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ABSTRACT 

In Chapter 1, we prove that for every family I of closed subsets of a Polish 

space each Et set can be covered by countably many members of I or else contains 

a nonempty II~ set which cannot be covered by countably many members of I. 

vVe derive from it t he general form of Hurewicz 's theorem due to Kechris , Louveau, 

and vVoodin, and a theorem of Feng on the open covering axiom. Also some well­

known theorems on finding "big" closed sets inside of "big" Ei sets are consequeces 

of our result. Chapter 2 consists of a joint work with A.S. Kechris. We prove that 

given a a-ideal I , the possibilty of approximating each Ei set by a Borel set 

modulo I is equivalent to a definable form of the countable chain condition. This 

answers a question of Mauldin. Vie also characterize the meager ideal on a Polish 

group G as the only translation invariant, ccc a-ideal I on G such that each set 

from I is contained in an FIT set from I . This partially verifies a conjecture of 

Kunen. In Chapter 3 , we establish a theorem which gives sufficient conditions 

for a KIT equivalence relation to continuously embed Eo. As a consequence of 

this result we show that no indecomposable continuum contains a Borel set which 

has precisely one point in common with each composant. This solves an old 

problem in the theory of continua. In Chapter 4, answering a question of A.S. 

Kechris, we prove that the Topological Vaught Conjecture holds for Polish groups 

admitting invariant metrics. Vie also answer a question of R.L. Sami by proving 

that there exist continuous actions of Polish abelian groups with non-Borel induced 

orbit eqivalence relations. Actually, we give a fully algebraic characterization of 

sequences of countable abelian groups (Hn ) such that the group fIn Hn has a 

continuous action with non-Borel orbit equivalence relation. In Chapter 5, we give ' 

a characterization of local compactness for Polish abelian groups in terms of Haar 

null sets of Christensen: a Polish abelian group is locally compact iff each family 

of mutually disjoint closed (or, equivalently, universally measurable) sets which 

are not Haar null is countable. This completes, in a sense , Dougherty 's solution 

to a problem of Christensen. We also consider the question of the possibili ty of 

approximating analytic by Borel sets modulo Haar null sets. Chapter 6 contains 
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two dichotomy theorems for Baire class 1 functions: a Baire class 1 funct ion can 

be decomposed into countably many continuous functions , or else it contains a 

function which is as complicated with respect to decompositions into continuous 

functions as any other Baire class 1 function; an analogous theorem is proved 

for decompositions into continuous functions with closed domains . These results 

strengthen a theorem of Jayne and Rogers and answer some questions of Stepra ns. 

Their proofs use effective descriptive set theory as well as infinite games. Some 

results on decompositions of Borel sets and funct ions on higher levels are also 

obtained. 

VI 



T HE Jm.iRNAL OF SYMBOLIC LOGIC 

Volume 59. Number J. September 1994 

CHAPTER 1 

COVERING ANALYTIC SETS BY FAMILIES OF CLOSED SETS 

SLAWOMIR SO LECKI 

Abstract. We prove that for every family I of closed subsets of a Pol ish space each !: ~ set can be 

co .... ered by countably many members of / or else contains a nonempty ~ set which canno l be covered 

by countably many members of I . We prove an ana logous result for It-Souslin sets and show that if A ~ 

exists fo r any A C (}JI.:.I. then the above result is true for ~i sets. A theorem af Mart in is included stating 

that this result is also true fo r weakly homogeneo usly SousHn sets. As an applica tion of Our results we 

derive from them a general form of Hurewicz's theorem due to K.echris. Louveau. and Woodin and a 

theorem of Feng on tbe open covering axiom. Also some well-known theorems on finding "big" closed 

sets inside of ··big'· l:l and l:~ sets are consequences of our results. 

§1. Inttoduction. Gy. Petruska answering a question of M. Laczkovich proved 
in [P] that a I:l set on [0. I] either can be covered by countably many closed sets 
of Lebesgue measure 0 or else it contains a nonempty m set which cannot be 
covered by countably many closed sets of measure O. (This is. in fact. an equivalent 
reformulation. see Remark 2 following the proof of Theorem 1. ) It is a trivial 
observation that the above statement holds if we replace closed sets of Lebesgue 
measure 0 by closed nowhere dense sets (or equivalently, first category sets). A. 
Kechris formulated the following general question. Let I be a family of closed 
subsets of a Polish space X . Put l ex! = {Y ~ X : 3{Fn : n E ev } ~ I Y ~ U n Ew Fn}. 
Find out to what families of closed sets Petruska's theorem can be generalized, i.e. , 
what families of closed sets have the following property: for any I:l set A either 
A E lex! or there is a ~ set G ~ A with G ¢ lex(. This is a weak form of the covering 
property which says the same except that the set G is closed rather than merely 
~. The covering property is very restrictive. For example, neither the family of 
closed sets of Lebesgue measure 0 nor of first category have this property. On the 
other hand, the families of closed countable sets, of compact sets and of closed 
sets of extended uniqueness on [O ,2n] do have it (Souslin; Kechris [K] and Saint 
Raymond [SR]; Debs-Saint Raymond [DS]. see also [KL. Theorem 5, p. 426]) . 
Surprisingly it turns out that the answer to Kechris' question is affirmative for all 
families of closed sets. Moreover. assuming that A # exists for any A ~ evW we 
prove that if A E I:i then A E lex! or there is G c A with G ¢ Iext and G E~. We 
give several applications of these results. Among them the generalized Hurewicz 
theorem proved in [KLW] and the theorem of Feng [F] that I:: sets fulfil the open 
covering axiom. Also certain theorems of Kechris, Solovay, and Louveau can be 
derived from our results. 

Received May 1. 1993: revised December 20. 1993. 
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CmERI"IG .. ""I~LYTIC SETS 1023 

Define [perf = { Y <;;; X: Y t 0 and'iU open u n Y t 0 => u n Y '1. [ext}. 

By cl (A) we denote the closure of the set A. If:Y is a family of subsets of X let 
pi = cHUJT)\ U{cl (F): F EJT} . MGR(A) denotes the fami ly ofal! subsets of 
A which are of first category in A. If! E w<'" then Ih r is the unique NEw with 
r E w

N 
By r * a. T. a E w<u. we denote the concatenation of T and a: r " n. 

T E w<u,. nEw: stands for r * (0.11 ). For x E w'" or x E 2'" = {O. I } '" and 
11 E w by x [n we denote the restriction of x to n = {O ..... n - I}: in particular 
·,10 = 0. We give w '" and 2'" the product topologies with basic neighborhoods 
[a) = {x: x llha = a} for a E w<u or a E yUJ. If T is a tree on a set X 
and l/ E X" for some nEw. then Tu = {v E T: v C l/ or l/ cd. For 
T C w<w put [T) = {x E w"' : \'nxln E T}. If T is a tree on w x " define 
p[T) = {x E w"): :3y E ,,0 \:1n (x ln·yin ) E T}. For P C Y x X and y E Y put 
P, = {x E X: (y.x ) E P}. 

§2. Covering Ei sets by dosed sets. 
THEOREM 1. Let [ be a family of closed subsets of a Polish space X. Then each 

Ei set either is in I ext or contains a rr~ subset 110t in I ex t 

This result can also be formulated as follows: Let J be a a-ideal generated by 
a family of closed sets in a Polish space. Then any Ei set not in J contains a II~ 
subset which is not in J. 

We need the following lemma of Petruska. It was proved in [P) in the special 
case I = the family of measure 0 closed subsets of [0. 1). but the argument works 
in the general situation as well. 

LEMMA ([P. Lemma 4]). Let A <;;; X be Ei. Assume A 'f. Iext . Then there is a 
regular Souslin scheme {A r : r E w<W} consisting of closed sets such that 

(i) A0 =f 0; 

(ii) U,Eww nnEW A'in <;;; A: 
(iii ) if Ar =f 0. then A n A, E I perf and is dense in AT; 
(iv) U{AT. ,, : nEw} is dense in AT' 
O UTUNE OF THE PROOF OF THE LEMMA. Let A have a representation A = 

UXEw" nnEW Hxln where H,. r E w<w. are closed. Put L r = UXEW'" nnE'" H,n ln' 
Then define AT = cl(L;) where L; = L r \ U{ U: U open and u n LT E Iext }. 0 

PROOF OF THEOREM 1. Let A <;;; X be Ei. Suppose A if: I ext . Let AT' T E w<w. 
be as in the Lemma. 

Case 1. :3 r E w<w:3 U open Ar n U =f 0 and I ext :J MGR(A, n U). 
Put A' = A nAT n U. Then by (iii ) from the Lemma A' E I perf ' Also A' is Ei. 

Thus A' has the Baire property whence there is a II~ set G such that G <;;; A' and 
A'\ G E MGR(A r n U) <;;; Iext . Thus. G 'f. Iext . 

Case 2. 'rj r E w<w'rj U open AT r l U = 0 or MGR(A r n U)\Iext =f 0. 
In the following construction we use an idea from [KLW. Lemma 7) (see also 

[KL. Theorem 2. p. 425]). Let us fix a complete metric on X. We construct 
recursively ¢;: W<W -- w<w and Ur • r E w<w. with the following properties: 

(1) lh¢;(r) = lhr: r <;;; p => ¢;(r) C ¢;(p); 
(2) UT is open: 
(3) diam Ur ::; I j(lhr + 1); 
(4) limn diam Um = 0: 
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1024 Sl AWOMIR SO LECKI 

(5) r t:;; p and r t- p =} cl ( V) CUr: 
(6) Vr>n n Vr .'" = 0 if n t- m: 

(7 ) Vr n A~( rI t- 0: 
(8) { Vrz" : n E w}d ~ l ex!: 
(9) { Vr .,,: n E w }d C U,. 

Put ¢ (0) = 0 . Ve; any open set wi th diam Ve; ::; I and U0 n A e; t- 0 . Assume 
d>( r ). Vr are constructed for all r E w.v NEw. Pick r E w N Then Ur n A"i' i t- 0 
and MGR(A<;> ir) n Ur)\Ioxt t- 0. Thus . we can find K t:;; A¢(rJ n U,. K closed. 
nowhere dense in A<;>(rJ and K ~ l eX! . Since K is nowhere dense. we can find a 
countable discrete set D t:;; A ,,(r) n Ur with cl (D ) = K U D and D n K = 0. Put 
D = {x": nEW} with x" t- x", for n t- m . Let Vr." be an open ball ce ntered 
at x" with radius ' " > O. By choosing '" sufficiently small we can arrange that 
cl ( Vr• n ) t:;; Ur. diam Vr•n ::; I /(l hr 2). limn diam Urzn = O. UrM n Vr ." = 0 if 
11 t- m . and {Ur • n : nEw}d = K . Since x" E A¢(r)' we also have U .. " n A ",(r ! t- 0. 
Now for each n we can find a k E w with U"n n A ¢( r )*k t- 0 by (iv) from the 
Lemma. Pick such a k and put ¢ (-r * n) = ¢{r) * k. This finishes the construction. 

Now put G = n n U { Vr: IhT = n}. Then G is II~ by (2). We show that G t:;; A 

and G f/:. 1m · From (5) and (6) it follows that G = UXEOP n"Ew U' ln' Since 
diam V" ln ::; I / (n + I). U, ln n A¢(xln) t- 0 (by (3) and (7)) and A ¢(xl" ) are closed. 
we have nnEw UYl n t:;; n nEw A ¢(xln) ' By (1) there is yEw'" with ¢(x ln ) = yi n for 
all nEw. Then n"E'" V y !" t:;; n nEw A vl n t:;; A. 

Now we show that G f/:. I ext . Note that (3). (5). and (7) guarantee that 
n"EW Vyl" t- 0 for any x E W W Thus. Ur n G t- 0 for any r E w <w . Assume 
there are closed sets F" E I with UnEw F" :J G . Then. by the Baire Category 
Theorem applied to cl ( G ). there is an open set V and no E w with V n G t- 0 and 
V n cl(G) t:;; Fno' Now there is arE w<w with Ur t:;; V (by (3)) . But by (4) and (9) 
and the fact that G n V,." t- 0. nEw. we have {Vr.n: nEw }tI t:;; V n cl(G) t:;; Fno ' 
But Fno E I which contradicts (8) and the proof is complete. 0 

REMARK. (1) By putting G' = G\ U{ V: U open and V n G E Iext } we can 
guarantee that the Wz set produced in Theorem I is in lperf ' 

(2) In the case where I is a a-ideal of closed sets (i.e .. I is a family of closed 
sets. a subset of an element from I is in I. and if {Fn : nEw } t:;; I and UnEw Fn is 
closed. then Un"'''' Fn E I) the weak covering property has the following obvious 
reformulation (this is the original formulation from Petruska's theorem): Let A be 
E:. Then either A E Iext , or there is a nonempty closed set C so that e n A contains 
a II~ set dense in C and for any open set V if V n et- 0. then cl ( V n C ) ~ I. 
To ~btain such a set C from the II~ set G produced in Theorem I. put C 
cl( G\ U{ U: U open and U n G E Ie~t} ). 

We can actually obtain a slightly more accurate conclusion than that In 

Theorem I. 
COROLlARY I. Let I be a family of closed subsets of a Polish space X. Let A e x 

be E: and such that A CUI . Then either A E Iext or there is G c A such that G 
is homeomorphic 10 w '" and G E Iperf. 

PROOF. By Theorem I and Remark I A E lext or there is G' C A which is 
IIg and G' E l perf. Since G' E Iperf and G' CUI. G' is dense in itself. Now we 
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find a n~ set Gil 0;:; G' such that Gil is dense in G' and G" is a-dimensional. By 
the Baire Category Theorem Gil E I rerl . If there is no compact set C C Gil such 
that 0 l' U n Gil c C for some open set [J. then G " is homeomorphic to cd'. 

If there is such a compact set C. then C i I"X( since G il E Ipeel . We find C' C C 
compact and such that C' E Iporl . Since C' is a-dimensional. compact. and dense 
in itself C' is homeomorphic to 2"'. Thus. it contains a dense copy of cI' . call 
it G. Again by a Baire category argument G E I peel . 0 

§3. Covering II;-Souslin sets by closed sets. By L[A I · .... All] we denote the smal l-
est inner model M of ZF such that Ai n AI EM. i = 1 ..... n (see [1. p. 128] ). \Ve 
say that a family of closed sets 1 is hereditar}' if closed subsets of elements from 
1 are in I. 

THEOREM 2. L et 1 be a hereditary family of closed subsets of w ''' . L et A cd" 
be II;-Souslin. Assume that II;-SoLislin sets have the Baire property. Then one of the 
following holds: 

(i) A can be covered by II; many sets from I: 
(ii) A contains a IIQ set G such that G rt I ext . 

A'foreover if A = peT] for a tree T on w x 11;. then (i) can be strengthened w: 
(i)' there exist). < 11;7 and a family of trees on w{ SE: ~ < i,} E L[T.1] such 

that A C U{[Sd: ~ < I,} and {[Sd: ~ < j.} c I. 
PROOF. For any tree S on w x II; define c(S) = {s E w<w: {( (nl. ~I ) " ... 

( l1 k ·~kl) E S: s C (11 1 ..... l1d} is not well founded}. We have [C(S l] = cl(P[SJ). 
Now we define recursively 

TO = T: 
T~+I = {u E T~: [c (T ,n] rt I}: 
T~ = n,<z T( if ~ is a limit ordinal. 

There exists). < 11;+ such that Ti. = Ti.+I . 
Case 1. T i. = 0. 

Define:T = U~<i{c( T5 ) : u E T~\ T~+I} . Then:T E L[T.1] and {[S]: S E 

:T} c I. Also. p[T] C U{[S]: S E :T}. 
Case 2. T " f' 0. 

Sub case 1. 3u E Ti1ext :::) MGR (cl (p[T,:Jl). Since by assumption p[T,:] has 
the Baire property, this subcase can be dealt with as in Case 1 in Theorem 1 as 
long as we show that p[T:·] rt Iext for u E Ti. But otherwise there exist u E T i. 

and Kn E I. 11 E w such that p[T,: ] c UnElO Kn. Then [T,:] c UnEwp-I(KII ) . 

By the Baire Category Theorem there is 110 E wand v E p. with u c v and 
[T( ] C p-I (Kno ). whence [c( T; )] = cl(P[T~]) E I which contradicts the definition 
of ) .. 

Sub case 2. 'v' u E Ti MGR(cl(P[T,: ]))\!exr f' 0. The assumption implies that . 
for any u E F we can find a closed set K c cl (p[T,:J) which is nowhere dense in 
cl (p[T,: ] ) and K rt 1m. By a construction similar to that in Case 2 in Theorem I 
we build a function cf;: w<w -l- T i. so that 

(i) diam(p[T~(I1)J) S Ij(lha + I): 

(ii) if a C r and a f' r. then cf;(a) c cf;(r ) and cf;(a) f' cf; (r ) : 

4 



1026 SL-\WOMIR SO LEC KI 

(iii ) {P[T~( ,,]: nEw } is discrete (i.e .. cl (p[T;, k)])n cl (U '" k p[P ]) = 0 ) 
<.;J"-Il (i) ,G- n,- o ia - II ,1 

fo r any (J E w <"' : 

l' iv) {P [T ; ]: nEw}" E I . CD to 'C n ) . ext 

The set 

G = U n p[T~(\ i " l ] = n U p[ T,;] 

is contained in A. To show that G E n~ note that the conditions (i) and (iii ) imply 
the existence of a family of open sets {V,: r E w<"'} such that p[T~() c V,. if 
per then V, C ~" if neither per nor rep. then ~, n V, = 0 . and finally 
diam V, ::; 2/(lhr + I) . Since nnEwp[T;(xln)] t= 0 for any x E w"'. we have 

n nEwp[T';'(xln ;l = nnEO) V"ln' It fo llows that G = n nE'" UrEUJ" Vr E n~. As in 
Case 2 in Theorem I we show that G fi lm. 0 

Let I be a family of closed sets of a Polish space X. Call a set A C X 1-
approximable if either A E Iext or there is a n~ set G C A such that G if. Iext . A is 
absolutely approximable if it is I-approximable for any family I of closed subsets 
of X. The fo llowing simple proposition will prove to be useful. 

PROPOSITION I. Let X and Y be Polish spaces. Let I be a family of closed 
subsets of Y . and let f: X -+ Y be continuous. If A C X is r -approximable. 
where r = {I-I[F] : F E l}. then f [A] is I-approximable. In particular. if A is 
absolutely approximable. then so is f(A]. 

PROOF. By assumption either A E Je~t. whence f(A] E Iext • or there is a ~ set 
G' C A such that G' rt Ie: t · But then f [G ' ] rt Iext and f[ G'] E E:. Thus. applying 
Theorem 1 we obtain a n~ set G C f(G ' ] C A with G rt Iext . 0 

COROLL\RY 2. Assume ~f[xJ < W I for any x E w"'. Let X be a Polish space. 
Let A C X be E~. and let I be a family of closed sets which is E~ (in the Effros 
structure). Then ~ither A E Iext or there exists a ~ set G C A with G rt Iext . 

PROOF. First. let us notice that we need to prove the conclusion only for 
X = W W . Indeed. let ¢: WW -+ X be a continuous surjection. Put A' = ¢- I(A). 
r = {c,i>- I(F ) : F E l}. Note that A' E Ei and l* E Ei . Now assuming that we 
have proved the Corollary for X = WW A' is r -approximable. Then by Proposition 
I A is I-approximable. 

Let X = wt
') . We obviously can assume that I is hereditary. There exists 

Xo E WW such that A. I E Li (xo) . Thus. by Schoenfield's theorem I is absolute 
for L[xoJ. and there exists a tree T on w x WI such that T E L [xo] and p[T] = A'. 
Assume A does not contain a n~ set not in Iext . Since by Solovay's theorem 
wf[x) < WI for all x E w'" implie; that wl.Souslin sets with trees in L have the 
Baire property, we conclude from Theorem 2 that there exists a sequence of trees 
on w {S~: ~ < A.} E L[xo] such that A C U{[S~ ] : ~ < A.} and ([S~ ]: ~ < ).} c I. 
Since L[xo ] n w'" is countable. I{ S~ : ~ < A.}I ::; w. whence A E Iext . 0 

A. Kechris pointed out that if one assumes that A~ exists for A I ... .. An C w'" 
(e.g .. if a Ramsey cardinal exists) then L[A I ..... An] contains only countably many 
reals. Thus . the proof of Theorem 2 and Corollary 4 goes through for an arbitrary 
family I of closed sets. Therefore. the following corollary holds true. 

5 
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COROLLo,RY 3. Assume Ai! exists for allv A C w"' . Let [ be a familv of closed 
subse ts uf a Polish space X. and let A C X be E;. Then either A E [e" or there 
exiscs a rr~ . set G C A \I'ith G ri [e\(' - . 

D. A. Martin defined the fo llowing game f U. A ). where [ is a family of closed 
subsets of w'" and A is a subset of w '·' . Player I plays K" E [. and Player II plays 
IT" E w <'·' . nEw. so that IT" C 0'''71 .0'" i= 0',, - 1 and [0',, ] n K" = 0 . Player II wins 
if U"",,) 0'" E A. The next theorem and corollary are due to Martin. 

THEOREM 3 (Martin). If Player II has a I.-inning srl'(lregy in fU. A ). thell there 
is a rr~ set G C A such that G tf. [ ext . If Player 1 has a lI'inning strareg:v. Ihell 
A E [ext. 

PROOF. By Theorem I to prove the first part it is enough to show that there is 
a E[ subset of A not in 1m. Denote by ~ a winning strategy of Player II. First we 
construct recursively a countable set .% c 1 such that for any' Ko· ... . K,, _ 1 E.%. 
K E [there is K" E .% such that I (Ko ..... K,, - I. K ) = I (Ko ..... Kn_ 1.K,, ). 
Now define B c W W as follows: x E B iff there exist Kn E .% and kn E w. 
!l E w. such that k" < k,, _1 and (Ko·x iko ..... Kn.x lkn) agrees with I for each 
nEw. Then clearly B E E[ and B C A. Moreover B tf. [e<t. Otherwise there 
are K" E 1. nEw with B C U"EW K" . Now we can define inductively K~ E .% 

so that I (K6 • .... K~_ l' Kn) = I. (K6 .... · K~_l ' K~) for each Il E w. Put 0'" = 
~ (K6 .. . .. K~) . Then [an] n Kn = 0 for every nEw whence UnEw an rf, Un Ew Kn. 
But on the other hand UnEwan E B. 

Let I. be a winning strategy of Player I. Define:T by the condition that K E :T 
iff there exist 0'0 . . . . . an E w <w and Ko . .... Kn E [ such that (Ko. 0'0 . .. ·· Kn· an· K ) 
agrees with I.. It is easy to see that:T is countable. Obviously.:T C [ and A C U:T. 
Thus. A E Iext . 0 

It is easy to see that if A c W W is homogeneously Souslin. then the outcome 
of the above game is homogeneously Souslin. Thus. by [MS. Theorem 2.3] the 
game is determined, i.e .. from Theorem 3 homogeneously Souslin subsets of W W are 
absolutely approximable. Since weakly homogeneously Souslin sets are projections 
of homogeneously Souslin sets . we get from Proposition I that these too are 
absolutely approximable. In particular. if there exist w Woodin cardinals and a 
measurable cardinal above them. then the game is determined for A projective or 
A E L (R ) n Power(R) [MS] . Thus. we have the following corollary. 

COROLlARY 4 (Martin ). Let 1 be afamity of closed subsets of W W . and let A C W W 

be weakly homogeneously Souslin. Then either A E Iext . or there is a rr~ set G C A 
wilh G rf, 1m . The same holds for A projective or A E L (R ) n Power(R) if there 
are w Woodin cardinals with a measurable wrdinal above them . 

§4. Applications. In this section we give various applications of the results 
proved in the §§2 and 3. 

A frequently met problem in analysis or descriptive set theory is that of finding 
a "big" closed set inside of "big" E[. Ei. or projective sets. The results proved in 
§§2 and 3 reduce this problem to finding "big" closed sets inside of "big" ~ sets. 
Let us be more precise. Following [L] call a set A C X I-regular if either A E Iext or 
there is a closed set C C X with C c A and C rf, Iext . (Here again X is a Polish space 
and I is a family of closed subsets of X. ) Note that I has the covering property 
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(see the Introductio n) iff every 1: : set is I -regular. From Theorem I and Coroll ary 
2 we have the following immediate corollary. (Note that similar conclusions. under 
appropriate assumptions. can be drawn form Coro llaries 3 and 4. ) 

COROLLA RY 5. Ler I hI:' ujil/nih' of'closl:'d suhsels o(u Polish span! X. Era.\' 1: \ 
\uh.l'1' 1 of' X is I -regular iff' ('I'('IT n~ suhSl'1 is. [f' additional/y w~!' l < w ! for wn' 

\' E ('/" unei r E 1: \. 117m ererl' 1:; subs('1 of X is I-regu lar ijl t'r('IT n~ suhsel is. 
This corollary provides a basi; for provi ng I-regula rity o f 1: : and i~ sets. For 

example generalizing results of Kechris [K]. Saint Raymond [SR]. Solovay [S]. and 
Souslin (the classical perfect set theorem ). Louvea u in [L] proved that if I is of 
well-founded type (for definition see [L] ) then any 1: : set is [-regular (i .e .. I has 

the covering property) and if w~[x l < WI for any x E W W then any 1:i set is J­
regular. Usi ng Corollary 4 we can obtain both results by simply proving that 0'; 
sets are [-regu lar (note that I E n~ c 1:j since I is of well-founded type ) and thi~ 
is not difficult . 

Now we will indicate how one can derive from the results proved in §§2 and 3 
a theorem of Feng [F. Theorem 1.1. Theorem 2. 1. the remark following Theorem 
3.4] saying that sets in 1: \ (or in 1:~ if w~[xl < OJI for all x E d

J
• or in UIlE'" 1:;, 

or L lR ) n Power(R) if there are OJ Woodin cardinals with a measurable cardinal 
above them) satisfy the open covering axiom. 

COROLL\RY 6 (Feng). Let X be a Polish space. and ler X x X = Ko U K I • 

1I.·here K I is closed and symmelric. Assume A C X is 1:[ (1:j if OJ~[xl < OJI fo r all 
x E OJ"'. or is in UnEw 1:,; or L (R ) n Power(R ) if rhere are OJ Wo odin cardinals wirh 
a m easurable cardinal above them ). Th en either A can be covered by COlllllaNy many 
I-homogeneous sels or conlains a peifeci compact set wh ich is O-homogeneous. (A 
sel S e X is called i-homogeneous. i = I or 2 if (x.J·) E K ; for any x. y E S Ivirh 

xf-y.) 
PROOF. Put 1= {F c X: F is closed and F x F C K I }. Notice that I is II? 

whence certainly 1:~ . Then by Theorem I or Corollary 2 or Corollary 4 A Elm· 
i.e .. A can be covered by countably many I-homogeneous sets. or there exists a 
a~ set G C A with G E Iperf. This condition means that if U c X is open and 
u n G l' 0. then (U n G ) x ( U n G ) rt. K 1• Let us fix a complete metric on G. 
We are in the following situation: G is complete. V = (G X G)\K I c G x G is 
open and symmetric and for any nonempty open set U C G there are open sets 
UI. U2 C U with UI x U2 C V. and hence. U2 x UI C V. This allows us to 

construct open sets U". a E 2<w such that 
(1) a C r and a f- T =? cI (Ur ) C U,,: 
(2) If neither aCT nor Tea. then Ua n Ur = 0 and U" x U, C V: 

(3) diam U" :s l / Ih(a) . 
Now if we put C = nnEw Uh(a l=n U". then C is perfect and compact. C C G cA. 
and also C x C \ { (x.x): x E G} c V. This last condition means that C is 0-

homogeneous. 0 
Let us point out that Corollary 6 (for X = OJ"') is essentially included (modulo 

the simple argument presented above) in [L] as it is easy to see that the family I 
defined in the above proof is of well-founded type. 

From this point on we state all results for 1:[ sets. But in the proofs we use only 
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the pmperty of r: : sets established in Theorem I (i.e .. we ac tually pmve them for 
absol utely approximable sets ). Therefore one can equally well apply Corollar ies 
3 or 4 an d obtain. under appropriately stronger hypothesis. ana logous results fo r 
sets in r:\.r:,I, . or L (R) n Power l R). 

One can quite easily deduce fro m Theorem I the strong \ers ion of Hurewicz's 
theorem proved in [KLW Theorem 4. p. 267] (see also [KL. Theorem 7. p. 419]i. 
The original proof is game theoretic and relies on the fact that games v.h ich ,1I'e 
Boo lean combinations of nQ sets are determined. 

COROLURY 8 ( Kech ris-L~uveau-Woodin ) . Le[ X he a Pu/i.lh span'. Le[ A. B ;; 
X he di:,juill[. alld assume [hat A. is r: :. Then either A. can he separated / rum B hr ({ 
r:g set. ur [here is a hum eumorphic embedding ¢: Y ' --. X such that ¢[2'-' ] c A. L- B 
alld ¢ (x ) E B iff x (n ) = O/or al/ bu[ jini[e~\' many nE w . 

PROOF. Apply Theorem I to the family [ = {F: F is closed and F B = 0}. 
Then either A. E [ ext. i. e .. A. can be separated fro m B by a r:~ set. or there is a 
dosed set C as in Remark 2 which in this case means that A. n C contains a n~ 
se t dense in C and B n C is dense in C. Let Gil C C. 11 E w. be open and dense 
in C and such that Gil :; Gil_I and A :; nliEw Gil ' Now we recursively construct 
open in C sets U, C C and points y, E C. r E 2<w . so that 

(I) r <;;; p and r t= p => U, :; cl ( ~, ) : 
(2) U" o n U,. I = 0: 
(3) diam U, ::; I /(lhr + 1): 
(4) v, E Ur II B: 
(5) Yr = Yr.o" for any 11 E w where on is a sequence consisting of 11 O's: 
(6) if lhr = 11 + 1 and dl1 ) = 1. then Ur C Gn . 

The co nstruction is elementary so we skip its detailed description. Let us only 
mention that the conditions (4). (5). and (6) can be met since B is de nse and the 
Gil are open and dense in C. 

Now define I/>(x ) to be the only (by (1 ) and (3)) point in n nEW U' IIl for x E 2". 
Clearly. I/> is a homeomorphism by (1 ) . (2). and (3). If x E 2w and x (l1 ) = I 
for infinitely many 11 E w. then (6) and the fact that Gn :; G,,+I guarantee that 
¢ (x ) E n nE'" Gn cA. If x (n ) = 0 for n 2: N for some NEw. then I/> (x ) = .v' IN E B 
by (4) and (5). Thus. I/> is as required. 0 

A. Kechris pointed out to us that the following result proved independently in 
[K] (for X = wW) and (SR] follows from the above corollary. Let X be Polish. 
Let A. C X be r: [. Then either A can be covered by a KfT or else contains a closed 

copy of W U
) . To see this put X = a metrizable compactification of X. Then either 

A can be separated from X\ X by a r:g set. i.e .. A. can be covered by a K" since 

X is compact or else there is a homeomorphic embedding ¢: 2'" -- X such that 
¢ [2"'] C (X\ X) U A and I/> (x ) E X\ X iff x(n) = 0 for all but finitely many nEw. 
In this case ¢ [2"'] II X is closed in X and is contained in A. Notice also that 
¢ [2" ] II X is homeomorphic to w') . 

A special case of the next corollary for A E ng. as well as its lightface version 
for A E l::. P c X x X symmetric n: with K" sections. is due to Louvea u [Ll]. 
[U. Lemma 3.10]. That the following boldface version for A E r:: follows from 
Theorem I was pointed out to us by Kechris. (We state it here for Xk x X instead 
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of X x X because of o ne application that we consider below. ) 
COROLL>.RY 7. Ler X be Polish alld ler P C X k - I = X k X X. k E w . be slich 

rhar P has rhe Baire properly ill y k - l fo r any Y c X. Y E n~ . and P" E I:~ fin' 
allY X E X ' . Ler A C X he I::. Th eil either {h ere is a sequellc; x" E X k . n Eo OJ. 

slich that A C Un"" " P, ,, or else there is a pelfeCl compact set C C A sllch that 
( X I .. .. X k - i ) rt P fo r x l ····· X k - l E C \\ ·/th X i f= X j fo r i i= j. 

PROOF. Put [ = {F: F C X. F is closed. and there is x E X k with F c 
P:d . Then by Theorem I and Remark I either A E [e" which in this case means 
A C U,E," P, ,, for some xn E X k. Il E OJ. or else there is a rr~ set G C A such 
that G E [perf' Put p i = P n Gk ~l. (We could use now Louveau's theorem for 
A E rr~ . but the argument is short enough to be included here. ) Then p i has 
the Bai;e property in Gk~ l . Note also that P~ is meager in G for any x E G k 

Otherwise. by the Baire Category Theorem. there would exist an open set U C X 
with 0 f= U II G c p~ c P" which contradicts the fact that G E [perf . Thus. by 
the Kuratowski-Ulam theorem (see [0] ) p i is meager in G k + l . Since G is Polish 
in the relative topology. by Mycielski's theorem [M] there exists a compact perfect 
set C C G c A with the desired properties. 0 

This corollary can be used to prove the following result of van Engelen. Kunen. 
and Miller [EKM]. Let A C R2. R = the reals. be 1::. Then either A can be covered 
by countably many lines or it contains a compact perfect set no three points of 
which are collinear. Simply consider the relation P C (R2 )3 = (R2 )2 x R2 defined 
by: (x. y .:: ) E P iff x.y.:: E R2 are collinear and x t- y and note that P E 1:: 
and P Cy ! ) . for x. y E R2 is empty or a line thus. 1:~. 

Let us mention one more application of Theorem I. Louveau in [L. Theorem 
2.2] proved that in Solovay's model if [ is a family of closed subsets of WW of the 
form [ = {Cy : x E W W } for some closed set C C WW x w CJ

• then for any set 
A C W W A rt leX! there exists a 1:: set G such that G C A and G rt [ext. From 
Theorem I it follows that G can be chosen to be rr~. 

Acknowledgment. I would like to thank Professor A. S. Kechris for drawing 
my attention to the problem considered in the paper. for valuable discussions. 
guidance. and encouragement and also Professor D. A. Martin for allowing to 
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ABSTRACT 

Let I be a ",-ideal on a Polish space such that each set from I is contained 

in a Borel set from I. We say that I fails to fulfil the E~ countable chain 

condition if there is a E~ equivalence relation with uncountably many 

equivalence classes none of which is in I. Assuming definable determinacy, 

we show that if t he family of Borel sets from I is definable in the codes 

of Borel sets, then each E~ set is equal to a Borel set modulo a set from 

I iff I fulfils the E~ countable chain condition. Further we characterize 

the ",-ideals I generated by closed sets that satisfy the countable chain 

condition or , equivalently in this case, the approximation property for E~ 

sets mentioned above. It turns out that they are exactly of the form 

MGR(F) = {A : V F E FAn F is meager in F} for a countable family F 

of closed sets. In particular, we verify partially a conjecture of Kunen by 

showing that the ",-ideal of meager sets is the unique ",-ideal on R, or any 

Polish group , generated by closed sets which is invariant under translations 

and satisfies the countable chain condition. 

1. Introduction 

The main objects of our study will be a-ideals of subsets of Polish spaces. By 

a a-ideal on X we mean a family of subsets of X willch is closed under taking 

subsets and countable unions. All a-ideals considered in this paper are assumed 

to be proper, i.e ., they do not contain X , and uniform, i.e., they contain 

all singletons {x}, x EX. Here are some other relevant definitions. A a-ideal 

* Research partially supported by NSF grant DMS-9317509. 
Received July 20 , 1993 and in revised form March 6, 1994 
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I is said to be Borel supported ( E~ supported, resp. ) if for any A. E I 

there is B E ~~ n I (B E E~ n I , resp. ) with A C B. Note that a a-ideal 

is E~ supported iff it is generated by a family of closed sets. A a-ideal I has 

the approximation property if for any A E E~ there is B E ~~ such that 

Ab.B = (A '- B ) u (B '- A) E I. Note that, in case I is Borel supported, t his 

is equivalent to saying that if A E EL then there are B l , B2 E ~~ such that 

Bl cAe B2 and B2 '- Bl E I. vVe say that a a-ideal I fulfils the countable 

chain condition (the c.c.c. ) if any family A of disjoint Borel sets such that 

A n I = 0 is countable . It is well-known that if a Borel supported a-ideal fulfils 

the c.c.c., then it has the approximation property (see e.g. the proof of Lemma 5 

below). In particular cases , like , e.g. , I = the family of meager sets or the family 

of measure zero sets for some a-finite Borel measure, this says that analytic sets 

have the Baire property and are measurable. It also follows from the above fact 

that, in case I is Borel supported, the members of A in the definition of the c.c.c. 

can be assumed to be merely E~ without changing the meaning of this definition. 

Let A be a family of disjoint sets. One can naturally associate with such a 

family the equivalence relation EA : 

(1) xEAy ¢? ('VA E Ax E A¢? YEA). 

Thus a Borel supported a-ideal I does not fulfil the c.c.c. iff there is an equiva­

lence relation E with IXI E I > w whose equivalence classes , except for possibly 

one, are E~ and do not belong to I. We propose the following definable version 

of the c.c.c. We say that a Borel supported a-ideal I fulfils the E~ C.C.c. if there 

is no E~ equivalence relation E with Ix l E I > w whose all, but possibly countably 

many, equivalence classes are not in I . (We get an equivalent version of this def­

inition if we assume that none of the equivalence classes of E is in I. ) The main 

result of the first part of the present paper is that the E~ C.C.c. is equivalent with 

the approximation property (assuming some determinacy and definability of the 

a-ideal) . This gives an answer to a question of Mauldin [MIl. We also define 

the pseudo-Borel c.c.c. and prove a version of the above result (the pseudo-Borel 

c.c.c. replacing the E~ c.c.c.) without assuming any determinacy hypotheses. As 

a lemma we prove (see Lemma 4) the following result which seems interesting in 

its own right : Assume ~~-determinacy. If E is a E~ equivalence relation, then 

E has countably many equivalence classes iff every E -invariant E~ set is Borel. 

(After this paper was written, G. Hjorth showed that ~~-determinacy can be 
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replaced in the above statement by the assumption that x# exists for all x E w"' , 

which is equivalent, by results of Harrington and :tvlartin, to ~l-determinacy.) 

In the second part we examine which ~g supported a-ideals fulfil the ~l 

C.C.c. It turns {Jut that the ~l C.C.c. is equivalent in this case wi th the c.c.c. 

Actually we show that ~g supported a-ideals fulfilling the c.c.c. are of the form 

I = {A : V F E F A n F is meager in F} for some countable well-ordered by reverse 

inclusion family F of closed sets. On the other hand, if the c.c.c. is violated 

by a ~g supported a-ideal I , then there exists a homeomorphic embedding cp: 

2w x w'" -+ X such that cp [ {Q:} X WW) rt I for any Q: E 2W. This sharpens and 

generalizes some earlier results of IVlauldin [M) and Balcerzak, Baumgartner and 

Hejduk [BBH). We use this fact to show that if I is a ~g supported a-ideal of 

subsets of a Polish group which is translation invariant and fulfils the c.c.c ., then 

it is the a-ideal of meager sets. This gives a partial answer to a question of Kunen 

(KU). 

2. Approximating ~t sets and the ~l c.c.c. 

It is a well-known fact that if a Borel supported a-ideal fulfills the c.c.c., then it 

has the approximation property (see Lemma 5 below). That the reverse implica­

tion also holds in certain particular cases was proved in [KLW). A combination 

of Theorem 7(ii) , Proposition 6(ii) of Section 3 in [KLW) yields the following 

result: Let I be a Borel supported a-ideal such that I n ~l is III in the codes 

of Borel sets and such that for any A E ~l "I there exists a closed set C rt I 

with C c A. Then I has the approximation property iff I fulfills the c.c.c. 

Also Mauldin [MI) proved, using results from [MJ, that the a-ideal of subsets of 

[0, 1) which can be covered by a ~g set of Lebesgue measure zero (the a-ideal very 

strongly violates the c.c.c. as was shown in [Ml) does not have the approxima­

tion property. Here, using quite different methods and assuming an appropriate 

amount of determinacy, we are able to prove that the approximation property IS 
actually equivalent to the ~l c.c.c. , for all reasonably definable Borel supported 

a-ideals regardless of their other structural properties. This gives an answer to a 

question of Mauldin [MI], who asked what properties of a a-ideal are responsible 

for it having the approximation property. 

If E is an equivalence relation on X and A c X is E-invariant , we Write 

IA/ EI for the cardinality of the family of equivalence classes included in A. If 

B eX, then [B)E denotes the saturation of B with respect to E, i.e., [B)E = 
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{r E X 3y E BrEy}. We write [XJE for [{r}l£. If there is no possibility 

of confusion we will drop the subscript E. If IJ and T are two sequences of 

elements of a set Y then IJ * T denotes their concatenation. If y E Y , then 

IJ * Y = IJ * (0, y ). For a definition of IIi-rank see [Kl, 34BJ. Now we define the 

set WOe 2"'. Let ( , ) ': w 2 
-> w be a bijection. Put a E W 0 iff t he relation 

{ (n ,m) E w2
: o((n,m)) = I} well orders w. Hl O is IIi. Define 101 = the order 

type of { (n,m) E w2
: o( (n ,m)) = I} for a E WOo Then a -> 101 is a IIi-rank 

on ToV O. For a pointclass r, Det(f) means that all games in r are determined. 

By IJ ( II~ ) we denote the IJ-algebra generated by the family of all II~ sets. 

THEOREM 1: Assume Det ( ~~). Let I be a Borel supported IJ-ideal such that the 

family I n ~i is IJ ( II~ ) in the codes of Borel sets. Then I has the approximation 

property iff I fulfils the Ei e.e.e. 

The proof of the theorem is split up into several lemmas. The implication ~ 

follows from Lemmas 3 and 4 and the implicat ion {= follows from Lemmas 5 and 

6. Note that the assumption that I n ~i is IJ(II~) in the codes is used only in 

the proof of {=. 

The following consequence of Theorem 4 from [KW] will be useful. 

LEMMA 1: (Kechris-Woodin) Det(~~) implies Det((1(II~)). 

We will be also using the following particular case of a theorem due to Solovay. 

For a proof see [K, Theorem 7.1]. 

LEMMA 2: (Solovay) Assume Det(~~). Let A be a IIi set and p a IIi-rank on 

A. Let B c A be IJ(II~) and such that if p(x) = p(y) and x E B, yEA then 

y E B. Then B E IIi. 

LEMMA 3: Let E be a Ei equivalence relation whose all but eountably many 

classes are not in I. Let A be an E-invariant set. If A ¢:. ~L then there is no 

B E ~i such that A.6.B E I. 

Proof: Assume otherwise. Since I is Borelsupported, we can suppose that there 

are Borel sets C and D such that C n A = 0, DCA and X '-(C U D) E I. Now, 

[CJ and [D] are Ei and also [CJ n A = 0 and [D ] C A, as A is E-invariant. 

Let {On: nEw} be the family of all equivalence classes of E which are in 

I. Each On is Ei. If [CJ U [D ] u UnEwOn = X, then, since A is E-invariant, 

A = [D] u UOnCA On and X '- A = [C] U UonnA=0 On. Now, the Suslin theorem 

implies that A is Borel which contradicts the assumptions. Thus there exists 
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x E X ,-([e] u [D] u UnEw On ). Then [x ] $. I and [x] c X '-(e u D) E I , a 

contradiction. • 

LEMMA 4: A.ssume Det ( A~). Let E be a :Ei equivalence relation. If E has 

uncountably many equivalence classes, then there exists an E-invariant set A. E 

:Ei '- Ai· (Thus E has countably many equivalence classes iff every E-invariant 

:Ei set is Borel.) 

Proof: Assume that such an A does not exist. Then [A] E Ai for any A E :Ei. 
We claim that either there exists a Borel uncountable set e c X such that 

xEy iff x = y for x, y E e, or there exists an E-invariant set B E Ai such 

that IB I E I > wand if B' c B is Ai and E-invariant then IB' I E I ::; w or 

I(B " B') I E I ::; w. (The proof below is related to arguments of Becker (B], Sami 

and Stern on minimal counterexamples to the Vaught conjecture.) To prove 

this assume that for any E-invariant B E Ai there exist E-invariant Ai sets 

Bl , B2 C B such that Bl n B2 = 0 and IBd E I > w, IB21 EI > w. We construct 

a countable Boolean algebra A of Borel sets such that: 

(i) A contains a countable topological basis of X ; 

(ii) if BE A and I[B]IE I > w then there exist Bl , B2 E A such that Bl , B2 c B, 
[B l ] n [B2] = 0, and I[Bll/E I > w , I[B2]/ EI > w; 

(iii) the topology generated by A is Polish. 

A is built recursively starting from a countable topological basis of X. We easily 

take care of (ii) using the assumption on E. To get (iii), we apply two well-known 

facts : a topology on a standard Borel space can be extended by Borel sets to 

obtain a Polish topology (see [Kl , Theorem 13.1]), and an increasing union of 

Polish topologies is Polish (see [Kl, Le=a 13,3]). 

Now we fix a complete metric d on X which is compatible with the topology 

generated by A, and do a Cantor-type construction producing open (in this 

topology) sets Q~, u E 2<w, so that: 

(a) Q0 = X ; 

(b) d-diam(Q~)::; 1/(lhu + 1); 

(c) I [Q~l/EI > w; 

(d) d-dosure(Q~.il C Q~ for i E 2 and u E 2<w; 

(e) if U , T E 2<w are incompatible, then [Q~] n [Qrl = 0. 

When Q~, for some u E 2<w, has been constructed, we find by (ii) open (in the 

topology generated by A) sets Uo, Ul C Q~ such that I [Uil/ EI > w, i = 1, 2, and 
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[Uo] n lUll = 0. Now for i = 1,2 find V~, nEw, such that \,/~ is open in the 

topology generated by A, d-closure ( v~) C Q", d-diam( V~ ) < 1/( lho- + 2) and 

U nEw V~ = Ui . Then 1 [V~i]1 E I > w for some ni E w . Put Q".i = V~. for i = 1, 2. 

Now .C = nnEw Ulh,,=n Q" is an uncountable Borel (in the original topology) 

set whose distinct elements lie in distinct equivalence classes of E. 

If t here exists an uncountable Borel set C as above , we can find a I;l non-Borel 

set A c C. Then [A] n C = .4, whence [A] tf. ~L a contradiction. 

Thus we can assume, by passing to a Borel invariant subset of X , that IXI E I > 
wand for each I;l set A c X , I[A]I E I ~ w or I(X ' [A])I E I ~ w. Using Det(nl) , 

by Burgess ' theorem [Bu], there exists a .6.~ function / : X --+ WO such that 

xEy {:} 1/ (x)1 = 1/ (y) l· Put B = {x E WO : 3y E X 1/ (y)1 = Ix l}. Then B E I;~ 

and fulfils the assumptions of Lemma 2 (with A = WO and p(x) = Ixl) . Thus 

B E nl. Now define 

B' = {x E B : 3z E B (Iz l < Ixl/\ "Iy (y E B /\ Iyl < Ix l =? Iyl ~ Izl ))}. 

It follows that B' E I;~ . Put A = /-I(B'). Then A E I;~ and is E-invariant. 

Also A as well as its complement contain urlcourltably many equivalence classes of 

E . Thus A E I;~ , nl. By Det(.6.~) and Lemma 1, each I;l set is Borel reducible 

to A. Pick D c 2W with D E I;l ' .6.l. Let ¢ : 2W 
--+ X be Borel and such that 

xED {:} ¢(x) E A. Since A is E-invariant, xED {:} <I>(x) E [¢[D]] E .6.l . Thus 

D is ~l , a contradiction. • 

LEMMA 5: If I does not have the approximation property, then there exists a 

nt set A with a nt-rank p such that the set T C WI defined by a E T iff 

{x : p( x) = a} ¢. I is uncountable. 

Proof: Let P be a I;t set such that there is no B E ~t with Ptl.B E I . Then 

the same is true about the nt set Q = X, P . Let ¢ be a Borel mapping from X 

to the space of all trees on w such that ¢(x) is well fOurlded iff x E Q. For a tree 

Ton wand u E w<w, put Tu = {v E w<w : u*v E T} . If T is well fOurlded , let IT I 

denote the rank ofT. Suppose "Iu E w<w3~ < wl"l( > ~{x : ¢(x)u is well fOurlded 

and 1<I>(x)ul = (} E I . Then for each u E w<w there exists a smallest ~ = ~u < WI 

as above. Put (= sup{~u : u E w<W} + 1. Now define B = {x EX: ¢(x) is well 

founded and 1<I>(x)1 ~ n and B' = {x EX: 3u E w<w¢(x)u is well fOurlded and 

1<I>(x)ul = (} . Then it is easy to check that B C Q c BuB', B, B' E .6.t and 

B' E I which contradicts our assumption on Q. Thus there exists u E w<w such 
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that \IE, < WI :J( > E,{X EX: ib(x )u is well founded and i<P(x)ul = (} rf. I. Put 

A. = {x EX: ¢(x)u is well founded} and p(x ) = 1<P(x)u l. It is easy to verify that 

these A. and p work. • 

LEMMA 6: Assume Det( ~~ ) . Let I n ~~ be a (II~ ) in the codes. If I does not 

have the approximation property, then there is a ~~ equivalence relation E such 

that IX / E I = WI and all equivalence classes of E , except for perhaps one, are not 

in I . 

Proof: Take A. and p as in Lemma 5. Define A' = {x E A : {y E A. : p(y) = 
p(x)} rf. I}. Since I n ~i is a (II~ ) in the codes, A' is a (II~ ). Clearly A' fulfils 

the assumption of Lemma 2 whence A.' E IIi. Then the following equivalence 

relation is ~ i : 

xEy {:} ((x E A.' V Y E A.') ~ (x E A' /\ yEA.' /\ p(x) = p(y) )). 

Also E has WI equivalence classes and all of them except for perhaps X '- A' are 

not in I . • 

Assuming more determinacy and using the full strength of Solovay's lemma 

(see [K , Theorem 7.1]) we obtain the same conclusion (with the same proof) as 

in Theorem 1 for wider classes of Borel supported a-ideals or even for all of them 

if we assume AD. (Note however that, as follows from Lemmas 2 and 3, it is 

enough to have only Det(~~) to prove that the approximation property implies 

the ~i c.c.c. for all Borel supported a-ideals.) For example we have the following 

result. 

THEOREM 1' : Assume PD (AD, resp.). Let I be a Borel supported a-ideal such 

that I n ~i is projective in the codes (I n ~i is arbitrary, resp.). Then the ~i 

c.c.c. and the approximation property are equivalent. 

We want to make here a few comments on what can be proved without any 

determinacy hypotheses. We will summarize them in Theroem In. A family A 

of disjoint sets is called pseudo-Borel if the relation EA associated with A as 

in (1) in the Introduction is ~i and there is a IIi equivalence relation F such 

that 

(2) 

Note that if EA is Borel we can take F = EA . A Borel supported a-ideal I fulfils 

the pseudo-Borel c.c.c. if every pseudo-Borel family A of disjoint sets such 
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that An [ = 0 is countable. Clearly the c.c.c. implies the :Ei C.C.c., which in 

turn implies the pseudo-Borel e.e.c. 

LEiv!:.!A 7: A.ssume a Borel supported (7-ideal has the approximation property. 

Then [ fulfils the pseudo-Borel c.c.c. 

Proof: Suppose I does not fulfil the pseudo-Borel e.c.e. Let A be a pseudo­

Borel family of sets witnessing it and let F be a IIi equivalence relat ion from the 

definition of pseudo-Borelness. By Lemma 3 applied to EA it is enough to find 

an EA-invariant set A such that A E :Ei " ~i. Since EA E :Ei, X" U A E :Ei. 
If X" U A rt. ~i we are done. Thus we can assume that U A E ~i. But 

by (2) UA is F-invariant and F i UA = EAIUA. Thus since FE IIi and 

I U AI F I = IA I > W, by Silver's theorem [S], there is a perfect compact set 

C C U A such that different elements of C belong to different equivalence classes 

of EA. Pick Ace in :Ei " ~i. Then [AlEA is EA-invariant and :Ei and, as 

[AlEA n C = A, [AlEA rt. ~i· • 

LEMMA 8: Assume I is a Borel supported (7-ideal sucb tbat I n ~i is :Ei in the 

codes of Borel sets. If I fulfils the pseudo-Borel c.c.c., tben I has tbe approxima­

tion property. 

Proof: It is enough to prove an analogue of Lemma 6 without the determinacy 

hypothesis. But since we assume that I n ~i is :Ei in the codes, the set AI 

defined in the proof of Lemma 6 is IIi. Put A = {{x E AI : p(x) = Q} : Q < Wl} ' 

Then EA is equal to the relation E defined in the proof of Lemma 6 and thus 

I X l EA I > wand E A E :Ei· For the IIi equivalence relation F we take 

xFy ~ (x = y V (x E A.I II Y E A' II p(x) = p(y))) . 

• 
Combining Lemmas 7 and 8 we obtain the following theorem. 

THEOREM! " : Let I be a Borel supported (7-ideal sucb tbat I n ~i is :Ei in 

tbe codes of Borel sets. Tben I has tbe approximation property iff I fulfils the 

pseudo-Borel c.c.c. 
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3, l:g supported (I-ideals 

The l:g supported (I-ideals occur frequently in harmonic analysis and descriptive 

set theory as (I-ideals generated by families of closed sets. In this section we 

characterize those l:g supported (I-ideals which have the approximation property 

and also give an abstract characterization of the (I-ideal of meager sets. No 

determinacy assumptions will be used in the sequel. 

Let F be a family of subsets of a Polish space X. Put 

j'vIGR(F) = {B eX: VA E F B n ,4 is meager in A}. 

If A c X, we will write AIGR(A) for AIGR({A}). If I is a (I-ideal and A c 
X, we write IIA = {B c A : B E I}. A family F of subsets of X is said 

to be well-ordered by reverse inclusion if there is an ordinal a such that 

F = {AE : ~ < a} and ~ ::; ( < a ¢} AE :::> A(- By 7rx and 7ry we denote the 

projections from X x Y onto X and Y, respectively. Also for A C X x Y we 

write Ax = {y E Y: (x,y) E A}. 

LEMMA 9: Let Y be Polish and let J be a l:g supported (I-ideal. Assume that 

for any open set U t- 0 there exists a nowhere dense set FeU such that 

F ~ J. Then there is a homeomorphic embedding ¢> : 2W x WW ---+ Y such that 

¢[{a} x WW] ~ J for any a E 2W. 

Proof: For any family A of subsets of Y define Ad to be the set of all points 

x E Y such that for any open U with x E U the set {A E A : A nut- 0} 

is infinite. In the natural way we identify a sequence (I E (2 x w)n with the 

sequence (((1)0, ((Ill) E 2n x w n
. For a E WW by aln we denote the restriction 

of a to n = {D, ... ,n - I}. We also write N~ = bE 2W x WW : 7r2~(-Y)ln = 

((I)o,7rw~(-Y)ln = ((lh} for (I E (2 x w)n,n E w. 

Now we construct recursively open sets U~,(I E (2 x w)<w, so that: 

(i) (I C T,(I t- T implies closure(Ur ) C U~; 

(ii) if neither (I C T nor T C (I then U~ n Ur = 0; 
(iii) diam(U~)::; 1/2n+(~h(n-l), where n = lh(l; 

(iv) {U~.(i,n): nEw}d ~ J for i E 2; 

(v) U~ t- 0. 
If U~ has been defined, find a nowhere dense closed set F C U~ with F ~ J. 

Then find two closed sets Fo, Fl C F, Fo, FI ~ J such that there exist two open 

sets Vo, VI C U~ containing Fo and Fl , respectively, and having disjoint closures. 
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Since Fi is nowhere dense in V;, i = 0, 1, we can find nonempty pairwise disjoint 

open sets W~ , n E w, so that Fi = {W~ : n E w }d, W~ C ,,~ and diam(W~) ::: 

1/2k +l+n
, where k = lh17. To define VV~, first choose Di = {d~ : nE w} to 

be discrete subsets of V; such that Fi = closure( Di) " Di. Then let W~ be an 

appropriately small ball around d~. Put U,,*(i,n) = W~. 

Now define <p : 2'" x WW --> Y by <p( Ct,;3) = the only point in nnE'" U(aln.Llln)' 

It is clear from (i)-( iii) and (v) that <p is a homeomorphic embedding. Note also 

that, by (iii) and (iv), {¢>[N"*(i ,n)] : nEw}d = {U,,* (i,n) : nEw}d rf. J for any 

17 E (2 x w)<w and i E 2. 

Suppose that there is Ct E 2W such that ¢>[ {Ct} x w"'] E J. Then there exist 

Fn E J n II~, nEw, such that <P[{Ct} x WW] C UnEw Fn. By the Baire Category 

Theorem there is T E wk, for some k E w, and no E w such that d>[N(alk,T)] C Fno' 

But then {<P [Nal(k+l),r* (n)] : nEw}d C Fno E J , a contradiction. • 

The following theorem generalizes and strengthens some results proved in [M] 
and [BBR]. It was shown in [BBR, Theorem 2.3] that (ii) holds for the 17-ideal 

of all subsets of 2"' which can be covered by Eg sets of Lebesgue measure zero. 

A bit weaker result for the same 17-ideal was proved earlier in [M, Theorem 1] 
and this weaker result was generalized in [BBR, Theorem 1.5] to a slightly wider 

class of Eg supported 17-ideals. 

THEOREM 2: Let I be a Eg supported 17-ideal. Then precisely one of the follow­

ing possibilities holds: 

(i) I = MGR(F) for a countable family F of closed subsets of X , which can be 

assumed to be well-ordered by reverse inclusion; 

(ii) there is a homeomorphic embedding ¢> : 2W x WW --> X such that <P[ { Ct} x WW] rf. 
I for any Ct E 2"'. 

Proof: For F C X closed put F' = F" U{U : U is open, Un F =I 0 and 

l l(U n F) = MGR(U n F)} and F* = F" U{U : U is open and Un F E I}. 
Now define by transfinite recursion: 

Fo = X*; 

F>. = (n,.<>. F,.)* if,\ is limit; 

F,.+l = F~ . 

Claim: Let U C X be open. Assume F,.+l n U = F,. n U. Then F~ n U = F,. n U 

for any ~ > 'Y. 
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Proof of the Claim: First we prove that if IV n F-y E I for an open set IV , 

then IV n F-y = 0. This is clear if / is limit or O. Assume / is a successor. Let 

,\ be the biggest limit ordinal S; -l or ,\ = O. Then IV n F-y must be meager in 

FA' So there exists a biggest (J < / with IV n F-y meager in Fo· It follows that 

there exists an open set V such that 0 # V n FO+l C IV n F"{' \Ve t hus have 

V n FO+l E MGR (Fo ) and V n FO+I E I, whence \/ n FO+ I = 0, a contradiction. 

Now, if U n F-y C F-1+l, we show by induction on ~ > / that Un F-y C F~. 
For ~ limit it is a consequence of the observation from the previous paragraph. 

For successors it follows directly from the inductive hypothesis and the inclusion 

un F-y C F-y+l ' This finishes the proof of the Claim. 

There exists a smallest Ct < WI such that Fa = F 0+1· 

CASE 1: Fa = 0. 
Put F = {F-y : / < Ct}. First notice that F-y+1 is nowhere dense in F-y for 

/ < Ct. Otherwise there is an open set U such that F-Y+l :J F-y n U # 0. Then 

by the Claim F{ :J F-y n U for all ~ > / . In particular, Fa :J F-y n U # 0 which 

contradicts our assumption on Fa· 
Now we show that I = MGR(F). Let A E I. Then An (F-y ...... F-y+l) E 

MGR(F-y ...... F-y+l) for / < Ct. But since F-Y+l E MGR(F-y), we have A E 

MGR(F-y ). For the opposite direction assume that An F-y E MGR(F-y) . Since 

F-y+l is closed, A n (F-y ...... F-y+l) E MGR(F-y ...... F-y+l) ' Thus An (F-y ...... F-y+l ) E I 
for / < Ct. Also clearly X ...... Fo E I and n-y<>. F-y ...... F>. E I for ,\ limit. Since I is 

a a-ideal, 

A = A n (X ...... Fo) U u 
>'<",>. limit 

CASE 2: Fa # 0. 
By the Claim Fa = F{ for all ~ > Ct. Thus F~ = F" and F~ = Fa· This easily 

implies that the assumptions of Lemma 9 are fulfilled for Y = F" and J = llF,,· 
Thus we obtairl (ii). • 

Note that (i) implies that I fulfils the c.c.c. Thus it follows from Theorem 

2 that if a Eg supported a-ideal does not fulfil the c.c.c., then there exists a 

"perfect" family of Go's outside of I , i.e. , (ii) holds. A similar fact was proved 

for a different class of 17-ideals in [KLW]. Namely by Theorem 2 of Section 3 in 
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[KLWJ, if I is a Borel supported a -ideal such t ha t I n Ai is ni in t he codes 

and for any A E Ai " I t here is a closed set C rf. I with C c A , then if I does 

not fu lfi l the c.c.c. , then there is a "perfect" family of closed sets not in I . In 

particular , in this case, as well as in t he case of Eg supported a- ideals, t he c.c.c., 

the Ei c.c.c., and the pseudo-Borel c.c .c. are equivalent . 

T he next theorem lists a few characterizations of the cr-ideals of the form 

M G R ( F ) for a countable , well-ordered by reverse inclusion family F of closed 

sets . 

THEOREM 3 : Let I be a Eg supported a -ideal. Then the following are equi valent . 

(i) I is of the form MGR(F ) for a countable family F of closed subsets of X 

well-ordered by reverse inclusion; 

(ii) I fulfils the c.c.c.; 

(iii) I fulfils the pseudo-Borel c.c.c.; 

(iv) I n Ai is Ai in the codes of B orel sets; 

(v) I n Ai is Ei in the codes of Borel sets; 

(vi) I has the approximation property. 

Proof: (i) => (ii). Let A be an uncountable family of disjoint Ei sets wit h 

A n I = 0. Then , since F is countable, there is F E F and an uncountable 

family A' C A such that A n F is not meager in F for any A E A' . This yields a 

contradiction, since MGR(F ) fulfils the c.c.c. 

(ii ) => (iii) is obvious. 

(iii) => (i) . Suppose (i) does not hold. Let ¢ be as in Theorem 2(ii). Put 

A = {<I>[ { o} x WW] : 0 E 2W}. Then E A is Borel. Indeed, notice that since <I> is a 

homeomorphic embedding <I> [2W x WW] is ng. Put B = <I>[2W x WW ]. Then 

XEAY ¢} (( x rf. B II Y rf. B) V (30 E 2w x , Y E <I> [{o} x WW])) 

¢} (( x rf. B II Y ¢ B) V (3!0 E 2Wx,y E <I> [{o} x WW])). 

Since EA is Borel, A is a pseudo-Borel family. 

(i) => (iv). By a standard calculation, see e.g. [K, 16.1] . 

(iv) => (v) is obvious. 

(v) => (i) . Suppose that I is not of the required form. Let <I> be as in Theorem 

2( ii). Let B C WW x 2W be such that BEAt and 7rw~ [B] rf. nt . Define 

B' C WW X X by (o , x ) E B' ¢} x E <1>[2"" x wW]1I (0 , 7r2~ (<I>-1 (x» ) E B. Clearly 

B' E Ai. It is easy to check that B~ rf. I or B~ = 0 for any 0 E w"" and 
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{Q E w" : B~ rI- I} = {Q E w"' : Bn :j:. 0} = "w- [B ] rI- IIi. Thus {Q E 2W 
: B~ E 

I} rI- :Ei which gives a contradiction since if I n ~i is :Ei in the codes , then 

{Q E 2"' : An E I} is :Ei for any Borel set A c 2"' x X. 

(vi ) ~ (iii ) is simply Lemma 7. 

(( iii ) /I (v)) ~ (vi) is Lemma 8. • 

Consider now 2"' as a group with t he coordinatewise addition modulo 2. Kunen 

[Ku, 1.27] asked if all Borel supported (i-ideals on 2"' which are t ranslat ion in­

variant and fulfil the c.c.c. are: the family of meager sets, the family of Lebesgue 

measure zero sets or the intersection of the two. The following corollary provides 

a part ial answer to this question. 

COROLLARY: Let X be a Polisb space and let H be a group of bomeomorpbisms 

of X sucb tbat U h EH h[U] = X for any open nonempty set U C X. Let I be a 

:Eg supported (i-ideal on X . If I fulfils tbe c.c.c. and is sucb tbat h(A] E I if 

A E I , tben I is tbe (i-ideal of meager sets. In particular, if G is a Polisb group 

and I is a :Eg supported translation invariant (i-ideal on G wbicb fulfils tbe c.c.c., 

tben I is tbe (i-ideal of meager sets. 

Proof: First notice that, by invariance under homeomorphisms from H, I cannot 

contain a nonempty open set . By Theorem 3 there is a well-ordered by reverse 

inclusion countable family F of closed subsets of X such that I = MGR(F ). 

Let Fa E F be such that F' C Fa for any F' E F. Then X ...... Fa is open and 

X ...... Fa E I . Thus X ...... Fa = 0, Le., Fa = X. If F :j:. {Fa} , let FI E F be such 

that F' C FI for any F' E F ...... {Fo}. If F = {Fa} , put FI = 0. It follows that 

MGR(X ...... FIl c I . Since X ...... FI is nonempty and open, we get MGR(X) C I 

by invariance of MGR(X) and I under homeomorphisms from H. If there is 

a set A E I ...... MGR(X), then, since I is :Eg supported, we can find A E :Eg, 
A E I ...... MGR(X). Now the Baire Category Theorem implies that there is an 

open set in I which is impossible. • 
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CHAPTER 3 

KIT EQUIVALENCE RELATIONS AND INDECOMPOSABLE 

CONTINUA 

3.1. KIT equivalence relations 

Let Eo be the equivalence relation on 2'" defined by xEoY iff :IN E wVn > 
N x(n ) = y(n ), for x, y E 2"'. If E is a Borel equivalence relation on a Polish 

space , we say t hat Eo continuously embeds in E , Eo r;;;c E, if there is a continuous 

injection q,: 2'" -+ X such that xEOY iff q,( x )E q,(y) for X,y E 2"'. 

vVe prove below a theorem which gives a sufficient condition for a KIT equiv­

alence relation to cont inuously embed Eo. A corollary of this result solves an old 

problem in the t heory of indecomposable continua concerning t he existence of a 

Borel set having precisely one point in common with each composant. Theorem 

3.1 is related to and was inspired by the Glimm-Effros theorem on continuous 

actions of Polish groups discovered in the study of CO-algebras [G], [E] and it s 

generalization to actions of arbit rary groups of homeomorphisms due to Becker 

and Kechris [BK]. 

Theorem 1. Let X be Polish, and let F be a KIT equivalence relation on X. 

Assume that {x EX: [X]F is not locally closed at x} is not meager. Then Eo r;;;c 
F. 

Proof. Since F is KIT and contains the diagonal of X X X, X is KIT' Hence, there 

exist open Un, nEw, such that Un Un is dense and for each n, Un is compact. 

Thus {x E Un o : [x] F is not locally closed at x} is not meager for some no. So, 

restricting F t o Uno' we can assume that X is compact. 

Now, we can find Fk C F, k E w , such that Fk is compact , symmetric (i.e. , 

(x,y ) E Fk implies (y , x) E Fk ), {(x , x): x EX} C Fb and Ffk+3 C Fk+I' (FI: 

is defined recursively: Ff = Fk, and F;:+l = {(x , y) ::Jz (x , z) E FI: and (z,y ) E 

Fd. ) VVe write A. 1- k B for A., Be X if (A. x B ) n FIc = 0. 
Claim l. There exists an open nonempty set U C X such that given k E w 

and 0 =1= vV c U open there are nonempty compact Co, C I C IV and nEw such 
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that 

(i) Co -Lk C1; 

(ii) Co C [C1 lFn and C1 C [COlFn ; 

(iii) Co = V for some open V. 

Proof of Claim 1. Let {Vm: mEw} be an open basis for X with each Vm 

nonempty. Put 

Note that Am,p are F17 • Put 

First , we show that if x f/. nk nr(B k U (X \ Vr)), then [XlF is locally closed at x . 

If x is as above, then x E Vr and x f/. Bk for some k,r E w. Let y E Vr. Then 

(x,y) E F iff (x,y) E Fk. Since Fk C F, it is enough to show that (x,y) f/. Fk 

implies (x,y) f/. F. But if (x, y) f/. F k , then there are Vm'v; C Vr such that 

x E Vm, y E Vp, and Vm -Lk Vp. Since x f/. Bk and x E Vm, x f/. [Vpl F whence 

(x, y) f/. F. It follows that [X]F n Vr = [XlF. n Vr whence [X]F is locally closed at x. 

By assumption, nk nr(Bk U (X \ Vr)) is not meager. Since B k U (X \ Vr) is 

F 17 , there exists a nonempty open set U such that for all r, k, int(B k U (X \ Vr )) 

is dense in U. Let 0 =1= W CUbe open. If Vr C W , then for all k, int (BD 

is dense in Vr, whence for any k there are Vp, Vm C Vr such that Vp -Lk Vm and 

int( [VplFnVm ) =1= 0. Now, we can find l,n E w such that VI C Vm and VI C [Vp]Fn' 

Put Co = VI and C1 = Vpn[VdFn' Then Co and C1 are as required, which finishes 

the proof of Claim 1. 

We construct recursively nonempty compact sets C., s E 2<w (as usual C. C 

Ct if s :J t , and diam(C.) ~ 1/(lh(s ) + 1)) along with a sequence of natural 

numbers no < nl < n2 < ... so that to some pairs (C., Ct ), s, t E 2k , an ni with 

i < k will be assigned in which case, we write C. ~ Ct . The following additional 

conditions will be fulfilled. (By Ok we denote the sequence consisting of k O's.) 

(1) Co' = Uk where Uk is open; 

(2) if C. ~ Ct , then Ct C [Csl Fnk and Cs C [Ctl Fnk ; 

(3) COk+l ~ CO'*i for i = 0,1; 

(4) CO.+1 -L nk _ 1 +2 CO'*l ; 

(5) if Cs ~ Ct , then C.*; ~ Chi for i = 0,1. 
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Assume the construction has been carried out. 

Claim 2. Eo I;;;c F. 

Proof of Claim 2. Call s, t E 2<w k-close if lh (s) = lh(t), t here is p :::: k such 

that sl(p + 1) = OP+ l, t l(p + 1) = OP * 1 or vice versa, and for any m with 

p + 1 :::: m < lh (s) , s(m) = t(m). Immediately from (3) and (5), we get that 

if s, t E 2<w ar~ k-close, then [G. ]Fnk :J Gt and [Gt]Fnk :J G •. Also, it is clear 

that if s, t E 2<w, lh(s) = lh(t), and s(i) = t (i ) for all i ?: k + 1, then there is a 

sequence SO ,SI, . .. ,S m such that m:::: 2k , So = S, Sm = T , and Si,Si+l are k-close 

for i < m . Thus, if s , t E 2<w are as above, then [G.]F2k :J Gt and [Gt]F2k :J Gs . 
",Ie "k 

Since F~: c Fndl , we obtain the following conclusion. 

(i) Let s , t E 2<w , lh( s) = lh( t ), and s( i) = t ( i ) for i ?: k + 1. Then [GS ]Fnk +1 :J Gt 

and [GtlFndl :J Gs ' 

Also we have the following fact. 

(ii ) Let s,t E 2<w , lh (s) = lh(t). Assume s(k) =I- t (k), k?: 1. Then Gs .1nk _ 1 Gt . 

If s(O) =I- t(O), then clearly Gs .10 Gt · 

To see this , assume s(k) = 0, t(k) = 1, and put s' = sl(k + 1), t' = t l( k + 1). 

By (i), Gs ' C [GOk+ l] Fnk _l+l and Gt , C [Gok.dFnk_l+t . Now if G. '/-nk_ l Gt , then 

there are x E Gs , y E Gt with xFnk _t y. Since Gs C Gs ' and Gt C Gt" we get 

Zo E GOk+l and ZI E GOkol with (x, zo) E F nk _ 1+1 and (yzr) E F nk _ 1+1 . Thus 

(ZO,ZI) E F;k_l+ 1 C Fnk _1+2 which contradicts (4) . 

Define tjJ: 2'" -+ X by letting tjJ(a ) be the unique element in nn Gain for 

a E 2"'. Since {(x, x) : x EX} C Fk for all k, from (ii) we get that if lh(s ) = lh(t) 

and s =I- t , then Gs n Gt = 0. Thus, tjJ is 1-to-1 and continuous. If a, fJ E 2'" 

and (a, ,B) rf. Eo , that is , a(k) =I- fJ(k) for infinitely many k E w, then by (ii) and 

the fact that Fk C FHI for all k, we have (tjJ(a ), tjJ(fJ)) rf. Fk for all k whence 

(tjJ(a) ,</>(fJ)) rf. F. If a,fJ E 2:.1 and (a ,fJ) E Eo , then a(k) = fJ(k) for k ?: N 

and some NEw. By (ii), [Ga lm]FnN+t :J Gplm and [GPlm]Fn.;v+l :J Gal m for 

all k. Hence [Galm]FnN+l 3 tjJ(fJ) and [Gplm]Fn N+l 3 </>( a). This allows us to ' 

pick sequences Ym -+ </>(a) and Zm -+ </>(,B) with Ym E [</>(fJ) ]FnN+I and Zm E 

[</>( a)] FnN +l Since [</>(a)] FnN+ 1 and [tjJ(fJ)]FnN+ 1 are closed, </>(a) E [q,(fJ) ]FnN+I 

and 6(fJ) E [tjJ(a)]FnN+I, whence tjJ(a)Fq,(fJ), and Claim 2 is proved. 

Thus, to finish the proof of the theorem, it is enough to construct {G. : 

s E 2<W}. The construction is recursive on the length of s E 2<"'. To avoid 

cluttering pages with not ation, we will describe only the first three steps of the 
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construction. Let U be as in Claim 1. Put C0 = U 0 where Uo is a nonempty, 

open set with diam(Uo) < 1 and U 0 cU. Find no and Do 1 Dl as in Claim 1 

for VV = Uo and k = O. Let V be an open set with Do = V. Let D l , ... , Dm 

be compact sets with diameter < 1/2 and whose union is D l . Then for some 

i 01 [DiolFno n Do has a nonempty interior. Let Ul be open with diameter < 1/2 

and such that Ul C int ([DioJFno n Do). Finally, put C(O) = Ul and C(l) = 

Dio n [COJFno' Now, we define C. for s with lh(s) = 2. Let nl, Doo , DOl be as 

in Claim 1 for W = Ul and k = no + 2. Let V be open with Doo = V. Put 

D10 = Cl n [DoolFno and Dll = Cl n [D01 JFno ' We could define C(i ,j) to be Dij 
except that their diameters may be too big, so in the remainder of the proof, we 

modify them appropriately. First, find Dtl C Dll compact with diameter < 1/3 

and such that the interior of [[DilJFn n DOl l F nUl is nonempty. Next, find 
o n1 

D6l C [Dtl JFno n DOl compact with diameter < 1/3 and such that the interior of 

[D6llFnl nUl is nonempty. Find Dto compact with diameter < 1/3 and such that 

the interior of [DioJFno n [D61JFnl nUl is nonempty. Let U2 be an open set such 

that diam(U2 ) < 1/3 and U2 C [Dio JFno n [D6ll Fn1 nUl. Put finally C(O,O) = U2 , 

C(l,O) = [C(O,O)JFno n Dio, C(O,l) = [C(O,O)J Fn1 n D6l ' and C(l,l) = [C(o,l)lFno n Dtl ' 
This finishes the proof of the theorem. 

Corollary 2. Let X be a Polish space. Let F be a K/7 equivalence relation on X 

each equivalence class of which is dense. If F has at least two equivalence classes, 

then Eo r;;;c F. 

Proof. By Theorem 1 it is enough t o show that for any x E X, [XJF is not locally 

closed at x. But if it were, then, since [XJF is dense, there would exist an open set 

U with x E U C [XJF' But then no equivalence class different from [X lF could be 

dense. 

3.2. Application to indecomposable continua 

A continuum is a metric compact connected space. A continuum is called 

indecomposable if it is not the union of two proper sub continua. Indecomposable 

continua, first constructed by Brouwer in 1910, occur naturally in dynamical sys­

tems and also have their own extensive literature. A compos ant of a continuum C 

is a maximal set any two points of which lie in a proper subcontinutun of C. Each 
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indecomposable continuum is partitioned into disjoint composants. We will call 

the equivalence relation Ec induced by this partition the composant equivalence 

relation, i.e. , xECY iff x and y lie in a proper subcontinuum of C. The study of 

compos ants is crucial in understanding the structure of indecomposable continua. 

Mazurkiewicz [Ma] proved that there is a perfect closed set P C C which has at 

most one point in common with each composant. (An immediate consequence of 

it is that there are 2~o composants.) A natural question to ask is whether there is 

a Borel set T C C which has precisely one point in common with each composant. 

Such a set T is called a Borel transversal. (This question is formulated explicitly 

in Mauldin 's [M] but was considered earlier by continuum theorists. ) A partial 

answer was obtained by Cook [C] who proved that a Borel transversal cannot be 

Fu. (More general facts about Fu transversals were obtained in the recent paper 

by D~bski and Tymchatyn [DT].) By an argument of Mauldin [MJ, some other 

part ial results can be deduced from the work of Emeryk [Em] and Krasinkiewicz 

[K]. Rogers in [R] noticed the relation of the question of the existence of a Borel 

transversal to the Glimm-Effros theorem. He applied the Glimm-Effros theorem 

to prove that certain indecomposable continua (solenoids and the Knaster contin­

uum) carry a Borel probability measure f..L which is ergodic in the sense that it 

assigns to each composant measure 0 and for any Borel X C C if each composant 

of C is either contained in X or disjoint from it, then f..L(X) = 0 or f..L(X ) = l. 

Such continua do not have Borel transversals. 

Below, we answer the question of the existence of Borel transversals in the 

negative for all indecomposable continua. The following corollary will imply that 

each indecomposable continuum carries an ergodic (in the sense described above) 

probability measure (see Corollary 4). 

Corollary 3. Let C be an indecomposable continuum. Then Eo ~c Ec where 

Ec is the composant equivalence relation. 

Proof. By [R, Theorem 3.3], Ec is Ku. It is well known, see for example [Ku, 

Ch.5, §48, VI , Theorems 2 and 7], that each compos ant is dense and that there 

are at least two composants, that is , [X]Ec is dense for each x E C and Ec has at 

least two equivalence classes. Thus , Corollary 3 follows from Corollary 2. 
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To state the next corollary, we need the following definition. Let E be a Borel 

equivalence relation on a Polish space Y. A Borel probabili ty measure J1- on Y is 

called E-ergodic if J1-([xlE ) = 0 for any x E Y and J1- (X ) = 0 or 1 if X C Y is Borel 

and is the union of a fami ly of E-equivalence classes. The next corollary follows 

from Corollary 3 by, by now, standard arguments (see [El) . 

Corollary 4. Let C be an indecomposable continuum with the composant equiv­

alence relation Ee. 

(i) There exists an Ee-ergodic Borel probability measure on C . 

. (ii) There does not exist a Borel set which has precisely one point in common 

with each composant. 

The following theorem, improving on a result of Rogers [R, Theorem 3.3], 

gives an important structural property of the compos ant equivalence relation. It 

shows that the composant equivalence relation is hypersmooth, see [KL]. 

Theorem 5. The composant equivalence relation on an indecomposable contin­

uum is the increasing union of a sequence of compact equivalence relations. 

Proof. Let C be an indecomposable continuum with the composant equivalence 

relation Ee. Let {Un: nEw}, with Un+1 C Un, be an open basis at Xo E C. 

Let Cn , nEw, be proper subcontinua of C such that Xo E Cn , Cn C Cn +1 , and 

Un Cn = [XO ]Ec = the compos ant of Xo. Define for x , y E C and nEw 

xEnY iff x = y or X, y E K for some sub cont inuum K C (C \ Un ) U Cn. 

One checks easily that each En is an equivalence relation and that En C E n+1 . To 

see that En is closed, let xkEnYk, k E w, and Xk --+ X, Yk --+ y. vVe can assume that 

Xk i= Yk for all k. Let Kk be a continuum witnessing xkEnYk. Then K = limk Kk 

is a continuum, X,Y E K, and K C (C \ Un ) U Cn since (C \ Un ) U Cn is closed. 

Thus, xEnY. 

Since Un \ Cn i= 0 for all n (as Cn is nowhere dense, see [Kul) , each subcon­

tinuum K C (C \ Un) U Cn is proper , whence En C Ee for all nEw. To see that 

Un En = Ee , let xEey · If xEexo , we can find an nEw such that x , Y E Cn. But 

then xEnY. If -{ xEexo ), let K be a proper sub continuum of C with x, Y E K. 

There is n such that K n Un = 0, as Xo f/. K. Then xEny. This finishes the proof. 
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CHAPTER 4 

POLISH GROUP ACTIONS 

4.1. The Topological Vaught Conjecture for Polish groups with an 

invariant metric 

Let G be a Polish group acting on a set X. Put for x, y E X 

xE3y {:? 3g E G gx = y. 

Then E3 c X x X is an equivalence relation and is called the equivalence relation 

induced by the action of G on X. (Sometimes, if there is no possibility of confusion, 

we drop the superscript X.) If X is Polish and the action of G is continuous, then 

EG is analytic . The Topological Vaught Conjecture (TVC ) says that either EG 

has countably many equivalence classes, or there exists a perfect set which has at 

most one point in common with each equivalence class. It is a generalization of the 

famous Vaught conjecture from model theory and was firs t formulated by Miller. 

The TVC is still open, so it seems interesting to ask for what classes of Polish 

groups it holds. If EG is Borel , the TVC follows from Silver's theorem. And indeed , 

in case G is locally compact, EG turns out to be Borel. R.L. Sami in [S] proved 

that the TVC holds for abelian Polish groups. A.S. Kechris asked if the TVC holds 

for Polish groups admitting an invariant metric. (By invariant metric we mean a 

two-sided invariant metric.) Each abelian Polish group admits an invariant metric. 

There exist , however , groups admitting invariant metrics which are very far from 

being abelian, for instance, they may contain the free group with 2No generators. 

Below, we show that the TVC does hold for Polish groups with invariant metric. 

vVe actually prove a much stronger dichotomy theorem reminiscent of the Glimm- . 

Effros theorem (see [EJ, [GJ). Recently, G. Hjorth established analogous results for 

Polish nilpotent groups and for Polish groups whose quotient by the center admits 

an invariant metric. 

For the definition of Eo and [;;;c see 3.1. 

Theorem 1. Let G be a Polish group admitting an invariant metric. Let X be a 

Polish G-space. Then either Eo [;;;c EG or EG is Go. 
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Corollary 2. The Topological Vaught Conjecture holds for Polish groups admit­

ting an invariant metric. 

Proof of the corollary. By the thorem \ve have two cases: either Eo I:;:;c EG 

or EG is G 8 . It is easy to see that there is a perfect set which has at most one 

point in common with each equivalence class of Eo. So, if Eo I:;:; c E G, then the 

same is true of E G. If EG is Go, then t he function f: X --+ 2'"' defined by 

f (x ) = {n E w: x E [Vn]G} is Borel ({Vn: nEw} a topological basis of X) 

and has the property that xEGY iff f (x ) = f (y ). From this it follows by standard 

methods that the TVC holds for E G . 

In the sequel, I will use the following known facts. 

(Effros) Let X be a Polish G-space , G a Polish group . Let x E X be such 

that [x]a is nonmeager. Then [x] G is Go , and the mapping 9 --+ gx, G --+ [x ] G , is 

open. 

(Becker-Kechris) Let X and G be as above. Assume the action has a dense 

orbit and Eo ~c E G. Then there is x E X with [x ]G nonmeager. 

Lemma 3. Let G be a Polish group, and let X be a Polish G-space. H [Y]G is 

nonmeager, y EX, and x rf. [y]a, then there is V C G open such that e E V and 

Vx n [Y]G = 0. 
Proof. Since [Y]G is Go , X \ [Y]G = Un Fn, Fn closed. Put F~ = {g E G: gx E 

Fn}. Then F~ are closed, and Un F~ = G. Thus , there is no and an open set 

U of. 0 with U C F~o ' Let 9 E G be such that e E gUo Put V = gUo Then 

Vx = gUx = gUx C gFno ' and clearly gFno n [Y]G = 0, whence Vx n [Y]g = 0. 

Lemma 4 . Let G be a Polish group admitting an invariant metric, and let X be 

a Polish G-space. H [Y]G is nonmeager and [x]G is dense, x, Y E X, then for any 

nonempty open set V C G, V x n [Y ]G of. 0. 
Proof. Let 0 of. V c G be open. We show that V x n [Y]G of. 0. Since G admits 

an invariant metric, we can assume that e E V and gVg- 1 = V for any 9 E G. 

Let W be open, symmetric and such that e E W , W 3 C V, gW g-l = W for 

any 9 E G. Since Wy is open in [ylG, ")iVy has a nonempty interior , whence 

[x lG n Wy of. 0. Thus , there are h E G and hk E W with hky --+ hx . If we 

show that Vhx n [Y]G of. 0, then, since Vhx n [Y]G = hVx n [Y]G = hVx n [Y]G , 
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hVx n [Y]G =I- 0, that is , Vx n [Y]G =I- 0. Thus, \ve can assume that hx = x, t hat is, 

hkX -t x. Since [x ]G is dense, we can find gn E G such that gnx -t y. Fix n. For 

k large enough, d(gnhky,gnX ) < l /( n + I ), d a metric on X. Thus, we can find 

a subsequence (hkJ such that d(gnhkny,gnX ) < l/ (n + 1). Call this subsequence 

(hn). Since gnx -t y,gnhnY -t y. Since g -t gy is open, for n large enough we 

have gnhn E WG y. 

Now, we shm-v that VU :3 e open3NVn, m ~ I'V- Ghny C UG hmy . Put Yn = 
hny. Let e E Uo be open, symmetric, ut C U , and gUOg- 1 = Uo for all g E G. 

Since UOy is open in [Y]G, we can find 0 C X open with 0 =I- 0 n [Y]G C Uoy. 

There is g E G with gx E O. It follows that gYn -t gx , so , gYn E 0 for n ~ N 

some NEw , whence gYn E Uoy. Thus, gYn E U~gYm for n, m ~ N, so Yn E UgYm. 

It follows that 

Put 

First , note that H C G x . Indeed, if g E H , then x .- hnky = PkhnkY -t gx , so 

g E G x . Next , we show that gn E vV3 H for n large enough. Since gnhn E W"G y, 

gn E Wh~l (hnGyh~l) C W 2 Gh nY. Again put Yn = hny. Let Wi, i E w, be open 

with e E Wi, Ui>k Wk··· vVi -t e as k -t 00, and Ui Wo WI··· Wi C W. Let N be 

such that GYn C vVOGYm for n , m ~ N. Let n ~ .N. Pick n = no < nl < n2 < ... 
so that GYk C W"iGYm for k, m ~ ni. Let g E G yn o = G yn . Pick gi E Gyn" i ~ 1, so 

that gg~l E Wo and gig;':l E vV; for i ~ 1. This is possible since Gyn , C vViGYn'+l . 

It is easy to check that (g;) is Cauchy, so we can put h = limi g·i. Clearly h E H, 

and 

gh - 1 = lim gg;l = lim(gg~l )(glg2 1
) ... (gi_lg; l) E U Wo WI ... Wi C W 

" . , 

So, g E Wh C WHo Thus, GYn C WH for n ~ lV, whence gn E W 2 WH = W 3 H 

for n ~ N. 

Combining gn E W 3 H for large nand He G x , we get gn E W 3 Gx for large 

n. Since W 3 C V , there are Cn E G x such that gncn E V for large n . But then 

gncnx = gnx -+ y, so Vx n [Y ]G =I- 0, and the lemma is proved. 

i,"!ole list two corollaries to Lemmas 3 and 4. 
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Corollary 5. Let G be a Polish group admitting an invariant metric, and let 

X be a Polish G-space. If [ylG is nonmeager and [xlG is dense, x , y E X , then 

[xlG = [ylG' 

Corollary 6. Let G and X be as above. Assume all orbits are dense. Then either 

Eo l;;;c EG or there is only one orbit. 

Proof. If Eo \be EG, then there is a nonmeager orbit. Since all orbits are dense, 

this is the only orbit by Corollary 5. 

Proof of the theorem. Define the equivalence relation xFy iff [xl G [ylG' 
Then F is G8 since xFy iff tin [x lG n Vn -I- 0 {:} [ylG n Vn -I- 0 iff tin x E [VnlG {:} 
y E [VnlG for an open basis {Vn: nEw} for the topology on X. Clearly EG C F. 

If EG = F , EG is G8 and we are done. If EG -I- F , then for some x E X the 

invariant set [XlF contains at least two orbits. Since [XlF is G8 and each orbit 

contained in it is dense in it, Eo l;;;e EGI[xlF by Corollary 6; thus, Eo l;;;c EG. 

4.2. Complexity of equivalence relations induced by Polish group 

actions 

4.2.1. Introduction. As mentioned above, it was proved by R. L. Sami 

[S, Theorem 2.1l that the topological Vaught conjecture holds for Borel actions 

of abelian Polish groups. The proof, however, was different from the one in the 

locally compact case; in particular, it did not show that E§ was Borel for G Polish 

abelian. The natural question was raised by Sami (see [S, p.339J) whether E§ is 

Borel for all Borel (or, equivalently, continuous if X is a Polish space, see [BKJ) 

actions of Polish abelian groups on standard Borel spaces. vVe answer this question 

in the negative. We consider groups of the form Ho x Hi X H2 X ... where the 

H n 's are countable. Such groups are equipped with the product topology (each 

H n earring the discrete topology) which is Polish and compatible with the group 

structure. vVe fully characterize those sequences (H n) of countable abelian groups 

for which all Borel actions of Ho x Hi X H2 X . •. induce Borel equivalence relations. 

This happens precisely when all but finitely many of the H n 's are torsion and, for 

each prime p , for all but finitely many n's the p-component of Hn is of the form 

F x Z(poo )m, where F is a finite p-group, Z(pOO) is the quasicyclic p-group (i .e. , 

Z(pOC ) ~ {z E C: :In zpn = I }), and mEw. In particular, if Hn = H , nEw, 
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and H is countable abelian, then all Borel actions of H x H x H x .. . induce 

Borel equivalence relations iff H ~ EB p(Fp x Z(poot p
), where Fp is afini te abelian 

p-group, np E w, and p varies over the set of all primes. Thus, e.g ., the group 

Z x Z x Z x ... is abelian, Polish, and has a Borel action which induces non­

Borel equivalence relation. This answers Sami's question. On the other hand , 

Z(2= ) x Z(2°O ) x Z(2°O ) x ... provides an interesting example of a Polish abelian 

group which is not locally compact but whose Borel actions induce only Borel 

equivalence relations. This shows that the implicat ion "G locally compact =? E§ 
Borel" cannot be reversed. Some results for non-abelian H n 's are also obtained. 

Now, we state some definitions and est ablish not ation. By w we denote the 

set of all natural numbers {O, 1, 2, .. . }. Ordinal numbers are identified with t he 

set of their predecessors, in particular n = {O , 1, ... , n - I}, for nEw. By Z, 

Z(p), Z(p= ), P a prime, we denote the group of integers, the cyclic group with p 

elements, and the quasicyclic p-group , respectively. By e we denote the identity 

element of a group and by (X), for a subset X of a group, the subgroup generated 

by X. We write (h) for ({h}). If H is a group , EBw H stands for the direct sum of 

count ably many copies of H . A group H is called p-compact if for any decreasing 

sequence of groups Gk < Z(p) x H with 7r[Gk J = Z(p), for each k E w, we have 

7r [n kEw Gk J = Z(p) where 7r : Z(p) x H ~ Z(p) is the projection. If H is an 

abelian group and p is a prime, by the p-component of H we mean the maximal 

p-subgroup of H . 

For a sequence of sets (Hn ), nEw, we wri te 

H n = Ho x ··· x Hn- I , H<w = U Hn , and H W = Ho X HI X ... . 

nEw 

We also write AW for the product of infinitely many copies of A .. If x E H W, put 

lhx = w; if 0" E Hn , some nEw, put lhO" = n. For 0" E H <w and x E H <w U H "' , 

we write 0" * x for the concatenation of 0" and x. If x E H<w U HW and X C w , 

we write x iX for the unique element y E H <w U HW such that the domain of y 

is w, if X n lhx is infinite , and n , if X n [hx is finite and has n elements , and 

y(i) = x(the (i+1 )'th element of X). A set S c H <w is called a tree on (Hn ) if 

0" E S implies O" ln E 5 for any n < lh(O"). If S is a tree on (Hn ) and 0" E H <w, 

put 5~ = {T E H <"': 0" * T E 5}. For a tree 5 on (Hn ), Hn countable, define 

5' = {O" E 5: 3r E 50" C T, O" -I- r} . By t ransfinite induction define, for f3 E wI , 
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50 = 5 and 5 J3 = (51)' if {3 = ,+ 1, and S J3 = n/<J3 5' if (3 is limit. Put 

ht(S ) = min{{3: sJ3 = S J3+1}. For 0" E H< w, put rs(O") = min{{3 E WI : 0" (j. 5 J3 } 

if there exists {3 < WI with 0" (j. SJ3, and r s( 0" ) = WI otherwise. If there is no danger 

of confusion, we will omit the subscript in rs. A tree on (Hn ) is well-founded if 

there is no sequence 0"; E 5 , i E w, such that O"i C O"i+l and Ih(O";) -> 00 as i -> 00 . 

Now, assume that the Hn's are groups. The identity element (e, e, ... ) of HW is 

denoted by e. A tree 5 on (H n) is called a coset tree if 5 n Hn is a left coset of a 

subgroup of Hn for any n E "-', i.e., if 0"1 , 0"2 , 0"3 E 5 n Hn , then 0"10";-10"3 E S. A 

coset t ree S is called a group tree if S n H n is a subgroup of H n for any nEw. The 

notion of a group tree was introduced by i\IIakkai in [M] and rediscovered by the 

author. We say that (Hn ) admits group (coset) trees of arbitrary height iffor any 

,8 < WI, there is a group (coset) tree T on (Hn ) with ht(T) > (3. Let 5 be a coset 

tree on a sequence of groups (Hn ). Then for each n Ew there is a unique subgroup 

Gn of Hn which S n Hn is a coset of. We actually have Gn = O"-I(S n Hn) for 

any 0" E S n Hn. Define 

O'(S ) = U Gn . 

nEw 

Thus O'(S) = UnEwO"~l(S n Hn ) where O"n E S n Hn if 5 n Hn #- 0 and O"n = e 

otherwise . It is easy to see that 0'(5) is a group tree. 

4.2.2. Main results. 

Theorem 7. Let (Hn ) be a sequence of countable abelian groups. Then the 

equivalence relation induced by any Borel action of HW is Borel iff for all but 

finitely many n, Hn is torsion, and for all primes p for all but finitely many n 

the p-component of H n is of the form F x Z(poo )k, where k E wand F is a finite 

abelian p-group. 

If H is countable, abelian , and torsion , then H = E9p H p , where p ranges over . 

the set of all primes , and Hp is the p-component of H (see [Fl) . Thus we get the 

following corollary. 

Corollary 8. Let H be an abelian countable group. Then the equivalence rela­

tions induced by Borel actions of H W are Borel iff H is isomorphic to E9 p(Fp x 

Z(poo)np), where p ranges over the set of all primes, np E w, and Fp is a finite 

abelian p-group. 
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For not necessarily abelian countable groups, we have the following version of 

one implication from Theorem 7. 

Theorem 9. Let (Hn ) be a sequence of countable groups. If for each prime p, for 

all but finitely many n , Hn is p-compact, then the equivalence relations induced 

by Borel actions of HW are Borel. 

It is an open question whether the converse of Theorem 9 holds. This would 

be a natural extension of Theorem 7, since, as we show in Lemma 16, a countable 

abelian group is p-compact iff it is torsion and its p-component has the form as in 

Theorem l. 

Some of the ingredients of the proofs are: the theorem of Becker and Kechris 

[BK] on the existence of universal actions, the structure theory for countable 

abelian groups, and a construction of group trees of arbitrary height. It turns out 

that both conditions in Theorem 7 are equivalent to (Hn ) not admitting group 

trees of arbitrary height (Lemma 21). This generalizes the known results that the 

sequence (Hn ), Hn = Z for each nEw, admits group t rees of arbitrary height 

(Makkai [M, Lemma 2.6]) , and that the sequence (Hn ), Hn = EB", Z(2) for each 

n, admits group trees of arbitrary height (Shelah [M, Appendix]) . (See also [L, 

p. 979] for a proof of the lat ter result and its generalizations to groups which 

are direct sums of K. many copies of Z(2) for certain cardinals K..) The known 

proofs in the above two cases- Z and EBw Z(2)-were different from each other, 

and Makkai's construction for Z rested on Dirichlet's theorem on primes in arith­

metic progressions. vVe present a construction (Lemma 19) that encompasses both 

these cases and is purely combinatorial. 

Here is how Theorems 7 and 9 follow from the lemmas in Sections 4.2.3-

4.2.5. In Section 4.2.3, we prove that all Borel actions of H:.J , (Hn ) a sequence 

of countable groups, induce Borel equivalence relations iff (Hn ) does not admit 

well-founded coset trees of arbitrary height (Lemma 11) . In Section 4.2.4 , we show 

that (Hn) does not admit well-founded coset trees of arbitrary height iff it does 

not admit group t rees of arbitrary height (Lemma 15). Then, in Section 4.4.5 , we 

show that if for each prime p, for all but finitely many n, Hn is p-compact , then 

(Hn ) does not admit group trees of arbitrary height (Lemma 17). This proves 

Theorem 9. Next, we prove that if (Hn ) is a sequence of abelian groups , then 
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(Hn) does not admit group trees of arbitrary height iff for all but finitely many n, 

Hn is torsion and, for all primes p, for all but finitely many n, the p-component 

of H n has the form as in Theorem 7 (Lemma 21). This proves Theorem 7. 

4.2.3. Group actions and coset trees. The following construction is from 

[BK]. Let G be a Polish group. Consider F( G) the space of all closed subsets of G 

with the Effros Borel structure, i.e., the Borel structure generated by sets of the 

form {F E F( G) : F n V -=f. 0} for V c G open. Put UG = F( G)"', and define the 

following G-action on UG: (g, (Fn)) -+ (gFn). 

Theorem. (Becker-Kechris [BK]) UG with the above G-action 1S a universal 

Borel G space, i.e. , if X is a standard Borel space on which G acts by Borel 

automorphisms, then there is a Borel injection 11 : X -+ UG such that rr(gx) = 
g1l(x) for 9 E G and x EX. 

Let X be a standard Borel G-space. Let 11 : X -+ UG be a Borel injection 

whose existence is guaranteed by the above theorem. Then, for x, y EX, we have 

This shows that the following corollary to the theorem above is true. 

Lemma 10. Let G be a Polish group. The relation induced by any Borel G-action 

is Borel iff the relation induced by the G-action on UG is Borel. 

Lemma 11. Let (H n) be a sequence of countable groups. The equivalence relation 

induced by any Borel H"'-action is Borel iff(Hn ) does not admit well-founded coset 

trees of arbitrary height. 

Proof. Let T be the family of all trees on (Hn ). The set T is a Polish space with 

the topology generated by sets of the form {T E T : a E T } and {T E T: a tf. T} 

for a E H<"'. 

( ¢=) By Lemma 10, it is enough to prove that the H'" -action on UH'" induces 

a Borel relation. Let Tp be the family of all pruned trees on (Hn ), i.e., trees with 

no finite branches , with the topology inherited from T. This topology makes Tp 
a Polish space. The mapping ¢ : Tp -+ F(H"") given by ¢(T) = {x E HW : "In E 
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W x ln E T} is a Borel isomorphism. For x E HW and T E 7" define 

xT = {O" E H <w: 0" E xlm(T n H m) where m = Ih (O" )}. 

Then easily xT E 7". Also ,p(xT ) = x,p(T). Thus it is enough to check that the 

following action of H W on ~w induces a Borel equivalence relation: (x, (Tn )) -. 

(xTn ), for x E HW , (Tn ) E ~w. 

N ow define 1> : 7" x 7" -. T by 

<p (T, S) = {O" E H<w: Tn H m = O"(S n H m) where m = Ih(O" )}. 

Easily 1>(T , S ) is a coset tree. Define the mapping W : ~w x ~w -. T by 

W( (Tn), (Sn )) = n <p (Tn, Sn ). 
nEw 

Note that the intersection of a family of coset trees is a coset tree . Thus, for any 

(Tn ), (Sn ) E ~w , W((Tn ),(Sn)) is a coset tree. Also note that 

Indeed, if 0"0 C 0"1 C ... , Ih(O"i) -. 00 , and 0"; E W((Tn ),(Sn)), then xSn = Tn 

for each nEw where x = U i EwO"i . If xSn = Tn for all nEw and some x E HW , 

then x li E W((Tn), (Sn )) and {x li: i E w} witnesses that W( (Tn), (Sn )) is not 

well-founded. Clearly W is a Borel mapping. Thus, if we assume thai there is 

;3 E WI such that any well-founded coset tree on (H n) has height < ;3, we get 

T'" (7" x 7,, ) \ Ed", = w-1 ({T E T: T well-founded and ht(T ) < ;3}). 

T '" 
But {T E T : T well-founded and ht(T ) < ;3} is Borel, whence Ed", is Borel. 

('*) Assume (Hn ) admits well-founded coset trees of arbitrary height . Define ' 

the following continuous action of HW on T : 

(x, T ) -. xT = {O" E H<w: 0" E xlm(T n H m) where m = Ih (O" )}. 

Define a Borel function <PI : TxT -. T by 
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Now, if EiIw is Borel, <1>1 [(T X T) \ EiIw 1 is ~i· Also <1>1 [(T X T) \ EiIw 1 c 
{T E T : T is well-founded}. Since {T E T : T is \vell-founded} is a IIi set and 

T --+ ht(T ) is a IIi -norm on it, by the boundedness principal, there is (3 E WI such 

that, for any T,S E T, if (T,S) rf. EiIw, then ht(<1>I (T,S)) < {3. But note that if 

T is a coset tree, then <1>1 (T, O' (T )) = T. Thus, for any well-founded coset tree T 

on (Hn), ht(T) = ht(<1>(T, O'(T))) < j3, a contradiction. 

4.2.4. Coset and group trees. The next several lemmas lead to a proof that 

the existence of well-founded coset trees of arbitrary height is equivalent to the 

existence of group trees of arbitrary height (Lemma 15). vVe will use a few times 

the easy fact that {r(a) : a E T} :J ht(T) for any tree T on (Hn ). 

Lemma 12 . Let S be a coset tree. Then: 

(i) 0'( S') = 0'( S)' ; 
(ii) if S{ n Hk i= 0 for each k E w, then o'(S{) = o'(S ){. 

Proof. To show (i), let a E Hn. Then a E o'(S') implies that there are 1'1,1'2 E S' 

such that a = 1'1-11'2' Now we can find g, hE Hn with 1'1 * g, 1'2 * hE S. But then 

a * (g -lh ) = h * g)-lh * h) E o'(S). Thus a E o'(S)'. On the other hand, if 

a E 0'( S)" then there are g E Hn and 1'1 , 1'2 E S with 1'1-11'2 = a * g. But then 

a = (1'1In)-I(1'2 In) and 1'11n ,1'2 1n E S' , whence a E o' (S' ). 

Notice that if Sn :J Sn+1 , nEw, are coset trees, and, for some k E w, 

nnEjSn n Hk ) i= 0, then O'(nnEW Sn) n Hk = nnE'" O'(Sn) n Hk. To see this, pick 

a E nnE'" Sn n Hk. Then 

nEw nEw nE"'-' nEw 

Using (i) and the above observation, we get (ii) by transfinite induction. 

Lemma 13. Let T be a group tree. Let an E Hn, nEw, be such that 

(an+l ln )- lan E T ,B for some ,8 E WI' Put S = UnEw an(T n Hn). Then S is 

a coset tree, and for any ~ ~ (3 we have Se = UnE"" an(T{ n Hn). 

Proof. For ~ ~ (3, define 

SW = U an(T{ n Hn). 
nEw 
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In particular, 5(0 ) = S. First note that each SW is a coset t ree. Indeed, if m < n, 

then (O'nlm )-lO'm E T~. This follows easily by induction from our assumptions 

that it holds for n = m + 1 and t he fact that T~ is a group tree. To check that 

S(~) is a tree, let T E T{ n Hn. Then, for m < n, (O'nT) lm = (O'n lm)(Tlm) = 

O'm (O'~l(O' lm)( T l m)) E SW n Hm since (O'~l(O'nlm ) ) ( Tlm) E T~ n Hm. Thus SW 

is a tree, and because of the way it was defined, it is a coset tree. It is obvious 

that a(S(~)) = T{ and that O'n E SW for any n E "'-', ~ :; (3. 

Now, we show by induction that, for ~ :; (3, a(S~) = T~ and O'n E S{ for each 

n E "'-'. Both statements are true for ~ = O. If ~ is limit and O'n E S( for all ( < ( 
then clearly O'n E S~. By Lemma 12(ii), we also have a(S~) = a (S)~ = T~. If ~ 

is a succesor, say ~ = ( + 1, then, by Lemma 12(i) and the induction hypothesis, 

we get a(S~) = a(S()' = (T ()' = T~. Since O'n+l E 5' , O'n+l ln E S( Since 

(O'n+lln)-lO'n E TP C T~, we have O'n = (O'n+l ln)((O'n+lln)-lO'n) E S( 

Thus a(SW) = TE = a(S~ ) , i.e., for each nEw, SW n Hn and S{ n Hn are 

left cosets of the same subgroup of Hn. Also (SW n Hn) n (S~ n Hn) =f. 0, as O'n 

belongs to the intersection. Thus we get SW n Hn = S~ n Hn for each nEw, i.e., 

S(O = Sf.. 

Lemma 14. Let T be a group tree with ht(T) > w. Then there exist O'n E Hn 

such that: 

(i) (O'n+l ln)-lO'n E T; 

(ii) UnE"" 0' neT n Hn) is a well-founded tree of height < w ·2. 

Proof. We start with the following observation. Let K be a countable group and 

let K n, nEw, be a strictly decreasing sequence of subgroups of K. Then there 

exist gn E K , nEw, such that g;lgn+l E Kn and nnEw gnKn = 0. To see that 

this is true , enumerate K = {kn : nEw} and pick gn E K recursively so that 

gn+lKn+l C gnKn and kn '/. gn+lKn+l' 

Now, assume that T is a group tree and ht(T) > w. Let 0'0 be such that 

r(O'o) =W. Put ko = lh(O'o)+l. Then {r(O'): 0' E TnHko}nw is cofinalinw. 

Let Pn : Hn ~ Hko , n > ko, denote the projection on the first ko coordinates. 

Since {O' E Hko : r( 0') ~ m} = Pko+m [T n Hko+m ], there is an increasing sequence 

ko < mo < ml < m2 < ... such that Pm n +l [T n Hmn+l ] =f. Pm n [T n Hmn ] and, 

obviously, Pmn+l [T n Hmn+l ] C Pm n [T n Hmn]. Pick Tn E Hk o, nEw, as in the 
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preceding paragraph for ]{n = Pmn [T n Hmn ], i.e., 

T;:~lTn E Pm J T n Hm nj and n Tn (PmJT n Hmn]) = 0. 
nEw 

vVe recursively const ruct 0' n E H n , nE w, so that 

First, find Pn E Hmn with Pn lko = Tn and (Pn+ 1Im n)-lPn E T. For Po take any 

extension of TO in Hmo. Now assume pn has been constructed. Then T;:~l ( Pn l ko ) = 

T;:~lTn E Pm n[TnHmnj. Let 0' E TnHm n be such that T;:~~ ( Pnlko ) = O' iko. Note 

that (PnO'-l )I ko = T n+1 , and let Pn+1 be an arbi trary extension of PnO'-l in Hm n+l . 

Now, put O'n = Pl ln if 0 ~ n ~ mo and I = 0 or if ml-1 < n ~ ml and I > O. 

We have O'm n Iko = Pn lko = Tn. Also (O'n+1In)-10'n E T , i.e ., (i), is easy to 

see. Put S = UnEw O'n (T n H n). To check (ii) , let 0' E S n H ko. Pick the unique 

k E w such that 0' E Tk (Pmk [T n Hmk ]) \ Tk+1 (Pmk+ l [T n Hmk+ l ]). Then for any 

0" E S with 0" ::l 0', we have lhO" < mk+1 . Otherwise, 0" E 0' neT n Hn ) for some 

n:::: mk+1 , whence 0' = Pn (O" ) E Tn (Pn [TnHn ]), a contradiction. Thus rs(O' ) < w 

for any 0' E S n Hko. It follows that S is well-founded and ht( S) ~ w + ko. 

Lemma 15. Let (Hn) be a sequence of countable groups. Then the following 

conditions are equivalent: 

(i) (Hn ) admits well-founded coset trees of arbitrary height; 

(ii) (Hn ) admits coset trees of arbitrary height; 

(iii) (Hn) admits group trees of arbitrary height. 

Proof. (i)=>(ii) is obvious . 

(ii)=> (iii). Note that if SeT are coset trees and S =i T , then a(S ) C aCT ) 

and a ( S ) =i aCT). To see this, pick k E w such that S n H k =i T n H k and 

0' E S n Hk . Then a(S) n H k = O'-l (S n H k) =i O' - l (T n H k) = aCT ) n H k. 

Now, let S be a given coset t ree . Define, = min{min{~ : 3k S{ n H k = 
0}, ht(S )}. Then, by Lemma 12(ii) and the above observat ion, we have a(S )e = 

a (S{) =i a(S< ) = a(S)' for ~ < ( <" whence ht(a(S)) :::: ,. But it is easy to see 

that ht(S ) < , +w. Thus (ii)=>(iii) is proved. 

(iii)=> (i). Let T be a group tree of height> f3 + w. We show that there is a 

well-founded coset tree of height:::: ,8 . To this end consider T/3 . Then ht(T /3) > ","'. 
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Apply Lemma 14 to T ,B to find O'n E H n, nEw, as in Lemma 14(i) and (ii), 

Put S = UnEw O'n (T n Hn ). T hen, by Lemma 13, S is a coset t ree and S f3 = 
UnEw O' n(T f3 n H n) -=f. 0. By Lemma 14(ii ), S f3+ w ,2 = (UnEw O' n(TB n H n) )"',Z = 0. 
Thus S is a well-founded tree with ht( S) ~ (3. 

4.2.5. Group trees and algebraic properties of groups. 

Lemma 16. Let H be a countable group, If H is not torsion, it is not p-compact 

for any prime p, 

Proof. Clearly, if a subgroup of H is not p-compact, neither is H . Thus it 

is enough to show that Z is not p-compact, This is witnessed by the following 

sequence of subgroups of Z(p) x Z: 

Gk ={ (m(p+1/modp,m(p+l )k): mEZ}, kEw . 

Lemma 17. Let (Hn ) be a sequence of countable groups, If (Hn ) admits group 

trees of arbitrary height, then there exist a prime p and infinitely many nEw 

such that Hn is not p-compact , 

Proof. If for infinitely many n E 1.<.' Hn is not t orsion, we are done by Lemma 

16. Also, if (Hn) admits group trees of arbitrary height , so does (Hn )n?N for any 

NEw. This follows from Lemma 15 as soon as we notice that if S is a coset tree 

on (Hn ) and O' E H N, then Su is a coset tree on (Hn )n?Jv, and that , given (3 < WI, 

if ht( S ) is large enough, then ht(Su) > (3 for some O' E H N. Thus, we can assume 

that H n is torsion for each n, and that there exists a group tree on (H n) of height 

> w2
• 

Let T be a group tree on (Hn ). Let p be a prime. Assume O' E Tn H n, 

r( O' ) < WI, and the order of O' is a power of p. Let (3 < r( O' ), Then there is T ~ O' 

such that r( T) = (3 and the order of T is a power of p. To see this, let T' ~ O', 

T' -=f. O' and r( T' ) ~ (3. Let lEw be such that p does not divide it and the order of 

Ir' is a power of p. Since the order of O' is a power of p, there is l' E W such that 

I'IO' = O'. Put Tl = l' IT' . Note that Tl ~ O' and Tl -=f. O' , Since, for any, E WI and 

m Ew , {T E Tn Hm : reT) ~ ,} is a subgroup of Hm (this follows easily from 

the facts that {T E T n Hm : r( T) ~ ,} = T I n Hm and that T I is a group tree), 

r(rl) = r(I'IT' ) ~ reT' ) ~ (3. If r(Td = ,8, we are done . If r(Td > (3 , we repeat 

the above construction and get T2 ~ Tl, TZ -=f. Tl, whose order is a power of p and 
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1'(72) ? (3 . Again, if 'r( 72) = (3, we are done; otherwise we repeat the construction. 

Note that we cannot do it indefinitely, since then we would produce a sequence 

a C 71 C 72 C .. " 7 m =f. 7 m+l, whence 1'( a) = WI, a contradiction. Thus we must 

obtain 7m :J a such that 1'(7m ) = (3 and the order of rm is a power of p. 

N ext, notice that if rET n Hn , 1'(7) is a limit, and the order of r is a power 

of p, p a prime, then H n is not p-compact. Indeed, let I'k, k E w, be a strictly 

increasing sequence of ordinals tending to l' ( r ). Put G k = {a E T n H n+ 1 
: l' ( a) ? 

I'd. Let 1l' : Hn+l -+ Hn be the projection. Notice that (G k) is a decreasing 

sequence of subgroups of H n +1 and 7 E nkEW 1l'[G k J \ 7l"[nkEW GkJ. Let C = (7) . 
Then C < Hn and C ~ lZ(pm) for some mEw. Put G~ = Gk n (C x Hn ). Let 

¢ : C -+ lZ(p) be a surjective homomorphism. Let iP = ¢ x id : C x H n -+ lZ(p) x H n' 

Since iP is finite-to-l , iP [nkEw G~ l = nkEw iP[G~l. Note also that 1l" 0 iP = ¢ 0 1l' 
where 1l" : lZ(p) x H n -+ lZ(p) is the projection. Thus 

kEw kEw 

But 7l"[nkEwG~l =f. C whence 1l'[nkEwG~1 C kE1'(¢). Thus ¢HnkEwG~]) = {O} 
and finally 

1l" [n iP[G~Jl = {O}. 
kEw 

On the other hand, 

kEw kE"" 

Thus the decreasing sequence of groups iP[G~ ], k E w, witnesses that Hn is not 

p-compact. 

Now, let T be a group tree on (Hn) with ht(T) > w2
• There exists a prime p 

and a E T such that the order of a is a power of p and w 2 
:::::: 1'( a) < WI' To show 

this, first find rET with 1'(r) = w2. The group G = (r) is cyclic and finite. T hus 

there are al,a2, ... ,am E T n Hn , n = lh(r), which commute with each other, 

their orders are powers of distinct primes and r = ao··· am. Note that for each 

0:::::: i :::::: m there is k E w with kT = ai. Thus, since {a E Tn Hn : 1' (a) ? w 2
} is a 

subgroup of Hn , r(ai) ? w2 for all 0 :::::: i :::::: m. Also {a E Tn Hn : 1'(a) ? wd is 

a subgroup of Hn, thus there is i such that r( aj) < WI, and we are done. 
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Now, fix the prime p and (J ETas above. Let NEw . We show that there are 

more than N numbers n such that Hn is not p-compact. Indeed, we can recursively 

produce TO , Tl: .. . , TN E T so that (J C TO and r( TO) = w Z
, Ti C Ti+l, the order of 

each Ti is a power of p, and r(Ti) = W· (N + 1 - i), 1 ::; i ::; JV. But then if we put 

ni = lh(Ti), we get no < nl < ... < nN and Hn; is not p-compact since "-'z and 

W· (N + 1 - i), 1::; i ::; N, are limit. 

In the following lemma, we essentially find all abelian countable groups which 

are p-compact. 

Lemma 18. Let H be an abelian countable group. Let p be a prime. Then the 

following conditions are equivalent: 

(i) H is p-compact j 

(ii) H is torsion, and the p-component of H is of the form F x Z(poo)n where F 

is a finite p-group and nEw; 

(iii) H is torsion , and there is no surjective homomorphism mapping a subgroup 

of H onto EB", Z(p). 

Proof. (ii)=>(i). Let Gk < Z(p) x H , k E W, Gk+ l < Gk, and 1I"[Gk ] = Z(p ) where 

11" : Z(p) x H --+ Z(p) is the projection. Now, H = Hp X H' and Gk = (Gk )p x G~ 

where Hp and (Gk )p are the p-components of Hand Gk, respectively, and the 

order of any element of H' or G~ is not divisible by p [F, Thm. 8.4]. Clearly we 

have (Gk )p < Z(p) x Hp. We say that a group fulfils the minimum condition if 

each strictly decreasing sequence of subgroups if finite . Since, as one can easily see, 

Z(p=) and finite groups fulfil the minimum condition, and the property offulfilling 

the minimum condition is preserved under taking fini te products, Z(p ) x Hp fulfils 

the minimum condition. Thus there is ko E w such that (Gk )p = (Gka)p for k ~ ko. 

But then 

(i)=> (iii). By Lemma 16, H is torsion. Note that if Fl can be mapped by a 

homomorphism onto Fz, F1 , F2 groups, and Fz is not p-compact, then Fl is not 

p-compact either. Indeed, let ¢ : Fl --+ F2 be a surjective homomorphism, and let 

the sequence (Gk ) of subgroups of Z(p) x F2 witness that F2 is not p-compact, 
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then 

G~ = {(m,g) E Z(p) X F 1 : (m,9(g)) E Gd 

witness that Fl is not p-compact. Thus to prove that H is not p-compact, assuming 

(iii) fails, it is enough to show that EBw Z(p) is not p-compact. Let {ei : iE w} 

be an independent set generating EBw Z(p). Let us fix a sequence of sets X k C w, 

k E w , such that Xk+l C X k and nkEw X k = 0. Define Gk < Z(p) X EB",. Z(p) by 

Gk = ({(m,mei): i E Xk,m E Z(p)}). 

Then (G k ) witnesses that EB,"" Z(p) is not p-compact. 

(iii )=Hii ). Assume (iii). Let Hp the p-component of H. Let H~ = nnE'" nHp 

be its first Ulm group. If Hp j H~ is infinite, then Hp j H~ ~ EBmEw Z(pnm) for a 

sequence nm E w \ {O} [F , Thm. 17.2 and remarks on p. 155]. Thus Hpj H; , 

and hence Hp, can be mapped homomorphicaly onto EBw Z(p). Therefore Hp j H; 

is finite. Put F = Hpj H~. But then H; is divisible [F, Lemma 37.2] and Hp ~ 

F X H; [F, Thm. 21.2]. Now, by [F, Thm. 23.1]' either H; ~ Z(poc)n, for some 

nEw, and we are done, or H; ~ EB", Z(pOC). But in the latter case H; , and hence 

H , contains an isomorphic copy of EBw Z(p), a contradiction. 

Remark. (In this remark the notation and terminology follow [F] .) One can give 

other characterizations of p-compactness among countable torsion abelian groups. 

For example p-compactness of H is equivalent to the following conditions: 

(iv) the p-component of H fulfils the minimum condition; 

(v) for any finite p-group F < H the p-rank of H jF is finite. 

Obviously (ii)=?(iv), and (iv)=?(i) as in the proof of (ii)=?(i). Now, assu=ng 

(iv) and noticing that a homomorphic image of a group fulfilling the minimum 

condition fulfils the minimum condition, we get that the p-component of H j F, 

F < H finite, fulfils the minimum condition. This obviously implies that its 

p-rank is finite. Thus (iv)=?(v). To see (v)=?(ii), let Hp be the p-component 

of H. Let T be its Ulm type. First note that if T = / + 1, for some / , then 

HJjH; is finite. Otherwise, 'rp(HJjH;) = 00, and since Hp ~ HpjH; X H; , 

we get 'rp(Hp) = 00. Now, we claim, that T is neither a limit ordinal nor a 

succesor of a limit ordinal. Otherwise, using the above observation there is a 

sequence of groups Gn < Hp j H; , nEw , such that Gn+1 < Gn , Gn+1 =I- Gn and 

47 



nnEw Gn is finite. Put G = nnE,,-' Gn. Then we can pick recursively gk E Hpj H; 

so that pgk E G and for each k there is an n with gk E Gn and gi tJ. Gn for 

i < k. Then clearly the image of {gk : k E w} under the natural homomorphism 

HpjH; -> (HpjH;)jG is infinite independent. Again, since Hp ~ HpjH; x H; , 

Tp (HjG' ) = Tp(HpjG' ) = 00 for some finite p-group G'. Next, notice that T is not 

of the form, + 2 because in this case H;+l j H; is finite and Tp(Hl j H;+l) = 00 

whence Tp ((Hi j H;)j(H;+l j Hn) = 00. And as before Tp(H jG') = 00 for some 

fini te p-group G'. Thus T ::; 1, and if T = 1, then Hpj H; is finite. If T = 0, Hp 

is divisible, and sincerp(Hp) < 00, there is nEw with Hp ~ Z(poc)n. If T = 1, 

put F = HpjH;. Then Hp ~ F x H;, F finite, H; divisible. Since Tp(H;) < 00, 

there is nEw with H; ~ Z(p= t. 

Now, we make a technical definition useful in proving the existence of group 

trees of arbitrary height. An abelian countable group H is called managable if there 

exist two decreasing sequences of subgroups (G~), (G;,) with nnEw G~ = {e}, for 

i = 0,1 , and a homomorphism ¢: H x H -> H such that ¢[G~ x G;, ] = H for 

any nEw. 

Lemma 19. Let H be a countable abelian group. If H is managable, then (Hn) , 

where Hn = H for each nEw, admits group trees of arbitrary height. 

Proof. Fix two decreasing sequences of subgroups (G~) and (G;,) and a homo­

morphism ¢ as in the definition of managability. For each ordinal 13 < Wl, we 

produce a group tree Tf3 such that: 

- if ,8 =, + 1, then TJ n H = Hand Vh E H (h i= e => (Ta)h is well-founded); 

- if 13 is limit, then V, < ;3 :In E w (TJ n H2 :J G~ x G;,) and Va E H2 (a i= 
(e, e) => (Tf3)(7 is well-founded). 

Then clearly Wl > TTp (h) ~ ;3 for any h E H \ {e} in the first case, and for any 

~f < 13, Wl > TTp (a) ~ , for some a E H2 \ {( e, e)} in the latter. Thus ht(Tf3) ~ ;3 

for any ;3 E Wl· 

. Put To = {e'} and Tl = H U {e'}. Assume T, has been defined for all, < ;3. 

If ;3 = ~(+ 1 and ~f is a successor, put 

Tf3 = {0} u H U {a(O) * a: a E T"lha ~ I}. 
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If {3 = I + 1 and I is a limit, put 

Tf3 = the tree generated by { ~(o-( O),o-(l)) * 0-: 0- E T" lho- 2 2}. 

Checking that the T{3 's work is straightforward. 0l"ow, assume {3 is a limit ordinal. 

Note that it is enough to construct two group trees So and Sl such that there 

is an increasing sequence I n -+ {3 with Sd'n n H :J G~ and s;n n H :J G~ and 

Vh E H (h oj; e =} (So h and (Sl h are well-founded). If So and Sl are defined, let 

T.!3 = {o- E H <w : 0- 1{ 2k: k E w} E So and 0- 1{2k + 1 : k E w} E Sd. 

We will define a group tree S = So as above; the construction of Sl is anal­

ogous. Put G~ = . Gn. Fix an increasing sequence of successors In -+ {3, nEw. 

Find pairwise disjoint infinite sets X n, nEw, with UnEw Xn = 1.<.,'. Let 

R n = {0} U {h * 0-: h E Gn,o-lXn E T,n , o- I(w \ Xn) C e, and 

if lho- > minXn , then h = (o- IXn )(O)}. 

Note t hat each Rn is a group tree. Define 

S= U(Hkn URn} . 
kEw nEw 

Easily S is a group t ree. To see S ,n n H :J Gn , just not ice that , for each h E Gn , 

rT"n (h) 2 In, and there is a monotone I-to-l mapping 1/;: (T-Inh -+ S defined by 

1'(0- ) = h*T, where T E H <w is maximal such that TIXn = h*o- and TI(w\Xn ) C e. 
To show that (S h is well-founded for h E H \ {e}, fix h E H with h oj; e, and 

assume towards a cont radiction that h * x is an infinite branch through S for some 

x E HW. Find nEw with h f/. Gn. Let k E w be such that k n Xi oj; 0 for 

i E n. Put T = x lk and ni = minXi for i E n. If T(niD ) =1= e for some io E n, 

notice that XI XiD is an infinite branch through T'iD with (XI X iJ(O) oj; e which 

contradicts the inductive assumption. Thus we can assume that T(ni ) = e for all 

i E n . Then, since the Ri s are group trees , h * T = 0- . I1 iEn(h i * Ti ) for some 

0- E Gn x Hk with o-(ni ) = e and some hi * Ti E Ri n Hk+1. By the definit ion of 

Ri , hi = Ti (ni ) = T(n;) = e. Thus h = 0-(0 ) E Gn , a contradiction. 

Lemma 20. Let (Hn) be a sequence of countable groups. Then (Hn ) admits 

group trees of arbitrary height if either of the following conditions holds. 
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(i) There exists a sequence no < nl < ... such that (H nk) admits group trees of 

arbitrary height. 

(ii) For each n, Gn is a homomorphic image of a subgroup of Hn , and (G n ) admits 

group trees of arbitrary height. 

Proof. (i) Let T be a group tree on (H n .). Define T a group tree on (Hn ) as 

follows 

a E T iff a-IX E T and a l(w \ X) = fl(w \ X) 

where X = {nk: k E w}. Then ht(T) 2 ht(T). 

(ii) Fix H~ < Hn and surjective homomorphisms ¢;n : H~ -+ Gn. Let T be a 

group tree on (G n ) . Define T a group tree on (Hn ) as follows 

a E T iff Vk < lha (a(k) E H~ and (¢;o(a(O)),.·. ,¢;k(a-(k))) E T). 

Then ht(T) 2 ht(T). 

Lemma 21. Let (Hn) be a sequence of countable abelian groups. Then (Hn) 

does not admit group trees of arbitrary height iff Hn is torsion for all but finitely 

many n, and for each prime p, for all but finitely many n the p-component of Hn 

is of the form F X Z(poo)k, where F is a finite p-group, k E w. 

Proof. The implication <¢= follows from Lemmas 8 and 9. To see =? , assume the 

conclusion does not hold. Then either there exist infinitely many n such that H n 

contains an isomorphic copy of Z or, by Lemma 18 , there exist a prime p and 

infinitely many n such that a subgroup of Hn can be mapped homomorphically 

onto EEl", Z(p). Thus, by Lemma 20, it is enough to show that (Hn ), where Hn = Z 
for each n or Hn = EEl", Z(p) for each n, admits group trees of arbitrary height. 

By Lemma 19, it suffices to prove that Z and EEl", Z(p) are managable. For 

Z, put G~ = (2n), G~ = (3 n). Define ¢; : Z X Z -+ Z by ¢;(m, I) = m + l. For 

EEl",Z(p), fix an infinite independent set {ei: i E w} generating EEl",Z(p). Find 

a decreasing sequence of nonempty sets Xn C w, nEw, such that nnEwXn = 0. 
Put G~ = ({e;: i E Xn}) and G~ = {e}. Fix a function j : w -+ w so that, for 

any n , mEw, j-l(m)nXn oj=. 0. Define ¢;' : EEl", Z(p) -+ EEl", Z(p) to be the unique 

homomorphism extending ¢' (ei) = e f( i)' Let ¢; : EEl", Z(p) x EEl", Z(p) -+ EEl", Z(p) 

be the composition of the projection to the first coordinate with ¢' . 
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CHAPTER 5 

ON HAAR NULL SETS 

Let G be a Polish abelian group. Christensen [C] calls a universally mea­

surable set A C G Haar null if there exists a probability Borel measure J-L on G 

such that J-L(g + A) = 0 for all g E G. It was proved in [C] that in case G is 

locally compact a universally measurable set is Haar null iff it is of Haar measure 

zero. Also, the union of a countable family of Haar null sets is Haar null, i.e., 

Haar null sets constitute a (I-ideal. One of the first questions asked by Chris­

tensen in [C] was whether any family of mutually disjoint, universally measurable 

sets which are not Haar null is countable, as is the case when the group is Polish 

locally compact. This was answered in the negative by Dougherty [D] who con­

structed such uncountable families, for example, in all infinite dimensional Banach 

spaces. (Haar null sets are called "shy" in [D] following the terminology of [HSY].) 

This gives rise to the question whether the existence of such uncountable families 

characterizes non-locally-compact, Polish, abelian groups. vVe prove that this is 

indeed the case, i.e., a Polish, abelian group is not locally compact iff there exists 

an uncountable family of universally measurable or , equivalently, closed, pairwise 

disjoint sets which are not Haar null. We also consider the problem of approx­

imating sets modulo Haar null sets. vVe show that in each non-locally-compact, 

Polish, abelian group there exists an analytic set A such that A6B is not Haar 

null for any co-analytic set B; but each analytic Haar null set is contained in a 

Borel Haar null set. (This last statement answers a question of Dougherty [D , 

p.86].) Additionally, we prove that for any a < WI there exists A E £~ such that 

A6B is not Haar null for any B E II~. 

The definition of Haar null sets was extended by Tops¢e and Hoffmann­

J¢rgensen [TH-J] and Mycielski to all Polish groups. A universally measurable 

set A eGis said to be Haar null if there exists a Borel probability measure J-L 

such that J-L(gAh) = 0 for all g, h E G. Haar null sets are still closed under count­

able unions and coincide with Haar measure zero sets in locally compact groups. 

We prove all our results for Polish groups which admit an invariant metric. (A 
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metric d on G is invariant if d(gl hg2 , gl kg2 ) = d( h , k ) for any gl , g2 , h , kEG. ) 

This class of groups contains properly all Polish , abelian groups, since each metric 

group G admits a left-invariant metric which, obviously, is invariant when G is 

abelian. Any invariant metric on a Polish group is automatically complete. 

By d( A) we denote the closure of A. N stands for the set of all natural 

numbers (and 0 E N) and 21'1 for the countable infinite product of {a, 1} with the 

product topology. By Nn or 2n, for n E N, we denote the set of all sequences of 

elements of N or {a , 1} , respectively, of length n indexed by {a, ... , n - 1}, and by 

NN the set of all infinite sequences of elements of N. Put also N<:"l = UnE:"l Nn. If a 

is a sequence, by a ln , for some n E N, we denote the sequence (a (a), ... ,a( n -1 )); 

in particular, a la = 0. If a E Nn, mE N, a * m denotes the unique T E Nn+1 such 

that Tin = a and T(n) = m. 

First , we prove the following purely topological theorem. 

Theorem 1. Assume G is a Polish , non-locally-compact group admitting an 

invariant metric. Then there exists a closed set Fe G and a continuous function 

rjI: F -t 21'1 such that for any x E 2N and any compact set KeG there is 9 E G 

with gK C rjI - 1(X). 

Proof. A family A of subsets of G is called discrete if each 9 E G has an open 

neighborhood intersecting at most one member of A. Let d be an invariant metric 

on G; d is complete. 

Claim. Let U C G be open and nonempty. There exist gn E U and open 

Un, n E N, such that Un C Un+1 , Un Un = G, and the family {gnUn : n E N} is 

discrete. 

Fix an increasing sequence of finite sets (Q n) such that Un Q n is dense in G. 

Find 8 > a and an infinite set D C U whose points are at distance at least 8 from 

each other. For any finite sets A, BeG there is 9 E D such that d(gA , B) ~ 8/2. · 

If not, then for any 9 E D there are a E A and b E B with d(ga , b) < 8/2. But then 

there exist distinct g, g' E D with the same pair a, b; hence d(g, g') = d(ga , g' a) ~ 

d(ga, b) + d( b, g' a) < 8, contradicting d(g, g') ~ 8. Thus , we can inductively choose 

gn E D so that d(gnQn , Ui<ngiQi) ~ 8/2. Let W = {g E G: d(e,g) < 8/5}. 

Put Un = Qn W . Then Un Un = (Un Qn)W = G since Un Qn is dense, and, by 

invariance of d, {gnUn : n E N} is discrete, which finishes the proof of the claim. 
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For a E N<l'< , define gl7 E G and V17 C G open so that: 

(i) V0 = G; 

(ii ) if m < n, then V17 • m C V17on ; 

(iii ) Urn V17 *m = G; 

(iv) {gl7 . m V17 • m : mEN} is discrete; 

(v) if a E Nn, n:?: 1, then d(gl7.m, e) < 2- 17 (n -l ) for each mEN. 

Put g0 = e and V0 = G. For a E Nn
, let U = {g: d(g, e) < 2- 17(n-l)} if n :?: 1 

and U = G if n = O. Find grn E U and Um C G open with the properties as in the 

Claim. Put gl7*m = gm and V17 • m = Urn. 

Let lV17 = nk:'On gl7 lk V17 lk for a E Nn. Put 

F = n u cl(WI7)' 
n I7EMn 

Notice that for each n the family {W17 : a E Nn} is discrete, whence 

U cl(WI7) = cl( U W(7 ); 

therefore, F is closed. For x E 2M, put 

F x =nu{cl(W17 ): aENn and a (i)iseven iffx(i) =l fori<n} . 
n 

Then Fx o n FXl = 0 if Xo # Xl' Indeed, assume xo(n) = 0 and xl(n ) = 1 for 

some n . Since {W17 : a E Nn+l} is discrete, cl(W17 ) n cl(vV17 ,) = 0 if a, a f E Nn+l, 

a # a f . Thus 

U { cl(W17 ): a E Nn + l and a (n) is even} 

n U{cl(W17 ): a E Nn +l and a(n) is odd} = 0. 

But 

Fx o C U {cl(W17 ) : a E Nn +l and a(n) is odd}, 

while 
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Note also that UXE2l'i Fx = F. Now define ¢; : F ~ 2N by letting ¢; (g) be equal to 

the unique x with 9 E Fx. To prove that ¢; is continuous, it is enough to see that 

preimages of basic clopen subsets of 2N are closed. But for T E 2n , n E N, we have 

¢>-1({xE2N: x ln=T}) 

= F n U{cl(W,, ) : (j E Wand (j(i) even iff T(i) = 1 for i < n} . 

And again, since {W,,: (j E Nn} is discrete, 

U{cl(W,,) : (j E W and (j(i ) is even iff T(i) = 1 for i < n} 

is closed. 

Let KeG be compact. We want to show that for any x E 2N there is 

9 E G with gK C Fr. For simplicity of notation we will only find 9 E G such that 

gK C F. It will be clear from the proof that the same argument applies to each 

Fx in place of F. We will produce a E NN such that for each n E N 

(a) galnga ln-l ... g0 K C \-1;' ln+l; 

(b) I:i~n+2 d(ga li ' e) < d(ga lng"ln-l . .. g0 K , G \ V" ln+l)' 

Then by (b), Iliger li exists , since d is complete. By (a), (b), and the invariance 

of d , (I1; 9" li)K C g"'ln+l V" in+l for each n. Thus, since V0 = G , (TIi gerl i)K C 

nn gain Va in C F, and we are done. 

Assume a ln has been defined. By (ii) and (iii), there is 5 > 0 such that for 

all m large enough 

Also, by (v), given E > 0 for m large enough we have d(g", IMm*kl e) < E for all k . 

Thus, we can pick an m so that (*) holds, and for each k 

with the convention min 0 = 00. Put aln + 1 = aln * m. This finishes the proof of 

the theorem. 

Corollary 2. Let G be a Polish group admitting an invariant metric. Then 

each family of universally measurable or, equivalently, closed, pairwise disjoint 

sets which are not Haar null is countable iff G is locally compact. 
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Proof. ({=) If G is locally compact , Haar null sets coincide with sets of Haar 

measure zero , see [C] and [TH-J]. Since G is Polish , Haar measure is a-finite. 

(::::} ) Assume G is not locally compact. Since for any Borel probability measure 

on G there is a compact set of positive measure, it follows that the sets ¢>-I(X), 

x E 21'1 , from the Theorem are not Haar null. 

Proposition 3. Let G be a Polish group. 

(i) If A eGis analytic and Haar null, then there exists a Borel set BeG which 

is Haar null and A. C B. 

(ii) Assume that G is not locally compact and admits an invariant metric. Then 

there exists an analytic set A such that for no co-analytic set B ALB is Haar null. 

For any Q < WI there exists A E }J~ such that for no B E II~ ALB is Haar null. 

Proof. If Z C X x Y, then, as usual, Zx = {y E Y: (x, y) E Z} for x EX. 

(i) Let A be analytic and Haar null. Let f-L be a probability Borel measure 

witnessing it. Then the family of sets 

is II~ on }Ji, i.e., for any }Ji set P C Y x G, Y a Polish space, the set {y E 

Y: Py E <I>} is II~. To check this, let P C Y x G be }Ji , Y Polish. Define 
- - - 1 PeG x G x Y x G by (gl , gZ , y,g ) E P iff 9 E glPygZ' Then P E }Jl' It follows 

from [K , Theorem 29.26] that ((gl,g2,Y) : f-L(P(9',92 'Y» ) = O} is IIi , whence so is 

Now, since A E <I> , by (the dual form of) the First Reflection Theorem, see [K, 

Theorem 35.10 and the remarks following it], there exists a Borel set B with B ::J A. 

and B E <I> , so B is as required. 

(ii) Let F and <p: F --+ 2N be as in the Theorem. The argument below 

is essentially the same as Balcerzak's argument in the proof of Lemma 2.1 from 
o 1'1 [B]. Let A = co-analytic sets or A = IIo: for some Q < WI' Let U C 21 X G be 

universal for AIG, i.e., U E A and {B C G: B E A} = {Ux : x E 2N} . Put 

A = (G\F)UUXE2",(¢>-I(x)\Ux ) ' Note that A = (G\F)U{g E F : (¢>( g) , g) rf- U} 

whence, since r:P is continuous and F is closed, G \ A E A. Also , for any x E 21'1, 

we have ALUx::J ¢> -I (X). Thus , ALB is not Haar null for any B E A. 
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Remark. Proposition (i) can also be deduced from a theorem of Dellacherie. If f-L 

witnesses that an analytic set A is Haar null , put ji (X ) = sup { f-L* (gXh) : g, h E 

G}, where X c G and f-L* is the outer measure induced by f-L. Then it is easy to 

check that ji is what is called in [De] a caliber. Thus, since ji (A) = 0, by [De, 

Theorem 2.4], there exists a Borel set B :J A with ji (B ) = 0, i.e. , f-L (gBh) = 0 for 

any g, hE G. 
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CHAPTER 6 

DECOMPOSING BOREL SETS AND FUNCTIONS AND THE 

STRUCTURE OF BAIRE CLASS 1 FUNCTIONS 

6.1. Introduction 

All spaces considered are metric separable and are denoted usually by the 

letters X , Y , or Z. If a metric separable space is addit ionally complete, we call 

it Polish; if it is a continuous image of WW or , equivalently, of a Polish space, it is 

called Souslin. 

In the firs t part of the paper our main concern is to determine how difficult 

it is to represent a Borel set as a union of simpler Borel sets or the graph of a 

Borel function as a union of the graphs of simpler Borel functions . Using Effective 

Descriptive Set Theory, in particular Louveau's theorem, we show that if A c X , 

X Polish, is Borel, then A E E~ or there is a continuous injection <p : WW --+ A 

such that <p - 1 (B ) is meager for any B C A which is E~ . This gives a new proof 

of J. Stern's result that if a Borel set A is the union of < cov(M ) sets in ~~ , 

then A is itself E~. (cov(M) is the smallest cardinality of a family of meager sets 

covering R) vVe prove similar results for functions . Put, for f: X --+ Y and a 

family of functions Q, 

dec(J , Q) = min{IFI : UF= X, VZ E F f lZ E Q}. 

Let Bcr stand for the family of functions on the a 's level of the Baire hierarchy. 

We show, e.g., that given f: X --+ Y Borel, X Polish, either dec(J , Bcr) ~ w or 

there is a continuous injection <p : w'" --+ X such that <;b-l(A) is meager for any 

A C X with f lA E Bcr; thus dec(J , Bcr) ~ cov(M ). These results imply that ' 

the decomposition coefficients defined in [CMPS] and proved there to be > ware 

actually ~ cov(M). 

In the second part , we apply some of the ideas of the first part to study Baire 

class 1 functions. The structure of Baire class 1 functions was recently extensively 

studied in a number of papers , see e.g. [KL], [R]. We prove two dichotomy results 

of the following form: a Baire class 1 function "decomposes" into count ably many 
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continuous functions or "cont ains" a very complicated funct ion. Two kinds of 

decomposit ions will be considered: decomposition into continuous funct ions with 

closed domains (considered first by J ayne and Rogers [JRJ) and into continuous 

funct ions with arbit rary domains (firs t considered by Lusin); thus, a function 

f: X ~ Y will be regarded as simple in the first sense if X = Un X n , nEw, 

each Xn is closed and f lX n is continuous , and it will be simple in the latter sense 

if X = Un X n) nEw, and f lX n is continuous for each n. To define cont ainment 

between functions , put for g: Xl ~ Yl and f: X2 ~ Y2 

g !; f iff:3q,: Xl ~ X 2 , 1j; : g[X l ] ~ Y2 embeddings with 1j; 0 g = f 0 q,. 

Now, we identify the functions which will be cont ained in each complicated with 

respect to a decomposition Baire class 1 function. For the decomposition into 

continuous functions with closed domains the functions are modeled on the well­

known Lebesgue's example of an increasing function on [O,lJ which is continuous 

exact ly at all irrational points; for the decomposition into continuous functions 

with arbit rary domains the function is the so-called Pawlikowski 's function defined 

in [CMPS]. Here are the precise definitions . 

Definition of Lebesgue 's functions Land L l . Let Q be the set of all points in 

2"" which are eventually equal to 1. For each x E Q fix a number ax > 0 so that 

1) if x , y E Q, x =I y , then ax =I a y; 

2) ax < 1/ 3n o , where no is the smallest natural number such that x (n ) = 1 for 

n 2: no· 

Let H : 2"" ~ [0,1] be the well-known embedding H (x) = L::':'=o x(n )/3n +1
. Let 

L , L l : 2"" ~ IR be defined by 

and 

L(x) = {H(X ), 
H(x ) + ax , 

if x rf Q; 
if x E Q; 

if x rf Q; 
if x E Q. 

Definition of Pawlikowski 's function P. Let w + 1 have the natural, order 

topology. Let P: (w + 1)"" ~ WW be defined by P(T/ ) = " T/ E (w + 1)"" , where for 

n Ew 

,(n) = {~(n) + 1, 
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Finally, we can formulate the results . Let I: X --+ Y be Baire class 1, 

X Souslin. T hen either X = Un X n, nEw, Xn closed and I IX n continuous , 

or L (;;; I or Ll (;;; I; also, ei ther X = Un X n, nEw, and I IX n continuous, or 

P (;;; I. The first part of the above sentence sharpens a result of Jayne and Rogers 

from [JR]. An interesting feature of the second part is that its proof uses Effective 

Desriptive Set Theory even though its statement mentions only functions on the 

first level of Baire hierarchy. 

Further, it turns out that L , L1 , and P are as complicated as any other Baire 

class 1 function with respect to the decomposition into continuous funct ions with 

closed domains, in case of Land L1 , and with arbitrary domains, in case of P ; 

thus, the above dichotomy results are in a sense best possible. Put 

decc(J) = min{ IF I : U F = X , t/Z E F Z is closed and l iZ is continuous} 

and 

dec(J) = min{ IF I : U F = X, t/Z E F l iZ is continuous}, 

i.e. , dec(J) = dec(J, Bo ). Note that if 9 (;;; I, then clearly decc(g) ~ decc(J) and 

dec(g) ~ dec(J). By a result of Cichon and Morayne [CM], 

sup{ decc(J): I: X --+ Y , X Souslin, I Baire class 1} ~ d , 

where d is the smallest cardinality of a dominating subset of w"' . vVe prove that 

decc( L ) = decc( L1 ) = d. Thus indeed L and Ll are as complicated as any other 

Baire class 1 function as far as decomposing into continuous functions with closed 

domains is concerned, i.e., decc(L) = decc(Ld ~ decc(J) for any Baire class 1 

function f. vVe prove an analogous result for P. Put 

dec = sup{ dec(J): I: X --+ Y, X Souslin, I Baire class 1}. 

We show that dec(P ) = dec. (This answers two questions of Steprans [St, Q.7.1 

andQ.7.2].) Thus combinigthe above results, we get thatforany I: X --+ YBaire 

class 1, X Polish, we have decc(J) ~ w or decc(J) = d, and dec(J) ~ w or dec(J ) = 
dec. The equality dec(P) = dec also gives , via the work of Steprans, an interesing 

characterization of dec as the covering coefficient of a certain combinatorially 

defined (T-ideal on w"'. (It is known that cov(M) ~ dec ~ d , [CMPS], and that 
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it is consistent that cov(M ) < dec , Steprans [St], and dec < d , Shelah-Steprans 

[SS].) 

In order to prove dec(P) = dec , we define and study complete semicontin­

uous functions. A lower semicontinuous (lsc) function F: X -+ [0, 1] is called 

lsc complete if each lsc function j: 2'" -+ [0 , 1] can be obtained as F 0 <p for 

some continuous <p: 2'" -+ X. Using a Wadge-type game, we give an internal 

characterization of lsc complete functions as those lsc functions F : X -+ [0,1] 

for which there is a I1~ set D C X such that 0 E F [D] and for any open set U , 

F[U n D] is of the form {y E [0,1]: y ~ Yo} or {y E [0,1]: y > Yo} for some 

Yo E [0 , 1]. Also, we prove the existence of "minimal" lsc complete functions. We 

give a new proof of the inequality dec ~ cov(A1) , first established in [CMPS], by 

showing that dec(f ) ~ cov( M) for any lsc complete j. 

If X is a compact, metric space, let K (X) denote the space of all closed 

subsets of X with the Hausdorff metric. A particular attention has been devoted 

to the fact that the restriction of the Lebesgue measure to K([O,I]) provides a 

natural example of a complicated usc function [JM, vMP]. We apply some of the 

results mentioned above to Borel measures on compact metric spaces X viewed as 

usc functions on K(X). Using the characterization of complete lsc functions, we 

show that any Borel, probability, nonatomic measure on a compact metric space is 

usc complete. In fact , we prove a more general version of this result for capacities. 

This generalizes van Mill and Pol 's result for the Lebesgue measure [vMP] . Also, 

we use the theorem that dec = dec(P) to characterize probability, Borel measures 

f.1 on a compact metric space X for which dec(f.1) = dec , e.g., if X does not have 

isolat~d points , then dec(f.1) = dec unless f.1 is a finite , convex combination of Dirac 

measures . This generalizes the result of Jackson and Mauldin that dec(A) > W , 

where A is the Lebesgue measure [JM]. 

6.2. Decomposing Borel sets and functions into simpler Borel sets 

and functions 

By B a , Cl' < WI, we denote the Cl'th class of the Baire hierarchy of real func­

tions, i.e., for j: X -+ Y, j E B" if for any U c Y open j-I(U) is :E~+" in X. 

In particular, Bo is the class of continuous functions. (Note that the enumeration 

of the B ,,'s starts with Cl' = 0 while that of the :E~ 's with Cl' = 1.) Also define 

j: X -+ !R to be in L" (V", respectively) if j-l ((r, 00)) (f-l (( -00, r)), re-
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(1) 

spect ively) is ~~+'" in X for all r E JR. Thus Lo, U o are the classes of lower and 

upper semi continuous functions , respectively. By a classical theorem of Lebesgue 

and Hausdorff a real function is in B p' iff it is a pointwise limit of a sequence of 

functions from Uo:<P' B "" and it is in L,8 (U p', respectively) iff it is a poinbvise 

limi t of an inCieasing (decreasing , respect ively ) sequence of functions from Be. 

Let cov( j\;-j) be the smallest cardinality of a family of meager sets covering JR. Re­

call that the Gandy-Harrington topology on a recursively presented Polish space 

is the topology generated by all 2:t sets and that it is strong Choquet . (See [HKLJ 

for some background on the Gandy-Harrington topology.) We will refer to the 

Gandy-Harrington topology as the G-H topology and sets open with respect to it 

will be called G-H open. 

We say that a set D separates A. and B if A. C D and D n B = 0. We will 

use the following theorem due to Louveau (see [Ll]): 

Let Ao, A1 be 2:i sets such that for some D E II~ , 1 ::; C\: < wfK, Ao C D 

and A1 n D = 0 modulo sets meager in the Gandy-Harrington topology. Then Ao 

and A1 can be separated by a set from II~ ( 6D. 

Let A be a family of subsets of a Polish space X. Let C eX, and let C\: < W1' 

We say that 

- A is II~ on e iff VA E A 3D E II~ A n C cDC A; 

- A is relatively II~ on C iff VA E A 3D E II~ An C c D n C c A (i.e. , 

An C = D n e). 

Lemma 2.1. Let A 1, A2 be countable families of Borel subsets of a Polish space 

X , and let 1 < (3 < W1. Then precisely one of the following two possibilities holds. 

(i) X = Un Cn and, for each nEw, A lar A2 is II~ (relatively II~ , respectively) 

on en for some C\: < (3; 

(ii) There is a continuous injection ¢ : WW --. U A1 n U A2 such that if Alar A 2 . 

is II~ (relatively II~ , respectively) on C for some C\: < /3, then ¢ -l(C) is meager. 

Proof. We will prove the statements for "II~ ~n C" and "relatively II~ on C" 

simultaneously. Let A be a countable family of Borel subsets of X. Fix A C X x w 

such that 

A = {{x EX: (x , n ) E A} : nEw}. 
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(2) 

Since the argument below relativizes , we can assume that X is a recursively pre­

sented Polish space, /3 < wf K, and A E 6i. Note that for C c X 

A is Il~ on C iff (C x w) n A and (X x w) \ A can be separated by a Il~ set, 

and also 

A is relatively Il~ on C iff 

(C x w) n A and (C x w) \ A can be separated by a Il~ set. 

Let .p : P(X) -+ P (X) denote either the identity function, or the constant 

function .p(C) = X for all C E P (X). Put 

pcP = {C eX: C E :B~ and 

(C x w) n A and (.p(C) x w) \ A can be separated by a set in U Il~ }. 
cx<.8 

Claim 1. U pcP is IIi. 

If C E pcP , then , by Louveau 's theorem, there is D E II~(6D, for some Cl' < /3, 
which separates the :Bi sets (C x w) n A and (.p( C) x w) \ A. Put 

C' = {x EX: 'v'n (x, n) E (D n A) u ((Xx w) \ (D U A)) }. 

Then C C C', C' E :Bi, and, as is easy to see, D separates (C' x w) n A and 

(.p(C') x w) \ A, i.e., C' E pcP. Thus 

UPcP = {x EX : 3D E U II~(6i) 'v'n (x,n) E (D n .4) U ((X x w) \ (D U A))} 
cx<fJ 

which is IIi . 
Below in this proof all topological notions- meager , G 5, etc.-refer to the 

Gandy-Harrington topology. 

Claim 2. Let C C X be such that (C x w) n A and (.p(C) x w) \ A can be 

separated by a set from Ucx<fi Il~ . Then there are Cn E pcP , nEw, such that 

C \ Un Cn is meager. 

There exist Cn E :Bi, nEw, such that Cn \ C does not contain a nonmeager set 

with the Baire property, for each n, and C \ Un Cn is meager. Let D E Ucx<fJ Il~ 
separate (C x w) n A and (.p(C) x w) \ A. Note that (Cn x w) n A c D and 
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(( if> ( Cn ) x w) \ A) n D = 0 modulo meager sets. Thus, by Louveau's theorem, 

for each n E ,,-' there is a set in UQ<,BII~(~n which separates (Cn x w) n A and 

( if> (Cn ) x w) \ A. Therefore Cn E p<p. 

Let A.I , A2 and pI<P, p 2<P be defined as in (1) and (2) for A = Al and A = Az, 

respectively. If U pI<P U U p 2<P ~ U Al n U Az , then actually U pI<P U U p 2<P = X , as 

X \ UAi = X \ {x EX: :In (x, n) E Ad E Pi<P , i = 1,2, whence (i) holds . If not , 

put 

EI = UAI n UA2 \ UPI<P U Upt 

By Claim 1, EI is a nonempty I:i set. If C c X is such that (C x w) n Ai and 

(if> ( C) x w) \ Ai can be separated by a II~ set , for some a < f3, then , by Claim 2, 

CnEI is meager. Note that ({x} xW) n Ai and (if>( {x}) XW)\Ai can be separated by 

a II~ set for any x EX ; thus EI does not have isolated points . Let {Bn: nEw} 

be a countable basis of EI . Put E z = EI \ Un (Bn \ Bn ). Then E2 is a dense 

Go in E I , whence it is strong Choquet (see [HKL, Proposition 2.1 (iii )]) . Since 

it is clearly regular and has countable basis, it is Polish by Choquet 's theorem. 

Moreover, since Ez does not have isolated points, we can find a dense Go subset 

of E2 homeomorphic to w"'. This finishes the proof of the lemma. 

Theorem 2.2. Let X be a Polish space, and let 1 < f3 < WI . Let A C X be 

Borel. Then either A E ~~ , or there is a continuous injection ¢: WW ---+ A such 

that for any C C A, C E ~~ , ¢-I (C) is meager in WW. 

Proof. Let Al = A2 = {A.}. If X = Un Cn and, for each nEw, Al is II~ on Cn 

for some a < /3, then A is ~~ . Otherwise, from Lemma 2.1 , we get a continuous 

injection ¢ as required. 

I was informed by A. Miller that the following corollary was proved by Stern 

[Sr , Theorem 3.2J. Stern 's proof is different from the one presented here and uses 

Steel's forcing. Also, [BD , Theorem 2] contains a similar but weaker result. The 

corollary immediately follows from Theorem 2.2 if a > 1 and is trivial if a = 1. 

Corollary 2.3. Let A be a Borel set in a Polish space and let 1 ::::: /3 < WI. Assume 

A is the union of < cov(M) sets in ~~ . Then A E ~~. 

Theorem 2.4. Let X be a Polish space, and let 1 ::::: f3 < WI. Let (I be one of the 
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following 

Let f: X -+ JR be a Borel function. Then either dec(f , 9 ) :::; w, or there is a 

continuous injection rp : WW -+ X such that if f lC E 9 , then rp -I ( C) is meager, so 

dec(f, 9) 2::: cov(M). 

Proof. Put Al = A2 = {f-I (JR \ Vn) : nEw} , where {Vn : nEw} is a countable 

t opological basis of R. Note, that A l is relatively II~+Q on C c X iff flC E B Q. 
Thus, an application of Lemma 2.1 similar to the one in Theorem 2.2 gives the 

conclusion for 9 = Ua<.a BQ. To obtain it for 9 = UQ<.a LQ, 9 = UQ<.a DQ, 

and 9 = Ua<.a LQ U Do apply a similar argument respectively to the families 

Al = A2 = {f-I(( -00, q]): q E IQ}, Al = A2 = {f-I( [q, 00)): q E IQ}, and 

Al = {f-I(( -00, q]): q E IQ}, A2 = {f-I([q, 00)): q E IQ}. 

It was proved in [CMPS, Corollary 3.3] that dec(f , Ua<.a La U Do) > w, for 

some f E B a and also [CMPS , Theorem 5.7] that dec(f, Lo U Do) 2::: cov(M) 

for some f E B I. Laczkovich showed that for any j3 < WI there is f E La with 

dec(f, B .a) > w (see [CM] for a proof); and by [CMPS, Theorem 5.6] there is 

f E Lo with dec(f, Bo) 2::: cov(M) . The next corollary improves on these results. 

Let me firs t ment ion, however, that StepnIns established in [St] the consistency 

with ZFC of the existence of f E Lo such that dec(f , Bo ) > cov(M). 

Corollary 2.5. Let X be Polish uncountable. 

(i) For each 1 :::; ,8 < WI there exists f: X -+ JR, f E B .a, with dec(f , UQ<,8 La U 

Da) 2::: cov(M). 

(ii) For each j3 < WI there exists f: X -+ JR, f E L.a , such that dec(f , Ba ) 2::: 

cov(M). 

Proof. By [CMPS , Corollary 3.3]' there exists f: X -+ R, f E B p such that 

dec(f , Ua<,8 La U Da) > w. Thus (i) follows from Theorem 2.4. To prove (ii), 

use the fact that there is f: X -+ JR, f E L,8 such that dec(f , B .a) > w [CM, 

Corollary 3.4] and apply Theorem 2.4. 

Remarks. 1. By the proof of Theorem 4.8 from [CMPS], for j3 < WI and any 
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f E B p+l there is 9 E La such that dec(g, B a) ~ dec(f, La U Up ). Thus (ii ) in 

our Corollary 2.5 actually follows from (i). 

2. I do not know whether the method employed here can be used to show 

that the more subtle decomposition coefficients studied by Morayne in [M] are also 

~ cov(A1). Perhaps the refined version of Louveau 's theorem from [L2] can be of 

some help. 

6.3. Decomposing Baire class 1 functions into continuous functions 

with closed domains 

In [JR, Theorem 1] J ayne and Rogers proved that for any function f: X ~ Y, 

X Souslin, either there are closed sets X n eX , nEw , such that Un Xn = X and 

f lX n is continuous, or there is an F" set A C Y such that f-l(A) is not F" . The 

next result-the first dichotomy theorem for Baire class 1 functions-sharpens 

Jayne and Rogers's theorem and, perhaps, provides an explanation why it is true. 

(For a derivation of [JR, Theorem 1] from Theorem 3.1 see the remark following 

the proof of Theorem 3.1. ) 

Theorem 3.1. Let f: X ~ Y be Baire class 1, X Souslin. Then precisely one 

of the following holds. 

(i) There are closed sets Xn C X , nEw, such that UnXn = X and f lX n is 

continuous. 

(ii) L I;;; f or Ll I;;; f· 

We will need a few auxiliary notions. For a sequence of sets Ak eX, k E w, 

and x.E X, we write Ak ~ x if each Ak is nonempty and for any € > 0 Ak c B (x, €) 
for k large enough. A function f: X ~ Y is strongly discontinuous at x E X 

if there exist a sequence of open sets Vk C X and an open set U C Y such that 

Vk ~ x, f(x) E U and J[Vk ] n u = 0. A point x E X is f-isolated if there is an 

open set U C Y such that f- 1 (U) = {x}. 

First , we give characterizations of L and L 1 . 

Lemma 3.2. Let g: 2'" ~ Y. Assume each x E Q is g-isolated, 9 is continuous 

at each x E 2'" \ Q, and given € > 0 osc(g, x) < € for all but finitely many points 

in Q. 

(i) H gl(2'" \ Q) is an embedding, then 1/;0 : L [2W] ~ Y given by 1/;0 (L (x)) = g(x) 
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is a well-defined embedding, and l/Jo 0 L = g. 

(ii) Ifg l(2W \ Q) is constant, then 1/;1 : II [2"'] ---. Y given by l/Jl( Ll (X)) = g(x) is 

a well-defined embedding, and 1/;1 0 I I = g. 

Proof. (i) Since 9 1(2"' \ Q) is I-to-l and each x E Q is g-isolated, 9 is I- to-l. Also L 

is I-to-l, thus 1/;0 is well-defined and I-to-l. Let L(xn) ---. L (x ) and L(xn) =1= L(x ). 

Clearly x E 2'" \ Q and Xn ---. x. Since x is a continuity point of g, g(x n) ---. g(x). 

Thus , 1/;oCL(xn)) ----t 1/;o(L(x )); whence 1/;0 is continuous. Assume g(xn) ----t g(x). 

Since each x E Q is g-isolated , x E 2'"' \ Q. Since osc(g, Xn ) ----t 0, we can find 

Zn E 2'" \ Q such that d(zn ,xn) ----t 0 and d(g(zn ), g(Xn)) ----t O. Thus g(Zn ) ----t g(x ). 

Since g12'"' \ Q is an embedding, Zn ----t x , whence Xn ----t x . Thus L(xn) ----t L(x ), 

i.e., 1/;ol( g(xn)) ----t 1/; - l(g(X) ); whence 1/; is an embedding. 

(ii) If Ll(x ) = Ll( y), then X, y E 2'" \ Q or x = y, so g(x ) = g(y ). Thus , 

l/Jl is well-defined. Nate that if Ll (x ) =1= Ll (y) , then x =1= y and x E Q or y E 

Q. Since each element of Q is g-isolat ed, g(x ) =1= g(y). Thus 1/;1 is I- to-l. Let 

Ll (xn) ----t Ll (x ) and Ll (Xn) =1= Ll (X). Then clearly Xn E Q and x E 2'" \ Q . Since 

osc(g, Xn ) ----t 0, there are Zn E 2'" \ Q with d(g ( Xn ), g( Zn )) ----t O. But g( Zn) = g( X). 

Thus g(Xn ) ----t g(x ), so l/J (L1(xn)) ----t 1/;(L1(X )) , So 1/; is continuous. Since L1[2"'] 

is compact , l/J is an embedding. 

Lemma 3.3. Let f : X ----t Y. Assume the sets of all continuity and of all 

discontinuity points of f are both dense. For E > 0 let S, be the set of all strong 

discontinuity points at which the osci1ation of f is < E. Then for any 0 =1= U c X 

open f lU n S f] is infinite. 

Proof. Let S be the set of all strong discontinuity points of f. Note that if there 

is a sequence Xn ----t x, Xn are continuity points of f and f (xn) f+ f (x ), then xES. 

To see this , find first a subsequence (x nk ) of (xn ) and an open set V C Y such that ' 

f (x ) E V and f(x nk) ~ V . Since each Xnk is a continuity point, we can find open 

sets Wk 3 Xnk and an open set V' C V such that f ( x ) E VI and J[WkJ n VI = 0. 
By making WI;; small in diameter, we ensure that Wk ----t X. 

Now, we show that S is dense. Let 0 =1= U c X be open. Let x E U be a 

discontinuity point of f . Let Xn E U and V C Y open be such that Xn ----t x , 

f (x) E V , and f(xn ) ~ V. Let Yk ' n , k E w, be continuity points of f such that 
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Yk E U and Yk -; Xn. If for some n f ey!: ) -1+ f (xn) , then Xn E S. If for all n 

f (Yk ) -; f (x n), t hen we can choose a "diagonal" sequence Yk
n 

so that yL -; x 

and f (y!:J -1+ f (x) , so xES. In any case, S n U -I- 0. 
Let 0 -I- U c X be open. \Ve construct by induction a sequence x n E S n U 

such that f (xn) -I- f(x m ) if n -I- m . Let Xo E S n U. Since Xo E S, there is 

o -I- Vo c U \~ith f(xo ) tf. f [Vo]. Let Xl E S n Vo. Find 0 -I- VI C Va open so 

that f (xd tf. fWd. Let X2 E S n VI. Continuing this procedure, we obtain a 

sequence (Xn) as required. Thus , for any 0 -I- U C X open j[S n UJ is infinite . 

Since Sf = Sn {x EX : osc(f,x) < t} and {x EX: osc(f,x) < t} is dense, as it 

contains all cont inuity points of f , and obviously open, we also have that j[ Sf n UJ 

is infinite. 

Lemma 3.4. Let f: X -; Y , X Polish, be Baire class 1. Assume that the set of 

all discontinuity points of f is dense. Then there is a compact perfect set K eX 

and a countable set D C K such that 

(i) D is dense in K; 

(ii) each xED is f IK-isolated; 

(iii) given t > 0 oscU IK , x) < t for all but finitely many points in D . 

Proof. Fix 1> : w -; W such that ¢( n) ~ n and Vn3°O k n = ¢( k) . We construct 

sequences Fn C X closed and qn E X so that 

1) F n +1 C Fn; 

2) {qk: k ~ n} C Fn; 

3) Vx E Fn3k ~ n d(x, qk ) ~ l /(n + 1); 

4) d(qn+l' q¢>(n) ) ~ l /(n + 1); 

5) qn is flFn-isolated; 

6) osc(f IFn ' qn) < 1/( n + 1); 

7) int( F n) is dense in Fn. 

We will put K = nn Fn and D = {qn: nEw}. K is clearly closed and by 3) 

totally bounded, whence compact . By 2), D c K , and by 3) D is dense in K. 

By 4), as Vn3°Ok n = ¢(k), D is dense-in-itself; thus K is perfect. Since K C Fn , 

each qn is f lK-isolated by 5), and osc(fIK, qn) < l /(n + 1) by 6) . 

Since f is Baire class 1, continuity points of f are dense in X ; thus, we can 

apply Lemma 3.3. Let qo E S1' There is V C Y open and a sequence of open 
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sets Vk C X such that Vk -+ qo , Vk C B (qo , 1), f (qo ) E V , and J[Vk] n V = 0. 

Put Fo = {qo} U Uk V k. Assume Fn and qk , k ~ n , has been defined . Let 

o f. U C B (q<!>( n) , l /(n + 2)) n Fn be open. (This is possible by 7).) By Lemma 

3.3 , find Po, ... ,Pn+l E un Sl /( n+l ) so that f (pi ) f. f (pj) if i f. j. Let Wi C Y be 

open such that f (pi) Eo W·i and W i n Wj = 0 if if. j . For each k ~ n there is at 

most one i ~ n + 1 such that f- 1 ("Wi) is comeager in W n Fn for some open W :3 qk. 

Thus, by the pigeonhole principle , there is io ~ n + 1 such that for each k ~ n 

X \ f- 1(W io) is not meager in any neighborhood of qk in Fn. But X \ f - I( Wi o) is 

Frr , so using 7), we can find V! C (X \ f-I(W io)) n Fn, nE w, open and such that 

V,! C B (qk, l/ (n + 2)), V,! -+ qk. By the choice of the pi s and by making Wio 

smaller if neccessary, we can find Vm C B (pio, l /(n + 2)) n (X \ f- l(WiJ) n Fn 

open with V m -+ Pi o' Put qn+l = Pi o and 

F;"+l={qk: k~n+l}U U U V~ U UVm. 
k<n m m 

All the requirements 1)-7) are easy to check. 

The following lemma is certainly well-known. 

Lemma 3.5. Let f: w'" -+ Y be continuous. Then there is a closed, non­

O"-bounded set HI C w'" such that f lHl is constant, or there exists a closed, 

non-O"-bounded set H2 C WW such that f lH2 is an embedding. 

Proof. Case l. 3U C WW open, nonempty and such that flU] is finite. 

Then, since f is continuous, there is 0 f. V C U open and such that flV IS 

constant. Put HI = V' for some open nonempty V' with V' C V . 

Case 2. VU C WW open, nonempty, J[U ] is infinite. 

Define recursively 0". E w<'-", s E w<"-' , so that 

1) set =? 0". C O"t and s.L t =? O" • .L O"t ; 

2) U [N rr •• J : nEw} is a discrete family ; 

3) diam(f[Nrr.]) ~ l/(lh(s) + 1); 

4) {O" s*n(l) : nEw} is infinite, where I = lh( 0".). 

Assume 0". is defined. Let I = lh(O".) . Since for each pEw J[Nrr •• p ] is infinite, 

we can find a sequence Xn E N rr. , nEw, such that xn , (l ) f. xn, (l ) and f(xn,} f. 
f (xn, ) if nl f. n2· We can assume that {J (xn ) : nEw } is a discrete set. 
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Now usmg continuity of f , we easily find O" .. n, nEw, so that Xn E Nrr ,.n ' 

diam(f[N" ,.J ) ::; 1/(1 + 2), Ih (O"son ) > I, and U[N" ,.J : nEw} is discrete. 

Put H2 = {x E w'''; : :lac s xllh(l7 s ) = I7s }. 

Proof of Theorem 3.1. Let F be the family of all closed sets Fe X such that 

flF is continuous. It follows from [S, Theorem 1] that either X can be covered by 

count ably many members of F , i.e., we get (i), or there is X' C X which is Polish 

in the relative topology and X' cannot be covered by count ably many sets from 

:F.Thus, we can assume that X is Polish and that (i) fails. 

By a transfinite derivation process , we produce an ordinal CI! < WI and a 

descending transfinite sequence of closed sets F~ , ~ < CI! , so that 

1) fl (n ,),<{ F')' \ F~) is continuous for all ~ < CI!; 

2) the set of discontinuity points of flF is dense in F , where F = n~<a F~. 
Case 1. F = 0 

Then since n"«~ F')' \ F~ is Frr , we can easily find countably many closd sets 

X n, nEw, so that Un Xn = X and f lX n is cont inuous which contradicts our 

assumption. 

Case 2. F-I0 

Let KeF and Dc K be as in Lemma 3.4. (We apply it to f lF.) We can assume 

that X = K . Since continuity points of J constitute a dense Go and no point in 

D is a cont inuity point of J, by Hurewicz's theorem, we can find an embedding 

<PI : 2'" -+ K so that x E Q '* <PI (x ) E D and x rf- Q '* <PI (x) is a continuity point 

of f. Consider 9 = f 0 <PI 1(2'" \ Q); 9 is continuous. We identify 2'" \ Q with w"'. 
Then He w'" is non-l7-bounded iff there is no Go set G such that G n H = 0 and 

Q C G. Let Hew'" be closed, non-l7-bouned such that either glH is constant 

or glH is an embedding (Lemma 3.5). Again by Hurewicz 's theorem, there is an 

embedding <P2 : 2'" -+ 2'" such that x E Q '* <P2(X) E Q and x rf- Q '* <P2(X) E H. 

Put <P = ,pI 0 <P2. Then clearly 

a) x E Q,* x is f 0 4>-isolated; 

b) x rf- Q '* x is a continuity point of f 0 4>; 

c) given € > 0 osc(f 0 <p , x) < € for all but finitely many x E Q. 

We now have two subcases. 

Subcase 1. f 0 4>1( 2'" \ Q) is constant . 

Subcase 2. f 0 <p 1(2'" \ Q) is an embedding. 
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An application of Lemma 3.2 in each of these subcases finishes the proof. 

Remark. To derive [JR, Theorem 1] from Theorem 3.1 combine the following 

three obvious facts: (1) if f is not Baire class 1, then there is an open, so F17 , set 

A. C Y with f-1(A. ) not F17 ; (2) if 9 ~ f, g: Xl -t Y1 , and there is an FI7 set 

Be Y1 v.rith g-l(B) not F 17 , then there is an FI7 set A. C Y with f-1(A.) not F 17 ; 

(3) L-1({Z:;'=o x(n )/3n+1 : x E 2W }) and L~l ( {O}) are not F17 • 

The first part of the following proposition is due to Cichon and Morayne. We 

include its proof here for the sake of completenss. It was also known to Morayne 

that there is a Baire class 1 function f with decc(f) = d . 

Proposition 3.6. (i) [eM] Let f: X -t Y be Baire class 1, X Souslin. Then 

decc(f) :5 d. 

(ii) decc(L1 ) = decc (L) = d. 

Proof. (i)[CM] Let 7r: X x Y -t X be the projection. The graph of f is 

Souslin, so there is !jJ: w'" -t f c X x Y continuous and onto. For any x E w"' , 

Kx = {y E WW: Vn y(n):5 x(n)} is compact, whence so is !jJ [Kx] . Thus .p[K x] is a 

graph of a continuous function defined on 7r [.p[Kxll which is also compact whence 

closed in X. Also , clearly X = UxED 7r[¢[Kxll for any dominating set D C WW. 

(ii) The inequality :5 follows from (i). To see ~, note that if LIP is continuous, 

F C 2'" closed, then each point in Q n F is isolated in F. Thus F \ Q is still closed 

in 2w
, whence it is compact . Thus if U F = 2'" and for any F E F F is closed and 

LIF is continuous, then U{F \ Q: FE F} = 2'" \ Q and each F \ Q is compact. 

Since 2'" \ Q is homeomorphic to WW and any compact subset of w'" is bounded, 

;ve get IFI ~ d. The proof for L1 is similar. 

Corollary 3.7. Let f : X -t Y be Baire class 1, X Souslin . Then decc(f) :5 w 

or decc(f) = d. 

Proof. If (i) of Theorem 3.1 holds, then decc(f) :5 w. If (ii) holds , then decc(f) ~ 

decc (L ) or decc(f) ~ decc(L1); thus decc(f) = d by Proposition 3.6 . 

6.4. Decomposing Baire class 1 functions into continuous functions 
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with arbitrary domains 

In this section, we prove the second dichotomy theorem for Baire class 1 

functions . 

Theorem 4.1. Let f: X -> Y be Baire class 1, X Souslin. Then either there are 

Xn C X , nEw, such that Un Xn = X and flX n are continuous (i.e., dec(J) :::; w), 

or P ~ f. 

Most of the proof of Theorem 4.1 consists of showing preparatory results to 

establish two main lemmas: 4.6 and 4.7. Lemma 4.6 shows that if dec(J) > w, 

then the restriction of f to a subset Z of X has three characteristic properties of 

P . (It is not difficult to check that P satisfies propert ies (i)-(iii) from Lemma 4.6. ) 

Lemma 4.7 then shows that P is contained in f iZ . 
- - - ---

Let X , Y be Polish with X c X and Y C Y. It is well known that f can be 
- - -

ext ended to a Borel function f: X -> Y. Assume in the rest of this section that 

X and Yare recursively presented Polish spaces X E I:t and J E ~t. 

Lemma 4.2. Either dec(J ) :::; w, or there is a Bt set 0 =I A C X such that f iB is 

not continuous for any Bi set 0 =I B C A. 

Proof. This lemma is , in a sense, a first level analog of Lemma 2.1 ; its original 

proof was a simplified version of that of Lemma 2.1. The usage of reflection was 

suggested to me by G. Hjorth. Let P = {C eX: C E Bt and f lC is continuous}. 

By reflection , for C E Bt with fiG continuous , there is G' E ~i such that C C 

G' and fiG' is continuous . Thus , x E UP iff :lG' E ~t and fiG' continuous. 

Thorefore, U P E IIi · If X cUP, clearly dec(J) :::; w. If X ct UP , put 

A=X\UP. 

A set Z C X is called singular if there is an open set U C Y such that 

f- l(U) n Z is nonempty, closed, and nowhere dense in Z. 

Lemma 4.3. Let f: X -> Y be Baire class 1. Let 0 =I A C X be Bi. Then 

either 

0) :lB CAB E BL B =I 0, and f iB continuous, or 

(ii) VB C A , 0 =I B E Bi, :lC c B G singular and Bt. 
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Proof. Assume that for some 0 =I- B C A, B E ~t , the following holds: 

We prove that (*) implies that f iB is cont inuous. Let V C Y be basic open. P ut 

C = {x E B: VW C X basic open (x rf. W or 3z E W z E B \ r l(V ))}. 

Then C E ~t and C = B \ intBU- l(V ) n B ). If f- l(V ) n C = 0, f-l (V ) n B is 

open in B . So assume f- l (V ) n C =I- 0. Then by (*) there is W C X basic open 

such that 0 =I- w n C c f-l(F )n C. But then WnB C intB(f- l(V )n B ), whence 

W n C = 0, a contradiction. 

Now, assume that for all 0 =I- B C A, B E ~L we have ..., (*). We show 

that (ii) holds . Thus , let 0 =I- B C A , B E ~~ . Pick C l C B , C l E ~L and 

V C Y basic open such that f- l (V ) n C1 =I- 0 and intG, U-1 (V ) n Cd = 0. Note 

that j-l (V ) is an Fer and j-l (V) n C1 E ~t. Since j-1 (V) n C1 with the Gandy­

Harrington topology is a Baire space, there is 0 =I- C2 C j-l (V) n C1 , C2 E ~~ , and 

C 2 C j- l(V ). Thus, C2 is closed and nowhere dense in C = C2 U (C1 \ f-l (V )). 

Also, j-1 (V ) n C = C2 . Thus C is singular and ~~ . 

Lemma 4.4. Let 0 =I- Dn C . .. C D1 cAe X be all G-H open with Dl closed 

nowhere dense in A . Assume 51 , 52 C A \ D1 are disjoint and such that A \ 5 1 

and "4 \ 52 are G-H open. Then there are io E {1 , 2} and a G-H open set A' C A 

such that 

(i) A' n Dn =I- 0; 
(ii ) A' n Dl is nowhere dense in A' ; 

(iii) if Di+1 is nowhere dense in Di , then A' n D i +1 is nowhere dense in A' n Di; 

(iv) A' n 5 io = 0. 

Proof. Claim. There are £0 E {1 , 2} and relatively open sets 0 =I- Wi C D i , · 

1 ::; i :5 n , such that 
-:-:-~:o---=----o-

(i) U1$i$n Wi C A. \ (5 io U Dd; 

(ii) VI::; j ::; n (U1$i$j Wi) n Dj is dense in (U1$i$n Wi) n Dj . 

Assuming the claim has been proved, put 

A' = U Wi U (A \ (D1 U 5io))' 
l<i< n 
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It is clear that (i), (ii), and (iv) hold . To see (iii ), note that for any 1 :S j :S n, 

CUl::;i::;j Wi)nDj is relatively open inDj and dense in A'nDj = (Ul::;;::;n Wi )nDj. 

~ow, if DHI is nowhere dense in D j , then there is a set W c ((UI::;i::;j Wi) n D j ) \ 

DH I relatively open in Dj and dense in A.' n DJ . But then W n (A' n DHd = 0, 
whence A' n Dj+l is nowhere dense in A' n D j . 

Thus , it is enough to prove the claim. Put Zi = A \ (Dl U Si ), i = 1,2. The 

claim will follow, if we show that there are io E {I , 2} and relatively open sets 

o =I- Wi C Di , 1 :S i :S n , 0 =I- Wa C A. such that 

(i) Zio n Wo is dense in Ui::;n Wi ; 

(ii) VI :S j :S n (Ul::;i::;j Wi ) n D j is dense in (Ul::;i::;n Wi) n D j . 

For Z C A put ZO = intA(Z) and ZHI = intD;+lZj , j :S n. Note first that 

Z{ U z4 is dense in D j for any j :S n. This is proved by induction: since Zl U Z2 = 
Zl U Z2 :J A. , Zr u zg = intAZl U intAZ2 is dense in A.. A similar argument 

shows that denseness of Z{ U Zi in D j implies denseness of Z{+l U z4+ l in DHI . 

Note also that if Zl = 0, then Z{+l = 0. Since Zr U Z; is dense in D n , there 

is io E {1 ,2} such that Z~ =I- 0; thus Z;o =I- 0 for any j :S n. Put Wj = zfo' 
Obviously Wj is relatively open in D j . It is also clear that Wo = Z?o is dense 

in Ui::;n Wi and Zio n Z?o is dense in ZPo; whence Zio n Wa is dense in Ui::;n Wi· 

To see (ii) , note that Wj C D j and Wj is dense in Uj::;i::;n Wi. Since obviously 

(Ul::;i<j Wi) n D j is dense in (Ul::; i<j Wi ) nDj , we get (ii) which finishes the proof 

of the claim. 

Lemma 4.5. Assume j is not constant on any G-H open set. Let Y :J Ul :J 

U2 ··· :J Un be basic open. Assume that j-l (Un ) n A =I- 0 and that j-I (Ul ) n A. 

is closed and nowhere dense in A .. For i :S m, let Vi C A be relatively open, and 

let Vi C Y be open with Vi n j-l (Vi) =I- 0 and Vi n Ul = 0. Then there are basic 

open sets Oi C Vi, i :S m, and a G-H open set A.' C A such that 

(i) Oi n OJ = 0 ifi =I- j; 

(ii) 0 =I- j-l(O;) n A.' c Vi ; 

(iii) j-l (Un ) n A' =I- 0; 

(iv) j-l(Ul ) n A.' is closed and nowhere dense in A'; 

(v) if rl(Ui+d n A is nowhere dense in j-lCUi) n A , then j-l(Ui+d n A' 1S 

nowhere dense in j-l(U;) n A" 
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Proof. First , note that since j is not constant on any G-H open set , f l(Vi n 
j-1 (Vi )), i :::; m , attains infinitely many values. Thus by shrinking the Vi's, we 

can assure that Vi n V j = 0 if i f. j but still 1-Ti n j-1 (Vi ) f. 0. Thus (i) will be 

fulfilled automatically as long as Oi C Vi . 

Now by recursion on i :::; m, we will find A; C A G-H open and basic open 

sets Oi C Vi such that (iii)-(v) hold for A' = A; and 

(vi) j-1 (Oi ) n Vi f. 0, 
(vii) j -1 (Oi) n A.; = 0, and 

(viii ) A:+1 C A:. 
I will just show how to obtain 0 0 and A~ from A; one gets Oi+1 and Ai+1 from 

A: by the same argument . Since j is not constant on V O n j-1 (Vo), there are 

0 1 , 0 2 C Vo open and such that 0 1 n 0 2 = 0 and j-1 (Oi) n V O f. 0, i E {l , 2} . 

Consider the sets 

and 

Sl = r1 (01 ) n A and S2 = r1 (02) n A. 

Apply Lemma 4.4 to Di = j-1(Ui)nA and S1, S2 to obtain io E {I, 2} and A.' CA. 

Put A~ = A' and 0 0 = Oio. It is clear that (iii )-( viii) are fulfilled by these sets. 

Having produced the Ai's and the Oi 'S, put 

A' = A;" U U U-1(Oi) n Vi) . 
i:Sm 

Now, it is easy to check that A' along with the Oi 'S fulfil (i)-(v) . 

Lemma 4.6. Assume A C X is lji and (ii) of Lemma 4.3 holds. Then there is a 

set Z C A such that 

(i) j [Zl is homeomorphic to wW ; 

(ii) j lZ : Z -+ J[Z] is l-to-l and open; 

(iii) for any 0 f. U C J[Z] relatively open there is 0 f. V c U relatively open such 

that U IZ)-l(V) is nowhere dense in U IZ)-l(U). 

Proof. Let us fix a winning strategy ~ for Cl' in the Choquet game for X with 

the Gandy-Harrington topology. (See [HKL] for details on the Choquet game for 
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this topology.) Let d be a totally bounded metric on X, and let p be a complete 

metric on Y. vVe recursively define finite trees Tn C w<"" , nEw, so that 

I)Un Tn = w<"'. 

2) Tn C Tn+l; 

3) if a * k E Tn, then a * I E Tn for all I < k; 

Additionally, we construct An eX G-H open and U" C Y, a E Tn, basic open so 

that 

4) .4.n+1 CAn ; 

5) p - diam(U,,) ~ 1/(lh(a) + 1); 

6) aCT E Tn =;. UT C U,,; 

7) a , T E Tn, a ..L T =;. U" n U T = 0; 
8) if a *0 E Tn , then An nj-1(U".0) is closed and nowhere dense in An n j - 1(U" \ 

U".kETn ,k~1 U ".k); 
9) d - diam (An n j-l (U,,) ~ 1/(lh(a) + 1); 

10) if a * k E Tn+1 \ Tn for some k :::: 1, then Vx E A n+1 n j-l(U".O) 3a * m E 

Tn+l ' m :::: 1 Vy E A.n+1 n j-l(U".m) d(x, y) < 1/(n + 1); 

11) Let a E Tn be terminal. Let ao C a1 C ... C an = a be such that ai is 

terminal in Ti , i ~ n . Then 

Let {an: nEw} = w<w, and assume that Va E w<w 300n a = an. This 

will guarantee that 1) holds. Assume that An, Tn, and U", a E Tn, have been 

constructed. First , we show that in the construction at the n+l'st stage we have 

to worry only about conditions 2)-10) . Let a O
, ••• , a q be the terminal nodes of Tn. 

For any i ~ q and j ~ n , let a; C ai be terminal in Tj. Define 

and 

i~q i~q 

Note that A~, Tn, and U", a E Tn, still fulfil 2)-11). Moreover, if we construct 

An+1 C .4.~, Tn+l ' and U", a E Tn+1 , with properties 2)-10) , they will automat­

ically fulfil 11). Thus having constructed An, Tn , U" , a E Tn , with 2)-10) , it is 
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enough to find An+l' Tn+b and U", a E Tn+l ' with 2)-10), and this is what will 

be done below. 

Put an = a and Ih(a ) = I. 
Case 1. :::l k < 0' (1 - 1) 0' 1(1- 1) * k (j. Tn or a E Tn . 

vVe do not do a.nything , i.e. , Tn+l = Tn and A n+l = An . 

Case 2. a (j. Tn , 0'1(1 -1) E Tn , and a(l- 1) = O. 

Put Tn+l = Tn U {a }. Let A C An n j-l (U ,,1(1-1)) be I;i and singular. Let 

V C U"I (I-l) be open and such that j- l (V ) n A is nonempty, closed in A. , and 

nowhere dense in A . Let U" C V be basic open such that p-diam(U,, ) < 1/(1+1 ), 

j-l (U,, ) n A =f. 0. Let 0 =f. AI c j-l (U,,) n A be I;i such that d - diam(AI) < 
1/ (/ + 1). Put 

Case 3. a (j. Tn , 0' (1- 1) > 0, and Vk < 0'(1-1 ) 0' 1(1-1) * k E Tn . 

Let 0'= 0'1(1 -1) and 0'0 = 0'*0 . Find relatively open, nonempty sets V O
, ••• , vm C 

An n j-l (Uue \ ~*kETn Uue•k ) so that V i n Vi = 0 if i =f. j , d - diam(V i) ~ 

1/( 2(n + 1)) , and Vx E An n j-l (U"o) :::li ~ m Vy E Vi d(x , y) < 1/ (2(n + 1)) . 

(This is possible by 8).) Additionally, find V; C Uue \ ~.kETn Uue•k open with 

j-l (V; ) n Vi =f. 0 and p - diam(V; ) < 1/(1 + 2). Put 

Tn+1 = Tn U {C7, 0' * (0'(1-1 ) + 1), .. . ,a * (0'(1- 1) + m)} . 

Let T = { T: 0'0 * T E Tn }. T is a tree. Let TO , ... , Tq be all the terminal nodes in 

T . Let 

u 
For each Tj consider the sets U"o :J U"o01'jll :J ... :J U" OO1'j and the set A-j = 

A \ U"oc", ".l.'T'j j-l (U,, ). Applying repeatedly Lemma 4.5 , we define recursively 

on J ~ q basic open sets ot H C O{ c V; andG-H open sets Aj C Aj so that 

(i)-(v) of Lemma 4.5 hold for A = A j , Oi = O{ and AI = A.} . Finally, put 

U'07.(,, (I- l )+i) = Or, i ~ m, and 

u 
j~q 
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If the Tn's are constructed, let G = nn U"E:.In U" = UqE:.r' nn Uq1n and 

Z = nn i in n f-I(G ). By 5)-7), G is homeomorphic to "-'w. Let Ti E w W
, and let 

I7n C Ti be terminal in Tn. Then, by 11) and 4) , the following is a play in the 

Choquet game for the Gandy-Harrington topology: 

Ao n r l(U"o),Z:(Ao n rl (U"o)), 

Al n r l (U",), I:(Ao n rl (U"o), Al n rl(U",)), ... 

where Ii plays first, and g responds by its winning strategy I:. Thus, nn f-I (U "n)n 
An =f. 0, whence there is x E Z with {J (x)} = nn Uq1n. By 9), such an x is unique. 

Therefore, j[Z] = G, and f lZ is l-to-l. By 9), for any x E Z and E > 0 there 

exists R C Z such that x E R, d - diam (R ) < E, and j[R] is open in G. It follows 

that flZ: Z ..... j[Z] is open. To see (iii), let U C G be relatively open. Let 

17 E w<w be such that U" n G c U. Then by 7) and 9), f-I (U,,*o n G) is nowhere 

dense in r l(U" n G) so also in f-I (U). 

Let Z be as in Lemma 4.6. We want to show that P 1;;:; f iZ . If we put 

F = UIZ)-l , this will follow from the next lemma. 

Lemma 4.7. Assume F: w"; ..... Z is continuous, I-to-l , onto, and for any 

o =f. U C w'" open there is 0 =f. V c U open such that F[V] is nowhere dense in 

F[U]. Then, P r;;:; F- I . 

We will deduce the above statement from Lemma 4.8. To formulate it we need 

several definitions. Let d be a totally bounded metric on Z. Let us equip F(Z) , 

the set of all closed nonempty subsets of Z, with the Hausdorff metric induced 

by d. We denot e this metric also by d. Total boundedness of the metric d on Z 

implies the following fact which will be used repeatedly in the proofs below: given 

E> 0 and K E F(Z) there is a finite set A C Z with dCA, K ) < E. In the sequel, 

F (Z) is always considered as a topological space with the topology induced by d. ' 

Let n denote the set of all nonempty open subsets of w"'. For 0 =f. U c w'" open, 

let n(U) be the set of all nonempty open subsets of U. Call a nonempty open 

subset of w'" n-good, for nEw, if it is a finite union of sets of the form N" with 

17 E w m , m ~ n. A function ¢>: X ..... n is called n-good, nEw, if ¢>(x) is n-good 

for any x EX. For ¢>: X ..... n define ¢>F : X ..... F (Z) by 

dJF(x) = F [¢>( x)] . 
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A function <p : X -+ fl is called disjoint if ¢i F(xd n ¢iF( X2 ) = 0 for Xl =1= XZ , 

Xl , X2 E X j it is called continuous if @F is continuous. 

Lemma 4.8. There is a sequence of functions ¢in: (w + l )n -+ fl , nEw, such 

that 

(i) d - diam(¢i; (ry )) S; 1/(n + 1), ry E (w + It ; 

Oi) <P n+! (ry ) C <P n(ry ln ), ry E (w + It+! ; 

(iii ) cP n is n-good; 

(iv) cPn is disjoint ; 

(v) cP n is continuous. 

Proof of Lemma 4.7 from Lemma 4.8. Notice the following fact which is a 

simple consequence of Konig 's lemma: 

(*) Assume Un C w'" is n-good , nEw , and Un+l C Un; then , nn Un =1= 0. 
So, in particular, by (ii) and (iii ), nn cP(ryln) =1= 0 for any ry E (w + 1)"', and by (i) 

and the fact that F is I-to-1 , 

( **) nn cP( ry ln ) has precisely one element. 

Define <p: (w + 1)'" -+ Z by 

cP(ry ) = the unique element of n .p;(ry ln) = F[n cPn(ry ln )]. 
n n 

Note that .p( ry ) is well defined for all ry E (w + 1)'" by (**). cP is continuous by (v), 

(i), and (ii) and 1-to-1 by (i) and (iv) j thus, since (w + 1)'" is compact , .p is an 

embedding. 

Put G = nn U1)E(",+I)n <P n(ry) , and define 1/J : G -+ w'" as follows. Let X E G. 

By (iv) and (ii) , there is a unique ry E (w + 1)'" with X E nn <Pn(ryln). Let 1/J (x) 

be the unique element in nn Np ( 1)) In ' We claim that 1/J is an embedding, and that 

it is onto w"'. Continuity of 1/J is obvious. By (**) and the fact that P is onto, 

1/J is onto. To show that it is open, we have to find , for any X E G and NI7 with 

X E N 17 , an n E c...' such that <P n(ry ln) C NI7 where ry is the unique element of 

(w+ 1)'" with x E nn <P n(ryln ). But iffor infinitely many n , cPn(ry in) \NI7 =1= 0, then 

we apply (* ) to the family <Pn(ryln ) \ NI7 for n > lh(cr) , which is legal by (iii), and 

obtain y E nn <Pn(ry ln ) \ N17 • But then, by (i) , F(x) = F(y) even though x =1= y 

contradictng the fact that F is 1-to-1. 
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Now, we claim that ¢ 0 p-l 0 1jJ = F IG. Note first that for any x E G, 

p-l 0 h(x) = the unique element in n" ¢; (ry ln ). But for any n , F(x ) E ¢~(ry l n); 

thus, by (i), F ( x) = ¢ 0 p-l 0 1/-'( x). K ow since F, cp, P , and 1jJ are all 1-to-1, and 

1jJ is onto, it follows that 1jJ -l 0 P = F- 1 0 ¢. Since 1jJ -l and 1> are embeddings, we 

get P r;;; F-l. 

To prove Lemma 4.8, we will need one more auxiliary fact. 

Lemma 4.9.(i) Let U E ,0, and let 5 > O. There is 1>: w + 1 -... O(U) disjoint , 

continuous, and such that d - diam( ¢F (ex)) < b for any ex E w + l. 
(ii) Let U, V E n. Assume d(F [U], F [V ]) ::; t, t > O. Let ¢ : w + 1 -... n(U ) be 

disjoint and continuous. Let nEw. Then, there is ~: w + 1 -... n (V) disjoint, 

continuous, n-good, and such that d(pF(ex) , ~F ( ex )) ::; 2t for ex E w + l. 

Proof. (i) Let V C U, V E ,0, be such that F [V] is nowhere dense in F[U]. 

Find (J' E wm
, for some m ~ n , such that Nu C V and d - diam(F[Nu]) < b. 

Put 4>(w) = Nu. Since F [¢(w)] is nowhere dense in F [U], there are Wi C F[U], 

i E w, relatively open and such that Wi n Wj = 0 if i i- j , Wi n F[¢>(w) ] = 0, 

Wi -... F [qi(w)] and d - diam(Wi) < b. For each i find an n-good set 11; so that 

Vi C un F-1 (Wi ) and d(F[1I;], Wi) < l /(i + 1). Put 4>(i) = Vi. 
(ii) This is a refinement ofthe argument proving (i). Find a finite set A C F[V] 

such that d(¢F(w), A) < (3/2)€. We find an n-good set We V so that F[W] is 

nowhere dense in F [V] and d(A , F [WJ) < (1/2)€. To this end, for any x E A , let 

(J'x E wm
, m ~ n , be such that Nux C V , d({x }, F[NuJ) < (1/2)t, and F [NuJ 

is nowhere dense in F [V]. Then put ~(w) = UXEA Nux. Let Ai C F[V] be fini te 

such that Ai -... F[~(w)] and Ai n F[~(w)J = 0. This is possible since F[~(w)J is 

nowhere dense in F[V]. Since ¢ is continuous, by modifying finitely many of the 

Ai 'S, we can assume that d(Ai, 4>F(i» < (3/2)€ for all i E w. Now, since F[~(w)J is 

nowhere dense in F [V], using a technique similar to that used in constructing ~(w ) 

above we can find sets Wi C V which are n-good and such that F[W;J n F [Wj J = 0 
if i i- j , d(Ai , F[WiJ) < €/ (2i + 2) , F[Wi] n F[~(w)l = 0. Put ~(i) = Wi for i E w. 

It is easy to check that ~ is as required . 

Proof of Lemma 4.8. For a metric space X , we write X' for the set of all 

nonisolated points of X. First we observe that the following general claim holds . 
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(1 ) 

(2) 

Claim 1. Let X be compact. Let !jJ : X ---+ D be disjoint and continuous, 

and let <fJ : X' X (w + 1) ---+ D be disjoint , continuous, n-good, n Ew, with 

Q(X, 0') C !jJ(x) and d - diam(1)(x,O')) < 5, b > 0, for all (x, 0') E X' X (w + 1). 

Then there is <fJ : X X (w + 1) ---+ D which extends <fJ and has all the above mentioned 

properties of <P excep t that ~(x , 0') C !jJ( x ) and d - diam(~(x, 0: )) < 5 hold for all 

(x, 0') E X x (w + 1). 

Proof of Claim 1. First , we define an extension <fJ which satisfies all the 

required conditions except perhaps d - diam(<fJ (x , O')) < 5. Let x E X \X'. Find 

Vz E X' such that d( -if; F(x ), !jJ F(V,, )) is minimal among d(!jJ F(x) , ..p F(V)) for 

y E X'. Consider </l(yx, ·) : w + 1 ---+ D(l/,(y,,)). By Lemma 4.9(ii), there is ~x : 

w+ 1 ---+ D(-if;( x )) disjoint , continuous , n-good , and such that d«pF(y, 0'), ~,, ( O')) ~ 

2d(..p F(x), ..p F(yx)). Put 

;;(x, 0' ) = ~x(O') , for x EX \ X' and a E w + 1. 

If x E XI , we put ~(x , a) = <p(x, 0'). It is clear that;; is n-good and that ~(x, a ) C 

..p(x) for (x, 0' ) E X x (w + 1) . Also , is (x, a) =1= (Xl , a'), then ~F( x , O')n~F (x', a /) = 

0. It is enough to check the continuity of 1/ on sequences of the form (xn ' O'n ) ....... 

(y,O' ) where Xn EX \X' , y E X' , and O'n , O' E w+ 1. Let Yn be the YX n E XI used 

to define ~X n. Then, by definit ion of Yn , 

Hence, since X is compact , Xn ---+ V, and 1/JF is continuous ans I-to-l, Yn -> y. 

Thus, 

as </>F is continuous on X' x (w + 1). On the other hand, 

Thus by (1) and (2), ~F(X n, O'n ) ....... <fJF(y, a). To get d - diam(~(x , a )) < 5, we 

modify ~ constructed above as follows . The set 

-F 
{(x, a ) E X X (w + 1) : d - diam (<fJ (x, 0')) < 5} 
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is open and contains X' x (w + 1). Thus, 

{(x,o:) E X x (w + 1): d - diam(¢F (x, 0: )) 2: 5} 

is contained in a set of the form {x 1 , ... , X m} X (w + 1) where each x ; is an isolated 

point in X. Therefore, it suffices to redefine ¢ on each {x d x (w + 1) separately 

so that ¢F(x ;, 0:) C 1j; F(x;) and d - diam(¢F(x;, 0: )) < 5, and this can be done by 

Lemma 4.9(i) . 

Claim 2. Let 1j;: (w + It -> n be disjoint and continuous. Then there exists 

¢: (w + l)n+l -> n disjoint, continuous, (n + I )-good with ¢(T] ) C 1j;(T]ln) and 

d - diam(¢> F(Ti)) < 1/(n + 2) for any Ti E (w + l)n+l. 

Proof of Claim 2. "lvVrite (w + l )n+l as (w + It x (w + 1). Let X = (w + It. 

P ut X(O) = X and X (k+ 1) = (X (k))'. Then, x ( n) = { (w, . .. ,w)}. Define ¢i : 

x (n) x (w + 1) -> n(1j;(w, .. . ,w)) using Lemma 4.9(i) with 5 = 1/(n + 2). Using 

Claim 1 extend rP consecutively to x (n-l) x (w + 1), x(n-2 ) x (w + 1), ... , and 

finally to X(O) x (w + 1) = (w + l )n+l. 

To construct ¢in as in the conclusion of Lemma 4.8 , let ¢>o be defined according 

to Lemma 4.9(i) with 5 = 1. If ¢i n is defined, we find ¢>n+l by applying Claim 2 

to 1j; = ¢>n. 

6.5. Complete semicontinuous functions 

In this section, we study complete semi continuous functions. The results 

obtained here will be used to prove that dec(P) is highest possible and as a conse­

quence establish an analogue of Corollary 3.7 for the decomposition into functions 

with arbitrary domains. 

It will be convenient to widen the range of applicability of the definition of 

semi continuity to certain functions whose image is contained in a compact space 

equipped with a closed linear order. Let K be a compact , metric space. Let 

jc K x K be closed. Assume j linearly orders K. A function I: X -> K , X a 

metric , separable space, is called lower semi continuous (lsc) if I-I ({y E K: Yo j 

y and Yo =f. Y } ) is open for any Yo E K . A lsc function I: X --+ K will be called K­

lsc complete if for any g: 2w -> K lsc there is a continuous function ¢>: 2W -> X 

such that 9 = 10 ¢i . If K = [0,1] and j=:S:, we say lsc complete. Since for any 

compact, metric K and any j closed linear order on K there exists an embedding 

h: K -> [0,1] such that x j y iff hex) :s: hey), we always implicitely assume 
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(1) 

that K is embedded in [0, 1] and j=:5 IK . A ray is a subset of K of the form 

{y E K : Yo :5 y} or {y E K : Yo $ y and Yo I- y} for some Yo E K. We adopt the 

notation {y E K: Yo:5 y} = [Yo, (0 ) and {y E K: Yo:5 Y and Yo I- y} = (Yo, (0) . 

Theorem 5.1. Let F : X ...... K be 1sc. Then F is K-1sc complete if, and only if, 

there exists D·C X Polish in the relative topology and such that F [D] = K and 

for any U C D relatively open F[U] is a ray. 

Proof. (=}) It is enough to find g: 2'"' ...... K lsc such that g[2"' ] = K and 

for any U C 2'" open g[U] is a ray, since then there is a continuous function 

</>: 2"' ...... X such that F 0 </> = g, and it is easy to check that D = </> [2""'] works . 

To define g, fix a nondeacreasing surjection h: 2"'...... K. Define the function 

sup: (2"')"' ...... 2'" by sup((x n)) = SUPnXn. Finally, put 9 = hosup, and note that 

(2"' )'" is homeomorphic to 2"'. 

( ~) Assume we have D as above. First, we show that 

Vy , z E K (y < z =} F-1(y) n DC F-l (z) n D), 

then that (1) implies 

(2) :lG c X (G Polish, zero-dimensional, and 

Vf: G ...... K lsc f n F I- 0 (i.e. , :lx E G f (x) = F(x))), 

and, finally, that (2) implies F is K -lsc complete. 

If (1) fails for some y < z, there is U C D relatively open such that Un 

F-l (y) I- 0 and un F- 1 (z) = 0, i.e., y E F [U] and z rt F [U], which contradicts 

the assumption that F [U] is a ray. 

To prove (2) from (1), let Q C K be count able and such that Vy E KV€ > 
O:lz E Q y-€ < z :5 y. Note that minK E Q. For each y E Q, let Qy c F- 1 (y )nD 

be countable and dense in F-l(y ) n D. Let G be zero-dimensional, bpi02 subset 

of D such that UyEQ Qy c G. We show that G works. Let G = nn Gn , Gn open 

aIid Gn +! C Gn . Let f: G ...... K be lsc. Note that Q C F[G] fu'ld for any y, z E Q 

with y < z we have F- 1 (y) n G c F-l (z) n G. This last condition implies that 

if V is open and y E F[V], then z E F [V] for y , z E Q, y < z . We recursively 

construct a sequence of open sets Un and Zn E Q, nEw, such that: 
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(i) Un C Gn; 

(ii ) Un+1 C Un; 

(iii) diamUn < l/(n + 1); 

(iv) Zn :S inf f[Un], and Zn E F [Un]; 

(v) inf f [Un]- l/(n + 1) < inf F[Un+1 ] :S inf f[Un]. 

Let Uo be open such that diamUo < 1, Uo C Go, and minK E F[Uo]. If Un has 

been defined , find Zn+l E Q with inf f[Un ] - l/(n + 1) < Zn+l :S inf f[Un] and 

Zn ::; Zn+l. Such a Zn+l exists by the definition of Q and by (iv). Since Zn E F[U n], 

Zn+l E F[Un ]. Since F is lsc, there is V C Un open such that Zn+l E F[V] and 

inf f[Un l - l/(n + 1) < inf F[V]. We get Un+1 by making V small enough. Kow, 

let x be the only element in nn Un. Then x E G, and since f and F are lsc , by 

(v), we get 

f (x) = supinf f[Un] = supinf F [Un] = F(x). 
n n 

Now we show that (2) implies that F is K-Isc complete. We can assume that 

G is a closed subset of WW so that G = the set of all branches of T , for some tree 

T C w<w . Let f: 2'" -+ K be lsc. We show that there is a continuous function 

¢: 2'" -+ G such that f = Fo¢. We play the following game: Players I and II play 

interchangeably; I plays Xn E 2, II plays Yn E w so that (Yo , . . . , Yn ) E T ; I wins 

iff f((x n)) =1= F((Yn)). By Martin's theorem, the game is determined. A winning 

strategy for I induces a continuous function 1jJ: G -+ 2'" such that f 0 1jJ n F = 0, 
which contradicts (2) since f 0 1jJ is lsc. Therefore, II has a winning strategy. It 

induces a continuous function ¢: 2'"' -+ G such that f = F 0 ¢. 

Now, we present a construction of a family of Baire class 1 functions. These 

functions will be used in the proof of the existence of "minimal" lsc complete 

functions and in the proof that the decomposition coefficient of Pawlikowski's 

function is highest possible. Let ::SnC 2n, nEw, be partial orders . Assume that 

for (J' l' E 2n +1 , 

Define T(:~n) C ITn 2
n by 

x E T(:~n) iff "In x(n) ::Sn x(n + l)ln. 

Let F(:~n) : T(:~n) -+ 2'" be defined by 

FC-<n)(x) = the unique Y E 2'" with VnVook Yin = x(k)ln . 
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(3) 

Define a partial order ::::S on 2'" by 

x ::::S y iff "In x ln ::::Sn y in. 

Lemma 5.2. FC"inl is Baire class 1 and onto. 

Proof. It is clear that FC"inl is a pointwise limit of a sequence of continuous 

functions, whence it is Baire class 1. For y E 2'" define x E TC"inl by x(n) = yin , 

nEw. Then FC"in)(x) = y. Thus FC"inl is onto. 

Lemma 5.3. H C C 2'" is closed and linearly ordered by::::s, then FC"inl IFC-;lnl (C) 

is C -lsc complete. 

Proof. By Lemma 5.2, G = F(-;ljC) is I1~. Therefore, to check that FC"inlIG 

is C-lsc complete, it is enough, by Theorem 5.1 , to show that FC"inlIG is lsc and 

that for any U C G relatively open FC"inl[U] is a ray with respect to ::::S IC. To this 

end, it is enough to see that 

(i) if U C TC"inl is open, y E FC"inl[U], and y ::::S z, then z E FC"inl[U], and 

(ii) if x E TC"inl and y ::::S FC"in l(x), y =I- FC"inl(x) , then there is an open set 

U C TC"inl such that x E U and if z ::::S y then z rf. FC"inl[U]' 

To see (i), find x E U with FC"in l(x) = y. Fix nEw such that if x'(i) = x(i) 

for i ~ n, then x' E U. Define x so that x(i) = x(i) for i ~ n, and x(i) = z li for 

i > n. It is easy to check that x E TC"inl' and clearly x E U and FC"inl(x) = z. To 

see (ii), note that there is nEw such that x(n) in yin. Then U = {x' E TC"inl : 

x'(n) = x(n)} works . 

Lemma 5.4 Assume there is a closed uncountable, linearly ordered by ::::S subset 

of2w . Then dec(FC"inl) 2: dec(f) for any lsc f: 2'" -; [0,1]. 

Proof. Let C C 2'" be closed, uncountable, linearly ordered by ::::S . We can easily 

find a copy Co of 2'" inside C such that the lexicographic order is equal to ::::S on Co. 

Let <p: Co -; [0,1] be an increasing homeomorphism, e.g., the Cantor function. By 

Lemma 5.3, FC"inl[U] is a ray in (Co,::::S) for any relatively open U C FC-;ljCO)' 

Thus <p 0 F("inl [U] is a ray in [0 , 1] . It follows that <p 0 FC"inllFc-;ljCo) is lsc 
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(4) 

(5) 

complete. Thus, dec(cP 0 F( ~ n)) ~ dec(J) for any f : 2'" --- [0, l ] lsc. But since cP 

is continuous , dec(F(~n)) ~ dec(cP 0 F( ~n ))' 

17 E 2
n is called splitting if 17 * 0 jn+l 17 * I, or 17 * 1 jn+l 17 * O. 

Lemma 5.5. Assume that for each nEw and any 17, T E 2 n with 17 jn T we have 

Vi E 2 3j E 2 17 * i jn+l T * j and Vi E 2 3j E 2 (]" * j jn+l T * i. 

A.ssume also that for any 17 E 2<'" there is a splitting T E 2<'" with 17 C T. Then 

there is a perfect, closed set linearly ordered by j. 

Proof. The conclusion will follow easily if we can show that if 170, ... ,17k E 2n, 

170 jn ... jn 17k , and i ::; k, then there are TO , ... , Tk+1 E 2m for some m > n with 

Tjln = 17j for j ::; i and Tjln = 17j- l for j > i , TO jm ... jm Tk+l , and Ti -I Ti+1' 

To see this, let T :J 17i be splitting. Assume T * 0 jm T * 1 where m = lh( T * 0). 

Put Ti = T * 0 and Ti+1 = T * l. By (4), we can extend 17i+l , ' .. , 17k one by one 

to Ti+2, ... , Tk+ 1 , respectively, so that Ti+ 1 j m ... j m Tk+ 1. Similarly, we extend 

17i -1 , ... ,170 to Ti-1, " " TO· 

Remark. Before we proved Lemma 5.5, J. Pawlikowski pointed out that in case 

17 j n T iff Vi < n 17( i) ::; T( i), 17, T E 2n, one can get a perfect closed set linearly 

ordered by j by the following simple argument. (Lemmas 5.4 and 5.5 applied to 

this j will be used in the proof of Theorem 6.l.) Identify w with the rationls, IQ. 

For any T E R, let aT E 2'" be the characteristic function of {q E IQ: q < T}. Then 

{aT : T E ~} is a Borel uncoutable subset of 2""' linearly ordered by j. Now, any 

perfect closed subset of {aT: T E ~} works. 

In the next theorem, we prove the existence of complete semi continuous func­

tions which are in a sense minimal. This result will not be used in the sequel we 

nevertheless find it interesting. 

Now, let jn= the lexicographic order for each nEw. Put T/ = T(~n)' In this 

case, j is the lexicographic order on 2"'; it linearly orders 2"' . Let K be a perfect, 

compact , metric space linearly ordered by a closed linear order. Fix 1j;: 2'" ___ K 

a nondecreasing surjection such that 

3D C 2'" D dense and 1,bI D I-to-l. 
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Put FK = 1/; 0 F<:~n)' By Lemma 5.3, FK is K-lsc complete. We show t hat it is in 

a sense a minimal such function. 

Theorem 5.5. Let f: X ..... K be K -lsc complete, K compact perfect. Then 

there is an embedding cjJ: T/ ..... X such that FK = f 0 cjJ. 

Proof. Let D c X be as in Theorem 5.1. Without loss of generality we can assume 

that D = X. Define h: 2<<.1 ..... K by h(o-) = 1/;( 0- * 00 ·· .). Let 5 C Uk I1n9 2n 

be the pruned tree with T/ = [5]. For r E 5 we recursively, with respect to lh( r) , 

define UT C X open and such that: 

(i) diamUT :=::: 1/(lh(7) + 1); 

(ii) if Tl C r2 and 71 i= 72, then U,-, c U'-2' and if Tl ..l T2, then Ur, n UT2 = 0; 
(iii) h(r(n - 1)) E f [Ur] C (h(r(n -1)) - l/(n + 1),=). 

Define U0 to be any open set of diameter < 1 containing an x E X such that 

f(x) = minK. This is possible since f is onto. If Ur is defined, consider the set 

A = {T' E 5: lh(T' ) = lh(r) + 1, 7 C r'} . 

Enumerate A so that A = {TO, rl, ... , r m} for some mEw, the Tj'S are pairwise 

different , and ro(n) ~n rl(n) ~n ... ~n 7m (n), where n = lh(r). Note that by (5) 

h(r(n -1)) = h(ro(n)) < h(rl(n)) < .. . < h(rm(n)). 

N ow, we find recursively U r; , i :=::: m. Let U;o and Va be open and such that 

U'TO nvo = 0, U'TO' Va C U,.., h(To(n)) E h[U;o], h(rl(n)) E h[VoJ, and diamU;o < 
1/(n + 2). Put 

Uro = U;o n r 1 ((h(ro(n)) - l/(n + 2), (0)). 

Then find U;, and VI open and such that U'r, nVI = 0, U''-l> VI C Vo, h(Tl(n)) E . 

h[U;,]' h(r2(n)) E h[V1 ], and diamU;, < 1/(n + 2). Put 

Repeat this procedure m + 1 times . 

Define cjJ by 

cjJ(x) = the unique element of n Uxl n' 
n 
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By (i) and (ii), ,p is continuous, and, by (ii), it is 1-to-1 , whence it is an embedding 

since T/ is compact. Since I and FK are lsc, (iii) implies that FK = 1 0 rjJ . 

6.6. The value of dec for Baire class 1 functions 

In [CMPSl it was proved that dec(P) ~ cov(M) , and in [St] that it is consis­

tent that dec(P) > covUvt). Thus P provides a particularly simple example of a 

complicated Baire class 1 function. Below we show that dec(P) is actually highest 

possible. This answers two questions of Steprans [St , Questions 7.1 and 7.2]. 

Theorem 6.1. dec(P) = dec, where P is Pawlikowski 's function . 

Proof. 1£ Y is a metric separable space, define 

decl/2(Y) = sup{dec(J) : J : Y -+ [0,1]' Ilsc}. 

Of course, the value of decl/2(Y) would remain the same if we used usc instead of 

lsc functions in its definition. 

First we show that dec = decl/2(2W). The inequality ~ is clear since each 

lsc is Baire class 1. To see ~, first we show that decl/2 (Y) ~ decl/2(2W) for any 

metric separable space Y. By a result due to Smirnov (see [E, Problem 1.8.G.]) , 

Y = U"'<Wl Y"" where Y"" Go < WI, are zero-dimensional. Each Y", embeds in 2"' , 

and each lsc function on Ycr extends to 2w; thus , decl/2(Ycr) ~ decl/2(2W) . By a 

result of Adyan and Novikov, decl/2 (2"") ~ Nl (see [JM, Theorem 4]); thus, we get 

decl/2(Y) ~ Nl sup decl/2(Y"') ~ decl/2(2W). 
crEWl 

Now, let I x -+ Y be Baire class 1. Again, by Smimov's theorem 

Y = Ucr<Wl Y", and each Y", is zero-dimensional. Since Y", embeds in [0, 1], we 

can assume that III-l(y",): I-l (y",) -+ [0,1]. By Lindenbaum's theorem (see 

[CMPS , Theorem 4.4]), any Baire class 1 function h: Z -+ [O , l J can be repre­

sented as h = g2 0 gl where gl: Z -+ [0, 1] is usc and g2 ~ [0, 1] -+ [O ,lJ is Isc, so 

dec( h) ~ dec(gz )dec(gl); whence 

dec(J) ~ Nl sup decl/2(Y",)decl/2([0, 1]) ~ decl/2 (2W). 
0'<W1 

Thus dec ~ decl/2(2W) . 
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The theorem will be proved, if we can show that decl /2( 2:'; ) :::; dec(P). Let 

G : w'" -+ 2""' be defined by 

G(x)(n) = min{l , x(n)} for nEw. 

Let :Sn be the partial order on 2n defined by 

a:S n T iff 'Iii < n a(i) :::; T(i). 

Let :S be the partial order on 2'" arising from (:Sn) by formula (3) . Since (:Sn ) 
fulfils the assumptions of Lemma 5.5, there is a perfect, closed subset of 2'" linearly 

ordered by:S. Now, it follows from Lemma 5.4 that dec(F(::',n)) :::: decl/2(2""' ). 

Thus, it is enough to show that there is a homeomorphism ¢: (w + 1)""' -+ 2'" 

such that GoP = FC::',n) 0 ¢ since then 

dec(P) :::: dec(G 0 P) = dec(F(::',n )) :::: decl/2(2""'). 

Let 17 E (w + 1)"'. Put ¢(17) = x, where x = (x(n)) E I1n 2n , and for i < nEw we 

have 

x(n)(i) = {O, ~f 1)(9:::: n; 
1, If 1)(t) < n. 

It is easy to check that r/> is continuous , 1-to-1 , and onto , whence, since (w + 1)""' 

is compact, ¢ is a homeomorphism. Now, Go P (1) )(i) = 0 iff 1)(i) = w iff 'lin > 
i x(n)(i) = 0 iff F(::',n) (x)(i) = O. 

Remark. It follows from Theorem 6.1 , via the work of Steprarrs [St , Definit ion 

4.1 , Proposition 4.1], that dec = cov(Jp ), where J p is a a-ideal on w""'. The 

interesting fact about J p is that its definition is purely combinatorial. 

The following corollary is analogous to Corollary 3.7. 

Corollary 6.2. Let f: X -+ Y be Brure class 1, X Souslin . Then dec(f ) :::; w or 

dec(f) = dec. 

Proof. If (i) of Theorem 4.1 holds, then dec(f) :::; w. If (ii) holds , then dec(f) = 
dec by Theorem 6.1. 
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It was proved in [CMPS , Theorem 5.5] that there exists a lsc function f such 

that dec(f ) ~ cov(A1 ). We strengthen this result below. A function f: Y--+ 

[0,1]' Y a metric space, is called c1osed-to-l if for any y E [0,1] f- 1 (y) is closed in 

Y . Obviously, each continuous function is closed-to-1; however there exist plenty 

of closed-to-l , Isc functions which are not continuous, e.g ., Pawlikowski 's function 

P being I-to-l is closed-to-l. The method of proof presented here is different from 

the one in [CMPS] . 

Theorem 6.3. Let P: X --+ [0, IJ be lsc complete. If F is a family of subsets of 

X such that U F = X, and PlY is c1osed-to-l for any Y E F, then IFI ~ cov(M). 

Proof. Let {Vn : nEw} be a countable topological basis of X. Let D be as in 

Theorem 5.1. Without loss of generality we can assume that D = X . Fix nEw 

and Y E F. We claim that there is at most one y E [0, 1] such that Vn np-1(y) f= 0 
and Y is dense in Vn n P-l(y) . If not , let YI < Y2 be two such y's. Since (1) from 

the proof of Theorem 5.1 holds , we have 

whence, since Y E F , P I(Y n Vn n P- 1 (Yl)) == Y2 , a contradiction. Thus , we can 

pick Yo E [0, 1] such that for any nEw and any Y E F either Vn n P-I(yo) = 0, or 

Y is not dense in Vnnp-I(yo). Then, clearly, Y is nowhere dense in P-I (yO). Since 

P-I(yo) is II~, as Pis Baire class 1, and UF:J P-I(yo) , we have IFI ~ cov(M). 

Remark. Below, we prove a result which relates the value of dec to the value of 

an ordinal rank on the family of all Baire class 1 functions. For the definition of 

the oscilation rank (3 on Baire class 1 functions we refer the reader to [KL] where 

it was studied in great detail. 

(i) Let f: X --+ JR, X Polish, be Baire class 1. Assume (3(f) < w; then dec(f) :s w. · 

(ii) f3(P) = w. 

To see (i) , put (3(f) = n. Then there exists EO > a such that (3(f, E) = n for E < EO' 

mI ' 
Let X~ = {x EX : osc(f, x) < l /k} and Xr = {x EX \ U;=~ Xi.: osc(fIX \ 

U::~I xL x) < 1/ k for m :s n and for k with 1/ k < EO . By our assumption, 

U~=O XL = X for any k. Now define Al = n~1 xt and Ai = cn~1 U::I Xj) \ 

( n~=1 U::~I Xj ) for 1 < m :s n and I < w. Notice that Al U U:;'=2 U;:1 Ai = X; 
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thus , it is enough to see that l lA l and l IA7', I < w, 1 < m ~ n, are continuous. 

But we have Al C Xk for all k < w. Also, if k > I, then U::~1 X~ C n~=1 U::~1 Xj 

for m ~ n. Thus , A7' C U::l X~ \ U~~1 Xi: = XI:' for all k > l. Therefore , 

oscUIAl ,x) = 0 for x E Al and oscU IA7' , x) = 0 for x E A;" . 

We leave proving (ii ) to the reader. 

6.7. Applications to measures 

Let A be the Lebesque measure on [0,1]. Then the restriction of A to K([O , 1]) 
is usc . We denote this rest riction by the same letter A. Van Mill and Pol proved 

in [vMP, Theorem 3.1] that A is usc complete. (Actually, they showed that for any 

compact, metric space X , not only 2"' , and any usc function 1: X -+ [0 , 1] there 

is a continuous function ¢: X -+ K( [O, 1]) such that 1 = A 0 ¢.) Below we are 

able to generalize this result using the characterization from Theorem 5.1. Let X 

be a compact, met ric space. Recall that a function c: K(X) -+ [0,1] is called a 

capacity if 

(i) c(F1 ) ~ c(F2 ) for F1 ,F2 E K(X) with Fl C F2 ; 

(ii) c(nn Fn) = infn c(Fn) for any sequence Fn E K(X) , nEw, with Fn+l C Fni 

(iii) if F E K(X) and F = Un Fn for some sequence Fn E K(X) , nEw, with 

Fn C Fn+l , then c(F) = supn c(Fn). 

Notice that the restriction of any probability, Borel measure on X to K(X) is a ca­

pacity; however, there exist lots of important capacities which cannot be obtained 

in this way. 

Corollary 7.1. Let X be a compact, metric space. Let c: K(X) -+ [0 , 1] be a 

capacity. Assume that c(X) = 1 and cCD) = 0 for any finite set D eX. Then c 

is usc complete. 

Proof. First notice that conditions (i) and (ii) guarantee that c is usc. Thus , by 

Theorem 5.1 , it is enough to check that clUJ is a ray for any open set U C K (X). 

Let Fa E U. We will show that for any real r with c(Fa) ~ r ~ 0 there is F' E U 

with c(F') = r. We can easily find D C Fa finite such that for any F E K(X) 

if D c F c Fa , then FEU . Let F be a maximal, linearly ordered by inclusion 

family of closed subsets F of X such that D C F C Fa and c(F) ~ r. Put 

F' = nF. Then F' E U. We can find a decreasing sequence Fn E F, nEw, 
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such that F' = nnFn ; thus , by (ii), c(F' ) ~ T. If F' is fini te, then T = 0 and 

c(F' ) = T. Otherwise , we can find a decreasing sequence of open sets Vn, nEw, 

such that D n Vn = 0, F' n Vn ::/= 0, and nn Vn = 0. Put F'n = F' \ Vn. Then by 

the definition of F' , c(Fn) < T . By (iii ), c(F') = sUPnc(Fn ) ::; T. Thus c(F') = T. 

Jackson and ~1aulclin proved in [JM, Theorem 5] that dec( A) > w, where A is 

the restriction to K([O , 1]) of the Lebesgue measure on [0 , 1] . It follows from van 

Mill-Pol's result [vMP, Theorem 3.1] mentioned above that decCA ) = dec. In the 

next corollary, using Corollary 7.1 and Theorem 6.1, we characterize those Borel , 

probability measures J-l on compact , metric spaces for which dec(J1. ) = dec. By 

Ox we denote the Dirac measure concentrated at x , i.e., Ox (A) = 1 if x E A and 

ox(A) = 0 otherwise. 

Corollary 7.2. Let X be a compact, metric space. Let J-l be a Borel, probability 

measure. Let us denote by the same letter the restriction of J-l to K(X). Then 

dec(J-l) = dec unless J-l = L:XEDax8x where ax> 0, L:XEDax = 1, and {x ED: 
x is not isolated} is finite. Moreover, if J-l is of the above form, then dec(J-l) = n + 1 

where n = I{x ED: x is not isolated} I. 

Proof. If J-l is not purely atomic , then there is a closed set Fo C X such that 

J-l(Fo) > 0 and J-l( {x}) = 0 for any x E Fo . Then by Corollary 7.1, (1/ f1(Fo))J-lI {F E 

K (X) : Fe Fo} is usc complete. It follows that dec(J-l) = dec. 

Put N = {x EX: x is not isolated and J-l( {x}) ::/= O}. Assume N is infinite. 

We will find a continuous function ¢>: (w + I)'"' -+ K(X) such that if 1/1<:1/ E 

(w+ 1)"' , 1/k -+ 1/, then PC'lk ) -.'+ P(1/) implies J-l 0 ¢i(1/k) -.'+ J-l0¢i(1/). Then, clearly, 

if J-l IY is continuous, so is P I¢i -1(y); thus, dec(J-l ) ~ dec(P) , and we are done by 

Theorem 6.1. Find a converging sequence x~ EN, nEw. Put y = limn x~. Find 

xl: , k E w , with xl: -+ x~ . By choosing subsequences, we can assume that 

(i) 'tIk, lEw + 1 'tin , mEw xk::/= XI if k ::/= I or n ::/= m; 

(ii) 'tIk E w + 1 'tin E w d(xk ' y)::; l/n; 

(iii)'tInEw J-l({xk' : n<mEw, kEw+1 })<J-l({x~ }). 

Define 1/; : (w + I)'"' -+ K(X ) by 

1/;(1/ ) = {y} u {x~(n) : nEw} for 1/ E (w + I )'"'. 

By (ii) , the set on the right hand side is closed. It is routine to check that I/; is 
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(6) 

continuous. Let T}k,T} E (w + l )W, T}k -+ T). Assume P (T}k ) ...,... P(T} ). Then there 

is nEw such that T}k (n ) E w for infinitely many k, T}k (n ) -+ w, and T} (n ) = w. 

Let no be the smallest such n. 'Vithout loss of generality we can assume that 

T}k (n ) =ry(n ) for all n < no and T}k (nO) E w for all k E w. T hen 

po ¢(ryk) :::;p({x~( n): n < no}) + J1({x~;(no)} ) 

+J1({xi: lEw+1 , nEw, n>no})+J1({Y} ). 

Since T}k (nO ) -+ w, by (i), J1({x~;(no)}) -+ 0; thus , 

limsupJ1 0 ¢>( T}k):::; J1 ({x;(n ) : n < no}) 
k 

+ p( {xi: lEw + I, nEw, n > no}) + J1 ({ Y} ). 

On the other hand, by (iii ), 

!-l0 ¢>(T}) = J1( {x;(n) : n < no}) + J1( {x:o}) + J1( {y}) 

>J1({x;(n): n<no})+J1({x/': lEw+1 , nEw,n>no} ) +J1({Y} )· 

Therefore, J1 0 ¢>( T) k) ...,... !-l 0 ¢> ( T}). 

If INI = n < ~o , put 

Xi = {F E K(X): IFn NI = i}, for i E {O, . .. ,n}. 

It is easy to check that J1IXi is continuous , so dec(J1) :::; n + 1. To show that 

dec(J1) ~ n + I , assume towards contradiction that dec(J1) :::; n. Let Yo,.··, Yn- 1 

be such that J1 1Y; is continuous and U~:Ol Y; = K(X). Now find an open set 

U :::> N such that 

J1(U \ N ) < min{J1({x}): x EN}. 

Notice that for any A eN the set {F E K(X): FeU, F n N = A } is n~ , so 

we can apply the Baire Category Theorem, and that if A c A' then 

{F E K(X) : FeU, F n N = A'} c {F E K (X) : FeU, F n N = A} 

(this holds since the points in N are not isolated) . Using this, we recursively 

construct Aj eN and Zj C {F E K (X) : FeU, F n N = Aj } , j E {O , . .. ,n} , 

so that 
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(7) 

(8) 

(iv) IAi l = j; 

(v) Ai C Aj+1 for j < n ; 

(vi) Vj ::::; n:Ji ::::; n -1 Zj C Y;; 

(vii) Zj contains a nonempty, relatively open subset of {F E K(X) F C 

U, F nN = Aj }; 

(viii) Zj+l C Zi for j < n. 

Using (vi), by the pigeonhole principle, we get j1 < h ::::; nand io ::::; n - 1 with 

Zh , Zi> C Yio ' Let Xo E Ai> \ Ail' Then 

On the other hand, 

whence, since ttllio is continuous, 

But (7) and (8) contradict (6), since, by (viii), Zh clio n Zil' 
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