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Abstract

In this thesis, we first briefly introduce the history of the Weil-étale cohomology theory
of arithmetic schemes and review some important results established by Lichtenbaum,
Flach and Morin. Next we generalize the Weil-étale cohomology to S-integers and
compute the cohomology for constant sheaves Z or R. We also define a Weil-étale
cohomology with compact support H.(Yy, —) for Y = Spec Op ¢ where F' is a number
field, and computed them. We verify that these cohomology groups satisfy the ax-
ioms state by Lichtenbaum. As an application, we derive a canonical representation of
Tate sequence from RI'. (Y, Z). Motivated by this result, in the final part, we define
an étale complex R Gy, such that the complexes RHomgz (RI'(Ug, R Gy,), Z)[—2] and
73Rl (U, Z) are canonically quasi-isomorphic for arbitrary étale U over Spec Op.
This quasi-isomorphism provides a possible approach to define the Weil-étale coho-
mology for higher dimensional arithmetic schemes, as the Weil groups are not involved

in the definition of R G,,.
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Introduction

Stephen Lichtenbaum conjectured that there exists a new cohomology theory, called
Weil-étale cohomology, for arbitrary arithmetic schemes X, such that its cohomologies
are connected to the zeta function of X. In [9], he defined a prototype of such a
cohomology theory for number rings. The main idea is replacing the role of Galois
groups in the étale cohomology by Weil groups. There is still no exact definition for
the Weil-étale cohomology. Let ¢ : X < X be a fixed Nagata and Artin-Verdier style

compactification, and here we list the axioms suggested by Lichtenbaum:

a) The Weil-étale cohomology groups with compact support H1(X,Z) := H1(X, )Z)
are finitely generated abelian groups that equal to 0 almost everywhere, and in-

dependent of the choice of compactification of X.

b) [f]ﬁ denotes the sheaf of real valued functions on X, then HI(X, I@) and H1( X, Z)
are independent of the choice of ¢p. Moreover, the natural map from H1(X,7Z)®y,
R to Hg(X,I?KE) is an isomorphism.

c¢) There exists an element ¢ € H'(X,R) such that the complex
- HIXR) S HPXR)
18 exact. In particular,

> (=1)"dim Hi(X,R) = 0.

>0

d) ords—oCx(s) = Z(—l)iz’ rank; H.(X, 7).

1>0
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e) The Euler characteristic x.(X)(Def. of the complex H1(X,Z) is well-defined,
and the leading coefficient of the Taylor’s expansion of (x(z) at z = 0 is £x.(X).

The cohomology theory H*( Xy, —) for X = Spec Op, where F is a number field,
defined in [9], is an inductive limit of cohomology for a projective system of sites.
And the above axioms hold only under the assumption H*(Xy,Z) = 0 for all j > 3.
However, Matthias Flach [5] proved that the cohomology group H*(Xyy,Z) is an
infinitely generated abelian group for even ¢ > 4, and is vanishing for odd 7 > 5.
In a recent paper [6], by modifying the prototype defined by Lichtenbaum, Flach
and Baptiste Morin constructed a topos that recovers the Lichtenbaum Weil-étale
cohomology groups for number fields. By this result, one may avoid the limit process
for the case of number fields. However, we still need to truncate the cohomologies of
higher degrees.

Recall that Lichtenbaum only defined the Weil-étale cohomology for Spec Op, but
one can generalize it to its arbitrary open subschemes Y = Spec Op ¢ in an obvious
way. In Chapter 2, we compute the Weil-étale cohomology of Y with Z-coefficients and
give a brief review of Morin’s results concerning Weil-étale cohomology. From Chapter
3, we assume that the ground field F' is totally imaginary. Under this assumption,
in section 3.1, we show that the Weil-étale cohomology groups with compact support

for S-integers with Z or R-coefficients are as follows,

(

0 p=0,
HP (Y, Z) = [IsZ/Z p=1,
Pic(Y)? x Hom(Ug,Z) p = 2,
|17 p=3,
and
H?(Yi,R) = s R/R p=1.2

0 otherwise.
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The computation is based on Theorem that there exists an exact triangle
RI.(Yy,Z) — 7= RI.(Yw, Z) — Hom(Ug, Q)[—2] — .

In section 3.2, we show that all the axioms (a)-(d) hold for S-integers if we truncate
the cohomologies of higher degrees. The proof relies on that in Lichtenbaum’s original
paper and a closer look of the effect of the cup product by .

Recall that for any Galois extension F'/L of number fields with Galois group G,
and a G-stable subset S of valuation of F' containing all the infinite places and those
ramified in F//Q and so that Pic(Opg) = 0, then, by using class field theory, one can

define an exact sequence ([15] Théorem 5.1)
0—-Us—A—B— Xg—0,

where Ug is the group of S-umits, Xg := {(z,) € [[,egZ|> @, = 0} and A and
B are finitely generated cohomologically trivial Z[G]-modules. We call the complex
A — B the Tate sequence associated to S. The Tate sequence is not unique, but
one can choose the complex Ug : A — B so that it represents a certain canonical
class of Ext%(Xg,Us). We denote by Vg the complex A — B — Xg ®z Q and
(—)P := RHomgz(—, Q/Z) = Homz(—,Q/Z). Burns and Flach([2] Prop. 3.1) showed

that there is a map of complexes,

Vg — RL.(Ya, Z)P[-3],

~

inducing an isomorphism on H® for ¢ # 0 and the inclusion Ug < [/]; =Ug ®y 7
on H°. In section [3.3] we are able to show that 7=*RI.(Yyw,Z) gives a canonical

description of the complex Wg in the sense that there is a quasi-isomorphism,
Uy 2% RHom (7S3 RI. (Y ,Z) ,Z) —2]. (1)

In the final section, we construct a canonical complex RG,, of Y-sheaves as
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an element of Ext%t(c%ffv, Gm), where 2 is the Y -sheaf associated to the presheaf
Ug — Xi_yy. We show that

Hi(Uy, RGyy) = Hi<RHomZ(r§3 RT.(Uyy, Z) ,Z)[—2]>, Vi>0,

for any étale U — Spec Op. Therefore, it may be possible to define certain Weil-étale
cohomology for arbitrary arithmetic scheme by generalizing R G,,.

In the final section, we prove that, in fact, there is a canonical quasi-isomorphism:
RE(Ust, R Gry) 2 RHomy, (7<% R (U, Z) , Z)[~2] in D(Z[G)),

for any étale U — Spec O, when S is stable under the action of G. When U small
enough so that the Tate sequence exists, this together with show that

RI'(Ug, RGy) ~ Wg.
When G is the trivial group, this implies the quasi-isomorphism,
RHom (7=* RI'.(Uyw, Z), Z)[—2] ~ RI'(Uyg, RG,),

in D(Z), for any étale U — Spec Op.

Therefore, one sees that the the complex RI'(Ug, R Gy,) generalizes the Tate se-
quences and its Z-dual recovers the truncated Weil-étale cohomology groups of S-
integers.

Also, this suggests the following duality property:

Conjecture 1. There is a (perfect) paring
RHomy,, (%, RG,,) x 7=* Rl (Uy, F) — Z]-2],

for a certain class of étale sheaf F on U.

The reason that it is hard to generalize Lichtenbaum’s prototype to higher dimen-
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sional arithmetic schemes 2 is that there are no Weil groups for higher dimensional
fields. However, Theorem shows us a probability to generalize Lichtenbaum’s

prototype, because we do not use Weil groups when defining the complex R G,,. One

direct conjecture is that

Conjecture 2. For an arithmetic scheme 2 of dimension n, one may define a
complex RZ(n) in Ext3-(Z(n), #*(n)), so that the Z-dual of RT'(Z ¢, RZ(n)) defines
certain Weil-étale cohomology theory, where F*(n) is a complex of étale sheaves that

depends on n.



Notation

Here we list the notations that are used frequently throughout this thesis.

e F'is anumber field if not specified, G is its absolute Galois group. G is reserved

to be the Galois group of any Galois extension F'/L.
o Op: the ring of integers of F.

e Spec Op: the Artin-Verdier compactification of Spec O, which, as a set, is the
same as the set of the equivalence classes of valuation of F' (the trivial valuation

is included). We say a subset of Spec OF is open if it has finite complement.

e For any open subset U of Spec Op, we denote by

— U := Spec Op,
— K(U) : the function field of U,

— U (resp. Uy): the set of points of U corresponding to infinite (resp. finite)
places of K (U).

e For any field K, My is the collection of equivalence classes of valuations of K.
e vy the trivial valuation of F'.

e S: a finite subset of Mg. We always assume that it contains all the infinite

places then S = Spec Op — Spec O g as sets.
o S (resp. Sy): the subset of all the infinite (resp. finite) places in S.

e Ug: the group of units of Op.
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(_)V = HOmz<—,Z), (_)D = RHOmz(—,Q/Z) - HOmz<—,Q/Z) and (_)D =
Hom,,:(—, R/Z) the Pontryagin dual.

Xg: ={(xy) € [1yeq Z|Xyx, = 0}. Hence X¢ =[[¢Z/Z and (Xg)" = Xs.

Cp: the usual idele class group Cr (resp. F*) when the field F' is global (resp.

local).

For any site C, Sh(C) is the category of abelian sheaves on C.



Chapter 1

Preliminary

1.1 The Weil Groups for Number Fields and Local
Fields

1.1.1  Weil Groups

Idele class groups and Galois groups are the central objects in class field theory. In
1951, Weil introduced the Weil groups, which carry the information of both. There
are many equivalent ways to define the Weil groups. (cf. [14] sec.1). A brief definition
of the Weil group for F' (global or local) is as follows : let K/F be any finite Galois

extension, and the relative Weil group Wi, be the extension
1 = Cx — Wgp — Gal(K/F) — 1

representing the canonical generator a,p of the group

H2(Gal(K/F), Cy) = [K—lﬂz /7.

By abuse of language, the absolute Weil group for I is defined as

Wp = lln WK/Fa
K/F

where the index runs over all finite Galois extension K/F. This induces a contin-
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uous morphism ap : Wr — Gp with a dense image, and we know that there is an
isomorphism of topological groups rr : Cp — W& ([1] p.238-239).
From now on we restrict F' to be a number field. Let K/F be a finite Galois
extension, and S be a finite set of places of K containing all the infinite ones and
those ramified in K/F, we define Wg/rg to be the extension Cx g := Ck/Uks by

Gal(K/F) that represents the canonical class ax/r g of the group
H*(Gal(K/F),Ck,s) = H*(Gal(K/F), Ck),

where Uk s is the ideles of the form (a,) in which a, = 1 (resp. a, € O ) for

all v € § (resp. v ¢ S§). It is easy to see that Wy ps = Wk p/Uk,s and then

WI“(”/FS =~ (k. Together with the map log|-| : Cks — R, one defines a map
lr,s : Wg/ps — R. Further, we know that Wr = @K/FSWK/F’S' ([9] Lemma 3.1),

and there is a canonical map [, : Wp — R.

1.1.2 Weil Maps

For any non-trivial place v of F, we choose a place ¥ of F lying over v once for all,
and denote by D, the associated decomposition group and I, the inertia group. This
induces an embedding o, : D, = G, — Gr. We set Gy, := D,/I,. Note that then
Gy = 1 for any infinite place v. By the construction of Weil groups, there exists
a so-called Weil map O, : Wr, — Wy, which is also an embedding such that the
following diagram commutes.

©
Wg, —=Wg

iam lw

GF L> GF.

v

For any non-trivial place v, the composition I, : Wpg, L Wlfif = FX LR R has

kernel p~'(Op ). Thus, Wiy := W, /p~'(OF,) = Z (resp. = R) when v { oo (resp.
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v]|oo.). We denote the quotient Wp, — Wi by 7,. Summarily, the diagram

Wr, —> Wi (1.1)

Je- | |

WFL)]K

is commutative. Note that, for any finite place v, [, sends the generator o, of Wy,
to log N (v).

Consider the commutative diagram

WFU O WF

i i

Wk/p, —= Wikips = Wip/Uk s.

It is not hard to show that the image of Wg, in Wk pg is isomorphic to W, /r, (
resp. Wk, /r,/OF,) when v € S (resp. v ¢ S). This implies the canonical map
Ty : Wk, — Wi factors through ﬁ/\;v, where W\}:‘; is the image of Wg, in Wy /ps.
We denote g, : VI//E — Wi and 0, : V[//\F/v — Wk/r,s.

1.2 The Classifying Topos and Cohomology of a
Topological Group

Let G be a topological group. We denote by B*™G the small classifying topos of G the
category of discrete sets on which G acts continuously, and by Br,,G the classifying
site of GG, the category of G-topological spaces endowed with the local section topology
Jis (see [9] sec. 1), and Bg := Sh(BG, Js) the topos of sheaves on this site. Let eq
be the final object of B¢, we define the global section functor I'¢ as Homp, (eq, —).

For any abelian object A of B¢, we define the cohomology of G with coefficient A by

Hi(G, A) = RI(T'g)(A).



11
Let A be any continuous G-module, and A : X — Hompg(X, A), then H (G, A)
coincides with the usual group cohomology group H'(G, A) when G is a profinite
group ([9] corollary 2.4).

Theorem 1.1 ( [9] Thm. 3.6 & [5] Thm. 10.1).

(

Z q=0,
LD g=2.
HI(Wp,Z) =4 "
0 odd q,
| is of infinite rank even q > 4,
where Ch is the idéle class group with norm one and D := Homen(—, R/Z) the

Pontryagin dual.

1.3 Artin-Verdier Topology

1.3.1 The Definition

For any subset U of X, one can define a so-called Artin- Verdier étale site Ety, which
generalizes the usual étale topology for schemes. The objects in Ety are pairs V =
(Vf, Vo) where V (resp. Vi) is a subset of the finite (resp. infinite) places of K (V)
and Vy (resp. Vi) is étale over Uy (resp.Us). We say that V' is étale over U if V is
an object of Fty.

A morphism from V' = (V{,V])) to V is an Us-étale morphism f : V' — V' that
induces a map sending V. to V. The fibre product is defined componentwise in the
obvious way, and a covering is a surjective family. We denote by Sh(Ug) the category
of abelian sheaves on the site Et.

Let j : V < U be nonempty open subsets of X and j7'W = W xy V is a map
of topology. We have an embedding j. : Sh(Vy) — Sh(Ug). For each « € U, there is
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an embedding of closed point i, : Sh(z¢g) — Sh(Ug). In this case Z := U — V has
only finitely many points, and it is easy to see that Sh(Zg) = [],., Sh(ve) where

Sh(ve) = By, We set F, = o7, where « : Spec K{U)—-U.

veEZ

Proposition 1.1. The category Sh(Ug) of abelian sheaves is equivalent to the cat-
egory that consists of (F,{Astv-v,{¢s : Az — L%?I”f}U,V) where A, 1s a con-
tinuous Gyz)-module and ¢, is an Gjy)-map. ( The morphisms between objects
(Z,{A}, {6:) and (F', {AL}, {6,}) are collection of morphisms {f : F — F',{f, :
A, — ALY} such that (3% f)(pe) = ¢L(fz) forallz e U —-V.)

Proof. This is just a generalization of [I8] section 1.3.3. By the same argument we

are led to prove the following condition holds.
a. iz and j, are fully faithful,
b. j*%# =0 if and only if .% is of the form Il,cy_y M, where M, € Sh(x).

Condition (a) follows from the fact i, M (W) = I, wM and j*j. = id. To see
condition (b) is true, first note that the sufficient is obvious. For the necessary, let
(W,y) — (U,z) be any étale morphism and W — U together with (U; — U) be a
covering of U, then (W,y) — (U, x) together with (U; — U) form a covering of (U, x).
By the sheaves condition and j*% = 0, we see that #((W,y)) ~ % ((U,z)), which
shows that if.% ~ M, where M, = Z((U,z)). Therefore .# is of the desired form.
And the result follows from the above and [3] III, Prop. 2.3.

[

Remark. In the proof of the above property, we actually proved that % € Sh(Ug)
is vanishing if and only if the stalks F, = 0 for all x € U. Moreover, to verify the

exactness of complexes of étale sheaves it is enough to check it on stalks.

As the open-closed decomposition of étale sheaf for schemes, there are functors

jil Lo,

» > - > ks
Sh(Us) <— Sh(Var), Sh(za) <—— Sh(Va), Sh((Vao)at) k= Sh(Ver)
Jx iz, I —

—_—
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such that each functor is left adjoint to the one below it.

(Z,{A.},{¢+}) € Sh(Us) then

19 = (4,{0},{0}),

T =9,
59 = (9. A9} {id}),
k7 ={A,},
k*{Afc} = (07 {Ax}7 {0})7
EF = {ker ¢, }.
Some immediate properties:
Proposition 1.2.  a. 5, 5%, k" and k, are exact,

b. 5%, ju, ke and k' preserve injectives,

c. There is a short exact sequence

0— 439 — 4.9 — k.k" 7.9 — 0.

Explicitly, let .# =

Proof. Part (a) follows from the formula above and part (b) follows directly from (a)

because any functors listed in (b) has an exact right adjoint. The exact sequence in

part (c) is the same as the exact sequence

0— (¢,0,0) — (¥4, {gn]*}, {id}) — (0, {gnlr},()) — 0.

]

Remark. By the construction of mapping cylinder, the section function I'(—, F) is

the sheaf sending an étale VW over U to the abelian group

G2 J"F W) X ke juge 7o) k™ F (V).
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We denote by Gy, € Sh(Ug) to be the j, G, where j : Uy — U.

Because Sh((Up)a) and Sh((Us)¢t) have enough injectives and j, and k, are both
preserve injective, so Sh(Uyg) has enough injectives as well. This enables us to define
right derived functors.

For any .% € Sh(Ug), we define H?(Ug, F) = RPT(—,.%) and HE(Uy, F) =

RPK..Z. Then applying for Exty;,, (—, %) to the short exact sequence,
0 — HWZ — j 1 — kk™j, 7 — 0,
we get a long exact sequence,

— H ' (Va, Flv) = | H2Ua, F) — H(Ua, F) — H (Va, Flv) — . (1.2)
U-v)

Lemma 1.1.
ker ¢, p=0,

HY(Viy, F) = ¢ coker ¢, p=1,
HP Y1, F,) p>2.
Corollary 1.1. Let U and V be the same as before, and F € Sh(Ug). If V —U

consists of only complex places, then
H?(Vyy, joF) = H?(Ugt, F).

Corollary 1.2. Assume that F' is totally imaginary. Let U be any open subset of
X = Spec Op and S its complement, then

( (9;75 p=0,
Pic(Ors) p=1
H*(Ug, Gy) = § {elements of Br F with no invarants in U} p =2,
Q/Z p=3 and U D Xy,
0 otherwise.

\

Proof. By the previous Lemma, we have H?(Ug, Gy,) = HP((U N X) ¢, Gp). O
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Corollary 1.3. Under the same assumption of the previous corollary. Let v be a

place of F', then
a. H3(X ¢, Gy) =0 if v is complex,

b. The morphism H3(X s, Gy) — H*(X 4, Gy) is an isomorphism if v is a finite

place.

Proof. Part (a) follows from Lemma [I.1] directly.

To see part (b), we set U = X — v and V = X in the long exact sequence (1.2)
and note that, by the previous corollary, H*(Ug, G,,) = H3(Ug, Gy,) = 0. Thus, the
morphism H2 (X4, Gn) — H?(X g, Gy) has to be an isomorphism. O

1.3.2 The Norm Maps

Let Y = Spec Ok, where K is a finite extension of F, and 7 : Yy — X, the natural
projection. There is also a natural projection 7, : Y, — X sending a valuation to
the unique one it lays above. We can combine these two projections into 7 : Y — X,
which indeed defines a morphism between sites. More general, let U = (Uy; Us,) be
any open subscheme of X and V = 77!(U) an open subscheme of Y, then we also
denote by 7 the fibre product of morphism 7 x (V < X) : V — U. From now on, j
denotes either Uy — U or V; — V and ¢ denotes either Uy, — U or Vo, — V.

Proposition 1.3. a. 5T = mg",
b. ik k*F = Hy/x Fy.
c. ™ and m, are exact.

Proof. For any étale Wy — Uy, j*m. 7 (Wy) = 1.7 (Wy) = F(WyxyV) = F(Wyxy,
Vi) = m.j*% (W), which proves the part (a).
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For proving part (b), note that k.k*%# = (0,{.%,},,0), and then

ikt F = @(W,w)éwﬁr) Tk k™ F (W, w))
= hi)n(W,w)H(Uf,x) (07 {yy}gh O) (ﬂ-il((W7 w)))
— 13 or
= ) 117
y/x
= ﬁy.
y/x

As 7 is a morphism between sites, 7* is exact. To see m, is exact, suppose .Z €
Sh(Vg) has decomposition (¢4,{%,},{¢,}), then 7, is the sheaf sending W to

Z'*ﬂ'*y = lim ﬂ*]*]*g((W, w)) Xﬂ-*k*k*j*j*{g((wyw)) mk:*k:*%((VV, W)),

v — (Ww)

where the limit runs over all étale (W, w) — U than sends w to x.
Since taking stalks commute with fibre products, so the above direct limit equals
to

i T Jxd G Xismokkjujo g lpTaks k™G,

By part (b), we know that ¢*m.k.k*9Y =[] 7

Also observe that

<4, and iim.k.k*5,5°9 =11

y/z y/x

e Jed Y =i jm g Y = f*w*g(SpecFIz) = W*f'*%(SpecFIz) = f’*%(H Specfly) = H%{y,

y/z y/x

where f : Spec F" - U and f" and 7" are defined by the fibre product

I/, Spec K L1/

|+ f l

Spec ol U
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Therefore,

Uy TwF = H%{y XHy/z%Iy H% = H%y = Hﬁlﬁ

y/x y/@ y/x y/x
and so the functor ¢}, is exact for all z € U,,. Together with the fact, j*m, = m,j*
is exact, we see that m, have to be exact.

]

One can generalize the classical norm map K* — F* to the level of étale sheaf; ie.
NGy, = Gy, Applying j. to N, where j : Uy — U, one obtains a morphism
T Gmy — Gumpy. We also denote this morphism by N. For any .# € Sh(Vy), we

define a norm map N as the following composition,
adj norm
N(y) . RHOIHSh(Vét)(y, Gm’v) —J> RHOHlSh(Uét)(ﬂ'*egZ, ™ Gm,V) —_— RHomSh(Uét)(mf, Gm,U)a

recalling that R'm, = 0for ¢ > 0 as m, is exact. Here [A, B] denotes RHom p(sn(v,,)) (A, B)
for A, B € Sh(Ve).

Theorem 1.2 (Norm Theorem). Let m : V. — U be the same as before, and as-
sume that F is totally imaginary, then N(j.%) is a quasi-isomorphism for all Z-

constructible sheaf F on Vj.

Proof. The norm functor transfers the short exact sequence,
0 — jF — j.F — kk*j. 7 — 0,

to the morphism of exact triangles

RHomgp((v;) ) (Z, Gm,v;) —— RHomgy(v,,) (j+F , Gm ) —— RHomgyv) (kb ™ juF, G y) ——
\LNI iNz \LNg
RHomSh((Uf)ét)(ﬂ*éz, Gm,Uf) —— RHomgyv,,) (T+J5F , G y) — RHomgpu,,) (T2 ksk*§4 T, G ) ——
(Note ji commutes with 7,.)
By [10] II1.3.9, N; is a quasi-isomorphism and [4] Lemma 3.8 ensures that both
of the domain and the codomain of N3 are vanishing. Therefore, Ny is a quasi-

isomorphism. O
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1.3.3 The Etale Cohomology with Compact Support

There are many kinds of étale cohomologies with compact support. Let ¢ : U =
Spec Or.s — Spec Or. We denote by H!(Ug, F) := H'((Spec Op)et, 01 F) the coho-

mology with compact support, which is equivalent to be defined by the exact triangle

R (Uy, F) — RI(U. — [ RO(Lu,

One can define a modified cohomology with compact support, ]:lé(Uét,ﬁ ), by
replacing the complex RI'(L,,.%#) in the above exact triangle by RI'7ge(Ly, %) for
each infinite places w.

Since Tate cohomology is isomorphic to the original cohomology for degree > 1,
these two cohomologies with compact support are the same for degree > 2. Moreover,
the difference between these two kinds of cohomologies is measured by the exact
triangle,

RI.(Us, F) = RTe(Ua, 7) — P RTA(Lw, F) —,

where RI'A(Ly,, #) := cone(RI'(Ly, F) — RFTate(Lw, F))[-1].

Assume that L is totally imaginary and set .% = Z, we have the following exact
triangle,
RL(Us, Z) — RU(Us, Z) — P Z[0] —, (1.3)
w|oo

Artin-Verdier Duality

Consider the pairing
RD (Ust, F) x RHomy,, (F, Gy) — RI(Ugt, Gny) — Q/Z[-3].
It induces a morphism

AV (F) : RHomy,,(Z, Gy) — RL.(Us, F)P[-3).
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The Artin-Verdier duality theorem (cf. [10] Theorem 3.1) shows that H'(AV(Z)) is
an isomorphism for ¢ > 1 and H O(ZV(Z)) : Ug — Ug, which can be summarized in

an exact triangle
RI(Us, Gr) — RTe(Usy, Z)P[—3] — Us/Us[0] — . (1.4)
Together with the Q/Z-dual of (1.3)), we obtain the following exact triangle
RL(Ust, Gr) — RTo(Ust, Z)P[=3] — Us/Us[0] ® (MyeeQ/Z)[~2] — . (1.5)

Exact triangles ([1.3)), (1.4]), and ((1.5)) will be used in the last part of chapter 4.
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Chapter 2

The Weil-Etale Cohomology of
S-integers

2.1 The Definition

We fix a number field F' and set Y = Spec Op. Let K/F be a finite Galois extension
and S be a finite set of non-trivial valuations of F', containing all those which ramify
in K/F. The site Tx/p,s was defined in [9] as follows:

The objects of Tk /p g are the collections

((Xv)a (fv))ve?>

where X, is an Wj,-space, and f, : X, — X, is map of W, -spaces. ( We regard
X, as an Wg -space via m,, and X,, as an W -space via ©,). Further, we require
that the action of Wpr on X, factors through Wy r .

Let X = ((X,), (f»)) and X' = ((X}), (f;)) be objects of T/, g, then Hom(X, X”)
is the collections of Wg,-maps g, : X, — X, such that g,, f, = f; g for all v. And the
fibre product of two morphisms with the same codomain is defined componentwise.

The covering Cov(Tk/r,s) consists of the family of morphisms {((X;,), (fiv)) —
((Xy), (f»))}i such that {X;, — X,}; is a local section covering of X, for all v. We
denote 77(7}/5 the topos ShTk/r,s, Jis)-

Clearly, *x/rs = ((pt), (id)) is the final object of Tk /ps. For any abelian sheaf
Fk,s on it, we define the cohomology H?(Tx/r,s, Fr,s) by H?(Tk/r,s,*, FK,s).
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For each non-trivial place v, the map iz'g, : ((X,)) — X, induces an embedding

of topoi ix gy : BWk(v) — Tk/rs. When v = vy, we denoted by jg s the embedding

i8St Bwy ps = Tk/Fs-

For any finite Galois extension K’ of K, and S’ D S, the canonical morphism

p: Wkiyps — Wk ps defines a transition map tx/k,5/s : Txryps — Tryps ( by
regarding any Wy, p g-space as an Wy p g-space via p). We will throw out K, S from
the index if there is no risk of confusing.
Proposition 2.1 ([12] Prop. 3.5, 3.14). @) i, i,. and j* are exact, and i, i} =
id.
b) We have the following commutative diagram

k!, g1 ——~——

BWK’/F,S’ —— TK{/Fvsli;/? BWk(v)

T

B JK,S
Wk/r,s > TK/F,S-

Proposition 2.2 (ibid., Prop. 3.15, 3.16).  a) There is a morphism

frs :Tk/rs — Br
so that fx s o iy is isomorphic to B, : Bw,  — Br, for any closed point v of
Y.
b) The following diagram is commutative

P e N o

Trrrs Tk /F,s

N

Br

for any F/K'/K/F and S C S'.

Definition 2.1. A compatible system of abelian sheaves on the sites (TK/ F.9)K.S

is a collection {(Fk.s), (¢xr/K,s/s)}, where Fgs € Ti/ps and ¢rrjk 51/ i a mor-
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phism ti /g 5175 FK,s = Frorsr, such that if K"/K'/K a series of finite Galois exten-
sions and S" D 5" DS, then Qi i 5m/s = Cen 1 gn 15/ ( Pk jicr,57/57) © Prcrjic,57/5 -
Definition 2.2. Let # = {(Fk.s), (0r//k,57/5)} be any compatible system of sheaves

on the sites (T p.s)k,s, then we define the Weil-étale cohomology on Spec Op for F,
Hp(?w, 9) to be hi)nKS Hp(TK/ES, FK,S)'

Example 2.1. Let px s be the morphism Bw, — Bw, ., and A be an abelian object
of Bw,. associated to a topological abelian Wg-group A. Then A= {Uk.s+0r5:A), (0)}

forms a compatible system of sheaves, where
Prr/r,s1)s it IK,SxPr A = Ul jir 50 xDE7 v A — JK 574 DE7 2 A

is the natural map induced by the adjunction. We define HP(Y v, A) to be HP (Y, E)
In particular, if A is a topological abelian group on which Wg acts trivially, then A is
called the constant sheaf with A-value. We denote by A the constant sheaf defined
by A if A has the discrete topology.

In [12], Morin gave a direct description of the topos T/K;/s Recall that W,
denotes the image of Wy, in Wk g, and 0, : VI’/;U — Wk/rs and g, : @ — Wi

are the induced continuous maps.

Definition 2.3 (ibid., Def. 3.1). We define a category Sk r,s as follows. The objects
of this category are of the form F = (Fy; fv),eyv, where F, is an object of Bw,,,, for

v #£ vy (resp. of Bwy s forv= vo) and
fo 1 qy(Fy) — 05(Fy,)

is @ morphism of By so that f,, = idp, . A morphism ¢ from F = (Fo; fo)ver
to F' = (F}; f,) ey s a family of morphisms ¢, : Fy — F, € FI(Bw,, )(and ¢y, €

Fl(Bwy ) so that

N o (Bv)
q (Fv) B

v

a(Fy)

s
06 .
qv(FUO) = OU(Fé())
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15 a commutative diagram of BV[;;U.
For K = F and S the set of all non-trivial valuations of F, one has Wkirs =
Wg, I;I—/\;U = Wp, and we set §x/rs = SW;V'

Proposition 2.3 (ibid., Thm. 5.9). §x/rs s a topos and is equivalent to Tk ps as

a topos.

In the following, we identify §x/rs and Tix/rs.

Proposition 2.4 (a special case of [12] Lemma 4.5 & Prop. 4.6). Let A be an abelian
object in By, defined by A on which Wg acts trivially, then

a) RPj.A = {(RF(jr.s+)(Pr,s5+A), (¢)} is a compatible system of sheaves.

b) There ezists a spectral sequence
H?(Yyw, R1j,A) = H'(Wp, A).

Proposition 2.5 ([9] Thm 5.10, [5] Theorem 11.1).

Z p=0,

0 p=1,

— Pic'(Y)P p =2,
Hp(YW,Z) = )

I p=3,

1s of infinite rank even p > 4,

0 odd p > 5,

\

where Pic' (Y) is the kernel of the absolute value map from Pic(Y) to R>? and Pic(Y)
is the Arakelov Picard group of F', which is obtained by taking the idéle group of F' and
dividing by the principal idéles and the unit idéles( i.e. those idéle (u,) s.t. |uy|, =1
for allv.).
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Proposition 2.6 ([9] Theorem 5.11).

- R p=0,1,
H(Yw,R) =

0 p>1.

More generally, for any open subscheme U = Spec O of Y, U defines an open
sub-topos §k/r.s' /v — Sk/r,s, the full sub-category of Fx/ps whose objects are of

the form F = (F,; f,)vev (ie. F, =0 for v € Y — U). One can show that Sk/Fs /U

is equivalent to Tf/ ¢, where Ty . o, is defined similarly as Ti/rs by throwing out
from each object all the v-components for v € Y — U. We have the usual embeddings

S . S
Jkips - Bwype = Sx/ps /v and iy - Bw, ., — Sk/ps/v-

Definition 2.4. We define the cohomology H?(Fk/rs,U,—) == H?(Jk/ps' /v, —),
and Hp(Uw,Z) = @HP(SK/F’S/, U, Z)

Proposition 2.7. For any proper open subscheme U = Spec Ops of Y,

p

L p=0,
0 p is odd,
H?(Uw,Z) = <
(Ch/ Hoer U)? p=2,
ka(WF,Z> p > 3.

Proof. There exists the Leray spectral sequence induced by the inclusion of the generic
point

Hp(SK/F,S’/Ua quIS;/F,SQ*Z) - Hp-l—q(WF’Z).

lim
—K/F,S
By the same argument of [9] Theorem 4.8, for ¢ > 0, one has qu}%/ES,’*Z =
[ocsns .80 Rij5 pg o2 Moreover, the functor @ RYjy g g, = RIS J3pe ) =
Rq(if*is*is*jf(/F’S,’*) = R(i%jK/rs ) = 15RYjKk/rs «, where i is the open embed-
ding Sk rs' /v — Sk/F,s-
Therefore, for any ¢ > 0, H?(Sk/r,s' /v, quf(/F,S’,*Z) = HyesnsH? Wiy, i Rk /p,50 < 1),
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By the computation due to Flach [5], we have

Z q=0,
h_I)IlK/RS, HP(SK/Fys’/Ua qu}s("/F,S’,*Z’) = H’UEU UUD p=20 and q=2,

0 p >0 and q # 2.

\

So the 2nd page of the spectral sequence looks like the following,

0

[y

velU O
0

H(Uw,Z) H(Uw,Z) H*Uw.Z) H*Uy,Z).

This gives us H'(Uyw,Z) = Z, H'(Uw,Z) = H'(Wg,Z) = 0 and the exact se-

quence,

0—> H2(Uy, Z) —> H2(Wg, Z) —> [[,cpy UP — H3(Uw, Z) —> H3(Wp,Z) = 0,

1,D
Cr

which is dual to
OHHS(Uw,Z>D*>Hv€U UUHC;HH2<U{/V,Z)DHO

As the middle map is injective when U is a proper subset of Y, we see that H?(Uyy, Z) =
(Ck/ 1yer Uo)? and H?*(Uw,Z) = 0. And for p > 3, H?(Uw, Z) = HP(Wp, Z), which
is vanishing for odd p > 3. O

Definition 2.5. Let % = (Fg/ps) be a compatible system on sheaves on the site
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(Tk/rs). TheniyF = (if s, i /rs) a compatible system of sheaves on the site By, ,
and it gives rise to restriction maps H*(Tx/rs, Fr/rs) — H*(k(v)w, ik s, FKk/Fs)-
Let U be any open subscheme of Y. Since U =Y, we define the Weil-étale coho-
mology with compact support for an open subscheme U with coefficient % as

the cohomologies of the mapping cone

RL, (U, ) := cone <RF (Yw.F) — @ RO(k(v)w. i ﬁ))[—u,

veY\U

where k(v)w = Bw,,,. The map RI(Yw, %) — RI(k(v)w,i:F) is derived by

first applying global section functor to I} — K. Sl and then tak-

% 5K/ F,S

ing the inductive limits, where II} . (resp. ) is an injective resolution of

K.swEK/F,s

Fy/ps(resp. iy s,Fx/rs). Note that the Complex RI.(Uw,.Z) is uniquely determined

up to homotopy equivalences.

As H?(k(v)w,Z) = HP (Wi, Z) has non-vanishing cohomology (all equals to Z)
only when v|joo and p = 0 or v { oo and p = 0,1. And H?(k(v)w,R) equals to R

(resp. 0) if p=0,1 (resp. p > 1). One can easily deduce the following,

Proposition 2.8 ([9] Thm. 6.3). Let Y = Spec O, then

HY (Y 2) = { (1, 2)/Z p=1.

and
(Hv‘oo R)/R p=1,2,

0 otherwise.

H?(Yw,R) =
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2.2 The Weil-Etale Sites and the Artin-Verdier Etale

Sites

All the material in this subsection can be found in [12]. We will only give brief

definitions and state the results.

Proposition 2.9 (ibid., Prop 7.1). There exists a morphism of left exact sites

¢ (BHY); Ta) — (T Jis)
X = X = ((X0); (#0)),

where X, 1= Homy(Vzh;Y) and Vih = Spec(k(v)) (resp. = (0;0)) when v { oo (resp.

v|o0o).

Let K/F be a finite Galois extension. We denote by Etg,p the full sub-category
of Et(Y) consisting of étale Y-schemes X such that the action of G on the finite set
Xy, := Hom(Spec(F); X) factors through Gal(K/F). This category is again endowed

with the topology induced by the étale topology on Et(Y') via the inclusion functor

Etgp — Et(Y). These morphisms are compatible and induce a projective system

(Bt e Je)) k-

Proposition 2.10 (ibid., Prop. 7.7). The canonical morphism

Yo — lm (Btg/r, Ja)

18 an equivalence.

Proposition 2.11 (ibid., Prop. 7.5 & 7.8).  a) ¢* : (EX(Y); Ja) — (Ty iy Jis) is
the inverse image of a morphism of topoi ¢ : Fy,.yv — Y.

—_—~—

b) ¢ induces a morphism of topoi Cx.s : Sk/rs — (Etx/p, Jet). Moreover, the
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diagram

Ck!,s/

Skr/ps > (Etgrp, Jet)

|

(Kk,s
Sk/rs = (Etg/r, Jat)

is commutative, for K'/K/F and S C S'.
Proposition 2.12 (ibid., Prop. 4.69). For any closed point v € Y, the diagram

sm
Gr(v)

-

¢ _
Swy Y.

BWk(v) - B

s a pull-back of topoi.

Theorem 2.1 (ibid., Thm. 8.5 & Prop. 8.6). Let .F = (Fk.s: ft) be a compatible
system of sheaves on the sites (TK/ES)K,S . There exists a bounded below complex

RZ of abelian Y ¢-sheaves and an isomorphism
H?(Y 4, RF) ~ H* (Y, F),

where the left-hand side is the étale hypercohomology of the complex R% . In particu-
lar, one has a spectral sequence relating Lichtenbaum’s Weil-étale cohomology to étale
cohomology,

H?(Y 4, R1.F) = H" (Y, F),

where R1.F = HY(RZF). The compler RF is well-defined up to quasi-isomorphism

and functorial in % . Moreover, R1.¥ is the sheaf associated to the presheaf

qu . ?ét — &

U — HY(Uy, 7).

Remark. For the future use, we describe the construction of the complex RA.
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For each pair (K, S), we fiv an injective resolution 0 — Fr g — I g in Sk.s.
and with morphism of complexes t*I}. ¢ — Iy o, for any transition map t. These
complexes are compatible. Then one can show that (CK757*I}(7S)5 form a direct systems
of complexes. We set

® . 1 (]
I = 12_)“5 (K5l k5

Then (I%) i defines a compatible system of complexes of sheaves on the sites (Etg )i .
Finally, the complex

RZ = lim up !y,

where u ;Y g — (Etr/r, Jet)-
We are interested in the complex 753 RI'(Y -, Z), and Morin proved the following.

Theorem 2.2 (ibid., Thm 8.5 & 9.5). Suppose F is totally imaginary then the fol-

lowing hold
a) R1(Y 4, 7S3RZ) 25 +S3RI(Yw, Z),
b) RT(Y s, R?Z) % Homy(Ur, Q)[0].
Here is an immediate corollary of this theorem:

Corollary 2.1. We have the following exact triangle
RI (Y, Z) — 7=*RI(Yw,Z) — Homgz(Ur, Q)[—2] — .

Proof. By Prop. H'(Uyw,Z) = 0 for all open étale U over Y, so R'Z = 0 by

Theorem 1.2. Thus, we have an exact triangle

Z[0] — 7S3RZ — R*Z[-2] — .

Applying RI'(Y ¢, —) to the above exact triangle and by using the previous Theorem,

we obtain the desired exact triangle. O]
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Chapter 3

Cohomology with Compact
Support for the Ring of S-integers

In this whole chapter, we assume that F' is a totally imaginary number field, and
Y = Spec Opg. We shall compute the cohomology groups H(Yyy, Z) and H* (Y, R)
in section 3.1 and prove that the axioms of the Weil-étale cohomology theory hold

for Y in section 3.2.

3.1 The Computation of the Cohomology with Com-
pact Support

Let A be an abelian group with trivial Wg-action and A the constant sheaf defined
by it. Recall that (cf. Def. the Weil-étale cohomology groups with compact
support H}(Yy, A) are defined by the cohomologies of the mapping cone

RL.(Yyy, A) = cone (Rr Y. A) — @RIk )[ 1],

vES

which is equivalent to the exact triangle

RI(Yw, A) = RE(Yw, A) — EDRI(k(v

vES

We are interested in the complex 753 RI.(Yiy,Z), and want to prove first the
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following.

Theorem 3.1. There is an exact triangle
RI.(Ye, Z) —= =3 RT (Y, Z) — Hom(Ug, Q)[—2] — . (3.1)

Before proving Theorem we show the following lemma.

Lemma 3.1. For any constant sheaf A, the inclusion A[0] — RA induces a morphism

RI(Y, A) — RI(Yw, A), and the following diagram commutes

RF(?ét, A) — RF(k(U)ét, A)

Tk

RI(Yw, A) — RI(k(v)w, A),

where the morphisms of the rows are the canonical ones and o is induced by the
canonical morphism of topos a, : Bw, ., — Bg}’:( -
v v

3

Hence, taking the truncation functor 7<% on every terms gives rise to the following

commutative diagram.

S RI(Va, A) —RE(K(0)a, A)

| -

TSS RF(?W, A) — Rr(k(v)w, A)

Proof. Recall that by the knowledge of section [2.2] there exists a commutative dia-

gram of topoi

k(U)W % k(U)ét
[k
7JI(:S" T? EtF

‘\ l lw

~— (K5 —~—

Tk/rs — Etgr,

where «, : BWk(v) — Bg’;‘(v). Here we drop v in the indexes.
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(Clearly, the following diagram commutes.

RI (Y, A) RI(Y 4, i.i*A) = RT(k(v)g, A)

i i

RI (Y, A) = R[ (Y, RA) ——RI(Y 4, i,i* RA)

To complete the proof, we need to show the morphism RI'(Yy, A) — RI(k(v)w, A)
factors through RI'(Yyy, A) — RI(Y 4, i,i*RA).
Note that the morphism RI'(Yy, A) — RI(k(v)w, A) is induced by

o~

li_r)n RF(TK/F,Sy A) — hi>n RF(TK/F,Sa iK,S,*Z’*[QSA)'
By Theorem , this is the same as the morphism of complexes of Y ¢-sheaves

. * 1: ) IA LT % 1: . °
RA = lim e i e 5. e g — R'A = limufe lim Cre s i s T s

where I} g (vesp. Jj ) is any fixed injective resolution of A (resp. i} ¢A) and note
that ik 5. is exact and preserves injectives.
By applying the natural functor id — i,i* to RA — R'A, we get the following

canonical commutative diagram

R'A

PRA l lpR’A

13" RA —1,i*R'A.
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Note that

/ : * 713 . .
R'A= th Ug hms Crsxirsx K 5
IRT % 1- . °
= th U th uK*z*av,*JKS
. . * . ( ]
= th hms U UK by iS¢ g
Y L . . . . Yy :
= lim lim o i g (th lim gt Fis =lim lim  Fig (c.f. [I1] lemma 7.5))

=i, Ro, A

Because applying with ¢* induces the adjoint isomorphism Hom/(i, P, i.Q)) = Hom(P,Q),

and i*pr 4 = 1d, by definition, so pr 4 = id and the result follows. O]

Remark. Whenever there is a square commutative diagram of complexes in an abelian
category A, then by taking mapping cones, one can complete it as a semi-commutative

3 by 3 diagram of complexes in which rows and columns are exact triangles in the de-

rived category D(A). (c.f. [17] Exercise 10.2.6).

Proof of Theorem[3.1. By [11] Prop. 6.5 and 6.6,

7,Q,0 forq=0,1, and ¢ > 2 (vt 00),
Ria, 7 =

7,0 for ¢ =0, and ¢ > 1 (v]|o0).

Since Ra, .7 has trivial cohomology in degree greater than 1, we have an exact trian-
gle Z[0] — Rov.Z — R'a, . Z|—1] —. On the other hand, by Prop. 2.7, H'(Uw,Z) = 0
for all open étale subset U of Y, so R'Z = 0 by Theorem 1.2. And then we have
an exact triangle Z[0] — 75*RZ — R*Z[—2] —. Together with Lemma [3.1| and

Theorem [2.2] there exists a morphism of exact triangles

RI (Y, Z) TSR (Yw, Z) RI(Y ¢, R*Z)[-2]

| |

Doy RU(E(V)et, Z) — Bgy RE(K(0)w, Z) — B gy RU(K(0)er, R 0 nZ)[ 1] —>

where the rows are exact triangles, and the vertical morphisms in the first 2 columns
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are the canonical ones. By the remark above, we get an exact triangle
RIe(Yer, Z) —= 75° RT(Yiy, Z) —= RTo(Yer, R2Z)[~1] —=
where
RT,(Yy, R?Z) := cone (Rr(?ét, R2Z)[-2] — = @, s RU(k(v)er, Rlov, . ) [—1]).

Since RD(Y &, R*Z) = Hom(O%, Q)[0] (Theorem [2.2) and R'a,.Z = 0 (resp. Q) when

v is an infinite place (resp. a finite place),

RT,(Yy, R*Z) = cone (Hom(o;, Q-2 - P @[—1]).

UESf

By looking at the long exact sequence of cohomology, one can identify ﬁ(l@t, R*7)
with Hom(Ug, Q)[—1]. O

Theorem 3.2. Let Y = Spec Opg, then

7

0 p=0,

[1:Z/Z p=1,
HP (Y, Z) =4

Pic(Y)? x Hom(Ug,Z) p =2,

|17 p=3.

Proof. By the definition of the cohomology with compact support, we have the fol-

lowing long exact sequence

H?(Yw,7Z) Z BpesZ — H (Y, Z) —= 0 —

— @ves.nl— H?(Yi, Z) — Pic' (V)P 0 H3(Yw,Z) uP

Since A is the diagonal map, we see that H?(Yyy,Z) = 0 and H}(Yy,Z) = Z1°/Z.
And H2(Yy,7Z) = pZ, trivially. Finally, the exact triangle in Theorem induces a
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long exact sequence of cohomology groups

0—= H2(Yu,Z) — H2(Yw,Z) —= Hom(Us, Q) H3(Yu,Z) 0 0

Pic(Y)? Hom(Us, Q/Z)

Since Hom(Ug, Q) is torsion free, the injection on the left implies H2(Yiy,Z)ir =
Pic(Y)P. On the other hand, the long exact sequence in the beginning of the proof
shows rankz(H?(Yiy,Z)) = #{vjv ¢ Y} = rankg(Us), as Pic'(Y)? = Pic(Or)? x
Hom(Ox,Z)([9] Prop. 6.4). As any free abelian subgroup of Hom(Us, Q) of rank
# Ug is isomorphic to Hom(Ug, Z), Consequently,

H*(Yyy,Z) = Pic(Y)? x Hom(Us, Z).

]

By a direct computation of the long exact sequence defining the cohomologies

with compact support, we see that

Proposition 3.1.

~ [[cR/R p=1,2,
HP (Y, Ry ={ 7

0 otherwise.
In the end of this section, we compare RI'.((Spec Op.s,)w, A) and RI'.((Spec Op.s, )w, A)

for future use, where Y O S; O S.

Proposition 3.2. Let Y D S1 D Sy D Yo and F a compatible system of sheaves on

the sites (Tkrp,s), then we have an exact triangle

RT((Spec Ops,)w, F) — RI((Spec Ors,)w, F) — € RI(k(v)w,i
veS1\So

F).

*
v

Proof. We first have the following commutative diagram of complexes in which the
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rows are exact triangles,

RI.(Spec Ops,, F) —=RI(Y,.F) — D,cs, RU(k(0)w,i3F) —

RT.(Spec Opsy, F) —=RI(Y,.F) — Deg, R (k(0)w, 337 ) — -

This diagram can be completed by the following 3 by 3 commutative diagram of

complexes,

RI.(Spec Opg,, F)

RI.(Spec Ops,, F)

Doesiso REF(0)w, 53.7)

(3.2)
where all the rows and columns are exact triangles. Then the result follows from the

first column. O

Corollary 3.1. Let A be Z or R on which Wg acts trivially, then there is an exact

triangle

T RT.((Spec Ops, Jw, A) — 7=* RT((Spec Ors,)w, A) = € RI(k(v)w, A) — .
veS1\So

Proof. This follows easily from the fact 722 RI'(k(v)w, A) = 0 when A = Z, R. O

Corollary 3.2. For A =7, the long exact sequence induced by the exact triangle in

the above corollary splits into short exact sequences
0— [] H'(k(v)w,Z) — H"((Spec Ors,)w, Z) — H. ((Spec Ops,)w, Z) — 0,

for all i > 0.
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Proof. Tt is suffice to prove the induced morphisms H;((Spec Or,s,)w, Z) — [1g,\5, H' (k(v)w, Z)
are zero maps for all i. As H!((Spec Ors,)w,Z) is concentrated in degree 1,2 and 3
and H'(k(v)w,Z) is concentrated in degree 0 and 1, we only need to consider the case
1 = 1. Since the 3rd row of diagram comes from the splitting exact sequence of

complexes

0— €P RI(k()w.Z) — @ RI(k(v)w,Z) — P RT(k(v)w,Z) — 0.

UES1\S() veES] vESH

It is then clear that the morphisms

P H k(v)w,2) = B H(k(v)w,Z)

'UESO ’UESl\SO
are zero maps for ¢ > 0. Therefore, the morphism of long exact sequences induced by

the morphism of the 2nd and the 3rd rows in diagram (3.2)) looks like

—— DB, H(k(v)w, Z) ! H((Spec Ors,)w, Z) —— H'(Yw,Z)(= 0) —

! ! o

- @Uesl\SO ' (k(v)W7 Z’) — ®v651\50 A (k(U)W7 Z’) 0

As f is surjective and the diagram is commutative, h has to be the zero map. O]

3.2 Verification of the Axioms of Weil-Etale Co-
homology

As before, F' is totally imaginary and Y = Spec Opg. In this subsection, we verify
that the axioms (a)-(d) stated in the introduction hold for the generalized Weil-étale

cohomology theory.
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3.2.1 Axiom (a)

We have seen that H?(Yy,Z) are finitely generated abelian groups for p = 0,1, 2, 3.
Unfortunately, H?(Yyy,Z) is still of infinite rank, for odd p > 5 as H?(Yy,Z) =
HP?(Spec O, Z).

3.2.2 Axiom (b)

We need to show that H?(Yy,Z) ®z R ~ H?(Yy,R). But, obviously, this is false for
odd p > 5, as H?(Yy,R) = 0 then. But we can prove the following.

Proposition 3.3. H?(Yw,Z) ®z R ~ H?(Yy,R) for p=10,1,2,3.

Proof. By corollary and taking tensor product over Z, we get a morphism between

exact triangles

73 RI.((Spec OF,5)w, Z) @z R —— 7<3 RI'.((Spec Op)w, Z) @7z R —— @ves\sm RI'(k(v)w,Z) @z R ——

| - -

73 RI.((Spec O s)w, R) 73 RI.((Spec OF )w, R) @veS\Sm RI(E(v)w,R) ——— .

Clearly, for v t oo, H*(k(v)w,Z) ®z R ~ H*(k(v)w,R), so the right vertical
map is a quasi-isomorphism. Also, the middle one is a quasi-isomorphism ([9] Thm.
8.1). Thus, by the property of exact triangles, the left vertical morphism is also a

quasi-isomorphism. O

3.2.3 Axiom (d)

Recall that the L-function (y(z) for Y is the same as the S-zeta function (g(s) :=
> acops V(@)% The analytic class number formula shows its Taylor expansion at
z=01s

Gs(z) = —15T 1 4 o),

where hg = # PicY, Rg the S-regulator, and w = #pup.
As HP?(Y,7Z) does not vanish for all even p > 4, we are unable to show that

ords—oCy (s) = Eizo(—l)iz’ rankz H'(X,Z). However, by the computation in previous
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section, we see that

> (—1)iiranky Hi(X,Z) = —(|S| = 1) + 2(|S| - 1)

=0

— 18] -1

= OT'dZ:()Cy(Z).

3.2.4 Axiom (c) and (e)

Recall that the Euler character is defined as the following

Definition 3.1. Let Aq, ..., A, be finitely generated abelian groups, V; := A; @z R,

and T; : V; — Viiq are R-linear maps s.t.
oO—-Vy—-Vi—---—V,—0
is exact. We define the Euler characteristic x.(Aq, -, An, To,- -+ ,Ty) to be
iH (A ior| TV ) Det(Vo, ..., Vis b, -+, by),
where b; = (b;;); is an arbitrary choice of Z-basis of A;/(A;)ior for all i and
Det(Vo, ..., Vo bg, -+, by)
is the image of ®i(/\jb§;1)i) under the canonical map

®; DetV'V, - R,

and b;' is the dual of b;; in Hom(V;, R).
Recall that for any R-vector space V, DetV := /\mnk(V)V, Det™ 'V := Hompg(Det V,R)
and Det’ V = R.

Clearly, the Euler characteristic is independent to the choice of basis.
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Example 3.1. Suppose 0 — Ag — Ay — -+ — A, — 0 is an exact sequence of
finitely generated abelian groups. It induces an exact sequence of R-vector spaces
0= AR — A ®zR — - = A, ®, R — 0. The determinant of this complex
equals to Hi\(Ai)toA(_l)i. Therefore, the Euler characteristic of this complex is +1.

Example 3.2. Let {A;;}izo,.mij—0..n be a set of finitely generated non-trivial abelian

groups and B; ;j := A; ; @z R. Suppose that there exist exact sequences

0_>Ai,0_>Ai,l_)"'_)Ai,n_)0> VZZO,,m

And suppose there exist R-linear maps T, ; : B; j — Bit1 foralli=0,...,m—1 and
7 =0,...,n, such that the following diagram commutes and all rows and columns are
exact.
0 0 0
0 By Byy——: - ——= DBy, —=0
To,0 To,1 To,n
0 By Biy———Bi,—=0
TL() T1,1 Tl,n
Tm—1,0 Tm—1,1 Tm—1,n
0 Bm,O Bm,l — T Bm,n —0
0 0 0

Then TL; X ((Ar,i)k, (Tk,i)k)(_l)Z ==+l

This can be proved by showing the diagram

i+J

®i(®; Det™Y

is commutative and all arrows are the canonical isomorphisms. (cf.[8]).
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Let # = ((FLs);(ft)) be a compatible system of abelian sheaves on the sites

(Tr/r,s). And observe that HP(Tyrs, Fr/rs) = Ext’; (R, F1/F,s) for any sheaf of
L/F,S

R-modules F, so HP(Yyy,.7) = lim Ext’ — (R, Fs). This allow us to define a cup

TrL/F,s

product
HYYw,Z) x H(Yw,R) — H (Y, 7).

Consider the compatible system ((i,.5FL s); (4405 f;)), and take mapping cone,
we can actually define a cup product
Hf(Yw, ﬁ‘) X Hq(Yw,]R) — Hgﬂ_q(Ym/, ﬁ)
The Leray spectral sequence for jg, p g yields

0— H'(Yw,R) — H'(Wg,R) — H* (Y, R'j,R) = 0 (see [9]).

Since H'(Wg, R) = Hom o (Wr, R) = Hom o (R, R)([9]Lemma 3.4) , we may choose

an element v of H'(Yy,,R) which corresponds to the composition
ab log ||

Note that 1 corresponds to the identity map in Homg,,;(R,R), and ¢ « ¢ = 0, so
the sequence (HA(Y, F ), ):

= H (Y, F) =5 HY Yy, F) — -

is a complex.

In the following, we will prove that (H!(Yy,R),~ ) is exact. Together with
the isomorphisms H!(Yy,R) = Hi(Yy,Z) @z R for i < 3, the Euler characteristic
Xe((HI(Yw,Z))q<s3, (~ 1)) is well-defined and called the Euler characteristic x.(Y)
for Y.

It was already known that x.(Spec Op) = Rh/w.([9] Thm. 8.1).
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Proposition 3.4. (a) The complex (H:(Yw,R),~ 1) is ezact.
(b) Moreover, its Euler character equals j:ifuhi, where Rg is the S-requlator.

Proof.  (a) Recall that H(Yy,R) # 0 only for i = 1,2. So we only need to show
H, (i, R) = HA(Yiw, R)

is an isomorphism. For this, consider the morphism between two exact se-

quences

0—= g5 H'(E()w,R) —= H(Viyy,R) —= H!((Spec Op)yw, R) —=0

|- |- |-
0—— HS\Soo Hl(k(’u)w, R) - Hg(Yw, IFRE) - Hf((Spec OF)Wa @) - 07
(3.3)

in which the rows are obtained by tensoring with R over Z the exact sequences
derived in corollary Recall that the right vertical map is an isomorphism
([9)Thm. 8.1). We are now showing the left vertical map is also an isomorphism.
Note that i, is an embedding and preserves injectives, so that we have the

following commutative diagram

~ ~

HO(k(v)w,R) X H'(Y,R)

|

HO(k(v)w,R) X H'(k(v)w,R) —= H' (k(v)w,R).

H'(k(v)w,R)

For any finite place in S, the diagram (1.1} ensures that the image of ¥ in
H'(k(v)w,R) = Hom(Wy(),R) is I, : 0 +— log N(v), where o is the generator
of Wi Let 1, is the identity element in H°(k(v)w,R) = R. Then 1, -«
¢ =1, <~ l, = l,. So, cup product with ¢ identifies [ [ s H°(k(v)w,R) and
[ls\s.. Y(k(v)w,R). Therefore, the middle vertical map of diagram is

also an isomorphism.
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(b) The rows of (3.3]) are induced by tensoring with R the exact sequences

0— J[ H (k(v)w,Z) — H'(Yw,Z) — H7 ((Spec Op)w,Z) — 0, i=0,1.

S<oo

Let xo = xe (0, HO(k(0)w, 2), H' (k(v)w, 2)), (= ¥)).

Applying Example to (3.3]), we see that

Xe(Y) = £x.(Spec Or) xo-

Because H'(k(v)w,Z) is torsion free, and we has seen in (a) that — 1 sends 1,

to l, : 0 +— log N(v), so xo = £lls__ log N(v). Thus,

Rshg
w

xe() = £ T tog N{w) =+

S<oo

(c.f. [I5] Lemma 2.1 for the last equality).

3.3 A Canonical Representation of Tate Sequences

As before Y = Spec Op g and G = Gal(F'/L) for a subfield L of F'. Recall that

(

0 p=0,

[[sZ/Z (= Xg) p=1,
H (Y, Z) =4 °

Hom(Us, Z) ® Pic(Y)P p=2,

3 p=3.

\

Proposition 3.5. The cohomologies of RHomgz (7= RT.(Yw, Z),Z)[—2] concentrate
at degrees 0 and 1 and H° = Ug, H' = X5 @ Pic(Y).
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Proof. Consider the spectral sequence

E}? = Ext}(H™4(C*),Z) = H"**(RHom(C*,Z)),

in which C* = 73R (Y, Z).
It is clear that F¥? = 0 for all p < 0 or ¢ > 0, i.e. the E; has only non-trivial

terms on the 4th quadrant

0 0
Xg = XY 0
Us/tor = UYY Ext'((PicY)P,Z)
0 Ext!'(u2,7) 0

We have exact sequences
0— PicY = H'— X¢—0 and 0— pup— H *— Ug/tor — 0.

Thus, H! = Xg ® Pic(Y) and H2 = (Us/tor) ® ur = Us. This shows that
RHom(7=3 Rl .(Yw, Z), Z)[—2] has only two non-trivial cohomologies H° = Ug and
H'= X5 ®PicY. O

From now on we assume that S is large enough so that PicY = 0 and is stable
under the action of G. We will prove RHom(7=* RI'.(Yyy, Z), Z)[—2] is indeed quasi-

isomorphic to Wg, the canonical Tate sequence. (see the introduction section).
Lemma 3.2. Let A and B € D, the derived category of Z|G|-modules.

a) If H(B) are Z|G)-injective for all i, then

Homp (A, B) = H Home(H'(A), H'(B)).
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b) If H'(A) are Z[G]-cohomologically trivial, then we have an ezact sequence

0— H Exts(H'(A), H™'(B)) — Homp (A, B) — H Homg(H'(A), H(B)) — 0.

Proof.  a) By [16], there is a spectral sequence
[ Extl(H (A), H*(B)) = HP**(RHomgc (A, B)).

By condition, Ext?(H'(A), H1*(B)) is non-trivial only if p = 0, so the above

spectral sequence simply shows

Homp (A, B) = H(RHomgg (A, B)) = HHomG(Hi(A), H'(B)).

b) In the same spectral sequence, since H*(A) are cohomologically trivial, H*(A)
are of projective dimension 1, so Extf.(H'(A), H7™(B)) = 0 for all p > 2.
Therefore, on the position with p + ¢ = 0, we have only 2 non-trivial groups
Ey° and Ey ™', and both the difference maps are 0. This gives the desired short

exact sequence.

Lemma 3.3. The canonical exact triangle
RHomgz(RT' (Y, Z),Z) — RHomz(RI'.(Ye, Z), Q) — RHomgz(RI.(Y, Z),Q/Z) —

15 1somorphic to the exact triangle

!/

V(2] — X5 @z Q[l] — Vs [3] —

where ' is the image of ¥ in ExtZ (Xs, (A]S) and (I—/Tg/ is the image of Vg in Exty,(Xs®z
Q/Zv ﬁS)

Proof. Suppose Vg is the complex A — B and \TIS is the complex A — B —
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Xg ®z Q. Recall that Wg presents a class of Exty(Xg, Us) and ¥l the image of
Ug under the map Exts(Xg, Ug) = ExtQG(XS,ﬁS). Indeed , WY is the complex
(A Ug)/Ug =: A' — B. Similarly, \TI’S is the complex A” — B — Xg ®z Q. Re-
call that RHom(RI'.(Yz, Z),Q/Z) s, U, by definition ([2] Prop. 3.1). Also, as Q is
injective, H'(RHomgz(RT.(Yy,Z),Q)) = Homy(H,"(Ye, Z),Q). Thus,

RHomy(RT.(Yy, Z), Q) <5 Xg @5 Q[1].

We claim that the following diagram commutes for a suitable choice of the left vertical

quasi-isomorphism.

RHomy (RT(Yey, Z), Q)[—3] — = RHoms (RTu(Yar, Z), Q/Z) (3] (3.4)
Xs ®z Q[-2] U,

Since the both horizontal maps induce the canonical projection Xg®7,Q — Xs®7,Q/Z
on H?, the right vertical quasi-isomorphism induces the identity map on H? and the
left vertical one can be induced by any G-automorphism of Xg ®z Q, so there is a
suitable choice of the quasi-isomorphism so that the above diagram commutes for H?
groups.

Let A be Xg ®z Q[—2] and B be RHomgz(RT.(Yy, Z), Q/Z)[—3]. Clearly, H(A)
are Z|G]-cohomologically trivial. So we can apply lemma [3.2(b) to A and B, and it

induces an exact sequence
0 = Ext(Xs ®z Q, H(B)(= 0)) — Homp(A, B) — Homg(H?*(A), H*(B)) — 0.

Thus, Homp(A, B) = Homg(H?*(A), H*(B)). Therefore, the commutative on H?
implies the diagram (3.4) indeed commutes. By taking exact triangles of each row,
and note that cone(Xg®7Q[—2] — @;)[—1] ~ U'[2], we get the desired isomorphism

of exact triangles. O]

Theorem 3.3. Let Y = Spec Opg, where S is large enough so that PicY =0 and is
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stable under the action of G. Then

RHomy (r<*RT.(Yiy, Z), Z)[-2] < T,

where Vg is the Tate sequence representing the canonical class of Exté(Xs, Us).

Proof. Here, we use the same notation with previous lemma. Clearly, we have a

canonical exact triangle

Vg — Wy — Us/Us[0] — .

On the other hand, by applying RHomg(—, Z) to exact triangle (3.1]), we have another

exact triangle
RHomgz(7=* RT. (Y, Z), Z)[—2] — RHomgz(RI.(Ye, Z), Z)|—2] — RHomgz(Homgz(Us, Q), Z)[—1]

The previous lemma ensures that W KLR RHomy(RT' (Y, Z), Z)[—2].
Also, observe that RHomyz(Homy(Us, Q),7Z)[—1] q—iS>(75/US[O] and we have seen
that RHomg(7=3 RT.(Yiy, Z),Z)[—2] has the same cohomologies as Ug. We claim

that there is an isomorphism between these two exact triangles,

RHomy (7<% RL, (Y, Z), Z)[~2] — s —>~ RHomz(Homz (Us, Q), Z)[—1] —=

A A
a

)

Uy 48 ! Us/Us[0]

In the top exact triangle, we replaced RHomyz(RI'.(Yy, Z), Z)[—2] by V4. By taking
the long exact sequence induced by the top exact triangle, we see that H*(3) =iop
where p : Ug — I/J\S/US is the canonical projection and i € Aut(ﬁs/Ug>. Clearly,
H?*(y) = p. As RHomgz(Homz(Us, Q),Z)[—1] q—is>ﬁS/U5[O], we may take a to be
the morphism induced by i. Then the right square commutes on H2. By lemma ,
because Ug /Uy is uniquely divisible and thus injective, H2(8) = H?(a)o H2(v) implies

0 =ao~y. As a is a quasi-isomorphism, so is d by property of derived categories. []

Remark. It is equivalent to say that 73 RT.(Yyy, Z) s, RHom(Vg, Z)[—2] and this
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1s an evidence that, at least for open subschemes of spectra of number rings, the Weil-
étale cohomology can be obtained from usual cohomology theories without using the

Weil groups.
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Chapter 4

The Construction of R Gy,

Throughout this chapter, we assume that F' is a totally imaginary number field,
X = SpecOp, and U = SpecOp ¢ is any connected étale neighborhood of X. We
also assume that K is a subfield of L such that the extension L/K is Galois and
G := Gal(L/K).

When Pic(U) = 0 and S is a G-stable set containing all the archimedean places

and those ramified in K(U)/Q, there exists a canonical Tate sequence:
Uy WY — g,

which represents a canonical class of ExtZ(Xg,Us). By the construction of Tate
sequences, if U" = Spec O ¢ is étale over U, then there is a morphism from Wy to

Vg that fits into the following morphism of complexes

0 Us v vl Xg 0
I I
0 Us: v, Ui, Xy 0,

where B((av)ves) = ((aw = [Lu : Fy] - @y)wpwes)-

In fact {Xg} and {3} define an X -presheaf 27, and we denote its associated
sheaf by 2. In section , we construct a complex RG,, € Sh(X¢) which rep-
resents a canonical class of Ext%et(gz;, Gn) = Z (see below). The cohomologies of

RI'(Uy, RGy,) and RHomg (7= RT.(Uw, Z), Z)[—2] are the same for arbitrary U.
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Furthermore, in section 4.2, we prove that
RI(Us, R Gy) 25 RHom (7= RT.(Uw, Z), Z) [~2), (4.1)

in D(Z|G]), when S is stable under the action of G.

This implies RT'(Ug, R Gy) and RHomy, (7=* RT.(Uw, Z), Z)[—2] are canonically
quasi-isomorphic in D(Z) for any U. Also, when U is small enough so that the Tate
sequence exists, then by and by the help of Theorem , one can see that

RI (U, R Gu) ~ Uy

in D(Z[G]).
Thus, one can conclude that the complex RI'(Ug, RGy,) generalizes the Tate
sequences and its Z-dual defines Weil-étale cohomology of S-integers without trunca-

tions.

4.1 The Definition

Let .# be the sheaf sending a connected étale U — X to the group @@, . A, where

wel

Ay, is Q (resp. Z) if w { oo (resp. w | o0), and the transition map # (U) — (V)

for an X-morphism V — U is

Dr — D

vel wevV
a, = Y [K(V)w: K(U)a,.
wlv
It is clear that the projections @, Ay = @,y Av, for any étale U — X, define

an epimorphism of sheaves . # — @, 5 iv»Av.
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We define .#* to be the complex
tgo L g‘l
Q,

where #° = ker(M — @, x ivsAy) is the X-étale sheaf

for any connected U — X and Y (U)((ay)) =Y., m%,.

Note that if U doesn’t contain all the finite places of F, then > (U) is surjective.
This implies Y is an epimorphism in the category Sh(Xg) as any U — X can be
covered by some {U;}, where U; doesn’t contain all the finite places of K (U;), for all

i. Consequently, .Z* ~ (ker 3.)[0] in D(Sh(X¢)).

Remark. a. The way that we define the transition maps of the sheaf F° makes
2 a sub-presheaf of ker Y. In fact, we have the following exact sequence of
presheaves

0—>3{—>kerZ—>§;—>O,

where Br is the presheaf U — H?*(U,Gy,). By taking associated sheaves, we see
that 2 = ker Y as “(H'(—,%9)) = 0 for any sheaf 4 when i > 1.

b. Let M, = hi)ﬂL My, where L runs over all finite extension of F' and My, =
., Aw where the sum runs over all places w of L lying over v and the transition
map is defined similarly to those of 2. We denote #, the sheaf associated to
the Galois module M,. FEquivalently, in the level of sheaves, M, = li_n>1L LAy

where wy, : Spec LY — Spec F' is the canonical morphism and L° is the fized

field of D, N Gal(L/F). Clearly, # = @, < o.M, where o : Spec F — X.
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Moreover, consider the Cartesian diagram of schemes

Spec LY —X> u(LY)

-k

Spec FF ——X,

o aT—A— . L o , _
where u(L") = Spec Opv. Hence o, lim LAy = lim a,mp Ay = lim T LAy =

lim Tr Ay (Note that ay A, is the constant A, on Spec(L”).)
Lemma 4.1. The sheaf #° is cohomologically trivial.

Proof. Since .#° fits into the short exact sequence

0— 7° = P oty — Piv.As — 0, (4.2)

veX veX

which is derived from the short exact sequence of sections:

0— @ Avﬁ@Ayﬁ@AvﬁO.
veU-U vel vel

Since there is no real place and A, = Q when v { oo, the cohomology of i, .A,
concentrates at degree zero. Also, the above exact sequence remains exact when we
pass to global sections. Thus, we only need to show that a,.#, is cohomologically
trivial for any v.

Recall that a,.#, = hLRlL 7T/L,*AU. When v is finite, o, M, is acyclic as A, = Q and
inductive limit and 77, , both preserve acyclic sheaves (as 7}, is finite).

When v|oo, I, is trivial, so M, = I ndfp A, and then M, is cohomologically trivial.
Therefore i (R M,) = H(I,,, M,) = 0 for ¢ > 0. The Leray spectral sequence for
a,

HP(Ug, Rl M,) = HPYI(F, M,),

for any étale U over X, is degenerated, i.e. HP(Ug,a,M,) = HP(F, M,) = 0 for
p > 0. Thus the result follows.
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Proposition 4.1. For any connected étale U — X,

ker X(U) p=70,
HP(Ug, #°) = § coker B(U) = Q/Im(2(U)) p =1,
0 p > 2.

In particular, H*(Xg, F*) = 0, H' (X4, Z*) = Q, H'(X —v)g,.-F*) = 0 and
HY((X —v)g, F*) = Q/A,.

Corollary 4.1. The canonical morphism H} (X s, F*) — H (X g, F*) is an inclu-
sion of A, into Q.

Now we define a complex R G,,, up to quasi-isomorphism, of Sh(X¢) by an exact
triangle

Gm — RG,, — F°[-1] —,

or equivalently an exact triangle
RG, — Z°[-1] 5 Gull] — .

One can choose carefully a morphism v € Homp g%, (7 *[—1], Gu[1]) = Extzyét (Z°,Gn)
so that R Gy, has the cohomologies that we expected. Before computing the group

Ext%t(ﬂ *. G ), we need to derive the following lemmas.

Lemma 4.2. Let I be an inductive system of index that can be refined by an in-
dex which 1is isomorphic to Z, then the canonical morphism Extg(lim A;, B) —

lim_ Ext (A, B) is an isomorphism if any of the following conditions holds
a. the projective system {Exts ' (A;, B)} satisfies the Mittag-Leffler condition,
b. Exti (A, B) is a finite group for all i.

Proof. Because I can be refined by Z, so lim A; = lim_A; and lim Ext}(4;, B) =
=T —7z |

liLnZ Ext?(A;, B). Thus, we only need to consider the case that [ = Z. When [ = Z,
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by [13], there is a spectral sequence
lln; Exti(A;, B) = EXt2+S(lii>IlI A;, B).

This spectral sequence is certainly degenerated as we know that lim" is vanishing for
any inductive system of abelian groups when r > 2 (cf. [17] 3.5). Therefore, we get

exact sequences
0 — lim’ Extg™' (4, B) — Extg(lim A, B) — lim Extg(4;, B) — 0,

for all s > 0.

The Mittag-Leffler condition implies liill Exti '(A4;, B) = 0 and condition (b)
also implies the vanishing of @11 Ext5 '(A;, B) by [7] 2.3. Thus, the isomorphism is
established under both conditions. []

Lemma 4.3. a.

0 p:27

Extpy,t (Q,Gm) =< )
’ 2@, Q=1[,Q p=3,

where H; Q, = Ag/R is the restricted product of the Q,’s with respect to the
ZLy’s.

0 p=2,
Etiyét(Oé*%vy Gm) =9 H}X&,Gn) =Q/Z p=3andv | oo,
@nH3(7,Gm):Z®ZQ p=3and vt oo.

Proof.  a. Since Q =lim Z and H (X4, Gyy) are finite groups for i = 1,2, we have

Ext}, (Q Gp)=lim B (X4, Gp).

ét

As H*(X ¢, Gy,) = 0, one sees that Extzy (Q,Gy) = 0. Also, h£1n H3(X ¢, Gy) =

ét



99
lim Q/Z = Hom(Q,Q/Z) = Z®, Q

. As A, =lim w7 A,
—L s
Ext%ét(a*,//v, Gm) = Ext’ (hm 77 A, Gm).
When v is an infinite place, A, = Z, and by the norm theorem,
EtiYét (W/L,*Za Gm) = Hp<u(Lv)ét7 Gm)?

for all p. Note that F' is totally imaginary and u(L") contains all the fi-
nite places of LY, so H' (u(L")¢, Gy) = Pic(u(L?)), H*(u(L?)¢, Gn) = 0, and
H3(u(L?) ¢, G) = Q/Z. Since H' (u(L?)¢, Gy) and H?(u(LY)¢, Gy) are both
finite groups, by Lemma [4.2] we actually get

Extl (0utly, G) = lim HP(u(L")er, G

for p = 2,3. Clearly, Ext%ét(a*%v,Gm) = H*(u(L")¢,Gy) = 0. Moreover,
for any finite extension K over L, the transition map H3(u(K")s, Gn) —
H3(u(L?)¢t, Gyy) is an isomorphism. So, we conclude that Ext3, Ny, Gry,) =
H3}(X¢,Gn) = Q/Z.

For the case v is a finite place of F', there is a slightly difference, as now A, =

Q =lim 1Z and so a, M, = lim 77 2. We claim that
—n —rn L

EtiYét(th Tyl Gr) = lim — HP(u(L’)er, G),

Ln

for p = 2,3. Indeed, because Exty.), (7}.2,Gn) = H' (u(L')s4,Gmn) =
Pic(u(LV)) is a finite groups, and EXtZ(Lv)ét (7742, Gr) = H*(u(L") e, Grn) = 0,
by Lemma , one gets Extpyét(a*///v,((}m) = li;an H?(u(L"),, Gy) for p =
2,3. Again, by Lemma , one get Extpyét(Mv,Gm) = @L,n Extz(Lv)(Z,Gm)
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for p = 2,3. Hence

0 p=2,

Extt (M,,Gn) = .
“ lim H3(X e, Grm) p=3.

Proposition 4.2.

0 p:27

Etiy (‘goa Gm) — o
‘ My (X G = T Q/Z p=3

Proof. Let #? := ker(c..#, — i,.A,). Then it arises a long exact sequence

-, Extl (.M, Gn) — Exth

P (F),Gu) — Extl (iy. Ay, Gr) 2z, Ext?"! (0, M, Gr) — .

Xet
Since Ext%ét(a*///U,Gm) = 0 by the previous lemma, and it is easy to see that

Ext?

y,t(iwAv, Gum) = 0, we have the following exact sequence,

0 — Ext} (F),Gn) — Ext% (ivedy, Gn) — Extl (@, Gr) — Ext} (F),Gn) — 0.

v ét v

By the adjunction of 4, , and i, and Lemma (as H2(X 4, Gp) = 0),

H3(X¢,Gn) =0 v | oo,

Extgy/t (ip Ay, Gry) = - ,
linn H3(X ¢, Gp) = [1,Q, vtoc.

Therefore, Ext% (7)), Gw) = 0 and Ext% (#),Gn) = Ext%, (0w, Gn) = Q/Z
when v|oo.
We claim that the morphism Ext%ét (tyAv, G) — Ext?’yét(&*Mv, Gp) is an iso-

morphism when v t co. For this, observe that there is a commutative diagram of
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sheaves
_ T / .
Oé*,%v = th 7TL7*A’U E—— ZU,*AU

T

/
AU — ﬂ-F’*AU

where A, — i,.A, is the canonical morphism induced by adjunction of i and 7, ..

Applying Ext®(—, G,,) to the above diagram, we get another commutative diagram :

Ext®(a, My, Gy) <~ hmn H3(Xet, G

A —

|

lim H? (Xet, G).

All the groups in the above diagram are isomorphic to z@z(@ =11 . Qg Note
the h is an isomorphism as the natural morphism H?(X 4, G) — H?*(X 4, Gy) is an
isomorphism ([4] Prop.3.2). Therefore, i is an injection from ], Q, to itself. Since
Homyz(Q,,Q,) = 0is p # ¢ and Q, are fields, one sees that ¢ has to be an isomorphism.
It follows that Ext%ét(ﬂf, Gu) and Extgyét(ﬂg ,G,,) are vanishing.

Consequently, Ex‘c%ét(gZ 0 Gn) =0 and

Ext} (#°,Gn) = @ Ext% (F),Gn) = P Q/Z

veEX v|oo

Proposition 4.3. There is a canonical isomorphism

1%

Ext? (#°,Gn) 2 Z.

Proof. The exact sequence

O—>ker2—>ﬁ0—>@—>0,
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induces a long exact sequence

Ext? (#°,Gu)(=0) — Ext% (ker Y, Gn) — Ext} (Q,Gun) 2 @) HY X4, Gu)

v]oo

where A is a copies of the canonical map 7 : Hom(Q, Q/Z) — Hom(Z,Q/Z).
Clearly, ker A = ker m = Homy(Q/Z,Q/7Z) = Z. As a consequence Ext%ét(ker >Gn) =

kerA = ker(r) = Z.
[

Let v be the class in Ext (ﬁ’ *,Gy) that corresponds to the generator 1 of Z

and R Gy, is the complex demded by the exact triangle
RG, — F°[-1] L Gu[l] — .

To compute the étale cohomology of the complex RG,,, we need to determine the
coboundary morphisms 9%, : H(Ug, . F*) — H*?(Ug, Gy,), for any connected étale

U— X.
Lemma 4.4. For any connected étale U — X, let S := U — U, we have

a. Of is the canonical projection

(B A= - (P A4/z)*"

veES vES

b. Of is an isomorphism if S is non-empty, and it is the canonical projection

Q — Q/Z otherwise.
c. O is isomorphic for all i > 2.
In particular, all the 0° are surjective for all i > 0.

Proof. We first deal with the second part of (b). Consider the following commutative
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diagram

H' (XakerY)  x  Ext® (kerY,Gu) = H3(X 4, Gy)

§ i

H(X 4,Q) X Ext3 QG m)

lim H(X ¢, —Z) X lim Ext3 Z, Gn) =—— H3(X &4, Grn)

H3 (Yéta Gm)

It is easy to see that the bottom cup product sends pair (a,1) to (¢ mod Z) and
thus a — v = a — 1 = a mod Z. This shows ' : H'(Xy,.F*) — H?*( X4, Gy) is
the canonical projection Q — Q/Z. The general case that U = U follows from the

commutative diagram

(Xet7 y.) ;) H (Xét7 Gm)

——

H Uy, F*) —> H3(Uy, Gyy).

For a Zariski open subset j : U < X, set i : X — U — X, we have the following

commutative diagram

0——=H(Ust, 7*) — @p H) (X1, 7°) Z:*>Hl(7ét, F*) —=H'(Us, F*) —=0

J{v’y J{vv ivv lvv
00— H*(Ust, Gi) —= B HI(Xet, Gin) = (X e, Gn) — H(Ust, Grn) — 0,

where the rows are exact sequences induced by the short exact sequence
0 — jij*F — F — i,i*F — 0, for any F € Sh(X).

The morphism HO(Ug, kerY)) —5 H?*(Ug, Gy,) is completely determined by
HY (X g, ker Y) =% H3(X 4, Gyy) because ¥ restricts to an inclusion on H} (X ¢, F*) =
A,. (This can be seen by put U to be X —v and use the fact HO((X —v)g, ker >_) =
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0). Therefore, by the commutativity, — v : H°(Uy, #*) — H?*(Uy,G,,) maps
(B ey Av)™=" to (B, cr_yy Av/Z)*=° by taking modular by Z componentwise.
For general i : U — X, set U® to be the largest open subscheme of U such that
for any v € U?, all the valuations of K (U) above i(v) is contained in U®. We have

the commutative diagram

H Uy, F*) —— = H*(Ug, G

HO(US, F*) ——— H*(US, Gy,)

| !

HO(i(U g, F*) —> H2(i(U%) 41, Gyy)

More precisely,

$=0 $=0
@& A) 1 @ Az
vEX—i(U%) veX—i(Ua)

Note that the cup products are canonical on v and w, and we have seen above that
the bottom cup product is canonical projection. By chasing diagram, one sees that
the middle one is also canonical projection, and so is the top one as the injection is
canonical. It follows that 9 is the canonical projection.

To see the first part of part (b), we assume S is non-empty. When U ¢ U,
H3(Uy4,Gy) = 0 and HY(Ug, #°) = 0 (Prop. [4.1). Therefore, we have 9}, = 0. For

the case Uf C U, note that U is then étale over X as all the infinite places are
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complex. Therefore, we have the following commutation diagram

Q - Hl(Uétvy.)*ﬂ-)Hl(Uétug.) - @/Z

Q/Z = H*(Uy,Gy) == H*(Uy, Gy) = Q/Z.

As we have seen, in the very beginning of the proof, that 8% and 7 are the canonical
projections, 9, has to be the identity map on Q/Z by the commutative.
Part (c) is trivial because H' (U, F°*) = H'"?(Uy, Gy) = 0 for all ¢ > 2. O

Now, we are ready to compute the étale cohomology of the complex R G,,.

Proposition 4.4. Let U be étale over X, S =U — U and L = K(U), then

(

OZ,S p=0,

Pic(Ors)® Xs p=1,

H?(Ug, RGp) =< 0 p=2,
Z (resp.0) p=3and S =0 (resp. S#0),

\ 0 p > 4.

Hence, these cohomologies coincide with those of the Z-dual of =3 RT.(Uw, Z)[2] (c.f.

Prop. [3.5).

Proof. Consider the usual long exact sequence on cohomology induced by the exact

triangle RG,, — Z°[~1] & Gu[l] — and use the result that 9’ are surjective

(Lemma, we get
HO(Uét, Gm) :) HO(Uét7 RGm)7

0 — H' (Uy,Gy) — H' (Usy, RGyy) — ker(0") — 0 is exact,
H'(Ug, RGy,) = ker(01).

Thus, H°(Us, RGy) = Of 4. Because ker 0° = (©yesZ)>=" = X is Z-free, the mid-
dle exact sequence splits and so H' (U, R Gy,) = Pic(Op s)®Xs. Also, H*(Uy, RG,,) =
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0 (resp. Z) when S # ) (resp. S = 0) and H'(Ugy, RGy,) = 0 for all i@ > 4, by
Lemma [£.4] (b) and (c). O

The computations of Prop[4.4] and [3.5] suggest that
Theorem 4.1. RT(Uy, RG,,) 25 RHom (758 RT.(Uw, Z), Z) [~2] in D(Z).

In the next section, we shall prove the following more general quasi-isomorphism
RI(Us, R Gyn) 25 RHom (7= RT. (U, Z), Z) [~2),

in D(Z|G]), when S is stable under the action of G. Note that when G is the trivial
group, this is just Theorem

4.2 The Duality Theorem

Throughout this section, we assume that F is a totally imaginary number field, X =
Spec Op, U = Spec Or, s be any connected étale neighborhood of X. We also assume
that K is a subfield of L such that the extension L/K is Galois and G := Gal(L/K).
We require that S contains all the archimedean places and is stable under the action
of G.

Recall that .#*(U) ~ ker > (U)[0] in D(Z[G]). To simplify the notation, in the
following, we denote by .#*(U) the complex ker > (U)[0].

Theorem 4.2. Let U = Spec Oy, 5 and A — B represents RHom(7=3 RT (U, Z), Z)[—2]
in Ext(Xs @ Pic(U), Us). Then RI'(Ug, Gy,) can be represented by

A— B — ZF*(U).
Moreover, there is an exact triangle in D(Z|G]),

Z*(U)[-2] — RI'(Ug, G) — RHom(7=* RT (U, Z), Z)[-2] — . (4.3)
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This exact triangle is the same as the exact sequence of complexes
0— #*(U)[-2] —(A—B— #*(U)) — (A— B) — 0.

Proof.

|

RHom(7=3 RI.(Uw, Z), Z)[—2] — RHom(RI'.(Us, Z), Z)[—2]

A

RI (U, Gy) RI.(Ug, Z)P[—3] = L[0] P L[-2] —

A

Z(U)[-2 X5 ®, Q2] I[-2]

<RHom(RFc(Uét, Z),Q) [—3]>

where I = Us/Us and I, = D.ecs.. Q/Z are both Z|G]-injective modules. All the
rows are known exact triangles. The top is applying RHomy(—,Z) to the exact
triangle

RI.(Us,Z) — RI'(Uw, Z) — Homg(Us, Q)[—2] —,

the middle is ([1.5)) induced by the Artin-Verdier Duality Theorem, and the bottom
is followed from the definition of .#*(U) and is indeed a short exact sequence. The

middle column is obtained by applying
HomZ(_a Z) - HomZ(_a Q) - HOmz(—, Q/Z) -

to the complex RI'.(Ug, Z).
The top right hand and bottom right hand squares of the above diagram are com-
mutative because they are commutative on H° and H? respectively (see Lemma .

Thus, by property of derived categories, there exist morphisms in D(Z[G]) so that the



64

first column is an exact triangle and the above 3 by 3 diagram is semi-commutative.

Suppose RHom(7=* RT'.(Uw, Z), Z)[—2] is in the same class of A L. B as an ele-
ment of the 2-extension group ExtZ (Xs@®Pic(U), Us). Then RHom (73 R (U, Z), Z)[—2)
is in the class of image, says A’ L B, of A— Bin Ext%(Xs @ Pic(U), Us), and
RT.(Ug, Z)P[—3] is in the same class of A’ — B — Xg@®, Q. In fact, one may
choose A" to be (A @ ﬁg)/Ug and set f'(a,x) = f(a). Note that RI'(Ug, Gy,) is de-
termined by «, more precisely by H°(a) and H?(a). It’s easy to see that the exact
triangle associated to the following exact sequence of complexes is in fact isomorphic

to the middle row of the above diagram.

We conclude that RI'(Ug, Gy,) can be represented by A — B — % (U) and it induced

the exact triangle
Z*(U)[-2] — RI'(Uy, Gp) — RHomy(7=* RI'.(Uyw, Z), Z)[-2] — .

O

Remark. By definition of the compler R Gy,, RI'(Ug, RGy,) satisfies the following

exact triangle

F*(U)[-2] — RT(Us, Gp) — RO(Usy, RGry) — . (4.4)
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One expects that exact triangles and are 1somorphic, which would imply

the quasi-isomorphism
RHom (7=* R['.(Uyw, Z), Z)[—2] ~ RI'(Us, RGy,).
Theorem 4.3. For any U = Spec O, g, one has a quasi-isomorphism
RHom (7=* RI'.(Uyw, Z), Z)[-2] ~ RT'(Us, RGyy,),

in D(Z[Q)).

Proof. We first show that
Hompzia)) (Z*(U)[—2], RT (Ug, Gi)) ~ Home(F*(U), H*(Ug, Gyn)) (4.5)
Observe that there is an exact sequence

0— X5, ®2Q— Z°(U) - PZ—0.
Soo

Since Xs, ®z Q and Pg_Z (= Z[Gal(F/Q)]) are G-cohomologically trivial, so is
ZF*(U). By lemma [3.2(b), there is an exact sequence

0 —— Extlyy (F*(U), H' (s, G)) — Hompizi (F*(U)[~2), RT (U, Gi))

— Homg(Z*(U), H*(Uy, Gy))

0

Note that Extg(F*(U), H (Us, Gu)) = Ext(Xs, ®z Q, Pic(U)) = 0. Hence the

isomorphism (4.5)).
By Lemma [4.4 and Theorem [4.2, we see that the induced homomorphisms on H?,

F*(U) — H*(Uy, Gy),

for (4.3) and (4.4)) are both the canonical projections. Thus, exact triangles (4.3)) and
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(4.4) have to be isomorphic, in virtue of isomorphism . Consequently,

RHomg(7=* RI.(Uw, Z), Z)[—2] ~ RI'(Ug, RGyy),

in D(Z[G)).
O

Corollary 4.2. Suppose that Pic(Spec(Ors)) = 0 and S is stable under the action

of G, then we have the following quasi-isomorphism
RI'((Spec(Ops))et, RGy) =~ Vg,

where Wy is the canonical Tate sequence associated to S.

Proof. This follows from Theorem [£.3] and Theorem O
Remark. a. Theorem[4.d allows us to recover the truncated Weil-étale cohomol-

ogy groups H?(Uw,Z) by the hyper étale cohomology of the compler R Gy,.

Also, one might find corresponding Weil-étale cohomology axioms in terms of

H?(Ug, RGy).

b. The reason that it s hard to generalize Lichtenbaum’s prototype to higher di-
mensional arithmetic schemes 2 is that there are no Weil groups for higher
dimensional fields. However, Theorem [{.3 shows us a probability to generalize
Lichtenbaum’s prototype, because we do not use Weil groups when defining the
complex RGy,. One direct thought is that, for any n-dimensional arithmetic
scheme X', one may define a complex RZ(n) in Ext>-(Z(n), #*(n)), so that
the Z-dual of RI'(Z o, RZ(n)) defines certain Weil-étale cohomology theory,

where F*(n) is a complez of étale sheaves that depends on n.

c. Theorem@ suggests that for any étale U — X there could be a perfect pairing

RHomy,, (Z, RG,,) x 7=* Rl (U, F) — Z]-2],
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for a certain class of Ug-sheaves . .
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