkers current observable values are added.

Definition at line 650 of file QMCwalker.cpp. ‘

References QMCproperties::acceptanceProbability, QMCproperties::distance-
MovedAccepted, QMCproperties::distanceMoved Trial, QMCproperties::energy,
getWeight(), QMCproperties::kineticEnergy, ~QMCproperties::logWeights,
QMCproperty::newSample(), and QMCproperties::potentialEnergy.

Referenced by propagateWalker().
3.51.3.2 double QMCwalker::get Weight ()
Gets the weight for this walker.

Returns:
weight for this walker.

Definition at line 587 of file QMCwalker.cpp.
Referenced by calculateObservables(), and toXML().

3.51.3.3 void QMCwalker::initialize (QMCInput = input)

Initializes and allocates memory for the walker.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.51 QMCwalker Class Reference

137

The electronic configuration for the walker is not set. To do this initialize-
WalkerPosition must be used to generate a new walker, or read must be used
to read this walkers state from a stream.

Parameters:
input data input to control the calculation.
Definition at line 470 of file QMCwalker.cpp.
References Array2D < double >::allocate(), and QMCFunctions::initialize().

Referenced by QMCrun:randomlylInitializeWalkers(), and QMCrun::read-
XML().

3.51.3.4 void QMCwalker::initializeWalkerPosition ()

Initializes the electronic configuration for this walker using an algorithm from
QMCInitializeWalkerFactory (p.73).

If a singular walker is generated, upto 100 configurations are generated until
one is not singular.

Definition at line 557 of file QMCwalker.cpp.

References QMClInitializeWalkerFactory::initializeWalkerFactory(),
QMCInitializeWalker::initializeWalkerPosition(), and isSingular().
£

Referenced by propagateWalker(}, and QMCrun::randomlyInitializeWalkers().

3.51.3.5 bool QMCwalker::isSingular ()
Determines if the trial wavefunction is singular for this walker.
Returns:

true if the trial wavefunction is singular for this walker, and false other-
wise.

Definition at line 678 of file QMCwalker.cpp.
References QMCFunctions::isSingular().
Referenced by initializeWalkerPosition(), and propagateWalker().

3.51.83.6 void QMCwalker::operator= (const QMCwalker & rhs)
Sets two QMCwalker objects equal.

Parameters:
rhs object to set this object equal to.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.51 QMCwalker Class Reference 138

Definition at line 45 of file QMCwalker.cpp.

References AcceptanceProbability, age, distanceMovedAccepted, dR2, Input,
kineticEnergy, localEnergy, move_accepted, potentialEnergy, QMF, R, and
weight.

3.51.3.7 void QMCwalker::readXML (istream & strm)
Loads the state of this object from an XML stream.

The input stream must be formatted exactly like the output from toXML because
it is not intelligent.

Parameters:
strm XML stream

Definition at line 524 of file QMCwalker.cpp.
Referenced by QMCrun::read XML().

3.51.3.8 void QMCwalker::set Weight (double wval)
Sets the weight for this walker.

Parameters:
val value to set the weight equal to. :

Definition at line 592 of file QMCwalker.cpp.

3.51.3.9 void QMCwalker::toXML (ostream & strm)
Writes the state of this object to an XML stream.

Parameters:
strm XML stream

Definition at line 503 of file QMCwalker.cpp.
References QMCFunctions::getLocalEnergy(), and getWeight().

3.51.3.10 void QMCwalker::writeCorrelatedSamplingConfiguration
(ostream & strm)

Writes the state of this walker to a stream in a format that is suitable for
correlated sampling,.

This writes out more information than toXML so that parts of the wavefunc-
tion do not have to be reevaluated every time properties are calculated using
correlated sampling.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.52 QMCWavefunction Class Reference 139

Parameters:
strm stream to write correlated sampling information to.

Definition at line 483 of file QMCwalker.cpp.

References Array2D< double >::diml(), and QMCFunctions::writeCorrelated-
SamplingConfiguration().

3.52 QMCWavefunction Class Reference

The coefficients and parameters describing the trial wavefunction for the system.

Public Methods

e QMCWavefunction ()

Creates an instance of the class.

e int getNumberOrbitals ()

Gets the number of orbitals.

e int getNumberBasisFunctions ()

Gets the number of basis functions.

s int getNumberAlphaFElectrons ()

Gets the number of o spin electrons.

¢ int getNumberBetaElectrons ()

Gets the number of 8 spin electrons.

e int getNumberElectrons ()

Gets the total number of electrons.

e QMCWavefunction operator= (const QMCWavefunction &rhs)
Sets two QMCWavefunction objects equal.

e void read (int numberOrbitals, int numberBasisFunctions, string run-

file)
Loads the state of the object from a file.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.52 QMCWavefunction Class Reference

140

Public Attributes

e Array2D< double > Coeffs

Array containing the coefficients used to construct the orbitals.

e ArraylD< int > AlphaOccupation

Array which indicates how many « spin electron are in each orbital for the
wavefunction.

¢ ArraylD< int > BetaOccupation

Array which indicates how many B spin electron are in each orbital for the
wavefunction.

Friends

e istream & operator>> (istream &strm, QMCWavefunction &rhs)

Loads the state of the object from an input stream.

e ostream & operator<< {ostream &strm, QMCWavefunction &rhs)

Writes the state of the object to an output stream.

4

3.52.1 Detailed Description

The coefficients and parameters describing the trial wavefunction for the system.

These are the coefficients for a wavefunction obtained through standard means
(HF, DFT, etc.).

Definition at line 33 of file QMCWavefunction.h.
3.52.2 Member Function Documentation

3.52.2.1 int QMCWavefunction::getNumberAlphaFElectrons ()

Gets the number of a spin electrons.

Returns:
number of o spin electrons.

Definition at line 34 of file QMCWavefunction.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.52 QMCWavefunction Class Reference 141

3.52.2.2 int QMCWavefunction::getNumberBasisFunctions ()

Gets the number of basis functions.

Returns:
number of basis functions.

Definition at line 29 of file QMCWavefunction.cpp.

3.52.2.3 int QMCWavefunction::getNumberBetaElectrons ()

Gets the number of /3 spin electrons.

Returns:
number of § spin electrons.

Definition at line 39 of file QMCWavefunction.cpp.

3.52.2.4 int QMCWavefunction::getNumberElectrons ()

Gets the total number of electrons.

Returns:
total number of electrons.

Definition at line 44 of file QMCWavefunction.cpp.

3.52.2.5 int QMCWavefunction::getNumberOrbitals ()

Gets the number of orbitals.

Returns:
number of orbitals.

Definition at line 24 of file QMCWavefunction.cpp.

3.52.2.6 QMCWavefunction QMCWavefunction::operator= (const
QMCWavefunction & rhs)

Sets two QMCWavefunction objects equal.

Parameters:
Ths object to set this object equal to.
Definition at line 50 of file QMCWavefunction.cpp.

References AlphaOccupation, BetaOccupation, Coeffs, Nalpha, Nbasisfunc,
Nbeta, Nelectrons, and Norbitals.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.53 SortedParameterScorePairList Class Reference 142

3.52.2.7 void QMCWavefunction::read (int numberOrbitals, int
numberBasisFunctions, string runfile)

Loads the state of the object from a file.

Parameters:
numberOrbitals number of orbitals.

numberBasisFunctions number of basis functions.

runfile file to load the object state from.

Definition at line 93 of file QMCWavefunction.cpp.

3.52.3 Member Data Documentation

3.52.3.1 Array2D<double> QMCWavefunction::Coeffs
Array containing the coefficients used to construct the orbitals.
For example, orbitals are constructed so that

NumberBasisFunctions—1
Orbital;(z,y, 2) = Z Coef fs; jBasisFunction;(z,y, z)

=0

where the the BasisFunction;(z,y, z) are from QMCBasisFunction (p.49).
It is assumed that the ordering of the coefficients is the same as the basisfunc-
tions in the input file.

Definition at line 108 of file QMCWavefunction.h.

Referenced by operator=().

3.53 SortedParameterScorePairList Class Reference

A sorted list of ParameterScorePair (p.43) objects where the objects are
ordered in an increasing order.

Public Methods

e SortedParameterScorePairList ()

Creates an empty instance of this class.

e SortedParameterScorePairList (SortedParameterScorePairList
&SPSL)

Createsan instance of this class which is equal to another instance.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.53 SortedParameterScorePairList Class Reference 143

e int size ()

Gets the number of elements in this list.

e void add (const ParameterScorePair &PSP)
Adds a new ParameterScorePair (p.43) to this list.

e ParameterScorePair get (int i)
Gets the ith element.

¢ void clear ()

Remove all elements from this list.

e void operator= (const SortedParameterScorePairList &SPSL)

Sets two objects equal to one another.

3.53.1 Detailed Description

A sorted list of ParameterScorePair (p.43) objects where the objects are
ordered in an increasing order.

Definition at line 27 of file SortedParameterScorePairList.h.

i

3.53.2 Constructor & Destructor Documentation

3.53.2.1 SortedParameterScorePairList::SortedParameterScore-
PairList (SortedParameterScorePairList & SPSL)

Createsan instance of this class which is equal to another instance.

Parameters:
SPSL this object to which this one will be made equal.

Definition at line 19 of file SortedParameterScorePairList.cpp.
References PSPList.

3.53.3 Member Function Documentation

3.53.3.1 void SortedParameterScorePairList::add (const Parameter-
ScorePair & PSP)

Adds a new ParameterScorePair (p.43) to this list.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.54 Stopwatch Class Reference

144

Parameters:
PSP new element to add to this list.

Definition at line 29 of file SortedParameterScorePairList.cpp.

3.53.3.2 ParameterScorePair SortedParameterScorePairList::get

(int)
Gets the ith element.

Parameters:
¢ index of the element to return.

Returns:
the ith element of the list.

Definition at line 35 of file SortedParameterScorePairList.cpp.
Referenced by CKGeneticAlgorithml::optimize().

3.53.3.3 void SortedParameterScorePairList::operator=
SortedParameterScorePairList & SPSI)

Sets two objects equal to one another.

Parameters:
SPSL object to set this object equal to.

Definition at line 60 of file SortedParameterScorePairList.cpp.
References PSPList.

3.53.3.4 int SortedParameterScorePairList::size ()

Gets the number of elements in this list.

Returns:
number of elements in this list.

Definition at line 24 of file SortedParameterScorePairList.cpp.

3.54 Stopwatch Class Reference

An accurate software stopwatch.

(const

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.54 Stopwatch Class Reference 145

Public Methods

e Stopwatch ()

Creates an instance of the stopwatch that is zeroed and not running.

s void reset ()

Resets and stops the stopwatch.

e void start ()

Starts the stopwatch.

e void stop ()
Stops the stopwaich.

s long timeMS ()

Gets the time in milliseconds.

s bool isRunning ()

Returns true if the stopwatch s running and false otherwise.

e string toString ()

Gets the time formaited as a string.

s Stopwatch operator- (Stopwatch &rhs)

Returns a stopwatch which contains the total time from two stopwatch ob-
Jects.

Static Public Attributes

e MPI Datatype MPI. TYPE
The MPI dota type for a Stopwatch.

s MPI_Op MPI_LREDUCE
The MPI operation for performing MPI_Reduce on Stopwatch objects.

Friends

¢ ostream & operator<< (ostream &strm, Stopwatch &watch)

Formats and prints the time to o stream.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.55

StringManipulation Class Reference

146

3.54.1 Detailed Description

An accurate software stopwatch.

Definition at line 31 of file Stopwatch.h.

3.55 StringManipulation Class Reference

A set of functions to manipulate strings.

Static Public Methods

string toAllUpper (string &s)

Converts a string to all upper case.

string toAllLower (string &s)

Converts a string to all lower case.

string toFirstUpperRestLower (string &s)

Capitalizes the first letter and lowers all others in a siring.

char toUpperChar (char c)

Makes a character upper case.

char toLowerChar (char c)

Makes a character lower case.

string intToString (int i)

Returns a string representation of an integer.

string int ToHexString (int i)

Returns a hezadecimal string representation of an integer.

string doubleToString (double d)

Returns o string representation of a double.

int stringTolInt (string &s)

Returns an int representation of a string.

int hexstringTolInt (string &s)

Returns an representation of a hexadecimal siring.

double stringToDouble (string &s)

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.55 StringManipulation Class Reference

147

Returns an double representation of o string.

3.55.1 Detailed Description

A set of functions to manipulate strings.
Definition at line 26 of file StringManipulation.h.
3.55.2 Member Function Documentation

3.55.2.1 string StringManipulation::doubleToString (double
[static]
Returns a string representation of a double.

Parameters:
d a double.

Definition at line 163 of file StringManipulation.cpp.
Referenced by XMLElement::setAttribute().

d)

i
3.55.2.2 int StringManipulation::hexstringToInt (string & 3)

[static]

Returns an representation of a hexadecimal string.

Parameters:
8 a string.

Definition at line 183 of file StringManipulation.cpp.

3.55.2.3 string StringManipulation::intToHexString (int
[static]

Returns a hexadecimal string representation of an integer.

Parameters:
i an integer.

Definition at line 151 of file StringManipulation.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.55 StringManipulation Class Reference 148

3.55.2.4 string StringManipulation::intToString (int 7} [static]
Returns a string representation of an integer.
Parameters:

i an integer.

Definition at line 139 of file StringManipulation.cpp.

Referenced by XMLElement::setAttribute(), and XMLParse-
Exception:: XMLParseException().

3.55.2.5 double StringManipulation::stringToDouble (string & s)
[static]

Returns an double representation of a string.

Parameters:
8 a string.

Definition at line 191 of file StringManipulation.cpp.
Referenced by XMLElement::getDoubleAttribute().

3.55.2.6 int StringManipulation::stringTolnt (s;tring & 8) [static]

Returns an int representation of a string.

Parameters:
8 a string.

Definition at line 175 of file StringManipulation.cpp.
Referenced by XMLElement::getIntAttribute().

3.55.2.7 string StringManipulation::toAllLower (string & s)
[static]

Converts a string to all lower case.

Parameters:
8 a string

Definition at line 31 of file StringManipulation.cpp.

References toLowerChar().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.55 StringManipulation Class Reference 149

3.55.2.8 string StringManipulation::toAllUpper (string & 3)
[static]

Converts a string to all upper case.

Parameters:

3 a string
Definition at line 16 of file StringManipulation.cpp.
References toUpperChar().

3.55.2.9 string StringManipulation::toFirstUpperRestLower (string
& 3) [static]

Capitalizes the first letter and lowers all others in a string.

Parameters:
8 a string

Definition at line 47 of file StringManipulation.cpp.
References toLowerChar(), and toUpperChar().
Referenced by QMCCorrelationFunctionParameters::read().

4

3.55.2.10 char StringManipulation::toLowerChar (char ¢) [static]

Makes a character lower case.

Parameters:
¢ a character

Definition at line 105 of file StringManipulation.cpp.
Referenced by toAllLower(), and toFirstUpperRestLower().

3.55.2.11 char StringManipulation::toUpperChar (char ¢) [static]

Makes a character upper case.

Parameters:
¢ a character

Definition at line 70 of file StringManipulation.cpp.
Referenced by toAllUpper(), and toFirstUpperRestLower().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 150

3.56 XMILElement Class Reference

XMLElement is a representation of an XML object.

Public Methods

¢ XMLElement ()

Creates and initializes a new XML element.

e XMLElement (map< string, string > xentities)

Creates and initializes a new XML element.

» XMLElement (bool skipLeadingWhitespace)

Creates and initializes a new XML element.

¢ XMLElement (map< string, string > =entities, bool skipLeading-
Whitespace)

Creates and initielizes a new XML element.

¢ int countChildren ()
Returns the number of child elements of the elemnent.

4

¢ void addChild (XMLElement &Child}
Adds a child element.

e void set Attribute (string &name, string &value)
Adds or modifies an atiribute.

¢ void setAttribute (string &name, int value)

Adds or modifies an attribute.

e void set Attribute (string &name, double value)

Adds or modifies an attribute.

¢ void parse (string &file)
Reads one XML element from o file and parses it.

e void parse (istream &reader)

Reads one XML element from o stream aend parses it.

e void removeChild (XMLElement &child)

Remowves a child element.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56

XMLElement Class Reference

151

list< XMLElement > * getChildren ()

Returns the child elements as a Vector.

string getString Attribute (string &name)

Returns an attribute of the element.

string getString Attribute (string &name, string &defaultValue)

Returns an attribute of the element.

int getInt Attribute (string &name)

Returns an attribute of the element.

int getIntAttribute (string &name, int defaultValue)

Returns an attribute of the element.

double getDoubleAttribute (string &name)

Returns an attribute of the element.

double getDoubleAttribute (string &name, double defaultValue)

Returns an attribute of the element.

i
bool getBooleanAttribute (string &name, string &trueValue, string
&falseValue, bool defaultValue)

Returns an attribute of the element.

vold removeAttribute (string &name)

Removes an attribute.

void setContent (string &content)

Changes the content string.

string getContent ()
Returns the PCDATA content of the object.

string getName ()

Returns the name of the element.

void setName (string &name)
Changes the neme of the element.

int getLineNr ()

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 152

Returns the line number in the source date on which the element is found.

¢ void singleLineWriter (ostream &writer)

Writes the XML element to an output stream as a single line.

s void write (string &file)
Writes the XML element to a file using a pretty format.

e void prettyWriter (ostream &writer)

Writes the XML element to an output stream using o pretty format.

e void operator= (XMLElement &rhs)

Sets two objects equal to one another.

e bool operator== (XMLElement &rhs)

Determines if two objects equal to one another.

3.56.1 Detailed Description

XMLElement is a representation of an XML object.
The object is able to parse and write XML code. y
Definition at line 32 of file XMLElement.h.

3.56.2 Constructor & Destructor Documentation

3.56.2.1 XMLElement:: XMLElement ()
Creates and initializes a new XML element.

A basic entity ("&", etc.) conversion table is used and leading whitespace is
not skipped.

Definition at line 15 of file XMLElement.cpp.

3.56.2.2 XMLElement::XMLElement (map< string, string > * enti-
ties)

Creates and initializes a new XML element.

A basic entity ("&”, etc.) conversion table and the provided entity conversion
table are used and leading whitespace is not skipped.

Parameters:
entities The entity conversion table.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference

153

Definition at line 21 of file XMLElement.cpp.

3.56.2.3 XMLElement::XMLElement (bool skipLeading Whitespace)

Creates and initializes a new XML element.
A basic entity ("&7”, etc.) conversion table is used and skipping of leading
whitespace is controled by skipLeadingWhitespace.

Parameters:
skipLeading Whitespace true if leading and trailing whitespace in PC-
DATA content has to be removed.

Definition at line 27 of file XMLElement.cpp.

3.56.2.4 XMLElement::XMLElement (map< string, string > * enti-
ties, bool skipLeading Whitespace)

Creates and initializes a new XML element.

A basic entity ("&”, etc.) conversion table and the provided entity con-
version table are used and leading whitespace is controled by skipLeading-

Whitespace.
F3

Parameters:
entities The entity conversion table.

skipLeading Whitespace true if leading and trailing whitespace in PC-
DATA content has to be removed.

Definition at line 33 of file XMLElement.cpp.

3.56.3 Member Function Documentation

3.56.3.1 void XMLElement::addChild (XMLElement & child)
Adds a child element.

Parameters:
child The child element to add.

Definition at line 93 of file XMLElement.cpp.

3.56.3.2 int XMLElement::countChildren ()

Returns the number of child elements of the element.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 154

Returns:
number of child elements.

Definition at line 88 of file XMLElement.cpp.

3.56.3.3 bool XMLElement::getBooleanAttribute (string & name,
string & trueValue, string & false Value, bool default Value)

Returns an attribute of the element.

If the attribute doesn’t exist, defaultValue is returned. If the value of the
attribute is equal to trueValue, true is returned. If the value of the attribute
is equal to falseValue, false is returned. If the value doesn’t match true-
Value or falseValue, an exception is thrown.

Parameters:
name The name of the attribute.

true Value The value associated with true.
false Value The value associated with true.

default Value Value to use if the attribute is missing.

Returns:
The value of the attribute.

Exceptions:
XMLParseException (p.161) If the value doesn’t match trueValue or
falseValue.

Definition at line 274 of file XMLElement.cpp.

3.56.3.4 list< XMLElement > x XMLElement::getChildren ()
Returns the child elements as a Vector.

It is safe to modify this Vector.

Returns:
The child elements of this element.

Definition at line 202 of file XMLElement.cpp.

3.56.3.5 string XMLElement::getContent ()
Returns the PCDATA content of the object.

If there is no such content, an empty string is returned.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMULElement Class Reference 155

Returns:
PCDATA content.

Definition at line 182 of file XMLElement.cpp.

3.56.3.6 double XMLElement::getDoubleAttribute (string & name,
double default Value)

Returns an attribute of the element.

If the attribute doesn’t exist, defaultValue is returned.

Parameters:
name The name of the attribute.

default Value Key to use if the attribute is missing.

Returns:
The value of the attribute.

Definition at line 258 of file XMLElement.cpp.
References StringManipulation::stringToDouble().

3.56.3.7 double XMLElement::getDoubleAttribute (string & name)

Returns an attribute of the element.

If the attribute doesn’t exist, 0.0 is returned.

Parameters:
name The name of the attribute.

Returns:
The value of the attribute.

Definition at line 252 of file XMLElement.cpp.

3.56.3.8 int XMLElement::getInt Attribute (string & mname, int
default Value)

Returns an attribute of the element.

If the attribute doesn’t exist, defaultValue is returned.

Parameters:
name The name of the attribute.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 156

default Value Key to use if the attribute is missing.

Returns:
The value of the attribute.

Definition at line 236 of file XMLElement.cpp.
References StringManipulation::stringToInt().

3.56.3.9 int XMLElement::getInt Attribute (string & name)
Returns an attribute of the element.

If the attribute doesn’t exist, 0 is returned.

Parameters:
name The name of the attribute.

Returns:
The value of the attribute.

Definition at line 230 of file XMLElement.cpp.

3.56.3.10 int XMLElement::getLineNr () g
Returns the line number in the source data on which the element is found.

This method returns 0 there is no associated source data.

Returns:
Line number in the source data on which the element is found.

Definition at line 197 of file XMLElement.cpp.

3.56.3.11 string XMLElement::getName ()

Returns the name of the element.

Returns:
name of the element.

Definition at line 187 of file XMLElement.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 157

3.56.3.12 string XMLElement::getStringAttribute (string & name,
string & default Value)

Returns an attribute of the element.

If the attribute doesn’t exist, defaultValue is returned.

Parameters:
name The name of the attribute.

default Value Key to use if the attribute is missing.

Returns:
The value of the attribute.

Definition at line 216 of file XMLElement.cpp.

3.56.3.13 string XMLElement::getStringAttribute (string & name)
Returns an attribute of the element.
If the attribute doesn’t exist, an empty string is returned.

Parameters:
name The name of the attribute. 1

Returns:
The value of the attribute.

Definition at line 209 of file XMLElement.cpp.

3.56.3.14 void XMLElement::operator= (XMLElement & rhs)

Sets two objects equal to one another.

Parameters:
rhs object to set this object equal to.

Definition at line 1037 of file XMLElement.cpp.

References attributes, children, contents, entities, ignoreWhitespace, lineNr, and
name.

3.56.3.15 bool XMLElement::operator== (XMLElement & rhs)

Determines if two objects equal to one another.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 158

Parameters:
rhs object to determine if this one is equal to.

Returns:
true if both objects are equal and false otherwise.

Definition at line 1063 of file XMLElement.cpp.

References attributes, children, contents, and name.

3.56.3.16 void XMLElement::parse (istream & reader)

Reads one XML element from a stream and parses it.

Parameters:
reader The stream from which to retrieve the XML data.

Exceptions:
XMLParseException (p.161) If an error occured while parsing the read
data.

Definition at line 124 of file XMLElement.cpp.

References parse().

3.56.3.17 void XMLElement::parse (string & file)

Reads one XML element from a file and parses it.

Parameters:
file The file from which to retrieve the XML data.

Exceptions:
XMLParseException (p.161) If an error occured while parsing the read
data.

Definition at line 116 of file XMLElement.cpp.
Referenced by parse().

3.56.3.18 void XMLElement::prettyWriter (ostream & writer)

Writes the XML element to an output stream using a pretty format.

Parameters:
writer The stream to write the XML data to.

Definition at line 929 of file XMLElement.cpp.
Referenced by write().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 159

3.56.3.19 void XMLElement::removeAttribute (string & name)

Removes an attribute.

Parameters:
name The name of the attribute.

Definition at line 172 of file XMLElement.cpp.

3.56.3.20 void XMLElement::removeChild (XMLElement & child)

Removes a child element.

Parameters:
child The child element to remove.

Definition at line 159 of file XMLElement.cpp.

3.56.3.21 wvoid XMLElement::set Attribute (string & name, double
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Definition at line 111 of file XMLElement.cpp.
References StringManipulation::doubleToString().

3.56.3.22 void XMLElement::setAttribute (string & name, int
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Definition at line 105 of file XMLElement.cpp.
References StringManipulation::intToString().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.56 XMLElement Class Reference 160

3.56.3.23 void XMLElement::setAttribute (string & name, string &
value)

Adds or modifies an attribute.

Parameters:
name The name of the attribute.

value The value of the attribute.

Definition at line 99 of file XMLElement.cpp.

3.56.3.24 void XMLElement::setContent (string & content)

Changes the content string.

Parameters:
content The new content string.

Definition at line 177 of file XMLElement.cpp.

3.56.3.25 void XMLElement::setName (string & name)

Changes the name of the element.

Parameters: 7
name The new name.

Definition at line 192 of file XMLElement.cpp.

3.56.3.26 void XMLElement::singleLineWriter (ostream & writer)

Writes the XML element to an output stream as a single line.

Parameters:
writer The stream to write the XML data to.

Definition at line 858 of file XMLElement.cpp.

3.56.3.27 void XMLElement::write (string & file)
Writes the XML element to a file using a pretty format.

Parameters:
file The file to write the XML data to.

Definition at line 922 of file XMLElement.cpp.
References prettyWriter().

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.57 XMLParseException Class Reference

161

3.57 XMULParseException Class Reference

An XMLParseException is thrown when an error occures while parsing an XML
stream.

Inheritance diagram for XMLParseException::

r Exception l
I

| XMLParseExceptiognl

Public Methods

e XMLParseException (string name, string message)

Creates an ezception.

¢ XMLParseException (string name, int lineNr, string message)

Creates an exception.

int getLineNr ()

Where the error occurred, or NO_LINE if the line number is unknown.

void setMessage (string message)

Sets the error message for the exception.

string getMessage ()

Gets the error message for the exception.

Static Public Attributes

e int NO_LINE = -1

Indicates that no line number has been associated with this ezception.

3.57.1 Detailed Description

An XMLParseException is thrown when an error occures while parsing an XML
stream.

Definition at line 28 of file XMLParseException.h.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.58 ZeroCorrelationFunction Class Reference 162

3.57.2 Constructor & Destructor Documentation

3.57.2.1 XMLParseException::XMLParseException (string name,
string message)
Creates an exception.

Parameters:
name The name of the element where the error is located.

message A message describing what went wrong.

Definition at line 18 of file XMLParseException.cpp.
References NO_LINE, and Exception::setMessage().

3.57.2.2 XMLParseException::XMLParseException (string name,
int lineNr, string message)

Creates an exception.

Parameters:
name The name of the element where the error is located.

lineNr The number of the line in the input.

message A message describing what went wrong.z

Definition at line 29 of file XMLParseException.cpp.
References StringManipulation::intToString(), and Exception::setMessage().
3.57.3 Member Function Documentation

3.57.3.1 int XMLParseException::getLineNr ()

Where the error occurred, or NO_LINE if the line number is unknown.

Returns:
Line number where the error occurred.

Definition at line 41 of file XMLParseException.cpp.

3.58 ZeroCorrelationFunction Class Reference

Correlation function which describes noninteracting particles.

Inheritance diagram for ZeroCorrelationFunction::

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

3.58 ZeroCorrelationFunction Class Reference

163

| QMCCorrelationFunction |

| ZeroCorrelationFunction |

Public Methods

e void initializeParameters (ArraylD< int > &BeginningIndexOf-
ParameterType, ArraylD< double > &Parameters, ArraylD< int >
&BeginningIndexOfConstantType, Arrayl1D< double > &Constants)

Initializes the correlation function with a specified set of parameters.

e void evaluate (double r)

Evaluates the correlation function and it's first two derivatives at r.

e bool isSingular ()

Returns true if the correlation function has a singularity in the domainr > 0,
and false otherwise.

e double getFunctionValue ()

Gets the value of the correlation function for the last evaluated r.

e double getFirstDerivativeValue ()

Gets the value of the first derivative of the correlation function for the last
evaluated 7.

e double getSecondDerivativeValue ()

Gets the value of the second derivative of the correlation function for the last
evaluated r.

3.58.1 Detailed Description

Correlation function which describes noninteracting particles.
Definition at line 24 of file ZeroCorrelationFunction.h.
3.58.2 Member Function Documentation

3.58.2.1 void ZeroCorrelationFunction::initializeParameters
(ArraylD< int > & BeginningIndexOfParameterType, ArraylD<

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4 QMcBeaver File Documentation 164

double > & Parameters, ArraylD< int > & BeginninglndexOf-
ConstantType, ArraylD< double > & Constants) [virtuall

Initializes the correlation function with a specified set of parameters.
This must be called every time the parameters are changed.
Implements QMCCorrelationFunction (p. 58).

Definition at line 16 of file ZeroCorrelationFunction.cpp.

4 QMcBeaver File Documentation

4.1 ckfastfunctions.h File Reference

This is a fast function library originally intended to speed up QMcBeaver a
Quantum Monte Carlo program.
Functions

e double fastPower (double x, int n)

Fast power function for use when the ezxponent is a small integer.
i
4.1.1 Detailed Description

This is a fast function library originally intended to speed up QMcBeaver a
Quantum Monte Carlo program.

Definition in file ckfastfunctions.h.

4.1.2 Function Documentation

4.1.2.1 double fastPower (double z, int n)

Fast power function for use when the exponent is a small integer.

Parameters:
x base

n exponent

Returns:
.,L.n

" Definition at line 15 of file ckfastfunctions.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4.2 LU.h File Reference 165

4.2 LU.h File Reference

Library of matrix functions which involve LU decompositions.

Functions

¢ void ludemp (Array2D< double > &a, int *indx, double *d, bool *calc-
OK)

LU decomposition using the algorithm in numerical recipes for a dense ma-
triz.

e void lubksb (Array2D< double > &a, int *indx, ArraylD< double >
&b)

LU backsubstitution using the algorithm in numerical recipes for o dense
matriz.

e double determinant (Array2D< double > a, bool *calcOK)

Calculates o determinant of a matriz using a dense LU solver.

e Array2D< double > inverse (Array2D< double > a, bool *calcOK)

Calculates the inverse of a matriz using a dense LU solver.

¢ void determinant_and_inverse (Array2D< deuble > a, Array2D<
double > &inv, double &det, bool xcalcOK)

Calculates the inverse and determinant of o matriz using o dense LU solver.

¢ void linearsolver (Array2D< double > &a, ArraylD< double > &b,
bool *calcOK)

Solves a system of linear equations using a dense LU solver.

4.2.1 Detailed Description

Library of matrix functions which involve LU decompositions.
Definition in file LU.h.

4.2.2 Function Documentation

4.2.2.1 double determinant (Array2D< double > a, bool * calcOK)

Calculates a determinant of a matrix using a dense LU solver.

This method scales as O(3N?).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4.2 LU.h File Reference

166

Parameters:
a a N x N matrix

cale OK returns false if the calculation is singular and true otherwise

Returns:
the determinant of a

Definition at line 115 of file LU.cpp.

4.2.2.2 void determinant_and_inverse (Array2D< double > a,
Array2D< double > & inwv, double & det, bool * caleOK)

Calculates the inverse and determinant of a matrix using a dense LU solver.
This method scales as O(1N?).

Parameters:
a a N x N matrix

inv inverse of a is returned here
det determinant of a is returned here

caleOK returns false if the calculation is singular and true otherwise

Definition at line 161 of file LU.cpp.

4.2.2.3 Array2D<double> inverse (Array2D< double > a, bool *
calcOK)

Calculates the inverse of a matrix using a dense LU solver.
This method scales as O(1N3).

Parameters:
a a N x N matrix

calcOK returns false if the calculation is singular and true otherwise

Returns:
the inverse of a

Definition at line 134 of file LU.cpp.

4.2.2.4 void linearsolver (Array2D< double > & @, Array1D< double
> & b, bool * calcOK)

Solves a system of linear equations using a dense LU solver.

this method scales as O(3N?).

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4.3 mfrandom.h File Reference 167

Parameters:
a a N x N matrix. This matrix is destroyed in the calculation.

b the N dimensional right hand side to solve for. Result is returned here
and the original values are destroyed.

calcOK returns false if the calculation is singular and true otherwise

Definition at line 191 of file LU.cpp.

4.2.2.5 void lubksb (Array2D< double > & a, int * indz, ArraylD<
double > & b)

LU backsubstitution using the algorithm in numerical recipes for a dense matrix.

Parameters:
a the LU decomposition of a matrix produced by ludcmp

indx a N dimensional array which records the row permutation from par-
tial pivoting generated by ludcmp

b the N dimensional array right hand side of the system of equations to
solve

Definition at line 90 of file LU.cpp.

4.2.2.6 void ludemp (Array2D< double > & a, int * indz, double *
d, bool * calcOK)

LU decomposition using the algorithm in numerical recipes for a dense matrix.

Parameters:
a a N x N matrix which is destroyed during the operation. The resulting
LU decompositon is placed here.

indx a N dimensional array which records the row permutation from par-
tial pivoting.

d used to give det(a) the correct sign

calcOK returns false if the calculation is singular and true otherwise

Definition at line 23 of file LU.cpp.

4.3 mfrandom.h File Reference

Library of functions for generating random numbers.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

4.3 mfrandom.h File Reference 168

Functions

e double gasdev (long *idum)

Generates a gaussian distributed random number with unit veriance using
the gasdev algorithm from numerical recipes.

e double ranl (long *idum)

Generates a uniform random number on [0, 1] using the ranl elgorithm from
numerical recipes.

4.3.1 Detailed Description

Library of functions for generating random numbers.

Definition in file mfrandom.h.

4.3.2 Function Documentation

4.3.2.1 double gasdev (long * idum)

Generates a gaussian distributed random number with unit variance using the

gasdev algorithm from numerical recipes.
i

Parameters:
tdum random number seed

Returns:
gaussian random number with unit variance

Definition at line 16 of file mfrandom.cpp.

4.3.2.2 double ranl (long * idum)

Generates a uniform random number on [0, 1] using the ranl algorithm from
numerical recipes.

Parameters:
tdum random number seed

Returns:
uniform random number on [0, 1].

Definition at line 55 of file mfrandom.cpp.

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

Index

~ArraylD

ArraylD, 14
~Array2D

Array2D, 17
~Array3D

Array3D, 20
~Array4D

Array4D, 24
~FunctionR1toR1

FunctionR1toR1, 45
~QMCCorrelationFunction

QMCCorrelationFunction, 62
~QMCCorrelationFunctionParameters

QMCCorrelationFunction-
Parameters, 64
~QMClInitializeWalker
QMCInitializeWalker, 77
~QMCLineSearch
QMCLineSearch, 94

Array4D, 25
AlphaOccupation
QMCWavefunction, 145
array
ArraylD, 15
Array2D, 19
Array3D, 22
Array4D, 25
ArraylD, 13
~ArraylD, 14
allocate, 15
array, 15
ArraylD, 14, 15
deallocate, 13
diml1, 15
operator *, 13
operator *=, 13
operator(), 14
operator+, 13

~QMCLineSearchStepLengthSelectionAlgorithmperator-, 13

QMCLineSearchStepLength-

SelectionAlgorithm, 95
~QMCManager
QMCManager, 97
~QMCOptimizationAlgorithm

QMCOptimizationAlgorithm,

111
~QMCwalker
QMCwalker, 139

abs
Complex, 30
acceptanceProbability
QMCproperties, 120
add
SortedParameterScorePair-
List, 148
addChild
XMLElement, 158
allocate
ArraylD, 15
Array2D, 18
Array3D, 21

operater/=, 14
operator<<, 14
operator=, 13
size, 16
Array2D, 16
~Array2D, 17
allocate, 18
array, 19
Array2D, 17, 18
deallocate, 17
diml, 19
dim?2, 19
operator *, 17
operator *=, 17
operator(), 17
operator/=, 17
operator<<, 17
operator=, 17
size, 19
Array3D, 20
~Array3D, 20
allocate, 21
array, 22

INDEX

170

Array3D, 20, 21
deallocate, 20
diml, 22
dim?2, 22
dim3, 22
operator(), 21
operator=, 20
size, 22
Array4D, 23
~Array4dD, 24
allocate, 25
array, 25
Array4D, 24
deallocate, 23
diml, 25
dim2, 25
dim3, 26
dim4, 26
operator(), 24
operator=, 23
size, 26
Atom_Labels
QMCMolecule, 104
Atom_Positions
QMCMolecule, 104

BetaOccupation
QMCWavefunction, 145

calculateObservables
QMCwalker, 141
ckfastfunctions.h, 169
fastPower, 169
CKGeneticAlgorithml
CKGeneticAlgorithm1, 27
CKGeneticAlgorithm1, 26
CKGeneticAlgorithm1, 27
optimize, 28
clear
SortedParameterScorePair-
List, 148
Coefls
QMCBasisFunction-
Coefficients, 58
QMCWavefunction, 147
Complex, 28

abs, 30
Complex, 28, 30
conjugate, 30
imaginary, 31
operator *, 31
operator+, 31, 32
operator-, 32
operator/, 32
operator<<, 30
operator=, 32, 33
real, 33
squareroot, 33
conjugate
Complex, 30
correlationFunctionFactory
QMCCorrelationFunction-

Factory, 64
countChildren
XMLElement, 158
CubicSpline

CubicSpline, 34
CubicSpline, 33
evaluate, 35
getFirstDerivativeValue, 35
getFunctionValue, 36
getSecondDerivativeValue, 36
initializeWithDerivative Val-
ues, 36
initializeWithFunctionValues,
36
operator=, 37
toXML, 37
CubicSplineWithGeometricProgressionGrid
CubicSplineWithGeometric-
ProgressionGrid, 38
CubicSplineWithGeometric-
ProgressionGrid, 37
evaluate, 39
getFirstDerivativeValue, 40
getFunctionValue, 40
getSecondDerivativeValue, 40
initializeWithDerivative Val-
ues, 40
initializeWithFunctionValues,
41
operator=, 41

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

171

setGridParameters, 41
toXML, 42

deallocate
ArraylD, 13
Array2D, 17
Array3D, 20
Array4D, 23
determinant
LU.h, 170
determinant_and_inverse
LU.h, 171
dim1
ArraylD, 15
Array2D, 19
Array3D, 22
Array4D, 25
dim?2
Array2D, 19
Array3D, 22
Array4D, 25
dim3
Array3D, 22
Array4D, 26
dim4
Array4D, 26
distanceMoved Accepted
QMCproperties, 120
distanceMovedTrial
QMCproperties, 120
doubleToString
StringManipulation, 152

energy
~ QMCproperties, 120
evaluate
CubicSpline, 35
CubicSplineWithGeometric-
ProgressionGrid, 39
FixedCuspPadeCorrelation-
Function, 44
FunctionR1toR1, 46
PadeCorrelationFunction, 47
Polynomial, 52
QMCCorrelationFunction, 63
QMCTunctions, 74

QMCJastrow, 80, 81
QMCJastrowElectronFElectron,

84
QMCJastrowElectronNuclear,
86
QMCObjectiveFunction, 105,
106

QMCPolynomial, 115

QMCPotential Energy, 118

QMCSlater, 130

ZeroCorrelationFunction, 168
Exception, 42

Exception, 42, 43

getMessage, 43

setMessage, 43

factory
QMCLineSearchStepLength-
SelectionFactory, 96
fastPower
ckfastfunctions.h, 169
finalize
QMCManager, 97
FixedCuspPadeCorrelationFunction
evaluate, 44
getFirstDerivativeValue, 44
getFunctionValue, 44
getSecondDerivativeValue, 44
isSingular, 44
FixedCuspPadeCorrelation-
Function, 43
initializeParameters, 44
FunctionR1toR1
~FunctionR1toR1, 45
FunctionR1toR1, 45
evaluate, 46
getFirstDerivativeValue, 46
getFunctionValue, 46
getSecondDerivativeValue, 46

gasdev
mfrandom.h, 173
get
SortedParameterScorePair-
List, 149
getAverage

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

172

QMCproperty, 122

QMCstatistic, 132
getBooleanAttribute

XMLElement, 159
getChildren

XMLElement, 159
getCoefficient

Polynomial, 52

QMCPolynomial, 115
getCommandPollingStopwatch

QMCStopwatches, 137

getCommunicationSynchronizationStopwatch

QMCStopwatches, 137
getContent

XMLElement, 159
getCorrelationFunction

QMCCorrelationFunction-

Parameters, 66
getDerivativeScore
QMCObjectiveFunction-
Result, 109
getDoubleAttribute
XMLElement, 160
getEffectiveTimeStep

QMCObjectiveFunction-
Result, 110

getFirstDerivativeValue

CubicSpline, 35
CubicSplineWithGeometric-
ProgressionGrid, 40
FixedCuspPadeCorrelation-
Function, 44
FunctionR1toR1, 46
PadeCorrelationFunction, 47
Polynomial, 52
QMCCorrelationFunction, 63
QMCPolynomial, 115
ZeroCorrelationFunction, 168

getFunctionValue

CubicSpline, 36
CubicSplineWithGeometric-
ProgressionGrid, 40
FixedCuspPadeCorrelation-
Function, 44
FunctionR1toR1, 46
PadeCorrelationFunction, 47
Polynomial, 52
QMCCorrelationFunction, 63

QMCDerivativeProperties, 70 QMCPolynomial, 116

getEffectiveTimeStepStandardDeviation ZeroCorrelationFunction, 168
getGatherPropertiesStopwatch

QMCDerivativeProperties, 70

getEffectiveTimeStepVariance QMCStopwatches, 138

QMCDerivativeProperties, 71 getGradientLnJastrow
getElectronDownElectronDownParameters QMCJastrow, 81
QMCJastrowParameters, 90 QMCJastrowElectronElectron,
getElectronDownNuclearParameters 84
QMCJastrowParameters, 90 QMCJastrowElectronNuclear,
getElectronUpElectronDownParameters 87
QMCJastrowParameters, 91 getGradPsi
getElectronUpElectronUpParameters QMCBasisFunction, 55
QMCJastrowParameters, 91 getGradPsiRatio
getElectronUpNuclearParameters QMCFunctions, 74
QMCJastrowParameters, 91 QMCSlater, 131
getEnergy getInitializationStopwatch
QMCPotential Energy, 118 QMCStopwatches, 136
getEnergy Ave getInputData
QMCObjectiveFunction- QMCManager, 98
Result, 109 getIntAttribute
getEnergy Var XMLElement, 160, 161

getJastrow

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

173

QMCJastrow, 81
getKineticEnergy
QMCFunctions, 75
getLaplacianlinJastrow
QMClJastrow, 81
QMCJastrowElectronElectron,
84
QMCJastrowElectronNuclear,
87
getLaplacianPsi
QMCBasisFunction, 56
getLaplacianPsiRatio
QMCSlater, 131
getLineNr
XMLElement, 161
XMLParseException, 167
getLnJastrow
QMCJastrow, 82
QMCJastrowElectronElectron,
85
QMCJastrowElectronNuclear,
87
getLocalEnergy
QMCFunctions, 75
getLocalEnergyEstimator
QMCwalker, 140
getLogWeightsAve
QMCObjectiveFunction-
Result, 110
getLogWeightsVar
QMCObjectiveFunction-
Result, 110
getMessage
Exception, 43
XMLParseException, 166
getModifiedGradPsiRatio
QMCFunctions, 75
getName
XMLElement, 161
getNucleiTypes
QMCJastrowParameters, 89
getNumberAlphaFElectrons
QMCWavefunction, 145
getNumberAtoms
QMCMolecule, 103
getNumberBasisFunctions

QMCBasisFunction, 56
QMCBasisFunction-
Coefficients, 60
QMCWavefunction, 145
getNumberBetaElectrons
QMCWavefunction, 146
getNumberCoeflicients
Polynomial, 53
QMCPolynomial, 116
getNumberElectrons
QMCWavefunction, 146
getNumberOfWalkers
QMCrun, 127
getNumberOrbitals
QMCWavefunction, 146
getNumberSamples
QMCproperty, 122
QMCstatistic, 132
getObjectiveFunction
QMCLineSearch, 94
QMCSteepestDescent, 135
getOptimizationStopwatch
QMCStopwatches, 138
getParameters
ParameterScorePair, 49
QMCCorrelationFunction-
Parameters, 66
QMCJastrowParameters, 92
getParticlelType
QMCCorrelationFunction-
Parameters, 67
getParticle2Type
QMCCorrelationFunction-
Parameters, 67
getPotentialEnergy
QMCPFunctions, 75
getPropagationStopwatch
QMCStopwatches, 138
getProperties
QMCrun, 127
getPsi
QMCBasisFunction, 56
QMCFunctions, 76
QMCSlater, 131
getResultsOutputStream
QMCManager, 98

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

174

getRoots
Polynomial, 53
QMCPolynomial, 116
getScore
ParameterScorePair, 49
QMCObjectiveFunction-
Result, 110
getSecondDerivative Value
CubicSpline, 36
CubicSplineWithGeometric-
ProgressionGrid, 40
FixedCuspPadeCorrelation-
Function, 44
FunctionR1toRl1, 46
PadeCorrelationFunction, 47
Polynomial, 53
QMCCorrelationFunction, 63
QMCPolynomial, 117
ZeroCorrelationFunction, 168
getSend CommandStopwatch
QMCStopwatches, 138
getSeriallyCorrelatedStandardDeviation
QMCproperty, 122
getSeriallyCorrelated Variance
QMCproperty, 122
getStandardDeviation
QMCproperty, 122
QMCstatistic, 132
getStringAttribute
XMLElement, 161, 162
getTotalNumber OfParameters
QMCCorrelationFunction-
Parameters, 67
getTotal TimeStopwatch
QMCStopwatches, 139
getVariance
QMCproperty, 122
QMCstatistic, 132
getVirialRatio
QMCDerivativeProperties, 71
getVirialRatioStandardDeviation
QMCDerivativeProperties, 71
getVirialRatioVariance
QMCDerivativeProperties, 72
getWeight
QMCwalker, 141

getWeights
QMCrun, 128
grad
QMCODbjectiveFunction, 106

hasNonNegativeZeroes
QMCPolynomial, 117

hexstringTolnt
StringManipulation, 152

imaginary
Complex, 31
initialize
Polynomial, 54
QMCBasisFunction, 57
QMCFunctions, 76
QMCJastrow, 82
QMCJastrowElectronElectron,
85
QMCJastrowElectronNuclear,
88
QMCManager, 98
QMCMolecule, 103
QMCObjectiveFunction, 107
QMCPolynomial, 117
QMCPotential Energy, 119
QMCRead AndEvaluate-
Configs, 125
QMCrun, 128
QMCSlater, 131
QMCwalker, 141
initializeParameters
FixedCuspPadeCorrelation-
Function, 44
PadeCorrelationFunction, 48
QMCCorrelationFunction, 63
ZeroCorrelationFunction, 168
initializeWalkerFactory
QMClnitializeWalkerFactory,
79
initializeWalkerPosition
QMClInitializeWalker, 78
QMCMikesJacked Walker-
Initialization, 101
QMCwalker, 142
initializeWithDerivativeValues

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

CubicSpline, 36
CubicSplineWithGeometric-
ProgressionGrid, 40
initializeWithFunctionValues
CubicSpline, 36
CubicSplineWithGeometric-
ProgressionGrid, 41
intToHexString
StringManipulation, 152
intToString
StringManipulation, 152
inverse
LU.h, 171
isRunning
Stopwatch, 150
isSingular
Fixed CuspPadeCorrelation-
Function, 44
PadeCorrelationFunction, 47
QMCCorrelationFunction, 62
QMCCorrelationFunction-
Parameters, 67
QMCFunctions, 76
QMCSlater, 130
QMCwalker, 142
ZeroCorrelationFunction, 168

kineticEnergy
QMCproperties, 120

linearsolver
LU.h, 171
logWeights
QMCproperties, 120
LU.h, 170
determinant, 170
determinant.and_inverse, 171
inverse, 171
linearsolver, 171
lubksh, 172
ludemp, 172
lubksb
LU.h, 172
ludcmp
LU.h, 172

mfrandom.h, 172

gasdev, 173
ranl, 173
MPI_LREDUCE
QMCproperties, 120
QMCproperty, 123
QMCstatistic, 133
QMCStopwatches, 137
Stopwatch, 150
MPITYPE
QMCproperties, 120
QMCproperty, 123
QMCstatistic, 133
QMCStopwatches, 137
Stopwatch, 150

N_Gauss

QMCBasisFunction-

Coefficients, 58

newSample

QMCproperty, 123

QMCstatistic, 133
NO_LINE ~

XMLParseException, 166
NucleiTypes

QMCMolecule, 102

operator *
ArraylD, 13
Array2D, 17
Complex, 31
operator *=
ArraylD, 13
Array2D, 17
operator()
ArraylD, 14
Array2D, 17
Array3D, 21
Array4D, 24
operator+
ArraylD, 13
Complex, 31, 32
QMCproperties, 119
QMCproperty, 122
QMCstatistic, 132
QMCStopwatches, 137
Stopwatch, 150

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

176

operator-
ArraylD, 13
Complex, 32
operator/
Complex, 32
operator/=
ArraylD, 14
Array2D, 17
operator<
ParameterScorePair, 49
operator<<
ArraylD, 14
Array2D, 17
Complex, 30
QMCBasisFunction, 55
QMCBasisFunction-
Coefficients, 59
QMCCopyright, 61
QMCCorrelationFunction-
Parameters, 65
QMCDerivativeProperties, 70
QMClJastrowParametetrs, 89
QMCManager, 98
QMCMolecule, 103
QMCObjectiveFunction-
Result, 108
QMCproperties, 121
QMCproperty, 123
QMCstatistic, 133
QMCStopwatches, 137
QMCWavefunction, 145
Stopwatch, 150
operator=
ArraylD, 13
Array2D, 17
Array3D, 20
Array4D, 23
Complex, 32, 33
CubicSpline, 37
CubicSplineWithGeometric-
ProgressionGrid, 41
ParameterScorePair, 50
QMCBasisFunction, 57
QMCBasisFunction-
Coefficients, 60

QMCCorrelationFunction-
Parameters, 68
QMCFunctions, 76
QMCJastrowParameters, 92
QMCMolecule, 103
QMCObjectiveFunction-
Result, 111
QMCPotential Energy, 119
QMCSlater, 132
QMCwalker, 142
QMCWavefunction, 146
SortedParameterScorePair-
List, 149
XMLElement, 162
operator==
XMLElement, 162
operator>>
QMCBasisFunction, 55
QMCBasisFunction-
Coefficients, 59
QMCMolecule, 102
QMCWavefunction, 145
optimizationAlgorithmFactory
QMCOptimizationFactory,
113
optimize
CKGeneticAlgorithm1, 28
QMCCorrelatedSampling-
VMCOptimization, 62
QMCLineSearch, 95
QMCManager, 97
QMCOptimizationAlgorithm,
112
QMCSteepestDescent, 135

PadeCorrelationFunction
evaluate, 47
getFirstDerivativeValue, 47
getFunctionValue, 47
getSecondDerivativeValue, 47
isSingular, 47

PadeCorrelationFunction, 47
initializeParameters, 48

ParameterScorePair
operator<, 49
ParameterScorePair, 48, 49

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

177

ParameterScorePair, 48
getParameters, 49
getScore, 49
operator=, 50
ParameterScorePair, 49

parse
XMLElement, 163

Polynomial, 50
evaluate, 52
getCoefficient, 52
getFirstDerivativeValue, 52
getFunctionValue, 52
getNumberCoefficients, 53
getRoots, 53
getSecondDerivativeValue, 53
initialize, 54
Polynomial, 50, 51

potentialEnergy
QMCproperties, 120

pretty Writer
XMLElement, 163

propagateWalker -
QMCwalker, 140

QMCBasisFunction
operator<<, 55
operator>>, 55
QMCBasisFunction, 54
QMCBasisFunction, 54
getGradPsi, 55
getLaplacianPsi, 56
getNumberBasisFunctions, 56
getPsi, 56
initialize, 57
operator=, 57
read, 57
QMCBasisFunctionCoefficients
Coeffs, 58
N_Gauss, 58
operator<<, 59
operator>>, 59
QMCBasisFunction-
Coefficients, 58
read, 58
QMCBasisFunctionCoefficients, 58
getNumberBasisFunctions, 60

operator=, 60
Type, 60
xyz-powers, 60
QMCCopyright, 61
operator<<, 61
QMCCorrelatedSampling-
VMCOptimization, 61
optimize, 62
QMCCorrelationFunction
~QMCCorrelationFunction,
62
evaluate, 63
getFirstDerivativeValue, 63
getFunctionValue, 63
getSecondDerivativeValue, 63
isSingular, 62
QMCCorrelationFunction, 62
initializeParameters, 63
QMCCorrelationFunctionFactory
correlationFunctionFactory, 64
QMCCorrelationFunctionFactory,
63

QMCCorrelationFunctionParameters

~QMCCorrelationFunction-
Parameters, 64

operator<<, 65

QMCCorrelationFunction-
Parameters, 64, 66

setParticlelType, 65

setParticle2Type, 65

QMCCorrelationFunction-

Parameters, 64

getCorrelationFunction, 66

getParameters, 66

getParticlel1Type, 67

getParticle2Type, 67

getTotalNumberOfParame-
ters, 67

isSingular, 67

operator=, 68

QMCCorrelationFunctionPa-
rameters, 66

read, 68

setParameters, 68

QMCDerivativeProperties
operator<<, 70

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

178

QMCDerivativeProperties, 70
QMCDerivativeProperties, 69
getEffectiveTimeStep, 70
getEffectiveTimeStepStan-
dardDeviation, 70
getEffectiveTimeStepVariance,
71
getVirialRatio, 71
getVirialRatioStandardDevia-
tion, 71
getVirialRatioVariance, 72
QMCDerivativeProperties, 70
QMCFunctions, 72
evaluate, 74
getGradPsiRatio, 74
getKineticEnergy, 75
getLocalEnergy, 75
getModifiedGradPsiRatio, 75
getPotentialEnergy, 75
getPsi, 76
initialize, 76
isSingular, 76 2
operator=, 76
QMCFunctions, 72, 74
writeCorrelatedSamplingCon-
figuration, 77
QMClInitializeWalker
~QMCInitializeWalker, 77
QMClInitializeWalker, 77
initializeWalkerPosition, 78
QMClInitializeWalkerFactory, 78
initializeWalkerFactory, 79
QMCJastrow, 79
evaluate, 80, 81
getGradientLnJastrow, 81
getJastrow, 81
getLaplacianLnJastrow, 81
getLnJastrow, 82
initialize, 82
QMCJastrowElectronElectron, 82
evaluate, 84
getGradientLnJastrow, 84
getLaplacianLnJastrow, 84
getLnJastrow, 85
initialize, 85
QMCJastrowElectronNuclear, 85

evaluate, 86
getGradientLnJastrow, 87
getLaplacianLnJastrow, 87
getLnJastrow, 87
initialize, 88
QMCJastrowParameters
getNucleiTypes, 89
operator<<, 89
QMCJastrowParameters, 88,
90
QMCJastrowParameters, 88
getElectronDownElectron-
DownParameters, 90
getElectronDownNuclearPa-
rameters, 90
getElectronUpElectronDown-
Parameters, 91
getElectronUpElectronUpPa-
rameters, 91
getElectronUpNuclearParame-
ters, 91
getParameters, 92
operator=, 92
QMCJastrowParameters, 90
read, 92
setParameterVector, 93
QMCLineSearch
~QMCLineSearch, 94
getObjectiveFunction, 94
QMCLineSearch, 94
QMCLineSearch, 93
optimize, 95
QMCLineSearch, 94

QMCLineSearchStepLengthSelectionAlgorithm

~QMCLineSearchStepLength-
SelectionAlgorithm, 95
QMCLineSearchStepLength-
SelectionAlgorithm, 95
stepLength, 96

QMCLineSearchStepLengthSelectionFactory

factory, 96
QMCLineSearchStepLength-
SelectionFactory, 96
QMCManager, 97
~QMCManager, 97
finalize, 97

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

getInputData, 98
getResultsOutputStream, 98
initialize, 98
operator<<, 98
optimize, 97
QMCManager, 97
run, 98
writeRestart, 97
writeTimingData, 99
zeroQut, 97
QMCMikesBracketingStepLength-
Selector, 99
stepLength, 100
QMCMikesJackedWalkerInitialization
QMCMikesJacked Walker-
Initialization, 101
QMCMikesJacked Walker-
Initialization, 100
initializeWalkerPosition, 101
QMCMikesJacked WalkerIni-
tialization, 101
QMCMolecule, 102 v
Atom_Labels, 104
Atom_Positions, 104
getNumberAtoms, 103
initialize, 103
NucleiTypes, 102
operator<<, 103
operator=, 103
operator>>, 102
QMCMolecule, 102
read, 103
Z, 104
QMCObjectiveFunction, 104
evaluate, 105, 106
grad, 106
initialize, 107
QMCObjectiveFunctionResult
operator<<, 108
QMCObjectiveFunction-
Result, 107, 109
QMCObjectiveFunctionResult, 107
getDerivativeScore, 109
getEnergyAve, 109
getEnergyVar, 110
getLogWeightsAve, 110

getLogWeightsVar, 110
getScore, 110
operator=, 111
QMCObjectiveFunctionRe-
sult, 109
QMCOptimizationAlgorithm
~QMCOptimization-
Algorithm, 111
QMCOptimizationAlgorithm, 111
optimize, 112
QMCOptimizationFactory, 112
optimizationAlgorithmFac-
tory, 113
QMCPolynomial, 113
evaluate, 115
getCoeflicient, 115
getFirstDerivativeValue, 115
getFunctionValue, 116
getNumberCoefficients, 116
getRoots, 116
getSecondDerivativeValue, 117
hasNonNegativeZeroes, 117
initialize, 117
QMCPolynomial, 113, 114
QMCPotential Energy, 118
evaluate, 118
getEnergy, 118
initialize, 119
operator=, 119
QMCPotential Energy, 118
QMCproperties, 119
acceptanceProbability, 120
distanceMovedAccepted, 120
distanceMovedTrial, 120
energy, 120
kineticEnergy, 120
logWeights, 120
MPI_REDUCE, 120
MPITYPE, 120
operator+, 119
operator<<, 121
potentialEnergy, 120
QMCproperties, 119
readXML, 121
toXML, 121
zeroOut, 119

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

180

QMCproperty, 121

getAverage, 122

getNumberSamples, 122

getSeriallyCorrelated-
StandardDeviation,
122

getSeriallyCorrelated Variance,
122

getStandardDeviation, 122

getVariance, 122

MPI REDUCE, 123

MPI_TYPE, 123

newSample, 123

operator+, 122

operator< <, 123

QMCproperty, 122

read XML, 123

toXML, 124

zeroOut, 122

QMCReadAndEvaluateConfigs

QMCRead AndEvaluate-
Configs, 124, 125,

QMCReadAndEvaluateConfigs,

124
initialize, 125
QMCReadAndEvaluateCon-
figs, 125
rootCalculateProperties, 125
workerCalculateProperties,
126

QMCrun, 126

getNumberOfWalkers, 127

getProperties, 127

getWeights, 128

initialize, 128

QMCrun, 126

randomlyInitializeWalkers, 127

read XML, 128

step, 126

toXML, 128

writeCorrelatedSamplingCon-
figurations, 129

writeEnergies, 129

zeroOut, 126

QMCSlater, 129

evaluate, 130

getGradPsiRatio, 131
getLaplacianPsiRatio, 131
getPsi, 131
initialize, 131
isSingular, 130
operator=, 132
QMCstatistic, 132
getAverage, 132
getNumberSamples, 132
getStandardDeviation, 132
getVariance, 132
MPI REDUCE, 133
MPITYPE, 133
newSample, 133
operator+, 132
operator<<, 133
QMCstatistic, 132
readXML, 133
toXML, 134
zeroOut, 132
QMOCSteepestDescent
getObjectiveFunction, 135
QMCSteepestDescent, 135
QMCSteepestDescent, 134
optimize, 135
QMCSteepestDescent, 135
QMCStopwatches, 136
getCommandPollingStop-
watch, 137
getCommunicationSynchro-
nizationStopwatch, 137
getGatherPropertiesStop-
watch, 138
getInitializationStopwatch,
136
getOptimizationStopwatch,
138

getPropagationStopwatch, 138

getSendCommandStopwatch,
138

getTotal TimeStopwatch, 139

MPIREDUCE, 137

MPITYPE, 137

operator+, 137

operator< <, 137

QMCStopwatches, 136

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX 181
reset, 136 QMCWavefunction, 146
stop, 136 read XML

QMCwalker, 139
~QMCwalker, 139
calculateObservables, 141
getLocalEnergyEstimator, 140
getWeight, 141
initialize, 141
initializeWalkerPosition, 142
isSingular, 142
operator=, 142
propagateWalker, 140
QMCwalker, 139, 141
readXML, 143
setWeight, 143
toXML, 143
writeCorrelatedSamplingCon-
figuration, 143
QMCWavefunction, 144
AlphaQOccupation, 145
BetaOccupation, 145"
Coeffs, 147
getNumberAlphaElectrons,
145
getNumberBasisFunctions, 145
getNumberBetaElectrons, 146
getNumberElectrons, 146
getNumberOrbitals, 146
operator<<, 145
operator=, 146
operator>>, 145
QMCWavefunction, 144
read, 146

ranl
mfrandom.h, 173
randomlylInitialize Walkers
QMCrun, 127
read
QMCBasisFunction, 57
QMCBasisFunction-
Coefficients, 58
QMCCorrelationFunction-
Parameters, 68
QMCJastrowParameters, 92
QMCMolecule, 103

QMCproperties, 121
QMCproperty, 123
QMCrun, 128
QMCstatistic, 133
QMCwalker, 143
real
Complex, 33
removeAttribute
XMLElement, 163
removeChild
XMLElement, 164
reset
QMCStopwatches, 136
Stopwatch, 150
rootCalculateProperties
QMCReadAndEvaluate-
Configs, 125
run
QMCManager, 98

setAttribute
XMLElement, 164
setContent,
XMLElement, 165
setGridParameters
CubicSplineWithGeometric-
ProgressionGrid, 41
setMessage
Exception, 43
XMLParseException, 166
setName
XMLElement, 165
setParameters
QMCCorrelationFunction-
Parameters, 68
setParameterVector
QMCJastrowParameters, 93
setParticlel Type
QMCCorrelationFunction-
Parameters, 65
setParticle2Type
QMCCorrelationFunction-
Parameters, 65
setWeight

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

182

QMCwalker, 143
singleLineWriter
XMLElement, 165
size
ArraylD, 16
Array2D, 19
Array3D, 22
Array4D, 26
SortedParameterScorePair-
List, 149
SortedParameterScorePairList
clear, 148
SortedParameterScorePair-
List, 147, 148
SortedParameterScorePairList, 147
add, 148
get, 149
operator=, 149
size, 149
SortedParameterScore-
PairList, 148
squareroot,
Complex, 33
start
Stopwatch, 150
step
QMCrun, 126
stepLength
QMCLineSearchStepLength-
SelectionAlgorithm, 96
QMCMikesBracketingStep-
LengthSelector, 100
stop
QMCStopwatches, 136
Stopwatch, 150
Stopwatch, 149
isRunning, 150
MPI_REDUCE, 150
MPI_TYPE, 150
operator+, 150
operator<<, 150
reset, 150
start, 150
stop, 150
Stopwatch, 150
timeMS, 150

toString, 150
StringManipulation, 151
doubleToString, 152
hexstringTolnt, 152
int ToHexString, 152
intToString, 152
stringToDouble, 153
stringTolnt, 153
toAllLower, 153
toAllUpper, 153
toFirstUpperRestLower, 154
toLowerChar, 154
toUpperChar, 154
stringToDouble
StringManipulation, 153
stringTolnt
StringManipulation, 153

timeMS
Stopwatch, 150
toAllLower
StringManipulation, 153
toAllUpper
StringManipulation, 153
toFirstUpperRestLower
StringManipulation, 154
toLowerChar
StringManipulation, 154
toString
Stopwatch, 150
toUpperChar
StringManipulation, 154
toXML
CubicSpline, 37
CubicSplineWithGeometric-
ProgressionGrid, 42
QMCproperties, 121
QMCproperty, 124
QMCrun, 128
QMCstatistic, 134
QMCwalker, 143
Type
QMCBasisFunction-
Coefficients, 60

workerCalculateProperties

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

INDEX

183

QMCRead AndEvaluate-
Configs, 126

write

XMLElement, 165
writeCorrelatedSamplingConfiguration

QMCFunctions, 77

QMCwalker, 143
writeCorrelatedSamplingConfigurations

QMCrun, 129
writeEnergies

QMCrun, 129
writeRestart

QMCManager, 97
writeTimingData

QMCManager, 99

XMLElement, 155
addChild, 158
countChildren, 158
getBooleanAttribute, 159
getChildren, 159 =
getContent, 159
getDoubleAttribute, 160
getIntAttribute, 160, 161
getLineNr, 161
getName, 161
getStringAttribute, 161, 162
operator=, 162
operator==, 162
parse, 163
pretty Writer, 163
removeAttribute, 163
removeChild, 164
setAttribute, 164
setContent, 165
setName, 165
singleLineWriter, 165
write, 165
XMLElement, 157, 158

XMLParseException
getMessage, 166
NO_LINE, 166
setMessage, 166
XMLParseException, 167

XMLParseException, 166
getLineNr, 167

XMLParseException, 167
XyZ_DOWers
QMCBasisFunction-
Coefficients, 60

Z
QMCMolecule, 104
ZeroCorrelationFunction
evaluate, 168
getFirstDerivativeValue, 168
getFunctionValue, 168
getSecondDerivativeValue, 168
isSingular, 168
ZeroCorrelationFunction, 167
initializeParameters, 168
zeroQut
QMCManager, 97
QMCproperties, 119
QMCproperty, 122
QMCrun, 126
QMCstatistic, 132

Generated on Wed May 1 11:34:48 2002 for QMcBeaver by Doxygen

