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Abstract

Motion of a block on flat ground under the influence of gravity is studied.

A general model is introduced for the free motion of a rectangular, rigid block on a continuous,
perfectly elastic foundation. The model includes friction forces between the block and foundation
and allows for sliding, rocking and flight of the block. Solutions are obtained through numerical
integration. A three parameter study is carried out, namely as a function of aspect ratio, r, coefficient
of friction, u, and non-dimensional stiffness, k_, for various initial conditions.

Dominant types of response are identified and the stability of the block against overturning and
its tendency to fly are studied. For initial conditions with sufficient energy, critical curves are found
in the (k.,r) parameter space which define a transition between a flight and no flight region. For
initial conditions with sufficient energy there also exists a critical curve in the same parameter space
which separates a region of overturning from a region where the block dees not overturn.

Chaos is found in the flight region of the (k- r) parameter space for sufficiently high r. Poincare

maps and Liapunov exponents are computed to document the existence of chaos.
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Chapter 1

Introduction

Why study rigid block dynamics?

Rigid block dynamics is a rewarding subject. A simple, common object like a rectangular block can
behave in a variety of different ways when interacting with even such a simple environment as an
elastic half space.

Consider the following ‘experiment.’ Take a rectanpgular block composed of a hard material
having dimensions 1x5x10 em (i.e. a brick.) Place the block on a flat surface, for example a table.
Rotate the block a little with one corner remaining on the table and release it. Depending on the
block’s %?f ratio you will observe quite different behavior. To i)e more specific: if the block’s
dimensions in the plane of rotation are 258K o 10 the biock will rock back and forth a few times.

The rotation amplitude will get smaller and eventnally the block stops moving. If the dimensions

are 2240 — 10 the block will bounce only once, jump forward and immediately stop. If hefght — &

the block is likely to clear the table and fly shortly before stopping. In the first described case it
took a few seconds, while in the latter two cases the block stops almost immediately. The moral is
that the block displayed qualitatively different behavior due to the change of only one parameter -
its aspect ratio.

It is our goal to develop a simple model of the block simulating to some extent real world
behavior, such as the situation described above. Studying dynamices of a rigid black is interesting
from a purely academic perspective: finding and understanding why and how a simple block may
hehave in a complicated way.

At the same time, the subject of rigid block dynamics definitely has a wide application. Many
man made objects are block-like: starting with a box of matches and ending with & high rise building.

An immediate application of considerable importance is performance of rectangular structures or



objects during an earthquake. Some important questions arising in this context are: Will the given
rectangular object overturn when subjected to a certain ground acceleration? How can we prevent
overturning? What will be the acceleration of the object during the earthquake induced motion? Is
the block going to slide? What will be the final displacement?

Objects, whose earthquake response is of prime interest to engineers, include towers, nuclear
reactors, base isolated buildings, statues, monuments, and on a smaller scale, laboratory or hospital
equipment, computers, precious museum pieces ...and the list goes on. Undoubtedly, the reader

can think of other examples.

Previous work

Rigid objects overturned in an earthquake can be seriously damaged, say when a TV set or computer
overturns and falls dovg:n from a shelf. They can also hurt people, s when a piece of factory machinery
falls on somebody. Due to importance of such earthquake related issues most studies in rigid block
dynamics were geared towards earthquake applications.

Previous studies dealt mostly with foreed vibrations and could be divided along two lines of
research. The first line of research, represented mainly by the work of Psycharis [1991] and Yim and
Chopra [1983), considered SDOF (single degree of freedom) structures on an elastic foundation. The
structure, subjected to horizontal ground motions, was attached to a rigid mat. The mat was allowed
to uplift. The foundation was represented by two spring damper elements placed at each corner of
the foundation mat or by continuous spring damper elements distributed over the entire mat width.
The main goal was to study the influence of foundation mat uplift on earthquake response.

The second line of research, undertaken by many authors, considered a rigid block rocking on
rigid ground, where impact treatment was based on the assumption that the angular velocity after
impact equals the angular velocity hefore impa,ct times a restitution coefficient ranging from 0 to
1. Among the more recent publications, we highlight a complex investigaﬁon done by Shentonlll
[1990] and by Jones and ShentonIII [1990]. The authors developed a model of the block allowing for
metion in any of five modes of response: rest, slide, rock, slide rock, and free flight. The block was
excited by a harmonic force or by impulsive periodic loading. For the interested reader, Shentonlll
[1990] also includes a detailed survey of previous research on the subject. Other articles in the field
include Koh and Spanocs [1986], Spanos and Koh _[1984]_~ Andreaus [1990], Matsui ef al, [1991) and a
series of articles by Hogan [Hogan, 1994a), [Hogan, 1992b}, [Hogan, 1992a], [Hogan, 1994b).

Research on chaotic aspects of rigid block dynamics hag been recently presented by Vim and Lin

[1991b), Yim and Lin [1991a] and, in analytical treatment, by Bruhn and Koch [1991].



Our model and objectives of work

We model a rigid block moving on an elastic ground in 2 dimensions. Naturally, a 3-dimensional
study would be moré"iegliétic and very interesting but far more difficult so we leave it just as a
possibility for future work. To our knowledge, no study in 3 dimensions has been published so far.

The block is rectangular and rigid in our model. The foundation is a continuous, elastic half
space commonly called & Winkler foundation. Interaction between the two is realized by a vertical
foundation reaction force and by a horizontal friction force resisting motion of the block along the
foundation surface. We do not put any damper elements in the foundation and do not apply an
external time dependent excitation to the block. Energy can be dissipated only by friction forces.

The block does or does not slide horizontally depending upon the available friction force acting
at its lowest corner. Such treatment results in a dynamical system switching between 4 and 6
dimensions. The equations of motion are different in the two cases, therefore we introduce the
notion of ‘contact’ and ‘slide’ modes. Also, the special case of zero friction removes any horizontal
force resulting in a 4-dimensional system, The block is allowed to fly as well. By defining appropriate
transition conditions the block can switch to either of the modes or flight.

Thus, the formulated model combines an elastic coniinuous foundation, as in Psycharis [1991),
Yim end Chopra [1983], with treatment allowing for motion in different modes, as in ShentonIIl
[1990]. The presence of an elastic foundation allows us to introduce fewer, but more general modes
than in ShentontII [1990].

We aim at creating a simple model which would allow for general, unrestricted types of motion
and treat impact without a restrictivé coefficient of restitution. Our objective then is to use the
model for a general investigation of rigid block dynamics. While the present work is not concentrated
around a specific area like earthquake engineering, the results are applicable to it. The reader can
argue that since our model incorporates neither external excitation nor damping it little resembles
motion of the block in an earthquake. But does a harmonic excitation describe earthquake ground
motion better than a single initial pulse? An initial impulse can be translated into appropriate initial
conditions, just like the ones we later call ic2.

The beauty of numerical simulations is that a model can be easily altered. Thus, we can add
damping, make friction proportional to the square of velocity,...or even incorporate an external
force on the top of existing code. Tt is a beauty of mechanics that a simple model, where all physics
limits to mz" = f and the concept of friction, can show rich behavior - including chaos. Let us see

that on the next pages.



Chapter 2

Analytical model

~*

The physical systemn investigated consists of a block moving on a flat horizontal surface. The block
is subjected to initial conditions such that it moves only in 2 fixed vertical plane. Motion of the
block evolves under the action of gravity and interaction with the ground. The block and ground

interact only when in direct contact with each other. There is no ground acceleration.

2.1 Model

2.1.1 Block, foundation and the range of motion

‘We model the physical system in 2 dimensions. The block is modeled as a rigid, rectangular block of
height a arid width b. The mass of the block is m and is distributed evenly in the block. Therefore,
the ceriter of gravity of the block is at its geometric center and its moment of inertia, 7, about the
center is given by I = (a? + b*)m/12.

The grourid is modeled as a Winkler foundation, only vertical stress, no shear, is considered. The
foundation is elastic, and there is no viscous damping present. The stiffness constant characterizing
the foundation flexibility is denoted as k. That means to hold a horizontal foundation strip of width
dv at the depth s below the foundation surface we need to apply the force df = ks dv.

‘We assutne range of motion such that at most two corners of the block sink under the foundation
surface at a given time. Motion of the block is observed only up to a point of overturning. By
the point of overturning we understand a position when the diagonal of the block is vertical. Only

blocks with their height longer than or equal to their width, i.e., ¢ > b are considered.



Figure 2.1: Block and foundation

2.1.2 Block foundation interaction

If the whole block is above the foundation, there is no interaction between the two.

When part of the block is below the foundation surface, interaction between the block and the
foundation is modeled by two forces: the vertical R, and the horizontal R..

The horizontal force K. is the conventional friction force which resists the horizontal motion of
the block along the foundation surface. It is the only horizontal foree introduced in the system. We
let R; act only at the lowest corner of the block. This assumption simplifies the model and implies
that no energy is lost while the block rotates about its lowest corner. Let the friction between the
block and the foundation be characterized by a coefficient of friction y, then |R;| € uRy.

The vertical force R, is the resultant of all the vertical forces the foundation exerts on the
block. These are the forces which push the block up out of the foundation. Now we determine
the magnitude and the line of action of R,. Refer to Figure 2.2 for the following derivation. Let
us consider a connected rigid 2-D object with a piecewise smooth boundary sinking in a Winkler
foundation. By the definition of a Winkler foundation, each foundation strip of infinitesimal width
dv compressed to the depth s below the foundation surface will contribute an infinitesimal vertical

force df = ks dv pushing the object up. Vector summation of all such forces is H,. We have

R, = j;z ks(v.)dv = k]jz s(v)do.



Figure 2.2: Winkler foundation

Let the position of the line of action of By be given by @ with respect to the employed coordinate

system. We find # from the moment equilibrium about the origin of the coordinate system:

Ryz = /v * vks(v)do.

1

Clearly " "
fo1 vhs(v)dv [ vs(v)dv

By - j"f s(v)dv.

v

r =

Thus,  is simply an x coordinate of the geometric center of the region, where the elastic foundation
was displaced by a rigid object sinking in it. The vertical force R, acts at the geometric center of
that region.

Hereafter we refer to the region, where the elastic foundation was displaced by a rigid object,
as the Region. In Figure 2.2, the Hegion is the part of the picture below the surface(s > 0), lightly
shaded. The magnitude of R, is the area of the Region multiplied by theé stiffness constant k. Note
that Region consists not only of the part of the obiject under the surface, but also of any vertical
gap between the object and the surface. In Figure 2.2, such a gap is of triangular shape and on the
left side of the rigid object.

We can summarize our kiiowledge about R, in the following: R, is a vertical force larger than
zero acting &t the geometric center of the Region. Let the area of the Region be given by afea, then
Ry = karea.



2.1.3 Equations of motion
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Figure 2.3: Block foundation interaction

The block is a rigid body moving in a 2-dimensional plane. To describe uniquely its motion, we need
three variables, let us call them =(t), y(2), w(t). Time ¢ is the independent variable, =(#) and y(t) are
the x and y coordinates of the center of the block in the usual Cartesian coordinate system. The x
axis is alipned with the fonndation surface and points to the right, the y axis points vertically up.
The third variable, w(t), is the angle of rotation of the block. The rotation angle w(t) is measured
from a horizontal line counterclockwise to the line paesing through the bottom edge of the block.
Now we can write three simple equations of motion for the considered system. The equations,

it terms of chosen variables, are:

mi(t) = KR,
mj(t) = Ry—mg
Iwlt) = Hgag + Hyay,

where @, is the dilference between y (ibe y courdinate of the center of the block) and the y coordinate
of the point where R acts. Similarly, a, is the difference hetween £ (the x coordinate of $he center
ol ¢he bluck) and the x coordinate of the point where R, acts. Note that a. is always positive but

a, can be negative to account for the correct sign of the moment R, a,,.



2.1.4 Non-dimensional analysis

‘We rewtite the analytical formulation of the problem in a non-dimensional form. This will determine
the relevant parameters in the problem, thus reducing the number of parameters needed. This
a.pl;roach also clarifies and simplifies the equations.

First we perform a ron-dimensional analysis to determine how to combine existing parameters 1o
form a smaller set of new non-dimensional parameters. Subsequently we introduce non-dimensional
variables and rewrite the equations of motion in a non-dimensional form. From now on we work with
only non-dimensional constants, parameters, variables and equations. All newly introduced variables
and equations will be non-dimensional. As a notational convention, we attach an underscore - to
2 symbol to distinguish it from its dimensional counterpart. For example, the x coordinate of the
center of the block, # is a physical quantity length using unit meter. Its non-dimensional counterpart
of unit 1 is =/a, described hy a symbol z.. 8o 2_ = z/a and similatly y_ = y/a, etc. However, if there
is o need to put - at the end of a nonu-dimensional symbol to avoid double notation we do not do
50. For example, the non-dimensional aspect ratio  given by r = b/a does not need an underscore -
attached to it. Neither does the coefficient of friction u or the angle w (measured in radians) which
are from the outset of dimension I.

The non-dimensional analysis is omitted here. We merely state results, Both the old and
pew parameters and variables are presented in Table 2.1. The derivative dz/dt with respect to
time t is written as &(t), whereas the derivative with respect to non-dimensional time 1. is written
as z./(t.). The original six parameters are reduced to three non-dimensional parameters: p, r,
k_. Only the variables ¢, z,y,tw,#,¥,% and their non-dimensional counterparts are presented in
Table 2.1. All other variables are put in 2 non-dimensional form in a similar manner. For example,
Ry = R,/mg. The new variables z.,y.,w are functions of non-dimensional time t.. That is
v (b ),y =y (2 )= ow(t). The new parameter & has a nice physieal interpretation: a block
of unit height will sink 1/k. units deep under the foundation surface when resting in a vertical static
equilibrinm. Now we can state the equations of motion in terms of the non-dimensional parameters

and variables:

2’ = R (2.1)
g = Ry.—1 (2.2)
Iw" = Rya, +Ryuo,, {2.3)

where I. = I/ma® = (1 +r2)/12.



old  dimension | new _ dimension
a m
b m r=bfa 1
Parameters | m kg
g m/s?
" 1 7} 1
k kg/ms? | k. = kab/mg 1
¢ 5 t.=t\/g/e 1
z(£) m 2.(t.) = z(t)/a 1
#(%) m/s z.!(t.) = &(t)/ /ag 1
Variables | y(t) m v-(t.) = y(t)/a 1
§t)  wfs () =9)/aE 1
w(t) 1 w(t.) 1
w(t) 1/u w'(t.) = Wa/afy 1

Table 2.1: Parameters and variables

2.1.5 'The right-hand side

To fully deseribe the analytical model we must express R,_, Ry, 0, ,a, on the right-hand side of
equations 2.1, 2.2, 2.3 in terms of the variables z., y., w.

First consider a simple case when the whole block is above the foundation. There is no interaction
between the block and the foundation. Therefore B, = Ry. = 5. = dy- = 0,

Tn the other case, when a part of the block is under the foundation surface, we can evaluate

Ry, a4, ay- solely from the geometry of our model. Directly from Figure 2.4 or 2.5, we see that
az{w) = acos(w)/2 + bsin(w)/2 for w > 0.
Clearly for w « 0 the figure is symwetric and
az(w) = acos(—w)/2 + bsin(—w)/2 for w < 0.
Thus, after dividing by a the formula for &, can be stated in a non-dimensional form
az-(w) = cos(w) /2 + rsinf]w|)/2,

which holds for any w.
Now we determine a,- and area.. We need to determine area- since R,. = k.area—. We have to
figure out the x coordinate of the geometric center of the Region to get a,- and area of the Region

to get area.. The derivation is lengthy and therefore omitted, we only state formulas for a,- and
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area.. Formulas differ depending on whether only one or two of the corners are below the foundation
surface. Declare:

position type 1 exactly one corner of the block is under the surface
position type 2 exactly two ¢ornérs of the block are under the surface.

A drawing of a block in each position and corresponding formulas for a,.- and area. are shown
in Figures 2.4 and 2.5. For a,. the - sign holds for w > 0 and + sign holds for w < 0. The sign
ensures the correct orientation of the turning moment R, a,_. Let us verify the formulas for two
special cases. For w = 0 we correctly get in position type 2:
area-=1/2 — y_ a;-=1/2 a,-=0.

The position when exactly one corner is at the surface and exactly one is under the surface is both
type 1 and type 2. In such 2 ‘border’ position, area. computed in type 1 must be equal to areq.
computed in type 2. Also a,_ must be the same computed in type 1 as in & type 2 position. Indeed,
in ‘border’ position

zoin[w|

type 1 area- = type 2 areq- = === and
type 1 ay- = type 2 a,. = tegsw _ simjul _ roiglul(conw _ sinluy

Finally let ns state the relations which hold ¥V 3_,w :

area.(y-,w) = area.y. —w)
area.(y,w) = 0
Ge-(w) = ap{~w)

ay-(y.,ur) = _a'!!"(y'! —-‘HJ}.

These relations follow from the formulas for area.,a,-, iy and are in accordance with the physical

meaning of those quantities.

2.2 Modes

‘We have elrcady determined ae-, ay—, I2y- in terma of y., w. In order to express the right-hand side
of the equations 2.1, 2.2 and 2.3 in terms of the variables z_, y., w we have yet to determine R,...
If the whole block is above the foundagion surface, the block is in flight and R;.. = 0.
If not, then part of the block is below the surface and R,. is the friction force resisting horizontal
motion of ti.us block along the foundation surface. The value of R,- can be any real number satisfying

|Re-| < pRy-.
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Bay the bottom of the block s sliding and the lowest corner of the block is moving to the right,
that is in the positive x direction. Then there is a horizontal force E._ acting at that corner against
such motion, thal is acting io negative x direction. The magnitude of R, is given by R;- = pRy-.
Suppoese the horizontal motion of the corner stops and block starts rotating about that corner. What
will be the value of R, now? Furthermore, since the block rutates now about its corner, the variable
z.(t.} can be stated in terms of w(t.). One degree of freedom is lost.

Clearly one must account for different regimes (modes) of motion of the black. We introduce
two basic modes of motion: slide mode and contact mode.

We will use frequently the terms ‘lower left corner’ and *lower right corner.” When the block
rests at a vertical position w = 0, we label its four corners as lower left and right, upper left and
right corners, according to their physical position at the momeni. "Lhe corner's label remains the
same as the block moves even when the physical position of the corner may not correspond to the
label at some time. For example, a corner labeled as the lower left corner will be still called lower
left corner even when the blocks turns +90 degrees and the said corner is now physically the lower
right corner. On the other hand, the term ‘lowest corner’ means exactly what it says. At a given

time, the lowest corner is the corner positioned vertically lowest of all the corners.

2.2.1 Slide mode

Ly = x coordinate of the lower left corner

= x coordinate of the lower right corner
w>0 &=z —~1/2(rcos(w) — sin(w)) #0
w<0 af=2a!+1/2rcos(—w) — sin{—w)) #£0

Figure 2.6: Slide mode

Definition:
The black is in slide made if part of the block is helow the fonndation surface and at lesst one of
the following is true:

i) horizantal velocity of the lowest corner is nonzero

i) p=0.
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Sliding here does not imply purely borizowtsl translation of the block dlong the surface with
y.! = 0 and w' = 0. The block can move horizontally (z_’ # 0), vertically (y. # 0) and can also
rotate about its center (w' # 0) while sliding. Case 1) is the usual way of slide mode cugagement,
when friction developed between the block and the foundation is too small to prevent sliding of the
lowest corner (Figure 2.6). In the special case of g = 0 the lowest corner will move horizontally
for most initial conditions. We state u = 0 case separately in ii) to define motion when yu = 0 and
w(t.) == w'(t.) = U also as slide mode. Such motion is a simple vertical oscillation of the upright
block and the lowest corner does not move horizontally.

The horizontal force R,.. resisting the sliding acts at the lowest corner. Its magnitude is Ry- =
fiRy.. The sign of R.. is the opposite of the sign of the horizontal velocity of the lowest corner. We
can substitute R._ in equations 2.1, 2.3 with +uR, .

In the slide mode the equations of motion are

z. = uR,. (2.4)
y_ll = R«J— _ 1
Inw" B .l?.«yw(:hﬂam- - a&'-), (2-5)

and the unknown variables are z_, y., w.

2.2.2 Contact mode

Definition:

The block is in contact mode if part of the block is below the foundation surface and each of the
following is true:

i) horizontal velocity of the lowest corner is zero

ii) p > 0.

The friction developed between the block and the foundation is large enough te prevent sliding
of the lowest corner (Figure 2.7). The block can rotate about its lowest corner and move vertically
(y-” # 0) at the same time. We require p > 0 to prevent vertical oscillation of the block when u =0
and w(t-) = w’(t.) = 0 from being classified as in contact mode.

The horizontal force R . resisting sliding acts at the lowest corner. Since the block rotates about
one of its corners, the variables z- and w are related. This will eliminate one of the equations of

motion and determine B,
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#; =  x coordinate of the lower left corner

2. =  x coordinate of the lower right corner

w0 z=0=2'=1/2(rcos(w) — sin(w))’
the lower left corper moves along the left vertical line only
block rotates about the lower left corner

w<0 zi=0=2"=-1/2(rcos(—w)} — sin(—w))’
the lower right corner moves along the right vertical line only
block rotates about the lower right corner

Figure 2.7: Contaet mode

Let us assume w > 0, the block rotates about its lower left corner. Let the x coordinate of this

corner be 2y, a constant. Then
2. == wm1 + (rcos(w) — sin{w)}/2.
Differentiating the above equation twice with respect to t- and recalling z.”" = R,— {2.1) we get:
z." = K- = w"(— cos(w) — rsin(w))/2 + w(sin(w) — r cos{w)})/2.

‘We substitute fiom the above equation for F;- in equation 2.3 and solve for w" to obiain

oo Y 4w (sin(w} ~ r cos(w))(cos(w) + r sin(w)) + R, -a,-
o I ¥ 1/4(cos(w) + 7 sin(w))2 '

A similar derivation can be easily done if w < 0, the block rotates about its lower right corner,

whose x coordinate is 2., a constant. Then

z_= @, ~ (r cos{~w) ~ sin(~w))/2.
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Differentiating twice with respect to t_ and recalling z." = R,..:
2." = Ry = w" (-~ cos(w) — rein(—w))/2 + w? (- sin(—w) | reos(w))/2.

Substituting for R,. in eqnation 2.3 and solving far w” we obtain

o — 1/4w'?(~ sin(—1w) + r cos(w)){cos(w) + r sin(—w)} + R, .a,..
- I+ 1/4(cos(w) + r sin(—w))? )

Finally we can summarize this section. Since the black rotates about one of its corners, the -
variable z_ can be expressed in terms of w. The equation 2. = R,- {2.1) is then used only to
express R, in terms of w. Now we can substitute for R... in equation 2.3.

In the contact mode, the three equations of motion reduce to the following two:

i

y...” Rym - 1

W = 41/4w"™ (sin |w| — rcos w)(cos w + #sin |w|) + Ry_a,- 2.6)
- I+ 1/4(cosw -+ rsin |wi)? ’ )

where the + sign relates to the case w > (} and the - sign to the case w < 0. The unknown variables
are y., w.
2.2.3 Flight

Definition:
The block is in flight regime if the whole block is above the foundation surface,

There is no interaction between the block and the foundation: R, = K, = a,_ = @, = 0. The

block is now just a free falling rigid body. The equations of motion 2.1, 2.2, 2.3 are simplified to:

m_" - 0
ywﬂ‘ = — 1
L’ =

Given the initial conditions this can be solved analytically.

We call this regime of motion flight. However, we choose not to introduce flight a5 a new
mode. We treat flight as a special case of the slide mode, as far as the equations of motion are
concerned. Indeed, compare the equations of motion in slide mode (equations 2.4, 2.2, 2.5) and in

flight (above). The flight equations are obtained from the slide equations merely by substituting
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By = By. = Gpg- = ay. = 0. Thus, the flight equations become a special case of the equations in

slide mode.

2.2.4 Friction force in horizqntal position

‘We have defined the friction force as a horizontal force acting at the lowest corner of the bleck. Say
w > 0, then the block is tilted to the left and the friction force R, acts at the lower left corner. Now
if the block passes through the horizeutal position w = (), the lower right cornet becomes the lowest
corner and K. _ acts there. Thus, as the block passes through the horizontal position, R.. skips from
one lower corner to the other. Since at that moment the iwo lower corners lie on a horizontal line,
ER_ does not change its line of action. However, it could change the orientation or even magnitude.
Now we examine if this happens,

In the slide mode |B;_| = pR,. and R.. acts against the horizontal motion of the lowest corner.
At w = 0, the lower corners have the same horizontal velocity 2| = z,. = 2./ + 1/2w’. Since R,. is
continuous through w == ¢ and so is the horizontal velocity of the lowest corner, the friction foree
R, is also continuous through w = 0.

In the contact mode we compute B, for w < 0 and for w > 0 from the appropriate equations

in section 2.2.2. At w = 0 we have

1

i > =t 12 -

fwz20 Re-=-+rw?/2 ( 1+1+4L)
1

y [OR—— —

fw<0 Rpy=-—-ruw“j2 ( 1-5-1_'_41_).

Thus, B, - changes its sign through w = 0, which results in a discontinuity on the right-hand side of

equation 2.6.

2.2.5 Modes-summary
The flight regime holds when the whole block is above the foundation surface.

The block is in slide mode when it is not in flight and at least one of the following is true

1) horizontal velocity of the lowest corner is nonzero
fiyp=10.
The block is in contact mode when it is not in flight and each of the following is true:

i) horizontal velocity of the Jowest corner is zero

H) > 0.
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2.3 Switching the modes

We have introduced two basic modes of motion: contact mode, slide mode and flight regime. We
do not want to confine motion of the block to one mode only. The idea behind introducing different
modes and regimes is to let the block switch freely between them, and to make the model more
representative of actual behavior. Accordingly we have to define a process of switching between the

modes. Let us list all such possible transitions:

contact— slide slide— contact

contact— flight slide— flight
flight—+ slide slide— slide, when

Hight— contact | sliding direction changes.

2.3.1 Contact — slide, contact — Hight

The block is moving in a contact mode. Then at a time £. the state of the block is fully
described by y-(1.), w{t-}, their first derivatives g."(t.}, w'(t.) and a constant ©; or . The block can

switch from contact to either slide mode or flight regime.

| contact — slide: friction can no longer prevent sliding of the lowest corner |
| contact — Hight: the whole block leaves foundation surface |

Table 2.2: Contaet to either slide or flight

contact — slide: As the block moves in the contact mode we constantly monitor R,.-(£-) and
Ry (i). In contact mode: {R.-(t.}| < pRy-(t.). At the time when [R._(t.)| equals pR, (t.), the
transition contact — slide ocecurs (Figure 2.8).

contact — flight: As the block moves in the contact mode at least some part of the black is
under the foundation surface. We constantly monitor the y coordinate of the lowest corner of the
block. Since the block partially sinks in the foundation, the y coordinate is negative. When the said
¥ coordinate becomes zero, transition to flight occurs. At that moment, the block is just touching
the foundation surface with its lowest corner.

Obvicusly in both cases, contact — slide and contact -+ flight, the equations of motion character-
izing the dynamical system change from the contact equations 2.2, 2.6 to the slide equations 2.4, 2.2,
2.5. That means that a four-dimensional system (two second-order ODE’s in contact mode) changes
into a six-dimensional one {three second-order ODE’s in slide mode). There is an additiorial degree
of freedom in sHde mode represented by the variables ., z.!. We need to evaluate v, 2" at the time

of transition, fsrans. The values of the other variables, y_, w, %), w', at the time of transition remain
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CONTACT

2 ODE’s
of 2nd order

H
Yy U
w, w'

> SUDE

criteriom: |Rg-| = uR,-

equations

3 ODE's

of 2nd order
variables

Y 9

w, w'

Loy &

at time dpans
fw>0 z.=z + (rcos(w) —sin(w))/2
2" = 1/2(r cos(w) — sin(w))
fw<0 a-=g — (rcos(—w) - sin(~w))/2
z. = —1/2{r cos(~w) — sin{—w))’

R, . continuous

Figure 2.8; Contact — slide



20

unchanged. The contact mode still applies at the transition, so we can find z_(frans)y 2" (Etrans)

from the equations valid in contact mode.

w>0 . =+ (reos(w) - sin(w))/2 (2.7
. = 1f2(r cos(w) — sin(w))',
w<0 2. =g, (rcos(~w)—sin{~w))/2 (2.8)

2z =~1/2(rcos(—w) ~ sin{-w))’

The above expressions are evaluated at the time L. = tpong.

To complete the transition contact — slide, we need to determine which direction to apply the
force R,. when the block starts sliding. Right after the transition the lowest corner of the block
moves left or right. We need to apply the horizontal friction force at sliding R,. = ®uR,. against
that motion. That is, we need to determine the sign of R,.. At the transition, we can compute
the direction of R.. assuming contact mode. Naturally R,. will not change orientation through the
transition; it will be continuous through the transition.

After the contact — flight transition the block is above the surface and R, = R, = 0. Therefore,
we do not need to find the direction of R... Contact — flight is actually unlikely to happen. Before
the block leaves the foundation, the force Ry usually becomes so small that R,. in contact mode is

greater than pR,,.. Thus, the transition contact -+ slide usually occurs before the flight.

2.3.2 Slide — contact, slide — slide and other transitions

If the block is moving in a slide mode, then at 2. time £. the state of the block is fully described
by z.(t.),y.(t.), w(t.) and their first derivatives 2_'(£),y."(t.), w'(1-). A part of the block is below
the foundation surface and the lowest corner moves in a horizontal direction. As the block slides
we constantly monitor the hotizontal velocity of the lowest corner of the block, When this velocity
becomes zero, the lowest corner of the block comes horizontally to a stop and one of the two scenarios

in Table 2.3 takes place.

| slide-s contact: frietion sufficient to suppart enntact [
slide — slide: friction not sufficiefit to support contact
the lowest corner continues sliding but in the other direction

Table 2.3; Slide to either contact or slide

Let us discuss the situation in more detail now. As the block slides the horizontal velocity of the
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variables:
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fw>0 zf=z'~1/2rcos(w) ~ sin(w)) =0

criterion to stop: 1fw <0 2 =x"+1/2(rcos(—w) — sin(—W))' = (.

SLIDE -+ CONTACT

N~

SUDE CONTACT

criterion; R,- computed in contact < uR,,.

3 ODE’s of 2nd order 2 ODE’s of 2nd order
Y- y-' Yo Yo'

w, w' w, w’

By T

Figure 2.9: Slide — contact

SLIDE — SLIDE
b
a
equations do not change
variables do not change
sliding direction reverses
R, . changes sign SUDE -p

ctiterion: R,. computed in contact > pky,.

Figure 2.10: Slide — slide
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lowest corner 15 glven by:

ifw>0 z} = =.) 1/2(rcos(w} - sin(w)) #0

fw<0 z. = 2.4+ 1/2(rcos(—w) —~ sin(—w)) # 0

This velocity can be only positive or negetive while the block is sliding, When the said velocity
becomes zero, the lowest corner of the bleck stopped moving in a horizontal direction. At this time,
we compute R, . assuming contact mode. If [R..| < pR,,., we let the block switch to a contact mode
{alide — contact). If |[Re- = plly-, we let the block continue in slide mode, reversing the direction

of slide (slide — slide).

Slide — contact

Obvivusly, the equativos of mwotion characterlzing the dynamical system change from the slide equa-
tions 2.4, 2.2, 2.5 to contact equations 2.2, 2.6. That means that a six-dimensional system [three
second-order ODE’s in slide mode) changes into a four-dtmenslonal one (two second-order ODE's in
contact mode). One degree of freedom is lost. To keep track of the horizontal position of the block
we only need to know the x coordinate of the lowest corner. That is a constant 2y or &,, which can

be obtained from the relations 2.7 and 2.8:

ifw>0 = x.— (rcos(w) ~ sin(w))/2
fw< Zp = Zu+ (rcos(~w) — sin(—w))/2.
The above expressions are evaiuated at the time & — birgns. Values ol Lhe vawiables y., w and their

first derivatives y.',w' carry over from contact to slide mode without change.

Slide — slide

The equations of motion do not change, neither do the variables. Only the sign of friction force F.,..
reverses through the transition. The lowest corner was moving herizontally in either a positive or
negative directlon, came to a stop and then started moving in the opposite direction. We need to
reverse the orientation of B,- at the transition so that R,. acts against the sliding motion after the
transition ag well as before. For example say w > 0, the lowest corner is the lower left corner and
it is moving to the right, so the hotizontal velocity of this corner is positive and friction force is
Ry = ~pRy,.. Suppose now the horizontal velocity gets smaller and eventually becomes zere. The

lower left corner stops moving in a horizontal direction. Suppose the friction is insufficient to keep
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the corner from further sliding. The corner will move this time to the left, its horizontal velocity

being negative. Then the friction force will be Re.. = +uRy.. Thus, R.. does not change maguitude

through the slide — slide transition, it changes the sign.

Flight scontact, Aight — slide

Either of the ttansitions can happen only at the instant of landing. At the landing we check horizontal
velocity of the lowest corner, that is of the landing point. If this velocity is zero, we switch to contact.
Usually though the said velocity will be nonzero and we switch to slide mode.

flight—contact: Transition same as in slide — contact.

flight — slide: Equations of motion and variables do not change at the instant of landing. We only
have to determine direction of E,. upon landing so that it acts against the horizontal motion of

the lowest corner. Usually this direction is the same as the direction of R,. when the block left the
ground.

Slide —flight

The slide —flight transition we mention only for completeness. The equations and variables remain

the same, nothing changes here.

2.4 Rigid block ~ rigid ground

In this section we consider a system consisting of a rigid block moving on rigid ground. Call such a
system R-R as opposed to R-E system which consists of a rigid block moving on elastic foundation.
In the preceding part of this chapter we defined a model for R-E system, derived the equations of
motion and conceived the notion of different modes. Now we want to consider a model for R-R

system for two reasons:

* the equations of motion in an R-R system can be used when determining some of the initial

conditions in R-E system
» the R-R system will serve as a fest case for the more general R-E system.

For this purpose, we do not need to fully work out the R-R model as done for the R-E model.
Specifically, we do not need to treat impact. If we incorporated impact in the R-R model, we would

derive another model for the considered dynsmical systemn, similar to models already introduced by

other anthors [Jones and ShentonlIll, 1990].
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We observe the motion only for w > 0 and do not consider irnpact. The coordinate system,
variables, parameters, definition of modes, and transition between them carry over from the R-E
systern model. Only the parameter k. does not enter and the flight regime is not applicable anymore.

The equations of motior: can be derived from scratch or from the equations already stated for R-E

model. The ground is rigid, therefore

y- = (cosw ~+ rsinw)/2

and the y. degres of froedom is lost. We merely etate equations of maotion:

contact mode

" reosw — sinw
R 2.9
21+ (1 +12)/2 =9
slide mode
2" = *uR,.
- i inw) — - i
o = (2 — w'(cosw + rsinw)){p(cosw + rsinw) — (rcosw — sinw)) (2.10)

4l. ~ (rcosw — sinw){p(cosw + rsinw) — (rcosw —sinw))

The reaction forces R.., R,. are given by:

mode force
contact R, = —1/2(w"(r cos w — sinw) + w" (cosw + r sinw))
slide R, — xpR,

contact, slide Ry =1~ 1/2(w"(cosw + rsinw) — w"(r cosw — sinw)).

Note, however, that R,.. is generally different in slide and contact mode, as w” differs in each mode.
In contact mode, the system is two-dimensional and we have one ODE of second order. In slide
mode, the system is four-dimensional and we have two ODE’s of second order. The equation of
motion for y. has been climinated by expressing y. explicitly in terms of w. Therefore in each mode,

the dimension of the R-R system is smaller by two as compared to the R-E system.
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Chapter 3

Numerical implementation

The equations of motion in both contact and slide mode are too difficult to solve analytically with
the exception of a few special cases, such as free flight, or the periodic solution w(t.) = w'(3-) = 0.

The solution of the equations of motion can be obtained in the general case only by numerical
methods. The equations of motion are autonomous ODE’s of second order subjected to initial
conditions. In contact mode there are 2 ODEs (2.2,2.6) and in slide mode there are 3 ODE's
(2.4,2.2,2.5):

mode: slide contact
equations: z." = fy(y-, w)
¥ = fy(y-w) ¥ = fyly-w)
W = fps (Yo w) W = fuc(Ye w)

initial conditions: z_(0) = zp

z'(0) = =},
y-(0) = wo v-(0) =0
¥-(0) =y y-'(0) =up
w{0) = wyp w(0) = wo
w'(0) = w} w'(0) = wj.
Let us define
Ty =z Y2 =y wy = w'.

Then the second-order system of equations can be written as a first-order system with twice the

number of equations.
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mode: slide contact

equations: x' =y

w,2 = fo(y-,w)

¥- =1 Y- =1

¥ = fylyw) s = fy(y~ )

w' == wy f e g

Wy = fus(gy- ) wy = fue(yrw)
initial conditions: z_(0) = z¢

22(0) = zp

¥-(0) = yo ¥-(0) = wo

12(0) =y ¥2(0) =y

w(0} = wp w(0) = wo

w3(0) = wy wz(0) = wy.

Thus, the problem at hand is identified as a standard initial value problem:

4 f(z)

z{0) = 2z,

i

where z and f are six-dimensional vectars in slide mode and four-dimensional in contact mode.
The equations of motion in flight are a special case of the equations of motion in slide mode.
Therefore, when integrating the equations of motion, flight is treated as slide mode. For simplicity
we choose not to solve the motion of the block in flight analytically.
There are number of numerical techniques to solve the above problem. We use a Sth-order
Runge-Kutta integration scheme with automatic step size selection. The algorithm used is a slightly
modified version of the Press et al. [1992] code. Computation is done on Sun Sparcstations. The

code is written in C using 16 digit double precision variables.

3.1 Switching the modes

In chapter 2 we defined the contact and slide modes and the transition between them. The numerical
implementation of the transition is mostly straightforwatd: we change the equations, evaluate z_, 2.’
and z;. or &,., and determine the sign of R,_. Finding the exact transition time, ty.qne, is harder

t0 solve numerically. The transition time is the time when a certain monitored quantity becomes
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zero; in contact mode, when |K._| ~ pRy. = (, and in slide mode, when the horizontal velocity of
the lowest corner becomes zero (that is .. == 0 or ;. = 0).

Integration forward in one titne step may result in conditions such that the current mode is no
longer valid; the monitore:& value crossed zero. The time step could be quite long. For example, in
Figure 3.1, the code passed ty,n; while integrating from #;1; to {;3. Ouly at the end of a time step

(at 2,12 in Figure 3.1) does the code find out that the monitored gquantity crossed zero.

v axis: monitored quantity
contact: [Rp.|~ ph,-
slide: o if w0

2 U w<U
1.

X axis: time

Tigure 3.1: Iterative subroutines

We want to determine tipqns; With machine accuracy. For this purpese we constructed simple
iterative subroutines, CaleGS for contact mode and CaleStop for slide mode. They both search for
a zero crossipg of the monitored quantity by successively halving the time interval, Say we find that
the monitored quantity crossed zero within the interval (£,41,%42), as in Figure 3.1. 'We halve the
interval at t. = (t;41 4+ tit2)/2 and determine at which of the two new intervals (£;41,%:), (tc, tivs),
the monitored quantity crosses zero. We reiterate the above step until we have determined #ir4n
with machine accuracy.

The subroutine CalcC.S iterates to find #4rans when |R,.| = pR,.. The subroutine CalcStop
iterates to find when the horizontal velocity of the lowest cortier is zero. Thus, we use iteration to
determine the transition time as accurately as possible in contact—+slide, slide—contact, slide—sslide.

In the case of flight—slide and slide—flight, we do not need to iterate to find ty-qn. since the
equations of motion are the spme for flight as for slide. In flight we keep track of direction of the
horizontal motion of the lowest corner. When the block lands the friction force is correctly applied
against that direction.

‘We do not iterate to find the exact transition time in the contact—sflight transition. There are

two reasons for this, both based on our experience. First, if the transition occurs, the time step
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is already very small. Becond; this transition rarely occurs. At the end of the time step when the
block is completely above the surface we switch to flight. So we end up holding the block a tiny
little bit tonger in contact mode. Extensive testing showed this to be better than trying to iterate
to the exact take off point.

CaleStop can be used in another rare transition: flight—contact. When the block lands, the code
assumes it will continue in slide mode. The applied friction force may be large enough to push, in
one time step, the lowest corner in the direction of the force. The code realizes this is incorrect, and
it uses CaleStop to iterate back to a point when lowest cornet is alteady below the surface but its
horizontal velocity is still zero within machine accuracy. At such a point we then switch to contact.

CalcStop may be used more than once trying to find a suitable point for the flight—contact
switch. Say the friction force points right. It pushes the lowest corner right during the landing time
step. The corner incorrectly gains a positive horizontal velocity. The code discovers this at the end
of the time step and uses CalcStop to iterate back. It may iterate back to a desired point below
the surface where we can switch to contact. However, often with only one iteration CalcStop gets
back to 2 point above the surface. Then the code switches the sign of friction foree and the cycle is

repeated. Using CalcStop once or twice is usually sufficient.

3.2 Initial conditions

We run the code with different initial conditions. Only g, the initial value of ., can be chosen
arbitrary without any influence on the subsequent behavior of the block. Different z¢ merely shifts
the origin of our coordinate system. We choose 2 so that initia.lly the lower left corner of the block
is located at z. = 0,

For most of this study, we use two sets of initial conditions. We call them initial conditions set
1 or icl, and initial condition set 2 or ic2. Define a = arctan(b/a), an angle between the diagonal of

the block and its side. Then icl and ic2 are given by:

icl wo=af2 ic2 wy=0
wh =0 wh = b6z / (1 +r?)
Yy = ‘static’ ' Yy = % —1/k_
yh=0 y.} = 0.0001
T = 3{r cos(wo) — sin(wy)) Tog=T/2
z4 =0 z_f = 0.06.

The set icl corresponds to a block tilted at an angle wy == /2. The tilted block is given zero
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initial velocities and rests on the elastic foundation. By y.o = ‘static’ we mean that the block is not
pushed down or pulled up, it just rests on the elastic springs under the action of gravity. We attempt
to choose a y.o such that the block will initially rotate about its lowest corner. To determine y.o
we assume momentarily tﬁat the foundation is rigid and calculate the resulting R,., R, in contact
mode referring to the Rigid block-Rigid ground section. Comparing now R, and pR,_ we decide
whether the block starts moving in slide or contact mode. If [R..| > pR,. the block starts in a slide

mode and we recalculate I, appropriately assuming again rigid ground. Then

Yoy = W - \/ 2r cos wy sin wo Ky, -/ k...
The computed y.q will be closer to the desired ‘static’ value when k. is large.
The initial conditions ic2 correspond to a block resting upright on the foundation. A horizontal
and a vertical force impulse are applied at the botiom of the block resulting in initial velocities stated
above. Such initial condition can be viewed as a simplified simulation of an earthquake action on a

free standing rectangular object.

3.3 Testing the code

We have defined the model of the block and foundation and discussed our implementation of the
computer simulation code. We now check the integrity of the code against a known analytical

solution and a simpler numerical solution.

Comparing R-~E and R-R models

‘We expect close agreement between the dynamics of the R-R model and the R-E model with large
k_. We wrote a separate cade for each model and ran it with initial condition set iel, altering wg
and the parameter set r, k., ug. 'We stopped the simulations when w = 0, since the R-R model was

not designed to handle impaect. Results of only two tests are presented in Figures 3.2 through 3.9,

Figure | k- displayed RE x RR
first test 3.2 | 10° variables
icl 3.3 104 Loy & Yo Y w0, W'
= (L2 34 108
p=02 3.5 | 108

second test 36 10
iel wp = 0.8 3.7 108
=20 3.8 | 107,10%,10° 10*® | forces
p—023 39 104, 108, 108 R R,

Table 3.1: Test figures, comparison between RE, RR models
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As expected, with increasing k., the response of the R-E mode! approaches the R-R model’s
response. For k. = 10° the response of the two models is nearly identical. ‘This is encouraging, since
the two models are qualitatively different - to see that compare the equation of motion for w in the
two models. In contact mode, compare equation 2.6 to equation 2.9 and in slide mede compare the
equations 2.5 and 2.10. In the first test the block moves in contact mode only. The second test
is more interesting: the block moves initially in contact mode, then its lowest corner starts sliding
left, comes to a stop and slides to the right. In the second test we compare the response of the
two models also by locking at the time, s,, of the slide—slide transition, that is the time when the
lowest corner came to a stop horizontally. As k- increases, s, computed in the R-E model converges

to s, computed in R-R model, as documented in Table 3.2.

k_ R-E model

105 §,=2.22580229

10 5.=2.30565054

10 5,=2.31704765

R-R model 10% 5,=2.32155059
8,=:2.32240567 108 s,=12.32203630
107 5,=2.32239531

108 5,==2.32247161

10°  5,==2.32248152

1010 5,==2.32249325

Table 3.2: Test, time of slide—slide transition

Finally, we note an interesting difference between the two models. When the block switches its
direction of sliding, the friction force R, changes sign. This introduces a discontinmity in w” In
the R-R model, the discontinuity in w"” implies a discontinuity in the vertical reaction force R,.. In
the R-E model, the discontinuity in w" causes an oscillation in Ry,., whose amplitude increases with
increasing k. up to a certain point. This is a qualitative difference between the two models. In the
R-E modcl, no matter how large b grows, a change in the dircetion of sliding will cause an oscillation
in R,—. We can view the oscillation as a result of an impulse in the turning moment caused by the
change in direction of the friction force. The bottom of the block then oscillates vertically. In the
R-R model, the change in the direction of sliding implies a simple jump in R,.. Of course, adding
damping Lo the BB model would limit the By oscillation. Flgures 3.8 and 8.9 document discusslon

in this paragraph by plotiing R,., B, for our second test case.

Periodic solution, w(t.) = w'(t.) =0

We test the code against 2 known periodic solution where the block merely oscillates vertically, i.e.,

w(t) = w'(¢_) = 0 for all £.. The code should be able to handle this special case and reproduce the
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exact known sohition. This simple case tests more than ane might think at first glance. Specifying
the initial conditions with sufficient energy, we ensure that the block will bounce off the surface -
flight. ensues. For g ™ 0 the block will move in contact mode 2nd for g ~ 0 in slide mode when
partially below the foundation surface. Above the foundation, the block is in its fiight regime and the
slide equations are employed. Thus, the transitions contect—flight, Bight s contact and slide—flight,

Hight-—sslide are tested. The initial conditions we chose are:

@p = 7(2 zf =0
vo=3-3/k y=0
wy = { wh = Q,

which will guarantee fight no matter what set of parameters r, k., ¢ we use. Results for two test
runs are presented in Figures 3.10 and 3.11. Our numerical solution is equal to the exact analytical
solution.

In graphs of y_,y. we plot discrete points at which a numerical solution was obtained. We can
see how the code adjusts the time step size. Time steps are long in flight and short when block
is interacting with the foundation springs. We also mark each usage of the iterative subroutine
CalcStop by a circle plotted in the y. graph. We see that for ¢ = 0, CalcStop is never used.
Transitions slide-+flight and fight-+slide do not require any additional computation for u = Q.
CalcStop, however, is used each time the block lands for p > 0 t0 assist the flight— contact transition.
When u > 0, a small amount of the horizontal foree is applied to the block during the landing time
step. As a result, at the end of the computation, w,w' are slightly perturbed, with values ranging
from 107*7 to 1027 instead of being identically 0. Identical zeros are obtained for w,w' in the case

o= 0



y_-0.5

40

r=0.5 k_=1e5 ¢f=0.2

e
0
B
&
E
0 -
0 Q.05 0.1 0.15 0.2
O=flight 1=bontdct
0.01 . . . , . ; ‘
0.005 xw P: Px px P“ Px Px; Px i
x = * ® b y "
):‘ ’x *! xx x‘ xx *It xx
x x X vl
0 ’; x ,:( % "x x ’;
% x % x « X
x x x x . X "x q
-0.005 ) \} nJ " -
-0.01 | x i X |
0 c.05 0.1 0.15 0.2
T T T
y ]
1e-05 - f&x :%* x x" :%K ’ﬁﬁx xf&x ,,’m,; :“ "
X . X X x . % x . . x x x
rox .1 . . ¥ % ¥ =t .

0 F | j f @ Y ~
“1e05 + N
~2e-05 4
-3e-05 -
-4e-05 : - : ; !

[¢] 0.05 a1 018 0.2

time

Figure 3.10: Vertical oscillation p = 0.2



02

0.15

1=slide

01

41

O-flight

0.5 k =1e5 ¢f=0.0

o

I

0.05

t 9
x
x * ¥
x
<
»
xkl
unx
=
<
o
vnua
Kvn
n X

02

0.15

0.1

0.08

0.2

0.15

0.0

0.1
fime

X X
Jch
x* %
%
%X
%
e
x
Al S
x XAE
x X
¢
X x

0.05
Figure 3.11: Vertical oscillation p

0.01

-0.005

-0.01




42

Chapter 4

Parametric study

‘We ran the code and studied the dynamics of the block for various different parameters and initial
conditions. The observed guantities were

- variables z_, 2, y_, v, w, w',

- mode as a function of time,

- energy.

We limit the study to following parameter ranges:

stiffness k.. | aspect ratio » (width/height) | coefficient of friction u
2.0t0 107 = to1 0,0.1, 0.2, 03

We did not introduce damping in the block-foundation system. However, energy can be lost in slide
mode due to the friction force R,. The system conserves energy if there is no friction, p = 0, oz

while the block is in flight, or while it is in contact mode.

mode or regime | flight contact slideu=0 slidep>0

energy conserved cohserved conserved  dissipated

The energy present in the block-foundation system consists of:

kinetic energy in the x direction z.” (2
Lkinotic energy in the y direction y-272
rotational kinetic energy Tw'™/2
potential energy due to gravity Y. — 0.5

potential energy of compressed springs [ [ Region force_fwidth. dA..

To find the formula for the potential energy of the compressed springs, refer to H'igure 2.2. We see

that [ fo, gion S dA = f:f IN ) ks dsdy. Carrying out the integration for the case of our rectangular
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block is simple but lengthy. We merely state the resulting formulas:

bldck position potential energy of compressed springs
block in fiight 0
tvoe 1 ks}
ype Gr sin |w! cos w
type 2 i (83 [ cOS W = 83 COS W
yp ﬁrSinlwl( 1/ 2 )!
where s _cosw_kfsin]wi” o o SOSW sin|w|
P 5 3 Y-, 2= 7 9 Y=

Note that formula for type 2 correctly reduces to the type 1 formula when s3 = 0. All the energies

are stated in non-dimensional form.

4.1 Typical response

Some dominant types of response are presented in Figures 4.1, 4.2, 4.3, and 4.4. Presented com-
putation was done using the initial conditions icl. When both a generalized displacement and a
generalized velocity are plotted in the same window, the smoother curve belongs to the displacement.
The parameter 4 is denoted as cf in fizure headings.

In Figure 4.1, for initial conditions icl, the block, after some transient rocking and sliding, settles
dowz into steady-state motion. Variables z_, y_, w become nearly constant, with w = (,y. = 0.5,2. =
0.31. Thas, the block is vertical, the bottom almost aligned with the foundation surface and it has
slid significantly forward to z. = 0.31. If the block settled down without sliding, then z. would be
r/?2 = 0.25 Veloeities ', " are almost zero, only ' oseillates sliphtly 2s the hlack moves vertically.
Even though y. is nearly constant and the vertical oscillations are small, the block stili escapes the
foundation surface, flies and lands. Contact mode and flight regime regularly interchange. Slide
mode oceurs in steady-state only in between flight and contact mode and for a short time - when
the block ie landing or taking off. A lot of energy is dissipated by friction forees during the initial
transient motion. Still referring to Figure 4.1, sudden changes in 2./, 4/, w’ occur at the impact and
constant values of x’, w' occur in flight.

In Figure 4.2, the block moves in contact mode only. There is no flight or sliding. Therefore, we
do ook include a plot of the modes against time. The block is not restricied to the contact mode, it
Jjust does not switch to slide mode or flight. The block rocks steadily back and forth. An oscillation
in the y direction is induced after the first impact. The amplitude of the y cscillation remains almost

constant hetween two subsequent impacts, it ¢can change though at the impact. Energy is conserved.
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In Figure 4.3, the foundation is stiffer. Impacts are harder and oceur during a shorter time
interval. The block moves mostly in contact mode. There is no flight or sliding at the first impact
around a time of 1. The block shides and flies for a short time during the second and each subsequent
impact. Again, the y oscillation is induced st the first impact, and again its amplitude remains
almost constant between two subsequeh‘t tpacts and can change at the impact. Comparing this
to Figure 4.2, the y oscillation has a much ligher frequency. Dissipation of energy in the system is
minimal,

In Figure 4.4, the block moves with zero friction, u = 0. There are no horizontal forces acting on
the block. The horizontal velocity, 2. (£.), of the block is constant and equal to the initial velocity
z./(t.) = 2.y, which is zero in this case. Without loss of generality, we can assume ¢./(t.) = 0 and
z_(t_) = 0 for all parameter sets with g = 0. Thus, the case of zero friction is qualitatively different
and the x degree of freedom is lost. The code, however, still integrates in x even for g = 0 and it
arrives at correct constant values for both x.-(f.}, .'(£.). Although the other two parameters k., »
are the same as in Figure 4.1, the behavior of the block for g = 0 is completely different. The block
never settles down and it never moves in contact mode. Flight and sliding take place and the block
rocks and moves vertically. The block spends most of time in flight while Impacts occur during
a small time interval. Again, constant values of w' in Figure 4.4 correspond to flight. Energy is

conserved in the system.

4.2 Flight

The purpose of our parametric study is to determine the response of the block in (g, k-, r) parameter
space. We have to 1dentify the dominant types of response and regions in the parameter space where
such type of response oceurs.

‘We start with the single most distinet type of response - flight. Through extensive numerical
simulations, we will determine the range of initial conditions and parameters g, k_,r resuliing in
flight. However, before starting the numerical simulations we try to estimate the flght region
analytically based on a simple energy criterion. The analytical approach will serve as a verification

of the numerical results and will give us more insighs.

4,.2.1 Flight region - analytical estimate

Initial conditions with low energy will not allow flight and the block will merely sit on the springs,

barely moving, and never leaving the foundation surface. Flight can occur only if the total initial
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energy is sufficient. to 1ift the block above the giitfice. Suppose no energy is lost during the motion,
then the initial energy must be equal to or larger than the energy of the block in flight. The minimum
energy the block can have in flight is mero. Thus, for the block to fly, the initial conditions with
the total energy larger than zero are necessary. If the initial energy is zero and the block moves
¢onserving energy, it could arrive ot o vertical position, its bottom aligned with the surface, and all
velocities zero. This is the situation when the block clears the surface requiring the least amount of
energy. If the initial energy is less than zero, the block can never leave the foundation. If the initial
energy is larger than zero, the block could fly. However, the block mostly leaves the surface tilted
and with some kinetic energy. Some energy may also be dissipated Lefore the Llock reaches the
surface, so initial energy just larger than zero does not guarantee flight. Thus, the minimum initial
energy pecessary bul aob sullicient fur flight is zero. Note that zero happens to be the minimum
necessary energy due to the definition of potential energy. If we defined potential energy as y., the
minimumw energy required for flight would be 0.5,

The initial energies are given by the initial conditions, which in turn may depend on the pa-
rameters u, k., r. Given a set of initial conditions we evaluate the total initial energy at different
points in the g, k., r. parameter space. If for specific choice of parameters this energy is negative
the block can never fly, If this energy is positive the block could possibly fly. The set of all points
in parameter space where block could possibly fly, will be called the possible flight region. The
higher the initial energy, the more likely flight is. The possible flight region will contain a region
where block does fly at some time, the actual flight region. In other words, the possible flight
region is the lower bound of the actual flight region.

Now we determine the lower bound of the actual flight region for the initial conditions set icl,
ic2 and other similar initial condition sets. For example, icl w(0) = a/4 is the set icl where the
initial value of w(0) is changed from w(0) = a/2 to w(0) = a/4. We find that block could fly for all
k- larger than the value we call k.min, which depends on r and practically does not depend on p.
The block can never fiy for k- smaller then k.min. Curves of k.min(r) are plotted in Figure 4.5 for

various initial conditions. The actual flight region caii be only above the curve,

4.2.2 Flight region - numerical simulation

We want to determine the actual flight regioni by numerical simulations. In the previous section, we
defined the possible flight region as the set of all points in parameter space where the block initially
has enough energy to leave the foundation. The actual flight region is then set of all points where

the block really does fly at some time. The words ‘somie time’ present a problem when we want to
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determine the actual flight region by numerical simulations. We cannot compute the motion of the
block indefinitely; evei*y cod_é ‘has‘ to stop at some finite time. If the block did rot fly during that

time, it could dy later.

Flight for fixed r, u

To find out more abo’iif 'ihé'ﬁ'ight behavior of the block, we start by plotting time to flight versus k.
for fixed r, p. Figures 4.6 through 4.13 contain such plots for our favorite initial conditions icl, ic2.
For each k- we obsen’*e. ﬁxotidn of tlie block only till a certain time _epng. For each plot r, s and {_.png
are constant. If the first flight occurs at some 1. < teend, We plot a point (&., £.). If the block does
not fly for any ¢. < teng, we ploﬁ a point (Kuy toend)-

Based on the time to flight figures we can draw a few conclusions about the behavior of the block
which are independent of g and valid for both icl, ic2,

For a given r, the lowest stiffiness for which the block flies is much higher than the k.mir
determined by energy considerations.

As predicted by the energy considerations, the block’s tendency to Hy increases with stiffness
k.. In general, the block does not fly for low k- and flies early on during its motion for high k..
Values of low and high k. depend strongly on r. Flight behavior for k. between low and high values
depends also on r. When the aspect ratio r is around 1, we find that for all k- below a certain
value, no flight occurs at all, but as k. increases, flight occurs early on during the block’s motion.
So the block either does not fly at all or flies early on. For lower aspect ratios r (tall, thin blocks)
we {ind a more gradual change in flight tendency. Again, for all k- below a certain value no flight
occurs at all, then for some higher k., flight occurs, however, the time of the first flight is rather late.
As the value of k. goes further up, the time of the first fight decreases, then increases and again
decreases, increases...., forming sort of spikes when plotted against k_. At the peak we find late or
no fHight, in the velley between spikes flight occurs early on. Spikes get smaller with higher k- and
eventually they disappear as the block constantly fies early on (Figure 4.6). Although the described
phenomena is evident for both icl and ic2, the gradual change in flight tendency with increasing
k- is more pronounced for initial conditions icl. On the other hand, for initial conditions ic2, the
no-flight-or-early-flight bebavior is more pronounced and occurs for a wider range of the aspect ratio
7. (from r = 1 to approximately r = 0.3).

Also for low r, points indicating the time of first fight are spaced vertically in rows, suggesting
that the first flight occurs during some regularly repeating event. This event turns out to be the

passage of the block through the upright vertical position (w = 0). During the short time we observed
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its motion, the bloek was regularly rocking bdack and forth with a tendency to lift off when w was
near zero, that is during impact. Note also that each plot in Figures 4.6 through 4.13 is ended by
a continuous horizomtal line positioned no higher than any previous point in the plot. This line
corresponds to flight during the first impact. Continuity of the line implies that for all k. larger
than a certain valuc the block will always fiy during the first impaci. One can make even a stoouger
statement for initial conditions icl: if for certain k.. the block flies during the first impact, it will do
so for all larger k..

Flight in k., r parameter space

The flight behavior observed and described so far depends only weakly on the coefficient of friction
I Relevant changes In flight behavior can be captured in the (k-,r) parameter space. Also, based
on energy considerations we do not expect much variation in the flight tendency for different p.
Therefore, we will numerically estimate the actual flight region in (k.,7) parameter space for just a
few different p's. Since we cannot compute the motion of the block indefinitely, we cannot determine
numerically the actual flight region defined as a set of all points in the parameter space where flight
occurs at some time. We will instead determine in the (k.,r) parameter space the low k. region
where block never flies, the No Flight Region, and the high k. region where block always flies early
on, the Early Flight Region. Plots in Figures 4.6 through 4.13 are for fixed r and g, showing the
block’s tendency to fly along a single vertical line r = constant in (k.,r) parameter space. Knowing
the flight tendency along few single lines » = constant we can set a suitable eriterion for establishing
a critical curve, k.critical(r}, separating the No Flight Region and a curve k-high separating the
Early Flight Region.

Definition:

Consider arbitrary but fixed initial conditions and parameters g, r. Lot kn(7) be a stiffness such that
for given initial conditions and for p, r, ¥k < k,.(r), the block does not fly before completing the n-th
pass through the vertical position w = 0. Then k.critical,(r) is defined as supremum of all such

numbers K.

"The value of k.critical,, depends on the parameters p, ¥ and on the initial conditions, Dependence
on r is stated explicitly in the definition as it is miost distinct and of our prime interest, Criterion
“before completing the n-th pass throtigh the vertical position w = 0” can be stated briefly as “while
z'h.&r %‘n”, where shor is an integer vatiable counting passages through w = 0. Far initial conditions

with w(0) = 0 the starting position also counts as a passage through w = 0, so ihor = 1 from the
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start. For n — o9, the curve k.eritieal,,(r) will converge to a curve k.critical(r) separating the No
Flight Region. Let us relate this definition to data displayed in time to flight versus k_ plots for fixed
v, . For example, in the bottom plot in Figure 4.7, the first flight occurs at time 13 for k. = 6ed but
flight during the first impact at time 0.55 is guaranteed for k. = 1.2e8. For that plot we have by our
definition k_criticals == 1.68¢B, k_critical; = 3.41cb and k_critical; docs not cxist since flight never
occurs before the first passage through w = 0. Typically for initial conditions icl, if the block flies
during the first impact it does so shortly after passing through w = 0 but if the first fight occurs

during the second, third or later impacts, it typically starts shortly before reaching w = 0.

Definition:

Consider axbitrary biut fixed initial conditions and parameters p, r. et kk(r) be a stiffness such that
for given initial conditions and for g, r,Vk > kk(r) the block files before or during the first impact.
Then k_high(r) is defined as the infimum of all such numbers kk(r).

The value of k.high depends again on the parameters g, r and on the injtial conditions. Again
dependence on r is stated explicitly in the definition as the most distinet end interesiing. For
the initial conditions ic2, the criverion “before or during the first impact” is interpreted as “while
ihor < 2," For initiel conditions icl it is interpreted as “while w' « 0” if k-high(r) exists for such
an interpretation. If not, then it is interpreted as “while thor < 2. 'The reason for the different
implementation of the “first impact” criterion is due to the nature of the initial conditions. For icl,
the first impact is usually finished while w' < 0. Only for r close to 1 does flight occur for very low
stiffnesses, when the first impact is long and soft and the earliest our block can fly is at the end of
the first impact when «' is already greater than 0.

In Figure 4.14, we plot k.criticalz(r) for the initial conditions icl (bottom plot) and ic2 (top
plot). Each plot presents k.criticaly(r) for various coefficients of friction u and an appropriate lower
bounding curve k-min. At the bottom plot with icl, the lowest curve is for g = 0. The other three
curves which almost coincide are for g = 0.1,0.2,0.3. Thus, the block is a little more inclined to fy
for zero friction and the flight tendency is practically independent of friction for u = 0.1,0.2,0.3.
The curves k.criticals(r) have the same shape as the lower bound k-min and the flight tendency
is high for a square block and decreases with r, as the block gets tall and thin. The lower bound
is orders of magnitude smaller than k.criticaly(r). At the top plot with ic2, the flight tendency is
almost independent of x for tall, thin blocks. For r between 1 and 1/6, the flight tendency depends
somewhat on u, but in contrast to icl, the block does not tend to fly earlier for zero friction. The

curves k.criticals(r) are of similar shape, only more flat, compared to curves for icl. The flight
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tendency again decreases with r contrary to the prediction by ic2 lower bound k_min. The lower
bound is a few orders of magnitude lower than k_criticals(r), even more so than for icl. Note that
only one ic2 critical curve is computed up to r == 20, the other ic2 critical curves are shorter, each
of different lengih. Reason for that will be explained in the Stability section.

In Figure 4.15, we plot k_eriticalyg(r) for initial conditions icl (bottom plot) and ic2 (top plot}.
Each plot presents k.criticalio{r) for various coefficients of frictlon g and an appropriate lower
bound curve k_min. The plots look very similar to the plots of k_criticely(r) and all observations
made there apply to k-criticalo(r) as well.

In Figure 4.16, we plot k.high, again for the initial conditions icl (bottom plot) and ic? (top
plot). Curves k.high for ic2 are slightly flatter and less smooth than k_high for icl, but otherwise
similar. For both icl and ic2, the flight tendency strongly decreases with r. The k_high curves
also resemble k_critical curves. For both icl and ic2 we observe the same p dependence as for
k_critical. For icl, the lowest k.high curve is for u = 0, the other, coinciding when r < 1/6, are for
£ =0.1,02,0.3. For ic2, zero friction does not result in a higher flight tendency.

Each plot in Figures 4,18 and 4.19 contains the k-criticals, k.criticalyy and k-high curves. Fig.
ure 4.18 consists of four plots, all plots for initial conditions icl, but each for different u. Likewise
Figure 4.19 consists of four plots, all plots for initial conditions ic2, again each for different p.

By definition k-criticaliof{r) < k.criticals(r) < k-high{r) ¥ r, a fact reflected in plots in Fig-
ures 4.18 and 4.19. The two k_critical curves are close to each other in (k_,7) parameter space,
indicating a fast convergence of k_critical,. For icl the two critical curves are nearly of the same
shape over the whole observed range of r, one appears to be the other only shifted by a constant in
plot’s logarithmic scale. For ic2 the two k.critical curves nearly coincide when r < 1/5 and differ
somewhat when 1/5 < r < 1. Having k_high and k_critical in the same parametric plot gives a
clear picture of fight tendency in the (&_,r) parameter space. The region above k_high we call the
Early Flight Region - anywhere in that region the block will fy before or during the first impact.
The region below k_critical, we call the No Flight Region - anywhere in that region block will not
fly while ther < n. Finally, the region between k.high and k-critical is a transition between the
two regions. We call this region the Flight Transition Region. Here the first flight occurs at various
times: early, late or never. The vertical width of the Flight Transition Region appears constant in
plot’s logarithmic scale, it is approximately one order of magnitude. In other words for any given

pt,r and initial conditions we have approximately k_high(r) = 10 k_critical(r).
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Flight - conclusions

In general, we can draw few conclusions valid for both icl, ic2:

+ The flight tendency depends strongly on the aspect ratio r and weakly on the friction

»

The flight tendency decreases as the aspect ratio r decreases

For any fixed r, the block never flies for k- below a certain value called k-ecritical(r)

For any fixed r, the block always flies early for k_ above a certain value called k_high(r)

For any fixed r approximately k_high(r) = 10 k_critical(r).

The curves k_high(r) presented in Figures 4.16 and 4.18 do not reach all the way to r = 1 for the
initial conditions icl. We recall that by the definition of k_high, we require the block to fiy “before
or during the first impact” for all k > k_high. The said curves were compnted for icl interpreting
this criterion as “while ' < 0.” When r is very close to 1, then k_high is not defined for the “while
w' < 07 interpretation. Now we will use an alternate interpretation “while ihor < 27 1o computse
the remaining piece of k_high. In Figure 4.17 for initial conditions icl, we present curves k_high(r)
for an aspect ratio » between 1 and 1/5. Each plot is for different u and each plot contains k. high(r)
computed using “while w' < 0" and k.high(r) computed using the “while thor < 2" interpretatior.
As expected for a given r, when k_high(r} computed by “while w’ < 0" exists, it ie higher. The two
k_high(r) curves come together at an r coordinate, where k-high(r) computed by “while w’ < 0"
becomes undefined. Thus, k.high(r) computed by “while w’ < 0” can be continuously extended into
the r region where it does not exist by an alternate “while ihor < 2” interpretation of first impact
criberion,

The last piot in the flight study, plot 4.20, shows a gray-scale image of the time to flight in the

(k-,T) parameter space, where darker shades represent longer time to flight.

4.3 Stability

In this section we study the stability of the block with sspeet ratios r < 1. Although it is nat
explicitly repeated in each statement, the following observations, claims, and conclusions do not
necessarily hold for the block of aspect ratio » > 1.

In all of the computer simulations in this thesis we observe the motion of the block only up to a

point when its diagonal becomes vertical (jw| = @.) If the block passes this position at some time

we say that the block overturns and we stop the numerical computation. By the word stability
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we will mean the tendency of the block not to overturn. On the other hand, the words stable and
unstable will be used to characterize the static equilibrium points of the block within |w| < a.
Reasons for the ca.reful definition of seemingly obvious concepts will become apparent later. For
example, we will _sljow tﬁat the equilibrium w = { can be unstable but a block subjected to ic2 will
never overturn!

Our effort in this section is to determine the parameter ranges resulting in overturning for the
initial conditions icl, ic2. IHowever, we will not be satisfied with a mere ¥yes”, “no” answor to a
question: “does the block overturn at this point of parameter space for this set of initial conditions?”
‘We also want to know the time when the block overturns, during which swing (or equivalently after
how many passes through w = 0) did it overiurn, if it did not overturn within the observed time, kow
likely It is to overturn later, etc. We will try to answer such questions in the subsections “3sability
- initial conditions ic1” and “Stability - initial conditions ic2.”

In the subsection “Static equilibrium,” we will find static equilibrium positions of a rigld rectan-
gular block on a Winkler foundation. In this study, our block does not move and such equilibrium

positions depend only on the block’s shape and the foundation model.

4,3.1 Stability - initial conditions ic2

Initial conditions ic? impose a horizontal and a vertical force impulse at the bottom of the block,
which is sitting straight up on elastic foundation in a static equilibrium. Since we keep the impulse
constant, we expect intuitively that if the block gets sufficiently tall and thin, it will overturn.
Numerical simmulations described in this section confirm the intuitive suggestion and further show
that stability depends on all three parameters: k.,r, j.

Similarly to flight studies, we will perform numerical simulations in the (k_,r) parameter space
for four different values of the coefficient of friction p = 0,0.1,0.2,0.3. We start by studying the
time when the block overturns versus the stiffness & for fixed parameters r, u. For each . we note
not only the absolute time when bloek overturned but also after how many passages through the
vertical position w = 0 it occurred. We use the integer variable ihor to count the passages through
w = 0. At time zero, the block is at a w = 0 position which is already counted, so ihor at time zero
will be equal to one. Even though we study the time of overturning and the corresponding thor for
only a few fixed », 4 pairs, it will tell us 2 lot about general stability of the block. It will also give

us a suggestion for a suitable way to study the global stability in the whole (k-, r) parameter space.



72

Stahility for fixed r, u

Plots of time and thor at overtiirning vetsus the stiffness k. are displayed in Figures 4.21 through
4.28 for various fixed parameters r, . For each choicé of r,u we present two plots: the time of
overturning versus the stiffneéss and ihor at the time of overturning versus stiffness. The two plots
are always aligned vertically and share the same horizontal axis. For each k. we run the code only
till time 30. If the block overturns we plot the corfesponding time and ihor. I it does not, we plot
the final tirne 30 and ihor at that moment.

In interpreting the data plotted in the figures, the fitst evident observation is that stability of
the block decreases with the aspect ratio r and increases with the stiffness k.. Thus, the expected
lower stability of tall, thin blocks is confirmed.

For very low aspect ratios, the block always overturns, no matier what k.. is. What “Very low” r
is, depends on the coefficient of friction p. This simple kind of response is witnessed in Figure 4.24.

Furthermore, we find that for most of the presented runs there is a distinet, shatp border between
the ovetturning region and the no overtirning region. More specifically: there is a certain critical
stiffness value such that for all k- less than the valiie, the block always overturtis and for any k-
larger than the value block never overturns. Among the test runs presented this is not true only for
cases g == 0.1, r = 0,092 and p = 0.2, r = 0.055. A siinilar critical stiffness value exists here, however,
for some k.. larger than the critical value, the block will overturn. Test runs like these two are rather
hard to find though.

Thus, in all observed cases; if k- is less than the critical value the block always overturns. The
block overturns then only while shor < 2. That means the block will overturn before completing the
third pass through the vertical position w = 0 or not at all.

Let us look now in more detail at, for example, Figure 4.25. The left-hand side of the plot is for
p = 0.2,r = 0.2. Here, the block overturns only while ihor = 1. The time of overturning is abont
2 and rises sharply as k- approaches the critical value of about 150. Even then, when the block
overturns at a late time, it still does so while ihor = 1. Once k. is above the critical value, the block
never overturns and the plotted ihor now gives the number of passages through vertical position
completed at time 30 when the computation stops. For k_ just above the critical value, ihor sharply
rises from 1. The above observation is explained by the pliysical mieaning of the critical stiffness
value; the critical stiffness value is a value for which block ifitially subjected to ic2 will foraver
approach an unstable equilibtium position where the block rests on one corner only. The block will
not overturn and will not come back down to pass through w = 0. Tt will get rloser and closer to

an equilibrium position as time goes to infinity. The block’s angular velocity w' does not change
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Figure 4.22: Time,; ihor at overturning for g = 0.1,7 = 0.3, 0.125
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Figure 4.25: Time, thor at overturning for p = 0.2, r = 0.2,0.1
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sign and monotonically decreases. Thus, for k- slightly less than critical, it takes a long time for the
block to get past the equilibrium position- the block slowly approaches the equilibrium, eveniually
passing it at finite tirne and overturning., For k. slightly above the critical value, the block again
glowly approaches the equilibrium position, but never gets there. Here, w' changes sign and the
block turns back. In most cases it will go on rocking. This is what we see in the plot, so for k. right
above the critical, thor at the time of 30 is equal to only 2, 3 or 4. Rarely, the returning block gets
stuck around another equilibrium, this time a stable one. Then the biock never passes w = 0 and
it oscillates around the stable equilibrium forever. The existence of such a stable equilibrium point
is proved in a subsection on static equilibriums. The whole topic of stable and unstable equilibrinm
points will be studied there in great detail.

The plot on the right-hand side of Figure 4.25 is for g = 0.2,r = 0.1, Here, the block overturns
while ihor = 1 but also while ihor = 2. For all k_ below 730, the block overturns while ihor = 1.
The time at overturning is roughly 2-3, then rises sharply as k. approaches 730. For k. above 730,
the time of overturning falls sharply to as low a value as 13 then rises up as k_ approaches a critical
value of about 800, For k- anywhere between 730 and 800, the block overturns while ihor = 2.
For k. above 800, the block never overturns. At each of the two stiffness values, 730 and 800, the
behavior of the block qualitatively changes. The 800 is a critical value in sense discussed above -
it divides the k- axis into section where overturning occurs and a section where it does not. The
730 is a critical value in sense that it divides the overturning part further into an interval where
block overturns while ihor = 1 and into an interval where block overturns while thor = 2. The
described behavior can be again explained by the physical meaning of the two critical values. For
each of the two critical stiffness values, the block will approach an unstable equilibrium position as
time goes to infinity. For the lower critical value it is the equilibrium position when w > 0. From
the initial vertical position the block will tilt left forever: w'(t_) > 0 Vi_ and w'(t- — o0} — 0. For
the higher critical value the block will converge to the unstable e(iuilibrium position with w < 0.
The block initially turns with w’ > 0, stops at some point and starts turning back with w' < 0. It
passes through the vertical position w = 0, continues to turn with «’ < 0, and approaches as time
goes to infinity the unstable equilibrivm position where w < 0.

The existence of unstable equilibrium points, and the corresponding critical stiffness values,
explain why for k- close to critical values, the block overturns in such a late time or why it takes so
long to complete just 3 or 4 passes through w = {. It is because for k- near the critical value, block

spends a long time near the unstable equilibrivm point.
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Stability in (k.,r} parameter space

Now we want to study stability in the whole (k.,r) parameter space. The foregoing discussion
suggests that we find curves displaying critical stiffness versus r in (k_,7) space. It also motivates

the following definition of such critical curves:

Definition:

Consider the initial conditions ic2 and arbitrary but fixed parawmeters yu,r.

Let k2(r) be stiffness such that Yk < k2(r), the block overturns before completing 2 2-nd pass
through the vertical position w = 0, 1‘;ha.t is while ther < 2. Then the supremum of all such &2(r) is
defined as k2,¢apitity (1)

Lei £3(r) be the stiffuess such that V& < k3(r) not in an ¢ nelghborhood of AZ2stanitisy (), the block
overturns before completing its 3-rd pass through the vertical position w = 0, that is while thor < 3.
Then the supremum of all such £3(r) is defined as k3giabitity (7).

Both k2, sapiriry (r) and k3seasiisy (1) can be infinite; they can be also equal.

While we realize that the € neighborhood in the definition needs to be described more accurately,
we can only say e is small compared to the difference between k2gsapiity (r) and k3iapitisy(r). To
relate these definitions to the data plotted, let us consider Figure 4.25 discussed above. For p = 0.2
and r = 0.2, the critical stiffnesses k2.40puiy and ERisapisss, eoineide at a walue around 150. For
p=02and r =0.1, we hla.ve approximately k2;iapitity = 730 and k3sapiity = 800.

HExtensive numerical simulations establish the two critieal eurves, k2, by (r) and B3y (7),
in the (k.,r} parameter space for u = 0,0.1,0.2,0.3. The curves are displayed in Figure 4.29 for
£ =10,0.1 and in Figure 4.30 for p = 0.2,0.3.

As follows from the definition, k2.tapiity (r) < k3stapuiey (r) Vr and any fixed pu. Over the observed
range, the critical stability curves monotonically incrcasc with 1/r. For g == 0 the two critical curves
coincide. Plots for g4 = 0.1,0.2,0.3 are similar to each other. Any plot looks like the other two,
only contracted or stretched along the horizontal axis. For p > 0, the two eritical eurves coincide
when the block is close to a square, then slowly separate as 1/r increases. Both curves grow towards
tnfinity at a certain aspect ratio r, the value of which is different for each curve and . The critical
curves blow up also for p = 0. The aspect ratio r where &2;10pi1i, (r) blows up we call r2,(y) and
likewive 1 where k3gabitiy (r) Dlows up we call r3,(p).

A plot of r2,(p), r3:(s) is shown in Figure 4.31. For any 7 below 72,4(p4) (or equivalently for
any 1/r above 1/r2,(u)), the block will uverturn while thor = 1 regardless of k.. For any r between

2,(p) and r3,(p), the block will overturn while ihor < 2 regardless of k.. For r above r3,(u), the
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block doeé or does not overturn depending on k.. For most r larger than r3,(u), the above defined
critical stiffness k3sabitity () becomes a sharp stability border: the block overturns Vk. < k3sapitity
and does not overturn fur any &. > K3stabitiy. Only rarely, for r just above r3,(u), can the block
sometime overturn also for k_ > k3;iabitity- This is witnessed at the fixed p, r plots: p = 0.1, = 0.092
in Figure 4.23 and p = 0.2,7 = 0.055 in Figure 4.26.

r2_s(cf), r3_sch , ic2

0.15 1

0.10 -
o
&
0.05 R
0.00 . | ) .
0.00 0.10 0.20 0.30
coefficient of friction cf

Figure 4.31: #2;(p),r3:{1)

Comparing to the block’s flight tendency, points in the parameter space where the block overturns
form a simpler, tnore compact region. We saw that for giveh r and g, the block can Hy at some k.,
then as we increase k., the block never flies, flies early, late again, never flies etc. In comparison,
stability is with a few exceptions well behaved. Given r and g, the block overturns for all k. below
a critical value and never overturns for any k- above the value. That value can be infinite, in which
case the block overturns for any k-.

The few exceptions when stability is not nicely, simply behaved occur for a narrow range of r.
Given such » and x4, again the block overturns for all k. below some critical value. However, for

some k- above the critical value, the block can overturn too. As mentioned before, this occurs, for
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example for g = 0.1,r = 0.092 in Figure 4.23 sad g = 0.2, r = 0.055 in Figure 4.26. In those plots,
for k.. above the critical value, a slight change in k_ makes a crucial difference in stability. In other
words stability depends sensitively on parameter k.. This sensitive dependence is a phenomena not
limited to stability. It is also witnessed in Figure 4.21 for g = 0,7 = 0.15, where shor(t- = 30)
depends sensitively on k.. We eaommentad shortly on sensitive dependence as it is apparent in some

stability plots - we will investigate sensitive dependence more deeply in the chapter on chaos.

Stability ic2 « eonclusions
a Stability of the block increagses as the coefficient of friction g increoses
o Stability of the block decreases as the aspect ratio r decreases
* Stability of the block increases as the stiffness k. increases
e The block always overturns, regardless of k-, for all r less than a certain p-dependent value

» If given a fixed r and g, the block does not overturn for some k. then it does not overturn for
any k- above a certain critical value and does overturn for all - less than that value. This is

true for most but not all »

« If the block overturns it does so mostly during the first or second swing

4.3.2 Stability - initial conditions icl

Initial conditions iel prescribe that the block iz initially resting on springs inclined at an angle
wy = /2 and that all of the initial velocities are zero. That is, the block is initially inclined half
way to point of overturning. For this sct of initial conditions, the block displays somewhat similar
but far simpler stability behavior than for set ic2.

‘We will proceed in the same fashion as in case of the ic2 initial conditions. We will do numerical
simulatiods in (k_,r) parameter space for four different values of the coefficient of friction p =
0,0.1,0.2,0.3. First we plot the timme and fhor at overturning versus stiffness k.. for fixed parameters
r,p. Just as for ic2, we observe the motion only up to time 30. If block overturns, we plot the
cuizesponding time and ihor. If it does not overturn, we plot the final time 30 and ihor at that
moment. Only two such plots are presented in Figure 4.32. They show stability behavior typical
for block subjected to icl. If we vary the parameters g and r in the ranpges considered, we get plots
which do not qualitatively cﬁange. _ '

As for ic2, stability of the block decreases with the aspect ratio r and increases with the stiffness

k.. As for ic2, there is a distinet, sharp border between the overturing region and the region where
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the block does not overturn. More specifically: there is a certain critical stiffness value such that for
all k.. less than the critical value, the block overturns and for most k. bigger than the critical value,
the block does not overturn.

At the exceptional case, when block overturns at sote k_ above the critical value, this k_ is close
to critical and u = 0. We can possibly explain this by recalliig the way the initial conditions icl
are computed: based on block resting on rigid ground. When k. is low, the initial conditions icl
position the block high so that when motion starts the block not only rotates but also falls somiewhat.
Additional energy introduced to the system by initial conditions may result in overturning, The block
overturns at k_ higher than critical only when this critical value is rather low which supports our
explanation.

Unlike in case of block subjected to ic2, there does not exist an aspect ratio r for which the
block always overturns regardless of k.. Also, when k_ is below the critical value the block overturns
when ihor = (. That means the block on the foundation with less than critical stiffness never passes
through the vertical position. From the initial position, w == /2, the block immediately overturns.
Thus, there is only one critical stiffness value for icl. At that critical k. value the block is initially
positioned very close to a static unstable equilibrium position.

To study stability in the whole (k_, r) parametrie space we define curves displaying critical stiff-

ress versus + in (k.,r) space.

Definition:

Consider the initial conditions icl and arbitrary but fixed parameters x4 and r.

Let k1(r) be the stiffness such that ¥k < k1(r) the block overturns before completing its 1-st pass
through the vertical position w = 0, that is while thor < 1. Then the supremum of all such k1(r) is
defined as k1,sapiiy(1)-

Numerical simulations establish a critical curve klsapusty(r) in (k.,7) parameter space for p =
0,0.1,0.2,0.3. It turns out tha$ these curves are cssentiglly independent of g. The curve is displayed
in Figure 4.33. Over the observed range the critical stability curve monotonically increases with
1/r. Comparing this to Figures 4.29 and 4.30 we sec that the curves k2tabitity () and E3stabiziny (T)
computed for ic2 initially follow curve klsapitiey (1} computed for icl. The smaller the u the earlier
they split and blow up.

The curve k1 ,4upitiey(r) divides the (k. 1) parameter space into two regions. In the region below
the curve the block always overturns right at the beginning of the motion. In region above the curve

the block will not overturn most of the time. Only in few rare cases will the block overturn in that



89

region - when g = 0 and {k_,7) is close above ithe curve, aud + larger. We van cluse this subsection

k1 _stability
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Figure 4.33: Critical stability curve, icl
with our final conclusions on the stability behavior of a block subjected to the initial conditions icl.
¢ Stability of the block is independent of the coefficient of friction p
o Stability of the block decreases ae the aspect ratio r decreases
o Stability of the block increases as the stiffness k_ increases

« For given r the block will overturn for all k_ below a certain critical value and will not overturn

for most k. above that value. this value is independent of p

» If the block vverturns it does so mostly during the very beginning of its motion

4.3.3 Statie equilibrium

Consider a rigid block on a rigid foundation. Clearly, when the block rests on a foundation in a
vertical position this is a stable equilibrium. When the block is positioned on a rigid foundation
with its diagonal vertical, w = ¢, it is in an unstable equilibrivm. Consider now a rigid block on a
Winkler foundation with stiffness k. If the stiffness k is high the equilibrium positions will be same
as for rigid foundation. What happens for lower k7 Are there any other equilibrium points? Does
the existing stable equilibrium point at w = 0 remain stable? What role does the aspect ratio »

play? These are the questions we will study and answer in this section.



Problem formulation

Figure 4.34: Equilibrium positions

‘We work with non-dimensional variables and parameters, keeping their names as introduced earlier.
Thus, the gravity force is 1 and acts down at the center of gravity of the block. The resultant force
pushing the block up is B,- and acts at the geometric center of the region in which foundation
springs arve displaced by the block (Figure 4.34). Distance between the two parallel forces is ay..
Both R,.,a,. are functions of y.,w. We have R,. = R,.(y.,w) and ay- = @y.(y-, w). Equilibrium
point is any position (y_,w) satisfying both:

Ry‘(y‘7 w) =1

ﬂg-(y_, 'UJ) = 0.

We limit our equilibriiim seatcli to blocks with aspect ratios r < 1 and foundations with k. > 2.
Furthermore, we confive the search to angles w within range 0 < w < a. Since the geometry is
symmetric in w this automatically covers angles —~a < w < 0. Note that looking at equilibtia of a
block with aspect ratio r for angles 0 < W < a is equivaleiit to looking at equilibria of a bﬁock with
aspect ratio 1/r for angles o < w < «/2.
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Solution technique

Formulas for By.(y.,w) and a,.(y., w) are stated in Figures 2.4 and 2.5. Due to their complexity
we opt for a numerical solution. The problem is formulated in mathematical terms as:
Find zeros of a two-dimensional function of two variables y_, w with parameters k., r.

There are several numerical techniques to solve this rather standard problem. We couid also
determine the equilibrium by finding the local energy minimum or maximum of the block-foundation
system. We do not use any standard numerical solver. We created an efficient code ourselves utilizing
our knowledge of the function Ry.. This will prove useful later when we study the equilibrium
positions in the whole (k_, r) parameter space.

The function R, is monotonically decreasing in y_. Thus, given fixed w there is exactly one
yr(w) such that Ry (yr(w),w) = 1, Then, for each w we can define a continnous function arm(w) =
a,_(yr(w),w). The problem is now reduced to finding zeros of arm(w), a continuous function of
one variable. In other words, we solve numerically Ry.{y-,w) = 1 for y. as a function of w and

substitute in ay.{y.,w) = 0.

Bquilibrium - fixed k. r

The function armi(w) is plotted for several specific parameter values in Figures 4.35 and 4.36. There
are two plots in each row, both for the same parameters k.,r: on the left-hand side we show
arm(w) versus w and on the right-hand side we have a plot entitled energy. The energy plot shows
I arm(q) * 1 da versus w. But Ji° arm{g) * 1 dq is equal to the work done when moving the hlack
from (yr(0), 0} to (yr{w), w). Thus, the said integral gives the energy of the block-foundation system
at (vr(w), w) assuming a zero energy level at (yr(0},N).

At any w where arm(w) becomes zero we have an equilibrium point. At that w the energy reaches
2 local minimum if it is a stable eqguilibrinm and a local maximum if it is an unstable equilibrium.
‘We can imagine a little ball rolling atop the curve in energy plot. If we put a ball on a *hill’ it will
stay until slightly perturbed. If we put the hall in a ‘valley? it will stay even if porturbed. The block
would rock back and forth in the same way that the ball would roll.

The paramétars k_, r in Figures 4 35 and 4.36 were chosen to display qualitatively different kinds
of equilibrium situation. Figure 4.35 shows arm(w) and its corresponding energy plot for r = 0.9
and k. == 4.5,6.2, 100, Figure 4.36 shows the same information for v == (.1 and k- == 500, 599.1, 2000.

Fixing the aspect ratio at » = 0.9 we have for k. = 100 2 stable equilibrium point at w = 0 and
an unstable one near w ~ . This is a familiar situstion - just like having a rigid block on xigid

ground. - The situation qualitatively changes when we lower the foundation stiffness to k. = 6.2,
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The equilibrium point at w = 0 becomes unstable, a new stable equilibrium point shows up at
w == 0.19950, and the equilibrium point nearest the angle a remains unstable and moves to w = 0.552.
Lowering the stiffness further 10 k. = 4.5 while keeping r fixed at (.9 we find things different again.
There are no stable equilibrium points at all and only one unstable point at w = (.

Changing now the aspect ratio to r = 0.1 we have for k_ = 2000 a stable equilibrium point at
w = 0 and an unstable one near w = «, again a familiar situation. Pixing r and lowering k. to
599.1 we find that w = 0 eguilibrivm point is now unstable, 2 new stable eguilibrivim point appeats
at w = 0.01433593, and the old unstable point drops to w = 0.034466552. This sounds the same
as the equilibrium scenario for the parameters r» == 0.9, k. == 6.2 - until we look at the plot. For
w < 0.034466552 arm{w) pets so close to zerc that we cannot see with the naked eye where in the plot
arm(w) actually crosses the zero line. Basically, the whole interval —0.034466552 < w < 0.034466552
becomes one large neutral equilibrium. This is reflected in the corresponding energy plot where the
top of the ‘hill’ is wide and flat. Lowering k- further to 500 there are no stable equilibrium points

at all and only one unstable point at w = 0.

Equilibrium bifurcation - fixed r, varying k.

An obvious question to ask now is: for 7 = 0.9 what happens to the equilibrium picture when k-
changes between the values 4.5, 6.2 ,1007 At a more general level we ask to see the equilibrium
points for a fixed r as the stiffness changes in the considered interval k. > 2.

For fixed r we vary k. in small increments starting at 2. For each k. we compute all of the
equilibrium positions w and determine whether they are stable or unstable. We plot the equilibria
positions w versus k- in Figure 4.37 for » = 1, 0.95, in Figure 4.38 for » = 0.7, 0.5, and in Figure 4.39
for r = 0.2,0.1. For each r we present two horizontally aligned plots. The right-hand plot shows the
equilibria positions w in the whole range 2 < k. < 105, The left-hand plot shows a magnification of
the same data where the equilibrium situation qualitatively changes. The stable equilibrium points
w are connected by a solid line, unstable by a dashed line. For reference we draw w = « a8 a dotted
line in the plots.

Analyzing the data displayed in the plots we notice different equilibria behavior between r = 1
and any r > 1.

For any fixed r > 1 we observe the following: When k. is high, w = 0 is a stable equilibrium
point and w = « is an unstable one. As k_ gets smaller, w = 0 is still a stable equilibrium but the
unstable equilibrium originally at w = a drops monotonically to smaller and smaller values of w.

This is true for all k- down to an r dependent stiffness value we call ky,(r). At ko.(r) an equilibzia



95

r=1

0.8

06

— — - unstable equilibrium

= 04 - gtable equilibrium
------------ w=alpha=arctan(r)
no
0
i 1 1
3 4 5 &
k_
1=0.95 r=0.95
0.8 | | E T Illllll TF Ili T l]l”ll' L} T lllllii T 7T
- / - T
o s T T T T i /
- [
-~
06 /s + | -
/ |
[ )
; i
Y |
A H
04 |- \\ —tm 1 -
S \ i
\\ N !.
\ |
0.2 \'\ T 1 N
\ :
\ l
\\ . -
ol N |
{ 1 | S RNRITE el v vl £ Yol
4 5 8 7 8 10’ 10° 10° 10* 10°
k_ k

Figure 4.37: Equilibrium bifutcation, r = 1,0.95, varying k.



0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.5

0.4

0.3

0.2

0.1

96

r=0.7 r=0.7
T T T L)1 S M s S B L B S R 10 R )
hoss FEse Y / o iy ——" —_— s aae el
-~
i
» 4 / -
/
I
- - e — — ] ’ -
—_ |
-
n - £ { 4
:’ '
N
\
_ \ 4 |
AN
AY
.............................. N\
| | 1 Lok 2 bbb bbb bbb Ao B b b Ak ek AL
10 11 12 13 14 10' 10° 10° 10* 10°
k_ K
r=0.5 1=0.5
T T T T T T | T
- - / o —— -_— -
-~
e
- - / -
/
] l /
/
/
— — - -—-:- [
— - - - - I
5 - 4 | i
AY T -
Y
\\ ™
= \ . -
\
........................ \ srers asrs
t | J taveanl 1ot el Loagaent Vo1 bty
22 23 24 25 26 10’ 10° 10° 10° 10°
k_ k_
Figure 4.38: Bquilibriui bifurcation, r = 0.7, 0.5, varying k.



97

r=0.2

I l l l\lli'll T TUVTTVEF F llll.ﬂl L ’1'1'1:' YO PRI
02 ko == - -]
—_
/
Vd
P
/
/
/
{
{
= g1 |
___________ t
v
\
\
\
N\
\,
o - S SO
| I [ ey 1aanf poa il 1 |11|u!J s gl R T
148 148 150 151 152 10’ 10° 10° 10* 10°
k. k_
r=0.1 rw0.1
l | I IIIIIII‘ T LB REL T Illlllll T llllllll L T T 3T1TIT
o [ A -
—=
-~
P
.
s
/
/
!/
0.05 4 /
!
wwwwwwwwwww |
\\\
\
N
\\\
0 I AN
! 1 | 'REREM 1l ||n!n| P RETITE okt taasl NN AT
596 599 600 601 60z 10" 168 10° w' 0
K K

Figure 4.8%: Equilibrium bifurcation, » = 0.2, 0.1, varying k.



98

bifurcation occurs. The w = 0 equilibrium becomes unstable and another, new stable equilibrium
is born at w = 0. Whexn k. is lowered further the new stable equilibrium branches off to higher w
values. Thus, we have three equilibrium points now: an unstable one at w == {, a stable at some
higher w and another unstable one at even higher w. The latter equilibrium point is the unstable
branch coming from w = a. This situation persists for all k. down to an r dependent value we call
Buns(r). At kyne(r) the two higher branches meet and die. For all k. below kyps (r) there is no stable
equilibrium and only one unstable point at w = (.

A square block, r = 1, is an exceptional situation. For high k., there is again a w = 0 stable
equilibrium point and an nnstable one at w = o = 0.7854. However, when we lower k. the unstable
equilibrium point remains exactly at w = a = 0.7854, unlike the case when r > 1. Agsin a new,
stable equilibrium branch bifurcates from w = 0 at ko, {1) = 5.449 and the w = 0 equilibrium point
becomes unstable here. However, unlike the case r > 1, when the stable branch meets the unstable
w =  branch at kyns (1) = 3.558, they collapse into one stable branch. This stable branch continues
exactly at w = a = 0.7854, as k_ drops below the value kyn, (1) = 3.558.

Thus, for a square block, the equilibrium point w = 0 is stable Y. > ko, (1) = 5.449 and unstable
k. < kog{1) = 5.449. The w = o = 0.7854 equilibrium point is stable Yk. < kyns(1) = 3.558 and
unstable Yk. > ky,s(1) = 3.558. So interestingly, for soft springs, a square block resting with its
diagonal vertical is at a stable equilibrium. 7

For r = 1 we get a stable equilibrivm point at w = « below the value kyn.(1). But for a block
with r just slightly less than 1 we do not see any stable equilibrium points below the value by, (r).
Recall that we only looked at w < «. Physical intuition says that when the stable and unstable
equilibtia branches meet and disappear at ks (r) there is a new equilibria branch born at some value

w > o. We do not investigate this further.

Bqguilibrimm bifurcatioo in {k.,7) paramneter space

‘We have already obtained plots of the equilibrium position w against k- for several specific aspect
ratios ». For each » we found two critical k_ values where equilibrium bifurcation occurred. We
called these critical values kg, (r) and kyp,(r).

Now we want to determine ko, (), kuns(r) as a function of . We will consider aspect ratios in
the interval 0.05 < r < 1. Knowledge of ky,(r}, kuns(r) as functions of r will tell us where different
kinds of equilibrium behavior occur in the whole (k- r) parameter space. First let us make & precise

definition of both functions,

Definition:



99

Consider a rigid block of aspect ratio r < 1 on a Winkler foundation with stifiness k- > 2. Consider
the equilibrinm positions of the block only at angles 0 < w < @ = arctan(r). Fix r.

Let ks(r) be a value such that Yk. > ks(r) the equilibritmm point w == 0 is stable. Then kys(7) is an
infimum of all such vaiues ks(r).

Let ku(r) be a value such that Yk. < ku(r) there are no stable equilibrium points. Then kyns(r) is
supremum of all such values ku(r).

Both ko.(7), kuns(r) are plotted in Figure 4.40. The curves ko, (r), kyns () nearly coincide in the
top plot with logarithmic scale. Therefore, we plot the difference between the two eurves in a lower
plot. The difference kos(r) — kuns(r) is 1.891 at = 1, then falls quickly to about 0.8 and remains
almost constant for tall, thin blocks. Thus, the distance hetween the two hifureation paints mﬁning
nearly constant as the block gets taller and thinner.

The kyns(r) curve dividesthe (k_, 7) parameter space into twa regions. The region helow the eurve
has no stable equilibrium points and every point in region above the curve has a stable equilibrium
point at some w. Again we remind ourselves this refers to equilibria in the interval [w| < a.

"I‘hé nice, smooth shape of ko (r) suggests that we try to find a polynomial to approximate kg.(r).
A fow attempts yield a simple expression 8/r% — 0.5 which fits ko, (7} with remarkable accuracy. At
the lower picture in Figure 4.40 we also plot 6/+% — (1.5 — kos(r). It is practically equal to zero. The
remarkable fit suggests we try to derive 6/r2 — 0.5 analytically.

It is possible, indeed. We recall the formula for ay.(y., w) stated in Figure 2.5:

*ay (y,w) = reos(w)/2 —sin(|w|)/2-
) 77 cos® (w) (3 cos(w) /2 — rsin(|w|) /2 — 3p.) — v-* (3., w) sin® (jw])
/8 r cos®{w)(cos(w) — 2y.) + sin|w]) cos(w)v_*(y., w)

H

where v..(1., w) = cos(w) /241 sin{{w])/2-y_. Consider a block resting on a foundation at equilibrium
position - = 0.5 — 1/k_,w = 0. Tilt the block a small amount w = ¢. We can assume that y- does

not change. Then the equilibrium point w = 0 is neutral when
ay(0.5 — 1/k-,€) = 0

When solving the equation we assume that sine = € and cos¢ = | and neglect all terms with second
or higher powers of e. After some algebra the equation simplifies, the first power of e cancels out
and we arrive at:

k2r? —6k_+3=0.
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Figure 4.40: Equilibrium bifurcation in (k.,r) parameter space

When solving for k. we make the additional assumption that ? is small and replace the expression

v3—1r2 by V3 - ;3’3%. The solution is then given by:

§
ko = 0.5 ko = = 0.5,

We disregard the first solution, k.; = 0.5, because the whole block would be under the foundation

surface. Our model assumes at most two corners of the block are under the surface. TheK second
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solution is the one we were looking for. Thus,
6
kos (T) = "1':"5 - (1.5

is the stiffness value, where for a given ¢, equilibrium point w = 0 is neutral. For larger k_, the

equilibrium point w = 0 will be stable and for smaller k.. it will be unstable.

Equilibriurm - conclusions

The following conclusions apply to a block with an aspect ratio r < 1 on Winkler foundation with

stiffness k. > 2 for equilibria positions in the interval jw| < a.

¢ The equilibrium point at w = 0 is stable for all k_ larger than ko,(r) = 3% — 0.5 and unstable
for all k_ lower than ko,(r)

» There is no stable equilibrium point for any k_ lower than kyuns(r) and there is a stable equi-

librium point for all k. larger than ky,.(r). The value of kuns(r) is about 0.8 less than kp,(r)
» At kos(r) and kyn,(r), equilibria are born or die. Bifurcation occurs

¢ There is exactly one equilibrium point for any k. smaller than k,..(r), there are three equi-
librium points for any k_ between k,,;(r) and kq.(r), and there are two equilibrium points for

any k. larger than kos(r)

The fact that there are no stable equilibrium points for any k- smaller than Ky, (v) Is refllecied iu
our dynamic analysis. The k2.opiiey(r) and k3siapitiey (r) curves computed for ic2 follow kyns(r)
clusely before blowing up. The klgapii, (r) curve computed for icl is almost identical 10 kyp,{r),

only little higher.

Equilibrium - applications

‘We discussed equilibria of a rigid block, assuming it is a rectangular rigid block with uniform density
as defined in the beginning of this thesis. Looking back at this section we realize onr equilibria
discussion applies to a much larger class of rigid objects. The block does not have to be uniform
since the moment of inertia I_ does not enter the discussion. The whole object does net have to be
rectangular. The discussion applies to any rigid object with the following properties:

1) the part of the object which is below the foundation surface must be part of some rectangle,

and
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2) the center of gravity of the object when projected straight at the bottom edge is in the middle
between the two lower corners.

Then the aspect ratio  of the object will be -.}};, where Iy is width of the bottom edge and I is the
distance from center of gravity to the bottom.,

A possible application of this static equilibria analysis lies in the atea of civil engineering. We
could estimate k. that best approxitmates given foundation soil properties and conclude that build-
ings of lesser aspect ratio than k! (k_} cannot exist on a given foundation. Cities and countries put
a large amount of effort and take pride in constructing tall buildings. The simple equilibria analysis
suggests that the mere height may not be the main limiting factor in constructing tall structures.
More important is how slim the structure gets. We realize that real soil foundations do not behave
exacily like our investigated elastic model. The immediate conclusions regarding the stability of tall
structures may be oversimplified. However, the presented equilibria approach could be developed
further towards civil engineering applications. A more realistic mode] could be considered for foun-
dations, for struetures, etc. We believe such analysis would yield valuable results on the stability of
tall structures.

‘We have to mention another interesting application. If the block is tilted and both lower corners
are under the foundation surface, then the friangular area between the higher of the two corpers
and the surface contributes to an upward force pushing the block out. Referring to Figure 4.34 or
2.5, it is the white triangle outside of the block. We let the said triangle contribute to the reaction
foree since the springs cannot ‘bend around’ the corner,

Suppose now that the contribution of the said tdangular area does not strongly influence the
equilibria of the block. Then we simply take k. = %ﬁf and relate the whole analysis to the
equilibria of blocks fioating on water. Indeed, we can see garbage cartons Hoating on water declined
from vertical. It would be interesting and not véry difficult to redo the analysis with a model which

does not include the said triangle, that is with a liquid foundation model.

4.4 Long term response

This section is a direct continuation of the 4.1 section. We will be looking at the behavior of the
block subjected to the initial conditions icl, ic2 for various different parameters, trying to identify
the dominant types of response. In section 4.1 we looked at the behavior of the block for times 0
to 10 or 20. Now we study the motion of the block to times of order 100 or 1000. We ob$erve the
motion for large times £ to find out whether the response changes for large ¢. and if it does how.

Unlike in section 4.1, we do not plot the variables z.,z.", y, 4., w, w' versus time. We present
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phase spa.co plots of . versus y.. a:ad. w' versus w. Plots of #.' versus x. arc often not included. If
the whole motion takes place in contact mode, o is just a function of w for all times. If y = 0, the
block moves only in slide mode but its motion in the x direction is trivial. So we can take #(2.) =0
without loss of generality. In these cases or when we simply feel the z." versus z.. plot does not show
anything worth displaying, we omit it.

Furthermore, we present plots of energy versus time. We plot all five of the energy components
defined earlier: kinetic rotational, translational in x, in y, and gravitational potential, potential of
the springs. We plot the energy averaged over one swing instead of plotting the energy continuously
at vach time step. By swing we understand that part of the block’s motion which oceurs between
two subsequent changes of the sign of angular velocity w'. So, if rocking were periodic, one period
would consist of two swings. To average the energy we numerically integrate the energy over the
whole swing using a trapezoidal rule and divide it by the time length of that swing. We average
each of the five energy componenis. The averaged energy for a given swing is plotted at the end of

that swing. We call averaged energy components as follows:

averaged kinetic energy in x direction ave_x'
averaged kinetic energy in ¥ direction ave.y'
averaged rotational kinetic energy aveaw'
averaged gravitational potential energy avey

averaged potential energy of compressed springs  ave_k.

The response presented in the form of the said phase space and energy plots is shown in Figures 4.41
through 4.55. Each figure shows the response of our system for a given choice of parameters p, k-, r.
Each figure presents phase space plots of y_, %’ and w,w'. At the bottom of a plot the averaged
energy versus time is shown. Rarely, we include the phase space plot of z_,x_'. Table 4.1 contains a
list of figures with parameters and initial conditions given for the figure and a hrief deseription of
the response iype in the figure. Figures are listed in the table in order they appear in this thesis.
In phase space we plot the discrete points along trajectories at constant time intervals. Since the
motion is observed for a long time, drawing trajectories with a continuous solid line would result in
an overcrowded picture - essentially just a black spot. Plotting discrete points may not show the
geometry of the trajectories well. But it will show a region in phase space where trajectories move
for givep initial conditions. The preseunted phoso space plots are o projection of this region onto the
y-y- and w,w' planes. Then on top of the dotted region we sometimes draw an initial or a typical
trajectory with a golid line - but only for a short time, just enough to display the geumetry of a

trajectory.
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Figure | o k_ | initial conditions response type

4.41 0 05 10° icl Steady rocking
442 |0 05 10¢ icl Zero friction rock-flight
4.43 0 0.1 108 icl Rock to vertical
4.44 0 05 10° ic2 Steady rocking
4.45 0 05 104 ic2 Zero friction rock-flight -
4.46 0 02 108 L Rock to vertical
4.47 02 02 10| icl Steady rocking
4.48 01 0.5 108 icl Settle down

4.49 01 05 10° icl Settle down

4.50 03 0.2 10° icl Rock to vertical
4.51 02 0.1 108 icl Rock to vertical
4.52 0.2 0.1 108 icl Rock to vertical
4.53 0.2 03 104 ic2 Steady rocking -
4.54 01 02 104 ic2 Settle down

455 |02 015 10° ic2 Rock to vertical

Table 4.1: Long term response figures list

Dominant response types

When the hlock does not averturn we can divide the response of the system into four dominant

types:

Steady rocking
Settle down
dominant response types:
Zero friction rock-flight

Rock to vertical.

Each of response types occurs for both initial conditions icl and ic2. Its occurrence depends mainly
on the parameters p,r, k.. The four response types above correspond to the types of response
discussed in section 4.1 when studying the short term behavior of the block. Description of the four

dominant types now follows one by one.

4.4.1 Steady rocking response

This type of response occurs for any p in the No Flight Region of the (k-,7) parameter space. In
other words, it occurs for smaller values of k- when the block does not fly. No other type of response
occurs in the No Flight Region so we could call the Steady rocking response the No flight response.
The block will forever rock back and forth in a quasiperiodic motion. For icl the averaged energy

components slightly oscillate around a certain constant value and the total energy is conserved. The
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same holds for ic2 once a short transient period is passed. Thus, the block moves in a steady-state
motion from the beginning when subjected to icl and after some transient, energy losing period
when subjected to ic2. However, the motion is not periodic, at least not on the time scale the block
was observed. While the oscillatibn in the w,w’ plane seems to fall on a closed orbit, the vertical
y-,y.. oscillation of the block changes in time creating nice patterns. The time length of a swing
remains almost constant with only a slight sinusoidal like oscillation. See Figure 4.57 for a typical

swing length plot.

4.4.2 Settle down response

This type of response occurs only for coefficients of friction u greater than 0. It can take place when
the aspect ratio is between 0.2 < r < 1 and for higher k_, in the region where the block already flies.
During the initial transient motion, which also includes flight, the block loses almost all energy due
to friction forces. Then it settles down into a small steady-state vertical oscillation, while motion
in the z.,z." and w,w' planes is practically eliminated. Even though the vertical oscillation in a
steady-state is small, the block still periodically lifts off the surface and flies shortly. The transient,
energy dissipating motion is rather short, roughly up to time 5 during which the block rocks back
and forth about 5 to 10 times. Dramatic loss of the energy is reflected in the plots of the averaged
energy. The total averaged energy decreases at least one order of magnitude. Elimination éf the
angular rotation is also evident in a sharp decline of averaged rotational kinetic energy ave.w'. As
the block settles down, its swings get shorter and shorter. See Figure 4.57 for a typical swing length
plot. The time length of a swing falls practically to zero during the transient part of the motion.

For initial conditions ic2, the Settle down response is in some ways similar to the Steady rocking
response. In both cases, the system loses energy during its initial transient motion and then settles
in a steady-state oscillation. The difference is that in the Settle down response, the block flies during
both transient and steady-state motion, whereas in the Steady rocking response the block almost
never flies. Furthermore, in the Settle down response, much more energy is lost and the steady-state
angular motion is smaller. Steady-state trajectories in the y-,y-' plane practically form a simple
closed orbit (Figure 4.56).

In both the Settle down and the Steady rocking response types, the block will move in a steady- ‘
state motion after a short transient period. In the other two response types, Zero friction rock-flight

and Rock to vertical, the block will never settle into steady-state motion. ‘
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4.4.3 Zero friction rock-flight response

This type of response occurs only for coefficients of friction p = 0. We can view it as a éounterpart
of the Settle down response in a case of zero friction. It takes place in a similar region in the (k-,r)
parameter space (for aspect ratios in the range 0.2 < r < 1 and larger k., such that the block
flies). Since there is no friction, energy is conserved. The block never settles down into steady-state
motion. It Wﬂl rock back and forth, move vertically, and fly in a random manner for all times. We
do not see any regularity in the behavior or any trend as in the two response types discussed above.
Graphs of the averaged energies wiggle in time in an unpredictable fashion. Also, the length of the
swing chénges rather unpredictably (Figure 4.57). ‘

Initial tfajectories travel through the whole dotted region in the phase space plots. This is
different than in the Rock to vertical response type.

4.4.4 Rock to vertical response

This type of response occurs for any u. It takes place for r below approximately 0.2 and large k-, such
that the block flies. This corresponds to a tall, slender block on a hard foundation. The following
description of the Rock to vertical response type holds for initial conditions icl. We observe the
same behavior for ic2 only after a short inijtial energy dissipation.

If 4 > 0 the block moves in the beginning mostly in contact mode with short flights during
impact. As time increases, flights get longer and more frequent and the contact mode less dominant.
However, in any time the slide mode, with its consequent energy dissipation, is limited to a very
short time between the flight and contact modes. Thus, energy is almost conserved. If p = 0, the
energy is entirely conserved and we also observe more and longer flights as time increases.

The initial trajectories travel through specific parts of the dotted region in the phase space plots.
In the w,w’' plane, they travel along the circumference of the dotted region. In the z.,y.' plane,
they oscillate close to a horizontal line of symmetry of the dotted region. As time progresses, the
trajectories move away from their initial paths. In the w, w' plane, trajectories start on the boundary
of dotted region and then spiral towards the inside. In the y.,y." plane, trajectories start along a
horizontal line of symmetry but then stretch out vertically and spread out across the whole dotted
region. This is best illustrated in Figure 4.52 where an initial,’as'well as a typical, trajectory are
drawn in the same picture.

Furthermore, throughout the motion, energy is transfered between different energy components.
Iu the beginning of the motion, the y kinetic energy rises which in turn is balanced by decreasing

gravitational potential, x kinetic and rotational kinetic energies. The energy subsequently flows
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between different components. The initial energy distribution is not regained. Thus, the y kinetic
energy and the potential energy of springs will almost always be higher than they were initially. The
x kinetic; the rotational kinetic energy, and the gravitational potential energy are almost always
lower than they were initially. The sharp rise of the y kinetic energy right at the beginning of
motion is seen clearly in Figures 4.50 and 4.51. The kinetic y energy rises significantly during first
5-8 swings. This energy rise is accompanied by decreasing length of the swings (Figure 4.57).

The three described phenomena, increasing flight time, the difference in initial and later trajec-
tories and the energy transfer are all related. They suggest that a tall block on a hard foundation
will rock less but oscillate more vertically during the initial motion, all that with energy practically
conserved.

Counsider now a simple, real world experiment. We slightly incline a tall, slender block on a flat,
hard surface and release it. It rocks less and less over time and all motion quickly dies. One would
think that it rocks less only because energy gets dissipated. The described numerical simulation
suggests that a tall block has a natural tendency to right itself even when energy is conserved.
Thus, the decreasing rocking motion in our experiment may be natural to a large extent and not
caused by energy dissipation. Of course later, when the block tends to oscillate more vertically,
dissipation takes over and motion disappears.

The Rock to vertical response does not settle into a steady-state. However, unlike the Zero

friction rock-flight response, we observe an initial trend toward purely vertical motion.

4.4.5 Response types - summary

‘We have identified four dominant types of response in the long term behavior of the block subjected

to the initial conditions icl and ic2. We roughly characterize each of them in the following table.

response type flight | steady-state energy description

Steady rocking no yes conserved smooth rocking
Settle down yes yes dissipated a lot | motion almost dies

slight y oscillation

Zero friction rock-flight || yes no conserved random rocking,flight
Rock to vertical yes no almost long time
conserved energy transfer

For ic2 somec encrgy is dissipated even in Steady rocking and Rock o vertical response types. This

dissipation occurs only in the beginning of the motion and for a short time.
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steady-state motion in Settle down response type 1=0.2 K_=1e4 cf=0.1 ic2
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Figure 4.56: Settle down response type: steady-state motion
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Chapter 5

Sensitive dependence, chaos

Sensitive dependence on initial conditions and parameters in forced rigid block dynamics has been
already reported in a few publications. The authors Aslam et al. [1980] describe experimental
shaking table tests:

...... similar tests using simulated earthquake motions were not exactly repeatable
... Unlike a linear elastic problem, the rocking problem is very sensitive to small changes
...a small change in the value of » (coefficient of restitution) completely changes the

time history response under the same ground motion ...

Bruhn and Koch [1991] analyze a simple model of a rocking block subjected to periodic forcing. They
prove analytically the existence of Smale horseshoe chaos in the dynamics by calculating intersections
of stable and unstable manifolds of periodic solutions.

The dynamical system we consider in this thesis is not subjected to external forcing; only free
vibration of the block is analyzed. In this chapter we provide numerical evidence of chaos in such

dynamical system ,i.e., in the initial value problem.

5.1 Energy conservation and phase space

Phase space of the considered dynamical system is either 4- or 6-dimensional. Conservation and
dissipation of energy restrict the set of all possible states of the dynamical system in the appropriate
phase space. In other words, the energy considerations restrict motion of the block to a certain
subset of the whole 4- or 6-dimensional phase space. Dissipation is possible only in a 6-dimensional

space. Energy is conserved in a 4-dimensional space. In either case, trajectories cannot escape a



126
compéct set given by initial conditions:

6 dimensions: total energy(z_',y_,y,w,w') < E

4 dimensions:  total energy(y-, ¥/, w,w') =E,

where E is the initial energy.

If the system is 6-dimensional we have friction forces. Friction will allow for only a finite z.
variation, meaning [z—_(t-) — 2(0)| < constant Vi.. The constent is always finite and depends on
the initial conditions and parameters. The block cannot travel too far since cven a small amount
of friction stops it effectively. The system is also invariant under z_ translation so we can consider
2. only in the interval |z_| < constant. We arguc that variation in z. is finite to support the claim
that trajectories in a 6-dimensional space cannot escape a compact set given by initial conditions.
Thus, all trajectorics of a 6-dimensional system will lie on or inside a 4-dimensional surface given
by the following equation

y-

Iw" ’
-05+—§—+ 5+ 5 +ekly-w) = E, (5.1)

where ek(y-,w) is the potential energy of compressed springs. The 4-dimensional surface can move
in the finite interval —constant < z_ < +constant.

If the system is 4-dimensional the situation is simpler. The block is either in the contact mode
or the friction is zero. In each case, the energy is conserved and the variables z_, z_' do not enter
the problem. All trajectories lie strictly on a 3-dimensional energy surface given by equation 5.2 in

the g = 0 case and by equation 5.3 in the contact mode case.

- ILw'"

p=0" —05+y7+ S tek(yow) = E(52)
L(rcosw —sinw)’)? y2 [ w?

contact mode: y-— 05+ G 3 )) + -'1!—2— + £12D-— +ek(y-,w) = E (53)

So we know that in a 4-dimensional phase space all trajectories lie on some 3-dimensional en-
ergy surface and that in a 6-dimensional phase space all trajectories remain on or within some
4-dimensional energy surface. But the presented phase space plots are in 2-dimensional w,w’' and
y-, y- planes. Therefore, we would like to know the projection of the cnergy surfaces 5.1,5.2, and
5.3 onto our 2-dimensional planes. A bit of algebra shows that the pro_]ectmn of any of the three
energy surfaces 5. 1 5.2, and 5.3 onto the y-, y./ plane is given by:
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Y- y-' projection y- range
E>0|y.—05+% <E . 0<y-—05<E

Y. — 0.5+ 4= 4 E08) < p | _LevIFREE: <y _ 05 <0
E<0|y.—05+ %> 4 klu=05 « p | 14VIFIBE. < o) _ (5 < =LbVITIFE:

Projection of the energy surface 5.2 onto the w, w' plane is different than the w, w’ projection of 5.3.

Formulas for both projections are given in the following table:

surface w,w' projection

12
5.2, p=0 | yr(w) — 0.5+ ~I—=‘§"-—- + ek(yr(w), w) <E

5.3, contact | yr(w) — 0.5 + %ﬁ(%(r sinw + cosw)? + I..) + ek(yr(w),w) < E,

where yg(w) was defined in the section on static equilibria as a function satisfying R, (yr (w), w) = 1.

Equivalently, this definition of yr(w) means that given w
~ ek(yr(w), w) + yr(w) — 0.5 < ek(y-, w) +y-— 0.5 Vy-.

To put it in words: yr(w) makes the combined potential energy of the system minimal for a given
w. We do not state in an analytical form the w range admissible for a given value of E. This will
depend on yr which we compute only numerically.

Projection of the 4-dimensional surface 5.1 on the w,w' plane will be in general equal to the
w,w' projection of 5.2 surface. However, if energy dissipation in the 6-dimensional system is very
small then the trajectories will be effectively limited to a smaller set than 5.1, a set whose w,w’
projection is equal to the projection of the 5.3 surface. This happens when the block spends most of
its time in the contact mode and in flight. Then the system is 6-dimensional but sliding is limited
to very short periods duriﬁg take off and landing and results in only negligible energy dissipation.

Such behavior can be seen in the Rock to vertical response.

5.1.1 Projected energy surface and trajectories

Since trajectories must stay on the energy surface they must also stay within its projection on the
Y-,y and w,w’ planes. Thus, the numerically computed trajectory projected onto the y_,y." and
w,w’ planes should stay for all times within the analytically derived projection of the energy surface.

We present computed trajectories projected onto the y-,y.' and w,w’ planes by plotting in
constant time intervals discrete points lying on a trajectory. All such trajectory ‘dots’ should stay

within the relevant energy surface projection. Let us verify this by looking at specific examples in
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Figui'es 5.1 and 5.2 where we present w, w’ and y_, y-' phase space plots for each of the four discussed
response types. Indeed in both Figures trajectories stay within the projected energy surface.

An important point to be made here is what part of the projected energy surface the trajectories
occupy. For the Steady rocking and Settle down response types in Figure 5.1 the trajectories travel
only through a small fraction of the adwmissible energy surface. On the contrary, for the Rock to
vertical and Zero friction rock flight response types in Figure 5.2 the trajectories travel through
the whole area of the prujected energy surface. However, the fact that trajectories densely fill the
whole projection of the surface does not imply that they densely fill the whole energy surface itself.
In other words, the filled surface projection is a necessary but not sufficient condition for a filled
surface itself. We can view it only as a good indication that the trajectories travel densely through

the whole energy surface.

5.2 Sensitive dependence

In some subset of the parameter space (i, k-,r) even a slight change in a numcrical value in the
problem will cause a large solution difference later in time. This numerical value can be any of thé
initial conditions, the integrator time stcp sclection parameter eps, the value of parameters u, k-, 7
ete. The author originally thought this was simply a programming error [Ames et al., 1993]. After
long testing, checking and improving of the code, a different conclusion was re#ched. The code works
fine and the trajectory separation is caused by a small initial change in a numerical value. This is
a natural property of the dynamical system. The system exhibits sensitive dependence on initial
conditions.

We give a brief example of the observed sensitive dependence on the initial conditions. We run
the code using the parameter values pp = 0,k. = 10°, and r = 0.3 with the initial conditions icl.
The second run is for the same setting, only the initial y.! is changed from 0 to 10—, We stop the

computation at time ¢ = 20 and present results in the following table. In both runs the first flight

p=0 k_=1e5 r = 0.3 || initial conditions icl | initial conditions icl, y.'(0) = le— 10
first flight at t- = 0.604 t- = 0.604
w(20) —-9.5108e — 02 —3.8973e — 03
y-(20) 5.1023e — 01 5.0924e — 01
ihor(20) 25 33
mMaXo < t..< 20 IE E(t..)l le -9 le—9

Table 5.1: Sensitive dependence on initial conditions - example

occurs at time 0.604. However; at time 20 the values of the vaxiabies y- and w differ completely
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in the two runs. Also, ihor(20) tells us that in the first run the block passed through the w = 0
position 25 times whereas in the second run 33 times. Thus, a very small change in the initial
condition (yy = 0 in first run and y) = 1071° in the second) results quite quickly in a separation
of the two solutions. The solutions become quite different, they are not just out of phase. At the
same time we note that the total energy is well conserved in each numerical svlution. The largest
difference between the initial energy E and the total energy E(f_) at time 0 < t- < 20 is of order
10 °. The initial energy E = E(0) = 1.586403¢ — 02 is of order 10~ so the 7 first digits iu the total
energy are the same throughout the computation. Conservation of energy is an independent check
of the numerical solution. It gives us increased confidence that the described separation of initially
close trajectories is due to a natural sensitive dependency on the initial conditioﬁs contained in the
mathematical formulation of the system and not due to an incorrect numerical implementation.
We ought to do more though to claim sensitive dependence. We will use two techniques widely
accepted as strong evidence of chaotic behavior. We will study a Poincare map of our dynamical

system and we will compute a Liapunov exponent along a trajectory.

5.2.1 Poincare map

A Poincare map is a classical technique for analyzing continuous dynamical systems. The technique
cuts an n-dimensional phase space of the dynamical system along an n — 1-dimensional surface and
then studies the in;cersections of solution curves with the said surface. This way, continuous-time
flow of the n-dimensional system is replaced with an n — 1-dimensional discrete map. Advantages
of such an approach are a dimensional reduction of the system and possible insightful display of
global dynamics of the system. An important point is the selection of the n — 1-dimensional cutting
surface. For a precise definition and examples of a Poincare map we refer the reader to Wiggins
[1990] and Guckenheimer and Holmes [1983].

In our study a natural choice for the cutting surface is the w = 0 hyper plane. The said hyper
plane is 3-dimensional in the case of a 4-dimensional space and 5-dimensional in the case of a 6-
dimensional space. Thus, in more loose terms, we will be taking snapshots of the moving block each
time it passes through the upright vertical position.

We run into the same problem when presenting results as in case of continuous trajectories.
How do we display the results from a 3- or 5- dimensional space on 2-dimensional plots? We will
project the intersection points from a 3-dimensional hyper pl:ine (y-3-", w = 0,w') onto two planes:
Y- y-' and y.,w. We will employ the same projection also in case of a 5-dimensional hyper plane

(Y- y-,w = 0,w',z_,z.") simply forgetting about 2,z dimensions. Our experience shows that
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including plots in z_, 2. plane does not give any more relevant information. In the interesting cases,
when we suspect chaos, the dynamical system is 4-dimensional, as in the Zero friction rock flight
response, or ‘almost’ 4-dimensional as in the Rock to vertical response.

A trajectory is computed in discrete time steps. It may pass through the cutting hyper plane in a
large time step, especially when block is in flight. Therefore, we add to our code a subroutine which

computes the intersection of a solution curve with the said hyper plane within machine accuracy.

5.2.2 Liapunov exponent

A Liapunov exponent tells us about the contraction or the expansion of the phase space in direct
vicinity of a specific orbit. It tells us at what rate two trajectories starting initially very close to each

other will separate. The following definition is from Wiggins [1990]: Consider a dynamical system
z = f(x), zeR"
with the initial condition (0} = 2¢. The system is linearized about its solution z(t) by
£=Df((t) ¢ £ €R™

Let X () be the fundamental solution matrix of the linearized system and e € Rﬁ. Then the Liapunov
exponent LE in the direction e along the orbit through zg is defined as:

LE(zg,e) = tgzgo sup -} log J&”gﬁﬁu. (5.4)
‘We can view the Liapunov exponent as a time average of the real parts of the eigenvalues of X(t).
The dependence on xp appearing on the left-hand side of equation 5.4 enters the right-hand side
through X (t). The Liapunov exponent LE does not depend on the point zp itself; it is an asymptotic
quantity and it depends on the orbit passing through 2. So we should view zy in the definition of
the Liapunov exponent as an orbit label rather than a point.

The Liapunov exponent depends by definition on a particular direction e. Thus, in general for a
different direction e, the Liapunov exponent will be different. For a given orbit of an n-dimensional
system there exists no more than n different Liapunqv exponents.

If we choose the direction e arbitrarily and compute LE from the definition we are almost certain
to get the maximal (largest) Liapunov exponent. Simplifying somewhat we would liké t0 compare

the convergence to the maximal LE for almost any e to a more familiar situation from linear algebra:
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consider the iteration vij; = A v, ﬁhgre A is a n % n matrix and v, an » dimensional vector. For
almost any initial choice of vg the vector v; will converge as i ~ oo to the eigenvector belonging to
the largest eigenvalue. In a similar fashion, for almost any choice of e, the vector X (t)e will converge
to and follow the direction of maximal stretch in X () as ¢ — co. Consequently, the computed LE
will be the largest Liapunov exponent. Only if we choose the vector e to be exactly 6rthogonal to
the direction of maximal stretch in X () then we compute an LE other then largest.

In a practical numerical setting the LE computed simply from the definition 5.4 will always be
the largest one. This is due to fact that any computer implementation will produce perturbations
from X(t) e. These perturbations are amplified in the direction of maximal stretch in X (¢) and
eventually the vector X (t) e will line up in that direction. .

The described convergence to a maximal LE for almost any e is great if we merely want to
compute the largest Liapunov exponent. However, it makes computation of the remaining Liapunov

eprnents more difficult.

Application to the considered dynamical system

In our study, we caré to compute only the maximal Liapunov exponent. If for a certain orbit this
exponent is positive, then phase space in the immediate vicinity of this orbit expands, indicating
sensitive dependence. If the maximal Liapunov exponent is zero, phase space does not expand in
the immediate vicinity of the orbit and the trajectories which start close together stay close together
and there is no sensitive dependence on initial conditions near the given orbit.

We do not address in the definition 5.4 whether the solution z(t) exists for all times. This is
true for the dynamical system considered, since trajectories lie on the energy surface - a compact,
bondaryless manifold. Also, the supremum in the definition 5.4 may be dropped in the context of
our dynamical system as the limit lim;., o exists.

We write our own code to compute the Liapunov exponent along a given trajectory of the
considered dynamical system. Without going into details of the code structure we refer the reader
to Pa.fker and Chua [1989] and Benettin et al. [1980] who discuss thoroughly practical Liapunov
exponent computation. Other references we used on the subject of Liapunov exponents include

Wiggins [1990], Wolf et al. [1985] and Zaremba [1992].
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5.3 Chaos

5.3.1 Chaos - initial conditions icl and ic2

* In the beginning of section 5.2 we observed that the considered dynamical system exhibited suspected
sensitive dependence on the initial conditions in some subset of the parameter space (p, k-,r). Then
we introduced the notion of the Poincare map and the Liapunov exponent. We now use these
two numerical techniques to support the claim of sensitive dependence and to show the underlying
chaotic structure in the system. We will also specify more closely in what subset of the parameter
space we observe chaotic structure.

For now we limit our computation of the Poincare map and the Liapunov exponént to trajectories
starting with the initial conditions icl. The results are presented in Figures 5.3 through 5.7. The
top two plots of each figure display the Poincare map through the w = 0 hyper plane projected
onto the planes y.,y- and y.,w’. The bottom plot shows again the averaged energy versus time,
this also tells us up to what time we computed the Poincare map. The title of each figure notes the
Liapunov exponent LE for the given orbit. Each figure is for a specific set of parameters, which are
chosén so that we pfesent in the five figures all four response types described in the section Long
term response.

Response type Rock to vertical is presented in Figure 5.3 and 5.4 and response type Zero friction
rock flight in Figure 5.5. We discuss the two at the same time as the computed Poincare maps show
a striking resemblance. The Liapunov exponent is larger than 1 for each orbit, even larger than 2
when p = 0. The computed Poincare map does not create a simple geometric structure, it does
not even follow any pattern. The computed intersection points are scattered randomly in phase
space. This situation persists as we increase the computation time. The solution trajectory does
not converge to any attracting set. If wonders endlessly through the phase space tied to the energy
surface E since the energy dissipation is zero or negligible. The solution trajectory seems to travel
throughout the whole energy surface although it visits less frequently the area where w' is close to
Zero. ’

Response type Settle down is presented in‘Figure 5.6. The computed Liapunov exponent is close
to zero, The Poincé,re map quickly converges to a simple geometric figure in each projection plane:
almost a straight line in y-,w’ and a pear shape in the y., y-' plane. The corresponding steady-state
motion is a permanent vertical oscillation with slight angular rotation.

Response type Steady rocking is presented in Figure 5.7. The computed Liapunov exponent is

practically zero. All points in this Poincare map fall on two straight lines in the y.,w’ plane and on
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an eilipse in the y_, y_' plane. The corresponding motion is steady-state rocking.

Thus, in the Rock to vertical and the Zero friction rock flight response types the computed
Liapunov exponent indicates a local expansion in the vicinity of the orbit and therefore sensitive
dependence on the initial conditions. The Poincare map shows no pattern; the points are scattered
randomly indicating a chaotic like motion. On the contrary, in the Settle down and Steady rocking
response types the computed Liapunov exponent is close to zero, indicating that the trajectories
stay close together if they start close together. The Poincare map creates a simple geometric figiire
documenting a predictable, simpler type of motion.

The preceding discussion and presented plots were for the initial conditions icl. We could present
similar plots in each response type for the initial conditions ic2 and repeat the discussion above. The
only difference for ic2 is an initial energy dissipation when g > 0. However, the initial dissipation

will not change the structure of the Poincare maps.

Chaos icl and ic2 - where in parameter space

‘We have shown a sensitive dependence on the initial conditions icl and ic2 and the underlying
chaotic structure of the dynamical system at some points in the parameter space. For the same
initial conditions at other points of the parameter space our dynamical system exhibits simple,
predictable behavior. Naturally, we want to know where in the parameter space we get chaoﬁc like
motion and where we do not - again still limited to initial conditions icl and ic2.

When we discussed Poincare maps and Liapunov exponents at specific points in parameter space
we referred to that point by the response type it exhibited. We did so somewhat prematurely but for
a reason: earlier described response types divide the parameter space into chaotic and non chaotic
zones. The response types Rock to vertical and Zero friction rock flight exhibit chaotic structure. The
response types Settle down and Steady rocking display simpler, predictable dynamics. Trajectories
in these two response types occupy a small subset of the admissible energy surface or, in the case of
dissipation, a small subset of the region inside that surface.

Chaotic motion occurs in the parameter space where the corresponding response types reside.
The ‘chaotic’ response types reside, roughly speaking, anywhere in the actual flight region if u = 0
and in the r < 0.2 subset of the actual flight region if 4 > 0. For a more precise location of the
subset of the (k., r) parameter space exhibiting chaotic like motion for icl and ic2, see the parametric

Figures 6.1 and 6.2 in the final Conclusions section.



averaged energy

141

E=7.00291e-3
r=0.2 k_=1e5 ¢f=0.3, w(0)=alpha/8, y_(0)=0.502, y_’(0)=0.0989677876, other=0

02 . : . T : :

w
. , : , . | \ l
- /- o T Oinitial condition
0.05 - T A
-0.05 .
-0.15 L 1 1 ! : 1 . ]
0.499 0.501 0.503 0.505 0.507

Figure 5.8: r = 0.2, k- = 1e5, 4 = 0.3, typical initial condition set on given surface E



0.2

0.1

-0.2

0.1

¥ I ! 1 ' I ! |
[
{
005 | .
-
005 | 2
‘: ’
-0.15 ! | 2 | 3 1 L !
0.499 0.501 0.503 0.505 0.507
Y.
2
10% ¢ . — . r . . -
[ M { ' s i » o8 { I I O I 0y -=' i It “ 1 i
'.‘.".af\":'u;«':x-"\."t..:,’.,-'.'..}-"‘p.l-‘l«a.,-‘-'\-‘-"gu“.'.v.."':.a.«“u:},:\.-' 1 uh.‘."-f'.,l-’.q'!:-.‘;’i.'""n-.*\.."»"‘.-’4'\‘-ﬂ.é«"--.-‘.'...a’fw..ﬁn.'\'fg;"...~_r"':|in.§fh~.vé'-"-"'-,"-‘.~‘.a"~.‘i-,‘-‘o.‘,’l.,ﬁ“l*._*!:,ﬂ.?",& 1
5 10° E
@ F ]
c L -
0 - B
° L j
g, | — ave W 1
¢, .\ T ave y'
1 1] |‘ ‘ 1 C L |

142

E=7.00291e-3
r=0.2 k_=1e5 cf-0.3, w(0)=alpha/64, y_(0)=0.5002, y_'(0)=0.116367375, other=0

-//

P

A / \\\.
-f M
(\ ) !l
LN A
‘s‘“~ ”’/’74’
e

100 2000 300

time

Figure 5.9: r = 0.2, k- = 1e5, g = 0.3, initial condition set near periodic solution



averaged energy

0.2

0.05

-0.05

143

, E=7.00291e-3
r=0.2 K_=165 ci=0.3, w(0)=alpha/64, y_(0)=0.5002, y_'(0)=0.116367375, other=0

—— T v POT i Sy T T e
’ "_/ .“‘\\

£
H
i -
/
I8

: ] ; ! : L . i
0.501 0.503 0.505 0.507
Y.
= L T i I N [ T E‘
: ]
]

it kel ts b A st b s

Ml .

o, e
B L R

: — ave W -
-------- ave_y
" ) HL :
i IRiAT LRSI ‘
T
1 L A L _1 ‘ .

] 200 400 . 600

time

Figure 5.10: r = 0.2, k. = 1e5, u = 0.3, initial condition set near periodic solution

800



144

5.3.2 Chaos - other initial conditions

We studied in this thesis the dynamics of the block mainly for the initial conditions icl and ic2.
Thus, we documented chaotic structure of the motion at a certain subset of the parameter space
first for icl and ic2. Naturally, we have to ask whether such chaotic inotion occurs for other initial
conditions and where in parameter space. This is a very broad question. If we witness chaotic
motion for icl at some point of the parameter spa;ce then obviously for another choice of initial
conditions at the same point the motion may not be chaotic. Just take yo = 05-1/k- and set all
other variables to zero. The block will merely sit there never moving at all. So, for a possibility of
chaotic motion at a certain point of parameter space, we have to put enough energy into the initial

conditions.

Initial conditions on given energy surface

‘We will look now at the dynamics of our system for the initial conditions on the fixed energy surface
E. Pick a point in parameter space at which the system exhibits the Rock to vertical response type
for the initial conditions icl. For example, take g = 0.3, k- = 10%, and r = 0.2. The corresponding
energy level for icl is E=7.002910e-03. Now alter the initial conditions while staying on the same
energy level E. Avoid initial conditions resulting in an initial energy dissipation, i.e., initial conditions
making the lowest corner move horizontally. |

An initial condition set satisfying the above criterion is yp = 0.502, yq = 9.8967787616e—02, wg =
a/8, all other variables set to zero. The response of the system subjected to this initial condition set
is presented in Figure 5.8 in the form of phase space plots. Comparing Figures 5.8 and 5.2, we see
that the respomnse at u = 0.3, k. = leb,r = 0.2 is qualitatively same for the above initial condition
set as for icl.

| We observe:d that at a specific point of paraméter space the response was qualitatively the

same for icl as for the different speciﬁc set of initial conditions on the same surface E. Numerical
simulations show this to be true in general. Namely: Pick any point in parameter space where the
initial conditions icl result in chaotic like motion. Let the energy level given by icl at that point
be E. Then for almost any other initial condition set on E avoiding initial dissipation the response
of the system is qualitatively same as for icl. The system exhibits at fhe given point of parameter
space chaotic motion, with long time energy transfer if p > 0, for almost any initial condition set
on E avoiding initial dissipation. |

Slight differences in the response to icl as opposed to other initial conditions on E may be in

the direction of the initial energy transfer. Set icl is special in that it lies on the envelope of the -
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energy surface projected onto the w,w’ plane. The icl trajectory will move inside the envclope
which corresponds to an initial transfer of rotational kinetic energy to y kinetic energy. Other initial
conditions may lie inside that envelope, as in Figure 5.8. Then the initial energy transfer may not

be in the same direction as for icl.

Initial conditions on a given energy surface near the periodic solution

‘We stated above that the response of the system is the same for icl as for almost any initlal condition
set on E avoiding initial dissipation. Now we consider the “not almost any” initial conditions on E,
that is initial conditions which lie on & and avoid initial dissipation but do not result in qualitatively
same response as icl.

Such initial conditions lie in a direct vicinity of the periodic solution w(t.) = 0 Vt., when the
block merely moves vertically. A specific example of the system’s response to such initial conditions
is shown in Figure 5.9 in the form of phase space plots. The block moves vertically with only slight
angular motion. This kind of response is rather simple and predictable. The resulting Poincare map
forms a simple georetric figure and the motion is not chaotic.

But wait! In Figﬁre 5.10 we present the response of the system at the same point of the parameter
space for the same initial conditions - only computed for longer time. Roughly at time 600 the
response changes dramatically. The trajectories escape the direct vicinity of the periodic solution
and start moving all over the energy surface. The response becomes chaotic, qualitatively the same
as for icl and other initial conditions on a given E.

Numerical simulations show that the closer to the periodic solution we start, the longer it takes to
escape the direct vicinity of the periodic solution. It is unclear whether there exists a small invariant
subset of phase space containing the periodic solution or whether any trajectory, no matter how close
initially to the periodic solution, will escape its vicinity at some finite time. The periodic solution
itself never escapes of course - it is periodic. While we realize this is a good point for perturbation
analysis of the system at small angles w, we have not done so yet.

For an interesting related observation look again at Figures 5.8 and 5.2. The trajectories move
around the whole projected energy surface but visit less frequently the vicinity of the periodic
solution. As time increases, the t:ajectories come closer to that vicinity, however, they never stay
there long. Again, it is not clear whether the trajectories would come arbitrarily close to the
periodic solution at some finite time or whether they forever avoid some invariant subset containing

the periodic solution.
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Various initial conditions - examples

We present now the response of thg system to a few selected initial condition sets. While we realize
this is not exactly a systematic approach to the study of chaos, the presented plots will at least show
some types of chaotic motion not described on the previous pages. Notation ic 2(0) = 2 means an
initial condition set ic, where the value of z(0) is changed to zg. '

Figure 5.11 displays the response of the system 'to the initial condition set lying on the same
energy surface as icl, at the given point in parameter space. The system responds first with rather
simple y and w oscillations. As time increases, the energy transfers very slowly but steadily from y
oscillations to angular motion. Points in the Poincare map get scattered around indicating underlying
chaotic structure.

Figure 5.12 shows a distinct geometric structure in the Poincare map. Points in the Poincare
map are scattered again indicating chaos but this time they are confined to a certain geometric
structure on the energy surface. Previously, the intersection points were scattered randomly over
the whole energy surface when chaos was suspected. Roughly at time 120, motion seems to settle
to steady state as is apparent from graphs of the averaged energies. The points are now confined
to only a part of the geometric structure. However, later, at time 250, the points escape again and
wonder around. This phenomena is quite common in our system in case of chaotic motion.

Figure 5.13 displays a rather simple type of response: rocking with slight vertical oscillations.
The Poincare map creates a few simple lines with no indication of chaos. Now look at Figure 5.14,
which shows the response to the same initial conditions and same parameters, only computed for a
longer time. We see that at time 200 the response drastically changes. Points in the Poincare map
jump out from the old simple lines and the vertical oscillation increases while the angular rotation
decreases. Subsequent energy transfer is apparent and so is chaotic structure as the points in the
Poincare map travel now randomly on the energy surface. The Poincare maps in the two figures are

drawn at the same scale for comparison.

5.3.3 Chaos - conclusions

In certain subsets of parameter space and for certain initial conditions the considered dynamical sys-
tem exhibits chaotic behavior. To support and document such claims we have computed numerically
for specific orbits Liapunov exponents and Poincare maps. Positive Liapunov exponents indicate a
sensitive dependence on the initial conditions. Scattered points in the Poincare map confirmed this
and further displayed underlying chaotic structure.

It is hard to make general statements about where in the parameter space the considered sys-
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top plots: poincare map w=0
r=0.2 k_=1e4 cf=0.2, w(0)=alpha/8, y_(0)=0.50132, y_'(0)=0.0943112665, other=0
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Figure 5.11: Poincare map, r = 0.2, k.= 104, p = 0.2, slow, long time energy transfer
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top plots: poincare map w=0
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Figure 5.12: Poincare map, r = 0.2, k_ = 105, u = 0, patterns
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top plots: poincare map w=0
r=0.1 k =166 cf=0, ic2 y_'(0)=0 Xx_'(0)=0.010144
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tem exhibits chaos and for what initial conditions. We shall try to do so - based on our limited
observations.

Consider an arbitrary but fixed point p in the (g, k-, ) parameter space. Let a real constant E
be an energy level given by the initial conditions at p. For a given p let Ef(p) be the lowest energy

level such that flight results for all initial conditions on Ey(p) avoiding initial dissipation.
e Chaos and flight are closely related and no flight implies no chaos
o If E <0, then no flight and consequently no chaos is possible

¢ if E > E(p), chaotic motion results at point p for almost any initial conditions on E avoiding

initial dissipation unless

1. the block overturns

2. energy is dissipated significantly

the resulting chaotic trajectories seem to fill the whole surface F except possibly the direct

vicinity of the periodic solution w(t-) =0 Vi-
» if 0 < E < E;(p), the response of the system at p is

1. simple predictable motion without flight or in vicinity of the periodic solution or

2. chaotic motion limited only to a subset of E (or a subset of an energy level lower than E

if dissipation took place) possibly creating more complicated geometric figures

s we have not observed the presence of an invariant attracting chaotic set of complicated struc-
ture which repeats itself under resolution as in Lorenz [1984] (a strange attractor on a Cantor

set)

The widely accepted definition of chaos, see for example Wiggins [1990] page 608, requires sen-
sitive dependence and topological transitivity on a compact invariant set. We have shown quite
convincingly sensitive dependence on the initial conditions. The energy surface E is compact. It is
a preimage of a compact set (point) of a continuous function {total energy) from R™ to R. Topo-
logical transitivity on E (or its subset) is likely, as seen in the presented computer simulations, but

not certain.
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Chapter 6

Conclusions

The dynamical system studied consists of a rigid, rectangular block moving on continuous, elastic
foundation. Friction forces resist horizontal movement of the block on the foundation surface. The
system is modeled in 2 dimensions allowing for general, unrestricted motion; the block can leave
the foundation surface and fly, and at the same time it can rotate, move horizontally or vertically.
The magnitude of the friction forces at a given moment determines whether the lowest corner of the
block is prevented from horizontal travel or whether it slides resulting in energy dissipation.

At most two corners of the block can sink under the foundation surface at any given mdment.
Motion is observed only up to the point of overturning, that is when the block’s diagonal becomes
vertical. Otherwise there are no restrictions; the model is fully nonlinear and no simplifications
assuming only small rotation angles or only tall blocks are made.

The parameters of the problem are reduced by dimensional analysis to the following three: the
coefficient of friction 4, the aspect ratio r = b/a and a non-dimensional stiffness k. = %‘;’-’, where b
is the width of the block, a its height, k the original stiffness characterizing the elastic foundation,
m the mass of the block, and g the gravitational constant.

A parametric study is carried out identifying the dominant types of response. Tendency to fly

as well as block stability against overturning are also studied.
Dominant types of response
Steady rocking quasiperiodic motion, the block rocks back and forth, no flight, energy is conserved

Settle down strong transient energy dissipation, then the block settles in small vertical oscillations

Zero friction rock flight energy is conserved, chaotic motion, block rotates, moves vertically in-

cluding flights
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Rock to vertical typical for tall blocks on hard foundatious, chaotic motion, long time energy

transfer between different energy components, total energy practically conserved

Flight tendency

Flight tendency is high for a square block and decreases as the block becomes taller. Flight tendency
is low for a soft foundation and increases as k. increases. Recalling k_ = ',:'anb’ this shows that heavier
blocks of the same dimensions are less likely to fly and bigger blocks of the same weight and aspect
ratio are more prone to flight. At any given r, there exists a sufficiently high k. such that the block
flies unless special low energy initial conditions are chosen. For given initial conditions with sufficient
energy, there exists a complicated transition zone between the region in the paranieter space where

the block never flies and the region where it always flies early.

Stability

Static stability of the block is studied. All equilibrium positions of the block in the considered angle
range are found and determined to be stable or unstable. It is shown analytically that the block’s
vertical equilibrium i)osition is stable only for k- above a certain critical value, which increases with
r. This suggests that the aspect ratio, not only mere height, may be a serious limiting factor in
future attempts to construct super high buildings.

Dynamical analysis employing the described model shows that the stability of the block against
overturning increases with the coefficient of friction for the considered initial conditions. This how-
ever, may be untrue for other initial conditions. Stability is further found to increase with k..
Recalling k- = fﬁ;—’, this suggests that heavier blocks of the same dimensions are less stable and
bigger blocks of the same weight and aspect ratio are more stable. The latter observation confirms
work done by Housner [1963]. Finally, as expected intuitively, stability is found to decrease rapidly

as the block becomes taller. There exists a sharp boundary in (k-,r) parameter space separating a

region where the block overturns and region where it does not for the considered initial conditions.

Chaos

In the final chapter, chaos is studied in the dynamics of the considered system. Chaotic motion
occurs in certain subsets of parameter space and for certain initial conditions; roughly speaking, for
initial conditions with sufficient energy and in subset of parameter space where k- is high and  is
low, i.e., tall block on hard foundation. When p = 0 chaos is found for all aspect ratios.

Liapunov exponents and Poincare maps are computed to provide numerical evidence for chaos
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in the considered system. Poincare maps are computed at several points in the parameter space
for various initial conditions to display different chaotic regimes. Strange attractors, i.e., chaos on
attracting, invariant sets with Cantor structure, are not found.

Chaos was already reported in rigid block dynamics with ezternal forcing by several authors.
Numerical work presented in this thesis shows that chaos exists also in free, unforced dynamics of

rigid blocks.

Parametric plots

Parametric plots of the block’s response in the (k.,r) parameter space for 4 = 0.2 are shown in
Figures 6.1 and 6.2. These plots locate more precisely where in parameter space, various types of

discussed response occur for considered initial conditions.



19t 103 g0 = 1/ ye eveds asjeurexed (4 -y) ut ssuodssy :1°g emsrg

4]

log k

PN

response types in (K_,r) parameter space

cf=0.2, initia? corditions ic1

T T T T T T T T T T
- 0 o@ma 8 v v -
- O opos Vv v N4 % -
- ®m
= (]
= O
= o
+ sensitive dependence
| o V rock to vertical B
O setile down
O steady rocking
stability boundary
- ———— k_high (early flight boundary) -
— — k_critical (no flight boundary)
I I i ! 1 i 1 ! | I
1 2 3 4 5 6 7 8 9 10 11

1/r = heightiwidth

41



yipmayBisy = i1
! oL (5} i1 L o S ]

(Aepunoq jybyy ou) (Boga ™y — —
- (Aepunog 1yBy Apes) yby ™y —

UMOD BIIeS O
jeapiea of Yoou A
asuspuadap aansuas +

155

N ..\ A

1 i 1 1 | 1 i

[::imfin}

10| suonipuoD eniul “2'0=|o
aoeds Jejewered (1Y) w sadf) esuodsal

™y Boj

Figure 6.1: Response in (k- r) parumeter space at u

0.2 for icl



156

8l

Li

yipmiytiey = a7t
[2]8 Gl i el cl L (¢]% 6 8 VA 9 g i

I T i i I I I i i I I i

(Arepunoq Wby ou) |eoguo™ — —
(Arepunoq by Apes) ubiy™> ——
Arepunog Ajiqess
Bupjoos Apesis O

umop ames o

[eciUSA 0] 3004 A
aouspuadap aajlisuss +

A A A A | O
A A A | oo
A ! 1 i 1 i i I ] 1 i { ]

291 SUONIPUOD [eRiul ‘2 0=f0
ooeds Jsjeweled (1'7)) Ul sedA} asuodsai

™ Boy

Figure 6.2: Response in (k-,r) parameter space at 1 = 0.2 for ie2



156

yipmauBEy = 41

ol gl kL £l el L al & 1 3 9

I T 1 1 I 1 | T I I T

(Arepunoq By ou) Eaguo™Y — —
(Arepunog 1By Apes) B ——
Arepunoq Ajiqels
Gupoos Apesis O

UMop sfjes O

[EafEA 0] 3ood A
souspuadap anjisUBSs +

& &

1 1 L 1 L 1 L Il | | 1

i xR O

B OO O

291 suonipuoa [l ' 0=|0
aseds iejaweled (1Y) u sedA) esuodsal

0.2 for ic2

Figure 6.2: Response in (k_,r) parameter space at u



157

Bibliography

Ames, W., W. Kuhn, and W. Rufeger, Computational chaos may be due to a single local error,
Journal Of Computational Physics, 104, 241-250, 1993. “ |

Andreaus, U., Sliding uplifting response of rigid blocks to base excitation, Earthquake Enginecering
and Structural Dynamics, 19(8), 1181-1196, 1990.

Aslam, M., W. G. Godden, and T. D. Scalise, Earthquake rocking response of rigid bodies, Journal
of Structural Divigion, pp. 377-392, 1980.

Benéttin, G., L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lyapunov characteristic exponents for
smooth dynamical systems and for hamiltonian systems; a method for computing all of them,

Meccanica, 9-20, 1980.

Bruhn, B., and B. Koch, Heteroclinic bifurcations and invariant manifolds in rocking block dynamics,

Zeitschrift Pur Naturforschung, 46, 481-490, 1991.

Guckenheimer, J., and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of

Vector Fields, Applied mathematical sciences. Springer-Verlag, 1983.

Hogan, S. J., The effect of damping on rigid block motion under harmonic forcing, Proc. R. Soc.

Lond., 437, 97-108, 1992a.

Hogan, S. J., Heteroclinic bifurcations in damped rigid block motion, Proc. R. Soc. Lond., 439,
155-162, 1992b.

Hogan, S. 1., Rigid block dynamics confined between side-walls, Phil. Trans. R. Soc. Lond., 347,
411419, 1994a.

Hogan, 8. J., Slender rigid block motion, Journal of Engineering Mechanics, 120(1), 1994b.

Housner, G., The behavior of inverted pendulum structures during earthquakes, Bulletin of the
Seismological Society of America, 53, 404-417, 1963.



158

Jones, N. P., and H. W. ShentonllIl, Generalized slide-rock response of rigid blocks during earth-
quakes, in Proceedings of Fourth U.S. National Conference on Earthquake Engineering, vol. 3, pp.
31-40. 1990.

Koh, A. S., and P. D. Spanos, Harmonic rocking of rigid block on flexible foundation, Journal of
Engineering Mechanics, 112(11), 1165-1180, 1986. »

Lorenz, E. N., The local structure of a chaotic attractor in four dimensions, Physica, 13D, 90-104,

1984.

Matsui, K., M. Iura, T. Sasaki, and I. Kosaka, Periodic response of a rigid block resting on a footing
subjected to harmonic excitation, Farthquake Engineering and Structural Dynamics, 20(7), 683-
697, 1991.

Parker, T. S., and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag,
1989.

Press, W. H., S. A. Teukolsky, W. 'T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press, second edn., 1992.

Psycharis, I. N., Effect of base uplift on dynamic response of SDOF structures, Journal of Structural
Engineering, 117(3), 733-754, 1991. ‘

ShentonIII, H. W., Response of rigid bodies to base excitation, Ph.D. thesis, Johns Hopkins Univer-
sity, 1990.

’

Spanos, P. D., and A. S. Koh, Rocking of rigid blocks due to harmonic shaking, Journal of Engi-
neering Mechanics, 110(11), 1627-1642, 1984.

Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied
Mathematics. Springer-Verlag, 1990.

Wolf, A., J. Swift, H. Swinney, and J. A. Vastano, Determining lyapunov exponents from a time

series, Physica, 16D, 285-317, 1985.

Yim, C.-S., and A. K. Chopra, Effects of transient foundation uplift on earthquake response of
structures, Tech. Rep. UCB/EERC-83/09, University Of California, Berkeley, 1983.

Yim, C. 8. S., and H. Lin, Chaotic behavior and stability of free-standing offshore equipment, Ocean
Engineering, 18(3), 225-250, 1991a.



159

Yim, S. C. S., and H. Lin, Nonlinear impact and chaotic response of slender rocking objects, Journal

of Engineering Mechanics, 117(9), 1991b.

Zaremba, S., Theory of liapunov characteristic exponents, memo, Caltech, 1992,





