
On the Weil-étale Cohomology of S-integers

Thesis by

Yi-Chih Chiu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended October 5, 2011)



ii

c© 2012

Yi-Chih Chiu

All Rights Reserved



iii

Acknowledgments

I would sincerely like to thank my supervisor Matthias Flach for his patience and

guidance throughout my graduate studies. It has been a pleasure to work with him

and his expertise and advice have been invaluable. Without his helpful instructions

and constant guidance, this work would not have been possible.

I am grateful to Tom Graber, Andrei Jorza, and Elena Mantovan for agreeing to

serve on my dissertation committee.

I would also like to thank the Department of Mathematics at Caltech for its

support during my graduate study program and for providing a great environment

for research.

Finally, and most of all, I want to thank my family. My parents have always been

a tireless source of love and support; I dedicate this thesis to them.



iv

Abstract

In this thesis, we first briefly introduce the history of the Weil-étale cohomology theory

of arithmetic schemes and review some important results established by Lichtenbaum,

Flach and Morin. Next we generalize the Weil-étale cohomology to S-integers and

compute the cohomology for constant sheaves Z or R. We also define a Weil-étale

cohomology with compact support Hc(YW ,−) for Y = SpecOF,S where F is a number

field, and computed them. We verify that these cohomology groups satisfy the ax-

ioms state by Lichtenbaum. As an application, we derive a canonical representation of

Tate sequence from RΓc(YW ,Z). Motivated by this result, in the final part, we define

an étale complex RGm, such that the complexes RHomZ(RΓ(Uét, RGm), Z)[−2] and

τ≤3 RΓc(UW ,Z) are canonically quasi-isomorphic for arbitrary étale U over SpecOF .

This quasi-isomorphism provides a possible approach to define the Weil-étale coho-

mology for higher dimensional arithmetic schemes, as the Weil groups are not involved

in the definition of RGm.
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Introduction

Stephen Lichtenbaum conjectured that there exists a new cohomology theory, called

Weil-étale cohomology, for arbitrary arithmetic schemes X, such that its cohomologies

are connected to the zeta function of X. In [9], he defined a prototype of such a

cohomology theory for number rings. The main idea is replacing the role of Galois

groups in the étale cohomology by Weil groups. There is still no exact definition for

the Weil-étale cohomology. Let φ : X ↪→ X be a fixed Nagata and Artin-Verdier style

compactification, and here we list the axioms suggested by Lichtenbaum:

a) The Weil-étale cohomology groups with compact support Hq
c (X,Z) := Hq(X,φ!Z)

are finitely generated abelian groups that equal to 0 almost everywhere, and in-

dependent of the choice of compactification of X.

b) If R̃ denotes the sheaf of real valued functions on X, then Hq
c (X, R̃) and Hq

c (X,Z)

are independent of the choice of φ. Moreover, the natural map from Hq
c (X,Z)⊗Z

R to Hq
c (X, R̃) is an isomorphism.

c) There exists an element ψ ∈ H1(X,R) such that the complex

`ψ // H i
c(X, R̃)

`ψ // H i+1
c (X, R̃)

`ψ //

is exact. In particular,

∑
i≥0

(−1)i dimH i
c(X, R̃) = 0.

d) ords=0ζX(s) =
∑
i≥0

(−1)ii rankZH
i
c(X,Z).
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e) The Euler characteristic χc(X)(Def. 3.1) of the complex Hq
c (X,Z) is well-defined,

and the leading coefficient of the Taylor’s expansion of ζX(z) at z = 0 is ±χc(X).

The cohomology theory H∗(XW ,−) for X = SpecOF , where F is a number field,

defined in [9], is an inductive limit of cohomology for a projective system of sites.

And the above axioms hold only under the assumption H i(XW ,Z) = 0 for all j > 3.

However, Matthias Flach [5] proved that the cohomology group H i(XW ,Z) is an

infinitely generated abelian group for even i ≥ 4, and is vanishing for odd i ≥ 5.

In a recent paper [6], by modifying the prototype defined by Lichtenbaum, Flach

and Baptiste Morin constructed a topos that recovers the Lichtenbaum Weil-étale

cohomology groups for number fields. By this result, one may avoid the limit process

for the case of number fields. However, we still need to truncate the cohomologies of

higher degrees.

Recall that Lichtenbaum only defined the Weil-étale cohomology for SpecOF , but

one can generalize it to its arbitrary open subschemes Y = SpecOF,S in an obvious

way. In Chapter 2, we compute the Weil-étale cohomology of Y with Z-coefficients and

give a brief review of Morin’s results concerning Weil-étale cohomology. From Chapter

3, we assume that the ground field F is totally imaginary. Under this assumption,

in section 3.1, we show that the Weil-étale cohomology groups with compact support

for S-integers with Z or R̃-coefficients are as follows,

Hp
c (YW ,Z) =



0 p = 0,∏
S Z/Z p = 1,

Pic(Y )D × Hom(US,Z) p = 2,

µDF p = 3,

and

Hp
c (YW , R̃) =


∏

S R/R p = 1, 2,

0 otherwise.
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The computation is based on Theorem 3.1 that there exists an exact triangle

RΓc(Yét,Z)→ τ≤3 RΓc(YW ,Z)→ Hom(US,Q)[−2]→ .

In section 3.2, we show that all the axioms (a)-(d) hold for S-integers if we truncate

the cohomologies of higher degrees. The proof relies on that in Lichtenbaum’s original

paper and a closer look of the effect of the cup product by ψ.

Recall that for any Galois extension F/L of number fields with Galois group G,

and a G-stable subset S of valuation of F containing all the infinite places and those

ramified in F/Q and so that Pic(OF,S) = 0, then, by using class field theory, one can

define an exact sequence ([15] Théorèm 5.1)

0→ US → A→ B → XS → 0,

where US is the group of S-units, XS := {(xv) ∈
∐

v∈S Z|
∑
xv = 0} and A and

B are finitely generated cohomologically trivial Z[G]-modules. We call the complex

A → B the Tate sequence associated to S. The Tate sequence is not unique, but

one can choose the complex ΨS : A → B so that it represents a certain canonical

class of Ext2
G(XS, US). We denote by Ψ̃S the complex A → B → XS ⊗Z Q and

(−)D := RHomZ(−,Q/Z) = HomZ(−,Q/Z). Burns and Flach([2] Prop. 3.1) showed

that there is a map of complexes,

Ψ̃S → RΓc(Yét,Z)D[−3],

inducing an isomorphism on H i for i 6= 0 and the inclusion US ↪→ ÛS := US ⊗Z Ẑ

on H0. In section 3.3, we are able to show that τ≤3RΓc(YW ,Z) gives a canonical

description of the complex ΨS in the sense that there is a quasi-isomorphism,

ΨS
qis−→ RHom

(
τ≤3 RΓc

(
YW ,Z

)
,Z
)

[−2]. (1)

In the final section, we construct a canonical complex RGm of Y ét-sheaves as



4

an element of Ext2
Y ét

(X̃ ,Gm), where X̃ is the Y ét-sheaf associated to the presheaf

Uét 7→ XU−U . We show that

H i(Uét, RGm) = H i
(

RHomZ(τ≤3 RΓc(UW ,Z) ,Z)[−2]
)
, ∀ i ≥ 0,

for any étale U → SpecOF . Therefore, it may be possible to define certain Weil-étale

cohomology for arbitrary arithmetic scheme by generalizing RGm.

In the final section, we prove that, in fact, there is a canonical quasi-isomorphism:

RΓ(Uét, RGm)
qis−→RHomZ(τ≤3 RΓc(UW ,Z) ,Z)[−2] in D(Z[G]),

for any étale U → SpecOF , when S is stable under the action of G. When U small

enough so that the Tate sequence exists, this together with (1) show that

RΓ(Uét, RGm) ' ΨS.

When G is the trivial group, this implies the quasi-isomorphism,

RHom(τ≤3 RΓc(UW ,Z),Z)[−2] ' RΓ(Uét, RGm),

in D(Z), for any étale U → SpecOF .

Therefore, one sees that the the complex RΓ(Uét, RGm) generalizes the Tate se-

quences and its Z-dual recovers the truncated Weil-étale cohomology groups of S-

integers.

Also, this suggests the following duality property:

Conjecture 1. There is a (perfect) paring

RHomUét(F , RGm)× τ≤3 RΓc(UW ,F )→ Z[−2],

for a certain class of étale sheaf F on U .

The reason that it is hard to generalize Lichtenbaum’s prototype to higher dimen-
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sional arithmetic schemes X is that there are no Weil groups for higher dimensional

fields. However, Theorem 4.3 shows us a probability to generalize Lichtenbaum’s

prototype, because we do not use Weil groups when defining the complex RGm. One

direct conjecture is that

Conjecture 2. For an arithmetic scheme X of dimension n, one may define a

complex RZ(n) in Ext2
X

(Z(n),F •(n)), so that the Z-dual of RΓ(X et, RZ(n)) defines

certain Weil-étale cohomology theory, where F •(n) is a complex of étale sheaves that

depends on n.
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Notation

Here we list the notations that are used frequently throughout this thesis.

• F is a number field if not specified, GF is its absolute Galois group. G is reserved

to be the Galois group of any Galois extension F/L.

• OF : the ring of integers of F .

• SpecOF : the Artin-Verdier compactification of SpecOF , which, as a set, is the

same as the set of the equivalence classes of valuation of F (the trivial valuation

is included). We say a subset of SpecOF is open if it has finite complement.

• For any open subset U of SpecOF , we denote by

– U := SpecOF ,

– K(U) : the function field of U ,

– U∞ (resp. Uf ): the set of points of U corresponding to infinite (resp. finite)

places of K(U).

• For any field K,MK is the collection of equivalence classes of valuations of K.

• v0: the trivial valuation of F .

• S: a finite subset of MK . We always assume that it contains all the infinite

places then S = SpecOF − SpecOF,S as sets.

• S∞(resp. Sf ): the subset of all the infinite (resp. finite) places in S.

• US: the group of units of OF,S.



7

• (−)∨ := HomZ(−,Z), (−)D := RHomZ(−,Q/Z) = HomZ(−,Q/Z) and (−)D :=

Homcont(−,R/Z) the Pontryagin dual.

• XS: = {(xv) ∈
∐

v∈S Z|Σvxv = 0}. Hence X∨S =
∐

S Z /Z and (X∨S )∨ = XS.

• CF : the usual idèle class group CF (resp. F×) when the field F is global (resp.

local).

• For any site C, Sh(C) is the category of abelian sheaves on C.
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Chapter 1

Preliminary

1.1 The Weil Groups for Number Fields and Local

Fields

1.1.1 Weil Groups

Idèle class groups and Galois groups are the central objects in class field theory. In

1951, Weil introduced the Weil groups, which carry the information of both. There

are many equivalent ways to define the Weil groups. (cf. [14] sec.1). A brief definition

of the Weil group for F (global or local) is as follows : let K/F be any finite Galois

extension, and the relative Weil group WK/F be the extension

1→ CK → WK/F → Gal(K/F )→ 1

representing the canonical generator αK/F of the group

H2(Gal(K/F ), CK) ∼=
1

[K : F ]
Z /Z.

By abuse of language, the absolute Weil group for F is defined as

WF := lim←−
K/F

WK/F ,

where the index runs over all finite Galois extension K/F . This induces a contin-
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uous morphism αF : WF → GF with a dense image, and we know that there is an

isomorphism of topological groups rF : CF
∼−→ W ab

F ([1] p.238-239).

From now on we restrict F to be a number field. Let K/F be a finite Galois

extension, and S be a finite set of places of K containing all the infinite ones and

those ramified in K/F , we define WK/F,S to be the extension CK,S := CK/UK,S by

Gal(K/F ) that represents the canonical class αK/F,S of the group

H2(Gal(K/F ), CK,S) ∼= H2(Gal(K/F ), CK),

where UK,S is the idèles of the form (av) in which av = 1 (resp. av ∈ O×Kv) for

all v ∈ S (resp. v /∈ S). It is easy to see that WK/F,S
∼= WK/F/UK,S and then

W ab
K/F,S

∼= CK,S. Together with the map log | · | : CK,S → R, one defines a map

lL,S : WK/F,S → R. Further, we know that WF = lim←−K/F,SWK/F,S. ([9] Lemma 3.1),

and there is a canonical map lv0 : WF → R.

1.1.2 Weil Maps

For any non-trivial place v of F , we choose a place v of F lying over v once for all,

and denote by Dv the associated decomposition group and Iv the inertia group. This

induces an embedding ov : Dv = GFv → GF . We set Gk(v) := Dv/Iv. Note that then

Gk(v) = 1 for any infinite place v. By the construction of Weil groups, there exists

a so-called Weil map Θv : WFv → WF , which is also an embedding such that the

following diagram commutes.

WFv
Θv //

αFv
��

WF

αF

��
GFv

ov // GF .

For any non-trivial place v, the composition lv : WFv

p−→ W ab
Fv

∼−→ F×v
|.|−→ R has

kernel p−1(O×Fv). Thus, Wk(v) := WFv/p
−1(O×Fv) ∼= Z (resp. ∼= R) when v - ∞ (resp.
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v|∞.). We denote the quotient WFv → Wk(v) by πv. Summarily, the diagram

WFv

qv //

Θv
��

Wk(v)

lv
��

WF

lv0 // R,

(1.1)

is commutative. Note that, for any finite place v, lv sends the generator σv of Wk(v)

to logN(v).

Consider the commutative diagram

WFv
� � //

����

WF

����
WKw/Fv

// WK/F,S = WK/F/UK,S.

It is not hard to show that the image of WFv in WK/F,S is isomorphic to WKw/Fv (

resp. WKw/Fv/O×Kw) when v ∈ S (resp. v /∈ S). This implies the canonical map

πv : WFv → Wk(v) factors through W̃Fv , where W̃Fv is the image of WFv in WK/F,S.

We denote qv : W̃Fv → Wk(v) and θv : W̃Fv → WK/F,S.

1.2 The Classifying Topos and Cohomology of a

Topological Group

Let G be a topological group. We denote by BsmG the small classifying topos of G the

category of discrete sets on which G acts continuously, and by BTopG the classifying

site of G, the category of G-topological spaces endowed with the local section topology

Jls (see [9] sec. 1), and BG := Sh(BG,Jls) the topos of sheaves on this site. Let eG

be the final object of BG, we define the global section functor ΓG as HomBG(eG,−).

For any abelian object A of BG, we define the cohomology of G with coefficient A by

H i(G,A) := Ri(ΓG)(A).
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Let A be any continuous G-module, and A : X → HomBG(X,A), then H i(G,A)

coincides with the usual group cohomology group H i(G,A) when G is a profinite

group ([9] corollary 2.4).

Theorem 1.1 ( [9] Thm. 3.6 & [5] Thm. 10.1).

Hq(WF ,Z) =



Z q = 0,

C1,D
F q = 2,

0 odd q,

is of infinite rank even q ≥ 4,

where C1
F is the idèle class group with norm one and D := Homconti(−,R/Z) the

Pontryagin dual.

1.3 Artin-Verdier Topology

1.3.1 The Definition

For any subset U of X, one can define a so-called Artin-Verdier étale site EtU , which

generalizes the usual étale topology for schemes. The objects in EtU are pairs V =

(Vf , V∞) where Vf (resp. V∞) is a subset of the finite (resp. infinite) places of K(Vf )

and Vf (resp. V∞) is étale over Uf (resp.U∞). We say that V is étale over U if V is

an object of EtU .

A morphism from V ′ = (V ′f , V
′
∞) to V is an Uf -étale morphism f : V ′ → V that

induces a map sending V ′∞ to V∞. The fibre product is defined componentwise in the

obvious way, and a covering is a surjective family. We denote by Sh(Uét) the category

of abelian sheaves on the site EtU .

Let j : V ↪→ U be nonempty open subsets of X and j−1W = W ×U V is a map

of topology. We have an embedding j∗ : Sh(Vét)→ Sh(Uét). For each x ∈ U , there is
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an embedding of closed point ix : Sh(xét) → Sh(Uét). In this case Z := U − V has

only finitely many points, and it is easy to see that Sh(Zét) =
∐

v∈Z Sh(vét) where

Sh(vét) = Bsm
Gk(v)

. We set Fη = α∗F , where α : SpecK(U)→ U .

Proposition 1.1. The category Sh(Uét) of abelian sheaves is equivalent to the cat-

egory that consists of (F , {Ax}U−V , {φx : Ax → F Ix
η }U−V ) where Ax is a con-

tinuous Gk(x)-module and φx is an Gk(x)-map. ( The morphisms between objects

(F , {Ax}, {φx}) and (F ′, {A′x}, {φ′x}) are collection of morphisms {f : F → F ′, {fx :

Ax → A′x}} such that (i∗xf)(φx) = φ′x(fx) for all x ∈ U − V .)

Proof. This is just a generalization of [18] section 1.3.3. By the same argument we

are led to prove the following condition holds.

a. ix,∗ and j∗ are fully faithful,

b. j∗F = 0 if and only if F is of the form Πx∈U−VMx where Mx ∈ Sh(x).

Condition (a) follows from the fact ix,∗M(W ) = Πx×UWM and j∗j∗ = id. To see

condition (b) is true, first note that the sufficient is obvious. For the necessary, let

(W, y) → (U, x) be any étale morphism and W → U together with (Ui → U) be a

covering of U , then (W, y)→ (U, x) together with (Ui → U) form a covering of (U, x).

By the sheaves condition and j∗F = 0, we see that F ((W, y)) ' F ((U, x)), which

shows that i∗xF ' Mx where Mx = F ((U, x)). Therefore F is of the desired form.

And the result follows from the above and [3] III, Prop. 2.3.

Remark. In the proof of the above property, we actually proved that F ∈ Sh(Uét)

is vanishing if and only if the stalks Fx = 0 for all x ∈ U . Moreover, to verify the

exactness of complexes of étale sheaves it is enough to check it on stalks.

As the open-closed decomposition of étale sheaf for schemes, there are functors

Sh(Uét)

j! //

j∗ //
Sh(Vét),

j∗oo Sh(xét)

ix,∗ //

ix,! //
Sh(Vét),

i∗xoo Sh((V∞)ét)
k∗ //

Sh(Vét)k∗oo
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such that each functor is left adjoint to the one below it. Explicitly, let F =

(G , {Ax}, {φx}) ∈ Sh(Uét) then

j!G = (G , {0}, {0}),

j∗F = G ,

j∗G = (G , {G Ix
η }, {id}),

k∗F = {Ax},

k∗{Ax} = (0, {Ax}, {0}),

k!F = {kerφx}.

Some immediate properties:

Proposition 1.2. a. j!, j
∗, k∗ and k∗ are exact,

b. j∗, j∗, k∗ and k! preserve injectives,

c. There is a short exact sequence

0→ j!G → j∗G → k∗k
∗j∗G → 0.

Proof. Part (a) follows from the formula above and part (b) follows directly from (a)

because any functors listed in (b) has an exact right adjoint. The exact sequence in

part (c) is the same as the exact sequence

0→ (G , 0, 0)→ (G , {G Ix
η }, {id})→ (0, {G Ix

η }, 0)→ 0.

Remark. By the construction of mapping cylinder, the section function Γ(−,F ) is

the sheaf sending an étale W over U to the abelian group

j∗j
∗F (W)×k∗k∗j∗j∗F (W) k∗k

∗F (W).
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We denote by Gm ∈ Sh(Uét) to be the j∗Gm, where j : U0 → U .

Because Sh((U0)ét) and Sh((U∞)ét) have enough injectives and j∗ and k∗ are both

preserve injective, so Sh(Uét) has enough injectives as well. This enables us to define

right derived functors.

For any F ∈ Sh(Uét), we define Hp(Uét,F ) = RpΓ(−,F ) and Hp
x(Uét,F ) =

Rpk!
xF . Then applying for Ext∗Uét(−,F ) to the short exact sequence,

0→ j!Z→ j∗Z→ k∗k
∗j∗Z→ 0,

we get a long exact sequence,

→ Hp−1(Vét,F |V )→
∐

(U−V )ét

Hp
x(Uét,F )→ Hp(Uét,F )→ Hp(Vét,F |V )→ . (1.2)

Lemma 1.1.

Hp
x(Vét,F ) =


kerφx p = 0,

cokerφx p = 1,

Hp−1(Ix,Fη) p ≥ 2.

Corollary 1.1. Let U and V be the same as before, and F ∈ Sh(Uét). If V − U

consists of only complex places, then

Hp(Vét, j∗F ) ' Hp(Uét,F ).

Corollary 1.2. Assume that F is totally imaginary. Let U be any open subset of

X = SpecOF and S its complement, then

Hp(Uét,Gm) =



O×F,S p = 0,

P ic(OF,S) p = 1,

{elements of Br F with no invarants in U} p = 2,

Q/Z p = 3 and U ⊃ Xf ,

0 otherwise.

Proof. By the previous Lemma, we have Hp(Uét,Gm) = Hp((U ∩X)ét,Gm).
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Corollary 1.3. Under the same assumption of the previous corollary. Let v be a

place of F , then

a. H3
v (X ét,Gm) = 0 if v is complex,

b. The morphism H3
v (X ét,Gm) → H3(X ét,Gm) is an isomorphism if v is a finite

place.

Proof. Part (a) follows from Lemma 1.1 directly.

To see part (b), we set U = X − v and V = X in the long exact sequence (1.2)

and note that, by the previous corollary, H2(Uét,Gm) = H3(Uét,Gm) = 0. Thus, the

morphism H3
v (X ét,Gm)→ H3(X ét,Gm) has to be an isomorphism.

1.3.2 The Norm Maps

Let Y = SpecOK , where K is a finite extension of F , and π0 : Y0 → X0 the natural

projection. There is also a natural projection π∞ : Y∞ → X∞ sending a valuation to

the unique one it lays above. We can combine these two projections into π : Y → X,

which indeed defines a morphism between sites. More general, let U = (Uf ;U∞) be

any open subscheme of X and V = π−1(U) an open subscheme of Y , then we also

denote by π the fibre product of morphism π × (V ↪→ X) : V → U . From now on, j

denotes either Uf → U or Vf → V and i denotes either U∞ → U or V∞ → V .

Proposition 1.3. a. j∗π∗ = π∗j
∗,

b. i∗xπ∗k∗k
∗F =

∏
y/x Fy.

c. π∗ and π∗ are exact.

Proof. For any étaleWf → Uf , j
∗π∗F (Wf ) = π∗F (Wf ) = F (Wf×UV ) = F (Wf×Uf

Vf ) = π∗j
∗F (Wf ), which proves the part (a).
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For proving part (b), note that k∗k
∗F = (0, {Fy}y, 0), and then

i∗xπ∗k∗k
∗F = lim−→(W,w)→(Uf ,x)

π∗k∗k
∗F ((W,w))

= lim−→(W,w)→(Uf ,x)
(0, {Fy}y, 0)(π−1((W,w)))

= lim−→(W,w)→(Uf ,x)

∏
y/x

Fy

=
∏
y/x

Fy.

As π is a morphism between sites, π∗ is exact. To see π∗ is exact, suppose F ∈

Sh(Vét) has decomposition (G , {Gv}, {φv}), then π∗F is the sheaf sending W to

i∗xπ∗F = lim−→(W,w)
π∗j∗j

∗G ((W,w))×π∗k∗k∗j∗j∗G ((W,w)) π∗k∗k
∗G ((W,w)),

where the limit runs over all étale (W,w)→ U than sends w to x.

Since taking stalks commute with fibre products, so the above direct limit equals

to

i∗xπ∗j∗j
∗G ×i∗xπ∗k∗k∗j∗j∗G i∗xπ∗k∗k

∗G .

By part (b), we know that i∗xπ∗k∗k
∗G =

∏
y/x Gy and i∗xπ∗k∗k

∗j∗j
∗G =

∏
y/x G

Iy
η .

Also observe that

i∗xπ∗j∗j
∗G = i∗xj∗π∗j

∗G = f ∗π∗G (SpecF
Ix

) = π∗f
′∗G (SpecF

Ix
) = f ′∗G (

∏
y/x

SpecK
Iy

) =
∏
y/x

G Iy
η ,

where f : SpecF
Ix → U and f ′ and π′ are defined by the fibre product

∏
y/x SpecK

Iy f ′ //

π′

��

V

π

��
SpecF

Ix f // U
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Therefore,

i∗xπ∗F =
∏
y/x

G Iy
η ×∏

y/x G
Iy
η

∏
y/x

Gy =
∏
y/x

Gy =
∏
y/x

Fy,

and so the functor i∗xπ∗ is exact for all x ∈ U∞. Together with the fact, j∗π∗ = π∗j
∗

is exact, we see that π∗ have to be exact.

One can generalize the classical norm map K× → F× to the level of étale sheaf, ie.

N : π∗Gm,Vf → Gm,Uf . Applying j∗ to N , where j : Uf → U , one obtains a morphism

π∗Gm,V → Gm,U . We also denote this morphism by N . For any F ∈ Sh(Vét), we

define a norm map N as the following composition,

N(F ) : RHomSh(Vét)(F , Gm,V )
adj−→ RHomSh(Uét)(π∗F , π∗Gm,V )

norm−−−→ RHomSh(Uét)(π∗F ,Gm,U),

recalling thatRiπ∗ = 0 for i > 0 as π∗ is exact. Here [A,B] denotes RHomD(Sh(Vét))(A,B)

for A,B ∈ Sh(Vét).

Theorem 1.2 (Norm Theorem). Let π : V → U be the same as before, and as-

sume that F is totally imaginary, then N(j∗F ) is a quasi-isomorphism for all Z-

constructible sheaf F on V0.

Proof. The norm functor transfers the short exact sequence,

0→ j!F → j∗F → k∗k
∗j∗F → 0,

to the morphism of exact triangles

RHomSh((Vf )ét)(F ,Gm,Vf
) //

N1

��

RHomSh(Vét)(j∗F ,Gm,V ) //

N2

��

RHomSh(V )(k∗k∗j∗F ,Gm,V ) //

N3

��
RHomSh((Uf )ét)(π∗F ,Gm,Uf

) // RHomSh(Uét)(π∗j∗F ,Gm,U ) // RHomSh(Uét)(π∗k∗k
∗j∗F ,Gm,U ) //

(Note j! commutes with π∗.)

By [10] III.3.9, N1 is a quasi-isomorphism and [4] Lemma 3.8 ensures that both

of the domain and the codomain of N3 are vanishing. Therefore, N2 is a quasi-

isomorphism.
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1.3.3 The Étale Cohomology with Compact Support

There are many kinds of étale cohomologies with compact support. Let φ : U =

SpecOL,S → SpecOL. We denote by H i
c(Uét,F ) := H i((SpecOL)ét, φ!F ) the coho-

mology with compact support, which is equivalent to be defined by the exact triangle

RΓc(Uét,F )→ RΓ(Uét,F )→
∏
w∈S

RΓ(Lw,F )→ .

One can define a modified cohomology with compact support, H̃ i
c(Uét,F ), by

replacing the complex RΓ(Lw,F ) in the above exact triangle by RΓTate(Lw,F ) for

each infinite places w.

Since Tate cohomology is isomorphic to the original cohomology for degree ≥ 1,

these two cohomologies with compact support are the same for degree ≥ 2. Moreover,

the difference between these two kinds of cohomologies is measured by the exact

triangle,

RΓc(Uét,F )→ R̃Γc(Uét,F )→
⊕
w∈S∞

RΓ∆(Lw,F )→,

where RΓ∆(Lw,F ) := cone(RΓ(Lw,F )→ RΓTate(Lw,F ))[−1].

Assume that L is totally imaginary and set F = Z, we have the following exact

triangle,

RΓc(Uét,Z)→ R̃Γc(Uét,Z)→
⊕
w|∞

Z [0]→, (1.3)

Artin-Verdier Duality

Consider the pairing

R̃Γc(Uét,F )× RHomUét(F ,Gm)→ RΓc(Uét,Gm)→ Q/Z[−3].

It induces a morphism

ÃV (F ) : RHomUét(F ,Gm)→ R̃Γc(Uét,F )D[−3].
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The Artin-Verdier duality theorem (cf. [10] Theorem 3.1) shows that H i(ÃV (Z)) is

an isomorphism for i ≥ 1 and H0(ÃV (Z)) : US ↪→ ÛS, which can be summarized in

an exact triangle

RΓ(Uét,Gm)→ R̃Γc(Uét,Z)D[−3]→ ÛS/US[0]→ . (1.4)

Together with the Q/Z-dual of (1.3), we obtain the following exact triangle

RΓ(Uét,Gm)→ RΓc(Uét,Z)D[−3]→ ÛS/US[0]⊕ (Πv|∞Q/Z)[−2]→ . (1.5)

Exact triangles (1.3), (1.4), and (1.5) will be used in the last part of chapter 4.
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Chapter 2

The Weil-Étale Cohomology of
S-integers

2.1 The Definition

We fix a number field F and set Y = SpecOF . Let K/F be a finite Galois extension

and S be a finite set of non-trivial valuations of F , containing all those which ramify

in K/F . The site TK/F,S was defined in [9] as follows:

The objects of TK/F,S are the collections

((Xv), (fv))v∈Y ,

where Xv is an Wk(v)-space, and fv : Xv → Xv0 is map of WFv -spaces. ( We regard

Xv as an WFv -space via πv, and Xv0 as an WFv -space via Θv). Further, we require

that the action of WF on Xv0 factors through WL/F,S.

Let X = ((Xv), (fv)) and X ′ = ((X ′v), (f
′
v)) be objects of TK/F,S, then Hom(X ,X ′)

is the collections of WFv -maps gv : Xv → X ′v such that gv0fv = f ′v0
gv for all v. And the

fibre product of two morphisms with the same codomain is defined componentwise.

The covering Cov(TK/F,S) consists of the family of morphisms {((Xi,v), (fi,v)) →

((Xv), (fv))}i such that {Xi,v → Xv}i is a local section covering of Xv for all v. We

denote T̃K/F,S the topos Sh(TK/F,S,Jls).

Clearly, ∗K/F,S = ((pt), (id)) is the final object of TK/F,S. For any abelian sheaf

FK,S on it, we define the cohomology Hp(TK/F,S,FK,S) by Hp(TK/F,S, ∗,FK,S).
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For each non-trivial place v, the map i−1
K,S,v : ((Xv)) 7→ Xv induces an embedding

of topoi iK,S,v : BWk(v)
→ T̃K/F,S. When v = v0, we denoted by jK,S the embedding

iK,S,v : BWK/F,S
→ T̃K/F,S.

For any finite Galois extension K ′ of K, and S ′ ⊃ S, the canonical morphism

p : WK′/F,S′ → WK/F,S defines a transition map tK′/K,S′/S : T̃K′/F,S′ → T̃K/F,S ( by

regarding any WK′/F,S′-space as an WK/F,S-space via p). We will throw out K,S from

the index if there is no risk of confusing.

Proposition 2.1 ([12] Prop. 3.5, 3.14). a) i∗v, iv,∗ and j∗ are exact, and iv,∗i
∗
v =

id.

b) We have the following commutative diagram

BWK′/F,S′
jK′,S′ //

��

T̃K′/F,S′

t
��

BWk(v)iK′,S′,v

oo

iK,S,v{{vvvvvvvvv

BWK/F,S

jK,S // T̃K/F,S.

Proposition 2.2 (ibid., Prop. 3.15, 3.16). a) There is a morphism

fK,S : T̃K/F,S → BR

so that fK,S ◦ iv is isomorphic to Blv : BWk(v)
→ BR, for any closed point v of

Y .

b) The following diagram is commutative

T̃K′/F,S′
//

$$JJJJJJJJJ
T̃K/F,S

��
BR

for any F/K ′/K/F and S ⊂ S ′.

Definition 2.1. A compatible system of abelian sheaves on the sites (TK/F,S)K,S

is a collection {(FK,S), (φK′/K,S′/S)}, where FK,S ∈ T̃K/F,S and φK′/K,S′/S is a mor-
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phism t∗K′/K,S′/SFK,S → FK′,S′, such that if K ′′/K ′/K a series of finite Galois exten-

sions and S ′′ ⊃ S ′ ⊃ S, then φK′′/K,S′′/S = t∗K′′/K′,S′′/S′(φK′′/K′,S′′/S′) ◦ φK′/K,S′/S.

Definition 2.2. Let F = {(FK,S), (φK′/K,S′/S)} be any compatible system of sheaves

on the sites (TK/F,S)K,S, then we define the Weil-étale cohomology on SpecOF for F ,

Hp(Y W ,F ) to be lim−→K,S
Hp(TK/F,S, FK,S).

Example 2.1. Let pK,S be the morphism BWF
→ BWK/F,S

and A be an abelian object

of BWF
associated to a topological abelian WF -group A. Then Ã := {(jK,S,∗pK,S,∗A), (φ)}

forms a compatible system of sheaves, where

φK′/K,S′/S : t∗jK,S,∗pK,∗A = t∗t∗jK′,S′,∗pK′,∗A → jK′,S′,∗pK′,∗A

is the natural map induced by the adjunction. We define Hp(Y W , A) to be Hp(Y W , Ã).

In particular, if A is a topological abelian group on which WF acts trivially, then Ã is

called the constant sheaf with A-value. We denote by A the constant sheaf defined

by A if A has the discrete topology.

In [12], Morin gave a direct description of the topos T̃K/F,S. Recall that W̃Kv

denotes the image of WKv in WK/F,S, and θv : W̃Kv → WK/F,S and qv : W̃Kv → Wk(v)

are the induced continuous maps.

Definition 2.3 (ibid., Def. 3.1). We define a category FK/F,S as follows. The objects

of this category are of the form F = (Fv; fv)v∈Y , where Fv is an object of BWk(v)
for

v 6= v0 ( resp. of BWK/F,S
for v = v0) and

fv : q∗v(Fv)→ θ∗v(Fv0)

is a morphism of BW̃Kv
so that fv0 = idFv0 . A morphism φ from F = (Fv; fv)v∈Y

to F ′ = (F ′v; f
′
v)v∈Y is a family of morphisms φv : Fv → F ′v ∈ Fl(BWKv

)(and φv0 ∈

Fl(BWK/F,S
)) so that

q∗v(Fv)
q∗v(φv) //

fv
��

q∗v(F
′
v)

f ′v
��

q∗v(Fv0)
θ∗v(φv0 )

// θ∗v(F
′
v0

)
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is a commutative diagram of BW̃Kv
.

For K = F and S the set of all non-trivial valuations of F , one has WK/F,S =

WF , W̃Fv = WFv and we set FK/F,S = FW ;Y .

Proposition 2.3 (ibid., Thm. 5.9). FK/F,S is a topos and is equivalent to T̃K/F,S as

a topos.

In the following, we identify FK/F,S and T̃K/F,S.

Proposition 2.4 (a special case of [12] Lemma 4.5 & Prop. 4.6). Let A be an abelian

object in BWF
defined by A on which WF acts trivially, then

a) Rpj∗A := {(Rp(jK,S,∗)(pK,S,∗A), (φ)} is a compatible system of sheaves.

b) There exists a spectral sequence

Hp(Y W , R
qj∗A) =⇒ Hp+q(WF , A).

Proposition 2.5 ([9] Thm 5.10, [5] Theorem 11.1).

Hp(Y W ,Z) =



Z p = 0,

0 p = 1,

Pic1(Y )D p = 2,

µDF p = 3,

is of infinite rank even p ≥ 4,

0 odd p ≥ 5,

where Pic1(Y ) is the kernel of the absolute value map from Pic(Y ) to R>0 and Pic(Y )

is the Arakelov Picard group of F , which is obtained by taking the idèle group of F and

dividing by the principal idèles and the unit idèles( i.e. those idèle (uv) s.t. |uv|v = 1

for all v.).
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Proposition 2.6 ([9] Theorem 5.11).

Hp(Y W , R̃) =

R p = 0, 1,

0 p > 1.

More generally, for any open subscheme U = SpecOF,S of Y , U defines an open

sub-topos FK/F,S′/U → FK/F,S′ , the full sub-category of FK/F,S′ whose objects are of

the form F = (Fv; fv)v∈U (i.e. Fv = ∅ for v ∈ Y − U). One can show that FK/F,S′/U

is equivalent to T̃UK/F,S′ , where TUK/F,S′ is defined similarly as TK/F,S′ by throwing out

from each object all the v-components for v ∈ Y −U . We have the usual embeddings

jSK/F,S′ : BWK/F,S′
→ FK/F,S′/U and iSv : BWk(v)

→ FK/F,S′/U .

Definition 2.4. We define the cohomology Hp(FK/F,S′ , U,−) := Hp(FK/F,S′/U ,−),

and Hp(UW ,Z) = lim−→Hp(FK/F,S′ , U,Z).

Proposition 2.7. For any proper open subscheme U = SpecOF,S of Y ,

Hp(UW ,Z) =



Z p = 0,

0 p is odd,

(C1
F/
∐

v∈U Uv)
D p = 2,

Hp(WF ,Z) p ≥ 3.

Proof. There exists the Leray spectral sequence induced by the inclusion of the generic

point

lim−→K/F,S′
Hp(FK/F,S′/U , R

qjSK/F,S′,∗Z) =⇒ Hp+q(WF ,Z).

By the same argument of [9] Theorem 4.8, for q > 0, one has RqjSK/F,S′,∗Z =∐
v∈S′\S i

S
v ∗i

S
v
∗
RqjSK/F,S′,∗Z. Moreover, the functor iSv

∗
RqjSK/F,S′,∗ = Rq(iSv

∗
jSK/F,S′,∗) =

Rq(iSv
∗
iS
∗
iS∗j

S
K/F,S′,∗) = Rq(i∗vjK/F,S′,∗) = i∗vR

qjK/F,S′,∗, where iS is the open embed-

ding FK/F,S′/U → FK/F,S′ .

Therefore, for any q > 0, Hp(FK/F,S′/U , R
qjSK/F,S′,∗Z) = Πv∈S′\SH

p(Wk(v), i
∗
vR

qjK/F,S′,∗Z).
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By the computation due to Flach [5], we have

lim−→K/F,S′
Hp(FK/F,S′/U , R

qjSK/F,S′,∗Z) =


Z q = 0,∏

v∈U U
D
v p = 0 and q = 2,

0 p > 0 and q 6= 2.

So the 2nd page of the spectral sequence looks like the following,

0∏
v∈U

UDv

0
0

H0(UW ,Z) H1(UW ,Z) H2(UW ,Z) H3(UW ,Z).

This gives us H0(UW ,Z) = Z, H1(UW ,Z) = H1(WF ,Z) = 0 and the exact se-

quence,

0 // H2(UW ,Z) // H2(WF ,Z) //
∏

v∈U U
D
v

// H3(UW ,Z) // H3(WF ,Z) = 0,

C1,D
F

which is dual to

0 // H3(UW ,Z)D //
∐

v∈U Uv // C1
F

// H2(UW ,Z)D // 0.

As the middle map is injective when U is a proper subset of Y , we see thatH2(UW ,Z) =

(C1
F/
∐

v∈U Uv)
D and H3(UW ,Z) = 0. And for p ≥ 3, Hp(UW ,Z) = Hp(WF ,Z), which

is vanishing for odd p ≥ 3.

Definition 2.5. Let F = (FK/F,S) be a compatible system on sheaves on the site
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(TK/F,S). Then i∗vF := (i∗K,S,vFK/F,S) a compatible system of sheaves on the site BWk(v)

and it gives rise to restriction maps H∗(TK/F,S, FK/F,S) → H∗(k(v)W , i
∗
K,S,vFK/F,S).

Let U be any open subscheme of Y . Since U = Y , we define the Weil-étale coho-

mology with compact support for an open subscheme U with coefficient F as

the cohomologies of the mapping cone

RΓc(UW ,F ) := cone
(

RΓ(Y W ,F )→
⊕
v∈Y \U

RΓ(k(v)W , i
∗
vF )

)
[−1],

where k(v)W := BWk(v)
. The map RΓ(Y W ,F ) → RΓ(k(v)W , i

∗
vF ) is derived by

first applying global section functor to I•FK/F,S → iK,S,v,∗I
•
i∗K,S,vFK/F,S

and then tak-

ing the inductive limits, where I•FK/F,S (resp. I•i∗K,S,vFK/F,S) is an injective resolution of

FK/F,S(resp. i∗K,S,vFK/F,S). Note that the complex RΓc(UW ,F ) is uniquely determined

up to homotopy equivalences.

As Hp(k(v)W ,Z) = Hp(Wk(v),Z) has non-vanishing cohomology (all equals to Z)

only when v|∞ and p = 0 or v - ∞ and p = 0, 1. And Hp(k(v)W ,R) equals to R

(resp. 0) if p = 0, 1 (resp. p > 1). One can easily deduce the following,

Proposition 2.8 ([9] Thm. 6.3). Let Y = SpecOF , then

Hp
c (YW ,Z) =


0 p = 0,

(
∐

v|∞ Z)/Z p = 1,

Hp(Y W ,Z) p ≥ 2,

and

Hp
c (YW ,R) =

(
∐

v|∞R)/R p = 1, 2,

0 otherwise.
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2.2 The Weil-Étale Sites and the Artin-Verdier Étale

Sites

All the material in this subsection can be found in [12]. We will only give brief

definitions and state the results.

Proposition 2.9 (ibid., Prop 7.1). There exists a morphism of left exact sites

ζ∗ : (Et(Y );Jét) → (TW ;Y ;Jls)

X 7→ X = ((Xv); (ϕv)),

where Xv := HomY (Y
sh

v ;X) and Y
sh

v = Spec(k(v)) (resp. = (∅; v)) when v -∞ (resp.

v|∞).

Let K/F be a finite Galois extension. We denote by EtK/F the full sub-category

of Et(Y ) consisting of étale Y -schemes X such that the action of GF on the finite set

Xv0 := Hom(Spec(F );X) factors through Gal(K/F ). This category is again endowed

with the topology induced by the étale topology on Et(Y ) via the inclusion functor

EtK/F → Et(Y ). These morphisms are compatible and induce a projective system

( ˜(EtK/F ,Jét))K .

Proposition 2.10 (ibid., Prop. 7.7). The canonical morphism

Y ét → lim←−
˜(EtK/F ,Jét)

is an equivalence.

Proposition 2.11 (ibid., Prop. 7.5 & 7.8). a) ζ∗ : (Et(Y );Jét) → (TW ;Y ;Jls) is

the inverse image of a morphism of topoi ζ : FW ;Y → Y ét.

b) ζ induces a morphism of topoi ζK,S : FK/F,S → ˜(EtK/F ,Jét). Moreover, the
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diagram

FK′/F,S′
ζK′,S′//

��

˜(EtK′/F ,Jét)

��

FK/F,S
ζK,S// ˜(EtK/F ,Jét)

is commutative, for K ′/K/F and S ⊂ S ′.

Proposition 2.12 (ibid., Prop. 4.69). For any closed point v ∈ Y , the diagram

BWk(v)

αv //

iv

��

Bsm
Gk(v)

uv
��

FW,Y
ζ //

Ỹ ét.

is a pull-back of topoi.

Theorem 2.1 (ibid., Thm. 8.5 & Prop. 8.6). Let F = (FK,S; ft) be a compatible

system of sheaves on the sites (TK/F,S)K,S . There exists a bounded below complex

RF of abelian Y ét-sheaves and an isomorphism

Hp(Y ét, RF ) ' Hp(Y W ,F ),

where the left-hand side is the étale hypercohomology of the complex RF . In particu-

lar, one has a spectral sequence relating Lichtenbaum’s Weil-étale cohomology to étale

cohomology,

Hp(Y ét, R
qF ) =⇒ Hp+q(Y W ,F ),

where RqF := Hq(RF ). The complex RF is well-defined up to quasi-isomorphism

and functorial in F . Moreover, RqF is the sheaf associated to the presheaf

PqF : Y ét −→ Ab

U 7→ Hq(UW ,F ).

Remark. For the future use, we describe the construction of the complex RA.
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For each pair (K,S), we fix an injective resolution 0 → FK,S → I•K,S in FK,S.

and with morphism of complexes t∗I•K,S → I•K′,S′, for any transition map t. These

complexes are compatible. Then one can show that (ζK,S,∗I
•
K,S)S form a direct systems

of complexes. We set

I•K := lim−→S
ζK,S,∗I

•
K,S.

Then (I•K)K defines a compatible system of complexes of sheaves on the sites (EtK/F )K.

Finally, the complex

RF := lim−→K
u∗KI

•
K ,

where u : Y ét → ˜(EtK/F ,Jét).

We are interested in the complex τ≤3 RΓ(Y W ,Z), and Morin proved the following.

Theorem 2.2 (ibid., Thm 8.5 & 9.5). Suppose F is totally imaginary then the fol-

lowing hold

a) RΓ(Y ét, τ
≤3RZ)

qis−→ τ≤3 RΓ(Y W ,Z),

b) RΓ(Y ét, R
2Z)

qis−→ HomZ(UF ,Q)[0].

Here is an immediate corollary of this theorem:

Corollary 2.1. We have the following exact triangle

RΓ(Y ét,Z)→ τ≤3 RΓ(Y W ,Z)→ HomZ(UF ,Q)[−2]→ .

Proof. By Prop. 2.7, H1(UW ,Z) = 0 for all open étale U over Y ét, so R1Z = 0 by

Theorem 1.2. Thus, we have an exact triangle

Z[0] −→ τ≤3RZ −→ R2Z[−2] −→ .

Applying RΓ(Y ét,−) to the above exact triangle and by using the previous Theorem,

we obtain the desired exact triangle.
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Chapter 3

Cohomology with Compact
Support for the Ring of S-integers

In this whole chapter, we assume that F is a totally imaginary number field, and

Y = SpecOF,S. We shall compute the cohomology groups H∗c (YW ,Z) and H∗c (YW , R̃)

in section 3.1 and prove that the axioms of the Weil-étale cohomology theory hold

for Y in section 3.2.

3.1 The Computation of the Cohomology with Com-

pact Support

Let A be an abelian group with trivial WF -action and A the constant sheaf defined

by it. Recall that (cf. Def. 2.5) the Weil-étale cohomology groups with compact

support H∗c (YW , A) are defined by the cohomologies of the mapping cone

RΓc(YW , A) = cone
(

RΓ(Y W , A)→
⊕
v∈S

RΓ(k(v)W , A)
)

[−1],

which is equivalent to the exact triangle

RΓc(YW , A)→ RΓ(Y W , A)→
⊕
v∈S

RΓ(k(v)W , A)→ .

We are interested in the complex τ≤3 RΓc(YW ,Z), and want to prove first the
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following.

Theorem 3.1. There is an exact triangle

RΓc(Yét,Z) // τ≤3 RΓc(YW ,Z) // Hom(US,Q)[−2]→ . (3.1)

Before proving Theorem 3.1, we show the following lemma.

Lemma 3.1. For any constant sheaf A, the inclusion A[0]→ RA induces a morphism

RΓ(Y ét, A) −→ RΓ(Y W , A), and the following diagram commutes

RΓ(Y ét, A) //

��

RΓ(k(v)ét, A)

α∗v
��

RΓ(Y W , A) // RΓ(k(v)W , A),

where the morphisms of the rows are the canonical ones and α∗v is induced by the

canonical morphism of topos αv : BWk(v)
→ Bsm

Gk(v)
.

Hence, taking the truncation functor τ≤3 on every terms gives rise to the following

commutative diagram.

τ≤3 RΓ(Y ét, A) //

��

RΓ(k(v)ét, A)

α∗v
��

τ≤3 RΓ(Y W , A) // RΓ(k(v)W , A).

Proof. Recall that by the knowledge of section 2.2, there exists a commutative dia-

gram of topoi

k(v)W
αv //

iv
��

iK,S

��

k(v)ét

i
��

T̃Y
ζ //

��

ẼtF

uK
��

T̃K/F,S
ζK,S // ẼtK/F ,

where αv : BWk(v)
→ Bsm

Gk(v)
. Here we drop v in the indexes.
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Clearly, the following diagram commutes.

RΓ(Y ét, A) //

��

RΓ(Y ét, i∗i
∗A) = RΓ(k(v)ét, A)

��

RΓ(Y W , A) = RΓ(Y ét, RA) // RΓ(Y ét, i∗i
∗RA) .

To complete the proof, we need to show the morphism RΓ(Y W , A)→ RΓ(k(v)W , A)

factors through RΓ(Y W , A)→ RΓ(Y ét, i∗i
∗RA).

Note that the morphism RΓ(Y W , A)→ RΓ(k(v)W , A) is induced by

lim−→RΓ(T̃K/F,S, A) −→ lim−→RΓ(T̃K/F,S, iK,S,∗i
∗
K,SA).

By Theorem 2.1, this is the same as the morphism of complexes of Y ét-sheaves

RA := lim−→u∗K lim−→ ζK,S,∗I
•
K,S −→ R′A := lim−→u∗K lim−→ ζK,S,∗iK,S,∗J

•
K,S,

where I•K,S (resp. J•K,S) is any fixed injective resolution of A (resp. i∗K,SA) and note

that iK,S,∗ is exact and preserves injectives.

By applying the natural functor id → i∗i
∗ to RA → R′A, we get the following

canonical commutative diagram

RA //

pRA
��

R′A

pR′A
��

i∗i
∗RA // i∗i

∗R′A.
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Note that

R′A = lim−→K
u∗K lim−→S

ζK,S,∗iK,S,∗J
•
K,S

= lim−→K
u∗K lim−→S

uK,∗i∗αv,∗J
•
K,S

= lim−→K
lim−→S

u∗KuK,∗i∗αv,∗J
•
K,S

= lim−→K
lim−→S

i∗αv,∗J
•
K,S (lim−→K

lim−→S
u∗KuK,∗FK,S = lim−→K

lim−→S
FK,S (c.f. [11] lemma 7.5))

= i∗Rαv,∗A.

Because applying with i∗ induces the adjoint isomorphismHom(i∗P, i∗Q) = Hom(P,Q),

and i∗pR′A = id, by definition, so pR′A = id and the result follows.

Remark. Whenever there is a square commutative diagram of complexes in an abelian

category A, then by taking mapping cones, one can complete it as a semi-commutative

3 by 3 diagram of complexes in which rows and columns are exact triangles in the de-

rived category D(A). (c.f. [17] Exercise 10.2.6).

Proof of Theorem 3.1. By [11] Prop. 6.5 and 6.6,

Rqαv,∗Z =

Z,Q, 0 for q = 0, 1, and q ≥ 2 (v -∞),

Z, 0 for q = 0, and q ≥ 1 (v|∞).

Since Rαv,∗Z has trivial cohomology in degree greater than 1, we have an exact trian-

gle Z[0]→ Rα∗Z→ R1αv,∗Z[−1]→. On the other hand, by Prop. 2.7, H1(UW ,Z) = 0

for all open étale subset U of Y ét, so R1Z = 0 by Theorem 1.2. And then we have

an exact triangle Z[0] −→ τ≤3RZ −→ R2Z[−2] −→. Together with Lemma 3.1 and

Theorem 2.2, there exists a morphism of exact triangles

RΓ(Y ét,Z) //

��

τ≤3 RΓ(Y W ,Z) //

��

RΓ(Y ét, R
2Z)[−2]

∃ γ
��

//

⊕
v/∈Y RΓ(k(v)ét,Z) //

⊕
v/∈Y RΓ(k(v)W ,Z) //

⊕
v/∈Y RΓ(k(v)ét, R

1αv,∗Z)[−1] // ,

where the rows are exact triangles, and the vertical morphisms in the first 2 columns
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are the canonical ones. By the remark above, we get an exact triangle

RΓc(Yét,Z) // τ≤3 RΓc(YW ,Z) // R̃Γc(Yét, R
2Z)[−1] // ,

where

R̃Γc(Yét, R
2Z) := cone

(
RΓ(Y ét, R

2Z)[−2]
γ //

⊕
v∈S RΓ(k(v)ét, R

1αv,∗Z)[−1]
)
.

Since RΓ(Y ét, R
2Z) = Hom(O×F ,Q)[0] (Theorem 2.2) and R1αv,∗Z = 0 (resp. Q) when

v is an infinite place (resp. a finite place),

R̃Γc(Yét, R
2Z) = cone

(
Hom(O×F ,Q)[−2]→

⊕
v∈Sf

Q[−1]
)
.

By looking at the long exact sequence of cohomology, one can identify R̃Γc(Yét, R
2Z)

with Hom(US,Q)[−1].

Theorem 3.2. Let Y = SpecOF,S, then

Hp
c (YW ,Z) =



0 p = 0,∏
S Z/Z p = 1,

Pic(Y )D × Hom(US,Z) p = 2,

µDF p = 3.

Proof. By the definition of the cohomology with compact support, we have the fol-

lowing long exact sequence

0 // H0
c (YW ,Z) // Z

4 // ⊕v∈SZ // H1
c (YW ,Z) // 0→

→ ⊕v∈S<∞Z // H2
c (YW ,Z) // Pic1(Y )D // 0 // H3

c (YW ,Z) // µDF
// 0.

Since 4 is the diagonal map, we see that H0
c (YW ,Z) = 0 and H1

c (YW ,Z) = Z|S|/Z.

And H3
c (YW ,Z) = µDF , trivially. Finally, the exact triangle in Theorem 3.1 induces a
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long exact sequence of cohomology groups

0 // H2
c (Yét,Z) // H2

c (YW ,Z) // Hom(US,Q) // H3
c (Yét,Z) // µDF

// 0

Pic(Y )D Hom(US,Q/Z)

Since Hom(US,Q) is torsion free, the injection on the left implies H2
c (YW ,Z)tor =

Pic(Y )D. On the other hand, the long exact sequence in the beginning of the proof

shows rankZ(H2
c (YW ,Z)) = #{v|v /∈ Y } = rankZ(US), as Pic1(Y )D = Pic(OF )D ×

Hom(O×F ,Z)([9] Prop. 6.4). As any free abelian subgroup of Hom(US,Q) of rank

# US is isomorphic to Hom(US,Z), Consequently,

H2
c (YW ,Z) = Pic(Y )D × Hom(US,Z).

By a direct computation of the long exact sequence defining the cohomologies

with compact support, we see that

Proposition 3.1.

Hp
c (YW , R̃) =


∏

S R/R p = 1, 2,

0 otherwise.

In the end of this section, we compare RΓc((SpecOF,S0)W , A) and RΓc((SpecOF,S1)W , A)

for future use, where Y ⊃ S1 ⊃ S0.

Proposition 3.2. Let Y ⊃ S1 ⊃ S0 ⊃ Y ∞ and F a compatible system of sheaves on

the sites (TK/F,S), then we have an exact triangle

RΓc((SpecOF,S1)W ,F )→ RΓc((SpecOF,S0)W ,F )→
⊕

v∈S1\S0

RΓ(k(v)W , i
∗
vF ).

Proof. We first have the following commutative diagram of complexes in which the
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rows are exact triangles,

RΓc(SpecOF,S1 ,F ) //

��

RΓ(Y ,F ) //
⊕

v∈S1
RΓ(k(v)W , i

∗
vF )

��

//

RΓc(SpecOF,S0 ,F ) // RΓ(Y ,F ) //
⊕

v∈S0
RΓ(k(v)W , i

∗
vF ) // .

This diagram can be completed by the following 3 by 3 commutative diagram of

complexes,

RΓc(SpecOF,S1 ,F ) //

��

RΓ(Y ,F ) //
⊕

v∈S1
RΓ(k(v)W , i

∗
vF )

��

//

RΓc(SpecOF,S0 ,F ) //

��

RΓ(Y ,F ) //

��

⊕
v∈S0

RΓ(k(v)W , i
∗
vF )

��

//

⊕
v∈S1\S0

RΓ(k(v)W , i
∗
vF ) //

��

0 //

��

⊕
v∈S1\S0

RΓ(k(v)W , i
∗
vF )[1] //

��

,

(3.2)

where all the rows and columns are exact triangles. Then the result follows from the

first column.

Corollary 3.1. Let A be Z or R on which WF acts trivially, then there is an exact

triangle

τ≤3 RΓc((SpecOF,S1)W , A)→ τ≤3 RΓc((SpecOF,S0)W , A)→
⊕

v∈S1\S0

RΓ(k(v)W , A)→ .

Proof. This follows easily from the fact τ≥2 RΓ(k(v)W , A) = 0 when A = Z,R.

Corollary 3.2. For A = Z, the long exact sequence induced by the exact triangle in

the above corollary splits into short exact sequences

0→
∐
S1\S0

H i(k(v)W ,Z)→ H i+1
c ((SpecOF,S1)W ,Z)→ H i+1

c ((SpecOF,S0)W ,Z)→ 0,

for all i ≥ 0.
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Proof. It is suffice to prove the induced morphismsH i
c((SpecOF,S0)W ,Z)→

∐
S1\S0

H i(k(v)W ,Z)

are zero maps for all i. As H i
c((SpecOF,S0)W ,Z) is concentrated in degree 1,2 and 3

and H i(k(v)W ,Z) is concentrated in degree 0 and 1, we only need to consider the case

i = 1. Since the 3rd row of diagram (3.2) comes from the splitting exact sequence of

complexes

0→
⊕

v∈S1\S0

RΓ(k(v)W ,Z)→
⊕
v∈S1

RΓ(k(v)W ,Z)→
⊕
v∈S0

RΓ(k(v)W ,Z)→ 0.

It is then clear that the morphisms

⊕
v∈S0

H i−1(k(v)W ,Z)
δ−→

⊕
v∈S1\S0

H i(k(v)W ,Z)

are zero maps for i ≥ 0. Therefore, the morphism of long exact sequences induced by

the morphism of the 2nd and the 3rd rows in diagram (3.2) looks like

//
⊕

v∈S0
H0(k(v)W ,Z)

f //

0
��

H1
c ((SpecOF,S0)W ,Z) //

h
��

H1(Y W ,Z)(= 0)

0

��

//

//
⊕

v∈S1\S0
H1(k(v)W ,Z) ∼ //

⊕
v∈S1\S0

H1(k(v)W ,Z) // 0 //

As f is surjective and the diagram is commutative, h has to be the zero map.

3.2 Verification of the Axioms of Weil-Étale Co-

homology

As before, F is totally imaginary and Y = SpecOF,S. In this subsection, we verify

that the axioms (a)-(d) stated in the introduction hold for the generalized Weil-étale

cohomology theory.
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3.2.1 Axiom (a)

We have seen that Hp
c (YW ,Z) are finitely generated abelian groups for p = 0, 1, 2, 3.

Unfortunately, Hp
c (YW ,Z) is still of infinite rank, for odd p ≥ 5 as Hp

c (YW ,Z) ∼=

Hp
c (SpecOF ,Z).

3.2.2 Axiom (b)

We need to show that Hp
c (YW ,Z)⊗Z R ' Hp

c (YW ,R). But, obviously, this is false for

odd p ≥ 5, as Hp
c (YW ,R) = 0 then. But we can prove the following.

Proposition 3.3. Hp
c (YW ,Z)⊗Z R ' Hp

c (YW ,R) for p = 0, 1, 2, 3.

Proof. By corollary 3.1 and taking tensor product over Z, we get a morphism between

exact triangles

τ≤3 RΓc((SpecOF,S)W ,Z)⊗Z R //

��

τ≤3 RΓc((SpecOF )W ,Z)⊗Z R //

qis

��

⊕
v∈S\S∞ RΓ(k(v)W ,Z)⊗Z R

qis

��

//

τ≤3 RΓc((SpecOF,S)W ,R) // τ≤3 RΓc((SpecOF )W ,R) //
⊕

v∈S\S∞ RΓ(k(v)W ,R) // .

Clearly, for v - ∞, H∗(k(v)W ,Z) ⊗Z R ' H∗(k(v)W ,R), so the right vertical

map is a quasi-isomorphism. Also, the middle one is a quasi-isomorphism ([9] Thm.

8.1). Thus, by the property of exact triangles, the left vertical morphism is also a

quasi-isomorphism.

3.2.3 Axiom (d)

Recall that the L-function ζY (z) for Y is the same as the S-zeta function ζS(s) :=∑
a⊂OF,S N(a)−s. The analytic class number formula shows its Taylor expansion at

z = 0 is

ζS(z) = −hSRS

w
z|S|−1 +O(z|S|),

where hS = # PicY , RS the S-regulator, and w = #µF .

As Hp
c (Y,Z) does not vanish for all even p ≥ 4, we are unable to show that

ords=0ζY (s) =
∑

i≥0(−1)ii rankZH
i
c(X,Z). However, by the computation in previous
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section, we see that

3∑
i=0

(−1)ii rankZH
i
c(X,Z) = −(|S| − 1) + 2(|S| − 1)

= |S| − 1

= ordz=0ζY (z).

3.2.4 Axiom (c) and (e)

Recall that the Euler character is defined as the following

Definition 3.1. Let A0, . . . , An be finitely generated abelian groups, Vi := Ai ⊗Z R,

and Ti : Vi → Vi+1 are R-linear maps s.t.

0→ V0 → V1 → · · · → Vn → 0

is exact. We define the Euler characteristic χc(A0, · · · , An, T0, · · · , Tn) to be

±
∏
i

|(Ai)tor|(−1)i/Det(V0, . . . , Vn; b0, · · · , bn),

where bi = (bij)j is an arbitrary choice of Z-basis of Ai/(Ai)tor for all i and

Det(V0, . . . , Vn; b0, · · · , bn)

is the image of ⊗i(∧jb(−1)i

ij ) under the canonical map

⊗i Det(−1)i Vi → R,

and b−1
ij is the dual of bij in Hom(Vi,R).

Recall that for any R-vector space V , DetV := ∧rank(V )V , Det−1 V := HomR(DetV,R)

and Det0 V := R.

Clearly, the Euler characteristic is independent to the choice of basis.
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Example 3.1. Suppose 0 → A0 → A1 → · · · → An → 0 is an exact sequence of

finitely generated abelian groups. It induces an exact sequence of R-vector spaces

0 → A0 ⊗Z R → A1 ⊗Z R → · · · → An ⊗Z R → 0. The determinant of this complex

equals to Πi|(Ai)tor|(−1)i. Therefore, the Euler characteristic of this complex is ±1.

Example 3.2. Let {Ai,j}i=0,..,m;j=0,..,n be a set of finitely generated non-trivial abelian

groups and Bi,j := Ai,j ⊗Z R. Suppose that there exist exact sequences

0→ Ai,0 → Ai,1 → · · · → Ai,n → 0, ∀ i = 0, · · · ,m.

And suppose there exist R-linear maps Ti,j : Bi,j → Bi+1,j for all i = 0, . . . ,m−1 and

j = 0, . . . , n, such that the following diagram commutes and all rows and columns are

exact.

0

��

0

��

0

��
0 // B0,0

//

T0,0

��

B0,1
//

T0,1

��

· · · // B0,n
//

T0,n

��

0

0 // B1,0
//

T1,0

��

B1,1
//

T1,1

��

· · · // B1,n
//

T1,n

��

0

...

Tm−1,0

��

...

Tm−1,1

��

...

Tm−1,n

��
0 // Bm,0

//

��

Bm,1
//

��

· · · // Bm,n
//

��

0

0 0 0

Then Πi χc
(
(Ak,i)k, (Tk,i)k

)(−1)i
= ±1.

This can be proved by showing the diagram

⊗i(⊗j Det(−1)i+j Bij)
∼ //

∼
''PPPPPPPPPPPPP

⊗j(⊗i Det(−1)i+j Bij)

∼
wwnnnnnnnnnnnnn

R

is commutative and all arrows are the canonical isomorphisms.(cf.[8]).
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Let F = ((FL,S); (ft)) be a compatible system of abelian sheaves on the sites

(TL/F,S). And observe that Hp(TL/F,S, FL/F,S) = Extp
T̃L/F,S

(R, FL/F,S) for any sheaf of

R̃-modules F , so Hp(Y W ,F ) = lim−→Extp
T̃L/F,S

(R, FL,S). This allow us to define a cup

product

Hp(Y W ,F )×Hq(Y W ,R)→ Hp+q(Y W ,F ).

Consider the compatible system ((iv,∗i
∗
vFL,S); (iv,∗i

∗
vft)), and take mapping cone,

we can actually define a cup product

Hp
c (YW ,F )×Hq(Y W ,R)→ Hp+q

c (YW ,F ).

The Leray spectral sequence for jK/F,S yields

0→ H1(Y W ,R)→ H1(WF ,R)→ H0(Y W , R
1j∗R) = 0 (see [9]).

Since H1(WF ,R) = Homcont(WF ,R) ∼= Homcont(R,R)([9]Lemma 3.4) , we may choose

an element ψ of H1(Y W ,R) which corresponds to the composition

WF
ab−→ CF

log |.|−−−→ R.

Note that ψ corresponds to the identity map in Homcont(R,R), and ψ ` ψ = 0, so

the sequence (H i
c(Y,F ),` ψ):

· · · → H i
c(YW ,F )

`ψ−−→ H i+1
c (YW ,F )→ · · ·

is a complex.

In the following, we will prove that (H i
c(YW ,R),` ψ) is exact. Together with

the isomorphisms H i
c(YW , R̃) ∼= H i

c(YW ,Z) ⊗Z R for i ≤ 3, the Euler characteristic

χc
(
(Hq

c (YW ,Z))q≤3, (` ψ)
)

is well-defined and called the Euler characteristic χc(Y )

for Y .

It was already known that χc(SpecOF ) = Rh/w.([9] Thm. 8.1).
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Proposition 3.4. (a) The complex (H i
c(YW , R̃),` ψ) is exact.

(b) Moreover, its Euler character equals ±RShS
w

, where RS is the S-regulator.

Proof. (a) Recall that H i
c(YW , R̃) 6= 0 only for i = 1, 2. So we only need to show

H1
c (YW , R̃)

`ψ−−→ H2
c (YW , R̃)

is an isomorphism. For this, consider the morphism between two exact se-

quences

0 //
∐

S\S∞ H
0(k(v)W ,R) //

`ψ
��

H1
c (YW , R̃) //

`ψ
��

H1
c ((SpecOF )W , R̃) //

`ψ
��

0

0 //
∐

S\S∞ H
1(k(v)W ,R) // H2

c (YW , R̃) // H2
c ((SpecOF )W , R̃) // 0,

(3.3)

in which the rows are obtained by tensoring with R over Z the exact sequences

derived in corollary 3.2. Recall that the right vertical map is an isomorphism

([9]Thm. 8.1). We are now showing the left vertical map is also an isomorphism.

Note that iv is an embedding and preserves injectives, so that we have the

following commutative diagram

H0(k(v)W ,R) × H1(Y , R̃)
` //

��

H1(k(v)W ,R)

H0(k(v)W ,R) × H1(k(v)W ,R)
` // H1(k(v)W ,R).

For any finite place in S, the diagram (1.1) ensures that the image of ψ in

H1(k(v)W ,R) = Hom(Wk(v),R) is lv : σ 7→ logN(v), where σ is the generator

of Wk(v). Let 1v is the identity element in H0(k(v)W ,R) = R. Then 1v `

ψ = 1v ` lv = lv. So, cup product with ψ identifies
∐

S\S∞ H
0(k(v)W ,R) and∐

S\S∞ H
1(k(v)W ,R). Therefore, the middle vertical map of diagram (3.3) is

also an isomorphism.
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(b) The rows of (3.3) are induced by tensoring with R the exact sequences

0→
∐
S<∞

H i(k(v)W ,Z)→ H i+1
c (YW ,Z)→ H i+1

c ((SpecOF )W ,Z)→ 0, i = 0, 1.

Let χ0 := χc

(
(0, H0(k(v)W ,Z), H1(k(v)W ,Z)), (` ψ)

)
.

Applying Example 3.2 to (3.3), we see that

χc(Y ) = ±χc(SpecOF )χ0.

Because H i(k(v)W ,Z) is torsion free, and we has seen in (a) that ` ψ sends 1v

to lv : σ 7→ logN(v), so χ0 = ±ΠS<∞ logN(v). Thus,

χc(Y ) = ±Rh
w

∏
S<∞

logN(v) = ±RShS
w

(c.f. [15] Lemma 2.1 for the last equality).

3.3 A Canonical Representation of Tate Sequences

As before Y = SpecOF,S and G = Gal(F/L) for a subfield L of F . Recall that

Hp
c (YW ,Z) =



0 p = 0,∏
S Z/Z (= X∨S ) p = 1,

Hom(US,Z)⊕ Pic(Y )D p = 2,

µDF p = 3.

Proposition 3.5. The cohomologies of RHomZ(τ≤3 RΓc(YW ,Z),Z)[−2] concentrate

at degrees 0 and 1 and H0 = US, H1 = XS ⊕ Pic(Y ).
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Proof. Consider the spectral sequence

Epq
2 = ExtpZ(H−q(C•),Z)⇒ Hp+q(RHom(C•,Z)),

in which C• = τ≤3 RΓc(YW ,Z).

It is clear that Epq
2 = 0 for all p < 0 or q > 0, i.e. the E2 has only non-trivial

terms on the 4th quadrant

0 0

XS = X∨∨S 0

US/tor = U∨∨S Ext1((PicY )D,Z)

0 Ext1(µDF ,Z) 0

We have exact sequences

0→ PicY → H−1 → XS → 0 and 0→ µF → H−2 → US/tor → 0.

Thus, H−1 = XS ⊕ Pic(Y ) and H−2 = (US/tor) ⊕ µF = US. This shows that

RHom(τ≤3 RΓc(YW ,Z),Z)[−2] has only two non-trivial cohomologies H0 = US and

H1 = XS ⊕ PicY .

From now on we assume that S is large enough so that PicY = 0 and is stable

under the action of G. We will prove RHom(τ≤3 RΓc(YW ,Z),Z)[−2] is indeed quasi-

isomorphic to ΨS, the canonical Tate sequence. (see the introduction section).

Lemma 3.2. Let A and B ∈ D, the derived category of Z[G]-modules.

a) If H i(B) are Z[G]-injective for all i, then

HomD(A,B) ∼=
∏
i

HomG(H i(A), H i(B)).
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b) If H i(A) are Z[G]-cohomologically trivial, then we have an exact sequence

0→
∏
i

Ext1
G(H i(A), H i−1(B))→ HomD(A,B)→

∏
i

HomG(H i(A), H i(B))→ 0.

Proof. a) By [16], there is a spectral sequence

∏
i

ExtpG(H i(A), Hq+i(B))⇒ Hp+q(RHomZ[G](A,B)).

By condition, Extp(H i(A), Hq+i(B)) is non-trivial only if p = 0, so the above

spectral sequence simply shows

HomD(A,B) = H0(RHomZ[G](A,B)) =
∏
i

HomG(H i(A), H i(B)).

b) In the same spectral sequence, since H i(A) are cohomologically trivial, H i(A)

are of projective dimension 1, so ExtpG(H i(A), Hq+i(B)) = 0 for all p ≥ 2.

Therefore, on the position with p + q = 0, we have only 2 non-trivial groups

E0,0
2 and E1,−1

2 , and both the difference maps are 0. This gives the desired short

exact sequence.

Lemma 3.3. The canonical exact triangle

RHomZ(RΓc(Yét,Z),Z)→ RHomZ(RΓc(Yét,Z),Q)→ RHomZ(RΓc(Yét,Z),Q/Z)→

is isomorphic to the exact triangle

Ψ′S[2]→ XS ⊗Z Q[1]→ Ψ̃S

′
[3]→

where Ψ′S is the image of ΨS in Ext2
G(XS, ÛS) and Ψ̃S

′
is the image of ΨS in Ext3

G(XS⊗Z

Q/Z, ÛS).

Proof. Suppose ΨS is the complex A → B and Ψ̃S is the complex A → B →
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XS ⊗Z Q. Recall that ΨS presents a class of Ext2
G(XS,US) and Ψ′S the image of

ΨS under the map Ext2
G(XS,US)

∼−→ Ext2
G(XS, ÛS). Indeed , Ψ′S is the complex

(A ⊕ ÛS)/US =: A′ → B. Similarly, Ψ̃′S is the complex A′ → B → XS ⊗Z Q. Re-

call that RHom(RΓc(Yét,Z),Q/Z)
qis−→ Ψ̃′S by definition ([2] Prop. 3.1). Also, as Q is

injective, H i(RHomZ(RΓc(Yét,Z),Q)) = HomZ(H−ic (Yét,Z),Q). Thus,

RHomZ(RΓc(Yét,Z),Q)
qis−→XS ⊗Z Q[1].

We claim that the following diagram commutes for a suitable choice of the left vertical

quasi-isomorphism.

RHomZ(RΓc(Yét,Z),Q)[−3] // RHomZ(RΓc(Yét,Z),Q/Z)[−3]

XS ⊗Z Q[−2] //

qis

OO

Ψ̃
′
S.

qis

OO
(3.4)

Since the both horizontal maps induce the canonical projection XS⊗ZQ→ XS⊗ZQ/Z

on H2, the right vertical quasi-isomorphism induces the identity map on H2 and the

left vertical one can be induced by any G-automorphism of XS ⊗Z Q, so there is a

suitable choice of the quasi-isomorphism so that the above diagram commutes for H2

groups.

Let A be XS ⊗Z Q[−2] and B be RHomZ(RΓc(Yét,Z),Q/Z)[−3]. Clearly, H i(A)

are Z[G]-cohomologically trivial. So we can apply lemma 3.2(b) to A and B, and it

induces an exact sequence

0 = Ext1
G(XS ⊗Z Q, H1(B)(= 0)) −→ HomD(A,B) −→ HomG(H2(A), H2(B))→ 0.

Thus, HomD(A,B) ∼= HomG(H2(A), H2(B)). Therefore, the commutative on H2

implies the diagram (3.4) indeed commutes. By taking exact triangles of each row,

and note that cone(XS⊗ZQ[−2]→ Ψ̃
′
S)[−1] ' Ψ′S[2], we get the desired isomorphism

of exact triangles.

Theorem 3.3. Let Y = SpecOF,S, where S is large enough so that PicY = 0 and is
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stable under the action of G. Then

RHomZ(τ≤3 RΓc(YW ,Z),Z)[−2]
qis−→ΨS,

where ΨS is the Tate sequence representing the canonical class of Ext2
G(XS, US).

Proof. Here, we use the same notation with previous lemma. Clearly, we have a

canonical exact triangle

ΨS → Ψ′S → ÛS/US[0]→ .

On the other hand, by applying RHomZ(−,Z) to exact triangle (3.1), we have another

exact triangle

RHomZ(τ≤3 RΓc(YW ,Z),Z)[−2]→ RHomZ(RΓc(Yét,Z),Z)[−2]→ RHomZ(HomZ(US,Q),Z)[−1]

The previous lemma ensures that Ψ′S
qis−→RHomZ(RΓc(Yét,Z),Z)[−2].

Also, observe that RHomZ(HomZ(US,Q),Z)[−1]
qis−→ ÛS/US[0] and we have seen

that RHomZ(τ≤3 RΓc(YW ,Z),Z)[−2] has the same cohomologies as ΨS. We claim

that there is an isomorphism between these two exact triangles,

RHomZ(τ≤3 RΓc(YW ,Z),Z)[−2] // Ψ′S
β // RHomZ(HomZ(US,Q),Z)[−1] //

ΨS

δ

OO

// Ψ′S
γ // ÛS/US[0]

α

OO

// .

In the top exact triangle, we replaced RHomZ(RΓc(Yét,Z),Z)[−2] by Ψ′S. By taking

the long exact sequence induced by the top exact triangle, we see that H2(β) = i ◦ p

where p : ÛS → ÛS/US is the canonical projection and i ∈ Aut(ÛS/US). Clearly,

H2(γ) = p. As RHomZ(HomZ(US,Q),Z)[−1]
qis−→ ÛS/US[0], we may take α to be

the morphism induced by i. Then the right square commutes on H2. By lemma 3.2,

because ÛS/US is uniquely divisible and thus injective, H2(β) = H2(α)◦H2(γ) implies

β = α ◦ γ. As α is a quasi-isomorphism, so is δ by property of derived categories.

Remark. It is equivalent to say that τ≤3 RΓc(YW ,Z)
qis−→RHom(ΨS,Z)[−2] and this
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is an evidence that, at least for open subschemes of spectra of number rings, the Weil-

étale cohomology can be obtained from usual cohomology theories without using the

Weil groups.
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Chapter 4

The Construction of R Gm

Throughout this chapter, we assume that F is a totally imaginary number field,

X = SpecOF , and U = SpecOL,S is any connected étale neighborhood of X. We

also assume that K is a subfield of L such that the extension L/K is Galois and

G := Gal(L/K).

When Pic(U) = 0 and S is a G-stable set containing all the archimedean places

and those ramified in K(U)/Q, there exists a canonical Tate sequence:

ΨU : Ψ0
S → Ψ1

S,

which represents a canonical class of Ext2
G(XS, US). By the construction of Tate

sequences, if U ′ = SpecOL′,S′ is étale over U , then there is a morphism from ΨS to

ΨS′ that fits into the following morphism of complexes

0 // US

��

// Ψ0
S

��

// Ψ1
S

��

// XS
//

β

��

0

0 // US′ // Ψ0
S′

// Ψ1
S′

// XS′
// 0,

where β((av)v∈S) =
(
(aw := [Lw : Fv] · av)w|v,w∈S′

)
.

In fact {XS} and {β} define an X ét-presheaf X , and we denote its associated

sheaf by X̃ . In section 4.1, we construct a complex RGm ∈ Sh(X ét) which rep-

resents a canonical class of Ext2
Xet

(X̃ ,Gm) = Ẑ (see below). The cohomologies of

RΓ(Uét, RGm) and RHomZ
(
τ≤3 RΓc(UW ,Z), Z

)
[−2] are the same for arbitrary U .
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Furthermore, in section 4.2, we prove that

RΓ(Uét, RGm)
qis−→RHom

(
τ≤3 RΓc(UW ,Z),Z

)
[−2], (4.1)

in D(Z[G]), when S is stable under the action of G.

This implies RΓ(Uét, RGm) and RHomZ
(
τ≤3 RΓc(UW ,Z), Z

)
[−2] are canonically

quasi-isomorphic in D(Z) for any U . Also, when U is small enough so that the Tate

sequence exists, then by (4.1) and by the help of Theorem 3.3, one can see that

RΓ(Uét, RGm) ' ΨU

in D(Z[G]).

Thus, one can conclude that the complex RΓ(Uét, RGm) generalizes the Tate

sequences and its Z-dual defines Weil-étale cohomology of S-integers without trunca-

tions.

4.1 The Definition

Let M be the sheaf sending a connected étale U → X to the group
⊕

w∈U Aw, where

Aw is Q (resp. Z) if w - ∞ (resp. w | ∞), and the transition map M (U) →M (V )

for an X-morphism V → U is

⊕
v∈U

Av −→
⊕
w∈V

Aw

av 7→
∑
w|v

[K(V )w : K(U)v]av.

It is clear that the projections
⊕

v∈U Av �
⊕

v∈U Av, for any étale U → X, define

an epimorphism of sheaves M →
⊕

v∈X iv,∗Av.
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We define F • to be the complex

F 0

∑
// F 1

Q,

where F 0 = ker(M →
⊕

v∈X iv,∗Av) is the X-étale sheaf

U 7→
⊕

w∈U−U

Aw,

for any connected U → X and
∑

(U)((aw)) =
∑

w
1

[K(U)w:Fv ]
aw.

Note that if U doesn’t contain all the finite places of F , then
∑

(U) is surjective.

This implies
∑

is an epimorphism in the category Sh(X ét) as any U → X can be

covered by some {Ui}, where Ui doesn’t contain all the finite places of K(Ui), for all

i. Consequently, F • ' (ker
∑

)[0] in D(Sh(X ét)).

Remark. a. The way that we define the transition maps of the sheaf F 0 makes

X a sub-presheaf of ker
∑

. In fact, we have the following exact sequence of

presheaves

0→X → ker
∑
→ B̃r → 0,

where B̃r is the presheaf U 7→ H2(U,Gm). By taking associated sheaves, we see

that X̃ ∼= ker
∑

as a(H i(−,G )) = 0 for any sheaf G when i ≥ 1.

b. Let Mv = lim−→L
ML,v where L runs over all finite extension of F and ML,v =⊕

w Aw where the sum runs over all places w of L lying over v and the transition

map is defined similarly to those of X . We denote Mv the sheaf associated to

the Galois module Mv. Equivalently, in the level of sheaves, Mv = lim−→L
πL,∗Av

where πL : SpecLv −→ SpecF is the canonical morphism and Lv is the fixed

field of Dv ∩ Gal(L/F ). Clearly, M =
⊕

v∈X α∗Mv, where α : SpecF → X.
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Moreover, consider the Cartesian diagram of schemes

SpecLv

πL

��

αL // u(Lv)

π′L
��

SpecF α // X,

where u(Lv) = SpecOLv . Hence α∗ lim−→L
πL,∗Av = lim−→L

α∗πL,∗Av = lim−→L
π′L,∗αL,∗Av =

lim−→L
π′L,∗Av. (Note that αL,∗Av is the constant Av on Spec(Lv).)

Lemma 4.1. The sheaf F 0 is cohomologically trivial.

Proof. Since F 0 fits into the short exact sequence

0→ F 0 →
⊕
v∈X

α∗Mv →
⊕
v∈X

iv,∗Av → 0, (4.2)

which is derived from the short exact sequence of sections:

0→
⊕

v∈U−U

Av →
⊕
v∈U

Av →
⊕
v∈U

Av → 0.

Since there is no real place and Av = Q when v - ∞, the cohomology of iv,∗Av

concentrates at degree zero. Also, the above exact sequence remains exact when we

pass to global sections. Thus, we only need to show that α∗Mv is cohomologically

trivial for any v.

Recall that α∗Mv = lim−→L
π′L,∗Av. When v is finite, α∗Mv is acyclic as Av = Q and

inductive limit and π′L,∗ both preserve acyclic sheaves (as π′L is finite).

When v|∞, Iv is trivial, so Mv = IndGF1 Av and then Mv is cohomologically trivial.

Therefore i∗w(Rqα∗Mv) = Hq(Iw,Mv) = 0 for q > 0. The Leray spectral sequence for

α,

Hp(Uét, R
qα∗Mv)⇒ Hp+q(F,Mv),

for any étale U over X, is degenerated, i.e. Hp(Uét, α∗Mv) = Hp(F,Mv) = 0 for

p > 0. Thus the result follows.
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Proposition 4.1. For any connected étale U → X,

Hp(Uét,F
•) =


ker Σ(U) p = 0,

coker Σ(U) = Q/Im(Σ(U)) p = 1,

0 p ≥ 2.

In particular, H0(X ét,F •) = 0, H1(X ét,F •) = Q, H0((X − v)ét,F •) = 0 and

H1((X − v)ét,F •) = Q/Av.

Corollary 4.1. The canonical morphism H1
v (X ét,F •) → H1(X ét,F •) is an inclu-

sion of Av into Q.

Now we define a complex RGm, up to quasi-isomorphism, of Sh(X ét) by an exact

triangle

Gm → RGm → F •[−1]→,

or equivalently an exact triangle

RGm → F •[−1]
γ−→ Gm[1]→ .

One can choose carefully a morphism γ ∈ HomD(Sh(X ét))
(F •[−1],Gm[1]) ∼= Ext2

X ét
(F •,Gm)

so that RGm has the cohomologies that we expected. Before computing the group

Ext2
X ét

(F •,Gm), we need to derive the following lemmas.

Lemma 4.2. Let I be an inductive system of index that can be refined by an in-

dex which is isomorphic to Z, then the canonical morphism ExtsC(lim−→i
Ai, B) −→

lim←−i ExtsC(Ai, B) is an isomorphism if any of the following conditions holds

a. the projective system {Exts−1
C (Ai, B)} satisfies the Mittag-Leffler condition,

b. Exts−1
C (Ai, B) is a finite group for all i.

Proof. Because I can be refined by Z, so lim−→I
Ai = lim−→Z

Ai and lim←−I ExtpC(Ai, B) =

lim←−Z
ExtpC(Ai, B). Thus, we only need to consider the case that I ∼= Z. When I ∼= Z,
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by [13], there is a spectral sequence

lim←−
r

I
ExtsC(Ai, B)⇒ Extr+sC (lim−→I

Ai, B).

This spectral sequence is certainly degenerated as we know that lim←−
r is vanishing for

any inductive system of abelian groups when r ≥ 2 (cf. [17] 3.5). Therefore, we get

exact sequences

0→ lim←−
1

I
Exts−1

C (Ai, B)→ ExtsC(lim−→I
Ai, B)→ lim←−

1

I
ExtsC(Ai, B)→ 0,

for all s ≥ 0.

The Mittag-Leffler condition implies lim←−
1 Exts−1

C (Ai, B) = 0 and condition (b)

also implies the vanishing of lim←−
1 Exts−1

C (Ai, B) by [7] 2.3. Thus, the isomorphism is

established under both conditions.

Lemma 4.3. a.

Extp
X ét

(Q,Gm) =

 0 p = 2,

Ẑ
⊗

Z Q =
∏′

q Qq p = 3,

where
∏′

q Qq = AQ/R is the restricted product of the Qp’s with respect to the

Zp’s.

b.

Extp
X ét

(α∗Mv,Gm) =


0 p = 2,

H3(X ét,Gm) = Q/Z p = 3 and v | ∞,

lim←−nH
3(X,Gm) = Ẑ

⊗
Z Q p = 3 and v -∞.

Proof. a. Since Q = lim−→n
Z and H i(X ét,Gm) are finite groups for i = 1, 2, we have

Extp
X ét

(Q,Gm) = lim←−nH
p(X ét,Gm).

AsH2(X ét,Gm) = 0, one sees that Ext2
X ét

(Q,Gm) = 0. Also, lim←−nH
3(X ét,Gm) =
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lim←−n Q/Z = Hom(Q,Q/Z) = Ẑ
⊗

Z Q.

b. As Mv = lim−→L
π′L,∗Av,

Extp
X ét

(α∗Mv,Gm) = Extp
X ét

(lim−→L
π′L,∗Av,Gm).

When v is an infinite place, Av = Z, and by the norm theorem,

Extp
X ét

(π′L,∗Z,Gm) = Hp(u(Lv)ét,Gm),

for all p. Note that F is totally imaginary and u(Lv) contains all the fi-

nite places of Lv, so H1(u(Lv)ét,Gm) = Pic(u(Lv)), H2(u(Lv)ét,Gm) = 0, and

H3(u(Lv)ét,Gm) = Q/Z. Since H1(u(Lv)ét,Gm) and H2(u(Lv)ét,Gm) are both

finite groups, by Lemma 4.2, we actually get

Extp
X ét

(α∗Mv,Gm) = lim←−LH
p(u(Lv)ét,Gm)

for p = 2, 3. Clearly, Ext2
X ét

(α∗Mv,Gm) = H2(u(Lv)ét,Gm) = 0. Moreover,

for any finite extension K over L, the transition map H3(u(Kv)ét,Gm) →

H3(u(Lv)ét,Gm) is an isomorphism. So, we conclude that Ext3
X ét

(α∗Mv,Gm) =

H3(X ét,Gm) = Q/Z.

For the case v is a finite place of F , there is a slightly difference, as now Av =

Q = lim−→
1
n
Z and so α∗Mv = lim−→L,n

π′L,∗Z. We claim that

Extp
X ét

(lim−→L,n
π′L,∗Z,Gm) = lim←−L,nH

p(u(Lv)ét,Gm),

for p = 2, 3. Indeed, because Ext1
u(Lv)ét

(π′L,∗Z,Gm) = H1(u(Lv)ét,Gm) =

Pic(u(Lv)) is a finite groups, and Ext2
u(Lv)ét

(π′L,∗Z,Gm) = H2(u(Lv)ét,Gm) = 0,

by Lemma 4.2, one gets Extp
X ét

(α∗Mv,Gm) = lim←−L,nH
p(u(Lv)ét,Gm) for p =

2, 3. Again, by Lemma 4.2, one get Extp
X ét

(Mv,Gm) = lim←−L,n Extpu(Lv)(Z,Gm)
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for p = 2, 3. Hence

Extp
X ét

(Mv,Gm) =

 0 p = 2,

lim←−nH
3(X ét,Gm) p = 3.

Proposition 4.2.

Extp
X ét

(F 0,Gm) =

 0 p = 2,∏
v|∞H

3(X ét,Gm) =
∏

X∞
Q/Z p = 3.

Proof. Let F 0
v := ker(α∗Mv → iv,∗Av). Then it arises a long exact sequence

∂p−1

−−−→ Extp
X ét

(α∗Mv,Gm)→ Extp
X ét

(F 0
v ,Gm)→ Extp

X ét
(iv,∗Av,Gm)

∂p−→ Extp+1

X ét
(α∗Mv,Gm)→ .

Since Ext2
X ét

(α∗Mv,Gm) = 0 by the previous lemma, and it is easy to see that

Ext4
X ét

(iv,∗Av,Gm) = 0, we have the following exact sequence,

0→ Ext2
X ét

(F 0
v ,Gm)→ Ext3

X ét
(iv,∗Av,Gm)→ Ext3

X ét
(α∗Mv,Gm)→ Ext3

X ét
(F 0

v ,Gm)→ 0.

By the adjunction of iv,∗ and i!v and Lemma 4.2 (as H2
v (X ét,Gm) = 0),

Ext3
X ét

(iv,∗Av,Gm) =

 H3
v (X ét,Gm) = 0 v | ∞,

lim←−nH
3
v (X ét,Gm) =

∏′
q Qq v -∞.

Therefore, Ext2
X ét

(F 0
v ,Gm) = 0 and Ext3

X ét
(F 0

v ,Gm) = Ext3
X ét

(α∗Mv,Gm) = Q/Z

when v|∞.

We claim that the morphism Ext3
X ét

(iv,∗Av,Gm) → Ext3
X ét

(α∗Mv,Gm) is an iso-

morphism when v - ∞. For this, observe that there is a commutative diagram of
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sheaves

α∗Mv = lim−→L
π′L,∗Av // iv,∗Av

Av = π′F,∗Av

OO 66nnnnnnnnnnnnn

where Av → iv,∗Av is the canonical morphism induced by adjunction of i∗v and iv,∗.

Applying Ext3(−,Gm) to the above diagram, we get another commutative diagram :

Ext3(α∗Mv,Gm)

��

lim←−nH
3
v (X ét,Gm)

huukkkkkkkkkkkkkki
oo

lim←−nH
3(X ét,Gm).

All the groups in the above diagram are isomorphic to Ẑ
⊗

Z Q =
∏

q Qq. Note

the h is an isomorphism as the natural morphism H3
v (X ét,Gm)→ H3(X ét,Gm) is an

isomorphism ([4] Prop.3.2). Therefore, i is an injection from
∏

q Qq to itself. Since

HomZ(Qp,Qq) = 0 is p 6= q and Qq are fields, one sees that i has to be an isomorphism.

It follows that Ext2
X ét

(F 0
v ,Gm) and Ext3

X ét
(F 0

v ,Gm) are vanishing.

Consequently, Ext2
X ét

(F 0,Gm) = 0 and

Ext3
X ét

(F 0,Gm) =
⊕
v∈X

Ext3
X ét

(F 0
v ,Gm) =

⊕
v|∞

Q/Z

Proposition 4.3. There is a canonical isomorphism

Ext2
X ét

(F •,Gm) ∼= Ẑ.

Proof. The exact sequence

0 −→ ker
∑
−→ F 0 −→ Q −→ 0,
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induces a long exact sequence

Ext2
X ét

(F 0,Gm)(= 0)→ Ext2
X ét

(ker
∑

,Gm)→ Ext3
X ét

(Q,Gm)
∆−→
⊕
v|∞

H3(X ét,Gm)→,

where ∆ is a copies of the canonical map π : Hom(Q,Q/Z)→ Hom(Z,Q/Z).

Clearly, ker ∆ = ker π = HomZ(Q/Z,Q/Z) = Ẑ. As a consequence Ext2
X ét

(ker
∑
,Gm) =

ker∆ = ker(π) = Ẑ.

Let γ be the class in Ext2
X ét

(F •,Gm) that corresponds to the generator 1 of Ẑ,

and RGm is the complex decided by the exact triangle

RGm → F •[−1]
γ−→ Gm[1]→ .

To compute the étale cohomology of the complex RGm, we need to determine the

coboundary morphisms ∂iU : H i(Uét,F •)
^γ−−→ H i+2(Uét,Gm), for any connected étale

U → X.

Lemma 4.4. For any connected étale U → X, let S := U − U , we have

a. ∂0
U is the canonical projection

(
⊕
v∈S

Av)
Σ=0 → (

⊕
v∈S

Av/Z)Σ=0,

b. ∂1
U is an isomorphism if S is non-empty, and it is the canonical projection

Q→ Q/Z otherwise.

c. ∂iU is isomorphic for all i ≥ 2.

In particular, all the ∂i are surjective for all i ≥ 0.

Proof. We first deal with the second part of (b). Consider the following commutative
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diagram

H1(X ét, ker
∑

) × Ext2
X ét

(ker
∑
,Gm)

����

^ // H3(X ét,Gm)

H0(X ét,Q)

o

OO

× Ext3
X ét

(Q,Gm) ^ // H3(X ét,Gm)

lim−→H0(X ét,
1
n
Z) × lim←−Ext3

X ét
( 1
n
Z,Gm) ^ // H3(X ét,Gm)

It is easy to see that the bottom cup product sends pair (a,1) to (a mod Z) and

thus a ^ γ = a ^ 1 = a mod Z. This shows ∂1 : H1(X ét,F •) → H3(X ét,Gm) is

the canonical projection Q → Q/Z. The general case that U = U follows from the

commutative diagram

H1(X ét,F •)

=

��

^γ

mod Z
// H3(X ét,Gm)

=

��

H1(U ét,F •)
^γ // H3(U ét,Gm).

For a Zariski open subset j : U ↪→ X, set i : X − U ↪→ X, we have the following

commutative diagram

0 // H0(Uét,F •) //

^γ

��

⊕
v/∈U H

1
v (X ét,F •)

^γ

��

∑
// H1(X ét,F •)

^γ

��

// H1(Uét,F •)

^γ

��

// 0

0 // H2(Uét,Gm) //
⊕

v/∈U H
3
v (X ét,Gm)

∑
// H3(X ét,Gm) // H3(Uét,Gm) // 0,

where the rows are exact sequences induced by the short exact sequence

0 −→ j!j
∗F −→ F −→ i∗i

∗F −→ 0, for any F ∈ Sh(X).

The morphism H0(Uét, ker
∑

)
^γ−−→ H2(Uét,Gm) is completely determined by

H1(X ét, ker
∑

)
^γ−−→ H3(X ét,Gm) because Σ restricts to an inclusion onH1

v (X ét,F •) =

Av. (This can be seen by put U to be X− v and use the fact H0((X− v)ét, ker
∑

) =



60

0). Therefore, by the commutativity, ^ γ : H0(Uét,F •) → H2(Uét,Gm) maps

(
⊕

v∈U−U Av)
Σ=0 to (

⊕
v∈U−U Av/Z)Σ=0 by taking modular by Z componentwise.

For general i : U → X, set Ua to be the largest open subscheme of U such that

for any v ∈ Ua, all the valuations of K(U) above i(v) is contained in Ua. We have

the commutative diagram

H0(Uét,F •)
^γ //

� _

��

H2(Uét,Gm)� _

��
H0(Ua

ét,F
•)

^γ // H2(Ua
ét,Gm)

H0(i(Ua)ét,F •)
^γ //

OO

H2(i(Ua)ét,Gm)

OO

More precisely,

( ⊕
w∈U−U

Aw

)Σ=0
^γ //

� _

��

( ⊕
w∈U−U

Aw/Z
)Σ=0

� _

��( ⊕
w∈U−Ua

Aw

)Σ=0
^γ //

( ⊕
w∈U−Ua

Aw/Z
)Σ=0

( ⊕
v∈X−i(Ua)

Av

)Σ=0
^γ //

OO

( ⊕
v∈X−i(Ua)

Av/Z
)Σ=0

OO

Note that the cup products are canonical on v and w, and we have seen above that

the bottom cup product is canonical projection. By chasing diagram, one sees that

the middle one is also canonical projection, and so is the top one as the injection is

canonical. It follows that ∂0
U is the canonical projection.

To see the first part of part (b), we assume S is non-empty. When U f * U ,

H3(Uét,Gm) = 0 and H1(Uét,F •) = 0 (Prop. 4.1). Therefore, we have ∂1
U = 0. For

the case U f ⊆ U , note that U is then étale over X as all the infinite places are
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complex. Therefore, we have the following commutation diagram

Q = H1(U ét,F •)
π //

∂1
U

��

H1(Uét,F •) = Q/Z

∂1
U

��
Q/Z = H3(U ét,Gm) H3(Uét,Gm) = Q/Z.

As we have seen, in the very beginning of the proof, that ∂1
U

and π are the canonical

projections, ∂1
U has to be the identity map on Q/Z by the commutative.

Part (c) is trivial because H i(Uét,F •) = H i+2(Uét,Gm) = 0 for all i ≥ 2.

Now, we are ready to compute the étale cohomology of the complex RGm.

Proposition 4.4. Let U be étale over X, S = U − U and L = K(U), then

Hp(Uét, RGm) =



O×L,S p = 0,

Pic(OL,S)⊕XS p = 1,

0 p = 2,

Z (resp. 0) p = 3 and S = ∅ (resp. S 6= ∅),

0 p ≥ 4.

Hence, these cohomologies coincide with those of the Z-dual of τ≤3 RΓc(UW ,Z)[2] (c.f.

Prop. 3.5).

Proof. Consider the usual long exact sequence on cohomology induced by the exact

triangle RGm → F •[−1]
γ−→ Gm[1] → and use the result that ∂i are surjective

(Lemma 4.4), we get

H0(Uét,Gm)
∼−→ H0(Uét, RGm),

0→ H1(Uét,Gm)→ H1(Uét, RGm)→ ker(∂0)→ 0 is exact,

H i(Uét, RGm) = ker(∂i−1).

Thus, H0(Uét, RGm) = O×L,S. Because ker ∂0 = (⊕v∈SZ)Σ=0 = XS is Z-free, the mid-

dle exact sequence splits and soH1(Uét, RGm) = Pic(OL,S)⊕XS. Also, H3(Uét, RGm) =
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0 (resp. Z) when S 6= ∅ (resp. S = ∅) and H i(Uét, RGm) = 0 for all i ≥ 4, by

Lemma 4.4 (b) and (c).

The computations of Prop.4.4 and 3.5 suggest that

Theorem 4.1. RΓ(Uét, RGm)
qis−→RHom

(
τ≤3 RΓc(UW ,Z),Z

)
[−2] in D(Z).

In the next section, we shall prove the following more general quasi-isomorphism

RΓ(Uét, RGm)
qis−→RHom

(
τ≤3 RΓc(UW ,Z),Z

)
[−2],

in D(Z[G]), when S is stable under the action of G. Note that when G is the trivial

group, this is just Theorem 4.1

4.2 The Duality Theorem

Throughout this section, we assume that F is a totally imaginary number field, X =

SpecOF , U = SpecOL,S be any connected étale neighborhood of X. We also assume

that K is a subfield of L such that the extension L/K is Galois and G := Gal(L/K).

We require that S contains all the archimedean places and is stable under the action

of G.

Recall that F •(U) ' ker
∑

(U)[0] in D(Z[G]). To simplify the notation, in the

following, we denote by F •(U) the complex ker
∑

(U)[0].

Theorem 4.2. Let U = SpecOL,S and A→ B represents RHom(τ≤3 RΓc(UW ,Z),Z)[−2]

in Ext2
G(XS ⊕ Pic(U), US). Then RΓ(Uét,Gm) can be represented by

A→ B → F •(U).

Moreover, there is an exact triangle in D(Z[G]),

F •(U)[−2]→ RΓ(Uét,Gm)→ RHom(τ≤3 RΓc(UW ,Z),Z)[−2]→ . (4.3)
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This exact triangle is the same as the exact sequence of complexes

0 −→ F •(U)[−2] −→ (A→ B → F •(U)) −→ (A→ B) −→ 0.

Proof.

RHom(τ≤3 RΓc(UW ,Z),Z)[−2] //

OO

RHom(RΓc(Uét,Z),Z)[−2] //

OO

I0[0] //

OO

RΓ(Uét,Gm) //

OO

RΓc(Uét,Z)D[−3]
α //

OO

I0[0]
⊕

I2[−2] //

OO

F •(U)[−2] //

OO

XS

⊗
Z Q[−2] //

OO

I2[−2] //

OO

,

(
RHom(RΓc(Uét,Z),Q)[−3]

)
where I0 = ÛS/US and I2 =

⊕
v∈S∞ Q/Z are both Z[G]-injective modules. All the

rows are known exact triangles. The top is applying RHomZ(−,Z) to the exact

triangle

RΓc(Uét,Z)→ RΓc(UW ,Z)→ HomZ(US,Q)[−2]→,

the middle is (1.5) induced by the Artin-Verdier Duality Theorem, and the bottom

is followed from the definition of F •(U) and is indeed a short exact sequence. The

middle column is obtained by applying

HomZ(−,Z)→ HomZ(−,Q)→ HomZ(−,Q/Z)→

to the complex RΓc(Uét,Z).

The top right hand and bottom right hand squares of the above diagram are com-

mutative because they are commutative on H0 and H2 respectively (see Lemma 3.2).

Thus, by property of derived categories, there exist morphisms in D(Z[G]) so that the
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first column is an exact triangle and the above 3 by 3 diagram is semi-commutative.

Suppose RHom(τ≤3 RΓc(UW ,Z),Z)[−2] is in the same class of A
f−→ B as an ele-

ment of the 2-extension group Ext2
G(XS⊕Pic(U), US). Then RHom(τ≤3 RΓc(UW ,Z),Z)[−2]

is in the class of image, says A′
f−→ B, of A → B in Ext2

G(XS ⊕ Pic(U), ÛS), and

RΓc(Uét,Z)D[−3] is in the same class of A′ → B → XS

⊗
Z Q. In fact, one may

choose A′ to be (A ⊕ ÛS)/US and set f ′(a, x) = f(a). Note that RΓ(Uét,Gm) is de-

termined by α, more precisely by H0(α) and H2(α). It’s easy to see that the exact

triangle associated to the following exact sequence of complexes is in fact isomorphic

to the middle row of the above diagram.

0

��

0

��

0

��
A

��

f // B

��

// F (U)

��

A′

��

f ′ // B

��

// XS

⊗
Z Q

��
I0

//

��

0 //

��

I2

��
0 0 0

We conclude that RΓ(Uét,Gm) can be represented by A→ B → F (U) and it induced

the exact triangle

F •(U)[−2]→ RΓ(Uét,Gm)→ RHomZ(τ≤3 RΓc(UW ,Z),Z)[−2]→ .

Remark. By definition of the complex RGm, RΓ(Uét, RGm) satisfies the following

exact triangle

F •(U)[−2]→ RΓ(Uét,Gm)→ RΓ(Uét, RGm)→ . (4.4)
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One expects that exact triangles (4.3) and (4.4) are isomorphic, which would imply

the quasi-isomorphism

RHom(τ≤3 RΓc(UW ,Z),Z)[−2] ' RΓ(Uét, RGm).

Theorem 4.3. For any U = SpecOL,S, one has a quasi-isomorphism

RHom(τ≤3 RΓc(UW ,Z),Z)[−2] ' RΓ(Uét, RGm),

in D(Z[G]).

Proof. We first show that

HomD(Z[G])(F
•(U)[−2],RΓ(Uét,Gm)) ' HomG(F •(U), H2(Uét,Gm)) (4.5)

Observe that there is an exact sequence

0→ XSf ⊗Z Q→ F •(U)→
⊕
S∞

Z→ 0.

Since XSf ⊗Z Q and
⊕

S∞
Z (∼= Z[Gal(F/Q)]) are G-cohomologically trivial, so is

F •(U). By lemma 3.2(b), there is an exact sequence

0 // Ext1
Z[G](F

•(U), H1(Uét,Gm)) // HomD(Z[G])(F
•(U)[−2],RΓ(Uét,Gm))

−→ HomG(F •(U), H2(Uét,Gm)) // 0

Note that Ext1
G(F •(U), H1(Uét,Gm)) = Ext1

G(XSf ⊗Z Q,Pic(U)) = 0. Hence the

isomorphism (4.5).

By Lemma 4.4 and Theorem 4.2, we see that the induced homomorphisms on H2,

F •(U)→ H2(Uét,Gm),

for (4.3) and (4.4) are both the canonical projections. Thus, exact triangles (4.3) and
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(4.4) have to be isomorphic, in virtue of isomorphism 4.5. Consequently,

RHomZ(τ≤3 RΓc(UW ,Z),Z)[−2] ' RΓ(Uét, RGm),

in D(Z[G]).

Corollary 4.2. Suppose that Pic(Spec(OF,S)) = 0 and S is stable under the action

of G, then we have the following quasi-isomorphism

RΓ((Spec(OF,S))ét, RGm) ' ΨS,

where ΨS is the canonical Tate sequence associated to S.

Proof. This follows from Theorem 4.3 and Theorem 3.3.

Remark. a. Theorem 4.3 allows us to recover the truncated Weil-étale cohomol-

ogy groups Hp
c (UW ,Z) by the hyper étale cohomology of the complex RGm.

Also, one might find corresponding Weil-étale cohomology axioms in terms of

Hp(Uét, RGm).

b. The reason that it is hard to generalize Lichtenbaum’s prototype to higher di-

mensional arithmetic schemes X is that there are no Weil groups for higher

dimensional fields. However, Theorem 4.3 shows us a probability to generalize

Lichtenbaum’s prototype, because we do not use Weil groups when defining the

complex RGm. One direct thought is that, for any n-dimensional arithmetic

scheme X , one may define a complex RZ(n) in Ext2
X

(Z(n),F •(n)), so that

the Z-dual of RΓ(X et, RZ(n)) defines certain Weil-étale cohomology theory,

where F •(n) is a complex of étale sheaves that depends on n.

c. Theorem 4.3 suggests that for any étale U → X there could be a perfect pairing

RHomUét(F , RGm)× τ≤3 RΓc(UW ,F )→ Z[−2],
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for a certain class of Uét-sheaves F .
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