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Abstract

In this thesis, we investigate the mapping properties of two averaging opera-
tors.

In the first part, we consider a model rigid well-curved line complex Gy in
R¢. The X-ray transform, X, restricted to Gy is defined as an operator from

functions on R? to functions on Gy in the following way:

Xf(l):]lf, le Gy

We obtain sharp mixed norm estimates for X in R* and IRS.
In the second part, we consider the elliptic maximal function M. Let £ be
the set of all ellipses in R? centered at the origin with axial lengths in [1/2, 2].

Let f:R? — R, then M f : R? — R is defined in the following way:

1
Mf(z) = sup oz [ fla+ a)doa)

where do is the arclength measure on E and |E| is the length of E.

In this part of the thesis, we investigate the L” mapping properties of M.
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Chapter 1 Introduction

This thesis consists of two distinct results [10], [11] about the mapping prop-
erties of two averaging operators.
I) Restricted X-ray transform

The full X-ray transform, Xy, is an operator from the functions on R? to

the functions on G, the space of all lines in R%. It is defined as

Xfuilf(l) == [f: le gd-

Since Gy is a (2d — 2)-dimensional space, X,y is over-determined, and it is of
interest to investigate the restriction of Xy,; to lower dimensional subsets of
Ga.

We are interested in the subsets that are called rigid well-curved line com-
plexes (see [17] for a definition as a member of a general family of line com-
plexes, some properties and applications). We work with the model line com-
plex of this type:

Let 4 be the curve {v4(t) : va(t) = (1, £, ...,t471),t € (—=1,1)} in R%. Let
I(t,x) denote the line {x + sv4(¢) : s € R}. The model rigid well-curved line
complex, Gy, is defined via G4 = {l(t,z) : t € [-1,1],z L v4(¢)}. The term

well-curved refers to the fact that for all ¢ the first d — 1 derivatives of va(t)
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are linearly independent, and rigid refers to the fact that for any direction e in
the direction set 4, all the lines with direction e are in the line complex [16].
We define the restricted X-ray transform, X, as the restriction of Xy, to
Ga.
In this part of the thesis, we obtain almost sharp mixed norm estimates for

X in R* and R5.

IT) Elliptic Maximal Function
In this part of the thesis, we consider a natural generalization of the circular
maximal function by taking maximal averages over ellipses instead of circles.
More explicitly, let £ be the set of all ellipses in R? centered at the origin
with axial lengths in [,2]. Note that we do not restrict ourselves to the ellipses

whose axes are parallel to the co-ordinate axes. The elliptic mazimal function,

Mg, is defined in the following way: Let f : R? — R, then

MSf(z) = SE%S]I;_‘S‘ - flu)du, (L)

where E? is the d-neighborhood of F and |E°| is the measure of E°.
In Chapter 3, we obtain some estimates about the asymptotic behavior of

the best constant A, ,(d) in the inequalities

IMgfllg < Apg(9)]|£llp-



Notation

|A]: Cardinality or the measure of the set A or the length of the vector A.
x4: Characteristic function of the set A.

N (A, T))." n neighborhood of the set A.

C, K: Constants that may vary from line to line.

ASB: A<CB.

AxB: ASBand BS A.

A << B: A< C7'B where C is a large enough constant.



Chapter 2 Restricted X-ray Transform

2.1 Overview and General Discussion

Let Gy 4 be the space of all k-planes in R%. The Radon transform or the k-plane
transform Ry 4 is defined as an operator from the functions defined on R? to

the functions defined on Gy 4 via

Riaf(p) = /f1 P € Gra-
P

The Radon transform found important applications in integral geometry and
in the study of PDE’s.

R1,q is often called the X-ray transform due to its applications in radiology;
we denote it by Xp,y. It is well-known [33], [19] that the sharp mixed norm
estimates for the full X-ray transform implies the Kakeya conjecture and it
is related to some of the main problems in the summability of Fourier trans-
form, Fourier restriction and more generally to oscillatory integrals, non-linear
P.D.E.’s and number theory [13], [2], [3], [34], [4], [28]. For some mapping
properties of X s, see, e.g., [9], [5], [33] and [19].

Note that G, 4 is a (2d — 2)-dimensional manifold, thus Xy, is overdeter-

mined for d > 3, and it is of interest to consider its restrictions to lower dimen-



5

sional subspaces of G, 4. For the definition of the restricted X-ray transforms
as part of a more general class of transformations and some of its properties,
see [16].

One particular example is the restriction of Xy, to the space of light rays
(lines in RY making a 45 degree angle with the plane x4 = 0). Recently, Wolff
[35] obtained mixed norm estimates for this operator (almost sharp in R?) and
used this information to prove almost sharp bilinear cone restriction estimates
in all dimensions.

We are interested in the restriction of X ¢,y to d dimensional line complexes
in R%. Let d > 3: the subspace Gy of G1,¢ we are interested in is defined as
follows: Let 4 be the curve {va(t) : v4(t) = (1,¢,£2, ..., t47 1), ¢t € [-1,1]} in R%
Let I(¢, z) denote the line {z+s74(¢) : s € R}, wherez € H, := {z : z L v4(¢)}.
We identify G4 with [—1,1] x R via Gq = {l(¢,z) : t € [-1,1],z € H;}.
This line complex is a model case for a general class called rigid well-curved
line complezes (see, e.g., [15], [17] and [16]). It is called well-curved since
v4(t), ...,fyédgl)(t) are linearly independent for any ¢ € [—1, 1], and the term
rigid is used to describe the fact that for any point v4(¢) in the “direction set”
~4, G4 contains all the lines in R? having the direction ~4(¢). We call the lines
in G? the ~z-rays.

Now, we define the restricted X-ray transform as an operator from the
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functions defined on R? to the functions defined on Gy in the following way:

Xilt.z)) = ” )f, te[-1,1],z € H,.

We work with the following mixed norms for the functions defined on Gy :

1
[ flzaczey = 1 £llgr = (/_1( - | F(UE, %)) | dz)o/" de) e,

We are interested in the estimates of the following type: If f : R* — R is

supported in the unit cube ;, then

[ X fllar < Cogrll F1le- (2.1)

Proposition 2.1.1. The following conditions for p, ¢ and r are necessary for

(2.1) to hold

d d—1
gxityd, (2.2)
(d-1)d _ 2 | (d—1)d
28 E S, (2:3)
(d=2)(d+1) o (d=1)d (2.4)
r - T

Proof. The following counter-examples prove Proposition 2.1.1; they are quite
standard (see, e.g., [5], [15], [17] and [16]). The restriction (2.2) can be obtained
by applying X to the characteristic function of a J-ball. To obtain (2.3), let

f be the characteristic function of the set |z1| < 1,|2a] < 6, ..., |4 < 6971
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Note that || f]|, ~ §%4=1/P) and for all |t| < 6, we have X f =~ 1 on a subset

of H, of measure 2 §%?D/2. Hence || X f||,» = 6/96%@-1/Cr) which proves
the necessity of (2.3). Finally, divide v, into M (= 1/6) segments sq, ..., sps of
length o centered at ¢y, ..., 15, respectively. For any segment s;, consider the
parallelogram P; C R% ! with dimensions & x 6% x ... x §%~!, whose longest
axis is tangent to 74 at ~4(t;) and whose other axes are in the directions
~vi (L), ...,fy((id_l)(ti), respectively. Let f be the characteristic function of the
set {(z1,Z2,...,2q) € RY : 21 € (1,2), (z2/T1,...,z4/71) € UM PF;}. Note that
| £llp = 6(*=4=2)/(3) and for all £, Xf ~ 1 on a subset of H, of measure >

§%-1/2 Hence || X f|lqr = 644=1/A7) which proves the necessity of (2.4). O

~y

In light of Proposition 2.1.1, one may conjecture that

Conjecture. ! If p, ¢ and r satisfy the inequalities (2.2), (2.3) and (2.4), then

(2.1) holds.

We have the following theorem that contains one of the main results of this

thesis.

Theorem 2.1.2. The conjecture is true in R? for d = 3, 4 or 5 except the
end-point issues. More explicitly, if p, ¢ and r satisfy (2.2), (2.8) and (2.4)
with inequalities replaced with strict inequalities, then (2.1) holds in R? for

d=3,4 orb5.

The case d = 3 follows from Wolff’s above-mentioned mixed norm estimates

1Recently, the conjecture is settled in all dimensions by Michael Christ and the author [7].
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for the X-ray transform restricted to light rays [35], since in R® the space of
light rays is a rigid well-curved line complex.

If one considers the case ¢ = r only, the conjecture had been settled for
d = 3 in [14] and [31], and for the case ¢ = r and d = 4, it had been verified
except the endpoint issues in [17]. In higher dimensions, the conjecture was
verified for p=d/(d—1) and ¢ =r = (d —1)/(d — 2) in [23] and for g =r = 2
and p = (2d® — 2d)/(d® — d + 2) in [15]. Note that the results mentioned here
are valid for all rigid well-curved line complexes whereas Theorem 2.1.2 is valid
only in the model case.

In the following remark, we discuss simple estimates for X:

Remark. i) Note that (2.1) holds for all ¢ and r if p = oo, since we are
interested in local estimates.

ii) Fubini’s theorem implies that (2.1) holds for p =g =7 = 1.

iii) X is bounded from W2~ 227 to L? (see, e.g., [17] and [15]). Here WP*(Q;)
is the Sobolev space consisting of all functions f supported in ¢); such that

(1 = 2)*2flp < o0.

Proof of (iii). We prove this using the method of stationary phase. We

modify the definition of X in the following way:

X f(i(t, z)) = h(t) / f, teR, ek,

here h is a smooth cut off function. A straightforward calculation shows that
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X", the adjoint of X, is the transform

X*g(z) = / " gt 2)h()dt, € R,

—o0

where g is a function on G¢.
Using the 7T method, it suffices to prove that X*X : L2 — W@,

We have

X*Xf(z) = [ flz+sy(t)R?(t)dtds,

—

F(&)m(€)em=4de,

where

m(E) = f e2TiE O B2 (1) dt ds.

Thus, it suffices to prove that [m(&)| < [¢]7Y@D. This follows from the

stationary phase estimate (see, e.g., [27] p. 342)
’/eQﬂ'isfq(t)hQ(t)dt' S Isgl—lf(d—l). O

In light of these remarks, Theorem 2.1.2. (the cases d = 4 and d = 5) can

be obtained from the following theorem by interpolation.

Theorem 2.1.3. Letd =4 or5. Letp=q = (d+2)/d andr = (&® +d —
2)/(d? — d — 2). Then, the restricted X-ray transform X is bounded from the

Sobolev space WP#(Q1) to LI(L") for any € > 0, where @y is the unit cube in
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RY,

In [35], Wolff used the “bush” construction. It was introduced by Bourgain
in [2] and used by several other authors (see, e.g., [29]). A bush is a family
of tubes passing through a common point. The basic observation there was
the following; in the case of light rays the intersection of a bush with a tube
passing through a point far from the bush is at most a small ball.

As in [35], in the proof of Theorem 2.1.3, we use the bush construction. The
basic property of the bushes in our case is the following transversality property:
Let d > 4. If the basepoint of one bush is far from another bush, then their
intersection is at most a finite union of small balls. This is consequence of
well-curvedness. This property yields the proof in R*.

However, for d = 5, this property by itself is not enough. The reason for
this is that in R® two generic bushes do not intersect at all. We overcome this
difficulty by collecting the bushes into groups that we denote by bushfields. A
bushfield is a set of tubes intersecting a given tube that we call the basetube.
In some aspects, this object is similar to that used in [32], that came to be
recognized as the “hairbrush” (see, e.g., [19]). The main difference is that
a bushfield behaves like a disjoint union of bushes. This is because of the
following basic properties:

i) The tubes in a bushfield are disjoint away from the base tube.
ii) If the basepoint of a given bush 8 in R® is far from a given bushfield bf,

then 8N bf consists of at most finitely many small balls, as in the case of two
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bushes in R*.
To make use of these properties, we use a standard technique that is usually
called the bilinear reduction (see, e.g., [30], [29], [19] and [35]) together with

the rescaling argument in [35].
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2.2 Bush Decomposition

Fix § > 0. We work with tubes 7 C R? such that the axis of 7 is a v4-ray and
it has dimensions § x ... x § x 1. Two d-tubes are called §-separated if the
distance between their axis with respect to a (fixed) smooth metric on Gy is
greater than 4.

We say two segments of =, are disjoint if the distance between them is
positive. Fix two disjoint segments W and B of v4. We call a tube whose axis
direction belongs to W (resp. B) a white (resp. black) tube. Also fix two
arbitrary d-separated families of white and black tubes, W and B respectively.
Until the end of Lemma 2.5.1, we work with these 4, W and B.

Let @5 denotes the sum of the characteristic functions of the objects in the
set S, e.g., Py, Op.

In the Sections 2.2-2.5, we estimate the L norm of the function min(®yy, ®5).
This can be considered as a bilinear estimate for the adjoint of X. We begin
with the following bush decomposition lemma of Wolff [35]. We give a proof
for the reader’s convenience. A bush [2] is a set of tubes passing through a
common point p, that is called a base point for the bush. A white (resp. black)
bush means a bush consisting of white (resp. black) tubes. Given a set W of
d-tubes, we define a u-fold point for W to be a point contained in at least p

tubes from W or equivalently a point x such that ®w(z) > u.
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Lemma 2.2.1. Given a set W of §-tubes, we have a decomposition
w=u_Ww;, 2/= W,

such that

i) Wj is a union of < 27 bushes 3/, and any tube in W belongs to at most one
of the bushes /7.

ii) W¥ := U;5,W; does not have any [W|/2*-fold points, i.e., Dy < [W|/2F,
for all £k < J.

iii) WY 1= Uj<xW; is a union of < 2* bushes.
First, we prove the following lemma:

Lemma 2.2.2. Given a set W of d-tubes and a positive number u < |W|, we

can decompose W as

W =W, UW,,

where W, is a union of < |[W|/p bushes and W, does not have any p-fold

points.

Proof. We construct W, inductively. Take any u-fold point z; € R? for W.
The tubes in W containing z; forms a bush 3;. Let W, = 5 and W' = W\ 3.
Repeat this procedure with W), instead of W. This gives another bush ;. Let
W, = 1 U [z and Wy = W;\B. Continue to repeat this procedure until there
is no p-fold points. Since we subtract at least p tubes from W in each step, we

stop at most in |[W)|/u steps. Note that this gives W, = UL 15, k < [W|/p,
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and W, := W* has no p-fold points. O
Proof of Lemma 2.2.1. Apply Lemma 2.2.2 to W with u = |W)|/2. This gives
a set YW, with no |W)|/2-fold points and a collection Wy of bushes 3}. Then
apply Lemma 2.2.2 to W} with u = |[W)|/4 to obtain W2 with no |W|/2*-fold
points and a collection W of bushes 5?. Continue to repeat this procedure
taking p = |W)|/27 at the jth step. We stop the procedure at Jth step, where
J is the smallest integer such that |[W|/27 < 1. Note that W = U/_,W; and
by Lemma 2.2.2, W, is a union of at most |[W|/(|W|/27) = 27 bushes 5. This
yields the part i) of the lemma. Part ii) follows from the construction and part

iii) immediately follows from part i). O
Lemma 2.2.1 gives a decomposition of W into a set of bushes ﬁf At this
point, we fix £ > 0 and a tiling of @1 by §°-cubes. The letter () is reserved for

these d°-cubes. The following definitions are from [35].

Definition. A tube w is related to a é°-cube Q, w ~ @, if w belongs to a
bush Bf whose basepoint is in @ or one of its neighbors. Similarly, a tube w

is related to a point z, w ~ z, if = is in a cube that is related to w.

Definition.

Oy (z) =D Pw(z), Bw(x) =) dw(z) = Pw(z) — Bly(2).

w~x wWT

We use Lemma 2.2.1 for B too and define &5 and &% similarly.
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2.3 Main Lemma in R*; Bushes

The following lemma is the main lemma of the proof in RY. Let m = |W)|,

n= |B|.

Lemma 2.3.1. Let d = 4. With the notation in Section 2.2, for any x and v
we have
i) {z € Qu: Bw(az) > 1, &p > v}| S 6202

i) {z € Q1 : Pw(z) > p, &5 > v}| S °/2-Cenpm,

We begin the proof with the following geometric lemma about the transver-

sality of white and black 4-bushes.

Lemma 2.3.2. Fix € > 0, and let W and B be two disjoint segments of ;.
Let z and y be two arbitrary points in 2Q; and Sy (resp. Sg) be the surface
consisting of all white (resp. black) rays passing from the point z (resp. y).
Let Q. be the é°-cube centered at the point z. Then

i) the measure of the intersection of the ¢ neighborhood of Sy and a black
5-tube is < 64,

ii) the measure of the set Q; N (N (Sw,8)\Qx) NN (Sp,d) is < §-C46%.

Proof. We use the following parametrizations:
SB = {y + (a’: a't: a't2: ata) RS (_27 2)’74(75) € B}1

Sw = {x + (b, bs, bs?,bs3) : b € (—2,2),74(s) € W},
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and any black é-tube is the § neighborhood of a line

I(to, 2) = {z + (c, cto, ct3, ctd), |c| < 2},

where % is a point such that v4(¢o) € B.

i) It is easy to check that the intersection of Sy and [(to,z) consists of
at most 2 points. The claim follows from the observations that the tangent
plane T'(b, s) of Sy at the point corresponding to the parameter values (b, s) is
spanned by the vectors e; = (0, 1,25, 3s?) and e; = (1, 5,52, 8%), and the angle
between {(tg, z) and T'(b, s) is greater than a fixed constant depending on the
distance between W and B. We omit the details.

ii) It is easy to check that for fixed z, the intersection of Sy and Sp consists
of <1 points for v in a dense subset of R*. Therefore, by changing y slightly
if necessary and replacing § with 24, we can assume that Sy N Sp consists of
< 1 points.

Note that if F¥ and F' are subsets of a metric space, then

N(E,8) N N(F,8) C N(ENN(F,25),0);

hence, it suffices to prove that the induced Lebesgue measure of the set of
points on Sz N @y, that are in the 45 neighborhood of Sy \Q,, is < §-94462.
Let Ay = {2 : |z — y| € [A,2)\]}. We prove that for all A € (0,1/2), the

measure of the set of points on Sy N Ay N @, that are in the 46 neighborhood
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of Sw\Qxz is < §-C=52%. This yields the claim since Sz N Q; can be covered by

< log(d1) Ay’s.

Note that the area element on the surface Sy is

dA = f(a,t)adadt, (2.5)

where f is a bounded function. Hence, the measure of a subset of Sg N A, of
the form {z + (a, at, at?, at®) : |a — ag| < a, |t —to| < a/A} is < a?. Therefore,
by using part (i) of the lemma, we only need to show that the measure of the

set

S; := {t € [-1,1] : 3a, b, s such that |F(a,b,t,s)| < 46}

is < §°5/)\, where F': R* — R* is the function defined via

F(a,b,t,s) =z —y+ (a —b,at — bs, at® — bs?, at® — bs®).

Note that any derivative of F' of order less than two is bounded by C' and

JF = det = ab(t — s)* 2 \6°C.
0 a 2at 3at?

\ 0 —b —2bs —3bs?

Hence, a quantitative version of the inverse function theorem, for example the

one in [6], implies that F~'(B(0,44)) is contained in < 1 balls of diameter
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< 67%6/A. This shows that the measure of the set S; is < 556/, O

Proof of Lemma 2.3.1. We prove part i) only.

Let jo be the smallest integer so that m/2% < u/2. By Lemma 2.2.1, we
have ‘I’wgo < u/2. Note that @y < @ng - @vao Therefore, {<'~I>w > u} C
{il:)WgO > p/2} and it is enough to prove part i) with &)Wgﬂ instead of ®y. Also
by Lemma 2.2.1, W/° is a union of < 2% < m/u bushes. Similarly, let ko be
the smallest integer so that n/2% < v//2. Note that &g < CDB’;U + @B;co; hence,
by the same reasoning, it is enough to prove part i) with (I)Bf‘) instead of ®p
and Bf° is a union of < 2% < n /v bushes.

Denote the bushes in W/ (resp. Bi®) by B, (resp. 3). We have

1\2Q

[ty =35 [ oa0a, (26)
By Bw V@

where @ is the §°*-cube containing the base of (3,.

Now, we divide each black bush into ~ log(6~!) disjoint segments 3f. The
segment (3 consists of the parts of the tubes that are in the § neighborhood
of the basepoint, and for k& > 0, 8F consists of the parts of the tubes whose

distance to the basepoint is between 251§ and 2*¥6. We have

log(6~1

)
2603 > ZZ] D5 P, (2.7)
k g Bu V@

[
=0 1\2Q

We need the following lemma to estimate the right-hand side of the inequality

(2.7).
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Lemma 2.3.3. Fix a black bush segment SF.

i) There are < 2%%§~1 white tubes that intersect 8F.

ii) For any white bush £,, that intersects 3¢, we have

f P Pp, S 527,
@1\2Q

where () is the é°-cube containing the basepoint of the white bush (3,,.
iii) For any white tube w that intersects 3F, we have

[ Dgpx S 8°27F.

1

Proof. i) Note that there are at most 6! tubes through a given point, and (2.5)
implies that the maximum possible cardinality of a d-separated set of points
on BF is < 2%, Hence, there are at most 22*§~! white tubes that intersect 3F.

ii) Part ii) of Lemma 2.3.2 shows that the measure of the set of points that
belong to both GF and 3, is < 6*“. The claim follows from the following

pointwise inequalities:

e s
@5;: = (2.8)
P, X120 SO (2.9)
To prove (2.8), note that the angle between the axis of the adjacent tubes is

> §. Also note that the distance between the points on S and the basepoint of

(3 is at least 2%§. These show that at most 27%§~! many tubes passes through
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a given point on GF.
Proof of (2.9) is similar, since the points in the complement of 2Q) are at
least at a distance 6° to the basepoint of the bush.

iii) This follows from part 1) of Lemma 2.3.3 and (2.8). O

We continue the proof of part i) of Lemma 2.3.1. Fix a black bush segment
(F. Using part ii) of Lemma 2.3.3, and remembering that there are at most

m/p white bushes, we obtain

) / BB, S =002 ", (2.10)
b
Fe Y Q1\2Q H

On the other hand, parts i) and iii) of Lemma 2.3.3 imply that

> ] By, S 25827, (2.11)
B Y @1\2Q

Using (2.10) and (2.11) in (2.7), and remembering that there are at most n/v

black bushes, we obtain
log(6” ) n m n . m
< 2 min( = 92kg—1y§3-Ceo—k < | g Rt 1/265/2_05,

k=0

which yields the claim of part i) using Tschebyshev’s inequality. O
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2.4 Main Lemma in R’; Bushfields

The following lemma is the main lemma for the proof in R®. Let m = |W|,

= |B|.

Lemma 2.4.1. Let d = 5. With the notation in Section 2.2, for any y and v
we have
) {z € Q1 : dw(z) > p, p > v}| S 67/ Cenm,

i) [{z € Q1 : dw(2) >, &p > v}| S 67Oz,

In the proof of the lemma, we use a geometric construction called bushfield.
A bushfield is a set of tubes intersecting a common tube 7; we call 7 the
basetube of the bushfield. We call a bushfield consisting of white (resp. black)
tubes a white (resp. black) bushfield. We begin the proof with the following

lemma about the geometric properties of the bushfields.

Lemma 2.4.2. Let bf be a bushfield of white é-tubes with basetube w and
B be a bush of black é-tubes with basepoint p. Let A, be the cylinder
Ay = {y € R® : dist(w, y) € [A,2\]}. Then

i) If y € Ay, then $p(y) S A7

it) |Bf N Ax| < A%6%; hence, there are at most \26~4 §-separated tubes inter-
secting bf N Aj.

i) |(&f N Ax) N (B\N(p, 6°))| < 679¢6°.

Proof. Using the maps T}, that are defined before Lemma 2.6.2, it is easy to see

that for all s and ¢ in [—1, 1], there exists a linear map T}, that takes the curve
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s to itself and in particular takes vs(s) to 7s(¢), such that the entries in the
matrix representation of 7% and its inverse are bounded by a fixed constant.
Because of this and translation invariance, it is enough to prove the lemma by
assuming that W is a segment around ;(0), and the basetube of bf is the §
neighborhood of the line [(+5(0), 0).

Note that bf is contained in the 2 neighborhood of the set
Sy = {(11,0,0,0,0) + a(1,t, 3,3, tY)|u € (=1,1),a € (=2,2),%(t) € W}2.12)
It is easy to see that Sy can also be parametrized as
Sir = {(u, a,at,at®, at®) 1w € (—2,2),a € (—2,2),v5(t) € W} (2.13)

Using this parametrization, we see that bf N A, is contained in the 20 neigh-

borhood of
Sy = {(u, a, at, at?, at®) 1 u € (—=2,2), |al € [A\/2,2)],75(t) € W}.  (2.14)
Also as before, we define
Sp = {(b, bs, bs®, bs*,bs*) : |b| € (67%,2),vs(s) € B}. (2.15)

Note that B3\N(p, §°) is contained in the 2§ neighborhood of the set p + Sp.

i) Let bf; be the set of tubes in bf whose direction is ys(t) for some ¢ € [i, (i+
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1)8]. Note that because of d-separatedness every point in R is contained in
< 1 of the tubes in bf;. Let P? be the 2§ neighborhood of the 2-plane P,
through the origin that is spanned by the vectors 75(0) and ~5(4). Note that
all of the tubes in bf; are contained in P. Also note that the angle between

the planes P; and F; is

L(P,F) =~ L(v(i6) —75(0),75(56) — ¥5(0))

~ £((0,1,i6,(i6)%, (6)%), (0,1, 48, (36)*, (56)%)) = |i — 4.

This and the observation that the distance between the points in A, and the
basetube is approximately A\ show that any point in A is contained in < 1/
P$’s, which is the claim of part i).

ii) Note that the volume element on Sy with respect to parametrization

(2.13) is
dW = f(a,t)a dudadt, (2.16)

where f is a bounded function. This and (2.14) prove the first part. The second
part follows from the observations that there are at most A6~ §-separated
points on bf N Ay, and at most 67! d-separated tubes pass through a given
point.

iii) This is similar to the proof of Lemma 2.3.2. Using parametrization

(2.12), it is easy to check that for p in a dense subset of R>, the intersection of
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Sy and Sg consists of < 1 points. Hence, by changing p slightly if necessary
and replacing § with 24, we can assume that Sy N Sp consists of < 1 points.

As in the proof of Lemma 2.3.2 ii), it suffices to prove that the induced
Lebesgue measure of the set of points on Sy N A,, that are in the 4§ neigh-
borhood of S5\Qs, is < 69453

Formula (2.16) implies that the measure of a subset of Sy N A of the form
{(u,a,at,at? at3) : |u —ug| < a,|a —ao| < o, |t — o] < a/A} is < a®. Also
note that for fixed ¢, the intersection of the 2-plane {(u,a,at,at?, at®) : |u] <
2,|a| < 2} with the 46 neighborhood of Sy is of measure < §2. This is because
of the transversality as in the proof of Lemma 2.3.2 i). Hence, it suffices to

prove that the measure of the set
S; = {t : Ju, a,b, s such that |F(u,a,b,t,s)| < 4}
is < 67¢6/), where F : R® — R5 is the function defined via

F(u,a,b,t,s) =p+ (u—0b,a—bs,at — bs?, at’> — bs3, at® — bs*).
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Note that any derivative of F' of order less than two is bounded by C and

1 0 0 0 0
0 1 t # g
JF = det —1 —8 _.32 —33 —34 = ameB Z )\(SE,

0 0 a 2at 3at?

0 —b —2bs —3bs? —4bsd )

where Cy 5 is a constant that depends on the distance between W and B only.
Hence, F~'(B(0,44)) is contained in < 1 balls of diameter < §=¢5/\. This

~

shows that the measure of the set S; is < §7%4/\. O

Proof of Lemma 2.4.1. We prove part i) only.

Let jo be the smallest integer so that m /2% < /2. Using Lemma 2.2.1 as
in the proof of Lemma 2.3.1, we note that it is enough to prove part i) with
éwgﬂ instead of ®yy, and W is a union of < 2% < m/u bushes.

Now, we decompose the black tubes into bushfields. Let {2 be the set
{®s > v/2}. Fix a number 7 € (0, 1) which is determined later. We need the

following lemmas.

Lemma 2.4.3. Let 7 be a black tube. If |7N$2| > n|7| = nd*, then 7 intersects

> mv? tubes from B.

Proof. Without loss of generality, we can assume that 7 is the §-tube with axis

[(v5(0),0). Note that the set 7 N {2 is covered by the black tubes ~ /2 times.
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Since we are trying to find a lower bound for the number of tubes required to
cover T N /2 times, we can assume that all the tubes that intersect 7 in a
small angle are in the covering.

Let B; be the set of tubes b in B that intersect 7 and such that the direction
of b is 5(¢) for some ¢ € [id, (i + 1)d]. Note that using the tubes in B;, one can
cover the set 7N at most once. This is because of §-separatedness.

The angle between 7 and the tubes in B; is approximately 6. This shows
that |7 N b < §*/(]i] + 1); hence, to cover the set 7 N Q with the tubes in
B;, we need at least n(|i| + 1) tubes from B;. This yields the claim of the
lemma, since we have to cover the set 7 N {2 approximately v/2 times and

Y2 (i + 1) 2 0

Lemma 2.4.4. Given n > 0 we can decompose B as
B = B; \JB;,

where each tube b in B, satisfies |b N 2| < nlb|, and B, is a union of S

n/(nv?)log(6=') bushfields.

Proof. Let A be a large enough constant. Choose An/(nv?)log(6~*) tubes
from B randomly. The following claim yields the lemma.

Claim. With high probability all the tubes b in B with |bNw| > n|b| intersect
at least one of the tubes from the random sample.

Proof of the claim. Lemma 2.4.3 implies that b intersects at least nv? tubes;
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hence, b intersects none of the tubes from the random sample with probability
< (1 — q?/n)An/ @186 ~ §4. This shows that the above-mentioned
probability is > 1 — Cnd?4, which is > 1/2 if A is large enough. O

Choose such a sample. Let B; be the set of tubes that intersect one of
the tubes in the sample and B, be the set of remaining tubes. Obviously,
B, is a union of < n/(n?)log(6~1) bushfields, and any tube b € B, satisfies

|bN Q| < nlb|. 0

We continue the proof of Lemma 2.4.1. Note that
= ~ v v
{8y > 15,85 > v} C (o > 1,05, 2 S}U {08, 22} (217)
Using Lemma 2.4.4, we obtain

¥ 4
|25, X(@5,221 1 £ bezB: b {@s, = 5} S né°n.

Thus,

{25, = S} S 26t (2.18)

Now, we estimate the measure of the set {@Wgo > u,®p, > v/2} as in the

proof of Lemma 2.3.1. Denote the bushfields in B, by of and white bushes by
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Bw- We have

f 5,800 = > /Q o Dy P, (2.19)

b Puw

where () is the 6°-cube containing the base of 3,.

Now, we divide each black bushfield into = log(§~!) disjoint segments bf*.
The segment bf° consists of the parts of the tubes that are in the § neighbor-
hood of the basetube, and for & > 0, bf* consists of the parts of the tubes

whose distance to the basetube is between 21§ and 2%§. We have
log(6~1

2195 Y. Y ) Dy P, (2.20)

k=0 bk By Y@1\2Q

Fix a black bushfield segment bf*. Note that, as in the case d = 4,
Xo\20Ps, S 67°. Using this and parts i) and iii) of Lemma 2.4.2, and re-

membering that there are at most m/u white bushes, we obtain

3 f By, S ZotCOer k. (2.21)
8y Y @1\2Q o

On the other hand, part ii) of Lemma 2.4.2 shows that there are at most 22¥§—2
white tubes that intersect f*. Using this and parts i) and iii) of Lemma 2.4.2,

we obtain

> / By g, S 286777, (2.22)
Bn Y @1\2Q
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Using (2.21) and (2.22) in (2.20), and remembering that there are at most

n/(nv*)(log(6—1))? black bushfields, we obtain

log(6—1)
(2200 5 > m,z(log(é ))Qmin(%,f’“a*?)a‘*—cfz—k
k=0

& 3 M My Ce
(og(074))° 225 (21

Thus, using Tschebyshev’s inequality, we obtain

ml/2
{ @i 2 1, 5, 2 2}l nv3 L (2.23)
Using (2.18) and (2.23) in (2.17), we obtain
< M s B o e
}{‘I)Wm > u, P> v} < nV3,1L3/26 ] (2.24)

Minimizing the right-hand side of the inequality (2.24) by choosing a suitable

n yields the claim of the lemma. O
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2.5 Bilinear Estimate

In this section, we estimate the L” norm of the function min(®yy, ®g). We
need the following numerical inequalities. For proofs see [35]. Let 8 € [1/2,1]

and a;, by, a, b,z and y be nonnegative real numbers. Let
f(z,y) := min(z,y)’ max(z, y)' .
Then

flaz,by) < f(z,y)f(a,b), (2.25)

FO e > b)) < Z f(aj, bg). (2.26)

J
The following inequality is an immediate corollary of (2.26). Let a,b,c and d

be nonnegative real numbers. Then
min(a + b, ¢ + d)? max(a + b,c+ d)*? S a*?(b + ) + O (c+ d)0.(2.27)

For technical reasons, we work with the function ¥y defined below instead of
min(®yy, ). This is because of the asymmetry of the bounds in Lemmas 2.3.1

and 2.4.1. Here, 6 is a dimension dependent parameter in [1/2,1].

Definition.

Wy 1= Xy s min(@w, (I’B)e maX(QW, (I)B)l_gi
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So = Xq,- min(®}, &5’ max (3, &),
Tp = Xau- (35705 + 05, 857°).

Note that the inequality (2.27) implies that
Vo < Sy + T (2.28)

By using the estimates in Lemmas 2.3.1 and 2.4.1, we obtain an estimate
for Ty, and using the rescaling and induction arguments from [35], we prove
the same estimate for Wy. In some sense, the estimates in Lemmas 2.3.1 and
2.4.1 are stronger than the estimates we need; in the following lemma we bring

them into the relevant form using trivial estimates.

Lemma 2.5.1. Let@ =1/2ford=4and @ =4/7ford = 5. Let p = (d+2)/d

and 1/p+1/p’ = 1. Then
16Ty |15 S 6-9°(6% max(|B], W)/, (2.29)

Proof. First note that there are S 6! same colored tubes containing a given

point. Hence,
16T < 1. (2.30)

Also note that || ®@yy||; < [W[d4 L. This and the similar estimate for ®z imply
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via Tschebyshev’s inequality that

{®y > p, &5 > v} < 6% lmln(| ’ L)

Y o (2.31)

i) The case d = 4: Let

Y(p,v) = {z € Q1 : Pw(z) > p, @5 > v}
and m = |W)|, n = |B|. Using part i) of Lemma 2.3.1, we obtain

. o onm? m
Y(IU‘JV) S; 55/2 Cemln(g_m’__alﬂ)
f-" 2
5/2—C nm?/ 2/3 1/2\1/3
< GO ()

B 5(547154 )2/3

Summing over the dyadic values of ;1 and v between 1 and 6~ gives

||XQ1\/¢W®B||2§§ < 570 (5*n5tm)2/35-8/3.
Estimating ||xg, vV 25Pw|/s /3 in the same way gives
”(5T1/2||3/3 5 5_05((547’154?7?,)1/4. (233)

Interpolating (2.33) with (2.30) yields the claim of the lemma for d = 4.

ii) The case d = 5:
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Define Y (p,v) in the same way. Using part i) of Lemma 2.4.1, we obtain

1/4
< s—CePI 7" cqpn
Y(p,v) <6 I/2,U,3/46 ;

Using p < 671, we obtain

nm1/4

&% max(m, n))"/* 5-7/2
V2 3/ d

511/4 < 6—06(
~ 2372

Y (n,v) S 67

Summing over the dyadic values of y and v between 1 and 6~ gives

F3/T x4/77/2 -, -
Ixe B3 @F 1175 < 8C5(8% max(m, )55/,

Estimating ]]XQgi)%/ 7@4)4/,7“7 /2 in the same way gives
16T/ 117/a S 67C%(8° max(m, n))¥/4.

O

Lemma 2.5.2. Let 0 =1/2ford =4and 8 =4/7 ford = 5. Let p = (d+2)/d
and 1/p+1/p’ = 1. Fix two disjoint segments W and B of 4. For any 6 > 0,

we have that, for any d-separated VW and B the following inequality is valid:
|6ollz) < 57C%(8% max(|B], [W[)H . (2.34)

Proof. We begin with the following rescaling lemma.
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Lemma 2.5.3. Fix § € (0,d0) (do is determined in the proof) and assume

that the claim of Lemma 2.5.2 has been proved for §'~¢. Then, we have

16D5 17 gy < Ae87/2%((6% max(|B], W), (2.35)

P
L' (Q)

where () is a 6°-cube and where W and B are J-separated sets of tubes.

Proof. Fix a §°-cube Q. For each w € W, let k(w) be the cardinality of the set
of white tubes w; such that w; N () is contained in the double of w. Let W, be
the set of white tubes w with k(w) € [g, 2u]. Define k(b) and B, analogously.

Note that k(w) and k(b) are restricted to values between 1 and §~°. Let

UhY = xo. min(Pyw, , Bs,)’ max(Pw,, Ps,) °.

Note that (2.26) implies that

‘1’9 _<_ Z \I;,g-u’ (236)

[z

pointwise on @, where the sum is over the dyadic values of 1 and v. We
estimate the L¥ norm of the functions ¥4”. We can assume that p > v.

Let W, be a maximal subset of W, that satisfies the property:

(*): If wi,ws € W, then wi N Q is not contained in the double of ws.

Define B, analogously. Replace the tubes in W, (resp. B,) with their
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doubles and let

\ngw = X0 min(‘I’W#, @BV)G max(q)wy ; q)gv)l_a.

Note that the maximality of W, (resp. B,) implies that Py, S udy, (resp.

~

Pp, < vPg,), which implies via (2.25) that
T < OO
Taking the L norms, we obtain
195"l S #0957 |- (2.37)
Finally, note that property (*) implies that
Wal SV, 1B Sv7H Bl (2.38)

Dilating the cube Q by 6%, we obtain a cube @’ of side 1, and we obtain §'°-

separated sets W, B, of 201 ~*-tubes. Hence, we can apply the hypothesis to

obtain

|85 (65) ||¥

7y S A0 (FA N max (W], | B, )V D,
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Making the change of variables z — §°x, we obtain

55T, o) S Acd O(5 max([ W, |B, )Y/ @60 5~/ 1Y2,39)

Using estimates in (2.38), we have

AR Wi |B|
< Liha -y il
max(Wul 1B) 5 max(22, 1)
i
< = max(|W|, |B|). (2.40)

Using estimate (2.39) and then estimate (2.40) in (2.37) and making the nec-

essary cancelations, we get

Uy S M7V 5T,

A A

A

A576%(6" max(|W], |B]))¥ @ D59,
the last inequality follows from the fact that p, v < 67 when we note that

5 d

Aaé—Cs (5d maX(lV_V“L IB_V |))d/(d—-1)5052 Mﬂp’u(l—G')p’6;)’55—0!/(01—1)5

Asa—Ce(éd max(|W|, |B|))d/(d—1)5062 ‘uﬂp’U(I—G)p’—d.'/(d—l)511’55—0'5/({1—1)

(2.41)
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Using (2.41) in (2.36), we have

16Tally < > 16Tl
uy
S D A% (8 max(|W), |B|))¥ Vs
pv

< A% (8% max(|W|, |B])) ¥ @D5% 1og (5712,

since there are < log(6~!)? terms in the summation. This yields the claim of

the lemma given that dp is small enough. O

We continue the proof of Lemma 2.5.2. Note that the lemma is obvious for
§ > &, and we prove the lemma for the values of & such that §'=¢ > §;. An
obvious induction argument yields the claim of the lemma.

We estimate T using Lemma 2.5.1 and estimate Sp using Lemma 2.5.3 in

the following way. For each 6%-cube @), applying Lemma 2.5.3 to the sets
(@) ={weW:w~Q}, ng(Q):={beB:b~Q}

we obtain

d/(d—1)

188617, ) < 6957275 A, (6% max(nw(Q), n5(Q)))
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Summing over @, we obtain
4 e*/2—Ce d/(d—1
18ol[Ey < 69/ A, 3™ (6 max(nw(Q), ns(@))) "
Q

d/(d-1)
< §O*/2-Ce g_ (Z 6% max(nw(Q), nB(Q)))
Q

d/(d—1)
&« Joe-te g (5d max(D _ nw(Q), Y nB(Q))) : (2.42)
Q

Q

Note that > onw(Q) S [W| and > ,ns(Q) < |B|. This is because by
Lemma 2.2.1 each tube belongs to at most one bush; hence, each tube is

related to < 1 é°-cubes. Using these bounds in (2.42), we obtain
1980l S 8%°/2 4.875%(6% max(|W], 1)),

which yields the claim of the lemma. O
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2.6 Proof of Theorem 2.1.3

We do the rest of the proof in general dimensions. Lemma 2.5.2 and the

following theorem yield the claim of Theorem 2.1.3.

Theorem 2.6.1. Let d > 3 and € > 0. Assume that p, ¢ and r satisfy the
inequalities (2.2), (2.8) and (2.4), and r > q > p. Let W and B be disjoint
segments of vq. Assume that for any 6 > 0, and for any d-separated W and

B, we have

S 675(8% max(JW], |B])y*/",

”5 IIliIl(CI)W, ®B) ||IIJ:;U’(Q1) ~

where 1/p+1/p' =1 and 1/r+ 1/r" = 1. Then the restricted X-ray transform

X is bounded from the Sobolev space WPC¢(Q,) to LI(L").

In the proof of Theorem 2.6.1, we work with the operator

X0 = 55 [ f@)s

where 5 is the § neighborhood of [ in R?. X is simply the operator X thickened
by 4. It is easy to see that the adjoint map Xj of X; which takes functions

defined on Gy to functions defined on R? is defined via

X3 (w) = f 1 /H Xstey () F(U(2, 7))dedt.

The hypothesis of Theorem 2.6.1 is essentially a bilinear estimate for Xj; in
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the proof, we convert it to a linear estimate. The argument is quite standard,

and we omit some details; the proof below is a variation of the one in [35].
We need the following rescaling map for the curve 4: Fix a point ~4(to)

and consider the basis {v4(to), v;(%0), ...,'yéd_l)(to)} for R%  Define Ty via

Tie (P (t)) = N97P(to), 5 =10,1,2,...,d — 1.

Lemma 2.6.2. i) T3 takes the curve 7, to itself, thus taking the vzrays to

vg-rays. Moreover, we have the following formula:
TR (va(t)) = 7a(N(t — to) + to).

ii) T3 takes a segment of length N1 centered at v4(to) of the curve v, to a

segment of length ~ 1.

Proof. We prove that T3¢ (va(t)) = va(IN(t — to) + to), which yields the claims
of the lemma. Let A be the d x d matrix whose ith column is 5 ' (%), i.e.,

A = [yalto) Vilto) . v (t)] and B = diag(1, N, ..., N*-1). Note that
T (ya(t)) = ABATML, ¢, 8%, ..., ¢ 1T, (2.43)
Let f(t) = t/. Using the equality

) = £(t0) + £t~ 1)+ .+ SO ETL, (2.44)
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and the definition of v4(t), we have

— $:)2 4 \d-1
[11 ta weey tdAl]T = A[l;t = t(), (t to) (t to) ]T

o @1 (2.45)
Using (2.44) and (2.45) in (2.43), we have
feta)  ([Bde)t
Tto - _ ( 0 0 T
N(ﬂyd(t)) AB[lvt lo, 21 g % (d — 1)' ]
_ oy (NE—t)?  (N(t—t)* p
= A[l,N(t—tp), % R I*. (2.46)
Using (2.45) by replacing ¢ with N (¢ — t9) + o, we obtain
(2.46) = [1, N(t — to) + to, ..., (N(t — to) + t0)* Y] = ya(N(t — to) + to).
O

Let s be a segment of the curve -4 of length N~! centered at ~4(ty). We
denote T3 by T, and we denote the subset of Gy consisting of all lines whose
directions are in s by G§. Since T} takes yg-rays to y4-rays, there is an action

Ts : G4 — G4. We give some more definitions:

Definition. Let Y be a subset of a metric space. We denote the characteristic

function of N (Y,7) by Xy

Let Y be a subset of G, then we have

1, dd—1)
lP,T ~Nv'w ¢y || o,

() lIxzy

. 1 a1
(i) [Ixtvsller S NPT = |Ixvemliprs
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(i) X5xv (z) = N7 Xixy (Toz).

To prove (i), note that T expands s by a factor ~# N by Lemma 2.6.2, and
for any v4(t) € s, T expands volumes in H; by ~ N49-1/2 Thjs follows from

the observations that
det(T;) ~ N.N2.. . N¢-1 = Ndld-1)/2 (2.47)

and T essentially preserves the lengths in 4(¢) direction. Inequality (ii) fol-
lows from (i) and the observation that N(T,Y,d) C TN (Y, C5/N). Finally,

inequality (iii) follows from the fact that T, expands s by a factor ~ N.

Lemma 2.6.3. Fix a large constant C. Let € > 0, d > 3 and p,q,r be as in
Theorem 2.6.1. Let Z C Gy and R be a subset of R? such that for any ~vg-ray I,
N(l,6) N R is contained in a cube of side 1. Let S be a subset of R satisfying:
If x € S, then there are two segments s; and sy of 74 such that

i) s, and s are of length C1,

ii) The distance between s; and s is at least C1,

iii) min(X5(xzna., ), X5 (Xznc.,)) = -
Then,

19| S 67077 |Ixzsll% -

Proof. First note that it suffices to prove the lemma with R replaced with Q).
To see this, assume that we have proved the lemma for cubes of side 1. Tile

R by cubes of side 1, R = U;Q* say. Let Z* be the § neighborhood of the set
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{le Z:N(1,6) N Q" # 0}. Note that

S| SE1SNQY S0~ X, lIxz:

o,
g

pl
q

S 0N i xzlly e S 0% lIxze

the third inequality follows from the fact that p’ > ¢ > ¢/, and the last
inequality can be obtained by noting that for any yg-ray {, N'(l,d) intersects
< 1 of the cubes Q.

Also note that 74 can be covered with < 1 segments of length slightly larger
than C~! so that any segment of length C~! is contained in one of the segments
in the covering. The set C of pairs of the segments in the covering has < 1
members and for any pair of segments s; and sg as in the lemma there is a
pair (c1,¢2) € C so that s; C ¢;, i=1,2. Hence, it suffices to prove the lemma
assuming that the segments s; and sy are independent of x.

Let Z; = ZN G, i =1,2. Let W (resp. B) be d-separated subsets of Z;
(resp. Zs). Denote the characteristic function of the § neighborhood of w € W
in G4 by D, and the characteristic function of the Cé-tube whose axis is w
by Xw. Note that X}D,, < dxw. Hence, X;7Z1 S 6) ., Xw = 0Pw. Similarly,

we have X;Z; < 0®p. Using these and the hypothesis of Theorem 2.6.1, we

~
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obtain

“min(X§XZlaXgXZz)”ip'(Q,) S Hdmjn(@w’q)g)“i”"@l)

A

6=(8% max(|W), |B|))F/"

< 6 max(|N(Zy, 8)|, IN (Zs, )| )/

24

/SJ 575”)(2,5[ vl 5 5_E”XZ,5“5:,T’;

we used the fact that ¢’ > 7 in the last inequality. This yields the claim of

the lemma using Tschebyshev’s inequality. O

Lemma 2.6.4. With the hypothesis of Theorem 2.6.1, we have

1XGxv 2w @ S 8 llxvisllg

for any Y C Gg.

Proof. Below, we prove that
{z € Q1+ Xixv(z) 2 M S 6737 Ixwsl e (2.48)

This yields the claim of the lemma as in the proof of Lemma 2.5.1. Note that
(2.48) is obvious for A < §%, where B is a large enough constant. The reason
for this is that the left-hand side is bounded by 1 and the right-hand side is
> 1if X is small and Y is non-empty. Therefore, we assume that \ > §5.

Now, we prove (2.48). Fix a sufficiently large constant C' that depends on
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eand B. Let A = {z € Q1 : Xxv(z) > A} and A, be the set of all points

x € ()1 such that

i) there are two segments s; and s, of length o of ~,,

ii) the distance between s; and ss is between ¢ and Co,
iii) X5(xvne,,) > C™16°A fori=1,2.

We claim that U, A, 2 A, where the union is over dyadic ¢ > 6%, where K
is a constant which depends on B.

Let z € A. Let ¢ be the smallest number such that Xj(xyvng,)(z) >
(Co)/E ) for some segment s of length Co. Note that the lower bound for
A implies that ¢ > ¢%. Divide s into ~ C segments s; of length o. Since o
is minimal, for any segment s;, X5 (xvne,,)(z) < /%X, On the other hand,
> X3 (xvne., ) (@) = X;(xyne.)(z) > (Co)*/® . Hence, there should be at
least 3 segments s; such that X;(xyng,,) = C'o/% A, which proves the claim
since o > 6%.

By pigeonholing, there is a o such that |A,| = 6°|A|. Using the rescaling
maps and Lemma 2.6.3, we find a bound for |A,|, which is independent of o.

To do this, consider a covering of v4 with C'o-segments s; with bounded
overlap. Let A’ be the set of points € A, such that the two o-segments in
the definition of A, are contained in s;. Note that A, = U;A%.

Fix one of the s;’s. Note that the sets R = T;,(Q1), Z = Ts,(Y N G,,) and
S = T, (A!) satisfy the hypothesis of Lemma 2.6.3 with n = 6 'A. R satisfies

the hypothesis since Ty, essentially preserves distances in vy direction. Thus,
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using Lemma 2.6.3, we obtain
T AL S 67507 N Ixm, g el e (2.49)
Using property (ii) of the map 7,, we have

;o Ly dld=1 .
(249) < 567 N o 7T 5 xyeg,, sl

Using (2.47), we have

2 —1) e | dfd-—l! 7
|48] S 6750 T (0™ W) P o @) | [xyng,, ol - (2.50)

d(d—1) P’O-_pl(El""d_(g_r_’l_)

Equation (2.3) implies that 0~ 2 o ) < 1. Using this in (2.50),

we obtain
|4L] S 67X |l xvng,o0ll% (2.51)

Now, note that the sets N(Y N G, 00) have bounded overlap. Thus, using

(2.51), we get

4.1 < S 14L

S A7 S Ixvncaesl?

Si

S 5N vl S 67T vl

q' o~
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the last inequality follows from the observation that N (Y, 0d) C N(V,6). O

Proof of Theorem 2.6.1.

Using duality, Lemma 2.6.4 implies that

| Xsfllzezry S 0% fllzecqu)- (2.52)

Now, we trade € derivatives for the ¢ factors. This argument is standard;
we follow [33] and omit the details. We can assume that || f||w=s=1. Using a
suitable partition of unity (see, e.g., [33], p. 597), one can find functions f;,
j = 1,2,... with Fourier support in {£ : [¢] ~ 27} such that 3 .2"| f;ll, S

|| fllwee = 1 for small n and
IXFIS 1+ [ Xas £l (2.53)
J
Using (2.53) and (2.52) with € = 7, we have
1XFllgr S 1+ 1Ko fillar S 1+ D27 Ilfills S 1,
j J

which is the claim of Theorem 2.6.1. O
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Chapter 3 Elliptic Maximal Function

3.1 Overview and General Discussion

In 1986, Bourgain [1] proved that the circular maximal function

Mof (@) =sup [ f(z+ts)do(s)

t>0 Jg1

is bounded on LP(R?) if p > 2. Different proofs were given in [22] and [26].

In [24], Schlag generalized this result and obtained sharp L? — L9 estimates
for Mg.

In this part of the thesis, we attempt to generalize Bourgain’s theorem in a
different direction; we consider a natural generalization of the circular maximal
function by taking maximal averages over ellipses instead of circles.

More explicitly, let £ be the set of all ellipses in R? centered at the origin
with axial lengths in [1/2,2]. Note that we do not restrict ourselves to the
ellipses whose axes are parallel to the co-ordinate axes. The elliptic mazimal

function, M, is defined in the following way: Let f : R? — R, then

I .
Mf(z) = sup = /E f@+s)do(s), zeR

where do is the arclength measure on E and |E| is the length of E.
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We are interested in the LP mapping properties of M.
Proposition 3.1.1. M is not bounded in L? for p < 4.

Proof. 1t is easy to see that M is not bounded in P for p < 4 by applying it
to the characteristic function, fs, of the d-neighborhood of the unit circle and
taking the limit § — 0. A simple calculation shows that for all z € B(0,1),
we have M fs(z) > 6'/%. Therefore, ||M||, = 6'/4, whereas | fs||, = 6/7.

To prove that M is not bounded in L*, consider the function
g5(x) = (11 = ||| + 6) ™ *xB21nB0)- (3.1)

Note that ||gs||s = log(1/6)*%. On the other hand, we have M gs(x) 2 log(1/6)

for all z € B(0,1) and hence | Mgs||ls 2 log(1/5) (see [24] for the details). O

In light of Proposition 3.1.1, one may conjecture that M is bounded in LP
for p > 4. We are far from proving this conjecture. However, we obtain some
non-trivial estimates for M. We will state our results for the key exponent
p=4.

The setup is the following; we work with the family of maximal functions:

1
Msf (z) = sup 72 f LT (3.2)

where EY is the § neighborhood of the ellipse F and | E?| is the two- dimensional

Lebesgue measure of £%. We investigate the L* mapping properties of Ms.
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Applying M; to the functions in (3.1), we see that the inequality
Msflla S A flls  6>0 (3-3)

can not hold if A (6) = o(log(1/6)**). On the other hand, estimating the right-
hand side of (3.2) by 61| f||; implies that ||Msf||1 < 67| f|l. and estimating
it by || f|leo implies that |[Msf|le < ||f]lco. By interpolating these bounds, we
see that (3.3) holds for A(§) = §—1/4,

Let E° denote the §-neighborhood of the ellipse . We have the following

basic property of the elliptic annuli.
Lemma 3.1.2. Let E; and E; be ellipses such that the distance A between

their centers is > 6%/°. Then

55/4
|EY N B3| S ATE’

We prove this lemma in Section 3.2 (Theorem 3.2.1(i)). Now, using this
lemma and Cordoba’s L? Kakeya argument [8], we prove the simple fact that

(3.3) holds for A(8) = 63/16,

Lemma 3.1.3.

IMsflla S 7| flls, &>0.

Proof. The lemma follows by interpolating the trivial L* bound with the
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following restricted weak type estimate:

Msfll200 S 5% flla,1- (3.4)

Fix a set A in B(0,1) and A € [0,1]. Let Q@ = {z : Ms(xa) > A}. Take a

§-separated set {zi, ..., T} in . We have
Q| < mé?. (3.5)

For each z;, choose an ellipse E; such that [Ej N A| > M. Using Cauchy-

Schwarz inequality, we have

mox < Y IEInAl= [ e
Jj=1 J

< LAY xmsl2
-

1/2
= |A]\2 (Z|Ean;§|) . (3.6)

gk
Now, we estimate the sum Y, |E? N E}| using Lemma 3.1.2. We have |E} N

E| < = given that |z; — x| = 6%/°. Using this, we obtain for fixed j

~ Tzl

5/4
'———5'—1/4d$ -+ (S_Z f 5d$

120;—a|z62/5 [T — 2] gl <525
5—3/4

S IBNE| S &7
k

A
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Thus,

> BN Ef| S méS/ (3.7)
ik

Using (3.7) in (3.6), we have
méA S |A|M2(ma—34)2,

Hence

1/2\ 2
ol sme? 5 (57on A=)

which proves (3.4). O
We have the following improvement:
Theorem 3.1.4. For all ¢ > 0, inequality (3.3) holds with A (§) = 6-1/857¢,

Theorem 3.1.4 is a corollary of the following stronger theorem, which is the

main result of this chapter.
Theorem 3.1.5. || Msf|laa/z,00 S 72| 10g(8) %4 f|l2,1-

In the proof of Theorem 3.1.5, we use a combinatorial method of Kolasa
and Wolff [18], [34].

Note that in the proof of Lemma 3.1.3, we assumed that any two ellipses
can be third order tangent to each other in a given set of ellipses. However, in

Section 3.3 (see Theorem 3.3.1), we obtain a Marstrand’s three circle lemma
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[20] type result for ellipses and use it together with the combinatorial method
to obtain a bound for the third order tangencies. This is the main ingredient
of the proof of Theorem 3.1.5.

This technique was also used in [24], [26], [25] and [21].
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3.2 Intersection of Elliptic Annuli

The proof of Theorem 3.1.5 utilizes an analysis of the intersection properties
of elliptic annuli. In this section and the next one, we obtain the necessary
geometric facts about ellipses. The main result of this section is Theorem 3.2.1
below. It gives a bound for the measure of the intersection of two elliptic
annuli. Let B¢/ denote the ellipse {z € R? : (2=21)2 4 (22;—21)2 =1}, and let
E>%9 denote the ellipse %/ rotated counter-clockwise by an angle § around

its center. Let N(A, d) denote the § neighborhood of the set A. Also let d(z,y)

denote the distance between the points z,y € R2.

Theorem 3.2.1. Let d(z,y) = A 2 6*5. Then
i) the measure of the set N(E&58 §) NN (E2,6) is S 6(8/A)Y4,
ii) if the measure of the set N(EST? 86) N N(E*,8) is 2 §(6/(uA))M4 1 £

u << (A/6)'/3, then we have
min(|(fe)** — (ab)**(1 £ dap(2,))]) < min((ud)*/48%, u¥2(5/A)172),

where dap((p1,D2), (01, g2)) = ((p1 — Q’1)2/a2 + (g — Q2)2/b2)1/2-

In the rest of this section, we prove Theorem 3.2.1.
Let S* denote the unit circle. First, we find a relationship between the pa-
rameters z, 2, e and f of an ellipse £ and the measure of the set N'(ESf, §)N

N(S1,5). We begin with the following basic lemma.

Lemma 3.2.2. Let N be a positive integer. There exist constants K; and Ko
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such that for all a > 0 and for all 6 > 0, we have

N
Z Iailai >0 = dz; € (0, KIO{) and z, € (—KIO{,O)

=0

N
such that |Za¢-a:§-| = Kad, §=1.2
1=0

Proof. The statement is trivial if @« = 1, and the general case follows from this

by the change of variable y = za. O

Let S} be ST N {z € R? : 25 > 0, |z1]| < 2/3}. In the proof of the following

theorem, we use without mentioning equalities of the form
le—fl=le—f°|, 0<e1<ef<e<oo, seR\{0},

where the implicit constants depend on s,¢;, co.

Theorem 3.2.3. Let d(z,0) = A > 6%/5. Then
i) the arclength of ESf N N(S},8) is < (6/A)V4.
i) if |EST N N(SE,0)| 2 (8/(wlA)4 for some 1 S u << (A/S)V3, then we

have

|z1] < min(u®?(6A)Y2,u¥4(5/A)%Y), (3.8)
If —€*| S min((ud)¥46Y4,4¥2(5/A)'?), (3.9)

lza+ f—1] < min((ud)¥46Y4 u32(6/A)12). (3.10)

~J



56

Proof. Consider the function

f(z) =z + (1~ ((z — 21)/e))/* — (1 — 2*)/2,

Take a point ¢t € (—2/3,2/3) such that |f(¢)| < §. Note that the set E&f N
N(S1,0) consists of at most four connected components. Hence, it suffices
to prove that there exists z; € (t — (§/A)Y4,t) and x, € (¢t + (§/A)V4)
such that |f(z;)] > & for j = 1,2, and if #; or z5 are not in the (§/(ud))/4
neighborhood of ¢ for 1 < u << (A/8)'/3, then (3.8), (3.9) and (3.10) are
valid.

We consider the first five terms of the Taylor expansion of f(z) around ¢.

Let w := (1 — (t — 21)2/e*)~/2(1 — ?)1/2. We can assume that w = 1.

[@ = z+(fw =11 -2
+ [(e—J;(zl —tHw+t)(1— tQ)"I/Q] (x—1t)

+ 2a-ersea - Lot @i

+ % (1—t2)"5/2(t—w5§4(t—z1))] (z—1)°

- é (1— 27214 482 — "f(1+4(t )2/62))j| (z =)
1 [ 3+42 f 3¢2 + 4(n — 21)?

+ g [T~ S ] (0=
n e

(t—|z—t|,t+ |z —t|).

= ap+ai(z —t) + as(z — t)* + ag(z — 1)° + as(z — t)* + Er.
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Choose u such that

4 i/4
Z )
i=0 a (E) =

We have

la;] < (uA)i/451“i/4 ford=10,1,2,8.4.

We consider two cases:

(i) v 2 (A/§)Y3. Lemma 3.2.2 shows that if we omit the error term Er, then
the arclength of the intersection is < (6/A)/3. It is easy to see using the
hypothesis A 2> §%/° that the error term is not significant.

(i) u << (A/6)Y/3. Using the definitions of ag, ay, az and az, we obtain

21— )72 4 fu~l =1+ 0(6), (3.11)
-é;(t 2w = £ + O((uA) /45314, (3.12)

éwB = 1+ O((uA)2§?), (3.13)
Lt — s = £+ O((ul45/%). (3.14)

Substituting (3.13) into (3.14), we obtain
(ef)™H3(t — 21)(1 + O((uA)Y25/2)) = ¢ + O((ul)*/*5/%), (3.15)

which implies that

el/s t—2z1 1
(m—l) pum

—521 — t = O((uA)3/45M4). (3.16)
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Substituting (3.13) into (3.12), we obtain

f2/3
ed/3

which implies that

o4/3

15(1—}2—/3

Subtracting (3.15) from (3.17), we obtain

(£~ 2) (F4° — €03 + O((uh)/25/2)) = O((ua)454),

Substituting (3.13) into (3.11), we obtain

f4/3

z(1 -2 4 (Gr == O((ud)/25/2).

Now, there are two cases |z3| &= A or |z1| = A.

Case a) Assume |z3| &~ A. Equation (3.20) implies that

le — f?| = A.

Using this in (3.19), we obtain

t — 21 = O(W®4(6/A)Y4),

(t—2)(1+ O((uA)!/26'2)) = t + O((udr)/*6%4),

) = 21 + O(|z1 — t|(wA) Y252 4 (wA)/463/4).

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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which implies using (3.17) that

t = O@W®(6/A)M4). (3.22)

Using the fact |e — f2| = A and (3.21) in (3.16), we obtain

t—Zl

ke s O((uA)¥/451/%).

This and the definition of w implies that

w =1+ O((ud)¥464),

On the other hand, using (3.21) and (3.22) in the definition of w, we obtain

w =14 O@*?(5/A)/2).

Hence, using (3.13), we have

|f — €2 < min((uA)¥46Y4, u32(6/A)/2). (3.23)

Using (3.21), (3.22) and (3.23) in (3.18), we obtain

21| < min(u¥2(8A)Y2, u¥4(5/A)3/4). (3.24)
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Finally, using (3.22) and the estimates for |w — 1| in (3.11), we obtain
|22 + f — 1| < min((uA)¥4Y4 4325/ A)?). (3.25)
Case b) Assume |z;| &~ A. Using (3.18), we obtain
f—e~ A, [ ~A. (3.26)
Using (3.13), we obtain
(WP = 1)(F/2P5 + (/2 — 1 = O((uA) 2647,
which implies using (3.26) that
lw? — 1] = A. (3.27)
Using the definition of w, we obtain
w? — 1= (t—2)%/e® — 2.

Hence (3.27) implies that

- tl ~ A. (3.28)
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Using (3.15), we obtain

el/3 t—z t
_I__

(m*‘l) ’

Ay (b)),
which implies using (3.28) that
le = f2||t — 21| = A.

Hence |e — f2| 2 A and (3.20) implies that |2z3| = A. Thus the estimates that
we obtained in case a) are valid.

Applying Lemma 3.2.2 (with K¢ instead of the 4 in the lemma, for a
sufficiently large K;), we see that |f(z) — Er| > K9, for some z; € (¢t —
K(6/(uA))Y4,0) and x5 € (0,1 + K(6/(ul))'/4).

Now, we prove that

Er = O(5)
for z € (t — K(6/(ul))Y4,t + K(6/(uA))*/4). Note that the estimates that
we obtained in part a) imply that

le— 1, |f —1]| 5 &

Let

(3+4n?)
h(n) == %—_—n)-g—/z—.
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‘We have

Br| < () — Zh(=E)) e — o

= e

((m) — R(P=2) + A2y —~ Lyl — o

—
S (=224 A)fz — 1 S (Inle = )l + || + Al — o°
0
< - \5/4
S A
< 4

Finally, we prove that uw can not be << 1. Assume that v << 1. Using the

definition of a4 and the estimates we obtained above, we obtain

t—zl

84

R R A A R T I it R

LV

A.

Hence, u can not be << 1. This yields the upper bound for the arclength of

the intersection. O
Let miny (A + B) denote min(A + B, A — B).

Corollary 3.2.4. Let d(z,0) = A > §%/5, Then
i) The arclength of E&f N N(S,6) is < (§/A)14,

i) if it is > (6/(uA))Y4, 1 < u << (A/§)Y/3, then we have

min(|(fe)** — 1 & d(z,0)]) S min((ud)* 454, u??(8/A)'/%).
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Proof. We divide A(S?, §) into four segments; N (S, §) = UL, N (S5}, 6), where

N(S1,6) is as before and N(S}, §) is obtained by rotating A/(S}, ) around the
origin i7/2 degrees. Note that if the intersection of the ellipse with NV (S, 6)
is large, then its intersection with one of NV(S},d) should be large, too.

Let |[E&f NAN(SE,68)| > (6/(ul))M4, for some 1 < u << (A/§)Y/3. Triangle

inequality and (3.8) imply that
min(|y, +d(2,0)]) < 2] S min(u®/2(§A)Y2, u¥*(6/A)*4), (3.29)
Equation (3.9) implies that
17 = (e 2 1f — €] S min((u)/ 464, w32(3)).

Hence, we have

f—1=(fe)*® — 1+ O(min((ul)346Y/4, u3/2(%)1/2)). (3.30)
Using (3.29) and (3.30) in (3.10), we obtain

min(|(fe)** — 1 £d(z,0)]) < min((uA)*/45'4, u"””(%)m)-

Applying Theorem 3.2.3 (after a rotation) also in the cases where N(S}, )

is replaced with N'(S},d), i = 2,3,4 yields the claim of the corollary. a

Proof of Theorem 3.2.1. By a dilation, a translation and then a rotation, we
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can transform Eg;ijo into S* and E&fY into B¢/, We have

ef
ab

d(w,0) = dap(z,v);

enfi =

here the first equality holds since the area of the region inside E&¢ is equal
to the area of the region inside E2%1 times ab.
The claim follows by applying Corollary 3.2.4 to E£»/1, S and using the

fact that for any sets A and B, we have

N(A,8)NN(B,8) c N(ANN(B,25),5). O
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3.3 Two Ellipses Theorem

Theorem 3.3.1 below is the basic ingredient of the proof of Theorem 3.1.5. It
can be considered as a Marstrand’s three circles theorem [20] type result for

ellipses.

Theorem 3.3.1. (Two ellipses Theorem) Fix A 2> 6*°, d 2 6 and u > 1.
Toke any two ellipses Ey and Ey such that the distance between their centers

(c1,co Tespectively) is approzimately d. Then the d-entropy of the set

S:={zeR?: |z —¢| 2 A, i=1,2, 3 an ellipse E centered at z such that
|E° N Bf| 2 6(8/ul),i=1,2,}
18 S 5_2d11T| log(5)|u3/4(5/ﬁ)1/4
Proof. By making the suitable translations, rotations and dilations we can

assume that E; = S' and E; = E2®, where |y| ~ d. Since the statement of

the theorem is void if u > (A/8)/3, we can further assume that u << (A/8)%/3.

Denote u*/?(6/A)'/? by &, and consider the functions

F(z) = (Jal* dap(z,y)®),

G(r,s) = min(|-1+ VT 4 (ab)2(1 £ /3))).
Theorem 3.2.1 implies that the set S is contained in the set

§={zeR?: |z| 2 A, dz,y) 2 A, GF(x) < &} (3.31)



66
It is easy to see that the measure of the set Be := {(r,s) : G(r,s) <&} is S¢&

(note that & < 1).

Below, we prove that the measure of the inverse image of a set of measure
¢ under F is at most (£/d)Y/?(|1log(é/d)| + 1), which yields the claim of the
lemma.

Let B¢ be a set of measure £ and A, be the set where the Jacobian of F,

JF, is less than . Co-area formula (see, e.g., [12] Theorem 3.2.3) implies that

- §
|F~H(Be)| S 14y] o (3.32)
Claim. |A,| 5 (n/d)(|log(n/d)| +1).
Proof. Without loss of generality, we can assume that |y;| = d. Tt is easy

to calculate that

~ z1(z2 —y2)  m2(T1 —y1) o a? =0 my L Z2Y1
- b2 B a? TURTaR T R a?

JF

Hence,

T1y20> < na*b? )
z1(a? — %) +116?) " ™ |z1(a? — B2) + 02|

(3.33)

A, ={z €eR?: 3y € (-2,2),|z2 —

This shows that if |a®2 — 8%| << d, then |A,| < n/d. Now, assume that



67
|a? — b?| = d. (3.33) implies that

nab?
<
|4, < / min( (@ —b2)+y eI 1)dz;

S 2(1oeDi+1),

which proves the claim.
Claim of the theorem follows from (3.32) and the claim above by choosing

n = (&d)M2. O
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3.4 Proof of Theorem 3.1.5

Let ACR?,0< A <1and Q= {z € R?: Msxa(z) > A}. We need to prove

that
24/7
15 (1og @ P52 P )

Without loss of generality, we can assume that A C B(0,1). Let {z;}}1;

be a maximally & separated set in §). Note that
12 < Mé&% (3.34)
Choose ellipses I; centered at z; such that
|EZ N Al > ME?| = A6

‘We have

M

M
Mox S SIBNAI= [ >
j=1 Azm

M
< JAPPYS Xl
g=1

A

M 1/2
= |A\1/2(Z|E§0E;§|) : (3.35)

jk=1
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Let

; 4]
S = { (1) a5 = 2l € (8,20),6(50)" < |5 0 B < 8(00) ).

Using this notation, we can estimate > 5_; |22 N EJ| as

M
SIENE S Y. leMw )1/4+ZammM56/5)

3,k=1 52/5<A<1 w 7=1
1/4 17/12 ¢3 10
. ZISMM(—)/ + MYT/1263/
525<AL1

(3.36)

where the summations are over the dyadic values of A and the dyadic values

of u € (1,(5‘K) (since the terms with u greater than a high power of 6!

makes negligible contribution, and Lemma 3.1.2 implies that Sa, is empty if

A > §2/5 and u << 1).

Now, we find a bound for the cardinality of the set Sa , using Theorem 3.3.1.

Consider the set of triples:

Q = {7 ki ks): |z — 2| € (A,24),

9 \i/a s 5
— < EZ_ E' < ——
5(’U,A) < BN kl < 5(2uA)

We calculate the cardinality of @ in two different ways. Let

= |{k: (j, k) € Sau}|

/4 5 =1,2}.

Note that there are at least S? triples in @ whose first co-ordinate is 5. Hence,



we have
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M M 1/2
1Saul =D 8 < M2 (Z S;‘) < (M|QNY2.
j=1 i=1

(3.37)

On the other hand, we can choose k; in M different ways, and for fixed k,

there are at most min (M, d*/§*) indices ks such that |zx, — x| € (d,2d). For

any such (ki, k2), by Theorem 3.3.1 and J-separatedness, there are at most

52 min (|1og () |d—/23/4 (5/A)1/4,A2) indices j such that (j, k1, k) € Q.

Summing over dyadic d € (J, 1), we obtain

2
Al & ) win (M ’ 'fsl—z) < min (|1og (8) [d~/*u" (8/A)*, A7)
d

A

52

M [ (Muw)¥*
?57‘ log (§) | min ((TA%/T’MA2 ;

Using (3.38) in (3.37), we have

[SA,'LJ

N

A

A

(M|Q))"*

M o (Muy*?
7| log (6) |'/? min (((5A))1/8 ,Ml/zA)

M 12 [ (Mu)*’® e 1/2 A\ 1/3
T| IOg(a)l (5&)]‘/8 (M A)
M17/12

§13/12

| 108(8) /2 (uld) /%

(3.38)

(3.39)

Using (3.39) in (3.36) together with the fact that there are at most log(d)?
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terms in the summation, we obtain

= 5 \ Y4 ppir2
Z IEij’i' 5 Zzé ("ELE) WI]Og(5)11/2(uA)1/4+M17/1263/10
A u

Jk=1

< M8 10g (6) |32, (3.40)
Using (3.40), (3.35) and (3.34), we have
AP/ 2T
01 S 30 5 (g () 4515 ) (3.41)

which yields the claim of the theorem.
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