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Abstract 

The Seiberg-Witten equations have proved to be quite powerful in studying smooth 

4-manifolds since their landing in 1994. The corresponding Seiberg-Witten theory on 

closed 3-manifolds can either be obtained by a dimension reduction from the four­

dimensional t heory, or by following Floer's approach. Here we investigate the theory 

on 3-manifolds with boundary. The solut ions to the Seiberg-Witten equations are 

identified with critical points to the Chern-Simons-Dirac functional, regarded as a 

section of the U(l) bundle over the quotient B of the configuration space. An infinite 

tube [0, CXJ) X ~ is added to the compact manifold and the asymptotic behavior of the 

solutions on the cylindrical end are studied. The moduli spaces of solutions under 

gauge group action are finite dimensional, compact and generically smooth. For a 

generic perturbation h, the moduli space Mh can be related to the moduli space 

ML of t he Kahler-Vortex equations on the boundary surface ~, via a limit ing map r, 

which is a LagTangian immersion with respect to a canonical symplectic structure on 

ML . Moreover, for a family of admissible perturbations, the moduli spaces for the 

perturbed Seiberg-Witten equations are mutually Legendrian cobordant. 
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Chapter 1 Introduction 

A central problem of low-dimensional topology and geometry is to find invariants 

(topological, differential, piece-wise linear, etc.) of manifolds. This thesis is an at­

tempt to set up the Seiberg-Witten invariants on 3-manifolds with boundary. As a 

step toward this, we analyze the structure of moduli space to the Seiberg-Witten equa­

tions, which is related with topological invariants on the boundary Riemann surface. 

Furthermore, a family of admissible perturbations of the Seiberg-Witten equations is 

considered and a Legendrian Cobordism Theorem of the perturbed moduli spaces is 

proved. 

1.1 History and Background 

1.1.1 Why Three and Four Dimensions 

Over the decades there has been long and sustained interest in low-dimensional topol­

ogy. There is a considerable incentive from the theoretical physics, especially from the 

theory of relativity and string theory, to understand the three and four-dimensional 

manifolds with appropriate metrics imposed. These theories usually involve a field 

on a certain manifold, or, in other words, a section of a certain vector bundle on the 

manifold. 

From the mathematics' point of view, low-dimensional topology has its own charm 

as well. To start with, smooth 4-manifolds have resisted classification. In dimension 

five or higher, smooth structures on a manifold correspond to t he reductions of tangent 

microbundle [35]. On four-dimension, however, there is a completely different picture. 

For any 4n-dimensional manifold X, define 

w(a,b) = (a ~ b, [X l) (1.1) 
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where a, bE H2n(x; Z), '-.../ is the cup product on cohomology group, and [X] is the 

volume form. This gives a symmetric bilinear form on H2n(x ; Z), and is referred as 

the intersection form. 

A bilinear form w on a vector space V is called even if w (v, v) is even for all v E V. 

It is called odd if otherwise. 

For topological manifolds, M. Freedman showed [23] in 1982 

Theorem 1.1 (Freedman) Given any integral unimodular quadratic form w, there is 

an oriented simply connected four-dimensional manifold M realizing w as its intersec­

tion form. Furthermore, if w is even, then any two such manifolds are homeomorphic. 

If w is odd, then there are exactly two homeomorphism classes of 4-manifolds realizing 

it. 

For smooth manifolds, however, V. Rohlin proved in 1952 that [55] 

Theorem 1. 2 (Rohlin) If a smooth, simply connected compact 4-manifold has even 

intersection form w, then cr(w) is divisible by 16 . 

This hinted some peculiar behavior of smooth 4-manifolds. 

In around 1982, S. Donaldson [15] found gauge theory offer a particular power­

ful tool to study the four-dimensional geometry. From there on t his area thrived 

remarkably. 

1.1.2 The Gauge Theory Approach 

Donaldson's idea [15] is to study the Anti-Self-Dual (AS D) connections on certain 

complex bundles over a closed 4-manifold X under the gauge group action. It t urns 

out, for generic metrics, the moduli spaces are finite dimensional, compact, oriented 

manifolds, smooth except possibly at finite points, which correspond to the reducible 

connections. Such moduli spaces carry much of the information of the original 4-

manifold in which we are interested. 

From another point of view, the ASD connections are the critical points of certain 

functional, invariant under the gauge group action, on the configuration space, and 
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t he functional generally plays the role of an energy function. For example, on an 

SU(2) bundle V over X , the Yang-Mills functional, for a connection A, is [22J 

(1.2) 

where Ft and FA are the self-dual and anti-self-dual part of the curvature FA. Notice 

we have 

(1.3) 

where C2(V) is the second Chern class of t he SU(2) bundle V. Therefore, 

(1.4) 

and t he equality only holds on ASD or SD connections respectively, depending on the 

sign of the second Chern class, evaluated on fundamental class [XJ. 

Later Donaldson [17J defined the polynomial invariants for a smooth 4-manifold, 

using the structure of the moduli spaces. On a complex surface, the Donaldson poly­

nomial invariants are nonvanishing and can be related to effective divisors on certain 

complex bundles on the surface. On a general4-manifold, however, the computation 

of t he invariants remained elusive and a challenge. 

By studying embedded surfaces in the 4-manifolds, P.B. Kronheimer and T .S. 

Mrowka [39J [41J [42J were able to understand the general structure of t he Donaldson 

polynomial invariants for the so-called simple-type 4-manifolds. 

1.1.3 The Seiberg-Witten Equations 

1994 marks another year of breakthrough in low-dimensional topology. The discovery 

of Seiberg-Witten equations [69J from theoretical physics [56] [57] saw more insights 

to the subject and solut ions to many long standing problems in four-dimensional 

topology. To name a few, P.E. Kronheimer and T.S. Mrowka [40], J. Morgan, Z. 
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Szabo and C.H. Taubes [52], and R. Fintushel and R. Stern [20] proved the Thorn 

conjecture independently using the Seiberg-Witten invariants. C.H. Taubes [63] found 

some new constraints on symplectic 4-manifolds from the perspectives of Seiberg­

Witten invariants. And there was a strong hint on the connections between the 

Donaldson's polynomial invariants and the Seiberg-Witten invariants, with the latter 

much simpler to handle. 

On a closed 4-manifold X the Seiberg-Witten invariants are obtained by studying 

the moduli spaces of solutions to t he Seiberg-Witten equations 

Ft + i(T( <I> , <1» = 0 

DA<I> = 0 
(1.5) 

where <I> is a section of the positive spinor bundle W+, A is a connection on W+ 

and A is t he corresponding connection on the determinant line bundle det W+. (T is 

t he map that sends the traceless part of the endomorphism of SU(2) bundle to the 

self-dual 2-forms (see next chapter) . And DA is the Dirac operator associated with 

connection A. 

The solutions to the above equations are the critical points for t he following func­

tional on X 

(1.6) 

£ can be rewritten as 

So again this £ behaves as an energy function on the configuration space and achieves 

minimum on the solution set to the Seiberg-Witten equations. The moduli spaces are 

finite-dimensional smooth compact manifolds for generic metrics and are empty for 

all but finitely many spine structures. 
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1.1.4 Gauge Theory on 3-manifolds 

The three-dimensional manifolds have been studied extensively by W.P. Thurston 

and many others, mainly using geometric tools. For example [24] [26] [66]. There is a 

close relation between foliations on three manifolds and the Seiberg-Witten equations. 

As soon as the gauge theory was developed for 4-manifolds, it was applied to 

3-manifolds as well. Since anti-self-duality is something special for 4-manifolds, the 

ASD perspective is not available for 3-manifolds. However, one may still adopt the 

energy functional view and consider t he crit ical point set of a certain functional. In 

this case the Chern-Simons functional on a closed 3-manifold, for connections A on a 

SU(2) bundle over the 3-manifold Y , fits t he picture well: 

1 1 2 CS(A) = - tr(A 1\ dA + -A 1\ A 1\ A). 
4~ y 3 

(1.8) 

This functional is not invariant under gauge transformation. But t he gauge transfor­

mation will only change the functional by 2~ times an integer . Therefore, we may 

view it as an SI valued functional. The critical points of this functional correspond 

to flat connections on Y. One is lead to try to define analogues of the Morse theory in 

this setting and study the moduli space when varying a I-parameter family of metrics. 

The moduli spaces are O-dimensional and smooth generically. By the compactness 

and the orientation, t hey are of finite points with sign. The number of points counted 

with sign is determined by the spectral flow of the Chern-Simons functional. This is 

Floer's approach. [ll] [2 1] 

Similarly one can set up the Seiberg-Witten invariants on a closed 3-manifold this 

way. The three-dimensional analogue of t he Seiberg-Witten equat ions are 

i 
FA + 2"T(<f? , <f?) = 0 

(1.9) 
DA<f?=O 

and the solut ions to these equations are the critical points to t he Chern-Simons-Dirac 
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functional 

CSD(A, cJ» = - (A - Ao) A (FA + FAa) + (cJ>, DAcJ». 1 j' 
47r 

(1.10) 

Three-dimensional Seiberg-Witten invariants can also be obtained by dimension re­

duction from the four-dimensional equations, that is, by considering translationally 

invariant solutions on S1 x Y. The invariants derived this way are closely connected to 

other classical invariants, such as Casson invariant , Milnor torsion and the Alexander 

polynomial of knots. [47J [53J 

1.1.5 On Manifolds with Boundaries 

There is another direction along the line of developments. That is, the study of open 

manifolds. In 1997 P.B. Kronheimer and T.S. Mrowka defined the moduli spaces 

for the Seiberg-Witten monopole equations on 4-manifolds with boundary [43J. In 

their theory a contact structure is imposed on the boundary oX. The moduli spaces 

resemble the ones in closed case and P.B. Kronheimer and T.S. Mrowka were able to 

use them to prove some important theorems on the contact 3-manifolds oX. 

The contact structure imposed on the boundary makes it unappealing to try the 

dimension reduction approach to get invariants on 3-manifolds with boundary. The 

natural spine structure near the boundary of a 3-manifold will be the one arising 

from the product foliation of I x ~ . And it cannot possibly correspond to a contact 

structure on S1 x ~ . So we need to take some other approach. 

Earlier in his thesis C. Herald [30J studied the moduli spaces of fiat connections on 

a 3-manifold with boundary. He considered a fiat connection as the critical point of the 

Chern-Simons functional, regarded as a section of a U(l) bundle over the quotient 

of the configuration space under gauge group action. The moduli spaces My are 

stratified, with dimensions of strata dependent only on the genus of the bounding 

lliemann surface~ . Furthermore, there is a restriction map r : M y f-t M E where 

M E is the moduli space of fiat connections on ~. The fiat connections on connected 

Riemann surfaces with genus 9 are well understood and the moduli space has a 



7 

canonical symplectic structure. The restriction map turned out to be Lagrangian, and 

he found , under a suitable class of perturbations, the moduli spaces are Legendrian 

cobordant to each other with respect to this restriction map. 

1.2 Main Results and Organization of Material 

1.2.1 Main R esults 

Here we achieve a similar goal, although following a quite different setup in the tech­

nical sense. We study the moduli spaces of solutions to the Seiberg-Witten monopole 

equations on a 3-manifold Y with boundary ~. We prove that the moduli spaces are 

compact, finite-dimensional and generically smooth. There is a restriction map r from 

My to M~;. ME is the moduli space of solutions to the Kahler-Vortex equations on 

~. For the canonical symplectic structure on ME, r is Lagrangian. For a suitable 

class of perturbations, the moduli spaces are Legendrian cobordant to each other. 

To set up the theory, we consider critical points of the Chern-Simons-Dirac func­

tional on A (Y,E) , where the functional is regarded as a section of a U(l) bundle over 

B (y,E) = A(y,E) /9(y,E). We define a family of admissible perturbations and show, for 

a generic perturbation, the moduli space is a compact, smooth manifold of half the 

dimension of moduli space of Kahler-Vortex equations, a counter-part of fiat connec­

tions in Herald's theory. 

There are, however, no good boundary conditions for the Seiberg-Witten equations 

on (Y, ~). We get around this difficulty by working in a weighted Sobolev space on the 

3-manifold Y+ obtained by attaching a cylindrical end [0, (0) x ~ to Y. It turns out , 

on the cylindrical end the equation has the form J(~ + Qt) where Qt is a self-adjOint 

first order elliptic operator on ~ and J is a bundle automorphism. When t -+ 00 , 

Qt -+ Q= = Q which is t he linearization of the Kahler-Vortex equations. 

For this reason, the setup of our theory is quite different from Herald's, even 

though the results look somewhat similar. 

To start with, we consider the solutions to Seiberg-Witten equations on the cylin-
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drical end [0,00) x L: and turn the equations to a gTadient flow equation for the Dirac 

functional:F. Although:F does not resemble the energy functionals, it secretly enjoys 

their propert ies. Namely, the difference of :F on the tube controls t he energy of the 

pair (A , <p) in t he configuration space. 

Therefore we turn our attention to solutions with a finite :F variat ion at the end. 

With the help of the center manifold theory, we are able to understand how a finite 

energy flow approaches the center manifold, which is modeled on ker Q. 

On the other hand, Atiyah-Patodi-Singer [5] [6] [7] had studied t he similar sit ua­

t ion extensively. We mainly follow them to set up the Fredholm theory and compute 

the index. 

From Atiyah-Patodi-Singer's point of view, it is no miracle the formal dimension 

of Seiberg-Witten moduli space is precisely half the dimension of the Kiihler-Vortex 

moduli space. 

Let D = a( ;u + Q) : Coo(Y, E , P) --+ Coo(Y, F) , where P is t he projection to pos­

itive eigenspaces of Q. Then according to Atiyah-Patodi-Singer, ker D is isomorphic 

to the space of L2 solutions of D t = 0 on Y+ , and ker D* is isomorphic to space of 

extended £2 solutions of D* t = 0 on Y+ , that is, in L2 after modulo an t oo E ker Q. 

Our situation is somewhat the reverse. We would like ker D to contain L2 solutions 

after modulo an t oo E ker Q. SO we may as well start with its dual D = D* : 

COO(Y, F, P) --+ Coo(Y, E) . Atiyah-Patodi-Singer asserted that indexD = h(F) -

h(E) - hoo (E) . Therefore, the formal dimension, or the original index, is h(E) -

h(F) + hoo (E). 

The bundle isomorphism a in our case is roughly an almost complex structure J 

on the bundles involved. That makes J ft self-adjoint and offers a symmetry between 

E and F under consideration. With h(E) = h(F), hoo(E) = hoo (F) and hoo(E) + 
hoo (F) = dim ker Q, the half-dimension phenomenon is obvious. 

The asymptotic behavior of solut ions also implies t hat the restriction map r 

M y >--+ ME is generically an immersion. 

The U(l) bundle obtained from the Chern-Simons-Dirac functional descends from 

the configuration space AE to ME as well as the symplectic structure n. With respect 
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to n, we will show that the immersion r is Lagrangian. Moreover, the lift of t his 

restriction map to the U(l) bundle is parallel with respect to a canonical connection 

won t he U(l) bundle which is compatible with n. w induces a contact structure on 

t he total space of t he U(l) bundle and the restriction map is Legendrian. 

To obtain transversality results , instead of perturbing the metrics as in the four­

dimensional case, we define a family of perturbations by considering certain integrals 

on a collection of solid tori and cylinders. Under the perturbation the moduli spaces 

are cobordant and indeed Legendrian cobordant. 

1.2.2 Organization of Material 

The material is arranged as follows . Chapter 2 will cover most of the preliminaries. 

We focus on t he immediate needs for the Seiberg-Witten equations and leave read­

ers to the standard texts for more general background. In chapter 3 we study the 

equations on the cylinder and identify t he equations with the gradient flow equation 

of a functional :F on~. The critical points of :F are the solut ions to t he Ki:ihler­

Vortex equations over ~ and we study the moduli spaces. Chapter 4 introduces the 

Chern-Simons-Dirac functional on a 3-manifold with boundary, and eqUivalent ly, a 

3-manifold with cylindrical ends. A suitable class of perturbation is int roduced and 

their properties are studied. Chapter 5 explores the energy-like property of Dirac func­

t ional :F and show the asymptotic behavior of solutions with finite energy. Chapter 6 

consists of all the necessary analytical results to set up the theory: the Fredholm t he­

ory and index computation, t he compactness, and t he transversality. Once these are 

established, we move on to chapter 7 to the Legendrian cobordism of t he perturbed 

moduli spaces. 

More References 

[3] [16] [17] [18] [19] [25] [27] [38] [61] [64] [65] [67] 
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Chapter 2 Preliminaries 

This chapter covers the preliminaries to the thesis. We briefly introduce Clifford 

modules and spine structures on a Riemannian manifold. Then we discuss the Dirac 

operators on the spinor bundle, after which we derive the three-dimensional analogue 

of the Seiberg-Witten equations. Here we put emphasis on what we will need in later 

chapters and steer our discussion mainly for the three-dimensional case. For more 

general setting and background, we refer interested readers to the texts at the end of 

this chapter. 

2.1 Spine Structures 

2.1.1 Spin Geometry 

Definition 2.1 If V is a vector space with positive definite inner product g, then the 

Clifford module CI(V,g) is 

00 

CI(V,g) = Q9 V /(v 0 v + g(v,v)). (2.1) 
i=O 

Here ®:o V is the free tensor algebra and (v 0 v + g(v, v)) is the ideal generated by 

elements of type v 0 v + g(v, v) for any v E V . 

On a Riemannian manifold X 

Definition 2.2 A spine structure on a vector bundle V --t X is a unitary vector 

bundle S --t X together with a map "I : V --t Endc(S) satisfying 

(2.2) 
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and 

, : Cl(V) -+ Endc(S) is irreducible. (2.3) 

A representation that satisfies equation 2.2 is called a Clifford representation. 

There is a natural Clifford representation on the 2n real dimensional spaces with 

a metric g: 

p: T*X f-t End(A*X) 

induced by 

p(8)(TJ) = 8/\71 - ~eTJ (2.4) 

where ~ is the dual of 8/\ with respect to g. On a Riemannian manifold (M,g) the 

*-operator induces an involution on A'M. The space of exterior forms splits as the 

sum of even forms and odd forms 

A* M = Aeven EEl Aodd. 

If the dimension of the manifold is odd, *2 = (- 1 )p(n-p)Id = Id and the *-operator 

induces an isometry between Nven and Aodd. If we identify these two linear spaces 

through the isomorphism or, more precisely, if we identify a p-form a with an (n - p)­

form *a, then we cut the dimension of representation space by half. 

Lemma 2.3 For any cotangent 8, the following diagmm commutes: 

A*(X) ~ A*(X) 

1* 1* (2.5) 

A*(X) ~ A*(X) 

Proof: For any form 71, we need to show 

(2.6) 
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By definition, for a p-from r, 

D 

*p(())r, = *(8 /\r,) - *(~8r,) 

= (-1)2p-n~o(*r,) + (- l r-1
- 2P8 /\ *r, 

= p(8)(*r,). 

2.1.2 spine Structures on 3-manifolds 

The 2n
-

1 dimensional representation gives a representation of the spin group. This 

representation is not the spin representation. That is, this representation does not 

give rise to a spine structure. In three-dimension, however, there is something special. 

For convenience, instead of considering AO(X) EB A2(X) we consider AO(X) EB N(X). 

Locally, this gives a four-dimensional representation of spin(3) . The Clifford multi­

plication is given explicitly by 

p( 8)0'. = 0'.8 
(2.7) 

p(8){3 = - * (8/\ {3) - (8, {3) 

for 0'. E AO(X) and {3 E N(X). It 's easy to check that condition 2.2 is satisfied. 

Notice the complex dimension of irreducible spine(3) representation is 2. If we 

show the above gives rise to a spine (3) representation, then it is necessarily irreducible. 

To get a spine(3) representation we need to impose a Hermitian structure on the real 

space and prove they are compatible with the Clifford multiplication. 

The set of Hermitian structures on AO(X) EB N(X) is in 1-1 correspondence with 

the set of unit length I-forms on X. Given a complex structure J , J(I) is a unit 

length I-form where 1 is the identity function on X. Conversely, given a unit length 

I-form 0'.0 we can define J(I) = 0'.0' The metric and orientation on ali- together define 

an almost complex structure on the orthogonal complement aii-. 

As X(X) = 0, such a unit length I-form is always available. Call it el and complete 
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it to a local orthonormal basis {el, e2, e3 }, compatible with the orientation. The basis 

for AO(X) EflN(X) is {I, el, e2, e3}. Regarded as a complex vector space, it is spanned 

by {I, e2 }. By definition our Clifford multiplication gives 

p(ed( l ) = el = J(l) 

p(el)(e2) = - * (elA e2 ) = -e3 = -J(e2) 

p(e2)(1) = e2 

p(e2)(e2) = -(e2,e2) =-1 

p(e3)(1) = e3 = J(e2) 

p(e3)(e2) = - * (e3A e2) = el = J(l). 

So e;'s correspond with the Pauli matrices 

(2.8) 

The Pauli matrices all satisfy er = - Id and eiej = -eje; so they give an irreducible 

representation of the spinc(3) and the above gives a spinc(3) structure. We actually 

proved 

Lemma 2.4 There are always spinc(3) structures on any compact 3-manifold. 0 

Notice that on the spinor bundle W, which is a rank 2 Hermitian bundle in our 

case, there is a (local) hyperkahler structure. This is compatible with our picture as 

the three complex structures on ro(X) Efl TI(X), in our case, are exactly given by 

the 3 basis el,e2,e3, by letting Ji (l) = ei respectively. We may compare this with 

the four-dimensional case, where the self-dual 2-forms serve more or less similar roles. 

Except in that case A + is in general not trivial but , a splitting of A + = IV.,; Efl wl. 

would suffice. 

2.1.3 The Nonvanishing I-form ~ 

Parallel to the four-dimensional case, we also have 
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Lemma 2.5 The pairs (5 , ~) , where 5 is a spine structure and ~ is a unit length 

spinor, are in 1-1 correspondence with the unit length I-forms. 

Proof: Given a pair (5,0 , consider the map 

given by P : () I--t p(())~. ker p is given by pairs (a,{3) where p(a + (3)~ = O. By 

definition, t hat is 

p({3)~ + a~ = o. (2 .9) 

Acting by Clifford multiplication by (3 on both sides: 

- 1{312~ + ap({3)~ = o. (2.10) 

Multiplying a on both sides and subtracting 2.9 from 2.10 yields 

(2.11) 

Since ~ is of unit length, we conclude a = 0 and (3 = o. So ker p = o. By dimensional 

reasons, p must be an isomorphism. Now consider p-l(C~), clearly yo E p-l(C~). 

Suppose p-l(C~) = TO ED M, then M is a one-dimensional space of I-forms. So one 

can choose a () with unit length. 

Another way to look at it is to view the constant function 1 as the preimage of ~ 

and the preimage of i~ will be a unit length I-form. 

() acts on ~ by i and on ~.L by -i. 

Suppose we are now given a unit length I-form (), we can recover V by letting 

V = AO(X) ED N(X). The complex structure is given by J(l) = () and Jlo.L is 

determined by t he metric and orientation. V inherits a metric from t he metric on X 

and it is Hermit ian. So we have a representation T* I--t End(C2
). To check it gives 

a spine structure, we need to check that p*(()) = -p(()) and p(())2 = (-1()12)lv. This 
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can be shown readily from the Pauli matrices view we discussed earlier before this 

Lemma. 0 

Corollary 2 .6 The following are equivalent: 

2. i-form e, lei = 1. 

3. oriented 2-plane field. 

Given a 1-form~, we also use ~ to denote the 2-plane field associated to it. 

2 .2 Dirac Operators 

2 .2 .1 The Dirac Operator 

By standard theory 

D efinition 2.7 Given a spine structure (S,')') on T'X --+ X , ')' : T'X --+ End(S) 

induces a map i : T'X ® S --+ S. For a Hermitian connection A. on the determinant 

line bundle det W --+ X , the Levi-Civita connection on T' X together with A. induces 

a spin connection 

\7 A : f(S) --+ f(T' X ® S). 

The Dirac operator DAis the composition 

(2.12) 

Suppose <1>0 is the unit length spinor corresponding to the ident ity function 1. 

And e is the unit length i-form determining the spine structure. There is a unique 

connection \70 on det W so that the corresponding spin connection has the property 

t hat \7~pin<1>o E f(e.L). Denote the corresponding Dirac operator by Do. Then we 

have 
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Lemma 2.8 

(2.13) 

Proof: Not ice , (O)q?o = iq?o and 0 acts on r(o.1 ) by -i. Take the Dirac operator on 

both sides of the equation and apply 

(2 .14) 

We get 

Do(iq?o) = Do h(O) q?o ) 

= ,(dO + d*O)q?o + (-i)Doq?o 

= - iDoq?o + d*Oq?o + i * (0 1\ dO)q?o - iiedO. 

D 

The space of connections on a line bundle is an affine space for i01(X). For 

a fixed connection Ao and any connection A, we have A = Ao + a where a is an 

imaginary i-form. Then DA = DAo +2,(a)I w. Notice t he image of , (Al(X))q?O is 

r(ilRq?o ) EB AO,O(O where e is the 2-plane field 0.1 , so we can choose a connection A so 

that D A q?o = ~ * (01\ dO)q?o. We will call t his connection Ao and keep in mind 

(2.15) 

In particular 

Corollary 2.9 D A q?o = 0 if 0 1\ dO = O. 

If t he 2-plane field defines a contact structure, we can choose 0 so that Ol\ dO = vol 

then q?o becomes an eigenvector: 

Corollary 2 .10 D A q?o = ~q?o if the 2-plane field is a contact structure. 
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2 .2.2 Calculation with ~ 

From another point of view, given a 2-plane field ~, we can define the spine structure 

by declaring 

The orientation and the metric together define an almost complex structure on ~, so 

the above makes sense. The Clifford multiplication is given by the following rule. 

If e] is the unit length normal vector to~, then e1 acts on AO,O (~) by multiplication 

of i and on A 0,] (~) by multiplication of - i . And for v E ~, we define 

1 . 
,(v)a = ",,(v + 2Jv) a E AO, 1(~) ,a E AO,O(O 

2 

,(v)(3 = - ~(v + iJv,(3) E AO,O(~) ,(3 E AO, l(~). 
2 

(2.16) 

Here J is the almost complex structure on ~, (,) is the Hermitian inner product 

induced by the Riemannian metric. From above we have 

,(a)<PO = (a, O) ,a E AO,O(O 

,((3)<P0 = (0,(3),(3 E AO,1(~) . 

Lerruna 2.11 In matrix form, the Dirac operator is 

(
% * e 1\ de + i(da, e) + 'fd*e 

F I{(3 - ~(~ede,(3) 

Proof: For a spinor (a, (3) we compute 

Do(a,O) = D Ao(r(a)<po) 

= ,(da) <po + ,(a)D Ao <Po 

8a + %~ede) . 
-iLed(3 

a ai a 
= ,(da)<po + "2 * (e 1\ de) + 2 d*e + "2Lede) 

a ai -
= ("2 * (e 1\ de) + 2d*e + i(da, e) , oa + wedel 

(2.17) 
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where 1]: AO.O(~;) -7 AO.I(~) is the projection of da to AO.I(~). Notice we have, for a 

complex valued function a: 

da = (da, B)B + aa + 8a. 

On the other hand 

Do(O,f3) = DAob(f3)<I>o) 

= ,(df3 + d*f3)<I>o + l:= ,(ei )!(f3)V'i<I>o 

'=* 1 = , (8 f3)<I>o + ,(df3)<I>o - 2 ([odB, 13) 

= (8*13+ (*df3,B) - ~([odB , f3) , -i[odf3)). 

Notice here we have 8* = d* where the adjoint are both taken on Y. We can also 

consider 8*le, the adjoint along the 2-plane field. In this case 8* le = 8* + (*dO,B). 

Also notice some of the last terms in 2nd equality above vanish due to the fact that 

,(ei
) anticommutes with ,(13) whenever ei doesn't appear in 13 and commutes with 

the part of 13 that involves ei
. So in matrix form the Dirac operator can be written 

as 

( ~ * B 1\ dB + i(da, B) + <fd*B aa + ~[OdB) . 

8* lef3 - ~([odB, 13) - i[odf3 

o 
In particular, if the 3-manifold is a product lR x E and the 2-plane field is given 

by TE then B = dt, dB = 0 and d*B = O. The Dirac operator reduces to 
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2.3 The Seiberg-Witten Equations 

2.3.1 The Map (T 

On a four-dimensional manifold X, with a spine structure (W+, W-, ')'), the repre­

sentation 

')' : r (T' X) --+ End(W+ EB W-) 

lifts to a map, still called ')': 

')' : r( A' X) --+ End(W+ EB W-) 

by letting 

(2.18) 

for B; E T* X and extended inductively on the degree of forms. 

Restricted to r+(X) = r(A+(X) ), ')' induces a map, yet again called T 

since r+(X) acts on W- trivially. There is a unique map 

characterized by 

(iu(cp,'Ij;),B) = (!'(B)cp, 'Ij; ) (2.19) 

for any cp, 'Ij; E r(w+) and B E r+(X) . 

Fibrewise the map u can be seen as fo llows. If there is a split 11.+ = lRw EB w.l , then 

W+ = 11.0,0 ill 11.0,2 for the almost structure determined by t he unit-length 2-form w. 

The preferred section ')'(W) l supplies a (local) quarternion structure, together with 
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the orientation, on the ([;2 bundle W+ by declaring i = 'Y(W) L Under this quarternion 

structure, there is an isomorphism 

given by g(B) = 'Y(B)L Then u is the map 

u' : rnr x rnr -+ I m(rnr) 

defined by 

(2.20) 

composed with g-1. 

Remark 2.12 The map tp f-7 u'(tp, tp ) is the cone on the Hop/map 8 3 f-782
. 

2.3.2 The Seiberg-Witten Equations 

The Seiberg-Witten equations, for pairs (A , <1» , where A is a connection on W+ and 

<1> E r(W+) , are 

FA + iu(<1> , <1» = 0 

DA<1> = O. 
(2.21) 

From this we can derive the three-dimensional analogue by conSidering the trans­

lationally invariant solutions to the above equations on lR x Y. 

Given a 3-manifold Y, a spine structure (W, 'Y) induces a spine structure (W, W, i) 

on lR x Y, on which the metric is the product metric, by declaring i = 'Y on f(Y) 

and i (dt) be the identical map viewed as an isomorphism between the first Wand 

second W. 

For a translationally invariant solution (A, <1» to the Seiberg-Witten equations on 
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~ x Y, first notice 

DtlRXY = DA,Y' 

So the second equation is preserved. On the other hand 

FA,RxY = FA,Y 

as the metric on ~ is fiat. That means 

FAT D Y = ~(FA Y + dt 1\ *y FA y). 
,~x 2 ' , 

Apply the restriction map to the first equation: 

or 

1 . 
-FA Y + ur(<I>, <I»ly = 0 
2 ' 

FJi.,Y + 2iO'(<I>, <I»ly = o. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

20'(ip,7/J) ly . Then the three-dimensional Seiberg-Witten equations 

become 

FA + iT(<I>, <1» = 0 

DA<I> = O. 
(2.27) 

In the presence of a preferred unit-length section of W, T can be computed ex­

plicitly. 

Given a unit-length 1-form el, expand it to a basis {el,e2 ,e3
} (at least locally) 

preserving the orientation. Let ~ be the global 2-plane field spanned by {e2
, e3

} , then 
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W = AO,OCe) E!:l AO,l (e). The correspondence in the quarternionic structure is 

(2.28) 

In terms of 2-forms it is 

(2.29) 

Under this identification a pair (a, ,6) E rO,O(I;) E!:l rO,l(e) corresponds to a + ,6j . 

So 

Notice t he correspondence 

~ 

~ 

- (a + ,6j)i(a - j(3) 

=( -ai + ,6~)(a - j{j) 

= - aia + ,6m + aij{j - ,6~j{j 

=( - aa + ,6{j)i + ,6~a + a~{j 

=( -la l2 + 1.6I 2)i - 2a,6t 

Hdt /\ e1 + e2 /\ e3) 
r 

~(e2 /\ e3) ---+ 

~(dt /\ e2 + e3 /\ e1) 
r 

~(e3/\el) ---+ 

~ ~ Hdt /\ e3 + e1 
/\ e2) 

r He1/\e1
). ---+ 

Here r is the restriction. By the definition of T: 

(2.30) 

(2.31) 

(2.32) 

For simplicity of later computation, we take t he liberty of changing a constant 
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here and instead consider the equations 

i 
FA + 2"T(<l>, <l» = 0 

(2.33) 
DA<l> = O. 

Notice the change of constant in front of T is non material as it is just a rescaling of 

<l> in the first equation, and rescaling <l> does not affect the second equation. 

In terms of (a , j3) , the equations can also be written as 

More References 

FA = ~( l aI2-1,612,2aj3) 

DA(a,,6) = o. 

[4] [14] [29] [32] [36] [37] [44] [49] 

(2.34) 
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Chapter 3 The Equations on a Cylinder 

In this chapter we study the equations on a cylinder IR x ~ and relate them to the Dirac 

functional on~. Furthermore we study the critical points to the Dirac functional and 

show that they solve the Kiihler-Vortex equations on~ . We also study the moduli 

space of the Kiihler-Vortex equations. 

3.1 Equations on 1R x ~ 

3 .1.1 Simplifying the Equations 

Consider a 3-manifold IR x ~ where ~ is an oriented genus 9 lliemann surface, possibly 

not path connected. There is a canonical spine structure on ~, coming from the 

almost complex structure on ~, with W+ = A~o, W- = A~l. The almost complex 

structure here is given by the metric and orientation. The product foliation of the 

tangent space T(IR x ~) gives rise to a spine structure on IR x ~, compatible with the 

canonical spine structure on ~ induced by the almost complex structure, in the sense 

that WRx E = wt EB WE and Clifford multiplication by dt induces an automorphism 

of W + and W- respectively. 

Any spine structure on ~ can be written as W+ = A~o ® Land W- = A~l ® L 

where L is a complex line bundle on ~. Fix a Hermitian connection A on L, it gives 

rise to a spin connection on W±. The Dirac operator is given by a matrix 

( 
0 D~) . 

D"A 0 
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On 1R x E, the corresponding Dirac operator is given by 

Notice V"rncf.> = ":. Composing with the Clifford multiplication of dt on the spinor 
lU 

bundle, the Dirac operator is represented by the matrix 

(
ift D~ ) . 
D - ·8 

A -2Ft 

Consider now a spine structure on 1R x E which is induced from a line bundle L 

on E. Then, W = W+ EB W- = (A~O 0 L) EB (A~l 0 L) , and write cf.> = (cf.>+, cf.>-). 

Here we make no distinction between a bundle on E and its pullback to 1R x E. 

A connection A on 7r*(L)llItxE is given by A = A(t) + u(t)dt where A(t) is a 

connection on LIE and u(t) is an imaginary valued function on E. We say A is in 

temporal gauge if u = O. We have 

Lemma 3.1 If A is in tempoml gauge, then equations 2.33 can be simplified to 

(3.1) 

Proof: For the Dirac operators we have 
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And 

8A(t) 
FA(t )+u(t)dt = FA(t) + ~ A dt + 2du(t) A dt. 

If A is in the temporal gauge, that is, u(t) = 0, then 

Plugging into t he Seiberg-Witten equations 2.33, we get 

Or 

This proves the Lemma. 0 

D "'+ . 8<1>-
A(t)'I! = t7Jt 

8<1>+ 
D A(t) <1>- = -i7Jt 

* FA(t) = ~(I<I>+ 12 _ 1<1>-12) 

8A(t) = ."'+"'_ at t'l! 'I! . 

8<1>+ 
7Jt = iD A(t) <1>-

8<1>-
7Jt = -iD A(t) <1>+ 

8A(t) = i<l>+ <1>-
at 

* FA(t) = ~(I<I>+12 _1<1>-1 2). 

3.1.2 The Dirac Functional 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Lemma 3.2 The first three equations of Lemma 3.1 are the gmdient flow equations 
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of the Dim c functional:F: i01(E) x r(W+) x r(W-) >-7 IR defined by 

where ( , ) is the real inner product on W-. 

Proof: We claim 

Given the claim, the Lemma follows immediately. 

To prove the claim, compute 

D:F(A,4>+,4>- )(a, </>+, (p- ) 

=! { (F(A +ta, <1>+ + t</>+, <1>- + tr) - F(A, <1>+ , <I>-))}It=o 

= ! {(i t(!(a) <1>+ , i<l>-) + t(D A</>+' i <l>-) + t(D A <1>+ , i</>-))} It=o 

= ! {(i t(!(a)<I>+, i<l>-) + t( </>+ , iDA <1>-) + t( -iDA <1>+ , </>- ))} It=o 

= i(!(a)<I>+,i(P- ) + (</>+,iDA<I>-) + (</>- ,-iDA<I>+) 

= i (a,i<l>+<I>-) + (</>+, iDA<I>-) + (</>-, -iDA<I>+) . 

Here we used the fact that (!(a) <I>+ ,i<l>-) = (a,i<l>+<I>-). 0 

The Hessian of :F, at a crit ical point (Ao, <1>;, <1>0)' is t hen given by 

for any pairs (ai, CPt, cpn , i = 1, 2. Here L is the self-adjoint operator 

L : i01 (E) x r(W+) x r(W- ) -t i01(E) x r(W+) x r(W-) 

L(a,cp+,cp-) = (i cp+<I>o +i<l>; cp- ,iDAocp- +i'Y(a)<I>o ,-iDAo cp+ - i'/'(a)<I>;) 

(3 .6) 

(3.9) 
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On the configuration space subject to the restriction 

(3.10) 

L is a first order differential operator. That it is of first order on r(W+) x r(W-) 

is clear, to see it is of first order on iOl (E) as well, observe that the leading term of 

inl (E) in L* L(a, cp+, IfF) is: 

(3.11) 

But 

(3.12) 

Apply 8A" to both sides, and notice that DA"cp+ = 8Ao cp+, and DAocp- = *a:"cP-. 
Therefore the leading term is given by 28 Ao * dAoa. In summary 

Corollary 3 .3 The linearization L of \,IF at a critical point (Ao, <Pt, <Po) is a first 

order self-adjoint elliptic differential opemtor. L has real discrete spectrum, un­

bounded in both directions. Each eigenvalue is of finite multiplicity. In matrix form 

L can be expressed as 

( -i";)~o iO<Po ,0;,' 0) 
0 iDA" . (3.13) 

hO<l>t - iDA" 0 

3.2 The Mom ent Map 

3.2.1 The Constraint 

The constraint 3.10 is worth more attention. First it is preserved by the gradient 

flow. More precisely, 
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Lemma 3 .4 Assume 3.10 holds at t = to for the gradient flow from to to t J , then it 

also holds at t = t1 . 

Proof: From the first two equations we get 

(3.14) 

And we also know 

(3.15) 

IntegTating the above from to to tJ gives the result. 0 

We can also interpret these calculations from a more conceptual point of view. Let 

AI; = {(A, <I>+, <I>-)I<I>+ E r(W+),<I>- E r(W-)} be the configuration space. There is 

a symplectic structure on AI; defined by 

The symplectic structure is the usual one on the configuration space of Hermitian 

connections over a U (1) bundle. On the spinor bundle W+ EB W-, it is the symplectic 

structure on each line bundle summand, with the orientation of W- reversed. 

3.2.2 The Moment M ap 

Given a symplectic manifold (M,w) and a Lie gTOUp (5 acting on M, the moment 

map of the action is a map f : M 1-7 g*, where g* is the dual of the Lie algebra of (5, 

satisfying 

df(O = w(Xe, .). (3 .17) 

Where ~ is an element of the Lie algebra and Xe is the associated left invariant vector 

field. 
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Let M be the infinite dimensional configuration space AE , and 0 be the gauge 

gTOUp 9 = M ap(E, 8 1
). Then 

Lemma 3 .5 The constmint 3.10 is the moment map of the 9 action on the symplectic 

manifold (AE , n) . 

Proof: To prove the statement, we split our discussion into the connection part and 

spinor part. Let us first look at the connection part. The Lie algebra of t he gTOUp 9 

is the mapping space M ap(E, ilR). Now for ~ : E >-+ ilR, the left invariant vector field 

is Xe(A) = dA~ E in1 (E) as the gauge gTOUp element u acts on a connection A by 

u(A) = A - u-1du. For another vector field 'f) E ml(E), we have 

WA(X,,(A), 'f)(A)) = - h Xe(A) /\ 'f)(A) 

= - h dA(~) /\'f) 

= h ~ /\ dA'f) 

= h ~dA'f). 

The last equality follows from the fact that ~ is an imaginary function. On the other 

hand for t he map f : A >-+ *FA, the differential is given by DfA('f)) = *dA'f) so 

DfA('f))(~)= h~* dA'f)*VOI 

= h ~dA'f)· 

This proves the connection part. 

For t he spinor part, a gauge gTOUp element u acts on (<1>+, <1>- ) by 

hence, for a Lie algebra element ~ , the left invariant vector field is Xe (( <1>+, <1>-)) = 

(~<1>+,~<1>-). Notice for function 9 : (<1>+, <1>-) >-+ HI <1>+1 2 _ 1<1>+ 12 ), the differential is 
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Dg(1)+ , 1>- )(~)((<I>+, <1>-)) = 1 ~(4)+<I>+ + <1>+4>+ - 4>- <1>- - <1>- 4>-) 

= 1 Im(~<1>+4>+ - t;,<1>-4>-). 

Since ~ is purely imaginary. On the other hand 

w( (~<I>+, ~<I>-) , (4)+,4>-)) 

= 1 Im(~<1>+ 4>+ - t;,<1>- 4>-). 

So this proves t he spinor part. 0 

3.3 Critical Points of :F 

3.3.1 The Kahler-Vortex Equations 

Now we study the critical point set of F on E , with the additional constraint 3.10. 

This is the set of solutions to the following equations on E: 

DA<I>- = 0 

<1>+<1>- = 0 
(3.18) 
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Identifying <I>+ with AO,O(L) and <I>- with AO,l(L), the Dirac operators are OA and e: 
respectively. So we have: 

OA<I>+ = 0 

87<I>- = 0 

iP+iP- = 0 
(3.19) 

From the first 3 equations and the unique continuation theorem we know either <I>+ 

or <I>- vanishes identically. Integrate the last equation over ~ and we get 

If we assume <I>- = 0 then 

OA<I>+ = 0 

* FA = i l<I>+1 2
. 

2 

(3.20) 

(3.21) 

Notice *FA = (FA, Vol) = ~(FA'w) where w is t he (1,1) symplectic form on ~. The 

above can also be written as 

OAiP+ = 0 
(3.22) 

(FA, w) = iliP+ 12. 

These are the Kahler-Vortex equations on ~, which were studied by many. [12] [33] 

3.3.2 The Kazdan-Warner Equation 

On a line bundle L over~, for a pair (A,s) where s E r(L), consider the equations 

OAS = 0 
(3.23) 
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Fix the complex structure and change the metric within the conformal structure. 

This is the same as an action of ef where f is a real valued function. We have 

Consequently 

and 

ef(A) = A+8] -8f 

ef(s) = ef s. 

- 1 
F ef(A) = FA - 288f = FA - 2b.fw . 

As an equation for f the second equation of 3.23 becomes 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

This becomes the Kazdan-Warner equation [34] if both sides are multiplied by -1: 

(3.28) 

where h = Isl 2 is a nonnegative, and somewhere positive, function. Furthermore, 

k= -i(FA,w). (3.29) 

Equation 3.28 arises naturally when J. L. Kazdan and F. W. Warner t ried to prescribe 

scalar curvature on compact Riemann surfaces. They proved 

Theorem 3.6 (Kazdan- Warner) For any Coo junction h ::::: ° and h > ° somewhere. 

If J k > 0, then the Kazdan- Warner equation has a unique solution. D 

As a corollary 



34 

Corollary 3.7 W'hen -i (FA ' W) > 0, the pairs (A , s) are in 1-1 correspondence with 

the holomorphic sections of the line bundle L. 0 

Remark 3.8 Here FA is the curvature of A, which is on the determinant line bundle 

of the spine structure, with W = L E9 (L @ K - 1
) so 

(3.30) 

3.3.3 The Moduli Spaces 

When cl(det W) ::; 0, <1'- = O. For L to have a section, cl(L) > O. Meanwhile 

Cl (det W) ::; 0 means 2Cl (L) - Cl (K) ::; O. This is 

(3.31) 

After modulo t he gauge group act ion, [A, <I'+j correspond to an effective divisor on L . 

Denote the moduli space of the Kahler-Vortex equations corresponding to L E9 (L @ 

K- 1 ) by M L. Then M L = S ct(L) E. Here s nE = En / Sn is the symmetric product of 

E . 

A similar argument can be applied to Cl (det W) ;::: O. Here the pairs (A, <1'-) 

correspond to holomorphic L valued I -forms. By Serre duality, t hey correspond to 

holomorphic sections of K ® L -1 In this case t he conditions t ranslate to 

(3.32) 

The symmetry between W+ and W-, and hence, between range of 0 ::; Cl (L) ::; 

g - 1 and g - 1 ::; cl(L ) ::; 2g - 2, can also be seen through the conj ugation map 

between L and K ® L -1, which induces isomorphisms between W = L E9 (L ® K - 1
) 

and W' = K @L-1 E9 L-1 . 

We compile the facts into t he following 
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Theorem 3.9 Let W = L EB (L x K-l), then 

when 9 = 0, 

SCl(L)~ ifO:::;cJ(L):::;g-l 

when 9 > 0, ML = Sct(K X L- l)~ if 9 - 1 :::; cl(L) :::; 2g - 2 (3.33) 

° otherwise. 

Example 3.10 When L is trivial, cl(L) = 0, and ML consists of isolated, whose 

number counts the number of path connected boundary components. In particular, if 

Y has a single boundary component, then ML consists of a single point. Same for 

L = K. 

Example 3.11 At the midpoint when L = K~ and cl(L) = 9 - 1, both <1>+ and <1>­

vanish identically. And the connections are fiat. The dimension of moduli space for 

fiat connections is 2g - 2, compatible here with dimML = 2(g - 1). 

More References 

[3] [9] [12] [13] [28] [31] [33] [48] [52] [68] 
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The Chern-Simons-Dirac 

In this chapter we introduce the Chern-Simons-Dirac functional on t he 3-manifolds 

with boundary. While it is not gauge invariant, even in the SI sense, it defines a 

section of a U(l) bundle on the quotient space B. We also introduce a family of 

admissible perturbations and study their properties. 

4.1 The Chern-Simons-Dirac Functional on a 

3-manifold with Boundary 

4.1.1 The Chern-Simons-Dirac FUnctional 

For a compact 3-manifold the Chern-Simons-Dirac functional is defined by 

for a pair (A, <1» where A is a connection on the determinant line bundle of the spine 

structure and <I> is a section of the Hermitian bundle W. Here Ao is a reference 

connection and changing Ao will only change the CSV(A, <1» by a constant for every 

A. 

On a closed 3-manifold, acting by a gauge transformation changes the value by 

27r times an integer. For a g: Y >-+ U(l), let [g] E HI (y;Z) be the pullback of the 

generator of HI(U(l) ; Z) through g, then 

Lemma 4.1 CSV(g(A), g(<I») - CSV(A, <1» = 27r [g] U CI (W) . 

Proof: Notice our choice of the gauge transformation g(A) = A - g-Idg makes it 
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so that (<I> , D A <I» is invariant under the gauge transformation since 

(g(<I», Dg(A)g(<I» ) = (g<I>, DA_g- ldgg(<I» ) 

= (gi!>, DAg(i!» - 'Y (g - ldg)gi!» 

= (gi!> ,gDAi!>+ 'Y(dg)i!>- 'Y (dg)i!» 

= (gi!>,gDAi!» 

= (<I> , DA<I» . 

On the other hand we have 

So 

I (g(A) - .40) 1\ (Fg(A) + FAa) 

= I (A - g-ldg - Ao) 1\ (FA_g- ldg + FAa) 

= I (A - .40) 1\ (FA + FAa) - g-ldg 1\ (FA - d(g-ldg) 

+ FAa) - (A - g- ldg - Ao) 1\ d(g - ldg) 

= I (A - .40) 1\ (FA + F Ao) - g- ldg 1\ (FA + FAa) + d(A - g- ldg - Ao ) 1\ g-ldg 

= I (A - .40) 1\ (FA + F Ao) - 2g- 1dg 1\ FA ' 

CSV(g(A),g(<I») - CSV(A,<I» = ~ r g- ldg 1\ FA = 27r[g] U Cl(W) (4.2 ) 
27r }y 

as wanted. 0 

When Y has a boundary E the above computation brings in an extra boundary 

integral 4~ JE(A - Ao) 1\ g- ldg by integration by parts on the third equation above. 
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4.1.2 The U(l) Bundle .c~ 

Let 

AE = {(A,~)IA E Lb(iAl(~)),~ E L~;dW)} 

9E = {gig E L%+l;dMap(~, U(l)))} 

be the configuration space and gauge gTOUp for k 2: 2. 9E acts on AI; smoothly. We 

let BE = AE/9E be the quotient space. 

We shall use the correction term in last section to define a U (1) bundle Lover 

AE and show it descends to BE. 

Define a map 8 : AE x 9E >-+ U(l) by 

8(A,~, g) = exp(i(CSV(g(A), g(<1») - CSV(A, <1»)). (4.3) 

Here A, <1> and 9 are global extensions of the corresponding data from ~ to Y. The 

choices here are immaterial since explicit ly we have 

8(A, ~ , g) = exp( ~ { (A - Ao) 1\ g-ldg). 
47r JE (4.4) 

The formula suggests we write 8(A,~, g) = 8(A, g). From the above it is also evident 

that 8 is a cocycle. That is, 

8(A, g)8(g(A) , h) = 8(A, gh). (4.5) 

8 induces a line bundle LE over BE: 

where the equivalence relation is given by 

(A, ~,u) ~ (g(A),g(~), 8(A,g)u). 
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From equation 4.4 and the Sobolev multiplication theorem we conclude 

Lemma 4.2 8 is smooth. 0 

4.1.3 The Connection w 

We can define a connection on Lr:, as follows. First we define a global I-form, using 

the trivilization A r:, x {I} , by the formula 

for (a, t.p+, 'op-) E T(A,4»Ar:, and then extend the connection U( I) equivariantly. 

The curvature of the connection w, evaluated on two vectors in T(A,4»Ar:" is given 

by 

(4.7) 

This 2-form, without the factor of i , is t he symplectic form 0 on Ar:,. 

For a U(I) bundle U over a symplectic manifold (M,O), if there is a connection 

W so t hat F = dw = iO, t hen such a connection defines a contact structure on the 

total space of U. 

Qr:, acts on the configuration space Ar:,. With the help of e, Qr:, acts on Lr:, by 

sending (A , <I> ,u) to (g(A) ,g(<I»,u8(A,g)). 

Lemma 4.3 The Qr:, action on Lr:, is a contactomorphism, that is, g r:, preserves the 

connection w . 

Proof: Since 

(4.8) 
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we have 

g*(M,8<p,8u) = (g-IMg,g8<p,8u8(A,g) + u88(A,g)). (4.9) 

So 

g*W(A,<I> ,u) (8A, 8<p, 8u) 

= W(A-g-ldg,g1>,u9(A,g))(g* (8A, 8<p, 8u)) 

= 4~ l-(A - Ao - g-ldg) 1\ M + Im(g(<p+)g8(<p+)* - g(<p-)g8(<p-f) 

+ u-18 - 1(8u8 + u88) 

= 4~ l-(A - Ao) 1\ M + g-ldg 1\ M + Im(<p+8(<p+)* - <p 8(<p-)*) 

+ u-18u + 8-188 (4.10) 

=W(A,<I>,u)(M, 8<p, 8u) + 4~ h g-ldg 1\ M + 8-188 

=W(A,<I>,u)(M, 8<p, 8u) + 4~ h g-ldg 1\ 8A + 4~ h M 1\ g-ldg 

=W(A,<I>,u)(M, 8<p, 8u). 

This proves the Lemma. D. 

4.1.4 The CSD Functional as a Section 

The U(l) bundle .cE over BE pulls back to a U(l) bundle .cy on By, and inherit the 

connection by pullback. We next study the CSV functional as a section of the bundle 

and understand its critical point set. 

Consider the section s : A 1-+ A x U(l) given by 

s(A, <p) = (A, <P , exp(iCSV(A, <p))). (4.11) 

s is 8 equivariant thus descends to a continuous section of the quotient bundle .cy . 

First let us prove a Lemma. If we write CPi = (cpt, cpi) then 
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Lemma 4.4 

Proof: Let n be the normal vector of boundary 1:, then by [44] equation 5.7 

(4.13) 

In our case, n acts on W+ by multiplication by i and on W- by multiplication by -i, 

and the Lemma follows immediately. 0 

Given the Lemma, we have 

Lemma 4.5 The gmdient vector field of the section s is 

Proof: Given (a, cp) E T(A,<\»A, we compute 

Ds(A, cI»(a, cp) =s-lds(a, cp) + w(a, cp) 

= - ~ r a 1\ (FA + FAa) + (A - Ao) 1\ da 
4rr }y 

+ (cI>,-y(a)cI» + (CP, DA<I» + (<I> , DACP)) +w(a,cp) 

= - ~ r 2a 1\ (FA + FAo) + a 1\ iT(<I>, <I» + 2(cp, DA<I» 
4rr }y 

+ 4~ l (A - Ao) 1\ a - (<I>+, icp+) + (<I>-, icp- ) + w(a, cp) 

=-~ r 2a l\ (FA +FAo) +al\iT(<I>,<I»+2(cp, DA<I» 
4rr }y 

= - 2~ [ a 1\ (FA + FAa + ~T(<I>, <I») + (cp, DA<I». 

The Lemma then follows. 0 
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The critical points for the gradient satisfy the following equations: 

i 
FA + FAo + 2T(<I>, <I» = 0 

(4.15) 
DA<I>=O. 

We define the moduli space to be M = V-1(0) / gy. 

4.2 Perturbations of CSV Functional 

4.2.1 Admissible Perturbations 

In [30] a thicken link in Y is chosen and the perturbation is obtained by computing 

t he integral of holonomies of the connection along the loops. Here we take a similar 

approach. 

More precisely, let ¢ = {ri}f=1 be a finite collection of embeddings of solid tori 

I i : SI x D2 -+ Y with li( l , 0) = Xo where Xo is a fixed point on Y. A corresponding 

collection of functions hi E C2 (SI, lR) is chosen. We denote the set of such functions 

by it. and give it t he compact-open C2 topology. FUrthermore, let '1jJ = {Dj }~=l be a 

finite collection of embedding-s of solid cylinders Dj : [0, 1] x D2 -+ Y with Dj (0,0) = Xo · 

We also choose a corresponding collection of functions hj E C 2 (lR+,lR). The set of 

such functions will be denoted by it. while the topology is also given by compact-open 

C 2 topology. 

We define a function h : A -+ lR from the above choices by: 

here 7](x) is a fixed radially symmetric cut-off funct ion on the unit disc. The function 

h coming from the above choices is called an admissible function and we denote the 

space of admissible functions by 1i. 

The gauge invariance of the admissible perturbation is immediate from the ex-
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pression. Let 

sh(A, <p) = s(A, <p)exp(ih(A, <p)). (4. 16) 

Then Sh defines a section on the U(l) bundle .c. We denote t he gradient vector field 

of Sh by Vh and call Mh = V;;-I(O) / Qy the perturbed moduli space corresponding to 

h. 

For a given admissible perturbation h, there are two ways to vary it: 

1. Fix t he embeddings and vary functions h;'s and h/s; 

2. Vary t he embeddings. 

For most of our purposes it suffices to consider (1). For this reason we use 1-£</>.", to 

denote the set of admissible perturbations coming from the embeddings (¢, 'IjJ) . 

There is a partial ordering in the collection of sets 1-£</>.1/> ' The order is given by the 

inclusion relation of the embedding'S of ¢ and 'IjJ. More precisely, we say 1-£</>.1/>« 1-£</>,."" 

if and only if ¢ C ¢' and 'IjJ C 'IjJ' . In this case we may regard 1-£</>.", as a subset of 

1-£</>,.t/I by putting 

For two collections of embeddings ¢b 'ljJI and ¢2, 'ljJ2, t here is an obvious common 

upper bound for 1-£</>.1/> and 1-£</>,.t/I, that is, 1-£</>,u</>z,,,,,u1/>2' The set 1-£ can be viewed as 

the limit set under this partial ordering. Notice the topology on 1-£</>.", is compatible 

with t he partial ordering «; therefore, there is a unique (roughest) topology on the 

limit set , and we take this topology as the one on 1-£ . The topology is characterized 

as the roughest of all on which so that when restricted to individual 1i</>.", the two are 

the same. 

Under this topology the space 1-£ is path connected. For any two admissible 

perturbations hO and hI, a path connecting the two can be seen as follows. Denote 

the embeddings of thicken tori and interval by ¢i, 'ljJi, i = 0,1, respectively. Consider 

the component 1-£4>ou</>,.,p"uv>,. hO and hI can be regarded as its elements by extending 
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the h;'s, h/s to be zero outside the original tori and intervals. Therefore, we may 

define the path by ht = (1 - t)hO + thl. 

4.2.2 The Gradient of h 

The gradient of the function h, denoted by V' h( A, <I», is a vector field on the config­

urat ion space which is characterized by 

Dh(A, <I»(a, ¢) = (V'h(A, <I», (a, ¢)h2. ( 4.17) 

From the definition it is immediate that Vh = V + V' h. 

Lemma 4.6 Let h be an admissible junction, then 

k 

V'h(A , <I»(x) = (E h;(hol"l',(')'i (l , x), A))'I](P2'Yi-l(x))(')';I)*(dB), 
i=l 

I 

E h~(1<I>12)<I>'I](Q2bjl(x))). (4.18) 
j=1 

Remark 4.7 Here x is a point on Y , P2 is the projection of SI x D2 to D2 and Q2 is 

the projection of I x D2 to D2 . And B is the coordinate on SI in SI x D2. Since 'I] is 

a bump function on the disc, the above makes sense although 'Yi- I 's and bjl 's cannot 

be extended to a global diffeomorphism. 

Given the Lemma, let 

k 

J.Lh(A) = Eii;(hol"l',(')'i(1 ,x), A))'I](P2'Yi- l (x)) * (')'i-I)*(dB) (4.19) 
i=l 

and 

I 

lIh(<I» = E h~(1<I>12)<I>'I](Q2bjl(X))), (4.20) 
j=1 
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then the perturbed equations for Vh are 

i 
FA + F Ao + 2"7(<11, <II) + J.Lh(A) = 0 

(4.21) 
DA<II + Vh(<II) = o. 

Proof of Lemma: We again break the proof into the connection part and the 

spinor part. First let us consider the connection part. For t E (-E, E) and a E iA 1 (Y) 

we have 

hol.y• bi(1, x), A + ta) = hol.y• bi(1, x), A)exp(t 1. b;(a) , dB)dB) , (4 .22) 

where B is the coordinate on 8 1 . So 

! { t k2 iii(hol""(.bi(1,x),A + ta))7](x) H=o 

= ! { t k2 iii (hol""(. bi(1, x), A)exp(t 1, (-y;(a), dB)dB))7](x) H=o 
k 

= L 1 ii;(hol""(.bi(l, x), A)) 1 (a, b;I)*dB) ("(;I)*dB7](x) 
i=I D2 ""(.(I,x) 

k 

= L 11 ii;(hol""(.bi (l ,x), A)) (a, b;-I)*dB)bi-I )*dB7](x). 
i=I D2 ""(.(I,x) 

Here we notice the fact that we are considering U(l) connections so they are Abelian. 

It follows from above that 

k 

Dh(A, <II) (a, 0) = L r 1 ii; (hol""(.("(i (1, x), A))a7](x) 
;=1 J D2 ""(.(I,x) 

k 

= (L r 1 ii;(hol""(.b;(l, x), A))7](x)b;I)*(dB), a). 
i=I J D2 ""(.(I,x) 
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On the other hand for the spinor part, 

Hence 

! {~t in2 (1 hj((il> + tcp, il> + tcp))J/(X) H=o 

=~! { t in, (1 hj (Iil>12 + 2t(il>, cp) + O(t
2
)))J/(X) } It=o 

= t / (1 h~(1il>12)(il>, cp)J/(X). 
j=l D2 I 

I 

Dh(A, il»(O, cp) = I:: 1 (/ h~(1il>12)(il>, cp)J/(X) 
j=l D2 I 

I 

= (f; in2 (1 h~(1il>12)il»J/(X), cp) 

and this proves the lemma. 0 

Remark 4.8 The gradient of h E Hq",p vanishes identically outside the support of 

cp and'lj;. More precisely, J-th vanishes outside support of cp and I/h vanishes outside 

support of 'lj;. 

4.2.3 Bound for the Perturbation 

Given Lemma 4.6, the same computation will yield, again by applying the Abelian 

property of the connections, 

Lemma 4.9 Let h be an admissible junction, then 

H essh(A, il» ((aI, CPl), (a2, CP2)) 
k 

= I:: h~ (hoi",!, hi(l , x), A)) (aI, hi- l )* de) (a2, h:l)* de)J/(P2/i- l (x)) 
i=l 

I 

+ I:: (2h~ (I il>12) (il>, CPl) (il>, il>2) + h~ (I il>12) (CPl, CP2) )J/( Q26j 1 (X)). 
j=l 

(4.23) 
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o 
A corollary of the above is 

Corollary 4.10 Let h be an admissible perturbation, then 

1. The map A >-+ V'h(A) is smooth from A to LWV(Y) x f (W)). 

2. H essh(A) : L~ >-+ L~ is a compact opem,tor. 

Proof; (1) is obvious from 4.9 and the fact that 

(4.24) 

for a constant independent of A and only dependent of h, since hi E 0 2
. Furthermore, 

(4.25) 

also from the assumption that hi E 0 2
• This proves (2) by 4.9 along with the Rellich 

Lemma. 0 

From the expression of l/h in equation 4.20 we have 

I 

D A l/h (4)) = L ,),(hj (I4>1 2))DA 4>1] + ')'(d[hj (I4>12)1]])4>. (4.26) 
j=l 

For 4> E L~ t he coefficients depend on <I> but since hj E 0 2 they are all uniformly 

bounded. 

We restate the above facts in t he following 

Corollary 4.11 Let h be an admissible perturbation. Then there is a constant 0 

depending only on h so that lI V'h(A)IIL~ ::; 0 for each A E V;;-l(O) . 

4.2.4 A Unique Continuation Theorem 

Definition 4.12 A solution (A, <1» to the perturbed equations is degenemte if <I> == O. 

It is nondegenemte if otherwise. 



48 

For a degenerate solut ion to the unpert urbed equation, FA = 0 and we recover 

t he fiat connection. In our study we will consider only the nondegenerate solut ions. 

In 1957 N. Aronszajn [1] proved the following unique continuation t heorem for a 

second order differential operator: 

Theorem 4.13 If u solves 

IAul2 ::; M {t 1 ::i 12 + lun 
1=1 

(4.27) 

in a domain V c ]Rn and if at some point Xo E V, 

(4.28) 

for any Q > 0, then u vanishes identically on V. 

Here A is a second order differential operator, possibly with variable coefficients, 

and the leading coefficients aij E C2,1 (second derivative Lipshitzian). 

We can apply the t heorem to t he perturbed equation 

(4.29) 

Let A = D~, then A is a second order differential operator. If <I> solves 4.29 t hen <I> 

satisfies 

(4.30) 

D AlJh is a nonlinear operator, with coefficients depending on <1> . But by equation 4.26 

all coefficients are bounded for L~ solutions. 80 t here exists a constant M > 0 so that 

IA<I>I 2 ::; M {t 1 ;~ 12 + 1<I>12} 
1=1 

(4.31) 

in local coordinates. By Aronszajn's unique continuation t heorem: 
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Corollary 4.14 If rp solves 4.29 and around a point Yo E Y+ , 

(4.32) 

for any IX > 0, then rp == 0 identically. 

More References 

[32] [68] 
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Chapter 5 Asymptotic Behavior 

In this chapter we discuss the asymptotic behavior of solutions to the Seiberg-Witten 

equations on the cylindrical end. We first show that on the cylinder a solution with 

finite F variation converges to a solution to the Kahler-Vortex equations on ~ slice­

wise. Using the theory of center manifold, we describe a finite dimensional model for 

t he L2 moduli space. Furthermore, the convergence of a Seiberg-Witten equation to 

the Kahler-Vortex solution is exponentially fast. 

5.1 Finite:F Variation 

5.1.1 F as an Energy FUnctional 

D efinition 5.1 (A(t) , <l>(t)) on the cylindrical end is of finite F variation if for any 

t E [to , 00) 

IF(A(t), <l>(t)) - F(A(to) , <l>(to))I < 00. (5.1) 

For simplicity, we denote F (A(t), <l>(t)) by Ft . 

The following Lemma explores the similarity between F and other energy func­

t ionals. 

Lerruna 5 .2 

(5.2) 

Proof: 

(5.3) 
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!:Ft = i !(DA<P+,icJn 

= i (!(DA<P+),i<P-) + (DA<P+, !(i<P-)) 

( 8<p+ 8A 8<p-
= } E(DA(&) +'Y(-m)<P+,i<P-) + (DA<P+,i&) 

= i (DA(iDA<P-),i<P-) + (i<P+<P+<P- , i<P-) + (DA<P+ ,D A<P+) 

= i IDA<P-1 2 + IDA<P+1 2 + 1<p+<p-1 2
. 

If a Seiberg-Witten solution (A, <p) is put in temporal gauge, then it satisfies 3.5. 

Substituting into the above Lemma, we get 

(5.4) 

Then the variation will bound the L2 norm of 8(~;<I», which in turn bounds the L2 

distance between (A, <p)to and (A, <P)tl for arbitrarily large to , t J . And (A , <p)t will 

converge when t ~ 00. 

5.1.2 L2 Convergence 

The real picture is less fortunate. In reality we have 

8A c;c+ &t = i<p <P- - 2du. (5.5) 

For an imaginary function u. As we may not always be able to extend u to a globally 

defined function, there might be no gauge transformation to neutralize it . Hence the 

above argument is not applicable. 

The situation, however, had been extensively studied by S. Lojasiewicz [46] for 

finite dimensions and by L. Simon [58] for infinite dimensions. Simon's theory can 

actually imply more but it does not lie in the center of our theory and we will only 
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state the relevant consequences without proof. 

For bounds induced by energy, 

Lemma 5.3 Let (B, 'lI) be a Coo solution to the Kiihler- Vortex equations. Let U 

be a neighborhood around (B , 'lI ). Then there is a neighborhood V C U of (B, 'lI) , 

and constants 0 < f3 :S 1, 0 < fJ :S 4, so that if (C, 8) E V then there is a Coo 

Kiihler-Vortex solution (B' , <1>') so that 

o 

And for path length: 

II(C, 8) - (B' , <1>') 11£2 :S (11 V' (C,9)F II£2)P 

IF (C, 8W- e :s 11V'(C,9)FII£2· 
(5.6) 

Lemma 5.4 Let (B , 'lI ), U as in last Lemma. Then there is a neighborhood V C U 

and a constant fJ = fJ(B , 111) with 0 < fJ :S 4, so that the following holds. If (A , <1» 

solves the Seiberg- Witten equations on cylinder, then 

(5.7) 

o 

These, combined with the standard arguments, imply 

Theorem 5.5 There exists a constant fo , so that if an L~ loe solution (A , <1» satisfies , 

(5.8) 

for t > To, then (A(t) , <1>(t)) converges to a Coo solution to the Kiihler- Vortex equa­

tions. 0 
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5.2 The Center Manifold 

5.2.1 The General Picture 

In chapter 3 we showed that our equations are the gTadient flow equations for a 

Dirac functional :F with constraint 3.lD. The constraint is preserved by a flow line. 

Furthermore, the Hessian of :F is self adjoint with real and discrete spectrum. To 

understand our position let us first quote a general theorem [51] 

Theorem 5.6 Let H be a Hilbert space. Suppose that 

is a decomposition of H . Let 

be densely defined, closed, unbounded Fredholm linear opemtors. Suppose that for 

each t ~ 0 the maps 

are bounded linea?' maps, and that these define semi-groups of endomorphisms of H + 

and H- which vary continuously with t in the strong opemtor topology. Suppose that 

there exist positive constants A+, A_ , D such that 

supmax(eA+llle-L+III,eLtlleL- III)::; D 
1;::0 

(5 .9) 

where the norms are the opemtor norms on bounded linear opemtors on H ±. Let 

L : H -+ H be the densely defined linear opemtor given by L(x+, xo, x-) = L+(x+) + 
L - (x - ). Let U c H be a neighborhood of {O} and let n : U H H be a smooth function 
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which vanishes to second order at {O} E H . Consider the densely defined vector field 

V on U given by 

V(x) = L(x) + n(x). 

Then for any m 2: 1 there is a connected neighborhood N c HO of {O} and a cm 
map ~ : N --+ H+ EB H- whose gmph P satisfies: 

1. P c U; 

2. P is tangent to HO at {O} ; 

3. P is contained in the domain of the vector field V; 

4. V is everywhere tangent to P; 

5. Every critical point of V sufficiently close to {O} is contained in P. 

o 

5.2.2 Our Case 

Now we shall show that this theorem applies to our context. In our case L is the 

linearization of \l F as given in equation 3.9. Let H +, H-, and HO be the closures of 

the positive, negative, and zero eigenspaces of L respectively. By Corollary 3.3 L has 

real discrete spectrum. So H = H+ EB HO EB H- gives an L2-orthogonal decomposition 

as required. 

Furthermore e- L + t and eL - t define semi-groups of bounded endomorphisms of H+ 

and H- respectively, which vary continuously with respect to t in the strong operator 

norm. To see this, let us consider e-L + t on H+. Any element in H + can be written 

as an infinite linear combination 2::", <l", where A ranges over positive eigenvalues. 

Moreover , such an infinite sum defines an element of H c L2 if and only if 

(5.10) 
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By definition 

(5.11) 

This clearly defines a semigToup endomorphism on the span of the eigenspaces of L +. 

To show that e-L + t actually defines a semi-group of endomorphisms of H+ we need 

only see that for each t 2': 0, 

2...>->'tIl0:>.11 2 < C(t) L 110:>. 11
2 (5.12) 

>. >. 

for some constant C(t) only dependent of t. Since all the A's are bounded below by 

the first positive eigenvalue Al this is manifest. It also shows that these operators 

vary continuously with t in the strong operator topology. 

The same argument can be applied to show that eL - t defines a semigToup of 

bounded endomorphisms on H-, continuous in the strong operator norm. The above 

computation also indicates that the condition 

supmax(e"~+tlle-L+tll,eLtlleL- tll) ~ D 
t2:0 

is satisfied for A+ = AI, and A_ = A-I ' 

(5.13) 

For a coordinate patch U{B,'It) centered at (B , IJI), we have a function n : UnL~ f--t 

H given by 

(5.14) 

which is smooth and vanishes to the 2nd order at {O} with \l:F = L + n. Therefore 

applying Theorem 5.6 we have 

Corollary 5.7 Let (B , IJI) be a solution to the Kahler- Vortex equations. Let U(B,>l'l 

be a coordinate patch centered at (B, IJI). Let H 1. be the L2 -orthogonal complement 

of HO = kerL. Then there is a neighborhood N C HO of {O} and a C2 function 

~ : N f--t H 1. whose graph is a C2 -center for the densely defined vector field \l:F on 
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U. 0 

5.2.3 Main Theorem 

For the local decomposition for the coordinate patch at (B, Ill): 

(5.15) 

we denote by 7r0 and 7r.l the L2-orthogonal projections of K(B,w) onto H?B,W) and 

Hrs ,W)· The main theorem of this chapter can be accounted as following: 

T heorem 5.8 Let (B, Ill) be a solution to the Kiihler- Vortex equations on~ . Let N 

be a neighborhood of {O} in H(B,W) , and let ~ : N >--+ H .l be a C2 function whose graph 

PeN x Hrs,w) c K(B,w) is a C2-center manifold. Fix a c5 > O. For any C3 solution 

(A, cI» to the monopole equations, satisfying 

F(A(to), cI>(to)) - F(A(oo), cI>(00)) < c5 (5.16) 

then there is a unique path p : [to, 00) --t H(B,W) so that 

8p(t) 
fit = Y' p(t)F. (5 .17) 

Furthermore, if we let (A', cI>/) = p(t) + 8(P(t))dt E A y + , for to S t < 00, there is a 

constant K, so that 

(5.18) 

o 
We will not devote all our efforts to t he proof of every point of the Theorem; 

instead, we prove it from two aspects that we are most interested: approximate 

solutions in the center manifold and L2-exponential approach to the center manifold. 

We suggest interested readers to look into [51] chapter 5 for a technically complete 



57 

treatment of a similar subject. 

5.3 Exponential Approach 

5.3.1 Approximate Solutions in the Center Manifold 

This Lemma shows that an approximate solution to the gTadient flow equation is not 

far from a genuine solution: 

Lemma 5.9 Fix a C > 0 and let b [to, (0) --+ H (B,W) be a C2 -path such that 

limHoo b(t) exists and 

(5 .19) 

then there is a unique C 2 -path z: [to, (0) --+ H (B,w) with z(t) = \lz(t):F and 

4 L, ' 
II z(t) - b(t)lIp ::; A-l Ce--2 • (5.20) 

Proof: The proof is standard. Define the Banach space iJ to be the space of contin­

uous paths 'Y : [to, (0) --+ H (B,w) such that 

For 'Y E B define: 

.\ _ }t 

sup e-2- 1h'(t)lIp < 00. 
tE lto,oo) 

.\ _ It 

lI'YlI.8 = sup e-2 1h'(t)llp 
tE 110 ,00) 

(5.21) 

(5.22) 

For a path b : [to, (0) --+ H (B,w) with limHoo b(t ) = b( (0) we define a map Jr; : B I--t B 
by 

Jr;("()[t] = -b(t) + b(oo) -100 

3 (b(s) + 'Y(s))ds . (5 .23) 
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Here we still use 3 to denote the pullback of vector field 3 = 'il:F to H( B.,p). 

We claim that J/j is a ~ -contraction and the unique fixed point w for the map 

satisfies 

To show J/j is a ~-contraction we observe that for '/'1, 12: 

IIJ/j(!I) - J/j(!2) lI li 

=11 (-b(t) + b(oo) - [ "" 3(b(s) + 11 (s»ds) -

(-b(t) + b(oo) - [ "" 3(b(s) + 12(s» ds)ll li 

=111= 3(b(s) + 12(s»ds - 3(b(s) + 12(s»dsIi B 

= sup e ".,. 11= (3(b(s) + 12(S» - 3(b(s) + 12(s»)dsl 
IE[lo .=) I 

~ sup e "2" 1 = 1'ilb(B)+n(B) :F - 'ilb(s)+n(s) :F1 
tE[to.=) I 

~ sup e ".,. 1 = A-I11nO(b(s) + 12(S» - rrO(b(s) + II(s»lIpds 
IE[lo.=) I 4 

A-I L,' 1 = 
~4 sup e- 2- 1I /2 (S) -/I(s) llpds 

IE[to.=) I 

~A~Ie"-i'0 1,= llil(s) -/2(s)lI p ds 

A_I .\ _ l t O 100 
>' - 1-

~4e-2- to llil -/21IBe--2- ds 

A 1 100 
.>. 1 (. - to ) 

= ~ h -/21Ili e 2 ds 
10 

1 
="2h(s) - /2 (s) IIB 

(5.24) 

To estimate the norm of fixed point w, we only have to estimate the norm of J/j(O) . 

But 

(5.25) 
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So by integTal over the assumption 

(5.26) 

we have II Jb(O) 11.13 ::; ;~, t hus II wllB ::; t~ and t he L2 estimates depending on t holds 

readily from the definition of II . liB' 
Now we define z (t) = b(t)+w(t). Since Jb(t)(w) = w by differentiating the equation 

defining Jb(t) (w) we obtain 

: = 2(z (t)) 

or "Vz(t):F = ~ . As vector field "V:F is in GI
, z (t) is in G2

, and we have 

4G ' _1' Ilz(t) - b(t)IIL2 ::; - e--2 
A_I 

and that proves the Lemma. 0 

From the uniqueness, we immediately have 

(5 .27) 

(5.28) 

Corollary 5.10 Let Zl, Z2 : [To , (0) -+ 1i.(B ,>l!) be flow lines for "V:F. If there is a 

constant G so that 

(5.29) 

for all t 2: To , then Zl (t) = Z2(t). 0 

The Corollary says that distinct flow lines in the center manifold cannot approach 

each other exponentially fast . 

5.3.2 L2-exponential Approach to the Center Manifold 

This Lemma shows that the approach to the center manifold is exponentially fast , 
. '' _ I t 

WIth the speed controlled bye--2-. 
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Lemma 5. 11 Fix the notation and hypotheses as in the statement of Theorem 5.B. 

We decompose (A(t), cf>(t)) = (B, w)+b(t)+c(t) where b(t) E H?B,w) and c(t) E Hfs ,w)' 

There are constants Eo > 0, such that if there is a solution to the Kiihler- V01tex 

equation (B, w) + b= E U(B,w) so that 

then for all t ?:: to, 

sup IIb(t) - b= IIL~ + Ilc(t) IIL~ = E :S Eo 
tE!to,=) 

Proof: We first derive the equations b(t) and c(t) satisfy. Since 

and V'(B ,w)+b is tangent to HO, we have 

Bb at = L(b) + n(b) = n(b) 

and 

Bc at = L(c) + n(b + c) - n(b). 

n is quadratic so 

Iln(b + c) - n(b) lip :SC(llb + cllL~ + Ilc I IL~) lib + c - blip 

:S2C· E · Ilcllp 

:S2EoCl lcllp · 

(5.30) 

(5 .31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

The Sobolev constant C is independent of b, c, so we can choose Eo < min(~~Ll), then 

(5 .36) 
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Taking inner product with c we have 

I (n(b + e) - n(b), e) I :::; min(~, A-d lIe lli,2. (5.37) 

Let e = e+ + e- , where c± denote the H± component of e. We estimate, for e+ =1= 0, 

18 8 
"2 at lIe+(t)IIi,2 =(e+(t), at e+(t) ) 

8 
= (e+(t), at e(t) ) 

=(e+(t), L(e) + n(b + e) - n(b) ) 

::::Allle+ IIi2 - min(A~ ' A-I) Ile+ Ilpllellp. 

(5.38) 

The inequality is a closed condition, so it can be extended to the closure of e+ =1= o. 
For an open set where e+ = 0, the inequality is obvious. Divide out a factor of Ile+llp 

we get 

Similarly we can prove 

Subtracting the two inequality: 

!(lIe+(t)lIp -lIe-(t)l lp) 

+ min(AI, A_I) 
::::Alile lip + A_Ille-lip - 2 Ilel ip 

:::: min(AI, A_I)(lle+ llp + Ilcllp) _ min(A~ ' A-I) lIellu 

> min(A~ ' A_I) Ilelip 

(5.39) 

(5 .41) 



62 

Therefore Ile+(t)IIL2 - 1Ie-(t)IIL2 is nondeereasing. If Ile+(t)l lp > lI e-(t) lIp, then 

lIelip < 21Ie+(t)llp and 

! Ile+(t)llp 2: All1 e+ llp - min(Al ' A-I) Ile li p 

2: Al lle+ lip - min(Al ' A_I) 211e+ llp 

2: ~l Ile+ lip . 

(5.42) 

That means ! (log II e+lip ) 2: ~, so Ile+ llp is exponentially increasing with speed e~t. 

That contradicts the assumption that it is bounded by E . So Ile+(t) llp S lIe-(t)lIp· 

That implies lIellp < 21Ie-(t)lI p and 

a min(Al , A- I) 
atlle-(t)lIpS- A-llle-lIp+ 4 IIe llL2 

S - A_ll ie-lip + min(~ , A-I) 2l1e+llp (5.43) 

S - A;ll le-IIL2. 

Integrating the inequality form To to t , we get 

o 

More References 

[53] [60] [62] 

lIe- (t) lip S Ile- (To) Ilpe- ';' (t-To) 

S Ee- ';' (t -To). 
(5.44) 
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Chapter 6 Analytical Results 

We set up the analytical t heory in this chapter. First we discuss t he Fredholm t heory 

for Lr solutions and compute t he index. Then we show t he compactness of the 

perturbed moduli spaces. Last we prove the transversality. As a result of t hese, a 

generic moduli space is a compact smooth manifold, with dimension ~ML' 

6.1 Fredholm Theory 

6.1.1 Linearization Map 

Consider the maps 

81 : M ap(Y, ilR) -t r( iA 1) EEl r(W) 

82 : r(iN) EEl r(W) -t r(iA2) EEl r(W) 

defined by 

81 (f) = (-df, fq,) 
(6.1) 

82(a, ¢) = (da + iT(q" ¢) + (D/.lh)A(a) , DA¢ + ,(a)q, + (Dl/h)if>(¢)) 

at (A , q,) , where 

and 

I 

(Dl/h )if>(¢) = L r (2h~(1q,12)(q, , ¢) q, + h~( 1 q,1 2)¢)"I(Q28; 1(X)). (6.3) 
j=1 J(O,1j XD2 
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The first map 01 is the linearization of the gauge fixing map 

g(A, <1» = (A - g-ldg,g<l» (6.4) 

for gEM ap(Y, 8 1 ). The second map 02 is the linearization of the perturbed Seiberg­

Witten equations 4.21. The maps are purely local and do not depend on the global 

geometry of the underlying manifolds. Now consider the noncompact manifold Y+ = 
Y UE Ex [0 , (0). The metric is given by the product metric at the end. 

To set up the Fredholm theory and for purpose of index computation, for sim­

plicity, we may as well consider the unpert urbed equations and solutions. Still using 

notation 01 ,02, consider 

and 

01 : L~(r(ilR)) -t LL(r(iA1) EB r(W)) 

02 :LL(r(iA1) EB r(W)) -t LL2(r(iA2) EB r(W)) 

01 (f) = (-df, /<1» 

02(a, q;) = (da + iT(<I>, q;), DA q; + , (a)<I» 

o --t Li(r(ilR)) ~ LL(r(iA1) EB r(W)) ~ LL2 (r(iA2) EB r(W)) --t O. 

(6.5) 

Lemma 6.1 At any solution (A, <1» to the Seiberg- Witten equations, the above is a 

complex. 

Proof: To show that 02 0 01 = 0, we compute 

02 001 (f) 

=02 ( -df, /<1» 

=( d( -df) + iT( <1> , /<1» , D A (f<l» + ,( -df)<I». 
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d( -df) = O. On the other hand T is locally modeled on 

In particular , if 'IjJ = f 'P for a purely imaginary function f , then 

T( 'P, 'IjJ) =Im(('Pif'P)) 

=Ifllm( ('Pi) ('Pi)) 

=0. 

(6.6) 

(6.7) 

So iT( q" fq,) = 0 and the first component vanishes. For the second component, notice 

(6.8) 

And the vanishing of second component follows from DAq, = O. 0 

At any nondegenerate solution (A , q,) , t he map 61 is injective so the zeroth coho­

mology of the complex is trivial. The formal tangent space to the moduli space M at 

[A, q,], called the Zariski tangent space, is t he first cohomology of the above complex. 

The condition that M is smooth at [A, q,j is the vanishing of the second cohomology, 

called the obstruction space. 

6.1.2 Weighted Norms 

In the above we worked on the space of £2 solutions. This choice can easily be seen 

to be improper. In last chapter we showed, for a finite F variation solution, there is 

a limit at the cylindrical end to a Kahler-Vortex solution. If a corresponding Kahler­

Vortex solution is nontrivial, then the Seiberg-Witten solution cannot be possibly in 

L2 . 

To overcome this difficulty, let us fix a Kahler-Vortex solution (E , II1). On the 

cylindrical end, suppose the spine structure is induced by the product foliat ion, t hat 

is, W = rr*(Wt) E9 rr*(WEl Consider a pair (A, q,) +rr*(E, 111). For simplicity we will 

not distinguish (E , 111) from its pullback rr*(E , 111) . Substitute into the Seiberg-Witten 
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equations 4.15 and we get 

dA + F Ao + iT(<I>, \II) + ~T(<I> , <I» = 0 

DB<I> + ,(A) (<I> + \II) = O. 

The linearization for pair (a, ip), then, is 

(6.9) 

8~(a, ip) = (da + iT(ip, \II) + iT(ip, <I», DBip + ,(a) (<I> + \II)). (6.10) 

Now we can allow (a, ip) to vary on proper Sobolev spaces. 

Let t be a global extension to Y+ of the coordinate projection map t : lR+ x E --+ 

lR+. For any W E lR and a fixed Ao we define 

(6.11) 

We denote L~.w.Ao to be the completion of C~(Y+) under the above norm. It is a 

standard fact that for different Ao's all the norms are equivalent, so we will omit the 

index Ao from now on. 

In last chapter, we showed that the approach to the center manifold is exponen­

tially fast , with speed faster than e- '; ' t. Therefore, for a W < >';' the following 

complex makes sense: 

o --t L~.w (r( ilR)) 
(6.12) 

o 

From Lemma 6.1, 

Corollary 6.2 6.12 is a complex. 
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6.1.3 Operators at the End 

To understand the Fredholm property of complex 6.12, we wrap it up to form a single 

operator, by taking adjoint with respect to U-inner product after conjugation. Define 

Identifying iA 2 with iA I with *, we get 

o~: LHf(iAI) EB f(W)) --+ LL(f(iIR)) is characterized by 

So 

and 

o~(a, ip) = ((a, ip), 01(/)) 

= ((a, ip), (-dj, j(if> + w))) 

= (a, -df) + (ip, j(if> + w) ) 

= (- d" a, j) + (- i ( ip, i (if> + w)) , f) 

= (-d"a - i(ip, i(W + if») , f). 

o~(a, ip) = -d"a - i( ip, i(if> + w)) 

(6.13) 

(6.14) 

(6.15) 

e-wto~ewt(a, ip) = -d"a - i(ip, i(if> + w)) - w(dt, a). (6.16) 

If we write a = b + edt where b E iN (~) and e E iA O(~) then the above is 

-wt £. wl( b) d" b oe .( '('" 'T')) e vIe e" ip = - E + at + we - ~ ip, ~ '¥ + 'l' . (6.17) 
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On the other hand, if in addition we express ip = (ip+, ip- ), then 

*8~(c, b, ip+, ip-) = (*E dEb + iplr(ip, IJ! + <1», 

8b 
*E &t + *EdEC + ip2r (ip, IJ! + <1» , 

8ip+ 
i7}t + DiN- + (r(b + cdt)(1J! + <1»)+, 

a -
- i ~ + D~ip+ + (r(b + cdt)(1J! + <l>W) · 

Here Pl,P2 are projections to proper components. In summary we proved 

Lemma 6.3 

(6.18) 

'Dw(c, b, ip+, ip-) = ( - dEb - : - wc - i( ip, i(1J! + <1») + *EdEb + iplr( ip, IJ! + <1» , 

*E : + *EdEc + ip2r(ip, IJ! + <1» , 

8ip+ 
i7}t + D"Bip- + (r(b + cdt)(1J! + <l>W, (6 .19) 

8 -
- i ~ + D~ip+ + (r(b + cdt)(1J! + <l>W)· 

6.1.4 Operator in Matrix Form 

We can express 'Dw in matrix form as Dw,oo + 0 where 

_.!t. - w 
8t - *E dE i(·, ilJ!+) -i(·, ilJ!-) 

- *EdE *E£ .IJ!- ~. 
Dw,oo = (6.20) 

i'y(.)IJ!+ ,),( .)IJ!- ·8 DB ~&i 

-i')'(·) IJ!- ,),(.) IJ!+ DB · 8 
-~&i 

and 

0 d* - E i( ·, i<l>+) -i(· , i<l>-) 

0 0 . <1>- ~ . 
(6.21) 0= 

i'y(.) <1>+ ,),(.)<1>- 0 0 

- i')'(· )<1>- ,),(.)<1>+ 0 0 
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Let J be the involution on r(iA(~)) EB r(w+ EB W-). Explicitly J = * on r (iA1 (~)) 

and J = ±i on W±. Clearly J2 = -l and can be regarded as an almost complex 

structure on the bundles involved. 

Notice t he block 

(6.22) 

is L in Corollary 3.3, the linearization of the Kahler-Vortex equations, and 

(6.23) 

expresses the linearization of constraint 3.10. 

These illustrated 

Lemma 6.4 The limiting opemtor Dw,cx> is 

(6.24) 

Moreover, J anticommutes with L . D 

6.1.5 Fredholm Theory 

Lemma 6.5 'f is not in the spectrum of 

Q = (-w v) 
v' L 

(6.25) 

if A(L) > 0 and 0 < W < A1 . 

(

- W v) Proof: For an eigenvalue A > 0 of L, there are a pair of eigenvalues of 
v' L 
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, '(w+>.)2+4t>2 N t ' given by - W;-A ± 2 . 0 Ice 

W - A J(w + A)2 + 4,62 
---- < 0 

2 2 
(6.26) 

and 

W- A J(W+A)2+4,62 \ \ - --+ > A > AI' 2 2 -- (6.27) 

So * will not be in the spectrum. 0 

Lemma 6.6 V w ."" is Fredholm for W < AI ' 

Proof: Conjugating V w ."" by e- ~t induces an operator V "" on L2 norm, which equals 

V w ."" - * on the cylindrical end. By Lockhart and McOwen [45], V "" is Fredholm if 

Q - * is invertible. Corresponding to an eigenvalue A and an eigenfunction '{J>. of L , 

the eigenfunction on cylinder has form e->.t'{J>.. For it to live in L2 , we have to restrict 

to A > O. The Lemma now follows from Lemma 6.5. 0 

As a Corollary 

Corollary 6.7 The deformation complex 6.12 is Fredholm. 0 

6.2 Index Calculation 

6.2.1 Extended £2 

Definition 6.8 For an operator of form ~ + P at the cylindrical end, a pair (A, cl» 

is in extended L2 if (A, cl» E Lroc and for t large, 

(A, cl» = (B, 111) + (A , <1» (6.28) 

for (B, 111) E ker P and (A , <1» E P. 

We denote extended L2 space by j}. M. Atiyah, V. Patodi and A. Shapiro proved [5J 
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Lemma 6.9 Let D : COO(y, E; 1 - P) >-+ COO(y, F) be a linear first order elliptic 

differential opemtor on Y. Near the boundary I x ~ D takes form D = a-(-Nt + A) 

for a bundle isomorphism (}" and a first order self-adjoint elliptic opemtor A on ~. 

Let coo(Y, E ; 1 - P) denote the space of sections f of E satisfying (1 - P)f(·, 0) = 0 

where P is the spectml projection of A corresponding to eigenvalues 2: O. Let D* : 

c oo (Y, F; P) >-+ COO(y, E) be the adjoint opemtor. Then 

(1) ker D is isomorphic to the space of L 2 solutions of D f = 0 on y+. 

(2) ker D* is isomorphic to the space of extended L2 solutions of D* f = 0 on y+. 

In our situation, however , we would like to compute index where kernel is in extended 

L2 and cokernel is in L2. Therefore it is natural to introduce 

the adjoint of V w defined by 

(6.29) 

Then by Atiyah-Patodi-Singer, 

Lemma 6.10 -indV;" is the formal dimension of complex 6.12. D 

6.2.2 The Atiyah-Patodi-Singer Index Theorem 

Atiyah-Patodi-Singer also proved 

Lemma 6.11 

indD = h(E) - h(F) - hoo(F) (6.30) 

where h(E) is the dimension of the space of L2 solutions of D f = 0 on Y+ J h(F) is 

the corresponding dimension of D* and hoo (F) is the dimension of subspace of ker A 

consisting of limiting values of extended L2 sections f of F satisfying D* f = O. 
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Let 

be the operator on L2 spaces. Then by Atiyah-Singer-Patodi 

indV * = h(E) - h(F) - hoo(F) (6.31) 

where E = r(ilR) EB r (iA 1) EB r (W) and F = r (r (iAl) EB r(W). 

Atiyah-Patodi-Singer also showed that 

hoo(E) + hoo(F) = dimkerQ = dimML (6.32) 

On the cylindrical end, the operator takes form J( ft + Q) where J 2 = -1. and J 

anticommutes with Q. The operator is self-adjoint so h(E) = h(F) and hoo(E) = 

hoo(F) = ~ dim M L . Therefore 

Corollary 6.12 indD* = -~ dimML. 0 

6.2.3 An Excision Argument 

On a compact subset Yi of Y+, the U norm and L; norm are commensurate and 

the operator V ;" and V * are equivalent. By the excision principal [8], the difference 

indD* - indD;" only depends on the part Y+ \ Yi = [t, (0) x~. To see the difference 

on Y+ \ Yi, we take away Yi and glue back a cylinder [0, t] x~ . Extend both operators 

to the whole cylinder and consider the difference. While V ;" takes form J(ft + Q) , 

V * takes form J(ft + Q - ~). Since ~ is not in the spectrum of Q, the index of the 

two operators are the same. Therefore, 

Corollary 6.13 indV ;" = indV*. 0 

As a consequence, and combine the previous results, 

Theorem 6.14 The map V is Fredholm. The formal dimension of the moduli space 

is ~dimML . 0 
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6.2.4 The Orientation 

We can orient the moduli spaces in the following way, 

Lemma 6.15 Given an orientation of HO(y), Hl (y) and H2(y), there is a corre­

sponding orientation for M h , for any admissible h. 

Proof: For a family of Fredholm maps K : X >-+ Fred(V, W), where V, W are bundles 

over a manifold M, we can associate an index bundle defined as follows. Over X, we 

define the virtual bundle 

I ndKx = kerK(x) - cokerK(x). 

dimkerK(x) may not be continuous on x but dimkerK(x) - dimcokerK(x) is con­

t inuous and an orientation is defined to be a section of t he real determinant line 

bundle 

det(kerK(x) - cokerK(x))(x) 

=AdimkerK(x)(kerK(x)) 0 (AdimcokerK(x)(cokerK(x)))* . 

Notice when K is surjective the usual definition is recovered. 

In our case the family of operators K are 

K : Ay x 1-£ >-+ Fred(LL(nl (Y) E9 r(W)) , , 

LL w(nO(y) E9 n2(y) E9 r (W))). , 

( 
0 iD) The block A in L has positive determinant, and so does the correspond-

-iDA 0 
ing part in Q. SO we only have to worry the part 
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The operators are homotopic to 

(6.33) 

From Hodge t heory 

(6.34) 

So an orientation of HO(y), HI(y) and H2(y) induces an orientation on M h . 0 

6.3 Compactness 

6.3.1 A Weitzenbock Formula 

On a four-dimensional manifold X , the WeitzenbOck formula states 

(6.35) 

Now given a 3-manifold Y and a spine structure, consider Y x lR with the spine struc­

ture induced by the given spine structure on Y. For translationally invariant spinors 

the Weitzenoock formula for four-dimension should hold and the four-dimensional 

Dirac operator is equal to the three-dimensional Dirac operator, similar to discus­

sions in 3.1. Notice here we identify w E 02(y) with W 1\ dt + *yW so computing the 

norm gives a factor of 2. This proves the WeitzenbOck formula for 3-manifolds: 

(6.36) 

For the perturbing terms in equations 4.21, we have the estimates: 



75 

Lemma 6.16 Let (A, iI» be a solution to the perturbed Seiberg- Witten equation, then 

there exists constants C1 and C2 , only dependent of h such that 

Ih(J.th(A))iI>, iI»1 ::;C1 1iI>12 

I (DAVh(iI» , iI»1 ::;C21iI>12. 

- I 

Proof: The first inequality follows i=ediately from the bound on h.;. For the 

second inequality, notice 

I 

DAVh(iI» =DA L h~( 1 iI>12)iI>1)(Q20jl(X))) 
j=J 

j=l 

+ , ( dh~ (I iI>12) )iI>1)( Q20j 1 (x)) 
I 

= L h~(1iI>1 2)(-Vh(iI»)1)(Q20jJ(X)) 
j=J 

and the estimate follows . D 

6.3.2 Uniform Bounds on <I> 

The above estimates enable the pointwise uniform bound of fini te :F variational so­

lutions: 

Lemma 6.17 Let (A, iI» be an L~ ,w solution to the perturbed Seiberg-Witten equa­

tions, then there exists constant C, independent of (A , iI» , so that 

Proof: We show in last chapter that on the cylindrical end the solution converges 

to a solution to the Kahler-Vortex equations. The moduli space of Kahler-Vortex 

solutions is compact. So there is a uniform bound for 1iI>1 at the cylindrical end. If 
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the maximum of <I> is achieved at a point Xo then 

o :S~6 1 <I>12 
=(V:AV A<I> , <I» - (V A<I> , V A<I» 

:S (V:AV A<I>, <I» 

2 1 8 
= (D A <I> , <I» - Z(r (FA)<I> , <I» - 4 (<P, <p) 

= - ~(<I>, <I» - ~1<I>14 - ('Y (/Lh(A))<I>, <I» - (DVh(<I» , <I» 

:S - ~ ( <I>, <I» - ~1<I>14 + C1 1<I>1 2 + C21<I>1 2 

where C1 and C2 are only dependent of h and not of (A, <I» from the above lemmas. 

The result then follows. 0 

We will use the pointwise bound to prove a convergence result on a compact subset 

of the open manifold Y+, much as in the closed case. And we will use the asymptotic 

behavior of the finite :F variational solutions to prove a convergence result on the 

cylindrical end, in the spirit of [41] . We then patch these two together and prove the 

global convergence. 

6.3.3 Convergence on Compact Subset 

Lemma 6. 18 On a compact subset K1 ofY+ , for a sequence of the solutions (Ai, <I>i), 

there is a subsequence {i'} C {i} and gauge tmnsformations Ui' 80 that Ui' (A;, , <I>i') 

converge to a solution (A, <I» strongly. 

P roof: The uniform bounds of <I>i make it transparent and similar to the closed 

case. Fix a smooth connection Ao on Kl, for any connection A we can find a gauge 

transformation g in the identity component of M ap(Kl ' 51) so that g(A) - Ao is co­

closed and annihilates the normal vectors at t he boundary. Furthermore, by choosing 

9 from proper component we can make it so that the harmonic part of g(A) - Ao is 

also bounded by a constant independent of A, since the torus Hl(K1' 'R) / Hl(K1 ' Z) 

is compact. Therefore, by applying proper gauge transformations we may assume the 
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sequences (Ai, ct>i) are such that 

A. = Ao + ai 
(6.37) 

d*ai = O. 

The perturbed Seiberg-Witten equations for pair (ai, ct>i ) then become 

i 
dai + 2T(ct>i , ct>i) + /lh(Ao + ao) = 0 

(6.38) 

DAoct>i + ')' (ao)ct>i + Vh(ct>i) = O. 

The pointwise uniform bound, combined with the estimates on the admissible per­

turbations, implies that there is a constant C j , 

1 
11 2u(ct>i, ct>i)IILP ::; Cj 

II * /lh(Ao + a')b ::; C j 

Ilvh(ct>i)b ::; Cj 

(6.39) 

for any p > O. Here V' means the V' norm on K j • Now consider the operator d + d* 

and D Ao on K j • The first has a good boundary condition to make it an elliptic 

operator: vanishing of the normal vectors at the boundary. The second does not have 

a good boundary condition. However, the pointwise uniform bound of ct>i bounds the 

boundary integral by a constant C2 . Along with the Garding's inequality, we have, 

for any p: 

Here U, U' are open sets such that U cs U'. C4 depends on U and U' . In the following 

argument, we omit the U, U' subscript , with the understanding that in each step, we 

can always choose appropriate open sets. 
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We start the bootstrapping argument by 

and 

1Ia; IILi ::; C3(II(d + d*)aillv + Ilai lILP) 

::; C3(lIdailiLP + C]) 
i 

::; C3(1I2T(<Pi, <Pi) + J-!h(Ao + a;) IILP + C]) 

::; C3(C] + C] + C]) 

::; C5 

II<piIILi ::; C4 (IIDAo <Pi b + lI<piliLP + C2 ) 

::; C4 (lh(ai)<p + Vh(<Pi ) IILP + C] + C2 ) 

::; C4 (3C] + C2 ) 

On the other hand 

11a;IIL~ ::; C3(II(d + d*)aillv, + Ilai llLi) 

::; C3(lIdailiLi + C5 ) 

i 
::; C3(1I 2T(<Pi , <Pi) + J-!h(Ao + ai) IILi + C5 ) 

i 
::; C3(112T(<P;,<p;)IILi + IIJ-!h(Ao + a;)IILi + C5 ) 

::; C3(C]II<I>; IILl + C] + C5 ) 

::; C3(C]C5 + C] + C5 ) 

::; C7 . 

Similar estimates hold for II<I>;IILP' The convergence then follows from Rellich's com-
2 

pact ness theorem. 0 
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6.3.4 The Compactness 

The convergence on compact subset, along with the connectedness of the critical point 

set , enables us to prove 

Theorem 6.19 For any sequence (Ai,4>i) oj t~,6 solutions, there is a convergent 

subsequence, possibly after gauge tmnsjormations, in the t~,6 topology on Y+. 

Proof: Let yt = Y UE [0, t] x E. Consider a sequence (Ai, 4>i) on Y+ For each 

n > 0, there is a convergent subsequence, after applying the gauge transformation. 

By a diagonal arguement, we can pass further to a subsequence, still called (Ai,4>i) , 

so that it converges to an (Ao, 4>0) on Y +. 

Each equation is a closed condit ion, so (Ao , 4>o) still solves the Seiberg-Witten 

equat ions, and is a critical point for the Chern-Simons-Dirac functional. Furthermore, 

IFdAo, 4>0) - Fto(Ao, 4>0)1 

:SIFd Ao, 4>o) - Ft , (A;, 4>;)1 + 1Ft. (Ai , 4>i) - Fto (Ai , 4>;) 1 + IFto(Ao , 4>0) - F I<J (Ai , 4>i)1 

:sc (6.40) 

Where the last inequality follows from the continuity of F for large enough i's. The 

convengence now follows from the connectedness of the critical point set of finite F 

variation. 0 

As a corollary, 

Corollary 6.20 For any admissible perturbation h , the moduli space Mh is compact. 

o 

6.4 Transversality 

6.4.1 The Map S 

Consider a solut ion (..4, <1» to the perturbed Seiberg-Witten equations 4.21 on Y +. 

There exists a solut ion (B , iii) to the Kiihler-Vortex equations so that on the cylin­

drical end (..4, <1» asymptotically approaches (B, iii) . If we write (..4, <1» = (A , 4» + 
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7r* (B, Ill) then (A, cp) satisfies 

dA + ir(cp, Ill) + ~r(cp , cp) + Ilh(A + B) = 0 

DBCP +')'(A)(cp + Ill ) = 0. 

This motivates the following definition 

Definition 6.21 Define 

to be the map 

(6.41) 

S(h,A, cp , B , Ill) = (dA + ir(cp, Ill) + ~r(cp, cp) + Ilh (A + B) , DBCP + ')'(A)(cp + Ill» 

(6.42) 

where X:V denotes the solution space for Kiihler- Vortex equations. 

Then the linearization of S is given by 

DS(g, a, 'P, b, ¢) 

= (da + ir('P, III + cp) + ir(cp,¢) + Dllh(A + B)(g) , 

DB'P + ')'(a + b)(1lI + cp) + ')'(A)('P + ¢) + DVh(1lI + cp)(g». (6.43) 

6.4.2 Surjectivity of S 

Theorem 6.22 S is smooth and 0 is a regular value. 

Proof: Fix a nondegenerate solution (A + B , cP + Ill) = (Ao, cpo) . Rewrite DS as 

DS(g, a, 'P) = (da + ir('P, cpo) + Dllh(Ao) (a) + Dllh (Ao) (g) + ir( CP, ¢), 

DAo'P + ')'(a) cpo + DVh (CPO) (1)) + DVh(CPO ) (g) + ')' (A)¢). (6.44) 

DS is of closed range. If (Ci, f3) E coker DS. (Ci, f3) is orthogonal to t he image of DS. 

The surjectivity of S at 0 follows from the vanishing of (Ci, f3) on y+. 
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For any x E Y+ , choose embeddings 'Yj : SI x D 2 -+ Y+, j = 1, 2, 3, so that 

'Yj(-l,O) = x. Furthermore, we require that bjl)*dO be linearly independent at 

T;Y for y E U, a small neighborhood of x. 

Let ¢/ = <Po Ui 'Yi then <Po C <p' . Let 

on <Po 
(6 .45) 

on 'Y;'s 

t hen hI is an extension of he to 1i.</>oun" ,p· And (Ao , <1>0) solves t he perturbed equations 

corresponding to hI as well. 

Now we set a = 0, r.p = 0, b = 0, 'IjJ = 0, and change the g, then 

(6.46) 

{"(i. (dO)} spans the basis for T;Y for y E U, and we have the freedom to change 

g;'s, so a == ° in U. From the arbitrary choice of x, a == ° on Y+. Notice here t he 

holonomy inside g' becomes irrelevant, since we have t he freedom to change 'Y;'s as 

well because we allow intersections of the respective embeddings in t he definition of 

t he perturbation. 

Now for the (3 part. For any x E Y+ where <l>o(x) 1= 0, in 

set r.p = ° and 9 = ° then we get 

("((a) <1>0 , (3) = 0. (6.48) 

Let a = 0, r.p = ° and we will have 

(6.49) 
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That is 

(6.50) 

Notice End(W, W) = lR EB A). If f3 =I 0, then we can find u), U2 E lR and g, a so that 

(6.51 ) 

since <1>0 =I ° by assumption. That means 

(6.52) 

A contradiction. That proves f3 = ° identically by the Unique Continuation Theorem. 

o 
Combining the results of this chapter and by Sard-Smale theorem [59] 

Theorem 6.23 For any admissible perturbation h the moduli space Mh is a compact 

oriented manifold of dimension ~ dim M L . The moduli spaces are smooth for generic 

perturbations. 

More References 

[2] [8] [10] [43] [50] [54] 
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Chapter 7 The Cobordism 

7.1 The Limiting Map 

We study the limiting map r and show it is a Lagrangian immersion. The composition 

of r with the section Sh is Legendrian. We define a lift f to construct the Legendrian 

cobordism between perturbed moduli spaces. 

7.1.1 The Map r 

The asymptotic behavior of finite :F variational solutions in chapter 5 allows us to 

define a limiting map from the Seiberg-Witten solut ion set to the Kiihler-Vortex 

solut ion set. The map descends to a map 

By Lemma 5.9, Corollary 5.10, 

Lemma 7.1 The map r is continuous and is an immersionn 

We now proceed to prove the Legendrian property of r . First 

Lemma 7.2 Suppose,,! : [0,1] >-+ A is a smooth path such that Vh("t(t)) = 0 for 

all t E [0,1). Then Sh 0 "! is a horizontal lift of"! to A x U( l ). Consequently, 

rosho"!: [0,1] >-+ AE x U( l ) is a horizontal lift ofr o ,,! . 
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Proof: We need to show (Sh o'Y)o ( ~) is horizontal with respect to connection w. We 

apply the fact that Vh is the gTadient of the section Sh with respect to w: 

o 

W((Sh 0 'Y)o(!)) =DwSh('Yo(!)) 
_ f) 

= ('\7 Sh ('Y( t)), 'Y. (at) ) 
f) 

=(Vh ( 'Y(t)), 'Yo ( at)) 

= 0. 

7.1.2 The Lagrangian Immersion 

In chapter 3 we described a symplectic structure D on AE defined by 3.16. D is 

compatible on W+ Ell W- with the metric and almost complex structure in the sense 

(7.1) 

except that on W- the orientation is reversed. So the symplectic structure can also 

be written as 

(7.2) 

Let 'Yi : [0, 1] -+ Ay, i = 1,2 be two smooth paths so that Vh ('Yi(t) ) = 0 for all 

t E [0, 1]. Then 

Lemma 7.3 D((r 0 'Yl ) O(~)' (r 0 'Y2)'(~ )) = o. 

Proof: Let 
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on Y and 

on the cylindrical end. For t E lR+, let }Ii = Y+ \ [t , 00) x ~. Then 

(7.3) 

Let ~ be the unit length i-form corresponding to t he spine structure on Y +, then the 

integral can also be written as 

By Stokes theorem on }Ii : 

Since Vh bi(t) ) = 0, (ai, 'P;) satisfies 

dai + iT(cI> , 'Pi ) + D/-LhA('Pi) = 0 

DA'Pi + ,(a;) cI> + DVh<j> ('Pi) = o. 

(7.4) 

(7.5) 

(7.6) 



Therefore 

( d(aJ 1\ a2) 
Ir. 

= { daJ 1\ a2 - aJ 1\ da2 }y, 
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= { -(iT(1>,lPd + DJ.LhA(a2)) 1\ a2 + aJ 1\ (iT(1>, 1,02)) + D J.LhA(aJ) l y, 
= ( -iT(1), IPJ) 1\ a2 + aJ 1\ (iT(1>, 1,02)) - H essh(aJ, a2) + H essh(a2, aJ) }y, 

= ( - iT(1), IPJ) 1\ a2 + aJ 1\ (iT(1>, 1,02))' l y, 

The map T is characterized by 

for 1P,'Ij; E r (W) and () E ifI (Y). Hence 

( d(a1 1\ a2) l y, 
= - { ('y(a2) 1>, 1,01) - ('y(a2)1>, 1,01) l y, 
= { (D AIP2 + DVM> (1,02), IPd - (D AIP1 + DVh4>(lPd, 1,02) l y, 
= { (D AIP2,IPI)- (DAIPI,1P2)+ H essh(1P2,IPJ)- H essh(CPJ,1P2) l y, 
= { (D AIP2, 1,01) - (D AIPJ, 1,02). l y, 

By equation 4. 12 

Therefore 

(7.7) 
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That means 

(7.10) 

o 
From this Lemma we immediately have 

Corollary 7.4 The map r is a Lagmngian immersion. 0 

By definition a Legendrian immersion is a horizontal lift of a Lagrangian immer­

sion. For the contact structure on DE -+ ME and from Lemma 7.3 we have 

Lemma 7.5 For generic h, the compositions Sh 0 r : Mh f-t £ E are Legendrian. 

7.2 Legendrian Cobordism 

7.2.1 The Cobordism 

Suppose (M,n) is a symplectic manifold and (£,w) is a U(l) bundle with a contact 

structure over M. The contact structure on £ is obtained from the connection of 

£ where dw = in. There is a canonical contact structure on £ x TO [0, 1]. Let 

(u, v) E [0, 1] x lR be t he coordinates on TO [0, 1] and 71"i, i = 1,2 be the projections 

onto the first and second factors respectively in £ x TO [0,1] (and M x TO [0, 1] as well). 

On M x TO[O, 1) t here is a canonical symplectic structure 

(7.11) 

Now £ x TO[O, 1] defines a U(l) bundle over M x TO [0, 1], and the connection given 

by the 1-form 

(7.12) 

defines a compatible contact structure on £ x TO [0, 1] . 
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Definition 7.6 For i = 0, 1, let f i : Ni >-+ L be immersed Legendrian submanifolds. 

A Legendrian cobordism between fa and II is an immersed Legendrian submanifold 

f : N>-+ L x T*[O, 1], transversal to a(L x T*[O, 1]) and 

where p : T* [0, 1 J >-+ [0, 1 J is the projection. Two oriented Legendrian submanifolds No 

and N J are oriented Legendrian cobordant if there is an oriented Legendrian cobordism 

(N, f) so that aN = NJ - No as oriented manifolds. 

The space H is path connected. Given a path ht in t he space of admissible 

pert urbations, t here is a corresponding section Sh, of Ly x [0, 1], given by the 9 

equivariant map 

sh,(A, <I>,t) = ei (CS1l (A,<!»+h,(A ,<!>)): A x [0, IJ >-+ U( I) . (7.13) 

Let Mh, be t he moduli space on Y corresponding to the pert urbation ht. For simplic­

ity we will write Sh, as St and M h, as M t unless we want to emphasize the dependence 

on the perturbation. 

For a Fredholm operator S : A x H >-+ A', we can consider the operator from the 

path space PH of H: 

S t : A x PH >-+ A'. 

By standard t heory the operator S t is Fredholm of 1 more index. Regard UtM t as 

sitting inside B x [0, 1], for a generic path ht. Apply the same argument and we have 

Lemma 7 .7 For generic path ht , the space M t is a smooth, compact manifold of 

dimension ~ dimML + 1. 0 
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7.2.2 The Lift f 

With t his understood, we define a lift 

1': M t f--t LE x T '[O, 1) 

of r. We first declare 

f: A x [0,1) f--t AE x U(l) x T*[O , 1) 

by 

(7.14) 

This is equivariant wit h respect to the gauge group action so it induces a map on the 

quotient. We let l' to be the induced map restricted to M t . 

Lemma 7.7 supplies a smooth cobordism between two moduli spaces Mh for 

generic h's. By the help of the above lift l' the cobordism is indeed a Legendrian 

cobordism. 

Theorem 7.8 For generic path ht between Mho i = 0,1, l' : M t f--t LE is a Legen­

drian cobordism. 

Proof: From last section we know rt : M ht f--t ME is an immersion for each t. 

Similarly t he map from M t to M E x [0, 1) is also an immersion. To prove it gives 

a Legendrian cobordism, we must show that the lift to U(l) bundle is horizontal. 

That is, for any vector field (8a, 8¢, 8t) E T (A,<I>, t)(A x [0, 1)) where (A, <1» is a solut ion 

corresponding to ht, we need to show 1',(8a, 8¢, 8t) is horizontal. Since t he connection 

7ri(w) + 7r;(vdu) is the same as w when restricted to A, from earlier computation we 

know 1'.(8a, 8¢, 0) is horiwntal. So we only have to show t hat 1'.(0, 0, 8t) is horizontal. 
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And we compute 

(7.15) 

Consider the part -7r;(vdu) of the connection on A x TO[O, 1], here v = itht(A, <I» , 

the last factor of the image of map r. Evaluating this part 

(-ivdu)(ro(l5t)) = - ! ht(A, <I»l5t + ! ht(A, <I»ot 
(7.16) 

=0. 

So r. (ot) is horizontal and combine above we have 

w(ro(l5a , o¢,ot)) = 0 (7.17) 

as wanted. 0 

Remark 7.9 Similar to the discussion on the orientation of .Nth, given an orienta­

tion of IfO(Y) , Hl(y) and H2(y) , for any path ht in the space of admissible pertur­

bations, there is also a corresponding orientation for the cobordism moduli space .Ntt · 

And this gives the oriented Legendrian cobordism. 

7.3 Concluding Remarks 

Our approach here focuses on setup of the theory instead of the geometric implications 

and applications. 

Mainly by studying solutions on 3-manifolds with cylindrical ends, we established 

that the moduli spaces are compact oriented manifolds of finite dimension and are 

related to invariants on the boundary. The moduli spaces are smooth for generic 

perturbations. These should pave the path for further developments. 

Analogous to four-dimensional theory, one can derive the Seiberg-Witten invari­

ants through the above data, obtaining a map from H2(y) to Z. Or, in light of the 
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Donaldson polynomial invariants, a formal power series 2::i Otiqi where the coefficients 

Ot;'S are obtained from moduli spaces of proper dimensions. Since the moduli spaces 

are generically empty for all but finitely many spine structures, the above should 

be a polynomial of degTee given by the associated line bundle on the boundary ~. 

Furthermore, by the symmetry between W+ and W- , if we shift our base point of 

spine structure from the canonical one C EB K- 1 to K~ EB K-~ , then we will get a 

polynomial of q + q-l . 

It is then natural to ask the relationship between this polynomial with other known 

invariants. 

Another point of interest is the contact structures on Y. Our theory is based 

on a foliation on Y . Or more precisely, we assume that our spine structure under 

consideration arises from the product foliation of I x ~ near the boundary. One may 

also ask what is the case when the spine structure arises from a contact structure on 

Y . 
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