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ABSTRACT

Experimental investigations on the proximity effect bridge (a
Josephson device) at zero voltage and at finite voltages in the pV range
are reported,

The phase-supercurrent relation at zero voltage was measured
using an asymmetric superconducting quantum interferometer circuit,
The data are in agreement with the Josephson supercurrent-phase

relatipn g =3 IC sin § with dewviation less than 57’0 of the critical current

S

I.. The supercurrent density in the measured bridges reached as
high as 50-100 }.L.A/}.L‘mz.

Usiﬁg microcircuitry techniques, proximity effect bridges
were strongly coupled to superconducting microstrip resonators, Self-
induced steps in the I-V characteristics of bridges coupled to resonators
were observed in the GHz region at voltages (frequencies) corresponding
to the expected mo&es of the resonators. Two types of steps were
seen depending on whether the resonator impedance on resonance was
much higher or much smaller than the bridge resistance, A simple
two fluid model of the bridge-resonator circuit was developed and the
size and shape of self-induced steps were calculated for a generalized
Josephson oscillator relation IS = Ic(l -g+q sinJ‘ —2';!9 V dt) where q = 1
corresponds to the original Josephson relation and q = 1/2 represents
the phase slip regime. At low critic;al currents (IC < 10pA) and low
voltages (V < 3uV) the size and shape of experimentally observed

self-induced steps agree with the g = 1 model. At higher voltages

and/or critical currents the step size increasingly deviates from the
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g = 1 model towards q = 1/2. These observations are interpreted to
indicate a progressive reduction of the amplitude of the oscillating
Josephson supercurrent in proximity effect bridges from IC towards

IC/Z as the critical current and/or voltage are increased,
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INTRODUCTION

The study of Josephson phenomena in weakly coupled super- .
conductors has advanced greatly since its beginning in 1962, Chapter
1 of this thesis catalogs the ideas which in the author's opinion form
the foundation of current effort in this area. Chapter 2 and Chapter '3
report on research conducted by the author in an attempt to describe
in more detail the dynamics of the proximity effect bridge, a
Josephson device showing majdr promise in applications ranging
from magnetometry to far-infrared radiation detectors.

Chapter 2 deals with the zero voltage regime in which
equilibrium thermodynamics applies. The superconducting quantum
interferometer was used as a tool to establish that the proximity effect
bridge obeys the same equations at zero voltage as were proposed
by Josephson for the tunneling junction,

Chapter 3 covers situations in which nonequilibrium processes
are expected to cause major deviations from the Josephson tunneling
equations. The interaction of proximity effect bridges with super-
conducting microstrip resonators was explored both as an end in
itself and as a means to estimate the amplitude of the supercurrent
oscillation in these bridges. It was found that as the voltage increases
the amplitude undergoes a transition from that expected from classical
Josephson equations towards the smaller relative amplitude expected
from the nonequilibrium phase-slip theories. -Similar but less marked
trend towards a relative reduction of the oscillation amplitude was

seen with increasing critical current in these devices.



.,
I. MACROSCOPIC QUANTUM EFFECTS - THEORY

1.1 The Macroscopic Wavefunction

The macroscopic wavefunction concept was introduced by
London (Ref. 1) who proposed that. superconductivity is a phase in
which electrons are condensed into a single state described by a
single wavefunction ¢ = Lp(?, t). This description was taken
further by Ginzburg and Landau (GL) (Ref, 2) with particular
attention to the temperature regime in the vicinity of the super-
conducting transition., In 1957, Bardeen, Cooper and Schrieffer
(BCS) (Ref., 3) developed a microscopic theory of superconductivity
based on the phonon mediated electron-electron interaction. Since
both the IL.ondon and GL theories are derivable from the BCS
theory, the latter will be used as a starting point in this
discussion,

In the BCS picture pairwise attraction between electrons
near the Fermi level occurs via the distortion of the lattice
induced by each member of a pair. Below a certain transition
température this attraction results in the formation of bound
electron pairs with antiparallel spins. These pai-rs have mé.ny
characteristics of bosons and are condensed into a single state as
predicted by London, According to BCS a certain minimum
energy is required to break up an existing pair., The energy is
designated E_ = 24(T) and is referred to as the energy gap at
temperature T. The excitations resulting from pair breaking are
called quasiparticles, and it can be shown (Ref. 4) that they

behave like electrons in a normal (non-superconducting) metal,
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At finite temperatures, pairs are broken by thermal agitation which
leads to a dynamic equilibrium between quasiparticles and pairs,
The two fluids, the pair fluid and the quasiparticle fluid can be
approximately considered as mutually noninteracting,

The condensate of electron pairs can be represented by a
London wavefunction

W26 = VhE D O D) (1.1)

where p(?, t) is the electron pair density and Qp(;.'., t) is the phase
of the wavefunction. In general the pair density depends on
temperature and pair velocity and should be calculated using Ith.e
full BCS or GL theory. Nevertheless, at a given temperature
and velocity well below critical velocity the condensate obeys
simple quantum me-chanics (Ref. 5). Applying the quantum
mechanical expression for electrical current density to the form
(1.1) leads to

—J' :_Zeﬁ

(Vo + 22 R)p (1.2)

where K is the magnetic Veétor potential and -2e is the charge
of an electron pair, For bulk simply connected superconductors,
one can work in the London gauge (Ref. 6) where V.2 =0 in the
superconductor, Assuming p(?, t) = const., and —V’ . ._]t = 0 (steady

state) it can be seen that in the superconductor

v = 0 (1.3)
This implies ecp = 0 everywhere since on the surface of the

superconductor (_V’cp)n-'s 0. Therefore equation (1.2) yields

_ 4e2
T -2 BRX (1.4)
m
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Equation (1.4) is the London equation, The magnetic vector

potential is related to its source current by

2 1 (1.5)
o G N

e _C
(o]

Combining (1.4) and (1.5)

2
VA = i‘i-éE—K = -lZK (1.6)
€,c m A

where )\ is the London penetration depth (typ. 102- 1035;)° The
physical solution of equation (l.6) is a potential 2 which decays
exponentially from the surface of the superconductor inward with
decayiength A. Thus the magnetic field many penetration depths
A inside the superconductor is zero (Ref. 7). Fi'om equation
(1.4) it_ follows that the supercurrent density 7 is distributed
similarly to the magnetic vector potential,

Next a piece‘ of superconductor which is not simply
connected (e,g., a ring) shall be considered, Rewriting equation

(1.2) one obtains

ch Lt —-Z_é-%t_P' - —_h—' (l. 7)
Integrating once around the ring
o m 3 o 2e ok
bey =g §la- B gkl a.9)

But the wavefunction (1.1) must have only one value at a given

point which rimplies that

A = 2mn
and
- m :]! - nh
§K‘d£.‘+’ ZSE'E“dZ = -Z-g' = n@o (109)
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FR -k + p $2°Tdl = ns, (1.10)
where @O is called the flux quantum. The first left hand side
term of equation (1.10) is just the magnetic flux through the path
of integration, If the path is taken deep inside the superconducting
material of the ring, ‘Ts = 0 and the magnetic flux through the
ring is

¢ = ¢A-dh = n3 ' (1.11)
which is referred to as ''quantization of flux'., This phenomenon

has been observed experimentally (Ref, 8).

1.2 The Boundary of a Superconductor

At the boundary between a superconductor and vacuum two
processes take place, Some electrons which are bound in pairs
in the superconductor penetrate the boundary (with roughly the

velocity v the Fermi velocity) and 'depair' (lose their pair

ing
binding energy 2A). Also, the penetrating electrons find them-
selves in the negative energy region outside the superconductor
formed by the work function of the mefal W and the image
potential, and are r.eﬂected back into the superconductor. The
characteristic lengths for the two processes are the depairing
length £ and the tunneling length d. These can be estimated
using the uncertainty principle with A ~ 1 meV, W = 5 eV,

., = 2% 106 m/sec

F
. N

3 ~ 2000A

[

(1.12)
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Therefore at a superconductor-vacuum interface the distance for
pair penetration is dominated by the tunneling length d. Similarly,
at a boundary of a superconductor and an insulating dielectric, the
electrons leaving a superconductor encounter an energy barrier in
the form of the band gap (typically a few eV)., The resulting
tunneling length d i_s of the same order as at the superconductor-
vacuum interrface°

At a superconductor-normal metal interface (S-N) the
situation is different., The Fermi levels in the two metals have
equalized and single electrons are energetically free to move
between the two metals, The decay length of the pair wavefunction
will therefore be determined by the depairing distance for Cooper
pairs. It can be shown that this distance is (in the long mean

free path limit)

#

“ et . N (1.13)
SN F Skg(T-T_)

where T, is the superconducting transition temperature of the
normal metal (i,e., T > TCZ). The pair wavefunction therefore
has a finite amplitude in the normal metal due f.o pair diffusion
and similarly normal electrons diffuse in the opposité direction
into the superconductor, Such normal electron. diffusion diminishes
the equilibrium pair density in the wvicinity of the boundary,

thereby decreasing the gap emergy 2A(T) as if the temperature of
the superconductor at the boundary were raised., This is referred

to as the '"'proximity effect',

If the S-N interface carries a current through the interface
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in either direction the equilibrium between the condensed pairs
and quasiparticles is upset, i.e., the injected particles exceed
their equilibrium concentration, The disequilibrium is described
in terms of electrochemical potentials for pairs Ep (per electron)

and quasiparticles ko with definitions
= 2o
¥ T B e ddy

8G (T, pry 8)
B B i L (1.15)
Q T

where ¢ is the phase of the macroscopic wavefunction and
GQ(T, Poy %) is the Gibbs free energy of quasiparticles as a
function of temperature, quasiparticle density and electrOStatic
potential, The position dependence of electrochemical potentials
Fp and Bo near an S-N interface has been studied by Yu and
Mercereau (Ref. 9) who showed that while ) has a gradient

across the boundary, Fp stays constant, This is reasonable
since for quasiparticles
it
- Q
Iy =0 = (1.16)

where ¢ is the normal conductivity of the metal, whereas for

pairs (see equation 1,2) (BK/E}t = 0 assumed),

a_jl_S _ 9 —Zeeﬁ_vbcp) _ 4ezp. GP'P (1.17
ot ~ ot m T m e 1 7)

If the pair electrochemical potential developed a gradient, the
supercurrent would accelerate and a steady state could not be
achieved., Since the total current density T = 38 + :]!N is constant

across the S-N boundary, the decay of the supercurrent :TS in
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space must correspond to an appropriate increase in the normal

current j!N so that
v~(3’s + ﬁ'N) -0 (1.18)

The other assumption used in S-N interface studies is the
relaxation approximation according to which the deviation from

equilibrium Ko is proportional to the rate of '"'minority carrier"

-IJ'P

accumulation

Bo = Fp o Vo-.-T’N = —V-:T’S (1.19)
Combining this expression with equation (1,16) and the constancy

of pp one obtains

2 Fo “Fp
Plhgbp) = 5 (1.20)
»ap
where }‘QP is the relaxation length describing the spatial extent

of the nonequilibrium region for mutual pair-quasiparticle
conversion (Ref, 10). The constant KQP presumably depends both
on the material and the nature of the dominant relaxation process
for pair-quasiparticle conversion. Since deep inside the super-
conductor both pair and quasiparticle densities are nonzero (at
finite temperatures) ko ~Fp = 0 must hold there, | Deep inside
the normal metal the tail of the pair wavefunction is broken by

thermal agitation and b p is not defined.

1.3 Junctions in the Weak Coupling Limit

When two pieces of superconductor are brought into
proximity such that the behavior of the pair wavefunction in one

superconductor perturbs the pair wavefunction in the other
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superconductor, a device with many interesting properties is
produced--a Josephson device. The situation first considered by
Josephson (Ref, 11) involved two pieces of superconductor separated
by a small (= a few tunneling lengths d) insulating oxide space
(typically 30A thick); but as expected from the discussion in
section 1.2, this distance may be made longer (~ 400:@.) if the
space separating the superconductors is filled with a semiconductor
(Ref. 12). A Schroedinger equation for the two coupled super-

conductors (Ref. 13) may be written as 7
P By K\ /Y '
o (-0 0
Wy K Fa b,
where Lpl, and q;z are the macroscopic wavefunctions in supercon-
ductors 1 and 2 and K is the coupling between them, while My and
P, are the electrochemical potentials (per electron) for pairs in the
two superconductors, Writing the wavefunctions in the form )
in

and the coupling K = ke ™™ one obtains that

2(1s-pq)
o
=5 @0y - ) = —— .22

and

.

Py = -'pz = -k P1Py sin (o + %) (1.23)

where f.;l is the initial rate of pair density loss that would occur
if an external battery did not supply more electrons. Let £ be
the characteristic length over which the pair wavefunction responds
to perturbation—l~the coherence length (Ref, 14) of the supercon-
‘ductor, Then the supercurrent flowing through a current biased

junction is



sl
Iy = -ZeF',lg = kEqfp,p, sin(o+x) (1.24)

It is customary to define Jy = kg\lplpz and & = p+n so that

the Josephson equations can be written in simple form

| 26, i)
" . ~ ~32 78 = Zea¥
JS L sin & and 6 = A = “y (1,25}
where the chemical potential [ = p‘ - /2.

It should be observed that for zero voltage V = 0 current still
can flow, i.e., the Josephson device superconducts, The
maximum supercurrent density that can be thus conducted is JO,
called the critical current density of the junction, In the absence
of a directional influence in the junction (such as magnetic field
or voltage) we may set # = 0, In the presence of magnetic field

gauge invariance requires that
- [ A-du
1

where the integral is taken between the reference points for the
phase difference ¢ = Py = P
P2k
If by some means a voltage V = —— is maintained
across the junction, the Josephson equations indicate that the
supercurrent will oscillate at the frequency

_ 2
f = -5 v (1. 26)

The factor %‘i ' has the magnitude 484 MHz/pV. In addition
the voltage across the junction will also produce a flow of

quasiparticles across the barrier,

Iy = VR 7 (1.27)
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where R is the resistance per square of the junction., The total

current density through a Josephson device is then

J =1Jdg+Jy =7J,sind + V/R _ (1.28)
where
2e
§ = — Vdt
=] (1.29)

In the original paper by Josephson (Ref. 11) an additional so-called
pair-quasiparticle interference term was included, Its size is

currently under active scrutiny in many laboratories (Ref, 15),

1.4 The Phase Slip Model -

Whereas the weak coupling model deals with a situation
where two pieces of superconductor are separated by an insulating
barrier, Josephson phenomena have also been observed in
geometries where the barrier is not insulating., In such situations
the so-called phase slip process is believed to be respomnsible,

It is convenient to consider the case where a section of a super-
conducting strip is locally ''weakened'' by one of several techniques
(Ref, 16), The 'weakening'' leads to a local decrease in the
transition temperature compared to the surrounding superconductor,
Often the proximity effect (see section 1,2) is used to depress the
transition temperature in a section of the superconducting strip
and such structures are called proximity effect bridges (Ref. 17).
If the weak link is not much longer than the pair decay length

E’SN and the bridge is operated just above the transition
temperature of the weak section the decaying tails of the pair

wavefunction produce a small but finite pair density within the
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weak link (Fig. 1). To consider the behavior of the proximity
effect bridge it will be assumed for simplicity that the bridge is
sufficiently narrow to be treated as one-dimensional (Ref, 18),
In the absence of voltage the phase-slip model predicts that the
bridge behaves like an ordinary superconductor. When voltage
is applied the model predicts that a relaxation oscillation of the
supercurrent will occur, The gradient of the pair potential
maintained by the battery voltage and concentrated in the weak
link region accelerates the pairs until the depairing velocity
(Ref. 19) is exceeded, At that point the further existence of
pairs is energetically unfavorable and the pairs will depair.
(Such depairing is a non-equilibrium dissipative process and its
occurrence invalidates the assumptions (Ref. 20) of the weak
coupling model, ) Hé\vever; if depairing becomes complete in
the junction region, only normal current is conducted by the
bridge--a situation which is also energetically unfavorable, The
pair wavefunction therefore reforms but the reformed pairs have
a subcritical velocity, They are again raccelerated and the
process repeats itself, A rigorous treatment of this phenomenon
would involve the dynamics of pairing and depairing in space and
time (cf. the weak coupling model), A complete theory of the
phase-slip process is not currently available but attempts have
been made to extract the significant features, = These use the
time—dependent Ginzburg-Landau theory (Ref. 21) or various
forms of weak coupling theory with the inclusion of some non-

equilibrium effects (Ref, 22). The gist of the phase-slip theory
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and some results will be presented,

The weak link is treated as a superposition of an S-N and
N-S boundary separated by the length of the link (Fig. 1), For
zero current the pair wavefunction decays with decay length gSN
(see section 1.2) from both sides towards the center of the bridge.

Since the supercurrent density is (assuming the vector potential

R = 0)

Zepsﬁ

Jg = - —— Yo ' (1.30)

there is no phase difference across the bridge for zero super-
current, In order to change the supercurrent a voltage must be |
applied across the bridge since, by definition

. 2pp (1.31)

the total phase difference across the bridge will be

' t 2 =
B (HP2 upl)
f2 7% —C. - at (1.32)
o] h ;
The phase difference is not distributed evenly along the weak
link, At the center where the pair density is the smallest the

flow of supercurrent must be accompanied by a large phase

gradient, During the acceleration part of the cycle the phase

gradient increases until the critical value ]ch! ~ -§~1— is reached
SN '
at the center., In the GL theory the pair density is given by
e B g2
pg = 1 - £oqlvel : (1.33)
so that when |wp| = 1/§SN the pair density is zero and supercon-

ductivity breaks down at the center. This allows the phase to

slip by 27 and decrease the phase gradient so that a finite pair
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Figure 1, (not to scale) The distribution of pair density p along
a proximity effect bridge of length L.,
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density can be reestablished, Detailed models have been
constructed to describe the time-dependence of the supercurrent
under the phase-slip conditions (Ref, 21). According to these

models the supercurrent through the phase-slip center undergoes |

-a relaxation oscillation at the Josephson frequency w = -Z-:—V 5
The time average supercurrent density is
Jg = 0.5 - 0.6 J. (1.34)

where J_ is the peak supercurrent density (= the critical current
density).

Experimentally it is found that in a sufficiently short weak
link (proximity effect bridge) the oscillating current extends over
the entire length of the bridge L >> ESN’ even though the size of
the region over which supercondu-ctivity breaks down periodically
is expected to be only ESN’ This is not understood in detail at
present. A semiquantitative theory was worked out for the
situation where a phase-slip center (a small weak spot? ) is
located in a homogeneous superconducting whisker or thin film
strip (Ref. 23). In such cases experiments show thaj: oscillating
currents extend over distances ~10p.around the phase-slip
centers in tin whiskers and strips; This distance (~10pm in tin)
is thought to be the characteristic distance (eq. 1.20) for the |
relaxation of the quasiparticle chemical potential e and the pair

potential Hp to each other, i.e.,

2 M s
Plap-ig) = —o— (1.35)

MNap
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where A ~ 10pm in tin. Consistently with this equation, the

Qr

normal current distribution can be written as

e 8 _ Vo _-lx|/x
o ¥ T = oo ® QP (1.36)

g
N QP
where IX‘ is the distance from the phase-slip center and V is
the voltage across thé phase-slip center between points many KQP
distant from it (Fig. 2). For short weak links (gSN<< L << )

op!
the normal and supercurrents probably have little spatial variation
along the link since the S-N boundaries at the ends of the link
function as quasiparticle mirrors (Ref, 24) cutting off the exponen-
tial decay (eq. 1.36) before a significant drop occurs,

The spatial constancy of the supercurrent and the normal
current along a short weak link justifies the use of the two ~fluid
'modei of the weak link in which the voltage across the link is

assumed to be

(1.37)

where R is the normal resistance per unit width of the link, It

is the total (bias) current density and J the supercurrent density,

S’

is calculated at the phase-slip center, For weak links whose

length L ~ X\ substantial deviations from the simple two-fluid

QP
model are likely to occur,

In summary, the phase-slip model of a weak link describes
the periodic breakdown of superconductivity at the center of the

weak link in a region of size ~ gSN which causes the supercurrent

at the center to undergo relaxation oscillation at the Josephson
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The distribution of normal current J_ and the pair
(bp) and quasiparticle (;J,Q) chemical "potentials as a
function of the distance 'x from the phase-slip center
in a homogeneous superconductor (above), and in a
short (L. < LQP) proximity effect bridge (below).
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frequency w = 2:V . In a current biased weak link the

oscillation of the supercurrent is accompanied by the counter-
oscillation of the quasiparticle current. If the weak link is

shorter than the relaxation length X both the quasiparticle and

P
the pair currents are spatially uniform along the weak link and
follow the dynamics at the phase slip center, Accordingly the
time-average supercurrent density through the entire weak link
is given by equation (1. 34).

Kirschman, Notarys and Mercereau (Ref, 25) proposed that
experimental measurements on proximity effect bridges are
consistent with

J

JS = —2‘3[1+cos(2;1—erdt):| (1.38)

This waveform differs little from detailed theoretical phase-slip

waveforms (Ref, 21),

1.5 The Current-Voltage Characteristic of Josephson Devices

In the previous sections the weak coupling and the phase-
slip models were presented. The voltage in both cases was given
by the equation

V= R(Ip-Jg) (1.39)

where JT’ JS are the total and super current densities and R is
the resistance per square of the current carrying area of the
device, If the current is distributed uniformly acroés a uniform
junction area (cf. section 1.6) then

= » 1.4
V= R(L -1 (1.40)

s)

where R is the total resistance of the device and IT’ IS are the
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total and super currents respectively, In the preceding equations
the capacitance of the device has been neglected. Typically, for
- proximity effect bridges R = 0,1la and C < 1pF so that the shunt
capacitive impedance becomes important at f ~ lOlZHz = 103(}sz
In DC méasure'ments the time average voltage V is
measured, It can be shown (see Chapter 3) that for the weak

coupling model (Fig. 3) the time average voltage is

2 2
-1 (1.41)

<l
I
-
”

whereas for the phase slip model (Fig. 3)

= R\’IT(IT ~L} ' (1.42)

In both cases IC is the critical current, -i.e., the maximum

<l

supercurrent of the device at the given temperature. Asymptoti-
cally, for IT/IC >> 1 we obtain in the weak coupling model that

VvV - RIT

but in the phase-slip model

V s R(lp -1/2)

The term IC/Z in the phase-slip characteriétic. is _referred to as
"Excess supercurrent' and is a direct consequence of the non-
equilibrium nature of the model. Experimentally, R is roughly
the resistance of the bridge at a temperature above the onset of
any measurable supercurrent,. Excess supercurrent ~0,5 IC is
seen in proximity effect bridges (Ref. 26), ‘tin bridges and
whiskers and S-N-S junctions, It is not seen in insulating or

semiconductor barrier bridges,
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Figure 3. The I-V characteristics (normalized) of a Josephson
device of resistance R and critical current I_ in the
weak coupling model (solid curve) and in the phase-
slip model (dashed curve), The respective asymptotes
are also shown (thin lines).



23

Figure 3
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The addition of an RF current to the biasing current of a
Josephson device causes constant voltage 'steps'' to appear in the
I-V characteristic of the device (Fig. 4). The mathematical
details of this behavior are complicated but have been subject to
much investigation (Ref. 27). Physically the steps are a result
of phase locking between the external RF current and the oscil-
lating super_current of the bridge, accompanied by frequency
pulling, so that the voltage (and also the frequency of the super-
current oscillation) stays constant over a range of DC bias
currents. The phenomenon has been used in microwave and far

infrared detectors.

1.6 Quantum Interference Effects in Magnetic Fields

The phenomenon of quantum interference in magnetic fields
has been of much importance both in the understanding of super-
conductivity as a macroscopic quantum state (Ref, 28) and in
applications (Ref. 29). Experimentally it is ménifested by
periodic changes of the supercurrent as a functionr of magnetic
field. Fundamentally, the effects stem from the requirement of
gauge invariance of the supercurrent density.

The behavior of a thin film Josephson device (= bridge)
will be considered next, Suppose that a bridge is formed in a
thin superconducting film by local weakening of the superconductor
(Fig. 5). The structure will be described by a general phase-
supercurrent density relation (gauge invariant) |

L

2e [ A dx) ' (1.43)
] |

n

JS :JC f(tp"l'
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Figure 4. External RF (2 GHz) induced steps in the I-V and
dv/dl wvs. I characteristics of an experimental
- proximity effect bridge. The dashed curve is the ,
characteristic in the absence of external RF radiation,
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Figure 5, The geometry of a bridge of length L, width w, and
thickness d.
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where f attains a maximum value of 1 and @(y) is the phase
difference across the bridge between the points (0, y) and (L, y).
It is assumed that both the phase o and the vector potential

2 - (AX, A, A)) do not vary over the film thickness d. (In Nb-Ta

y’ |
proximity effect bridges d ~ 100;&, width w = 5-50 pm, L = 0, 3-

1.0 pm). The supercurrent variation across the thickness of the

film is therefore neglected and the supercurrent Ig is given by

X
Ig = J_d- j [cp(y)JrZh—ef Ax(y)dx:l dy (1.44)
(o]

—'&V

Expressing the transverse dependence of the phase as

y o
oly) = [ %ﬁdv + ©(0) | (1.45)

o
and using equation (l,7)

dy(y)/dy = 9y, (L, y)/dy - 8y, (0, y)/dy
(1.46)

Ze
By = g [J (L y)- 7.0, y)] - 5= [a (T, v)- A (0, v)]

y

the equation for the bridge supercurrent can be rewritten to obtain

- men(y)
Ig = I dj [ 0)-——J“A (0)dx T]dy
where _
) = 22| § . 2 [T 7. (0 )]d’] (1.47)
BY TR L) Zehp J Tyl y(0 ¥)1dy a

The quantity @B(y) has contributions from two sources: it includes
the magnetic flux through the part of the bridge between 0 and y
but in addition it contains terms due to transverse currents

screening the film at the two ends of the bridge from the bridge
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magnetic flux., In the absence of magnetic field, &(y) = 0 and

Ig = J_d-w £(p(0) = I_£(9(0)) (1.48)

For small magnetic fields such that @B(W/Z) g B the super-

current is

2
L Tl ,
IS = IC(O){f[cp(O)Jrz;ne Lof:ﬂt"&t@ + " ZB f”(cp(O))]} (1.49)
o
where /

o2  PIC @

] = = 3 d

B W—‘-!;V/Z L a

The dependence of the supercurrent on the magnetic field B can
be solved in a closed form if a sinusoidal current-phase relation
is assumed (Ref, 30)., In general magnetic fields decrease the

maximum supercurrent I, in a periodic fashion so that a diffrac-

S
tion-like pattern (Ref. 31) is seen as a function of applied
magnetic field B,

The behavior of two bridges joined in a ring (Fig. 6) is
simpler. It will be considered in the limit that the magnetic

field is small enough so equation (1.49) holds. The total phase

change along a circle going through the center of the bridges is
by = (89) p g HA®) g S H(AD) -y H(&R) o (1.50)
For path segments outside the bridges equation (1.7) holds, i.e.,

- m Ze ‘
% = - zans T EER (1.51)
so that

' + 3 (1.52)
bpg = (A) g~ (BP)p T S §R-ds - Ao

where the prime indicates that the bridge regions are left out of
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Figure 6, The superconducting quantum interferometer,
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aF B
the path integrals. The equation can be rewritten as

N 2e L m e s
Bog = 6)-6, - 5= §A-dl -5 ¢ 3. dz (1.53)

This time L

5. = Ze p 2,

5, = (o), p + 5 6[3 b

2 DC

is the gauge invariant phase which is the correct argument of
the phase-current relations. Ag, must be a multiple of 27,

otherwise the wavefunction would not be sringle—va.lued. So the

quantization relation is gotten as

2e = m i -
§,-8, = 2mn+=2 §R-d% + T ¢ 3. a2 , (1.54)

In this equation (jﬁ'K- d% is the total magnetic flux through the path
of integration consisting of contributions from external sources

and from the supercurrents in the ring. Accordingly,

@ & o]
~ B £, 5, . B
61—62 —Zﬁ(n‘[—@— + % + 3 (1.55)
o o o
where éE’ @S’ @K are fluxes due to external magnetic fields,
self-generated magnetic fields, and kinetic term respectively; and

@0 = h/Ze = 2x 10“15 Wb, At this point it is appropriate to

comment on the term @KQ For the bridges

2eV
h

5 = (1.56)

is the expression indicating that a voltage is needed to accelerate
the pairs and thus cause a phase change. In fact the pairs in
the rest of the circuit also have inertia, so that for the whole

circuit one gets

_d % & 2 m ' :
EMF = — $R-dl = 51782 = Zaks 393* dl (1.57)



-34-
The last term simpiy indicates that the EMF accelerates pairs in
the nonbridge parts of the ring as well. The total supercurrent
through the two bridges is (neglecting small "'single bridge' terms)

3, +%_ . +2
. D41 szmar s, zn K8
Cl CZ o)

) (1.58)

where the quantization condition (eq. 1,55) was used to replace

62. In an experiment the phase 61 is fixed by the external

current source, The maximum supercurrent IC that can be
passed through the interferometer at zero voltage is given by the

condition

5E = 0 (1.59)

-

The equation is in reality quite complicated because the ﬂux.
ter‘ms @S and @K depend on 61 through their dependence on
currents passing in the ring,

To illustrate some features of the interferometer dynamics,
the simple case of a symmetric interferometer is presented. Let

f(8) = sind and I =1 = Io‘ Then

C Cz
. +8 ,+8,
: : E "K °S
IS = Ic 511161 -IC sm(61 +72TY ——@O—-——) (1.60)

The diffraction terms can be included in Io for this case so that

: 5 2
I - 10(0)(1 - P @-132-) (1.61)
le]

Temporarily the terms éK’ @S shall be neglected, The maximum

supercurrent for the interferometer shows quantum interference:
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*E

Q
(o]

I = 21 |eos(m )l (1.62)

The current is equally divided between the two bridges, The

terms éK’ are in fact zero due to the symmetry of the

o]
S

geometry, (The asymmetric case is described in Chapter 2.)
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II. THE PHASE-CURRENT RELATION AT ZERO VOLTAGE

IN PROXIMITY EFFECT BRIDGES

2.1 Historical Background

The phase-supercurrent relation for insulating barrier
junctions was established to be sinusoidal (Ref. 1) soon after the
discovery of the Josephson effect, For thin film bridges the
situation remained confused for a loilg time, since in the naive
picture a bridge can reach its critical current with an almost
arbitrary phase difference alcross it, proportional to its length,
In 1970, Baratoff et al. (Ref. 2) presented a theory (based on GL
equations) according to which the phase-current relation is periodic
with a period of 27 but is sinusoidal 01113.,v in the limit of a wvery
weakly superconducting link, In the same year Fulton a.nd Dymes
(Ref. 3) investigated experimeﬁtally the current-phase relation at
zero voltage in Anderson-Dayem bridges, They concluded that
the current-phase relation is ''continuous, single valued'" and
"nearly sinusoidal' for critical currents smaller than 10 pA, In
1972 Bardeen and Johnson (Ref. 4) using microscopic theory
again proposed that the phase-current relation is sinusoidal for
normal metal barrier junctions in the limit of weak coupling but
is nonsinusoidal for strongly coupled junctions. In 1973, the
investigation of the phase-current relation at zero voltage in
proximity effect bridges was performed in our laboratory using
a method similar to the Fulton-Dynes experiment. The results
were presented at the American Physical Society meeting in

San Francisco, December, 1973,
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2.2 The Small Asymmetric Interferometer

The small asymmetric interferometer is the key element in
the Fulton-Dynes method of measuring the phase-supercurrent

relation, In terms of the interferometer equation (1.58) (Fig. 1)

8+ 5.4 %
=T $B:)% 1 f(Zﬂn-'rﬁ —ZHK—%——E)
1 cy ®

2.1
<, A (2.1)

S

"small'' means that the sum of the self-induced terms is small,
i & -+ " - 1! .
ie., &g @K < éo’ and "asymmetric'' means that Icl >> IC2° As

a first approximation, the critical current of the interferometer

I = such that the

o = e will be gotten by setting 61 = b

Imax
first term is maximized, The second term is thereby allowed
to vary as the magnetic flux from external sources is wvaried.

The modulation of the interferometer critical current by magnetic

flux is then

.+ 3 .+ &
__IS._M) (2_2)

Al =1 f(Zﬂn+6 -2
(= cy éo

lmax

Neglecti:;ig @K’ @S (kinetic and magnetic self-induced fluxes) in

the first approximation, the modulation is proportional to the
pha.se—current relation with the argument (Zﬂ‘n B 61rnax_ Zﬂ(@éEféo)).
Under these conditions a measurement of the modulation of the
critical current of a small asymmetric‘interferometer by external
magnetic flux is equivalent to measuring the phase-current relation,
If the phase-current relation is not periodic with a period 2m,

the integer n will affect the modulation curve when it changes,

The experimental realization of the ''smallness'' condition in a

strict manner, i,e., §S+ @K << @0 is difficult simultaneously with
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Figuré 1. The parameter & is defined as § = §K+ @S + 8
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SUPERCURRENTS IN AN INTERFEROMETER
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Figure 1
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the condition 1. >> ICZ. To show why, the fluxes will be written

1
in the form
@S = LS(I]. +12)
(2. 3)
@K = LK(I1 +IZ)
where LS’ LK are the self-inductance and the kinetic inductance
(section 1, 6) respectively, and I1 . I2 are the currents flowing through
bridges 1 and 2. Since 3 =2 x 10-15W'b, it would be necessary
to hawve
2 x 10" °Wb
L ='LK+ LS << Il+12 (2.4)

However, the typical current noise (Ref. 5) of proximity effect

bridges is ~ 0,1 pA so that the current I, >> 12 would have to be

~50 pA, i.e.,

-1 3
LetLg << 4x 107 H (2. 5)

The inductance 4 x 10'-ll

H corresponds to a linear dimension
~4 x 10—5m7 = 40pm. The dimensions of the interferometer
would have to be much smaller than 40 pm to satisfy the strict
smallness requirement,

A second approximation will therefore be used in which

) ® i 1 i

61max’ ® o and by are corrected to first order using the first
approximation, Since it is possible to make interferometers with
a diameter of 15p and ICl ~ IOICZ, the second approximation can

be introduced numerically after the approximate character of the

phase-current relation is known from a magnetic modulation

experiment,
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2.3 Sample Preparation

2.3.1 General procedure

A multilayered metal film is evaporated on an insulating
wafer under ultrahigh- vacuum conditions, Subsequently photolitho-
graphic techniques are used to mask selectively some areas of
the film. In unmasked areas the film is anodized to predetermined
depth so that a layer of anodic oxide i.s formed. For the manu-
facture of proximity effect bridges (Ref. 6) the top film layer of
higher intrinsic transition temperature is anodized away along a
narrow (Nl‘]\l.), rectangular area leaving the bottorm film layers of
lower intrinsic transition temperature as the only path of conduc-
tion. A bridge structure is thus formed where two areas of
unanodized film are joined by an area where the top layer of the
film is anodized away (Fig. 2). Other conduction paths (leads,
rings, etc.) can be delineated by complete anodization of the film
in places where conduction is not desired. In such films the
unanodized regions have a higher transition temperature than the
partially anodized regions while completely anodized regions are
insulating, |

2.3,2 The substrate and the film

A film-substrate combination for use in the preparation of
Proximity effect bridges and ancillary structures by anodization
(Ref. 7) must meet several requirements. .First, the film must
show a decreasing superconducting transition temperature in the
liquid helium range as a function of the depth of anodization.

Second, the anodic oxide must be stable and insoluble in the
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Figure 2. Diagram of a proximity effect bridge. The evaporated
Nb/Ta sandwich with thickness ts/tn is anodized in the
bridge region. The author uses bridges with tj = 0,
t1"1<tn and length £ = 0.7 - 1.0 pm, '
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reagents used during the preparation of the sample, Third, the
film should be tough and adhere well to the substrate, The fourth
requirement, while not critical in the interferometer experiment,
was nevertheless found useful in other applications: the substrate
should have a high thermal conductivity at liquid helium tempera-
tures to minimize the temperature rise due to Joule heating,

The following procedure has been used (Ref. 8) for inter-
ferometer samples., An inch by inch square, thin sapphire
substrate is cleaned by washing in chromerge, distilled water and
reagent quality acetone successively. The sapphi:lre chip is then
dried and placed into an ultra-high vacuum electron beam
evaporator.,r The substrate is heated to 400°C and when pressure
drops to the low 1572 range, 100-200 A of tantalum (Ta) is
evaporated followed immediately by 100-200 A of niobium (NDb).
The thickness is monitored by a Sloan monitor dxiring evaporation,

2.3.3 Photolithography and anodization (Ref, 7)

After evaporation the film is cleaned in chromerge,
distilled water and acetone again. Photoresist ('"PR'") (Shipley AZ)
is then spun on and test holes are exposed, The thickness of
the Nb and Ta layers is checked by slow anodization with a
voltage ramp. The empirical conversion constants between
anodization voltage and film thickness anodized to oxide are:
8 A/V for Nb, 6 A/V for Ta, yielding 15 A/V of oxide in both
cases. After dissolving the old photoresist with acetone, a new
layer is spun on and an interferometer ring mask is microprojected

(in reverse) through a x100 oil immersion lens. (50x diminution
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of the pattern is achieved.) The developéd PR pattern covers a
ring structure with two leads. Complete anodization removes all
metal film not covered by PR, leaving a thin film ring with two
leads. The manufacture of bridges proceeds similarly., A slit
pattern is microprojected through a x100 oil immersion lens into
freshly spun PR on one of the arms of the previously made ring
pattern. As a result, after developing, the PR is removed over
a strip ~1p wide extending across one arm of the interferometer
ring. Subsequent partial anodization removes the top layer of Nb
and some Ta through the gap in the PR. The second bricige is
made in the other arm the same way. In order to achieve
asymmetry of roughly the desired magnitude the two bridges are
made with somewhat different anodization voltages. A series of
interferometers is made on one substrate and the suitable ones
(IC2/1C1~ 1/10) are selected through further testing. Two of the
samples made by this procedure are shown in Fig. 3. These two.
were chosen from a total of eight complete interferometers and

were used for all the experiments described in this chapter,

2.4 The Measurement of the Interferometer Critical Current as

a Function of Applied Magnetic Field

After the manufacture of an interferometer is completed,
two wires are attached to each of the two interferometer leads by
pressed indium contacts so that a four-terminal measurement can
be performed. The interferometer is then mounted inside of a
solenoid with the plane of the interferometer ring perpendicular

to the axis of the solenoid, The solenoid is positioned at the end
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of a cryogenic probe and the probe is lowered into a cryostat,
Precautions have to be taken to limit AC and RF interference as
well as to minimize the effects of ambient magnetic field, These
precautions include the placement of the cryostat in a shielde;d |
room, the provision of a magnetic shield around the cryostat, and
the installation of a lead foil bucket inside the cryostat to create
a superconducting shield around the cryogenic probe.

An electronic feedback system is used to maintain the bias
current of the interferometer at its critical current even as the
critical current varies with the applied magnetic field (Fig. 4).
The operation of the feedback loop is described in Fig. 5. The
addition of an unchopped current source consisting of the voltage

source V_, and bias resistor R2 (Fig., 4) decreases the necessary

E
offset voltage Vp and thus lowers the operating point voltage V,
The operating point voltage is chosen to lie just above the high
curvature knee of the I-V characteristic so that as little distortion

of the critical current waveform as possible is introduced (Fig. 6).

The data are obtained in the form of an x-y plot with the horizontal

axis x proportional to the solenoid current IB and thus proportional
to the magnetic flux through the interferometer due to the solenoid,
The vertical axis y is driven by the output of the lock-in amplifier
(including its offset voltage VF) and is therefore proportional to

the critical current L of the interferometer. (Fig., 4). Since the

critical currents of the bridges are a function of the temperature

of the bath, I, vs. Is plots are recorded at several temperatures,
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(experimental tracing) The choice of operating point
of the circuit in Figures 4 and 5. The magnetic
fields Bmax and Bpip produce the minima and maxima
of the interference modulation of the critical current
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2.5 Data Analysis, Results and Discussion

Two interferometers (Fig. 3) were used to obtain the data
to be presented. They were selected because in both cases the
asymmetry ICZ/ICI was roughly 1:10 in the current range
0 < lc1 < 50 pA so that a compromise between the requirements
of smallness and asymmetry could be achieved,

Initial measurements indicated that the modulation was
roughly sinusoidal on a slowly varying background due to single
bridge diffraction (Fig. 7). No effects attributé.ble to the
periodicity of the phé.se-current relation differing from 21 were
seen (section 2.2)., At this point the approach was reversed.

The working hypothesis became that the phase-current relationship
is sinusoidal with a period 21, and an attempt was made to detect
any deviations incompatible with this hypothesis, There are three
causes of the interferometer critical currrent modulation deviating
from the sinusoid that are compatible with a sinusoidal current-
phase relation, The first of these is trivial: the single junction
diffraction term causes the overall background curvature of the
n;lodula.ted waveform, For this reason it was decided to' analyze
only the few modulation periods near the peak of the background
waveform where the variation is the slowest, The second effect
is due to the inductance of the interferometer ring L = LK-I- LS’
the sum of the kinetic and magnetic self-inductances (see section
2.3). As a result of kinetic and magnetic flux terms due to
currents flowing in the ring, the central peak of the modulation

pattern is shifted away from the point where the external magnetic
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field is zero, and a tilt is introduced into the modulation pattern
(Fig. 8). The .tilt is caused by the changes in L (the supercurrent
through the weaker bridge) as the external magnetic field is varied.
When L flows in one direction it increases the total flux through
the ring, in turn causing a faster rise of the current I, as a '
function of external magnetic field, When I2 reverses it produces
a flux term which diminishes the total flux causing a slower fall

in I, as a function of external magnetic field, Both a shift and a
tilt were observed in experiments with the two interferometers,
The shift should vary linearly with ICl, while the tilt should be
proportional to Icz’ with approximately the same proportionality
constants L' = L. Experimentally, this was indeed found to be

the case (Table 1), Finally, the last compatible cause of the -
modulation deviating from the sinusoid is due to imperfect
asymmetry IC1>> ICZ. With the use of trigonometric identities

the interferometer equation (2.1) can be rewritten to sho*;rv that the
lowest order correction (for a sinusoidal phase-current relation)

to equation (2.2) is

2
L

I

Cc

1
wj

ax ¢ = (2. 6)

1

This correction has a constant component and a component at the
second harmonic of the sinusoidal modulation pattern. The ampli-
tude of the second harmonic correction is -Iczz/4lcl.

Accordingly, the data, recorded in the form of IC Vs, IB

plots as described in section 2.4, were analyzed in the following

fashion, The curves were fitted with the analytical form
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The effect of inductance L of the interferometer
on the modulated waveform,
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(cf. equation 2.1)

L Cl 2
_{ (2. 7)
S L[s (T o L
IB = M [v_» - Llczsul(z - 27 @O)- @'J

where § is a free parameter corresponding to the total flux through

the interferometer and where ICI’ IC are the critical currents of
2

the two bridges, L is the inductance of the interferometer, g is

the flux quantum, MI_ is the flux through the interferometer due

B

to the solenoid current I and %' is the flux due to I1 =1 and

B’ ¢

the background B field, It should be noted that all of the

constants Icl’ I _, L, &', M are gotten by fitting. Internmal

<2
checks of the inductance L can be made by comparing data
recérded .at various temperatures (i.e., various critical currents
Icl, ICZ), In addition an independent measurement of L' = L

can be made from the shift of the central maximum with changing
ICl as the temperature is varied (i.e., L' = 8@'/81‘:1)_ A priori,
it would seem that the mutual inductance M of the solenoid and
interferometer in equation (2,7) can be calcqlated from the
geometry, However, the interferometer is in close proximity to
large contact pads of superconducting film, Since the supercon-
ductor is strongly diamagnetic the magnetic flux expelled from the
pads is concentrated in the interferometer, The mutual inductance
M therefore turns out to be much larger tha;l Mgeom calculated

neglecting diamagnetic effects (Table 1),

Finally, the deviation of the data from the fit (equation 2, 7),



sl
if significant, was compared to that expected from imperfect
asymmetry (equation 2.6).

The results are presented in Table 1 and in Figures 9 and
10, For the four curves analyzed in detail the noise amplitudes
N were from 2 to & percent of the modulation amplitude ICZ and
it is estimated that an incompatible periodic deviation would be
detected if its amplitude exceeded 5 percent of the modulation
amplitude IC . No such deviation was found in any of the data
studied,

It should be noted that this study was done on bridges at
zero voltage., Due to the onset of nonequilibrium behavior at
finite voltages extrapolation of the zero voltage phase-current
relation to finite voltages is not warranted., Additionally, the
phase-current relation is thought to depend on the strength of
coupling between the two superconductors separated ’by the normal
barrier, i.e.,, on the geometry and material composition of the
bridge. The '"coupling strength' of the theoretical models is
closely related to supercurrent density., In this study the super-
current density is estimated to be about 50-100 pA/}.Lmz which is
of the samé order of magnitude as the supercurrent density in
the typical working regime of most Nb/Ta proximity effect bridges
but about ten times higher than the current density in insulating
barrier junctions, It is likely that significant deviations from the
sinusoidal phase-current relation at zero voltage will not be

observed unless much higher supercurrent densities are reached,
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Figure 9, Comparison of an experimental trace with theory
(equation 2.7)
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Figure 10, Comparison of an experimental trace with theory
: (equation 2.7)
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2,6 Conclusion

The phase-supercurrent relation in proximity effect bridges
at zero voltage was experimentally determined using two asyrﬁ—
metric quantum interferometers., With supercurrent density in the
weaker bridge estimated at 50-100 VpA/}LmZ no evidence of
deviation from the Josephson phase-supercurrent relation Ig = ICSin6
was found., The experiment was sufficiently sensitive to detect
deviations as small as 0.05 I.-

From theory (Refs. 2 and 4) it is expected that the
deviation from the Josephson relation increases with the ''strength
of coupling'!, i.e., the supercurrent density in the bridge. The
supercurrent density in this experiment is typical of proximity
effect bridges in general but is about an order of magnitude
larger than the maximum in insulating barrier Josephson junctions.
Until any future evidence shows otherwise the simple Josephson
relation can be used to describe the zero voltage regime of both

proximity effect bridges and insulating barrier Josephson junctions.
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III. THE INTERACTION OF PROXIMITY EFFECT BRIDGES

WITH SUPERCONDUCTING MICROSTRIP RESONATORS

3.1 Introduction

When Josephson devices are made to interact with RF
resonators, the I-V characteristics of the devices (section 1, 5)
are modified, Usually, near the voltage corresponding to the
resonant frequency of the cavity, a step-like structure appears in
the I-V characteristic, To distinguish the structure from similar
"steps' induced by external RF currents (see secti;)n 1.5) the
resonator caused features are often referred to as ''self-induced
steps'., Their study is of interest both for the characterization
of Josephson devices and for device appiica.tions (Ref. 1). The
first experimental observation of self-induced steps was reported
by Fiske (Ref. 2) for insulating barrier Josephson junction
interacting with stripline type modes within the junction itself,
Subsequently self-induced steps in the I-V characteristics of
point-contact devices pla.‘ced in a cylindrical cavity were observed
by Dayem and Grimes (Ref. 3). In 1974 Levinsen (Ref. 4) saw
self-induced steps with a Dayem bridge coupled to a rectangular
microwave cavity, Since thin film bridges are planar devices it
was decided in this laboratory to use ''planar' resonators--micro-
strip resonators--for the ex.pIOration of the interaction of proximity
effect bridges with RF resonant systems. A preliminary report
on these studies will appear in the Applied Physics Journal
(Ref. 5).

Several goals have been pursued in this work, Initially,
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the technology of microcircuits with microstrips and proximity
effect bridges was developed. Secondly, the phenomenon of
self-induced steps was studied experimentally in these micro-
circuits and qualitatively compared to simple modeis. Finally,
an attempt was made to compare quantitatively the size and shape
of the steps observed in the experiments to those predicted from
two alternative theories of bridge dynamics and estimate the

amplitude of bridge oscillation in the GHz range,

3.2 Self-induced Steps--General Considerations

According to the two-fluid model (Ref. 6), a thin film
bridge can be considered as consisting of an ideal "junction
element'" and a shunting resistor. The junction element is a
voltage controlled oscillator which allows the flow of a super-
current

Iy =14 f(f‘z‘fzﬂdt) (3.1)
where f is a periodic function with period 2m and V is the voltage
across the bridge. In the current-biased mode the shunting
resistor R carries the normal part of the bias current I so that
the voltage across the bridge is

V = R - IS) (3.2}
" The voltage measured in the I-V characteristic of bridges is the

time average of equation (3.2), i.e.,

V = R(I - I.

s) (3.3)

In this model all the deviations from a simple resistive

characteristic



0
V = RI (3.4)

are ascribed to the time average of the supercurrent g Two

factors determine the 1‘nagnitud§ of the average supercurrent I—S“
The first is the intrinsic dynamics of the bridge, here represented
by the waveform f in equation (3.1). The second factor is
self-modulation due to the oscillating behavior of the time-
dependent voltage V, caused by the oscillations in the current
flowing through the shunting resistor R. The voltage V oscillates
about its average V thus alternately speeding the rate of phase
development when the supercurrent IS is negative (= opposite to
the bias cur'reﬁt I) and slowing the rate down when the super-
current IS is positive. This effect by itself increases the average
supercurrent I, beyond that given by the phase average of the

S

phase—suprercurrent relation IS = IC f(6). When a bridge is
strongly coupled to a resonator an additional shunting impedance
Z(w) is added to the bridge circuit (Fig. 1) to account for the
part of the bias current flowing through the resonator. Assurhing
that the real part of the resonator impedance is negligible (or
more accuratély, that the real part of the resomator admittance
is much smaller than 1/R) the amount of self-modulation will
change as the oscillation frequency of the bridge passes through
the resonance of the shunting resonator,

There are two simple cases of interg_ast. In the first case
the magnitude of the impedance Z(w) is much greater than the

shunt resistance R except near resonance o where Z(wo) < R,

Accordingly the I-V characteristic reflects the self-modulation
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Figure 1. The equivalent circuit of a proximity effect bridge of
resistance R shunted by a resonator.
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appropriate to the resistance R (as ifrthe resonator were absent)
except when the fundamental oscillation frequency of the bridge is
near the resonant frequency © - On resonance the shunting
resistor R is shorted by the resonator at the fundamental frequency
of the bridge oscillation and self-modulation almost ceases., (The
higher harmonics may still contribute a small amount of self-
modulation.) As a result the time average supercurrent TS is
lower at resomance than it would be in the absence of the
resonator. The time average voltage V is thus higher at
resonance producing an upward (convex) step in the I-V character-
istic (Fig. 2B). In the second case the resonatorrimpedance Z(w)
is much smaller than the shunt resistor R except near the
resonant frequency @ . (The situation is the reverse of the first
case.) The self-modulation is very small except when the bridge
oscillates at the resonator frequency. As a result the time
average voltage V is higher than it Would be in the absence of a
resonator except on resonance where it drops roughly to what it
would be in the absence of a resonator, A downward (concave)
step is thus produced (Fig. 2A). In both kinds of resonator-bridge
circuits the 'mraximur.n size of the self-—inducéd step AV is the
voltage difference at a given bias current I between the character-
istics of the bridge V(I) with and without the effect of self-
modulation,

This introductory discussion is oversimplified in several
aspects. The effects of noise have been ignored. Additional

complications stem from the multiple valuedness of the time-
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Sketch of a self-induced step in the I-V characteristic
of a bridge (Ig = I. sin §) of resistance R coupled to

a transmission line of characteristic impedance Z,.

In A: Zo ~ R/8, while in B: Zo ~ 8R, Dotted line
is the interpolated nonresonant characteristic. Dashed
line is the characteristic in the absence of a resomnator,
(Based on computer simulation, )
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average voltage V(I) as a function of the bias current for a
certain range of bridge and resonator parameters and from the
possibly anharmonic nature of the phase-supercurrent relation
Iy = Ic f(6). These topics will be discussed in section 3.5 where

S

a more detailed treatment will be presented.

3.3 Experimental Technique

3.3.1 The bridge-resonator circuit

The corupled bridge-resonator circuits were constructed on
single silicon or sapphire chips using superconductin;g micro-
circuitry techniques (Ref. 7). Four types of resonator circuits
were made (coded 1-4), In the type 1 (Fig. 3) a two-layer
niobium on tantalum (Nb/Ta = 280 A/Z()O-A) film was deposited
(see section 2. 3) on a sapphire chip to form a ground plane., A
dielectric strip (typ. 15mm x 2mm) was subsequently formed on
the ground plane by controlled anodization of the deposited film
to the depth of 30V (equivalent to approximately 150 A of Nb
converted into 450 A of Nb205) through a photoresist pattern (see
section 2,3). At one end of the dielectric strip a proximity
effect bridge (width 15u x length 1p) was made by further
anodization to the depth of 65V thrOugh another photoresist pattern,
This was followed by the formation of a contact pad to one side
of the bridge using complete anodization of the film to delineate
the pad. Then a 600 um wide top strip of 1200 A of Indalloy 11
was evapofated across the bridge and onto the dielectric strip,
The contact between the top strip and the ground plane is super-

conducting at one end of the bridge while at the other end the



Figure 3,

(not to scale)

o

The type 1 bridge-resonator circuit.

1 = sapphire substrate, 2 = Ta film
(260 A), 3 = Nb film (280 A), 4 = anodic
Nb,Og (~ 450 A), 5 = Indalloy 11 top
strip, 6 = contact area: top strip to
ground plane, 7 = proximity effect
bridge.
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anodized dielectric separates the ground plane from the top'
Indalloy layer forming a microstrip structure open at one end
terminated by a bridge at the other end. Mi‘crostrips similar to
the ones employed in the type 1 circuit, with the thickness d of
the dielectric comparable to the superconducting penetration depth,
were studied in detail by Mason and Gould (Ref. 8) according to
whom the characteristic impedance of these microstrips is given

by
o ey M
Zo - € d ev/c (3.5)

where d is the thickness of the dielectric layer, w is the width of
the microstrip, v is the phase velocity and ¢ is the dielectric
constant of the d‘lelectric layer. As a result of the high dielectric
constant (e =8-40, Ref, 9) and the inductive loading of f:he micro-
strip by the sﬁperconductor, v/c << 1 are measured in these
microstrips, Unfortunately the intrinsic Q of these superconducting
microstrip resonators depends on the detailed properties of the
materials used and may vary significantly from sample to sample
(Ref, 8). In the circuits used in this study the effect of the
intrinsic Q on self-induced steps was minimized by the strong
loading of the resonators by the resistance of the bridge (typically
loaded Q ~ 10 is aimed for). Due to technological limitations the
type 1 (anodized dielectric) microstrip is best suited for charac-
teristic impedances of 50 ma or less, while the typical bridge
resistance is 0.1 - 0.2n.

In the circuits of the second type (Fig. 4) the anodized
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‘Figure 4, (not to scale) The type 2 bridge-resonator circuit.
1 = sapphire substrate, 2 = Nb/Ta film,
3 = proximity effect bridge, 4 = germanium
dielectric, 5 = Indalloy 11 top strip. The
several samples had microstrips of width
0.1-1 mm, length 10-15 mm and dielectric
thickness 0.5-1 pm,
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B
dielectric was replaced by an evaporated high resistivity germanium
layer (typically S 1 pm thick)., First a bridge was made by the
usual procedure (Ref. 10) in a Nb/Ta film. Next the germanium
strip was evaporated across the bridge, Finally a strip of
Indalloy 11 (width 100pm to 1 mm) was evaporated onto the
germanium strip. The length of the tdp strip was set by the
removal of unwanted Indalloy by a combination of photolithography
and chemical etching, It should be noted that no contact is |
desired between the top Indalloy strip and the ground plane
containing the bridge. The resulting structure is a microstrip
70pen at both ends containing a proximity effect bridge in the
ground plane at the center of the microstrip segment. The type
2 circuits are most suitable for characteristic impedance ZO in
the 0.1an - 1an range. The top Indalloy strip can be selectively
chemically removed and reevaporated making it possible to vary
the characteristic impedance of the microstrip while retaining the
same bridge.

The third type of circuit (Fig. 5) used a2 high resistivity
silicon chip 0.4 mm thick as the dielectric, On one side of the
chip the top strip containing the bridge at the center was made by
a combination of photolithography, anodization and plasma etching
techniques (Ref. 11) in a Nb/Ta film (typ. 120 A/250 A), At the
same time the bridge leads were also made. The lead geometry
was chosen to minimize the loading of the circuit by the leads at
resonance, A ground plane film of several thousand ;ﬁ of Indalloy

11 was evaporated on the other face of the chip. This technique
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The type 3 bridge-resonator circuit, 1 = silicon or
sapphire substrate, 2 = Nb/Ta film, 3 = proximity effect
bridge, 4 = contact pads for bias (I) and monitor (V) leads.
The reverse side of the substrate is covered by an
Indalloy 11 film forming the ground plane.

Figure 5.
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is most suitable for microstrips of characteristic impedance Zo
greater than 5n.,

Finally the type 4 circuit (Fig. 6) was constructed to study
the resonant interaction of two proximity effect bridges in a
microstrip resonator. The circuit was made on a sapphire chip
0.25mm thick in a Nb/Ta film (72 1&/256 .Zi) by the technique used
for type 3 circuits. The two bridges were separated by 3mm,
and three superconducting bridge leads were employed for indepen-
dent biasing and monitoring of the two bridges, As before, the
ground plane on the reverse side of the chip was an evaporated
film of Indalloy 11 (1000 A).

3.3.,2 The measurement of dV/dl vs, I and

V wvs. I characteristics

In theoretical studies it is customary to work with the
V vs. I characteristic of bridges due to the convenience of
calculation, The d_\._f/dl vs. I characteristic was preferred
experimentally since it was easier to measure and gave better
resolution of small features, It was obtained by adding a small
AC component (i = 0,1pA RMS) to the DC bias current I
of the bridge and synchronously measuring the voltage
across the bridge with a lock-in amplifier (HR-8, Princeton
Applied Research) as a function of ‘the bias current I. In those
cases where a V vs, I characteristic was desired, the whole bias
current I was chopped by a synchronous chopper and the voltage
V was measured by the lock-in amplifier across the bridge. In

all cases a four-terminal measurement was employed,
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Figure 6, The type 4 bridge-resonator circuit, There are two
bridges in the microstrip. They can be biased and
monitored independently. The construction of the
circuit is otherwise similar to that of type 3 circuits,
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For all proximity effect bridges dV/dl vs. I traces were
obtained both before and after their inclusion in a resonant circuit,
Increasing and decreasing bias current sweeps were used to detect
péssible hysteresis, Both bias current directions were tested in
several samples to guard against possible offset in the bias
current,

To minimize RF interference and stray magnetic fields all
the measurements were performed in a shielded room in a cryostat
jacketed by a magnetic shield, The tip of the cryogenic probe,
where the bridge-resonator sample was located, was shielded by
a superconducting lead shield. To reduce the noise input through
the bias (I) and monitor (d\—f/dI) leads to the bridge, coaxial cables
were used in the cryogenic probe. In addition a 1Ka resistor
was placed into one bridge bias lead in the cryogenic space. A

transformer input (type B) preamplifier was used in all experiments,

3.4 Observations

3.4.1 Self-induced steps

Experimentally, ''self-induced steps' in the V wvs, I
cﬁaracteristic of a bridge coupled to a resonant system are step-
like features satisfying three criteria;

a) the steps occur 'in the absence of external RF signal

only when the bridge is coupled to the resonant system,

b) the steps are at voltages (frequencies) corresponding to

the modes of the resonant system, and

c) no steps are seen above the transition temperature of

the bridge (i.e., above the temperature where the bridge
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begins to carry a detectable supercurrent),

Self-induced steps satisfying these criteria were seen in the I-V
characteristics of bridge-resonator circuits of all four types,
Usually the first derivative of such steps waé recorded in the
d-'\_f/dl vs. I characteristic of these circuits where a convex step
showed up as a crest followed by a trough whereas a concave

step appeared as a trough followed by a crest,

The circuits of the first type contained a microstrip
resonator which acted as an RF short off resonance but had a
high impedance on resonance (relative to the bridge resistance R),
These circuits yielded concave steps (Figs. 7 and 8). On the
other hand the circuits of types 2-4 contained resonators with
relatively high impedance off resonance but their impedance on
resonance acted as an RF short for the bridge. These circuits
gave convex steps (Figs. 9 and 10). In all cases the knee of the
step was at a voltage (frequency) corresponding to a mode of
the resonator as-well as could be determined by a priori calcu-
lations, Commonly several steps could be observed corresponding
to the sequential modes of the resonator. The fundamental
resonances were in the 0.6 GHz - 4 GHz range depending on the
length and composition of the microstrip. The size of the steps
was a function of the critical current of the bridge (i.e., of the
temperature of the bath) with steps becoming more prominent at
higher critical currents (Fig. 10). When several steps were
present their amplitude would decrease with increasing mode

frequency until they became unobservable (usually above 10 GHz),
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The characteristics of a type 1 bridge-resonator
circuit (AF-1). The resonant frequencies are
sequential multiples of the lowest resonant frequency
f. = 0.7 GHz. Voltages V corresponding to the
resonant frequencies are indicated by arrows., The
characteristic impedance of the microstrip is
estimated as Z, = (30£20)mn (depending on the
assumed microstrip dielectric constant e¢), while

the bridge resistance is R = 135 ma.,
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Figure 8,

~02 .

The dV/dI vs., I characteristic of a bridge (AF-2)
before (top graph) and after (bottom graph) its
inclusion in a type 1 bridge-resonator circuit
(Z_. = 3020 man, R = 130 ma). Both traces were
recorded at the same temperature of the bath.
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The dV/dl vs. I characteristics of a type 2 circuit
(CIT 16 BC) at two different bath temperatures,
The most prominent step occurring at a bias
current 40-55 pA is due to the interaction of tle
Josephson oscillation with the lowest resonant
frequency £, = 1.9 GHz. The smaller steps are
due to the second harmonic of the Josephson
oscillation,
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The dV/dl vs, I characteristics of a bridge (0-1)
before (top graph) and after(bottom graph) its
inclusion in a type 3 resonant circuit (ZO = 5. B4,
R =170 ma). Both graphs were recordeéd at

the same temperature.
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In circuits 2-4, steps corresponding to the interaction of the
second harmonic of the bridge oscillation with the resonant modes
were also seen but their amplitude was relatively small (Fig. 10).
It was noted that the resonators with a lower loaded Q yielded
relativély broader steps in the bias current domain than those
with a higher loaded Q (cf. Figs. 9 and 10).

The type 3 circuits with the highest Q ( Q = 40 at 1.56 GHz)
were seen to be very sensitive to ambient RF interference, When
thé door of the screen room was opened the step size would
decrease and the steps would broaden. No such effect was seen
with circuits of lower Q, To account for these observations a
more detailed model of the interactio_n of proximity effect bridges
with microstrip resonators was developed (section 3,5).

3.4.2 Resonant interaction between two bridges coupled

by a microstrip resonator

Preliminary observations were made in one circuit of
type 4. The circuit contained two bridges approximately 3mm
apart at the center of the top strip of a microstrip segment
(Fig. 6). The two bridges were biased and monitored indepen-
dently of each other, The dV/dl vs. I characteristics of both
bridges showed a self-induced step corresponding to the lowest
resonant mode of the microstrip resonator, The size and shape
of the self-induced step of one bridge changed markedly depending
on the bias point of the other bridge (Fig. 11). Qualitatively,
the behavior of the system can be understood in terms of two

effects: first, the contribution of the impedance of the second
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The characteristics of two coupled bridges in the
type 4 circuit. Bridge 1 characteristics (graphs

A, B, C) are given as a function of bridge 2 bias
current (graph D). Bias points A, B, C correspond
to graphs A, B, C respectively, For bias below the
critical current of bridge 2 (A) maximum Q is
obtained. For step bias (B) the deepening of the
step in graph B is evidence of phase-locking between
the bridges., For bias (C) above the step the Q of
the step of bridge 1 is lower than in (A).
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bridge to the total impedance at the terminals of the first bridge;
and second, the phase locking between the two bridges when both
oscillate at the resonant frequency of the resonator. Accordingly
the characteristic of one bridge displays a self-induced step
corresponding to a resonant mode whose Q (and possibly frequency?)
depends on the bias point of the other bridge. When both bridges
are on resonance both display a characteristic which is a super-
position of a self-induced step with an externally induced step.

The system consisting of two bridges coupled by a
resonator is a rich (Ref, 11) and mathematically complex system.

Its detailed exploration, however, is outside the scope of this

work,

3.5 Self-induced Steps for a Simple Harmonic Phase-Supercurrent

Relation -- Theory

3.5.1 The model equations

Two kinds of phase-supercurrent relations are currently
used to describe Josephson devices (see Chapter 1), For devices
in \#hich the supercurrent flow at finite voltages involves tunneling
through a barrier or an equivalent process the phase-supercurrent
relation is (Ref. 12)

IS = 1(: sin & ' (3.06)

whereas for devices in which a phase-slip process occurs the
phase-supercurrent relation is believed to be (Ref. 13)

I

Ig = (1 + cos6) (3.7)

At finite voltages an additional so-called '"'quasiparticle
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interference' term is thought to play a role in tunneling devices
(Ref. 12). In proximity effect bridges quasiparticle interference
effects have not been observed to date (Ref, 14) and will not be
further considered here. It should be noted that regardless of
the phase-supercurrent relation the phase develops according to
the relation (Chapter 1) |

§ = =V - (348)

The two phase-supercurrent relations equations (3.6) and (3.7)

can for simplicity of writing be condensed for finite voltages as:

. W
I :Ic(l-—q+q51nj‘—$—th) (3.9)

S
where q = 1 is equivalent to equations (3.6) and (3. 8) while
q = % is equivalent to equation (3.7) and (3. 8).

Assuming the two fluid model for a bridge of resistance R

biased by a current source I, one obtains the integral equation
vV = R[I -I_(l-q+qgsin [ Zh—eth)] (3.10)

which can be solved to give

2
l -a
v = R -“-qﬂc]mﬁ; Rl
where
ql . 2eV (t)
a = I—WC and U.)O = S .

The bridge voltage V(t) can be expanded in a Fourier series

Vi) = Vo - V151nmot - Vzcos Zwot e L

where
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5 = = [ 15" 1+\/1_a2]

Terms V., and higher become negligible very rapidly as the

3
parameter a increases so that apart from a small region where
a = 1 the voltage oscillation can be well described by the DC
term, the fundamental and the second harmonic.

If the bridge is in addition shunted by a lossless resonator

with reactance iX(w) the integral equation becomes

[ =]
VO +n:1 Vn51n(mot+ 6n) =
® Vn
_qRIC sna[wot - I:L::l nVo cos(nwot + Sn):l (3.13)
2-0 RVn
+ n:l X(nwo) cos(nmot + 6n) + R[I - Ic(l -q)]
The Fourier expansion will be cut off at n = 2 as before so that

the equation can be transfcrmed into a set of coupled equations
involving Bessel functions., Retaining only Bessel functions up

to order 2 one can write:

Vo 1 Vl VZ V1 Vv

P .
SRE. = S+ T (5) T, 5g) cos 8+ T (577) Ty 57 ) sin(6,-6,)
C O (o] (o] o]
Y / A\ A%
1 1 1 2
gRI, " [Jo(v;)'Jz(v—())] Tolzv )08 %y

Vl Vl Vz
+ [JO(-\T)) + Jz(v;)jj Jl(—z‘{z) sin (52 —61) -+
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v v

1 2 '
) cos(262 - 361)

RPN
o] (o]

V]_ Vl Vl VZ
"X X {JO(V—)+ Jz(v—)} J (zv ) sinb,
[0 B ad le) o

Vl : Vl VZ
"[JG(—.V—) -JZ('V.—):] II(W)COS (62—61)
e} o] (e}

v, v
(V )JZ(ZV ) cos(26 - 361)
\s % v v
B 1 2 N
" @RI, Jl("v—)[%(ﬁ*) 'JZ(ETI—i'Sln(E’Z'Bl)
C o o (o]
J (—E} T (—V—2 0s &
16 Vol g ) w088,
o o
v s v
2 1 2 2
—— . = . T (—)[J (=) +J (—):I cos (6,-06,)
aX (20 )T _ 1V, | Te'2V 2'27 i
¥y ¥
+ Jl(—v—;)J (zv ) sind, {3: 14]

3.5, SteE size

Equations (3,12) and (3.14) can be used to calculate the
size of the self-induced steps in the harmonic model by deter-
mining the voltage difference Av‘max at a given bias current I
between the voltage VO = V with the resonator on resonance and
the voltage V _ with the resonator off resonance. (In experiments
the size of the steps Avmax is defined as the maximum voltage
difference between the experimental I-V characteristic in the
step region and the curve interpolated from outside the step

region, )
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As a first approximation the size of the self-induced step
is obtained by calculating the voltage difference at a given current
between the situation where the resonator reactance X is zero
and infinite respectively, The simplest case occurs when all the
harmonics can resonate simultaneously (e.g., in certain types of
microstrip resonators), The size of the self-induced step is then

AV —

max oL X)) = X(2,) = ... =0)

(3.15)

-V I,X(wo):X(Zm)=.“ == )

-
The first and second terms are the time averaged voltages in the
absence and in the presence of self-modulation, respectively.

Using equations (3.10) and (3.12) one obtains for this case

Avrna.:'x: 1 ]/ 2
qT = 'a— ° (1 - 1-a ) (3.16)
C

In the second case of interest only the fundamental frequency
resonates but the second harmonic interacts with a nonresonant
large reactance. The size of the step is calculated as

AV =V (L Xw)=0 X(2 ) ==)

(3.17)
= VO(I’ X(w()) = X(Zwo) = @)

and the effect of higher harmonics is neglected, The set of
equations (3.14) can be solved by successive approximation to

show that

Av
max

. qRIC

3

1 1 . B
£ §a+-8—a + O(@”) (3.18)

i,e,, to the order a4 the result is the same as for all the

harmonics resonating, If X(w) << R for w near 2@0 one obtains
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A\"fmax =V (L X(@,) = X(2 ) = 0) 3
- VO(I’ X(wo) — X(Zwo) = 0)
. -
Avmax 1 5 i
R - Zz® + O(a”) (3. 20)
[ A

The last case of interest occurs when only the second harmonic

resonates

AV . = V@ X,) ==, X(2,) = 0)

(3.21)
SV L X)) = ©, X)) = )

which gives

AV '

max 1 3 5 :
—CEI—C—' '§' a i O(a ) (3.22)

It can be seen that the second harmonic will resonate when the
Josephson frequency &, = 2e V/(ﬁ) is one half of the resonator
mode frequency and the size of the second harmonic self-induced
step is smaller by a factor of ~%a2 than the corresfxonding
fundamental step would be,

3.5.3 Step shape

The shape of the self-induced step in the harmonic model
is considered next, Due to the complexity of the equation (3.14)
only the lowest order terms exhibiting a self-induced step are
calculated, Accordingly equations (3.14) are approximated as

v v

o 1 1 1
= — 4+ = == cosd
qRI 2 2 vV, 1
v
1 = coOs 61

qRIC
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V.
: = sind
aX(w ) 1
v = 0 (3.23)

In this approximation the time average voltage VO is given by

1, 1
1+ RY/X%0)

- % - (3.24)
If the functional form of X(w ) = X(2eV_/#) is known the shape
of the self-induced step can be readily calculated.

The model circuits used in this work will bé discussed in
more detailrg The first circuit consists of a bridge of resistance
R shunting one end of a lossless microstrip of characteristic
impedance Zz, <R which is open at the other end., The reactance
of the microstrip resonator at the bridge terminals is

w
o]

X(wo) = -Z, cot (r 5

) (3. 25)

where () is the lowest resonant frequency, If W, is near the n-th

mode frequency nf{), the equation (3.25) can be approximated as

Zo _
X(wo) ~ '—w——— (3. 2.6)
Tr(—ﬁe - n)

where

The shape of the I-V characteristic in the neighborhood of
resonance is gotten by using the form (3.26) in equation (3.24),

i,e,,
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1
1+ 4Q2n2 (

¥ oL
qRIC a

< i a
2

(3.27)

zh%'\'r ] 1)2

where Q = TFR/ZZO and Q= n0 is the n-th resonant frequency,
The equafion is a cubic equation for V (the time average voltage)
in terms of 1/a (the dimensionless bias current) so that in
general more than one time average voltage may correspond to

a given bias current in the vicinity of resonance and the charac-
teristic contains a negative resistance region, Single valued I-V
characteristics V(a) or _\_T(I) result if

9!

af < 1.5 m (3. 28}
The voltage deviation An‘_f due to the n-th resonance can be
identified from equation (3.27) as
AT ' 1
n o4
QRT_ -~ "2 ° > o8,V aRI_ \2 (3.29)
l+4n " Q | =— + —= -1)
v av,
where
_ hQ _ _ 9qRI
V., = - and AV =7V - <
n 2e n a

and, as expected, for

b
<l

E

<< 1

<l
B

the width of the step in the domain of the dimeﬁsionless current
variable 1/a is proportional to the parameter Q,

The second model circuit has a bridge of resistance R
connected in series at the center of a lossless microstrip

segment of characteristic impedance Zo > R open at both ends,



-109-

The reactance of the microstrip segment at the bridge terminals

is w

X(w,) = -2Z_cot (53—

—Q—) (3. 30)

N

where, as before, () is the lowest resonant frequency. Following
the procedure employed in the previous case a single valued I-V

characteristic results if

hQ
aQ <1.5 ZeqRIc (3. 31)

where Q = ﬂZo/ZR . The voltage deviation of the I-V charac-

teristic due to the n-th resonance is given by

ATV : |
s : 1 +4(2n+1)%Q% A—-Y +qRI°(-“‘— . a) =1 : (3.32)
Vn Vn a 2 .

where only the lowest order term (in the dimensionless current
1/a) contributing to the self-induced step is shown. The sign of

the deviation An_\—f at resonance is the reverse of (3.29).

3.5.4 DNoise

In the above discussion the effects of noise on the shape
and magnitude of self-induced steps have been neglected, However,
as shown by Kirschman (Ref., 15), the b-andwidth of Josephson
oscillation in proximity effect bridges is determined by the
amplitude of noise voltage across the bridge, When environmental
sources of noise voltage are kept to a minimum the bandwidth of
the bridge oscillation is due to Johnson noise in the normal
current through the bridge. According to Kirschman the oscil-
lation bandwidth for a proximity effect bridge is given by the

equation




(3. 33)

where kB’ pi it IC, @0 are the Boltzmann constant, the temperature
of the bridge, the critical current of the bridge and the flux
quantum, respectively. If the oscillation bandwidth Af is much
smaller than the resonator bandwidth fO/Q, the noise will not
modify the self-induced step magnitude and shape appreciably,
provided that the theoretical I-V curve is single valued, If,
however, the bridge os‘cillation bandwidth exceeds the bandwidth
of the resonator, part of the power spectrum of the oscillation
will not couple to the resonator and the size A—vmax of the
self-induced step will be reduced, At the same time the sharp
features of the self-induced steps will be washed out or broadened,
If the theoretical I-V curve is multivalued in the absence of
noise, the effect of noise may be to induce transitions between
the several points on the I-V characteristic at a given bias
current I. Experimentally, a single averaged voltage may be
measured in such a situation, This would also reduce the step

size from the maximum value predicted from the noiseless model.

3.6 Results and Discussion

Both the size and the shape of self-induced steps Vobserved
in the I-V characteristics of bridge-resonator systems lend
themselves to comparison with the theory presented in section
3.5. To avoid the complications due to the possible complex
effects of noise (equation 3.33) and negative resistance (equations

3.28, 3.31) on the shape of the steps only the low loaded Q
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resonators were employed for the comparison., Two type 1
circuits and one type 2 circuit were thus chosen to obtain the
step size and shape data,

3.6.1 Step size

The type 1 circuits yielded mulfiple steps (at sequential
mode frequencies) enabling measurements of s-tep- size over the
range 0.7 - 2.7 GHz. Additional data on frequency dependence
were gotten by modification of one circuit of each type extending
the data to 3.2 GHz. The range of resonant frequencies and
bridge critical currents over which analyzable data could be
collected was limited by the small step size (relative to noise) at
low critical currents I, and high voltages V (V >> Rlc)’ and by
the extension of the lowest step into the cfitical current region
(7Q/2e ~ RIC) at high critical currents -IC or low first resonant
frequency (). Between these limits the step size (defined as the
maximum voltage deviation Avmax from the I-V curve interpolated
from the nonresonant portions of the I-V characteristic) was
measured by planimetry from the dﬁ/dl vs, I characteristic,

The step size Avmax thus measured was normalized to

AV RI_ and plotted against the normalized inverse bias current

max/
IC/I. Figures 12-14 show the normalized data in comparison
with the theoretical values (equations 3.15 - 3,20) based on the
two alternative phase-supercurrent relations.

It is readily apparent that the data p-oints fall between the

values predicted from the two alternative theories. The data

points at the lower voltages (frequencies) and lower critical
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currents are generally fitted better by the q = 1 curve (IS = Icsiné)
whereas the data at the highest frequencies and the highest
critical currents deviate significantly towards the q = 1/2 curve
I = I—2°—(1 +cos §)). '

This trend is interpreted as resulting from a true change
in the amplitude of Josephson oscillation in the proximity effect
bridges used in these experiments., At low critical currents
(£10pA) and low voltages (<3uV) the amplitude of the Josephson
oscillation is probably equal to the DC critical current of the
bridge. At higher voltages and/or higher critical currents the.
amplitude of supercurrent oscillation relative to the critical
current I is progressively reduced. These are indications both
from the present study and from the work of Franson (Ref. 14)
that at still higher voltages (> 6uV) the reduction of the amplitude
of Josephson oscillation with voltage continues., Franson deduced
the amplitude of the oscillating supercurrent from microwave
impedance measurements in a Ta/W proximity effect ;bridge of
dimensions similar to the bridges used in this work except for
the length (£ (Franson) = 0,5pum, £(Ganz) = 0.8 -1um). At the
frequency of 10 GHz, cri'tical current IC = 40 pA, bias current
I = 150pA and resistance R = 0,17 a he found that the amplitude
of the Josephson oscillation was (0.62 % 0,05) lc. At still higher
frequencies (2eV/# >> 10 GHz) the behavior of proximity effect
bridges is a strong function of their geometry (Ref. 16). In this
region the relaxation time associated with the length of the bridge,

and heating due to dissipation become the important parameters
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(Ref, 10),

The possible dependence of the phase-supercurrent relation
on the supercurrent density in the bridge was predicted by Notarys
et al, (Ref, 17) on the basis of a modified phase-slip model, The
dependence of the phase-supercurrent relation on the voltage v
across the bridge can be made plausible by the following argurﬁento
Evidence was presented in Chapter 2 that the phase-supercurrent
relation at V = 0 is I_S = IC siﬁS. The phase-slip model predicts
that at finite voltages IS :%(1 +cos &) holds, It is likely that a
transition region exists at intermediate voltages V where the
amplitude of the supercurrent oscillation is intermediate between
I and I /2.

3.6.2 Step shape

An important and sensitive check on the wvalidity of the
theoretical description of the origin 6f self-induced steps (section
3.5) is the comparison of the shaper of experimentally observed
self-induced steps with the theoretical shape (equations 3.26 and
3,31). The sensitivity of the test is increased by using the first
derivative dV/dI rather than the voltage V as the basis for
comparison, The theoretical points were obtained by the
numerical solution of the equation for the deviation An-\TT(I)

el
RI_ 2

Ic 1
- (3. 34)

ST RL-B_V . 2
1 +40Q [———— - 1}
B LR 1 2f21)
l'l:F C

where the upper signs were used for type 2 circuits while the

lower signs were used for type 1 circuits, The equation (3, 34)
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is an equivalent form of equations (3.29) and (3.32) for q = 1
(i.e., IS = Icsinﬁ). The parameter In is the bias current at the
center of the step and Qn' is the loaded Q of the n-th step. The

first derivative was also obtained numerically using the approxi-

mate form

- d(A_V)
dv n
= = —Se—3 R (3. 35)

For type 2 circuits, where the characteristic impedance
Z, of the resonator can be accurately determined from the known
dimensions only the current I, at the center of the step was
gotten by direct fitting. The parameters Ic and R were measured
from the portions of the dV/dI vs. I curve outside the resonant
regions while Q, = % Zo/R"

For type 1 circuits where the characteristic impedance Zé
was known only approximately, the parameter Ql was obtained
by fitting as was the current I , while Q was calculated from
the equation

Qn = nQ, (3. 36)

Figure 15 shows the typical data for relatively low critical currents
and voltages. At higher voltages (V > 5uV) and higher critical
currents (IC > 10pA) the agreement between the data and the
theory deteriorates, presumably due to the progressive decrease
of the amplitude of the oscillating supercurrent compared to the
criticél current IC.

3.7 Conclusion

Self-induced steps have been observed in the I-V and %}r
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vs. I characteristics of proximity effect bridges strongly coupled
to superconducting microstrip resonators. The characteristic
impedance of the various resonators ranged from 10mn to 6 o
with bridge resistances 0.1-0.2 . Steps corresponding to resonant
modes from 0.7 GHz to 10 GHz have been seen. Small steps
generated by the second harmonic of Josephson oscillation have
also Been observed in several samples.

For low critical currents (Ic < 10pA) and low voltages
(V < 3pV) the size and shape of self-induced éteps agree with a
simple two fluid model assuming the phase-supercurrent relation
IS = Icsinﬁ, The deviation at higher voltages ana/or critical
currents towards the model which assumes the alternative phase-
supercurrent relation IS = _ZC__(l +cos §) is interpreted to indicate
a progressive reduction (relative to the critical current IC) of

the amplitude of Josephson oscillation with increasing voltage v

and critical current IC.
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The normalized step size as a function of inverse
normalized bias current for a type 1 bridge-
resonator circuit (AF-1), The theoretical curves
were calculated from equation (3.16 ). The frequen-
cies f., f, and f, are the frequencies of the first
three step resondances., Experimental points are
labeled by the critical current I in pA. The bridge
resistance varied from R = 140%na at I_ = 3,2 pA

to R = 130 mna at I_ = 8,2 pA. The chiracteristic
impedance of the 'microstrip is estimated to be

Z, = (30£20) ma.



-117-

21 O.Hﬁm.mrﬂ

(AT ©b) ZHO |'2=51 x
(AT 62) ZHO ' | =24 +
(ATG'1)2ZHD €2°0= 1} o

|-4V-

<0

_ m

°14/AV

c0



Figure 13,

-118-

The normalized step size as a function of inverse
normalized bias current for a type 1 bridge-
resonator circuit (AF-2), The theoretical curves
were calculated from equation (3.16). The second
set f resulted from modification of the micro-
strip a.f%er the first set of data was obtained. The
bridge resistance varied from R = 135 ma at I =
4,5pA to R = 125 ma at I_ = 12,2 pA, The clarac--
teristic impedance Z0 =2 (3?)i20)mn as in Fig. 12,
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The normalized step size as a function of inverse
normalized bias current for a type 2 bridge-
resonator circuit (CIT-16BC). The theoretical
curves were calculated from equation (3.20). The
higher frequency data were obtained after microstrip
modification., The bridge resistance varied from

R =100maatl = 3,5pA to R = 90 maatl =
14,5 pA., The characteristic impedance could” be
determined accurately in this case to be Z_ =
(240420)mun. - ©
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The comparison of theory (equations 3,34-3,36) with
experimental dV/dl vs. I traces. In graph A the
theory (dots) corresponds to O, = 4 as determined
from best fit (expected Ql = Tr]'R/ZZO = 12%8). The
Ql in graph B was calculated a priori to be Q
="mZ /2R = 4*0,4. The theory (dots) corresponds

to Ql° = 4,
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