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Abstract

A hybrid weighted essentially non-oscillatory (WENO)/centered-difference (CD) nu-

merical method, with low numerical dissipation, high-order shock-capturing, and

structured adaptive mesh refinement (SAMR), has been developed for the direct nu-

merical simulation (DNS) of the multicomponent, compressive, reactive Navier-Stokes

equations. The method enables accurate resolution of diffusive processes within reac-

tion zones. This numerical method is verified with a series of one- and two-dimensional

test problems, including a convergence test of a two-dimensional unsteady reactive

double Mach reflection problem. Validation of the method is conducted with ex-

perimental comparisons of three applications all of which model multi-dimensional,

unsteady reactive flow: an irregular propane detonation, shock and detonation bifur-

cations, and spark ignition deflagrations.

The numerical approach combines time-split reactive source terms with a high-

order, shock-capturing scheme specifically designed for diffusive flows. A descrip-

tion of the order-optimized, symmetric, finite difference, flux-based, hybrid WENO

/ centered-difference scheme is given, along with its implementation in a high-order

SAMR framework. The implementation of new techniques for discontinuity flagging,

scheme-switching, and high-order prolongation and restriction is described. In partic-

ular, the refined methodology does not require upwinded WENO at grid refinement

interfaces for stability, allowing high-order prolongation and thereby eliminating a

significant source of numerical diffusion within the overall code performance.

A minimally reduced irregular detonation mixture mechanism (22 species and

53 reversible reactions) is developed and combined with the WENO-CD numeri-

cal method to accurately model two-dimensional hydrocarbon (propane) detonations

with detailed chemistry and transport. First of its kind, resolved double Mach reflec-

tion (DMR) detonation simulations with a large hyrdocarbon mixture are presented.

Detailed discussions and comparisons of the influence of grid resolution, lower-order

numerical methods, and inviscid approximations are made in addition to the detailed

presentation of fluid dynamics found in an unsteady, highly unstable, reactive DMR



v

simulation. Also conducted are direct experimental comparisons to soot foils and

schlieren images with an unresolved large-scale propane detonation channel simula-

tion.

The numerical method is also applied to the DNS of two other problems, det-

onation/shock bifurcations and spark ignited deflagrations. Through the resolution

of viscous/diffusive scales, new insights into how a bifurcated foot develops after a

detonation end wall reflection, and how geometry can influence the development of a

flame kernel after spark ignition are found.
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1

Chapter 1

Introduction

Reacting flows have been a topic of on-going research for more than a hundred years.

The interaction between hydrodynamic flow and chemical kinetics is complex and

even today many phenomena are not very well understood. One of these phenomena

is the propagation of detonation waves in gaseous media. Another is the statistical

nature of the formation of deflagrations through spark ignition.

Detailed understanding of detonation ignition and propagation in gases is vital

for accessing the threat from accidental explosion in piping systems of petrochemical

or nuclear fuel processing plants, but also for the innovative propulsion system of the

pulse detonation engine. Safety to accidental detonation is especially important in

the construction and design of hydrogen delivery systems that are a prerequisite for

establishing hydrogen as an alternative energy source (142).

Determining the risk of accidental ignition of flammable mixtures is a topic of

tremendous importance in industry and in aviation safety. Experimental work has

been done to determine the flammability limits of various fuels in terms of mixture

composition (8),(34). These studies were all performed using a very high energy spark

ignition source that is assumed strong enough to ignite any mixture with compositions

within the flammability limits. It is known that there is a limiting strength of the

ignition source. If an ignition source is not strong enough, or is below the minimum

ignition energy (MIE) of the particular mixture, the mixture will not ignite. While

the numerical modeling of the growth of a flame from a hot gas volume created by

an ignition source has been considered for simplified chemistry and transport models

or detailed models with unresolved diffusive effects, much is still unknown for real

mixtures with detailed chemistry and transport.
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1.1 Detonations

1.1.1 Detonation Theory

Detonation is a process of supersonic combustion in which a shock wave is propagated

and supported by the energy release in a reaction zone behind it. It is the more

powerful and destructive of the two general classes of combustion, the other more

common one being deflagration. In a detonation, the shock compresses the material,

thus increasing the temperature to the point of ignition. The ignited material burns

behind the shock and releases energy that supports the shock propagation.

The first successful detonation theory was the Chapman and Jouguet (CJ) model

to predict the detonation front speed using the conservation laws and thermodynamic

properties. Once the detonation velocity is known, the mean flow of the final trailing

gas can be completely determined without any consideration of the front. The wave

speed is determined by the extent of reaction before the sonic surface is reached, and

in this model the reaction is essentially complete at this point making the wave speed

independent of the chemistry. This approach is adequate for most simple engineering

purposes (98).

As experimental visualization tools improved, more was discovered of detonations,

particularly, the finite thickness and multi-dimensional structure. At the head of the

detonation wave, the shock wave is followed by a thin reaction zone where the flow is

nonuniform behind with a series of periodic striations extending horizontally to the

rear of the main flow.

If the effectx of the transverse waves are neglected, but the finite reaction zone

thickness is accounted for, as shown in figure 1.1, one can apply the ideal reaction

zone theory of Zeldovich, Doering, and Von Neumann (ZND) to compute the flow

within the reaction zone. The ZND model supposes a steady (time- bnindependent)

shock wave followed by chemical reaction in a constant-area, inviscid, compressible

flow. The temperature rises and pressure drops as the reactants are converted to

intermediates and finally to products. The coupling from the fluid mechanics to the

chemistry occurs through the dependence of reaction rates on the species concen-

trations, pressure, and temperature. The pulse width and the distance to the peak

energy release are determined by the chemical reaction mechanism, rates of reaction,

and the thermodynamic state behind the shock front.

One finds that, the ideal steady ZND structure is unstable with respect to small

disturbances in lead shock shape and speed. The instability is the result of the
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Figure 1.1: Detonation propagation in tube with a closed end.

amplification of acoustic waves trapped in the region between the lead shock and the

end of the energy release zone. These instabilities are large enough that they are

observed in experiments, showing detonations as multi-front waves. In detonation

tube experiments, one observes an average, planar detonation front with an average

speed close to the value predicted by CJ theory. But there also exists traverse waves

propagating perpendicular the the main front. Using a soot foil, an aluminum sheet

that is covered with soot and then placed on the side of the detonation channel, one

can observe the detonation instabilities. The soot foils show periodic cells, which

coincide with the motion of triple points along the front (142).

1.1.2 Detonation Shock-Bifurcation

The generation of a reflected shock wave by an ideal detonation wave is shown in

figure 1.2. The detonation travels from the point of ignition to the tube end at the

Chapman-Jouget (CJ) speed, UCJ , as derived in detonation textbooks (98). Trailing

the detonation is the Taylor expansion that terminates on the characteristic moving at

sound speed c3, the sound speed in the constant pressure region behind the expansion.

Since c3 > UCJ , the expansion broadens as the detonation wave propogates.

Many researchers have investigated the interaction of nonreacting reflected shock

waves with boundary layers in the context of shock tube performance and it has been

observed (114, 124) that interaction with the boundary layer may cause the reflecting
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Figure 1.2: (a) Space-time diagram of an ideal detonation and Taylor wave. (b)
Spatial pressure distributions for several times after detonation initiation and prior
to reflection. Reprinted from Damazo and Ziegler et al. (35).

shock wave to bifurcate into an unaffected normal shock wave and a leading angled

shock wave or foot that travels along the tube wall. Historical experimental and

theoretical comparisons were conducted by Davies et al. in 1969 (36), and significant

2D unresolved simulations were conducted by Weber et al. in 1995 (159). More recent

(2005) work by Gamezo et al. (87) has simulated this phenomena in three dimensions

using one-step chemistry. The effects of shock wave boundary layer interaction on

detonation reflection have had yet to be investigated for real gases that require the use

of detailed chemistry and transport. Also, current simulations, while gaining basic

insights, have failed to resolve the viscous and diffusive scales in the boundary and

shear layers.

Reactive shock bifurcations are likely to form in systems in which shocks, flames,

boundary layers, or other velocity gradients are present. These can grow quickly

and drastically change the reactive flow structure. They provide a mechanism for a

detonationless supersonic flame spread that may accelerate DDT or quickly burn a

reactive mixture without creating very strong shocks typical for detonations. This

phenomena is important for a broad range of propulsion applications and safety is-

sues (87).
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1.1.3 Detonation Stability

The dynamic response of detonation fronts is dependent on the regularity of the cel-

lular structure. This regularity is a function of the degree of instability of a particular

mixture. The activation energy is the dominant parameter, a function of the Mach

number as calculated at the Chapman Jouguet (CJ) point. figure 1.3 shows the de-

gree of instability for some of the commonly analysed mixtures. The distance from

the longitudinal neutral stability boundary in reduced activation energy vs. the Mach

number coordinates is used to quantify the degree of instability.

Figure 1.3: Categorization of the stability of detonations in relation to the longitudinal

neutral stability boundary (Shepherd 2008)

The effective activation energy, EA, can be defined in terms of the variation of the

induction length ∆i with post shock temperature. EA is found by finding the local

slope for ln(∆i) vs. 1
T

as in the equation

ln(∆i)
EA
R

1

T
+ constant, (1.1)

where T is the post shock temperature and R is the particular gas constant for the

mixture. A normalized activation energy, θ, is defined as EA/R/T, and the higher

the value, the more unstable the mixture. However, the activation energy alone is not

adequate to explain the stability properties of detonations. For example, shortening

the energy release zone relative to the induction zone causes more instability.
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The instability of detonations has also been examined from a dynamical systems

point of view. Linear stability theory predicts that also with increasing activation

energy θ the ZND structure will become unstable to small perturbations and an

increasing number of unstable modes will be accessible with further increases in θ (25).

The normalized activation energy of the common mixtures ranges from 5.2 for the

regular, marginally unstable argon diluted hydrogen-oxygen mixtures, to 12.7 for the

irregular, highly unstable propane-air mixtures. These normalized activation energies

of figure 1.3 were calculated by using a 2 − γ model approximation of the detailed

chemistry, where γ is the specific heat ratio. Note that the mixtures closest to the

neutral curve show the greatest cellular regularity, and those farthest from the neutral

stability curve show the least regularity (most unstable).

Figure 1.4: Diagram of shock waves and triple points in a multi-dimensional detona-
tion (Shepherd 2009).

A multi-dimensional detonation wave is described as having a periodic structure

of transverse waves in addition to the leading shock-reaction front. A key structure in

of these shock waves is the three-shock or triple-point configuration. Mach stems and

incident shocks are part of the leading shock and the resulting reflected shocks are the

transverse waves. The transverse movement of the triple points creates the well known

detonation cell pattern, as shown in figure 1.4. Triple points are created when shock

waves encounter solid boundaries or in the case of detonations, other incoming shock

waves. The regularity or irregularity of these patterns as observed in experiments is

what is used to qualitatively describe a detonation as regular or irregular. The most

regular cellular patterns are associated with a weakly unstable front with only a single

transverse wavelength and smooth wave fronts. The irregular cellular patterns are

associated with strongly unstable fronts with a large spectrum of transverse waves

parallel and perpendicular to the main front and fine-scale wrinkling on the shock and

reaction zones. Macroscopic behavior of detonations, such as initiation, diffraction,
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and quenching, is observed to be quantitatively different for these two types (54, 98,

142).

1.1.4 Simulating Detonations

Simulating all of the relevant processes in a detonation wave is extremely difficult.

Detonations are fundamentally three-dimensional and also multi-scale. In experi-

ments, detonations propagate 1 to 10 m and the reaction zones contain spatial gradi-

ents of the order of 10−6 to 10−5 m. Gradients in the temperatures, velocities, mass

fractions occur at even smaller scales due to diffusion. This range of scales makes

the direct simulation of detonations computationally expensive. Another issue is the

103 reactions and 102 species needed to model the chemistry for larger fuel molecules

such as hydrocarbons. This creates further computational expense and storage is-

sues. This simulation of multi-dimensional diffusive, reacting flow which includes

shock waves creates many numerical challenges involving efficiency, accuracy, shock

capturing, and turbulence modeling (142).

The most complex detonation simulations have typically used either the multi-

dimensional Euler (inviscid) formulation with detailed chemistry and no transport,

the multi-dimensional Navier-Stokes formulation with two-component, one-step chem-

istry and transport, or the one-dimensional Navier-Stokes formulation with detailed

chemistry and transport. All of these simulations required the use of adaptive mesh

refinement (AMR) in order to tackle the large range in scales (131). Powers and

Paolucci (132) give the rational and estimates for determining the minimum chemical

length scale that needs to be resolved in detonation simulations. They stress that for

the reactive Euler equations, in order for the simulation results to be mathematically

correct, the smallest length scale must be resolved. This length is widely different

for different chemical kinetic models and is the reciprocal of the magnitude of the

real part of each of the eigenvalues of the local Jacobian matrix. Their conclusion

is that the finest length scales predicted by a one-dimensional steady analysis of a

common stoichiometric CJ hydrogen-air detonation model are roughly three orders of

magnitude finer than the induction zone thickness. This suggets that past supposedly

accurate calculations using detailed kinetics were formally underresolved.

For more detailed discussion of detonation theory and history from experimental,

theoretical, and numerical viewpoints see the review of Shepherd (142) and the text-

books of Lee (98) and Fickett and Davis (54). Also, see Chapter 5 for a discussion of

research relevant to diffusive detonations.



8

1.1.5 Reduced Detonation Mechanisms

Currently, when conducting a multi-dimensional detonation simulation, including the

full detailed chemistry is prohibitively expensive. Detailed chemistry models are

not practical for large-scale multi-dimensional simulations nor suitable for analytical

computations that attempt to formulate theories using approximate methods such as

activation energy asymptotic analysis. The detonation chemical reaction is a coupled

chain-branching, thermal explosion in which exponential growth of radical species,

recombination reactions forming products and releasing thermal energy, and compet-

ing reaction pathways for intermediates all occur simultaneously. All of these effects

are included when a full detailed chemistry model is used for simulation. Substantial

efforts have gone into developing reduced detailed chemistry models that only contain

the essential species and reactions and also ad hoc models with pseudospecies that

mimic some portion of the actual chemical processes. For use in conducting the first

direct numerical simulations of detonations, the reduced detailed chemistry mech-

anisms are the most useful as they preserve more physics than the ad hoc models.

Example ad hoc models include Lu et al. (111), which uses complex CSP for chemistry

reduction, Browne et al. (24), who calibrated a five-step, four-species model that sim-

ulated hydrogen combustion, and Petrova et al. (126) and Fernandez-Galisteo (53),

who developed a phenomenological model for hydrocarbons.

These models give insight into the stability properties of detonations, yet, lack

many features that are needed to understand the much more complex irregular

detonations of larger fuel molecules. Additionally, when using the transport equa-

tions, actual rather than ad hoc “dummy” reactants and products must be used.

Full detailed chemistry and transport models have been developed for these pur-

poses. Examples include GRI-MECH 3.0 (www.me.berkeley.edu/gri mech/), Jet-

SurF2.0 (http://melchior.usc.edu/JetSurF/JetSurF2.0), and CaltechMech (22),(21).

These mechanisms are complex with a very large number of species and for use in

multi-dimensional simulations must be reduced either by hand or by using QSSA

(quasi-steady state analysis) (127),(125),(155),(133). All of these reductions are spe-

cific for certain mixture types and ranges of initial conditions. Also, of the ones cited,

except for the full detailed chemistry, the reductions only create models which are suit-

able for steady simulations, especially those for hydrocarbons such as in Varatharajan

et al. (155). One must account for the full range of detonation speeds (overdrives)

when modeling the chemistry for a more realistic unsteady simulation. Schultz and

Shepherd (141) used constant volume explosion and ZND simulations with the most

http://melchior.usc.edu/JetSurF/JetSurF2.0
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detailed reaction mechanisms available at the time for many types of mixtures (hydro-

gen, ethylene, and propane). They compared the induction times from their numerical

model with those from experiments and found on average that for post shock temper-

atures above 1200 K, the numerical/experimental error is approximately 25 percent.

This shows that care must be taken when designing reduced models and multiple

unreduced models and experimental comparisons are needed.

1.1.6 Contemporary Research

Experimental visualizations of shock and reaction front configurations suggest that

the process of supersonic combustion is more complex than previously thought. Al-

though all propagating detonations are unstable, there is a wide range of behavior

with one extreme being nearly laminar but unsteady periodic flow and the other a

chaotic instability with highly turbulent flow.

Figure 1.5: Schlieren and PLIF images OH reaction detonation structures 2H2-O2-
12Ar, P1 = 20 kPa (Austin et al. 2005).

Figure 1.6: Schlieren and PLIF images OH reaction detonation structures C2H4-3O2-
10.5N2 (Austin et al. 2005).
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While the typical regular (low activation energy or weakly unstable) detonations

of such mixtures as hydrogen and argon have predicable structures as in figure 1.5,

the reaction fronts and shear layers for irregular (hight activation energy or highly

unstable) detonations are highly wrinkled with velocity and density fluctuations on

a scale much smaller than the cell width as shown in figure 1.6. Here, ignition

delays allow diffusion to compete with convective adiabatic processes as a transport

mechanism, causing coupling between fluid dynamics and chemical processes. Also,

a significant temporal oscillation in the lead-shock strength can result in disparate

induction times across the shear layer, where instabilities can lead to the formation

of vortical structures before ignition. Transport of hot products and cold reactants

across the mixing/shear layer leads to local detonations, augmenting the fundamental

shock induced combustion mechanism in the detonation front.

Using a two-dimensional simulation of the shear layer behind detonation triple

points, Massa et al. (116) investigated the role of vortical structures associated with

Kelvin-Helmholtz instability in the formation of localized ignition using detailed

chemical kinetics and transport. Only in the higher effective activation energy mix-

tures did localized explosions occur in the shear layer. They also found that the

ignition is linked to mass and heat diffusion rather than the instability associated

with the shear layer. This was the first two-dimensional simulation that addressed

the diffusive role of detailed chemical kinetics and transport.

In this thesis, the work of Massa et al. (116) was built on, by further investigating

the role diffusive mixing has in the triple-point mixing layers of irregular detonations.

We now include the shock waves and triples points. The goal of this research is to

conduct multi-dimensional simulations of multiple species detonation problems using

AMR with detailed chemistry and transport. This models the largely unexplored

hydrocarbon detonations.

1.2 Spark Ignition

1.2.1 Theory

When energy is deposited into a combustible mixture, there are multiple possible

outcomes. When an extreme about of energy is used, a detonation wave results

where the chemical reactions follow and support the wave. When a lesser amount

of energy is deposited quickly (as with a spark), a shock wave still results, yet, the

chemical reactions lag behind, with the propagation speed of the products limited by
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a balance of diffusion and convection. Initially, with small enough energy or small

enough timescale, a laminar propagating flame, otherwise known as a deflagration,

results. Depending on mainly the amount of energy, the laminar deflagration may or

may not transition to a turbulent flame. The turbulence depends on instabilities, such

as changes in flame front curvature. A turbulent flame is faster and more energetic

than the original laminar flame, and more likely to continue to propagate through

the combustible mixture.

The physics of turbulent combustion includes many processes and effects. For

example, there are tens to thousands of species and reactions depending on the com-

position of the mixture. The fluid dynamics is inherently three dimensional and

includes many forces and effects that cannot be ignored, such as viscosity, mass diffu-

sion, heat conduction, buoyancy, and real gas thermodynamics. Also of importance is

the no slip boundary condition at solid complex shaped boundaries and the random,

complex, high energy nature of the spark. The spark in reality is a high temperature

plasma of ions and free radicals. In combustion theory, it is postulated that both the

high temperature and the presence of reaction enhancing radicals are the agents for

creating self sustaining deflagrations and detonations.

1.2.2 Experiment

Figure 1.7: Schlieren image of a deflagration wave from spark ignition propagating in
a 10 percent hydrogen, 11.37 percent oxygen, 78.63 percent argon mixture in a closed
vessel. Reprinted from Bane and Ziegler et al. (10).

In terms of deflagrating explosions from spark ignition, the concept of minimum

ignition energy (MIE) has traditionally formed the basis for studying ignition haz-

ards of fuels. Standard test methods for determining the MIE use a capacitive spark
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discharge as the ignition source, and there have been extensive experimental stud-

ies to determine the minimum ignition energies of many different flammable mix-

tures (11),(12). However, due to the complexity of modeling the ignition process,

predicting ignition remains primarily an experimental issue.

1.2.3 Simulation

Much of the previous work on simulating ignition has idealized the problem and

treated one-dimensional spherical and cylindrical spark kernels. There have been

some two-dimensional simulations of spark discharge in a nonreactive gas performed

by (91, 3, 136, 51) to investigate the fluid mechanics involved in the spark ignition

process and two-dimensional simulations of ignition have been performed in (78, 93,

153, 151, 152, 165). More recent 2D simulations include those of Nakaya et al. (120)

and Han et al. (63, 64). The Nakaya et al. work is an improvement on the work done

in the Yuasa et al. paper (165). However, none of these studies has made an effort to

resolve the diffusive scales (most notably immediately after the blast wave and the

boundary layers at solid boundaries) with the appropriate mesh size and AMR or

study the diffusive processes and interactions with varying geometries in detail with

the combination of detailed chemistry. In all the two-dimensional studies, the classic

toroidal shape of the hot gas kernel is observed, which occurs due to fluid flow inward

toward the point of symmetry.

In both the simulations and experiments in this study, only very short sparks (on

the order of 10−7 s) are considered. In some of the previous modeling work (78, 153,

152) sparks with a breakdown phase followed by a long arc phase (10−5 to 10−4 s) are

used to simulate sparks from circuits with a significant inductance component, e.g.,

an automotive spark plug, which is very different from sparks encountered by accident

from static electricity buildup or that from lightning. Shorter duration (< 10−6 s)

sparks are more consistent with electrostatic discharge hazards in aviation and other

industries.

1.3 Overview

In chapter 2, the key physics found in compressible, reactive, diffusive flow are intro-

duced, starting with hyperbolic systems and moving to the Euler equations and shock

reflections and then arriving at the reactive Navier-Stokes equations. In chapter 3,

WENO methods are briefly introduced and then extended to describe the symmetric
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variant and its hybridization with centered differences. The implementation of the

scheme with time-split integration, discontinuity flagging, and flux-based SAMR is

developed. One- and two-dimensional nonreactive and reactive verification problems

are presented in chapter 4. Convergence results are presented for a fully resolved reac-

tive, diffusive DMR with one-step chemistry, along with results for multi-component

flow with detailed transport and chemistry. The present simulations can be viewed

as extension and application of the hybrid approach to detonation-driven, diffusive-

reactive flows within an SAMR framework, with a focus on the accurate resolution

of reactive-diffusive effects.

In the next five chapters, specific applications are developed. In chapter 5, a

detailed, reduced mechanism for irregular propane detonations is developed. In chap-

ter 6, this mechanism is used for a diffusive double Mach reflection simulation with

a transition to micro-scale cellular structure in the the incident shock. Comparisons

between different resolutions and viscous/diffusive and inviscid simulations are con-

ducted. In the next chapter, 7, this mechanism is used to simulate the two dimensional

detonation cell pattern for propane. These results are compared to experimental vi-

sualizations and soot foils. The next two chapters involve two different applications

and also different hydrogen-oxidizer mixtures. In chapter 8, detonation and shock bi-

furcation is simulated at scales which are observable in experiment. Schlieren images

are compared to simulations for different compositions of reactive and nonreactive

mixtures. Lastly, in chapter 9, a comparison between spark ignition experiments and

simulations is shown and discussed. A systematic study is developed by starting

with a simple nonreactive single species model and moving towards the full multi-

component detailed chemistry and transport model.

This thesis also includes five appendices which provide supplemental background

material and mechanisms. Appendix A shows a similarity solution of the one dimen-

sional Euler equations. appendix B discusses irregular Mach reflections in detail and

appendix C provides algorithms which were used in MATLAB programs to explore

Mach reflections in detail. Viscous flow physics theory and solutions are developed in

appendix D. Lastly, CHEMKIN II mechanisms with detailed chemistry and transport

that are used in simulations discussed in this thesis are listed in appendix E.
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Chapter 2

equations of Compressible,
Diffusive, Reacting Flow

The equations of reactive fluid dynamics are described in this section starting with

a one-dimensional hyperbolic system and increasing complexity to the Euler and

Navier-Stokes equations and then with the full reactive Navier-Stokes with detailed

chemistry. Nondimensionalizations and an eigendecomposition are also given.

2.1 Hyperbolic Systems

Compressible flow is fundamentally related to the mathematical properties entailed

in a simple scalar hyperbolic equation,

u,t(x, t) + f,x(u(x, t)) = 0, (2.1)

where “, x” and “, t” denote x and t derivatives. In this equation, a quantity u is

conserved in space and time when a flux, f,x, of u is encountered. In this form, the

equation is deemed a conservation law. The law is that the change in a quantity is

equal to the flux of that quantity. In this chapter, this equation is built on, beginning

here with a scalar hyperbolic conservation law. A self-similar nonlinear system of

conservation laws with an analytical solution is described. This solution is later used

in verification of numerical simulations for the one space dimensional Euler equation.

The hyperbolic Euler equations are related to their parabolic Navier-Stokes extension,

and also to reacting flow, known for its the stiff source terms.
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2.2 Euler equations for Compressible Flow

The 3D Euler equations are a nonlinear hyperbolic system and consist of the conti-

nuity, momentum, and energy equations. The continuity equation is in differential

form

ρ,t + (ρui),i = 0, (2.2)

where ρ is the density and ui represents the velocity in the x, y, z directions. The

momentum equation is

(ρuj),t + (ρuiuj),i = −p,j, (2.3)

where p is the pressure with P,j = P,iδij. Unlike the scalar continuity and energy

equations, the momentum equation is a vector equation with one equation for each

of the three spatial dimensions. The last equation, the energy equation, is expressed

as

(ρet),t + (ρuiet),i = −(uip),i, (2.4)

where et is the total internal energy. Now, for a compact representation, one uses a

vector equation, that represents a system of 5 scalar equations. The final result is

a nonlinear, time dependent, hyperbolic, vector equation. This 5 degree of freedom

equation is written as

U,t + Fadv
i,i = 0. (2.5)

With

U =


ρ

ρu1

ρu2

ρu3

ρet

 , Fadv
i = uiU + p


0

δ11

δ22

δ33

ui

 . (2.6)

2.2.1 Inviscid, Adiabatic, One-Dimensional Similarity Flow

Inviscid, adiabatic, one dimensional flow as described by the Euler equations has no

characteristic length or time scales present. Only a velocity scale dictates the form

of the solution. In this case, all derivatives with respect to x and t can be expressed
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in terms of the similarity parameter ξ, see (94) §99,

ξ = x/t, (2.7)

∂

∂x
=

1

t

d

dξ
, (2.8)

∂

∂t
= −ξ

t

d

dξ
. (2.9)

These expressions can be applied to the continuity and Euler equations

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (2.10)

∂v

∂t
+ v

∂(v)

∂x
= −1

ρ

∂p

∂x
, (2.11)

with v as the x component of the velocity. Now writing all derivatives in terms of ξ,

the t and x variables disappear.

(v − ξ)dρ
dξ

+ ρ
d(v)

dξ
= 0, (2.12)

(v − ξ)dv
dξ

= −1

ρ

dp

dξ
. (2.13)

By expressing the equations in terms of the similarity variable, exact solutions can

be found, for example for the breaking wave problem, see appendix A. These exact

solutions have previously been used for verification of the numerical methods for

the inviscid part of the solutions. Understanding similarity flow is also crucial for

understanding the physics of shock reflections.

2.2.2 Shock Reflections

Shock waves are a fundamental property of the Euler equations and hyperbolic sys-

tems in general. To understand supersonic compressible flows, one must study shock

wave interactions with solid boundaries and other shocks.

The following section summarizes the basic theory for modeling the interactions of

planar shock waves with angled wedges, particularly the properties of the triple point

structure. This problem is important for understanding how shock waves interact

with boundaries and with other shock waves. When a moving planar shock wave hits

a wedge, the shock is reflected and the flow is deflected. This is referred to as the

“unsteady problem”. The incident shock wave is moving unchanged, encounters the
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wedge, and then moves up the wedge. Unsteady examples are shown in figures 2.1(a),

and 2.1(b). For the “steady problem” a stationary shock wave at an oblique angle

encounters a boundary and reflects off. An example of where this may occur is in

a jet engine inlet or outlet, or in shock tubes with traverse waves. Steady examples

are shown in Fig. 2.1(c) and 2.1(d). The unsteady and steady cases are different,

however, they have inherently similar fundamental processes involved.
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Figure 2.1: Example shock reflections

For both the steady and unsteady cases, the Mach number and the wedge an-

gle are the input parameters for a perfect gas model. For the real gas model, the

pressure, temperature, and species data are also required. There also exist different

levels of approximation for modeling chemical reactions. In all cases of inviscid the-

ory, thermodynamic equilibrium is enforced across all shock waves. The chemical post

shock state, for example, from dissociation, combustion, or other processes, can be

either ignored; (frozen case) as in the case of relatively low temperatures of nonreact-

ing species; assumed to be in local equilibrium (all reaction occur across shock); or

assumed to be partially reacted, by simulating the unsteady chemical kinetics.

Approximate solutions known as “two shock theory” and “three shock theory” for

the shock reflection phenomenon were developed by (156). The three shock theory

models the primary triple point shock structure of the more complex reflection phe-

nomenon known as Mach reflection. For the unsteady problem, the triple point path
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angle is found as a function of the incident shock Mach number and the wedge angle.

These results agree roughly with experimental results, except at small wedge angles

and for strong Mach numbers where the assumptions break down the most (16).

For further developments and examples from these shock theories and a discussion

of the various types of shock reflections see Appendices B and C.

2.2.2.1 Self Similar Approximation

The unsteady reflection process can be approximated as a self similar, pseudo-steady

problem (103), (15), (18). For this simplification, the Mach stem is assumed to

be straight and perpendicular to the wedge, and the fluid is modeled as inviscid.

By attaching a reference frame to the triple point, the three shock pseudo-steady

solution is found. In this frame, the reflected wave of a single Mach reflection (SMR)

relative to the triple point path, is straight in the pseudo-steady reference frame. This

is demonstrated in figure 2.2, where the velocity vectors are shown in the reference

frame of the triple point.

Figure 2.2: Velocity vectors in the triple point reference frame, DMR case

2.3 Reactive Multi-Component Navier-Stokes equa-

tions

To conduct direct numerical simulations (DNS) of detonations and deflagrations, the

compressible Navier-Stokes equations are extended to model multidimensional, multi-

component, chemically reacting gas flows. The model assumes an ideal gas mixture

with zero bulk viscosity. Soret and Dufour effects of mass diffusion, external body
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forces, and radiant heat transfer are neglected. This forms a large system of nonlinear

conservation laws containing stiff source terms (52) and both first- and second-order

derivative terms from convective and diffusive transport. Mixture averaged transport

is also assumed. In this approximation, “cross diffusion” terms are neglected and the

solution of a matrix equation at each time step is avoided. Note that in this case, there

are still separate temperature and pressure dependent diffusivities for each species.

For the derivation, see (164).

2.3.1 Formulation

The problem is formulated for a mixture of N species as

∂tq + ∂xf
conv + ∂yh

conv − ∂xfdiff − ∂yhdiff = schem (2.14)

with vector of state q = (ρu, ρv, ρet, ρY1, . . . , ρYN)T and the convective fluxes

fconv = uq + p (1, 0, u, 0, . . . , 0)T , hconv = vq + p (0, 1, v, 0, . . . , 0)T , (2.15)

the diffusive fluxes

fdiff =

(
τxx, τxy, uτxx + vτxy + k∂xT + ρ

N∑
i=1

hiDi∂xYi, ρD1∂xY1, . . . , ρDN∂xYN

)T

(2.16)

and

hdiff =

(
τxy, τyy, uτxy + vτyy + k∂yT + ρ

N∑
i=1

hiDi∂yYi, ρD1∂yY1, . . . , ρDN∂yYN

)T

,

(2.17)

and the reactive source term

schem = (0, 0, 0, 0, ω̇1(T, p, Y1, ..., YN), . . . , ω̇N(T, p, Y1, ..., YN))T , (2.18)

where τ denotes the stress tensor (defined in appendix 2.5). The mass fraction of

the i-th species is computed from the partial and total density as Yi = ρi/ρ. The

enthalpy of the gas mixture is denoted by h, ω̇i is the mass production rate of the i-th

species, µ the mixture viscosity, k the mixture thermal conductivity, and Di the mass

diffusivity of the i-th species into the mixture. The mass production rates are specified

by Arrhenius rate equations, determined by the particular reaction mechanism. The
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contribution of each species to the total energy is obtained by using a mass-fraction-

averaged enthalpy, i.e.,

h =
N∑
i=1

Yihi, where h = et +
p

ρ
− u2 + v2

2
. (2.19)

To close the system of equations, we have the ideal gas law for the average mixture

properties, as derived from the partial pressure equation for each species, that reads

p =
N∑
i=1

pi =
N∑
i=1

ρYiRiT = ρRT, with R =
N∑
i=1

YiRi, Ri =
R
Wi

, (2.20)

where R is the universal gas constant and Wi the molar mass of each species. The

mass production rates are computed by summing the contributions from each chemical

reaction. The reactions are all formulated with an Arrhenius rate equation, cf. (164).

The sound speed, a, a parameter that is calculated throughout the simulation, must

be derived for a mixture, of thermally perfect, ideal gases. The frozen sound speed

is defined as the derivative of the pressure with respect to the density at constant

entropy and species concentrations and reads

a2 =

(
∂p

∂ρ

)
s,Y1,...,YN

= γRT = γ
p

ρ
= γ

N∑
i=1

YiT. (2.21)

Using a representation of each species’ specific heat at constant pressure and constant

volume, denoted by cpi(T ) and cvi(T ), respectively, as a function of T , the specific

heat ratio for each species is

γi(T ) =
cpi(T )

cvi(T )
, cvi = cpi(T )−Ri. (2.22)

A mixture value for γ − 1 is found using the mole fraction, Xi, as

γ(T ) = 1 +

(
N∑
i=1

Xi

γi(T )− 1

)−1

, Xi =
ρi
ρ

=
YiW

Wi

, (2.23)

with W =

(
N∑
i=1

Yi
Wi

)−1

=
N∑
i=1

XiWi. (2.24)

For the canonical eigendecomposition, for instance, of the Jacobian of the flux function

f conv, see sectinob §2.6.
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2.3.2 Temperature Evaluation

Ideal gases require the computation of the temperature from the conserved quantities

by solving an implicit equation. Consider the pressure as the sum of partial pressures,

p =
N∑
i=1

ρYi
R
Wi

T, (2.25)

and also as related to the enthalpy and internal energy of the mixture,

p = H − E =
N∑
i=1

ρihi(T ) + ρet, p =
N∑
i=1

ρihi(T )− ρet + ρ
u2 + v2

2
. (2.26)

The pressure in (2.25) and (2.26) must be equal, giving the equation

0 =
N∑
i=1

ρihi(T )− ρet + ρ
u2 + v2

2
−

N∑
i=1

ρYi
R
Wi

T. (2.27)

2.3.3 Navier-Stokes equations in Axisymmetic Form

The Navier-Stokes equations for two-dimensional, compressible, viscous, heat con-

ducting flow in axisymmetric coordinates will be described. These equations consist

of the continuity, energy, and momentum equations. With u1 = u and u2 = v as the

axial and radial velocities (x and y velocities viewed in a cross section), the continuity

equation is in differential form

ρ,t + (ρui),i = −1

r
ρv, (2.28)

where ρ is the density and ui represents the velocity in the x and y directions. The

momentum equation is

(ρuj),t + (ρuiuj),i + p,j = (τij),i −
1

r
ρv2, (2.29)

where τij is the viscous stress tensor. The energy equation, is expressed as

(ρet),t + (ρuiet),i + (uip),i = (τijuj),i − qi,i −
1

r
(ρet + p)v, (2.30)

where qi,i = (−kT,i),i is the heat flux. This formulation is used in the spark ignition

simulations discussed in section §9.
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2.4 Shock-Driven Combustion

A canonical problem for shock-induced combustion in compressible flow is the detona-

tion wave. A multidimensional detonation wave is described as having a quasi-periodic

structure of transverse waves in addition to the leading shock-reaction front. A key

repetitive substructure within gaseous detonations is the three-shock or triple point

configuration that arises due to a fundamental instability. Here, Mach stems and

incident shocks are part of the leading shock and the resulting reflected shocks are

the transverse waves. However, Mach reflection structures can also be created when

shock waves encounter solid boundaries. In the following, we will concentrate on the

length scales required to obtain an accurate DNS simulation of just this fundamental

triple point structure.

2.4.1 Length Scales and Resolution

In order to achieve accurate numerical simulation results, all physically relevant length

and timescales must be resolved, regardless of the order of accuracy of the numerical

method. For our method, having at least 10 to 102 cells across a length scale is

required before one can begin testing for convergence. The detonation problem has

multiple length scales, which requires care both in setting up an adaptive solution and

in interpreting the results. The incident shock thickness is slightly larger than the

nondimensional length scale used in the exact one-dimensional viscous shock solution.

The shock thickness reads

λshock =
8µ(T )

5

√
2

πρ∞p∞
. (2.31)

It is of the order of three to five mean free path lengths. Note that in a Mach reflection

pattern, the smallest shock thickness is found in the Mach stem. In this thesis, we do

not always resolve this length scale and in this sense we are performing pseudo-DNS.

With shock-capturing, numerical dissipation will smear the shock in this region, yet,

the other areas of the flow field are largely unaffected if their other scales (reactive

and viscous) are resolved. The diffusive length scales, which include viscosity, heat,

and mass diffusion, are most prevalent in the shear layer. On dimensional grounds,

the viscous shear layer thickness, δvisc, grows as

δvisc ≈
√
νt, (2.32)
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where ν = µ
ρ

is the dynamic viscosity, while the thermal heat conduction layer thick-

ness, δcond, and the mass diffusion layer thickness, δmass,i, grow as

δcond ≈

√
kreft

ρcv
, δmass,i ≈

√
Di

ρ
t, (2.33)

respectively. For hydrogen and hydrocarbon fueled detonations, typically the smallest

scale is the viscous shear thickness, followed by the mass, and then the heat diffusion

thickness length across the shear layer.

Also, for the chemical reactions, there are two different types of scales. A funda-

mental time scale comes from each Arrhenius rate equation and for a simple one-step

model is

τArr =
1

AY1T n
exp

(
Ea
RT

)
. (2.34)

For a mixture with multiple reactions, associated timescales can differ by orders of

magnitude. A further length scale of larger size is the laminar flame thickness, which

results from the interaction of the chemical rate equations, diffusion, heat conduction,

and convection. For our resolved results, we only run simulations for timescales

capturing the flames in the laminar regime. Therefore, for the results presented, we

check the resolution of the smallest length scale, the viscous shear layer thickness.

2.5 Nondimensionalization

A nondimensionalization or scaling of the fluid dynamic equations is important at

the highest resolutions. Without a scaling the equations can be ill-conditioned for a

large pressure and small time step (short diffusive and reactive time scale). When

simulating diffusive flow with realistic physical parameters and using fine grids in

order to show convergence, the time steps become so small that round-off errors and

lack of precision pollute the results. Nondimensionalization mitigates this problem. In

section §4 for out convergence tests, the nonreactive results were for a shock traveling

into standard atmospheric conditions (T = 300 K and p = 1.01325 · 105 Pa); however,

the preliminary detonation simulations were for a shock propagating into a lower

pressure of 6, 700 Pa, for which a nondimensionalization was unnecessary.
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2.5.1 Non-Reactive Navier-Stokes equations

In the nonreactive case, using the length and the time scaling x = L∞x
∗, y = L∞y

∗

and t = L∞
a∞
t∗, respectively, the primitive variables are nondimensionalized as

u = a∞u
∗, v = a∞v

∗, ρ = ρ∞ρ
∗, p = ρ∞a

2
∞p
∗, T =

a2
∞

cp∞
T ∗, (2.35)

with the ∗ as nondimensional. The normalized caloric equation and ideal gas law for

a single polytropic gas then reads

cp(T ) = cp∞cp
∗(T ∗), R = cp∞R

∗, p = ρRT, (2.36)

(ρ∞a
2
∞p
∗) = (ρ∞ρ

∗)(cp∞R
∗)

(
a2
∞

cp∞
T ∗
)
. (2.37)

The validity of this nondimensionalization can be verified easily by substituting these

variables into the Navier-Stokes equations and cancelling the factors to derive the

results below. The nondimensional nonreactive compressible Navier-Stokes equations

in two space dimensions are

∂ρ∗

∂t∗
+
∂ρ∗u∗

∂x∗
+
∂ρ∗v∗

∂y∗
= 0, (2.38)

∂ρ∗u∗

∂t∗
+
∂ρ∗u∗2 + p∗

∂x∗
+
∂ρ∗u∗v∗

∂y∗
=
∂τ ∗xx
∂x∗

+
∂τ ∗xy
∂y∗

, (2.39)

∂ρ∗v∗

∂t∗
+
∂ρ∗u∗v∗

∂x∗
+
∂ρ∗v∗2 + p

∂y∗
=
∂τ ∗xy
∂x∗

+
∂τ ∗yy
∂y∗

, (2.40)

∂ρ∗e∗t
∂t∗

+
∂ρ∗u∗(e∗t + p∗)

∂x∗
+
∂ρv∗(e∗t + p∗)

∂y∗
=
∂(u∗τ ∗xx + v∗τ ∗xy)

∂x∗
+
∂(u∗τ ∗yx + v∗τ ∗yy)

∂y∗

(2.41)

+
∂q∗x
∂x∗

+
∂q∗y
∂x∗

, (2.42)

where the stresses read

τ ∗xx = µ∗(T ∗)
(

2∂u
∗

∂x∗
− 2

3
(∂u

∗

∂x∗
+ ∂v∗

∂y∗
)
)
,

τxy = µ∗(T ∗)
(
∂u∗

∂y∗
+ ∂v∗

∂x∗

)
,

τyy = µ∗(T ∗)
(

2∂v
∗

∂y∗
− 2

3
(∂u

∗

∂x∗
+ ∂v∗

∂y∗
)
)
,

(2.43)
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and the heat transfer terms are

q∗x = k∗(T ∗)
∂T ∗

∂x∗
, q∗y = k∗(T ∗)

∂T ∗

∂y∗
(2.44)

with normalized mixture viscosity and normalized thermal conductivity

µ = a∞L∞ρ∞µ
∗(T ∗), k = ρ∞a∞L∞cp∞k

∗(T ∗). (2.45)

2.5.2 Reactive Navier-Stokes equations for Thermally Per-

fect Mixtures

For N thermally perfect species, the normalization of the total and partial densities

is ρ∞ =
∑N

i=1 ρi∞, ρi = ρ∞ρ
∗
i and the normalized caloric equations (2.36) take the

form

cpi(T ) = cp∞cp
∗
i (T

∗), hi(T ) = a2
∞h
∗
i , Ri = cp∞R

∗
i . (2.46)

The normalized mass diffusivities read Di(T ) = a∞L∞D
∗
i (T

∗) and, in case of chemical

reaction, the normalized Arrhenius parameters are

Ei = a2
∞E

∗
i , Ai =

a∞
L∞

A∗i . (2.47)

2.5.2.1 Navier-Stokes equations for Two Calorically Perfect Gases with

One-Step Reaction

If only two calorically perfect gases with identical adiabatic coefficient, γ, are consid-

ered, (2.46) reduces to

cp =
γR

γ − 1
, cp = cpcp

∗, cp∗ = 1, h1 = q0 + cpT, h2 = cpT, q0 = a2
∞q
∗
0, R = cpR

∗,

(2.48)

where the normalized temperature is now given as T = a2
∞
cp
T ∗. With the single reaction

dω1

dt
= ρ1A exp

(
EA
RuT

)
= ρ1A exp

(
E

RT

)
, (2.49)

the normalized Arrhenius parameters of (2.47) read

E =
EA
W

= EA
R

Ru

, E = a2
∞E

∗, A =
a∞
L∞

A∗. (2.50)
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2.6 Eigendecomposition

An eigendecomposition is needed for the numerical solution of the inviscid part of the

reactive Navier-Stokes equations otherwise known as the reactive Euler equations.

The eigen values and vectors are required to put the solution in characteristic form

and also for approximate Riemann problem solutions, which are used by Roe’s method

and the shock detection method as described in §3.3 and 3.5.3.

The eigenvalues and eigenvectors of the thermally perfect multi-component Euler

equations can be derived in a straightforward algebraic computation, cf. (40). For

the state vector of conserved variables q = (ρu, ρv, ρet, ρY1, .., ρYN)T the inviscid flux

in the x-direction, for instance, satisfies f conv = A(q)q, with

A(q) =



(3− γ)u −γ̄v γ̄ φ1 − u2 . . . φN − u2

v u 0 −uv . . . −uv
H − γ̄u2 −γ̄uv γu u(φ1 −H) . . . u(φN −H)

Y1 0 0 u(1− Y1) −uY1 . . . −uY1

−uY2 u(1− Y2)
...

...
...

...
...

. . . −uYN−1

YN 0 0 −uYN . . . −uYN u(1− YN)


(2.51)

denoting the corresponding Jacobian. With eigenvalues λk = {u− a, u, ..., u, u+ a},
the matrix of right eigenvectors, defined by (A− λkI)rk = 0, reads

R(q) =



u− a u . . . u 0 u+ a

v v . . . v 1 v

H − ua u2 + v2 − φ1

γ̄
. . . u2 + v2 − φN

γ̄
v H + ua

Y1 1 0 . . . 0 0 Y1

0
...

...
. . .

...
...

...

0

YN 0 . . . 0 1 0 YN


, (2.52)

where φi = ∂p
∂ρi

, the partial derivative of the pressure with respect to the i-th species’

density, is given by

φi = γ̄

(
u2 + v2

2
− hi

)
+ γRiT, (2.53)
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with γ̄ = γ − 1 and the total specific enthalpy H = h+ u2+v2

2
.
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Chapter 3

Numerical Methods

The compressible, reactive Navier-Stokes equations are a mixed-type set of partial

differential equations (PDEs) with stiff source terms, presenting a significant chal-

lenge for numerical simulation. The result is a multiscale problem containing sharp

gradients whose discretized solution is highly sensitive to numerical dissipation. The

hyperbolic part of the equations (the inviscid terms as modeled by the Euler equa-

tions) is often solved numerically by using a shock-capturing method specifically de-

signed to be stable when discontinuities are present. However, these robust methods

introduce numerical dissipation that pollutes the diffusive part of the equations. For

a convective-diffusive equation, owing to the physical viscosity, there are no discon-

tinuities in a fully resolved solution, yet, shock-capturing is still necessary to handle

sharp gradients without spurious oscillations. Ideally, a method free of numerical

dissipation is desired to accurately capture the diffusive terms. However, owing to

their lack of shock-capturing dissipation, these schemes tend to lack robustness and

stability in a structured adaptive mesh refinement (SAMR) framework. Because of

these difficulties, a hybrid method has been developed, which combines the introduc-

tion of some numerical dissipation at sharp gradients, e.g., across shock waves, with

a dissipation-free treatment with centered stencils in regions of smooth flow.

3.1 Background on Methods

The present numerical method combines and extends, both to high order and to

the resolution of diffusive effects, numerical methods developed originally for large

eddy simulation (LES) of turbulence (67, 123) and for efficient inviscid detonation

simulation (40). We employ a hybrid WENO/centered-difference scheme (67, 123)

with improved scheme switching (106). Dynamic mesh adaptation is used to handle
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reactive flow problems of a multiscale nature, for which graded meshes (cf. Lele et

al. (95)) are usually found insufficient. Our implementation is in flux form through-

out, thereby ensuring conservation at scheme-matching boundaries, and uses a skew-

symmetric form for the inertial fluxes (123), yielding improved overall kinetic energy

conservation and stability. In general, our approach retains the benefits of low nu-

merical dissipation away from shocks, the efficiency of an SAMR algorithm and the

effectiveness of time-splitting for source term integration.

Aside from works such as (123, 107, 158, 117), which utilize the AMROC (Adap-

tive Mesh Refinement in Object-oriented C++) SAMR framework, hybrid WENO

methods have mainly been applied on uniform or graded meshes. Recent examples

include (2, 129, 115, 33, 96, 29). There has been much work in proving numeri-

cally and theoretically the stability of hybrid schemes. Adams et al. (2) addressed

this problem, and Larsson and Gustafsson (96) give a detailed analysis, particularly

proving the stability for a hybrid match between finite difference WENO and cen-

tered stencils. Their proof, using Kreiss or GKS theory (61), directly applies to our

scheme’s framework in the uniform case, yet, is difficult to extend to the SAMR case

with overlapping grids. A brief discussion is provided in §13.4 of (61), where the sta-

bility of overlapping grids is theorized to be stable when viewed as an overspecified

boundary value problem and deemed provable at least in the one-dimensional case.

Another high-order (in fact fourth-order accurate) method for use with SAMR

has been developed for the CHOMBO SAMR software (32) based on a globally con-

servative finite volume formulation. This approach, while well adapted to inviscid

simulations, can suffer from numerical dissipation in smooth flow regions, imped-

ing its suitability for small-scale diffusive and viscous phenomena. The problem is

shared by the classical second-order accurate MUSCL (Monotone Upstream-centered

Schemes for Conservation Laws) methods and by most pure WENO schemes, thereby

motivating the present work.

Diffusive effects in reacting flows have become a topic of recent research inter-

est. Day et al. (38), using the BoxLib software, have reported lower-order accurate,

SAMR-based, finite volume simulations for subsonic turbulent flames that model de-

tailed chemistry and diffusive mixing. For their flows, the compressibility is small

and this allows use of a low-Mach-number formulation. A hybrid essentially nonoscil-

latory (ENO)/centered-difference method with third-order Runge-Kutta (RK) time

integration was used by Fedkiw (52) for the simulation of reacting flow. Uniform

grids were employed. Related simulations of diffusive compressible reacting flow with

detailed chemistry have been conducted by Massa et al. (116). They utilized a third-
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order in time, fourth-order in space Rusanov, Kutler, Lomax, and Warming (RKLW)

scheme as described by Kennedy and Carpenter (86). This method is not monotone

or total variation diminishing (TVD) and a numerical filter, which is not appropriate

for shock-capturing and SAMR, was used to damp spurious oscillations. Neglecting

shock waves, they conducted a two-dimensional simulation of an equivalent shear

layer behind triple points in detonations. Double Mach reflection (DMR) simulations

with viscosity and thermal conduction have been reported by Vas Ilev et al. (76).

No-slip boundary conditions were used, which applies to shock-solid surface inter-

actions rather than shock-shock interactions. Similar work has also been done for

two- and three-dimensional, turbulent, compressible, reacting flow by Poludnenko et

al. (130), using the fixed-grid, massively-parallel framework Athena-RFX. Their nu-

merical method is based on a fully unsplit corner transport upwind (CTU) algorithm

and an integration scheme using Colella-Woodward (PPM) spatial reconstruction in

conjunction with an approximate nonlinear HLLC Riemann solver to achieve 3rd-

order accuracy in space and second-order accuracy in time.

3.2 Methods

As a comparison, the Roe-HLL MUSCL second-order method was also used. For

the initial verification and development purposes, the MUSCL method was useful.

The improvement and extension of problems that were previously simulated with the

second-order method, often without diffusive effects, is the focus of this work.

3.3 Roe-HLL MUSCL Second-Order Method

All modern high-resolution FV schemes are built upon first-order accurate upwind

methods that utilize characteristic information. These methods are based on Roe’s

method, a method based on the a linearization of the Godunov method. The Godunov

method solves the full Riemann problem but is expensive to calculate at each cell

boundary in the domain, thus the simpler Roe method (40) is most often employed.

Roe’s second-order slope-limited finite volume method is second-order in space

and time, and has the advantage over finite difference methods in that it includes

both normal and tangential fluxes rather than just normal fluxes. Because very fine

grids are being used to capture the length scales, this method has advantages over

higher-order methods. Because it is faster, one can use finer grids.
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Artificial oscillations at strong shock waves are moderated or avoided completely

within the Roe scheme by adding numerical viscosity to the flux approximation via

the entropy correction. Also, unphysical total energies and densities due to the Roe

linearization are circumvented by switching to the robust HLL scheme. These correc-

tions are combined for a Roe-HLL scheme with MUSCL (Monotone Upwind Schemes

for Conservation Laws) variable extrapolation.

In MUSCL extrapolation, the cell-wise constant approximation of the Riemann

problem is replaced by a linear or quadratic interpolation between the values of its left

and right neighbors. This interpolation is second- or first-order accurate, depending

on the local gradients in the solution, and the particular slope limiter used. The

method is designed such that it is only first-order near shock waves, where the solution

appears discontinuous. The best limiter for the Navier-Stokes equations appears to

be van Albada limiting, as it has the least numerical dissipation as compared to the

Minmod, Superbee, van Leer, and Monotized centered limiters.

The Roe method by itself has the problem of producing negative densities and

energies for strong shocks. To avoid the erroneous behavior, the Roe method is

replaced where necessary by the flux of the robust HLL method. The Harten-Lax-

Van Leer (HLL) scheme is positivity preserving in density and energy, when the

numerical signal velocities are within suitable bounds for the physical signal velocities.

The HLL scheme is a Godunov-type method that uses a very simple approximative

Riemann solver, which approximates the solution of the Riemann problem simply by

two discontinuous waves.

3.4 Advancement to a high-Order Hybrid Scheme

The shock-capturing component of the present hybrid scheme uses a sixth-order

accurate, symmetric enhancement of the classical WENO scheme as developed by

Shu (80, 144). In the limit of smooth flow, the method obtains a 6th-order cen-

tered stencil. We presently utilize only hybrid WENO/centered-difference schemes

for SAMR. Alternatives could also be pure WENO schemes with enhanced smoothness

measures, such as the Mapped WENO schemes (65, 23), or schemes with improved

stability properties, such as the monotonicity preserving schemes (9). Also of inter-

est for nonsteady, reactive, compressible flows is the implementation of WENO with

one-dimensional shock-fitting (66).

In the following section, WENO schemes are briefly described and the extension to

a symmetric WENO method is elaborated. Also, the time-split approach for reactive
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source terms, when using a Runge-Kutta integrator, is detailed.

3.4.1 ENO and WENO Schemes for Conservation Laws

ENO and WENO discretizations (144) have revolutionized the solution of nonlinear

hyperbolic conservation laws, particularly for the multidimensional Euler equations,

which are often used as an inviscid, hyperbolic, nondiffusive approximation of the

mixed-type Navier-Stokes equations. This approximation is suited for the simulation

of shock waves, contact discontinuities, and other nonsmooth flow features. ENO and

WENO schemes have been specifically developed for problems containing both piece-

wise smooth solutions and discontinuities. They are designed to obtain arbitrarily

high order of accuracy in smooth solution regions while minimizing the propagation

of first-order errors obtained along discontinuities. WENO schemes are an extension

of ENO. Instead of choosing from a group of stencils, the WENO approach uses a

convex combination of all stencils. Smoother stencils are given larger weight, yet,

at discontinuities, WENO performs exactly as ENO. In the limit of smooth regions,

however, the WENO approach obtains a much higher order of accuracy. ENO and

WENO schemes can either be finite difference or finite volume, yet, the finite dif-

ference variant is commonly chosen for reasons of efficiency (144). For the finite

difference schemes, the wider the interpolation stencil, the higher the order of ac-

curacy obtained; however, this is only true provided the solution is smooth. Using

centered stencils at discontinuities causes undesirable oscillations in the numerical so-

lution. These oscillations propagate through the domain and can create instabilities

in the numerical solution.

When discontinuities are present, the global order of accuracy is always reduced

to one (60). ENO, WENO, and, for example, discontinuous Galerkin finite volume

methods will not by themselves obtain high order of accuracy near discontinuities.

Therefore, these schemes are often referred to as high-resolution rather than high-order

methods. In fluid mechanics, whenever shocks are captured (rather than resolved as

possible with the Navier-Stokes equations), first-order accuracy is obtained. Note

that high-resolution schemes are nonetheless useful because complex structures, not

resolved by low-order methods, can be studied in greater detail. High order of ac-

curacy can be achieved in some cases, for instance, when a shock-fitting method is

used (66). Here, the discontinuity’s velocity and shape is tracked, and at each time

step the Rankine-Hugoniot equations for the shock are solved exactly. This is easily

implemented for one-dimensional problems, yet too expensive in two and three space
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dimensions. Difficulties also arise on how to track complex multidimensional struc-

tures, cf. (39). Thus, for all but the simplest problems, shock-capturing methods are

currently still needed.

3.4.1.1 WENO Reconstruction

For each interpolated flux, the smoothest stencil is chosen among the group of neigh-

boring stencils. In a k-th-order ENO scheme, k candidate stencils are considered

over a range of 2k − 1 cells, but only one stencil is used in the reconstruction. The

basis of WENO is to take advantage of this by using a convex combination of all of

them. Two properties are desired: ENO-like performance at discontinuities and the

usage of all k stencils in the limit of a smoothly varying solution, yielding O(∆x2k−1)

convergence. The convex combination is a linear combination of fluxes, where all

coefficients (smoothness-biased weights), ωr, are nonnegative and sum up to one,

i.e., ωr ≥ 0 for r = 0, . . . , k − 1 and
∑k−1

r=0 ωr = 1. The results from each stencil,

Sr = {xj−r, ..., xj−r+k−1}, are combined with the weights ωr to obtain the approxima-

tion of the boundary fluxes f̂ . The combination yields

f̂j+1/2 =
k−1∑
r=0

ωrcrκfj−r+κ. (3.1)

Since we are using a structured nongraded mesh, the same set of coefficients, crκ, is

used for each point value. This leads to an approximation of the derivative at the cell

center in terms of point fluxes at the cell boundaries. The weights are designed for the

limit of smoothly varying flow. In this limit, all smoothness measures are equal and

the weights become the predetermined values such that all k stencils together, act as

one large stencil that interpolates the 2k − 1 cells, hence obtaining (2k − 1)-th order

of accuracy. The weights ωr approach the coefficients dr, which, when multiplied

appropriately by each stencil’s coefficients crκ and summed, become exactly those

coefficients for a polynomial with 2k − 1 interpolation points. Hence, in the limit of

smooth solutions, the weights are equal to dr, while for a discontinuity, some or all

weights become zero, depending on if the discontinuity is located within or at the

boundary of a cell. With a smoothness measure βr for the r-th stencil defined, the

weights are

ωr =
αr∑k−1
s=0 αs

with αr =
dr

(ε+ βr)2
, (3.2)
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where ε > 0 is an arbitrary problem- and mesh-size-dependent parameter which can

range from 10−2 to 10−30. Shu (144) recommends 10−6. Depending on the type of

derivative approximation (for example, with centered differences), numerous formulas

for βr are possible. Thus, measures reported in the literature are varied. Note that

in deriving a smoothness measure, it is still required that the βr become zero when a

constant solution is encountered in order to ensure convergence to (2k − 1)-th order

in smooth solution regions.

The optimal (2k − 1)-th-order stencil can be biased in a particular direction for

upwinding or is unbiased for a symmetric centered scheme. For the present DNS,

an optimal, symmetric, centered stencil is desired, because the numerical dissipation

created otherwise pollutes the sensitive nature of the diffusive part of the solution.

3.4.1.2 Characteristic Form

For the finite difference scheme, aside from solving the exact Riemann problem at the

cell boundaries, the highest accuracy is obtained if a characteristic decomposition is

adopted. Here, the system of equations are diagonalized using a local approximation

of the Jacobian at each cell boundary. The state qj and flux f(qj) are transformed

into the characteristic state vj and flux g(qj), as detailed by Shu (144). The exact

transformation is determined by the local eigenvectors at the cell boundary. It is

unknown and must be approximated. The simplest way of doing this is to use the

average state at the right and left cells. For fluid mechanics, an expensive but more

accurate method is to use the Roe average, which is suitable for shock waves,

fj+1 − fj = f ′
j+ 1

2
(qj+1 + qj)(qj+1 − qj), (3.3)

from which the eigenvectors of the Jacobian, f ′
j+ 1

2

, can be determined. Note that the

canonical eigendecomposition of the inertial fluxes of the Navier-Stokes equations is

provided for completeness in appendix C. One important step remains before trans-

forming the fluxes back from the characteristic space. A flux split is conducted, which

separates the left- and right-moving contributions, based on the negative and pos-

itive characteristics. The most commonly used flux split is the Lax-Friedrichs flux

splitting, where for the m-th component of the flux,

g±m(v) =
1

2
(gm(v)± αmvm), (3.4)
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Figure 3.1: Set of candidate stencils for two different finite difference WENO meth-
ods using flux splitting. The positive and negative characteristic fluxes, g+ and g−,
respectively, are calculated at the cell boundary located at xj+ 1

2
.

is used. The coefficient αm is taken as the maximum of the range of the m-th eigen-

value in the solution over the whole domain, i.e.,

αm = max
j
|λm,j(qj)|. (3.5)

With the positive and negative characteristic fluxes found, the finite-difference re-

construction procedure is used twice to derive the positive and negative fluxes at the

cell boundaries. As shown in figure 3.1(a), two different sets of stencils and optimal

stencils are used. In two space dimensions, the final form of the approximation of the

point-wise time derivative for the (j, l)-th cell is

dqjl
dt

= − 1

∆x

(
f̂j+ 1

2
,l − f̂j− 1

2
,l

)
− 1

∆y

(
ĥj,l+ 1

2
− ĥj,l− 1

2

)
. (3.6)

3.4.2 Enhanced WENO Schemes

WENO schemes perform well for purely hyperbolic PDEs, yet, for mixed equations

with physical diffusion, they introduce too much numerical dissipation that tends

to artificially remove energy from the highest resolved wave numbers (160). This

numerical damping arises from the upwinded, optimal stencils and the smoothness

measures. Traditionally, finite difference approximations have been designed to maxi-

mize the order of accuracy. However, contemporary research interest in turbulent flow



36

has expressed the need for minimizing the approximation error of the small turbu-

lent scales. The resulting finite difference schemes are based on bandwidth-optimized

stencils (see (100)). For our application, DNS, these schemes are the basis for a more

general order-optimized variant. Our order-optimized scheme includes the symmet-

ric WENO stencils first developed for bandwidth-optimized schemes, e.g., WENO-

SYM (160). Our implementation, which we call WENO/CD, is a hybrid approach,

extended to an SAMR framework and configured for order optimization.

3.4.2.1 WENO-SYM

Weirs (160) used bandwidth optimization techniques to develop symmetric optimal

stencils with reduced dissipation and greater resolving efficiency. Using Fourier anal-

ysis, the coefficients are chosen to resolve the high frequencies of interest instead of

tailoring them for maximal order of accuracy. In this particular case, the optimal fifth-

order 5-point stencil, originally constructed with three 3-point stencils, is changed to

a symmetric 6th-order, 6-point stencil that is constructed with four 3-point stencils,

as shown in figure 3.1(b). Then by bandwidth (rather than order) optimizing the

coefficients, a 4th-order accurate optimal stencil is found with the desired spectral

properties.

Note the differences between the WENO-SYM stencil and that of the original

WENO as depicted in figure 3.1(a). The optimal WENO-SYM stencil is centered at

the point at which the flux is being evaluated while the optimal WENO stencil is

upwinded in order to mimic the flux in the characteristic directions. The latter is

advantageous for correctly modeling the flow of information but introduces numeri-

cal dissipation which is undesirable for convergence when resolving small turbulent

scales and diffusive mixing. In contrast to Shu’s upwinded counterparts (144) only

the smoothness measurement introduces dissipation into the WENO-SYM approach,

cf. (160). Now with an extra stencil present and all stencils shifted as shown in fig-

ure 3.1(b), the WENO-SYM construction is performed with the unchanged stencils

Sr but uses ωr ≥ 0 for r = 0, . . . , k with
∑k

r=0 ωr = 1 and thereby reads

f̂j+1/2 =
k∑
r=0

ωrcrκfj−r+κ. (3.7)

In the limit of smooth flow all k + 1 stencils together act as one large stencil, which

interpolates 2k cells obtaining (2k)-th order of accuracy. For the formally 6th-order

accurate WENO-SYM scheme, four 3rd-order-accurate ENO stencils are used. In
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this order-optimized implementation for k = 3, the optimal weights, dr, and the ENO

stencils, as specified by crκ, are

dr =
{

1
20
, 9

20
, 9

20
, 1

20

}
, c1,κ =

{
2
6
, −7

6
, 11

6

}
, c2,κ =

{−1
6
, 5

6
, 2

6

}
,

c3,κ =
{

2
6
, 5

6
, −1

6

}
, c4,κ =

{
11
6
, −7

6
, 2

6

}
.

(3.8)

The evaluation of the smoothness measure for the WENO-SYM scheme is compli-

cated by the fact that a discontinuity could be located exactly at the center of the

stencil. This problem is effectively avoided by forcing the right most stencil to have a

smoothness parameter, βk, equal to zero when calculating the positive characteristic

flux, g+
j+ 1

2

, and similarly forcing the left most stencil to have β0, equal to zero for the

negative characteristic flux, g−
j+ 1

2

. For the positive characteristic flux with k = 3 and

β3 = 0, the remaining smoothness measures for r = 0, . . . , 2 are defined as

βr =
2∑

n=1

(
3∑
l=1

dr,n,lf(qj−k+1+r+l)

)2

, (3.9)

where the smoothness coefficients, dr,n,l, are given by

d1,1,l =

{
1

2
,
−4

2
,
3

2

}
, d2,1,l =

{
−1

2
, 0,

1

2

}
, d3,1,l =

{
3

2
,
−4

2
,
1

2

}
, (3.10)

d4,1,l =

{
−5

2
,
8

2
,
−3

2

}
, (3.11)

and

dr,2,l =

{√
13

12
,−2

√
13

12
,

√
13

12

}
, r = 0, . . . , 3. (3.12)

In the limit of smooth flow, all smoothness measures approach zero. Thus, for exam-

ple, when WENO-SYM is used near but not at shock waves, the equivalent WENO

interpolation is still approaching a perfect, zero-dissipation, centered stencil.

3.4.2.2 WENO/CD

Hill et al. (67) and Pantano et al. (123) developed a robust hybrid WENO/tuned cen-

tered difference (TCD) method, which combines the TCD stencil with the WENO-

SYM scheme. The centered difference stencil was bandwidth-optimized, specifically

for weakly compressible decaying turbulence (123). The optimal WENO weights are

chosen to match those of the TCD scheme thereby minimizing oscillations at the

matching boundaries. The location of the scheme-switching boundary is defined by
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a problem dependent switch. By using the relatively inexpensive TCD stencil pre-

dominantly in regions where the solution is smooth and WENO-SYM at and around

discontinuities, the overall resulting WENO/TCD scheme performs faster and ad-

ditionally has the spectral resolution desired in turbulence simulations. For DNS,

however, where all scales are resolved, a symmetric order-optimized stencil is ideal.

Therefore, for our application a WENO/CD rather than WENO/TCD method is

used.

For schemes based on centered stencils, no numerical viscosity is present, yet care

is needed to avoid nonlinear instabilities that may develop (123). Such instabilities

can be alleviated by using a skew-symmetric formulation that conserves the kinetic

energy (69) and prevents the convective terms of the momentum and energy equations

from artificially producing or dissipating global kinetic energy. Without this, it has

been found that in unstable flow simulations, the entropy of the system decreases

with time, a clear violation of the second law of thermodynamics.

3.4.3 Stability

For WENO and other high-order spatial methods, at least second-order TVD (total

variation diminishing) time integration is required for stability. Higher-order inte-

grators, often up to fifth order, have been used, but can be very computationally

expensive. Also, in viscous and reactive-flow simulations, the approximation error

due to the spatial discretization is usually assumed to be dominant. Additionally,

any temporal discretization exhibits its own numerical dissipation, but whose influ-

ence is assumed to be smaller than that introduced by the WENO interpolation or

the upwinding. Recent research on the time integration of compressible flows has

generally focused on efficiency and stability rather than the reduction of temporal

numerical dissipation.

The commonly chosen time discretization for hyperbolic problems is the method

of lines. The most popular methods used with the Euler equations are explicit TVD

or strong stability preserving Runge-Kutta (SSPRK) methods, where each of these is

designed for a specific n-th order of time accuracy, O(∆tn). Also, note that each TVD

scheme has a critical Courant-Friedrichs-Lewy (CFL) number, ν, above which the

method is not guaranteed to be stable. A typical definition (for the 1D inviscid case

only) would be ν := ∆t
∆x
|λmax| ≤ 1, where λmax is the maximal eigenvalue encountered

in the domain at a particular time, t, (101). For PDEs with diffusion and convection,

the latter relation needs to adjusted (see section §3.6 for the case of two-dimensional
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reactive Navier-Stokes equations).

Note that in practice we use the stability limits of linear systems of equations

for our nonlinear system. The stability of a numerical method can be discussed in

terms of having a bounded norm. For smooth problems, linearizing the equations and

using, for instance, the L2-norm is sufficient. However, for problems with discontinu-

ities, a bounded L2-norm does not ensure that the solution is nonoscillatory. For a

nonoscillatory solution, at least the TV (total variation) or similarly the Lmax-norm

must exist (58). The TV semi-norm is defined as ||u||TV =
∑N

j=0 |uj+1 − uj|.
Finite volume methods with order of accuracy >2 have not been proven to be

TVD (121). The intrinsic complexity of WENO and hybrid methods with order ≥3

has made any analytical proof of nonoscillatory solutions difficult. In practice, SSPRK

integration is therefore used for WENO methods. The SSP property is a very strong

requirement that guarantees strong monotonicity in arbitrary convex functionals, for

arbitrary starting values and arbitrary nonlinear, nonautonomous equations (58). The

stability in the TVD sense of these methods is ensured for a particular CFL parameter,

ν, if the spatial discretization is also stable when used with the 1st-order accurate

forward Euler method for temporal integration. However, proof of the TVD stability

of WENO methods, that use spatial reconstruction with order 3 or higher, cannot

be made as any such operator is linearly unstable when combined with the forward

Euler method (157) or any explicit Runge-Kutta method with less than third-order

accuracy. Nevertheless, SSPRK methods work well in practice with WENO operators

and provide essentially nonoscillatory solutions.

Therefore, to date, in order to make some estimates of the stability region, analo-

gies with second-order accurate spatial discretizations with forward Euler time-integration

are commonly used. Note that the MUSCL method is second-order accurate both in

space and time, and hence, its stability limit of ν ≤ 1 cannot be used as an analogy

(cf. (101)). WENO/ENO methods with second-order spatial accuracy are equivalent

to slope-limited MUSCL schemes. When combining these methods with the forward

Euler method in time, the analytical nonlinear TVD stability result (when using ex-

ample equations such as the advection equation and Burger’s equation and Harten’s

lemma) ranges from ν ≤ 1
2

to ν ≤ 2
3

(58), depending on the limiter. It is surmised that

WENO/ENO hybrid methods should perform similarly; yet, for numerous problems,

such as the ones presented in here, they perform so well in practice that convergence

in the L1- and L2-norm can be established for ν ≤ 1 (see below). This by no means

proves that using ν ≤ 1 will work for all possible solutions of the Euler and Navier-

Stokes equations; a smaller value, such as ν ≤ 1
2
, is a generally safe choice. Note, that
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for a full study of stability properties, an analysis of the convergence in the Lmax-norm

is also needed.

3.4.4 Time Discretization

The typical third-order, three-step SSPRK(3,3) scheme, integrating from time step n

to n+ 1, is

q(1) = q(n) + ∆tL(q(n)), q(2) =
3

4
q(n) +

1

4
q(1) +

1

4
∆tL(q(1)), (3.13)

q(n+ 1) =
1

3
q(n) +

2

3
q(2) +

2

3
∆tL(q(2)) . (3.14)

In this case, the linear stability limit is ν ≤ 1.434 (58). For our nonlinear problem we

used the limit ν ≤ 1. This method has an SSP coefficient c = 1, thereby permitting a

time step size similar to the forward Euler method. The costs of the overall method

are three times a forward-Euler update. In the last equation, L(q) is the numerical

approximation of the spatial differential operator of the hyperbolic equation. For

smooth solutions approximated with a three-step Runge-Kutta method (RK3) and

sixth-order accurate WENO, we therefore have

qt = L(q) +O(∆x6) +O(∆t3) . (3.15)

When viscous scales are also being resolved, we must consider how numerical viscos-

ity from the spatial discretization scales with the CFL number. Using the advection-

diffusion equation as an example, if one uses first-order Euler time integration, up-

winding on the advection term and a centered difference approximation of the diffusive

term, one finds that the numerical viscosity from the space discretization (which scales

with ∆x4 in this case) approaches zero as the CFL number approaches one. There-

fore, for mixed-type PDEs with advection and diffusion terms, the highest possible

stable time step should be used.

For the reactive simulations, owing to the large difference in time scales between

the fluid dynamics and the reactive source terms, a time-splitting method is used in

combination with the SSPRK(3,3) method of Ketchenson et al. (58). The stiff source

terms are integrated separately in each cell utilizing the 4th-order accurate semi-

implicit GRK4A method of Kaps and Rentrop (82), which avoids a globally coupled

implicit problem. Using the Strang splitting approach, the maximal temporal order

of accuracy is limited to two (101). An easily neglected detail for Runge-Kutta
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schemes is the proper time update within the substeps, which is vital to ensure the

correctness of time-dependent boundary conditions, as used, for instance, at SAMR-

level boundaries when hierarchical time step refinement is employed. Therefore, we

sketch the application of Strang splitting with SSPRK(3,3) below. With sstepι =(
1,−1

2
, 1

2

)
the algorithm reads

Integrate chemistry from t to t+ ∆t
2

for ι = 1, 2, 3:

Update ghost cells at t+ ∆t · sstepι
Integrate fluid to t+ ∆t · sstepι

Integrate chemistry from t+ ∆t
2

to t+ ∆t.

Also, for the nonreactive preliminary simulations, a 10-step, 4th-order Runge-

Kutta scheme, SSPRK(10,4) (58), is used. While typically higher than 3rd-order

SSP/TVD Runge-Kutta schemes have a stability coefficient smaller than one, for

this unique scheme the stable region is for ν = 6. This scheme is more efficient than

SSPRK(3,3), however, is more difficult to integrate with a time-splitting scheme owing

to its 10 as compared to 3 substeps. The 4th-order scheme is stable for the collective

10 steps with a CFL number six times larger than that of the 3rd-order scheme with

its collective 3 steps, leading to a scheme that is almost twice as efficient. This 4th-

order scheme can also be compared to the four-step 4th-order scheme, SSPRK(4,4),

which has ν = 0.624 (59). Note that ν corresponds to the total time-step as computed

from the contribution of all substeps. The SSPRK(10,4) scheme reads

for ι = 1, . . . , 10:

if (ι 6= 10): q(ι) = q(ι−1) +
∆t

6
L(q(ι−1))

if (ι = 5): q(5) = q(4) +
∆t

6
L(q(4)), q(∗) =

1

25
qn +

9

25
q(5),

q(5) = 15q(∗) − 5q(5)

if (ι = 10): q(n+ 1) =
6

10
q(9) +

∆t

10
L(q(9)) + q(∗).

3.5 SAMR Implementation

We utilize the fluid-solver framework AMROC, version 2.0, integrated into the Vir-

tual Test Facility (47, 48, 46), which is based on the block-structured adaptive mesh

refinement algorithm pioneered by Berger and Oliger (20) and refined by Berger and

Colella (19). This algorithm is designed especially for the solution of hyperbolic par-

tial differential equations with SAMR, where the computational grid is implemented
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as a collection of rectangular grid components. Finite-difference methods are lim-

ited to either uniform grids or SAMR, while the finite-volume approach can also be

used with unstructured meshes. The SAMR method follows a patch-wise refinement

strategy. Cells are flagged by error indicators and clustered into rectangular boxes

of appropriate size. Refined grids are derived recursively from the coarser level and

a hierarchy of successively embedded grid patches is constructed. With its paral-

lel distribution strategy, described in detail in (41) and (40), AMROC synchronizes

the overlapping ghost cell regions of neighboring patches user-transparently over pro-

cessor borders whenever boundary conditions are applied. An efficient partitioning

strategy for distributed memory machines is used for high-performance simulations

with MPI-library, cf. (41).

Typically, a second-order accurate Cartesian finite volume method (commonly of

the MUSCL type) is used with SAMR implementations. AMROC has been employed

very successively with such schemes to efficiently simulate shock-induced combustion,

particularly detonation waves, with simplified (24) and detailed chemical kinetics (42,

44). From the standpoint of DNS, however, the low numerical dissipation of the 6th-

order hybrid WENO/CD scheme should provide faster grid-wise convergence than

a second-order scheme. Also, it is predicted that for three-dimensional simulations,

owing to the multiscale nature of the problem, it will be very expensive to obtain

the desired resolution needed in the diffusive mixing and reaction zones. In the case

where the simulation is memory rather than compute time limited (i.e., the available

memory determines the highest possible resolution), the 6th-order accurate method

yields superior results.

In order to prescribe nonrectangular domains in §4.2.3 we utilize a level-set-based

embedded boundary method, that has been demonstrated and verified in detail for

chemically reactive flows in (43).

3.5.1 Centered Differences in Flux-Based Form

WENO schemes themselves are naturally flux-based formulations, but a flux-based

formulation of the centered-difference method is also required in order to enforce

conservation at the WENO-SYM/CD scheme-matching points. For the j-th point

at the cell center, the flux in the x-direction can be approximated with a 7-point

centered stencil as

∂f

∂x

∣∣∣∣
j

≈ 1

∆x
(α(fj+3 − fj−3) + β(fj+2 − fj−2) + γ(fj+1 − fj−1)) , (3.16)
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where α = 1/60, β = −3/20, and γ = 3/4 are constants selected for the 6th-order

accurate stencil. However, in order to enforce conservation, we must consider the

fluxes at the cell boundaries fj+ 1
2

and fj− 1
2
. For the inertial fluxes, the local fj at

the cell centers are explicitly known. However, the local cell-centered diffusive fluxes

must be calculated with a stencil similar to that of (3.16) as discussed in §3.5.2.

These together are used to obtain the fluxes at the cell walls, obtaining the final

desired conservative approximation of the flux at the cell center, i.e.,

∂f

∂x

∣∣∣∣
j

≈ 1

∆x

(
fj+ 1

2
− fj− 1

2

)
, (3.17)

where fj+ 1
2

and fj− 1
2

are calculated using

fj+ 1
2

=
(
ᾱ(fj+3 + fj−2) + β̄(fj+2 + fj−1) + γ̄(fj + fj+1)

)
(3.18)

with ᾱ = 1/60, β̄ = −2/15, and γ̄ = 37/60. However, directly using this is not ad-

vised. Presently, we utilize the skew-symmetric form on each piece of the decomposed

flux (see Pantano et al. (123) for details). The derivative of the flux at the cell cen-

ter is obtained by adding the contributions from the cell boundaries in (3.17). Note

that in this formulation, conservation is ensured but at the cost of a second-order

error at cell interfaces where the centered difference (CD) stencil is matched with the

WENO-SYM scheme. Since WENO is only used at shock waves, this loss of accuracy

is negligible compared to the dominating first-order error along the discontinuity. The

forced conservation ensures the stability of the method in an SAMR framework.

3.5.2 Diffusive-Flux Approximation

The approximation of the diffusive fluxes shares the previously encountered problem

that the numerical fluxes must be calculated at the cell walls in a conservative fashion.

For orders of accuracy greater than two, it is difficult to obtain derivatives (nonlinear

combinations of first and second derivatives) at the cell walls without allowing for

stencil widening. To obtain a 6th-order accurate diffusive-flux approximation, the

fluxes need to be first evaluated at the cell centers. However, in order to obtain these

approximations, first derivatives of the velocities, mass fractions, and temperatures,

must be calculated. For this a standard 7-point centered stencil for the derivative is

used. As an example for the velocity, the derivative in the y-direction of the v-velocity
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is calculated as

∂v

∂y

∣∣∣∣
l

=
1

∆y
(α(vl+3 − vl−3) + β(vl+2 − vl−2) + γ(vl+1 − vl−1)) , (3.19)

where l denotes the cell index in the y-direction. The appropriate diffusive-flux terms

are then known at the cell centers with 6th-order accuracy. Yet, for the SAMR

framework, fluxes at the cell walls are needed. Therefore, these cell-centered values

are interpolated to the cell walls using (3.17) such that, when the wall fluxes are

combined with (3.18), the resulting flux at the cell center is conservative at the scheme

boundaries and of the desired 6th order of accuracy. In this case, the final cell-centered

flux is influenced by a total of 12 cells for each direction. Hence, 6 ghost/boundary

cells are required in the SAMR implementation. One may devise a way to calculate

the wall fluxes directly in a way that only uses 6 cells for 6th-order accuracy, however,

difficulties arise when attempting to calculate cross-derivative terms, such as τxy (cf.

appendix 2.5), as it is not straightforward to simultaneously use less than 12 cells and

ensure a conservative form.

3.5.3 Hybrid Method Boundary Flagging

The WENO/CD scheme requires an explicit switch, from regions of smooth flow (us-

ing CD) to regions of extremely high gradients, that require WENO, such as shocks.

The normalized curvature of pressure and density was used by Hill and Pullin (67).

However, this flagging criterion can be sensitive to the resolution of the mesh in the

sense that a smooth flow can appear almost discontinuous if a sufficiently coarse mesh

is employed. The problems encountered with this switch motivated development of

an alternative, shock-detection based technique (106). The new technique is robust,

accureate, and efficient. While reminiscent of shock-fitting in terms of location strong

shock waves, it preserves efficiency by not requiring a deformable mesh.

The shock-based detection is suitable for the high-speed DMR problems, studied

in depth below, because the shocks continually bound the mixing layer as shown in

figure 3.2. The technique uses an approximate Riemann solver to detect the existence

and orientation of strong shock waves, while ignoring weak ones. The approximate

solution to the Riemann problem is computed using Roe-averaged quantities from the

given left (L) and right (R) state. Liu’s entropy condition allows for characterizing

the type of the wave encountered at the characteristic associated with the eigenvalues

u±a (shock or rarefaction wave). A shock is produced if and only if the central state
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(a) Shock Detection (b) Density pseudo-color plot

Figure 3.2: Shock detection applied to the viscous double Mach reflection problem of
§4.2.3.

satisfies the condition

|uR ± aR| < |u∗ ± a∗| < |uL ± aL|. (3.20)

Here, aL,R is computed by evaluating the speed of sound, a =
√
γp/ρ, at the left or

right cell faces, and the central state (u∗, a∗) corresponds to the Roe averages,

u∗ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, a∗ =

√
(γ∗ − 1)(h∗ −

1

2
u2
∗), (3.21)

where
h∗ =

√
ρLhL+

√
ρRhR√

ρL+
√
ρR

, cp,∗ =
√
ρLcp,L+

√
ρRcp,R√

ρL+
√
ρR

,

γ∗ = cp,∗
cp,∗−R,∗ , R∗ =

√
ρLRL+

√
ρRRR√

ρL+
√
ρR

,
(3.22)

and h∗, γ∗, cp,∗, and R∗ are the Roe-averaged specific enthalpy, heat ratio, specific

heat for constant pressure, and gas constant, respectively. When testing the validity

of the inequalities (3.20), a threshold value αLiu/a is considered to eliminate weak

acoustic waves that could be easily handled by the CD scheme. For better efficiency

and flexibility, this criterion is combined with a geometrical test based on a mapping

of the normalized pressure gradient, θj, that reads (106)

φ(θj) =
2θj

(1 + θj)
2 , with θj =

|pj+1 − pj|
|pj+1 + pj|

. (3.23)

If equation (3.20) is satisfied for a cell wall bounded by cells j and j + 1 with values

different by at least αLiu/a and also φ(θj) > αMap holds true, then WENO is set

to be used at the cell wall. This algorithm is applied independently in each spatial
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direction and we additionally employ it in multiple rotated frames of reference. The

latter allows us to efficiently detect shocks that are not grid aligned. In our two-

dimensional simulations, to be discussed below, we use the shock-detection criterion

also for rotational angles ±45 and ±135 degrees to capture shock waves perpendicular

to the diagonal directions of the mesh.

3.5.4 Higher-Order Accurate Hybrid Prolongation and Re-

striction

Prolongation involves the interpolation of cell-centered vector of state variables at a

coarse level to the next finest level’s ghost or newly refined interior cells. Restriction

involves the interpolation (for finite difference methods) or just simple averaging (for

finite volume methods) of the fine level states onto the underlying coarse level mesh.

We have extended the prolongation and restriction operators commonly used (cf. (19))

from first-order to fifth-order accuracy. In order to construct the interpolation sten-

cils, the Aitken method (122), based on Lagrange interpolation, is used sequentially

in each spatial direction. The coefficients are calculated recursively allowing for dif-

ferent refinement factors, for example 2, 4, or 8 times finer grids. Wherever possible,

centered stencils are selected as shown in figures 3.3(a) and 3.3(b). Exactly centered

or slightly upwinded (by half a cell width) stencils are used in most cases. For coarse

cells adjacent to mesh boundaries, as in figure 3.3(c), a stencil upwinded by one cell

is required, which is a result of having 6-point fifth-order accurate stencils when 6

ghost cells are available. With our implementation, owing to the treatment of the

time step stability criterion as described in the appendix 3.6, WENO is not needed at

coarse/fine SAMR boundaries for stability. The hybrid prolongation and restriction

operators have been applied successfully both with reactive and nonreactive simu-

lations using the WENO/CD method and the shock-based discontinuity detection.

With the fifth-order accurate operators, overall 6th-order convergence was found in

the two-dimensional verification problems which had smooth flow. At present, these

operators are unconstrained and permit local conservation errors within the order of

accuracy of the used interpolation. We note that where a discontinuity is flagged, for

example with the shock-based detection, the operator defaults to the stable first-order

accurate interpolation. One can view this method as a simplified version of mesh in-

terface “WENO” interpolation. In this respect, by making the WENO smoothness

measures accessible to the prolongation and restriction functions, fifth-order fully

upwinded stencils could be used at the shocks. However, in our case the option of de-
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(a) Prolongation: coarse grid to fine ghost cells, upwinded

(b) Restriction: fine to coarse grid underlying cells, centered

(c) Restriction: upwinded case

Figure 3.3: Fifth-order accurate stencils used by the hybrid-order prolongation and restriction.
These stencils are used when nondiscontinuous flow is encountered. Note, that all stencils are
centered except for the boundary coarse grid cells set in the restriction operation.
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faulting to first-order accurate interpolation at discontinuities is chosen for simplicity.

3.5.5 Adaptive Mesh Refinement

As an example of how the Navier-Stokes equations can be fully resolved, we show

some results for a supersonic mixing jet. Relative to the viscous length scale (which

is determined by the gradients of the velocity), there are are approximately 100 cells.

Shown in figure 3.4(a) are some zoomed in views of the results to demonstrate the

detail captured.

Figure 3.4: AMR for the density of a fully resolved viscous jet with AMROC

3.5.6 Multi-Component Chemistry Solver

The detailed multi-component chemistry and transport are implemented through the

use of the CHEMKIN-II library (85). This chemical kinetics package is utilized to eval-
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uate the reaction rates, enthalpies, specific heats, and transport coefficients according

to a particular reaction mechanism and thermodynamic model. The temperature is

found by applying a standard Newton method to an implicit temperature equation.

If the Newton method does not converge in a reasonable number of iterations, a stan-

dard bisection technique is applied. The bisection method is always guaranteed to

converge (40). In order to speed up the evaluation of temperature-dependent specific

heats and enthalpies, two constant tables are constructed for each species during the

start-up of the computational code (45).

3.5.7 Accuracy of the Roe Linearization

To determine the accuracy of the numerical method, the size and order of magnitude

truncation error must be investigated. To gain some insight, the one dimensional

advection-diffusion equation is discussed,

∂φ

∂t
+ u

∂φ

∂x
= K

∂2φ

∂x2
, (3.24)

Now, consider the Beam-Warming Method (101). For simplicity of argument, the

advection equation is considered to determine the influence of the approximate ad-

vective derivatives on the numerical diffusion and dispersion. In this case the finite

difference method uses a second-order approximation of the derivatives. As in the

first order upwinded method, it is assumed that u > 0,

φn+1
i = φni −

∆t

2∆x
(3φni − 4φni−1 + φni−2) +

∆t2

2∆x2
(φni − 2φni−1 + φni−2). (3.25)

In this case the modified equation is

∂φ

∂t
+ u

∂φ

∂x
=
−1

6
u∆x2(2− 3C + C2)

∂3φ

∂x3
+ ... (3.26)

The lowest-order error is of order ∆x2 and is dispersive in nature. The numerical

viscosity is of order ∆x3 and scales with the fourth derivative. This method is the

1D linearized analogue to the second-order sloped limited Roe methods for multi-

dimensional nonlinear hyperbolic problems. For the Euler equations in particular,

the beam-warming method represents the linearized version of a stencil in which

one particular characteristic variable found along a positive characteristic, therefore,

u corresponds to the local u ± a characteristic speed, where a is the sound speed.

Therefore, when using a ”high-resolution” flux/slope limited Finite volume method,
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with adequate resolution, the numerical viscosity scales with δx3 and is practically

zero. However, one must also note that is only true when the approximate Jacobian

(eigenvalue decomposition in Roe’s method for example) has a lowest order error of

∆x2,

∂φ

∂t
+ f(φ) = 0, (3.27)

∂φ

∂t
+ A

∂φ

∂x
= 0, (3.28)

A(φ(x), φ(x+ ∆x)) =
∂f(φ(x+ ∆x/2))

∂x
+O(∆x2). (3.29)

This means the Roe linearization must be second-order accurate, which for it is for

the Euler equations.

3.6 Stability Criterion

Special care must be taken when defining a stable, explicit, time-step criterion for

mixed type nonlinear PDEs. By considering a straightforward explicit finite differ-

ence scheme for the closely related multidimensional but scalar advection-diffusion

equation with constant coefficients

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= Kx

∂2φ

∂x2
+Ky

∂2φ

∂y2
, (3.30)

an approximate criterion for explicit methods for the Navier-Stokes equations is con-

structed. The stability criterion for a finite difference method for (3.30) is found by

Von Neumann stability analysis. Then using this results as an analogue, a combined

stability criterion for explicit schemes for the Navier-Stokes equations is derived. The

parameters resulting from this analysis are

αx =
2Kx∆t

∆x2
, Cx =

u∆t

∆x
, αy =

2Ky∆t

∆y2
, Cy =

v∆t

∆y
, (3.31)

where αx,y and Cx,y are the diffusion parameters and the Courant numbers for (3.30),

respectively. The stability criterion for a hybrid finite difference method with forward

in time, upwinded advection (backward space) and centered diffusion (FT-BS/CS)

scheme in two space dimensions is simply (68)

αx + Cx + αy + Cy ≤ 1. (3.32)



51

3.6.1 Non-Reactive Explicit Stability Criterion

To determine the stability limit for the used schemes for the nonreactive single-

component Navier-Stokes equations one must look at each of the four conservation

equations and determine the corresponding Courant numbers and diffusion parame-

ters. For all four equations, the Courant number is the typical CFL number as for

the inviscid Euler equations, cf. §3.4.4. The continuity equation for the density has

only the Courant number stability criterion. The two momentum equations have the

Courant number and a diffusion parameter, where the equivalent Kx, Ky values for

an advection-diffusion equation analogue are both 4
3
µ
ρ
. In the equation of the total

energy density, the dissipative term from the viscosity does not directly affect the

stability of et and therefore the diffusion parameter comes from the heat conduction

term, where now the analogous condition is Kx,y ≡ k
cvρ

, with k denoting the heat

diffusivity and cv the specific heat at constant volume, cv = cp −R. Then, one splits

the convective and diffusive parts, and the maximum time steps are constrained by

different convective and diffusive scales. The maximum time step is limited by the

combination of the convective CFL number with the diffusion parameters from viscos-

ity and conductivity in the x- and y-direction. For example, just from the x-direction,

there is

νconv,x =
∆t

∆x
max |λ|, (3.33)

and the diffusive “CFL analogue” parameters are

νdiff,visc,x =
8µ∆t

3ρ(∆x)2
, νdiff,cond,x =

2k∆t

cvρ(∆x)2
. (3.34)

The complete stability condition encompassing convection, viscous diffusion, and heat

diffusion is

ν = max( νconv + νdiff,visc, νconv + νdiff,cond ) ≤ 1, (3.35)

where in the two-dimensional case those quantities take the forms

νconv = ∆t
∆x

max(|u|+ a) + ∆t
∆y

max(|v|+ a), νdiff,visc = 8µ∆t
3ρ(∆x)2

+ 8µ∆t
3ρ(∆y)2

,

νdiff,cond = 2k∆t
cvρ(∆x)2

+ 2k∆t
cvρ(∆y)2

.
(3.36)

Note that in this case the stability limit is computed from the contribution of the

CFL numbers for all dimensions rather than taking the maximum of each dimension

separately. The viscous and heat conduction scales are separated as they affect the

stability of the momentum and energy equations separately. One must also note that



52

in the case of using the SSPRK(10,4) scheme, the complete stability criterion is for

ν ≤ 6, rather than ν ≤ 1, cf. §3.4.4. This criterion is for the total ∆t, after all

substeps have been taken. If one considers each substep separately, then on average

the CFL number is for νavg ≤ 0.6.

3.6.2 Reactive Multicomponent Explicit Stability Criterion

The stability of the two-dimensional multi-component, reactive Navier-Stokes equa-

tions is found in the same fashion as for the nonreactive equations. The difference is

now that the mass-averaged density, viscosity, and thermal conductivity are used for

the convective, viscous, and thermal criterion. However, the mass diffusion of each

species must be considered separately. In this case, the explicit stability condition is

ν = max( νconv + νdiff,visc, νconv + νdiff,cond, νconv + νdiff,mass ) ≤ 1, (3.37)

with νdiff,mass = Di
(∆x)2

+ Di
(∆y)2

, where Di is the mass diffusion parameter of the i-th

species, cf. §2.3.
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Chapter 4

Verification

4.1 Preliminary Verification Study

A systematic verification study of the described hybrid WENO/CD method within

an SAMR framework has been conducted. The presentation starts with nonreacting

and reacting diffusive perfect gas flows in one space dimensions, and considers some

two-dimensional benchmarks subsequently. This work has also appeared in Ziegler et

al. (166).

4.1.1 One-Dimensional Viscous Shock

An analytical one-dimensional solution of a stationary viscous shock profile was used

to verify the implementation separately in the x- and y-directions. The analytical

solution is formulated in nondimensional form, where the upstream density, pressure,

and velocity (indexed with 0) in addition to an equivalent perfect gas mean free

path are used as scaling parameters. See Kramer (92) for the implicit solution (with

Prandtl number of 3
4

and γ = 1.4), which is expressed as a function of the Mach

number and specific heat ratio, and relates the nondimensional velocity and position.

The specific mean free path, if only used as a length scale, can be arbitrary. For

the adopted solution it is λ0 = 8µ
5

√
2

πρ0p0
. The density, pressure, and hence the total

energy are found with the relations,

ρu = ρ0u0, ū =
u

u0

,
p

p0

=
−M2((γ − 1)ū2 − (γ − 1)))− 2)

2ū
. (4.1)

By using the analytical solution as an initial condition, the Navier-Stokes equations

were marched forward in time until the computation reached a stationary state. Typ-

ical shock profiles are shown in figure 4.1, where exact and numerical solutions are
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(a) Density (b) Entropy

Figure 4.1: Analytical and numerical solution for the one-dimensional steady shock
wave (visually no difference).

indistinguishable. The L1-error norm of the difference between the exact and the

numerical solution was then used to verify 6th-order convergence of WENO and CD

solvers, with viscous and heat conduction terms, for a perfect gas. Since this test case

has a smooth solution, the WENO and CD methods were tested separately. The low

convergence rates at coarse resolution (cf. table 4.1) are the result of an insufficient

number of points spanning the shock thickness, and the WENO and CD stencils (6

points wide), but particularly, the viscous flux stencils (12 points wide) show de-

graded convergence. This is generally true for all possible length scales encountered

in a simulation. Note that for this and all following verification studies, because finite

difference rather than finite volume methods are used, cell centered rather than cell

averaged values are used in convergence tests.

Cells
Density
L1-error rate

Momentum
L1-error rate

Total energy
L1-error rate

Pure CD
256 2.31E-6 - 1.71E-5 - 1.62E-5 -
512 7.08E-7 1.71 2.73E-7 5.97 3.36E-6 2.27
1024 1.14E-8 5.96 4.38E-9 5.96 5.44E-8 5.95
2048 1.81E-10 5.98 6.94E-11 5.98 8.59E-10 5.99

Pure WENO
256 2.78E-5 - 4.01E-5 - 1.41E-4 -
512 1.03E-5 1.43 8.49E-6 2.24 4.45E-5 1.66
1024 2.36E-7 5.45 2.09E-7 5.34 1.03E-6 5.43
2048 5.19E-9 5.51 1.75E-8 3.58 2.52E-8 5.35

Table 4.1: L1-error norms for the three state variables of the viscous shock test
problem. For the pure WENO method the ε value, cf. equation (3.2), was set to
10−4.
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One-Step Chemistry Model:
Implementation in AMROCImplementation in AMROC

• implemented one-step model in AMROC, first simulated a 1D laminar flame

- solves multi-dimensional, non-steady, chemically reacting Navier-Stokes equations

• validated flame simulation by comparing flame profiles with Cantera computations

11

Figure 4.2: Multicomponent laminar flame with detailed transport. Comparison is
with the steady solution of CANTERA.

4.1.2 Mass Diffusion/Heat Diffusion Analogy

The two-dimensional analytical heat equation solution was used to verify the mass

diffusion of the two-species model. This analytical solution is based on the diffusion of

a delta function. Using a 2D Fourier transform the solution is found as a symmetrical

Gaussian function.

The exact solution at a time t = t0 as a function of the x and y position is

∆ρ =
1

4πt
e
−x2
4t e

−y2
4t , (4.2)

ρproduct =
1

2
(1 + ∆ρ), (4.3)

ρreactant =
1

2
(1−∆ρ). (4.4)

We choose a time of t0 = 1
4

as the initial condition and observe that that the ∆ρ

value follows the exact solution.

4.1.3 Two-Species Laminar Flame Propagation

Using CANTERA to construct a reference solution, we designed a perfect gas, two-

species, one-step chemistry model that approximates the propagation of a laminar

flame in one dimension. For this model we matched the flame velocity and tempera-

ture by changing the species’ heat release, specific heat, and molecular weight. Also,

an approximate one-step reaction rate and activation energy was chosen,

ω̇ = −AT nρλe−
Ea
RT . (4.5)

http://www.cantera.org
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(a) Initial product mass fraction (b) Final product mass fraction
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Figure 4.3: Verification of product/reactant mass diffusion with comparison to the
heat equation.
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When λ, the reaction progress variable is specified as the mass fraction of the reac-

tants, then ω̇ is the mass production rate for the reactant. A is the pre-exponential

factor, n the temperature factor (zero in our model), Ea the activation energy in

units of (energy/mass), and R the gas constant. Note that if the common units of

(energy/mol) are used for the activation energy, then the universal gas constant R
must be used.

The laminar flame speed is defined as the velocity at which reactants propagate

through a stationary flame front, see Williams(164) §5.1. In this case, the reactants

are approaching the flame front at a constant speed, and then are accelerated to a

higher speed as they react and expand. figure 4.4, shows the convention, which one

notes is similar to that for a steady shock front.

Figure 4.4: Particle speeds of reactants and products in a steady laminar flame

The laminar flame velocity is determined mainly by the energy equation, where

there is a balance of heat conduction and mass diffusion of the different enthalpies

of the reactants and products. For a one-step model, there is the diffusion of the

heat release, which is transported by the products’ and reactants’ mass diffusion

mechanisms. These diffusion rates are controlled by the mass and thermal diffu-

sion coefficients which are functions highly dependent on temperature and inversely

dependent on pressure.

We used a simple one-step mechanism with CANTERA’s FreeFlame model and

mixture transport to obtain an exemplary solution shown in figure 4.5(b) for a mixture

starting at standard temperature and pressure. Our parameters, which were obtained

by modifying the CANTERA argon mechanism and adding a reaction are shown in

figure 4.2.
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Property Value Units Comments

Initial Density 1.623 kg/m3 density at 300 K, 1 atm

Reactant Specific Heat (Cp) 20.79 J/mol*K Cp/R in cti file (1st polynomical coefficient)

Product Specific Heat (Cp) 20.79 J/mol*K Cp/R in cti file (1st polynomical coefficient)

Gamma γ 1.67 calculated from Cp/Cv

Heat Release q 1074.86 kJ/kg R*(Δa5 
o) where Δ() = ()R - ()P

Activation Energy Ea 17000 cal/mol chosen as part of one-step model

71128 J/mol common units

Pre-exponential A 9.62E+07 s-1 chosen as part of one-step model

Temperature Power n 0 no Tn dependence of reaction rate

NOTES:

1.  One-Step model with 2 species:  R (reactant) and P (product)

2.  Both species R and P consist of one atom of Argon

8.  Reaction rate parameters Ea and A chosen as part of one-step model to match flame speed

3. Constant specific heat (can be different values for R and P) - for polynomial coefficients in cti file, (a0) = 
Cp/R , a1-a4 = 0 (no dependence of Cp on temperature)

5.  Transport properties of both R and P are that of Argon

6.  Assume no temperature dependence of viscosity or thermal conductivity (constant values)

7.  Values for Cp, q picked as part of one-step model, all other thermodynamic (density, viscosity, diffusion 
coefficients, etc.) parameters are obtained using Cantera by evaluating the gas object at 300 K, 1 atm

4.  Heat release q from Reactant to Product - included in cti file in the 6th coefficient

Table 4.2: Input parameters for one-step steady flame model
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Figure 4.5: CANTERA and AMROC comparison for the 1D laminar flame
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4.1.3.1 One Dimension

Using the 1D reactive flow equations in AMROC a laminar steady flame was sim-

ulated and compared the reference solution produced with CANTERA. We used a

two-species model with the total energy defined by the heat release per unit mass

parameter, q.

γ = γ1 = γ2, p = ρRT,R = R1 = R2, (4.6)

ρ = ρ1 + ρ2, ρ1 = ρY1, ρ2 = ρY2, (4.7)

ρet =
p

(γ − 1)
+

1

2
ρ(u2 + v2) + ρ2q, (4.8)

et =
p

(γ − 1)ρ
+

1

2
(u2 + v2) + qY2. (4.9)

(4.10)

This is equivalent to having product and reactant enthalpies of the form

h1 = h0 + cpT, (4.11)

h2 = h0 + q0 + cpT, (4.12)

h1 − h2 = hprod − hreact = ∆hreaction = −q0. (4.13)

Also, note that in general for a two-species model, the sound speed used in the

numerical simulation is the frozen sound speed, where

c =

√
γp

ρ1 + ρ2

, (4.14)

γ = 1 +
X1

γ1 − 1
+

X2

γ2 − 1
, (4.15)

X1 = ρ
Y1

W1

, X2 = ρ
Y2

W2

, (4.16)

where Xi is the mole fraction and Wi is the molar mass;

Now, for the special case of a one-dimensional model assuming perfect gases,

reactants and products having the same molecular weight, constant conductivity and

mass diffusivities, and zero viscosity, the conservation equations for mass, momentum,
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and energy are as follows,

∂(ρY1)

∂t
+
∂(ρuY1)

∂x
=

∂

∂x

(
ρD

∂Y1

∂x

)
+ ω̇1, (4.17)

∂(ρY2)

∂t
+
∂(ρuY2)

∂x
=

∂

∂x

(
ρD

∂Y2

∂x

)
+ ω̇2, (4.18)

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0, (4.19)

∂(ρet)

∂t
+
∂ (ρu(et + p))

∂x
=

∂

∂x

(
ρDq0

∂Y2

∂x

)
+

∂

∂x

(
k
∂T

∂x

)
, (4.20)

where Y1, Y2, D, and k are the reactant and product mass fractions, mass diffusivity,

and thermal diffusivity. First, using constant conductivity and mass diffusivities, we

started the laminar flame using a compressed and pressurized region of products. By

the ideal gas law this corresponds to an increase in temperature. After a transient

period, a steady propagating laminar flame resulted. Initially, a weak shock wave

travels out slightly raising the temperature and pressure in front of the flame. There

is an expansion fan behind the shock wave, which cools reactants close to ambient

conditions.

In this first simulation using constant diffusivities corresponding the ambient val-

ues, the laminar flame speed was found to be about half of that expected from CAN-

TERA, which uses a temperature dependent transport model. Subsequently, another

simulation was conducted using temperature dependent conductivity and tempera-

ture and pressure dependent mass diffusivity that match CANTERA’s. The temper-

ature dependent Sutherland law is used for the viscosity and conductivity, however,

to match the CANTERA solution, the viscosity was neglected,

µ = µref

{
T

Tref

} 3
2 Tref + sµ
T + sµ

, (4.21)

k = kref

{
T

Tref

} 3
2 Tref + sk
T + sk

. (4.22)

The following equation was used for the mass diffusivity,

D = Dref

{
D

Dref

}1.71

k

p

pref
, (4.23)

where pref is defined as atmospheric pressure. For our temperature ranges of 300

to 2500 K, these approximate functions are very close to CANTERA’s as shown in
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figure 4.6.

Figure 4.6: Comparing the Transport Properties to CANTERA’s results for T = 300
to 2500 K

Using the temperature and pressure dependent transport values, the results were

much closer. The discrepancies are surmised to be the result of CANTERA using

a constant pressure assumption in its solution (the momentum equation is ignored),

and the slight differences in the transport properties. Since the CANTERA solution is

not exact for the momentum equation, there are differences in the steady state results

between the full diffusive Navier-Stokes (ignoring viscosity) equations of AMROC and

the CANTERA energy and continuity based result.

4.1.4 One-Dimensional Steady Laminar Flame with Multi-

component Detailed Chemistry

As a multi-component verification of flows with chemistry, we compared our solution

for a 4-species one-step model of hydrogen-air combustion using CHEMKIN-II and
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the full one-dimensional reactive multi-component Navier-Stokes equation to the ap-

proximate FreeFlame model of CANTERA1 using the same mixture transport and

kinetic model. The flame velocity and temperature were matched to that of a typical

hydrogen-air flame by changing the heat release and one-step Arrhenius reaction rate

and activation energy. Physical transport properties were used for the H2O,N2,H2,O2

mixture.

The small discrepancies in the compared solutions are expected and interpreted as

the result of CANTERA using a constant pressure assumption in its solution. Since

the CANTERA solution is not exact for the momentum equation, there are slight

differences in the steady state results to the full diffusive Navier-Stokes equations of

AMROC. For our AMROC solution, the CANTERA result is used as the initial condi-

tion and the solution undergoes a transient process (as the pressure adjusts) to reach

a slightly different steady state. To the authors’ best knowledge, there exist no an-

alytical or semi-analytical, implicit solutions for multi-component, reacting, diffusive

flow. The difficulty is primarily due to modeling both mass diffusion and pressure

gradients. Therefore, a comparison to CANTERA’s widely accepted approximate

flame solution was warranted.

4.1.4.1 Two Dimensions

In axisymmetric coordinates we simulated the evolution of a laminar flame, for an

initial condition as box of hot products. First, similar to the unreactive cases, a

shock wave (in this case very weak) propagates out and pre-compresses and pressures

the surrounding fluid. Then heat conduction and mass diffusion (as in the 1D case

viscosity is neglected) show their effects, as shown in figure 4.7(a). First we observe

how a low energy flame propagates in axisymmetric coordinates with the symmetry

BCs, but with out the influence of solid boundaries as will later be the case for an

electrode surface. These 2D results are different from the 1D reference solution mainly

with the fact the simulation is not in the reference frame of a flame front.

4.1.5 One-Dimensional Unsteady Detonation

An unsteady reactive one-dimensional problem was used to verify the interaction of

the time-split chemistry terms with the reactive fluid solver. A standard unsteady

detonation problem with specific heat γ = 1.2, nondimensional heat release q = 50,

activation energy E = 50, gas constant R = 1, reaction rate coefficient A = 230.75,

1http://www.cantera.org

http://www.cantera.org
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(a) Temperature (b) AMR Levels

(c) Product mass fraction (d) Density

Figure 4.7: Preliminary unresolved axisymmetric laminar flame results

and overdrive f = 1.6 is adopted to compare to the single mode period solutions

found in (75) and (40). The initial condition is the same as that used by Hwang et

al. (75), using a discontinuous ambient and post-detonation state. Deiterding (40)

used the steady Zel’dovich, Von Neumann, and Doering (ZND) solution as the initial

condition, yet, it was found that for the WENO method, the post-detonation solution

is better suited as the initial nonperiodic solution decays faster. The shock pressure

was determined two ways, first using a local maximum, and alternatively by detecting

the shock position. Because shock-capturing, rather than shock-fitting, is used, there

are oscillations in the shock pressure owing to the unavoidable errors of the shock

moving back and forth across the grid (when the reference frame is determined by the

known average shock velocity). The best results were found by detecting the time-

dependent shock position and using this to calculate the pressure, which depends

analytically on the shock velocity. This shock velocity was found by using second-

order differentiation of the data points corresponding to the position of the local shock

pressure peaks. Using this indirect extrapolation of the velocity leads to smoother

data in figure 4.9 (50). This procedure has typically not be used by previous sources.

As shown in figure 4.8(a), after the initial transient relaxation, a periodic solution

is reached. The features of interest, i.e., the period and amplitude of the pressure

oscillation, agree, although the relaxation period is slightly different for each method.
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(a) Uniform grid

(b) 4 levels of SAMR

Figure 4.8: Maximum shock pressure versus time. Uniform grid: Compares the
WENO/CD solutions on a grid of 1,600 and 6,400 cells to a MUSCL solution with
16,000 cells. 4 levels: Comparing a WENO solution with 4 refinement levels (2, 2, 2,
2) and a base grid of 1600 cells to the highly resolved MUSCL solution with 16,000
cells. In each case the domain size is 80 and the final time is 40.
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The magnitude and development of the initial start-up errors are grid resolution

and method dependent, which is characteristic for this unstable problem (40). For

a fairly coarse uniform grid, 20 and 80 cells per half-reaction-zone length, L 1
2
, the

WENO/centered difference hybrid scheme is fairly close and converges to a highly

resolved MUSCL solution with 200 cells per L 1
2
. In these tests a domain of size 80

was used. In figure 4.8(b), the dynamic mesh adaptation is tested by using a WENO

solution with a base grid of 20 cells per L 1
2

along with 4 refinement levels, which

corresponds to 320 cells per L 1
2

near the shock front.

Figure 4.9: Convergence of the maximum pressure peak of ∼ 99 for the WENO/CD,
WENO, and MUSCL methods.

In figure 4.9 and table 4.3, the convergence of the WENO/CD and pure WENO

was compared in the uniform grid case to the convergence of the widely accepted

MUSCL method as used by Deiterding (40). The method of Hwang et al. (75), a

3rd-order WENO scheme, also converges to a pressure of approximately 99. Here it

is found that the WENO and WENO/CD solutions converge at similar rates to the

maximum shock pressure. As expected, this is substantially higher than that of the

2nd-order MUSCL solution at the same resolution. Note that at least 10 cells per L 1
2

are required to have an acceptable maximal pressure amplitude and period.
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Cell Size
(half reaction widths) L 1

2
Cells

MUSCL
Max Pressure

WENO
Max Pressure

WENOCD
Max Pressure

1.00E-001 10 160 - 93.3 92.6
5.00E-002 20 800 80.9 96.3 96.2
2.50E-002 40 1600 92.0 97.4 97.4
1.25E-002 80 3200 95.1 98.2 98.2
6.25E-003 160 6400 97.0 99.0 99.0
2.50E-003 400 16000 98.4 - 99.05
1.56E-003 641 25600 98.5 - -

Table 4.3: Convergence of the maximum pressure peak for the one-dimensional, un-
stable two-species detonation problem. Values are shown for the MUSCL, WENO,
and WENO/CD methods. The solution accepted by the detonation research commu-
nity is ∼99 (40).

Figure 4.10: One-dimensional inviscid exact solution for the manufactured Lamb-
Oseen vortex problem.

4.1.6 Two-Dimensional Manufactured and Decaying Lamb-

Oseen Vortex

For verification of the convergence properties of both the inviscid and viscous fluxes, a

two-dimensional “manufactured solution” of the convecting Lamb-Oseen vortex (137)

was constructed. Radial profiles for this exact solution, shown in figure 4.10, were

obtained for a steady, inviscid vortex problem. An exact viscous, steady solution was

then constructed by adding viscous fluxes together with analytically known source

terms in both the momentum and energy equations to cancel them exactly. An order-

verification via the manufactured solution procedure (OVMSP) (90) creates analytic

solutions to the fully general differential equations solved by the code and uses a

grid convergence study to confirm the order of accuracy. Fourth- and sixth-order,

conservative (in each SAMR level) viscous fluxes were constructed and verified. A
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Figure 4.11: Convergence plot (log-log scale) for the manufactured Lamb-Oseen vor-
tex solution (a) and the viscous decaying vortex (b). The convergence plots show the
decrease of the L1-error norm of the total energy as the resolution is doubled.
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convergence study was conducted for a uniform and a two-level grid. When using

first-order accurate prolongation and restriction, global 3rd-order spatial convergence

was found for the two-level grid over a finite time for the 6th- and 4th-order methods.

The uniform grid convergence results are shown in figure 4.11(a) and table 4.4.

Cells

MUSCL
2nd-order

viscous
L1-error

rate

WENO/CD
2nd-order

viscous
L1-error

rate

WENO/CD
4th-order
viscous
L1-error

rate

WENO/CD
6th-order
viscous
L1-error

rate

502 0.0355 0.0143 0.00442 0.00162
1002 0.00839 2.08 0.00359 1.99 0.000284 3.96 5.65E-05 4.84
2002 0.00194 2.11 0.000899 2.00 1.76E-05 4.01 6.43E-07 6.46

Table 4.4: Convergence on uniform grids using the manufactured solution for the
two-dimensional Lamb-Oseen vortex test, showing the error values of the L1-norm of
the total energy and the corresponding convergence rates for different methods with
differing viscous flux stencils.

Further, a separate verification problem was constructed using a highly accurate

simulation of the convecting, viscous, decaying Lamb-Oseen vortex. Here, the ex-

pected 6th-order convergence rate using the 5th-order prolongation and restriction

was verified using the full compressible Navier-Stokes equations. For these test cases,

a highly resolved 4096 × 4096 mesh was used as reference result, and was compared

to base meshes of 64×64 to 512×512 cells. This convergence test was carried out

using two levels, a base grid with a static 2 × 2 refinement mesh, centered in the

vortex. In figure 4.11(b) and table 4.5, with 2 levels, 2nd-order convergence is found

for all methods using the standard 1st-order accurate prolongation and restriction

operators. With a uniform grid, 6th-order convergence is confirmed for WENO/CD.

Lastly, with the new 5th-order accurate hybrid prolongation and restriction, overall

6th-order convergence is achieved even for the SAMR results. Note that in the SAMR

case, the error is evaluated as the sum of the L1-error norms on the domain Ωλ of

level λ without higher refinement. Denoting by Λ the highest level available, the norm

calculation reads

L1(q) = Le1(∆xΛ,∆yΛ,ΩΛ) +
Λ−1∑
λ=0

L1(∆xλ,∆yλ,Ωλ \ Ωλ+1), (4.24)

where

L1(∆x,∆y,Ω) =
∑
j,l

|qjl − qrjl|∆x∆y (4.25)

is the L1-error norm on the domain Ω, and where qrjl denotes the averaging projection
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Finest grid
resolution

WENO/CD
2 levels
L1-error

rate

WENO/CD
2 levels

higher-order SAMR
L1-error

rate
MUSCL
2 levels
L1-error

rate
WENO/CD

unigrid
L1-error

rate

0.1875 0.000282 0.000101 1.60 0.000102
0.09375 5.80E-05 2.28 2.18E-06 5.53 0.409 1.97 2.19E-06 5.54
0.046875 1.40E-05 2.05 4.72E-08 5.53 0.103 1.99 4.75E-08 5.53
0.0234375 3.82E-06 1.87 1.31E-09 5.17 0.0248 2.05 1.01E-9 5.56

Table 4.5: Convergence results for the decaying (viscous) two-dimensional Lamb-
Oseen vortex benchmark, showing the error values of the L1-norm of the total en-
ergy and the corresponding convergence rates. Except for the MUSCL method, each
WENO/CD test case uses 6th-order accurate viscous flux stencils, yet only the uni-
form grid and the multi-level test case using higher-order prolongation and restriction
yields close to 6th-order convergence.

of the reference solution from the 4096×4096 uniform mesh down to the desired mesh

with step sizes ∆x, ∆y.

4.2 Multi-Dimensionsal Unsteady Convergence Stud-

ies

Convergence studies for unsteady two-dimensional flow have been carried out to com-

plete the verification process. By systematically increasing the complexity of the

problem, convergence was tested for the nonreactive, two- and multi-component re-

active shock reflection problems. For all of these cases, the initial conditions were

selected such that the DMR type reflection was produced. See appendix B for more

discussion on Mach reflections.

4.2.1 The Model Problem

Detonations are intrinsically three-dimensional; however, due to the complexity of

the problem and the ability to easily extend an implementation from two to three

space-dimensional, a two-dimensional model is used. The problem setup for a two-

dimensional, shock-initiated detonation reflection is depicted schematically in fig-

ure 4.12(a). Two detonation waves travel symmetrically down inclined wedges of

equal angle θw and then collide. As depicted schematically in figure 4.12(b), the

collision produces a symmetrical structure consisting of two triple points with Mach

stems, reflected waves, and shear layers, one set for each incident shock wave. To

reduce computational cost, the symmetry of the problem is utilized. For our pre-
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Figure 4.12: The model problem of two interacting planar shock waves

liminary results, one nonreacting, perfect gas species with constant specific heat was

used. Later, one-step and multi-step reaction models involving multiple species were

employed. Note that a Reynolds number, Re, for this flow can be defined by using

the ambient density, speed of sound, and also the distance the incident shock has

traveled along the bottom boundary,

Re =
ρ∞a∞L(t)

µ∞
, L(t) = dshock sin θwt. (4.26)

4.2.2 Initial and Boundary Conditions

Figure 4.13: Boundary conditions for the reactive double Mach reflection problem.
For the nonreactive problem, the top ghost-fluid-method (GFM) region is not needed
and the exact shock solution is used at the upper boundary.



71

For the nonreactive simulations, the setup involves pre- and post-shock initial con-

ditions throughout the domain. The boundary conditions include vanishing normal

velocity, tangential stress and heat conduction on the inclined portions of the “wedge”;

symmetry boundary conditions on the horizontal boundary with zero normal velocity,

tangential stress, and heat conduction on the horizontal boundary, and simple zeroth-

order inflow/outflow boundary conditions on the left and right boundaries, as shown

in figure 4.13. Since this is a compressible supersonic flow, the boundary errors do

not travel fast enough to interact with the solution area of interest. The inclined slip

surface boundary is enforced using the level set implementation of the first-order ac-

curate ghost fluid method (43). The exact traveling shock solution is prescribed along

the top boundary. For this nonreactive case, the setup is similar geometrically to the

wedge interaction problem studied by Vas Ilev et al. (76). However, we use differ-

ent boundary conditions as our present interest is in shock-shock interactions rather

than shock-solid boundary interactions. For the reactive case, the one-dimensional or

planar ZND detonation wave solution was used as initial condition. This admits finite-

rate chemical reactions and describes a detonation as an infinitely thin shock wave

followed by a zone of exothermic chemical reaction. The shock travels with a speed

given by the Chapman-Jouguet condition. The initial condition is found by numeri-

cally solving the one-dimensional, steady, reactive Euler equations using a numerical

ordinary differential equation (ODE) solver. Also, in order to reduce boundary errors,

the top boundary was angled and set to a solid slip boundary condition, as shown in

figure 4.13. The initial and boundary conditions for the multi-component, detailed

chemistry results are the same as in the two-component, one-step chemistry case,

aside from a differing ZND solution due to the increased complexity in chemistry.

4.2.3 NonReactive Diffusive Double Mach Reflection

A fully resolved unsteady DMR simulation in air with γ = 1.4 specific heat ratio

was conducted. The initial conditions were selected to match the numerical and

experimental results of Vas Ilev et al. (76), where a Mach number M = 4.5, inflow

angle θw = 36◦, and viscosity and thermal conductivity of µ = 1.73 · 10−5 Pa · s and

k = 2.57 · 10−2 W/(m ·K) were chosen. However, in order to gauge the performance

of the code for detonation simulations, a slip boundary condition was applied, rather

than the no-slip boundary condition proposed by Vas Ilev et al. (76). The constant

viscosity and conductivity correspond approximately to the average values for the

post-shock conditions for the ambient state with T = 300 K and p = 2000 Pa. Vas
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Ilev et al. (76) was one of the first publications to look at 2D shock reflections with

viscosity and thermal conductivity. They used the 2D Navier-Stokes equations with

a single species perfect gas to look at the wall jetting effect of the slipstream in Mach

reflections. They compare these computations to a self-similar viscous solution at

different Reynolds number and also compared to their previous inviscid solution.

A nondimensionalization or scaling of the fluid dynamic equations was used and is

detailed in §2.5. The maximum CFL parameter for automatic time step adjustment

was 0.98 using the ten-step RK4 integration. Refinement criteria that capture the

physics of each length scale in the problem were utilized. The density gradient is

used to refine the convective length scale, the x- and y-velocity gradients are used

for the viscous length scale, and the energy gradient for the conduction lengths. The

viscous length scale is estimated by using the average density of the top and bottom

flows of the shear layer ρavg = 0.1496 kg/m3. The shock speed and speed of sound

used to calculate the Reynolds number are 1,566 and 348 m/s, respectively. Through

experience, it has been found that for (2.32), using the time value at which the shear

layer begins to become unstable is sufficient for calculating a viscous length scale δvisc.

Note that this naturally applies only to resolved simulations, in which there are at

least 10 to 100 cells within δvisc for our discretization approach. Therefore, despite

our intention, the incident shock is marginally resolved.

table 4.6 summarizes runs performed for the nonreactive, diffusive double Mach

reflection. For the result shown in table 4.6(D) the incident shock thickness (encom-

passing the high gradient part) is only slightly larger than λshock = 8µ
5

√
2

πρ∞p∞
≈

3.2 · 10−6 m. This corresponds to approximately 100 cells across the shear layer (at

finest grid resolution) immediately behind the triple point and some 10 cells across

the incident shock.

In the absence of an exact solution and with the necessity of adaptive mesh refine-

ment to resolve the scales, a standard convergence study is difficult. For the shear-

layer portions of the flow, comparisons with free shear layer theory were used to study

solution accuracy. Directly behind the triple point, the flow is laminar and stable;

therefore, for constant viscosity, the thin-layer equations apply. The similarity solu-

tion, as shown in appendix D, obeys the Blasius ODE but with boundary conditions

for the free-mixing layer. A demonstrative numerical result is shown in figure 4.14(a).

Here, the growth and transition to instability (the initial inviscid mode) of the region

dominated by vorticity is shown. The mixing thickness can also be obtained using

the Von Kármán momentum-integral technique (15) as shown in appendix D. It is

assumed that the flows on both sides of the shear layer are incompressible and that
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Density pseudo-color Density contour Method Diffusion
(A)

WENO/
CD-RK4
6 levels

(2, 2, 2, 2, 2)
base grid:
700× 120
x = [−1, 34]
y = [0, 6]

L∞ = 0.001 m

δvisc =
q
µt
ρ

≈ 4.07
·10−5 m

∆xmin = 1.5625
·10−6 m

t = 5.0 (nondim),
1.4368 · 10−5 s

Re = 6, 150

(B)

WENO/
CD-RK4
5 levels
(2,2,2,4)

base grid:
496× 86

x = [−0.8, 24]
y = [0, 4.3]

L∞ = 0.001 m

δvisc ≈ 3.57
·10−5 m

∆xmin = 1.5625
·10−6 m

t = 3.48 (nondim),
9.298 · 10−6 s
Re = 4, 278

(C)

WENO/
CD-RK4
6 levels

(2, 2, 2, 2, 4)
base grid:
496× 86

x = [−0.8, 24]
y = [0, 4.3]

L∞ = 0.001 m

δvisc ≈ 3.57
·10−5 m

∆xmin = 7.8125
·10−7 m

t = 3.48 (nondim),
9.298 · 10−6 s
Re = 4, 278

(D)

WENO/
CD-RK4
7-levels

(2, 2, 2, 2, 2, 4)
base grid:
496× 86

x = [−0.8, 24]
y = [0, 4.3]

L∞ = 0.001 m

δvisc ≈ 3.57
·10−5 m

∆xmin = 3.90625
·10−7 m

t = 3.48 (nondim),
9.298 · 10−6 s
Re = 4, 278

Table 4.6: Nonreactive diffusive double Mach reflection: pseudo-color density and
contour plots of the DMR structure. figure (A) displays the long-term behavior and
figures (B) to (D) demonstrate the convergence of the WENO/CD method in resolving
the viscous processes in the shear layer, by showing a successive increase in resolution
by a factor of 2 for three simulations. The approximate viscous scale and minimum
cell size show the required resolution for convergence of the viscous DMR problem.
Note: For the electronic version, the zoom tool in the PDF reader can be used to study
the details of the high-resolution plots.
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(a) Vorticity in the mixing layer (b) Mixing thickness growth

Figure 4.14: Vorticity in the mixing layer and the laminar mixing layer thickness as a
function of distance from the triple point, Von Karman momentum-integral technique.
The last black dot is from our numerical simulation for the approximate thickness at
a distance of 1.35 mm behind the triple point. This thickness is in the laminar stable
regime.

there is no pressure gradient along the layer. As assumed in Bendor (15), the upper

and lower velocities, u2 and u3 as shown in figure 4.14(a), tangential to the interface

are assumed to have a laminar profile and are approximated with third-order poly-

nomials. The benefit of the Von Kármán integral method is that it approximates the

effects of the density difference across the layer, unlike the Blasius method, for which

an average density was used. Of equal importance is that it also allows for a viscosity

variation: the lower fluid is much hotter than the upper fluid, yielding a physically

nonnegligible change in viscosity. The total displacement thickness was calculated

and is shown in figure 4.14(b). The dots on figure 4.14(b) show the comparison of the

numerical and boundary layer theory results. Before conducting quantitative conver-

gence calculations, the high-resolution results were compared to a simulation with

one less refinement level, which supported visual convergence.

4.2.3.1 Convergence Results

A series of simulations were conducted to investigate the influence of resolution and

SAMR level distribution on the initial roll-up of the shear layer. Pseudo-color and

contour plots of the density are presented in table 4.6 (B) to (D) for 3 different SAMR

resolutions. Through this investigation, it was found that setting the refinement

thresholds to enable adequate coverage of the shear layer and its surrounding region

is vital for convergence because the interactions of the SAMR levels create grid-level

disturbances that can influence the initially highly sensitive vortical roll-up. The

region behind the shock wave close to the second triple point requires the highest
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level of refinement (used similarly for the shear layer) because the roll-up first occurs

behind this shock.

Levels
Density
L1-error rate

y-velocity
L1-error rate

Total energy
L1-error rate

t = 3.48, domain:
[17.0, 24.0]× [0.0, 3.5]

3 1.05458 - 0.429532 - 31.4198 -
4 0.675551 0.64 0.295575 0.54 20.6763 0.60
5 0.304157 1.15 0.131237 1.17 9.41859 1.13
6 0.223831 0.44 0.090042 0.54 6.35662 0.57

t = 3.60 domain:
[17.0, 24.0]× [0.0, 3.5]

3 1.11937 - 0.460977 - 33.0184 -
4 0.78734 0.51 0.340686 0.44 23.912 0.47
5 0.389708 1.01 0.164079 1.05 12.1556 0.98
6 0.284423 0.45 0.115549 0.51 8.31585 0.55

t = 3.84 domain:
[18.5, 24.0]× [0.0, 3.5]

(incident shock at
edge of domain)

3 1.24815 - 0.53609 - 37.1056 -
4 1.07438 0.22 0.46187 0.21 32.7679 0.18
5 0.576804 0.90 0.240978 0.94 17.843 0.88
6 0.413381 0.48 0.175842 0.45 12.3752 0.53

Table 4.7: L1-error norms for some state variables using the 7-level case as the refer-
ence solution.

Base grid
Density
L1-error rate

Total energy
L1-error rate

t = 3.84 domain: [19.2, 24.0]× [0.0, 3.23]
(incident shock at edge of domain)

62× 11 1.17987 - 36.6927 -
124× 22 0.516237 1.19 15.7583 1.22
248× 43 0.289879 0.83 8.63115 0.87

t = 3.84 domain: [19.2, 23.55]× [0.0, 1.14]
bottom jet (shocks are not included)

62× 11 0.946061 - 29.9732 -
124× 22 0.418507 1.18 13.0559 1.20
248× 43 0.204751 1.03 6.27181 1.06

Table 4.8: L1-error norms for some state variables using the 7-level case (with 496×86
base grid) as the reference solution. Coarser solutions also have 7-levels, but use
coarser base grids.

Using the highest resolved case as an approximate “exact” numerical solution, the

convergence of the WENO/CD method was quantified. As an example, figure 4.15

shows the distribution of SAMR refinement levels for the 7-level case at a time of t =
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Figure 4.15: SAMR levels for the DMR convergence test. The domain corresponds
to those of tests (B)-(D) of table 4.6.

3.48 (nondimensional). The L1-error norms in table 4.7 demonstrate the convergence

of the state variables density, momentum, and total energy. The computation of

these norms utilized only the domain surrounding the shear layer. Here, convergence

is demonstrated from the time the shear layer begins to roll up, t = 3.36, to the time

at which half of the shear layer has left the domain, t = 3.84. For these norms, rates

of convergence are calculated assuming that all levels are being refined, rather than

just the finest level.

Also shown is table 4.8, where instead of changing the number of levels, the res-

olution of the base grid is halved in each direction. Here, because all grids are being

refined/coarsened rather than just those coinciding with the finest grid, the conver-

gence rates are slightly higher. Even higher rates are found when a domain excluding

the shock waves is used for the norms. As an example, the rate of convergence for

only the unstable jet at the bottom of the domain is shown. In this case the last rate

for the density increases from 1.33 to 1.43 and for the total energy, from 1.35 to 1.44.

Note that in all of these DMR test cases for tables 4.7 and 4.8, when comparing one

result to another, all the coarse/fine grid boundaries do not exactly match up. This is

unavoidable with our adaptive mesh refinement strategy, as the grid is being updated

at every time step and its coverage depends on the local gradients of the solution.

The evaluation of the L1-error norms is carried out as described at the end of

§4.1.6, with the only difference that the reference solution qr itself is now defined

on a hierarchical SAMR mesh. The data on the highest locally available level of

the reference solution is averaged onto the currently evaluated level of the present
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approximation. Since the SAMR approach leads to refinement domains Ωλ that are

always properly nested within the next coarser level domain Ωλ−1 plus a buffer region

of at least one layer of coarse level cells, it is safe to assume that for the cases

considered here the reference solution is always significantly better resolved. We

have implemented the used error norm computation for large-scale parallel adaptive

simulations as a mere post-processing step reading the I/O files generated by AMROC

into a separate single-processor program.

These quantitative measures and visual comparisons of the solution support that

our method is converging. In our two highest resolutions shown in table 4.6, because

the solutions visually look the same and the rates show convergence we can conclude

that the diffusive processes are resolved.

4.2.4 Double Mach Reflection Detonation

Demonstrative, fully-resolved, diffusive, detonation-reflection simulations have also

been completed in two space-dimensions for a one-step, two-species, marginally sta-

ble detonation. The problem setup is similar to the nonreactive case, except for

modifications of initial flow field and boundary conditions, required for an extension

of a shock wave to a detonation. Simulations were conducted using the WENO/CD

method and the robust MUSCL method for comparison. It was found that the accu-

racy of the flow was highly sensitive to the particular locations of the SAMR levels.

A simple two-species, single-reaction model was used with temperature dependent

transport properties. Because of the later goal of using multi-component detailed

chemistry, the thermodynamical and transport properties of our model where se-

lected and fitted to physical parameters for a H2-O2 detonation initially at T = 300 K

and p = 6, 700 Pa. Using a high-temperature extension of the GRI30 mechanism

in CANTERA and the SDToolbox2, the ZND solution was calculated with detailed

chemistry and used to make an approximate chemistry and transport model with

a single Arrhenius rate equation, constant specific heat, and temperature dependent

transport. Fekiw et al. (52) is one of the earlier works which modeled species diffusion

and viscosity in multidimensional reacting flows. Their formulation was applied to

1D detonations and 2D combusting flows. They also used an ENO formulation with

3rd order Runge-Kutta integration with time splitting for the stiff source terms.

The Arrhenius rate activation energy and pre-exponential, heat release, and spe-

cific heat ratio were chosen by matching the Chapman-Jouguet speed and the Von

2http://www.galcit.caltech.edu/EDL/public/cantera/html/SD Toolbox/index.html

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/index.html


78

Neumann (post-shock) pressure at the beginning of the ZND detonation, as shown in

4.16(a).

(a) ZND Initial Conditions: Temperature and Pressure

(b) Transport Properties: Viscosity, Conductivity, and Mass Diffuion

Figure 4.16: Comparing the initial conditions and transport properties of the one-
step two-species with the detailed chemistry case. Reaction length is of the order of
1 meter for the full detailed chemistry, however, the induction length length is of the
order of 1 mm for both the approximate one-step model and the detailed chemistry.
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For this two-species, calorically perfect model we have

γ = γ1 = γ2, p = ρRT, R = R1 = R2, and ρ = ρ1 + ρ2, ρ1 = ρY1, ρ2 = ρY2.

(4.27)

With the total energy defined by the heat release per unit mass parameter, q, the

equation of state takes the explicit form

ρet =
p

(γ − 1)
+

1

2
ρ(u2 + v2) + ρ1q, or et =

p

(γ − 1)ρ
+

1

2
(u2 + v2) + qY1. (4.28)

This is equivalent to having product and reactant enthalpies of the form

h1 = h0 + q+ cpT, h2 = h0 + cpT =⇒ h2−h1 = hprod−hreact = ∆hreaction = −q.
(4.29)

The mass fraction production rates are

ω̇1 = −ρY1A exp

(
Ea
RT

)
, and ω̇2 = ρY1A exp

(
Ea
RT

)
. (4.30)

The thermodynamic parameters T∞ = 300 K, p∞ = 6, 670 Pa, ρ∞ = 0.077552 kg/m3,

γ = 1.29499, W = 0.029 kg/mol, q = 54, 000 J/mol, Ea = 30, 000 J/mol, and

A = 6 · 105 s−1 were used. This corresponds to a post-shock pressure of approxi-

mately 1.7 atm and detonation shock speed of dshock = 1, 587.84 m/s. The viscosity,

thermal conductivity, and mass diffusions were selected by matching general trends

and the values at the end of the reaction zone of the one-step and detailed chemistry

models encountered in their separate one-dimensional steady ZND solutions. In all of

theses ZND configurations, the solution and parameters are described as a function

of position or equivalently time. For the viscosity and conductivity, the Sutherland

model was used,

µ = µref

(
T

Tref

) 3
2 T

Tref

, k = kref

(
T

Tref

) 3
2 T

Tref

. (4.31)

A simple expression that includes the inverse dependence on pressure was used for

the mass diffusion

D1 = D1ref

(
T

Tref

) 3
2 T

Tref

patm

p
, D2 = D2ref

(
T

Tref

) 3
2 T

Tref

patm

p
. (4.32)

At the end of the reaction zone, the temperature is approximately 2, 500 K and the
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pressure is ∼ 1 atm. This yields the following transport parameters for our one-

step model: Tref = 2, 500 K, µref = 1.07 · 10−4 Pa s, kref = 0.148 W/(mK), D1ref =

5.5 · 10−4 m2/s, D2ref = 6.4 · 10−4 m2/s. Note that for calculating a Reynolds number

we use µref rather than µ∞ as µ in this case is a function of temperature.

(a) Temperature

Figure 4.17: Temperature (K) pseudo-color plot for ZND initial condition with one-
step chemistry.

4.2.4.1 One-Step Chemistry

Results for the whole domain are presented in figures 4.17-4.18(a). For this simulation,

the ZND planar steady detonation wave solution was used as initial condition. Using

an average density, ρ ≈ 0.60 kg/m3, of the top and bottom portions of the shear layer

directly behind the triple point, viscosity of 5.95 · 10−5 Pa s, thermal conductivity of

0.847 W/(mK), a mass diffusivity of 1.57 · 10−4 m2/s for the average temperature of

2, 000 K, and a pressure of 2 atm the diffusive scales were estimated (see table 4.9(A)).

Observe that the viscous scale is the smallest, and mass diffusion and heat diffusion

scale are approximately 1.5 and 10 times larger, respectively.
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(a) Density (b) Product Mass Fraction

Figure 4.18: Pseudo-color plots for a fully-resolved marginally stable detonation with
one-step chemistry.

(a) Refinement levels

(b) Refinement levels (c) WENO usage (red)

Figure 4.19: SAMR levels and WENO usage for the 8-level reactive DMR convergence
test.
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4.2.4.2 Convergence Results

Using the nondimensional version of the equations and up to 8-levels of refinement,

convergence of the method for the reactive DMR was verified as shown in tables 4.9

and 4.10 (B) to (D). For these simulations, the National Energy Research Scientific

Computing Center (NERSC) machine “Carver” (quad-core Intel 5500 series) was used

with 128 cores. Additionally, in order to increase the efficiency of the simulation and

allow for higher resolution, a time-dependent coarsening region behind the DMR was

utilized, as shown in figure 4.19(b). Three-step RK3 integration was used with a

CFL time step parameter of 0.99 in conjunction with the time-split integration for

the chemistry. As expected, it was found that when the induction length is larger than

the viscous scales (as is for realistic physical parameters), a fully resolved simulation

is limited by the viscous length scale. Shown in figure 4.19(c) is the use of the WENO

scheme only at the strong shocks. At the highest resolution, the shock coming from

the second triple point is not strong enough to activate the discontinuity flag and the

centered difference method captures the shock satisfactorily. At these resolutions, the

weak shocks are nearly resolved, yet the strong shocks remain under-resolved.

Levels
Density
L1-error rate

Y1

L1-error rate

t = 4.300, domain: [23.0, 30.0]× [0, 5.0]
4 2.00432 - 0.216785 -
5 1.36915 0.55 0.160973 0.43
6 0.709029 0.95 0.0791281 1.03
7 0.329581 1.11 0.0360734 1.13

t = 4.608 domain: [23.0, 30.0]× [0, 5.0]
(Mach stem/incident shock has left the domain)

4 1.83941 - 0.226811 -
5 1.36174 0.44 0.170671 0.41
6 0.810797 0.75 0.104466 0.71
7 0.350756 1.21 0.0429677 1.28

Table 4.11: L1-error norms for the state variables using the 8-level case as the reference
solution.

Again, using the highest resolved 8-level case as a reference solution, L1-error

norms were calculated for the density and first species mass fraction to quantify

the convergence of the reactive DMR problem. Quantitative results are given in

table 4.11. Pseudo-color plots of the absolute value of the cell-wise difference between

current and reference approximation are displayed in table 4.12. As previously shown

for the nonreactive case, the solution is converging and accurately resolved. The latter

statement is further supported by the visualization of the local errors in table 4.12,
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A) 4-levels B) 5-levels

C) 6-levels D) 7-levels

Table 4.12: Density errors calculated with a comparison to the highest resolved case
(8-levels).

Scheme Levels Wall time CPU time
MUSCL 6 6.25 · 103 s = 1.74 h 55.6 h
MUSCL 7 2.51 · 104 s = 6.97 h 233 h
MUSCL 8 8.65 · 104 s = 24.0 h 769 h

WENO/CD 6 1.74 · 104 s = 4.83 h 155 h
WENO/CD 7 5.28 · 104 s = 14.7 h 470 h
WENO/CD 8 1.78 · 105 s = 49.5 h 1590 h

Table 4.13: Comparison of run times for the MUSCL and WENO/CD methods using
one-step, two-component chemistry for the DMR problem. Intel 5400 series, 32 cores,
320× 160 SAMR base grid, x = (−10, 30), y = (0, 20), final time t = 4.91498476.
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showing obvious visual convergence in the shear layer.

4.2.4.3 Method Comparison

Using up to 7-levels refinement, the computation was repeated with the MUSCL

method and second-order accurate finite differences for the diffusive terms. As shown

in table 4.10 (E) to (F), the overall flow field is similar, including the position of the

shock waves, the jet, and the mixing layer. However, not surprisingly, is the observed

result that the roll-up of the shear layer occurs later, which is surmised to be from the

additional numerical viscosity (from the spatial solver and temporal integrator) and

from the second-order errors from linear interpolation across the SAMR levels. Also

for comparison, an inviscid solution is shown in table 4.10(G). In this case, it is the

numerical viscosity (which is a function of the resolution used) that dictates the roll-up

of the mixing layer. This last case stresses the importance of including physical rather

than numerical viscosity when simulating detonations as most detonation simulations

us the reactive Euler equations as an approximation.

Also, as shown in table 4.13, is a comparison of the computational expense of

the MUSCL and WENO/CD methods. Results are shown for 32 cores as actual wall

time and total CPU hours. The WENO/CD method is approximately two times more

expensive than MUSCL as the number of levels is increased while using the same base

grid. Note that the wall times increase at a rate greater than linear as each level is

added.

4.2.5 H2-O2-Ar Multi-Component Chemistry

Using our simplified two-component one-step chemistry model as a basis for compar-

ison, the results were further extended to realistic, multi-component, detailed chem-

istry. Adapted from Deiterding (40), detailed chemistry and transport of the diffusive

DMR problem was modeled using a basic hydrogen-oxygen mechanism as extracted

from the hydrocarbon mechanism by Westbrook (161). This mechanism consists of

9 species (O2, H2O, H, O, OH, H2, HO2, H2O2, Ar) and 34 Arrhenius-rate reac-

tions. Due to the larger computational expense required by the additional species

and chemistry terms, presently, the diffusive processes are two times less resolved

than the previously presented two-component flow results. Because the reaction zone

length scale is much larger than the diffusive scales, and we resolve the diffusive scales,

the influence of the chemistry is completely resolved, as shown with the OH radical

mass fraction field in table 4.14. Note that the two-component one-step case was
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(a)

(b)

Figure 4.20: a) DMR density pseudo-color results with detailed chemistry and trans-
port of an H2-O2-Ar detonation in a mixture of initial mole ratios of 2 : 1 : 7 and at
T = 300 K and p = 6,700 Pa. The Chapman-Jouguet detonation speed is 1,627 m/s
and the induction length 0.01875 m. Problem setup: [−0.010, 0.030] m×[0.0, 0.022] m,
7 levels (2,2,2,2,2,2), 590 × 369 base grid, ∆xmin = 1.06 · 10−6 m, t = 1.2829 · 10−5 s.
b) Refinement levels of the DMR at a time of t = 1.05386 · 10−5.
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Levels
density
L1-error rate

total energy
L1-error rate

OH mass fraction
L1-error rate

A)
3 1.030E-6 - 3.531E+4 - 1.729E-4 -
4 7.445e-07 0.468 2.270E+4 0.637 1.589E-4 0.122
5 6.849e-07 0.124 2.037+4 0.047 1.575E-4 0.013
6 6.723e-07 0.027 2.020E+4 0.004 1.565E-4 0.009

B)
3 1.418E-6 - 4.447E+4 - 7.802E-5 -
4 1.306E-6 0.119 4.141E+4 0.103 6.899E-5 0.177
5 1.288E-6 0.020 4.013E+4 0.045 6.887E-5 0.003
6 1.276E-6 0.013 3.991E+4 0.008 6.778E-5 0.023

Table 4.15: Detailed chemistry convergence results: L1-error norms for the state
variables using the 7-level case as the reference solution: A) final time: t = 1.05386 ·
10−5 s, domain: [1.8, 2.4]× [0, 0.4] cm, corresponding to when the mixing layer starts
to roll up. B) final time: t = 1.1455 · 10−5 s, domain: [2.026, 2.47]× [0, 0.32] cm

modeled to correspond to the detailed chemistry simulations in terms of the reactive

and diffusive length scales. Also, except for the 8-level case, the smallest cell sizes

are the same, and the refinement criteria are similar. Therefore, a comparison of the

simulations supports that this detailed chemistry result, being similar to the one-step

result, is also resolved in the 7-level case shown in table 4.14. The expense of the

highest resolved case was 140,000 h CPU, running 3 months continuously with 64

cores. An even further resolved simulation with 8-levels is currently infeasible for us.

Also, note that at the current resolution, a nondimensionalization was unnecessary

to avoid underflow errors.

Results are presented for the whole domain in figure 4.20 and for the area spanned

by the DMR in table 4.14. Using the 7-level case as an “exact” solution, equivalent

convergence rates were calculated and are shown table 4.15. The rates are significantly

lower than for the previous configurations. Although the images in table 4.14 seem

to suggest convergence, the quantitative analysis and visualizations of the local error

similarly as in table 4.12 (not shown here) uncover that the computational resolution

and refinement criterion were not yet sufficient. Two to four mour times resolution

is likely needed to show more convincing results. In the highest resolved detailed

chemistry case, the thickness of the last refinement level around the shear layer is

thinner than that used in the 7- and 8-level two-component one-step simulations.

Our rates are calculated assuming that all levels are simultaneously made two times

finer, where in practice just the finest level is refined. Therefore, the magnitude of the

rates is dependent on the refinement criterion, specifically the efficiency parameter and

error tolerances. The conclusive quantitative convergence results of the two-species
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case support the validity of the multi-component results and also demonstrate some

of the differences in a solution when choosing to model detailed chemistry. There

are now multiple reactions scales, one of which, OH, is shown in table 4.14. These

simulations were run only until the onset of instability in the shear layers, and a

careful verification study was used to quantify our confidence in the validity of the

results. Note that comparisons past the onset of the initial instability are problematic

as the flow in the shear layer leaves the laminar regime.

The parameters selected for this case correspond to a regular detonation structure

(142) with a nearly laminar reaction zone and periodically-spaced transverse waves.

This corresponds to a weakly unstable mixture characteristic of low values of the

effective activation energy (128) with a relative long energy release region compared

to the induction zone length. The reaction zone fluctuations are quasi-steady (142)

in weakly unstable waves, and the shear layers associated with the triple-points are

primarily downstream of the induction zone. However, due to the subsonic (relative

to the shock front) nature of the flow field, the dynamics of the mixing layers can

influence the overall structure. In addition, there is clear experimental evidence (138)

of jetting of relatively unreacted fluid into the reacted region in the weakly unstable

case.

In the present simulations, the results show that there is a clear difference be-

tween simulations with and without diffusive transport in the region of the shear

layers and jetting. As expected, the presence of diffusion dramatically affects the

presence of the large-scale structures in the shear layer, features that are very promi-

nent (134, 105) in inviscid simulations of detonations. However, without simulations

of self-sustaining propagating detonations, it is unclear how diffusion will influence

the qualitative and quantitative conclusions drawn from inviscid simulations. Of

course, the role of diffusion will be strongly dependent on the characteristic Reynolds

number associated with the shear flow. In the present case, a characteristic value

of Re ∼ 3000 is representative of fuel-oxygen detonations at low pressure, similar

to those examined in Radulescu et al. (134). Larger values are possible in fuel-air

mixtures at high pressures. Extensive simulations of detonation structure with mod-

els of diffusive processes have been carried out in two and three space dimensions

by the group at the Naval Research Laboratory, see for example, Kessler et al. (88).

They simulated these flows using the reactive Navier-Stokes equations and one-step

models with diffusive transport of a single species. The emphasis of these studies has

primarily been on deflagration to detonation transition and comparisons of inviscid

and viscous propagating detonation simulations are not presented.
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The present study is most relevant to the simulation of irregular detonations which

are characterized by a turbulent reaction zone and a large range of spatial scales both

in the spacing of transverse waves, the associated shear layers and reaction fronts

(7, 135). Motivated by the experimental observations, preliminary (4, 116) studies

of diffusive reaction along shear layers have been carried out by previous authors. In

particular, Massa et al. (116) carried out a two-dimensional simulation of the shear

layer behind expected detonation triple points. Note that this is unlike our simulations

in that it excludes all shock waves and symmetry boundary conditions which create

the bottom jet. They investigated the role of vortical structures associated with

Kelvin-Helmholtz (KH) instability in the formation of localized ignition using detailed

chemical kinetics and transport. Their analysis indicates that the diffusive processes

and KH instability play no role in ignition for low activation energy mixtures and

have a modest role in ignition events for high activation energy mixtures. However,

the model problem that Massa et al. examined was highly idealized and it is difficult

to generalize the results to the structure of propagating detonations.

The present simulations are encouraging and demonstrate the feasibility of ap-

plying the computational method to the investigation of the mechanisms involved in

the diffusive processes of irregular detonations. The goal is to study highly unstable

mixtures for which major effects along the shear layers can be expected; e.g., unre-

acted pockets transported downstream or reaction behind highly fluctuating shock

fronts. We apply these methods to two-dimensional simulations of irregular detona-

tion problems with a reduced model of chemistry and transport. Even with the on-

going advances in computational capability, it seems unlikely that simulations which

also resove diffusive processes will be possible in the near term with realistic reaction

mechanisms for hydrocarbon fuels in three-dimensional flows.
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Chapter 5

Irregular, Diffusive Detonations

In this chapter, the direct numerical simulation (DNS) of irregular detonations is

introduced and discussed in detail. For a direct numerical simulation, detailed multi-

component chemistry, viscosity, heat conduction, and mass diffusion must be included

in a multi-dimensional simulation in order to capture all physical processses. Past

research has approached this problem by using various approximations that neglect

one or more of these effects. This had made the problem more tractable and less

computationally expensive. The only approximations in this work will be a two-

rather than three-dimensional simulation in addition to the “psuedo DNS” capturing

of strong the shocks.

Firstly in §5.1, the relevant past research in regard to irregular detonations and dif-

fusive detonations is discussed. Then in §5.2, a reduced irregular mixture mechanism

is developed, tested, and discussed. The descriptions and results of simulations with

this mechanism begin in §5.3 where one-dimensional inviscid and viscous solutions at

different resolutions are tested.

This chapter is a primer for simulation results that appear in the next two chapters.

In the following chapter6, a small-scale double Mach reflection is studied in great

detail. These simulations are run until instability arises in the initially steady wave.

Moving on, in the next chapter7 this transition to instability of the steady ZND wave

to a multi-dimensional front with characteristic cell sizes is simulated and studied.

In these following two chapters in §6.6 and §7.3, a comparison of the simulated DMR

structure and detonation cell length scales with those found for an experimentally

studied detonation tube is conducted.
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5.1 Background Research

Numerical studies of irregular detonations in the past have been challenging as de-

tailed chemical kinetics alone dramatically increase the required computational ex-

pense. Many multi-dimensional simulations to date have included simple one-step

chemistry, but progress was made in the late 90s when researchers began to used re-

duced detailed chemical kinetic models for the hydrogen-oxygen system as by Oran et

al. (1), Inaba and Matsuo (77), and Eckett (49). Simulations in three-dimensions with

detailed kinetics in hydrogen-oxygen-argon were first made in 2003 by Deiterding (40)

and in 2004 a simplified ethylene-air model by Khoklov (89).

5.1.1 Recent Research on Unsteady Effects of Detonations

Only over the past 10 years have the effects of diffusion (mass, viscous, heat) in

detonations been investigated. Diffusive/viscous processs are important in irregular

detonations, but only because of their interactions with the highly unstable shock

fronts. Because of their complexity and small size, these instabilities have been diffi-

cult to observe and quantify in both experiments and simulation. Some recent works

which tackle these issues are discussed below.

Lee and Radulescu (99) describes the general contemporary theories for detona-

tion propagation and structure. They explain the differences of three-dimensional

stable and unstable detonations with the basic historical ZND theory and highlight

its limitations. Between transverse wave collisions, the velocity of the leading shock

generally fluctuates between 1.6 and 0.7 times the average velocity. They discuss how

the highly variable flow is still related to an overall mean wave that moves close to

the CJ speed.

Experiments of unstable (irregular) detonations have been carried out by multiple

research groups. In Austin et al. (7, 6) experiments were conducted for various mix-

tures diluted with Ar (more stable) or N2 (less stable). The regularity or irregularity

(stability or instability) of the detonations was investigated with schlieren images and

chemiluminescene of OH. Of their mixtures tested, d etonations were found to be most

unstable for propane-air. This seems to be the most unstable hydrocarbon studied

experimentally in detonations to date. Haloua et al. (62) investigated experimentally

unstable gaseous detonation of stoichiometric propane/oxygen mixtures, diluted or

not with argon or helium. They identified four modes of unsteady propagation: stable

detonation, stuttering mode, galloping mode, and fast flame. A comprehensive study

was also undertaken by Pintgen et al. (128). Experiments, 2D Euler simulations, and
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nonreactive 3 shock theory were compared for H2/O2/Ar diluted mixtures. Reasons

were surmised for the possible existence of unburnt pockets behind the incident shock

wave. These unburnt structures known as keystones show up in experiments when the

fluorescence of OH is measured. OH is one of the radicals present in hydrocarbon-air

reactive zones. Radulescu et al. (135) also experimentally investigated the gas igni-

tion mechanism in typical irregular detonations. They have very clear high-resolution

experimental photos of the unstable detonations. For systems with high activation

energies and a sensitive dependence on temperature fluctuations, large portions of gas

escape shock-induced ignition. The ignition of the remaining gas relies on turbulent

mixing between burned and unburned gases.

Numerical studies on the unsteady effects of detonations have been conducted by

many researchers. Noteable ones are discussed below in chronological order. Gamezo

et al. (55, 56) used a one-step reaction with different activation energies to study the

appearance and nature of unreacted gas pockets downstream of the front, and the

oscillation of the center-line velocity. Unstable detonations of ethylene-O2 were exam-

ined by Khokhlov et al. (89). Their model consisted of the reactive Euler equations

with Arrhenius kinetics, comparing the OH concentration to that found in experi-

ments. They found the solutions to be sensitive to the adiabatic index (specific heat

ratio) and the molecular weight. Higher specific heat ratios lead to higher post shock

temperatures and more stability. Radulescu et al. (134) analyzes the cellular reaction

zone structure of unstable methane-oxygen detonations, which are characterized by

large hydrodynamic fluctuations and unreacted pockets with a fine structure. The

quantitative comparison between experiment and numerics also permits identification

of the current limitations of numerical simulations in capturing these effects. The flow

fields were obtained from numerical solutions of the Favre-averaged Euler equations

in time and space. They added artificial diffusion to the Riemann solver to suppress

the entropy oscillations. The simulations revealed two important length scales, the

first being associated with the chemical exothermicity and the second (the hydrody-

namic thickness) with the slower dissipation of the hydrodynamic fluctuations, which

govern the location of the average sonic surface. In the paper of Massa et al. (116),

they state that three principal phenomena occur in the evolution of the triple-point

shear layer: diffusion, the Kelvin-Helmholtz instability, and the auto-ignition of the

shocked unreacted stream. They find that the chemical energy release at the transver-

sal front is the dominant energetic contribution for high activation energy mixtures.

The shear-layer instability appears to play no role in the formation of localized ex-

plosions. They find hot spots occurring in the high and medium activation energy
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mixtures near the sonic-transition locus of the initially supersonic unreacted stream.

Here, molecular diffusion heating is responsible for ignition supporting the localized

and multidimensional nature of these irregular explosions.

5.1.2 Recent Research on Diffusive, Reactive Navier-Stokes

As discussed in Powers (131), viscosity, be it from physical or numerical errors, can

have a large influence on detonation and reactive flow solutions in genernal. Singh

et al. (146) considered both viscous and inviscid models and qualitatively measured

the influences of both physical and numerical viscosity on two-dimensional detona-

tion solutions. Here, the physical viscosity in the Navier-Stokes model was adjusted

so that the viscous layers were roughly one-tenth the length of the induction length.

Both the Euler and Navier-Stokes models were subjected to a grid-refinement study.

In the Euler calculations, intrinsic numerical viscosity, which depends on the size of

the grid and the details of the particular numerical method chosen, always played a

role in the solution downstream of the shock. In the Navier-Stokes calculations at

coarse resolutions, the same artificial viscosity dominates the physical viscosity, and

the structures depend on the grid resolution. As the grid is refined for the Euler calcu-

lations, the artificial viscosity decreases, and fewer downstream instabilities, such as

the Kelvin-Helmholtz instability, are suppressed. At coarse resolutions in the Navier-

Stokes model predicts similar results as the Euler model. In this case, the inherent

numerical viscosity of the method dominates the physical viscosity. However, as the

grid is refined in the Navier-Stokes calculations, the physical viscosity dominates, and

no finer-scale structures are apparent. We see these same effects in §6.2.

The first works including diffusion processses for a detailed chemistry and trans-

port model began with a one-dimensional analysis. Singh et al. (147) used a wavelet

based method to efficiently solve the one-dimensional reactive Navier-Stokes equa-

tions. In a paper by Arienti and Shepherd (5), simplified zero- and one-dimensional

models were used to estimate the role of diffusion in detonations. From the triple

points, there exist mixing layers of hot products and relatively colder unreacted reac-

tants. The rate of mixing affects the time for which the colder flow ignites, and has

more affect on the overall flow field if the detonation is highly unstable (in other words,

sensitive or having a high activation energy). The zero-dimensional model assumes

instantaneous mixing and the one-dimensional model assumes a one-dimensional lam-

inarily diffusing flame. A study by Singh et al. (147) considered a one-dimensional

Navier-Stokes model for a detailed H2-O2-Ar mixture and thus resolved shocks of
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finite thickness. The viscous layer overlapped some of the finest reaction zone lengths

but is distinct from the better understood induction zone. In another paper (145),

they also examine the combustion modes possible behind shock waves through solu-

tions of the one-dimensional, steady reactive Navier-Stokes (diffusive but nonviscous)

equations with a detailed chemical reaction mechanism for stoichiometric methane-air

mixtures.

Many researchers have simulated diffusion for two- and three-dimensional deto-

nations, yet, almost all have neglected multi-component chemistry and/or have also

neglected to resolve the diffusive scales. One work that stands out is that of the NRL

group (88), which has modeled DDT (detonation to deflagration transition) in 2D

and 3D. In their simulations they have used two-component chemistry. They found

DDT to be very sensitive to the specific heat ratio.

The most recent and complex simulations to date that are relevant to this thesis

are that of Massa et al. (116). In their two-dimensional simulations, also discussed in

§1.1.6, they neglected the shock waves (which leaves out the main source of detonation

instability) and simulated with detailed chemistry the shear layer behind detonation

triple points. They investigated the role of vortical structures associated with Kelvin-

Helmholtz instability in the formation of localized ignition.

5.2 Reactive Propane-Air Mechanism

Detonation for hydrocarbon fuels was simulated through the use of the multi-component

model and a reduced mechanism. In order to control the computational expense in a

simulation which includes detailed chemistry and transport, a custom reduced model

which preserves the steady one-dimensional ZND solution was developed. This was

matched for the expected range of detonation speeds in an unsteady multi-dimensional

detonation. Propane is of high interest as it is one of the most unstable fuels for which

detonations have been studied experimentally in labs to date (116).

5.2.1 Reduced Chemistry

The detailed hydrocarbon mechanism of Blanquart et al. (22, 21) was reduced from

161 species and 1055 reactions to 22 species and 53 reversible reactions, as shown

in appendix E.1. This reduction is only for the C3H8-5O2-9N2 mixture at an initial

pressure of 20 kPa and temperature of 298 K and should only be trusted for overdrives

of 0.8 to 1.4. In this reduction, molecules with greater than 3 carbon atoms were
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neglected as were many nonessential reactions. After the initial reduction, a few

of the rates for the subreactions of C2H5 were tuned to rescale the induction times

to match the experimental data. C2H5 is a direct product of C3H8 and therefore,

tuning this reaction directly affects the induction time and only indirectly affects the

exothermic energy release and long time relaxation reactions like CO2 and CO. The

22 species included in this mechanism are all essential, in that if any one species were

to be removed, relatively large changes in at least one range of the overdrive solutions

is affected. The species are C3H8, O2, N2, H, O, OH, H2, H2O, CO2, HO2, CO, HCO,

CH2, CH3, CH2O, HCCO, C2H2, CH4, C2H3, C2H4, C2H5, NC3H7

5.2.1.1 Comparison to Detailed Chemistry

The detailed mechanism reduction was carried out by matching the induction times

and the steady ZND solution profile as close as possible as shown in figures 5.1

and 5.2. The expected detonation wave speeds for the unsteady problem range from

an overdrive, f = U/UCJ , of 0.8 to 1.4. Therefore, throughout the reduction process,

the steady ZND solution was matched as close as possible throughout this range.

Shown in figures 5.3 and 5.4 are various properties of interest that were preserved in

the reduction. The most difficult and important property to match is the thermicity,

shown in figure 5.4. The location of the peak directly corresponds to the induction

time/length. The shape and width of the peak directly corresponds to the exothermic

pulse width. Thermicity describes the rate at which energy from chemical reactions

is coupled to the fluid dynamics.

The thermicity term can be broken down into two parts, a dimensionless coefficient

σi that depends on thermodynamic properties and the convective derivative of the

species mass fractions,

σ̇ =

NY∑
i=1

σi
DYi
Dt

. (5.1)

As written, the coefficients σi in the thermicity term are difficult to compute since

the necessary partial derviatives are not commonly available for a typical equation of

state. Using thermodynamic identities, the following version can be obtained

σi = −1

ρ

∂ρ

∂Yi

∣∣∣∣
P,T,Yk 6=i

− αT
cP

∂h

∂Yi

∣∣∣∣
P,T,Yk 6=i

. (5.2)
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Note that this relation is completely general and is independent of any assumptions

about the equation of state or the reaction mechanism. The coefficient of thermal

expansion is

αT = −1

ρ

∂ρ

∂T

∣∣∣∣
P,Y

. (5.3)

For an ideal gas,

σi =
W

Wi

− hi
cPT

. (5.4)

The entire coupling between the flow and the chemistry is contained with σ̇. Ther-

micity measures the rate at which chemical energy is transformed into thermal energy

and vice versa. The variation of the thermicity within the flow reflects the net effect

of all chemical reactions taking place: bimolecular exchanges, recombination, and

dissociation. The first term in Equation 5.2 is the effective energy release associated

with changing the total number of moles of species per unit mass of the reacting mix-

ture. The second term in Equation 5.2 is the normalized energy release associated

with chemical bond breaking and formation.

Also, note that for the overdrive greater than one cases, there is an endothermic

energy deposition in the early times which is described with a negative thermicity.

For an overdrive less than one, the shape of the thermicity is very simple, it goes from

practically zero to its final positive value very rapidly. In these cases the location of

this rapid rise is important to match.
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5.2.1.2 Reduced Mechanism Chemistry

In figures 5.5, 5.6, and 5.7, as an example, using the CJ speed (overdrive = 1) case

the change in composition through the detonation wave is shown. Note the distinct

regions where the chain branching and relaxation zones begin. The relaxation involves

the final formation of CO2 and CO.

Figure 5.5: Mole fractions as a function of distance for each species for the reduced
mechanism at an overdrive of 1.0 (CJ speed).

In figure 5.5, the species with the largest mole fractions are shown. N2 is a dilutent

and its mass (rather than mole) fraction is constant. All nitrogen-related reactions

have been neglected in this reduction. This is a common practice for detonation

hydrocarbon reductions. The rate at which N2 is made into N, NO, NO2, N2O, NO3,

etc. is very slow compared to the induction time and relaxation time for CO and

CO2 formation. Therefore, the dynamics of the detonation are not affected. The

only difference that would be seen if these reactions were included would be a slightly

different final temperature far downstream of the detonation wave.

The induction length is clearly seen in figure 5.5 by looking for the rapid con-

sumption of O2 and complete consumption of C3H8. The exothermic energy release
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Figure 5.6: Zoomed in view of the mole fractions as a function of distance for each
species for the reduced mechanism at an overdrive of 1.0 (CJ speed).

is seen by observing the rapid formation of H2O. The chemical relaxation is mainly

described by the formation of CO and CO2. HCO which is in a relatively very small

concentration shown in figure 5.7, is an important intermediate in this process.

In figure 5.6, the formation of the intermediate H2 and hydrocarbons C2H2 and

CH4 is observed. The formation of larger concentration radicals OH, H, and O is

also observed. In the next figure, 5.7, more chain branching intermediates are viewed

more closely by zooming in. The formation and depletion of CH2O, CH3, C2H3, CH2,

C2H4, HCCO, is observed. There are other species of smaller concentrations such as

C2H5, C3H7, and CH2O which are also essential in the chain branching process. Also,

essential at early times is the HO2 radical. Shown in figure 5.8, at an early time the

small concentrations of C3H7 and C2H5 are formed and then consumed as they are

broken down into smaller hydrocarbons.

Our numerical simulations investigate the mechanisms involved in the diffusive

processses of irregular detonations. Here, the goal is to study a highly unstable

mixture for which major effects along the shear layers can be expected; e.g., unreacted

pockets transported downstream or highly irregular ignition. In this case, diffusive

processses can be an integral part of the detonation mechanism.
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Figure 5.7: Highly zoomed in view of the mole fractions as a function of distance for
each species for the reduced mechanism at an overdrive of 1.0 (CJ speed).

Figure 5.8: Zoomed in view of the mole fractions of C3H7 and C2H5 as a function of
distance for each species for the reduced mechanism at an overdrive of 1.0 (CJ speed).
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5.3 One-Dimensional Unsteady Results

Firstly, after the successful development of a reduced mechanism for the steady prob-

lem, a unsteady one-dimensional simulation was conducted. For this simulation, a

uniform grid of 50,000 cells was used for a domain from -3 to 50 cm, with the smallest

cell size equal to 10.6 micrometers. The ZND solution, at a speed slightly larger

than the CJ case (overdrive = 1) was used. As shown in figure 5.9(a), the detona-

tion dies and does not self-propagate. The induction zone (where most of the rapid

energy release is occurring) becomes separated from the leading shock. Soon after

the separation process begins, there is an explosion in the induction zone and the

flow locally speeds up and sends a strong pressure wave that runs up to the leading

shock. However, this explosion was not strong enough and the induction zone con-

tinues to lag behind the leading shock, which without its support loses its strength.

The separation of the induction zone is clearly seen by looking at the temperature in

figure 5.9(b). The steep temperature rise marks the induction length.

This initial inviscid simulation was carried out at a coarse resolution which does

not resolve all the length scales of the chemical reactions. Therefore, in order to test

how well a coarse simulation performs, the simulation was repeated with a smallest

cell size that was 10 times smaller. For this simulation, a base grid of 50,000 cells

was used with 2 refinement levels (2x, 2x) for a domain from -3 to 20 cm, with the

smallest cell size equal to 1.15 micrometers. The coarse- and fine-mesh simulations

are compared in figures 5.10(a) and 5.10(a). Overall, the same pattern of a decoupled

shock and reaction zone is found. The main difference for the simulations is the

appearance of fine-scale oscillations which were previously damped out by numerical

dissipation. Another large difference is that the simulation with higher resolution

decouples at a later time than the lower resolution case. This is observed by seeing

that the pressure rises less slowly initially and the is higher at a later time right when

the decoupling begins.

Shown in figures 5.11(a) and 5.11(b) is a comparison between inviscid and vis-

cous/diffusive simulations. As expected, at first glance, there is little difference be-

tween the two solutions. However, if one zooms in on the plots, it is seen that near

the leading shock diffusion of heat has slightly raised the pressure and lowered the

temperature for the viscous/diffusive case.
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(a) Pressure

(b) Temperature

Figure 5.9: Time elapsed nondimensional pressure and temperature for the 1D inviscid
case. The lines are plotted every t = 240 nodim = 7.24·10−6 seconds. The dimensions
of the x-axis are cm.
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(a) Pressure: ∆xmin = 10.6 micrometers

(b) Pressure: ∆xmin = 1.15 micrometers

Figure 5.10: Time elapsed nondimensional pressure for the 1D inviscid case. Com-
paring a coarse- and high-resolution simulations. The lines are plotted every t = 240
nodim = 7.24·10−6 seconds for both simulations. The dimensions of the x-axis are
cm.
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(a) Pressure

(b) Temperature

Figure 5.11: Non-dimensional pressure temperature for the 1D viscous (solid black)
and inviscid (dotted red) cases at a time t = 1.08597·10−4 seconds. The dimensions
of the x-axis are cm.
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5.4 Discussion

A reduced model was developed in order to simulate the most irregular detonation

mixture experimentally studied to date. The full detailed hydrocarbon combustion

mechanism of Blanquart (22, 21) was reduced to 22 species and 53 reversible reactions.

The 22 species included in this mechanism are all essential, in that if any one species

were to be removed, large changes in at least one range of the expected over- and

underdriven solutions is affected. The shock von Neumann states, induction zones,

and equilibrium states were all matched in addition to the location and shapes of the

thermicity peak for the overdrives of 0.8 to 1.4.

Starting with a one-dimensional detonation failure test, as compared to all past

detonation research, the first of its kind, multi-dimensional, unsteady, hydrocarbon,

detonation simulations were begun. The next two chapters demonstrate these results

in two-dimensions.
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Chapter 6

Irregular Detonation Double Mach
Reflection

The propane mechanism developed in chapter 5 was used extensively for a detonation

double Mach reflection (DMR) simulation. In this chapter results from the diffusive

and inviscid detonation DMR are shown and discussed. In §6.1, a time-elapsed, large-

scale pressure and radical mass fraction visualization is shown. For each of these, the

diffusive and inviscid results using WENO-CD are shown.

These results are from multiple simulations using domains of subsequently increas-

ing size (multiples of 2). The first set corresponds to the smallest domain and the

highest resolution using 6-levels (one base level and 5 refinement levels). All cases

have a base grid of the same resolution. Figures 6.1-6.4 are of the pressure for only the

6-level simulation results. figures 6.12-6.20 are of the OH mass fraction and are orga-

nized as 6-, 5-, and 4-level cases. The time and Reynolds number, as defined by equa-

tion (4.26), are listed on each figure. The ambient dynamic viscosity, sound speed,

and density used to calculate the Reynolds number were 1.7501·10−4 gm/cm·sec,

33,150 cm/sec, and 2.46·10−4 g/cm3 (all in cgs units as used by CHEMKIN). In these

computations, with these particular grids, the viscous solution was surprisingly only

approximately two times more computationally expensive than the inviscid solution.

In §6.2, the influence of numerical viscosity as dependent on the grid resolution is

studied. In §6.5 the diffusive and inviscid results for this irregular detonation DMR are

compared. The influence of the diffusive terms is discussed. In §6.3 the inviscid and

diffusive WENO-CD solutions are compared with an inviscid second-order accurate

MUSCL solution. Lastly, in §6.4 the diffusive DMR of propane is described in detail

qualitatively and quantitatively using traces. More detailed analysis is carried out in

§6.4.1 where the flow directions of the DMR are studied by observing how the velocity

vectors evolve in time. Various time steps and parameters are selected chronologically
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and discussed in multiple figures. The appearance of new triple points from the

convective-reactive instability is described.

6.1 Overview of Viscous and Inviscid DMR Simu-

lations

In the following subsection, pseudo-color plots which show the complete range of

physical processs are shown. The simulations begin with the initial, steady ZND

solution reflecting off the bottom boundary where a DMR forms. The DMR firstly

looks similar to the nonreactive case, but at later times the Mach stem and reflected

and transverse waves which are within the induction zone go unstable and new triple

points are formed. At a much later time the incident shock also goes unstable forming

new triple points and interacting with the primary Mach stem.

Levels x-dim (cm) y-dim (cm) final t (nondim) final t (s) final Re ∆xmin (m)
3 -1, 8 0,6.8 792 2.39·10−5 328,000 10.42·10−6

4 -0.5, 4 0,3.4 336 1.01·10−5 139,000 5.21·10−6

5 -0.5, 2 0,1.7 204 6.15·10−6 93,000 2.3·10−6

6 -0.5 ,1 0,1.2 108 3.26·10−6 46,500 1.30·10−6

Table 6.1: table of simulation runs for the detonation DMR.

Different domain sizes and resolutions were used, as shown in table 6.1. For the

larger domains, fewer refinement levels and hence less resolution was used. This was

done in order to keep the computational expense manageable. Note that all simulation

results use a base grid of the same resolution. It is important to have a fine enough

base grid, such that errors from the time prolongation when dealing with the sharp

gradients in the species concentrations do not pollute the finer levels. For the 6-, 5-,

and 4-level cases, the reflection was run up to x = 1, 2, and 4 cm. In this length/time

range, the incident shock remains stable (no new triple points are formed). For the

3-level case, the reflection is run until x = 8 cm. In these results, the incident shock

is found to go unstable. Note that in all results, the Mach stem has new triple points

forming, as does the reflected wave while it is still bounded by the induction length.

In what follows, owing to the complexity of the graphical presentation, the reader

should follow instructions where indicated, in order to view the visualizations. When

this is completed, please move on to the descriptive text, starting in §6.4.
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6.1.1 Pressure Psuedo-Color: 6-Levels, xmax = 1 cm

Shown here in figures 6.1-6.4 are time-elapsed results of pressure for the highest re-

solved 6-level case. A 360x288 cell base grid spanning x=[-0.5,1] and y=[0,1.2] cm was

used with 6-levels (base grid,2x,2x,2x,2x,2x) with smallest cell width = 1.302083·10−6

m. Viscous and inviscid results are compared. As discussed in §6.2, the numerical

viscosity is found to be much smaller than the physical viscosity. In the first figure,

6.1, the DMR has traveled 3 mm along the bottom symmetry boundary. Instabilities

have developed in the main reflected wave and in the next figure, 6.2, triple points

have clearly formed. In figure 6.3, the Mach stem has also gone unstable and at least

4 triple points are clearly visible. Aside from the maximum pressure value which is

larger for the viscous case, overall, the inviscid and viscous results for pressure appear

to be very similar. If using a pdf reader, go to: view − > rotate − > clockwise 90

degrees. When finished viewing, rotate counterclockwise.
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6.1.2 Pressure Psuedo-Color: 3-Levels, xmax = 8 cm

Figure 6.5: Incident shock pressure for the inviscid case. The green line peaks at
about 4 MPa. The dimensions of the x-axis are cm and the y-axis are MPa.

Shown in figures 6.5-6.9 are time-elapsed results of pressure for a much less resolved

case with 3-levels. A 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm

was used with 3-levels (base grid,2x,2x) with smallest cell width = 1.041671̇0−5 m,

about 10 times larger than the previous case. Viscous and inviscid results are again

compared. As discussed in §6.2, the numerical viscosity is found to be significantly

larger than the physical viscosity at this resolution.

figure 6.5, shows a pressure trace through the incident shock. When comparing

this result to the one-dimensional case in figure 5.9(a), it is seen that the introduction

of another spatial dimension into the problem has allowed the reaction zone to stay

coupled with the incident shock. In the 1D case, they become decoupled. However, in

2D, instabilities in the transverse direction of the flow have allowed chemical reactions

to be accelerated and the incident shock to be supported by their energy release. A

comparison of the 1D and 2D cases showing the propane mass fraction is shown later

in figure 6.44

In the first figure below, 6.6, the DMR has traveled about 4 cm along the bottom

symmetry boundary. The instabilities that are observed in figure 6.4 are still visible.

Many more triple points are visible on the Mach stem which has grown in size,
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however, now the secondary triple point of the DMR is no longer bounded by the

induction length, and hence, there are no extra triple points around it as was observed

in figure 6.4 when the DMR is much smaller. In figure 6.7, the incident shock is

observed to have gone unstable. This is presumed to be due to the shock and the

reaction zone decoupling as was seen for the one-dimensional results shown in §5.3.

This instability also looks similar to that found on the main reflected shock shown in

figure 6.1. In figure 6.9, new triple points are clearly visible on the incident shock.

With these new instabilities formed, the reaction zone and shock are again coupled.
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t = 456 nondim, 1.38·10−5 sec, Re =188,000
inviscid

viscous

Figure 6.6: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) refine-
ment with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with smallest
cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.
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t = 504 nondim, 1.52·10−5 sec, Re =209,000
inviscid

viscous

Figure 6.7: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) refine-
ment with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with smallest
cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.
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t = 552 nondim, 1.67·10−5 sec, Re =228,000
inviscid

viscous

Figure 6.8: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) refine-
ment with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with smallest
cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.



123

t = 576 nondim, 1.74·10−5 sec, Re =238,000
inviscid

viscous

Figure 6.9: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) refine-
ment with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with smallest
cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.



124

t = 696 nondim, 2.10·10−5 sec, Re =288,000
inviscid

viscous

Figure 6.10: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) re-
finement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with
smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.
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t = 792 nondim, 2.39·10−5 sec, Re =328,000
inviscid

viscous

Figure 6.11: Pseudo-color plot of the pressure (Pa), 3-levels (base grid,2x,2x) re-
finement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8] cm with
smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive results.
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6.1.3 Radical Mass Fraction: 6-Levels, xmax = 1 cm

Shown here in figures 6.12-6.15 are time-elapsed results of OH radical mass fractions

for the highest resolved 6-level case. A 360x288 cell base grid spanning x=[-0.500,1]

and y=[0,1.2] cm was used with 6-levels (base grid,2x,2x,2x,2x,2x) with a smallest

cell width = 1.3020831̇0−6 m. Viscous and inviscid results are compared.

Each of these figures corresponds to the same time step as was shown in figures 6.1-

6.4. In the first figure, 6.12, the DMR has again traveled 3 mm along the bottom

symmetry boundary. By observing where the sharp gradient of the OH mass fraction

occurs behind the incident shock, the induction length is observed. In this region,

propane is firstly broken down into smaller hydrocarbons, and at the end radicals

are rapidly produced and the large exothermic release (usually described with an

exothermic pulse width) occurs. In figure 6.12, the whole DMR including the whole

reflected shock wave is inside the induction zone. In the next figure, 6.13, only half of

the reflected shock wave is in the induction zone and only half of the wave has triple

points on it. However, the left half still has vortices inside of it from earlier formed

triple points. In figures 6.14 and 6.15, less and less of the reflected shock has triple

points. The induction length has not changed too much in size, however, the DMR

structure is growing in time.

If using a pdf reader, go to: view − > rotate − > clockwise 90 degrees. When

finished viewing, rotate counterclockwise.
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6.1.4 Radical Mass Fraction: 5-Levels, xmax = 2 cm

Shown here in figures 6.16-6.18 are time-elapsed results of O radical mass fractions for

the 5-level case. A 600x408 cell base grid spanning x=[-0.500,2] and y=[0,1.7] cm was

used with 5-levels (base grid,2x,2x,2x,2x) with a smallest cell width = 2.6041671̇0−6

m. Note that the cell size of the base grid, 4.166671̇0−5 m, is exactly that which was

used in the 6-level case. Viscous and inviscid results are compared.

Here, even though we are now looking at the O rather than the OH radical mass

fraction, the same trends are observed as was seen in figures 6.12-6.15. The numerical

viscosity is still small enough to see differences in the inviscid and viscous solutions,

however, only the small-scale vortices are affected. The larger scale structures are

basically the same.

If using a pdf reader, go to: view − > rotate − > clockwise 90 degrees. When

finished viewing, rotate counterclockwise.
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6.1.5 Radical Mass Fraction: 4-Levels, xmax = 4 cm

Shown here in figures 6.19 and 6.20 are time-elapsed results of O radical mass fractions

for the 4-level case. A 1080x816 cell base grid spanning x=[-0.5,4] and y=[0,3.4] cm

was used with 4-levels (base grid,2x,2x,2x) with a smallest cell width = 5.208331̇0−6

m. Viscous and inviscid results are again compared.

Starting in figure 6.19, a transverse shock which is below and parallel to the main

reflected shock has formed. In figure 6.20 it has grown in size, which is bounded

by an interaction with the end of the induction zone and the location of the main

shear/mixing layer coming from the primary triple point.

If using a pdf reader, go to: view − > rotate − > clockwise 90 degrees. When

finished viewing, rotate counterclockwise.
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6.1.6 Radical Mass Fraction: 3-Levels, xmax = 3 cm

Shown in figures 6.21-6.26 are time-elapsed results of OH radical mass fractions for

the less resolved case with 3-levels. These results are from the same simulation which

produced the results shown in figures 6.6-6.11. The 2160x1624 cell base grid spanning

x=[-1,8] and y=[0,6.8] cm was used with 3-levels (base grid,2x,2x) with a smallest cell

width = 1.041671̇0−5 m. Viscous and inviscid results are again compared.

Starting in figure 6.24, a keystone like structure has formed from the incident

shock accelerating into the Mach stem. Later in figure 6.26, this structure has grown

such that it has interacted with the whole length of the Mach stem and a new reflected

shock structure appears that is neither a DMR, SMR (single MR), or RR (regular

reflection).
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t = 456 nondim, 1.38·10−5 sec, Re =188,000
inviscid

viscous

Figure 6.21: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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t = 504 nondim, 1.52·10−5 sec, Re =209,000
inviscid

viscous

Figure 6.22: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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t = 552 nondim, 1.67·10−5 sec, Re =228,000
inviscid

viscous

Figure 6.23: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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t = 576 nondim, 1.74·10−5 sec, Re =238,000
inviscid

viscous

Figure 6.24: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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t = 696 nondim, 2.10·10−5 sec, Re =288,000
inviscid

viscous

Figure 6.25: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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t = 792 nondim, 2.39·10−5 sec, Re =328,000
inviscid

viscous

Figure 6.26: Pseudo-color plot of the OH radical mass fraction, 3-levels (base
grid,2x,2x) refinement with a 2160x1624 cell base grid spanning x=[-1,8] and y=[0,6.8]
cm with smallest cell width = 1.041671̇0−5 m. Comparing inviscid and diffusive re-
sults.
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6.2 Resolution Comparison

In this section, the influence of resolution and numerical viscosity is investigated by

comparing solutions at the same time step, yet, with different grid resolutions. Shown

in figures 6.27 and 6.28 are comparisons of the H mass fraction at different resolutions

for inviscid and viscous/diffusive results. As levels are taken away from the highest

resolved 6-level case, the influence of numerical viscosity and how it compares to the

physical viscosity is clearly seen. In the 3-level case the numerical viscosity is clearly

dominating the physical viscosity. For the 4-level case it appears that the numerical

and physical viscosities are of similar magnitudes. This is based on the observation

that the vortices are of very similar shape, but out of phase. Also, note that only

when going to the resolution found in the 6- and 5-level cases ( approximately 1.5 and

3.0 micrometers), does the unreacted pocket of hydrogen radicals appear in the main

shear layer. Additionally, the number and the locations of new triple points appearing

in the Mach stem and reflected wave are influenced by the numerical viscosity and

resolution.

The influence of numerical viscosity is seen even more when using a lower order

purely shock-capturing method such as the MUSCL method which is demonstrated

in §6.3

6.3 MUSCL Comparison

An inviscid simulation was conducted using the second-order accurate CLAWPACK

based MUSCL method of AMROC. Shown in figure 6.29 is a comparison of the

temperature and pressure at the resolution used in the 5-level case. In figure 6.30

is a comparison of the O mass fraction. It is seen that the influence of numerical

diffusion of the MUSCL result is very high at this particular resolution which yields

marginally resolved results with a WENO-CD method. Also, the magnitudes of the

pressure and temperature are different when compared to the WENO-CD result. An

usually high maximum temperature and low maximum pressure is found. For the

inviscid MUSCL result the maximum temperature is 4,647 K, the inviscid WENO-

CD 4,399 K, and the diffusive WENO-CD 4,273 K. For the inviscid MUSCL result

the maximum pressure is 14.28 MPa, the inviscid WENO-CD 18.34 MPa, and the

diffusive WENO-CD 22.74 MPa.
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A) B)

C) D)

E) F)

G) H)

Figure 6.29: Comparing inviscid CLAWPACK (MUSCL) results to inviscid and viscous/diffusive
WENO-CD results. All cases are for the same 5-level grid setup, at t=114 nondim (3.44·10−6 s), Re
=47,200. The first three are the temperature (K) for A) inviscid MUSCL, B) inviscid WENO-CD,
and C) viscous/diffusive WENO-CD. D) is the whole inviscid WENO-CD solution. The next three,
E), F), and G), are for the Pressure (Pa). H) is the whole inviscid WENO-CD solution. The units
of the x- and y-axes are cm.
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6.4 Diffusive, Detonation DMR Structural Details

In this section, the physical development of the diffusive double Mach reflection

(DMR) is described in a chronological order as new features appear in the simu-

lation, starting with figure 6.31 and ending with figure 6.46. The results shown come

from multiple simulations. figures 6.31-6.38 are from the 6-level case, figure 6.39 the

5-level case, figure 6.40 the 4-level case, and figures 6.41-6.46 the 3-level case.

In the first figures, the DMR is seen to resemble a nonreactive DMR, with the pri-

mary and secondary triple points appearing with their respective, incident, reflected,

and Mach stem shock waves. Very soon, the unstable nature of the chemistry starts

to interact with these shocks. This interaction is observed to only occur within the

induction (reaction) zone of the incident shock. The induction zone is described as

the region from the main shock front to where the thermicity peak lies and similarly

where the maximum temperature gradient lies. As the DMR structure grows in size,

instabilities appear, and new transverse shocks and mixing layers/vortical structures

appear. Eventually, the incident shock also goes unstable and interacts with the

complex DMR structure. In what follows, each of the figures is described, noting

important features as they appear in time.

Starting in figure 6.31, shortly after reflection, the DMR structure resembles the

typical nonreactive case, except that the interaction of the shear layer jet and the

Mach stem forms a triple point on the Mach stem. Then, in figure 6.32, instabilities

of the chemical reactions begin to appear in the reflected shock. In figure 6.33, more

reflected shocks have appeared within the DMR. Also, another triple point has formed

near the primary one. Later in figure 6.34, multiple triple points have formed on the

reflected shock. Also, looking at the main shear layer coming from the primary triple

point, the above cooler fluid being entrained into the jet is not fully reacted. Now at

a later time in figure 6.35, the newly formed triple points on the reflected shock are

showing many new shear layers and other shear layers from shock reflections. Also,

at this time, the secondary triple point (which also appears in the nonreactive DMR)

has its shear layer rolling up as expected. Then, later in figure 6.36, the triple points

formed on the main reflected shock have now had their reflected shocks and Mach

stems reflect at least four times off each other forming at least four levels of shear

layers. The main Mach stem is also becoming more unstable, showing the formation

of new triple points. Even later in figure 6.37, at least five triple points are visible

on the main Mach stem of the DMR. Also, very high pressures are appearing at the

triple points on the main reflected shock.
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A)

B)

Figure 6.32: Instabilities of the chemical reactions first appearing in the reflected shock. Showing diffusive
results for A) pressure (nondimensional) and B) C3H8 mass fraction, t = at 24 nondim (7.24·10−7 s), Re =9,930,
with 6-levels. The units of the x- and y-axes are 1·10−3 cm.

A)

B)

Figure 6.33: More reflected shocks have appeared within the DMR. Also, another triple point has formed near the
primary one. Showing diffusive results for A) pressure (Pa) and B) C3H8 mass fraction, at t = 30 nondim (9.05·10−7

s), Re =12,400, with 6-levels. The units of the x- and y-axes are 1·10−3 cm.



153

A
)

B
)

C
)

D
)

F
ig

u
re

6.
34

:
S
h
ow

in
g

d
iff

u
si

ve
re

su
lt

s
fo

r
A

)
p
re

ss
u
re

(P
a)

,
B

)
zo

om
ed

in
p
re

ss
u
re

v
ie

w
,

C
)

O
H

m
as

s
fr

ac
ti

on
,

an
d

D
)

C
3
H

8

m
as

s
fr

ac
ti

on
,

at
t

=
42

n
on

d
im

(1
.2

7·
10
−

6
s)

,
R

e
=

17
,4

00
,
w

it
h

6-
le

ve
ls

.
T

h
e

u
n
it

s
of

th
e

x
-

an
d

y
-a

x
es

ar
e

1·
10
−

3
cm

.
M

u
lt

ip
le

tr
ip

le
p

oi
n
ts

h
av

e
fo

rm
ed

on
th

e
re

fl
ec

te
d

sh
o
ck

.
A

ls
o,

th
e

fl
u
id

b
ei

n
g

en
tr

ai
n
ed

in
to

th
e

je
t

is
n
ot

fu
ll
y

re
ac

te
d
.



154

A
)

B
)

C
)

D
)

F
ig

u
re

6.
35

:
S
h
ow

in
g

d
iff

u
si

ve
re

su
lt

s
fo

r
A

)
p
re

ss
u
re

(P
a)

,
B

)
te

m
p

er
at

u
re

(K
),

an
d

C
)

an
d

D
)

O
H

m
as

s
fr

ac
ti

on
,

at
t

=
48

n
on

d
im

(1
.4

5·
10
−

6
s)

,
R

e
=

19
,9

00
,

w
it

h
6-

le
ve

ls
.

T
h
e

u
n
it

s
of

th
e

x
-

an
d

y
-a

x
es

ar
e

1·
10
−

3
cm

.
T

h
e

n
ew

ly
fo

rm
ed

tr
ip

le
p

oi
n
ts

on
th

e
re

fl
ec

te
d

sh
o
ck

ar
e

sh
ow

in
g

m
an

y
n
ew

sh
ea

r
la

ye
rs

an
d

ot
h
er

sh
ea

r
la

ye
rs

fr
om

sh
o
ck

re
fl
ec

ti
on

s.
A

ls
o,

th
e

se
co

n
d
ar

y
tr

ip
le

p
oi

n
t

(w
h
ic

h
al

so
ap

p
ea

rs
in

th
e

n
on

re
ac

ti
ve

D
M

R
)

h
as

it
s

sh
ea

r
la

ye
r

ro
ll
in

g
u
p
.



155

A)

B)

Figure 6.36: Showing diffusive results for A) temperature (K) and B) OH mass frac-
tion, at t = 60 nondim (1.81·10−6 s), Re =24,800, with 6-levels. The units of the
x- and y-axes are 1·10−3 cm. The triple points formed on the main reflected shock
have now had their reflected shocks and Mach stems reflect at least four times off
each other forming at least four levels of shear layers. The main Mach stem is also
becoming more unstable, showing the formation of new triple points.

Now, looking at later times, it is seen that the trend of more triple points and

keystones forming and the resulting increase in mixing from their transverse shocks

and shear layers continues. In figure 6.38 below, it is shown that there is now mixing

occurring everywhere within the DMR. Keystone structures are seen on the main

reflected shock. Also, the main shear layer emanating from the primary triple point

is showing many roll-ups of vortices. A shock wave has also appeared within the main

jet and traveled into the main shear layer. Multiple triple points have also appeared

on the upper portion of the Mach stem, however, pronounced keystone structures do

not yet appear. Note that the main incident shock is still very stable and has not yet

shown any instabilities which will eventually lead to more triple points forming on it.

At a later time, now with 5-levels in figure 6.39, triple points are appearing uni-
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A)

B)

Figure 6.37: Showing diffusive results for A) Pressure (Pa) and B) OH mass fraction
at t = 84 nondim (2.53·10−6 s), Re =34,800, with 6-levels. The units of the x- and
y-axes are 1·10−3 cm. At least five triple points are visible on the main Mach stem
of the DMR. Also, very high pressures are appearing at the triple points on the main
reflected shock.

formly along the main Mach stem. Keystone like structures are visible and the

shear/mixing layer coming from the main triple point now shows inviscid instabil-

ities all along its length. A small-scale cell pattern is also very visible when one looks

at the y-component of the velocity in figure 6.39D).

At an even later time (and now with 4 rather than 5-levels) in figure 6.40, the

occurance of triple points and keystones in the Mach stem is very evident. Also,

the region of the main reflected wave with in the induction length is much smaller

as compared to the relative size of the whole DMR structure. Now, with four times

less resolution than the 6-level case, the vortices formed by the triple points on the
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reflected shock are smeared with numerical viscosity. However, despite having less

resolution, the growth and features of the DMR are as expected and similar to those

at an earlier time step with 2x more resolution as shown in figure 6.39.
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Now, in the figures 6.41-6.46, the unstable decoupling and recoupling of the re-

action zone of the incident shock is investigated in detail. In figure 6.41, by look-

ing at the product H2O mass fraction one sees that the reaction zone has become

decoupled from the incident shock front for a long enough time to allow diffusive

multi-dimensional mixing to create instabilities leading to a deflagration that grows

and eventually accelerates into the shock front.

Figure 6.41: At a time of t = 504 nondim = 1.52·10−5 seconds, the incident
shock/detonation has gone unstable. The original induction zone is showing trans-
verse oscillations and ahead of it a local explosion is developing. Showing diffusive
results for the H2O mass fraction. The units of the x- and y-axes are cm.
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Also, for the same time value shown in figure 6.42A), the localized unstable de-

flagration is seen by looking at the creation of the H radical. In figures 6.42B)-D),

very rapidly, the deflagration has grown and collided with the shock front, creating a

dynamic reaction zone length characteristic of a pulsating detonation. In figure 6.43,

the same domains and time values are shown again, but now for the pressure. It is

seen that the localized deflagration has created a pressure wave (seen as a pressure

spike in a 1D cut). This nonuniform wave travels upstream raising the temperature

and pressure of the flow in a nonuniform way which leads to more diffusive mixing

and an acceleration of the energy release. In figure 6.43, the formation of new triple

points is observed on the incident wave. Also, observe that in all of these time steps

of figure 6.43, the pressure waves created by the ignition have propagated into the

DMR and have largely influenced its structure. Note that the formation of these de-

flagration and subsequent keystone structures is a chaotic multi-dimensional process,

which was influenced by small but fairly uniform errors created by the interaction of

the grid with the numerical scheme.

In figure 6.44 is comparison of the 1D solution, a), with the 2D planar solution,

b). The fuel mass fraction in the reaction zone behind the incident shock is shown

sequentially. The initial decoupling of the shock and reaction zone (seen by observing

the increase in length of this zone) is seen in both the 1D and 2D cases. However,

in the 2D case a thinner reaction zone is established and the detonation becomes

overdriven.

In figure 6.45, the whole DMR/incident detonation interaction is shown at a later

time value. At this time the incident detonation has interacted with all of the primary

Mach stem. Mixing is now occurring at a much larger scale. There is a range of scales

observed from the largest scale occurring near the end of the main reflected wave to

the smaller scales of the triple point separation distance (related to cell size) and

mixing scales behind the incident shock, the large keystone, and the remaining Mach

stem close to the bottom boundary. In figure 6.46, the interaction of the incident

shock and the DMR and shown in detail. The growth of a large scale keystone like

structure is seen as the incident shock accelerates into the Mach stem and primary

mixing layer.
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6.4.1 Velocity Vector Visualizations

In this subsection, velocity vectors are visualized on top of pseudo-color plot of such

quantities as pressure. The changes in flow direction is clearly seen as the flow passes

through multiple shocks waves. In figures 6.47 and 6.48 close ups for the 6-level case

are shown. In figure 6.49, results for the 3-level large domain case are shown.

Starting with figure 6.47A) and B), one can observe two processses that change

the flow direction, shock waves, and shear layers. The function of the shock waves is

to turn the flow such that it is parallel to the bottom boundary, a consequence of the

no-slip boundary condition. the shear layer results from a mismatch in magnitude

and flow direction of the flow (in the reference frame of the primary triple point)

which has passed through the Mach stem or the incident shock and then the reflected

shock. Note that this reflected shock serves as the incident shock for the secondary

triple point, as is labeled in figure 6.31D). The transverse shock (which is the reflected

shock of the secondary triple point) interacts with the shear layer, turning the flow

and creating the jet that has moved its way into the main Mach stem. The collision of

the shear layer with this shock and its symmetrical shear layer mirrored on the other

side of the boundary pushes the flow forward at a relatively large velocity, as seen in

the visualization of figure 6.47, where the magnitude of the velocity is proportional to

the arrow size. In figure 6.47C), at a later time, the complexity of the flow is seen by

the growth in instability of the shear layer. Also, a growing region where the shear

layer has destroyed the transverse shock is observed. Then, in figure 6.47D), at an

even later time, the creation of triple points on the main reflected shock (technically

the mach stem of the secondary triple point), is observed. These triple points each

have their own incident and reflected shocks, but share a Mach stem, just as the

main Mach stem has a mirror image which is modeled with the symmetry boundary

condition. The reflected shocks of these triple points are referred to as transverse

shocks when discussing their influence on the whole flow field.

Now, later in figure 6.48A) and B), the interaction of the triple points’ transverse

shocks is observed, with multiple collisions and reflections having occurred. In fig-

ures 6.48C) and D), the very slight influence of the shear layers of the triple points

occurring on the main reflected shock on the overall flow field velocity is observed.

Also observed is the the beginnings of triple points on the Mach stem. This is seen

by the appearance of shear layers, kinks in the Mach stem, and also slightly different

flow directions near the Mach stem shock wave.
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At a much later time in figures 6.49, 6.50, and 6.51, the differing transverse flow

directions around the triple points/keystones is more visible and pronounced. By

looking at the pressure in figure 6.51, one sees that within what was a DMR (whose

size is observed by looking at the location of the primary triple point, which is now

about 1 cm above the bottom boundary) has become a chaotic mixture of transverse

waves and shear layers.

6.5 Detialed Inviscid/Viscous Comparison

An inviscid simulation was conducted for each diffusive simulation in order to measure

the influence of the viscous, heat, and mass diffusion terms in the reactive Navier-

Stokes equations. In figure 6.52 the results are directly compared, and in figures 6.53,

and 6.54, inviscid results are shown which correspond to the diffusive results shown

in figures 6.38 and 6.39. The largest difference in the results is seen by comparing

the mass fractions of an intermediate radical species such as H, O, or OH.

As shown in figure 6.52, there are large differences between the two solutions. The

viscous/diffusive terms have largely contributed towards the shape of the jet at the

bottom of the the DMR. In the viscous case, the jet has moved farther up stream and

has interacted with the Mach stem, forming a triple point. In the viscous case, the

jet is farther back and is interacting less with the Mach stem, and a triple point is not

clearly seen. Also, looking at the H radical, the influence of diffusion on reacting the

partially burnt pockets is observed. Note that with even higher resolution and smaller

numerical viscosity, more and more incompletely reacted pockets in the unstable shear

layer would be observed. In these inviscid simulations, these partially reacted pockets

are predominately combusted due to the chemical mechanism rather than also with

diffusion as is the case for the viscous simulation.

In figures 6.53 and 6.54, a slight influence of diffusion is seen in the shear layer for

the visualization of C3H8. Differences are also seen in the magnitudes of the pressure

and temperature. The maximum temperature of the diffusive simulation is lower and

its maximum pressure is higher. Heat diffusion cools the hot gases by mixing them

with the cooler cases, most notably at the shear layers, where in the perfectly inviscid

solution with no numerical viscosity, there is a discontinuous jump in temperature

and velocity.

As was demonstrated in §6.2 the numerical viscosity has dominated the physical

viscosity in the 3-level case and is the same order of magnitude in the 4-level case.

Therefore, only the sensitivity of the solution to small changes in viscosity can be
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deduced. In the 3-level case there is virtually no observable change. In the 4-level

case there is only a visible change in the phase (location not size) of the vorticies.
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6.5.1 Product Traces

In the previous section, the viscous and inviscid solutions were compared using

pseudo-color plots. These visualizations are useful for comparing qualitatively the

difference in the solutions, particularly identifying features of the flow such as shock

waves and shear layers. They are also useful for comparing minimum and maxi-

mum values of the solution. However, in order to better appreciate a quantitative

comparison of solutions, different visualization methods must be employed, such as

one-dimensional cuts.

(a) viscous/diffusive

(b) inviscid

Figure 6.55: Key showing traces used withoutput from the case shown in figure 6.15
is used.

Shown in figure 6.55 are the viscous and inviscid solutions at the final time step for

the highest resolved 6-level case. Also shown is a grid overlaying the solutions. This
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grid corresponds to the 1D cuts of the product H2O mass fraction. The horizontal

cuts start at y = 0.05 cm and then y = 0.1 and 0.15 cm, as displayed in figures 6.56-

6.58. Also used are vertical cuts at x = 0.2, 0.4, 0.6, 0.8, and 0.9 cm, as displayed in

figures 6.59-6.63.

Figure 6.56: H2O mass fraction traces starting at (x,y) = (0,0.05) and going to
(0.975,0.05) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

In these horizontal cuts, a small-scale cell-like pattern is observed by looking at

the average wavelength the peaks in the product mass fraction. These oscillations

which show an average wavelength are due to the shear layers and transverse shocks

which are produced by the triple points on the main reflected shock. Both the inviscid

and viscous solutions show this pattern, however, the inviscid solution shows lower

valleys and high peaks, and also shows some higher frequency oscillations. These

differences in the inviscid solution are dependent on the numerical viscosity, which is

dependent on the resolution of the grid. The amplitude of these patterns will increase

and more high frequency oscillations will increase as the grid is made finer. These

plots also shown the change in the product H2O due to the shear layers on the Mach

stem, the main shear layer from the primary triple point, and the transverse shock.

In figure 6.63, there also a huge dip in the mass fraction as the cut passes through

the part of the flow which has only passed through the incident shock.
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Figure 6.57: H2O mass fraction traces starting at (x,y) = (0,0.1) and going to
(0.975,0.1) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

In the vertical cuts the same general conclusions are made. In the left most cut

shown in figure 6.59, the viscous and inviscid solutions are very similar. In this region

physical and numerical dissipation has smoothed out the vortices. This is most likely

due to numerical viscosity because less refinement levels were purposefully used here

to speed the computation. In the next cut, shown in figure 6.60, more resolution is

used and also the local Reynolds number of the flow is higher, therefore the shear

layers are less dissipated. The inviscid solution is oscillating at a slightly higher

frequency than the viscous solution. In the next cut, figure 6.61, at x = 0.6 cm, the

frequencies of the solutions are much closer. However; then looking at the next cut at

x=0.8 cm, , figure 6.62, the inviscid solution is seen to have many more high frequency

oscillations. This is now because the cut is going through the unstable main shear

layering coming from the primary triple point. In the last vertical cut, figure 6.63,

the jet is passed through, for which the solutions are very different, but then after

passing through the jet and entering the region behind the mach stem which does not

contain the shear layer, the solutions are again similar.

Regarding information gained from the previous traces, there is motivation to

attempt to measure a characteristic small-scale from the triple points and shear layers
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Figure 6.58: H2O mass fraction traces starting at (x,y) = (0,0.15) and going to
(0.975,0.15) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

occurring on the main reflected shock wave. In figure 6.64, shown is a cut that is

reasonably parallel to the triple points. Looking only at the trace from x (on the

trace plot) = 75 to 175, a pattern that repeats three times is observed for both

solutions, while being slightly different for each. The wavelength of this oscillation is

approximately 0.03 cm (3·10−4 m).

In figure 6.66, shown is a cut that is reasonably perpendicular to the triple points.

In this case it is harder to identify a pattern with just the eye. Also the inviscid

and viscous solutions are very out of phase, and many high frequency oscillations in

the viscous solution have been damped out, appear in the inviscid solution. Using

“double peak” pattern for the viscous solution a wavelength of approximately 0.02

cm (3·10−4 m) is observed.

Now in figure 6.68, product traces are employed on the final time step of the

5-level simulation results for the inviscid and viscous WENO-CD solution and also

the second-order accurate MUSCL method. For the trace going through the triple

point shear layers in figure 6.69, the WENO-CD solution is shown and in figure 6.70.

As expected the viscous and inviscid WENO-CD solutions are similar. Also, one

can compare these to a similar trace at an earlier time using the 6-level solution
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Figure 6.59: H2O mass fraction traces starting at (x,y) = (0.2,0) and going to
(0.2,0.32) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

(figure 6.61). No particular patterns for this 5-level case are observed, as is observed

in the 6-level solution. This is most likely due to the larger Reynolds number, due to

the time step being approximately 2 times later. The numerical and physical viscosity

has had more time to create instabilities and increase the chaos of the flow. However,

still with this 5-level result, using the distance between the single large peaks in

the mass fraction, an average wavelength can be determined, which is approximately

0.025 cm (2.5·10−4 m), which is the same scale which was measured in the 6-Level

simulation at an earlier time step.

Now, looking at figure 6.70, one sees a very different result for the MUSCL method.

It captures the mean properties of the mass fraction, however, almost all of the small-

scale oscillations have been damped out by numerical viscosity.

Now in figures 6.71 and 6.72, a product trace through the shear layers created by

triple points on the Mach stem is shown for the 3 solutions. The inviscid and viscid

WENO-CD solutions are very different. This trace touches the right-most portion

of the large jet and then travels through shear layers created by triple points on the

Mach stem and then gets closer and closer to the triple points (due to the fact the the

Mach stem is curved). The portion of the trace which travels through the triple point
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Figure 6.60: H2O mass fraction traces starting at (x,y) = (0.4,0) and going to
(0.4,0.32) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

shear layers is different due to the different positions and times of creation of the

triple points for the inviscid and viscous flows. Also, compared again is the inviscid

MUSCL solution, which has overwhelmed the solution with numerical viscosity.



185

Figure 6.61: H2O mass fraction traces starting at (x,y) = (0.6,0) and going to
(0.6,0.32) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.

Figure 6.62: H2O mass fraction traces starting at (x,y) = (0.8,0) and going to
(0.8,0.32) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.
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Figure 6.63: H2O mass fraction traces starting at (x,y) = (0.9,0) and going to
(0.9,0.32) cm. Solid black is viscous/diffusive and dotted blue is inviscid. Output
from the 6-level case shown in figure 6.15 is used.
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(a) viscous/diffusive

(b) inviscid

Figure 6.64: H2O mass fraction traces starting at (x,y) = (0.58683,0.232936) and
going to (0.789084,0.15026) cm. Output from the 6-level case shown in figure 6.15 is
used.
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Figure 6.65: H2O mass fraction traces starting at (x,y) = (0.58683,0.232936) and
going to (0.789084,0.15026) cm. Solid black is viscous/diffusive and dotted blue is
inviscid. Output from the 6-level case shown in figure 6.15 is used.
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(a) viscous/diffusive

(b) inviscid

Figure 6.66: H2O mass fraction traces starting at (x,y) = (0.73852,0.18615) and going
to (0.651474,0.288406) cm. Output from the 6-level case shown in figure 6.15 is used.
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Figure 6.67: H2O mass fraction traces starting at (x,y) = (0.73852,0.18615) and going
to (0.651474,0.288406) cm. Solid black is viscous/diffusive and dotted blue is inviscid.
Output from the 6-level case shown in figure 6.15 is used.
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(a) viscous/diffusive

(b) inviscid

(c) inviscid MUSCL

Figure 6.68: Key showing traces used with output from the 5-level case shown in
figure 6.18
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Figure 6.69: H2O mass fraction traces starting at (x,y) = (1.3,0) and going to (1.3,0.4)
cm. Solid is viscous/diffusive and dotted is inviscid. Output from the 5-level case
shown in figure 6.18 is used.

Figure 6.70: H2O mass fraction traces starting at (x,y) = (1.3,0) and going to (1.3,0.4)
cm. Solid black MUSCL with 5-levels.
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Figure 6.71: H2O mass fraction traces starting at (x,y) = (1.3,0) and going to
(1.75,0.22) cm. Solid is viscous/diffusive and dotted is inviscid. Output from the
5-level case shown in figure 6.18 is used.

Figure 6.72: H2O mass fraction traces starting at (x,y) = (1.75,0) and going to
(1.75,0.22) cm for MUSCL with 5-levels.
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6.6 Soot Foil Length Scales

In experiments conducted by Austin (6), this exact propane mixture (C3H8-5O2-9N2

at ambient temperature and 20 kPa) was detonated and visualized using a rect-

angular narrow tube (150x18 mm cross section) where one dimension was smaller

than the dominate cell size. One must note that the cellular structure of a deto-

nation wave is three-dimensional and dependent on the confining geometry due to

shock reflections off the solid structure’s walls. In a rectangular channel as used in

Austin’s experiments, the propagation direction of transverse waves is ideally in two

orthogonal planes orthogonal to one another. In round and exactly square tubes

the three-dimensional complexity of the front makes visualization difficult because

one is integrating through the flow field. In these experiments, the instability was

suppressed in the plane where the tube dimension is on the order of the detona-

tion cell width. These narrow channel detonations are different from unsuppressed

detonations, where in particular, the track angle and the calculated transverse wave

strength is larger.

Using soot foils, Austin found a range of length scales of cellular instability from

the dominant cell width of 45 ±8 mm to the smaller observable scales of 10 mm, as

shown in figure 6.73.

Figure 6.73: Soot foil in propane detonation mixture, C3H8-5O2-9N2 20 kPa, showing
the range of cell sizes found in experiment with a narrow tube with a 15x1.8 cm cross
section. Reprinted with permission from Austin (6).
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6.6.1 Small-Scale DMR Comparisons

On the soot foil, scales smaller than approximately 1 mm are unresolvable. In §6.5.1

for the DMR simulations, the scale which was measured in the product traces through

the shear layers of the reflected wave was an average value of 0.25 mm, which is

unfortunately below this scale. However, the triple points found on the unstable

incident and Mach stem shocks also form length scales. By measuring the average

distance between the triple points on these waves, and also by looking at the pressure

peaks in a trace just behind these waves, a length scale can be measured. For the

3-level DMR simulation, the last time step was used for this purpose. The traces used

on the incident and Mach stem waves are shown in figures 6.74 and 6.76. By dividing

the length of this trace by the number of triple points, a scale of 0.55 mm is found on

the incident shock, and a scale of 0.3 mm is found on the Mach stem. Also, a slightly

less crude method is to look at the actual major pressure peaks along these waves, as

is shown in figures 6.74 and 6.76. Dividing the length by the number of peaks in this

case yields a length scale of 1.1 mm on the incident shock, and a scale of 0.5 mm on

the Mach stem.

The intermittent small cell scales shown on the soot foil are of the order of 1

cm. Even the scales measured on the unstable incident waves at these early times

of instability in the DMR simulations are 10 times smaller than this. It is presumed

that a larger domain and longer in time simulation could show this 1 cm scale. There

is another obvious scale shown in the soot foil, the average dominate cell size of 4.5

cm. The domain used in the DMR simulation is unfortunately not large enough to

show this scale.

figure 6.78B), reprinted from Austin (6), shows a plot of the normalized cell width

as a function of the overdrive. From this result, we can conclude that because the

scales are of order of 1 mm, which is much smaller than the dominant cell size of 4.5

cm, the detonation must be highly overdriven at the end of the 3-level DMR simula-

tion. When a larger domain is used, the detonation eventually becomes underdriven

and the triple point spacing increases to a size which is observable in experiment.

Shown below in figure 6.79 is a schlieren visualization of this detonation mixture.

The dominate cell size is clearly seen. Also observed is the prospect of comparing the

simulated DMR result to one of these many Mach stem/incident shock interactions.

Albeit, formed from a different process, the DMR is physically similar to the triple

point collisions in a self-propagating unsteady multi-dimensional detonation. Shown

in figure 6.80 is a particular schlieren image that will be used in a comparison. The
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Figure 6.74: Pseudo-color pressure plot at t=2.39·10−5 seconds showing the trace
used to estimate a small-scale cell size for the simulated incident wave.

Figure 6.75: Pressure trace through the incident wave as shown in figure 6.74.

exact region to be compared is boxed out and shown with a zoomed in view in

figure 6.81a).

The first simulation comparison, figure 6.81b), shows the reflection of the incident
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Figure 6.76: Pseudo-color pressure plot at t=2.39·10−5 seconds showing the trace
used to estimate a small-scale cell size for the simulated “Mach stem” wave.

Figure 6.77: Pressure trace through the “Mach stem” wave as shown in figure 6.76.
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Figure 6.78: (a) Induction time calculated as a function of lead shock strength using a
zero-dimensional constant volume approximation and the detailed kinetics mechanism
of Konnov (1998). (b) Estimation of substructure cell width as a function of lead shock
strength. The range of fine-scale cells observed on a soot foil in this mixture is also
shown. The lower bound is set by the resolution at which cells may be detected by
eye, about 1 mm. Reprinted with permission from Austin (6).

shock instability. When the incident shock first went unstable, it propagated past the

main DMR triple point into the Mach stem. This wave traveled all the way to the

bottom symmetry boundary where it reflected and is now traveling back upwards.

The second simulation comparison, figure 6.81c), shows the whole incident/Mach

stem combination. Similarities include a curvature on the Mach stem and a straight

incident shock. A difference is the scale of the experimental image, which is about 4

cm high. The main Mach stem in the simulation is approximately 1 cm high. With

greater future computational resources, the DMR problem could be run longer to

show a comparison at the same scale.
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Figure 6.79: Time-resolved shadowgraph images of a detonation propagating in
C3H8-5O2-9N2 in the narrow channel. Time between frames is 1.6 micros. Field of
view is about 138 mm. Reprinted from Austin et al. (7).

Figure 6.80: Image of a detonation propagating in C3H8-5O2-9N2. Reprinted with
permission from Massa et al. (116). Field of view is about 138 mm and the channel
is 150 mm wide. The green box in used for a comparison to the DMR structure in
figure 6.81.
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(a)

(b)

(c)

Figure 6.81: Image of a dominate scale incident shock/Mach stem combination com-
pared to the 3-level simulation result. The schlieren image is from figure 6.80.
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6.7 Discussion

The reduced propane mechanism was used to simulate a double Mach reflection

(DMR) in a DNS fashion resolving all the diffusive scales (except the strong shocks).

Also simulated were marginally unresolved and generally unresolved inviscid and vis-

cous simulations. By also simulating a range of resolutions and comparing the viscous

solution to the inviscid solution, the amount the numerical viscosity that pollutes the

solution was estimated. With these comparisons, evidence was shown supporting the

case that the 6- and 5-level simulations of the DMR were resolved and the 4-level

case was marginally resolved.

Also studied was the process in which the incident initially steady shock goes

unstable. This is a multi-dimensional process which only occurs when more than

one dimension is simulated. This unstable incident shock/Mach stem combination

found in the DMR has a direct similarity to the triple points of real detonations

which move across the front and collide with each other creating the detonation cell

pattern. Using soot foils, the range of resolvable (with soot) scales has been measured

for irregular detonations. In these resolved and unresolved DMR simulations, the

numerically measured scales were found to be below the experimentally (visually)

resolvable limit. In the next chapter, larger domains and time scales are used to

make this direct comparison to the experimentally resolvable scales.
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Chapter 7

Irregular Detonation Cell
Structure

In §6.4 in the previous chapter, the transition of the initially steady incident wave

of a detonating double Mach reflection to an unsteady multi-dimensional wave was

realized. In these simulations, the domain was of insufficient size to fully understand

this phenomena. In this chapter, the transition to and the long term behavior of a

two-dimensional unsteady irregular detonation is studied.

These simulations were conducted using the same initial conditions that were used

in the 1D case for the propane mixture in §5.3. The detonation was propagated in

different-sized rectangular domains with periodic boundary conditions on the top and

bottom boundaries.

Firstly, as was done for the DMR simulations, the detonation was simulated in the

lab frame, allowing the wave to propagate across the mesh. A large number of cells

was required for this simulation, and therefore, the transverse size of the domain and

running time was limited. Transition from the steady ZND solution to an unsteady

chaotic detonation solution was observed at multiple resolutions and for the inviscid

and viscous/diffusive models.

Secondly, the detonation was simulated in the average velocity (CJ) frame. A

smaller parallel distance for the domain was required, and hence, a larger transverse

confinement was feasible. The influence of the channel width and numerical and

physical viscosity were studied. With these simulations in §7.3, a comparison to the

experimental soot foil results, introduced in §6.6, was made matching the dominant

cell size. The statistical stationarity of the results was also confirmed and is discussed

in §7.3.4.
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7.1 Thin Channel, Lab Frame Results

In the lab frame, the initiailly steady detonation was propagated through a thin

(smaller than the expected cell size) periodically confined geometry. Both unre-

solved, in terms of the diffusive properties, and marginally resolved simulations were

conducted.

7.1.1 Two Levels, Unresolved

(a) viscous/diffusive

(b) inviscid

Figure 7.1: Pressure (kPa) traces at y=0.5 cm. Output from the 2-level case with a
channel width of 1 cm, base grid cell size of 41.67 µm, smallest cell size 20.8 µm.

Shown in figures 7.1 and 7.3 are results from a demonstrative unresolved simula-

tion. For these results, two-levels (base grid plus one refinement level, 2x finer) were

used with the base grid having 3240x240 cells for a domain x=(-3,12) and y=(0,1) cm.

In figures 7.2 and 7.4 the influence of physical viscosity is observed by comparing the

pressure and temperature traces for the inviscid and viscous solutions. The pressure

for the viscous case is larger throughout the whole domain. Also, for this particular

time step (t = 1800 nondim) the temperature for the inviscid case is slightly lower

near the leading shock. One would postulate that with low-enough numerical vis-

cosity for the inviscid case, this trend could continue causing the detonation to fail.

Also, note that the average leading shock speed in the inviscid case is slightly lower
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Figure 7.2: Pressure (kPa) traces at y=0.5 cm. Solid black is viscous/diffusive and
dotted red is inviscid. Output from the 2-level case shown in figure 7.1 used.

(a) viscous/diffusive

(b) inviscid

Figure 7.3: Temperature (K) traces at y=0.5 cm. Output from the 2-level case with
a channel width of 1 cm, base grid cell size of 41.67 µm, smallest cell size 20.8 µm.

than the viscous case. This is observed by seeing a lag in the shock position.

Also observed are the effects of the transverse periodic confinement. Only one
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Figure 7.4: Temperature (K) traces at y=0.5 cm. Solid black is viscous/diffusive and
dotted red is inviscid. Output from the 2-level case shown in figure 7.3 used.

to two triple points are able to exist in this 1 cm channel. Due to the increase in

transverse shock reflections, the flow appears different from the relatively unconfined

unsteady shock which was observed when the incident wave of the DMR went un-

stable. There, in the early times of instability, quite uniform triple points and shear

layers are observed across the front as is shown in figures 6.21-6.26.

7.1.2 Four Levels, Marginally Resolved

The thin channel simulation of §7.1.1 was repeated with two more refinement levels.

To keep up with the increased computational expense, a channel 2x thinner in the

y-direction was used. This creates even more nonphysical transverse shock reflections,

however, the influence of a decrease in numerical viscosity from using higher resolution

can still be observed.

Shown in figure 7.5 are the nondimensional temperature results. For these results,

4 levels (3 refinement levels, 2x finer each) were used with a base grid of 3240x120

cells for a domain x=(-3,12) and y=(0,0.5) cm. In figures 7.6 and 7.7 the influence

of physical viscosity is again observed. Even though this is at an earlier timestep

than that observed in the previous 2-level case, the same trends are observed when

comparing the viscous and inviscid cases. The only difference is that at this particular
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(a) viscous/diffusive

(b) inviscid

Figure 7.5: Non-dimensional temperature traces at y=0.5 cm. Output from the 4-
level case with a channel width of 0.5 cm, base grid cell size of 41.67 µm, smallest
cell size 5.21 µm.

timestep and y-location, at the leading shock, the inviscid solution has a high peak.

It still lags behind the inviscid solution.

One can also compare the startup process (ZND to unsteady detonation) for the

inviscid and viscous cases. By looking at the visualization of the nondimensional

temperature in figure 7.5b), cauliflower-like instabilities are observed in the inviscid

solution. This is from the interaction of the grid with the natural chemical and

Kelvin-Helmholtz instabilities and unnatural low viscosity.

Shown in figure 7.8 are the nondimensional pressure results, at a slightly later

time. For these results, the leading shock has moved from approximately x=7.7 cm

to 8.6 cm. The centerline traces of nondimensional pressure and temperature are

shown in figures 7.9 and 7.10. The trends that were observed at the previous time

step are now backwards. The viscous solution is lagging behind the inviscid solution,

proof the two solutions are now out of phase.

Comparing to the 2-level thin channel solution, the appearance of triple points

on the leading shock has been even more suppressed, due to the thin channel, which

through the use of the periodic boundary conditions, has not allowed the transverse
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Figure 7.6: Non-dimensional temperature traces at y=0.5 cm. Solid black is vis-
cous/diffusive and dotted red is inviscid. Output from case shown in figure 7.5.

Figure 7.7: Non-dimensional pressure traces at y=0.5 cm. Solid black is vis-
cous/diffusive and dotted red is inviscid. Output from case shown in figure 7.5.
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shocks to travel very far before reshocking the flow. This phenomena also occurs

experimentally with solid boundary conditions when the tube spacing is on the order

or smaller than the cell size (45± 8 mm for this mixture and IC) as is discussed in §6.6.

Therefore, in order to truly understand the formation of triple points in an unsteady

multi-dimensional detonation, a domain wider than the cell size is required. Due to

the increased domain size, this creates difficulties in resolving the viscous/diffusive

scales.

(a) viscous/diffusive

(b) inviscid

Figure 7.8: Non-dimensional pressure traces at y=0.5 cm. Output from the 4-level
case with a channel width of 0.5 cm, base grid cell size of 41.67 µm, smallest cell size
5.21 µm.
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Figure 7.9: Pressure traces at y=0.5 cm. Solid black is viscous/diffusive and dotted
red is inviscid. Output from the 4-level case shown in figure 7.8 used.

Figure 7.10: Non-dimensional temperature traces at y=0.5 cm. Solid black is vis-
cous/diffusive and dotted red is inviscid. Output from the 4-level case shown in
figure 7.10 used.
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7.2 Wide Channel, CJ Frame Results

As the next step, the planar detonation was simulated using a much larger domain,

approximately 2 to 4 times larger than the experimentally determined cell size. 8 cm

and 16 cm wide domains were used for simulations in the CJ reference frame with a

horizontal domain size of -6 to 3 cm with the ZND wave initially centered at x = 0.

Two different resolutions were tested, a 2-level and a 3-level case. The 2-level case

is the lowest resolution (∆x = 7.407407·10−5 m) which will support the formation

of triple points and a self-propagating detonation. Below this resolution, no triple

points form and the detonation dies as the shock speed decays.

Because the ultimate goal of these wide channel simulations is to reproduce the ex-

perimentally observed detonation cells, some analysis of the detonation length scales

and properties encountered is warranted. In order to ensure a self-propagating det-

onation in all simulations, a slightly overdriven initial condition has been used. The

initial condition is for a shock speed of 1950 m/s, which when compared to the CJ

speed of 1933.215 m/s yields an overdrive of f = 1.008683 (U/UCJ) or f = 1.01441

([U/UCJ ]2), depending on the notation used. Shown in table 7.1 is a summary of the

properties of the intial state and the CJ speed solution (which it is theorized that the

unsteady solution will approximately oscillate around).

Ushock f = U/UCJ pequil Tequil lind tind

1950 m/s 1.00893
18.11 (nondim)
= 4.89·105 Pa

3106.3 K 1.424 mm 4.71·106 sec

1933.22 m/s 1.0
15.48 (nondim)
= 4.18·105 Pa

3024.9 K 1.643 mm 5.45·106 sec

Table 7.1: Comparing the chosen initial condition with the CJ solution for the T=298
K, P = 20kPa detonation.

Of great note is that for the CJ detonation, the CJ length (where chemical equi-

librium is reached and the Mach number equals one when the overdrive equals one),

is 1.49 cm in length. This length is 4.02 times smaller than the domain (6 cm) used

to start a self-propagating unsteady detonation in the CJ frame. In preliminary sim-

ulations, a domain of 3 cm was first used, and it was found that the detonation died,

failing to self-propagate. A 6 cm equilibrium length corresponds to an underdriven

detonation 84.7 percent slower than the CJ detonation. For f = 0.847, the von Neu-

mann state is p = 5.796 Pa and T = 3025 K. Most likely in the multi-dimensional

unsteady detonation simulation and in experiments, there are portions of the detona-

tion which are even more underdriven and could require more than a 6 cm length to
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model the influence with the main shock front. However, in these simulations 6 cm

was found to be adequate for self-propagation and the formation of detonation cells

when the transverse domain size was large enough, as is discussed in §6.6.

Also of importance is the induction length, where the rapid heat release occurs.

For the CJ solution this length is 36.6 times shorter than the domain of 6 cm used

model the unsteady detonation problem. The induction length for the overdriven

initial condition is 42.1 times smaller than 6 cm.

For a 2-level case with x = [-6,3] cm and y =[0, 8, or 16] cm and a base grid of

1080x960 and 1080x1920 for the 8 and 16 cm wide cases, the solution was studied in

detail and found (despite the low resolution) to match the experiments of Austin as

is discussed in §6.6. Here, the smallest cell size is ∆x = 7.464·10−5 m.

A 3-level simulation was also conducted. Due to the increased computational

expense, this simulation was run for shorter time. In figures 7.11-7.14, the start-

up phenomena (now in the CJ frame) for a 16 cm wide channel shown. In these

simulations a domain with x = [-6,3] and y =[0, 16] cm was used with 2 refinement

levels and a base grid of size 1080x1920. The smallest cell size in this case is ∆x =

3.703704·10−5 m.

From a time of t = 1036.7 to 1368 (nondim) the influence of a Kelvin-Helmholtz

instability on heating the fluid is observed by looking at the temperature psuedo-color

plot. Then, at a time of t = 1440, a vertical sliver of hot gas is observed near the

main shock/detonation front. This sliver rapidly grows, turning into a local explosion,

which propagates into the main front pushing it forward overdriving the detonation as

is seen at a time of t = 1517.38 onward. At t = 1656, triple points with a nonuniform

spacing of an approximate average of 0.08 cm have formed. At t = 1800 the spacing

has decreased to approximately 0.05 cm and the detonation has accelerated. Note

that as was found for the resolved DMR simulation, the spacing of the triple points

depends on the resolution and is possibly smaller than these values for a resolved

simulation, which for this base grid, would require at least 5 to 6 levels total.
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t = 72 = 2.172·10−5 sec

t = 1036.7 = 3.127·10−5 sec

t = 1224 = 3.692·10−5 sec

Figure 7.11: Psuedo-color pressure(Pa) and temperature(K) results, showing transi-
tion from a steady ZND wave to an unsteady overdriven detonation. 3-levels with
∆xmin = 1.04167·10−5 m.
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t = 1368 = 4.127·10−5 sec

t = 1440 = 4.344·10−5 sec

t = 1512 = 4.561·10−5 sec

Figure 7.12: Psuedo-color pressure(Pa) and temperature(K) results, showing transi-
tion from a steady ZND wave to an unsteady overdriven detonation. 3-levels with
∆xmin = 1.04167·10−5 m.
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t = 1517.38 = 4.577·10−5 sec

t = 1584 = 4.778·10−5 sec

t = 1656 = 4.996·10−5 sec

Figure 7.13: Psuedo-color pressure(Pa) and temperature(K) results, showing transi-
tion from a steady ZND wave to an unsteady overdriven detonation. 3-levels with
∆xmin = 1.04167·10−5 m.
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t = 1800 = 5.430·10−5 sec

t = 2160 = 6.516·10−5 sec

Figure 7.14: Psuedo-color pressure(Pa) and temperature(K) results, showing transi-
tion from a steady ZND wave to an unsteady overdriven detonation. 3-levels with
∆xmin = 1.04167·10−5 m.
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7.3 Dominant Cell Size Comparison

Real detonations studied in experiments are a multi-dimensional and multiscale phe-

nomena. However, there is one scale, the dominant cell size, which can be observed

in schlieren images and on soot foils. In the past, this cell size has be observed in

two- and three-dimensional simulations with periodic and solid boundary conditions.

However, all these simulations used much smaller mechanisms and many ignored de-

tailed diffusive transport. Fortunately, resolving the viscous/diffusive scales is not

required in order to demonstrate the large-scale detonation cells.

In order to accomplish this, two channel simulations slightly smaller than 4 and

8 detonation cells in the transverse direction were carried out. A two-level mesh was

utilized with domain of size x = [-6,3] cm and y =[0, 8 or 16] cm and a base grid of

1080x960 or 1080x1920 for the 8 and 16 cm wide cases. Here, the smallest cell size is

∆x = 7.464·10−5 m.

7.3.1 Eight cm Channel Width

In order to determine a dominant cell size, the motion of the triple points on the main

shock front must be tracked. This shows a full range of scales, however, determining a

dominant scale from the triple point spacing is difficult because there any many triple

points, and only the strongest ones contribute to a dominant pattern. This is also

complicated by the fact that there is a finite transition from the steady ZND solution

to a fully developed statistically stationary cell pattern. In this transition region

the flow becomes overdriven, but initially nonchaotic in the transverse direction. As

was shown in §7.2, a fairly uniform distribution of triple points very closely (0.05

cm) spaced develops. The number of triple points decreases rapidly and reaches a

statistically stationary (but still changing) value. This change is demonstrated in

figure 7.15, where the number is shown to decrease from 50 to approximately 10

for the 8 cm wide channel. As the simulation is run farther, the number increases

as overdriven portions of flow are created, and then decreases as these fast-moving

portions slow to underdriven states. This is demonstrated in figure 7.16, which is a

tally of the number of triple points during the output time range that is used for a

dominant cell size comparison.

Despite the difficulties of having so many triple points, if one runs the 8 cm

wide channel long enough, one can still see some cells while ignoring the triple point

strengths. This can be seen by comparing the experimental soot foil with the simula-

tion’s triple points in figures 7.17 and 7.18. At around time step 20 in figure 7.18, a
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Figure 7.15: Triple point count during the transition from steady ZND to unsteady
detonation cells. Time t = 756 (nondim) = 2.28054375·10−5 sec to t = 2916 (nondim)
= 8.79638302·10−5 sec. The output steps are every 16 (nondim) time units.

Figure 7.16: 8 cm channel triple point count. Points correspond with data in fig-
ure 7.18.

dominant size of approximately 5 cm is observed. However, also at the last time step

shown, a collision of two triple points (and later other triple points in the domain

too) has led to a very large cell that practically covers the whole domain width of 8

cm. This is larger than the 4.5 cm expected from the soot foil, and attributed to the

transverse domain not being wide enough. Therefore, to obtain the proper cell size

the domain width was doubled to 16 cm, and the simulation was repeated.
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Figure 7.17: Soot foil (15 cm wide) in the propane detonation mixture, C3H8-5O2-9N2

at 298 K and 20 kPa, showing a similar region as is shown with the triple point tracks
in figure 7.18

Figure 7.18: 8 cm periodic channel triple point tracks from t = 4896 (nondim) =
1.47692357·10−4 sec to t = 7488 (nondim) = 2.25882428·10−4 sec. A similar region
in the soot foil is shown in figure 7.18.
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7.3.2 Sixteen cm Channel Width

Figure 7.19: Soot foil (15 cm wide) in the propane detonation mixture, C3H8-5O2-9N2

at 298 K and 20 kPa, showing a similar region as is shown with the triple point tracks
in figure 7.20

Figure 7.20: 16 cm periodic channel triple point tracks for the last 25 output steps
from t = 6,984 (nondim) = 2.106792·10−4 sec to t = 8712 (nondim) =2.62805517·10−4

sec. A similar region in the soot foil is shown in figure 7.20.
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Now, with a larger transverse domain of 16 cm (one cm wider than the experi-

mental channel), the triple points were tracked as shown in figure 7.20 which can be

compared to the boxed out region on the soot foil in figure 7.19. Analyzing the large

spaces between the triples points, very clearly, 3 to 4 cells can be seen in different

regions across the domain. This agrees with the experimentally measured cell size

of 4.5±0.5 cm which would create 3.5 cells on average across the domain. This was

a very computationally expensive simulation, utilizing 3072 cores on the order of a

week on the DOE LBNL NERSC Hopper supercomputing system.

Again, the total number of triple points across the main shock front verses time

is plotted in figure 7.21. From these results it is seen that with an average value of

30, the number oscillates from 19 to 41. This leads to an average spacing of 0.53 cm

with a maximum local average of 0.84 cm and a local minimum average of 0.39 cm.

Figure 7.21: 16 cm channel triple point count for the last 35 output steps for t =
6336 (nondim) = 1.91131285·10−4 sec to t = 8712 (nondim) =2.62805517·10−4 sec.
The last 25 points correspond with the data in figure 7.20.

The dominant cell size is even more clearly seen by looking at the actually 2D

psuedo-color simulation results. Results of nondimensional pressure, H2O mass frac-

tion, OH mass fraction, and temperature are shown in figures 7.22-7.29. Dominant

cells are observed by looking at the curvature of the main shock front and the regions

of high/low pressure and temperature existence of products or reactants and extra

high/equilibrium values of radicals. Note that in these figures, the maximum of the

psuedo-color scale was fixed so that all subsequent output steps used similar coloring.
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Figure 7.22: Psuedo-color nondimensional pressure results starting at t = 6984
(nondim) = 2.106792·10−4 sec with each result at a subsequent ∆t = 72 (nondim) =
2.172·10−6 sec. Note that the maximum pressure shown has been fixed at p = 150.
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Figure 7.23: Psuedo-color nondimensional pressure results starting at t = 7848
(nondim) = 2.367432·10−4 sec with each result at a subsequent ∆t = 72 (nondim) =
2.172·10−6 sec. Note that the maximum pressure shown has been fixed at p = 150.
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Figure 7.24: Psuedo-color H2O mass fraction results starting at t = 6984 (nondim) =
2.106792·10−4 sec with each result at a subsequent ∆t = 72 (nondim) = 2.172·10−6

sec. Note that the max fraction has be shown has been fixed at Yi = 0.1490.
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Figure 7.25: Psuedo-color H2O mass fraction results starting at t = 7848 (nondim) =
2.367432·10−4 sec with each result at a subsequent ∆t = 72 (nondim) = 2.172·10−6

sec. Note that the max fraction has be shown has been fixed at Yi = 0.1490.
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Figure 7.26: Psuedo-color OH mass fraction results starting at t = 6984 (nondim) =
2.106792·10−4 sec with each result at a subsequent ∆t = 72 (nondim) = 2.172·10−6

sec. Note that the max fraction has be shown has been fixed at Yi = 0.055.
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Figure 7.27: Psuedo-color OH mass fraction results starting at t = 7848 (nondim) =
2.367432·10−4 sec with each result at a subsequent ∆t = 72 (nondim) = 2.172·10−6

sec. Note that the max fraction has be shown has been fixed at Yi = 0.055.
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Figure 7.28: Psuedo-color nondimensional temperature results starting at t = 6984
(nondim) = 2.106792·10−4 sec with each result at a subsequent ∆t = 72 (nondim) =
2.172·10−6 sec. Note that the maximum temperature has be shown has been fixed at
T = 40.
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Figure 7.29: Psuedo-color nondimensional temperature results starting at t = 7848
(nondim) = 2.367432·10−4 sec with each result at a subsequent ∆t = 72 (nondim) =
2.172·10−6 sec. Note that the maximum temperature has be shown has been fixed at
T = 40.
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As an example, two output steps are shown in figures 7.30 and 7.31. In figure 7.30,

5 detonation cells are clearly observed. In figure 7.31, depending on the interpretation,

either 3, 4, or 5 cells exist. Looking at where the outer brackets point to, 3 fairly

large cells are clearly observed. However, within the upmost cell, another cell with

very strong pressure and temperature values is rapidly growing.

Figure 7.30: Psuedo-color OH mass fraction, pressure, and temperature. Five deto-
nation cell regions are labeled.

Figure 7.31: Psuedo-color OH mass fraction, pressure, and temperature. Four deto-
nation cell regions are labeled. The top-most cell has a cell within a cell.



230

7.3.3 Chemiluminescence Comparison

A experimental comparison of another variety can also be made by considering the

OH radical concentrations/temperature. Austin experimentally measured the chemi-

luminescence of the OH radical near the detonation front. These chemiluminescence

images, some of which are shown in figure 7.32, show regions of high fluorescence in-

tensity or hot spots where high temperature radicals are found. Comparing these to

the simultaneous schlieren images indicate that the hot spots occur in the vicinity of

triple-point shear layers near the end of the cell cycle. A comparison to the simulation

shown in figure 7.33 is made by looking where the highest concentrations of OH are

found and matching the shear layers and triple points. These high temperatures and

radical concentrations occur when two strong triple points collide, engulfing a region

of underdriven unreacted gas. As this gas quickly reacts from the high temperatures

created by the collision and subsequent reaction, more high temperature radicals are

formed into the keystone shape.

Figure 7.32: OH chemiluminescence images in figure 7.32 found in experiment by
Austin (6). These can be compared to the OH mass fraction results shown in fig-
ure 7.33.
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(a) (b)

Figure 7.33: Comparing OH radicial mass fraction results to the OH chemilumines-
cence images in figure 7.32 found in experiment by Austin (6).

7.3.4 Statistical Analysis

A statistical analysis of the detonation cell simulation was also carried out. By using

horizontal cuts of pressure, shown in figure 7.34, at different output steps, a distri-

bution of all encountered pressures was produced. In figure 7.35, the distribution

shows the underdriven equilibrium pressures in the range of 12.5 to 15.48 (nondim).

Also shown are the overdriven equilibrium pressures and the von Neumann (immedi-

ately post-shock) pressures, which range up to 200 (nondim) in the 2D psuedocolor

plots. By fitting this distribution with a generalized extreme value (GEV) distribu-

tion, along the y = -8 cm cut it is found to be centered at a pressure of 18.06 which

is approximately equal to the equilibrium pressure, 18.111 of the initially overdriven

ZND detonation. In figure ??, the distribution is centered at a slightly higher pres-

sure of 18.4. However, looking at the range of pressures found in the distribution it

is observed that the maximum pressures are much higher, showing that for this posi-

tion and time range the cut travels closer through a triplepoint and/or an overdriven

portion of the cell cycle.
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Figure 7.34: Nondimensional pressures along the y = 0, x=[-6000,3000] ·10−3 cm cut
for the last 18 output steps in the 16 cm wide detonation channel simulation.

Figure 7.35: Distribution of all pressures (shown in figure 7.34) along the y = -8 cm
cut for the last 18 output steps in the 16 cm wide detonation channel simulation. The
distribution is centered at a nondimensional pressure of 18.06 which is approximately
equal to the initial overdriven (U/UCJ = 1.008683) equilibrium pressure of 18.111.
The dimensional equivalents are 4.8442·105 and 4.8863·105 Pa.
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Figure 7.36: Distribution of all pressures along the y = 0 cm cut for the last 18
output steps in the 16 cm wide detonation channel simulation. The distribution is
now centered at a nondimensional pressure of 18.4.
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7.4 Discussion

Simulated and compared to experiments of Austin (6) was the transition from a

steady, planar, transversely periodic, ZND solution to a fully developed chaotic ir-

regular detonation cell pattern. By comparing soot foils, schlieren, and chemilumi-

nescence images, quantive aggreement with the experimentally dominant cell size of

45 mm was found, in addition to the qualitative comparison of the density/pressure

gradients and radical concentrations.

The statistical stationarity of the multi-dimensional unsteady solution was also

investigated. By “bining” and then fitting the pressure traces at different times to

a probality distribution, the data was observed to be clearly centered at the equilib-

rium pressure of the initially slightly overdriven steady ZND solution. While having

wild oscillations in pressure throughout the solution, the results on average oscillate

around this pressure and hence there is an average speed for this self-sustained chaotic

irregular detonation.
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Chapter 8

Detonation Shock Bifurcation

8.1 Motivation

Previous researchers have investigated the interaction of reflected shock waves with

boundary layers in the context of shock tube performance and it has been observed (114,

124) that interaction with the boundary layer may cause the reflecting shock wave

to bifurcate into an unaffected normal shock wave and a leading shock wave or foot

that travels along the tube wall. Mark developed a simple model for predicting con-

ditions under which bifurcation will occur. However, no analogous theory has been

developed for detonations and the possible role of the boundary layer in detonation

reflection has received relatively little attention in past research (143). The goal of

the present study is to obtain some insights into the effects of shock wave boundary

layer interaction on detonation reflection in order to make more realistic models of

pressure loads for structural response in finite-element simulations as well as single

degree of freedom models such as used by Karnesky et al. (84).

Using the available experimental data for comparison at the time of 1969, Davies

and Wilson (36), improved on Mark’s theory of the 1950s (114). This led to a x
3
4

dependence for the laminar case and a x
9
10 for the turbulent case. In experiment, all

cases followed a x1 dependence, therefore, the laminar theory was proven deficient.

Significant 2D simulations for a perfect gas conducted by Weber et al. in 1995

(159) confirmed the experimental findings in (36) for a linear dependence of foot

growth, but also suggested a nonlinear dependence at greater distances from the end

wall (7 cm and more). These results were conducted on a stretched grid with a

second-order accurate flux-corrected transport (FCT) method. The resolution used

yielded resolved results when the shock was closest to the end wall. The resolution

in the vertical direction was increased by 10.5 percent with each ∆x cell traversed
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from the end wall. Therefore, their data, which was for bifurcations occurring up to

11 cm from the end wall, had a decrease in resolution from being completely resolved

to extremely unresolved. Yet, some confidence was gained knowing the unresolved

simulation results were started from a more resolved condition.

More recently, in the experimental work of Petersen and Hanson (124), the initial

linear dependence was reconfirmed and at the close distance of 2 cm, the bifurcation

process was studied in detail. One finding was that the size and duration of the

bifurcated region do not depend on the test pressure for the range of pressures and

mixtures of their study.

A similar problem in two-dimensions was simulated by Gamezo et al in 2001 (57)

for shock-bifurcation induced DDT (deflagration to detonation transition). More re-

cent (2005) work by Gamezo et al. (87) has simulated this phenomena (but in a

steady frame) in three dimensions using one-step chemistry. The main 3D effect they

observed in their steady RSBs (reactive shock bifurcations) attached to a 3D rectan-

gular channel was from the presence of the second no-slip wall in a 3D rectangular

channel. The two RSBs that form at adjacent walls interact with each other and

produce an oblique Mach stem between two oblique shocks, when then interacts with

a central Mach stem creating a hot-spot that leads to a detonation initiation.

The effects of a nonsteady shock wave boundary layer interaction on a detonation

(rather than shock) reflection have had yet to be investigated for gases mixtures

which require the use of detailed thermodynamics, chemistry, and transport. Also,

the current mentioned simulations, while gaining basic insights, have failed to fully

resolve the viscous and diffusive scales in the boundary and shear layers at scales

which are comparable to experiments.

8.2 Ideal Detonation Reflection Model

If we are only interested in the shock for times soon after the detonation reflects, then

it is possible to make some simplifying assumptions and thereby create a model for the

amplitude of the reflected wave as done by Karnesky (83). One-dimensional numerical

simulations of the reflecting shock (see §8.6) predict that there is a very small pressure

gradient between the reflected shock and the end wall until the shock reaches the tail

of the expansion. Based on this observation, we made the approximation that there

is zero pressure gradient behind the reflected shock so that the pressure just behind

the shock is equal to the pressure at the end wall for all times. This approximation

is only valid for sufficiently short times following reflection when the shock is still in
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the Taylor wave. For later times, an expansion wave will develop behind the reflected

shock, and the pressure gradient cannot be neglected (35).

Assuming that the pressure PR behind the reflected shock is known, we can use

the shock jump relations (154) to find the speed, UR, of the reflected shock. The

result is

UR(t) = −u(x, t) + c(x, t)

√
γ + 1

2γ

[
PR(t)

P (x, t)− 1

]
+ 1, (8.1)

where u(x,t), P(x,t), and c(x,t) are the velocity, pressure, and sound speed just up-

stream of the shock, as determined by the Taylor wave solution. To use this method

of computation, the pressure-time history of the shock must be known from either

experimental measurement or simulation. Using the zero-pressure gradient assump-

tion discussed above, the present results approximate the reflected shock pressure as

the measured pressure history at the end wall. The pressure history is fit to a simple

exponential decay of the form

PR(t) = (PCJ,ref − P3) exp

(
−t− tref

τ

)
+ P3. (8.2)

The decay constant τ is found by fitting the measured pressure trace to equation 8.2.

Combining this solution for the reflected wave with the previous analytical solution

for the Taylor wave, the pressure P(x,t) within the tube is entirely specified (35).

8.3 Experimental Setup

Table 8.1: Pressure gauge locations

The later numerical simulations using one-step and detailed chemistry are com-

pared to the experimental results of Damazo (35, 84). For the purposes of examining

the dynamics of the reflected waves, the specimen tube is outfitted with thirteen

pressure gauges. A complete list of gauge locations is given in table 8.1. Before each

experiment, the tube assembly is evacuated before being filled with stoichiometric

ethylene-oxygen via the method of partial pressures to an initial total pressure of 50
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kPa. Following ignition, we observe a well-formed detonation has already developed

when the combustion wave reaches pressure gauge P1, indicating DDT occurs prior

to any pressure measurements (35).

8.4 Experimental Results

Figure 8.1: Pressure data compared to model results using two different end-wall
pressure histories. Vertical offsets are proportional to the physical separation of the
gauges. Reprinted from Damazo and Ziegler et al. (35).

figure 8.1 illustrates the typical pressure profiles observed in an experiment. The

initial rise in pressure for gauges P5 through P12 marks the arrival time of the det-

onation. From these measurements, we can extract the detonation wave speed to be

Udet = 2,348 m/s. The theoretical CJ velocity is 2,339 m/s. Gauges P5 through P12

then track the reflecting shock wave as it travels away from the reflecting end (35).

Although we are accurately predicting the shock speed, we observe that the

measured wall pressure is approximately 20 percent below that predicted by one-

dimensional theory. In other words, the speed of the reflected shock wave is incon-

sistent with the pressure data measured at the wall of the tube. If we vary the
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parameters of peak and plateau pressure to more accurately fit the recorded shock

amplitudes, we get the profiles shown in figure 8.1(b). Now the pressures are accu-

rately predicted, but the shock speed is not. It is also noteworthy that the measured

rise time of the pressure of the reflected shock is slower than expected, four times

longer than the rise time of the incident detonation wave (35).

These discrepancies suggest that the pressure is not uniform across the tube and

the shock waves are not one-dimensional. One possible reason for these discrepancies

is the viscous boundary layer that will be present at the tube wall. The reflected

shock wave may be interacting with the boundary layer to create a multi-dimensional

wave front near the reflected end. Such effects have been observed in shock tubes

where interaction of the reflected shock wave with the boundary layer set up by the

incident shock results in separated flow with an oblique shock in the boundary layer

leading the main reflected wave (114, 124).

8.5 Reflected Shock Wave-Boundary Layer Inter-

action

A sketch of reflected shock wave-boundary layer interaction is shown in figure 8.2.

The incident detonation induces a velocity in the fluid. The no-slip condition requires

the velocity to be zero at the wall and thus a boundary layer is created. The reflected

shock wave propagates into the flow outside the boundary layer in an essentially

one-dimensional fashion. Near the wall, the combination of low-speed fluid in the

boundary layer and the pressure rise across the reflected shock wave can result in

the separation of the flow. A system of oblique shocks is created to equilibrate the

pressures in the region next to the end wall. The leading portion of the reflected shock

wave that passes through the boundary layer (shock wave O in figure 8.2 is an oblique

wave and a reflected wave (R) is observed where this joins the normal (N) shock

wave. This configuration resembles the shock bifurcation or lambda shock observed

in the more familiar process of shock wave-boundary layer interaction in supersonic

steady flow. Experiments in nonreacting flow show that boundary layer separation

and oblique shocks only occur under certain conditions. Mark (114) developed a

simple criterion for when shock waves bifurcate. He theorized that bifurcation will

occur if the stagnation pressure in the boundary layer in the shock-fixed frame is

less than the pressure behind the normal shock. When using this criterion, it is

necessary to determine the Mach number of the reflecting shock wave in the boundary
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Figure 8.2: Schematic of flow for bifurcated shock wave. Reprinted from Damazo and
Ziegler et al. (35).

layer. When we attempt to apply this to reflecting detonations, we encounter a

serious difficulty because of the temperature dependence of the sound speed and

the Mach number with distance from the wall. Mark considered relatively weak

shock waves and assumed that the sound speed within the boundary layer remains

constant. However this assumption is not valid in the case of reflecting detonations

due to the large temperature variations within the boundary layer. To resolve this

issue and investigate the conditions under which boundary layer separation occurs

for detonation reflection, it is necessary to consider the unsteady interaction of the

reflected shock wave with a compressible viscous flow, described in the following two

sections.

In the first §8.6, a two-component perfect gas model of the reactive Navier-Stokes

was used with temperature dependent transport properties. This model helped gain

some basic insights for the detonation bifurcation problem. In the next §8.7 a re-

duced mechanism was used to simulate the detonation bifurcation problem with de-

tailed chemistry and transport. Also simulated were shock bifurcation problems with

isothermal boundary conditions.

8.6 Computational Results: Simple Two-Component

In the simplified preliminary simulations, two types of simulations were performed. A

nonreactive, one-dimensional Euler (inviscid) simulation was carried out in order to

have a reference solution for comparison to experiments and the full two-dimensional,

viscous simulations. The main simulations were two-dimensional viscous compressible

reactive computations of an incident detonation wave reflecting from a planar end wall

and also setting up a boundary layer on the sidewall. No-slip adiabatic boundary
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conditions were used on the bottom and right walls, inflow conditions on the left, and

outflow on the upper right boundary. At t = 0, the fluid adjacent to the wall has

a nonzero velocity, and thus there were start up errors from causing the boundary

layer to form in this manner. It is assumed that these errors are small enough to

be neglected and do not overly influence the general bifurcation structure. Both

simulations used simplified models of the chemical reaction process and considered

idealized detonation waves with reaction zones, but using parameters that did not

result in unstable detonation fronts. Although highly idealized, we believe that these

models do provide insight into the key physical processes.

A simple thermo-chemical mechanism was designed to model a H2, O2, Ar deto-

nation with mole ratios of 2, 1, and 7 at a state with a pressure and temperature of

50 kPa and 298 K. Using a high temperature extension of the GRI30 mechanism in

CANTERA and the Shock and Detonation Toolbox, a ZND solution was calculated

with detailed chemistry. A fitting procedure was used together with this solution

to determine approximate parameters for a one-step Arrhenius model with simple

depletion rate for the modeled chemical reaction. For this two-species model, the

total energy is defined by the heat release per unit mass parameter, q. Viscosity,

conductivity, and mass diffusion were calculated by the Sutherland model (162).

The approximate two-species mechanism properties were fitted to match the de-

tailed mechanism’s ZND solution properties at one-half the reaction length. The gas

and chemistry parameters used are given below in table 8.2. These values correspond

to a post shock von Neumann pressure of approximately 1.42 MPa and detonation

shock speed of Ushock = 1774 m/s. The reference values for viscosity, thermal conduc-

tivity, and mass diffusion were selected by matching values at the end of the reaction

zone. This yields the following reference properties: Tref = 2700 K, µref = 1.07·10−4

Pa·s, kref = 0.148 W/(m·K), Dref = 6·10−4 m2/s.

Tamb, K Pamb, kPa W, kg/mol q, J/mol Ea, J/mol A, s-1
298 50 1.4333 0.031 43000 30000 125000

Table 8.2: Gas and chemistry parameters used in computations.

Shown in figure 8.3 is the comparison between the 1D reactive Euler simulations

and the approximate analytic pressure model. As assumed in the simple model, the

gradient in pressure between the shock and the end wall is extremely small and the

model approximations are reasonable. Overall, the agreement of the model and the

one-dimensional inviscid calculations are reasonable. As found with the experimental

results, both the reflected shock speed and the reflected shock amplitude could not

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/
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Figure 8.3: Comparison of the approximate pressure model, PR(x) to the 1D reactive
Euler simulation of the TZ wave for a tube of length 2.4 meters with τ = 3000, and a
reflected shock pressure of 2.45 MPa, the approximate reflected value for the CJ post
detonation state (the reflected von Neumann state is 8.86 MPa).

be exactly matched.

The 2D simulations were carried out using the ZND initial condition starting in

a domain of 40x40 mm. Four mesh refinement levels were used, for which case the

smallest cell size was 7.8·10−3 mm. These results were not fully resolved, however,

enough cells were used across the boundary layer to gain insight into the overall flow

properties.

figure 8.4 clearly shows that the boundary layer separates and a bifurcated re-

flected shock wave develops. The basic structures discussed earlier in connection

with nonreactive shock waves are clearly visible. These include the oblique shock

propagating ahead of the main wave that is slightly curved and a reflected oblique

wave extending from the triple point nearly to the wall. A series of vortices are visible

near the wall and appear to be the result of the rolling up of the vortical boundary

layer fluid. A number of weak shock waves can be observed propagating away from

the interaction region toward the center of the flow.

As shown in figure 8.5 the pressure at the wall is significantly different than either

the pressure in the center of the flow or the reference inviscid solution. The pressure

at the wall clearly shows the lower amplitude oblique shock wave propagating ahead

of the normal shock in the core flow. A series of pressure oscillations are visible which
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Figure 8.4: 2D reflected detonation: Density, pressure, and vorticity pseudo-color
plots (nondimensional units) of the shock bifurcation from a detonation reflection at
50 kPa initial pressure. The reflecting end wall is at x=30 mm.
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Figure 8.5: Pressure traces at the heights of 0, 1, 10, and 30 mm from the wall 2.56
·10−5 s after reflection.

appear to be associated with the vortices moving along the wall and are terminated

by a sharp rise associated with the reflected shock wave of the triple point. The

amplitude and timing of the one-dimensional inviscid solution is in good agreement

with the wave form in the core of the two-dimensional viscous flow. This indicates

that at this particular time, the viscous effects are still confined to the walls. The

pressure traces shown in figure 8.1 confirm our speculations regarding the potential

effects of reflected shock-boundary layer interaction on side wall pressure histories.

8.7 Computational Results: Detonation and Shock

Bifurcation with Detailed Chemistry and Trans-

port

Comparison’s between simulations and experiments of Damazo were conducted for

H2-N2O detonation and shock reflections. The purpose of this study was to demon-

strate how different sizes and shapes of bifurcations result for different mixtures. The

mechanism used is a reduced version of the original 1989 Miller-Bowman H2-N2O

mechanism and is listed in appendix E.2. This reduced mechanism has 14 species

(H2, N2O, O, O2, OH, H2O, HO2, N, H, NO, HNO, N2, NH, N2H) and 19 reversible

reactions. It has been matched to a range of induction times and temperatures found
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in ZND solutions at overdrives 0.8 to 1.4.

In experiments of Damazo, shock bifurcations were compared for 3 different cases:

a H2-N2O detonation, a N2O shock wave at an incident Mach number of 2.7, and

an air shock wave at Mach number of 2.2. Experimental/numerical comparisons of

these are shown in figures 8.6, 8.7, and 8.8. The detonation simulation is an initially

underdriven steady ZND wave, matching the same speed found in the experiment, 15

kPa. The initial detonation Mach number is 5.9 (underdriven, incident speed 1670

m/s, which is 7 percent below the CJ speed of 1804 m/s).

These cases are summarized in table 8.3 below.

mixture ambient p (kPa) Mach # ρvN (kg/m3) pvN (Pa) TvN (K) uvNfluid
(m/s)

Air 25 2.2 0.868 137,500 550 256
N2O 15 2.7 1.183 123,000 550 163

mixture ambient p (kPa) Mach # ρvN (kg/m3) pvN (Pa) TvN (K) ushock (m/s)
H2-N2O 15 5.9 2.08 609,300 1,403 1,670 m/s

Table 8.3: Summary of bifurcation simulations.

In the next §8.7.1, schieren images for each of these three cases is compared to

unresolved simulations with two different solid wall boundary conditions, isothermal

and adiabatic. In the following §8.7.2, large-scale temperature and pressure results

are dicussed in detail. Next, in §8.7.3, resolved smaller scale simulations of all the

cases are shown and discussed. In this results the viscous/diffusive scales range from

be completely resolved to marginally resolved as the bifurcation process is analyzed

from immediate reflection to cm sized scales. In §8.7.4, the exact geometry of the feet

from the simulations is analyzed, plotted, and compared to Mark’s original three-

shock theory for shock bifurcations. Lastly, in §8.7.5 pressure traces through the

large-scale bifurcations are analyzed and their influenced on experimental pressure

measurements is discussed.

8.7.1 Schlieren vs. Multi-Component Simulation Compar-

isons

In figures 8.6-8.8, large-scale simulations (2D psuedo-color density plots) are compared

with schlieren images from experiments of Damazo. In these simulations for the

nonreactive shock cases, two different wall boundary conditions were used, adiabatic

and isothermal. As suspected, the isothermal results agree better with experiment.

For the reactive detonation case, only the adiabatic wall condition was used, however,

agreement with experiment was still found. It must be noted that in all of these large-
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scale simulations, the viscous/diffusive scales are very unresolved. This simulations

used on the order of 50 cores for a week at a time. To even marginally resolve one

of these large scale simulations, a supercomputer using on the order of 1000 cores

running for the same time would required.

Starting with the air comparison in figure 8.6, the foot shape and size in the

isothermal simulation matches that found in experiment. A slight difference is the

convex curvature in the reflected shock of the simulation. It is surmised that this is

due to two different effects, possibly the vertical domain isn’t large enough and the

pressure wave from the boundary layer is reflecting off the upper boundary, and/or

there is not enough resolution in the simulation. A simulation result using the adi-

abatic wall boundary condition is also shown, and for this case the size and shape

of the foot is found to be vastly different from the simulation result. However the

noncurvature of the reflected shock has been restored.

In the next comparison for N2O shown in figure 8.7, excellent agreement is again

found for the isothermal wall case. The height of the foot and the angle of the foot are

similar to the experimental image. Also, in both images curved pressure waves and

a shear layer are seen emanating from the foot. The foot in this case now resembles

the foot found for air’s adiabatic wall case. For the N2O adiabatic wall case, the foot

is massive, being two times larger than the isothermal case in height and in length.

The angle of the foot is also markedly smaller.

For the last case shown in figure 8.8, the H2-N2O detonation bifurcation is similar

to the experimental image. The feet in both images are small, however, they have a

different shape, for example, the simulation result has a much larger foot angle and

a shorter foot height. Yet, interpretation of the experimental image in this case is

difficult as either the foot has a very large angle and a relatively large height, or what

seems to be the foot could actually just be the curved reflected shock, and the actual

foot is very small and in the boundary layer region where the schlieren shows too

dark of a contrast to pick out features.

One would expect that with an isothermal boundary condition, the trend which

was found for the nonreactive shocks would continue, with the result being that the

foot angle would increase and the height of the triple point would also decrease.

Unfortunately, simulating a detonation along an isothermal solid wall is beyond the

current implementation AMROC and the ghost fluid boundary condition. This is due

to the difficulty of having both extremely large temperature and density gradients

and the requirement of 6 ghost cells cells when using 6th-order diffusive stencils.

This is problem is made even more difficult when detailed thermodynamics is used as
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most thermodynamic enthalpy polynomials are only defined to T = 300 K, and lower

temperatures are needed when using a symmetry boundary condition with ghost cells.

Despite these difficulties some insight can still be gained by studying the Adiabatic

wall case.

8.7.2 Temperature and Pressure Results: Large-Scale Bifur-

cations

More results, now for the temperature and pressure are shown in figures 8.9, 8.11,

and 8.13.

For the air and N2O case the isothermal and adiabatic cases can be compared

in even more detail. One obvious difference is that the maximum temperature and

pressure is about 20 percent higher in adiabatic case. The viscous dissipation of the

boundary layer heats the fluid and this heat stays in the fluid in the adiabatic case.

For the detonation case, in figure 8.13c), the mass fraction of H2O is shown. Here,

one finds for the detonation case that behind the reflection and in the boundary

layer, chemical equilibrium has still not been reached. However, in the top part of

the foot, due to the high temperatures from passing through the shock, there are

more products. It is presumed that these different compositions influence the shape

of the bifurcation.

In these large-scale (approximately 5 cm from reflection) simulations, the initial

boundary layer is only marginally resolved, and there are start-up errors which bounce

across the domain. We assume that these are small and do not change the overall

solution. To remove these errors one would have to use a recirculating boundary layer,

where a solution point is recycled and used on the left boundary. Also, the Taylor

waves (due to the velocity being zero at the left tube end) behind the detonation and

shock waves have been neglected. An additional effect that makes the simulations and

experimental results different is three dimensionality. The shocks and shear layers are

fuzzy because they are integrated (by the camera) across the tube. There are also

shocks and boundary layers on the outer sides (windows) of the tube.
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a)

b)

c)

Figure 8.6: Air at 25 kPa. Mach number is 2.2. a) is a schlieren image. b) (isothermal BC) and c)
(adiabatic BC) is a pseudo-color plot of the nondimensional density at the same scale and distance
from the end wall. Here the end wall is at x=0 cm. For this simulation the shock wave was started
at x = 7 and the domain is of size x = (14, 0) cm and y = (0,7) cm. There were 3 refinement levels
(2,2,2) (4 levels total) with a base grid of size [800,400] cells.
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a)

b)

c)

Figure 8.7: N2O at 15 kPa. Mach number is 2.7. a) is a schlieren image. b) (isothermal BC)
and c) (adiabatic BC) is a pseudo-color plot of the nondimensional density at the same scale and
distance from the end wall. Here the end wall is at x=0 cm. For this simulation the shock wave was
started at x = 7 and the domain is of size x = (14, 0) cm and y = (0,7) cm. There were 3 refinement
levels (2,2,2) (4 levels total) with a base grid of size [800,400] cells.
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a)
b)

Figure 8.8: 9:H2, 1:N2O by mole fraction at 15 kPa. The initial detonation Mach
number is 5.9 (underdriven, incident speed 1670 m/s, which is 7 percent below the
CJ speed of 1804 m/s). Figure a) is the experimental result. figure b) is a pseudo-
color plot of the nondimensional density at the same scale and distance from the end
wall. Here the end wall is at x=0 cm. For this simulation the shock wave was started
at x = 7 and the domain is of size x = (14, 0) cm and y = (0,7) cm. There were 3
refinement levels (2,2,2) (4 levels total) with a base grid of size [800,400] cells.
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a)

b)

Figure 8.9: Adiabatic case: Air at 25 kPa with Mach number 2.2. a) and b) are
pseudo-color plots of the temperature (K) and pressure (Pa) at the same scale and
distance from the end wall. Here the end wall is at x=0 cm. For this simulation the
shock wave was started at x=0 and the domain is of size x = (14, 0) cm and y =
(0,7) cm. There were 3 refinement levels (2,2,2) (4 levels total) with a base grid of
size [800,400] cells.



252

a)

b)

Figure 8.10: Isothermal case: Air at 25 kPa with Mach number 2.2. a) and b) are
pseudo-color plots of the temperature (K) and pressure (Pa) at the same scale and
distance from the end wall. Here the end wall is at x=0 cm. For this simulation the
shock wave was started at x = 7 and the domain is of size x = (14, 0) cm and y =
(0,7) cm. There were 3 refinement levels (2,2,2) (4 levels total) with a base grid of
size [800,400] cells.
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a)

b)

Figure 8.11: Adiabatic case: N2O at 15 kPa. Mach number is 2.7 a) and b) are
pseudo-color plots of the temperature (K) and pressure (Pa) at the same scale and
distance from the end wall. Here the end wall is at x=0 cm. For this simulation the
shock wave was started at x = 7 and the domain is of size x = (14, 0) cm and y =
(0,7) cm. There were 3 refinement levels (2,2,2) (4 levels total) with a base grid of
size [800,400] cells.
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a)

b)

Figure 8.12: Isothermal case: N2O at 15 kPa. Mach number is 2.7 a) and b) are
pseudo-color plots of the temperature (K) and pressure (Pa) at the same scale and
distance from the end wall. Here the end wall is at x=0 cm. For this simulation the
shock wave was started at x = 7 and the domain is of size x = (14, 0) cm and y =
(0,7) cm. There were 3 refinement levels (2,2,2) (4 levels total) with a base grid of
size [800,400] cells.



255

a)

b)

c)

Figure 8.13: 9:H2, 1:N2O by mole fraction at 15 kPa. Mach number is 5.9 (underdriven, incident
speed 1670 m/s, which is 7 percent below the CJ speed of 1804 m/s). Figure a), b), c) are pseudo-
color plots of the pressure (Pa), temperature (K), and H2O mass fraction. Here the end wall is at
x = 0 cm. For this simulation the ZND detonation solution was started at x = 3.5 and the domain
is of size x = (10.5, 0) cm and y = (0,7) cm. There were 3 refinement levels (2,2,2) (4 levels total)
with a base grid of size [800,400] cells.
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8.7.3 Resolved Small-Scale Bifurcations

In order to understand how bifurcations form and the flow properties inside, resolved

simulations of the 3 mixtures were conducted at the early times of reflection. For the

simulation results with the bifurcation closest to the wall, a very high resolution with

∆xmin = 4·10−8 m, was used to fully resolve the boundary layer. For other results

with increasing distances from the wall, lower resolutions, 2 to 8 times coarser, were

used as labeled in each figure. For the higher resolution simulations, the domain was

smaller, and hence, the shock or detonation was started closer to the end wall.

In all nonreactive cases, regardless of the mixture or boundary condition, imme-

diately after reflection (approximately 30·10−6 m), all bifurcations are of about the

same shape. With these small foot sizes, only the viscous/diffusive effects are influ-

encing the bifurcation. This is shown in figures 8.16, 8.20, 8.23, and 8.28. At later

times and distances from the wall, the top triple point of the foot materializes and

the foot grows, now at different rates and with different shapes for each mixture and

boundary condition. Another similarity of all the results is that above the triple

point, there is a concave curvature of the main reflected wave. In is surmised that

this is due to the pressure waves that are created by the initial compressible boundary

layer. In figure 8.14, this pressure wave is seen by visualizing the boundary layer of

the incident shock. Also shown in figure 8.15 are traces through the boundary layer

after it has become established, at a time four times later than the result shown in

figure 8.14. Here, location of the pressure wave and its affect on the temperature

profile is observed.

For the reactive case, even more immediately after reflection (10·10−6 m) as shown

in figure 8.32, the foot takes a different shape. It is longer (smaller angle), possibly

due to the heating and reactions of the mixture near the bottom wall. As discussed

later, the complexity of the foot is increased due to the nonconstant temperatures,

and the evolving reaction progress, behind the incident wave, reflected wave, and

behind the foot. Even another factor is the inherent instability of the detonation,

which causes additional triple points and shear layers to appear on the reflected wave

and inside the foot.

8.7.3.1 Air: Isothermal BC

Now, for just considering air for the isothermal case, in the second result, figure 8.17,

comparing to the previous figure 8.16, one can see that the curved section of the shock

on the foot is about the same size, yet, the straight portion of the shock leading to



257

A) B)

C) D)

Figure 8.14: Air, isothermal BC case: Incident shock boundary layer. Showing results
for nondimensional A) pressure, B) density, C) y-velocity, and D) temperature (K).
In these figures the incident shock has traveled approximately 1.25·10−3 cm. The x
and y units are 10−3 cm. ∆xmin = 4.88·10−8 m. Note that the blurry/blocky region
shows where there exists the coarser refinement regions.

what is now a clear triple point is markedly larger. By looking at the vorticity (plot C)

in the two figures), one can determine what part of the upper flow is passing through

the straight shock, and where the boundary layer is passing though the curved shock.

At a later time in figure 8.18, the third shock emanating from the triple point is now

more visible. As by three-shock theory, this is labeled as a reflected shock. Also,

by looking at the temperature in figure 8.18D), one observes that just now the shear

layer behind the foot is going unstable. In the last isothermal air figure 8.19, the

instabilities in the shear layer have grown, and also shocklets that emanate from the

newly formed vortices are visible. In figure 8.6, the experimental image, most likely

due to the small size of the foot, fails to show these shocklets. However, for the

N2O experimental case shown in figure 8.7, the foot is much larger and its stronger

shocklets are visible.
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A) B)

C) D)

Figure 8.15: Air, isothermal BC case: Incident shock boundary layer traces at a
time of t = 2.5 (nondim) = 7.2·10−8 sec. Showing results for A) temperature (K),
nondimensional B) pressure, C) x-velocity, and D) y-velocity. In these figures the
incident shock has traveled approximately 1.25·10−3 cm. The x and y units are 10−3

cm. ∆xmin = 4.88·10−8 m. Note that the straight lines show where there exists the
coarser refinement regions.
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8.7.3.2 Air: Adiabatic BC

A)

B)

Figure 8.20: Adiabatic BC case: Velocity vectors superimposed on pseudo-color plots
of pressure (Pa) and temperature (K) for the air shock-bifurcation case with detailed
chemistry and transport. In these figures the shock is approximately 3·10−3 cm from
the wall. The x and y units are 10−3 cm. ∆xmin = 1.95·10−7 m.

Starting with figure 8.20, one may compare the initial foot start-up of the adiabatic

case with that of the isothermal case. Here, the reflected wave has only traveled

30·10−6 m and already its height is 10·10−6 m. For the isothermal case, a height of

10·10−6 m is not reached until the reflected wave has traveled 100·10−6 m. Despite

this, the shapes of the feet are the same. The reasons for these differences, is influenced

by the sizes of the boundary layers. For the adiabatic case the thermal boundary layer

is much thicker (less steep gradients). Also, unlike the isothermal case, there is not a

pronounced density gradient.
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Moving on to the next result, figure 8.21, the reflected shock has now traveled

450·10−6 m. As for the isothermal case in figures 8.18 and 8.19, the same trends of a

triple point, an unstable shear layer, and shocklets appearing are found.

In the last result, a zoomed in view of the large-scale foot from figure 8.6 is shown.

Looking at the temperature, density, and vorticity, the shear layer just above the wall,

and emanating from the triple point can be identified. Both of these layers have gone

unstable. The shear layer near the wall has many strong vortical structures where

create a chaotic combination of shocklets throughout the foot that propagate into the

domain behind the main reflected shock.
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8.7.3.3 N2O: Isothermal BC

A first look the N2O results with an isothermal wall shows many similarities to the

air case with an adiabatic wall. At the same distance from the wall, approximately

30·10−6 m, the height of the foot is only 40 percent smaller as is seen in figure 8.23.

As we find later for the adiabatic case, the height of the foot for the adiabatic N2O

case is the largest foot of all cases. For the isothermal case, as is seen in figures 8.23,

8.24, 8.25, 8.26, and 8.27 the same trends continue, appearance of a triple point and

reflected wave, and shear layers which go unstable forming shocklets from the layers

just above the wall. Some of the vorticies near the wall are also lifted up, creating

a chaotic flow behind the foot in the large-scale results. A “medium-scale” result is

also shown in figure 8.27. At this time when the reflected shock is 1.850·10−3 m from

the wall, many shocklets have formed near the front of the foot in addition to the

shocks that first appear in the rear of the foot as is seen in figure 8.25.
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8.7.3.4 N2O: Adiabatic BC

Firstly, looking at figure 8.28, as compared to the air adiabatic case, for N2O the foot

is already 50 percent larger in height. In the next figure 8.29 at a distance of 75·10−6

m, a shocklet is forming behind the foot, the earliest of all results discussed so far.

Another shocklet is also forming just below the triple point. In the last figure 8.30,

the massive 4 cm long foot used in the experimental comparison is zoomed in on,

showing the chaotic flow and large number of shocklets.

A)

B)

Figure 8.28: Adiabatic BC case: Velocity vectors superimposed on pseudo-color plots
of various quantities for the N2O shock-bifurcation case with detailed chemistry and
transport. Showing results for nondimensional A) pressure (Pa), and B) temperature
(K). In these figures the shock is approximately 3·10−3 cm from the wall. The x and
y units are 10−3 cm. ∆xmin = 4.88·10−8 m.
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A)

B)

Figure 8.29: Adiabatic BC case: Velocity vectors superimposed on pseudo-color plots
of various quantities for the N2O shock-bifurcation case with detailed chemistry and
transport. Showing results for nondimensional A) pressure (Pa), and B) temperature
(K). In these figures the shock is approximately 7.5·10−3 cm from the wall. The x
and y units are 10−3 cm. ∆xmin = 4.88·10−8 m.
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A)

B)

C)

Figure 8.30: Adiabatic BC case: Velocity vectors pseudo-color plots for the N2O
shock-bifurcation case with detailed chemistry and transport. Showing results for
nondimensional A) pressure, B) density, and C) vorticity. In these figures the reflected
shock is approximately 4.5 cm from the wall. The x and y units are cm. ∆xmin =
2.19·10−5 m.



276

8.7.3.5 H2-N2O: Adiabatic BC

Figure 8.31: Velocity vectors superimposed on a pseudo-color plotof H2O mass frac-
tion. In this figure the shock is approximately 1·10−3 cm from the wall. The x and y
units are 10−3 cm. ∆xmin = 3.91·10−8 m.

As was previously mentioned, for the reactive case, immediately after reflection in

figure 8.32, the foot is already at a large size in length and height. This is presumed

to be due to the accelerated rate of chemical reaction due to the heating of the fluid

from the formation of the reflected shock and also from this shock interacting with

the already preheated boundary layer from the adiabatic wall boundary condition. In

figure 8.31, the pseudo-color plot of the H2O mass fraction shows the high concentra-

tions near the right end wall, and also at the bottom wall where already one vortex is

rolling up. Because of the enhanced temperature and pressure of the reflected wave,

the induction length of the initially underdriven wave has been shortened and the

detonation is now overdriven.

In the next set of results shown in figure 8.33, the foot has grown, the bottom

vortices have gone even more unstable, and a local explosion of the right most vortex

has occured. This is identified by observing the appearance of two triple points in the

pressure plot 8.33B) and the bubble of hot (red) fluid in the temperature plot 8.33D).

Also, of note, is that the bottom vortices are much larger relative to the foot than those

that were found in the nonreactive bifurcations. This again is due to the expansion

of the fluid due to the chemical heat release.

In the next figure 8.34, at a later time where the reflected shock has traveled

from 70·10−6 to 240·10−6 m and with two times less resolution, the same effects

are seen. However, the previously, very individualized vortices have all diffused into

each other. Also, the reflected shock has now gone unstable, forming triple points
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which will eventually lead to a detonation cell pattern. Each of these triple points

creates a shear layer, and these are observed in addition to the shear layer emanating

from the main triple point of the foot. Note, that in the experiment, there was

already a detonation cell pattern propagating behind the incident shock. In these

simulations this was approximated with a steady ZND solution. However, because

the induction length of the reflected shock/detonation is much larger than that for

the incident shock/detonation, there is a finite region where accelerated reaction

will take place. This region lasts all the way until the reflected reaches the end

of the reaction zone of the incident detonation. Because the incident detonation is

underdriven, the induction length and full reaction zone length are close to each other

and are approximately equal to 0.716 and 1.66 cm. As a comparison, for the reflected

overdriven detonation, the induction zone length is equal to approximately 2.4·10−6

m, and its full reaction length is approximately 60·10−6 m.

In the next figure 8.35, the same trends discussed continue. However, now the

shape of the foot has changed. The angle of the foot has increased and the height of

the foot is now about the same size as the length of the foot. Also, the region of the

foot which is not occupied by vortices has increased in size. This change in geometry

of the foot is presumed to be from the acceleration of reaction and the appearance of

triple points below the main triple point.

In the last figure 8.36, where shock has traveled 2 cm, the triple points on the

main reflected shock no longer exist. This is not due to the influence of numerical

viscosity, as if one looks at the early times of reflection as in figure 8.35, even at

this coarse resolution, the main reflected wave still goes unstable. However, after the

wave has propagated approximately 1 cm from the end wall, the triple points on the

main reflected wave disapear due to the pre-shocked consumption of fuel behind the

incident detonation.

Another feature shown in figure 8.36 that does not appear in the nonreactive cases

is a lifting of the rear-most wall vortex. This vortex has moved high enough such that

it has pushed up the shear layer which emanates from the main triple point of the

foot.
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8.7.3.6 Specific Heat Ratio

Also of possible influence on the size and existence of a foot is the specific heat ratio,

γ. Mark found that for perfect gases, increasing the specific heat increases the region

of existence of a bifurcated foot when considering all possible incident shock speeds.

Shown in figure 8.37 is a comparison of the specific heats for air for the isothermal

and adiabatic wall boundary cases. For the isothermal case, due to the temperature

being lower, near the wall the specific heat has a maximum value of 1.398, whereas

for the adiabatic wall, the value is slightly less than 1.37 near the wall. This could

have a contribution to foot angle.

A) B)

Figure 8.37: Specific heat, γ A) isothermal wall case, B) adiabatic wall case. A)
velocity is in m/s and the wall is at x = 5·10−3 cm, B) velocity is in mm/s and the
wall is at x = 50·10−3 cm.
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8.7.4 Foot Geometry

The applicability of Mark’s bifurcation theory to multi-component thermodynamics,

detailed chemistry and transport was studied. For each of the three mixtures and

for each of the two possible wall boundary conditions, whether a bifurcation should

be expected and the angle α that the foot creates was calculated. In figure 8.38, a

diagram labeling the fluid states and foot geometry angles is shown. Note that this

is a simplified, but still different convention of that used by Mark (114).

Figure 8.38: Schematic of the flow field after shock reflection from the tube end, in
the reference frame of the reflected shock’s triple point. The triple point connected
to the reflected wave, R, moves at a nonconstant velocity utriplepoint traveling at a
nonconstant angle β. The post incident shock state is state 2 and the post reflected
shock state is state three. The boundary layer is approximated to be fixed to the wall
and travel at a speed uR with respect to the reflected shock. The foot formed by the
reflect shock boundary layer interaction forms an angle α with the wall and the triple
point. Behind the foot, the flow speed is approximately zero in the reflected shock
frame, leading to a stagnation pressure of pstag.

As a first step, whether a bifurcation (a “foot”) appears in the flow is determined

by calculation the stagnation pressure of the boundary layer and comparing this to

the reflected shock pressure. If the stagnation pressure is lower, then a foot appears.

The stagnation pressure depends on the pressure, density, and speed of the boundary

layer with respect to the foot’s speed which is approximately the same speed as the

reflected shock,

pstag = pbl + ρbluR
2. (8.3)
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However, the density of the boundary layer is different depending on the boundary

condition. In the case of an adiabatic wall, there is no heat loss and the temperature

and density is that of the post incident shock,

ρbl =
RT2

p2

. (8.4)

In the other case, for an isothermal wall, the boundary layer is approximated to have

a constant temperature which is equal to the ambient state,

ρbl =
RT1

p2

, (8.5)

where T1 is the ambient temperature. In reality, there is a solid/gas heat conduction

problem which governs the nonlinear nonconstant boundary layer temperature, how-

ever, approximating the wall as isothermal is the more realistic choice of the two. In

shock and detonation cases simulated, a foot was predicted by Mark’s theory.

By making an assumption about the angle β at which the triple point travels, the

angle α, that the foot makes with the wall can also be computed. It is theorized that

the post shock pressure behind the foot must be equal to the stagnation pressure of the

boundary layer. This post shock pressure is calculated by transforming the problem

in the reference frame of the foot which moves at the same velocity of the triple point

above it. The triple point is traveling at an unknown angle, and therefore, this angle

was either assumed to be zero or equal the average value found in the simulations.

The velocity of the triple point depends on the angle β in the following fashion,

utriplepoint = uR · i + uR tan β · j. (8.6)

This leads to a velocity in state 2 of the flow where its normal component depends

on both the angles α and β,

uN = [(u2 + uR) + uR tan β] sinα. (8.7)

With this relation, the Shock and Detonation Toolbox was used to reverse engineer

a post shock pressure based on the angle α. The angle α which leads to a pressure

equal to the stagnation pressure is the solution.

The described calculation was carried out for each of the three mixtures, for

each of the two wall boundary conditions, and β approximated as zero or as the

average simulation value. Additionally, for the detonation case, the post shock state

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/
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was assumed to be for both state 2 and the region behind the foot to be either

“frozen” with no chemical reactions, or “equilibrium” with all chemical reactions

going to completion. The results are organized in table 8.4 below. Mark’s theory

Mixture Wall BC
Empirical β

input pstagnation
α output
(theory)

α
(simulation)

Air adiabatic 0 2.41·105 Pa 44.7 39-47
Air adiabatic 14 2.41·105 Pa 39.7 39-47
Air isothermal 0 3.29·105 Pa 54.2 49-57
Air isothermal 5 7.94·105 Pa 45.0 49-57

N2O adiabatic 0 1.78·105 Pa 32.8 31-44
N2O adiabatic 25 1.78·105 Pa 28.7 31-44
N2O isothermal 0 2.25·105 Pa 37.2 35-51
N2O isothermal 14 2.25·105 Pa 33.3 35-51

9H2-N2O frozen chem. adiabatic 0 9.47·105 Pa 27.8 29-56
9H2-N2O frozen chem. adiabatic 20 9.47·105 Pa 25.3 29-56
9H2-N2O frozen chem. isothermal 0 2.85·106 Pa 51.8 -
9H2-N2O frozen chem. isothermal 20 2.85·106 Pa 46.1 -
9H2-N2O equil. chem. adiabatic 0 7.94·105 Pa 33.0 29-56
9H2-N2O equil. chem. adiabatic 20 7.94·105 Pa 29.7 29-56
9H2-N2O equil. chem. isothermal 0 2.70·106 Pa 77.8 -
9H2-N2O equil. chem. isothermal 20 2.70·106 Pa 62.7 -

Table 8.4: Table of parameters comparing results from DNS and Mark’s Theory using
three-shock theory and the Shock and Detonation Toolbox for detailed thermodynam-
ics and chemistry. Mark’s theory has two input parameters, the incident shock Mach
number and an optional triple point vertical displacement angle β. The output from
the theory is the angle α, which describes the size of the foot. This angle is compared
to the DNS values for the two wall boundary conditions, isothermal and adiabatic.

does surprisingly well predicting the angle α given the complexity involved in the

simulations. Even more importantly, the theory predicts the trends of the angle

when changing the mixture type and using the adiabatic or isothermal boundary

condition. In all cases, a smaller angle α is predicted when an adiabatic boundary

condition is used. Also predicted is that for the air case, the angle alpha is larger,

leading to a shorter foot as was observed in the simulations. Another trend that the

theory predicts is the increasing the angle β always decreases the angle α. For just

the reactive case, the equilibrium chemistry leads to a larger α which better matches

the simulations. Also, by looking at the isothermal detonation result with equilibrium

chemistry, very large alpha angles (63-78 degrees) are predicted. This better matches

the very short foot which was found in experiment and shown in figure 8.8.

Of important note, is that in the simulations, the angles α and β change with

time and also with the different resolutions used in each simulation. These changes

are plotted and discussed in §8.7.4.1 and §8.7.4.2.

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/
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8.7.4.1 Bifurcation Shock Geometry

For each of the nonreactive shock mixtures and for both boundary conditions, the

geometrical properties of foot length and triple point height, δ, and the angles α and

β as labeled in figure 8.2 were studied. Also, studied was the effect of grid resolution

on these properties.

In figures 8.39-8.42, these properties are plotted with respect to the distance, x,

the reflected shock has traveled past the wall. The first two plots of each for the triple

point height and the foot length are on a log-log scale. The last two plots of each are

on a log scale only for the x-axis.

For all nonreactive cases, the foot length and triple point height grow at similar

polynomial rates. On a log-log plot these growth rates appear as linear with a slope

of approximately one. In all nonreactive cases, the angle α begins at a value of

approximately 50 degrees, and then decreases linearly on a x-log plot. The angle β

appears to be the most sensitive of all parameters. For the adiabatic air case and for

both N2O cases, a general trend of slowly decreasing and then slowly increasing angle

as the foot moves farther from the wall is found. Gaining insight on trends for the

isothermal air case is more difficult as the affect of resolution on the results is found

to be relatively large.

The air case with an isothermal wall has the smallest foot length and height out

of all the nonreactive cases studied. Not surprisingly is the result that with a smaller

scale, the viscous effects of numerical viscosity are much larger. In the plots of the

foot growth, triple point height, and β change in figure 8.39, each resolution has a

largely different starting value. Despite this, the curves over all have the same general

shapes.

Another factor that could be affecting the results when simulated at different res-

olution is the starting distance for the incident shock. Due to domain size constraints,

for each resolution the incident shock and hence initial boundary layer was started at

different distances from the end wall. Ideally, to get the best results for an experimen-

tal comparison, the shock should be started at a distance equal to the length of the

tube. However, this is obviously too expensive to simulate for a resolved simulation.

Other trends of note, are a comparison of the isothermal to adiabatic results. For

the angle β, the adiabatic results yields a larger result, and a taller foot. For the angle

α, the adiabatic results yields a smaller result and hence a longer foot. For N2O, the

slopes of the log-log foot-length and foot-height plots are similar for the isothermal

and adiabatic wall. For air, the isothermal wall slope is slightly steeper.
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Comparisons to Past Works

Using the available experimental data for comparison at the time of 1969, Davies

and Wilson (36), improved on Mark’s theory of the 1950s (114). They used the

boundary layer models of Mirels to calculate the growth rate of the bifurcated foot

from shock reflection. Two growth rate models were constructed, one for laminar

and one for turbulent boundary layers. The laminar theory was based on the Blasius

equation and the turbulent theory was based on an empirical model of the boundary

layer thickness. To obtain a foot height, the mass flow rate equations of the boundary

layers were integrated (with some additional approximations based on experimental

findings) and with the knowledge of a foot temperature, the foot volume was found,

which led to a calculated foot height based on the distance from the end wall. This led

to a x
3
4 dependence for the laminar case (δ = δL(Ms)x

3
4pamb

4), and a x
9
10 dependence

for the turbulent case (δ = δT (Ms)x
9
10pamb

10). In experiment, all cases followed a

x1 dependence, therefore, the laminar theory was proven deficient. Their theoretical

models are also only valid up to Mach numbers of 3.6.

Our simulation results also show a linear trend agreeing with experiment for the

foot height growth rate. Ignoring the unresolved large-scale results, polynomial fits

were constructed for each of the test cases:

N2O (isothermal): δ = 0.18x0.95

N2O (adiabatic): δ = 0.38x0.98

Air (isothermal): δ = 0.12x1.06

Air (adiabatic): δ = 0.27x1.01

These agree very with the experimental rate of approximately x1, considering the

larger x values used in the fits are only marginally rather than fully resolved, especially

for the isothermal wall air test case.

In the previous simulations of Weber et al. (159), a similar trend was found. In

these simulations, the bifurcation was simulated for a shock in air which had traveled

up to approximately 10 cm. Three Mach numbers were tested: 2.6, 5.0, and 10.0.

They used different incident shock conditions than our tests (Mach number of 2.6

and initial pressure of 0.02 atm = 2,026.5 Pa) and a single component perfect gas

model. A linear foot growth rate was found, but only up to 9 cm of foot travel where

the rate leveled off to practically zero. This trend agrees with experiments of Matsuo

et al. where the rate decreased rapidly at a distance of 7 cm. This led to Weber’s

simulations overestimating the growth by 20 percent at x = 11 cm. However, up to

approximately 6 cm the results agreed very well with experiment. This discrepancy

is surmised to be due to a lack of grid resolution which is needed to simulate the
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turbulent shear and boundary layers that are most likely present at this distance.

These results were for the isothermal wall case. Similarily to our approach, they

also simulated the adiabatic wall and found a significantly larger foot and a loss of

linearity at approximately x = 6 cm.

The evidence for a lack of resolution in Weber’s simulations is supported by a

result in which they decreased the cell size by 50 percent and found the foot angle α

to decrease by 1 percent and the foot height to decrease by 4.2 percent. This trend

suggests that using more resolution would produce a result that would better match

experiment. Weber et al. also simulated a resolved case with a very low pressure of

206.5 Pa and (with now a larger bifurcation for x up to 12 cm) and found a more

convincing trend that is shown by experiments in general. However, no experimental

data at this low pressure existed at the time. Unlike the unresolved result, when the

linearity of the growth rate stopped, a slow increase rather than a practically lack of

growth was found.

In our simulations, due to the much higher initial pressures tested, our bifurcations

showed no approach to linearity in the range x = 0 to 5 cm for the reflected shock.

Our large-scale simulations with the 14 cm sized domain are, like Weber’s results,

unresolved. However, except for our even less resolved isothermal air case, the shock-

bifurcation results at high and low resolutions exhibit basically the same trends.

Also, of important note is the improvement of our numerical method over the high

numerical viscosity creating low (second rather than sixth) order FCT method.
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8.7.4.2 Bifurcation H2-N2O Detonation Geometry

In figure 8.43, the geometrical parameters of the detonation with an adiabatic bound-

ary are shown over the range of resolutions and distances from the end wall. Except

for the coarsest resolution where numerical viscosity is influencing the solution, the

different curves of resolution match up very closely.

At the early times of reflection, the foot length and height are increasing linearly

(on a log-log plot) and the angles α and β are both decreasing with β decreasing at a

greater rate. This translates into the foot length growing proportionally faster than

the foot height. Then a farther distance from the wall, for all properties, but most

obviously for the angle β there is a trend change. Specifically the curvature on the

plots reverse at x = 0.01 cm. The foot length and height growth temporarily go to

zero before increasing again, and the angle alpha and stop decreasing and start to

increase and then decrease again. As discussed in §8.7.3.5, this is surmised to be due

to a local explosion occurring in the rear-most vortex of the foot. This vortex with

its two triple points and pressure rise slightly raises the main triple point.

For the parameters in the figure, yet another, clear change in inflection and trend

occurs when the induction length of the incident wave (0.716 cm, as discussed in

§8.7.3.5) has been passed. For the foot height/triple point y-position, the growth

completely stops until a horizontal distance of 4 cm has been reached. For the foot

length, the opposite trend results with the lengthening of the foot accelerating until

approximately 4 cm of travel has been reach. Because the foot height has become

temporarily constant, this translates into the angle α also growing rapidly and the

angle β decreasing rapidly.
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8.7.5 Pressure Traces

Now, as was done for the simplified two-component model in § 8.6, the pressure traces

at different times and heights about the bottom wall of the tube are plotted. These

are plotted with the earliest time trace at the bottom and the later time traces piled

on top sequentially. The experimental results for a detonation in figure 8.1 are plotted

verses time, but with pressure gauges at farther distances from the end wall stacked

on top of the previous sequentially. Results are shown for the shock cases with the

isothermal wall in figures 8.44-8.46 for air and figures 8.47-8.49 for N2O. The adiabatic

wall detonation results are shown in figures 8.50-8.52.
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8.7.5.1 Air

A) y = 0 B) y = 0.05 cm

Figure 8.44: Air: Pressure (MPa) traces. The x-axis is cm and the tube end is at x
= 6.5 cm. Showing traces at times t = 150, 1650, 3150, 4650, 6150 (nondim) which
is equivalent to t = 4.328·10−6, 4.761·10−5, 9.089·10−5, 1.342·10−4, 1.775·10−4 sec.
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A) y = 0.1 cm B) y = 0.2 cm

Figure 8.45: Air: Pressure (MPa) traces. The x-axis is cm and the tube end is at x
= 6.5 cm. Showing traces at times t = 150, 1650, 3150, 4650, 6150 (nondim) which
is equivalent to t = 4.328·10−6, 4.761·10−5, 9.089·10−5, 1.342·10−4, 1.775·10−4 sec.



299

Figure 8.46: Air: y = 0.5 cm pressure (MPa) trace. The x-axis is cm and the tube end
is at x = 6.5 cm. Showing traces at times t = 150, 1650, 3150, 4650, 6150 (nondim)
which is equivalent to t = 4.328·10−6, 4.761·10−5, 9.089·10−5, 1.342·10−4, 1.775·10−4

sec.
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8.7.5.2 N2O

A) y = 0 B) y = 0.1 cm

Figure 8.47: N2O: Pressure (KPa) traces. The x-axis is cm and the tube end is at
x = 7 cm. Showing traces at times t = 2100,3600,5100,6600,8100 (nondim) which is
equivalent to t = 7.841·10−5, 1.344·10−4, 1.904·10−4, 2.464·10−4, 3.024·10−4 sec.
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A) y = 0.5 B) y = 1.0 cm

Figure 8.48: N2O: Pressure (KPa) traces. The x-axis is cm and the tube end is at x
= 7 cm. Showing traces at times t = 2100, 3600, 5100, 6600, 8100 (nondim) which is
equivalent to t = 7.841·10−5, 1.344·10−4, 1.904·10−4, 2.464·10−4, 3.024·10−4 sec.
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Figure 8.49: y = 1.5 cm pressure (kPa) trace. The x-axis is cm and the tube end is at
x = 7 cm. Showing traces at times t = 2100, 3600, 5100, 6600, 8100 (nondim) which
is equivalent to t = 7.841·10−5, 1.344·10−4, 1.904·10−4, 2.464·10−4, 3.024·10−4 sec.
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8.7.5.3 H2-N2O

A) y = 0 B) y = 0.1 cm

Figure 8.50: H2-N2O: Pressure (MPa) traces. The x-axis is cm and the tube end is
at x = 6.5 cm. Showing traces at times t = 0,250,500,750,1000 (nondim) which is
equivalent to t = 0, 8.846·10−6, 1.769·10−5, 2.654·10−5, 3.538·10−5 sec.

8.7.5.4 Pressure Trace Discussion

The same trends as was found for the simplified detonation in § 8.6 are again seen.

The pressure is typically lower at first in the foot closer to the wall, until strong

shocklets of vortices or the reflected shock from the main triple point is traversed

through. Farther from the wall, the solution appears more like the one-dimensional

equivalent, with the exception being some oscillations in the tail of the shock due to

the shocklets from the vortices traveling upwards into the flow. Another exception is

to the one dimensional solution is the effect of the pressure wave from the starting of

the boundary layer which slowed down in the incident shock and creates a pressure

peak in the main reflected wave.

Comparing the different results, as expected, the air case with its much smaller

foot has the least effect on the shock pressure. The oscillations are less chaotic in
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A) y = 0.25 cm B) y = 0.5 cm

Figure 8.51: H2-N2O: Pressure (MPa) traces. The x-axis is cm and the tube end is
at x = 6.5 cm. Showing traces at times t = 0,250,500,750,1000 (nondim) which is
equivalent to t = 0, 8.846·10−6, 1.769·10−5, 2.654·10−5, 3.538·10−5 sec.

general, have smaller amplitudes, and are more localized to the region close to the

foot. For the N2O and detonation cases, the vortices are much stronger in comparison

and the influence of their shocklets is much stronger and span a larger upward space.

Also, for the detonation case, the shear layer emanating from the foots main triple

point is at an upward angle, leading to a larger relative (to the triple point height)

coverage area than the N2O case.

8.8 Discussion

Pressure measurements during detonation reflection are inconsistent with one-dimensional

inviscid gas dynamic models. There is an inconsistency between the measured shock

speed and the measured shock pressures if the flow is one-dimensional. We confirm

that the pressure jump across the shock wave is larger in the center of the tube and

there is a weaker shock wave leading the main front at the tube walls.

The preliminary simplified, two-dimensional, viscous, compressible simulation of
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Figure 8.52: y = 1 cm pressure (MPa) trace. The x-axis is cm and the tube end is
at x = 6.5 cm. Showing traces at times t = 0, 250, 500, 750, 1000 (nondim) which is
equivalent to t = 0, 8.846·10−6, 1.769·10−5, 2.654·10−5, 3.538·10−5 sec.

the reflection process clearly demonstrates that the reflected shock wave-boundary

layer interaction can result in separated flow and bifurcation of the reflected wave

front. Many of the same features are observed in the computational pressure traces

as in the experimentally measured pressure histories. These include the increase in

the rise time of the pressure and the inconsistency between measured wave speed and

pressures inferred from one-dimensional inviscid models.

More insight into the bifurcation process was gained with the simulations us-

ing detailed chemistry and transport in combination with comparisons with Mark’s

original theory (114). Two approaches were used: large-scale unresolved simulations

were used for comparison to experimentally obtained schlieren images and small-scale

resolved simulations were used to study foot formation during the early times of re-

flection. Also used for insight was a comparison between two nonreactive mixtures,

air and N2O, and a reactive H2-N2O mixture. This was instructive as the influence

of resolution on the large-scale simulations was seen, with the largest effect on the

simulation with the smallest foot.
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The trends in our resolved small-scale and marginally resolved medium-scale sim-

ulations were compared to the historical experiments and theory outlined by the

significant paper of Davies and Wilson (36) and the simulations of Weber et al. (159).

In particular, the linear trend of foot height growth and the enlarging affect of an

adiabatic wall were confirmed.

With these simulation results, certain trends were found for detonation bifurca-

tions. As compared to nonreactive shocks with feet of similar heights, one should

expect the detonation’s foot’s evolution to be more chaotic until the induction length

of the incident detonation is reached. At that point, it is expected to act more like a

very hot reflected shock. Also, due to the shocklets appearing from localized explo-

sions in the foot during its early evolution, on should expect pressure traces above

the wall to be chaotic even above the foot height.
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Chapter 9

Spark-Ignited Deflagrations

9.1 Motivation

Determining the risk of accidental ignition of flammable mixtures is a topic of tremen-

dous importance in industry and in aviation safety. Extensive work has been done

(see (11)) to determine the flammability limits of various fuels in terms of mixture

composition. When examining the amount of energy required to ignite a mixture

within the flammability limits, the concept of a threshold minimum ignition energy

(MIE) value has traditionally formed the basis in combustion science for studying

ignition hazards of fuels. If an ignition source is not strong enough, or is below the

minimum ignition energy (MIE) of the particular mixture, the mixture will not ig-

nite. Standard test methods for determining the MIE have been developed which use

a capacitive spark discharge for the ignition source. The MIE is determined from the

energy stored in a capacitor at a known voltage that is then discharged through a

specified gap. For more details and references see (12).

The view of ignition where the MIE is considered to be a single threshold value

is vastly simplified. The first work of this century to tackle this problem was with

simulations conducted by Thiele et al. (152). Their model for hydrogen-air included

the compressible Navier-Stokes equations, detailed chemistry and molecular transport

in the gas phase as well as heat conduction to the electrodes and solution with different

geometries. Their spark is modeled for the phases subsequent to breakdown using

the Maxwell equations for quasi-stationary conditions for the electric field. While

using a shock-capturing finite-difference method, very accurate detailed chemistry

and transport, and also modeling the initial plasma phase and realistic boundary

conditions, it seems that they failed to resolve the viscous/diffusive scales in the

simulations. They found that the length of the arc phase as well as the geometrical
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shape of the electrodes did not influence the temporal development of the radial

extension of the kernel significantly.

Oddly, all recent simulation works after the Thiele et al. paper contradict the

independence of geometry findings. In research by Nakaya et al. (120) flame kernel

initiation of methane/air mixtures in the spark ignition process were investigated

with a shock-capturing scheme, diffusive molecular transport, and a simplified plasma

model. In the early stage of their flame kernel development the hot gas expansion

was dominated by a flow which was induced by the blast wave. They found that the

induction time of the flame kernel initiation strongly depended on the ignition energy

and effects of preferential diffusion of lighter molecules in the early phase of the flame

kernel development.

In works by Han et al. (63, 64), the parameters which control spark ignition were

studied in much more detail for methane-air and hydrogen air, albeit with a cruder

(but more efficient) numerical method for the fluid dynamics. The SIMPLE method

as proposed by Patankar was used to couple the velocity and pressure fields, a first-

order upwind scheme was used for the convective terms, the implicit Euler method

was used for the time advance, and the successive overrelaxation method was used

to iterate each time step. They found that the MIE increased gradually below the

quenching distance (critical spark gap) for the free-tipped electrode, but increased

sharply starting at the quenching distance. Contrary to the work of Thiele et al., the

size of the electrodes significantly affected the value of the MIE within the quenching

distance, but did not affect it beyond the quenching distance. They also found that for

a short spark duration, the vortex gas motion and the temperature gradient around

the flame kernel dramatically influenced the flame formation and the MIE.

The traditional MIE view criticized by the cited works and also by our simu-

lation findings is deficient for reasons elaborated on in §9.6.3.3 and §9.6.3.4. The

primary Goal of this numerical application on spark ignition is to, through numerical

simulation, find the parameters and conditions which influence self-sustained flame

propagation from accidental spark ignition of combustible mixtures.

A systemic approach was used to simulate the spark ignition problem. In collab-

oration with Bane (12), simulations of increasing levels of complexity were designed

which matched as close as possible the initial conditions and geometries used in ex-

periments.
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9.2 Simulation Overview

Simulations and experimental comparisons are shown for increasing levels of com-

plexity. Firstly, single- and two-component models are used for nonreactive and

reactive sparks. Then, a four-component perfect gas model is used and lastly, a nine-

component ideal gas model with detailed chemistry and transport is used. These are

all compared to experimental schlieren images of Bane.

Figure 9.1: Cartoon of the spark ignition problem demonstrating the two planes in
the axisymmetric symmetry

As shown in figure 9.1 the experimental apparatus for spark ignition testing dis-

plays two planes of symmetry. The electrode geometry itself is axisymmetric and

thus great numerical simplification can be used by modeling the whole problem as a

axisymmetric “quarter” of the whole geometry. There are two planes of symmetry.

The vertical plane of symmetry is captured by requiring the y (radial) velocity to

be symmetric. Numerically, this means that the boundary cells have a velocity that

is the negative of its symmetric neighboring cells in the domain. Similarly on the

bottom plane, the x (axial) velocity is symmetric.

9.2.1 Approximating a Spark

Simulation of the spark breakdown phase is beyond the scope of this work. There-

fore, the following imposed initial conditions were used to model the plasma channel

between the electrodes that results from the spark breakdown. The initial conditions

are based on those used by Kravchik et al. (93) and Thiele et al. (153), which in turn
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were motivated by the work of Maly and Vogel (113, 112). The initial conditions

are those of the plasma channel at thermodynamic equilibrium approximately 60 ns

after breakdown (113, 112). The plasma is modeled as a thin axisymmetric channel

between the electrodes with a temperature of 35,000 K and a pressure of 1 MPa. The

channel is 2 mm long, the length of the spark gap, and the radius of the channel is

determined from the spark energy. Assuming the spark energy is deposited under

constant volume conditions, the volume of the spark channel for a perfect gas with

constant specific heat is

Vc =
Espark

cV ρ0 (Tc − T0)
, (9.1)

where Tc is the temperature of the channel and ρ0 and T0 are the density and temper-

ature of the ambient gas. Taking an axisymmetric channel of length Lgap, the channel

radius is

rc =

(
Vk

πLgap

)1/2

. (9.2)

9.3 Single-Component Nonreactive Model Prob-

lem

Firstly, the nonreactive problem was simulated using a single-component fluid consist-

ing of one perfect gas. This was done to separate the inviscid, nonreactive, convective

parts of the physics from those in a simulation including detailed chemistry and

transport. Both Euler and Navier-Stokes simulations were conducted for this model.

9.3.1 Initial and Boundary Conditions

The initial conditions grossly approximate a spark as a diffused axisymmetric high

temperature channel. A pressure increase and density decrease (temperature in-

crease) models the “spark plasma”. figures 9.2 and 9.3 show the initial conditions

and geometry used for the channel for this nonreactive case.
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Figure 9.2: Computational domain for the spark ignition simulations.

pspark
p∞

=
ρ∞
ρspark

= 102 (9.3)

Tspark
T∞

= 104 (9.4)

The Ghost Fluid Method (GFM) was used to model the solid electrode boundary.

For the (inviscid) Euler equations the GFM was used to make the normal velocity

zero, and for the Navier-Stokes equations, the no-slip boundary condition was used

(zero fluid velocity on the electrode). Also, the boundaries were modeled as adiabatic.

In the spark discharge studies without ignition, the gas used in the simulations is

a perfect gas modeling air and the following values were assumed within the spark

channel: cV = 721 J/kg·K, γ = 1.4, viscosity = 2 · 10−5 Pa·s, conductivity = 0.03

W/(m K), ρ0 = 1.15 kg/m3, Tspark = 35,000 K; and outside the channel T0 = 300 K

and p0 = 0.1 MPa. In these preliminary simulations, a larger spark gap of Lgap = 1

cm was used.

Refinement criteria were used that capture the physics of each length scale in the

problem. The gradient of the density is used to capture the convective length scale,

the gradient of the radial and axial velocities is used for the viscous length scale, the
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Figure 9.3: Initial Pressure

gradient of energy is used for the conduction length scale, and the gradients of the

mass fractions are used to capture the flame thickness length scale.

9.3.2 Single-Component Nonreactive Results

Using 32 processors, the Navier-Stokes and Euler equations were simulated with three

levels of refinement. The simulation time was the order of one day. Aside from the

appearance of the boundary layer on the electrode surface, the viscous and inviscid

simulations are very similar due to the small constant ambient value of the viscosity

chosen. Therefore, only the viscous result is shown.

The evolution of the density field is shown in figures 9.6(a)-9.6(f). After the shock

wave (shown in figure 9.4) has passed, a hot dense kernel remains that rolls up. This

occurs as the result of the axisymmetric shock wave interacting with the conelike

electrode surface. After the initial shock has passed the incline, the streamlines

diverge causing a back flow and roll up. Note that this also occurs in the inviscid

Euler simulation.

As show in figure 9.7, much later after the shock wave has passed, there remain

hot vortical structures in which mixing, viscous shear, and heat conduction play a

role. In a reactive simulation, it is presumed that these structures will influence the
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Figure 9.4: Pressure from axisymmetric shock wave in the early stages of the simula-
tion at t = 1.5·10−5 sec

Figure 9.5: Zoomed in view of the velocity magnitude near the electrode surface at t
= 6·10−6 s. This illustrates the application of the no-slip boundary condition using
the ghost fluid method
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(a) t = 2.4·10−5 s (b) t = 4.8·10−5 s

(c) t = 9.75·10−5 s (d) t = 1.425·10−4 s

(e) t = 1.965·10−4 s (f) t = 2.64·10−4 s

Figure 9.6: Evolution of density (kg/m3) for nonreactive viscous case.
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Figure 9.7: Temperature (K) at = 2.64·10−4 s for nonreactive viscous case.

growth of a self-sustained laminar flame.

For these particular initial and boundary conditions, there is little qualitative

difference between the results for the Euler and Navier-Stokes equations. The shock

waves and bulk vortical roll up of the hot dense region is essentially the same. The

main difference between the results is the boundary layer on the electrode, caused

by the no-slip boundary condition. For our simple nonreactive model with a small

constant viscosity and conductivity, the effects of viscous shear and heat diffusion on

the flow field are qualitatively small.
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9.4 Two-Component Model

The influence of a flame on the the fluid dynamics was investigated by first using a

simple model. A one-step reaction was assumed of the most simple form: R → P,

with constant perfect gas properties for the reactant, R, and the product, P. Both

the reactant and product were assumed to have the molecular weight of N2 and a

specific heat ratio of 1.4. The reaction rate parameters were for a rate of the form

AT n exp ((EA/Ru)T ) with A = 1.074926·106 s−1, n = 9.62·107, and EA = 71,128

J/mol. Constant mass diffusivities of 1.895·10−5 m2/s were assumed.

Shown in figures 9.8(a)-9.8(f) and figures 9.9(a)-9.9(f) is a comparison of the den-

sity and temperature fields for the nonreactive and two-species reactive case started

with the same initial conditions. It seems that for the small diffusivities selected for

the reactive case, the flow is dominated by the hydrodynamics set up by the ini-

tial pressure and temperature gradient of the spark. Also shown in figure 9.10, is

a visualization of the product mass fraction for the reactive case at t = 50·10−6 s.

This roughly corresponds to the outline of the temperature which is visualized in

figure 9.9(f). Overall, the reactive and nonreactive results are very similar. This is

due to the fact that for this particular model, the diffusion terms are small, the spark

energy dominates the chemical energy release, and the reactant and product, aside

from the energy release, are assumed to have the same thermodynamic and transport

properties.
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(a) t = 10·10−6 s nonreactive (b) t = 10·10−6 s reactive

(c) t = 25·10−6 s nonreactive (d) t = 25·10−6 s reactive

(e) t = 50·10−6 s nonreactive (f) t = 50·10−6 s reactive

Figure 9.8: Two-component model: Evolution of density (kg/m3) for nonreactive and
reactive case with 2 mm spark gap (2 mJ).
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(a) t = 10·10−6 s nonreactive (b) t = 10·10−6 s reactive

(c) t = 25·10−6 s nonreactive (d) t = 25·10−6 s reactive

(e) t = 50·10−6 s nonreactive (f) t = 50·10−6 s reactive

Figure 9.9: Two-component model: Evolution of temperature (K) for nonreactive
and reactive case with 2 mm spark gap (2 mJ).
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Figure 9.10: Two-component model: Product mass fraction at t = 50·10−6 s for
reactive case with 2mm spark gap (2 mJ).
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9.5 Four-Species One-Step Model with Constant

Transport Properties

To simulate spark ignition more accurately, and in particular, the straining behavior,

the one-step model was modified to closer match the Lewis number obtained with

a detailed chemistry CANTERA1 simulation. This one-step model includes the four

species H2, O2, H2O, and N2. The specific heats of H2, O2, and H2O were increased by

a factor of approximately 3 to reduce the numerator of the Lewis number, but for N2

the actual thermodynamic coefficients for a nitrogen molecule were used. The full,

detailed transport properties for all four-species were used. The one-step reaction

was changed from R + R → P + P to the model reaction H2 + 1
2

O2 → H2O with

effective parameters EA = 20.263 kcal/mol and A = 2.85 × 1014 s−1 . Finally, since

all the reactant species are included, the initial composition is the same as in the

detailed chemistry case: 0.42 H2 + 0.5 O2 + 1.88 N2. This corresponds to a 15

percent hydrogen-air mixture (10). After these changes were implemented, the Lewis

number of the mixture obtained with the new one-step model was 0.42, which is now

closer to the actual Lewis number of 0.38. This mechanism is documented in detail

in appendix H of the GALCIT technical report (13).

In both the experiments and simulations, the spark energy used is Espark = 2 mJ

and the spark gap is Lgap = 2 mm. Using equations 9.1 and 9.2, the volume and

radius of the spark channel used for the initial condition is approximately 0.063 mm3

and 0.1 mm, respectively. For more details on the experimental setup, see the thesis

of Bane (10).

Simulations and experiments were performed for this 15 percent hydrogen-air

mixture at the relatively hight energy of 2 mJ. At this energy, ignition always occurs

for the geometries we tested. By using a higher spark energy, the hydrodynamic forces

in the flow are enhanced allowing easier analysis of the general fluid flow for each

geometry. The 4-species one-step chemistry model with multi-component detailed

transport (but with modified perfect gas thermodynamics) was used with the same

initial temperature and pressure conditions as was used to model the spark for the

simple two-species model. These simulations were performed with three different

electrode geometries to investigate the effect of the geometry on the fluid mechanics of

the evolving spark kernel and on flame formation. High-speed schlieren visualizations

of spark and ignition kernels were compared to the computational results. It was found

1http://www.cantera.org

http://www.cantera.org
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that the electrode geometry had a significant effect on the fluid motion following spark

discharge and thus could influence the ignition process (13).

9.5.1 Nonreactive Results

Images from the high-speed schlieren visualization of a 2 mJ spark discharge in air

using the 0.38 diameter cylindrical electrodes and images from the two-dimensional

simulation at approximately the same time steps are shown in figure 9.11. The video

was taken at a rate of 79,069 frames per second with a total field of view of approxi-

mately 6.7 mm x 6.7 mm. Dimensions are given on the images in millimeters, and the

computational region is indicated on the first schlieren image by a white box. The

first image is taken less than 12.6 µs after the spark breakdown. The spark break-

down creates a thin plasma channel at high temperature and pressure, as described

in §9.3.1, and when the channel expands, a blast wave propagates outward while a

rarefaction wave propagates inward toward the center of the channel. The rarefaction

reflects at the center of the channel and propagates back outward and is seen trailing

the blast wave in the pressure contours from the simulation. Initially, the shock wave

is nearly a pure axisymmetric wave except for very close to the electrode surface,

where the wave is spherical in nature. Because the pressure gradient following a

axisymmetric shock wave is smaller than that following a spherical shock wave, the

pressure is higher in the middle of the channel than next to the electrodes, causing gas

to flow outward toward the electrode surface, as illustrated in figure 9.14. The flow

separates and creates a clockwise-rotating vortex at the corner of the face and cylin-

drical body of the electrode, and additional vorticity is generated from the boundary

layer due to the flow along the electrodes. The pressure gradient rapidly decreases

and as the outward flow stops, the vortices propagate outward from the corner and

pull fluid inward along the electrode as shown in both the schlieren visualization and

simulation at approximately 10 µs.

The vorticity contours from the computation reveal that by 10 µs a counter-

rotating vortex pair has formed near the tip of the electrode, shown in figure 9.15.

The clockwise rotating vortex (top) is a result of the flow separation, and the counter

clockwise rotating vortex (bottom) is a result of the shear layer that develops due to

flow moving outward against the inflow. The temperature results from the simulation

reveal that the vortex trapped a kernel of hot gas, preventing it from being cooled by

the gas inflow, and this hot kernel continues to propagate vertically from the center of

the channel. The kernel cools quickly and its temperature decreases below 1000 K by
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Figure 9.11: Four-component, nonreactive model: Images from high-speed schlieren
visualization (upper set) and simulation density (lower set) of a 2 mJ spark discharge
in air with 0.38 mm diameter cylindrical electrodes. Distances shown are in mm,
simulation region corresponds to the quadrant outlined in white on the upper left
schlieren image.
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Figure 9.12: Four-component, nonreactive model: Images from high-speed schlieren
visualization and simulation density of a 2 mJ spark discharge in air with conical
electrodes.
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Figure 9.13: Four-component, nonreactive model: Images from high-speed schlieren
visualization and simulation density of a 2 mJ spark discharge in air with 1.6 mm
diameter cylindrical electrodes with 19 mm diameter Teflon flanges.
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Figure 9.14: Four-component, nonreactive model: Simulated pressure field and ve-
locity vectors showing the axisymmetric and spherical portions of the blast wave at
time t = 0.5 µs.

Figure 9.15: Four-component, nonreactive model: Simulation results (vorticity and
velocity vectors) showing the vortex pair generated near the tip of the cylindrical
electrode at time t = 10 µs.
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80 µs. There is also a mixing region near the channel and the inflow of cool gas causes

this region to be significantly cooler than the rising kernel. The major features of the

flow field in the simulation, including the inflow of cold gas immediately following

expansion of the spark channel, the rising hot kernel, and the mixing region are also

observed in the schlieren visualization.

For the second geometry, images from schlieren visualization of the spark discharge

with the conical electrodes and the results from the two-dimensional simulation are

shown in figure 9.12. The images were taken at the same time steps as those for the

cylindrical electrode case for comparison. In this geometry, the competition between

spherical and axisymmetric expansion is more predominant than in the cylindrical

electrode case. Once again, clockwise-rotating vortices are generated near the tip

of the electrode due to flow separation, and boundary layer vorticity induces inflow

into the channel. The vortices are weaker in this geometry than in the cylindrical

electrode geometry due to less flow separation, and as a result the inflow has a lower

velocity. Due to the lower rates of convection and entrainment of cold gas, the kernel

cools slower than in the cylindrical electrode case, maintaining a temperature above

1000 K until 140 µs. The mixing region that forms near the gap is larger and at

higher temperatures than in the cylindrical case. In comparison to the cylindrical

electrodes, we have for the same energy a higher temperature gas kernel and larger

mixing region, suggesting that for a given mixture, a lower spark energy could be

needed for ignition.

The results of the schlieren visualization and computations for the third geom-

etry, the 1.6 mm diameter electrodes with Teflon flanges, are shown in figure 9.13.

In this geometry the expanding spark channel generates a purely axisymmetric blast

wave, and therefore, there is no pressure gradient along the spark channel, due to

(inviscid) hydrodynamics effects. However, in both the simulation and the schlieren

visualization there is clearly inflow of gas toward the center of the channel caused by

viscous effects. The vorticity field from the simulation shows that there is negative

vorticity originating in the boundary layer at the right-hand flange and positive vor-

ticity originating in the boundary layer at the left-hand flange. The kernel is hotter

for a longer time than in the other cases, maintaining a temperature above 1000 K

until 340 µs. These results suggest that the lowest ignition energy would be required

in this configuration and that the overall minimum ignition energy for a flammable

gas is obtained using this geometry, as done by Lewis and von Elbe (102).
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9.5.2 Reactive Results

13 s 25 s 51 s

10 s 30 s 50 s

Figure 9.16: Four-component, one-step model: Images from high-speed schlieren vi-
sualization and simulation of ignition with the thin cylindrical electrodes.

The same set of experiments and simulations were repeated now with the com-

bustible 15 percent hydrogen-air mixture. Images from the schlieren visualization

and images of the product (H2O) from the simulation of ignition are shown in figure

9.16 for the cylindrical electrode case. Both the experiment and computation show

the inflow of cold reactant gas along the electrode which then rolls up with the hot

product gas expanding rapidly outward to form a large vortex with the flame front on

its surface. This part of the flame continues to burn outward, while the small rising

kernel in the center of the channel forms the rest of the flame front.

figure 9.17 shows images from the schlieren visualization and of the simulated

product for the ignition with the conical electrodes. The flame formation is very

similar to the cylindrical electrode case, as expected from the nonreactive results.

Initially, there is inflow along the electrode which forms a vortex with the outward

flowing product gas. The flame front propagates outwards on the surface of this

vortical structure and the rising gas kernel in the center of the channel.

Lastly, the results for schlieren visualization and simulation of ignition with the

flanged electrodes are shown in figure 9.18. In the simulation, the flame front is

curved due to the viscous flow velocity profile in the channel. The kernel shape is
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13 s 25 s 51 s

10 s 30 s 50 s

-

Figure 9.17: Four-component, one-step model: Images from high-speed schlieren visu-
alization and simulations of ignition with the conical electrodes (four-species detailed
transport and 2 species constant transport, both with one-step chemistry).
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Figure 9.18: Four-component, one-step model: Images from high-speed schlieren vi-
sualization and simulation of ignition with the flanged electrodes.
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more pronounced in the schlieren images, and there is also some asymmetry of the

flame.

Theses results indicate that that the lowest minimum ignition energy would be

obtained using the flanged electrodes due to a hotter gas kernel and confinement of

the flow, and that the largest ignition energy would be required for the thin cylindrical

electrode case. Schlieren visualization and two-dimensional simulations of ignition in

a 15 percent hydrogen-air mixture demonstrated that the flame formation process

was comparable in the cylindrical and conical electrode cases due to the similarities

of the flow fields in the two geometries. Note, that this test was for the relatively

high energy of 2 mJ, which is above the critical energy at which nonignition/ignition

occurs.

9.6 Multi-Step Reduced Detailed Chemistry Model

Lastly, the spark ignition problem was repeated with multi-step, detailed chemistry,

thermodynamics, and transport. In the previous case, only four perfect (rather than

now ideal) gas species were used. Using this model for spark ignition is difficult as

most CHEMKIN mechanisms are only defined to a temperature of 3,000 or 5,000 K

maximum. In order to better model the initial high temperatures of the spark, a

reduced H2-O2-N2 mechanism was extrapolated to 10,000 K. With these new poly-

nomials for the thermodynamics, a higher initial temperature of approximately 9,000

K could be used. However, this is still lower than the experimentally measured tem-

peratures of the plasma at approximately 35,000 K. Therefore, instead of modeling

the hot plasma for which an entirely different mechanism would be needed, we opted

to model the cooled mixture of radicals. To obtain the radical mole fractions, an

arbitrary temperature and pressure were selected such that the cooled radicals had a

temperature less than 10,000 K.

The Goal of using this model was to find cases in axisymmetric one- and two-

dimensional simulations where specific spark thicknesses and energies lead to the

ignition of a deflagration (a Go) or a dying flame (a no Go). By comparing these cases

in this critical condition, the influence of the geometry, single and multi-dimensional

mixing, and heat diffusion on the MIE and other possible global parameters that

Govern ignition could be deduced.
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9.6.1 Initial Conditions

Using the reduced CHEMKIN mechanism shown in appendix E.3, the hydrogen-air

spark ignition for the conical electrode case was simulated. The demonstrative mix-

ture with mole fractions of H2:0.41, O2:0.50, N2:1.88 was again selected. The cooled

radical mole fractions were found by using a zero-dimensional constant volume explo-

sion calculation from the Shock and Detonation Toolbox which utilizes CANTERA.

Above approximately 15,000 K, an equilibrium solution for a cooled radical mixture

was not found. We were limited to a state with a cooled radical temperature less

than 10,000 K as that was the maximum valid range of the extrapolated CHEMKIN

mechanism. Constructing the initial condition in this manner made the thermody-

namic and transport the most realistic as possible, however, at the price of having a

less physical initial condition.

Firstly, the cooled radical mole fractions which match the 35,000 K temperature

and 100 times pressure ratio prediction as close as possible were constructed with the

following initial conditions, P = 1.1535 · 107 Pa and T = 14, 000 K, for the constant

volume explosion. This led to the initial conditions for the 1D and 2D simulations

with P = 1.0049 · 107 Pa, T = 9222.37 K, and the mole fractions of

H2: 0.000683549, O2: 0.000476917, H2O: 3.21669e-6, N2: 0.50952, H: 0.219253,

O: 0.268453, OH: 0.00161064, HO2: 3.47629e-7, H2O2: 3.31317e-10.

9.6.2 Experimental Comparison: 2 mJ Case

As was done in §9.5.2, a comparison with experiment was first conducted. Note that

that in this case, all initial conditions are the same, except the initial temperature

was limited to 14,000 K rather than the 35,000 K expected in experiment and used

in the four-species constant Cp (perfect gas) one-step simulation. This leads to an

energy slightly different from 2 mJ.

Using these initial conditions for a axisymmetric spark with a radius of 0.1 mm and

width of 2mm yields an initial condition with an energy of 3.1 mJ and energy density

of 49 J/m3, as calculated using the change in enthalpy with the reduced mechanism

in CANTERA. This is compared to the perfect gas four-species result (which has

an energy of 2 mJ) in figures 9.19, 9.20, and 9.21 where the density field is shown

for each of the three geometries. Note that even though the same spark thicknesses

where used and the temperature is lower for the detailed chemistry case, the perfect

gas case has a lower spark energy. This is due to the fact that the specific heats of the

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/
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detailed ideal gas species increase in a nonlinear fashion as the initial temperature is

increased. Therefore, using an initial condition of radicals (rather than products or

reactants) in this manner, has more stored energy and will lead to “a Go” for lower

initial temperatures and thinner sparks.

In figure 9.19, the cylindrical case is compared. Even though the detailed case

has a higher initial energy, the kernel is found to be smaller in size. Also, the flame

fronts appear to be less diffused then in the four-species perfect gas case. Note that,

the detailed case better matches the kernel size shown in the schlieren image, even

though the energies are not the same.

In figure 9.20 for the conical electrode, the same trend of kernel size and diffusion

is observed. The simple two-species model is also shown, for which the kernel is even

larger; yet, the diffusion is still small in comparison. In figure 9.21 the flanged results

are shown. At approximately 70 micros for the detailed case, the kernel is about

half the size or the perfect gas case. Also, the observed diffusion is again smaller in

extent. These differences highlight the importance of including detailed chemistry

and transport in an ignition simulation. While using the perfect gas approximation

allows one to easily use a higher initial temperature, this only occurs at the very early

times of the simulation where the initial strong blast wave initially decays. After the

initial decay, the temperature is much lower and the importance of having an accurate

multi-species low temperature model becomes apparent.

9.6.2.1 Simulations Details

Shown in figures 9.22-9.25 are detailed visualizations highlighting the fluid flow in

the detailed spark ignition problems. For the cylindrical geometry case in figure 9.22,

the mass fraction of product, H2O, is shown with superimposed flow velocity vectors.

Initially, the deflagration/flame is localized on the outside surface of the hot kernel

created by the blast wave. Also, vorticity is easily observed at the sharp electrode

corner, causing a localized rollup of the flame. Soon after the blast wave has traveled

past the electrode, a bulk backflow is created from the influence of the axisymmetric

geometry as was discussed for the simpler model’s nonreactive cases. This back flow

causes the vortex at the tip to be stretched into two pieces, both of which are pushed

into the the x = 0 symmetry plane. The top piece of the flame is pushed upward,

and the bottom piece is pushed down and right into the electrode tip.

In figures 9.23 and 9.24 for the conical case, a very similar phenomenon is observed.

A vortex, larger in this case is again formed at the electrode corner. Due to the larger
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13 s 25 s 51 s

10 s 30 s 50 s

———— ————-

Figure 9.19: High-energy case: Images from high-speed schlieren visualization and
pseudo-color density results from the simulation of ignition with the thin cylindrical
electrodes. Comparing experiment, four-species one-step model with 35,000 K ini-
tial temperature, and detailed chemistry with 14,000 K initial temperature. Both
simulations are at the same pressures.
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13 s 25 s 51 s

10 s 30 s 50 s

– – -

— –

Figure 9.20: High-energy case: Images from high-speed schlieren visualization and
pseudo-color density results from the simulation of ignition with the conical electrodes.
Comparing experiment, 2 species one-step model, four-species one-step model with
35,000 K initial temperature, and detailed chemistry with 14,000 K initial tempera-
ture. Both simulations are at the same pressures.



335

24 s

20 s 70 s

71 s

4

2

4

2

Figure 9.21: High-energy case: Images from high-speed schlieren visualization and
pseudo-color density results from the simulation of ignition with the flanged elec-
trodes. Comparing experiment, four-species one-step model with 35,000 K initial
temperature, and detailed chemistry with 14,000 K initial temperature. Both simu-
lations are at the same pressures.
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and less sharp conical electrode geometry interacting with the blast wave, the vortex

is allowed to rollup for a longer time and grow in size before it is stretched and broken

in to an upper and lower piece by the back flow.

Lastly, from figure 9.25A) to B), the growth of the flame for the flanged geometry

case is shown. Initially in A) near the wall, the flow directions are dominated by the

influence of the boundary layer. Later in B), the flame and flow speed through the

flame has grown in size and dominates the velocity flow direction even near the wall

and very little back flow occurs.

A large difference found by including multi-component detailed chemistry with

radicals is that for the early times involving the formation of the flame kernel, the

chemical reactions are localized to a region centered at the kernel surface. In the

one-step chemistry two- and four-species results the chemical reactions are seen to

occur more uniformly throughout the hot kernel.
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A) B)

C) D)

Figure 9.22: Velocity vectors superimposed on pseudo-color plots of H2O mass fraction
for the thin cylindrical electrode case with detailed chemistry and transport. Showing
results for A) 60 nondim = 1.602·10−6 s, B) 480 nondim = 1.2818·10−5 s, C) 780
nondim = 2.083·10−5 s, and D) 3000 nondim = 8.0114·10−5 s. The units of the x-
and y-axes are 1·10−3 cm.
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A) B)

C)
D)

E) F)

Figure 9.23: Velocity vectors superimposed on pseudo-color plots of H2O mass fraction for the
conical electrode case with detailed chemistry and transport. Results for A) 10 nondim = 2.7·10−6 s,
B) 24 nondim = 6.4·10−6 s, C) 40 nondim = 1.1·10−5 s, D) 80 nondim = 1.2·10−5 s, E) 172 nondim
= 4.6·10−5 s, and F) t = 264 nondim = 7.0·10−5 s. The units of the x- and y-axes are 1·10−3 cm.
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A) B)

C) D)

Figure 9.24: Velocity vectors superimposed on pseudo-color plots for the conical
electrode case with detailed chemistry and transport. Showing results for H2O mass
fraction in A) t = 560 nondim = 1.49·10−5 s and B) t = 1030 nondim = 2.75·10−5

s. Showing result for density in C) t = 560 nondim = 1.49·10−5 s and D) t = 1030
nondim = 2.75·10−5 s. The units of the x- and y-axes are 1·10−3 cm.
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A) B)

C)

Figure 9.25: Velocity vectors superimposed on pseudo-color plots of various quantities
for the flanged electrode case with detailed chemistry and transport. Showing results
for A) and C) t = 600 nondim = 1.6·10−5 s and B) t = 7.1·10−5 s. The units of the
x- and y-axes are 1·10−3 cm.
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9.6.3 Critical Energy Results

All previously run experiments and simulations discussed in this chapter have been at

energies that far exceed the minimum ignition energy (MIE). This has primarily been

done such that an experimental/numerical comparison through the use of schlieren

images was highly visible and repeatable. In particular, the use of a higher energy

increased the relative influence of the geometry and boundary layers as compared to

general mass and heat diffusion in the flame.

In the following sections, simulations in one and two dimensions were conducted at

low ignition energies near the MIE value. Initial energy values just above and below

the numerically discoved MIE values were used. The results from different initial

spark thicknesses, pressure ratios, and ambient pressures and from different number

of simulated dimensions were all compared to each other and also to a simplified

theoretical model.

9.6.3.1 One-Dimensional Axisymmetric Case

Firstly, one-dimensional axisymmetric simulations were carried out using the initial

conditions specified in section 9.6.1, however, now with smaller spark thicknesses.

The results for all time steps are shown in tables 9.2, 9.3, and 9.4. The boundary

conditions at x = 0 are symmetric and at the right boundary are outflow. These

results are summarized in table 9.1. Here, it is found that the transition between

a “Go” and a “No Go” is approximately at E
V
Pratio

2

Pinitial
= 4.91·10−2 (J/(m3)/Pa = 1

(nondimensional) ). Thus, a successful 1D axisymmetric flame propagation depends

on the energy density, ambient pressure, and pressure ratio (or equivalently the spark

pressure) of the spark.

As shown in table 9.2, with a initial pressure of 100,000 Pa and a ratio of approx-

imately 100, three different spark radii were simulated: 0.02, 0.01, and 0.005 mm.

The same initial conditions as specified for the experimental comparison in §9.6.2

were used.

In table 9.3, now with a initial pressure of 10,000 Pa and a ratio of approximately

100, three different spark radii were again simulated: 0.2, 0.1, and 0.05 mm. The

cooled radical mole fractions for table 9.3 were found by using the initial conditions

of P = 1.1535·106 Pa and T = 14,000 K. This lead to the initial conditions for the 1D

and 2D simulations with P = 1.00213·106 Pa, T = 9,174.09 K, and the mole fractions

of
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radius
(cm)

energy
E(J)

energy
density

E
V

(J/m3)

V
(m3) pratio

pinitial

(Pa)
E
V

Pratio
2

Pinitial
E Pratio

Pinitial
Go?

2·10−4 1.23·10−4 4.911·107 2.513·10−10 100 1·105 4.911·10−2 1.23·10−7 Go
1·10−4 3.08·10−5 4.911·107 6.283·10−11 100 1·105 4.911·10−2 3.08·10−8 Go
5·10−5 7.71·10−6 4.911·107 1.571·10−11 100 1·105 4.911·10−2 7.71·10−9 No Go
2·10−3 1.23·10−5 4.908·106 2.513·10−8 100 1·104 4.908·10−2 1.23·10−7 Go
1·10−3 3.08·10−6 4.908·106 6.283·10−9 100 1·104 4.908·10−2 3.08·10−8 Go
5·10−4 7.71·10−7 4.908·106 1.571·10−9 100 1·104 4.908·10−2 7.710·10−9 No Go
2·10−2 1.20·10−3 4.909·105 2.513·10−6 10 1·105 4.909·10−2 1.20·10−7 Go
1·10−2 3.084·10−4 4.909·105 6.283·10−7 10 1·105 4.909·10−2 3.084·10−8 Go
5·10−3 7.102·10−5 4.909·105 1.571·10−7 10 1·105 4.909·10−2 7.102·10−9 No Go

Table 9.1: Summary of one- and two-dimensional spark ignition results for different
initial spark and ambient conditions. Note that the transition between and Go and
a No Go is between E Pratio

Pinitial
= 3·10−8 and 7·10−9 for all three test cases.

H2: 7.17764e-05, O2: 4.99156e-05, H2O: 3.51239e-08, N2: 0.508256, H: 0.221374,

O: 0.27008, OH: 0.000168591, HO2: 3.71972e-09, H2O2: 3.66324e-13.

Lastly, in table 9.4 with a initial pressure of 10,000 Pa and a ratio of approxi-

mately 10, three different spark radii were simulated: 20, 10, and 5 mm. The cooled

radical mole fractions for table 9.4 were found by using a constant volume explosion

calculation from the Shock and Detonation Toolbox with the initial conditions of

P = 1.1535 · 105 Pa and T = 14, 000 K. This lead to the initial conditions for the 1D

and 2D simulations with P = 10, 0184 Pa, T = 9, 169.01 K, and the mole fractions of

H2: 7.21466e-06, O2: 5.01563e-06, H2O: 3.54512e-10, N2: 0.508123, H: 0.221597,

O: 0.270251, OH: 1.69404e-05, HO2: 3.74636e-11, H2O2: 3.70224e-16.

The first thickness results in a clear Go. The last thickness results in a clear no

Go. The middle spark thickness results in a simulation which at first shows a dying

flame. Yet, after it has cooled to approximately 800 K, the temperature begins to

slowly increase. The temperature then increases at an increasing rate until a Go is

established. Note that in both Go cases, the self propagating flame temperature has

a maximum of approximately 1,900 K.
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Spark
Raduis

Temperature Product Mass Fraction

0.0002 cm
E=1.24 µJ

0.0001 cm
E=0.309 µJ

0.00005 cm
E=0.0771 µJ

Table 9.2: Spark ignition results for the 1D axisymmetric problem with a pressure
ratio of 100 at ambient (100,000 Pa = 1atm) conditions. Three different spark
radii are shown: 0.0002, 0.0001, and 0.00005 cm. For each of these a time-elapsed
Temperature (K) and product (H2O2) mass fraction plot is shown. In these plots,
a line is plotted every 2·10−6 s from 0 to 2·10−4 s. Observe that for the 0.0002 and
0.0001 cm radius case, a clear “Go” is found. For the 0.00005 radius case, a clear “no
Go” is found.
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Spark
Raduis

Temperature Product Mass Fraction

0.002 cm
E=12.3 µJ

0.001 cm
E=3.08 µJ

0.0005 cm
E=0.771 µJ

Table 9.3: Spark ignition results for the 1D axisymmetric problem with a pressure
ratio of 100 at ambient (10,000 Pa = 0.1atm) conditions with three spark radii:
0.002, 0.001, and 0.0005 cm. For each of these a time-elapsed temperature (K) and
product (H2O2) mass fraction plot is shown. Here, lines are plotted every 2·10−6 s
from 0 to 4·10−4 s. Observe that for the 0.002 cm radius case, a clear “Go” is found.
For the 0.001 cm case an eventual “Go” is found. This is observed by noticing at
approximately 1·10−4 s, the temperature of the kernel stops decreasing and begins
to increase. For the 0.0005 radius case, a clear “no Go” is found as the temperature
continues to decrease.
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Spark
Raduis

Temperature Product Mass Fraction

0.02 cm
E=1.2 mJ

0.01 cm
E=0.30841 mJ

0.005 cm
E=0.07102 mJ

Table 9.4: Spark ignition results for the 1D axisymmetric problem with a pressure
ratio of 10 with ambient conditions at 10,000 Pa. Three different spark radii are
shown: 0.02, 0.01. and 0.005 cm. For each of these a time-elapsed Temperature (K)
and product (H2O2) mass fraction plot is shown. In these plots, a line is plotted every
1·10−4 s from 0 to 1·10−2 s. Observe that for the 0.02 cm radius case, a clear “Go”
is found. For the 0.005 radius case, a clear “no g” is found. For the 0.01 cm radius
case, after 4·10−3 s have passed, a “Go” is determined.
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9.6.3.2 Two-Dimensional Axisymmetric Cone Case

Two-dimensional axisymmetric simulations of the spark ignition problem were carried

out using the same initial and spark conditions in tables 9.3 (0.1 atm and a 100x

pressure ratio) and 9.4 (1 atm and a 10x pressure ratio). The purpose of these

simulations is to see how the multi-dimensional fluid dynamics can influence a flame

in the limit of a Go/No Go case. Due to the large computational expense of these

simulations, only the conical electrode case was simulated. Also, note that only two

out of the three 1D cases were simulated in 2D. Difficulties were found with the 1 atm

ambient, 100x pressure ratio case, as extremely small spark thicknesses were needed

to show a No Go result. This made this case the most spatially multi-scale out of the

three cases, requiring at least 8 refinement levels just to find nonignition. Because the

spark is so thin, nonignition is established before the flame has time to be influenced

by the geometry of the electrode, which is very large compared to the flame size, thus

making a two-dimensional simulation comparable to its 1D simplification.

The results of the 0.1 atm ambient with 100x pressure ratio case are shown with

the time-elapsed temperature in figures 9.26, 9.28, and 9.30 and H2O mass fraction

in figures 9.27, 9.29, and 9.31. In the first four figures, for the r = 0.002 cm and r =

0.001 cm sparks, a clear Go is found.

For the r = 0.002 cm case, a Go is seen by observing that after the initial tem-

perature decreases from the rarefaction behind the blast wave, there is an increasing

maximum temperature, from 725 at 0.87·10−4 s to 744 K at 2.3·10−4. Also, at these

timesteps, the product mass fraction has largely increased from 0.0059 to 0.023, val-

ues which match the laminar flames found in the one-dimensional simulation. In fact,

aside from the small effect of vorticity and the no-slip BC near the electrode surface,

and a final spherical looking flame front, the 1D and 2D results are practically the

same.

For the r = 0.001 cm case, another Go is found. Because of the lower energy with

this thinner spark, it takes a longer time for the flame to be established. At a time of

approximately 0.5·10−4 s, the maximum temperature again begins to increase, Going

from 586 to 589 K at 1.5·10−4 s, yet, this time at a much smaller rate. The product

mass fraction is also increasing, from 0.0029 to 0.0098 at these time steps. Comparing

the 0.001 cm case to the 0.002 cm case, the flow fields are found to be similar, with

diffusion (mass and heat) dominating flame evolution.

Now, for the r = 0.0005 cm case, just as for the 1D axisymmetric result, a No

Go is found. The temperature decreases from the the expansion of the blast wave,
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and then continues to decrease from the effect of heat diffusion. A very small amount

of combustion is occurring, however, at too small of a rate to heat up the fluid to

support a laminar flame. These effects are observed by looking at the figures at times

of 0.64·10−4 s and 1.1·10−4 s where the maximum temperature has decreased from 579

to 505 K, while the product mass fraction has decreased from 0.001107 to 0.001075

due to mass diffusion dominating the chemical reactions’ product creation. At 500 K,

the rate of chemical reaction is too small to increase the product concentration and

fluid temperature.
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The results of the 1 atm ambient with 10x pressure ratio case are shown with the

time-elapsed temperature in figures 9.32, 9.34, and 9.36 and H2O mass fraction in

figures 9.33, 9.35, and 9.37. Like the previous set of cases, the first two result in a

Go, and the last in a No Go.

The first case is for r = 0.02 cm. In this case a flame is established at a much earlier

time than in r = 0.002 cm case with the lower initial pressure and higher pressure ratio.

For this case, a flame kernel with a comparably high maximum product mass fraction

is observed at a time of approximately 1·10−5 s. At 6.4·10−5 s this kernel is pushed

into the center by the large scale cylindrical to spherical geometry change generated

vorticity. Also at this time, the product mass fraction is still increasing, indicating the

chemical reaction is dominating mass diffusion. In the range of timesteps shown, even

up to 1.1·10−4 s, the maximum temperature is still high, being at 1062 K, although it

is decreasing. This is due to the fact that the blast wave is weaker due to the pressure

ratio being 10x rather than 100x larger initially in the spark. Because the shock is

weaker, it travels slower and the temperature decrease due to the trailing expansion

is lower and occurs at a slower rate allowing the flame to become established while

the fluid is still hot.

For the r = 0.01 cm case, another Go is found, and the fashion at which the flame

forms (in regard to the temperature and product mass fraction changes) is similar.

The main difference is that now due to the spark being half as thick, the blast wave

is weaker than the previous case, in which the kernel was found to be pushed into the

vertical center line. In this case, diffusion dominates convection as was also found for

all the simulations in figures 9.28-9.31.

For the r = 0.005 cm case, as was found for the 1D axisymmetric solution, a No

Go is observed. This no Go is very marginal. At a time of 8·10−6 s (not shown) the

expansion has decreased the maximum temperature from 9169 to 1154 K. Then at

a time of 1.0·10−4 s, the temperature reaches a local minimum of 726 K. Here the

temperature begins to increase until a time of 2.0·10−4 s, at which it has reached

733.8 K, and then at an increasing rate, begins to decrease again. At t = 7.5·10−4

s, the temperature has reached 639 K and continues to decrease. The no Go is less

marginal in the equivalent 1D simulation. In this 2D simulation, a flame started to

form, and then died as it expanded from the confined region between the electrode

tips into the larger ambient fluid. The differences in the 1D and 2D simulations could

be due to the no-slip BC on the electrode surface which adds diffusion and vorticity to

the fluid. Also, a possibility is the effect of numerical diffusion, which is larger in the

2D simulation due to the larger cell sizes which were used. For efficiency, refinement
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levels were removed as the gradients of the solution became larger in time.

Overall, for both initial pressures and pressure ratios, the one-dimensional ax-

isymmetric solution predicts the initial conditions at which a No Go or Go is found

for a two-dimensional axisymmetric solution. Note that this only applies to the con-

ditions tested for this 15 percent hydrogen mixture. With lower fuel concentrations,

larger spark energies (which may critically induce multi-dimensional convection and

enhanced mixing) are needed to produce a flame.
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In the following sections, the “Go” and “no Go” results are compared to that

gained from experiment and theory.

9.6.3.3 MIE Experimental Comparison

The view of ignition, where the minimum ignition energy (MIE) is considered to be

a single threshold value, is the traditional viewpoint in combustion science. How-

ever, particularly in the aviation safety industry, a statistical approach to ignition

characterization is being used and is more consistent with experimental observations

of engineering test data. This statistical variation is most likely due to the chaotic

nature of the initial spark. Simulating a probabilistic spark in a DNS framework is

not practical and thus a single MIE and spark shape and distribution for each initial

condition is considered. In figure 9.38, the historical MIE threshold data of the 1960s

Figure 9.38: Minimum ignition energy results for hydrogen/inert gas mixtures at T
= 298 K and P = 1 atm. Reprinted from Lewis and von Elbe (102).

(102) is shown. They tested for MIE values with different inert gas mixtures at at-

mospheric pressure. As a comparison, for the 15 percent hydrogen-air mixture, they

found an energy of approximately 0.045 mJ. This can be compared to the numerically

determined results shown in table 9.1 which shows a MIE between 0.00771 and 0.0308

mJ for the 100x pressure ratio case and 0.07202 and 0.3084 mJ for the 10x ratio case.

The comparison is summarized in table 9.5. Due to the fact that the MIE depends

on the exact initial condition formed by a spark and the geometry of the electrodes
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and test vessel, these results do not match at all. Note that a 100x pressure ratio is

the more physical representation of an actual spark after the plasma breakdown as is

discussed in §9.2.1.

Analytical Simulation

Pu Eign

1.0·105 Pa 0.045 mJ

Pu Pratio Eign

1.0·105 Pa 100 0.00771-0.0308 mJ
1.0·105 Pa 10 0.07202-0.3084 mJ

Table 9.5: Comparing experimental ignition energy results for MIE to the 1D and 2D
simulation values.

9.6.3.4 MIE Analytical Comparison

.

An analytical model for the ignition energy of a cylindrical spark/kernel is dis-

cussed in the thesis of Bane (10). In this model, the flame is considered to be a

cylindrical volume of gas ignited by a point spark, and a critical radius is defined

under which the cylindrical wave cannot propagate. To determine the critical radius,

rcrit, it is assumed that there is a balance between the heat generated by chemical

reactions inside the gas volume and the heat lost to the surrounding cold gas through

conduction. It is also assumed that the required ignition energy is the energy needed

to heat the critical gas volume to the adiabatic flame temperature. These results

which were originally for a spherical kernel are derived in Bane (10) for the more re-

alistic case of a cylindrical spark and cylindrical flame. This analytical model greatly

simplifies the spark ignition process ignoring mass diffusion, geometry of the elec-

trodes and spark gap, and possible turbulence in the surrounding gas. This results

in a critical radius of

rcrit = 2
αu
sL
, (9.5)

where αu is the thermal diffusivity at the unburned condition and sL is the laminar

flame speed. This rcrit is approximately 20 percent smaller than the critical radius

for a spherical kernel, when a 2 mm spark gap is used. Considering the heating of a

cylindrical volume, the resulting ignition energy is

Eign = πr2
critLρbcPu(Tb − Tu), (9.6)

where b stands for burned and u unburned. In these cases, it was found that the

exclusion of mass transport could be leading to overestimated ignition energies be-

cause hydrogen has such a high mass diffusivity. Neglecting the effect of preferential
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diffusion has generally resulted in larger ignition energies than those observed in the

experiments, as was found by Bane for 5 to 7 percent hydrogen mixtures (10).

Shown in table 9.6 are the analytical results for the critical radius and the ignition

energy for the 15 percent hydrogen-air mixture. Also shown are the parameters used

in this calculation. The laminar flame parameters were found by using the FreeFlame

python routine of CANTERA. For consistency, the numerically determined flame

speed, temperature, and densities were used rather than experimental values. These

values do not differ significantly. For example, the 15 percent data of Lamoureux for

hydrogen air at one atm shows an experimental value of 0.291 m/s as compared to

our numerically determined value of 0.2235 m/s.

Pu Tb cP sL α ρb rcrit Eign
1·105 Pa 1413.9 K 1167.4 0.2235 m/s 3.3649·10−5 m2/s 0.2323 kg/m3 3.011·10−4 m 1.723·10−4 J
1·104 Pa 1418.8 K 1167.4 0.5069 m/s 3.3649·10−4 m2/s 0.2310 kg/m3 1.328·10−3 m 3.350·10−4 J

Table 9.6: Analytical ignition energy results and flame parameters used in the calcu-
lation.

Analytical Simulation

Pu Eign

1.0·105 Pa 0.17232 mJ
1.0·104 Pa 0.33495 mJ

Pu Pratio Eign

1.0·105 Pa 10 0.07102-0.3084 mJ
1.0·105 Pa 100 0.00771-0.0308 mJ
1.0·104 Pa 100 0.000771-0.00308 mJ

Table 9.7: Comparing analytical ignition energy results for MIE to the 1D and 2D
simulation values.

This comparison is summarized in table 9.7. The approximately 1 atm analytical

Eign result of 0.1732 mJ is right in the middle of the bounds (0.07102-0.3084 mJ)

found for the 10x pressure ratio case that was simulated in 1D and 2D. Note that

when the 100x pressure ratio is used,m the MIE found is approximately 10 times

smaller. This analytical model does not consider the initial condition of the spark at

all. The approximately 0.1 atm analytical Eign results of 0.3495 mJ are not close at

all to the 100x pressure ratio MIE case which is between 0.000771 and 0.00308 mJ

or the expected 10x pressure ratio results of 0.00771 and 0.0308 mJ. The analytical

model fails to even get the trend of a decreasing MIE correct in the case where initial

pressure is decreased. These results highlight the importance of initial spark and

ambient conditions when formulating a MIE for an industrial application.
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9.7 Discussion

For a prediction of spark ignition in combustible gas mixtures, the inclusion of multi-

component detailed chemistry and transport was found to have a significant role in

the process of ignition. Simplifications of this model where only a two-component

model or a one-step reaction, four-component model were used yielded quite different

sizes of the spark kernels for the three geometries tested. The choice of electrode

geometry was found to influence the development and propagation of a flame, with

the flanged electrode case (rather than the smaller radii conical or cylindrical cases)

most likely leading to the smallest MIE. This is due to the flange’s influence which

tends to confine the flame kernel, keeping the temperature high.

In a set of simulations for one particular geometry, the conical electrode, using

DNS for a 15 percent hydrogen-air mixture, critical ignition states were simulated and

studied for three different initial pressure and pressure ratio conditions. In all simu-

lations an ignition threshold was found. In the 2D and 1D axisymmetric geometries,

for the particular 15 percent hydrogen-air mixture selected, the ignition was found to

primarily depend on the approximately one-dimensional competition between tem-

perature decrease from a blast wave and heat diffusion, and the temperature increase

from chemical reaction. From the simulations, where the particular geometry tested

did not have a large effect, parameters of the ambient state and spark state which af-

fect ignition were determined. These are ambient pressure, pressure ratio, and spark

energy density.

The MIE values from the DNS results were compared to an approximate analytical

result and a historical experimental result. The deficiencies of the analytical model

were determined, particularly the lack of mass diffusion and initial pressure ratio and

ambient pressure effects. A comparison of experimentally determined MIE values

to simulation results was also wildly different, highlighting the need for an exact

knowledge of the spark and ambient initial conditions.

At the sacrifice of approximating the initial plasma phase of the spark, improve-

ments on the contemporary results of (152, 120, 63, 64) where made in terms of using

a more accurate shock-capturing method and resolution of the viscous and diffusive

effects. Using a plasma model that also includes ions in addition to radicals makes

the computation more expensive, making the production of resolved results more dif-

ficult. Despite this, our results agree with the findings of the most recent, yet less

resolved, works of Nakaya et al. and Han et al. in terms of the finding of evidence

that the geometry and initial spark conditions can affect the critical ignition cases.



366

Chapter 10

Conclusions

The study of high-speed reacting flows is important for assessing the threat of ac-

cidental ignition. In terms of detonations, most in depth numerical studies have

concentrated on the less stable, computationally easier, hydrogen mixtures. How-

ever, a large number of industrial applications present a need for also simulating the

largely unexplored hydrocarbon mixtures. For these mixtures, unlike others, diffusion

can become a key driving force of the detonation. This has created a need for meth-

ods which both capture shocks and accurately model diffusive processes. In general,

much is also unknown in the field of high-speed turbulent combustion, the realm be-

tween slow laminar flames and detonation waves. Numerical methods, such the one

developed in this work, attempt to bridge that gap.

10.1 Development and Verification of the 6th-Order

Hybrid WENO-CD Method for the Multi-

Component Reactive Navier-Stokes Equations

The hybrid WENO-CD method was extended in the structured adaptive mesh refine-

ment (SAMR) framework of AMROC and verified for 6th-order spatial accuracy for

diffusive, reactive flows. Series of “simple” one- and two-dimensional test problems

were used to verify the implementation, specifically the high-order accuracy of the

diffusion terms. One-dimensional benchmarks included a viscous shock wave, lami-

nar flame, and an unstable detonation. In two space dimensions, a viscous decaying

Lamb-Oseen vortex with multiple fixed in space refinement levels was demonstrated.

For all of these test, quantitative convergence, in particular 6th-order accuracy for

both the viscous/diffusive and convection terms was demonstrated.
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Further, “hard” convergence tests were carried out for three nonsteady two-

dimensional double Mach reflection (DMR) problems for which many refinement levels

in the SAMR framework were utilized. With a highly resolved case as the “exact”

solution, low but conclusive converge rates were found when using adaptive levels for

test problems with unresolved shock waves.

Using ORNL’s Jaguar and LBNL NERSC’s Carver supercomputers with up to 512

cores, the three tested DMR problems were subsequently simulated with increased

complexity of the gas mixture. The first test was for a single component perfect case

with constant transport properties. The second test was a two-component, one-step

reaction, detonation case with temperature dependent trasport. The third case was

a multi-component hydrogen-argon mixture with detailed chemistry and transport.

In all of these test cases the viscous/diffusive scales were resolved

The present convergence results for the nonreactive and reactive DMR simulations

support the case that, with our implementation and detailed simulations, diffusive

processes within chemically reacting zones can be resolved. The advances that have

allowed this are as follows: First, careful use of a hybrid method, where WENO is

activated only at strong shock waves (using an approximate Riemann-problem based

shock detection), allowed the sixth-order accurate centered difference stencils to be

uniformly active on shear layers and surrounding regions. Additionally, away from

the shocks, fifth-order accurate prolongation/restriction operators were utilized on

the fine/coarse mesh boundaries and overlaps while first-order operators were used

near the strong shocks in order to provide stability.

Second, the detailed inclusion of a reliable diffusive stability condition for the

explicit RK4 and RK3 integration allowed to take maximum time steps. Third,

appropriate nondimensionalization using physically relevant parameters was found

to be necessary for the elimination of underflow errors. Finally, a study of mesh

refinement indicated that a minimum coverage, at the finest refinement level, was

required in the region surrounding the shear layers in order to obtain convergence.

This usage of minimum coverage was found to be essential because these simula-

tions benefit substantially not only from high resolution provided by SAMR but also

from the efficiency. The results produced using the present implementation, together

with advancements in resolving capability and accuracy, demonstrate possible future

directions for converged SAMR simulations.
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10.2 Reduced, Detailed Mechanism Development

for the Simulation of a Highly Irregular, Hy-

drocarbon Detonation

Through the use of the efficient and accurate, hybrid numerical method, novel two-

dimensional simulations of irregular hydrocarbon detonations were conducted. The

development of a highly accurate, reduced propane-air mechanism also enabled these

results. The detailed hydrocarbon mechanism of Blanquart was minimally reduced

from 161 species and 1,055 reactions to 22 species and 53 reversible reactions. This

reduction is for only one mixture and initial state, in particular the C3H8-5O2-9N2

mixture at an initial pressure of 20 kPa and temperature of 298 K.

The reduction was carried by using the steady ZND solution as a reference over

the range of 0.8 to 1.4 overdrives, matching the temperature and pressure profiles

very closely. Also matched were the induction times and the rate of energy release

or the thermicity profiles. In this mechanism, the slow nitrogen chemistry and the

formation of hydrocarbons with more than 3 carbon atoms were neglected and found

to be negligible.

10.3 Resolved Multi-Component Irregular Deto-

nation Double Mach Reflection

With this mechanism, a double Mach reflection direct numerical simulation for a

diffusive, multi-component, highly irregular detonation was carried out. With our

two highest resolved simulations, all scales, including reactive, viscous, diffusive, and

weak shock scales were resolved, except for the strong shocks of the reflected, inci-

dent, and mach stem waves which were only marginally resolved. This simulation,

with 384-768 cores on LBNL NERSC’s Hopper supercomputer was conducted over

four differently sized domains, with each twice as large as the previous. For each

subsequently simulated domain, on refinement level was removed making the simula-

tion two times coarser. For each domain, a viscous/diffusive and an inviscid model

were utilized. By comparing inviscid and viscous results at different resolutions, a

qualitative measure of the relative magnitude and influence of the numerical viscosity

was determined. Comparisons to the lower-order accurate MUSCL method at the

same resolution were also made, with the expected result of its numerical viscosity
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dissipating out the many of the small scale shear/mixing layers of the solution.

The fluid dynamics of the detonation DMR were analyzed in detail. Initially the

DMR resembled its nonreactive variant, but shortly after reflection, new triple points

appeared. Firstly, a triple point in the Mach stem developed from an interaction

with the jet from the primary shear layer. This phenomenon did not arise in the

previously simulated nonreactive and reactive hydrogen-air detonation DMRs. Then,

triple points appeared on the main reflected shock and the reflected shock of the

secondary triple point of the DMR. These triple points grew in strength and in in-

stability. Shortly thereafter triple points appeared on the Mach stem of the primary

triple point. As the DMR grew in size, it eventually became larger than the induc-

tion length of the incident detonation, and in those regions no longer bounded by this

length, it gained stability as the chemical reactions approached equilibrium and the

triple points disappeared.

Also, at a lower resolution, the transition of the initially steady, slightly overdriven,

incident detonation to a transversely unstable, selfpropagating detonation and its in-

teraction with the DMR below it was simulated. This extremely unstable, multiple

triple-point interaction of a weaker unstable detonation with a stronger (hotter and

higher pressure) detonation is similar to what happens in real irregular detonation

mixtures when triple points, which bound under- and overdriven waves, also collide.

With these simulation results, a qualitative comparison was made with schlieren im-

ages of detonation structures of similar size. The triple-point spacing length-scales

were also measured, but found to be significantly smaller than those that are visible

through experimental methods.

10.4 Validation Through Comparisons to Thin Chan-

nel Detonation Experiments

Also, through the use of a large-scale computation utilizing 3072 cores on the Hopper

supercomputer, 8 and 16 cm wide, periodic detonation channels were simulated for

a propane-air mixture, enabling the first experimental comparison with the largest

and most unstable hydrocarbon mixture studied experimentally to date. The results,

while being unresolved for the viscous and diffusive terms, agreed with the 45 mm

dominant cell width found on soot foils of an experiment with a 15 cm wide, thin

channel. The results were also shown to be statistically stationary, while being cen-

tered at the equilibrium pressure (speed) of the initial, f = 1.008, overdriven steady
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ZND detonation.

Qualitative agreement was also found for comparisons with schlieren and chemi-

luminescence images, in particular the formation of keystone structures, pockets of

unreacted fuel which lead to localized explosions, and a chaotic range of scales be-

tween triple points depending on the overdriven or underdriven state of the local main

shock/detonation front.

This large-scale simulation was found to be the coarsest resolution which would

support a self-propagating detonation. With even coarser cells, no triple points would

appear and the detonation would fail. Also investigated was the influence of smaller

channel widths on the resulting unstable detonation solution. The 16 cm wide channel

was the smallest channel which had cells comparable to experiment. The 8 cm wide

channel could be compared in some periods of its oscillation. However, the enhanced

shock reflections with its smaller domain caused it to create a strong explosion which

engulfed the whole channel going well over the expected maximum dominant cell

size. With simulations in a 1-4 cm wide channel the number of possible triple points

was controlled. With a 0.5 cm wide channel, a marginally resolved simulation was

conducted, but due small transverse confinement, the results showed no triple points.

10.5 Contribution to Detonation and Shock Bifur-

cations

While nonreactive perfect gas shock bifurcations have been simulated in detail in

past works, no attempt has been made for multi-component and reactive flows with

detailed chemistry and transport. Bifurcation simulations of a H2-N2O detonation

reflecting off a shock tube end wall and its interaction with the wall boundary layer

were conducted and analyzed in detailed for the first time with detailed chemistry

and transport. The complete understanding of, and our ability to simulate shock and

detonation bifurcations are important for interpreting measurement and visualizations

of shock tube experiments.

These simulations were conducted on GALCIT’s Millikan parallel computer, us-

ing up to 128 cores. With the enhanced accuracy, efficiency, and confidence of a

viscous and diffusive simulation result with the WENO-CD method, the detonating

bifurcation was compared in detail to nonreactive shock bifurcations in air and N2O

mixtures. Also compared for the nonreactive mixtures was the influence of isothermal

as compared to adiabatic boundary conditions. These simulations were conducted at
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multiple resolutions, with the coarsest case running the reflected wave up to a dis-

tance of 5 cm from the end wall. With these simulations, conclusive comparisons with

experimentally obtained schlieren images were made, with the isothermal wall case

showing the best agreement. The adiabatic wall boundary condition had the effect

of enlarging the foot height by approximately 50 percent.

Also studied was the effect of resolution on the bifurcation solution. For all non-

reactive cases, except the isothermal air case which had a very small foot, the foot

length and height all showed a similar trend when plotted as a function of the dis-

tance from the end wall. However, the triple point angle beta and less so the angle

alpha, however, were more sensitive and were offset as the resolution was changed.

The detonation case also showed a high sensitivity to resolution, but more so due to

the fact that the initially steady detonation went transversely unstable upon reflec-

tion from the end wall. This was due to the affect of the interaction of the shock

waves with the now much hotter, unreacted fuel which has a much shorter induction

time than the incident detonation. These instabilities are very similar to those that

occurred in the double Mach reflection simulation with the propane mixture. In the

bifurcation, however, the instabilities die out as soon as the induction length of the

incident detonation is reached.

The shock and detonation bifurcations were also compared to calculations from

Mark’s orginal theory and nonreactive trends found in experiment and in the com-

putations of Weber et al. Considering the simplicity of the theory, agreement with

the nonreactive simulations was good, and with equilibrium shocks assumed for the

detonations case, agreement was also good. The previously numerically and exper-

imentally found trend, a linearly growing foot height, was also found by making

polynomial fits with the resolved and marginally resolved simulations which were

run no farther than 1 cm from the end wall. The unresolved large-scale simulations

showed a slight steeping above linear.

With the reactive calculations and comparisons, general trends for detonation

end-wall reflection-produced bifurcations were found. The pressure traces will be

extremely chaotic up to the induction length of the incident wave. At farther distances

as compared to nonreactive slower speed variants, the influence of shocklets in terms

of strength and extend will be larger. Also, the geometry will differ in that foot

angle will be much larger and the main shear layer will be tilted upward rather than

downward.
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10.6 Contribution to Spark Ignition

Two-dimensional, axisymmetric spark ignition simulations of hydrogen-air with the

resolution of solid boundary layers were also conducted. At the sacrifice of approx-

imating the initial plasma phase of the spark, improvements on the contemporary

results were made in the accuracy and resolution of the reactive and fluid dynamical

processes.

Through the use of high-energy computations with three different geometries,

the finding that the electrode geometry can influence the development of the flame

kernel was confirmed. Three geometries were tested, small cylindrical electrodes,

large conical electrodes, and even larger flanged electrodes. The spark energy and

spark gap were the same in all three cases. It was found for the nonreactive and

reactive simulations that the smaller the confinement region, the longer the flame

kernel will remain hot enough to accelerate chemical reactions. Therefore, the flanged

electrodes were determined to most likely produce the smallest minimum ignition

energies (MIE).

Also compared for these high energy test cases was the effect of the complexity

in the numerical model. Three models of increasing complexity were tested: a two-

component one-step perfect gas model, a four-component perfect gas one-step model

with simplified chemistry and detailed transport, and a multi-component ideal gas

multi-step model with detailed chemistry and transport. While the general shapes of

the kernels were all the same, the sizes and temperatures of the kernels differed greatly,

showing the need for multi-component detailed chemistry and transport models.

Using the multicomponent model, an investigation of the “Go” and “No Go”

ignition process at low critical ignition energies was conducted. Using the same spark

gap in all tests, the parameters of initial pressure, spark pressure ratio, and spark

radius were varied. This led to the finding that the critical ignition or nonignition state

depends on the energy density, initial pressure, and the pressure ratio of the spark.

These results supported the importance of using a detailed mechanism, modeling the

geometry, and capturing the exact initial spark conditions for simulations of MIE

tests.

A comparison of experimentally and theoretically determined MIE values to our

simulation results was also made. This highlighted the deficiency of the current theory

in terms of neglecting the initial pressure and the pressure in the spark state. The need

for an exact knowledge of the spark and ambient initial conditions was also confirmed

with the experimental comparison, which also did not agree. This disagreement was
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most likely due to our approximation of the initial spark state, yet, it brings to our

attention that sparks of the same energy but with different properties overall could

result in different ignition/nonignition results.

10.7 Future Work and Outlook

The WENO-CD numerical method/SAMR framework combination with improve-

ments in both parallel efficiency and numerical accuracy has enabled first of its kind,

resolved, detailed, diffusive irregular detonation DMR simulations. Even more ef-

ficient strategies would enable fully resolved two-dimensional irregular detonation

channel flow simulations and a marginally resolved three-dimensional equivalent. This

would require the use of tens to hundreds of thousands of cores on a supercomputer,

a feat which has yet to be implemented for a sixth-order accurate hybrid method and

SAMR together. Another possiblity is a “brute” force uniform grid computation with

hundreds of thousands of cores, however, SAMR and AMR in general is still needed

as not all researchers have access to that many cores, and even with that access one

would like to run more than one configuration. This will be possible with future de-

velopment of AMR for high-order methods. The same could also be said for resolving

shock and detonation bifurcations at the large scales encountered shock-tube experi-

ments and for using larger chemistry models which model both the plasma stage and

fluid dynamics in spark ignition simulations. More efficiency would also enable one to

to simulate the largely unexplored detonation to deflagation process for the expensive

hydrocarbon mixtures.

SAMR with higher-order, stable boundary conditions, possibly using upwinded

stencils, is needed to model the isothermal wall using the WENO-CD method. First-

order boundary conditions are very efficient and robust with the usual second-order

accurate SAMR methods, however, with larger stencils, more stability and accuracy

is needed.

Another improvement in accuracy and efficiency would be a hybrid WENO-like

prolongation and restriction routine. By measuring the smoothness/gradient of the

solution and finding shocks in a similar way that the WENO method does, the option

of using efficient low-order stencils or more expensive highly stable upwinded, or

maximally accurate (but prone to instability) centered stencils would enhance the

efficiency, accuracy, and stability of a high-order method in a SAMR framework.

The ultimate future goal is through the use of DNS, the development of subgrid

scale models for high-speed turbulent combustion, a clear need for simulating det-
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onation and high-speed deflagration problems at scales encountered in engineering

applications. The key challenge, as in low speed flows, is in the statistical char-

acterization of a turbulent flow field. This would enable quantitative engineering

predictions of macroscopic detonation behavior.
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Appendix A

Similarity Solution of the
One-Dimensional Euler equations

(v − ξ)dρ
dξ

+ ρ
d(v)

dξ
= 0, (A.1)

(v − ξ)dv
dξ

= −1

ρ

dp

dξ
. (A.2)

These two equations can be reduced to one integral equation by considering the

entropy, s, and the speed of sound, c. For this derivation, it must be assumed that

the entropy is conserved or constant. Therefore, there cannot be any discontinuities

such as shock waves. This assumption,

(v − ξ)ds
dξ

= 0, (A.3)

forces ds
dξ

to be zero, and thus s is constant. Therefore, the general definition for the

speed of sound,

c2 =

(
∂p

∂ρ

)
s

, (A.4)

reduces to

c2 =
dp

dρ
=

dp
dξ

dρ
dξ

. (A.5)

Now, by eliminating the pressure derivative with the simplified definition for c2, the
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continuity and momentum equations reduce to

(v − ξ)ρ′ + ρv′ = 0, (A.6)

(v − ξ)v′ = −c
2ρ′

ρ
, (A.7)

where the ′ denotes differentiation with respect to ξ. From this hyperbolic system of

equations, p′ and v′ can be eliminated, thus obtaining,

(v − ξ)2 = c2, (A.8)

x/t = v ± c. (A.9)

Using this result in the continuity equation, the integral relation for v as a function

of the thermodynamic state of the system is obtained

cρ′ = ρv′, (A.10)

v(ρ) = ±
∫
cdρ

ρ
= ±

∫
dp

ρc
. (A.11)

The significance of this result is that the any variable representing a quality of the

flow (v, p, ρ, c), can be expressed as a function of one of the others. For example, valid

options are {p(v), ρ(v), c(v)} or {v(ρ), p(ρ), c(ρ)}.
Now, by selecting ρ as the independent parameter, ∂x

∂t
at constant v, is obtained

by solving the momentum equation.

∂v
∂x
∂v
∂t

=

(
∂x

∂t

)
v

= v +
1

ρ

dp

dv
, (A.12)

or equivalently, (
∂x

∂t

)
v

= v +±c(v). (A.13)

This result is then integrated to yield a solution of the form

x = t[v ± c(v)] + f(v), , (A.14)

where f(v) is an arbitrary function. A more useful form is derived by inverting the
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function f(v) to obtain

v = F [x− t(v ± c(v))], , (A.15)

where F (v) is another function which is related to the arbitrary, smooth waveform

of the initial conditions. With a thermodynamic relation between c and ρ defined, a

nonlinear equation solver is easily used to obtain a solution. See (94) §101.

Assuming a polytropic gas, the thermodynamic relation required is

ρ = ρ0(c/c0)2/(γ−1), (A.16)

where γ is the specific heat ratio and the subscript, 0, denotes a reference state. Using

this in the integral relation A.11,

v = ±
∫
cdρ

ρ
=

2

γ − 1

∫
dc =

2

γ − 1
(c− c0), (A.17)

c is expressed as a function of v,

c = c0 ±
1

2
(γ − 1)v. (A.18)

This is then used in A.15, where now

v = F

{
x− t[±c0 + (

1

2
γ + 1))v]

}
. (A.19)

Therefore, given any continuous function, F , and a set of reference conditions, (c0, p0, ρ0),

this nonlinear equation is solved for v, at each x and t. With the velocity now known,

the pressure and density are found with the following p = p(v) and ρ = ρ(v) relations,

ρ = ρ0

(
1± 1

2
(γ − 1)v/c0

)2/(γ−1)

, (A.20)

p = p0

(
1± 1

2
(γ − 1)v/c0

)2γ/(γ−1)

. (A.21)

This similarity solution is not valid for all time, as compression waves tend to steepen

the profile to the point where discontinues appear. The discontinuity known as a shock

wave forms when the derivatives of the velocity, pressure, and density become infinite.
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Figure A.1: a) Velocity and pressure for the similarity solution at a time, t = 0.0021
seconds. b) Velocity and pressure for the similarity solution at a time, t = 0.11
seconds.
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This is realized when an inflection point is encountered, which occurs when(
∂x

∂v

)
t

= 0, (A.22)(
∂2x

∂v2

)
t

= 0. (A.23)

For polytropic gases, these equations are satisfied when

t = −2f ′(0)/(γ + 1), (A.24)

where f ′(0) is found from the function f(v) appearing in equation A.14. As an

example, consider the following function F = F (v),

F (w) = cos(8w), (A.25)

w = x− t[±c0 + (
1

2
γ + 1))v], (A.26)

v = F (w), (A.27)

where the + in the ± of equation A.15 has been taken for a left-going wave. This

solution at a time of 0.00018333 seconds is shown in figure A.1(a). In this example,

p0 = 100, ρ0 = 10, γ = 1.4, and a1 =
√

(γp0
ρ0

). Thus, with f(v) = F−1,

f(v) =
1

8
arccos(v), tbreaking = −2f ′(0)/(γ + 1), f ′(0) =

−1

8
, t = 0.1041666667s.(A.28)

At a time of 0.11 s < tbreaking, the discontinuity is present as shown in figure A.1(b).
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Appendix B

Shock Reflection Theory

In this appendix previous reseach literature on shock and detonation reflections are

described. Using theories developed from these Mach reflection and reactive Mach

reflection (detonation triple point) theories are developed. In the following appendix

algorithms that implement these theories are tested and described.

B.1 Shock Reflection Background Research

Ben-Dor and Glass (18) gives computational and experimental results for the perfect,

and real nitrogen Mach reflections. The real gas model is described as being in dis-

sociative equilibrium. The results shown in appendix C using equilibrium shocks in

CANTERA (dissociative and internal degrees of freedom (translational, rotational,

and vibrational)) match Ben-Dor’s computational results. The frozen result are no-

ticeably different.

Ben-Dor’s book (16) shows additional and repeated nitrogen plots as in (18) for

the real and perfect gas. Note that he has mislabeled almost half of his graphs

(particularly pages 70-90), labeling the perfect as imperfect (real) and the imperfect

as perfect. The first group of graphs is incorrect and the later group is correct.

Their 1979 paper is correct (18). The discussion in this book about the qualitative

differences of the perfect and real cases in some sections is based on this mislabeling

and is not correct. Ben-Dor also gives a discussion and estimates for relaxation length

scales for real gas effects. This book was written before any Navier-Stokes real gas

simulations we conducted.

Ben-Dor (15) also gives nice presentation of the three-shock theory and results

for N2 at 15 torr. He compares these results to Takayama’s experimental results for

yet another unnamed gas. Also in these document he shows how to find corrections
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by adding in the effects of the boundary layer. He also mentions vibrational and

relaxation time scales.

In the paper of Hornung et al. (72) three shock theory with dissociative relaxation

is modeled. Also, in Hornung and Talyor (74) it is demonstrated experimentally

that the influence of viscosity on the transition condition in pseudosteady flow as

predicted is very significant. A mechanism is proposed for the usual persistence of

regular reflection beyond the sonic condition.

Burtschell et al. (26) investigated regular and Mach reflections in steady nonequi-

librium hypersonic air flows at Mach 7, T=773 K, and P = 6.5 kPa. The computations

were performed using a multi-block MUSCL-TVD finite-volume scheme. The com-

parison with and without thermochemical effects revealed a strong dependence of

the transition angles, of the height and location of the Mach stem on the physical

modeling of the gas flow.

Hornung (71) used the reactive Euler equations to discuss the gradients across

curved reactive shock waves. Using the normal and parallel derivatives across the

shock the gradients and substantial derivatives are found to be proportional to the

rate of removal of enthalpy by reactions and the local shock curvature.

Meltzer et al. (118) shows work analogous to the nonreacting simulations of Mach

reflections, experimental and analytical transitions and triple point angles for RR

and MR were determined for the stable H2-O2 detonation. The two and three shock

theories where used and found to have similar properties of the nondetonating real

gas cases of previous researchers. Still though, computations and experiments quan-

titatively differ.

Sanderson et al. (139) presents a dimensionless framework for real gas effects on

normal, oblique and interacting shock waves. They consider dissociation reactions

and vibrational equilibrium. They develop a set of nondimensional parameters, par-

ticularly a reaction rate parameter that relates the chemical and fluid time scales.

Oblique shock jump conditions are presented for all of the dimensionless parameters.

B.1.1 Relaxation Effects Relevant to Detonations

Relaxation effects are processes that can have a large effect on the dynamics of shock

waves. (79), (27), (28), (37) and (81) are contemporary examples of how vibrational

relaxation is computational modeled in hypersonics. Clark (31) and Williamrich and

Treanor (163) are past reviews of real gas effects and vibrational relaxation.
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(30, 14, 150) are some older references which looked the effect that vibrational

relaxation may have on detonations. Belles and Lauver(14) concluded that existing

data exhibit little or no effect of slow vibrational relaxation. Calculations were pre-

sented to show that the greatest possible effect of slow O2 relaxation would, in fact,

be a small one. The calculations were carried out by making the assumption that

all the activation energy of the slow chain-branching step must be supplied by vi-

brational energy of O2. Their data covered different compositions and temperatures

and included observations in H2-air, H2-O2-argon, and H2-O2 mixtures. They did

not look at N2. Chesick and Kistiakowsky (30) has similar conclusions for H2-O2

detonations, that are based on comparing the ZND theory to experimental results.

Soloukhin (150) has similar views on O2 and shows graphically how vibrational re-

laxation changes the temperature behind the compression wave. Belles (14) states

that at 1500 K, for H2-O2-air, the induction times at 6 and 10 times longer than the

vibrational relaxation times in 5 and 20 percent mixtures mainly due to the presence

of H2 and O2.

In a contemporary set of examples by Lu and Fan, (110), (108), and (109) modeled

for a pulse detonation engine the chemical reaction for a stoichiometric H2/O2/N2 flow

by a simple two-step reaction involving five species: H2, O2, N2, H2O and OH. The

model consisted of a 2D unsteady and steady detonation hitting a wedge. The code

that was used included a two-temperature model for vibrational nonequilibrium, but

they found this effect to be negligibly small.

B.2 Steady Reflection

When a steady compressible flow impinges on a wedge, multiple flow configurations

are possible, depending on the initial Mach number M0, and the wedge deflection

angle θw. For subsonic flow, M0 < 1, no shocks can exist and the flow deflection

will take place with a continuous turning, as in figure B.1(a). For supersonic flow,

M0 > 1, two cases are possible, an attached straight shock or a curved detached shock

as in figure B.1(b) and B.1(c). An attached shock is approximately straight far from

the tip of the wedge and the detached shock is curved. The fluid dynamics of the

steady straight shock are governed by the oblique shock relations. When the wedge

angle is less than the detachment angle (which is a function of M0 and the initial

thermodynamic state), two attached shock configurations are possible. The strong

shock at a large angle and the weak shock at a small angle. The strong and weak post

shock states are respectively subsonic and supersonic. In an actual flow only one of
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these can occur, the one which satisfies the boundary conditions, or if both are valid

the weak wave will occur.

θ w

Mo

(a) subsonic flow

θ w

φ w

sφ 

Mo

(b) strong and weak oblique
shocks

θ w

Mo

(c) detached shock

Figure B.1: Possible steady wedge flows

B.3 Unsteady Reflection

Consider the flow depicted in figure B.2(a). Here a planar incident shock impinges on

a sharp wedge. As a result of the new boundary condition experience by the flow, a

reflected wave appears and follows the incident wave up the wedge, as shown for one

possible solution in figure B.2(b). Now to analyze this flow, the reference frame which

is steady relative to the reflection point is used. In this frame, where the incident and

reflected shocks meet and travel up the wedge, the flow is deemed pseudo-steady and

the oblique shock relations can be used. This described flow configuration, regular

reflection (RR) in figure B.2(b), is possible when the Mach number (relative to the

reflection point frame of reference) behind the reflected shock wave is greater than

one. If the post reflected shock Mach number is less than one, an irregular reflection

(IR) is realized. Physically, the subsonic flow interacts with the reflection point,

causing the MR or vNR type configuration to emerge.

Similar to the steady case, in an unsteady flow there are two basic types of shock

reflection, regular and irregular reflection (RR and IR). And again there are two

basic ways for flow deflection, through an attached bow shock or a detached bow

shock. However, unlike the steady case, for unsteady flows, the complexities and

the different variants of MRs are more numerous. One such variant, a single Mach

reflection (SMR), with an attached bow shock is shown in figure B.3(a).



384

i

θ w

(a) Psuedosteady case: problem setup
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(b) Regular reflection, pseudo-steady
case

Figure B.2: Unsteady reflection

B.3.1 Regular Reflection

The analysis of regular reflection is carried out in the stationary frame relative to the

reflection point, where the incident shock i, and the reflected shock r meet, as labeled

in figure B.2(b). The boundary condition is that the net deflection of i and r (in the

reflection point frame moving up the wedge) be zero, such the flow behind the wedge

is parallel the wedge surface.

The above problem thus has 9 equations (B.16-B.24) and 13 unknowns. The

solution is found by specifying the initial pressure, P0, and temperature, T0, and by

the geometrical relations below for the incident shock wave and frame of reference

φ1 = 90◦ − θw, (B.1)

u0 = ussec(θw). (B.2)

B.3.2 Irregular Reflection

In general for unsteady flow, the shock-wave reflection configurations are regular

reflection (RR), or irregular reflection (IR). The irregular reflection could be either a

von Neumann reflection (vNR), or a Mach reflection (MR). Unlike the steady case, the

MR can be further broken down into more configurations. The Mach reflection could

be one of the following three types, each depending on the direction the triple point,

T, travels: a direct Mach reflection (DiMR) where T moves away from the wedge,

a stationary Mach reflection (StMR) where T moves parallel to the wedge and an

inverse-Mach reflection (InMR) where T moves towards the reflecting wedge surface.

Upon the collision of the triple point with the wedge, the InMR terminates and a
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transitioned regular reflection (TRR) appears. In pseudo-steady flows (for which the

theories and algorithms discussed in this document are valid), the Mach reflection is

always a DiMR, with the triple point moving away from the wedge surface.

The DiMR can be further divided into three different types: a single Mach re-

flection (SMR), a transitional Mach reflection (TMR), and a double-Mach reflection

(DMR) depending on whether the triple point trajectory angle of the first triple point

is larger or smaller than that of the second triple point, the DMR can be further di-

vided into two types. This summary only touches the different types of unsteady

reflections, and will be discussed no further, as this document is concerned mostly

with the SMR in pseudo-steady flow.

B.3.3 Single Mach Reflection
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(a) Single Mach Reflection, pseudosteady case
with attached reflected wave
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(b) Shocks and flow directions
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(c) Shocks and slipstream

Figure B.3: Single Mach Reflection, pseudosteady case

The unsteady reflection process can be approximated as a self similar, pseudo-
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steady problem (103), (15), (18). For this simplification, the Mach stem is assumed

to be straight and perpendicular to the wedge, and the fluid is modeled as inviscid.

By attaching a reference frame to the triple point, the three shock pseudo-steady

solution is found. In this frame, the reflected wave of a SMR relative to the triple

point path, is straight in the pseudo-steady reference frame.

For each shock, there are 4 sets of oblique shock relations. The first 14 equations

(B.27-B.40) of the steady model are again used. However, the additional equations

resulting from the geometry and straight Mach stem assumption must be modified to

include the triple point angle, χ,

φ1 =
π

2
− θw − χ, , (B.3)

uo =
us

cos(θw + χ)
. (B.4)

The 16 equations (B.27-B.40, B.3, B.4) and 16 unknowns above can be solved given

the appropriate thermodynamic relations and initial conditions.

B.3.4 Unsteady Transition Criterion

For pseudo-steady flows, the transition from RR to MR occurs at what is known as

the sonic condition, as described by (72). The sonic condition occurs when the post-

reflected shock state becomes sonic, M = 1. On a shock polar diagram this occurs

when the sonic point of the reflected shock polar coincides with the pressure axis. This

point is lower than the detachment point of the shock polar, and thus transition to MR

will occur at a smaller incident shock angle than when using the detachment condition.

Experimentally, the sonic and detachment conditions are almost indistinguishable,

and different books and papers state the unsteady transition criteria as either the

detachment condition or sonic condition.

A single condition encompassing both the von Neumann condition for steady

flows and the sonic condition for pseudosteady flows is the information condition,

as described by (70). The condition states that in order for a Mach stem to exist,

it is necessary that information about a length scale can reach the region near the

reflection point in order to scale the Mach stem length.

In pseudo-steady flows, RR transitions to MR when the flow behind the reflection

point becomes sonic in a frame of reference attached to the RR point. When M2 > 1,

the corner generated signals catch up with the reflection point, and a Mach stem

is formed, causing an irregular reflection, IR. The IR can be either an MR or a
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vNR depending on the angle of incidence, φ2, between the flow in state (1) behind

the incident shock wave, i, and the reflected shock wave, r, in a frame of reference

attached to the triple point, T. The transition to a vNR takes place when

φ2 ≥ 90◦. (B.5)

φ2 = 90◦ occurs when the flow in state (1) is perpendicular to the reflected shock

wave, r, and afterward remains perpendicular to the reflected shock wave. This also

occurs when

ωrs = 90◦. (B.6)

where ωrs is the angle between the reflected shock wave r, and the slipstream s, as

shown in figure B.3(c).

The transition boundaries for MR can be seen be looking at the solution of the

triple point path as a function of Mach number and wedge angle as shown in figure C.9.

The left side of the plot for χ(M) at various θw shows that for a particular wedge

angle, there is a Mach number below which the MR does not physically exist. This

represents the transition to vNR. Not that using the shock polars, a MR solution

for φ2 ≥ 90◦ can be found, but can only physically exist in the steady case. In the

pseudo-steady case the vNR is found experimentally. Also, at the bottom of the

figure the transition to RR is found. Again for particular Mach number, there is a

wedge angle above which MR cannot exist and RR will be observed.

Once the condition for the existence of a Mach reflection is met, the value of the

Mach number, M2, in state (2) behind the reflected shock wave, r, of the Mach reflec-

tion with respect to the triple point T, becomes the main parameter for determining

what type of Mach reflection will be observed.

For M2 < 1, the reflection is an SMR with a reflected shock wave curved along

its entire length. When the flow in state (2) becomes supersonic with respect to T,

the reflected shock wave develops a straight portion that terminates at a point known

as the kink, K, which indicates the part of r that has been reached by the corner-

generated signals. The SMR changes to a transitional Mach reflection (TMR) when

M2 = 1.

Once a kink is formed in the reflected shock wave, the value of the Mach number

in state (2) behind the reflected shock wave, r, of the MR with respect to the kink,

K, becomes the significant parameter in determining whether the reflection remains
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a TMR or changes to a double Mach reflection (DMR). When a DMR forms, the

band of the compression waves from the TMR converge to form a shock wave, and a

second triple point, T’, appears. In the past, the kink of the TMR and the second

triple point, of the DMR were assumed to practically the same point. However, recent

research has developed more accurate, but complex theories (17).

In figure B.4(a) and B.4(b) the transition criterion for vNR, TMR, and RR are

shown as a function of θw, φ1, and Ms, for the entire solution domain up to Ms = 10

for the perfect gas case with gamma = 7
5
. In figure B.4(c) they are shown for the

domain with the triple point angle rather than explicitly calculating the transition

boundaries with a computationally expensive solution of the MR and RR equations

for each criterion, the points of transition within the solution algorithm have been

recognized as they first occur. For example, as soon as φ2 = 90◦ or θ2 switches sign,

the vNR transition boundary has been crossed. When M2 passed through one, the

TMR boundary has been crossed. The RR transition boundary can be calculated

explicitly, using and nonlinear equation solve for the sonic criterion, for which the

results are shown in figure B.4(c). This is fairly expensive, however, this boundary

can be estimated using the historical mechanical equilibrium transition criterion for

RR as shown in figure B.3.4. For these results it is assumed that transition occurs

when the RR reflected shock polar first crosses incident shock polar at θ1−θ2 = θ3 = 0.

For this criterion the transition wedge angle is overestimated, however, it is straight

forward to implement algorithmically. For the algorithms discussed later in this

document, this criterion is used as an estimate of the solution domain for SMR,

however, attention must still be paid when interpreting the results to rule out the

physically invalid solutions. Note that this computationally sensitive implementation

of the transition criterion is most important when dealing the real case models to

limit the computational expense.

B.3.5 Oblique Shock Relations

The Euler equations for compressible flow are used to derive a general solution for a

gas which travels through a planar oblique shock wave. These equations are written

for the normal velocity component of the gas as the tangential component is un-

changed. An additional required equation is the equation of state, which can be (for

perfect and imperfect gases) the ideal gas law or a more complex one, such as the

Van der Waals equation of state. For this, the temperature and pressure are chosen

as the independent thermodynamic parameters. With the pre-shock state, 0, and the
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(a) θw vs Ms

(b) φ1 vs Ms

(c) χ vs Ms

Figure B.4: Psuedo-steady transition regions, perfect gas
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Figure B.5: Psuedo-steady mechanical equilibrium RR transition criterion, θ3 = 0.

post-shock state, 1, the systems of equations are

ρ0u0 sinφ1 = ρ1u1 sin(φ1 − θ1), (B.7)

ρ0 tanφ1 = ρ1 tan(φ1 − θ1), (B.8)

p0 + ρ0u
2
0 sin2 φ1 = p1 + ρ1u

2
1 sin2(φ1 − θ1), (B.9)

h0 +
1

2
u2

0 sin2 φ1 = h1 +
1

2
u2

1 sin2(φ1 − θ1). (B.10)

The solution is found when given the wedge angle, θ1 = θw, and the thermodynamic

and chemical state at the initial state 0, for example, Mach number M0, temperature

T0, pressure P0, and species mole fractions q0. In this case, the solution is the shock

angle, φ1, which as shown in figure B.1(b) can be equal to φw or φs. The inverse

problem of finding the deflection angle in terms of the shock angle is also of inter-

est. These oblique shock relations as presented are valid for two-dimensional, steady,

inviscid, compressible flows.

For a perfect gas solution, the only required input information is the wedge angle

and the initial flow Mach number M0. The above equations are reduced, for example,
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from state 0 to state 1 across an oblique shock to

Mn0 = M0 sin(φ1), (B.11)

Mn1 =

√
1 + ((γ − 1)/2)M2

n0

γM2
n0 − (γ − 1)/2

, (B.12)

p1

p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1), (B.13)

θ1 = arctan

(
2 cot(φ1)((M0 sin(φ1))2 − 1

M2
0 (γ + cos(2φ1)) + 2

)
, (B.14)

M1 =
Mn1

sin(φ1 − θ1)
. (B.15)

B.3.5.1 Shock Polars

The shock polar is a graphical tool for visualizing and assisting the solution of multiple

shock interactions. A shock polar for one shock in figure B.6, represents the pressure

ratios, p1/p0, that are available through an oblique shock with a flow deflection, θ. The

polars have different sizes and shapes, depending on the initial thermodynamic state,

the flow Mach number, and the thermodynamic and chemical model, for example,

real or perfect gas and reacting or nonreacting. For perfect gases, the shock polar

shape depends solely on the Mach number and the specific heat ratio. figure B.7

shows the shock polar, for perfect (γ = 1.4) and imperfect reacting nitrogen. For

a given wedge angle, there are two solutions, the weak and strong. The asterisks

mark the sonic condition, below which the downstream flow is supersonic (the weak

solution) and above which it is subsonic (the strong solution). For θ = 0 there is

either no disturbance or a normal shock wave. There is also the maximum angle (left

and rightmost points), the detachment angle, beyond which there is no solution at

all for an upstream Mach number.

B.3.6 Regular Reflection

The regular reflection case generally occurs for larger angles of incidence, in which the

incident shock is closer to the wall boundary. A schematic is shown in figure B.8(a).

Here, a steady wave that could have been caused by a wedge in the free stream is in

contact with a wall at an oblique angle, causing a reflected wave to appear. If the

angle of incidence between the incident wave and the wall is less than the detachment

angle, then a straight attached reflected wave is a possible solution. More precisely,

the RR is the only solution when the incident shock angle is below the von Neumann
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Figure B.6: Incident (state 1) and Reflected shocks (state 2), Perfect gas shock polars
for air, M1 = 1.6 and θ1 = 8◦

Figure B.7: Incident (state 1) and Reflected shocks (state 2), shock polars: Comparing
Perfect gas and real gas mixture cases for air at 300 K and 100 kPa, M1 = 10 and
θ1 = 8◦
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Figure B.8: Steady flow reflections
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(a) Regular reflection (RR)

(b) Mach reflection (MR)

Figure B.9: Steady flow reflection shock polars
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angle (not to be confused with the von Neumann Reflection), and RR or MR is

possible between the von Neumann angle and the detachment angle, as discussed in

the steady transition criterion section. The von Neumann angle is the angle at which

the reflected shock polar intersects the incident shock polar at the top. On the (P,θ)

shock polar diagram, this is where θ = 0. Here the two shocks together have the same

effect on the pressure ratio that one normal shock would. A valid RR is demonstrated

with its incident and reflected shock polars, as shown in figure B.9(a).

For inviscid flow, this two-shock configuration can be accurately modeled using

the oblique shock relations twice. Starting at state 0, where the angle of incidence,

φ1, of the incident wave is known, the flow deflection and thermodynamic state can

be found across the incident shock. Then, this post-shock thermodynamic state and

the known flow deflection angle (parallel to the wall) are used to find the angle of the

reflected shock wave.

The solution from two shock theory is formulated by applying the oblique shock

relations twice and enforcing the BC,

State (0) to State (1)

ρ0u0 sinφ1 = ρ1u1 sin(φ1 − θ1), (B.16)

ρ0 tanφ1 = ρ1 tan(φ1 − θ1), (B.17)

p0 + ρ0u
2
0 sin2 φ1 = p1 + ρ1u

2
1 sin2(φ1 − θ1), (B.18)

h0 +
1

2
u2

0 sin2 φ1 = h1 +
1

2
u2

1 sin2(φ1 − θ1). (B.19)

State (1) to State (2)

ρ1u1 sinφ2 = ρ2u2 sin(φ2 − θ2), (B.20)

ρ1 tanφ2 = ρ2 tan(φ2 − θ2), (B.21)

p1 + ρ1u
2
1 sin2 φ2 = p2 + ρ2u

2
2 sin2(φ2 − θ2), (B.22)

h1 +
1

2
u2

1 sin2 φ2 = h2 +
1

2
u2

2 sin2(φ2 − θ2). (B.23)

and enforcing the BC,

θ1 − θ2 = 0.. (B.24)

Note that equations B.17 and B.21 are the result of dividing the conservation of
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the normal mass equation,

ρiui sinφi = ρjuj sin(φi − θj), (B.25)

by the continuity of tangential velocity equation,

ui cosφi = uj cos(φi − θj). (B.26)

B.3.7 Mach Reflection

Again consider the following straight incident shock wave, that originated from the

free stream and became steady, as in figure B.8(b). Now, consider the case when the

angle of incidence between shock i and the wall is greater than the von Neumann angle.

In the unsteady starting problem for this steady solution, an initially curved shock

wave resulted at the reflection point. This “detached” wave propagated away from

the wall and approached a new steady solution. The resulting solution configuration

is known as a Mach reflection (MR).

MR is the appearance of three main shock waves jointing at a common point,

the triple point, T. The Mach stem m, starting straight and perpendicular to the

wall “displaces” the reflection point up to the triple point at which m is curved.

For this configuration, the flow is supersonic behind the incident shock, subsonic or

supersonic behind the reflected shock, and subsonic behind the Mach stem. The

flow field coming from the reflected shock above is different from that coming from

the Mach stem below. However, physically the pressures and flow deflection (normal

velocity), must be equal for the slipstream to be at a constant angle. The surface

(or line in two dimensions), called the slipstream, at which these flows meet can thus

support differing densities, temperatures, and species concentrations.

At the triple point T in a MR, there are four discontinuities (in regard to inviscid

flow), the incident shock, labeled i, reflected shock r, Mach stem m, and the slipstream

s. These all coincide at the triple point T. The Mach stem is curved at the triple

point, concave for weak waves (supersonic post-reflected shock state)and convex for

strong waves (subsonic post-reflected shock state). A valid MR is demonstrated with

its incident and reflected shock polars, as shown in figure B.9(b).

The solution is found by applying the three shock theory, equivalently applying

the oblique shock relations once for each shock.
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Incident Shock, State (0) to State (1):

ρ0u0 sinφ1 = ρ1u1 sin(φ1 − θ1), (B.27)

ρ0 tanφ1 = ρ1 tan(φ1 − θ1), (B.28)

p0 + ρ0u
2
0 sin2 φ1 = p1 + ρ1u

2
1 sin2(φ1 − θ1), (B.29)

h0 +
1

2
u2

0 sin2 φ1 = h1 +
1

2
u2

1 sin2(φ1 − θ1). (B.30)

Reflected Shock, State (1) to State (2):

ρ1u1 sinφ2 = ρ2u2 sin(φ2 − θ2), (B.31)

ρ1 tanφ2 = ρ2 tan(φ2 − θ2), (B.32)

p1 + ρ1u
2
1 sin2 φ2 = p2 + ρ2u

2
2 sin2(φ2 − θ2), (B.33)

h1 +
1

2
u2

1 sin2 φ2 = h2 +
1

2
u2

2 sin2(φ2 − θ2). (B.34)

Mach Stem, State (0) to State (3):

ρ0u0 sinφ3 = ρ1u1 sin(φ3 − θ3), (B.35)

ρ0 tanφ3 = ρ1 tan(φ3 − θ3), (B.36)

p0 + ρ0u
2
0 sin2 φ3 = p1 + ρ1u

2
1 sin2(φ3 − θ3), (B.37)

h0 +
1

2
u2

0 sin2 φ3 = h1 +
1

2
u2

1 sin2(φ3 − θ3). (B.38)

and enforcing the BC’s across the slipstream,

p2 = p3, (B.39)

θ1 − θ2 = θ3. (B.40)

Note that θ3 is not zero and the flow travels to the wall, where it can curl in a counter

clockwise or clockwise direction. In the present framework, two alternatives exist in

finding a solution. If the angle of curvature of the Mach stem is known experimentally

or estimated, this can be used to close the equations. Otherwise, the curvature is

neglected and the approximation φ3 = 90◦ is used. In either case, the 14 equations

(B.27-B.40) and 14 unknowns above can then be solved given the incident shock and

wall angles and the appropriate thermodynamic relations at the initial state 0, for

example, Mach number M0, temperature T0, pressure p0, and species mole fractions

q0.
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B.3.8 Von Neumann Reflection

Figure B.10: Shock polar for vNR

Von Neumann reflection, visually similar but different than MR, occurs when the

reflected shock polar never intersects the incident shock polar, as shown in figure B.10.

In a von Neumann reflection (vNR), is unlike the clear and sharp change in the

orientation of the Mach stem and the incident shock wave at the triple point of a

Mach reflection. The Mach stem smoothly merges into the incident shock wave. In

addition, while the reflected wave is a clear shock wave in a Mach reflection, it is

instead a band of compression waves in a von Neumann reflection. Experimentally,

to the unaided eye the vNR looks like an SMR. Skews and Ashworth, showed the

experimental verification of steady vNR, (148).

B.3.9 Steady Transition Criterion

The transition criterion of reflections in compressible flows are governed by distur-

bances and the existence or lack of information pathways. These pathways are similar

to the regions of influence and dependence in countered in hyperbolic equations. In

steady flow, any disturbance in the flow that is strong enough to set up a small Mach

reflection would open an information path to the reflection point. Once the Mach

stem is set up a permanent information path is established from the subsonic flow
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to the triple point. Without any disturbances, regular reflection is possible at shock

angles greater than that at the von Neumann angle (also know as the von Neumann

condition). Therefore, in steady flow, between the von Neumann condition and the

detachment condition there exists the dual-solution domain where both RR and MR

are possible (73), (104), (119). Note that once the vNR is established, the two and

three shock theories can no longer be used, as solution is now governed by weak

compressive waves.

In general, reflection phenomenon are labeled as either regular reflection (RR) or

irregular reflection (IR). For steady flow, IR encompasses MR and vNR. The vNR

results whenever a reflected shock wave is insufficient to match the state behind the

incident shock with that behind the Mach stem. This occurs when the theoretically

possible reflected shock polar is totally inside of the incident shock polar.
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Appendix C

Mach Reflection Solution
Algorithms

Algorithms have been developed to model the case of a pseudo-steady MR. These

results are valid in the neighborhood of the triple point of any MR, for example DMR

or TMR, but are most useful for the case of a single Mach reflection (SMR).

Two types of algorithms have been implemented, a general one which iterates on

the triple point angle while keeping the wedge angle constant, and the (97) algorithm

which iterates on the triple point angle while keeping the angle of incidence, φ1,

between the flow and the incident shock constant. Both have been implemented for

perfect gases and real gases (ideal gas mixtures with nonconstant cP and frozen or

equilibrium chemistry to be precise).

The solution algorithms iterate on the triple point angle until the system of equa-

tions is satisfied. The additional information needed from the above formulation is

that across the slipstream, in the frame of reference of the triple point, the pressures

and flow deflections of states 2 and 3 must be equal. The equality of pressure and

flow deflection is used as criterion for evaluating the residual at each iteration.

C.1 Perfect Gas Algorithm

For a desired Mach number and wedge angle, this algorithm iterates to find the triple

point angle, χ, until a residual is zero, corresponding to the difference in deflections

on both sides of the slipstream.

For the perfect gas case, one starts with an initial guess for the triple point angle.

If the solution is desired for all possible M and θw, it is easiest to start at the largest

Mach number, for example M = 10, and slowly decrease it to obtain the χ = χ(θ)
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relation at each θw, which is varied in an outer loop. Below is a sketch of a Matlab

function which is called at every iteration by a nonlinear equation solver such as

Newton’s method, equivalently Matlab’s fsolve function. figure C.1(a) and C.1(b)

show how in the algorithm, the i and r shock polars can be matched while keeping

θw constant and varying the Mach number. figure C.1(a) shows an example inner

loop of the algorithm where M is varied, and figure C.1(b) shows this loop and the

subsequent loop at the next wedge angle. As the shock polars are varied, the solution

(in terms of χ(M, θw) for the perfect case), is tracked and extrapolated to ensure

better convergence properties of the nonlinear equation solver at the next iteration

in both the inner and outer loops.

In figures C.2(b) and C.2(a), the results are summarized by showing the triple

point angle and pressure ratio across the Mach stem as functions of the initial inci-

dent wave Mach number for different wedge angles.

For a particular M and θw, the algorithm starts with an extrapolated guess for χ.

Initial parameters a first found by transforming to the triple point frame of reference

and using geometrical relations,

M0 =
Ms

cos(θw + χ)
, (C.1)

using χ = π
2
− φ3,

φ3 =
π

2
− χ, (C.2)

φ1 =
π

2
− θw − χ, (C.3)

Ms = M0 sin(φ1). (C.4)
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(a) Example solution path for θw = 20◦ starting at a Mach
number of 5 and decreasing to 1.5 in .5 increments.

(b) Example solution path for θw = 20◦ starting at a Mach
number of 5 and decreasing to 1.5 in .5 increments, and then
repeating for θw = 25◦

Figure C.1: Evolution of the solution in the general algorithm, perfect gas

State (0) to State (1): Incident Shock

Mn0 = M0 sin(φ1), (C.5)

Mn1 =

√
1 + ((γ − 1)/2)M2

n0

γM2
n0 − (γ − 1)/2

, (C.6)

p1

p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1), (C.7)

θ1 = arctan

(
2 cot(φ1)((M0 sin(φ1))2 − 1

M2
0 (γ + cos(2φ1)) + 2

)
, (C.8)

M1 =
Mn1

sin(φ1 − θ1)
. (C.9)
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State (0) to State (3): Mach Stem

Mn0 = M0 sin(φ3), (C.10)

Mn3 =

√
1 + ((γ − 1)/2)M2

n0

γM2
n0 − (γ − 1)/2

, (C.11)

p3

p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1), (C.12)

θ3 = arctan

(
2 cot(φ3)((M0 sin(φ3))2 − 1

M2
0 (γ + cos(2φ3)) + 2

)
, (C.13)

M3 =
Mn3

sin(φ3 − θ3)
. (C.14)

Matching Reflected Shock and Mach Stem Pressure and Deflections of States (2) and

(3)

p2

p1

=
p0

p1

∗ p3

p0

, (C.15)

Mn1 =

√
((
p2

p1

− 1)
γ + 1

2γ
+ 1, (C.16)

φ2 = arcsin
Mn1

M1

, (C.17)

θ2 = arctan

(
2 cot(φ1)((M1 sin(φ2))2 − 1

M2
1 (γ + cos(2φ2)) + 2

)
, (C.18)

residual = (θ1 − θ3)− θ2. (C.19)

At this point the residual from the current iteration is used by the nonlinear equation

solver to find the next χ value and so on until residual converges to zero. Then the

solution can be used for extrapolating to the triple point angle at the next Mach

number.

C.2 Real Gas Algorithm

The real gas algorithm works is a similar fashion to the perfect gas algorithm. The

main changes are the use of CANTERA and the Shock and Detonation Toolbox to

find the post-shock state. Another difference is the use of a two- rather than one-

dimensional nonlinear equation solver.

The below example algorithm is for the equilibrium (rather than frozen) shock gas

case. This involves a two dimensional Newton Solve, requiring two guesses to start,

http://www.galcit.caltech.edu/EDL/public/cantera/html/SD_Toolbox/
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(a) Mach Stem Pressure Ratio vs Mach number

(b) Triple point angle vs Mach number

Figure C.2: Perfect gas results for general algorithm
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the initial guess for the triple point angle, χ, and the angle of incidence of the flow

with the reflected shock, φ2. Within the algorithm, one iterates on the triple point

angle, χ, while simultaneously solving the nonlinear oblique shock equation for φ2,

until both of components of the residual are zero, corresponding to the pressure and

deflection matching errors. In figures C.2 and C.2 the results are summarized by

showing the triple point angle and pressure ratio across the Mach stem as functions

of the initial incident wave Mach number for different wedge angles.

Transform to the triple point frame of reference

M0 =
Ms

cos(θw + χ)
, (C.20)

φ3 =
π

2
− χ, (C.21)

φ1 =
π

2
− θw − χ, (C.22)

Ms = M0 sin(φ1). (C.23)

State (0) to State (1): Incident Shock

Mn0 = M0 sin(φ1) (C.24)

(ρ1, p1, T1, q1,Mn1) = Post Equilibrium Shock(Mn0, p0, T0, q0), (C.25)

θ1 =
arctan(tan(φ1)(ρ1

ρ0
− 1)

(tan(φ1)2 + ρ1
ρ0

))
, (C.26)

M1 =
Mn1

sin(φ1 − θ1)
. (C.27)

State (0) to State (3): Mach Stem

Mn0 = M0 sin(φ3) (C.28)

(ρ3, p3, T3, q3,Mn3) = Post Equilibrium Shock(Mn0, p0, T0, q0), (C.29)

θ3 =
arctan(tan(φ3)(ρ3

ρ0
− 1)

tan(φ3)2 + ρ3
ρ0

))
, (C.30)

M3 =
Mn3

sin(φ3 − θ3)
. (C.31)

Matching Reflected Shock and Mach Stem Pressure and Deflections of States (2) and
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(3)

Error(φ2)← φ2(M1, θ2, gas, T1, p1, q1), (C.32)

M2 =
Mn2

sin(φ2 − θ2)
, (C.33)

Mn1 = M1 sin(φ2), (C.34)

(ρ2, p2, T2, q2,Mn2) = Post Equilibrium Shock(Mn1, p1, T1, q1), (C.35)

residual(1)← p0

p1

p1

p2

− p0

p3

, (C.36)

residual(2)← Error(φ2). (C.37)

Similar to the perfect gas algorithm, the residual from the current iteration is

used by the nonlinear equation solver to find the next χ and φ2 values and so on

until residual converges to zero. Then the solution can be used for extrapolating to χ

and φ2 at the next Mach number. Below are a sketch of the post-equilibrium shock

calculation of the algorithm and the general, oblique shock relation used.

Post Equilibrium Shock calculation using the SDToolbox

Example for pre- and post-shock states (0) and (1):

set(gas(T0, p0, q0). (C.38)

ρ0 = density(gas1). (C.39)

a0 = soundspeed frozen(gas1). (C.40)

u0n = a0Mn0. (C.41)

(ρ1, p1, T1, q1, a1) = equilibrated shock(u0n, p0, T0, q0). (C.42)

u1n =
ρ0u0n

ρ1

. (C.43)

Mn1 =
u1n

a1

. (C.44)

(C.45)

Oblique shock relation used for finding the deflections or evaluating the error of

phi2 for a given θ2, Mn2, and density ratio.

ρ1 tanφ2 = ρ2 tan(φ2 − θ2) (C.46)

tan(φ2) =
ρ2/ρ1(tan(φ2)− tan(θ2))

(1 + tan(φ2) tan(θ2))
. (C.47)
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Figure C.3: Triple point angle vs Mach number, ”*” real gas (frozen), ”x” perfect gas

C.3 Law and Glass Algorithm

The Law and Glass graphical method involves iterating on the triple point angle while

keeping constant the angle of incidence, φ1, between the flow and the incident shock

(97). As in the previous section, the perfect gas case one iterates on χ, and the real

gas case iterates on χ and φ2. The basis for this method is that for a MR, the incident

and reflected shock polars will always intersect some where in the right plane, where

θ2 = θ1 − θ3 and p2 = p3. This algorithm is more intuitive and insightful than the

previous, however, it has the extra hassle that χ(M) for constant θw is not explicitly

given. Interpolation is used in the final results to find this relation. Figures C.3

and C.3 show how in the algorithm, the i and r shock polars can be matched while

keeping φ1 constant and varying the Mach number. Figure C.3 shows an example

inner loop of the algorithm, and figure C.3 shows this loop and the subsequent loop.

As the shock polars are varied, the solution (in terms of φ3 and φ2 for the real gas

case, and just φ3 for the perfect case), is tracked and extrapolated to ensure better

convergence properties of the nonlinear equation solver at the next iteration. This
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Figure C.4: Mach stem pressure ratio vs Mach number, “*” real gas (frozen), “x”
perfect gas

is done for both φ1and M in the outer and inner loops, using up to third-order

extrapolation. Near the vNR transition limit, the r polar can become very small

relative to the i polar or it can be very close to it on the right side. This seems to

make the solution very sensitive and is the reason for the high-order extrapolation.

C.3.1 Perfect Gas Case

for φ1 = 30◦, 30.5◦, ...(0 < φ1 < 90◦)

for Ms = 10, 9.9, 9.8...(Ms > 1)

M0 = Ms/ sin(φ1)

State (0) to State (1): Incident Shock

Mn0 = M0 sin(φ1)

Mn1 =
√

1+((γ−1)/2)M2
n0

γM2
n0−(γ−1)/2

p1
p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1)

θ1 = arctan
(

2 cot(φ1)((M0 sin(φ1))2−1

M2
0 (γ+cos(2φ1))+2

)
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Figure C.5: Evolution of the Law and Glass graphical method, showing the matching
of the incident and reflected shock polars, for the perfect gas case decreasing M from
6 by 0.5 increments at a constant φ1 value of 30◦.

M1 = Mn1

sin(φ1−θ1)

if M1 > 1

Extrapolate for φ3guess

φ3 ← Match I and R Shock Polars

State (0) to State (3): Mach stem

Mn0 = M0 sin(φ3)

Mn3 =
√

1+((γ−1)/2)M2
n0

γM2
n0−(γ−1)/2

p3
p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1)

θ3 = arctan
(

2 cot(φ3)((M0 sin(φ3))2−1

M2
0 (γ+cos(2φ3))+2

)
M3 = Mn3

sin(φ3−θ3)

θ2 = θ1 − θ3

Check the RR and vNR transition limits

if θ3 > 0 and θ2 > 0

χ(Ms, φ1) = π/2− φ3

θw(Ms, φ1) = π/2− φ1 − χ
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Figure C.6: Evolution of the Law and Glass graphical method, showing the matching
of the incident and reflected shock polars, for the perfect gas case decreasing M from
5 by 0.5 increments at a constant φ1 value of 30◦, and then starting the next loop at
φ1 = 33◦

end

end

Variation of χ with Ms, along constant θw

Choose θw = 5, 10, ..., 45, for example

for each Ms

χ(θw,Ms) =interpolate(θw(Ms, χ), θw)

For the above calculations we obtain the following functions χ(Ms) along constant

χ + θw = π/2 − φ1 and χ(θw) along constant Ms. Another relation desired but not

exactly calculated by this algorithm is χ(Ms) along constant θw. In order to obtain

this, the above calculated data points must be interpolated. Given enough points this

is accurate.

The below function is iterated upon with the nonlinear equation solver, matching

the incident and reflected shock polars when the residual approaches zero.

MatchIRPolars(φ3,M0, p1/p0, γ,M1, θ1)
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Mn0 = M0 sin(φ3) (C.48)

Mn3 =

√
1 + ((γ − 1)/2)M2

n0

γM2
n0 − (γ − 1)/2

(C.49)

p3

p0

= 1 + 2γ(M2
n0 − 1)/(γ + 1) (C.50)

θ3 = arctan

(
2 cot(φ3)((M0 sin(φ3))2 − 1

M2
0 (γ + cos(2φ3)) + 2

)
(C.51)

M3 =
Mn3

sin(φ3 − θ3)

p2

p1

=
p0

p1

∗ p3

p0

(C.52)

Mn1 =

√
((
p2

p1

− 1)
γ + 1

2γ
+ 1 (C.53)

φ2 = arcsin
Mn1

M1

(C.54)

θ2 = arctan

(
2 cot(φ1)((M1 sin(φ2))2 − 1

M2
1 (γ + cos(2φ2)) + 2

)
(C.55)

residual = (θ1 − θ3)− θ2 (C.56)

C.3.2 Real Gas Case

Similar to the perfect gas case, φ1 and M are varied in the outer and inner loops.

CANTERA and the SDToolbox are used for the real gas normal shock calculations.

Also, just as in the general algorithm, a two-dimensional nonlinear equation solver is

used to match the i and r shock polars. The below algorithm is for the frozen shock

case, at an initial q0, p0, T0,Ms for a particular real gas model, using a CANTERA

mechanism file for the temperature variable thermodynamic properties.

for φ1 = 30◦, 30.5◦, ..., (0 < φ1 < 90◦)

for Ms = 10, 9.9, 9.8, ..., (1 < Ms < (Ms)max)

M0 = Ms/ sin(φ1)

State (0) to State (1): Incident Shock

Mn1 = M1 sin(φ1)

(ρ1, p1, T1, q1,Mn1) = Post Frozen Shock(Mn0, p0, T0, q0)

θ1 =
arctan(tan(φ1)(

ρ1
ρ0
−1)

(tan(φ1)2+
ρ1
ρ0

))

M1 = Mn1

sin(φ1−θ1)
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Figure C.7: For N2 perfect gas: χ(Ms) along constant χ+ θw = π/2− φ1

if M1 > 1

Extrapolate for φ3guess and φ2guess

φ3 ← Match I and R Shock Polars

State (0) to State (3): Mach stem

Mn0 = M0 sin(φ3)

(ρ3, p3, T3, q3,Mn3) = Post Frozen Shock(Mn0, p0, T0, q0)

θ3 =
arctan(tan(φ3)(

ρ3
ρ0
−1)

tan(φ3)2+
ρ3
ρ0

))

θ2 = θ1 − θ3

Check the RR and vNR transition limits

if θ3 > 0 and theta2 > 0

χ(Ms, φ1) = π/2− φ3

θw(Ms, φ1) = π/2− φ1 − χ

end
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Figure C.8: For N2 perfect gas: χ(θw) along constant Ms

end

Find the variation of χ with Ms, along constant θw

Choose θw = 5, 10, ..., 45

for each Ms

χ(θw,Ms) =interpolate(θw(Ms, χ), θw)

Post Frozen Shock calculation using the SDToolbox, example for pre- and post-shock
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Figure C.9: For N2 perfect gas: χ(Ms) along constant θw

states (0) and (1):

set(gas(T0, p0, q0) (C.57)

ρ0 = density(gas1) (C.58)

a0 = soundspeed frozen(gas1) (C.59)

u0n = a0Mn0 (C.60)

(ρ1, p1, T1, q1, a1) = frozen shock(u0n, p0, T0, q0) (C.61)

u1n =
ρ0u0n

ρ1

(C.62)

Mn1 =
u1n

a1

(C.63)

(C.64)

The below function is iterated upon with the nonlinear equation solver, matching

the incident and reflected shock polars when the residual approaches zero.
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matchIRpolars(φ3, φ2,M0, p1/p0,M1, θ1, T1, p1, ρ1, P0, T0, ρ0, q0)

Mn0 = M0 sin(φ3) (C.65)

(ρ3, p3, T3, q3,Mn3) = Post Equilibrium Shock(Mn0, p0, T0, q0) (C.66)

θ3 =
arctan(tan(φ3)(ρ3

ρ0
− 1)

tan(φ3)2 + ρ3
ρ0

))
(C.67)

M3 =
Mn3

sin(φ3 − θ3)
Error(φ2)← φ2(M1, θ2, gas, T1, p1, q1) (C.68)

M2 =
Mn2

sin(φ2 − θ2)
(C.69)

Mn1 = M1 sin(φ2) (C.70)

(ρ2, p2, T2, q2,Mn2) = Post Equilibrium Shock(Mn1, p1, T1, q1) (C.71)

residual(1)← p0

p1

p1

p2

− p0

p3

(C.72)

residual(2)← Error(φ2) (C.73)

Figure C.10: Law and Glass algorithm χ(M) along constant φ1, real gas results for
N2 imperfect gas (frozen): χ(Ms) along constant χ+ θw = π/2− φ1
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Figure C.11: Law and Glass algorithm χ(M) along constant θw, real gas results for
N2 imperfect gas (frozen): χ(Ms) along constant θw



417

C.3.3 Comparison of Results with Ben-Dor and Glass

The real gas results from the implementation of the Law and Glass algorithm have

been compared to the results from (18). In figure C.12, the calculated results are

compared for N2 with equilibrium chemistry across the shock waves. In both models

the specific heat is a function of temperature, and the diatomic nitrogen is modeled

to dissociate more and more into monatomic nitrogen at higher temperatures. The

results are equivalently the same, while allowing for the errors gathered while visually

picking the data points from Ben-Dor’s plot.

Figure C.12: Comparing Law and Glass algorithm N2 results with Ben-Dor and
Glass’s results for N2 imperfect gas (equilibrium chemistry, T = 300K, p = 2000Pa):
χ(Ms) along constant θw. The triangle’s correspond to the computational results
from (18)

The real gas results from the implementation of the Law and Glass algorithm have

also been compared to the experimental data from (18). In figure C.13, the calculated

results are compared for imperfect air (q0 = (N2:3.76,O2:1) with equilibrium chemistry

across the shock waves, and perfect air with a specific heat ration of 7
5
. The results

are very different and appear so even for Ben-Dor. This shows the limitations of the

assumptions used in the three shock theory for the MR problem.
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Figure C.13: Comparing Law and Glass algorithm air results with Ben-Dor and
Glass’s experimental results for air with perfect and imperfect gas models (equilibrium
chemistry, T = 300 K, p = 2000 Pa): χ(Ms) along constant θw. The triangle’s
correspond to the experimental results from (18), at 10◦, 20◦, and 30◦ wedge angles.

As shown in figure C.11, the real and perfect gas models for N2 were compared. At

low Mach numbers (equivalently lower temperatures), the real gas effects are small

and the solutions are seen to approach each other. At larger Mach numbers the

solutions diverge as the nonconstant enthalpy of the imperfect nitrogen is the most

different from the constant specific heat value a higher temperatures.
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Appendix D

Viscous Flow Physics

In this section theory on free shear layers is discussed in detail. Using approximate

analytical methods to calculate boundary layer thicknesses and inviscid shear layer

instabilities was useful for increasing the confidence and understanding the the Mach

reflection simulations where shear and mixing layers are created at the triple points.

D.1 Blasius Solution

Figure D.1: Vorticity in the Mixing layer

Directly behind the triple point, as shown in figure D.1, the flow is laminar and

the Reynolds number is high. Therefore, for constant viscosity, the boundary layer

equations apply. The similarity solution obeys the same ODE as the well-known

Blasius flat plat case, with the difference being the boundary conditions for the free

Blasius mixing layer.
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Figure D.2: Blasius laminar mixing layer solution

η = y

√
U

2νx
, (D.1)

ψ =
√

2νxUf(η), (D.2)

ν =
µ

ρ
, (D.3)

u =
∂psi

∂y
= Uf ′(η), (D.4)

v = −∂psi
∂x

=

√
U

2νx
(ηf ′(η)− f) , (D.5)

(D.6)

when the stream function ψ is substituted into the boundary layer equations, the

blaius ODE is obtained in terms of the dimensionless stream function f . Integration

of this ODE with the proper BCs leads to solution f in terms of the similarity variable

η, for which the velocities, u and v can be found. Now, let U be the velocity of the

high speed region behind the Mach stem (note this is not in the triple point frame of

reference, yet the results are equivalent with a reference frame change) and let λU be

the slower velocity behind the reflected shock on top of the mixing layer. Then the

boundary conditions follow as

η → +∞ : f ′ = λ, (D.7)

η → −∞ : f ′ = 1, (D.8)

lim(η → −∞) : (η − f) = lim(η → +∞) : −λ(ηλ− f). (D.9)
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The last boundary condition comes from a global momentum balance across the y

direction of the boundary layer where v−∞ = −λv∞. (140)

This boundary value problem was solved in MATLAB using an a iterative newton

solver around an ODE integrator. The ODE is third order, and is put in vector form

as follows,

y1 = f, (D.10)

y2 =
df

dη
, (D.11)

y3 =
d2f

dη2
=

d

dη

(
df

dη

)
, (D.12)

Y = [y1, y2, y3], (D.13)

dY

dη
= [y2, y3,−y1y3]. (D.14)

The algorithm is as follows. One guesses the solution of y1, y2, and y3 at η = 0

and solves two Blasius boundary layers toward positive and negative infinity. For a

λ value of 0.6033 ± 6 is sufficient for an approximate infinity. At plus and minus

“infinity” the third boundary condition is evaluated, yielding an error estimate for

the Newton iteration. The solution of u(y) for λ = 0.6033 and ν = µ
ρ̄

= 3.035e − 5

evaluated at x = 0.001m is shown in figure D.1.

D.2 Von Karman Momentum-Integral Technique

The mixing thickness can be obtained using the von Karman momentum-integral

technique (15). It is assumed in the that the flows on both sides of the shear layer

are incompressible and that there is no pressure gradient along the layer. The upper

and lower velocities, u2 and u3, are assumed to have a laminar profile and are ap-

proximated with third order polynomials. The coefficients for the upper slower fluid

are determined with the boundary conditions,

u(y = δ2) = V2, u(y = δ2) = Vc, (D.15)

∂2u

∂y2
(y = δ2) = 0,

∂2u

∂y2
(y = 0) = 0, (D.16)
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where δ2 is the displacement thickness and Vc is the velocity at the interface. This

leads to,

u2 =
1

2
V2(η2 − 1)

(
y

δ2

)3

− 3

2
V2(η2 − 1)

(
y

δ2

)
+ Vc, (D.17)

and similarly for the lower fluid,

u3 =
1

2
V3(η3 − 1)

(
y

δ3

)3

− 3

2
V3(η3 − 1)

(
y

δ3

)
+ Vc, (D.18)

where η2 = Vc/V2 and η3 = Vc/V3 are yet to be determined, yet it is known that

η2

η3

=
V3

V2

. (D.19)

These velocity profiles are subsituted into the von Karman momentum integral to get

the following result,

µi
∂ui
∂yi
|yi=0 = ∂∂x

∫ δi

0

(
u2
i − uiVi

)
dy (D.20)

δi
x

=

(
280

22ηi + 13

) 1
2

(Reix)
− 1

2 . (D.21)

Now, to determine η2 and η3 the magnitudes of the displacement thicknesses for

the upper and lower fluids are matched. This yields a nonlinear algebraic equation

relating the unknowns to the far field ratios of density, viscosity, and velocity.

1− η2

η3 − 1

(
22η3 + 13

22η2 + 13

) 1
2

=

(
µ3ρ2V2

µ2ρ3.V3

) 1
2

(D.22)

One then solves this equation along with η2
η3

= V3

V2
to obtain the displacement thickness

above and below the mixing layer. The total length scale of the mixing layer is simply

the sum of the two. The utility of von Karman integral method is that it approximates

the effects of the density difference across the layer, unlike the Blasius method for

which an average density was used. Of equal importance is that it also allows for the

viscosity to be different. The lower fluid is much hotter than the upper fluid yielding

a physically unnegligible change in viscosity. Yet, for the sake of simplicity, the total

displacment thick was calculated and shown in figure D.3.
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Figure D.3: Laminar mixing layer thickness as a function of distance from the triple
point, von Karman momentum-integral technique

D.3 Inviscid Mixing Layer Linear Stability

The initial growth of a laminar free shear/mixing layer depends on effects of the

linearized inviscid instability mode. This linearized growth rate is a function of the

density ratio, velocity ratio, and a convective Mach number (149). The convective

mach number is found by considering a pair of vortices that are convecting at a

common speed. In this case there is a stagnation point of common pressure where

(
1 +

γ1 − 1

2
M2

c1

) γ1
γ1−1

=

(
1 +

γ2 − 1

2
M2

c2

) γ2
γ2−1

, (D.23)

with Mc1 = (U1 − Uc)/a1 and Mc1 = (U1 − Uc)/a1 as the convective Mach numbers

in the top and bottom fluids. For low convective Mach numbers,

Mc1 =

(
γ1

γ2

) 1
2

Mc2. (D.24)

In the case γ1 = γ2,

Uc
U1

=
1 + q

√
s

1 +
√
s
, (D.25)
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where s = ρ2/rho1 and q = U2/U1. Also if the flow is isentropic, Mc1 = Mc2 = Mc,

Mc =
∆U

a1 + a2

, (D.26)

Uc =
a2U1 + a1U2

a1 + a2

. (D.27)

Note that in this analysis, Uc is the speed of the stagnation point, not the speed

of the eddies themselves. Now, to get a growth rate for the size of the eddies, we

assume for a subsonic variable density mixing layer that the turbulent diffusion rate

is constant in a frame of reference convected by the eddies and that the spreading

rate is inversely proportional to the convection velocity,

δ

x
= δ′0 ∝

∆U

Uc
, (D.28)

δ′0 = δ′ref
(1− q)(1 +

√
s)

2(1 + q
√
s)

, (D.29)

where δ′ref is the spreading rate for s = 1 and U2 = 0. This result is only valid

for low Mach numbers. For higher Mach numbers is is found that this growth rate

scales with a empirical function that depends solely on the convective Mach number.

Dimotakis’s semi-empirical relation for this function is commonly With a δ′ref of 0.16,

s = 1.431 and q = 0.6029 the resulting growth rate dependence on Mc is shown in

figure D.3. used,

δ′0 = δ′ref
(1− q)(1 +

√
s)

2(1 + q
√
s)

Φ(Mc), (D.30)

Φ(Mc) = 0.8e−M
2
c + 0.2. (D.31)
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Figure D.4: Inviscid growth rate dependence on the convective Mach number for
δ′ref = 0.16, s = 1.431, and q = 0.6029
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Appendix E

Reduced CHEMKIN Mechanisms

E.1 Reduced Propane-Air Mechanism

E.1.1 Chemistry
ELEMENTS

N H O C

END

SPECIES

C3H8 O2 N2 H O OH H2 H2O CO2 HO2

CO HCO TCH2 CH3 CH2O HCCO

C2H2 CH4 C2H3 C2H4

C2H5 NC3H7

END

REACTIONS

H+O2 = O+OH 2.640e+16 -0.670 17041.11

O+H2 = H+OH 4.590e+04 2.700 6259.56

OH+H2 = H+H2O 1.730e+08 1.510 3429.73

2OH = O+H2O 3.970e+04 2.400 -2110.42

H+OH+M = H2O+M 4.400e+22 -2.000 0.000

CH4/2.00/ CO/1.75/ CO2/3.60/ H2/2.00/ H2O/6.30/

H+O2(+M) = HO2(+M) 5.120e+12 0.440 0.00

O2/0.85/ H2/0.75/ H2O/11.89/ CO2/2.18/ CO/1.09/

LOW / 6.330e+19 -1.400 0.00 /

TROE/ 0.5 0.00 10000000000.00 /

H2+O2 = HO2+H 5.920e+05 2.430 53501.43

HO2+H = 2OH 7.490e+13 0.000 635.76

HO2+OH = H2O+O2 1.000e+16 0.000 17330.31

CO+OH = CO2+H 8.000e+11 0.140 7351.82

DUPLICATE

CO+OH = CO2+H 8.780e+10 0.030 -16.73

DUPLICATE

HCO+H = CO+H2 1.200e+14 0.000 0.00

HCO+OH = CO+H2O 3.020e+13 0.000 0.00

HCO+M = CO+H+M 1.870e+17 -1.000 17000.48

H2/2.00/ H2O/0.00/ CO2/3.60/ CO/1.75/ CH4/2.00/

HCO+H2O = CO+H+H2O 2.240e+18 -1.000 17000.48

HCO+O2 = CO+HO2 1.200e+10 0.810 -726.58

TCH2+O = HCO+H 8.000e+13 0.000 0.00
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TCH2+OH = CH2O+H 2.000e+13 0.000 0.00

TCH2+O2 => CO2+2H 5.800e+12 0.000 1500.96

TCH2+O2 = CH2O+O 2.400e+12 0.000 1500.96

TCH2+O2 => OH+H+CO 5.000e+12 0.000 1500.96

2TCH2 = C2H2+H2 1.600e+15 0.000 11943.12

CH2O+H = HCO+H2 5.740e+07 1.900 2741.40

CH2O+OH = HCO+H2O 3.430e+09 1.180 -446.94

CH3+H(+M) = CH4(+M) 6.920e+13 0.180 0.00

H2/2.00/ H2O/6.00/ CO2/2.00/ CO/1.50/ CH4/3.00/

LOW / 3.470e+38 -6.300 5074.09 /

TROE/ 0.783 74.00 2941.00 6964.00 /

CH3+O = CH2O+H 5.060e+13 0.000 0.00

CH3+O => H+H2+CO 3.370e+13 0.000 0.00

CH3+OH = TCH2+H2O 5.600e+07 1.600 5420.65

CH3+TCH2 = C2H4+H 1.000e+14 0.000 0.00

2CH3 = C2H5+H 6.840e+12 0.100 10599.90

CH4+H = CH3+H2 6.600e+08 1.620 10841.30

CH4+OH = CH3+H2O 1.000e+08 1.600 3119.02

HCCO+O = H+2CO 1.000e+14 0.000 0.00

HCCO+TCH2 = C2H3+CO 3.000e+13 0.000 0.00

C2H2+H(+M) = C2H3(+M) 1.710e+10 1.270 2707.93

H2/2.00/ H2O/12.00/ CO2/3.60/ CO/1.75/ CH4/2.00/

LOW / 6.340e+31 -4.660 3781.07 /

TROE/ 0.2122 1.00 -10212.00 /

C2H2+O = HCCO+H 8.100e+06 2.000 1900.10

C2H2+O = TCH2+CO 1.250e+07 2.000 1900.10

C2H3+H = C2H2+H2 3.000e+13 0.000 0.00

C2H3+O2 = C2H2+HO2 1.340e+06 1.610 -384.80

C2H3+O2 = HCO+CH2O 4.580e+16 -1.390 1015.77

C2H4+H(+M) = C2H5(+M) 1.370e+10 1.460 1355.16

H2/2.00/ H2O/12.00/ CO2/3.60/ CO/1.75/ CH4/2.00/

LOW / 4.060e+39 -6.640 5769.60 /

TROE/ -0.569 299.00 -9147.00 152.40 /

C2H4+H = C2H3+H2 1.270e+05 2.750 11649.14

C2H4+O = TCH2+CH2O 7.150e+04 2.470 929.73

C2H4+O = CH3+HCO 3.890e+08 1.360 886.71

C2H4+OH = C2H3+H2O 1.310e-01 4.200 -860.42

C2H4+CH3(+M) = NC3H7(+M) 2.550e+06 1.600 5700.29

H2/2.00/ H2O/12.00/ CO2/3.60/ CO/1.75/ CH4/2.00/

LOW / 3.000e+63 -14.600 18169.22 /

TROE/ 0.1894 277.00 8748.00 7891.00 /

C2H5+O2 = C2H4+HO2 1.920e+07 1.020 -2033.94

C3H8(+M) = C2H5+CH3(+M) 1.290e+37 -5.840 97387.67

H2/2.00/ H2O/12.00/ CO2/3.60/ CO/1.75/ CH4/2.00/

LOW / 1.1000e+74 -15.740 98718.93 /

TROE/ 0.31 50.00 3000.00 9000.00 /

NC3H7+O = C2H5+CH2O 3.170e+13 0.030 -394.36

C3H8+H = NC3H7+H2 5.800e-02 4.710 6211.76

C3H8+OH = NC3H7+H2O 5.360e+06 2.010 365.68

HCCO+CH3 = C2H4+CO 5.000e+13 0.000 0.00

HCCO+OH = 2 HCO 1.000e+13 0.000 0.00

END
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E.1.2 Thermodynamics
THERMO

298.000 1000.000 5000.000

N2 121286N 2 G 0300.00 5000.00 1000.00 1

0.02926640E+02 0.14879768E-02-0.05684760E-05 0.10097038E-09-0.06753351E-13 2

-0.09227977E+04 0.05980528E+02 0.03298677E+02 0.14082404E-02-0.03963222E-04 3

0.05641515E-07-0.02444854E-10-0.10208999E+04 0.03950372E+02 4

O L 1/90O 1 00 00 00G 200.000 3500.000 1000.000 1

2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2

2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 6.72540300E+03 4

O2 TPIS89O 2 00 00 00G 200.000 3500.000 1000.000 1

3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2

-1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3

-9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 8.68010400E+03 4

H L 7/88H 1 00 00 00G 200.000 3500.000 1000.00 1

2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2

2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3

2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 6.19742800E+03 4

H2 TPIS78H 2 00 00 00G 200.000 3500.000 1000.00 1

3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2

-9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3

2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 8.46810200E+03 4

OH S 9/01O 1H 1 0 0G 200.000 6000.000 1000.00 1

2.86472886E+00 1.05650448E-03-2.59082758E-07 3.05218674E-11-1.33195876E-15 2

3.71885774E+03 5.70164073E+00 4.12530561E+00-3.22544939E-03 6.52764691E-06 3

-5.79853643E-09 2.06237379E-12 3.38153812E+03-6.90432960E-01 4.51532273E+03 4

H2O L 8/89H 2O 1 00 00G 200.000 3500.000 1000.000 1

3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2

-3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3

-5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 9.90409200E+03 4

HO2 L 5/89H 1O 2 00 00G 200.000 3500.000 1000.000 1

4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2

1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3

-2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 1.00021620E+04 4

TCH2 L S/93C 1H 2 00 00G 200.000 3500.000 1000.000 1

2.87410113E+00 3.65639292E-03-1.40894597E-06 2.60179549E-10-1.87727567E-14 2

4.62636040E+04 6.17119324E+00 3.76267867E+00 9.68872143E-04 2.79489841E-06 3

-3.85091153E-09 1.68741719E-12 4.60040401E+04 1.56253185E+00 1.00274170E+04 4

CH3 L11/89C 1H 3 00 00G 200.000 3500.000 1000.000 1

2.28571772E+00 7.23990037E-03-2.98714348E-06 5.95684644E-10-4.67154394E-14 2

1.67755843E+04 8.48007179E+00 3.67359040E+00 2.01095175E-03 5.73021856E-06 3

-6.87117425E-09 2.54385734E-12 1.64449988E+04 1.60456433E+00 1.03663400E+04 4

CH4 L 8/88C 1H 4 00 00G 200.000 3500.000 1000.000 1

7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13 2

-9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05 3

-4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00 1.00161980E+04 4

CO TPIS79C 1O 1 00 00G 200.000 3500.000 1000.000 1

2.71518561E+00 2.06252743E-03-9.98825771E-07 2.30053008E-10-2.03647716E-14 2

-1.41518724E+04 7.81868772E+00 3.57953347E+00-6.10353680E-04 1.01681433E-06 3

9.07005884E-10-9.04424499E-13-1.43440860E+04 3.50840928E+00 8.67100000E+03 4

CO2 L 7/88C 1O 2 00 00G 200.000 3500.000 1000.000 1

3.85746029E+00 4.41437026E-03-2.21481404E-06 5.23490188E-10-4.72084164E-14 2

-4.87591660E+04 2.27163806E+00 2.35677352E+00 8.98459677E-03-7.12356269E-06 3
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2.45919022E-09-1.43699548E-13-4.83719697E+04 9.90105222E+00 9.36546900E+03 4

HCO L12/89H 1C 1O 1 00G 200.000 3500.000 1000.000 1

2.77217438E+00 4.95695526E-03-2.48445613E-06 5.89161778E-10-5.33508711E-14 2

4.01191815E+03 9.79834492E+00 4.22118584E+00-3.24392532E-03 1.37799446E-05 3

-1.33144093E-08 4.33768865E-12 3.83956496E+03 3.39437243E+00 9.98945000E+03 4

CH2O L 8/88H 2C 1O 1 00G 200.000 3500.000 1000.000 1

1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14 2

-1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05 3

-3.79285261E-08 1.31772652E-11-1.43089567E+04 6.02812900E-01 1.00197170E+04 4

C2H2 L 1/91C 2H 2 00 00G 200.000 3500.000 1000.000 1

4.14756964E+00 5.96166664E-03-2.37294852E-06 4.67412171E-10-3.61235213E-14 2

2.59359992E+04-1.23028121E+00 8.08681094E-01 2.33615629E-02-3.55171815E-05 3

2.80152437E-08-8.50072974E-12 2.64289807E+04 1.39397051E+01 1.00058390E+04 4

C2H3 L 2/92C 2H 3 00 00G 200.000 3500.000 1000.000 1

3.01672400E+00 1.03302292E-02-4.68082349E-06 1.01763288E-09-8.62607041E-14 2

3.46128739E+04 7.78732378E+00 3.21246645E+00 1.51479162E-03 2.59209412E-05 3

-3.57657847E-08 1.47150873E-11 3.48598468E+04 8.51054025E+00 1.05750490E+04 4

C2H4 L 1/91C 2H 4 00 00G 200.000 3500.000 1000.000 1

2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13 2

4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05 3

-6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00 1.05186890E+04 4

C2H5 L12/92C 2H 5 00 00G 200.000 3500.000 1000.000 1

1.95465642E+00 1.73972722E-02-7.98206668E-06 1.75217689E-09-1.49641576E-13 2

1.28575200E+04 1.34624343E+01 4.30646568E+00-4.18658892E-03 4.97142807E-05 3

-5.99126606E-08 2.30509004E-11 1.28416265E+04 4.70720924E+00 1.21852440E+04 4

HCCO SRIC91H 1C 2O 1 G 0300.00 4000.00 1000.00 1

0.56282058E+01 0.40853401E-02-0.15934547E-05 0.28626052E-09-0.19407832E-13 2

0.19327215E+05-0.39302595E+01 0.22517214E+01 0.17655021E-01-0.23729101E-04 3

0.17275759E-07-0.50664811E-11 0.20059449E+05 0.12490417E+02 4

C3H8 P11/94C 3H 8 0 0G 300.000 3000.000 1

0.75244152E+01 0.18898282E-01-0.62921041E-05 0.92161457E-09-0.48684478E-13 2

-0.16564394E+05-0.17838375E+02 0.92851093E+00 0.26460566E-01 0.60332446E-05 3

-0.21914953E-07 0.94961544E-11-0.14057907E+05 0.19225538E+02 4

NC3H7 P11/94C 3H 7 0 0G 300.000 3000.000 1

0.77097479E+01 0.16031485E-01-0.52720238E-05 0.75888352E-09-0.38862719E-13 2

0.79762236E+04-0.15515297E+02 0.10491173E+01 0.26008973E-01 0.23542516E-05 3

-0.19595132E-07 0.93720207E-11 0.10312346E+05 0.21136034E+02 4

ENDOFDATA

E.1.3 Transport
! ** Transport properties taken from **

!

! " An optimized kinetic model of H2/CO combustion"

! Davis, Joshi, Wang, and Egolfopoulos

! Proc. Comb. Inst. 30 (2005) 1283-1292

!

N2 1 97.530 3.621 0.000 1.760 4.000

H 0 145.000 2.050 0.000 0.000 0.000

H2 1 38.000 2.920 0.000 0.790 280.000

H2O 2 572.400 2.605 1.844 0.000 4.000

HO2 2 107.400 3.458 0.000 0.000 1.000

O 0 80.000 2.750 0.000 0.000 0.000

O2 1 107.400 3.458 0.000 1.600 3.800
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OH 1 80.000 2.750 0.000 0.000 0.000

CO 1 98.100 3.650 0.000 1.950 1.800

CO2 1 244.000 3.763 0.000 2.650 2.100

HCO 2 498.000 3.590 0.000 0.000 0.000

TCH2 1 144.000 3.800 0.000 0.000 0.000

CH3 1 144.000 3.800 0.000 0.000 0.000

CH4 2 141.400 3.746 0.000 2.600 13.000

CH2O 2 498.000 3.590 0.000 0.000 2.000

C2H2 1 209.000 4.100 0.000 0.000 2.500

C2H3 2 209.000 4.100 0.000 0.000 1.000

C2H4 2 280.800 3.971 0.000 0.000 1.500

C2H5 2 252.300 4.302 0.000 0.000 1.500

HCCO 2 150.000 2.500 0.000 0.000 1.000

NC3H7 2 266.800 4.982 0.000 0.000 1.000

C3H8 2 266.800 4.982 0.000 0.000 1.000

ENDDIFF

E.2 Reduced Hydrogen-N2O Mechanism

E.2.1 Chemistry
!H3-N2O-Air mechanism - BOWMAN-MILLER APPENDIX B (+ A FEW JES 3/93)

!Reduced model

ELEMENTS

H O N

END

SPECIES

H2 N2O O O2 OH H2O HO2 N H

NO HNO N2 NH N2H

END

REACTIONS

OH+H2=H2O+H 1.1700E+09 1.300 3626.000 ! 100 %

O+OH=O2+H 3.6100E+14 -0.500 0.000 ! 56 %

O+H2=OH+H 5.0600E+04 2.670 6290.000 ! 100 %

H+O2+M=HO2+M 3.6100E+17 -0.720 0.000 ! 67 %

H2O/18.6/, H2/2.9/, N2/1.3/

OH+HO2=H2O+O2 7.5000E+12 0.000 0.000 ! 33 %

H+HO2=OH+OH 1.4000E+14 0.000 1073.000 ! 78 %

2OH=O+H2O 6.0000E+08 1.300 0.000 ! 33 %

NH+NO=N2O+H 4.3300E+14 -0.500 0.000 ! 89 %

N2O+H=N2+OH 7.6000E+13 0.000 15200.000 ! 100 %

N2O(+M)=N2+O(+M) 1.3000E+11 0.000 59610.000 ! 100 %

LOW/6.94E23 -2.5 64995./

N2O+O=N2+O2 1.0000E+14 0.000 28020.000 ! 89 %

N2O+O=NO+NO 6.9200E+13 0.000 26630.000 ! 67 %

N2O+OH=N2+HO2 2.0000E+12 0.000 10000.000 ! 56 %

NH+N2O=HNO+N2 2.0000E+12 0.000 6000.000 ! 67 %

N2H+M=N2+H+M 2.0000E+14 0.000 2000.000 ! 67 %

N2H+O=N2O+H 1.0000E+14 0.000 0.000 ! 67 %

HNO+M=H+NO+M 1.5000E+16 0.000 48680.000 ! 56 %

H2O/10.0/, O2/2.0/, H2/2.0/

N+NO=N2+O 3.2700E+12 0.500 0.000 ! 78 %

N+O2=NO+O 6.4000E+09 1.000 6280.000 ! 56 %

END
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E.2.2 Thermodynamics
H2 REF ELEMENT RUS 78H 2 0 0 0G 200.000 6000.000 1000. 1

0.29328305E+01 0.82659802E-03-0.14640057E-06 0.15409851E-10-0.68879615E-15 2

-0.81305582E+03-0.10243164E+01 0.23443029E+01 0.79804248E-02-0.19477917E-04 3

0.20156967E-07-0.73760289E-11-0.91792413E+03 0.68300218E+00 0.00000000E+00 4

N2O L 7/88N 2O 1 0 0G 200.000 6000.000 1000. 1

0.48230729E+01 0.26270251E-02-0.95850872E-06 0.16000712E-09-0.97752302E-14 2

0.80734047E+04-0.22017208E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04 3

0.96819803E-08-0.29307182E-11 0.87417746E+04 0.10757992E+02 0.98141682E+04 4

O L 1/90O 1 0 0 0G 200.000 6000.000 1000. 1

2.54363697E+00-2.73162486E-05-4.19029520E-09 4.95481845E-12-4.79553694E-16 2

2.92260120E+04 4.92229457E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 2.99687009E+04 4

O2 REF ELEMENT RUS 89O 2 0 0 0G 200.000 6000.000 1000. 1

3.66096083E+00 6.56365523E-04-1.41149485E-07 2.05797658E-11-1.29913248E-15 2

-1.21597725E+03 3.41536184E+00 3.78245636E+00-2.99673415E-03 9.84730200E-06 3

-9.68129508E-09 3.24372836E-12-1.06394356E+03 3.65767573E+00 0.00000000E+00 4

OH HYDROXYL RADI IU3/03O 1.H 1. 0. 0.G 200.000 6000.000 1000. 1

2.83853033E+00 1.10741289E-03-2.94000209E-07 4.20698729E-11-2.42289890E-15 2

3.69780808E+03 5.84494652E+00 3.99198424E+00-2.40106655E-03 4.61664033E-06 3

-3.87916306E-09 1.36319502E-12 3.36889836E+03-1.03998477E-01 4.48613328E+03 4

H2O L 5/89H 2O 1 0 0G 200.000 6000.000 1000. 1

0.26770389E+01 0.29731816E-02-0.77376889E-06 0.94433514E-10-0.42689991E-14 2

-0.29885894E+05 0.68825500E+01 0.41986352E+01-0.20364017E-02 0.65203416E-05 3

-0.54879269E-08 0.17719680E-11-0.30293726E+05-0.84900901E+00-0.29084817E+05 4

HO2 L 5/89H 1O 2 0 0G 200.000 6000.000 1000. 1

0.41722659E+01 0.18812098E-02-0.34629297E-06 0.19468516E-10 0.17609153E-15 2

0.61818851E+02 0.29577974E+01 0.43017880E+01-0.47490201E-02 0.21157953E-04 3

-0.24275961E-07 0.92920670E-11 0.29480876E+03 0.37167010E+01 0.15096500E+04 4

N L 6/88N 1 0 0 0G 200.000 6000.000 1000. 1

0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226244E-10-0.20360983E-14 2

0.56133775E+05 0.46496095E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00 0.56104638E+05 0.41939088E+01 0.56850013E+05 4

N2 REF ELEMENT G 8/02N 2. 0. 0. 0.G 200.000 6000.000 1000. 1

2.95257637E+00 1.39690040E-03-4.92631603E-07 7.86010195E-11-4.60755204E-15 2

-9.23948688E+02 5.87188762E+00 3.53100528E+00-1.23660988E-04-5.02999433E-07 3

2.43530612E-09-1.40881235E-12-1.04697628E+03 2.96747038E+00 0.00000000E+00 4

H L 6/94H 1 0 0 0G 200.000 6000.000 1000. 1

0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

0.25473660E+05-0.44668285E+00 0.25000000E+01 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00 0.25473660E+05-0.44668285E+00 0.26219035E+05 4

NO RUS 89N 1O 1 0 0G 200.000 6000.000 1000. 1

3.26071234E+00 1.19101135E-03-4.29122646E-07 6.94481463E-11-4.03295681E-15 2

9.92143132E+03 6.36900518E+00 4.21859896E+00-4.63988124E-03 1.10443049E-05 3

-9.34055507E-09 2.80554874E-12 9.84509964E+03 2.28061001E+00 1.09770882E+04 4

HNO L12/89H 1N 1O 1 0G 200.000 3500.000 1000. 1

0.31655229E+01 0.30000862E-02-0.39436619E-06-0.38575815E-10 0.70807189E-14 2

0.11194426E+05 0.76477833E+01 0.45352475E+01-0.56853972E-02 0.18519850E-04 3

-0.17188273E-07 0.55583207E-11 0.11039881E+05 0.17431919E+01 0.12271645E+05 4

N2H T07/93N 2H 1 0 0G 200.000 6000.000 1000. 1

0.37667545E+01 0.28915081E-02-0.10416620E-05 0.16842594E-09-0.10091896E-13 2

0.28650697E+05 0.44705068E+01 0.43446927E+01-0.48497072E-02 0.20059459E-04 3

-0.21726464E-07 0.79469538E-11 0.28791973E+05 0.29779411E+01 0.30009829E+05 4
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E.2.3 Transport
! edited 20/06/00

H 0 145.000 2.050 0.000 0.000 0.000

H2 1 38.000 2.920 0.000 0.790 280.000

H2O 2 572.400 2.605 1.844 0.000 4.000

HNO 2 116.700 3.492 0.000 0.000 1.000 !(*)

HO2 2 107.400 3.458 0.000 0.000 1.000 !(*)

N 0 71.400 3.298 0.000 0.000 0.000 !(*)

N2 1 97.530 3.621 0.000 1.760 4.000

N2O 1 232.400 3.828 0.000 0.000 1.000 !(*)

NH 1 80.000 2.650 0.000 0.000 4.000

N2H 2 71.400 3.798 0.000 0.000 1.000 !(*)

NO 1 97.530 3.621 0.000 1.760 4.000

O 0 80.000 2.750 0.000 0.000 0.000

O2 1 107.400 3.458 0.000 1.600 3.800

OH 1 80.000 2.750 0.000 0.000 0.000

E.3 Reduced Hydrogen-Air Mechanism

E.3.1 Chemistry
ELEMENTS

H O N

END

SPECIES

H2 O2 H2O N2 H O OH HO2 H2O2

END

REACTIONS

!H2-O2 Chain Reactions

! Hessler, J. Phys. Chem. A, 102:4517 (1998)

H+O2=O+OH 3.547e+15 -0.406 1.6599E+4

! Sutherland et al., 21st Symposium, p. 929 (1986)

O+H2=H+OH 0.508E+05 2.67 0.629E+04

! Michael and Sutherland, J. Phys. Chem. 92:3853 (1988)

H2+OH=H2O+H 0.216E+09 1.51 0.343E+04

! Sutherland et al., 23rd Symposium, p. 51 (1990)

O+H2O=OH+OH 2.97e+06 2.02 1.34e+4

!H2-O2 Dissociation Reactions

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

H2+M=H+H+M 4.577E+19 -1.40 1.0438E+05

H2/2.5/ H2O/12/

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

O+O+M=O2+M 6.165E+15 -0.50 0.000E+00

H2/2.5/ H2O/12/

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

O+H+M=OH+M 4.714E+18 -1.00 0.000E+00

H2/2.5/ H2O/12/

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

!H+OH+M=H2O+M 2.212E+22 -2.00 0.000E+00

H+OH+M=H2O+M 3.800E+22 -2.00 0.000E+00

H2/2.5/ H2O/12/

!Formation and Consumption of HO2

! Cobos et al., J. Phys. Chem. 89:342 (1985) for kinf
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! Michael, et al., J. Phys. Chem. A, 106:5297 (2002) for k0

!******************************************************************************

! MAIN BATH GAS IS N2 (comment this reaction otherwise)

!

H+O2(+M)=HO2(+M) 1.475E+12 0.60 0.00E+00

LOW/6.366E+20 -1.72 5.248E+02/

TROE/0.8 1E-30 1E+30/

H2/2.0/ H2O/11./ O2/0.78/

!******************************************************************************

!

!H+O2(+M)=HO2(+M) 1.475E+12 0.60 0.00E+00

! LOW/9.042E+19 -1.50 4.922E+02/

! TROE/0.5 1E-30 1E+30/

! H2/3.0/ H2O/16/ O2/1.1/

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986) [modified]

HO2+H=H2+O2 1.66E+13 0.00 0.823E+03

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986) [modified]

HO2+H=OH+OH 7.079E+13 0.00 2.95E+02

! Baulch et al., J. Phys. Chem. Ref Data, 21:411 (1992)

HO2+O=O2+OH 0.325E+14 0.00 0.00E+00

! Keyser, J. Phys. Chem. 92:1193 (1988)

HO2+OH=H2O+O2 2.890E+13 0.00 -4.970E+02

!Formation and Consumption of H2O2

! Hippler et al., J. Chem. Phys. 93:1755 (1990)

HO2+HO2=H2O2+O2 4.200e+14 0.00 1.1982e+04

DUPLICATE

HO2+HO2=H2O2+O2 1.300e+11 0.00 -1.6293e+3

DUPLICATE

! Brouwer et al., J. Chem. Phys. 86:6171 (1987) for kinf

! Warnatz, J. in Combustion chemistry (1984) for k0

H2O2(+M)=OH+OH(+M) 2.951e+14 0.00 4.843E+04

LOW/1.202E+17 0.00 4.55E+04/

TROE/0.5 1E-30 1E+30/

H2/2.5/ H2O/12/

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

H2O2+H=H2O+OH 0.241E+14 0.00 0.397E+04

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

H2O2+H=HO2+H2 0.482E+14 0.00 0.795E+04

! Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)

H2O2+O=OH+HO2 9.550E+06 2.00 3.970E+03

! Hippler and Troe, J. Chem. Phys. Lett. 192:333 (1992)

H2O2+OH=HO2+H2O 1.000E+12 0.00 0.000

DUPLICATE

H2O2+OH=HO2+H2O 5.800E+14 0.00 9.557E+03

DUPLICATE

END

E.3.2 Thermodynamics
THERMO ALL

300.0 1000.0 5000.0

H 120186H 1 G 0300.00 5000.00 1000.00 1

2.50000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

2.54716270E+04-4.60117638E-01 2.50000000E+00 0.00000000E+00 0.00000000E+00 3
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0.00000000E+00 0.00000000E+00 2.54716270E+04-4.60117608E-01 4

O 120186O 1 G 0300.00 5000.00 1000.00 1

2.54205966E+00-2.75506191E-05-3.10280335E-09 4.55106742E-12-4.36805150E-16 2

2.92308027E+04 4.92030811E+00 2.94642878E+00-1.63816649E-03 2.42103170E-06 3

-1.60284319E-09 3.89069636E-13 2.91476445E+04 2.96399498E+00 4

OH S 9/01O 1H 1 0 0G 200.000 6000.000 1000. 1

2.86472886E+00 1.05650448E-03-2.59082758E-07 3.05218674E-11-1.33195876E-15 2

3.68362875E+03 5.70164073E+00 4.12530561E+00-3.22544939E-03 6.52764691E-06 3

-5.79853643E-09 2.06237379E-12 3.34630913E+03-6.90432960E-01 4.51532273E+03 4

H2 121286H 2 G 0300.00 5000.00 1000.00 1

2.99142337E+00 7.00064411E-04-5.63382869E-08-9.23157818E-12 1.58275179E-15 2

-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07 3

-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00 4

O2 121386O 2 G 0300.00 5000.00 1000.00 1

3.69757819E+00 6.13519689E-04-1.25884199E-07 1.77528148E-11-1.13643531E-15 2

-1.23393018E+03 3.18916559E+00 3.21293640E+00 1.12748635E-03-5.75615047E-07 3

1.31387723E-09-8.76855392E-13-1.00524902E+03 6.03473759E+00 4

H2O 20387H 2O 1 G 0300.00 5000.00 1000.00 1

2.67214561E+00 3.05629289E-03-8.73026011E-07 1.20099639E-10-6.39161787E-15 2

-2.98992090E+04 6.86281681E+00 3.38684249E+00 3.47498246E-03-6.35469633E-06 3

6.96858127E-09-2.50658847E-12-3.02081133E+04 2.59023285E+00 4

HO2 L 5/89H 1O 2 00 00G 200.000 3500.000 1000.000 1

4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2

1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3

-2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 1.00021620E+04 4

H2O2 120186H 2O 2 G 0300.00 5000.00 1000.00 1

4.57316685E+00 4.33613639E-03-1.47468882E-06 2.34890357E-10-1.43165356E-14 2

-1.80069609E+04 5.01136959E-01 3.38875365E+00 6.56922581E-03-1.48501258E-07 3

-4.62580552E-09 2.47151475E-12-1.76631465E+04 6.78536320E+00 4

AR 120186AR 1 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.04366001E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366001E+02 4

N2 121286N 2 G 0300.00 5000.00 1000.00 1

0.02926640E+02 0.01487977E-01-0.05684761E-05 0.01009704E-08-0.06753351E-13 2

-0.09227977E+04 0.05980528E+02 0.03298677E+02 0.01408240E-01-0.03963222E-04 3

0.05641515E-07-0.02444855E-10-0.01020900E+05 0.03950372E+02 4

HE 120186HE 1 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.09153489E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.09153488E+01 4

CO 121286C 1O 1 G 0300.00 5000.00 1000.00 1

0.03025078E+02 0.01442689E-01-0.05630828E-05 0.01018581E-08-0.06910952E-13 2

-0.01426835E+06 0.06108218E+02 0.03262452E+02 0.01511941E-01-0.03881755E-04 3

0.05581944E-07-0.02474951E-10-0.01431054E+06 0.04848897E+02 4

CO2 121286C 1O 2 G 0300.00 5000.00 1000.00 1

0.04453623E+02 0.03140169E-01-0.01278411E-04 0.02393997E-08-0.01669033E-12 2

-0.04896696E+06-0.09553959E+01 0.02275725E+02 0.09922072E-01-0.01040911E-03 3

0.06866687E-07-0.02117280E-10-0.04837314E+06 0.01018849E+03 4

END

E.3.3 Transport
CO 1 98.100 3.650 0.000 1.950 1.800
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H2O 2 572.400 2.605 1.844 0.000 4.000

H2 1 38.000 2.920 0.000 0.790 280.000

CO2 1 244.000 3.763 0.000 2.650 2.100

O2 1 107.400 3.458 0.000 1.600 3.800

H2O2 2 107.400 3.458 0.000 0.000 3.800

OH 1 80.000 2.750 0.000 0.000 0.000

HO2 2 107.400 3.458 0.000 0.000 1.000 ! *

H 0 145.000 2.050 0.000 0.000 0.000

O 0 80.000 2.750 0.000 0.000 0.000

AR 0 136.500 3.330 0.000 0.000 0.000

N2 1 97.530 3.621 0.000 1.760 4.000

HE 0 10.200 2.576 0.000 0.000 0.000 ! *

! Transport data for H2/O2 reaction mechanism

! Li, J., Zhao, Z., Kazakov, A., and Dryer, F.L. "An Updated Comprehensive Kinetic Model

! for H2 Combustion", Fall Technical Meeting of the Eastern States Section of the

! Combustion Institute, Penn State University, University Park, PA, October 26-29, 2003.
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