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Abstract

The Seiberg-Witten equations have proved to be quite powerful in studying smooth
4-manifolds since their landing in 1994. The corresponding Seiberg-Witten theory on
closed 3-manifolds can either be obtained by a dimension reduction from the four-
dimensional theory, or by following Floer’s approach. Here we investigate the theory
on 3-manifolds with boundary. The solutions to the Seiberg-Witten equations are
identified with critical points to the Chern-Simons-Dirac functional, regarded as a
section of the U(1) bundle over the quotient B of the configuration space. An infinite
tube [0, 00) x X is added to the compact manifold and the asymptotic behavior of the
solutions on the cylindrical end are studied. The moduli spaces of solutions under
gauge group action are finite dimensional, compact and generically smooth. For a
generic perturbation A, the moduli space My can be related to the moduli space
M, of the Kéhler-Vortex equations on the boundary surface ¥, via a limiting map r,
which is a Lagrangian immersion with respect to a canonical symplectic structure on
M. Moreover, for a family of admissible perturbations, the moduli spaces for the

perturbed Seiberg-Witten equations are mutually Legendrian cobordant.
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Chapter 1 Introduction

A central problem of low-dimensional topology and geometry is to find invariants
(topological, differential, piece-wise linear, ete.) of manifolds. This thesis is an at-
tempt to set up the Seiberg-Witten invariants on 3-manifolds with boundary. As a
step toward this, we analyze the structure of moduli space to the Seiberg-Witten equa-
tions, which is related with topological invariants on the boundary Riemann surface.
Furthermore, a family of admissible perturbations of the Seiberg-Witten equations is
considered and a Legendrian Cobordism Theorem of the perturbed moduli spaces is

proved.

1.1 History and Background

1.1.1 Why Three and Four Dimensions

Over the decades there has been long and sustained interest in low-dimensional topol-
ogy. There is a considerable incentive from the theoretical physics, especially from the
theory of relativity and string theory, to understand the three and four-dimensional
manifolds with appropriate metrics imposed. These theories usually involve a field
on a certain manifold, or, in other words, a section of a certain vector bundle on the
manifold.

From the mathematics’ point of view, low-dimensional topology has its own charm
as well. To start with, smooth 4-manifolds have resisted classification. In dimension
five or higher, smooth structures on a manifold correspond to the reductions of tangent
microbundle [35]. On four-dimension, however, there is a completely different picture.

For any 4n-dimensional manifold X, define

w(a,b) = (a — b, [X]) (L.1)
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where a,b € H**(X;Z), — is the cup product on cohomology group, and [X] is the
volume form. This gives a symmetric bilinear form on H**(X;Z), and is referred as
the intersection form.
A bilinear form w on a vector space V is called even if w(v,v) is even for allv € V.
It is called odd if otherwise.

For topological manifolds, M. Freedman showed [23] in 1982

Theorem 1.1 (Freedman) Given any integral unimodular quadratic form w, there is
an oriented simply connected four-dimensional manifold M realizing w as its intersec-
tion form. Purthermore, if w is even, then any two such manifolds are homeomorphic.
If w is odd, then there are exactly two homeomorphism classes of 4-manifolds realizing

it.
For smooth manifolds, however, V. Rohlin proved in 1952 that [55]

Theorem 1.2 (Rohlin) If a smooth, simply connected compact 4-manifold has even

intersection form w, then o(w) is divisible by 16.

This hinted some peculiar behavior of smooth 4-manifolds.
In around 1982, S. Donaldson [15] found gauge theory offer a particular power-
ful tool to study the four-dimensional geometry. From there on this area thrived

remarkably.

1.1.2 The Gauge Theory Approach

Donaldson’s idea [15] is to study the Anti-Self-Dual (ASD) connections on certain
complex bundles over a closed 4-manifold X under the gauge group action. It turns
out, for generic metrics, the moduli spaces are finite dimensional, compact, oriented
manifolds, smooth except possibly at finite points, which correspond to the reducible
connections. Such moduli spaces carry much of the information of the original 4-
manifold in which we are interested.

From another point of view, the ASD connections are the critical points of certain

functional, invariant under the gauge group action, on the configuration space, and
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the functional generally plays the role of an energy function. For example, on an
SU(2) bundle V over X, the Yang-Mills functional, for a connection A, is [22]

YM(4) = /X [F1? + |F5? (1.2)

where F'f and F; are the self-dual and anti-self-dual part of the curvature F,4. Notice

we have
~8n%(a(V), (X)) = [ IFFF ~ FP (L3)
where ¢3(V') is the second Chern class of the SU(2) bundle V. Therefore,
IYM = 8n?|(ca(V), [X])] (1.4)

and the equality only holds on ASD or SD connections respectively, depending on the
sign of the second Chern class, evaluated on fundamental class [X].

Later Donaldson [17] defined the polynomial invariants for a smooth 4-manifold,
using the structure of the moduli spaces. On a complex surface, the Donaldson poly-
nomial invariants are nonvanishing and can be related to effective divisors on certain
complex bundles on the surface. On a general 4-manifold, however, the computation
of the invariants remained elusive and a challenge.

By studying embedded surfaces in the 4-manifolds, P.B. Kronheimer and T.S.
Mrowka [39] [41] [42] were able to understand the general structure of the Donaldson

polynomial invariants for the so-called simple-type 4-manifolds.

1.1.3 The Seiberg-Witten Equations

1994 marks another year of breakthrough in low-dimensional topology. The discovery
of Seiberg-Witten equations [69] from theoretical physics [56] [57] saw more insights
to the subject and solutions to many long standing problems in four-dimensional

topology. To name a few, P.B. Kronheimer and T.S. Mrowka [40], J. Morgan, Z.
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Szabo and C.H. Taubes [52], and R. Fintushel and R. Stern [20] proved the Thom
conjecture independently using the Seiberg-Witten invariants. C.H. Taubes [63] found
some new constraints on symplectic 4-manifolds from the perspectives of Seiberg-
Witten invariants. And there was a strong hint on the connections between the
Donaldson’s polynomial invariants and the Seiberg-Witten invariants, with the latter
much simpler to handle.
On a closed 4-manifold X the Seiberg-Witten invariants are obtained by studying
the moduli spaces of solutions to the Seiberg-Witten equations
Fji- +io(P,®) =0

(1.5)
Da® =0

where @ is a section of the positive spinor bundle W+, A is a connection on W+
and A is the corresponding connection on the determinant line bundle det W*. o is
the map that sends the traceless part of the endomorphism of SU(2) bundle to the
self-dual 2-forms (see next chapter). And D, is the Dirac operator associated with
connection A.

The solutions to the above equations are the critical points for the following func-

tional on X
Ex(A,®) = fx [Va®* + %(s + 2% + |F5|* (1.6)
£ can be rewritten as
Ex(48) = [ IDFOP + 31 (F]) - @8 TP —ax(@(W),(X) + 55 (L7)

So again this £ behaves as an energy function on the configuration space and achieves
minimum on the solution set to the Seiberg-Witten equations. The moduli spaces are
finite-dimensional smooth compact manifolds for generic metrics and are empty for

all but finitely many spin,. structures.
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1.1.4 Gauge Theory on 3-manifolds

The three-dimensional manifolds have been studied extensively by W.P. Thurston
and many others, mainly using geometric tools. For example [24] [26] [66]. There is a
close relation between foliations on three manifolds and the Seiberg-Witten equations.

As soon as the gauge theory was developed for 4-manifolds, it was applied to
3-manifolds as well. Since anti-self-duality is something special for 4-manifolds, the
ASD perspective is not available for 3-manifolds. However, one may still adopt the
energy functional view and consider the critical point set of a certain functional. In
this case the Chern-Simons functional on a closed 3-manifold, for connections A on a

SU(2) bundle over the 3-manifold Y, fits the picture well:

CS(A) = %LtT(AAdA—F —gA/\A/\A). (1.8)

This functional is not invariant under gauge transformation. But the gauge transfor-
mation will only change the functional by 27 times an integer. Therefore, we may
view it as an S' valued functional. The critical points of this functional correspond
to flat connections on Y. One is lead to try to define analogues of the Morse theory in
this setting and study the moduli space when varying a 1-parameter family of metrics.
The moduli spaces are 0-dimensional and smooth generically. By the compactness
and the orientation, they are of finite points with sign. The number of points counted
with sign is determined by the spectral flow of the Chern-Simons functional. This is
Floer’s approach. [11] [21]

Similarly one can set up the Seiberg-Witten invariants on a closed 3-manifold this

way. The three-dimensional analogue of the Seiberg-Witten equations are

Fp+ 27(®,8) =0
2 (1.9)
Da® =0

and the solutions to these equations are the critical points to the Chern-Simons-Dirac



functional

CSD(A, @) = 4—1-/(A~A0) A (Fa + Fag) + (3, Da®). (1.10)

m

Three-dimensional Seiberg-Witten invariants can also be obtained by dimension re-
duction from the four-dimensional equations, that is, by considering translationally
invariant solutions on S* x Y. The invariants derived this way are closely connected to
other classical invariants, such as Casson invariant, Milnor torsion and the Alexander

polynomial of knots. [47] [53]

1.1.5 On Manifolds with Boundaries

There is another direction along the line of developments. That is, the study of open
manifolds. In 1997 P.B. Kronheimer and T.S. Mrowka defined the moduli spaces
for the Seiberg-Witten monopole equations on 4-manifolds with boundary [43]. In
their theory a contact structure is imposed on the boundary 0X. The moduli spaces
resemble the ones in closed case and P.B. Kronheimer and T.S. Mrowka were able to
use them to prove some important theorems on the contact 3-manifolds 9.X.

The contact structure imposed on the boundary makes it unappealing to try the
dimension reduction approach to get invariants on 3-manifolds with boundary. The
natural spin. structure near the boundary of a 3-manifold will be the one arising
from the product foliation of I x ¥. And it cannot possibly correspond to a contact
structure on S* x . So we need to take some other approach.

Earlier in his thesis C. Herald [30] studied the moduli spaces of flat connections on
a 3-manifold with boundary. He considered a flat connection as the critical point of the
Chern-Simons functional, regarded as a section of a U(1) bundle over the quotient
of the configuration space under gauge group action. The moduli spaces My are
stratified, with dimensions of strata dependent only on the genus of the bounding
Riemann surface ¥. Furthermore, there is a restriction map r : My — My where
My is the moduli space of flat connections on £. The flat connections on connected

Riemann surfaces with genus g are well understood and the moduli space has a
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canonical symplectic structure. The restriction map turned out to be Lagrangian, and
he found, under a suitable class of perturbations, the moduli spaces are Legendrian

cobordant to each other with respect to this restriction map.

1.2 Main Results and Organization of Material

1.2.1 Main Results

Here we achieve a similar goal, although following a quite different setup in the tech-
nical sense. We study the moduli spaces of solutions to the Seiberg-Witten monopole
equations on a 3-manifold V" with boundary ¥. We prove that the moduli spaces are
compact, finite-dimensional and generically smooth. There is a restriction map 7 from
My to Ms. My is the moduli space of solutions to the Kahler-Vortex equations on
3. For the canonical symplectic structure on My, r is Lagrangian. For a suitable
class of perturbations, the moduli spaces are Legendrian cobordant to each other.

To set up the theory, we consider critical points of the Chern-Simons-Dirac func-
tional on Ay;s), where the functional is regarded as a section of a U(1) bundle over
By = Ayn)/Gv,x). We define a family of admissible perturbations and show, for
a generic perturbation, the moduli space is a compact, smooth manifold of half the
dimension of moduli space of Kéhler-Vortex equations, a counter-part of flat connec-
tions in Herald’s theory.

There are, however, no good boundary conditions for the Seiberg-Witten equations
on (Y, X). We get around this difficulty by working in a weighted Sobolev space on the
3-manifold ¥+ obtained by attaching a cylindrical end [0, 00) x ¥ to Y. It turns out,
on the cylindrical end the equation has the form J (% + @Q;) where @, is a self-adjoint
first order elliptic operator on ¥ and .J is a bundle automorphism. When ¢ — oo,
Q: = Qw = @ which is the linearization of the Kéhler-Vortex equations.

For this reason, the setup of our theory is quite different from Herald’s, even
though the results look somewhat similar.

To start with, we consider the solutions to Seiberg-Witten equations on the cylin-
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drical end [0, 00) x ¥ and turn the equations to a gradient flow equation for the Dirac
functional F. Although F does not resemble the energy functionals, it secretly enjoys
their properties. Namely, the difference of F on the tube controls the energy of the
pair (A, ®) in the configuration space.

Therefore we turn our attention to solutions with a finite F variation at the end.
With the help of the center manifold theory, we are able to understand how a finite
energy flow approaches the center manifold, which is modeled on ker Q.

On the other hand, Atiyah-Patodi-Singer [5] [6] [7] had studied the similar situa-
tion extensively. We mainly follow them to set up the Fredholm theory and compute
the index.

From Atiyah-Patodi-Singer’s point of view, it is no miracle the formal dimension
of Seiberg-Witten moduli space is precisely half the dimension of the K&hler-Vortex
moduli space.

Let D = (£ + Q) : C=(Y, E, P) - C=(Y, F), where P is the projection to pos-
itive eigenspaces of ). Then according to Atiyah-Patodi-Singer, ker D is isomorphic
to the space of L? solutions of Df = 0 on Y+, and ker D* is isomorphic to space of
extended L? solutions of D*f = 0 on Y+, that is, in L? after modulo an f., € ker Q.

Our situation is somewhat the reverse. We would like ker D to contain L? solutions
after modulo an f, € kerQ. So we may as well start with its dual D = D* :
C>=(Y,F,P) — C=(Y,E). Atiyah-Patodi-Singer asserted that indezD = h(F) —
hE) — ho(E). Therefore, the formal dimension, or the original index, is h(E) —
h(F) + hoo(E).

The bundle isomorphism ¢ in our case is roughly an almost complex structure J
on the bundles involved. That makes J % self-adjoint and offers a symmetry between
E and F under consideration. With A(E) = h(F), hoo(F) = hoo(F) and ho(E) +
hoo(F) = dimker Q, the half-dimension phenomenon is obvious.

The asymptotic behavior of solutions also implies that the restriction map r :
My — My is generically an immersion.

The U(1) bundle obtained from the Chern-Simons-Dirac functional descends from

the configuration space Ay, to My as well as the symplectic structure Q. With respect
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to 2, we will show that the immersion r is Lagrangian. Moreover, the lift of this
restriction map to the U(1) bundle is parallel with respect to a canonical connection
w on the U(1) bundle which is compatible with Q. w induces a contact structure on
the total space of the U(1) bundle and the restriction map is Legendrian.

To obtain transversality results, instead of perturbing the metrics as in the four-
dimensional case, we define a family of perturbations by considering certain integrals
on a collection of solid tori and cylinders. Under the perturbation the moduli spaces

are cobordant and indeed Legendrian cobordant.

1.2.2 Organization of Material

The material is arranged as follows. Chapter 2 will cover most of the preliminaries.
We focus on the immediate needs for the Seiberg-Witten equations and leave read-
ers to the standard texts for more general background. In chapter 3 we study the
equations on the cylinder and identify the equations with the gradient flow equation
of a functional F on ¥. The critical points of F are the solutions to the Kéhler-
Vortex equations over ¥ and we study the moduli spaces. Chapter 4 introduces the
Chern-Simons-Dirac functional on a 3-manifold with boundary, and equivalently, a
3-manifold with cylindrical ends. A suitable class of perturbation is introduced and
their properties are studied. Chapter 5 explores the energy-like property of Dirac func-
tional F and show the asymptotic behavior of solutions with finite energy. Chapter 6
consists of all the necessary analytical results to set up the theory: the Fredholm the-
ory and index computation, the compactness, and the transversality. Once these are
established, we move on to chapter 7 to the Legendrian cobordism of the perturbed

moduli spaces.

More References

[3] [16] [17] [18] [19] [25] [27] [38] [61] [64] [65] [67]
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Chapter 2 Preliminaries

This chapter covers the preliminaries to the thesis. We briefly introduce Clifford
modules and spin, structures on a Riemannian manifold. Then we discuss the Dirac
operators on the spinor bundle, after which we derive the three-dimensional analogue
of the Seiberg-Witten equations. Here we put emphasis on what we will need in later
chapters and steer our discussion mainly for the three-dimensional case. For more
general setting and background, we refer interested readers to the texts at the end of

this chapter.

2.1 Spin. Structures

2.1.1 Spin Geometry

Definition 2.1 IfV is a vector space with positive definite inner product g, then the
Clifford module CL(V, g) is

Cl(V,g) = éV/(v ®v+ g(v,v)). (2.1)

i=0

Here @;=,V is the free tensor algebra and (v ® v + g(v,v)) is the ideal generated by
elements of type v @ v+ g(v,v) for anyv € V.

On a Riemannian manifold X

Definition 2.2 A spin, structure on a vector bundle V. — X is a unitary vector

bundle S — X together with a map v : V — Endc(S) satisfying

Y}y (v) = —|v|*Idg (2.2)
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and
v : CU (V) — Endc(S) is irreducible. (2.3)

A representation that satisfies equation 2.2 is called a Clifford representation.

There is a natural Clifford representation on the 2™ real dimensional spaces with
a metric g:

p:T*X — End(A*X)

induced by

p(0)(n) =0 An—wen (2.4)

where ¢y is the dual of A with respect to g. On a Riemannian manifold (M, g) the
x-operator induces an involution on A*M. The space of exterior forms splits as the

sum of even forms and odd forms
A*M = Acven oy Aodd

If the dimension of the manifold is odd, ** = (—1)?™~»1d = Id and the *-operator
induces an isometry between A" and A°¥. If we identify these two linear spaces
through the isomorphism or, more precisely, if we identify a p-form « with an (n—p)-

form *c, then we cut the dimension of representation space by half.

Lemma 2.3 For any cotangent 8, the following diagram commutes:

Ar(x) 22 A(x)
l* l (2.5)
A(x) 2 Av(X)

Proof: For any form 7, we need to show

+p(0)n = p(0)(+n). (2.6)



12
By definition, for a p-from 7

*p(B)n = *(6 Am) — *(ton)
= (=1)*"1p(xn) + (=1)" 71O A ¥
= p(0)(*n).

2.1.2 spin, Structures on 3-manifolds

The 2"~ dimensional representation gives a representation of the spin group. This
representation is not the spin representation. That is, this representation does not
give rise to a spin, structure. In three-dimension, however, there is something special.
For convenience, instead of considering A°(X) & A%(X) we consider A°(X) & A'(X).
Locally, this gives a four-dimensional representation of spin(3). The Clifford multi-

plication is given explicitly by

p(@)a = ab
p(6)8=—*(8AB)—(6,8)

(2.7)

for « € A°(X) and 8 € A'(X). It’s easy to check that condition 2.2 is satisfied.

Notice the complex dimension of irreducible spin.(3) representation is 2. If we
show the above gives rise to a spin,(3) representation, then it is necessarily irreducible.
To get a spin.(3) representation we need to impose a Hermitian structure on the real
space and prove they are compatible with the Clifford multiplication.

The set of Hermitian structures on A°(X) & A'(X) is in 1-1 correspondence with
the set of unit length 1-forms on X. Given a complex structure J, J(1) is a unit
length 1-form where 1 is the identity function on X. Conversely, given a unit length
1-form o we can define J(1) = a,. The metric and orientation on ag together define
an almost complex structure on the orthogonal complement ag .

As x(X) = 0, such a unit length 1-form is always available. Call it e; and complete
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it to a local orthonormal basis {e;, 3, €3}, compatible with the orientation. The basis
for A°( X)) AY(X) is {1, €1, e2,e3}. Regarded as a complex vector space, it is spanned

by {1,e2}. By definition our Clifford multiplication gives

plen)(1) = e = J(1)
pler)(ez) = — * (e1 A €z) = —e3 = —J(e2)
e)(1
ple2)(1) = (2.8)
plez)(ez2) = —(ez2,€2) = —1
ples)(1) = ez = J(ez)
ples)(e2) = —* (es A ex) = €; = J(1).
So e;’s correspond with the Pauli matrices
¢ 0 0 —1 0 i
€ = €2 — 4 €3 —*
0 —i 1 0 i 0
The Pauli matrices all satisfy €2 = —Id and e;e; = —e;e; so they give an irreducible

representation of the spin.(3) and the above gives a spin.(3) structure. We actually

proved
Lemma 2.4 There are always spin.(3) structures on any compact 3-manifold. O

Notice that on the spinor bundle W, which is a rank 2 Hermitian bundle in our
case, there is a (local) hyperkihler structure. This is compatible with our picture as
the three complex structures on 7°(X) @& T%(X), in our case, are exactly given by
the 3 basis ey, ez, €3, by letting J;(1) = e; respectively. We may compare this with
the four-dimensional case, where the self-dual 2-forms serve more or less similar roles.
Except in that case At is in general not trivial but, a splitting of AT = Rw @ w*

would suffice.

2.1.3 The Nonvanishing 1-form ¢

Parallel to the four-dimensional case, we also have
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Lemma 2.5 The pairs (s,£), where s is a spin. structure and & is a unit length

spinor, are in 1-1 correspondence with the unit length 1-forms.

Proof: Given a pair (s, £), consider the map
p:T(X)eTH (X))~ V

given by g : 8 — p(f)¢. kerj is given by pairs (o, 3) where p(a + §)€ = 0. By

definition, that is

p(B)€ + af = 0. (2.9)

Acting by Clifford multiplication by 3 on both sides:

= 1B + ap(B)§ = 0. (2.10)

Multiplying a on both sides and subtracting 2.9 from 2.10 yields

—(I8* + lef?)§ = 0. (2.11)

Since £ is of unit length, we conclude @ = 0 and 3 = 0. So ker j = 0. By dimensional
reasons, § must be an isomorphism. Now consider j—*(CE), clearly T° € §~*(C¢).
Suppose p~1(CE) = T° & M, then M is a one-dimensional space of 1-forms. So one
can choose a # with unit length.

Another way to look at it is to view the constant function 1 as the preimage of £
and the preimage of i€ will be a unit length 1-form.

6 acts on £ by i and on £+ by —i.

Suppose we are now given a unit length 1-form #, we can recover V by letting
V = A%X) @ A'(X). The complex structure is given by J(1) = 6 and J|p. is
determined by the metric and orientation. V inherits a metric from the metric on X
and it is Hermitian. So we have a representation T* — End(C?). To check it gives

a spin, structure, we need to check that p*(f) = —p(6) and p(0)* = (—|6|*)1v. This
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can be shown readily from the Pauli matrices view we discussed earlier before this

Lemma. OO

Corollary 2.6 The following are equivalent:
1. (s,€), €] = 1.
2. 1-form 6, 6] = 1.

3. oriented 2-plane field.

Given a 1-form &, we also use £ to denote the 2-plane field associated to it.

2.2 Dirac Operators

2.2.1 The Dirac Operator

By standard theory

Definition 2.7 Given a spin. structure (S,v) on T*"X — X, v : T*X — End(S)
induces a map 5 : T*X ® S — S. For a Hermitian connection A on the determinant
line bundle det W — X, the Levi-Civita connection on T*X together with A induces
a spin connection

Va4:T(S) > T(T*X ® S).

The Dirac operator D, is the composition
Da=H0Va. (2.12)

Suppose @, is the unit length spinor corresponding to the identity function 1.
And 4 is the unit length 1-form determining the spin,. structure. There is a unique
connection Vo on det W so that the corresponding spin connection has the property

that Vi7" ®, € I'(#1). Denote the corresponding Dirac operator by Dy. Then we

have
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Lemma 2.8

Doy = 5 * (6 A d8)Bo — d"0%, — %(:,,,de) (2.13)

[

Proof: Notice v(0)®, = i® and § acts on I'(6+) by —i. Take the Dirac operator on
both sides of the equation and apply

VI (y(0))@ = 1 (V) + v(n) V" S. (2.14)
We get
DO("’;‘I)O) = DO(V(Q)‘I)O)
= y(df + d*0) Py + (—i) DoPq
= —iDgPy + d*0Py + i % (0 A dB) Py — iLedb.
O

The space of connections on a line bundle is an affine space for iQ!(X). For
a fixed connection A, and any connection A, we have A = Ay + a where a is an
imaginary 1-form. Then D4 = D4, + 2v(a)Iy. Notice the image of v(A'(X))®, is
T (1R®o) & A%°(£) where £ is the 2-plane field 6+, so we can choose a connection A so

that Da®y = % * (6 A df)®Po. We will call this connection Ay and keep in mind
Do = % ¥ (0 A d6)Ds. (2.15)

In particular
Corollary 2.9 Ds®, =0 if 6 Adf = 0.

If the 2-plane field defines a contact structure, we can choose 6 so that # Adf = vol

then &4 becomes an eigenvector:

Corollary 2.10 Ds®, = 1@, if the 2-plane field is a contact structure.
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2.2.2 Calculation with ¢

From another point of view, given a 2-plane field £, we can define the spin. structure
by declaring
W = A%(¢) & A™(8).

The orientation and the metric together define an almost complex structure on £, so
the above makes sense. The Clifford multiplication is given by the following rule.
If e, is the unit length normal vector to £, then e; acts on A®°(&) by multiplication

of i and on A%!(£) by multiplication of —i. And for v € £, we define

y(v)a = —-1,=(v +iJv)a € A (€),a € A®°(€)
g (2.16)
A8 = o +iv, ) € A%, 6 € A% (8),

Here J is the almost complex structure on &, (,) is the Hermitian inner product

induced by the Riemannian metric. From above we have

’Y(a)‘I’o = (a: 0)1 o€ AO'O(&)
7(!6)(1)0 = (O= IB)’ﬁ € AO,I(&).

Lemma 2.11 In matriz form, the Dirac operator is

(g *0 Adf + i(da,6) + Sd'0 Do + %wdg) - (2.17)

3'[eB — L(wdb, B) —itedf3

Proof: For a spinor (a, 3) we compute

Do(a,0) = D a,(v(c)Po)
= vy(da)®o + () D 4,0
= 7(de)®o + % (0 Adf) + %d*@ + %Lgd@)

«
— k

= (5+(Ondo)+ %d*e +i(da, 8), Do + cusedh)
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where 9 : A%9(¢) — A%}(€) is the projection of da to A% (£). Notice we have, for a

complex valued function o:
da = (da, )8 + Ja + da.

On the other hand

Do(0, 8) = Da,(v(3)®o)
=y(dB+d"B)®o + > _ () (B)Vido
= (@' B) o +(dB) o — 5 (10dt, )

= (T 5+ (+d8,0) — 5 (a8, B), —itod))

Notice here we have 8 = d* where the adjoint are both taken on ¥. We can also
consider 9 |¢, the adjoint along the 2-plane field. In this case 8'|¢ = & + (xd(),6).
Also notice some of the last terms in 2nd equality above vanish due to the fact that
v(€e*) anticommutes with (/) whenever ¢ doesn’t appear in 3 and commutes with
the part of 8 that involves e'. So in matrix form the Dirac operator can be written

as
(; 0 Adf+i(do, 0) + Bd"0 Do+ %Lad@)

9 [¢B — L(edb, B) —itedf3
O
In particular, if the 3-manifold is a product R x ¥ and the 2-plane field is given
by TX then 6 = dt, df = 0 and d*8 = 0. The Dirac operator reduces to

i2 9 .
J —i2
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2.3 The Seiberg-Witten Equations

2.3.1 The Map o

On a four-dimensional manifold X, with a spin. structure (W*, W™, ~), the repre-
sentation

v:T(T*X) - End(Wt e W")

lifts to a map, still called ~:
v:T(A*X) = End(Wr o W)
by letting
V(61 A B2) = ¥(61)7(62) — ¥(62)7(6h) (2.18)

for 8; € T X and extended inductively on the degree of forms.

Restricted to I'*(X) = T'(A*(X)), v induces a map, yet again called ~:
v:TH(X) - End(W)
since I't(X) acts on W~ trivially. There is a unique map
o:T(WH)@T(W™) - I''(X)
characterized by
(1o (e, %), 0) = (0¥, ¥) (2.19)

for any p,9 € (W) and 6 € TH(X).
Fibrewise the map o can be seen as follows. If there is a split At = Rw@®w™, then
W+ = A% & A% for the almost structure determined by the unit-length 2-form w.

The preferred section v(w)1 supplies a (local) quarternion structure, together with
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the orientation, on the C? bundle W+ by declaring i = y(w)1. Under this quarternion

structure, there is an isomorphism

g: AT (X) — I'm(H)
given by g(#) = v(6)1. Then ¢ is the map

o' : H x H — I'm(H)
defined by

d'(p,%) = —Im(pi)) (2:20)
composed with g=!.

Remark 2.12 The map ¢ — a'(¢, ) is the cone on the Hopf map S® — S2.

2.3.2 The Seiberg-Witten Equations

The Seiberg-Witten equations, for pairs (A, ®), where A is a connection on W+ and
® e T(WH), are

Ff +io(®,®)=0
4 (@) (2.21)
D® = 0.

From this we can derive the three-dimensional analogue by considering the trans-
lationally invariant solutions to the above equations on R x Y.

Given a 3-manifold Y, a spin, structure (W, ) induces a spin. structure (W, W, 7)
on R x Y, on which the metric is the product metric, by declaring 4 = « on I'(Y)
and 4(dt) be the identical map viewed as an isomorphism between the first W and
second W.

For a translationally invariant solution (A, ®) to the Seiberg-Witten equations on
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R x Y, first notice

Dfxxy =Day. (2.22)
So the second equation is preserved. On the other hand

Farxy = Fay (2:23)
as the metric on R is flat. That means

Ft

il
ixxy = 5 (Fay T At AdvFay). (2.24)

Apply the restriction map to the first equation:

1 .

5Fiy +i0(2,2)ly =0 (2.25)
or

Fjiy +2i0(2,®)|y = 0. (2.26)

Call 7(p,%) = 20(p,9)|ly. Then the three-dimensional Seiberg-Witten equations
become
Fji+ir(®,®) =0

(2.27)
Da® = 0.

In the presence of a preferred unit-length section of W, 7 can be computed ex-
plicitly.
Given a unit-length 1-form e', expand it to a basis {e',e? €*} (at least locally)

preserving the orientation. Let £ be the global 2-plane field spanned by {e?, e}, then
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W = A%9(&) @ A%1(€). The correspondence in the quarternionic structure is

e' ~ i, e ~j, e~k (2.28)

In terms of 2-forms it is

e’ Ne® ~i, ene ~j, e' Ne? ~ k. (2.29)

Under this identification a pair (a, 3) € I'%°(§) & I'*!(§) corresponds to a + f3j.
So
- (a+ Bj)i(a—iB)
=(—ai + B¢)(@ — jB)

= — qia + Bta + aijB — B4 (2.30)
=(—a@ + BB)i + pta + atB
=(=lol* + |B8]*)i — 2Gpe.
Notice the correspondence
i —2 Ldtrne' +e2ned) —— L(e2Ae?)
i —2 ddtne*+etnel) —— (e nel) (2.31)
E—" 1dtAeE+etne?) —— (et ne).
Here 1 is the restriction. By the definition of 7:
(e, B), (@, B)) = (~le|* + |8]*, —2a3). (2.32)

Here (—|a|? + |3]%, —2a3) € T'(RE) @ I'(CHL).
For simplicity of later computation, we take the liberty of changing a constant
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here and instead consider the equations

i

Fit lr(®,®) =0
2% (2.33)

Dad = 0.

Notice the change of constant in front of 7 is non material as it is just a rescaling of
& in the first equation, and rescaling ® does not affect the second equation.

In terms of («, 3), the equations can also be written as

Fi = 3(laf* — 67, 235) -

More References

[4] [14] [29] [32] [36] [37] [44] [49]
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Chapter 3 The Equations on a Cylinder

In this chapter we study the equations on a cylinder R x ¥ and relate them to the Dirac
functional on ¥. Furthermore we study the critical points to the Dirac functional and
show that they solve the Kihler-Vortex equations on 3. We also study the moduli

space of the Kéhler-Vortex equations.

3.1 Equations on R x X

3.1.1 Simplifying the Equations

Consider a 3-manifold R x ¥ where ¥ is an oriented genus g Riemann surface, possibly
not path connected. There is a canonical spin. structure on X, coming from the
almost complex structure on ¥, with W+ = A%O, W- = A%l. The almost complex
structure here is given by the metric and orientation. The product foliation of the
tangent space T'(R x ¥) gives rise to a spin, structure on R x ¥, compatible with the
canonical spin, structure on ¥ induced by the almost complex structure, in the sense
that Wgyy = Wi ® Wy and Clifford multiplication by dt induces an automorphism
of W+ and W~ respectively.

Any spin, structure on X can be written as W+ = A?:’O ®Land W™ = A%’l ® L
where L is a complex line bundle on ¥. Fix a Hermitian connection A on L, it gives

rise to a spin connection on W*. The Dirac operator is given by a matrix

0 D
D; 0
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On R x ¥, the corresponding Dirac operator is given by

'y(dt)V’;’,_"'" D}
D;  AdvE)

Notice V‘?"@ = %‘”. Composing with the Clifford multiplication of dt on the spinor

bundle, the Dirac operator is represented by the matrix

i5 D
D; —i%

Consider now a spin,. structure on R x ¥ which is induced from a line bundle L
on . Then, W =W+te W~ = (A’ ® L) ® (AY' ® L), and write & = (&F,®").
Here we make no distinction between a bundle on ¥ and its pullback to R x X.

A connection A on 7*(L)|rxy is given by A = A(t) + u(t)dt where A(t) is a
connection on L|y and u(t) is an imaginary valued function on ¥. We say A is in

temporal gauge if u = 0. We have

Lemma 3.1 If A is in temporal gauge, then equations 2.33 can be simplified to

ot _
73?- = 'lDA(g)@
0%~ !
B = Paw® (3.1)
—a‘ggt) = —i®+tP~

) B
* Fapy = §(|‘1>+|2 — |27 ?).
Proof: For the Dirac operators we have

Da®* = Dagyrupya®™

Fo LG
= Day®* + q(dt)(ﬁ—) + 2u(t)y(dt)®*

:F
= Dapy®* ¥ z'a% + 2iu(t) .
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And

BA(t)

Fa@ysuyae = Faw + B A dt + 2du(t) A dt.

If Ais in the temporal gauge, that is, u(¢) = 0, then

oPF
+ __ =+ =+ -
Dy® _DA(t)‘I) ZFz—at
OA(t
Faw = Fap) + % A dt.

Plugging into the Seiberg-Witten equations 2.33, we get

0P~
Dypn®t =i——
A(t) t ot
Ot
DA(t)@_ = —'EW
1 =
« Fagy = (1271 = 27 P)
_—-—a’;gt) =i®td.
Or
oot .
ot = ZDA(t)q)
0P~ )
*'-a't—- = —EDA(t)‘I)+
2240 _ igra-

7 _
* Fpqy = §(|‘1’+|2 — @7 %).

This proves the Lemma. [

3.1.2 The Dirac Functional

(3.2)

(3.5)

Lemma 3.2 The first three equations of Lemma 3.1 are the gradient flow equations
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of the Dirac functional F : iQ () x T(W*) x T(W~) — R defined by

F(4,8+,0°) = f (DB, i®™) (3.6)
55

where (,) is the real inner product on W-.

Proof: We claim
Dt = / (a,i8F8") + (¢6*,iDad®") + (9=, —iDa®).  (3.7)
b

Given the claim, the Lemma follows immediately.

To prove the claim, compute

DF a0+ 9-)(a,¢%,¢7)

=%{(F(A +ta,® +tpt, @ +tp7) — F(A4,@,97))}

=%{(fZ t(y(a)®*,i®") + t(Dad™,i®") + t(Dad*,i¢™))}

=21 /E Hy(a)®, i®7) + (@, iDAD") + H{(—iDA®*,67))}

t=0

t=0

= [ ((@8*,i07) + (¢*,iDa®") + (¢, ~iDa®)

= [ (@ i®78) + (¢*,iDa%) + (67, ~iDa®").
x

Here we used the fact that (y(a)@*,i®") = (a,i®@T®7). O
The Hessian of F, at a critical point (Ao, @3, ®; ), is then given by

Hess‘?(Au,tIJ;r,@g)((alv 90-1‘-1 <P1_), (02, 90;7 902_)) = ((ala (p-li.s 90:-1-)’ L(a21 50_2*'7 ‘p2_)> (38)
for any pairs (a:, @7, ¢;),i = 1,2. Here L is the self-adjoint operator

L:iQ'(Z) xT(WH) xT(W™) = iQY(Z) x (W) x (W) (39)
L{a, ", ™) = (igT®; + i3 ¢~ ,iD s~ + iv(a)®5, —iDage™ — iv(a)®F)
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On the configuration space subject to the restriction

* Fagy = (12717 = [27%). (3.10)

3
2
L is a first order differential operator. That it is of first order on ['(W*) x I'(W ™)

is clear, to see it is of first order on Q' (32) as well, observe that the leading term of
iQY(X) in L*L(a, p*, @) is:

“Dayp®; + By Dagy™ (3.11)

But
2% daga = i((®F,¢") — (D5, 97)) (3.12)
Apply 84, to both sides, and notice that D™ = Ba,", and Da, @~ = %046~

Therefore the leading term is given by 204, * d4,a. In summary

Corollary 3.3 The linearization L of V.F at a critical point (Ao, @7, ®y) is a first
order self-adjoint elliptic differential operator. L has real discrete spectrum, un-
bounded in both directions. Fach eigenvalue is of finite multiplicity. In matriz form
L can be expressed as
0 02y %)
—in()® 0  iDa, |- (3.13)
()2 —iDa, O

3.2 The Moment Map

3.2.1 The Constraint

The constraint 3.10 is worth more attention. First it is preserved by the gradient

flow. More precisely,
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Lemma 3.4 Assume 3.10 holds at t = t, for the gradient flow from t, to t,, then it
also holds at t = t;.

Proof: From the first two equations we get

a i +|2 __ -2 _ Z +FH— —BHF 14
(5 (127 = 7)) = du(; (2T + 2°F7). (314
And we also know
0 0A
E(FA(t)) = dz(g)- (3.15)

Integrating the above from ¢, to t; gives the result. O
We can also interpret these calculations from a more conceptual point of view. Let
Az = {(4, 8, 97)|0¢" e T(W),®~ € I'(W~)} be the configuration space. There is

a symplectic structure on Ay defined by

(a1, 07, 7)), (a2, 05, 93)) = f —ay Aag + Im(of o — 0703). (3.16)
b3

The symplectic structure is the usual one on the configuration space of Hermitian
connections over a U(1) bundle. On the spinor bundle W+ & W, it is the symplectic

structure on each line bundle summand, with the orientation of W~ reversed.

3.2.2 The Moment Map

Given a symplectic manifold (M,w) and a Lie group & acting on M, the moment
map of the action is a map f : M — g*, where g* is the dual of the Lie algebra of &,
satisfying

df (€) = w(Xe, .)- (3.17)

Where € is an element of the Lie algebra and X is the associated left invariant vector
field.
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Let M be the infinite dimensional configuration space As, and & be the gauge
group G = Map(%,S*). Then

Lemma 3.5 The constraint .10 is the moment map of the G action on the symplectic
manifold (As, Q2).

Proof: To prove the statement, we split our discussion into the connection part and
spinor part. Let us first look at the connection part. The Lie algebra of the group G
is the mapping space Map(X,iR). Now for £ : ¥ — iR, the left invariant vector field
is X¢(A) = da€ € iQ'(X) as the gauge group element u acts on a connection A by
u(A) = A — u'du. For another vector field n € iQ2*(X), we have

wa(Xu(4),n(4)) = fXE(AMn 4)

= —/sz(é)/\

The last equality follows from the fact that £ is an imaginary function. On the other
hand for the map f : A — xF,, the differential is given by D fa(n) = *dan so

Dfa(n f & x d an * vol

= /2 §d an.-

For the spinor part, a gauge group element u acts on (®*, ®7) by

This proves the connection part.

u((q>+’ é_)) == (ucﬁ"" u¢"):

hence, for a Lie algebra element &, the left invariant vector field is X¢((®*,®7)) =
(£®*,£®7). Notice for function g : (@+,®~) — 1(|®*|* — [@*]?), the differential is
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given by

Dyer (O, @) = [ €67 + 245 — 55 — )
= ] Im(£@ g+ — D7 ¢).
b
Since £ is purely imaginary. On the other hand

w((£D,£27), (¢7,¢7))
i -

So this proves the spinor part. [J

3.3 Critical Points of F

3.3.1 The Kahler-Vortex Equations

Now we study the critical point set of F on ¥, with the additional constraint 3.10.

This is the set of solutions to the following equations on X:

)
Do+ =0
D;8~ =0

T A (3.18)
3+ =0
*Fa = 5(|2%)* —|[27?)
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Identifying &+ with A®°(L) and &~ with A%!(L), the Dirac operators are 9, and 9,

respectively. So we have:

9,9t =0
LD =0
5 (3.19)
H+P- =0
| #Fa=3(|2*} - |2

From the first 3 equations and the unique continuation theorem we know either ®*

or &~ vanishes identically. Integrate the last equation over ¥ and we get
—9micy (det W) = f L2 [ P). (3.20)
b4

If we assume ®~ = 0 then

9,8t =0
i (3.21)
* FA = 3|@+|2

Notice *F4 = (Fa,Vol) = 1(Fa,w) where w is the (1,1) symplectic form on X. The

above can also be written as

W =0 (3.22)
(Fa,w) = 6|02, '

These are the Kihler-Vortex equations on ¥, which were studied by many. [12] [33]

3.3.2 The Kazdan-Warner Equation

On a line bundle L over I, for a pair (A, s) where s € I'(L), consider the equations

Z (3.23)
(FA,w) = i[slz.
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Fix the complex structure and change the metric within the conformal structure.

This is the same as an action of e/ where f is a real valued function. We have

e/ (A) = A+ 0F —Bf

(3.24)
e/ (s) =els.
Consequently
Our(ay = €' 0ae™’ (3.25)
and
F.r(ay=Fa—200f = Fa — %Afw. (3.26)
As an equation for f the second equation of 3.23 becomes
—i(Fa,w) — Af = e*|s| (3.27)

This becomes the Kazdan-Warner equation [34] if both sides are multiplied by —1:
Af —k=—e*h (3.28)

where h = |s|? is a nonnegative, and somewhere positive, function. Furthermore,
k= —i(Fy,w). (3.29)

Equation 3.28 arises naturally when J. L. Kazdan and F. W. Warner tried to prescribe

scalar curvature on compact Riemann surfaces. They proved

Theorem 3.6 (Kazdan-Warner) For any C™ function h > 0 and h > 0 somewhere.

If [ k>0, then the Kazdan-Warner equation has a unique solution. O

As a corollary
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Corollary 3.7 When —i(Fa,w) > 0, the pairs (A, s) are in 1-1 correspondence with
the holomorphic sections of the line bundle L. O

Remark 3.8 Here F, is the curvature of A, which is on the determinant line bundle

of the spin, structure, with W = L& (L ® K1) so

detW =L*2 @ K. (3.30)

3.3.3 The Moduli Spaces

When ¢;(det W) < 0, @~ = 0. For L to have a section, ¢;(L) > 0. Meanwhile
c1(det W) < 0 means 2¢;(L) — ¢;(K) < 0. This is

0<a(l)<g-1 (3.31)

After modulo the gauge group action, [A, ®*] correspond to an effective divisor on L.
Denote the moduli space of the Kéhler-Vortex equations corresponding to L & (L ®
K~') by Mz. Then My = S(D)%. Here 8™ = £/, is the symmetric product of
z.

A similar argument can be applied to ¢;(det W) > 0. Here the pairs (A, ®7)
correspond to holomorphic L valued 1-forms. By Serre duality, they correspond to
holomorphic sections of K ® L~!. In this case the conditions translate to

g—1<¢(L)<2g-2. (3.32)

The symmetry between W+ and W, and hence, between range of 0 < ¢;(L) <
g—1land g —1 < ¢(L) € 2g — 2, can also be seen through the conjugation map
between L and K ® L~!, which induces isomorphisms between W = L & (L ® K™')
and W=K®L'® L™

We compile the facts into the following
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Theorem 3.9 Let W = L& (L x K1), then

when g =0, Mg =0;

Sy fo<ea(l)<g—-1

when g > 0, Mp = 8K jfg—1<e(l) <29-2 (3.33)

0 otherwise.

Example 3.10 When L is trivial, ¢;(L) = 0, and My, consists of isolated, whose
number counts the number of path connected boundary components. In particular, if
Y has a single boundary component, then My consists of a single point. Same for
L= K.

Example 3.11 At the midpoint when L = K2 and ¢,(L) = g — 1, both ®* and &
vanish identically. And the connections are flat. The dimension of moduli space for

flat connections is 2g — 2, compatible here with dim My, = 2(g9 — 1).

More References

[3] [9] [12] [13] [28] [31] [33] [48] [52] [68]
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Chapter 4 The Chern-Simons-Dirac

Functional

In this chapter we introduce the Chern-Simons-Dirac functional on the 3-manifolds
with boundary. While it is not gauge invariant, even in the S* sense, it defines a
section of a U(1) bundle on the quotient space B. We also introduce a family of

admissible perturbations and study their properties.

4.1 The Chern-Simons-Dirac Functional on a

3-manifold with Boundary

4.1.1 The Chern-Simons-Dirac Functional

For a compact 3-manifold the Chern-Simons-Dirac functional is defined by
CSD(A,®) =~ [ (A Ao) A (Fa+ Far) — (2, D) (4.1)
Y

for a pair (A, ®) where A is a connection on the determinant line bundle of the spin,
structure and ® is a section of the Hermitian bundle W. Here Ao is a reference
connection and changing Ay will only change the CSD(A, ®) by a constant for every
A.

On a closed 3-manifold, acting by a gauge transformation changes the value by
27 times an integer. Fora g : Y — U(1), let [g] € H'(Y;Z) be the pullback of the
generator of H'(U(1); Z) through g, then

Lemma 4.1 CSD(g(A), 9(®)) — CSD(A, &) = 2x[g] U ca(W).

Proof: Notice our choice of the gauge transformation g(A) = A — g~'dg makes it
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so that (®, D,®) is invariant under the gauge transformation since

(9(®), Dy(a)9(®)) = (9%, Da—g-1449(®P))
= (9®, Dag(®) — (9~ 'dg)g®)
= (9®,9Da® +(dg)® — 7(dg)®)
= (9®,9Da®)
= (®, D®).

On the other hand we have

[ (04 = 40) A (B + o)
- L (A— g~'dg — Ao) A (Fa—g-1a + Fag)
- jy(A _ Ao) A (Fa+ Fay) — g~ dg A (Fa — d(g~"dg)
+ Fa,) — (A— g™ 'dg — Ao) A d(g™'dg)
= (A= 40) A(Fa+ Fan) = g7 dg A (Fa + Fap) + d(A — g7 dg — o) A.g™dg

= f (A— Ao) A (Fa+ Fag) —2g™'dg A Fa.
¥
So

CSD(g(4),9(9)) ~ CSD(A,8) = o= [ g7dgnFa=2mlglUes(W)  (42)

™

as wanted. [J
When Y has a boundary ¥ the above computation brings in an extra boundary

integral ;- [5.(A — Ao) A g~'dg by integration by parts on the third equation above.
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4.1.2 The U(1) Bundle Ly

Let

-AE = {(Aa‘b)lA = LZ;E(iA] (E))7¢ S Li;)}(w')}

Gs = {g|g € LZH;E(Map(Z, U(1)))}

be the configuration space and gauge group for & > 2. Gy, acts on Ayx, smoothly. We
let By, = As/Gs. be the quotient space.

We shall use the correction term in last section to define a U(1) bundle £ over
Ay, and show it descends to Bs.

Define a map © : Ay x Gz — U(1) by

O(4, ®, g) = eap(i(CSD(3(A), §(P)) — CSD(A, ®))). (4.3)

Here A, ® and § are global extensions of the corresponding data from ¥ to Y. The

choices here are immaterial since explicitly we have

O(4,8,9) = eap(,- [ (A= A0) Ag~'dg). (4.4)

The formula suggests we write O(A, ®, g) = O(A4, g). From the above it is also evident
that © is a cocycle. That is,

B(4,9)0(g(A), h) = O(4, gh). (4.5)
© induces a line bundle Ls over Bs:
Ly =AxxeU(l) = As x U(1)/ ~
where the equivalence relation is given by

(4,2,u) ~ (9(A), 9(2), O(4, g)u).
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From equation 4.4 and the Sobolev multiplication theorem we conclude

Lemma 4.2 © is smooth. O

4.1.3 The Connection w

We can define a connection on Ly, as follows. First we define a global 1-form, using

the trivilization Ay, x {1}, by the formula

w(a, o, 7)) = %f —(A = Ao) Aa+ Im(®tpT —® ) (4.6)
b}
for (a, ", ™) € T(a,9)Ax and then extend the connection U(1) equivariantly.
The curvature of the connection w, evaluated on two vectors in T(4,4)Asx, is given
by

dw((ala ‘pi'-7 ‘Pl—): (a2a 903_1 CPQ_))

1 =% ==
=5 [ —m A+t Im(eTes —o7es ).
T Jy

(4.7)

This 2-form, without the factor of i, is the symplectic form 2 on Ag.

For a U(1) bundle U over a symplectic manifold (M, §2), if there is a connection
w so that F = dw = i), then such a connection defines a contact structure on the
total space of U.

Gyx acts on the configuration space Ay. With the help of ©, Gy acts on Ly by
sending (A, ®,u) to (g(A), g(®),uO(A,g)).

Lemma 4.3 The Gx action on Ls is a contactomorphism, that is, Gs, preserves the

connection w.

Proof: Since

9(A, ®,u) = (A —g'dg, g®,u0 (A4, g)) (4.8)
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we have
9.(0A,6®,0u) = (g7'0Ag, gd®, ouO(A, g) + udO(A4, g)). (4.9)

So

9" wiae . (0A, 5D, 5u)
=W(A-g~1dg,g%u6(A,g)) (9+ (04, 0D, 5u))

:ZZ;F Ay g7'dg) ASA+ Im(g(&*)gd(2+)" — g(®7)gb(27)")

+u'O7 (6ud + ud0)
=ﬁ —(A— Ao) ASA+ g7 dg A A + Im(TH5(BF) — B 6() )
>3]

+ul6u+ 07160 (4.10)

=W(a,d,u)(0A, 0P, du) + 21-17—1_ f g 'dgN6A+ OO
)

=w(A,d,u)(0A, 6P, du) + é ]

z

g ldg NGA + é f SAAg~\dg
b

=W(A,q>,u)(5A, 5@, Ju)

This proves the Lemma. Cl.

4.1.4 The CSD Functional as a Section

The U(1) bundle Ly, over By pulls back to a U(1) bundle Ly on By, and inherit the
connection by pullback. We next study the CSD functional as a section of the bundle
and understand its critical point set.

Consider the section s : 4 — A x U(1) given by
$(A, @) = (A4, ®,exp(iCSD(A, D))). (4.11)

s is © equivariant thus descends to a continuous section of the quotient bundle Ly .

First let us prove a Lemma. If we write @; = (¢;, ¢; ) then



41

Lemma 4.4

] (Dagss&1) — (Dagr, 0) = [ (oF i) — (&1 i3). (4.12)
Y b3

Proof: Let n be the normal vector of boundary ¥, then by [44] equation 5.7

f (Dapa, p1) — (Dapi, p2) = / (01,7(n)2). (4.13)
Y b

In our case, n acts on W+ by multiplication by ¢ and on W~ by multiplication by —i,
and the Lemma follows immediately. [J

Given the Lemma, we have

Lemma 4.5 The gradient vector field of the section s is
1 :
V = V.s(4,@) = 5= ((Fa+ Fag + %ﬂ@, 3)), Dad). (4.14)
Proof: Given (a,y) € T(a,4)A, we compute

Ds(A, ®)(a, p) =s'ds(a, ¢) + w(a, ¢)

= 4; a A (Fa+ Fag) + (A— Ao) Ada

o ((I)’ ’Y(G)@) + (‘P; DAq’) + (‘I’a DASO)) o w(a, ‘P)

- :W 2a A (Fa+ Fag) + a Air(®, ®) + 2(p, Da®)

+E (A_“AO)AG_(q)+17:(p+)+(q)_ai¢—)+w(as ¢)

=——/2a/\ (Fp+ Fa,) +a ANiT(2, D) + 2(p, Da®)

= o [[aA(Eat Fa+ 5r(®,9)) + (. D19).

The Lemma then follows. O
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The critical points for the gradient satisfy the following equations:

Fy+ Fuy+ or(®,8) =0
2 (4.15)

Dl =0

We define the moduli space to be M = V~1(0)/Gy.

4.2 Perturbations of CSD Functional

4.2.1 Admissible Perturbations

In [30] a thicken link in ¥ is chosen and the perturbation is obtained by computing
the integral of holonomies of the connection along the loops. Here we take a similar
approach.

More precisely, let ¢ = {v;}¥_, be a finite collection of embeddings of solid tori
7 : S' x D? - Y with v;(1,0) = zo where z, is a fixed point on Y. A corresponding
collection of functions h; € C2(S,R) is chosen. We denote the set of such functions
by # and give it the compact-open C? topology. Furthermore, let ¢ = {6;}'_, be a
finite collection of embeddings of solid cylinders ¢, : [0, 1]x D?* — Y with §,(0,0) = zo.
We also choose a corresponding collection of functions fz,- € C*(R*,R). The set of
such functions will be denoted by H while the topology is also given by compact-open
C? topology.

We define a function h : A — R from the above choices by:

k l
- il .
w4,9) =Y [ Ruthotout, 0, @ + 53 [ ([ hs(i@n@
i=1 ¥ D? i1 /D2 JIx{z}
here n(z) is a fixed radially symmetric cut-off function on the unit disc. The function
h coming from the above choices is called an admissible function and we denote the
space of admissible functions by H.

The gauge invariance of the admissible perturbation is immediate from the ex-
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pression. Let
sn(A, @) = s(A, ®)exp(ih(A, D)). (4.16)

Then sy, defines a section on the U(1) bundle £. We denote the gradient vector field
of s, by Vi and call M), = V;'(0)/Gy the perturbed moduli space corresponding to
h.

For a given admissible perturbation h, there are two ways to vary it:
1. Fix the embeddings and vary functions h;’s and ﬁj’s;
2. Vary the embeddings.

For most of our purposes it suffices to consider (1). For this reason we use Hy .y to
denote the set of admissible perturbations coming from the embeddings (¢, ).
There is a partial ordering in the collection of sets H, . The order is given by the
inclusion relation of the embeddings of ¢ and 9. More precisely, we say Hy,» < Her,u
if and only if ¢ C ¢’ and ¥ C ¢’. In this case we may regard M, as a subset of
Hy 4 by putting
hi, hy = 0,for v; ¢ ¢,8; & .

For two collections of embeddings ¢;, %, and ¢s, 1, there is an obvious common
upper bound for Hy, and Hy y, that is, Hg,ue, vuw,. The set H can be viewed as
the limit set under this partial ordering. Notice the topology on #H,, . is compatible
with the partial ordering <; therefore, there is a unique (roughest) topology on the
limit set, and we take this topology as the one on H. The topology is characterized
as the roughest of all on which so that when restricted to individual H, ., the two are
the same.

Under this topology the space H is path connected. For any two admissible
perturbations h° and h!, a path connecting the two can be seen as follows. Denote
the embeddings of thicken tori and interval by ¢;, ¥4, ¢ = 0, 1, respectively. Consider

the component Hasugp, v, - h° and A can be regarded as its elements by extending
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the ﬁ,-’s, fz,j’s to be zero outside the original tori and intervals. Therefore, we may
define the path by h* = (1 —¢t)h° + th.

4.2.2 The Gradient of h

The gradient of the function h, denoted by Vh(A, @), is a vector field on the config-

uration space which is characterized by
Dh(A, ®)(a, ¢) = (Vh(4, @), (a,9)) 2. (4.17)

From the definition it is immediate that V}, = V + Vh.

Lemma 4.6 Let h be an admissible function, then
k ~
Vh(4,®)(z) = (Y Ri(holy(w(1,2), A))n(Pr; () (v )" (d6),

=1

l
Zﬁ;(|¢|2)<1>n(6226;1(w)))- (4.18)

Remark 4.7 Here x is a point on Y, P, is the projection of S* x D? to D* and Q3 is
the projection of I x D? to D®. And @ is the coordinate on S* in S* x D?. Sincen is

1

a bump function on the disc, the above makes sense although ;' ’s and o5 1’s cannot
be extended to a global diffeomorphism.
Given the Lemma, let
k ~
un(A) =3 Ri(hol,((1,z), A)n(Pry; () * (371)"(d) (4.19)

i=1

and

!
() = 3 B5(121)2n(Qad (2))), (4.20)
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then the perturbed equations for V;, are

i
Fa+ Fyy + =7(®2,®) + un(A) =0
2 (4.21)
DA‘I’ + Vh(‘I’) =0.
Proof of Lemma: We again break the proof into the connection part and the
spinor part. First let us consider the connection part. For t € (—¢,€) and a € iA'(Y)

we have

hol,, (4L, 2), A + ta) = haly, (4{L, 2), A)ezp(t / (2 (a), d8)dB), (4.22)

where 6 is the coordinate on S*. So

{f: / (hol,, ((L, 3), A+ta))n(a:)}

t=0

@

{E/ i(holy, (vi(1,x), A)exp( f(fy, ), d0)de))n(x )}

=3 [ ol i, 4) [ o, (7 a8 o)

i=1 ¥i(1,2)

_—_ZLZ /'(1 )ﬁﬁ(holw(%(l,z),A))(a, (v 1) dB) ()" dn(z).

Here we notice the fact that we are considering U(1) connections so they are Abelian.

ko

=0

SelQJ

It follows from above that

h(A, ®)(a,0) Z /D 2 /m_(m) Rj(hol, (vi(1,z), A))an(x)

i=1

= [ ottt 2, A ).
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On the other hand for the spinor part,

g’;{%jz;L([ﬁ;—((mw,wmnn(w)}
%%{ jz; /Dz(flﬁjuq:ﬁ +2t(®, 6) + O(tz)))n(:c)}

=3 [ ([H0em @ o).

t=0

Hence
D4 8)0.0) =Y [ ([ B(#P)@.0m(a)

= <Z fD 2( ]; (|22 @)n(), §)

and this proves the lemma. [J

Remark 4.8 The gradient of h € My, vanishes identically outside the support of
¢ and vp. More precisely, up vanishes outside support of ¢ and v, vanishes outside

support of .

4.2.3 Bound for the Perturbation

Given Lemma 4.6, the same computation will yield, again by applying the Abelian

property of the connections,

Lemma 4.9 Let h be an admissible function, then

Hessh(A, ®)((a1,¢1), (az, ¢2))

=Zﬁi’(hol%(%(l,w),A))(al,(v:l)*dm (a2, (77 1) dO)n(P (2))
T . . (4.23)
+ ) RI(DI%)(®, ¢1) (@, Ba) + RL(1BI?) (b1, b2))n(Q265 1 (2)).

Jj=1
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(]

A corollary of the above is

Corollary 4.10 Let h be an admissible perturbation, then
1. The map A — Vh(A) is smooth from A to L(Q*(Y) x T(W)).
2. Hessh(A) : L2 — L% is a compact operator.

Proof: (1) is obvious from 4.9 and the fact that
Ri(hol., (vi(1,2), A)) < Cy (4.24)
for a constant independent of A and only dependent of h, since h; € C2. Furthermore,
Y (hol, (1:(1,2), A)) < Cy (4.25)

also from the assumption that h; € C?. This proves (2) by 4.9 along with the Rellich

Lemma. O
From the expression of v, in equation 4.20 we have
1

Dan(®) =D 3(h;(1®[2) Dan + y(d[h;(|2[*)n]) @. (4.26)

=1

For ® € L? the coefficients depend on ® but since fzj € C? they are all uniformly
bounded.

We restate the above facts in the following

Corollary 4.11 Let h be an admissible perturbation. Then there is a constant C
depending only on h so that |Vh(A)|zz < C for each A € V;7(0).

4.2.4 A Unique Continuation Theorem

Definition 4.12 A solution (A, ®) to the perturbed equations is degenerate if ® = 0.

It is nondegenerate if otherwise.
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For a degenerate solution to the unperturbed equation, F4 = 0 and we recover
the flat connection. In our study we will consider only the nondegenerate solutions.
In 1957 N. Aronszajn [1] proved the following unique continuation theorem for a

second order differential operator:

Theorem 4.13 If u solves

n au
AulP< M |2 - 4.27
|Aul® < {glaxllvhl"ftl} (4.27)
in @ domain V C R™ and if at some point xo € V,

f lu|dz = O(r**") (4.28)
B(zo,r)

for any a > 0, then u vanishes identically on V.

Here A is a second order differential operator, possibly with variable coefficients,
and the leading coefficients a;; € C%! (second derivative Lipshitzian).

We can apply the theorem to the perturbed equation

Let A = D3, then A is a second order differential operator. If ® solves 4.29 then @

satisfies
A® + Davp(®) = 0. (4.30)

D vy, is a nonlinear operator, with coefficients depending on ®. But by equation 4.26

all coefficients are bounded for L7 solutions. So there exists a constant M > 0 so that
asP < M3 1220 4 jap) (4.31)
- &y or

in local coordinates. By Aronszajn’s unique continuation theorem:
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Corollary 4.14 If ® solves 4.29 and around a point yo € YT,

/ |Bldz = O(r*+?) (4.32)
B(yo,r)

for any a > 0, then @ = 0 identically.

More References

[32] [68]



Chapter 5 Asymptotic Behavior

In this chapter we discuss the asymptotic behavior of solutions to the Seiberg-Witten
equations on the cylindrical end. We first show that on the cylinder a solution with
finite F variation converges to a solution to the Kéhler-Vortex equations on ¥ slice-
wise. Using the theory of center manifold, we describe a finite dimensional model for
the L? moduli space. Furthermore, the convergence of a Seiberg-Witten equation to

the Ké&hler-Vortex solution is exponentially fast.

5.1 Finite F Variation

5.1.1 F as an Energy Functional

Definition 5.1 (A(t), ®(t)) on the cylindrical end is of finite F variation if for any
te [to, OO)

|F(A(t), (t)) — F(A(to), ®(to))| < o0. (5.1)

For simplicity, we denote F(A(t), ®(t)) by F;.
The following Lemma explores the similarity between F and other energy func-

tionals.

Lemma 5.2
t1
Fi, —Fiy = ] / |D:;<I)+|2 + |D;‘I>—|2 + |§>+¢'_\2. (5.2)
to z
Proof:

Fi= L (DAD",i®") (5.3)
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SO
.Ft f (DA(I’+ 0] —)
)
= 112 +Y B + 9 rom
[ (Da®*),i07) + (Da2*, 2 (i)
oo+ A o~
=/(DA () + (500", i87) + (Da®*,i%5 )
=
= f(DA(z‘DAcb—),icp—) + (i®FPT P, id7) + (D, ®F, D, 0T)
2}
=f IDA®™ 2 + | DAB* [ + |8+ |2,
b
O

If a Seiberg-Witten solution (A, ®) is put in temporal gauge, then it satisfies 3.5.

Substituting into the above Lemma, we get

t1 + 2
 F— o g (5.4)

' oot |?

Then the variation will bound the L? norm of ‘%%2, which in turn bounds the L?
distance between (A, ®),, and (A, ®),, for arbitrarily large to,t;. And (4, ®), will

converge when ¢t — oo.

5.1.2 L? Convergence

The real picture is less fortunate. In reality we have

% =i® @ — 2du. (5.5)
For an imaginary function u. As we may not always be able to extend u to a globally
defined function, there might be no gauge transformation to neutralize it. Hence the
above argument is not applicable.

The situation, however, had been extensively studied by S. Lojasiewicz [46] for
finite dimensions and by L. Simon [58] for infinite dimensions. Simon’s theory can

actually imply more but it does not lie in the center of our theory and we will only
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state the relevant consequences without proof.

For bounds induced by energy,

Lemma 5.3 Let (B, V) be a C* solution to the Kdhler-Vortex equations. Let U
be a neighborhood around (B, V). Then there is a neighborhood V- C U of (B, ¥),
and constants 0 < B < 1, 0 < < 3, so that if (C,0) € V then there is a C™
Kihler-Vortez solution (B',®') so that

1(C,6) - (B, @)= < (IVcorFlzz)’ (5.6)
|F(C,0)'"? < |Vco)Fllza-

£l

And for path length:

Lemma 5.4 Let (B,V), U as in last Lemma. Then there is a neighborhood V.C U
and a constant 0 = 6(B,¥) with 0 < § < 3, so that the following holds. If (A, ®)

solves the Seiberg- Witten equations on cylinder, then

b 9(A, D) 2 ,
1252 < 217, - . .7
[ 1252 < i - 7

O

These, combined with the standard arguments, imply

Theorem 5.5 There exists a constant €, so that if an L} . solution (A, ®) satisfies
|Fi| < € (5.8)

fort > Ty, then (A(t), ®(t)) converges to a C*™ solution to the Kdihler-Vortex equa-

tions. O
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5.2 The Center Manifold
5.2.1 The General Picture

In chapter 3 we showed that our equations are the gradient flow equations for a
Dirac functional F with constraint 3.10. The constraint is preserved by a flow line.
Furthermore, the Hessian of F is self adjoint with real and discrete spectrum. To

understand our position let us first quote a general theorem [51]

Theorem 5.6 Let H be a Hilbert space. Suppose that
H=H*¢eH°9H"
is a decomposition of H. Let

L*:Ht* - H*
L~:H — H™

be densely defined, closed, unbounded Fredholm linear operators. Suppose that for

each t > 0 the maps
e Jgt 5 g
e :H - H"

are bounded linear maps, and that these define semi-groups of endomorphisms of H*
and H~ which vary continuously with t in the strong operator topology. Suppose that

there exist positive constants Ay, A_, D such that
sup max(e*+* e, e**l¢”|) < D (5.9)

where the norms are the operator norms on bounded linear operators on H*. Let
L: H — H be the densely defined linear operator given by L(z*,2° =) = LT (z*) +
L=(z~). LetU C H be a neighborhood of {0} and let n : U — H be a smooth function
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which vanishes to second order at {0} € H. Consider the densely defined vector field

V on U given by
V() = L(z) + n(2).

Then for any m > 1 there is a connected neighborhood N ¢ H® of {0} and a C™
map € : N — HT @ H~ whose graph P satisfies:

1. PClU;

2. P is tangent to H® at {0};

3. P is contained in the domain of the vector field V;

4. V is everywhere tangent to P;

5. Ewery critical point of V sufficiently close to {0} is contained in P.

O

5.2.2 Our Case

Now we shall show that this theorem applies to our context. In our case L is the
linearization of V.F as given in equation 3.9. Let H*, H~, and H° be the closures of
the positive, negative, and zero eigenspaces of L respectively. By Corollary 3.3 L has
real discrete spectrum. So H = H* @ H°® H~ gives an L2-orthogonal decomposition
as required.

Furthermore e~%"¢ and e’ ¢ define semi-groups of bounded endomorphisms of H*
and H~ respectively, which vary continuously with respect to ¢ in the strong operator
norm. To see this, let us consider e=%"¢ on H*. Any element in H* can be written
as an infinite linear combination ), @y where )\ ranges over positive eigenvalues.

Moreover, such an infinite sum defines an element of H C L? if and only if

> lleal® < oo (5.10)
A



55
By definition

eI (ay) = e Ma,. (5.11)

This clearly defines a semigroup endomorphism on the span of the eigenspaces of L*.
To show that e~*"* actually defines a semi-group of endomorphisms of H* we need

only see that for each t > 0,

doe¥laal? < @) laal® (5.12)
) A
for some constant C(t) only dependent of ¢. Since all the A’s are bounded below by
the first positive eigenvalue A, this is manifest. It also shows that these operators
vary continuously with ¢ in the strong operator topology.

The same argument can be applied to show that e/t defines a semigroup of
bounded endomorphisms on H~, continuous in the strong operator norm. The above

computation also indicates that the condition

sup max(e*t|le 7|, e*-t|le" t||) < D (5.13)

>0

is satisfied for Ay = A;, and A_ = A\_;.
For a coordinate patch Up ) centered at (B, ¥), we have a function n : UNL —

H given by

n(a, ¢t,7) = (i@t~ iv(a)e™, —iv(a)et) (5.14)

which is smooth and vanishes to the 2nd order at {0} with VF = L 4 n. Therefore
applying Theorem 5.6 we have

Corollary 5.7 Let (B, V) be a solution to the Kdhler-Vortex equations. Let Up,w)
be a coordinate patch centered at (B, V). Let H* be the L*-orthogonal complement
of H® = kerL. Then there is a neighborhood N C H® of {0} and a C* function
€: N H* whose graph is a C*-center for the densely defined vector field V.F on
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Uu. O

5.2.3 Main Theorem

For the local decomposition for the coordinate patch at (B, ¥):

0

we denote by 7° and 7t the L?-orthogonal projections of K(pw) onto H(OB’\I,) and

H(lB,q,). The main theorem of this chapter can be accounted as following:

Theorem 5.8 Let (B, ¥) be a solution to the Kihler-Vorter equations on . Let N
be a neighborhood of {0} in Hfp o, and let & : N — H* be a C? function whose graph
P CN x Hi gy C K is a C*-center manifold. Fiz a § > 0. For any C® solution
(A, @) to the monopole equations, satisfying

F(A(to), ®(to)) — F(A(c0), ®(00)) < & (5.16)

then there is a unique path p : [to,00) — H{p gy so that

oo1t)

5 = Ve (5.17)

Furthermore, if we let (A', @) = p(t) + O(p(t))dt € Ay+, forto <t < oo, there is a

constant Kk so that
(A, @) — (A, @) | aqter 1.4 81wy < wE2. (5.18)

d

We will not devote all our efforts to the proof of every point of the Theorem;
instead, we prove it from two aspects that we are most interested: approximate
solutions in the center manifold and L?-exponential approach to the center manifold.

We suggest interested readers to look into [51] chapter 5 for a technically complete
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treatment of a similar subject.

5.3 Exponential Approach

5.3.1 Approximate Solutions in the Center Manifold

This Lemma shows that an approximate solution to the gradient flow equation is not

far from a genuine solution:

Lemma 5.9 Fiz a C > 0 and let b : [tg,00) — H(OB!\I,) be a C?-path such that

limy o0 b(t) exists and
1b(t) — Voo Fllze < Ce™ "% (5.19)
then there is a unique C*-path z : [to,00) = H(pw) with £(t) = V., F and
4 A_qt
l2(t) — b()lz= < 3—Ce 7. (5.20)
-1

Proof: The proof is standard. Define the Banach space B to be the space of contin-

uous paths v : [tp,00) — Hp,y) such that

At
sup €77 [y(t)]lz2 < oo. (5.21)
t€[tg,00)
For v € B define:
At
[¥lz= sup e= [|v(t)]lz2 (5.22)
te[to,00)

For a path b : [tg,00) — H(p,y) With lim,_,., b(t) = b(co) we define a map J5: B B
by

(y)[H] = —B(t) + B(o0) — /t'  2(B(s) + 7(s))ds. (5.23)
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Here we still use = to denote the pullback of vector field = = V.F to Hp,v).

We claim that J; is a %-contraction and the unique fixed point w for the map

satisfies

4C —1t
lw@)llze < —e 7. (5.24)

To show J; is a 3-contraction we observe that for 41, ya:

15(m) — (e
—[I(=B() + j =(5(s) + m(s))ds) —
(=B(t) + ] S(5(s) + 72(5))ds) 15

| / =(B(s) + 2(8))ds — 2(5(s) + 12(5))dsl| 5

= sup & t”(s(B(s)w(s))—E(E(s)m(smds:

tE[to,oo)
A_jqt

oo
< sup ST[ lvl—)(a)+'n(s)‘7:—v3(3)+'71(3)‘7:|

tE[to,oo)

< s &P [T 22E6) + le)) - w(6) +(s)luads

A1 Age [
ST sup ez [v2(8) — v1(8) | z2ds
t€(to,00) t

Aol Aate [
=ik [[71(8) — 72(8) || z2ds
to
Aoy Aate [ _A-ye
e * / v —"2llge” 2 ds
to
A1 ® A_1(s—tp)
—_”’71 "rz||§/ e z ds
to

=5 Im(s) — ()5

To estimate the norm of fixed point w, we only have to estimate the norm of Jg(0).
But

JH(0) = /0 " (b(t) — Vi F)- (5.25)
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So by integral over the assumption

. A_jt
16(t) — Ve Fllze < Ce™ 72~ (5.26)
we have || J5(0)[| 3 < 2 thus [lw]|3 < ££ and the L? estimates depending on ¢ holds
readily from the definition of || - || 5.
Now we define z(t) = b(t)+w(t). Since J5, (w) = w by differentiating the equation
defining J5,, (w) we obtain

% —5(:(0) (5.27)

or V. F = 2. As vector field VF is in C?, z(t) is in C?, and we have

2(t) = b(t)ll g2 < —e T (5.28)

-1

and that proves the Lemma. [J

From the uniqueness, we immediately have
Corollary 5.10 Let 2,2 : [To,00) = H(pw) be flow lines for VF. If there is a
constant C so that

Aol
lz2(t) — 22(t) |22 < Ce~ "7 @To) (5.29)

for allt > Ty, then 2:(t) = 2o(t). O

The Corollary says that distinct flow lines in the center manifold cannot approach

each other exponentially fast.

5.3.2 L2-exponential Approach to the Center Manifold

This Lemma shows that the approach to the center manifold is exponentially fast,
A_qt

with the speed controlled by ez .
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Lemma 5.11 Fix the notation and hypotheses as in the statement of Theorem 5.8.
We decompose (A(t), B(t)) = (B, ¥)+b(t)+c(t) where b(t) € Hpp 4y and c(t) € Hip g-
There are constants Ey > 0, such that if there is a solution to the Kdihler-Vorter

equation (B, ¥) + by, € Up ) so that

sup [[b(¢) — beollzz + lle(®) |23 = E < Eo (5.30)
tE [tg,00)

then for all t > to,

A_qt

le(t)llze < Be™ 2. (5.31)
Proof: We first derive the equations b(t) and c(t) satisfy. Since
ab+c
( at ) s i (5.32)
and V(p,v)+b is tangent to H°, we have
b
5 = L) +n(b) =n(b) (5.33)
and
dc
" = L(c) + n(b+ ¢) — n(b). (5.34)
n is quadratic so
(b + €) = n(b) ||z <C(l|b+ cllzz + llellzz) b+ ¢ — bl 22
<2C - E - ||c|| 2 (5.35)

SQEQC”C”LZ.

The Sobolev constant C'is independent of b, ¢, so we can choose Ey < TE(;ELI), then

min(Ay, A_q)

In(b+0) — (Bl < =0

lle|| 2 (5.36)
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Taking inner product with ¢ we have

(n(b+ ) — n(b), )] < BB A-1)

< . lell32. (5.37)

Let ¢ = ¢t + ¢, where ¢* denote the H* component of c. We estimate, for ¢t # 0,

Sl O3 = @), orc* @)
= (e (1), prel®)
=(c*(t), L(c) + n(b+ c) — n(b))
min(Ay, A_q)
4

(5.38)

>Mle* (|72 — le™ | zzllell 2

The inequality is a closed condition, so it can be extended to the closure of ¢t # 0.
For an open set where ¢t = 0, the inequality is obvious. Divide out a factor of ||c*|| .z

we get

min(/\l, /\_..1)

a1 (539)

0
§\|C+(t)||m > Milletlzz —

Similarly we can prove

b) min (A, A
2 e @l < —Asllemla + BRI gy, (5.40)
Subtracting the two inequality:
D (et @)z = lle™ @)l1z2)
ot
min(Ay, A
SN RN LG L
min(A;, A-p) Gl

>min(A, A1) (€ |22 + [le™|lz2) — —————lcl| 2

2

min(Ay, A_
> BOLA) o),
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Therefore |c*(t)(|zz — [le~(t)]|z2 is nondecreasing. If ||ct(t)|lzz > ||¢(t)]/z2, then

llellz < 2[[e*(2)]|z2 and

1o} min( A, A
2 e Ollr 2Aulet e - 2RCRA g,
S Ly L L TR (5.2
A
251||C+|]L2-

That means 2 (log|c*|z2) > &, so [|¢*|| 12 is exponentially increasing with speed e 3.
That contradicts the assumption that it is bounded by E. So |le*(¢)||zz < |le™(8)]] 22

That implies ||c||zz < 2|l¢(t)||z2 and

0 min (A, A_
2 Jem@lee < = Al oz + ZRCLAD
<= Ayl gz + A A g (5.43)
A
= Tl||0_||L2-

Integrating the inequality form Tj to ¢, we get

A
c (t)|lzz <|lc™ T LZB_T(t_To)
lle”®llz= <| (Lol)ll (5.44)
<Ee~77 ¢-To),

a

More References

[53] [60] [62]
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Chapter 6 Analytical Results

We set up the analytical theory in this chapter. First we discuss the Fredholm theory
for L2 solutions and compute the index. Then we show the compactness of the
perturbed moduli spaces. Last we prove the transversality. As a result of these, a

generic moduli space is a compact smooth manifold, with dimension %M L

6.1 Fredholm Theory

6.1.1 Linearization Map

Consider the maps

81 : Map(Y,iR) — T (iAY) & T(W)
8 : T(AY) @ T(W) — T(iA2) @ T(W)

defined by
61(f) = (—df, f @) 6.1)
d2(a, ¢) = (da +ir(®,$) + (Duw)a(a), Dag + y(a)® + (Dvy) s ()
at (A, ®), where
(Dun) Z fD . B ol (01, 2), (P (), (7)) » (07)"(d6)
(6.2)

and

l

(Du)e(6) =3 ] (2R(1212)(@,0)® + K| OP)eIn(Qud7 (@) (63)

—1 Y[0,1]xD?
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The first map 4, is the linearization of the gauge fixing map

9(A, @) = (A—g7'dg,g®) (6.4)

for g € Map(Y,S"). The second map d, is the linearization of the perturbed Seiberg-
Witten equations 4.21. The maps are purely local and do not depend on the global
geometry of the underlying manifolds. Now consider the noncompact manifold Y+ =
Y Ug I x [0, 00). The metric is given by the product metric at the end.

To set up the Fredholm theory and for purpose of index computation, for sim-
plicity, we may as well consider the unperturbed equations and solutions. Still using

notation 4y, d,, consider

61 :LZ(T(4R)) — Li_,(T(iA") @ T'(W))

b6y :L2_(T(IAY) @ T(W)) — LZ_,(T(iA®) & T(W))
01(f) = (—df, f®)
d2(a, ) = (da +i7(®,$), Dad + ~(a)®)

and

0 —— L2(T(R)) -2 L2_(T(iAY) @ T(W)) —2— L2_,(T(iA?) & T(W)) — 0.
(6.5)

Lemma 6.1 At any solution (A, ®) to the Seiberg- Witten equations, the above is a

complez.

Proof: To show that d; 0 §; = 0, we compute

d2 0 61(f)
=0b2(—df, f®)
=(d(—df) +i7(2, f®), Da(f®) + 7(—df) D).
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d(—df) = 0. On the other hand 7 is locally modeled on

71 (%) = Im(pieh). (6.6)
In particular, if ¢ = fy for a purely imaginary function f, then

7(p, %) =Im((¢ify))
=|fFIIm((1) (1)) (6.7)
=0.

So i7(®, f®) = 0 and the first component vanishes. For the second component, notice
Da(f®) =~(df)®+ fDa®. (6.8)

And the vanishing of second component follows from D4® = 0. [

At any nondegenerate solution (A4, ®), the map ¢, is injective so the zeroth coho-
mology of the complex is trivial. The formal tangent space to the moduli space M at
[A, ®], called the Zariski tangent space, is the first cohomology of the above complex.
The condition that M is smooth at [A4, ®| is the vanishing of the second cohomology,

called the obstruction space.

6.1.2 Weighted Norms

In the above we worked on the space of L? solutions. This choice can easily be seen
to be improper. In last chapter we showed, for a finite F variation solution, there is
a limit at the cylindrical end to a Kéhler-Vortex solution. If a corresponding Kéhler-
Vortex solution is nontrivial, then the Seiberg-Witten solution cannot be possibly in
L2,

To overcome this difficulty, let us fix a Ké&hler-Vortex solution (B, ¥). On the
cylindrical end, suppose the spin,. structure is induced by the product foliation, that
is, W = n*(Wy)@n*(Wy). Consider a pair (A, ®) +7*(B, ¥). For simplicity we will
not distinguish (B, ¥) from its pullback 7*(B, ¥). Substitute into the Seiberg-Witten
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equations 4.15 and we get

dA + Fay +i7(®,0) + 27(3,8) = 0
2 (6.9)
Dp® + v(A)(® + ) = 0.

The linearization for pair (a, ¢), then, is
dz(a, p) = (da +it(p, ¥) +i7(p, @), Dy +7(a) (2 + ¥)). (6.10)

Now we can allow (a, ¢) to vary on proper Sobolev spaces.
Let £ be a global extension to Y+ of the coordinate projection map ¢ : Rt x ¥ —
R*. For any w € R and a fixed Ay we define

(1w
14llzz, ,, = lle“ Allzz ,, (6.11)
@Mz, . = le“ @iz, -

We denote L, 4, to be the completion of C°(Y ™) under the above norm. It is a
standard fact that for different Ao’s all the norms are equivalent, so we will omit the
index Ag from now on.

In last chapter, we showed that the approach to the center manifold is exponen-

tially fast, with speed faster than e~ 3, Therefore, for a w < % the following

complex makes sense:

0 —  L2,(T(iR)) 2, 12, (T(AY) & T(W))

&

(6.12)
—— L} (T(iA>) e T(W)) — 0

From Lemma 6.1,

Corollary 6.2 6.12 is a complez.
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6.1.3 Operators at the End

To understand the Fredholm property of complex 6.12, we wrap it up to form a single

operator, by taking adjoint with respect to L2-inner product after conjugation. Define

D! = (e~“5re™, &) :

w

(6.13)
L (CGEAY) @ T(W)) — L _, ,(T(iR) & T(:A%) @ T(W)).
Identifying A% with A with *, we get
D, : L2, (T(AY) & T(W)) — Li_, o (T(R) & T(iA") & T(W)).
(6.14)
0t : LT (iA") @ T(W)) — LE_,(T'(iR)) is characterized by
01(a, ) = ((a, ), 6:(f))
= ((a, ), (=df, f(2 + ©)))
= (@, —df) + (o, (2 + 7))
= (=d"a, f) + (—i(p, (2 + ¥)), f)
= (—d'a— %(90, (¥ +9)), f)-
So
5i(a, ) = —d*a — i(p, (P + T)) (6.15)
and
e~vi5r e (a, p) = —d*a — i(p, i(® + ¥)) — w(dt, a). (6.16)
If we write @ = b + cdt where b € {A'(X) and ¢ € 1A°(X) then the above is
e~ 8ev (0, b, ) = —dgh+ 2 + we— (i, i(® + T)). (6.17)

ot
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On the other hand, if in addition we express ¢ = (¢*, ™), then

#05(c,b, 0%, 07) = (*z dsb+ ip17(p, ¥ + @),
b )
*3 a == *EdEC + 31?27'(‘9; v = ¢)=

1227 L Do 4 (y(b + cdt) (@ + B))*
g B¥Y TV ’ (6.18)
a —
- i% + DEgt + (v(b + cdt) (¥ + ))7).

Here p;, p» are projections to proper components. In summary we proved

Lemma 6.3
Dule,bpt,¢7) = (—dsb— % —we — (g, i(V + D)) + *zdsb + ip17(p, ¥ + D),
*y % + *ndsc + ip27(p, ¥ + D),
LU b+ cdt) (¥ + ®))*
27“" BY +('7( +c )( + )) ; (6.19)
a P
_ i% + DEot + (y(b + cdt) (T + 3))7).

6.1.4 Operator in Matrix Form

We can express D,, in matrix form as D,, . + O where

—2 —w —xpds i(-,i¥F) —i(-,i07)

— ¥ d 2 - 7.
Duw=| 2% ™= (6.20)
()T ()T i Dp
—iy()¥~ ()Tt Dp ~i%
and
0 —d (%) —i(-i®")
P 3.
o=| ° 2 . (6.21)
HO®F A()8 0 0
0

~h()2" ()2 0
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Let J be the involution on I'(iA (X)) &' (W@ W ). Explicitly J = * on T(:A* (X))
and J = £i on W*. Clearly J?> = —1 and can be regarded as an almost complex

structure on the bundles involved.

Notice the block

0 RS
¥()¥~ 0 —iDp (6.22)
y(-)¥t 4Dpg 0

is L in Corollary 3.3, the linearization of the Kahler-Vortex equations, and
(<ds i(,i0%) —i(,ie7)) (6.23)

expresses the linearization of constraint 3.10.

These illustrated

Lemma 6.4 The limiting operator D, o is

(5’; Y v ) . (6.24)
v* J(2+1L)

Moreover, J anticommutes with L. O

6.1.5 Fredholm Theory

Lemma 6.5 3 is not in the spectrum of

o=1( " ”) (6.25)

fAML)>0and0<w< A .

=W %

v* L

Proof: For an eigenvalue A > 0 of L, there are a pair of eigenvalues of
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(w+A)2+4532

given by —%=2 + —"2""=_ Notice
—_ / 22 + 432
—“’2)‘_ (w+2)+ <o (6.26)
and

- 2 2
w ,\_i_\/(w—!—A) + 473 S>>, (6.27)

2 2

So 7 will not be in the spectrum. [J
Lemma 6.6 D, ., is Fredholm for w < A;.

Proof: Conjugating D,, . by e~ 2zt induces an operator D on L? norm, which equals
Dy, — % on the cylindrical end. By Lockhart and McOwen [45], Do is Fredholm if
@ — 7 is invertible. Corresponding to an eigenvalue A and an eigenfunction ¢, of L,
the eigenfunction on cylinder has form e *,. For it to live in L?, we have to restrict
to A > 0. The Lemma now follows from Lemma 6.5. (I

As a Corollary

Corollary 6.7 The deformation complex 6.12 is Fredholm. O

6.2 Index Calculation

6.2.1 Extended L2

Definition 6.8 For an operator of form 2 + P at the cylindrical end, a pair (A, ®)
is in estended L? if (A, ®) € L}, and fort large,

(A, @) = (B, ) + (4, ®) (6.28)

for (B, ¥) € ker P and (A, ®) € L.

We denote extended L? space by L2. M. Atiyah, V. Patodi and A. Shapiro proved [5]
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Lemma 6.9 Let D : C®(Y,E;1 — P) — C*=(Y,F) be a linear first order elliptic
differential operator on Y. Near the boundary I x ¥ D takes form D = o(5 + A)
for a bundle isomorphism o and a first order self-adjoint elliptic operator A on X.
Let C=(Y, E;1— P) denote the space of sections f of E satisfying (L — P)f(-,0) =0
where P is the spectral projection of A corresponding to eigenvalues > 0. Let D* :

C>=(Y,F;P) — C>=(Y, E) be the adjoint operator. Then

(1) ker D is isomorphic to the space of L* solutions of Df =0 on Y+,

(2) ker D* is isomorphic to the space of extended L* solutions of D*f =0 on Y.

In our situation, however, we would like to compute index where kernel is in extended

L? and cokernel is in L2. Therefore it is natural to introduce
T Li,w(F(iR) e TEAY) o T(W)) — Li_l,w(F(iAl) @ T'(W)),
the adjoint of D,, defined by
D = (6, e~ (x8))*e™). (6.29)

Then by Atiyah-Patodi-Singer,

Lemma 6.10 —indD;, is the formal dimension of complex 6.12. [

6.2.2 The Atiyah-Patodi-Singer Index Theorem

Atiyah-Patodi-Singer also proved

Lemma 6.11
indD = h(E) — h(F) — hoo(F) (6.30)

where h(E) is the dimension of the space of L? solutions of Df =0 on Y+, h(F) is
the corresponding dimension of D* and h(F) is the dimension of subspace of ker A

consisting of limiting values of extended L* sections f of F satisfying D*f = 0.
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Let

D*: LI(T(iR) @ T (iA") @ T(W)) — L;_,(T(iA") @ T'(W))
be the operator on L? spaces. Then by Atiyah-Singer-Patodi
indD™ = h(E) — h(F) — hoo(F) (6.31)

where E = I'(iR) @ T'(iA') & T(W) and F = T(T(iA!) @ T(W).
Atiyah-Patodi-Singer also showed that

hoo(E) + heo(F) = dimker @ = dim My (6.32)

On the cylindrical end, the operator takes form J (% + Q) where J*> = —1 and J
anticommutes with . The operator is self-adjoint so h(E) = h(F) and he(E) =
heo(F) = % dim Mj,. Therefore

=2

Corollary 6.12 indD* = "%dim M. O

6.2.3 An Excision Argument

On a compact subset Y; of ¥'*, the L? norm and L2 norm are commensurate and
the operator D}, and D* are equivalent. By the excision principal [8], the difference
indD* — ind D, only depends on the part Y\ Y; = [t,00) x E. To see the difference
on Y*\Y;, we take away Y; and glue back a cylinder [0, #] x X. Extend both operators
to the whole cylinder and consider the difference. While D}, takes form J (% +Q),
D* takes form J (% +Q —%). Since ¥ is not in the spectrum of @, the index of the

two operators are the same. Therefore,
Corollary 6.13 indD}, = indD*. O
As a consequence, and combine the previous results,

Theorem 6.14 The map D is Fredholm. The formal dimension of the moduli space
is 3dim M. O
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6.2.4 The Orientation

We can orient the moduli spaces in the following way,

Lemma 6.15 Given an orientation of H°(Y), HY(Y) and H*(Y), there is a corre-

sponding orientation for My, for any admissible h.

Proof: For a family of Fredholm maps K : X — Fred(V, W), where V, W are bundles
over a manifold M, we can associate an index bundle defined as follows. Over X, we

define the virtual bundle
IndK, = kerK(z) — cokerK(z).

dim ker/C(z) may not be continuous on z but dim kerk(z) — dim cokerk(z) is con-

tinuous and an orientation is defined to be a section of the real determinant line
bundle

det(kerk(z) — cokerk(z))(x)
=Adim kerlC(z)(ke,’_K:(m)) ® (Adimmkerf((z:)(Cokerlc(m)))n.

Notice when K is surjective the usual definition is recovered.

In our case the family of operators K are

K: Ay x M — Fred(L{ (Q'(Y) & T(W)),
L 1.(Q(Y) & Q*(Y) & T(W))).
iD 4

0
The block in L has positive determinant, and so does the correspond-
—iD4 0

ing part in (). So we only have to worry the part

Fred(Li,w(Ql)ﬂ Li—l,w(ﬂo @& QQ))
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The operators are homotopic to
(d@*,d) : QYY) — Q(Y) @ Q*(Y). (6.33)
From Hodge theory

(AmaxQO)x b2 (AmaxQZ)* ® Ama.xﬂl - (Ama.xHO)- ® (Ama.xHZ)n ® Ama.xHI
(6.34)

So an orientation of H°(Y), H'(Y) and H%(Y) induces an orientation on M,. O

6.3 Compactness

6.3.1 A Weitzenbock Formula

On a four-dimensional manifold X, the Weitzenbock formula states
2 * S 1

Now given a 3-manifold ¥ and a spin, structure, consider Y x R with the spin, struc-
ture induced by the given spin,. structure on Y. For translationally invariant spinors
the Weitzenbdck formula for four-dimension should hold and the four-dimensional
Dirac operator is equal to the three-dimensional Dirac operator, similar to discus-
sions in 3.1. Notice here we identify w € (Y with w A dt + *yw so computing the

norm gives a factor of 2. This proves the Weitzenbock formula for 3-manifolds:

1
D = VAV + J1dw + ;7(F3) (6.36)

For the perturbing terms in equations 4.21, we have the estimates:
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Lemma 6.16 Let (A, ®) be a solution to the perturbed Seiberg- Witten equation, then

there exists constants Cy, and C», only dependent of h such that

[(¥(1n(A)) @, ®)| <Ci|2[*
[(Davi(®), )| <Co| @[

Proof: The first inequality follows immediately from the bound on hi. For the

second inequality, notice

Davn(®) =Da Z K(121%)@n(Q26; ()

J=

Ry(|®1*) Da®n(Q26; ' ()

-

1

+y(dRj(|21%) 2n(Q26; ()

.
Il

-

5 (11%) (—vn(@))1(Q285 ()

1

+y(dR(1[%)) @n(Q207 " (x))

.
Il

and the estimate follows. [

6.3.2 Uniform Bounds on &

The above estimates enable the pointwise uniform bound of finite F variational so-

lutions:

Lemma 6.17 Let (A, ®) be an L%, solution to the perturbed Seiberg-Witten equa-

kaw

tions, then there ezists constant C, independent of (A, ®), so that

18| < C.

Proof: We show in last chapter that on the cylindrical end the solution converges
to a solution to the Kéahler-Vortex equations. The moduli space of Kéahler-Vortex

solutions is compact. So there is a uniform bound for |®| at the cylindrical end. If
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the maximum of @ is achieved at a point z, then

i ;
<-A|®|?
IR
=(V3VAD, ®) — (Va®, V2 ®)
<(VuVa2, 9)

~(D32,8) — 2(1(Fa)2,®) — 5(2,8)

~ 52,8) — 120" — ((m(4))®, @) — (Dwn(®), D)

< 2(2,9) — 119l + G2 + Cylaf?
where C) and C, are only dependent of h and not of (A, ®) from the above lemmas.
The result then follows. [
We will use the pointwise bound to prove a convergence result on a compact subset
of the open manifold ¥+, much as in the closed case. And we will use the asymptotic
behavior of the finite F variational solutions to prove a convergence result on the

cylindrical end, in the spirit of [41]. We then patch these two together and prove the

global convergence.

6.3.3 Convergence on Compact Subset

Lemma 6.18 On a compact subset K, of Y+, for a sequence of the solutions (A;, ®;),
there is a subsequence {i'} C {i} and gauge transformations uy so that uy(Ay, ®y)

converge to a solution (A, ®) strongly.

Proof: The uniform bounds of ®; make it transparent and similar to the closed
case. Fix a smooth connection Ay on K, for any connection A we can find a gauge
transformation g in the identity component of Map(K;,S') so that g(A) — Ao is co-
closed and annihilates the normal vectors at the boundary. Furthermore, by choosing
g from proper component we can make it so that the harmonic part of g(A) — Ag is
also bounded by a constant independent of A, since the torus H'(K,,R)/H" (K1, Z)

is compact. Therefore, by applying proper gauge transformations we may assume the
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sequences (A;, ®;) are such that

Ai= A+ a;
(6.37)
d"a,- =0.
The perturbed Seiberg-Witten equations for pair (a;, ®;) then become
i
dai+—T<I’,-,<I>,- + A + a; =)
S7(@i, 1) + un( Ao + ) -

D4, ®; + 7(a:)®; + va(®;) = 0.

The pointwise uniform bound, combined with the estimates on the admissible per-

turbations, implies that there is a constant Cj,

1
“50(@;',‘1%)”1; <C
| * un(Ao + @) ||lze < Cy (6.39)
v (®i)lz» < Cy

for any p > 0. Here L? means the L? norm on K,;. Now consider the operator d + d*
and Dy, on K,. The first has a good boundary condition to make it an elliptic
operator: vanishing of the normal vectors at the boundary. The second does not have
a good boundary condition. However, the pointwise uniform bound of ®; bounds the
boundary integral by a constant C,. Along with the Garding’s inequality, we have,
for any p:

laillzz < Cs(ll(d + d™)aillzz | + llasllzz )
19:llzp < CalllDao®illzz_, + 1 ®illzz_, , + C2)-
Here U, U’ are open sets such that U @ U’. C, depends on U and U’. In the following

argument, we omit the U, U’ subscript, with the understanding that in each step, we

can always choose appropriate open sets.
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We start the bootstrapping argument by

la:llze < Cs(ll(d + d*)asl e + ||aillzr)
< Cs(||das|z» + Ch)
2
< 03(”57(@1', ®;) + pa(Ao + i)l zr + C1)

< C3(C1+C1+ CY)

< Cs
and
[®illze < Ca(llDao®illze + [ ®illze + C2)
< Cy([lv(a:)® + vn(@i)||ze + C1 + C2)
< 04(301 + Cz)
< Cs.
On the other hand

laslizz < Ca(ll(d+d")asllzs + llaslzz)
< Cs(|ldasll 5 + Cs)
a3 Ca(IE%T(fbi, ®;) + pn(Ao + i) 2 + Cs)
< Oy (@0, 90) g + 8o + 091z + Co)
< C(Cr]|®illzz + C1 + Cs)
< C3(C1C5 + Cy + Cs)

< Cr.

Similar estimates hold for ||®;||zz. The convergence then follows from Rellich’s com-

pactness theorem. [
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6.3.4 The Compactness

The convergence on compact subset, along with the connectedness of the critical point

set, enables us to prove

Theorem 6.19 For any sequence (A;, ®;) of ii,& solutions, there is a convergent

subsequence, possibly after gauge transformations, in the Ei,J topology on Y.

Proof: Let Y; = Y Ug [0,¢] x £. Consider a sequence (A;,®;) on Y*. For each
n > 0, there is a convergent subsequence, after applying the gauge transformation.
By a diagonal arguement, we can pass further to a subsequence, still called (4;, ®;),
so that it converges to an (Ag, ®o) on Y.

Each equation is a closed condition, so (Ag,®Po) still solves the Seiberg-Witten

equations, and is a critical point for the Chern-Simons-Dirac functional. Furthermore,

| Ft, (Ao, o) — Fio (Ao, Do)
<|Fe (Ao, Ro) — Fi, (A, B3)| + | Foy (Ai, B;) — Fio(Ai, Bi)| + | Fio (Ao, Po) — Fip (As, B3)|
<C (6.40)

Where the last inequality follows from the continuity of F for large enough i’s. The
convengence now follows from the connectedness of the critical point set of finite F
variation. []

As a corollary,

Corollary 6.20 For any admissible perturbation h, the moduli space My, is compact.
O

6.4 'Transversality

6.4.1 The Map S

Consider a solution (45., ®) to the perturbed Seiberg-Witten equations 4.21 on Y+,
There exists a solution (B, ¥) to the Kéhler-Vortex equations so that on the cylin-
drical end (A, ®) asymptotically approaches (B, ¥). If we write (4,®) = (4, ®) +



80
(B, ¥) then (A, ®) satisfies

dA +i7(®, ¥) + L7(®,®) + pn(A+ B) =0
2 (6.41)

Dp® + v(A)(®+ T) =0.
This motivates the following definition
Definition 6.21 Define
S H x L 5(iA") x L (W) x KV +— Li_, 5(iN%) x Li_; (W)

to be the map

S(h, A, @, B, ) = (dA+i7(8,9) + Z7(®, ) + (A + B), Dp® +7(A)(® + V)
(6.42)
where KV denotes the solution space for Kihler-Vortex equations.

Then the linearization of S is given by

DS(g,a,¢,b,¢)
= (da +i7(p, U + @) +ir(®, ) + Dyu(A + B)(g),
Dpp +(a+b)(¥ +8) + 1(A)(p +9) + Du(¥ + 8)(g)).  (643)

6.4.2 Surjectivity of S

Theorem 6.22 S is smooth and 0 is a regular value.

Proof: Fix a nondegenerate solution (A + B, ® 4+ ¥) = (A4, ®y). Rewrite DS as

DS(g,a, ) = (da +it(p, o) + Dun(Ao)(a) + Dun(Ao)(9) + it(2, %),

Dagp + ¥(a)@o + Dvn(®o)(¢) + Dva(Po)(g) + ¥(A)Y). (6.44)

DS is of closed range. If (o, 8) € cokerDS. (a, () is orthogonal to the image of DS.
The surjectivity of S at 0 follows from the vanishing of (o, 3) on Y.
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For any 2 € Y+, choose embeddings v; : S* x D?* — Y+, j = 1,2,3, so that
7i(—1,0) = x. Furthermore, we require that (v;')*dé be linearly independent at
1,Y for y € U, a small neighborhood of z.
Let ¢' = ¢pg U; 7y; then ¢y C ¢'. Let

ey " (6.45)

0 on v;’s

then h, is an extension of hg to Hegyu,,,»- And (Ao, ®o) solves the perturbed equations
corresponding to h; as well.

Now we set a =0, ¢ =0, b =0, ¥ = 0, and change the g, then
() gi(hol, (vi(1, 7), Ao))n(Pov; ™ ())vie(dB), @) = 0. (6.46)

{7ix(d)} spans the basis for T,;Y for y € U, and we have the freedom to change
9i’s, so @ = 0 in U. From the arbitrary choice of z, @ = 0 on Y*. Notice here the
holonomy inside ¢’ becomes irrelevant, since we have the freedom to change ~;’s as
well because we allow intersections of the respective embeddings in the definition of
the perturbation.

Now for the 3 part. For any x € ¥+ where ®q(z) # 0, in

(Dot +7(a)®o + Dag(Po)() + Dvag(®0)(9), 8) = 0 (6.47)

set ¢ =0 and g = 0 then we get

(7(a)®o, B) = 0. (6.48)

Let a =0, ¢ = 0 and we will have

(Do (®0)(9), B) = 0. (6.49)
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That is

1{(g'(|®0|*) @0, B) = 0. (6.50)

Notice End(W,W) =R @& A!. If 3 # 0, then we can find u;,u, € R and g, a so that
(119’ + uzy(a)]®o = B (6.51)

since @y # 0 by assumption. That means

u1n(g'®o, B) + uz(v(a)®o, B) = |8* > 0. (6.52)

A contradiction. That proves 3 = 0 identically by the Unique Continuation Theorem.
O
Combining the results of this chapter and by Sard-Smale theorem [59]

Theorem 6.23 For any admissible perturbation h the moduli space My, is a compact
oriented manifold of dimension } dim My,. The moduli spaces are smooth for generic

perturbations.

More References

[2] [8] [10] [43] [50] [54]
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Chapter 7 The Cobordism

7.1 The Limiting Map

We study the limiting map r and show it is a Lagrangian immersion. The composition
of r with the section s; is Legendrian. We define a lift 7 to construct the Legendrian

cobordism between perturbed moduli spaces.

7.1.1 The Map r

The asymptotic behavior of finite F variational solutions in chapter 5 allows us to
define a limiting map from the Seiberg-Witten solution set to the Ké&hler-Vortex

solution set. The map descends to a map
r: Mp(Y,Z) = Mp(X)

By Lemma 5.9, Corollary 5.10,
Lemma 7.1 The map r is continuous and is an immersion..d
We now proceed to prove the Legendrian property of r. First

Lemma 7.2 Suppose v : [0,1] — A is a smooth path such that Vi(vy(t)) = 0 for
all t € [0,1]. Then 8, oy is a horizontal lift of v to A x U(1). Consequently,
ro8po~:[0,1] — As x U(1) is a horizontal lift of r o~.
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Proof: We need to show (3, 07).(Z) is horizontal with respect to connection w. We

apply the fact that V), is the gradient of the section §;, with respect to w:

) =Duin( (o))
=(V3n(v(t)), >
=(Vr(7(2)), %(

=0.

P

w((3r o).

(%»
L
()

a

7.1.2 The Lagrangian Immersion

In chapter 3 we described a symplectic structure © on Ay defined by 3.16. € is

compatible on W+ @ W~ with the metric and almost complex structure in the sense

¢, ¢2) = g(¢1, Jp2) (7.1)

except that on W~ the orientation is reversed. So the symplectic structure can also

be written as

Q(an, 0, 07), (a2, 0F, 63)) = — L a1 Adg + fz (F,ied) — (o7, 663).
(7.2)

Let v : [0,1] = Ay, i = 1,2 be two smooth paths so that Vi(v:(t)) = 0 for all
€ [0,1]. Then

Lemma 7.3 Q((r o v).(2), (ro1).(2)) = 0.

Proof: Let

(vi)s (%) = (as, @5)

S
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on Y and

(o) = (a0, 07)
on the cylindrical end. For ¢t € R*, let Y; = Y \ [t,00) x ¥. Then

Q((TO%)*(%),(TOW)*(%)) (7.3)
.3

—im— [ @mAa+ / (et i) — (o7 gV ol
{t}x2 {t}x2

t—o0

Let & be the unit length 1-form corresponding to the spin,. structure on Y™, then the

integral can also be written as

- ] A Bt ] (ot iwd) — (o7 ,ig3)] + €. (7.4)
{t}xZ {t}xZ

By Stokes theorem on Y;:

(r o). (g0)s (o) (5))
d

(7.5)
= Jim —/ dlar Aaz) + | a{[(¢t,ivd) — (o1, ipz )] * £}
* Iy Y,
Since Vip(7:(t)) = 0, (a;, ¢;) satisfies
da,:+i'r‘I>, 1+D i =0
(@, ¢1) + Dpna(e:) (7.6)

D ap; +v(a;)® + Dupe(yp;) = 0.
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Therefore

d(a1 A ag)
Y:

= [ day Nas —a; Adas
Y

=[ —(#7(®, ¢1) + Dpnalaz)) A az + ay A (iT(®, 2)) + Dpnalar)
Y

=/ —i7(®, 1) Aag + a1 A (iT(P, p2)) — Hessh(ay, az) + Hessh(az, a1)
Y:

- f —ir(®,1) A as + ar A (iT(®, ¢2)).
Y:

The map 7 is characterized by

ir(p, ) N = (v(0)w: ) (7.7)
for ¢,% € T'(W) and 6 € iT*(Y). Hence

d(ay A az)
Y

=-fy(7(az)‘1>,901) — (v(a2)®, ¢1)

=f (Datpz + Dung(2), 1) — (Daps + Dvna(p1), ¥2)

1

=f (Daa, 1) — (Daspr, p2) + Hessh(ps, p1) — Hessh(ipy, ¢2)

t

Z/ (DA902=991) - (DA<P1=4{J2)-
Y:

By equation 4.12

f(Dsz,wl)—(DAcpl,soz)=f (oF,ip3) — (1,403 )- (7.8)
Yi {t}x2
Therefore
= f d(a; A az) + / (of,dpd) — (¥7,ip7) =0. (7.9)
{t}x2 {t}x=
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That means

Q(r o m)e () (ro w)u(5)) = 0 (7.10)

O

From this Lemma we immediately have
Corollary 7.4 The map r is a Lagrangian immersion. O

By definition a Legendrian immersion is a horizontal lift of a Lagrangian immer-

sion. For the contact structure on Ly — My and from Lemma 7.3 we have

Lemma 7.5 For generic h, the compositions s, or : My, — Ly, are Legendrian.

7.2 Legendrian Cobordism

7.2.1 The Cobordism

Suppose (M, ) is a symplectic manifold and (£, w) is a U(1) bundle with a contact
structure over M. The contact structure on £ is obtained from the connection of
L where dw = i€. There is a canonical contact structure on £ x T*[0,1]. Let
(u,v) € [0,1] x R be the coordinates on 7*[0,1] and 7;, i = 1,2 be the projections
onto the first and second factors respectively in £ xT*[0, 1] (and M x T*[0, 1] as well).

On M x T*[0,1] there is a canonical symplectic structure
Q = mQ 4 73 (du A dv). (7.11)

Now L x T*[0,1] defines a U(1) bundle over M x T*[0,1], and the connection given
by the 1-form

w = mw — my(vdu) (7.12)

defines a compatible contact structure on £ x T™[0, 1].
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Definition 7.6 Fori = 0,1, let f; : N; — L be immersed Legendrian submanifolds.

A Legendrian cobordism between fo and f, is an immersed Legendrian submanifold
f:N— L xT*0,1], transversal to O(L x T*[0,1]) and

po flan = fi(N1) x {1} U fo(No) x {0}

where p : T*[0,1] — [0, 1] is the projection. Two oriented Legendrian submanifolds No
and N, are oriented Legendrian cobordant if there is an oriented Legendrian cobordism

(N, f) so that DN = Ny — Ny as oriented manifolds.

The space H is path connected. Given a path h; in the space of admissible
perturbations, there is a corresponding section sp, of Ly x [0,1], given by the G

equivariant map
Sh (A, ®,1) = elCSPARIHh(AR)) . A 5 [0,1] — U(L). (7.13)

Let My, be the moduli space on Y corresponding to the perturbation h;. For simplic-
ity we will write sp,, as s; and M}, as M, unless we want to emphasize the dependence
on the perturbation.
For a Fredholm operator S : A x H +— A’, we can consider the operator from the
path space PH of H:
S AxPH— A.

By standard theory the operator S; is Fredholm of 1 more index. Regard U;,M; as
sitting inside B x [0, 1], for a generic path h;. Apply the same argument and we have

Lemma 7.7 For generic path hy, the space M; is a smooth, compact manifold of

dimension 3 dim Mz + 1. O
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7.2.2 The Lift 7

With this understood, we define a lift
7 My Ly x T*[0,1]
of r. We first declare
F: Ax[0,1] = Ay x U(1) x T*[0, 1]

by

F(A, 8,1) = (r(A, @), 30.(4, @), 1, 5-hu(4, ), (7.14)

This is equivariant with respect to the gauge group action so it induces a map on the
quotient. We let 7 to be the induced map restricted to M;.

Lemma 7.7 supplies a smooth cobordism between two moduli spaces M, for
generic h’s. By the help of the above lift 7 the cobordism is indeed a Legendrian

cobordism.

Theorem 7.8 For generic path h; between My,, i = 0,1, 7 : My +> Ly is a Legen-

drian cobordism.

Proof: From last section we know 7; : Mj, — My is an immersion for each ¢.
Similarly the map from M; to My x [0,1] is also an immersion. To prove it gives
a Legendrian cobordism, we must show that the lift to U(1) bundle is horizontal.
That is, for any vector field (8a, §¢, 6t) € T(a,e,)(A % [0, 1]) where (A, ®) is a solution
corresponding to h;, we need to show 7,(da, 6¢, 6t) is horizontal. Since the connection
71 (w) + 73 (vdu) is the same as w when restricted to A, from earlier computation we

know 7, (da, 6¢, 0) is horizontal. So we only have to show that 7, (0, 0, §t) is horizontal.
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And we compute
_ - .0 8?
T (Jt) = (O, Shto (A, ‘I))'Z§|g=toht(x4., (I))Jt, (5t, @ ‘t:toht (A, @)5t)
(7.15)
Consider the part —