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ABSTRACT

In Chapter 1, we prove that for every family I of closed subsets of a Polish
space each X1 set can be covered by countably many members of I or else contains
a nonempty IIJ set which cannot be covered by countably many members of I.
We derive from it the general form of Hurewicz’s theorem due to Kechris, Louveau,
and Woodin, and a theorem of Feng on the open covering axiom. Also some well-
known theorems on finding “big” closed sets inside of “big” £7 sets are consequeces
of our result. Chapter 2 consists of a joint work with A.S. Kechris. We prove that
given a o-ideal I, the possibilty of approximating each Ei set by a Borel set
modulo I is equivalent to a definable form of the countable chain condition. This
answers a question of Mauldin. We also characterize the meager ideal on a Polish
group G as the only translation invariant, ccc o-ideal I on G such that each set
from I is contained in an F, set from I. This partially verifies a conjecture of
Kunen. In Chapter 3, we establish a theorem which gives sufficient conditions
for a K, equivalence relation to continuously embed E;. As a consequence of
this result we show that no indecomposable continuum contains a Borel set which
has precisely one point in common with each composant. This solves an old
problem in the theory of continua. In Chapter 4, answering a question of A.S.
Kechris, we prove that the Topological Vaught Conjecture holds for Polish groups
admitting invariant metrics. We also answer a question of R.L. Sami by proving
that there exist continuous actions of Polish abelian groups with non-Borel induced
orbit eqivalence relations. Actually, we give a fully algebraic characterization of
sequences of countable abelian groups (H,) such that the group [] H, has a
continuous action with non-Borel orbit equivalence relation. In Chapter 5, we give
a characterization of local compactness for Polish abelian groups in terms of Haar
null sets of Christensen: a Polish abelian group is locally compact iff each family
of mutually disjoint closed (or, equivalently, universally measurable) sets which
are not Haar null is countable. This completes, in a sense, Dougherty’s solution
to a problem of Christensen. We also consider the question of the possibility of

approximating analytic by Borel sets modulo Haar null sets. Chapter 6 contains




two dichotomy theorems for Baire class 1 functions: a Baire class 1 function can
be decomposed into countably many continuous functions, or else it contains a
function which is as complicated with respect to decompositions into continuous
functions as any other Baire class 1 function; an analogous theorem is proved
for decompositions into continuous functions with closed domains. These results
strengthen a theorem of Jayne and Rogers and answer some questions of Stepra ns.
Their proofs use effective descriptive set theory as well as infinite games. Some
results on decompositions of Borel sets and functions on higher levels are also

obtained.
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CHAPTER 1

COVERING ANALYTIC SETS BY FAMILIES OF CLOSED SETS
SLAWOMIR SOLECKI

Abstract. We prove that for every family / of closed subsets of a Polish space each I} set can be
covered by countably many members of [ or else contains a2 nonempty l'Ig set which cannot be covered
by countably many members of /. We prove an analogous result for x-Souslin sets and show that if 4~
exists for any A C ™. then the above result is true for I sets. A theorem of Martin is included stating
that this result is aiso true for weakly homogeneously Souslin sets. As an application of our results we
derive from them a general form of Hurewicz’s theorem due to Kechris. Louveau. and Woodin and a
theorem of Feng on the open covering axiom. Also some well-known theorems on finding “big™ closed
sets inside of "big” I} and E! sets are consequences of our resuits.

§1. Introduction. Gy. Petruska answering a question of M. Laczkovich proved
in [P] that a I} set on [0. 1] either can be covered by countably many closed sets
of Lebesgue measure 0 or else it contains a nonempty ITJ set which cannot be
covered by countably many closed sets of measure 0. (This is. in fact. an equivalent
reformulation, see Remark 2 following the proof of Theorem 1.) It is a trivial
observation that the above statement holds if we replace closed sets of Lebesgue
measure O by closed nowhere dense sets (or equivalently, first category sets). A.
Kechris formulated the following general question. Let I be a family of closed
subsets of a Polish space X. Put [ = {Y CX: 2{F,:n€w} CIY C e, Fr}-
Find out to what families of closed sets Petruska’s theorem can be generalized. i.e..
what families of closed sets have the following property: for any I! set A either
A € I, orthereisa l'lg set G C 4 with G & I.. This is a weak form of the covering
property which says the same except that the set G is closed rather than merely
I13. The covering property is very restrictive. For example, neither the family of
closed sets of Lebesgue measure 0 nor of first category have this property. On the
other hand, the families of closed countable sets, of compact sets and of closed
sets of extended uniqueness on [0, 27] do have it (Souslin; Kechris [K] and Saint
Raymond [SR]; Debs-Saint Raymond [DS]. see also [KL. Theorem 5. p. 426]).
Surprisingly it turns out that the answer to Kechris' question is affirmative for all
families of closed sets. Moreover. assuming that 4% exists for any 4 C w® we
prove that if 4 € I} then A € I, or there is G C A with G € I.x, and G € IT3. We
give several applications of these results. Among them the generalized Hurewicz
theorem proved in [KLW] and the theorem of Feng [F] that I! sets fulfil the open
covering axiom. Also certain theorems of Kechris, Solovay, and Louveau can-be
derived from our results.

Received May 1. 1993: revised December 20. 1993.

© 1994, Association for Symbolic Logic
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COVERING ANALYTIC SETS 1023

Define ooy = {Y CX: Y # 2 and ¥U open UNY # @ =UNY & Ly}
By cl(4) we denote the closure of the set 4. If 7 is a family of subsets of X let
FO=cdlUFNWULUF): F € 7). MGR(A) denotes the family of all subsets of
A which are of first category in 4. If r € w<“ then lht is the unique N € o with

- N . , , _ .
rew’. Byrxo. 1.0 € <", we denote the concatenation of r and o: 7 % n.

=

W< n € . stands for = (0.n). For x € w” or x € 2 = {0.1}* and
@ by xin we denote the restriction of ¥ to n = 0z n — 1}: in particular
vi0 = 3. We give @” and 2% the product topologies with basic neighborhoods
[0] = {x: xlhg = o} for 0 € w® or ¢ € 2<“. If T is a tree on a set X
and u € X" for some n € w. then T, = { T''v CuoruC v} For
T Cwo*put[T] = {x € w”:%ax|n € T}. If T is a tree on @ x « define
PIT] = {x € @*: 3y € k“¥n (x|n.y|n) € T}. For P C ¥ x X and ¥ € Y put
P.={xeX:(y.x)e P}

T

b

m

§2. Covering I sets by closed sets.

THEOREM 1. Let I be a familv of closed subsets of a Polish space X . Then each
Tl set either is in Ly or contains a I subset not in Iy,

This result can also be formulated as follows: Let J be a o-ideal generated by
a family of closed sets in a Polish space. Then any Z! set not in J contains a 1!
subset which is not in J.

We need the following lemma of Petruska. It was proved in [P] in the special
case [ = the family of measure 0 closed subsets of [0. 1], but the argument works
in the general situation as well.

LemMa ([P. Lemma 4]). Let 4 C X be T!. Assume A & L. Then there is a
regular Souslin scheme {A,: t € w<*} consisting of closed sets such that

(l) Ag ?,: <,

(ll) U.\‘Ew“ ﬂn(:'w A‘i\'\n C A

(iii) if A; # @. then AN A, € oert and is dense in A,

(iv) U{Adren: n € @} is dense in A..

OUTLINE OF THE PROOF OF THE LEMMA. Let 4 have a representation 4 =
Uvews Nicw Hepn where H.. 7 € @<, are closed. Put L, = Lot [ en st
Then define A, = cl(L;) where L; = L.\ |J{U: U open and UNL. € Lo}. O

PrOOF OF THEOREM 1. Let 4 C X be Z{. Suppose 4 £ I,,. Let 4.. 7 € @<,
be as in the Lemma.

Case 1. 37 € 0“3 U open 4. N U # & and I, > MGR(A4, N U).

Put 4 = 4N A.NU. Then by (iii) from the Lemma A’ € Toers. Also 4" is Z.
Thus 4" has the Baire property whence there is a I1§ set G such that G C 4’ and
A\NG € MGR(A4, NU) C Iy. Thus. G & L.

Case 2. V1 € o=*V U open 4. NU = @ or MGR(4, N U)\Iox # 2.

In the following construction we use an idea from [KLW. Lemma 7] (see also
[KL. Theorem 2. p. 425]). Let us fix a complete metric on X. We construct -
recursively ¢: <% — w<* and U.. t € »<“, with the following properties:

(1) thg(z) = lht: = C p = ¢(z) C ¢(p):

(2) U. is open:

(3) diam U, < 1/{lht + 1);

(4) lim, diam U,., = 0:



1024 SEAWOMIR SOLECKI

(5)tCpand r #p = cl(U,) C Us
(6] T I Um,; =g ifn # m:

(7) U, NAye # 2

(8)

7

e —

{L’T-"": A e ('J}‘F E cht'»
(9) {Urin: new} C U..
Put ¢(2) = @. Uy any open set with diam Uz < | and Uy N 4z # @. Assume
&(7). U: are constructed forall t € w¥. N €w. Pickr e w?. Then U.NA4,., # &
and MGR(A4,,, N U.)\[ew # @. Thus. we can find K C Agiey N Uz, K closed,
nowhere dense in 4, and K g Iewi. Since K 1s nowhere dense. we can find a
countable discrete set D C 4 NU. withel(D) =KuDand DNK = 2. Put

= {x,: n € o} with x, # r,,, for n # m. Let U.., be an open ball centered
at xn with radius r, > 0. By choosing r, sufficiently small we can arrange that
cl{Ussn) € U;. diam U,., < 1/(lhz +2). lim,diam U,., = 0. U.., N U.., = @ if
- n#m.and {U..,: n € w}’ = K. Since x, € A,.). we also have U.., N A, # 2.
Now for each n we can find a k € @ with U.., N 4, # @ by (iv) from the
Lemma. Pick such a k& and put ¢(r xn) = ¢(z) * k. This finishes the construction.

Now put G = (), [J{U:: lht = n}. Then G is ITJ by (2). We show that G C 4
and G € I.. From (35) and (6) it follows that G = U 2o | Vg Fisine Sinee
diam Uy, < 1/(n+1). Uy, N Agiypn # @ (by (3) and (7)) and Ay, are closed.
we have (,c., Usin € Npew Aot BY (1) there is y € 0 with ¢(x|n) = y|n for
all n € w. Then (,¢,, Usin € Nhew Avin € 4.

Now we show that G € [, Note that (3). (5). and (7) guarantee that
Mhew Usn # @ for any x € w®. Thus. U: NG # @ for any 7 € ©=“. Assume
there are closed sets F, € I with U,,EaJ F, O G. Then. by the Baire Category
Theorem applied to cl(G). there is an open set ¥ and ng € w with ¥ NG # @ and
V Ncl(G) C F,,. Now thereisa r € w<“ with U, C V (by (3)). But by (4) and (9)
and the fact that GN U.., # @. n € . we have {U..,: n €0} C VN cl(G) CF,,.
But F,, € I which contradicts (8) and the proof is complete. d

REMARK. (1) By putting G’ = G\|J{U: U open and U N G € I} we can
guarantee that the TI3 set produced in Theorem 1 is in Jper.

(2) In the case where I is a o-ideal of closed sets (i.e.. I is a family of closed
sets. a subset of an element from [ isin /. and if {F,: n € w} C 1 and |J,, Fx is
closed. then | J, ., F, € I) the weak covering property has the following obvious
reformulation (this is the original formulation from Petruska’s theorem): Let A be
Z!. Then either 4 € I, or there is a nonempty closed set C so that C 1 4 contains
a Hg set dense in C and for any open set U if UNC # @, thenc(UNC) € 1.
To obtain such a set C from the I'Ig set G produced in Theorem 1. put C =
{G\U{U: U open and UNG € lu}).

We can actually obtain a slightly more accurate conclusion than that in
Theorem 1.

COROLLARY 1. Let I be a family of closed subsets of a Polish space X. Let A C X
be Ll and such that A C \JI. Then either A € Iex or there is G C A such that G
is homeomorphic to @ and G € Ipes.

ProoF. By Theorem 1 and Remark | 4 € [ or there is G’ C A4 which is
19 and G’ € Iperr. Since G' € Iperr and G’ C |J7. G’ is dense in itself. Now we

3




COVERING ANALYTIC SETS 1023

find a ITY set G” C G’ such that G” is dense in G’ and G” is O-dimensional. By
the Baire Category Theorem G" € [...v. If there is no compact set C C G" such
that @ = U'N G" C C for some open set U'. then G” is homeomorphic to u"‘.
It there is such a compact set C. then C £ [ since G € Loy, We find C' C

compact and such that C’ € I,.s. Since C' is O-dimensional. compact. and deme
i 1tself. ¢ 1s homeomorphic to 2. Thus. it contains a dense copy of w™. call

it G. Again by a Baire category argument G & L

§3. Covering x-Souslin sets by closed sets. By L[A4;...... ,,] we denote the small-
est inner model M of ZF suchthat A, N M e M. i=1..... (see [J. p. 128]). We
say that a family of closed sets / is hereditary if closed subsets of elements from
I arein [.

- THEOREM 2. Let [ be a hereditary family of closed subsets of . Let 4 C w"”
be k-Souslin. Assume that k-Souslin sets have the Baire property. Then one of the
Jollowing holds:

(1) A can be covered by k many sets from I

{11) A contains a Hg set G such that G € L.y.

Moreover if A = p[T] for a tree T on w x k. then (i) can be snengthenea’ ro:

(1) there exist A < k™ and afamu’v of trees on w{S:: & < A} € L[T.I] such
that A C\J{[S:]: £ < A} and {[S:]: E < A} C 1.

ProOF. For any tree S on w x & define ¢{S) = {s € 0~ {{(n;.&).....
(. &NeS:scin..... n )} is not well founded}. We have [¢(S}] = cl{p[S]).
Now we define recursively

O == P

TS = {u e T5: [o(TS)] € I}:

T =().: T¢ if ¢ is a limit ordinal.

There exists 4 < «* such that T* = T**!,

Case 1. T* = @.

Define ¥ = |J.;{c(T5): w € TS\T*"'}. Then ¥ € L[T.I] and {[S]: S €
F} 1. Also. p[T] CU{S] SeZ }

Case 2. T" # @.

Subcase 1. 3u € T*I,, D MGR(cl(p[T7])). Since by assumption p[T/] has
the Baire property. this subcase can be dealt with as in Case 1 in Theorem 1 as
long as we show that p[T/] € I for u € T*. But otherwise there exist u € T*
and K, € I. n € w such that p[T;] C {J,., K». Then [T}] C U, p ' (Ks).
By the Baire Category Theorem there is nyp € @ and v € T* with u C v and
[T/] € p~!(K,,). whence [¢{T7)] = cl(p[T]) € I which contradicts the definition
of 4.

Subcase 2. ¥ u € T* MGR{cl(p[T]))\[ox« # @. The assumption implies that
for any u € T* we can find a closed set K c cl(p[T7]) which is nowhere dense in
cl{p[T7]) and K € L. By a construction similar to that in Case 2 in Theorem 1
we build a function ¢: @<“ — T* so that

(i) diam(p(T7,,]) < 1/(lhg + 1):

(ii) if 6 C v and 6 # t. then ¢(c) C ¢(7) and ¢(a) # o(7):

4

e



1026 SEAWOMIR SOLECKI

(iii) {p(T,.,]: n € @} is discrete (ie.. clp[T}, _, DNel(lU,« pITS, . 1) =)
for any o € <
(iv) {pT;,.. ) n €0} € L.

The set
¢=J NeT.1=) pIT/]
NEw uEofw"]

NEw nSw

1s contained in A. To show that G € Hg note that the conditions (i) and (ii1) imply
the existence of a family of open sets {¥.: r € @<“} such that P[T;u;.] c V.. if
p Ctthen V. C V,. if neither p C t nor z C p. then V, NV, = 2. and finally
diam V., < 2/(lht + 1). Since ﬂ"Ewp[T;(_\_ln.}] # @ for any x € w”. we have
MNicew PITS ] = Mucey Viine It follows that G = ., U, Ve € T Asin
Case 2 in Theorem 1| we show that G € [. O

Let 7 be a family of closed sets of a Polish space X. Call aset 4 C X -
approximable if either A € Iy or there is a l'lg set G C A such that G & I,. A 1s
absolutely approximable if it is I-approximable for any family I of closed subsets
of X. The following simple proposition will prove to be useful.

PropPOSITION 1. Let X and Y be Polish spaces. Let I be a family of closed
subsets of Y. and let f: X — Y be continuous. If A C X is I*-approximable.
where I* = {f ~'[F): F € I}. then f[A] is I-approximable. In particular. if A is
absolutely approximable. then so is f[A].

Proor. By assumption either 4 € I5,. whence f[A] € L. or there is a II(,_) set
G’ C A such that G’ € I;,. But then f[G'] € I« and f[G'] € E!. Thus. applying

ext-

Theorem 1 we obtain a IT) set G C f[G'] C A with G & Ly O

COROLLARY 2. Assume mfm < w for any x € w®. Let X be a Polish space.
Let A C X be ). and let I be a family of closed sets which is T} (in the Effros
structure). Then either A € Ly, or there exists a l’Ig set G C A with G € Iy,.

ProoF. First. let us notice that we need to prove the conclusion only for
X = w®. Indeed. let ¢: @® — X be a continuous surjection. Put 4’ = ¢~'(A4).
[* ={¢~'(F): F € I}. Note that A’ € £} and /* € Z}. Now assuming that we
have proved the Corollary for X = w® A’ is I *-approximable. Then by Proposition
1 A is I-approximable.

Let X = w®”. We obviously can assume that / is hereditary. There exists
xo € w® such that A. I € Zi(xp). Thus. by Schoenfield’s theorem / is absolute
for L[xo). and there exists a tree T on w X w; such that T € L[xp] and p[T] = 4.
Assume A does not contain a IT set not in Ly. Since by Solovay’s theorem
culL["'] < w for all x € w“ implies that w,-Souslin sets with trees in L have the
Baire property. we conclude from Theorem 2 that there exists a sequence of trees
on w {S;: & < A} € L[xo] such that 4 C |J{[S¢]: £ < A} and {[S:]: ¢ <A} C 1.

Since L[xo] Nw® is countable. [{S:: & < A}| < w. whence A4 € [ O
A. Kechris pointed out that if one assumes that A7 exists for 4,..... A, C 0¥
(e.g.. if a Ramsey cardinal exists) then L[A4;..... A,] contains only countably many

reals. Thus. the proof of Theorem 2 and Corollary 4 goes through for an arbitrary
family I of closed sets. Therefore. the following corollary holds true.

5




COVERING ANALYTIC SETS 1027

COROLLARY 3. Assume A% exists for anv A C w™. Let I be a family of closed
subsets of a Polish space X. and let A C X be E\. Then either A € L.y or there
exists d ﬂ‘:)-set G C A with G € I.,.

D. A. Martin defined the following game ['(/. 4}. where [ is a family of closed
subsets of @™ and A is a subset of w". Player I plays K, € /. and Player II plays
g, € w<”. n € w. so that g, C 6,.. 6, # 6,-1 and [6,]N K, = . Player II wins
if U, =, 9« € 4. The next theorem and corollary are due to Martin.

THEOREM 3 (Martin). If Plaver II has a winning strategy in T{I. A). then there
is a TS set G C A such that G € Ly. If Player I has a winning strategy. then
A E L.

ProoF. By Theorem 1 to prove the first part it is enough to show that there is
a ! subset of 4 not in L. Denote by £ a winning strategy of Player II. First we
construct recursively a countable set Z C [ such that for any K. . ... K,_ eX.
K € I there is K, € # such that Z(Kj..... Ei 1.K}) = BlKp.oos i 1K)
Now define B € w® as follows: x € B iff there exist K, € # and k&, € w.
n € w. such that k, < k,-; and {Ky. x}ko. .. .. K,.x|k,) agrees with Z for each
n € w. Then clearly B € £} and B C A. Moreover B € [.. Otherwise there
are K, € [. n € w with B C |, K.. Now we can define inductively K, € Z
so that Z(Kj..... K i Ky) = LKL s !_-K,) for each n € w. Put g, =
2 < A K}). Then [0,]N K, = @& for every n € w whence {J, ., n € U,c., Kn-
But on the other hand | J, ., 0. € B.

Let T be a winning strategy of Player I. Define & by the condition that K € &
iff there exist gg. .. .. o, €cow<®and K. . ... K, € I such that (Kp. gq. . . .. K,.0,.K)
agrees with . Itis easy to see that & is countable. Obviously. # ClandAC|JZ.
Thus. 4 € L. a

It is easy to see that if 4 C w® is homogeneously Souslin. then the outcome
of the above game is homogeneously Souslin. Thus. by [MS. Theorem 2.3] the
game is determined. i.e.. from Theorem 3 homogeneously Souslin subsets of w® are
absolutely approximable. Since weakly homogeneously Souslin sets are projections
of homogeneously Souslin sets. we get from Proposition 1 that these too are
absolutely approximable. In particular. if there exist @ Woodin cardinals and a
measurable cardinal above them. then the game is determined for A projective or
A € L(R) N Power(R) [MS]. Thus. we have the following corollary.

COROLLARY 4 (Martin). Let I be a family of closed subsets of w®. and let A C w®
be weakly homogeneously Souslin. Then either A € Iox.. or there is a I3 set G C A
with G € Ix.. The same holds for A projective or A € L(R) N Power(R) if there
are w Woodin cardinals with a measurable cordinal above them.

§4. Applications. In this section we give various applications of the results
proved in the §§2 and 3.

A frequently met problem in analysis or descriptive set theory is that of finding
a “big” closed set inside of “big” Ll. El. or projective sets. The results proved in
8§82 and 3 reduce this problem to finding “big” closed sets inside of “big” ITY sets.
Let us be more precise. Following [L] call a set 4 C X [-regular if either 4 € [ox or
there is a closed set C € X with C € 4 and C € I.,,. (Here again X is a Polish space
and 7 is a family of closed subsets of X.) Note that / has the covering property

6




1028 SEAWOMIR SOLECKI

(see the Introduction) iff every I set is /-regular. From Theorem | and Corollary
2 we have the following immediate corollary. {Note that similar conclusions. under
appropriate assumptions. can be drawn form Corollaries 3 and 4.

COROLLARY 5. Let [ be u fumily of dosed subsets of a Polish space X. Every E:
subset of X is [-regular iff every TS subset is. If additionally wlLN
v 2w und I € ZL. then every E! subset of X is [-regular if every 1Y subser is.

This corollary provides a basis for proving /-regularity of £} and I} sets. For
example generalizing results of Kechris [K]. Saint Raymond [SR]. Solovay [S]. and
Souslin (the classical perfect set theorem). Louveau in [L] proved that if / is of
well-founded type (for definition see [L]). then any Z; set is /-regular (1.e.. I has
the covering property) and if w‘L{"'] < ¢ for any x € w®. then any I} set is /-
regular. Using Corollary 4 we can obtain both results by simply proving that T3
sets are [-regular (note that 7 € I3 C I} since [ is of well-founded type) and this
is not difficult. '

Now we will indicate how one can derive from the results proved in §§2 and 3
a theorem of Feng [F. Theorem 1.1. Theorem 2.1. the remark following Theorem
3.4] saying that sets in £} {or in I3 if o < o forall x € w”. orin |, L,
or L{R) N Power(R) if there are » Woodin cardinals with a measurable cardinal
above them) satisfy the open covering axiom.

COROLLARY 6 (Feng). Let X he a Polish space. and let X x X = Ky UK.
where K, is closed and symmetric. Assume A C X is ) (I3 if a)LLM < wy for all
x € w®. or is in\J,z,, Eb or L(R) N Power(R) if there are w Woodin cardinals with
o measurable cardinal above them). Then either A can be covered by countably many
1-homogereous sets or contains a perfect compact set which is 0-homogeneous. (A
set S C X is called i-homogeneous. i = 1 or 2 if (x.y) € K; for any x.y € S with
xXFy)

ProoF. Put I = {F C X: F is closed and F x F C K| }. Notice that [ is IT.
whence certainly . Then by Thecrem 1 or Corollary 2 or Corollary 4 A € L.
i.e.. 4 can be covered by countably many 1-homogeneous sets. or there exists a
[I'g set G C A with G € I This condition means that if ' € X is open and
UNG # @. then (UNG) x (UNG) ¢ K. Let us fix a complete metric on G.
We are in the following situation: G is complete. V = (G x G\K; C G x G is
open and symmetric and for any nonempty open set U C G there are open sets
U,.U» ¢ U with Uy x U2 C V. and hence. U x Uy c V. This allows us to
construct open sets U,. o € 2<% such that

(1)e Ccrand g #t=cl(U:) C Us:

(2) If neither ¢ C 7 nor t C 6. then U, N U, = @ and U, x U: C V"

(3) diam U, < 1/lh(0o).

Now if we put C = (., Uin()=n Us- then C is perfect and compact. C C G C 4.
and also C x C\{(x.x): x € G} C V. This last condition means that C is 0-
homogeneous. .

Let us point out that Corollary 6 (for X = @) is essentially included (modulo
the simple argument presented above) in [L] as it is easy to see that the family /
defined in the above proof is of well-founded type.

From this point on we state all results for L! sets. But in the proofs we use only

< ey for any

i

.
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the property of I} sets established in Theorem | (i.e.. we actually prove them for
absolutely approximable sets). Therefore one can equally well apply Corollaries
3 or 4 and obtain. under appropriately stronger hypothesis. analogous results for
sets in L1 X}, or L(R) M Power(R).

One can quite easily deduce from Theorem 1 the strong version of Hurewicz's
theorem proved in [KLW. Theorem 4. p. 267] (see also [KL. Theorem 7. p. 419]).
The original proof is game theoretic and relies on the tact that games which are
Boolean combinations of ITY sets are determined.

Cororrary 8 (Kechris-Louveau-Woodin). Let X be u Polish space. Let 4. B C
X be disjoint. and assume that A is ). Then either A can be sepurated from B by u
I8 set. or there is a homeomorphic embedding ¢: 2 — X such that [2”] C AL B
and ¢(x) € B iff x{n) = 0 for all but finitely many n € w.

ProofF. Apply Theorem 1 to the family / = {F: F isclosed and F" B = &}
Then either 4 € [. i.e.. A can be separated from B by a Zg set. or there 1s a
closed set C as in Remark 2 which in this case means that 4 N C contains a 19
set dense in C and BN C isdense in C. Let G, C C. n € w. be open and dense
in C and such that G, > G,-; and 4 > (), G,. Now we recursively construct
open in C sets U, € C and points y. € C. t € 2<%, 50 that

(1) tCpand r #p= U. Dcl(l,):

(2) Ureo N Usa = @

(3) diam U, < 1/(lht +1):

(4) y. € U.N B:

(5) ¥z = yeap« for any n € @ where 0" 1s a sequence consisting of # 0’s:

(6) if lht = n+1 and z(n) = 1. then U, C G,.

The construction is elementary so we skip its detailed description. Let us only
mention that the conditions (4). (5). and (6) can be met since B is dense and the
G, are open and dense in C.

Now define ¢(x) to be the only (by (1) and (3)) point in (0, ,, Uy, for x € 2.
Clearly. ¢ is a homeomorphism by (1). (2). and (3). If x € 2¢ and x(n) = 1
for infinitely many n € w. then (6} and the fact that G, O G, guarantee that
o(x) € [V G E-A. If x(n) =0forn > N forsome N € w. then¢(x) =y, v €B
by (4) and (5). Thus. ¢ is as required. d

A. Kechris pointed out to us that the following result proved independently in
[K] (for X = »“) and [SR] follows from the above corollary. Let X" be Polish.
Let A C X be Z}. Then either A can be covered by a K, or else contains a closed
copy of w*. To see this put X = a metrizable compactification of X. Then either
A can be separated from X \X bya Eg set. .e.. A can be covered by a K, since
X is compact or else there is a homeomorphic embedding ¢: 2¢ — X such that
o[2¢] C (X\X)U A and ¢(x) € X\ X iff x(n) = 0 for all but finitely many » € w.
In this case ¢[2“] N X is closed in X and is contained in A. Notice also that
o[2¥] N X is homeomorphic to w®.

A special case of the next corollary for 4 € Hg. as well as its lightface version
for 4 € £}, P € X x X symmetric I1} with K, sections. is due to Louveau [L1].
[L2. Lemma 3.10]. That the following boldface version for A4 € ! follows from
Theorem | was pointed out to us by Kechris. (We state it here for X* x X instead
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of X x X because of one application that we consider below.)

COROLLARY 7. Let X be Polish and let P C X*7!' = X* x X. k € w. be such
that P huas the Baire property in Y*7! foranmy Y C X. Y € 8. and P+  £9 for
any ¥ € X¥. Let A C X be E{. Then either there is a sequence X, € X new.
such that A C |, Px, or else there is a perfect compact set C C A such that
(g Yeot) € P for xi.....xp— € C with x; # x; fori # j.

ProOF. Put /] = {F: F C X. F is closed. and there is ¥ € X* with F C
P<}. Then by Theorem | and Remark | either 4 € [.,;, which in this case means
4 C U, P, for some X, € X*. n € . or else there is a ITJ set G C A such
that G € [or. Put P = PN G*1. (We could use now Louveau’s theorem for
A4 € M. but the argument is short enough to be included here.) Then P’ has
the Baire property in G*~!. Note also that P’ is meager in G for any X £ G*.
Otherwise. by the Baire Category Theorem. there would exist an open set U < X
with @ # U NG C P, C Py which contradicts the fact that G € [ev. Thus. by
the Kuratowski-Ulam theorem (see [0]) P’ is meager in G*T!. Since G is Polish
in the relative topology. by Mycielski’s theorem [M] there exists a compact perfect
set C C G C A4 with the desired properties. O

This corollary can be used to prove the following result of van Engelen. Kunen.
and Miller [EKM]. Let 4 C R*. R = the reals. be £!. Then either A can be covered
by countably many lines or it contains a compact perfect set no three points of
which are collinear. Simply consider the relation P < (R*)? = (R?)* x R? defined
by: (x.y.z) € P iff x.y.z € R? are collinear and x # y and note that P € I
and P, . for x.y € R%. is empty or a line thus. ZY.

Let us mention one more application of Theorem 1. Louveau in [L. Theorem
2.2] proved that in Solovay’s model if I is a family of closed subsets of w® of the
form I = {C.: x € w®} for some closed set C C w® x w®. then for any set
A C w®. A4 & I there exists a Z{ set G such that G C 4 and G & I.;,. From
Theorem 1 it follows that G can be chosen to be ITJ.

Acknowledgment. I would like to thank Professor A. S. Kechris for drawing
my attention to the problem considered in the paper. for valuable discussions.
guidance. and encouragement and also Professor D. A. Martin for allowing to
include his Theorem 3 in this paper.
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ABSTRACT
Let I be a o-ideal on a Polish space such that each set from I is contained
in a Borel set from J. We say that [ fails to fulfil the £} countable chain
condition if there is a E% equivalence relation with uncountably many
equivalence classes none of which is in /. Assuming definable determinacy,
we show that if the family of Borel sets from I is definable in the codes
of Borel sets, then each Ei set is equal to a Borel set modulo a set from
I iff T fulfils the E% countable chain condition. Further we characterize
the o-ideals I generated by closed sets that satisfy the countable chain
condition or, equivalently in this case, the approximation property for £}
sets mentioned above. It turns out that they are exactly of the form
MGR(F) = {A:VF € FANF is meager in F} for a countable family 7
of closed sets. In particular, we verify partially a conjecture of Kunen by
showing that the o-ideal of meager sets is the unique o-ideal on R, or any
Polish group, generated by closed sets which is invariant under translations

and satisfies the countable chain condition.

1. Introduction

The main objects of our study will be o-ideals of subsets of Polish spaces. By
a o-ideal on X we mean a family of subsets of X which is closed under taking
subsets and countable unions. All o-ideals considered in this paper are assumed
to be proper, i.e., they do not contain X, and uniform, i.e., they contain
all singletons {z},z € X. Here are some other relevant definitions. A o-ideal

* Research partially supported by NSF grant DMS-9317509.
Received July 20, 1993 and in revised form March 6, 1994
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I is said to be Borel supported (X2 supported, resp.) if for any 4 € [
there is B € Al nT (B € ¥3n I, resp.) with A c B. Note that a o-ideal
is 9 supported iff it is generated by a family of closed sets. A o-ideal I has
the approximétion property if for any 4 € ¥} there is B € A} such that
AAB = (A~B)U (B~ A) € I. Note that, in case I is Borel supported, this
is equivalent to saying that if A € X}, then there are B, By € A}l such that
B,y C A C By and By~ B; € I. We say that a g-ideal I fulfils the countable
chain condition (the c.c.c.) if any family A of disjoint Borel sets such that
AN T =0 is countable. It is well-known that if a Borel supported o-ideal fulfils
the c.c.c., then it has the approximation property (see e.g. the proof of Lemma 5
below). In particular cases, like, e.g., I = the family of meager sets or the family
of measure zero sets for some o-finite Borel measure, this says that analytic sets
have the Baire property and are measurable. It also follows from the above fact
that, in case [ is Borel supported, the members of A in the definition of the c.c.c.
can be assumed to be merely X} without changing the meaning of this definition.

Let A be a family of disjoint sets. One can naturally associate with such a
family the equivalence relation E 4:

(1) zEqye (VAc Az c A ye A).

Thus a Borel supported o-ideal I does not fulfil the c.c.c. iff there is an equiva-
lence relation E with |X/E| > w whose equivalence classes, except for possibly
one, are X} and do not belong to I. We propose the following definable version
of the c.c.c. We say that a Borel supported o-ideal I fulfils the £} c.c.c. if there
. is no X} equivalence relation E with |z/E| > w whose all, but possibly countably
many, equivalence classes are not in I. (We get an equivalent version of this def-
inition if we assume that none of the equivalence classes of E is in /.) The main
result of the first part of the present paper is that the £} c.c.c. is equivalent with
the approximation property (assuming some determinacy and definability of the
o-ideal). This gives an answer to a question of Mauldin [M1]. We also define
the pseudo-Borel c.c.c. and prove a version of the above result (the pseudo-Borel
c.c.c. replacing the £] c.c.c.) without assuming any determinacy hypotheses. As
a lemma we prove (see Lemma 4) the following result which seems interesting in
its own right: Assume A}-determinacy. If E is a £} equivalence relation, then
E has countably many equivalence classes iff every E-invariant ¥} set is Borel.
(After this paper was written, G. Hjorth showed that Al-determinacy can be

12
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replaced in the above statement by the assumption that z# exists for all z € w*,
which is equivalent, by results of Harrington and Martin, to X1-determinacy.)
In the second part we examine which 9 supported o-ideals fulfil the ¥}
c.c.c. It turns out that the X} c.c.c. is equivalent in this case with the c.c.c.
Actually we show that £9 supported o-ideals fulfilling the c.c.c. are of the form
I'={A:YF € F ANF is meager in F'} for some countable well-ordered by reverse
inclusion family F of closed sets. On the other hand, if the c.c.c. is violated
by a X9 supported o-ideal I, then there exists a homeomorphic embedding ¢:
2 x w* — X such that ¢[{a} x w*] ¢ I for any a € 2*. This sharpens and
generalizes some earlier results of Mauldin [M] and Balcerzak, Baumgartner and
Hejduk [BBH]. We use this fact to show that if I is a X9 supported o-ideal of
subsets of a Polish group which is translation invariant and fulfils the c.c.c., then

it is the o-ideal of meager sets. This gives a partial answer to a question of Kunen
{(KU]J.

2. Approximating X1 sets and the i c.c.c.

It is a well-known fact that if a Borel supported o-ideal fulfills the c.c.c., then it
has the approximation property (see Lemma 5 below). That the reverse implica-
tion also holds in certain particular cases was proved in [KLW]. A combination
of Theorem 7(ii), Proposition 6(ii) of Section 3 in [KLW] yields the following
result: Let I be a Borel supported o-ideal such that I N A} is IT} in the codes
of Borel sets and such that for any A € A} ~ 1T there exists a closed set C ¢ I
with C C A. Then I has the approximation property iff I fulfills the c.c.c.
Also Mauldin [M1] proved, using results from [M], that the o-ideal of subsets of
[0, 1] which can be covered by a £J set of Lebesgue measure zero (the o-ideal very
strongly violates the c.c.c. as was shown in [M]) does not have the approxima-
tion property. Here, using quite different methods and assuming an appropriate
amount of determinacy, we are able to prove that the approximation property is
actually equivalent to the £1 c.c.c., for all reasonably definable Borel supported
o-ideals regardless of their other structural properties. This gives an answer to a
question of Mauldin [M1], who asked what properties of a o-ideal are responsible
for it having the approximation property.

If E is an equivalence relation on X and A C X is E-invariant, we write
|A/E| for the cardinality of the family of equivalence classes included in A. If
B C X, then [B]g denotes the saturation of B with respect to E, i.e., [Blg =
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{r € X : 3y € BxEy}. We write [z]g for [{zr}]g. If there is no possibility
of confusion we will drop the subscript E. If ¢ and 7 are two sequences of
elements of a set Y then o x 7 denotes their concatenation. If y € Y, then
ogxy=0c%(0,y). For a definition of IT}-rank see [K1, 34B]. Now we define the
set WO C 2%, Let {, ):w? > whbea bijection. Put a € WO iff the relation
{(n,m) € w? : a({n,m)) = 1} well orders w. WO is II}. Define |a| = the order
type of {(n,m) € w? : a((n,m)) = 1} for a € WO. Then o — |a| is a II}-rank
on WO. For a pointclass I', Det(I') means that all games in ' are determined.

By o(I13) we denote the o-algebra generated by the family of all TI3 sets.

THEOREM 1: Assume Det(A3}). Let I be a Borel supported o-ideal such that the
family IN A} is o(I13) in the codes of Borel sets. Then I has the approximation
property iff I fulfils the £] c.c.c.

The proof of the theorem is split up into several lemmas. The implication =
follows from Lemmas 3 and 4 and the implication < follows from Lemmas 5 and
6. Note that the assumption that 7 N A} is ¢(TI2) in the codes is used only in
the proof of <.

The following consequence of Theorem 4 from [KW] will be useful.

LeMMA 1: (Kechris-Woodin) Det(A3}) implies Det(o(I13)).

We will be also using the following particular case of a theorem due to Solovay.

For a proof see [K, Theorem 7.1].

LEMMA 2: (Solovay) Assume Det(A}). Let A be a I11 set and p a I1}-rank on
A. Let B C A be o(I13) and such that if p(z) = p(y) and z € B,y € A then
y € B. Then B € IT}.

LEMMA 3: Let E be a X1 equivalence relation whose all but countably many
classes are not in I. Let A be an E-invariant set. If A ¢ A}, then there is no
B € Al such that AAB € I.

Proof: Assume otherwise. Since I is Borel supported, we can suppose that there
are Borel sets C and D such that CN A=0,D C A and X ~(CU D) € I. Now,
[C] and [D] are X} and also [C]N A = @ and [D] C A, as A is E-invariant.
Let {On: n € w} be the family of all equivalence classes of E which are in
I. Each O, is 1. If [C]U[D]U,e, On = X, then, since A is E-invariant,
A=[DlUlUp, caO0n and X~ A= [ClUUp, na=pOn. Now, the Suslin theorem
implies that A is Borel which contradicts the assumptions. Thus there exists
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z € XN[C]U[D]UU,e,On) Then [z] ¢ [and [z] C XN(CUD) €I, a
contradiction. |

LEMMA 4: Assume Det(A}). Let E be a 1 equivalence relation. If E has
uncountably many equivalence classes, then there exists an E-invariant set A €

X1~ A}l. (Thus E has countably many equivalence classes iff every E-invariant
X1 set is Borel.)

Proof: Assume that such an A does not exist. Then [A] € Al for any 4 € X].
We claim that either there exists a Borel uncountable set C C X such that
zEy iff x = y for z,y € C, or there exists an E-invariant set B € A} such
that |B/E| > w and if B’ C B is A] and E-invariant then |B’/E| < w or
|(B~ B')/E| £ w. (The proof below is related to arguments of Becker [B], Sami
and Stern on minimal counterexamples to the Vaught conjecture.) To prove
this assume that for any E-invariant B € A} there exist E-invariant Al sets
B,,B; C B such that By N By =0 and |B,/E| > w, |B2/E| > w. We construct
a countable Boolean algebra .4 of Borel sets such that:

(i) A contains a countable topological basis of X;

(ii) if B € A and |[B]|/E| > w then there exist By, Bs € A such that By, B, C B,
[B1] N [B2] = 0, and [[B1]/E| > w, |[Ba]/E| > w;

(iii) the topology generated by A is Polish.

A is built recursively starting from a countable topological basis of X. We easily
take care of (ii) using the assumption on E. To get (iii), we apply two well-known
facts: a topology on a standard Borel space can be extended by Borel sets to
obtain a Polish topology (see [K1, Theorem 13.1]), and an increasing union of
Polish topologies is Polish (see [K1, Lemma 13.3]).

Now we fix a complete metric d on X which is compatible with the topology
generated by A, and do a Cantor-type construction producing open (in this
topology) sets Q,,0 € 2<¥, so that:

(a) Qo =X;

(b) d-diam(Q,) < 1/(lhe + 1);

(©) 11QuI/El > w;

(d) d-closure(Qg.i) C Qo for i € 2 and o € 2<¥;

(e) if o,7 € 2<¥ are incompatible, then [Q,] N [Q,] = 0.

When Q,, for some ¢ € 2<%, has been constructed, we find by (ii) open (in the
topology generated by .A) sets Uy, U; C Q. such that |[U;]/E| > w,i=1,2, and
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[Uo) N[Uh] = 0. Now for ¢ = 1,2 find V;i,n € w, such that V}} is open in the
topology generated by A, d-closure(V}) C Q,,d-diam(V}) < 1/(lhe + 2) and
Uneo Vi = Us. Then |[V1]/E| > w for some n; € w. Put Qou; = Vi fori=1,2.

Now C =, co, Uiho=n @o is an uncountable Borel (in the original topology)
set whose distinct elements lie in distinct equivalence classes of E.

If there exists an uncountable Borel set C as above, we can find a £] non-Borel
set AC C. Then [A]NC = A, whence [A] ¢ A}, a contradiction.

Thus we can assume, by passing to a Borel invariant subset of X, that | X/E| >
w and for each X} set A C X, |[A]/E| < w or |(X ~[A])/E| € w. Using Det(I1}),
by Burgess' theorem [Bu], there exists a A} function f : X — WO such that
zEy & |f(z)| = |f(y)|. Pt B={z € WO :3y € X |f(y)| = |z|}. Then B e =1
and fulfils the assumptions of Lemma 2 (with A = WO and p(z) = |z|). Thus
B € I1}. Now define

B'={reB:3zeB(lz[<lz|AVy(y € BAly| <|z| = [y| < |2]))}.

It follows that B’ € £1. Put A = f~1(B’). Then A € ¥} and is E-invariant.
Also A as well as its complement contain uncountably many equivalence classes of
E. Thus A € £} ~I1. By Det(Al) and Lemma 1, each £1 set is Borel reducible
to A. Pick D C 2¥ with D € £}~ A}l. Let ¢ : 2¥ — X be Borel and such that
z € D & ¢(z) € A. Since A is E-invariant, z € D & ¢(z) € [¢[D]] € A}. Thus
D is A1, a contradiction. 8

LEMMA 5: If I does not have the approximation property, then there exists a
I1} set A with a II}-rank p such that the set T C w; defined by a € T iff
{z : p(z) = a} ¢ I is uncountable.

Proof: Let P be a ] set such that there is no B € A} with PAB € I. Then
the same is true about the II} set @ = X \ P. Let ¢ be a Borel mapping from X
to the space of all trees on w such that ¢(z) is well founded iff z € Q. For a tree
Tonwandu € w<, put T, = {v € w<* : uxv € T}. If T is well founded, let |T|
denote the rank of T. Suppose Vu € w<“3€ < un V¢ > &{z : ¢(z), is well founded
and |¢(z)y| = ¢} € I. Then for each u € w<¥ there exists a smallest £ = £, < w,
as above. Put £ = sup{€, : u € w<“} + 1. Now define B = {z € X : ¢(z) is well
founded and |¢(z)| < £} and B’ = {z € X : 3u € w<“¢(z), is well founded and
|#(x)w| = €}. Then it is easy to check that B C Q ¢ BU B’, B,B’ € Al and
B’ € I which contradicts our assumption on Q. Thus there exists 4 € w<“ such
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that V€ < wy 3¢ > £{z € X : ¢(z);z is well founded and |¢(z)z| = ¢} ¢ I. Put
A= {z € X :0(z); is well founded} and p(z) = |6(x)4|. It is easy to verify that
these A and p work. ]

LEMMA 6: Assume Det(A3). Let I N A} be o(I13) in the codes. If I does not
have the approximation property, then there is a £] equivalence relation E such
that | X/E| = wy and all equivalence classes of E, except for perhaps one, are not
in I.

Proof: Take A and p as in Lemma 5. Define A’ = {z € A: {y € A:p(y) =
p(z)} & I}. Since I N Al is o(II3) in the codes, A’ is o(II3). Clearly A’ fulfils
the assumption of Lemma 2 whence A’ € II}. Then the following equivalence
relation is X}:

tEye (reAvyeA)=(ze A'Aye A Ap(z) = py))).

Also E has w; equivalence classes and all of them except for perhaps X ~ A’ are
not in J. |

Assuming more determinacy and using the full strength of Solovay’s lemma
(see [K, Theorem 7.1]) we obtain the same conclusion (with the same proof) as
in Theorem 1 for wider classes of Borel supported o-ideals or even for all of them
if we assume AD. (Note however that, as follows from Lemmas 2 and 3, it is
enough to have only Det(A3}) to prove that the approximation property implies
the ] c.c.c. for all Borel supported o-ideals.) For example we have the following

result.

- THEOREM 1’: Assume PD (AD, resp.). Let I be a Borel supported o-ideal such
that I N Al is projective in the codes (I N A} is arbitrary, resp.). Then the X}
c.c.c. and the approximation property are equivalent.

We want to make here a few comments on what can be proved without any
determinacy hypotheses. We will summarize them in Theroem 17. A family A
of disjoint sets is called pseudo-Borel if the relation E 4 associated with A as
in (1) in the Introduction is £} and there is a II] equivalence relation F' such
that

(2) ze|JA= (VyzFy & cEay).

Note that if E 4 is Borel we can take F = E 4. A Borel supported o-ideal I fulfils
the pseudo-Borel c.c.c. if every pseudo-Borel family A of disjoint sets such
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that AN I = @ is countable. Clearly the c.c.c. implies the X} c.c.c., which in

turn implies the pseudo-Borel c.c.c.

el

LEMMA 7: Assume a Borel supported o-ideal has the approximation property:.
Then [ fulfils the pseudo-Borel c.c.c.

Proof: Suppose I does not fulfil the pseudo-Borel c.c.c. Let A be a pseudo-
Borel family of sets witnessing it and let F’ be a II] equivalence relation from the
definition of pseudo-Borelness. By Lemma 3 applied to E 4 it is enough to find
an E 4-invariant set 4 such that 4 € £}~ A}l. Since E4 € 1. X~y A e T
If X~{JUA ¢ Al we are done. Thus we can assume that |J.4 € Al. But
by (2) UA is F-invariant and F{{JA = E4||JA. Thus since F € II} and
|UA/F| = |A| > w, by Silver’s theorem [S], there is a perfect compact set
C C |J A such that different elements of C belong to different equivalence classes
of E4. Pick A € C in £~ A}. Then [A]g, is E4-invariant and X1 and, as
[Ale,NC=A[Ag, ¢ AL 8

LEMMA 8: Assume I is a Borel supported o-ideal such that I N A} is ] in the
codes of Borel sets. If I fulfils the pseudo-Borel c.c.c., then I has the approxima-

tion property.

Proof: It is enough to prove an analogue of Lemma 6 without the determinacy
hypothesis. But since we assume that I N A} is £} in the codes, the set A’
defined in the proof of Lemma 6 is II]. Put A= {{z € A’ : p(z) = a}:a < w;}.
Then E 4 is equal to the relation E defined in the proof of Lemma 6 and thus
| X/E 4| >w and E4 € 1. For the IT} equivalence relation F we take

csFye (z=yv(ze A rAye A Ap(z) = p(y))).

El
Combining Lemmas 7 and 8 we obtain the following theorem.

THEOREM1”: Let I be a Borel supported o-ideal such that I N A} is £ in
the codes of Borel sets. Then I has the approximation property iff I fulfils the
pseudo-Borel c.c.c.

18
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3. £9 supported o-ideals

The X9 supported o-ideals occur frequently in harmonic analysis and descriptive
set theory as o-ideals generated by families of closed sets. In this section we
characterize those X9 supported ¢-ideals which have the approximation property
and also give an abstract characterization of the o-ideal of meager sets. No
determinacy assumptions will be used in the sequel.

Let F be a family of subsets of a Polish space X. Put

MGR(F)={BC X :YAe FBNA is meager in A}.

If A c X, we will write MGR(A) for MGR({A}). If I is a o-ideal and A C
X, we write [|A = {B C A: B € I}. A family F of subsets of X is said
to be well-ordered by reverse inclusion if there is an ordinal a such that
F={A¢:é<a}land £ £{ < ae Ag D A;. By mx and my we denote the
projections from X x Y onto X and Y, respectively. Also for A C X x Y we
write A, = {y €Y : (z,y) € A}

LEMMA 9: Let Y be Polish and let J be a £9 supported o-ideal. Assume that
for any open set U # 0 there exists a nowhere dense set F C U such that
F ¢ J. Then there is a homeomorphic embedding ¢ : 2¥ x w* — Y such that
ol{a} x w¥] ¢ J for any a € 2.

Proof: For any family A of subsets of ¥ define A? to be the set of all points
r € Y such that for any open U with r € U the set {A € A: AnU # 0}
is infinite. In the natural way we identify a sequence o € (2 x w)™ with the
sequence ((0)g, (0)1) € 2" x w™. For a € w* by a|n we denote the restriction
ofaton ={0,...,n —1}. We also write N, = {7y € 2¥ x w* : m(7)In =
(0)o, Twe(7)|n = (0)1} for 0 € 2 x w)",n € w.

Now we construct recursively open sets Uy, o € (2 x w)<¥, so that:
(i) o C 7,0 # 7 implies closure(U-) C Us;
(ii) if neither ¢ C 7 nor 7 C o then U, NU; = 9;
(iii) diam(U,) < 1/27+h(*=1) where n = lha;
(1v) {Ussgimy:n€ wit ¢ J fori € 2;
(v) Us #0. -
If U, has been defined, find a nowhere dense closed set F c U, with F ¢ J.
Then find two closed sets Fy, Fy C F, Fy, Fy € J such that there exist two open
sets Vp, Vi € U, containing Fp and F), respectively, and having disjoint closures.
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Since F; is nowhere dense in V;,72 = 0,1, we can find nonempty pairwise disjoint
open sets Wi,n € w, so that F; = {W} : n € w}4, W} c V; and diam(W}) <
1/28+14+" where k = lho. To define W}, first choose D' = {d% : n € w} to
be discrete subsets of V; such that F; = closure(D*)~ D'. Then let W} be an
approfariately small ball around d:. Put Upatigy = Wi

Now define ¢ : 2¥ x w“ — Y by ¢(a, 3) = the only point in (¢, Utain.8in)-
It is clear from (i)-(iii) and (v) that ¢ is a homeomorphic embedding. Note also
that, by (iii) and (iv), {#[Nesiin)] : 1 € w}? = {Usupiny 1 n € w}? ¢ J for any
o€ (2xw)<“andie€2 :

Suppose that there is a@ € 2“ such that ¢[{a} x w“] € J. Then there exist
F, € JNII?,n € w, such that ¢[{a} x w*] C |J,e, Fn- By the Baire Category
Theorem there is 7 € w*, for some k € w, and ng € w such that @[N(a|k,r)] C Fag s
But then {@[Naj(k+1),7=(n)] : 7 € w}¢ C Fpy € J, a contradiction. 1

The following theorem generalizes and strengthens some results proved in [M]
and [BBH]. It was shown in [BBH, Theorem 2.3] that (ii) holds for the o-ideal
of all subsets of 2 which can be covered by X9 sets of Lebesgue measure zero.
A bit weaker result for the same o-ideal was proved earlier in [M, Theorem 1]
and this weaker result was generalized in [BBH, Theorem 1.5] to a slightly wider
class of X9 supported o-ideals.

THEOREM 2: Let I be a X9 supported o-ideal. Then precisely one of the follow-
ing possibilities holds:

(i) I = MGR(F) for a countable family F of closed subsets of X, which can be
assumed to be well-ordered by reverse inclusion;

(ii) there is a homeomorphic embedding ¢ : 2¥ xw* — X such that ¢[{a} xw"] ¢
I for any o € 2%.

Proof: For F C X closed put F/ = FN|J{U : U is open, UNF # 0 and
INWUNF)=MGR(UNF)}and F* = FNJ{U : U is open and U N F € I}.

Now define by transfinite recursion:

F(} = X';
Fy = (Nyex F5)* if A is limit;
F'H—l = F:,

Claim: Let U C X be open. Assume F.,;NU = F,NU. Then F;NU = F,NU
for any £ > 7.

20

e



Vol. 89, 1995 APPROXIMATION OF ANALYTIC BY BOREL SETS 353

Proof of the Claim: First we prove that if W N F, € I for an open set W,
then W N F, = @. This is clear if v is limit or 0. Assume 7 is a successor. Let
A be the biggest limit ordinal < v or A = 0. Then W N F., must be meager in
F. So there exists a biggest § < v with W n F., meager in Fyp. It follows that
there exists an open set V such that @ # V N Fpyy € W N Fy. We thus have
VN Fgy1 € MGR(Fy) and VN Fyyy € I, whence VN Fpy1 = 0, a contradiction.

Now, if U N F, C F,41, we show by induction on §{ > 7 that U N Fy C Fg.
For ¢ limit it is a consequence of the observation from the previous paragraph.
For successors it follows directly from the inductive hypothesis and the inclusion
U N F, C Fyy1. This finishes the proof of the Claim. '

There exists a smallest o < wy such that Fiy = Fuy1.

Case 1: F,=0.

Put F = {F, : v < a}. First notice that F.;, is nowhere dense in F., for
v < a. Otherwise there is an open set U such that F.,py D FyNU # @. Then
by the Claim F¢ D F, N U for all £ > ~. In particular, F, D F, N U # ® which
contradicts our assumption on Fy.

Now we show that I = MGR(F). Let A € I. Then AN (Fy™ Fopi) €
MGR(F, ™~ Fy41) for ¥ < a. But since F,1 € MGR(F,), we have A €
MGR(F.,). For the opposite direction assume that AN F, € MGR(F,). Since
F,41 is closed, AN (Fy ™ Fyq1) € MGR(Fy~ Fy41). Thus AN (Fy~Fyyg) €1
for v < a. Also clearly X ~Fpe I and ﬂ_{a F,~F, €I for A limit. Since [ is
" a o-ideal,

A=An(X~F)u An([VF,~F)U AN(FyNFyp1) €l
Y v x

A<a, A limit y<A r<a

Case 2: F, #0.

By the Claim F, = Fg for all £ > a. Thus F), = F, and F? = F,. This easily
implies that the assumptions of Lemma 9 are fulfilled for Y = F, and J = I|Fk.
Thus we obtain (ii). [

Note that (i) implies that I fulfils the c.c.c. Thus it follows from Theorem
2 that if a X9 supported o-ideal does not fulfil the c.c.c., then there exists a
“perfect” family of Gs’s outside of I, i.e., (ii) holds. A similar fact was proved
for a different class of o-ideals in [KLW]. Namely by Theorem 2 of Section 3 in
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[KLW], if I is a Borel supported o-ideal such that I N A} is II} in the codes
and for any A € Af ™1 there is a closed set C ¢ I with C C A, then if I does
not fulfil the c.c.c., then there is a “perfect” family of closed sets not in /. In
particular, in this case, as well as in the case of £9 supported o-ideals. the c.c.c.,
the X1 c.c.c., and the pseudo-Borel c.c.c. are equivalent.

The next theorem lists a few characterizations of the o-ideals of the form
MGR(F) for a countable, well-ordered by reverse inclusion family F of closed
sets.

THEOREM 3: Let I be a £9 supported o-ideal. Then the following are equivalent.
(i) I is of the form MGR(F) for a countable family F of closed subsets of X
well-ordered by reverse inclusion;

(ii) I fulfils the c.c.c.;

(iii) I fulfils the pseudo-Borel c.c.c.;

(iv) In Al is Al in the codes of Borel sets;
(v) IN A} is £} in the codes of Borel sets;
(vi) I has the approximation property.

Proof: (i) = (ii). Let A be an uncountable family of disjoint X} sets with
ANI = @. Then, since F is countable, there is F € F and an uncountable
family A’ C A such that AN F is not meager in F for any A € A’. This yields a
contradiction, since MGR(F) fulfils the c.c.c.

(ii) = (iii) is obvious.

(iii) = (i). Suppose (i) does not hold. Let ¢ be as in Theorem 2(ii). Put
A= {¢[{a} x w¥]: @ € 2¢}. Then E 4 is Borel. Indeed, notice that since ¢ is a
homeomorphic embedding ¢[2 x w*] is II3. Put B = ¢[2¥ x w*|. Then

zEay & ((z € BAy ¢ B)V (Ja € 2¥z,y € d[{a} x w*]))
& ((r¢ BAy¢ B)V(Ia€2“z,y € ¢[{a} x w“])).

Since E 4 is Borel, A is a pseudo-Borel family.

(i) = (iv). By a standard calculation, see e.g. [K, 16.1].

(iv) = (v) is obvious.

(v) = (i). Suppose that I is not of the required form. Let ¢ be as in Theorem
2(ii). Let B C w“ x 2¥ be such that B € A} and m,-[B] ¢ II}. Define
B' Cc w* x X by (a,z) € B' & 7 € ¢[2° x w’] A (a, 72« (¢72(z))) € B. Clearly
B’ € Al. 1t is easy to check that B, ¢ I or B, = 0 for any a € w* and
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{oew:By¢l}={a€w’: By #0} =n,-[B]¢ II}. Thus {a €2¥: B/, ¢
I} ¢ X1 which gives a contradiction since if I N A} is £} in the codes, then
{a€2“: A, € I} is ] for any Borel set A C 2 x X.

(vi) = (iii) is simply Lemma 7.

((ifi) A (v)) = (vi) is Lemma 8. W

Consider now 2“ as a group with the coordinatewise addition modulo 2. Kunen
[Ku, 1.27'] asked if all Borel supported o-ideals on 2 which are translation in-
variant and fulfil the c.c.c. are: the family of meager sets, the family of Lebesgue
measure zero sets or the intersection of the two. The following corollary provides
a partial answer to this question.

COROLLARY: Let X be a Polish space and let H be a group of homeomorphisms
of X such that |J,cy h[U] = X for any open nonempty set U C X. Let I be a
9 supported o-ideal on X. If I fulfils the c.c.c. and is such that h[A] € I if
A € I, then I is the o-ideal of meager sets. In particular, if G is a Polish group
and I is a 9 supported translation invariant o-ideal on G which fulfils the c.c.c.,
then I is the o-ideal of meager sets.

Proof: First notice that, by invariance under homeomorphisms from H, I cannot
contain a nonempty open set. By Theorem 3 there is a well-ordered by reverse
inclusion countable family F of closed subsets of X such that I = MGR(F).
Let Fy € F be such that F/ C Fy for any F/ € F. Then X ™ Fj is open and
X~NFyel Thus XNFy=0,1ie, Fp =X. If F# {Fp}, let F; € F be such
that F/ C Fy for any F’' € F~N{Fp}. If F = {Fp}, put F; = 0. It follows that
MGR(X ~ Fy) c I. Since X ™ F} is nonempty and open, we get MGR(X) C I
by invariance of MGR(X) and I under homeomorphisms from H. If there is
aset A€ I~ MGR(X), then, since I is £9 supported, we can find A € X3,
A € INMGR(X). Now the Baire Category Theorem implies that there is an

open set in I which is impossible. |
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CHAPTER 3
K, EQUIVALENCE RELATIONS AND INDECOMPOSABLE
CONTINUA

3.1. K, equivalence relations

Let Ey be the equivalence relation on 2* defined by zEogy iff 3N € wVn >
N z(n) = y(n), for z,y € 2¥. If E is a Borel equivalence relation on a Polish
space, we say that Ey continuously embeds in E, Ey C, E, if there is a continuous
injection ¢ : 2 — X such that zEgy iff ¢(z)Ed(y) for z,y € 2.

We prove below a theorem which gives a sufficient condition for a K, equiv-
alence relation to continuously embed Ejy. A corollary of this result solves an old
problem in the theory of indecomposable continua concerning the existence of a
Borel set having precisely one point in common with each composant. Theorem
3.1 is related to and was inspired by the Glimm-Effros theorem on continuous
actions of Polish groups discovered in the study of C*-algebras [G], [E] and its
generalization to actions of arbitrary groups of homeomorphisms due to Becker

and Kechrs [BK].

Theorem 1. Let X be Polish, and let F be a K, equivalence relation on X.

Assume that {z € X : [z]F is not locally closed at z} is not meager. Then Ey C,
F.

Proof. Since F is K, and contains the diagonal of X x X, X is K,. Hence, there
exist open U,, n € w, such that |J, U, is dense and for each n, U, is compact.
Thus {z € U,, : [z]F is not locally closed at x} is not meager for some ng. So,
restricting F' to an; we can assume that X is compact. '

Now, we can find Fy, C F, k € w, such that Fj is compact, symmetric (i.e.,
(z,y) € Fy, implies (y,z) € Fy), {(z,z): = € X} C F, and ka'i's C Fry1. (FP
is defined recursively: F§ = F, and F'M' = {(2,y) : 32 (z,2) € F{ and (2,y) €
Fi}.) We write A 1y Bfor ABCX f (AxB)NF =0.

Claim 1. There exists an open nonempty set U C X such that given k € w

and § # W C U open there are nonempty compact Cp,C; C W and n € w such
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that

(i) Co L Ty

(ii) Co C [Ci]F, and C; C [Co]F,;

(iii) Cp = V for some open V.

Proof of Claim 1. Let {V,, : m € w} be an open basis for X with each V,

nonempty. Put
Amp = ([Vmlr N Vp) U (Vi N [Vp]F).

Note that A, , are F,. Put
Bf = U{Amvl’ : Vil Vp and Vi, Vo C Vi), kT Ew.

First, we show that if ¢ (), N, (Bi U (X \ V+)), then [z]F is locally closed at z.
If z is as above, then z € V, and z € B[ for some k,r € w. Let y € V;.. Then
(z,y) € F iff (z,y) € Fx. Since Fp C F, it is enough to show that (z,y) & Fi
implies (z,y) € F. But if (z,y) € Fj, then there are V;;,,V, C V; such that
€ Vn,y€eV,,and V, L V,. Since z € Bf and z € Vy,, = & [V,]Fr whence
(z,y) € F. It follows that [z]r NV} = [z]F, NV; whence [z]F is locally closed at z.

By assumption, (), (), (Bf U (X \ V;)) is not meager. Since B U(X \ V;) is
F,, there exists a nonempty open set U such that for all r, k, int(Bf U (X \ V,))
is dense in U. Let @ # W C U be open. If V., C W, then for all k, int(B])
is dense in V., whence for any k there are V,,V,, C V; such that V, 1, V,, and
int([V,]FNVim) # 0. Now, we can find I, n € w such that Vi C Vin and V; C [V,]F,
Put Cy = V; and C; = V,N[V]g,. Then Cy and C, are as required, which finishes
the proof of Claim 1.

We construct recursively nonempty compact sets C, s € 2<% (as usual C, C
C: if s D t, and diam(C,) < 1/(lh(s) + 1)) along with a sequence of natural
numbers ng < n; < ny < --- so that to some pairs (C,, Cy), s,t € 2%, an n; with
¢t < k will be assigned in which case, we write C, s . The following additional
conditions will be fulfilled. (By 0% we denote the sequence consisting of k 0’s.)
(1) Coe = U where Uy is open;
(2) if Cy < Cy, then C, C [Cy]p,,
(3) Cortr 2y Cyk; for i =0,1;
(4) Corsr Lny_ 42 Coraa;
(5) if Cy 2+ Cy, then Cyui +—= Cpy; for i = 0, 1.

and C, C [Ci]p, ;
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Assume the construction has been carried out.

Claim 2. Ey C, F.
Proof of Claim 2. Call s,t € 2<% k-close if [h(s) = Ih(t), there is p < k such
that sl(p + 1) = 07T, t|(p + 1) = 0P % 1 or vice versa, and for any m with
p+1 < m < Ih(s), s(m) = t(m). Immediately from (3) and (5), we get that
if s,t € 2<% are k-close, then [C,]r, D C; and [C|] F., O Cs. Also, it is clear
that if s,t € 2<“, Ih(s) = Ih(t), and s(i) = #(i) for all i > k + 1, then there is a
sequence g, S1,...,38m such that m < 2k, so = s, s;m = 7, and s;, si41 are k-close
for 2 < m. Thus, if s,t € 2<% are as above, then [Cs]F,fz O C; and {Ct]pgt o C,.
Since Fﬁf C Fp,+1, we obtain the following conclusion.
(i) Let s,t € 2<%, Ih(s) = Ih(¢), and s(i) = t(i) for ¢ > k+1. Then [C,]F,, ,, D C:
and [CilF, ,, D C,.
Also we have the following fact.
(i1) Let s,t € 2<%, [h(s) = lh(t). Assume s(k) # t(k), k > 1. Then Cy Ln,_, C;.
If 5(0) # t(0), then clearly C, Ly Cy.
To see this, assume s(k) = 0, t(k) = 1, and put s’ = s|(k + 1), t' = ¢t|(k + 1).
By (i), Cs C [Cor+1]F,, 4, and Cp C [Coika]F., 1. Now if Cs Ly, _, Ct, then
there are ¢ € C,, y € C; with zF,,_,y. Since C; C Cy and C; C Cy, we get
zo € Cor+1 and z; € Cyr,y with (z,29) € Fp,_,+1 and (yz1) € F,,_,4+1. Thus
(z0,21) € F},_ 11 C Fn,_,+2 which contradicts (4).

Define ¢ : 2“ — X by letting ¢(a) be the unique element in ), Cyn for
a € 2¥. Since {(z,z): ¢ € X} C F} for all k, from (ii) we get that if lh(s) = lh(t)
and s # t, then C, N Cy = 0. Thus, ¢ is 1-to-1 and continuous. If o, 8 € 2¢
and (a, 3) € Eq, that is, a(k) # B(k) for infinitely many k € w, then by (ii) and
the fact that Fy C Fyyy for all k, we have (¢(a), #(8)) € Fy for all k¥ whence
(¢(a),9(8)) € F. If a,8 € 2% and («,f) € Ey, then a(k) = (k) for k > N
and some N € w. By (ii), [Cojm]Fuysn O Cpm and [CpimlF. 11 D Cajm for
all k. Hence [Cajm]F, 1 2 ¢(8) and [CymlF, 4 3 8(a). This allows us to
pick sequences y, — -¢5(a) and z,, — ¢(B) with y, € [#(B)|F,, +1 and z, €
[6(@)]F,, 41 Since [$(c)]r, , +1 and [S(8)], , +1 are closed, 6(a) € [6(B)]r +1
and ¢(8) € [¢(a)|F, ,+1, whence ¢(a)F¢(B), and Claim 2 is proved.

Thus, to finish the proof of the theorem, it is enough to construct {C, :
s € 2<¥}. The construction is recursive on the length of s € 2<“. To avoid

cluttering pages with notation, we will describe only the first three steps of the
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construction. Let U be as in Claim 1. Put Cy = Uy where Uy is a nonempty,
open set with diam(Uy) < 1 and Uy C U. Find ng and Dy, D; as in Claim 1
for W = Uy and £ = 0. Let V be an open set with Dy = V. Let TP v 5 D
be compact sets with diameter < 1/2 and whose union is D;. Then for some
lo, [DiD}FND N Dy has a nonempty interior. Let U; be open with diameter < 1/2
and such that U; C int([DiO}Fua N Dy). Finally, put Cypy = U, and Cay =
D* N [ColF,,. Now, we define C, for s with lh(s) = 2. Let ny, Doo, D1 be as
in Claim 1 for W = U; and &k = ng + 2. Let V be open with Dy = V. Put
Diy=Ci N [DggipnG and Dy = C1 N [Doi]F,,. We could define Cy; jy to be D;;
except that their diameters may be too big, so in the remainder of the proof, we
modify them appropriately. First, find D}; C D;; compact with diameter < 1/3
and such that the interior of [[D%ﬂpﬁu n DgﬂFn
Dyg, C [Diy]F,, N Doy compact with diameter < 1/3 and such that the interior of
[Dg1]F,, NUy is nonempty. Find Dj, compact with diameter < 1/3 and such that

M U7 is nonempty. Next, find
$]

the interior of [Di,]r,, N [Dg1]F,, N U is nonempty. Let U be an open set such
that diam(U,) < 1/3 and U, C [DlolF., N[Dg1lF., NU1. Put finally Cyo 0y = Us,
Ci,0) = [Ci0,09]Fn, NDigs Cro,1y = [Clo,0)] .y, N D5 and Ca 1y = [Cro,1ylFay N D11
This finishes the proof of the theorem.

Corollary 2. Let X be a Polish space. Let F be a K, equivalence relation on X

each equivalence class of which is dense. If F' has at least two equivalence classes,
then Ey C, F.

Proof. By Theorem 1 it is enough to show that for any = € X, [z]r is not locally
closed at z. But if it were, then, since [z]r is dense, there would exist an open set
U with ¢ € U C [z]p. But then no equivalence class different from [z]p could be

dense.

3.2. Application to indecomposable continua

A continuum is a metric compact connected space. A continuum is called
indecomposable if it is not the union of two proper subcontinua. Indecomposable
continua, first constructed by Brouwer in 1910, occur naturally in dynamical sys-
tems and also have their own extensive literature. A composant of a continuum C

is a maximal set any two points of which lie in a proper subcontinuum of C. Each
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indecomposable continuum is partitioned into disjoint composants. We will call
the equivalence relation E¢ induced by this partition the composant equivalence
relation, i.e., zEcy iff z and y lie in a proper subcontinuum of C. The study of
composants 1s crucial in understanding the structure of indecomposable continua.
Mazurkiewicz [Ma] proved that there is a perfect closed set P C C which has at
most one point in common with each composant. (An immediate consequence of
it is that there are 2%° composants.) A natural question to ask is whether there is
a Borel set T C C which has precisely one point in common with each composant.
Such a set T is called a Borel transversal. (This question is formulated explicitly
in Mauldin’s [M] but was considered earlier by continuum theorists.) A partial
answer was obtained by Cook [C] who proved that a Borel transversal cannot be
F,. (More general facts about F, transversals were obtained in the recent paper
by Debski and Tymchatyn [DT].) By an argument of Mauldin [M], some other
partial results can be deduced from the work of Emeryk [Em] and Krasinkiewicz
[K]. Rogers in [R] noticed the relation of the question of the existence of a Borel
transversal to the Glimm-Effros theorem. He applied the Glimm-Effros theorem
to prove that certain indecomposable continua (solenoids and the Knaster contin-
uum) carry a Borel probability measure y which is ergodic in the sense that it
assigns to each composant measure 0 and for any Borel X C C if each composant
of C is either contained in X or disjoint from it, then p(X) = 0 or p(X) = 1.

Such continua do not have Borel transversals.

Below, we answer the question of the existence of Borel transversals in the
negative for all indecomposable continua. The following corollary will imply that
each indecomposable continuum carries an ergodic (in the sense described above)

probability measure (see Corollary 4).

Corollary 3. Let C be an indecomposable continuum. Then E, T, Ec where

E¢ is the composant equivalence relation.

Proof. By [R, Theorem 3.3], E¢ is K,. It is well known, see for example [Ku,
Ch.5, §48, VI, Theorems 2 and 7], that each composant is dense and that there
are at least two composants, that is, [z]g, is dense for each z € C and E¢ has at

least two equivalence classes. Thus, Corollary 3 follows from Corollary 2.
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To state the next corollary, we need the following definition. Let E be a Borel
equivalence relation on a Polish space Y. A Borel probability measure y on Y is
called E-ergodic if u([z]g) =0forany z € Y and u(X) =0or 1if X C Y is Borel
and is the union of a family of E-equivalence classes. The next corollary follows

from Corollary 3 by, by now, standard arguments (see [E]).

Corollary 4. Let C be an indecomposable continuum with the composant equiv-
alence relation E¢.

(i) There exists an Eg-ergodic Borel probability measure on C.

'(ii) There does not exist a Borel set which has precisely one point in common

with each composant.

The following theorem, improving on a result of Rogers [R, Theorem 3.3],
gives an important structural property of the composant equivalence relation. It

shows that the composant equivalence relation is hypersmooth, see [KL].

Theorem 5. The composant equivalence relation on an indecomposable contin-

uum is the increasing union of a sequence of compact equivalence relations.

Proof. Let C be an indecomposable continuum with the composant equivalence
relation Eq. Let {U, : n € w}, with Up,41 C Uy, be an open basis at zq € C.
Let Cp, n € w, be proper subcontinua of C such that zog € Cp, Cp C Cr+1, and
U, Cn = [z0]Ec. = the composant of zo. Define for r,y € C and n € w

zE,yiff £ =y or z,y € K for some subcontinuum K C (C\ U,) U Ch.

One c.hecks easily that each E, is an equivalence relation and that E, C E,4+;. To
see that F, is closed, let 23 E,yx, k € w, and £ — z, Yy, — y. We can assume that
zr # yk for all k. Let K be a continuum witnessing zx E,yx. Then K = lim; Kj
is a continuum, z,y € K, and K C (C \ U,) U C,, since (C \ Un) U C,, is closed.
Thus, zE,y.

Since Uy, \ Cr # 0 for all n (as C, is nowhere dense, see [Ku]), each subcon-
tinuum K C (C \ Un) U Cy, is proper, whence E, C E¢ for all n € w. To see that
U, En = Eg, let zEcy. If zEczo, we can find an n € w such that z,y € C,,. But
then zE,y. If =(zEcz), let K be a proper subcontinuum of C with z,y € K.
There is n such that KNU, =0, as zo € K. Then zE,y. This finishes the proof.
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CHAPTER 4
POLISH GROUP ACTIONS

4.1. The Topological Vaught Conjecture for Polish groups with an
invariant metric

Let G be a Polish group acting on a set X. Put for z,y € X
tESy e IgeGgz=y.

Then EX C X x X is an equivalence relation and is called the equivalence relation
induced by the action of G on X . (Sometimes, if there is no possibility of confusion,
we drop the superscript X.) If X is Polish and the action of G is continuous, then
E¢ is analytic. The Topological Vaught Conjecture (TVC) says that either Egq
has countably many equivalence classes, or there exists a perfect set which has at
most one point in common with each equivalence class. It is a generalization of the
famous Vaught conjecture from model theory and was first formulated by Miller.
The TVC is still open, so it seems interesting to ask for what classes of Polish
groups it holds. If Eg is Borel, the TVC follows from Silver’s theorem. And indeed,
in case G is locally compact, E¢ turns out to be Borel. R.L. Sami in [S] proved
that the TVC holds for abelian Polish groups. A.S. Kechris asked if the TVC holds
for Polish groups admitting an invariant metric. (By invariant metric we mean a
two-sided invariant metric.) Each abelian Polish group admits an invariant metric.
There exist, however, groups admitting invariant metrics which are very far from
being abelian, for instance, they may contain the free group with 2%° generators.
Below, we show that the TVC does hold for Polish groups with invariant metric.
We actually prove a much stronger dichotomy theorem reminiscent of the Glimm-
Effros theorem (see [E], [G]). Recently, G. Hjorth established analogous results for
Polish nilpotent groups and for Polish groups whose quotient by the center admits
an invariant metric.
For the definition of Ey and C, see 3.1.

Theorem 1. Let G be a Polish group admitting an invariant metric. Let X be a
Polish G-space. Then either Ey C. Eg or Eg is Gjs.
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Corollary 2. The Topological Vaught Conjecture holds for Polish groups admit-
ting an invariant metric.

Proof of the corollary. By the thorem we have two cases: either Ey T, Eg
or Eg is Gs. It is easy to see that there is a perfect set which has at most one
point in common with each equivalence class of Ey. So, if Ey C. Eg, then the
same is true of Eg. If Eg is G, then the function f : X — 2% defined by
flz) ={n €w: z € [V3]g} is Borel ({V,, : n € w} a topological basis of X)
and has the property that tEgy iff f(z) = f(y). From this it follows by standard
methods that the TVC holds for Fg.

In the sequel, I will use the following known facts.

(Effros) Let X be a Polish G-space, G a Polish group. Let z € X be such
that [z]g is nonmeager. Then [z]g is G4, and the mapping g — gz, G — [z]g, is
open.

(Becker-Kechris) Let X and G be as above. Assume the action has a dense
orbit and Ey [Z. Eg. Then there is z € X with [z]g nonmeager.

Lemma 3. Let G be a Polish group, and let X be a Polish G-space. If [y|¢ is
nonmeager, y € X, and z € [y|g, then there is V C G open such that e € V' and
Venyle =0.

Proof. Since [ylg is G5, X \ [yl¢ = U, Fn, Fn closed. Put F, = {g € G: gz €
Fp}. Then F) are closed, and | J, F,, = G. Thus, there is ny and an open set
U#0QwithlU C F, . Let ¢ € G be such that e € gU. Put V = gU. Then
Vz=gUz =gUzx C gF,,, and clearly ¢F,, N [y]e = 8, whence Vz N [y], = 0.

Lemma 4. Let G be a Polish group admitting an invariant metric, and let X be
a Polish G-space. If [y]¢ is nonmeager and [z]g Is dense, z,y € X, then for any
nonempty open set V. .C G, Vz N [y]g # 0. '
Proof. Let § # V C G be open. We show that Vz N [y]lg # 0. Since G admits
an invariant metric, we can assume that e € V and ¢gVg~! = V for any g € G.
Let W be open, symmetric and such that e € W, W3 Cc V, gWg™! = W for
any ¢ € G. Since Wy is open in [ylg, Wy has a nonempty interior, whence
[z]e N Wy # 0. Thus, there are h € G and hy € W with hyy — hz. If we
show that VAz N [ylg # 0, then, since Vhz N[ylg = AVz N [ylg = hVz N [v]a,
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RVzNlyle # 0, that is, Vz N [y]g # 8. Thus, we can assume that hz = z, that is,
hrz — z. Since [z]g is dense, we can find g, € G such that g,z — y. Fix n. For
k large enough, d(g,hry,gnz) < 1/(n+1), d a metric on X. Thus, we can find
a subsequence (A, ) such that d(gnh,y.gnz) < 1/(n +1). Call this subsequence
(hn). Since gn& — Yy, gnhny — y. Since g — gy is open, for n large enough we
have gohn, € WG,.

Now, we show that VU > e opendNVn,m > N G}y C UGp,y. Put y, =
hny. Let e € Uy be open, symmetric, U C U, and gUpg~! = U for all ¢ € G.
Since Upy is open in [y]g, we can find O C X open with § # O N [y]le C Uoy.
There i1s ¢ € G with gz € O. It follows that gy, — gz, so, gy, € O forn > N
some N € w, whence gy, € Upy. Thus, gy, € Ulgym for n,m > N, 50 yn € Ulym.
It follows that

G,, C UG, Ui CUsG,, CcUG,..

Put
H = {g - G: Enk — ooE]pk = Ghnkypk —-)g}

First, note that H C G,. Indeed, if ¢ € H, then 2 « h,,y = prhn,y — gz, so
g € G;. Next, we show that g, € W3H for n large enough. Since gnhn € WG,
gn € Wh (haGyh ') C W2Gh,y. Again put yn = hny. Let Wi, i € w, be open
withe € Wi, .5, Wi+ Wi s eask — oo, and | J, WoW;---W; CW. Let N be
such that G,, C—W"gGym fornm>N.Let n>N. Pickn=ng<n; <ng <---
sothat G,, C WiGy,, fork,m > n;. Letg € Gy, = Gy,. Pickgi € Gy,.,1 > 1,50
that gg7* € Wy and ggg;_ll € Wi for: > 1. Thisis possible since Gy, C W;G
It is easy to check that (g;) is Cauchy, so we can put h = lim; ¢;. Clearly h € H,

Ynigy”

and

gh™! = lifnggi_l = lign(;ggl_l)(glgz_l) n (g,'_lginl) € UWc)I'V] W WL
i

So, g € WhC WH. Thus, Gy, C WH for n > N, whence g, € W?WH =W3H
forn > N.

Combining ¢, € W3 H for large n and H C G, we get g, € W3G, for large
n. Since W2 C V, there are ¢, € G, such that g,c, € V for large n. But then

GnCnT = gpz — y, 5o Vz N [ylg # 0, and the lemma is proved.

We list two corollaries to Lemmas 3 and 4.
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Corollary 5. Let G be a Polish group admitting an invariant metric, and let
X be a Polish G-space. If [y]¢ is nonmeager and [z]c is dense, z.y € X, then

z]e = [yle-

Corollary 6. Let G and X be as above. Assume all orbits are dense. Then either

Ey C. Eg or there is only one orbit.

Proof. If Ey Z. Eg, then there is a nonmeager orbit. Since all orbits are dense,
this 1s the only orbit by Corollary 3.

Proof of the theorem. Define the equivalence relation zFy iff [z], = EG.
Then F is Gs since e Fy iff Vn [zlg N Vo #0 & [yleN Ve #0iff Vnz € [V,]g
y € [Vl for an open basis {V, : n € w} for the topology on X. Clearly Eg C F.
If Eq = F, Eg is G5 and we are done. If Eg # F, then for some z € X the
invariant set [z]p contains at least two orbits. Since [z]r is Gs and each orbit

contained in it is dense in it, Eg =, Eg|[z]F by Corollary 6; thus, Ey C. Eg.

4.2. Complexity of equivalence relations induced by Polish group

actions

4.2.1. Introduction. As mentioned above, it was proved by R. L. Sami
[S, Theorem 2.1] that the topological Vaught conjecture holds for Borel actions
of abelian Polish groups. The proof, however, was different from the one in the
locally compact case; in particular, it did not show that Eg was Borel for G Polish
abelian. The natural question was raised by Sami (see [S, p.339]) whether EX is
Borel for all Borel (or, equivalently, continuous if X is a Polish space, see [BK])
actions of Polish abelian groups on standard Borel spaces. We answer this question
in the negative. We consider groups of the form Hy x H; x Hy X --- where the
H,’s are countable. Such groups are equipped with the product topology (each
H, carring the discrete topology) which is Polish and compatible with the group
structure. We fully characterize those sequences (H, ) of countable abelian groups
for which all Borel actions of Hy X Hy X H; X - - - induce Borel equivalence relations.
This happens precisely when all but finitely many of the H,'s are torsion and, for
each prime p, for all but finitely many n’s the p-component of H,, is of the form
F x Z(p>=)™, where F is a finite p-group, Z(p*>) is the quasicyclic p-group (i.e.,
Z(p>®) ~ {z € C: 3In zF" =1}), and m € w. In particular, if H, = H, n € w,
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and H is countable abelian, then all Borel actions of H x H x H x --- induce
Borel equivalence relations iff H ~ @p(FIJ X Z(p>)"» ), where F, is afinite abelian
p-group, n, € w, and p varies over the set of all primes. Thus, e.g., the group
Z x Z x Z x --- is abelian, Polish, and has a Borel action which induces non-
Borel equivalence relation. This answers Sami’s question. On the other hand,
Z(2%) x Z(2*°) X Z(2*) x - - - provides an interesting example of a Polish abelian
group which is not locally compact but whose Borel actions induce only Borel
equivalence relations. This shows that the implication “G locally compact = Eg
Borel” cannot be reversed. Some results for non-abelian H,’s are also obtained.

~ Now, we state some definitions and establish notation. By w we denote the
set of all natural numbers {0,1,2,...}. Ordinal numbers are identified with the
set of their predecessors, in particular n = {0,1,...,n — 1}, for n € w. By Z,
Z(p), Z(p>), p a prime, we denote the group of integers, the cyclic group with p
elements, and the quasicyclic p-group, respectively. By e we denote the identity
element of a group and by (X)), for a subset X of a group, the subgroup generated
by X. We write () for ({h}). If H is a group, @, H stands for the direct sum of
countably many copies of H. A group H is called p-compact if for any decreasing
sequence of groups Gy < Z(p) x H with 7[Gi] = Z(p), for each k € w, we have
T[Niew Gk] = Z(p) where m : Z(p) x H — Z(p) is the projection. If H is an
abelian group and p is a prime, by the p-component of H we mean the maximal
p-subgroup of H.

For a sequence of sets (Hy), n € w, we write

Hr=Hyx - X Ho_1, HS¥ = UH", and H* = Hy x Hy X -+

nEw

We also write A for the product of infinitely many copies of A. If z € H¥, put
lht =w;ifoc € H*, somen € w, put [lho =n. Foroc € H<¥ and z € H<¥ U H¥,
we write ¢ x z for the concatenation of ¢ and z. f z € H<* U H¥ and X C w,
we write z|X for the unique element y € H<“ U H¥ such that the domain of y
is w, if X N lhz is infinite, and n, if X N [hz is finite and has n elements, and
y(i) = z(the (i+1)’th element of X). A set § C H<¥ is called a tree on (Hy) if
o € S implies o|n € S for any n < lh(s). If S is a tree on (H,) and 0 € H<¥,
put S, = {r € H<¥: o %7 € S}. For a tree S on (H,), H, countable, define
S'={ceS: 3r e So Cr,0# 7} By transfinite induction define, for 8 € wy,
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§° =S and §% = (§7) if 8 = y+1, and 57 = (), S7 if 7 is limit. Put
ht(S) = min{B: S% = §5+1}. For 0 € H<¥, put rs(¢) = min{B € w1 : o & 5°}
if there exists 3 < w; with 0 € §%, and r5(0) = w; otherwise. If there is no danger
of confusion, we will omit the subscript in rs. A tree on (H,) is well-founded if
there is no sequence o; € S, i € w, such that ¢; C 0+, and lh(o;) — oo as 1 — co.
Now, assume that the H,’s are groups. The identity element (e,e,...) of H¥ is
denoted by €. A tree S on (H,) is called a coset tree if SN H™ is a left coset of a
subgroup of H" for any n € w, i.e., if 01,02,03 € SN H™, then 510,03 € S. A
coset tree S is called a group tree if SNH™ is a subgroup of H" for any n € w. The
notion of a group tree was introduced by Makkai in [M] and rediscovered by the
author. We say that (H,) admits group (coset) trees of arbitrary height if for any
8 < w1, there is a group (coset) tree T on (H,) with ht(T) > 3. Let S be a coset
tree on a sequence of groups (H,). Then for each n € w there is a unique subgroup
G, of H™ which SN H" is a coset of. We actually have G, = ¢~}(SN H") for
any ¢ € SN H™. Define

a(S) = | Gn.

ncw

Thus a(S) = U . 0, (SNH") where o0, € SNH"if SNH™" # 0 and o, = €

nEw "N

otherwise. It is easy to see that a(S) is a group tree.

4.2.2. Main results.

Theorem 7. Let (H,) be a sequence of countable abelian groups. Then the
equivalence relation induced by any Borel action of H* is Borel iff for all but
finitely many n, H, is torsion, and for all primes p for all but finitely many n
the p-component of H, is of the form F x Z(p>)¥, where k € w and F is a finite

abelian p-group.

If H is countable, abelian, and torsion, then H = » Hp, where p ranges over
the set of all primes, and H, is the p-component of H (see [F]). Thus we get the

following corollary.

Corollary 8. Let H be an abelian countable group. Then the equivalence rela-
tions induced by Borel actions of H are Borel iff H is isomorphic to ,(F}, X
Z(p>)"#), where p ranges over the set of all primes, n, € w, and F, is a finite

abelian p-group.
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For not necessarily abelian countable groups, we have the following version of

one implication from Theorem 7.

Theorem 9. Let (H,) be a sequence of countable groups. If for each prime p, for
all but finitely many n, H, is p-compact, then the equivalence relations induced

by Borel actions of H* are Borel.

It is an open question whether the converse of Theorem 9 holds. This would
be a natural extension of Theorem 7, since, as we show in Lemma 16, a countable

abelian group is p-compact iff it is torsion and its p-component has the form as in
Theorem 1.

Some of the ingredients of the proofs are: the theorem of Becker and Kechris
[BK] on the existence of universal actions, the structure theory for countable
abelian groups, and a construction of group trees of arbitrary height. It turns out
that both conditions in Theorem 7 are equivalent to (H,) not admitting group
trees of arbitrary height (Lemma 21). This generalizes the known results that the
sequence (H,), H, = Z for each n € w, admits group trees of arbitrary height
(Makkai [M, Lemma 2.6]), and that the sequence (H,), H, = @ Z(2) for each
n, admits group trees of arbitrary height (Shelah [M, Appendix]). (See also [L,
p. 979] for a proof of the latter result and its generalizations to groups which
are direct sums of k many copies of Z(2) for certain cardinals x.) The known
proofs in the above two cases—Z and @ Z(2)—were different from each other,
and Makkai’s construction for Z rested on Dirichlet’s theorem on primes in arith-
metic progressions. We present a construction (Lemma 19) that encompasses both

these cases and is purely combinatorial.

Here is how Theorems 7 and 9 follow from the lemmas in Sections 4.2.3-
4.2.5. In Section 4.2.3, we prove that all Borel actions of H¥, (H,) a sequence
of countable groups, induce Borel equivalence relations iff (H,) does not admit
well-founded coset trees of arbitrary height (Lemma 11). In Section 4.2.4, we show
that (Hp) does not admit well-founded coset trees of arbitrary height iff it does
not admit group trees of arbitrary height (Lemma 15). Then, in Section 4.4.5, we
show that if for each prime p, for all but finitely many n, H, is p-compact, then
(H,) does not admit group trees of arbitrary height (Lemma 17). This proves

Theorem 9. Next, we prove that if (H,) is a sequence of abelian groups, then
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(H,) does not admit group trees of arbitrary height iff for all but finitely many n,
H, is torsion and, for all primes p, for all but finitely many n, the p-component
of H, has the form as in Theorem 7 (Lemma 21). This proves Theorem 7.

4.2.3. Group actions and coset trees. The following construction is from
[BK]. Let G be a Polish group. Consider F(G) the space of all closed subsets of G
with the Effros Borel structure, i.e., the Borel structure generated by sets of the
form {F € F(G) : FNV # @} for V C G open. Put Ug = F(G)“, and define the
following G-action on Ug: (g, (Fr)) — (¢F,).

Theorem. (Becker-Kechris [BK]) Ug with the above G-action is a universal
Borel G space, 1.e., if X is a standard Borel space on which G acts by Borel
automorphisms, then there is a Borel injection @ : X — Ug such that n(gz) =
gr(z) forg € G and z € X.

Let X be a standard Borel G-space. Let m : X — Ug be a Borel injection

whose existence is guaranteed by the above theorem. Then, for z,y € X, we have
% u
tE&y & n(2)ESen(y).
This shows that the following corollary to the theorem above is true.

Lemma 10. Let G be a Polish group. The relation induced by any Borel G-action

is Borel iff the relation induced by the G-action on Ug is Borel.

Lemma 11. Let (H, ) be a sequence of countable groups. The equivalence relation
induced by any Borel H¥-action is Borel iff (H,) does not admit well-founded coset
trees of arbitrary height.
Proof. Let 7 be the family of all trees on (H,). The set 7 is a Polish space with
the topology generated by sets of the form {T €T : 0 € T}and {T €7 : 0 € T}
for o € H<¥,

(<) By Lemma 10, it is enough to prove that the H“-action on Uy« induces
a Borel relation. Let 7, be the family of all pruned trees on (H,), i.e., trees with
no finite branches, with the topology inherited from 7. This topology makes 7,
a Polish space. The mapping ¢ : 7, — F(H*) given by ¢(T) = {z € H¥ : Vn €
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w z|n € T} is a Borel isomorphism. For z € H* and T € 7, define
tT={ce HY: sczim(TNH™) where m = lh(o)}.

Then easily T € T,. Also ¢(2T) = 2¢(T). Thus it is enough to check that the
following action of H¥ on 7,” induces a Borel equivalence relation: (z,(Tn)) —
(2T), for z € H*,(T,) € T,°.

Now define ®:7, x T, = T by

®(T,S)={cc H<Y: TNH™ =0(SNH™) where m=Ih(co)}.
Easily (T, S) is a coset tree. Define the mapping ¥ : 7;° X 7, — T by

U((Tn),(Sn)) = [ ®(Tn,Sn).

new

Note that the intersection of a family of coset trees is a coset tree. Thus, for any
(Tn); (Sn) € T¥, ¥((Tn), (Sn)) is a coset tree. Also note that

(T)E.(Ss) & U((Tn),(Sn)) is not well-founded.

Indeed, if 6o C 03 C -+, lh(0;) — o0, and o; € lIl((Tn),(S'n)), then zS, = T,
for each n € w where z = | J;¢, 0. f 25, =T, for all n € w and some z € H¥,
then z|i € ¥((Tn),(Sn)) and {z|i : i € w} witnesses that ¥((Ty),(Sn)) is not
well-founded. Clearly ¥ is a Borel mapping. Thus, if we assume that there is
3 € wy such that any well-founded coset tree on (H,) has height < 3, we get

(T, x )\ Er, =0 ({T€T: T well-founded and ht(T) < §}).

But {T € T : T well-founded and ht(T) < 3} is Borel, whence EZ{: is Borel.
(=) Assume (H,) admits well-founded coset trees of arbitrary height. Define

the following continuous action of H* on 7:
(2,T) » 2T ={c € H<*: c €zim(TNH™) where m = Ih(o)}.
Define a Borel function @, : 7 x 7 — 7 by
@ (T,S)={cc H: Ym<Ilh(c) TNH™ = olm(SN H™)}.
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Now, if EZ. is Borel, & [(T x T)\ EZ.] is B} Also &,[(T x T)\ EL.] C
{T € T : T is well-founded}. Since {T € 7 : T is well-founded} is a II] set and
T— ht(T)isa Hi-norm on it, by the boundedness principal, there is 8 € w; such
that, for any 7,5 € 7, if (T,S) € E_;‘_rIw., then ht(@l(_T, S)) < 3. But note that if
T is a coset tree, then ®,(T,a(T)) = T. Thus, for any well-founded coset tree T
on (Hy), ht(T) = ht(®(T,a(T))) < 8, a contradiction.

4.2.4. Coset and group trees. The next several lemmas lead to a proof that
the existence of well-founded coset trees of arbitrary height is equivalent to the
existence of group trees of arbitrary height (Lemma 13). We will use a few times
the easy fact that {r(¢):o € T} D ht(T) for any tree T on (H,).

Lemma 12. Let S be a coset tree. Then:
() a(8) = a(S)';
(i) if SN H* # 0 for each k € w, then a(S%) = o S)*.
Proof. To show (i), let ¢ € H". Then o € a(S’') implies that there are 7,75 € §'
such that o = ‘Tl_l’?"_)_. Now we can find g,h € H, with 7y xg, 72 *h € 5. But then
ox(g71R) = (1 xg) (2 x k) € a(S). Thus ¢ € a(S)'. On the other hand, if
o € aS), then there are ¢ € H, and 71,7 € S with 7,173 = 0 % g. But then
o = (m1|n)"Y(n2|n) and m1|n,72|n € S’, whence o € a(S").

Notice that if S, D S,+1, n € w, are coset trees, and, for some k € w,
Nnew(SaNH®) # 0, then a(N,c,, Sn) NH* =N, a(Sn)NHF. To see this, pick
cE ﬂnEw S,N H* Then

o) Se)NHY = ([ SanH*) = [ o7 (SaN H*) = () a(Sa) N H".

new new nEw nEw

Using (i) and the above observation, we get (ii) by transfinite induction.

Lemma 13. Let T be a group tree. Let o, € H", n € w, be such that
(0ns1|n)to, € TP for some B € wy. Put § = Urew (T N H™). Then S is
a coset tree, and for any £ < § we have §¢ = |, on(T*N H™).

Proof. For £ < 3, define

5@ = | | ea(TE N H").

necw
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In particular, S(®) = S. First note that each S'€ is a coset tree. Indeed, if m < n,
then (0,|m) 'o.n € TS. This follows easily by induction from our assumptions
that it holds for n = m + 1 and the fact that T¢ is a group tree. To check that
S is a tree, let 7 € TSN H". Then, for m < n, (.7)im = (o,|m)(r|m) =
om (ot (olm)(r|m)) € S© N H™ since (o (on|m))(r|m) € T¢ N H™. Thus S0
is a tree, and because of the way it was defined, it is a coset tree. It is obvious
that o(S®) = T¢€ and that o, € S'© for any n € w, £ < 8.

Now, we show by induction that, for £ < 3, a(S5%) = T¢ and ¢, € S* for each
n € w. Both statements are true for € = 0. If £ is limit and o, € S¢ for all { < €,
then clearly ¢, € S%. By Lemma 12(ii), we also have a(S¢) = a(S)* = T¢. If £
is a succesor, say { = ( + 1, then, by Lemma 12(i) and the induction hypothesis,
we get a(S¢) = a(S) = (T°) = T%. Since ont1 € S°, ont1/n € S¢. Since
(Gni1|n) o, € TP C T, we have 0p = (0nt1|n)((Fnt1/n)"1on) € SE.

Thus o S©)) = T¢ = o(S%), i.e., for each n € w, SO NH" and SN H™ are
left cosets of the same subgroup of H®. Also (S NH™)N(SSNH") #0, as o,
belongs to the intersection. Thus we get S NH™ = S¢N H™ for each n € w, i.e.,
S8 = §¢.

Lemma 14. Let T be a group tree with ht(T) > w. Then there exist o, € H"
such that :

(i) (eny1ln) o, € T;
(ii) Unew on(T N H™) is a well-founded tree of height < w - 2.

Proof. We start with the following observation. Let K be a countable group and
let K,, n € w, be a strictly decreasing sequence of subgroups of K. Then there
exist g, € K, n € w, such that g7 'gn41 € K, and ()¢, 9nfn = @. To see that
this is true, enumerate K = {k, : n € w} and pick g, € K recursively so that
gn+1Knt1 C gnKy and kn & gn+1Kns1.

Now, assume that T is a group tree and ht(T) > w. Let oy be such that
r(0o) = w. Put kg = lh(ao) + 1. Then {r(c): o € TN H*} Nw is cofinal in w.
Let p, : H™ — HF n > ko, denote the projection on the first kg coordinates.
Since {o € H* : r(g) > m} = pr,om[T N H*T™] there is an increasing sequence
ko < mg < my < mp < --- such that p, [T N H™+] # p, [T NH™] and,
obviously, pm, ., [T N H™+1] C pm, [T N H™]. Pick 7, € H*, n € w, as in the
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preceding paragraph for K, = pn, [T N H™"], i.e.,

1T € B, [T NH™] and ﬂTn(Pmn[TﬂHm"]):{D.

neEw

We recursively construct o, € H™, n € w, so that
Om, |ko = T and (on41|n) ton € T.

First, find p, € H™" with p,|ky = 7 and (pp+1|mn) " p. € T. For py take any
extension of 7q in H™°. Now assume p, has been constructed. Then T;il(Pnlko) =
Tn__il‘T'n € pm,[TNH™"]. Let ¢ € TN H™" be such that T;_{}i(pn]ko) = o|ko. Note
that (pno™)|ky = Thy1, and let p . be an arbitrary extension of p,o0~! in H™n+1,
Now, put o, = piin f0<n<mpandl=0o0rif m_; <n<myand!>0.

We have o, |ko = pnlko = Tn. Also (ont1|n)lon € T, ie., (i), is easy to
see. Put § = J, e, on(T NH™). To check (i), let ¢ € §N H*. Pick the unique
k € w such that 0 € 7% (pm, [T N H™]) \ 7ks1(Pm, . [T N H™*+1]). Then for any
o' € § with ¢' D ¢, we have lho' < my41. Otherwise, ¢’ € o,(T' N H") for some
n > mg41, whence o = pp(0') € Ta(pn[T N H™]), a contradiction. Thus rg(o) < w
forany c € SN H¥o_ Tt follows that S is well-founded and ht(S) < w + ko.

Lemma 15. Let (H,) be a sequence of countable groups. Then the following
conditions are equivalent:

(i) (H,) admits well-founded coset trees of arbitrary height;

(ii) (Hn) admits coset trees of arbitrary height;

(iii) (H,) admits group trees of arbitrary height.

Proof. (i)=>(ii) is obvious.

(i1)=(iii). Note that if S C T are coset trees and S # T, then «(S) C o(T)
and a(S5) # o(T). To see this, pick ¥ € w such that SN H* # TN H* and
c € SNH* Then (S NH* =61 (SNH*) #0671 (TNH*) =a(T)NH*.

Now, let S be a given coset tree. Define ¥ = min{min{¢ : 3k S¢ N HF =
0},ht(S)}. Then, by Lemma 12(ii) and the above observation, we have a(S)¢ =
a(S5%) # a(S¢) = a(S)¢ for £ < ¢ < 7, whence ht(a(S)) > v. But it is easy to see
that ht(S) < v + w. Thus (ii)=(iii) is proved.

(ii1)=>(i). Let T be a group tree of height > 3 + w. We show that there is a
well-founded coset tree of height > 3. To this end consider T?. Then ht(T?) > w.
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Apply Lemma 14 to T? to find o, € H",
Put S = U,e, on(T N H™). Then, by Lemma 13, S is a coset tree and S° =
Unew @n(T? N H™) # 0. By Lemma 14(ii), S#¥<2 = (|, o, on(T? N H™))“ = 0.
Thus S is a well-founded tree with ht(S) > 3.

n € w, as in Lemma 14(i) and (ii).

4.2.5. Group trees and algebraic properties of groups.

Lemma 16. Let H be a countable group. If H is not torsion, it is not p-compact
for any prime p.

Proof. Clearly, if a subgroup of H is not p-compact, neither is H. Thus it
is enough to show that Z is not p-compact. This is witnessed by the following

sequence of subgroups of Z(p) x Z:

G = {(m(P‘*‘l)k mod p, m(p-i-l)k) : mEZ}, keEw.

Lemma 17. Let (H,) be a sequence of countable groups. If (H,) admits group
trees of arbitrary height, then there exist a prime p and infinitely many n € w
such that H, is not p-compact.

Proof. If for infinitely many n € w H, is not torsion, we are done by Lemma
16. Also, if (H,) admits group trees of arbitrary height, so does (H,),>n for any
N € w. This follows from Lemma 15 as soon as we notice that if S is a coset tree
on (H,)and o € H", then S, is a coset tree on (Hp)n>n, and that, given 3 < wy,
if ht(S) is large enough, then ht(S,) > 3 for some ¢ € HY. Thus, we can assume
that H, is torsion for each n, and that there exists a group tree on (H,) of height
5 19,

Let T be a group tree on (H,). Let p be a prime. Assume ¢ € TN H™,
r(o) < wi, and the order of o is a power of p. Let § < r(¢). Then thereist D o
such that r(7) = @ and the order of 7 is a power of p. To see this, let 7' D o,
7' # o and r(7') > B. Let | € w be such that p does not divide it and the order of
7' is a power of p. Since the order of ¢ is a power of p, there is I' € w such that
'lc = o. Put 7y = [l'l'. Note that 71 D ¢ and 71 # o. Since, for any ¥ € w; and
me€w, {r e TNH™:r(r) >~} is a subgroup of H™ (this follows easily from
the facts that {r e TNH™ : r(7) 2 v} =T7N H™ and that T7 is a group tree),
r(m) = r(l'lr") 2 r(v") 2 B. If r(m1) = B, we are done. If r(7;) > B, we repeat

the above construction and get 7 D 71, ™2 # 71, whose order is a power of p and
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r(m2) > 8. Again, if r(73) = 3, we are done; otherwise we repeat the construction.
Note that we cannot do it indefinitely, since then we would produce a sequence
o C 71 CT C  * Tm # Tm+1, Whence r(o) = w;, a contradiction. Thus we must
obtain T, D o such that r(rm) = 3 and the order of 7., is a power of p.

Next, notice that if 7 € TN H™, r(7) is a limit, and the order of 7 is a power
of p, p a prime, then H, is not p-compact. Indeed, let v, k € w, be a strictly
increasing sequence of ordinals tending to r(7). Put Gy, = {g € TN H*ir(e) 2
Yk}. Let w : H™™1 — H"™ be the projection. Notice that (G) is a decreasing
sequence of subgroups of H*™! and 7 € ¢, 7[Gi] \ 7[Nieo Gi]- Let C = (7).
Then C < H™ and C ~ Z(p™) for some m € w. Put G}, = Gx N(C x H,). Let
¢ : C — Z(p) be a surjective homomorphism. Let ® = ¢xid : CxH, — Z(p)x H,.
Since @ is finite-to-1, @[();c., Gi] = [iecw @(G}]- Note also that 7' 0® = gon
where 7' : Z(p) x H, — Z(p) is the projection. Thus

o[r[() Gu] =='[[] @lGil].

k€Ew k€w

But 7[(\e, Gi] # C whence 7[Nkew Gi] C ker(4). Thus é[""{ﬂkeu G’k]] = {0}
and finally
<[ 2lGy] = {0}.
kEw
On the other hand,

() ='[@G4] = ¢[[) ~[GH]] = Z(p)-

kew kew
Thus the decreasing sequence of groups ®[G}], ¥ € w, witnesses that H, is not
p-compact.

Now, let T be a group tree on (H,) with h#(T) > w?. There exists a prime p
and o € T such that the order of & is a power of p and w? < r(o) < w;. To show
this, first find 7 € T with r(7) = w?. The group G = (7) is cyclic and finite. Thus
there are 01,02,...,0m € T N H" n = [h(7), which commute with each other,
their orders are powers of distinct primes and 7 = ¢g---0,,. Note that for each
0 < i < m there is k € w with k7 = ;. Thus, since {s e TNH" : r(0) 2 w?} isa
subgroup of H™, r(o;) > w? forall 0 <i<m. Also {c e TN H" : r(0) > wy } is

a subgroup of H™, thus there is ¢ such that r(o;) < w;, and we are done.
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Now, fix the prime p and ¢ € T as above. Let N € w. We show that there are
more than NV numbers n such that H, is not p-compact. Indeed, we can recursively
produce 79, 71,...,75 € T so that ¢ C 7y and r(7y) = w?, 7; C 7;41, the order of
each 7; is a power of p, and r(7;) =w - (N +1—1:),1 <i < N. But then if we put
n; = lh(r;), we get ng < n1 < --- < ny and H,, is not p-compact since w? and
w-(N+1-—1),1<i<N, are limit.

In the following lemma, we essentially find all abelian countable groups which

are p-compact.

Lemma 18. Let H be an abelian countable group. Let p be a prime. Then the
following conditions are equivalent:

(i) H is p-compact;

(ii) H is torsion, and the p-component of H is of the form F x Z(p>)" where F
is a finite p-group and n € w;

(1iii) H is torsion, and there is no surjective homomorphism mapping a subgroup
of H onto @, Z(p).

Proof. (ii)=>(i). Let Gx < Z(p) x H, k € w, Giy1 < G, and 7[Gi] = Z(p) where
7 : Z(p) x H — Z(p) is the projection. Now, H = Hp, x H' and G = (Gi), x G}
where H, and (Gy), are the p-components of H and G, respectively, and the
order of any element of H' or G} is not divisible by p [F, Thm. 8.4]. Clearly we
have (Gi)p < Z(p) x Hp. We say that a group fulfils the minimum condition if
each strictly decreasing sequence of subgroups if finite. Since, as one can easily see,
Z(p>) and finite groups fulfil the minimum condition, and the property of fulfilling
the minimum condition is preserved under taking finite products, Z(p) x H, fulfils
the minimum condition. Thus there is kg € w such that (Gk), = (G, ), for k > ko.
But then

() Gkl = =[[)(Gr)p x () Gkl D 7[(Gi,)p x {0}]

k€w kEw k€Ew
= 7[(Gko)p X Gy, = 7[G,] = Z(p).

(i)=>(iii). By Lemma 16, H is torsion. Note that if F; can be mapped by a
homomorphism onto Fy, Fy,F, groups, and F, is not p-compact, then Fj is not
p-compact either. Indeed, let ¢ : F; — F, be a surjective homomorphism, and let
the sequence (G} ) of subgroups of Z(p) x F; witness that F, is not p-compact,
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then
Gy ={(m,g) € Z(p) x F1 : (m,(g)) € Gi}

witness that F} is not p-compact. Thus to prove that H is not p-compact, assuming
(11i) fails, it is enough to show that €_ Z({p) is not p-compact. Let {e; : i € w}
be an independent set generating B Z(p). Let us fix a sequence of sets X} C w,
k € w, such that X1; C Xy and (e, Xi = 0. Define G < Z(p) x @, Z(p) by

G = {{{(m,me;) :1 € Xy, m € Z(p)}).

Then (G ) witnesses that € Z(p) is not p-compact.

(111)=>(i1). Assume (iii). Let H, the p-component of H. Let H_; = (Ve BHp
be its first Ulm group. If H,/H, is infinite, then H,/H] ~ @, . Z(p"™) for a
sequence nm € w \ {0} [F, Thm. 17.2 and remarks on p. 155]. Thus H,/H,,
and hence H,, can be mapped homomorphicaly onto @, Z(p). Therefore H,/H,
is finite. Put F = H,/H,. But then H, is divisible [F, Lemma 37.2] and H, ~
F x H, [F, Thm. 21.2]. Now, by [F, Thm. 23.1], either H; ~ Z(p*>)", for some
n € w, and we are done, or H) ~ @_ Z(p™). But in the latter case H,, and hence

H, contains an isomorphic copy of &, Z(p), a contradiction.

Remark. (In this remark the notation and terminology follow [F].) One can give
other characterizations of p-compactness among countable torsion abelian groups.
For example p-compactness of H is equivalent to the following conditions:

(iv) the p-component of H fulfils the minimum condition;

(v) for any finite p-group F < H the p-rank of H/F is finite.

Obviously (ii)=(iv), and (iv)=(i) as in the proof of (ii)=>(i). Now, assuming
(iv) and noticing that a homomorphic image of a group fulfilling the minimum
condition fulfils the minimum condition, we get that the p-component of H/F,
F < H finite, fulfils the minimum condition. This obviously implies that its
p-rank is finite. Thus (iv)=(v). To see (v)=(ii), let H, be the p-component
of H. Let 7 be its Ulm type. First note that if 7 = v + 1, for some v, then
H)/H; is finite. Otherwise, rp,(H)/H]) = oo, and since H, ~ H,/H x Hy,
we get r,(H,) = co. Now, we claim, that 7 is neither a limit ordinal nor a
succesor of a limit ordinal. Otherwise, using the above observation there is a

sequence of groups Gn < Hp/H, n € w, such that Gny1 < Gn, Gr41 # G and
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(Nnew Gn is finite. Put G = (1, . Gn. Then we can pick recursively gx € H,/H]
so that pgr € G and for each k there is an n with gx € G, and ¢; € G, for
t < k. Then clearly the image of {g; : ¥ € w} under the natural homomorphism
H,/H; — (Hp/H})/G is infinite independent. Again, since H, ~ H,/H; x H],
ro{H/G') = rp(Hp/G') = oo for some finite p-group G'. Next, notice that 7 is not
of the form 7 4 2 because in this case H]™!/H] is finite and r,(H)/H]™') = o
whence rp((H;/H;’)/(H;”‘Ll/H;)) = oc. And as before rp(H/G') = oo for some
finite p-group G'. Thus 7 < 1, and if 7 = 1, then Hp/H, is finite. If 7 = 0, H,
is divisible, and since r,(H,) < oo, there is n € w with H, =~ Z(p>)". If 7 = 1,
put F = H,/H!. Then H, ~ F x H,, F finite, H divisible. Since r,(H;) < o0,
there is n € w with H) ~ Z(p*)".

Now, we make a technical definition useful in proving the existence of group
trees of arbitrary height. An abelian countable group H is called managable if there
exist two decreasing sequences of subgroups (G%), (GL) with (¢, G4 = {e}, for
i = 0,1, and a homomorphism ¢ : H x H — H such that ¢[G: x GL] = H for

any n € w.

Lemma 19. Let H be a countable abelian group. If H is managable, then (H,),

where H, = H for each n € w, admits group trees of arbitrary height.

Proof. Fix two decreasing sequences of subgroups (G%) and (G},) and a homo-
morphism ¢ as in the definition of managability. For each ordinal § < w;, we
produce a group tree T3 such that:

~if f=v+1,then TN H = H and Vh € H (h # e = (T3)s is well-founded);

—if B is limit, then Vy < 83n € w (T N H? D G% x G.) and Vo € H? (0 #
(e,e) = (T3)q is well-founded).

Then clearly wy > rr,(h) > 3 for any h € H \ {e} in the first case, and for any
¥ < B, w1 >rq,(c) > v for some o € H?\ {(e,¢)} in the latter. Thus hi(Tp) > 3
for any 5 € ws.

. Put Ty = {€} and Ty = H U {€}. Assume T, has been defined for all v < 3.

If 3=++1 and 7 is a successor, put

Ts={0UHU{o(0)*c: ¢ € Ty,lho > 1}.
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If 3=++1 and v is a limit, put
T35 = the tree generated by {¢(c(0),0(1)) o : o € Ty, lho > 2}.

Checking that the Ts’s work is straightforward. Now, assume § is a limit ordinal.
Note that it is enough to construct two group trees Sp and S; such that there
is an increasing sequence v, — 3 with Sg" N H D G% and S]" N H O G}, and
Vh € H (h # e = (Sy)n and (S;), are well-founded). If Sy and S; are defined, let

Ts={c€c H<“: o|{2k: kew}€ Syand o|{2k+1: kew} e 5}

We will define a group tree S = Sy as above; the construction of S; is anal-
ogous. Put G? = G,. Fix an increasing sequence of successors v, — 3, n € w.
X, =w. Let

Find pairwise disjoint infinite sets Xy, n € w, with [, ¢,

R,={0}U{h*0:h€GpolX,€T,,, ol(w\X,)CEé and
if lho > min X,,, then h = (¢|X,)(0)}.

Note that each R, is a group tree. Define

S=J@#*n | Rn).

k€w n€w

Easily S is a group tree. To see S™ N H D G,, just notice that, for each h € G,
rr, (h) > %n, and there is a monotone 1-to-1 mapping ¢ : (7., )» — S defined by
Y(o) = h*7, where 1 € H<“ is maximal such that 7|X, = hxo and 7|(w\X,) C €.
To show that (S), is well-founded for h € H \ {e}, fix h € H with h # ¢, and
assume towards a contradiction that h*z 1s an infinite branch through S for some
r € H*. Findn € w with A ¢ G,. Let k € w be such that kN X; # 0 for
i €n. Put 7 = z|k and n; = min X; for ¢« € n. If 7(n;,) # e for some iy € n,
notice that z|X;, is an infinite branch through 7., with (2] X:,)(0) # e which
contradicts the inductive assumption. Thus we can assume that 7(n;) = e for all
i € n. Then, since the R;’s are group trees, h * 7 = o - [[;c,(hi * 7;) for some
o € G, x H* with o(n;) = e and some h; * 7; € R; N H**!, By the definition of
R;, h; = 7i(n;) = 7(n;) = e. Thus h = o(0) € G,, a contradiction.

Lemma 20. Let (H,) be a sequence of countable groups. Then (H,) admits
group trees of arbitrary height if either of the following conditions holds.
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(i) There exists a sequence ng < ny < --- such that (H,, ) admits group trees of
arbitrary height.

(ii) For each n, G, is a homomorphic image of a subgroup of H,, and (G,) admits
group trees of arbitrary height.

Proof. (i) Let T be a group tree on (H,,). Define T a group tree on (H,) as

follows

ccT iff o|X €T ando|(w\X)=2¢(w\X)

where X = {nj : k € w}. Then ht(T) > ht(T).
(i1) Fix H! < H, and surjective homomorphisms ¢, : H, — G,. Let T be a
group tree on (G,). Define T a group tree on (H,) as follows

ce€T iff Vk<lho (o(k)€ H, and (¢o(c(0)), -, dk(c(k))) € T).
Then ht(T) > ht(T).

Lemma 21. Let (H,) be a sequence of countable abelian groups. Then (H,)
does not admit group trees of arbitrary height iff H, is torsion for all but finitely
many n, and for each prime p, for all but finitely many n the p-component of H,
is of the form F x Z(p>)*, where F is a finite p-group, k € w.
Proof. The implication < follows from Lemmas 8 and 9. To see =, assume the
conclusion does not hold. Then either there exist infinitely many n such that H,
contains an isomorphic copy of Z or, by Lemma 18, there exist a prime p and
infinitely many n such that a subgroup of H, can be mapped homomorphically
onto @ Z(p). Thus, by Lemma 20, it is enough to show that (H,), where H, = Z
for each n or H, = @ Z(p) for each n, admits group trees of arbitrary height.
, By Lemma 19, it suffices to prove that Z and €, Z(p) are managable. For
Z, put G¢ = (2™), GL = (3"). Define ¢ : Z xZ — Z by ¢(m,l) = m + [. For
B, Z(p), fix an infinite independent set {e; : 7 € w} generating P _ Z(p). Find
newXn = 0.
Put G% = {{e; : i € X,}) and G}, = {e}. Fix a function f: w — w so that, for
any n,m € w, f~}(m)NX, # 0. Define ¢' : P_ Z(p) — D, Z(p) to be the unique
homomorphism extending ¢'(e;) = efy. Let ¢ @ Z(p) x B Z(p) — P Z(p)
be the composition of the projection to the first coordinate with ¢'.

a decreasing sequence of nonempty sets X, C w, n € w, such that )
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CHAPTER 5
ON HAAR NULL SETS

Let G be a Polish abelian group. Christensen [C] calls a universally mea-
surable set 4 C G Haar null if there exists a probability Borel measure y on G
such that u(g + A) = 0 for all g € G. It was proved in [C] that in case G is
locally compact a universally measurable set is Haar null iff it is of Haar measure
zero. Also, the union of a countable family of Haar null sets is Haar null, i.e.,
Haar null sets constitute a o-ideal. One of the first questions asked by Chris-
tensen in [C] was whether any family of mutually disjoint, universally measurable
sets which are not Haar null is countable, as is the case when the group is Polish
locally compact. This was answered in the negative by Dougherty [D] who con-
structed such uncountable families, for example, in all infinite dimensional Banach
spaces. (Haar null sets are called “shy” in [D] following the terminology of [HSY].)
This gives rise to the question whether the existence of such uncountable families
characterizes non-locally-compact, Polish, abelian groups. We prove that this is
indeed the case, i.e., a Polish, abelian group is not locally compact iff there exists
an uncountable family of universally measurable or, equivalently, closed, pairwise
disjoint sets which are not Haar null. We also consider the problem of approx-
imating sets modulo Haar null sets. We show that in each non-locally-compact,
Polish, abelian group there exists an analytic set A such that AAB is not Haar
null for any co-analytic set B; but each analytic Haar null set is contained in a
Borel Haar null set. (This last statement answers a question of Dougherty [D,
p.86].) Additionally, we prove that for any @ < w; there exists A € 22 such that
AAB is not Haar null for any B € Hg.

The definition of Haar null sets was extended by Topsge and Hoffmann-
Jorgensen [TH-J] and Mycielski to all Polish gfoups. A universally measurable
set A C G is said to be Haar null if there exists a Borel probability measure p
such that u(gAh) = 0 for all g, h € G. Haar null sets are still closed under count-
able unions and coincide with Haar measure zero sets in locally compact groups.

We prove all our results for Polish groups which admit an invariant metric. (A
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metric d on G is invariant if d(g1hg2,91kg2) = d(h,k) for any g1,92,h,k € G.)
This class of groups contains properly all Polish, abelian groups, since each metric
group G admits a left-invariant metric which, obviously, is invariant when G is

abelian. Any invariant metric on a Polish group is automatically complete.

By cl(A) we denote the closure of A. N stands for the set of all natural
numbers (and 0 € N) and 2" for the countable infinite product of {0,1} with the
product topology. By N™ or 27, for n € N, we denote the set of all sequences of
elements of N or {0, 1}, respectively, of length n indexed by {0,...,n—1}, and by
N™ the set of all infinite sequences of elements of N. Put also N<¥ = | J . N". If o
is a sequence, by a|n, for some n € N, we denote the sequence (a(0),...,a(n—1));
in particular, a|0 = 0. If 0 € N*, m € N, 6 * m denotes the unique 7 € N**! such
that 7|n = ¢ and 7(n) = m.

First, we prove the following purely topological theorem.

Theorem 1. Assume G is a Polish, non-locally-compact group admitting an
invariant metric. Then there exists a closed set F C G and a continuous function
é: F — 2N such that for any = € 2% and any compact set K C G thereis g € G
with gK C ¢7(z).

Proof. A family A of subsets of G is called discrete if each g € G has an open
neighborhood intersecting at most one member of A. Let d be an invariant metric
on G; d is complete.

Claim. Let U C G be open and nonempty. There exist g, € U and open
Un, n € N, such that U, C Upt1, U, Un = G, and the family {g,U, : n € N} is
discrete.

Fix an increasing sequence of finite sets (Q,) such that | J, @, is dense in G.
Find § > 0 and an infinite set D C U whose points are at distance at least § from
each other. For any finite sets A, B C G there is g € D such that d(gA, B) > /2.
If not, then for any g € D there are a € A and b € B with d(ga, b) < §/2. But then
there exist distinct g,¢' € D with the same pair a, b; hence d(g,¢') = d(ga, ¢'a) <
d(ga,b)+d(b,g'a) < 8, contradicting d(g,¢') > 6. Thus, we can inductively choose
gn € D so that d(gnQn, Uic, 9iQi) > 6/2. Let W = {g € G: d(e,g) < §/5}.
Put U, = Q,W. Then |J,Un = (U, @n)W = G since |J, @ is dense, and, by
invariance of d, {g,Un : n € N} is discrete, which finishes the proof of the claim.
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For o € N<N, define g, € G and V, C G open so that:
(i) Vs =G;
(n) i < 1, thefi Voun C Vawng
(#1) L Voum = Gi
(iv) {gosmVoum : m € N} is discrete;
(v)if o € N*, n > 1, then d(gpem,€) < 2-7(n=1) for each m € N.
Put gg =eand V3 =G. For g € N*, let U = {g : d(g,e) < grote=1)} o 2 1
and U =G ifn=0. Find g, € U and U,,, C G open with the properties as in the
Claim. Put gowin = ihm 808 Vi = U
Let W, = (Nycn 9ojk Volk for o € N*. Put

el U cl(W,).

n geNn

Notice that for each n the family {W, : ¢ € N"} is discrete, whence

U cl(Ws) = cl( U Wo);

oeN" ogENn

therefore, F is closed. For z € 2%, put

oy = ﬂ U{cl(Wa) : 0 € N" and o(¢) is even iff z(1) = 1 for 1 < n}.

Then F,, N F;, = 0 if zg # z;. Indeed, assume zo(n) = 0 and z;(n) = 1 for
some n. Since {W, : o € N®™1} is discrete, cl(W,)Necl(Wy) =0 if 0,0’ € T,
o # o'. Thus
U{cl(W,) : 0 € N"™! and o(n) is even}
n U{cl(W,) : 0 € N**! and o(n) is odd} = 0.

But

F,, C U{CZ(W}) : ¢ € N and o(n) is odd},
while

ey T U{cl(W,) : 0 € N*! and o(n) is even}.
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Note also that |, Fr = F. Now define ¢ :- F — 2% by letting ¢(g) be equal to
the unique z with ¢ € F;. To prove that ¢ is continuous, it is enough to see that

preimages of basic clopen subsets of 2% are closed. But for 7 € 2%, n € N, we have
o {ze2V: zjn=r})
=51 U{cl(W’,) : ¢ € N" and o(i) even iff 7(i) = 1 for 1 < n}.

And again, since {W, : ¢ € N"} is discrete,
U{CZ(W',,) : 0 € N" and o(2) is even iff 7(z) =1 for : < n}

1s closed.

Let K C G be compact. We want to show that for any z € 2V there is
g € G with ¢K C F,. For simplicity of notation we will only find g € G such that
gK C F. It will be clear from the proof that the same argument applies to each
F, in place of F. We will produce & € N" such that for each n € N
(2) 9a|nTajn—1 " 90K C Vajnt1;
(0) X isns2Ugajir€) < d(gajngain-1-" 90K, G\ Vajn1)-
Then by (b), []; ga|i exists, since d is complete. By (a), (b), and the invariance
of d, (T1; 9aji) K C 9afnt1Vajn+1 for each n. Thus, since Vy = G, ([]; 9a1i)K C
N 9a|nVajn C F, and we are done.

Assume a|n has been defined. By (ii) and (iii), there is § > 0 such that for

all m large enough

(,*) Janbajn—1""" ng L Va\n*m ELIld d(ga\ngcﬂn—l e ’g@}-{: G \ Tfa|n*m) > 6.

Also, by (v), given € > 0 for m large enough we have d(gqjnemsk,€) < € for all k.

Thus, we can pick an m so that (%) holds, and for each k
d(ga[nxm*k: E) < (1/2n+1)min{5: min{d(gcxﬁga[i—l e g@K: G \ I/7C!ii+1) c1Sn— 1}}

with the convention min = oco. Put a|n +1 = @|n *m. This finishes the proof of

the theorem.

Corollary 2. Let G be a Polish group admitting an invariant metric. Then
each family of universally measurable or, equivalently, closed, pairwise disjoint

sets which are not Haar null is countable iff G is locally compact.
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Proof. (<) If G is locally compact, Haar null sets coincide with sets of Haar

measure zero, see [C| and [TH-J]. Since G is Polish, Haar measure is o-finite.
(=) Assume G is not locally compact. Since for any Borel probability measure

on G there is a compact set of positive measure, it follows that the sets ¢~1(z),

z € 2V, from the Theorem are not Haar null.

Proposition 3. Let G be a Polish group.

(i) If A C G is analytic and Haar null, then there exists a Borel set B C G which
is Haar null and A C B.

(ii) Assume that G is not locally compact and admits an invariant metric. Then
there exists an analytic set A such that for no co-analytic set B AAB is Haar null.
For any o < w; there exists A € B2 such that for no B € 12 AAB is Haar null.

Proof. f ZC X x Y, then,as usual, Z, ={y €Y : (z,y) € Z} for z € X.
(i) Let A be analytic and Haar null. Let u be a probability Borel measure
witnessing it. Then the family of sets

®={X CG: X €] and Vgy,92 € G p(g:Xg2) = 0}

is I'Ii on Ei, i.e., for any 21 set P CY x G, Y a Polish space, the set {y €
Y : P, € ®} is II}. To check this, let P C ¥ x G be £}, ¥ Polish. Define
PCGxGxY xG by (¢1,92,¥,9) € P iff g € g1Pyg2. Then Pe =1 It follows
from [K, Theorem 29.26] that {(g1,92,¥) : y(ﬁ(ghgz}y)) = 0} is IT7, whence so is

{yeY: Vg1,00€ G uPy50) =0} ={yeY: P, €&}

Now, .since A € @, by (the dual form of) the First Reflection Theorem, see [K,
Theorem 35.10 and the remarks following it], there exists a Borel set B with B D A
and B € @, so B is as required.

(ii) Let F and ¢ : F — 2" be as in the Theorem. The argument below
is essentially the same as Balcerzak’s argument in the proof of Lemma 2.1 from
[B]. Let A = co-analytic sets or A = ITy for some a < w;. Let U C 2¥ x G be
universal for A|G, i.e., U € Aand {BC G: B € A} = {U. : z € 2V}. Put
A = (G\F)UU, (¢ (2)\Us). Note that A = (G\F)U{g € F: (8(g),0) ¢ U}
whence, since ¢ is continuous and F' is closed, G\ A € A. Also, for any z € oN,
we have AAU; D ¢~ !(z). Thus, AAB is not Haar null for any B € A.
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Remark. Proposition (i) can also be deduced from a theorem of Dellacherie. If p
witnesses that an analytic set A is Haar null, put i(X) = sup{u*(¢Xh): ¢,h €
G}, where X C G and u* is the outer measure induced by p. Then it is easy to
check that [ is what is called in [De| a caliber. Thus, since i(A) = 0, by [De,
Theorem 2.4], there exists a Borel set B O A with g(B) =0, i.e., u(gBh) =0 for
any g, h € G.
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CHAPTER 6
DECOMPOSING BOREL SETS AND FUNCTIONS AND THE
STRUCTURE OF BAIRE CLASS 1 FUNCTIONS

6.1. Introduction

All spaces considered are metric separable and are denoted usually by the
letters X, Y, or Z. If a metric separable space is additionally complete, we call
it Polish; if it is a continuous image of w® or, equivalently, of a Polish space, it is
called Souslin. _

In the first part of the paper our main concern is to determine how difficult
it is to represent a Borel set as a union of simpler Borel sets or the graph of a
Borel function as a union of the graphs of simpler Borel functions. Using Effective
Descriptive Set Theory, in particular Louveau’s theorem, we show that if A C X,
X Polish, is Borel, then A € 22 or there is a continuous injection ¢ : w* — A
such that ¢~1(B) is meager for any B C A which is 2. This gives a new proof
of J. Stern’s result that if a Borel set A is the union of < cov(M) sets in X2,
then A is itself 2. (cov(M) is the smallest cardinality of a family of meager sets
covering R.) We prove similar results for functions. Put, for f : X — Y and a

family of functions G,
dec(f,G) = min{|F|: | JF =X, VZ € F f|Z € G}.

Let B, stand for the family of functions on the «'s level of the Baire hierarchy.
We show, e.g., that given f: X — Y Borel, X Polish, either dec(f,B,) < w or
there is a continuous injection ¢ : w* — X such that ¢~1(A) is meager for any
A C X with f|A € B,; thus dec(f,Byo) > cov(M). These results imply that
the decomposition coefficients defined in [CMPS] and proved there to be > w are
actually > cov(M).

- In the second part, we apply some of the ideas of the first part to study Baire
class 1 functions. The structure of Baire class 1 functions was recently extensively
studied in a number of papers, see e.g. [KL], [R]. We prove two dichotomy results

of the following form: a Baire class 1 function “decomposes” into countably many
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continuous functions or “contains” a very complicated function. Two kinds of
decompositions will be considered: decomposition into continuous functions with
closed domains (considered first by Jayne and Rogers [JR]) and into continuous
functions with arbitrary domains (first considered by Lusin); thus, a function
f: X =Y will be régarded as simple in the first sense if X = |J, Xn, n € w,
each X, is closed and f|X, is continuous, and it will be simple in the latter sense
if X =J,Xn, n €w, and f|X, is continuous for each n. To define containment

between functions, put forg: X; - Yiand f: X5 = 15
gC fiff 3¢: X7 — Xo, ¥: ¢g[X1] —» Y5 embeddings with Y 0 g = f 0 ¢.

Now, we identify the functions which will be contained in each complicated with

respect to a decomposition Baire class 1 function. For the decomposition into

continuous functions with closed domains the functions are modeled on the well-

known Lebesgue’s example of an increasing function on [0, 1] which is continuous
“exactly at all irrational points; for the decomposition into continuous functions

with arbitrary domains the function is the so-called Pawlikowski’s function defined

in [CMPS]. Here are the precise definitions.

Definition of Lebesgue’s functions L and L;. Let @ be the set of all points in

2% which are eventually equal to 1. For each z € @ fix a number a, > 0 so that

1)if z,y € Q, = # y, then a; # ay;

2) a; < 1/3™, where ng is the smallest natural number such that z(n) = 1 for

n > ng.

Let H : 2¢ — [0,1] be the well-known embedding H(z) = Y oo, z(n)/3" 1. Let

L, L; : 2 — R be defined by '

_ H(I): ifng;
b= {H(x)-{-a;, if z € Q;

and

_J0, iHzgQ;
Ll(I)—{aI, ifze@.

Definition of Pawlikowski’s function P. Let w + 1 have the natural, order
topology. Let P: (w+1)“ — w® be defined by P(n) =7, 5 € (w+ 1)“, where for

new

p—

_ 0, if n(n
i) = {n(n) Sl 3 iy
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Finally, we can formulate the results. Let f : X — Y be Baire class 1,
X Souslin. Then either X = |J, X, n € w, X, closed and f|X, continuous,
or L C for L C f; also, either X = |J,Xn, n € w, and f|X, continuous, or
P C f. The first part of the above sentence sharpens a result of Jayne and Rogers
from [JR]. An interesting feature of the second part is that its proof uses Effective
Desriptive Set Theory even though its statement mentions only functions on the
first level of Baire hierarchy.

Further, it turns out that L, L;, and P are as complicated as any other Baire
class 1 function with respect to the decomposition into continuous functions with
closed domains, in case of L and L;, and with arbitrary domains, in case of P;

thus, the above dichotomy results are in a sense best possible. Put
dec.(f) = min{|F|: | JF =X, VZ € F Z is closed and f|Z is continuous}

and

dec(f) = min{|F| : U]—' =X, VZ € F f|Z is continuous},

i.e., dec(f) = dec(f,Bo). Note that if g T f, then clearly dec.(g) < dec.(f) and
dec(g) < dec(f). By a result of Cicholi and Morayne [CM],

sup{dec.(f): f: X =Y, X Souslin, f Baire class 1} < d,

where d is the smallest cardinality of a dominating subset of w*. We prove that
dec.(L) = decc(L1) = d. Thus indeed L and L; are as complicated as any other
Baire class 1 function as far as decomposing into continuous functions with closed
domains is concerned, i.e., dec.(L) = dec.(L1) > dec.(f) for any Baire class 1

function f. We prove an analogous result for P. Put
dec = sup{dec(f): f: X — Y, X Souslin, f Baire class 1}.

We show that dec(P) = dec. (This answers two questions of Steprans [St, Q.7.1
and Q.7.2].) Thus combinig the above results, we get that for any f : X — Y Baire
class 1, X Polish, we have dec.(f) < w or dec.(f) = d, and dec(f) < w or dec(f) =
dec. The equality dec(P) = dec also gives, via the work of Steprans, an interesing

characterization of dec as the covering coefficient of a certain combinatorially
defined o-ideal on w*. (It is known that cov(M) < dec < d, [CMPS], and that
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it is consistent that cov(M) < dec, Steprans [St], and dec < d, Shelah-Steprans
[SS].)

In order to prove dec(P) = dec, we define and study complete semicontin-
uous functions. A lower semicontinuous (Isc) function F : X — [0,1] is called
Isc complete if each lsc function f : 2% — [0,1] can be obtained as F o ¢ for
some continuous ¢ : 2% — X. Using a Wadge-type game, we give an internal
characterization of lsc complete functions as those lsc functions F : X — [0,1]
for which there is a II3 set D C X such that 0 € F[D] and for any open set U,
F[UND]is of the form {y € [0,1] : y > yo} or {y € [0,1] : y > yo} for some
Yo E [0,1]. Also, we prove the existence of “minimal” lsc complete functions. We
give a new proof of the inequality dec > cov(M), first established in [CMPS], by
showing that dec(f) > cov(M) for any lsc complete f.

If X is a compact, metric space, let K(X) denote the space of all closed
subsets of X with the Hausdorff metric. A particular attention has been devoted
to the fact that the restriction of the Lebesgue measure to K([0,1]) provides a
natural example of a complicated usc function [JM, vMP]. We apply some of the
results mentioned above to Borel measures on compact metric spaces X viewed as
usc functions on K(X). Using the characterization of complete Isc functions, we
show that any Borel, probability, nonatomic measure on a compact metric space is
usc complete. In fact, we prove a more general version of this result for capacities.
This generalizes van Mill and Pol’s result for the Lebesgue measure [vMP]. Also,
we use the theorem that dec = dec(P) to characterize probability, Borel measures
p on a compact metric space X for which dec(y) = dec, e.g., if X does not have
isolated points, then dec(p) = dec unless p is a finite, convex combination of Dirac
measures. This generalizes the result of Jackson and Mauldin that dec(A) > w,
where A is the Lebesgue measure [JM].

6.2. Decomposing Borel sets and functions into simpler Borel sets
and functions

By Ba, a < wi, we denote the ath class of the Baire hierarchy of real func-
tions, i.e., for f: X =Y, f € B, if for any U C Y open f~1(U) is B, in X.
In particular, By is the class of continuous functions. (Note that the enumeration
of the B,’s starts with @ = 0 while that of the £2's with & = 1.) Also define
f: X — R to be in Ly (Ug, respectively) if f=((r, o0)) (f~1((—o0, r)), re-
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(1)

spectively) is £}, , in X for all r € R. Thus Lo, U, are the classes of lower and
upper semicontinuous functions, respectively. By a classical theorem of Lebesgue
and Hausdorff a real function is in By iff it is a pointwise limit of a sequence of
functions from (J, 4 B, and it is in Ly (Ug, respectively) iff it is a pointwise
limit of an increasing (decreasing, respectively) sequence of functions from Bg.
Let cov(M) be the smallest cardinality of a family of meager sets covering R. Re-
call that the Gandy-Harrington topology on a recursively presented Polish space
is the topology generated by all &] sets and that it is strong Choquet. (See [HKL]
for some background on the Gandy-Harrington topology.) We will refer to the
Gandy-Harrington topology as the G-H topology and sets open with respect to it
will be called G-H open.

We say that a set D separates A and Bif AC D and DN B = 0. We will
use the following theorem due to Louveau (see [L1]):

Let Ay, A; be T} sets such that for some D € Hg, l1<a<uwtf¥ AycCcD
and A; N D = § modulo sets meager in the Gandy-Harrington topology. Then Aq
and A; can be separated by a set from II%(A}).

Let A be a family of subsets of a Polish space X. Let C C X, and let a < w;.
We say that
~Ais2 on Ciff YA€ AID €I ANC C D C 4
~ A is relatively II2 on C if VA€ AID e I2 ANC CcDNC C 4 (ie,
AnC=DnQ).

Lemma 2.1. Let A;, Ay be countable families of Borel subsets of a Polish space
X, and let 1 < 8 < wy. Then precisely one of the following two possibilities holds.
(1) X =J,,C, and, for each n € w, A; or A; is 12 (relatively II2, respectively)
on C,, for some a < 3;

(ii) There is a continuous injection ¢ : w* — |JA; N|J A2 such that if A; or Ay
is l'I?, (relatively 1'12, respectively) on C for some a < 3, then ¢~'(C) is meager.

Proof. We will prove the statements for “IT2 on C” and “relatively IIS on C”
simultaneously. Let A be a countable family of Borel subsets of X. Fix A C X xw
such that

A={{z € X : (z,n) € A}: new}.
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(2)

Since the argument below relativizes, we can assume that X is a recursively pre-
sented Polish space, # < w{'K, and A € Al. Note that for C ¢ X

AisII2 on C iff (C x w)N A and (X x w)\ A can be separated by a IT? set,

and also

A is relatively II2 on C iff
(C xw)N A and (C x w) \ A can be separated by a IS set.

Let @ : P(X) — P(X) denote either the identity function, or the constant
function ®(C) = X for all C € P(X). Put

P*={CcX: CeZ]and

(C xw)N A and ($(C) X w) \ A can be separated by a set in U 3.
a<l8

Claim 1. |JP? is IT3.
If C € P?, then, by Louveau’s theorem, thereis D € ITI%(A}), for some o < 3,
which separates the £ sets (C X w)N A and (®(C) x w) \ A. Put

C'={zeX:Vn(z,n)e(DNA)U((X xw)\(DUA))}

Then C C C', C' € T}, and, as is easy to see, D separates (C' X w) N A and
(®(C") x w)\ 4, i.e.,, C' € P®. Thus

UP®={zex:3De |JOAAD) Vn(z,n) € (DN AU ((X xw)\(DUA))}
a<lf

which is IT1.

Below in this proof all topological notions—meager, G5, etc.—refer to the
Gandy-Harrington topology.

Claim 2. Let C C X be such that (C x w)N A and (®(C) x w) \ A can be
separated by a set from |J, 4 II2. Then there are C, € P®, n € w, such that
C \ U, Cn is meager.

There exist C,, € £, n € w, such that C,,\C does not contain a nonmeager set
with the Baire property, for each n, and C \ |, C» is meager. Let D € |, .5 ITo
separate (C' x w) N A and (®(C) x w) \ A. Note that (Cp, X w)N A C D and
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((®(Cn) x w)\ A) N D = § modulo meager sets. Thus, by Louveau’s theorem,
for each n € w there is a set in (J, ;4 1% (A]) which separates (Cp, x w) N A and
(®(Cp) x w) \ A. Therefore C, € P2. '

Let A1, A; and P2, P2 be defined as in (1) and (2) for A = A; and A = A,,
respectively. If [ JPR U PR D U A1 N Az, then actually | JPRUJPE = X, as
X\UAi=X\{z€X: In(z,n) € A;} € P?,1=1,2, whence (i) holds. If not,

put
B ={JanJa\JPPulJR

By Claim 1, E; is a nonempty 1 set. If C C X is such that (C x w) N A; and
(®(C) x w) \ A; can be separated by a IT> set, for some a < 3, then, by Claim 2,
CNE; is meager. Note that ({z} xw)NA; and (®({z})xw)\A; can be separated by
a Hg set for any = € X; thus E; does not have isolated points. Let {B,: n € w}
be a countable basis of E;. Put E; = E; \ Un(ﬁn \ B,). Then E; is a dense
Gs in E;, whence it is strong Choquet (see [HKL, Proposition 2.1(iii)]). Since
it is clearly regular and has countable basis, it is Polish by Choquet’s theorem.
Moreover, since E, does not have isolated points, we can find a dense G5 subset

of E5 homeomorphic to w*. This finishes the proof of the lemma.

Theorem 2.2. Let X be a Polish space, and let 1 < § < w;. Let A C X be
Borel. Then either A € Eg, or there is a continuous injection ¢ : w“ — A such
that for any C C A, C € £, 7(C) is meager in w*.

Proof. Let A; = Ay, = {4}. If X =|J, C, and, for each n € w, A; is 12 on C,
for some a < 3, then A is Eg-. Otherwise, from Lemma 2.1, we get a continuous

injection ¢ as required.

I was informed by A. Miller that the following corollary was proved by Stern
[Sr, Theorem 3.2]. Stern’s proof is different from the one presented here and uses-
Steel’s forcing. Also, [BD, Theorem 2| contains a similar but weaker result. The

corollary immediately follows from Theorem 2.2 if @ > 1 and is trivial if @ = 1.

Corollary 2.3. Let A be a Borel set in a Polish space and let 1 < 3 < w;. Assume
A is the union of < cov(M) sets in Eg. Then A € Eg.

Theorem 2.4. Let X be a Polish space, and let 1 < 3 < wy. Let G be one of the
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following

L] B | ) Ta ) Won |) Bt W

a<lj a<8 a<lf alf

Let f : X — R be a Borel function. Then either dec(f,G) < w, or there is a
continuous injection ¢ : w* — X such that if f|C € G, then ¢~(C) is meager, so

dec(f, G) > cov(M).

Proof. Put 4; = A, = {f Y (R\V,): n € w}, where {V, : n € w}is a countable
topological basis of R. Note, that A; is relatively H‘1’+a on C C X iff f|C € B,.
Thus, an application of Lemma 2.1 similar to the one in Theorem 2.2 gives the
conclusion for G = (J,.3Ba- To obtain it for § = Ua<sLas § = Uacs Ua,
and G = UQ<‘3LQ U U, apply a similar argument respectively to the families
Ay = Ay = {f7 (o0, q]): ¢€Q}, A = Ay = {f7'([g; 0)): ¢ € Q}, and
Ar={f((-00, g]): ¢€Q}, A2 ={f7"(lg, >)): ¢ € Q}.

It was proved in [CMPS, Corollary 3.3] that dec(f, |J, <3 La UUs) > w, for
some f € Bs and also [CMPS, Theorem 5.7] that dec(f, Lo U Up) > cov(M)
for some f € B;. Laczkovich showed that for any § < w; thereis f € Lg with
dec(f, Bg) > w (see [CM] for a proof); and by [CMPS, Theorem 5.6] there is
f € Ly with dec(f, Bg) > cov(M). The next corollary improves on these results.
Let me first mention, however, that Steprans established in [St] the consistency

with ZFC of the existence of f € Lo such that dec(f, Bg) > cov(M).

Corollary 2.5. Let X be Polish uncountable.

(i) For each 1 < 8 < w; there exists f : X — R, f € Bg, with dec(f, Ua<ﬁ Ll
U,) 2 cov(M).

(ii) For each 8 < w there exists f : X — R, f € Lg, such that dec(f, Bg) >
cov(M).

Proof. By [CMPS, Corollary 3.3], there exists f : X — R, f € Bg such that
dec(f, Uycpla UUq) > w. Thus (i) follows from Theorem 2.4. To prove (ii),
use the fact that there is f : X — R, f € Ly such that dec(f, Bs) > w [CM,
Corollary 3.4] and apply Theorem 2.4.

Remarks. 1. By the proof of Theorem 4.8 from [CMPS], for 8 < w; and any
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f € Byt there is g € L such that dec(g, Bg) > dec(f, Lg U Ug). Thus (ii) in
our Corollary 2.5 actually follows from (i).

2. I do not know whether the method employed here can be used to show
that the more subtle decomposition coeflicients studied by Morayne in [M] are also
> cov(M). Perhaps the refined version of Louveau’s theorem from [L2] can be of

some help.

6.3. Decomposing Baire class 1 functions into continuous functions
with closed domains

In [JR, Theorem 1] Jayne and Rogers proved that for any function f : X — Y,
X Souslin, either there are closed sets X, C X, n € w, such that U, Xr» =X and
f| X, is continuous, or there is an F, set A C Y such that f~!(A) is not F,. The
next result—the first dichotomy theorem for Baire class 1 functions—sharpens
Jayne and Rogers’s theorem and, perhaps, provides an explanation why it is true.
(For a derivation of [JR, Theorem 1] from Theorem 3.1 see the remark following
the proof of Theorem 3.1.)

Theorem 3.1. Let f: X — Y be Baire class 1, X Souslin. Then precisely one
of the following holds.

(i) There are closed sets X, C X, n € w, such that |J, X, = X and f|X, is
continuous.

(i) LE for L1 E f.

We will need a few auxiliary notions. For a sequence of sets Ay C X, k € w,
and z € X, we write A; — z if each A; is nonempty and for any e > 0 4; C B(z,¢)
for k large enough. A function f : X — Y is strongly discontinuous at ¢ € X
if there exist a sequence of open sets Vx C X and an open set U C Y such that
Vi =z, f(z) € U and f[V3}]NU = 0. A point z € X is f-isolated if there is an
open set U C Y such that f~1(U) = {z}.

First, we give characterizations of L and L;.

Lemma 3.2. Let g: 2* — Y. Assume each = € Q is g-isolated, g is continuous
at each z € 2¥ \ @, and given € > 0 osc(g, z) < € for all but finitely many points
in Q.

(i) If g|(2* \ Q) is an embedding, then 1y : L[2¥] — Y given by ¥o(L(z)) = g(z)
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is a well-defined embedding, and ¥y o L = g.
(if) If g{(2¥ \ Q) is constant, then ¥ : L1[2¥] — Y given by ¢1(L1(z)) = g(z) is

a well-defined embedding, and ¥, o L; = g.

Proof. (i) Since ¢|(2“\Q) is 1-to-1 and each z € @ is g-isolated, g is 1-to-1. Also L
is 1-to-1, thus 4y is well-defined and 1-to-1. Let L{z,) — L(z) and L(z,) # L(z).
Clearly z € 2“\ @ and z, — z. Since z is a continuity point of g, g(z,) — g(z).
Thus, ¥o(L(z,)) — ¢o(L(z)); whence 1 is continuous. Assume g(z,) — g(z).
Since each z € Q is g-isolated, z € 2 \ ). Since osc(g,z,) — 0, we can find
zn € 2\ @ such that d(zn,zn) — 0 and d(g(zn), g(zn)) — 0. Thus g(z,) — g(z).
Since g|2¥ \ @ is an embedding, z, — z, whence z, — z. Thus L(z,) — L(z),
ie., ¥5(g(x,)) = ¥~ (g(z)); whence ¢ is an embedding.

(i1) If Ly(z) = Li(y), then z,y € 2\ Q or z = y, so g(z) = ¢(y). Thus,
¥y is well-defined. Note that if Li(z) # Li(y), then z # y and r € Q or y €
Q. Since each element of @ is g-isolated, g(z) # g(y). Thus ¢; is 1-to-1. Let
Li(z,) — Li(z) and Li(z,) # L1(z). Then clearly z, € Q and z € 2*\ Q. Since
osc(g,zn) — 0, there are z, € 2¢ \ Q with d(g(zn),9(2n)) — 0. But g(2z.) = g(z).
Thus g(z,) — g(z), so ¥(Li(zn)) — ¥Y(Li(z)). So ¥ is continuous. Since L;[2*]

is compact, ¥ is an embedding.

Lemma 3.3. Let f: X — Y. Assume the sets of all continuity and of all
discontinuity points of f are both dense. For € > 0 let S, be the set of all strong
discontinuity points at which the oscilation of f is < €. Then for any 0 # U C X
open f[U N S.] is infinite.

Proof. Let S be the set of all strong discontinuity points of f. Note that if there
is a sequence =, — T, T, are continuity points of f and f(z,) /# f(z), thenz € S.
To see this, find first a subsequence (z,, ) of (z,) and an open set V' C Y such that
f(z) € V and f(zn,) € V. Since each z,, is a continuity point, we can find open
sets Wi 3 z,,, and an open set V' C V such that f(z) € V' and f[Wi]NV' = 0.
By making Wj small in diameter, we ensure that Wy — z.

Now, we show that S is dense. Let § # U C X be open. Let z € U be a
discontinuity point of f. Let z,, € U and V C Y open be such that z, — z,
f(z) € V, and f(z,) € V. Let y2, n,k € w, be continuity points of f such that
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yp € U and y} — z,. If for some n f(yp) /7 f(za), then 2, € S. If for all n
f(yg) — f(zn), then we can choose a “diagonal” sequence y so that yp — =z
and f(yg ) # f(z),so z € S. In any case, SNU # 0.

Let @ # U C X be open. We construct by induction a sequence z, € SNU
such that f(z,) # f(zm) if n # m. Let o € SNU. Since zg € S, there is
0 # Vo C U with f(zo) & f[Vo]. Let z; € SNV,. Find @ # V; C V; open so
that f(z;) € f[Vi]. Let zo € SN V;. Continuing this procedure, we obtain a
sequence (z,) as required. Thus, for any § # U C X open f[S N U] is infinite.
Since Se=SN{z € X : osc(f,z) <e} and {x € X : osc(f,z) < €} is dense, as it
contains all continuity points of f, and obviously open, we also have that f[S.NU]

1s infinite.

Lemma 3.4. Let f: X — Y, X Polish, be Baire class 1. Assume that the set of
all discontinuity points of f is dense. Then there is a compact perfect set K C X
and a countable set D C K such that

(1) D is dense in K;

(ii) each = € D is f|K-isolated;

(iii) given € > 0 osc(f|K, z) < € for all but finitely many points in D.

Proof. Fix ¢ : w — w such that ¢(n) < n and Vn3*®k n = ¢(k). We construct
sequences F,, C X closed and ¢, € X so that
1) Fapr C Fy;
2) {gx : k <n} C Fy;
3)Vee Fobkdk < nd(z,qr) £ 1/(n+1);
4) d(gn+1, p(n)) < 1/(n +1);
5) qn is f|Fy-isolated,;
6) osc(f|Fa,qn) < 1/(n+1);
7) int(F,) is dense in F,.
We will put K = (), F, and D = {g, : n € w}. K is clearly closed and by 3)
totally bounded, whence compact. By 2), D C K, and by 3) D is dense in K.
By 4), as Y¥n3®k n = ¢(k), D is dense-in-itself; thus K is perfect. Since K C F,
each g, is f|K-isolated by 3), and osc(f|K,¢n) < 1/(n + 1) by 6).

Since f is Baire class 1, continuity points of f are dense in X; thus, we can

apply Lemma 3.3. Let ¢o € S;. Thereis V' C Y open and a sequence of open
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sets Vi C X such that Vi — ¢o, Vi C B{qo,1), f(go) € V, and f[Vi|NV = §.
Put Fy = {q} U Ukﬂ. Assume F, and g, £ < n, has been defined. Let
0 # U C B(g4(n),1/(n +2)) N F, be open. (This is possible by 7).) By Lemma
3.3, find po, ..., Pny1 € UN S j(n+1) 50 that f(pi) # f(p;)ifi # 7. Let W; CY be
open such that f(p;) € W; and W; N W, = 0 if i # j. For each k < n there is at
most one i < n+1 such that f~1(W;) is comeager in WNF, for some open W 3 g;.
Thus, by the pigeonhole principle, there is ip < n 4 1 such that for each £ < n
X\ f~1(W,,) is not meager in any neighborhood of g in F,. But X\ f~1(W,,) is
F,, so using 7), we can find VX c (X \ f~1(W;,))N Fn, n € w, open and such that
VE c B(gr,1/(n +2)), VX — gix. By the choice of the p;’s and by making W;,
smaller if neccessary, we can find V,,, C B(p;,,1/(n +2)N(X \ f7Y{(W;,)) N F,
open with V;, — pi,. Put gn+1 = p;, and

Foii={qg: k<n+1}U U U‘/_"’:UUV”‘
k<n m m

All the requirements 1)-7) are easy to check.
The following lemma is certainly well-known.

Lemma 3.5. Let f : w* — Y be continuous. Then there is a closed, non-
o-bounded set Hy C w* such that f|H; is constant, or there exists a closed,
non-o-bounded set H, C w* such that f|H; is an embedding.

Proof. Case 1. 3U C w* open, nonempty and such that f[U] is finite.
Then, since f is continuous, there is § # V C U open and such that f|V is
constant. Put H; = V' for some open nonempty V' with V' C V.
Case 2. YU C w* open, nonempty, f[U] is infinite.
Define recursively o, € w<¥, s € w<¥, so that
)sCt=0,Corands Lt= 0, L oy
2) {f[Ns,..]: n €w} is a discrete family;
3) diam(f[No,]) < 1/(h(s) +1);
4) {o44n(l) : n € w} is infinite, where [ = lh(0,).
Assume o, is defined. Let | = Ih(o,). Since for each p € w f[N,,.,] is infinite,
we can find a sequence z, € N,,, n € w, such that z,,(l) # z,,(I) and f(z,,) #

f(zn,) if Ny # n2. We can assume that {f(z,) : n € w} is a discrete set.
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Now using continuity of f, we easily find 0sxn, 7 € w, so that z, € N,,__,
diam(f[No,..]) L1/(1 4 2), Ih(csen) > |, and {f[Ng,..] : n € w} is discrete.
Put Hy = {zr € w¥: 3%s z|lk(0,) = 04}

Proof of Theorem 3.1. Let F be the family of all closed sets F' C X such that
f|F is continuous. It follows from [S, Theorem 1] that either X can be covered by
countably many members of F, i.e., we get (i), or there is X’ C X which is Polish
in the relative topology and X' cannot be covered by countably many sets from
F. Thus, we can assume that X is Polish and that (i) fails.
By a transfinite derivation process, we produce an ordinal @ < w; and a
descending transfinite sequence of closed sets F¢, £ < a, so that
1) f|(AﬂT<f F., \ F¢) is continuous for all £ < o
2) the set of discontinuity points of f|F is dense in F, where F =, F¢.
Casel. F=10
Then since [,
X, n € w, so that |J, X, = X and f|X, is continuous which contradicts our

F., \ F¢ is F,, we can easily find countably many closd sets

assumption.

Case 2. F#10
Let K C Fand D C K beasin Lemma 3.4. (We apply it to f|F.) We can assume
that X = K. Since continuity points of f constitute a dense G and no point in
D is a continuity point of f, by Hurewicz’s theorem, we can find an embedding
¢1: 2 = Ksothat z € @ = ¢1(z) € D and z & Q = ¢;1(z) is a continuity point
of f. Consider g = f o0 ¢1|(2“ \ Q); ¢ is continuous. We identify 2* \ @ with w®.
Then H C w® is non-o-bounded iff there is no G set G such that GN H = § and
Q C G. Let H C w* be closed, non-o-bouned such that either g|H is constant
or g|H is an embedding (Lemma 3.5). Again by Hurewicz’s theorem, there is an
embedding @, : 2¥ — 2¢ such that € Q = ¢3(z) € Q and z & Q = é2(z) € H.
Put ¢ = &7 o ¢5. Then clearly
a) z € Q@ = z is f o ¢-isolated;
b) z € @ = z is a continuity point of f o ¢;
c) given € > 0 osc(f 0 ¢, z) < e for all but finitely many z € Q.
We now have two subcases.

Subcase 1. f o ¢|(2¥ \ Q) is constant.

Subcase 2. f o ¢|(2“\ Q) is an embedding.
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An application of Lemma 3.2 in each of these subcases finishes the proof.

Remark. To derive [JR, Theorem 1] from Theorem 3.1 combine the following
three obvious facts: (1) if f is not Baire class 1, then there is an open, so Fy, set
ACY with f71(A) not F,; (2)if g C f, g: X; — Yi, and there is an F, set
B C Y; with ¢71(B) not F,, then there is an F, set A C Y with f~!(A4) not F,;
(3) LH{X2 , z(n)/3"t! : £ € 2¢}) and L7*({0}) are not F,.

The first part of the following proposition is due to Cichonl and Morayne. We
include its proof here for the sake of completenss. It was also known to Morayne
that there is a Baire class 1 function f with dec.(f) = d.

Proposition 3.6. (i) [CM] Let f : X — Y be Baire class 1, X Souslin. Then
dec.(f) < d.
(ii) decc(Ly) = dec(L) = d.

Proof. (i)[CM] Let # : X xY — X be the projection. The graph of f is
Souslin, so there is ¢ : w* — f C X X Y continuous and onto. For any z € w®,
K, ={y€w*: Yny(n) < z(n)} is compact, whence so is [K,|. Thus ¢[K,] is a
graph of a continuous function defined on w[¢[K;]] which is also compact whence
closed in X. Also, clearly X = |J,cp 7[¢[K;]] for any dominating set D C w*.
(i1) The inequality < follows from (i). To see >, note that if L|F is continuous,
F C 2% closed, then each point in @ N F' is isolated in F. Thus F'\ Q is still closed
in 2¥, whence it is compact. Thus if | JF = 2 and for any F € F F is closed and
L|F is continuous, then | J{F\Q: F € F} =2\ Q and each F\ @ is compact.
Since 2 \ Q is homeomorphic to w* and any compact subset of w* is bounded,

we get |F| 2> d. The proof for L, is similar.

Corollary 3.7. Let f: X — Y be Baire class 1, X Souslin. Then dec.(f) < w
or dec.(f) =d.

Proof. If (i) of Theorem 3.1 holds, then dec.(f) < w. If (ii) holds, then dec.(f) >
dece(L) or dec.(f) > dec.(Ly); thus dec.(f) = d by Proposition 3.6.

6.4. Decomposing Baire class 1 functions into continuous functions
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with arbitrary domains

In this section, we prove the second dichotomy theorem for Baire class 1

functions.

Theorem 4.1. Let f : X — Y be Baire class 1, X Souslin. Then either there are
Xn C X, n €w, such that | J, X» = X and f| X, are continuous (i.e., dec(f) <w),
or P f.

Most of the proof of Theorem 4.1 consists of showing preparatory results to
establish two main lemmas: 4.6 and 4.7. Lemma 4.6 shows that if dec(f) > w,
then the restriction of f to a subset Z of X has three characteristic properties of
P. (It is not difficult to check that P satisfies properties (i)-(iii) from Lemma 4.6.)
Lemma 4.7 then shows that P is contained in f|Z.

Let X,Y be Polish with X € X and Y C ¥. It is well known that f can be
extended to a Borel function f: X — Y. Assume in the rest of this section that

X and ¥ are recursively presented Polish spaces X € £} and ]?E Al

Lemma 4.2. Either dec(f) < w, or there is a ©.1 set § # A C X such that f|B is

not continuous for any L1 set § # B C A.

Proof. This lemma is, in a sense, a first level analog of Lemma 2.1; its original
proof was a simplified version of that of Lemma 2.1. The usage of reflection was
suggested to me by G. Hjorth. Let P = {C C X : C € £! and f|C is continuous}.
By reflection, for C € £ with f|C continuous, there is C' € A} such that C C
C' and f|C' is continuous. Thus, z € |JP iff 3C' € A} and f|C' continuous.
Thorefore, |JP € II}. If X C UP, clearly dec(f) < w. f X ¢ UP, put
A=XA1]P,

A set Z C X 1is called singular if there is an open set U C Y such that

f~H(U)N Z is nonempty, closed, and nowhere dense in Z.

Lemma 4.3. Let f: X — Y be Baire class 1. Let § # A C X be £]. Then

either
(i)3BC AB €], B#0, and f|B continuous, or
(ii)) VB C A,0 # B € £}, 3C C B C singular and 1.
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Proof. Assume that for some 0 # B C A, B € L], the following holds:
VC C B,C € S1VV C Y open F1(V)NC £ 0 = inte(f (V)N C) # 0.
We prove that () implies that f|B is continuous. Let V C Y be basic open. Put
C={zcB: VWCX basicopen (z€Wor3zeWze B\ fV)}

Then C € £l and C = B\ intg(f~{V)NB). If f~}(V)nC =0, fY(V)NBis
open in B. So assume f~ (V)N C # 0. Then by (*) there is W C X basic open
such that § # WNC C f~}(V)NC. But then WNB C intg(f~* (V)N B), whence
W nNC =0, a contradiction. '

Now, assume that for all @ # B C A, B € £}, we have =(*). We show
that (i) holds. Thus, let @ # B C A, B € £1. Pick C; C B, C; € ¥i, and
V C Y basic open such that f~1(V)NC; # 0 and inte, (f2(V) N C;) = 0. Note
that f~*(V)is an F, and f~}(V)NC; € E1. Since f~}(V) N C, with the Gandy-
Harrington topology is a Baire space, thereis § # C, C f~1(V)NCy, C; € £1, and
C, C f~Y(V). Thus, C; is closed and nowhere dense in C = C, U(C; \ f~1(V)).
Also, f~}(V)N C = C,. Thus C is singular and I}.

Lemma 4.4. Let  # D, C --- C D; C A C X be all G-H open with D, closed
nowhere dense in A. Assume S, S; C A\ D, are disjoint and such that A\ 5;
and A\ S; are G-H open. Then there are 15 € {1,2} and a G-H open set A' C A
such that

() /N D, £0;

(ii) A’ N Dy is nowhere dense in A’;

(iii) if Dy, is nowhere dense in D;, then A' N D;4, is nowhere dense in A' N D;;
(iv) A'nS;, =0.

Proof. Claim. There are iy € {1,2} and relatively open sets § # W; C D;,
1 <1 < n, such that

(i) Ur<icn Wi C A\ (Si, U Dy);

(i) V1 < j < n (U <ic; Wi) N Dj is dense in (U, i<, Wi) N Dj.

Assuming the claim has been proved, put

A = U W; U (A \ (D] U Sio))-

1<i<n
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It is clear that (i), (ii), and (iv) hold. To see (iii), note that for any 1 < j < n,
(Ui<icj Wi)NDj is relatively open in D; and dense in A'ND; = (U, <i<c, Wi)ND;.
Now, if Dj41 is nowhere dense in Dj, then thereis aset W C (U, <;<; Wi)ND;)\
Djy, relatively open in D; and dense in A' N D;. But then WN(A' N Djyq) =0,
whence A’ N Dj.; is nowhere dense in A' N D;.

Thus, it is enough to prove the claim. Put Z; = A\ (D, U S;), i = 1,2. The
claim will follow, if we show that there are 7y € {1,2} and relatively open sets
D#W;CcD;,1<i<n, 0 # W, C A such that
(1) Z;, N Wy is dense in Uisn Wi;

Visji<n (Ulgigj Wi) N D; is dense in (U, ¢;<, Wi) N D;.

For Z C A put Z° = int4(Z) and Z/+! = intDHl%, j < n. Note first that
Z{ U Zg is dense in D; for any j < n. This is proved by induction: since Z\UZ, =
ZUZs o A, B R = int4Z, Uint4Z, is dense in A. A similar argument
shows that denseness of Zf U Zﬁ in D; implies denseness of Zf"'l u 23_,'“ i Dy
Note also that if Z,-j = @, then Zfﬂ = 0. Since Z} U Z} is dense in D,, there
is ig € {1,2} such that Z # 0; thus Z,-j0 # 0 for any j < n. Put W; = Z..
Obviously W; is relatively open in D;. It is also clear that W = Z?o is dense
in (J;<, Wi and Z;, N Z) is dense in Z_) ; whence Z;, N W, is dense in Ui<n Wi-
To see (ii), note that W; C D; and W; is dense in |J;<;<, Wi. Since obviously
(Ui<ic; Wi)ND; is dense in (U, ¢;<; Wi)N Dj, we get (ii) which finishes the proof
of the claim.

Lemma 4.5. Assume f is not constant on any G-H open set. Let Y D U; D
Uy -+ D U, be basic open. Assume that f~1(U,)N A # @ and that f~}(U;)N A
is closed and nowhere dense in A. Fori < m, let V' C A be relatively open, and
let V; CY be open with Vin f~3(V;) # 0 and V; N U; = 0. Then there are basic
open sets O; C Vi, 1 < m, and a G-H open set A' C A such that

(1) 0;N0; =0 ifi # j;

(i) 0 # f~HO:)NA C V¥

(ii) AU N A £0;

(iv) f~1(Uy) N A’ is closed and nowhere dense in A';

(v) if f~Y(U;j+1) N A is nowhere dense in f~1(U;) N A, then f~(Ujs1) N A is
nowhere dense in f~1(U;) N A'.



Proof. First, note that since f is not constant on any G-H open set, fvin
f~1(V;)), © € m, attains infinitely many values. Thus by shrinking the V;’s, we
can assure that V; NV, = 0 if i # j but still Vin f~1(V;) # 0. Thus (i) will be
fulfilled automatically as long as O; C V;.

Now by recursion on i < m, we will find 4, C A G-H open and basic open
sets O; C V; such that (iii)-(v) hold for A" = A} and
(vi) FH(0) NV #0,
(vii) f71(0;)N AL =0, and
(viii) A}, C Al
I will just show how to obtain Op and A} from A; one gets O,y and Al from
A} by the same argument. Since f is not constant on V° N f~(V;), there are
0',0% C V; open and such that O'N 0% =0 and f~1(O)NV° #0, i € {1,2}.

Consider the sets
AD Y UDINAD D FY(U)N A4,

and

Si=fHOYNA and S; = f1(0O*) N A.
Apply Lemma4.4 to D; = f~}(U;)NA and S1, S5 to obtain iy € {1,2} and A’ C A.
Put A) = A" and Oy = O%. 1t is clear that (iii)-(viii) are fulfilled by these sets.
Having produced the A}’s and the O;’s, put
A'= AL u 00NV,

i<m

Now, it is easy to check that A' along with the O;’s fulfil (i)-(v).

Lemma 4.6. Assume A C X is ¥} and (ii) of Lemma 4.3 holds. Then there is a
set Z C A such that

(i) f[Z] is homeomorphic to w*;

(ii) f|Z : Z — f[Z] is 1-to-1 and open;

(iii) for any 0 # U C f[Z] relatively open there is 0 # V C U relatively open such
that (f|Z)~1(V) is nowhere dense in (f|Z)~1(U).

Proof. Let us fix a winning strategy ¥ for a in the Choquet game for X with
the Gandy-Harrington topology. (See [HKL] for details on the Choquet game for
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this topology.) Let d be a totally bounded metric on X, and let p be a complete
metric on Y. We recursively define finite trees T,, C w<“ n € w, so that

1 LLT, = u®,

2) Tn C Tnyy;

3)ifoxk €T,, theno*xl €T, foralll <k;

Additionally, we construct A, C X G-H open and U, C Y, o € T,, basic open so
that

4) Antr C Ap;

3) p— diam(U,) < 1/(lh(c) + 1);

BleCrel,=U; CUs;

7) O',TETn,O'_L'T:??gﬂﬁr: :

8)if 60 € T, then A, N f~1(Uyuo) is closed and nowhere dense in A, N f~1(U, \
Usker, k21 Uosk);

9) d — diam(A, N f~1(U,)) < 1/(th(s) + 1);

10) if o x k € Typy1 \ Ty for some k > 1, then Vz € Apyq N f7H(Upwo) Io*xm €
Tos1,m 2 1Vy € Apt1 N fH Upam) d(z,y) < 1/(n+1);

11) Let ¢ € T, be terminal. Let o9 C 03 C --- C 0, = ¢ be such that o; is

terminal in T}, ¢ < n. Then
Auia T U © Blds 0 T 0y o A T F {05, )]

Let {on : n € w} = w<¥, and assume that Vo € w<¥ 3%°n ¢ = o,. This
will guarantee that 1) holds. Assume that A,, T,, and U,, 0 € T,, have been
constructed. First, we show that in the construction at the n+1’st stage we have
to worry only about conditions 2)-10). Let ¢%,..., 07 be the terminal nodes of T,.

For any : < g and j < n, let a; C o' be terminal in T;. Define
B;=Z(ANf U)oy A N FHUs1)),

and

A=A\ |J W) ul Bi.

i<g 1<g
Note that A.,, T,, and U,, ¢ € T,, still fulfil 2)-11). Moreover, if we construct
Apyi Cc AL Thyy, and Uy, 0 € T,41, with properties 2)-10), they will automat-
ically fulfil 11). Thus having constructed An, Thn, Uy, 0 € Ty, with 2)-10), it is
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enough to find A,41, Thy1, and Uy, 0 € Thiq, with 2)-10), and this is what will
be done below.

Put 0, = ¢ and lh(o) = L.

Casel. Fk<o(l-1)o|(l-1)*xkgT,0r o €T,
We do not do anything, i.e., Th+1 =T, and A, = A,,.

Case 2. 0 € T, o|(l — 1) € Tp, and o(I — 1) = 0.
Put Thyy = T U{o}. Let 4 C 4, N f_l(U,J(g_l)) be ! and singular. Let
V' C Ugj@i—1) be open and such that f~'(V) N A is nonempty, closed in 4, and
nowhere dense in A. Let U, C V be basic open such that p—diam(U,) < 1/(I+1),
FFHUINA#0. Let @ # A' C f~Y(U,) N A be 1 such that d — diam(4') <
1/(1+1). Put

Angr = (An \ F Ugia-p)) U (A\ I U A

Case3. 0 g Th,0(l—1)>0,and Vk < o(l-1) o|(l = 1) *xk € Tp.
Let @ = o|(I—1) and 09 = 7*0. Find relatively open, nonempty sets V°,..., V™ C
An 0 7Y (U5 \ Usarer, Usek) 50 that VIiNVi = 0 if i # j, d — diam(V?) <
1/(2(n+1)), and Vz € A, N fY(Uy,) It < m Vy € V' d(z,y) < 1/(2(n +1)).

(This is possible by 8).) Additionally, find Vi C Uz \ Us.re, Ussr Open with
FYUV)N V' # 0 and p — diam(V;) < 1/(1 + 2). Put

The1 =T U{o,ox(c(l-1)4+1),...,7%(c(l—1) +m)}.

Let T={r: og*7 €Ty} T is a tree. Let 7p,..., 7, be all the terminal nodes in
T. Let
A=Ay | T
FHkET, k>1

For each 7; consider the sets Uy, D Uggur;j1 O ** D Ugypar; and the set 4; =
AN ses oy f~Y(U,). Applying repeatedly Lemma 4.5, we define recursively
on j < q basic open sets Ofﬂ C Of: C Vi and ‘G-H open sets A} C 4; so that
(1)-(v) of Lemma 4.5 hold for A = A, O; = O} and A’ = A’. Finally, put
Uss(o(i-1)4i) = O, i £m, and

,v
i

A= J AUV | T (Usa) N An

ji<q GekET,, k>1

~1
-1



If the Ta’s are constructed, let G = [, U,eun Us = Ujeuw My Ugpn and
Z =N,4. N fYG). By 5)-7), G is homeomorphic to w*. Let n € w*, and let
on C 1 be terminal in T,,. Then, by 11) and 4), the following is a play in the

Choquet game for the Gandy-Harrington topology:

AN f_‘l(U,,D)}Z(AO N f 1 (Us)),

AL NN Ug, ), B(A0 N FH(Uso ) 41 0 F7YUL,))s -

where 3 plays first, and a responds by its winning strategy X. Thus, (), f~(U,, )N
Ap, # 0, whence there is z € Z with {f(z)} =, Uyjn- By 9), such an z is unique.
Therefore, f[Z] = G, and f|Z is 1-to-1. By 9), for any z € Z and € > 0 there
exists R C Z such that z € R, d — diam(R) < ¢, and f[R] is 6pe11 in G. Tt follows
that f|Z : Z — f[Z] is open. To see (iii), let U C G be relatively open. Let
o € w<¥ be such that U, NG C U. Then by 7) and 9), f~!(Uyso N G) is nowhere
dense in f~1(U, N G) so also in f~1(U).

Let Z be as in Lemma 4.6. We want to show that P C f|Z. If we put
F = (f|Z)7, this will follow from the next lemma.

Lemma 4.7. Assume F : w® — Z is continuous, 1-to-1, onto, and for any
0 # U C w* open there is ) # V C U open such that F[V] is nowhere dense in
F{Ull, Then, PC F-1.

We will deduce the above statement from Lemma 4.8. To formulate it we need
several definitions. Let d be a totally bounded metric on Z. Let us equip F(Z),
the set of all closed nonempty subsets of Z, with the Hausdorff metric induced
by d. We denote this metric also by d. Total boundedness of the metric d on Z
implies the following fact which will be used repeatedly in the proofs below: given
e >0 and K € F(Z) there is a finite set A C Z with d(A4, K) < e. In the sequel,
F(Z) is always considered as a topological space with the topology induced by d.
Let © denote the set of all nonempty open subsets of w*. For @ # U C w* open,
let Q(U) be the set of all nonempty open subsets of U. Call a nonempty open
subset of w* n-good, for n € w, if it is a finite union of sets of the form N, with
o €w™, m>n. A function ¢ : X — Q is called n-good, n € w, if ¢(z) is n-good
for any € X. For ¢ : X — Q define ¢¥ : X — F(Z) by

6" (z) = Flp(2)].
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A function ¢ : X — Q is called disjoint if ¢F(z1) N ¢F(z;) = 0 for 21 # z,,

T1,72 € X it is called continuous if qSF is continuous.

Lemma 4.8. There is a sequence of functions ¢, : (w+1)" — Q, n € w, such
that v

(i) d = diam(¢5(n)) < 1/(n+1),n € (w+ 1)

(ii) dnt1(n) C @alnin), n € (w + 1)"*;

(1ii) ¢, is n-good;

(iv) ¢, is disjoint;

(v) én is continuous.

Proof of Lemma 4.7 from Lemma 4.8. Notice the following fact which is a
simple consequence of Konig’s lemma: '
(*) Assume U, C w* is n-good, n € w, and Un4q C Uy; then, N, U, # 0.
So, in particular, by (ii) and (iii), (), ¢(n|n) # @ for any n € (w + 1), and by (i)
and the fact that F is 1-to-1,
(#%) M, ¢(nin) has precisely one element.

Define ¢: (w+1)¥ = Z by

¢(n) = the unique element of ﬂ oL (nln) = F[m Sn(n|n)].

Note that ¢(n) is well defined for all € (w4 1)“ by (*x). ¢ is continuous by (v),
(i), and (ii) and 1-to-1 by (i) and (iv); thus, since (w + 1)* is compact, ¢ is an
embedding.

Pt G=[1, Une(w+1),, #n(n), and define ¥ : G — w* as follows. Let z € G,
By (iv) and (ii), there is a unique n € (w + 1)¥ with z € [, ¢n(n|n). Let ¥(z)
be the unique element in [, N P(n)|n- We claim that ¢ is an embedding, and that
it is onto w*. Continuity of ¥ is obvious. By (*#) and the fact that P is onto,
¥ is onto. To show that it is open, we have to find, for any z € G and N, with
z € N,, an n € w such that ¢,(n|n) C N, where 5 is the unique element of
(w+1)“ with z € [, #n(n|n). But if for infinitely many n, ¢,(n|n)\ N, # @, then
we apply (*) to the family ¢,(n|n) \ N, for n > lh(o), which is legal by (iii), and
obtain y € [, ¢n(n|n) \ N,. But then, by (i), F(z) = F(y) even though z # y
contradictng the fact that F is 1-to-1.



Now, we claim that ¢ o P~ 0 ¢y = F|G. Note first that for any r € G,
P10 h(z) = the unique element in (), ¢Z(n|n). But for any n, F(z) € ¢ (n|n);
thus, by (i), F(z) = ¢o Pt o¢)(z). Now since F, ¢, P, and ¢ are all 1-to-1, and
¥ is onto, it follows that ¢» 1 o P = F~! 0 ¢. Since !

get PC FL,

and ¢ are embeddings, we

To prove Lemma 4.8, we will need one more auxiliary fact.

Lemma 4.9.(i) Let U € Q, and let § > 0. Thereis ¢: w+1 — QU) disjoint,
continuous, and such that d — diam(¢% (o)) < 6 for any o € w + 1.

(ii) Let U,V € Q. Assume d(F[U], F[V])<e, e>0. Let ¢: w+1— Q(U) be
disjoint and continuous. Let n € w. Then, thereis £ : w+ 1 — V) disjoint,
continuous, n-good, and such that d(¢% (a), £F'(a)) < 2¢ for a € w + 1.

Proof. (i) Let V C U, V € Q, be such that F[V] is nowhere dense in F[U].
Find ¢ € w™, for some m > n, such that N, C V and d — diam(F[N,]) < §.
Put ¢(w) = N,. Since F[¢(w)] is nowhere dense in F[U], there are W; C F[U],
1 € w, relatwely open and such that W; N W;=0ifi #3, W:n F[cﬁ(w)] = {,
W; — F[¢(w)] and d — diam(W;) < é. For each 7 find an n-good set V; so that
Vi cUNF~YW,) and d(F[V;], W;) < 1/(i + 1). Put 8(i) = V,

(i1) This is a refinement of the argument proving (i). Find a finite set A C F[V]
such that d(¢¥(w), A) < (3/2)e. We find an n-good set W C V so that F[W] is
nowhere dense in F[V] and d(A, F[W]) < (1/2)e. To this end, for any z € A, let
o; € w™, m > n, be such that N,, C V, d({z}, F[N,_]) < (1/2)¢, and F[N,_]
is nowhere dense in F[V]. Then put {(w) = |J,c4 No.. Let A; C F[V] be finite
such that 4; — F[f(w)] and 4; N F[é(w)] = 0. Th;s is possible since F[§(w)] is
nowhere dense in F[I/ ]. Since ¢ is continuous, by modifying finitely many of the
Ay’s, we can assume that d(4;, 67 (7)) < (3/2)e for all i € w. Now, since F[£(w)] is
nowhere dense in W, using a technique similar to that used in constructing £(w)
above we can find sets W; C V which are n-good and such that F{W;|NF[W,] =0
if i £ 7, d(A;, FIW;]) < €/(2i +2), FIW;] N Flé(w)] = 0. Put £(i) = W, for i € w.
It is easy to check that £ is as required.

Proof of Lemma 4.8. For a metric space X, we write X' for the set of all

nonisolated points of X. First we observe that the following general claim holds.
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(1)

Claim 1. Let X be compact. Let & : X — Q be disjoint and continuous,
and let 6 : X' x (w+ 1) — Q be disjoint, continuous, n-good, n € w, with
d(z,a) C ¥(z) and d — diam(é(z,a)) < 6,6 > 0, for all (z,a) € X' x (w + 1).
Then there is 5 : X %X (w+1) — Q which extends ¢and has all the above mentioned
properties of ¢ except that é(z,a) C ¥(z) and d — diam(g?';(x,, a)) < é hold for all
(z,0) € X x (w+1).

Proof of Claim 1. First, we define an extension 5 which satisfies all the
required conditions except perhaps d — diam(g(:r, a)) <é. Let z € X \ X'. Find
y: € X' such that d(¥F(z), ¥F(y:)) is minimal among d(¥¥(z), ¥F(y)) for
y € X'. Consider yz,): w+1— QU(y:)). By Lemma 4.9(ii), there is &, :
w+1 — Q{y(z)) disjoint, continuous, n-good, and such that d(¢F (y, @), E-(a)) <
24(6F (z), ¥ (y:)). Put

#(z,a) =€), forz € X\ X anda €w + 1.

Ifz € X', we put ¢(z, &) = ¢(z, a). It is clear that ¢ is n-good and that é(z, a) C
U(z) for (z,a) € X x(w+1). Also, is (z,a) # (¢, '), then ¢F (z,a)NgF (2, a') =
0. It is enough to check the continuity of ESF on sequences of the form (z,,a,) —
(y,a) wherez, € X\ X',y € X', and an,o € w+1. Let y, be the y,, € X' used
to define £,,. Then, by definition of yn,

d(%" (zn), 7 (yn)) < d(¥" (zn), ¥7(2)) = 0.

Hence, since X is compact, , — vy, and ¥% is continuous ans 1-to-1, y, — v.

Thus,
6" (yn,an) = 67 (y, @)
as ¢% is continuous on X’ X (w + 1). On the other hand,
d(6 (wn, an), 67 (v, @n)) < 2467 (), ¥7(yn)) = 0.

Thus by (1) and (2), 5F($n,an) — 6F(y,a). To get d — déam(g(x, a)) < 6, we

modify g constructed above as follows. The set
{(z,e) € X x(w+1): d— dia.m(gp(:s,a)) < 6}
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is open and contains X' x (w 4+ 1). Thus,
{(z,0) € X x (w+1): d—diam (8% (z,a)) > 6}

is contained in a set of the form {z1,...,2zm} X (w+1) where each z; is an isolated
point in X. Therefore, it suffices to redefine ¢ on each {zi} x (w + 1) separately
so that 5F(zi: @) C ¥f(z;) and d — diam(aF(r,-, a)) < &, and this can be done by
Lemma 4.9(i).

Claim 2. Let ¢ : (w+1)" — Q be disjoint and continuous. Then there exists
¢ : (w+1)"" — Q disjoint, continuous, (n + 1)-good with ¢(n) C ¥(n|n) and
d — diam (¢ (n)) < 1/(n + 2) for any n € (w + 1)"+.

Proof of Claim 2. Write (w+1)**! as (w+1)" x (w+1). Let X = (w+1)".
Put X = X and X®*+) = (X(®) Then, X(™ = {(w,...,w)}. Define ¢ :
XM x (w+1) = Q¢(w,...,w)) using Lemma 4.9(i) with § = 1/(n 4+ 2). Using
Claim 1 extend ¢ consecutively to X(®V) x (w4 1), X(®2 x (w +1), ..., and
finally to X x (w +1) = (w + 1)+

To construct ¢, as in the conclusion of Lemma 4.8, let ¢o be defined according
to Lemma 4.9(1) with § = 1. If ¢, is defined, we find ¢,+1 by applying Claim 2

to ¥ = @,.

6.5. Complete semicontinuous functions

In this section, we study complete semicontinuous functions. The results
obtained here will be used to prove that dec(P) is highest possible and as a conse-
quence establish an analogue of Corollary 3.7 for the decomposition into functions
with arbitrary domains.

It will be convenient to widen the range of applicability of the definition of
semicontinuity to certain functions whose image is contained in a compact space
equipped with a closed linear order. Let K be a compact, metric space. Let
<C K x K be closed. Assume < linearly orders K. A function f: X - K, X a
metric, separable space, is called lower semicontinuous (lsc) if f 1{ye K: yp =
y and yo # y}) is open for any yp € K. A lsc function f : X — K will be called K-
Isc complete if for any g : 2“ — K lsc there is a continuous function ¢ : 2* — X
such that ¢ = fod. If K = [0,1] and X=<, we say lsc complete. Since for any
compact, metric K and any < closed linear order on K there exists an embedding

h : K — [0,1] such that z < y iff h(z) < h(y), we always implicitely assume
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(1)

that K is embedded in [0,1] and <=< |K. A ray is a subset of K of the form
{yeK: yy<ylor{ye K: yo <yandy # y} for some yy € K. We adopt the
notation {y € K': yo <y} =[yo,00) and {y € K : yo <y and yo # y} = (o, ).

Theorem 5.1. Let F': X — K be Isc. Then F is K-Isc complete if, and only if,
there exists D 'C X Polish in the relative topology and such that F[D] = K and
for any U C D relatively open F|U] is a ray.

Proof. (=) It is enough to find g : 2% — K lIsc such that ¢[2¥] = K and
for any U C 2“ open ¢[U] is a ray, since then there is a continuous function
¢ : 2¥ — X such that FFo ¢ = g, and it is easy to check that D = ¢[2] works.
To define g, fix a nondeacreasing surjection h : 2* — K. Define the function
sup: (2¥)“ — 2% by sup((zn)) = sup, z,. Finally, put g = hosup, and note that
(2¢)¥ is homeomorphic to 2.

(<) Assume we have D as above. First, we show that
Vy,ze K (y<z=F'(y)nD C F-(z)N D),
then that (1) implies

3G C X (G Polish, zero-dimensional, and
Vf: G—= Klsc fOF #0 (ie., 3z € G f(z) = F(x))),

and, finally, that (2) implies F' is K-lsc complete.

If (1) fails for some y < z, there is U C D relatively open such that U N
FYy)#0and UNF~Y(z) =0, ie., y € F[U] and z € F[U], which contradicts
the assumption that F[U] is a ray.

To prove (2) from (1), let @ C K be countable and such that Vy € KVe >
03z € Q y—e <z <y. Notethat min K € Q. Foreachy € Q,let @, C F~'(y)ND
be countable and dense in F~1(y) N D. Let G be zero-dimensional, bpi02 subset
of D such that | J,co Qy C G. We show that G works. Let G = N, Gr, G open
and Go41 C Gn. Let f: G — K belsc. Note that @ C F[G] and for any y,z € Q
with y < z we have F~(y) N G € F-1(z)N G. This last condition implies that
if V is open and y € F[V], then z € F[V] for y,z € Q, y < z. We recursively

construct a sequence of open sets U/, and z, € @, n € w, such that:
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(1) Un C Gu;
(ii) Un41 C Un;
(iti) diamU, < 1/(n +1);
(iv) 2o < inf f[U,], and z, € F[Us,];
(v) inf f[Un] = 1/(n + 1) < inf F[Ups1] < inf f[Un).
Let Uy be open such that diamUy < 1, Uy C Gy, and min K € F[U,]. If U, has
been defined, find z,41 € @ with inf f[U,] — 1/(n 4+ 1) < zp4; < inf f[U,] and
zn < zp41. Such a z,4 exists by the definition of @ and by (iv). Since z, € F[U,],
znt1 € F[Uy,]. Since F is lsc, there is V C U, open such that zp,4; € F[V] and
inf f{U,] —1/(n+ 1) < inf F[V]. We get U,+; by making V small enough. Now,
let z be the only element in (), U,. Then z € G, and since f and F are lsc, by
(v), we get

f(z) = supinf f[U,] = supinf F[U,] = F(z).

Now we show that (2) implies that F' is K-lsc complete. We can assume that
G is a closed subset of w” so that G = the set of all branches of T, for some tree
T Cw<¥ Let f: 2 — K be lIsc. We show that there is a continuous function
é: 2¥ — G such that f = Fo¢. We play the following game: Players I and II play
interchangeably; I plays z, € 2, II plays y, € w so that (yp,...,yn) € T; I wins
iff f((zn)) # F((yn)). By Martin’s theorem, the game is determined. A winning
strategy for I induces a continuous function ¢ : G — 2“ such that foy N F = §,
which contradicts (2) since f o ¢ is Isc. Therefore, II has a winning strategy. It

induces a continuous function ¢ : 2* — G such that f = F o ¢.

Now, we present a construction of a family of Baire class 1 functions. These
functions will be used in the proof of the existence of “minimal” lsc complete
functions and in the proof that the decomposition coefficient of Pawlikowski's
function is highest possible. Let <,C 2", n € w, be partial orders. Assume that
for o,7 € 211 |

& R T = o0 =y T
Define T(jn) C Hn 2™ by
z € T(x,) iff Yn z(n) =%, z(n + 1)|n.
Let F<,): T(<,) —* 2“ be defined by
Fi<,)(z) = the unique y € 2° with VrV*°k y|n = z(k)|n.
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(3)

Define a partial order < on 2“ by

z Ry iff Vn z|n <, y|n.

Lemma 5.2. F(jn) is Baire class 1 and onto.

Proof. It is clear that F(< ) is a pointwise limit of a sequence of continuous
functions, whence it is Baire class 1. For y € 2% define z € T(< ) by z(n) = y|n,
n € w. Then F<,)(z) = y. Thus Fi<,) is onto.

Lemma 5.3. If C C 2¥ is closed and linearly ordered by <, then F(jn)lF(jn)(C)

is C-Isc complete.

Proof. By Lemma 5.2, G = F(_;n)(C') is II3. Therefore, to check that Fi<)lG
is C-lsc complete, it is enough, by Theorem 5.1, to show that F< )|G is Isc and
that for any U C G relatively open F(<, )[U] is a ray with respect to < |C. To this
end, it is enough to see that

(1) if U C Ti<,) is open, y € F(<,)[U], and y = z, then z € F(<,)[U], and

(i) if z € T(«,) and y X F(<,)(), y # F(<,)(z), then there is an open set
U C I, such that z € U and if z X y then z &€ F<[U].

To see (i), find z € U with Fi<, )(z) = y. Fix n € w such that if z'(z) = z(7)
for 1 < n, then z' € U. Define Z so that z(i) = z(z) for ¢ < n, and Z(z) = z|¢ for
i > n. It is easy to check that Z € Ty<,), and clearly Z € U and F(<,)(Z) = z. To
see (ii), note that there is n € w such that z(n) £, y/n. Then U = {z' € T(<, :
z'(n) = z(n)} works.

Lemma 5.4 Assume there is a closed uncountable, linearly ordered by < subset
of 2. Then dec(F(<,)) > dec(f) for any Isc f: 2¥ — [0,1]. '

Proof. Let C C 2 be closed, uncountable, linearly ordered by <. We can easily
find a copy Cj of 2¢ inside C such that the lexicographic order is equal to < on Cj.
Let ¢ : Cy — [0,1] be an increasing homeomorphism, e.g., the Cantor function. By
Lemma 5.3, F<,)[U] is a ray in (Cy, %) for any relatively open U C F(_jln)(Co).
Thus ¢ o Fi<)[U] is a ray in [0,1]. It follows that ¢ o F(_jn)lF(_jln)(CO) is Isc
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complete. Thus, dec(¢ o Fi<,y) > dec(f) for any f: 2 — [0,1] Isc. But since ¢

is continuous, dec(F(<,)) > dec(¢ o Fi<)
o € 2" is called splittingif 0 %0 Jp410x1l,orox1 <,41 o *0.

Lemma 5.5. Assume that for eachn € w and any 0,7 € 2" with ¢ <, T we have
Vie23dj€2 0%t 241 7*jandVi €235 €2 o%j <41 T *1.

Assume also that for any o € 2<% there is a splitting 7 € 2<* with ¢ C 7. Then

there is a perfect, closed set linearly ordered by <.

Proof. The conclusion will follow easily if we can show that if ¢q,...,0% € 27,
09 2n - 2n 0k, and ¢ < k, then there are g, ..., Tk+1 € 2™ for some m > n with
Tjln = o for j <iand Tjjn =61 for j > ¢, T 2m *** 2m Tr1, a0d 7; # Tigg.

To see this, let 7 D o; be splitting. Assume 7% 0 <,,, 7 * 1 where m = [h(7 *0).

Put 7, = 7% 0 and 7;4; = 7 *1. By (4), we can extend ¢,41,...,0% one by one
to Tit2,..., Tk+1, respectively, so that ;47 <, -+ 2 Tk+1. Similarly, we extend
Fsti 30005 0 WO Timiiss vy T

Remark. Before we proved Lemma 5.5, J. Pawlikowski pointed out that in case
o 2, Tiff Vi < no(i) <7(i), o,7 € 2", one can get a perfect closed set linearly
ordered by = by the following simple argument. (Lemmas 5.4 and 5.5 applied to
this < will be used in the proof of Theorem 6.1.) Identify w with the rationls, Q.
For any r € R, let a, € 2¥ be the characteristic function of {g € Q: ¢ < r}. Then
{a, : 7 € R} is a Borel uncoutable subset of 2* linearly ordered by <. Now, any
perfect closed subset of {a, : r € R} works.

In the next theorem, we prove the existence of complete semicontinuous func-
tions which are in a sense minimal. This result will not be used in the sequel we
nevertheless find it interesting.

Now, let <,= the lexicographic order for each n € w. Put T} = T(<,). In this
case, < is the lexicographic order on 2¥; it linearly orders 2“. Let K be a perfect,
compact, metric space linearly ordered by a closed linear order. Fix ¢ : 2¥ — K

a nondecreasing surjection such that

3D C 2“ D dense and ¢|D 1-to-1.
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Put Fx =% o F(g,). By Lemma 5.3, Fx is K-lsc complete. We show that it is in

a sense a minimal such function.

Theorem 5.5. Let f : X — K be K-Isc complete, K compact perfect. Then
there is an embedding ¢ : Ty — X such that Fg = f o ¢.

Proof. Let D C X be asin Theorem 5.1. Without loss of generality we can assume
that D = X. Define h: 2<“ — K by h(¢) = ¢¥(c%00--+). Let S C U, [1,.<x 2"
be the pruned tree with T = [S]. For T € S we recursively, with respect to l_F_L(T),
define U, C X open and such that:

(i) diamU- < 1/(IR(7) + 1);

(i) if ; C 72 and 7 # T2, then ﬁ,-l CUr,andifmy L m, then U, NU,, =0;
(iii) A(r(n — 1)) € f[U,] C (h(r(n = 1)) = 1/(n + 1), 00).

Define Uy to be any open set of diameter < 1 containing an £ € X such that
f(z) = min K. This is possible since f is onto. If U, is defined, consider the set

A={r"eS: ()Y =1l(r)+1, rC '}

Enumerate A so that A = {79, 71,...,7m} for some m € w, the 7;'s are pairwise
different, and 79(n) <X, 11(n) 2, -+ =<n Tm(n), where n = lh(7). Note that by (5)

h(r(n —1)) = h(ro(n)) < h(r1(n)) < -+ < h(Tm(n)).

Now, we find recursively Uy, ¢ < m. Let U] and V; be open and such that
Uy NVe=0,T"r,Vo C Uy, h(ro(n)) € h[UL], h(m1(n)) € h[Vy], and diamU] <
1/(n+2). Put

Ur, = Uty 1 £ ((A(ra(n)) = 1/(n +2), 00)).

Then find U7, and V; open and such that U,.nV,=0,T,,V, CV,h(ri(n) €
h[U. ], h(m2(n)) € h[V1], and diamU! < 1/(n+2). Put

Ur, =UL N f7H(R(r1(n)) = 1/(n +2),00)).

Repeat this procedure m + 1 times.
Define ¢ by
#(z) = the unique element of n Ul
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By (1) and (11), ¢ is continuous, and, by (ii), it is 1-to-1, whence it is an embedding

since T; is compact. Since f and F are lsc, (iii) implies that Fg = f o ¢.

6.6. The value of dec for Baire class 1 functions

In [CMPS] it was proved that dec(P) > cov(M), and in [St] that it is consis-
tent that dec(P) > cov(M). Thus P provides a particularly simple example of a
complicated Baire class 1 function. Below we show that dec(P) is actually highest

possible. This answers two questions of Steprans [St, Questions 7.1 and 7.2].
Theorem 6.1. dec(P) = dec, where P is Pawlikowski’s function.

Proof. If Y is a metric separable space, define

decyjo(Y) = sup{dec(f): f: ¥ —[0,1], f Isc}.

Of course, the value of dec; /»(Y) would remain the same if we used usc instead of
Isc functions in its definition.

First we show that dec = dec,/;(2“). The inequality > is clear since each
Isc is Baire class 1. To see <, first we show that dec;/5(Y) < decj2(2¥) for any
metric separable space Y. By a result due to Smirnov (see [E, Problem 1.8.G.]),
Y = Ua(ul Y,, where Y, a < w;, are zero-dimensional. Each Y, embeds in 2%,
and each Isc function on Y, extends to 2¥; thus, dec;5(Ya) < decyj2(2¥). By a
result of Adyan and Novikov, dec; /5(2¥) > Ry (see [JM, Theorem 4]); thus, we get

decy/2(Y) < Ry sgp decy /3(Ya) < decy /2(2%).
aEwy

Now, let f : X — Y be Baire class 1. Again, by Smirmov’s theorem
=1L <w, Yo and each Y, is zero-dimensional. Since ¥, embeds in [0,1], we
can assume that f|f~1(Ya) : f~*(Ya) — [0,1]. By Lindenbaum’s theorem (see
[CMPS, Theorem 4.4]), any Baire class 1 function h : Z — [0,1] can be repre-
sented as h = g 0 g; where g; : Z — [0,1] is usc and g3 : [0,1] — [0,1] is lsc, so
dec(h) < dec(ga)dec(g;); whence

dec(f) < Ry sup decy 2(Yy)decy 2([0, 1]) < decy /2(2%).

C!<u.¥1

Thus dec < decy /5(2%).
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The theorem will be proved, if we can show that dec; /5(2¥) < dec(P). Let
G : w¥ — 2% be defined by

G(z)(n) = min{l, z(n)} for n € w.
Let <, be the partial order on 2™ defined by
o 2, Tt Vi <no(z) < 7(3).

Let < be the partial order on 2“ arising from (=<,) by formula (3). Since (<n)
fulfils the assumptions of Lemma 3.3, there is a perfect, closed subset of 2¢ linearly
ordered by <. Now, it follows from Lemma 5.4 that dec(Fi<,)) > dec;/2(2¥).
Thus, it is enough to show that there is a homeomorphism ¢ : (w + 1)¥ — 2%
such that Go P = F(< ) o ¢ since then

dec(P) > dec(G o P) = dec(F(<,)) > decy/2(2).

Let n € (w+ 1)“. Put ¢(n) = z, where ¢ = (z(n)) € [[,2", andfori <n € w we

have
~ [0, 3 nly) >
BN = {1, if Z(z’) <n.

It is easy to check that ¢ is continuous, 1-to-1, and onto, whence, since (w + 1)*
is compact, ¢ is a homeomorphism. Now, G o P(n)(z) = 0 iff n(i) = w iff Vn >

Remark. It follows from Theorem 6.1, via the work of Steprans [St, Definition
4.1, Proposition 4.1], that dec = cov(J,), where J, is a o-ideal on w*. The
interesting fact about J, is that its definition is purely combinatorial.

The following corollary is analogous to Corollary 3.7.

Corollary 6.2. Let f: X — Y be Baire class 1, X Souslin. Then dec(f) < w or
dec(f) = dec.

Proof. If (i) of Theorem 4.1 holds, then dec(f) < w. If (ii) holds, then dec(f) =
dec by Theorem 6.1.
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It was proved in [CMPS, Theorem 3.5] that there exists a Isc function f such
that dec(f) > cov(M). We strengthen this result below. A function f : ¥ —
[0,1], ¥ a metric space, is called closed-to-1 if for any y € [0,1] f~1(y) is closed in
Y. Obviously, each continuous function is closed-to-1; however there exist plenty
of closed-to-1, Isc functions which are not continuous, e.g., Pawlikowski’s function
P being 1-to-1 is closed-to-1. The method of proof presented here is different from
the one in [CMPS].

Theorem 6.3. Let F: X — [0,1] be Isc complete. If F is a family of subsets of
X such that | JF = X, and F|Y is closed-to-1 for any Y € F, then |F| > cov(M).

Proof. Let {V, : n € w} be a countable topological basis of X. Let D be as in
Theorem 5.1. Without loss of generality we can assume that D = X. Fixn € w
and Y € F. We claim that there is at most one y € [0,1] such that V,NF~!(y) # 0
and Y is dense in V, N F~1(y). If not, let y; < y» be two such y’s. Since (1) from
the proof of Theorem 5.1 holds, we have

YNV,NFl(yp) YNV, NF-1(y,),

whence, since Y € F, F|(Y NV, N F~(y;)) = ys, a contradiction. Thus, we can
pick yo € [0, 1] such that for any n € w and any Y € F either V,NF~1(y,) =0, or
Y is not dense in V,,NF~1(yp). Then, clearly, ¥ is nowhere dense in F~1(y,). Since
F~(yp) is I13, as F is Baire class 1, and |JF D F~(y), we have | F| > cov(M).

Remark. Below, we prove a result which relates the value of dec to the value of
an ordinal rank on the family of all Baire class 1 functions. For the definition of
the oscilation rank 3 on Baire class 1 functions we refer the reader to [KL] where
it was studied in great detail.

(i) Let f : X — R, X Polish, be Baire class 1. Assume 3(f) < w; then dec(f) < w.
(i) B(P) = w.

To see (i), put B(f) = n. Then there exists ¢y > 0 such that 3(f,e) = n for € < €.
Let X} = {z € X : osc(f,z) < 1/k} and X" = {z € X \ U7 X} : osc(f|X\
U:’;}I Xi z) < 1/k for m < n and for k with 1/k < €. By our assumption,
LI s Xi = X for any k. Now define 4; = Ni=; X and A" = (ﬂ;; Uit X;) \
(ﬂ;:l Uni' X for 1 <m < nand ! < w. Notice that 4; U _, U2, AT = X;
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thus, it is enough to see that f|A4; and fIA}“ | < w, 1 <m < n, are continuous.
But we have 4; C X} forall k < w. Also,if k > I, then UT7* Xi € NS, URT" X
for m < n. Thus, A" C UT, X; \ UD  Xi = X" for all k > I. Therefore,
osc(f|A1,2) =0 for z € 4; and osc(f|A*,z) =0 for z € AL .

We leave proving (ii) to the reader.

6.7. Applications to measures

Let A be the Lebesque measure on [0,1]. Then the restriction of A to K([0,1])
is usc. We denote this restriction by the same letter A\. Van Mill and Pol proved
in [vMP, Theorem 3.1] that A is usc complete. (Actually, they showed that for any
compact, metric space X, not only 2¥, and any usc function f: X — [0,1] there
is a continuous function ¢ : X — K([0,1]) such that f = Ao ¢.) Below we are
able to generalize this result using the characterization from Theorem 5.1. Let X
be a compact, metric space. Recall that a function ¢ : K(X) — [0,1] is called a
capacity if
(i) e(F1) € c(F3) for Fy, F; € K(X) with Fy C Fy;

(i1) e(),, Fr) = inf, c(F,) for any sequence F, € K(X), n € w, with Fr41 C Fy;

(i) if F € K(X) and F = |, F,, for some sequence F,, € K(X), n € w, with
F, C Fp41, then ¢(F) = sup, ¢(Fr)-

Notice that the restriction of any probability, Borel measure on X to K(X) is a ca-
pacity; however, there exist lots of important capacities which cannot be obtained

in this way.

Corollary 7.1. Let X be a compact, metric space. Let ¢: K(X) — [0,1] be a
capacity. Assume that ¢(X) = 1 and ¢(D) = 0 for any finite set D C X. Then c

is usc complete.

Proof. First notice that conditions (i) and (ii) guarantee that ¢ is usc. Thus, by
Theorem 3.1, it is enough to check that ¢[U] is a ray for any open set U C K(X).
Let Fy € U. We will show that for any real r with ¢(Fy) > r > 0 thereis F' € U
with ¢(F') = r. We can easily find D C F, finite such that for any F' € K(X)
if DCc FC F,, then F € U. Let F be a maximal, linearly ordered by inclusion
family of closed subsets F of X such that D C F C Fy and ¢(F) > r. Put
F' = F. Then F' € U. We can find a decreasing sequence F,, € F, n € w,
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such that F' = () Fy; thus, by (ii), ¢(F') > r. If F' is finite, then r = 0 and
¢(F") = r. Otherwise, we can find a decreasing sequence of open sets V,,, n € w,
such that DNV, =0, F'NV, #0, and (), Vo, =0. Put F,, = F' \ V,,. Then by
the definition of F', ¢(F,) < r. By (iii), ¢(F') = sup, ¢(F,) <r. Thus ¢(F') =r.

Jackson and Mauldin proved in [JM, Theorem 5] that dec()\) > w, where A is
the restriction to K([0,1]) of the Lebesgue measure on [0,1]. It follows from van
Mill-Pol’s result [vMP, Theorem 3.1] mentioned above that dec(A) = dec. In the
next corollary, using Corollary 7.1 and Theorem 6.1, we characterize those Borel,
probability measures p on compact, metric spaces for which dec(yu) = dec. By

6. we denote the Dirac measure concentrated at z, i.e., §;(A) =1if z € A and

6:(A) = 0 otherwise.

Corollary 7.2. Let X be a compact, metric space. Let p be a Borel, probability
measure. Let us denote by the same letter the restriction of p to K(X). Then
dec(p) = dec unless p = 3 cpazb, wherea, >0, Y cpa,=1,and {z€ D:
z is not isolated} is finite. Moreover, if p is of the above form, then dec(p) =n+1

where n = |{z € D : z is not isolated}|.

Proof. If p is not purely atomic, then there is a closed set Fy C X such that
1(Fy) > 0 and p({z}) = 0for any € Fy. Then by Corollary 7.1, (1/u(Fp))p|{F €
K(X): F C Fp} is usc complete. It follows that dec(u) = dec.

Put N = {z € X : z is not isolated and u({z}) # 0}. Assume N is infinite.
We will find a continuous function ¢ : (w + 1)¥ — K(X) such that if 5,1 €
(w+1)¥, ng — n, then P(ni) - P(n) implies p o ¢(nx) = u o ¢(n). Then, clearly,
if u|Y is continuous, so is P|¢~1(Y); thus, dec(p) > dec(P), and we are done by
Theorem 6.1. Find a converging sequence z, € N, n € w. Put y = lim, zJ,. Find
zh, k € w, with 2z} — z7. By choosing subsequences, we can assume that
() Vk,lew+1Vnmew s} #z if k#lor n #m;
() Vk ew+1Vn € w d(z}, y) < 1/n; _
(i) Vn €w p({zf: n<mew, kew+1}) < u({zl})
Define ¢ : (w+ 1) — K(X) by

o(n) ={y} U {z}n) : n€w} forn € (w+1)“
By (ii), the set on the right hand side is closed. It is routine to check that ¢ is
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(6)

continuous. Let ng,n € (w + 1), nx — n. Assume P(n;) - P(n). Then there
is n € w such that ni(n) € w for infinitely many &, nir(n) — w, and n(n) = w.
Let ng be the smallest such n. Without loss of generality we can assume that
ne(n) = n(n) for all n < ng and nx(ne) € w for all k € w. Then
pod(mk) Su({zhemy : m <no}) + u({z7e .\ 1)
+u({el: lew+l, new, n>ne})+u({y}).

No

Since ng(no) — w, by (i), u({z7},,y}) — 0; thus,

limksup# 0 d(nk) < p({zpny : m < mo})
+u({zl: l€w+1, n€w, n>ne})+ p({y}).
On the other hand, by (iii),
pod(n) = p({zhm) « n<no})+p({zl}) + u({y})
> p({zhmy : n<no}) +p({zl 1 l€w+1, n€w, n>no})+pu({y})

Therefore, p o ¢(nx) = 1o ¢(n).
If |IN| =n < Rg, put
Xi={FeKX): |[FNN|=1}, forie{0,...,n}.

It is easy to check that u|X; is continuous, so dec(p) < n 4+ 1. To show that
dec(p) > n + 1, assume towards contradiction that dec(yu) < n. Let Yy,..., ¥,
be such that u|Y; is continuous and U?:_OIY} = K(X). Now find an open set
U D N such that

p(U\N) < min{p({z}): z € N}.

Notice that for any A C N the set {F € K(X): FC U, FNN = A} is I3, so
we can apply the Baire Category Theorem, and that if A C A’ then

{(FEK(X): FCU FNN=A}Yc{FeK(X): FCU, FNN = 4}

(this holds since the points in N are not isolated). Using this, we recursively
construct A; CNand Z; C{Fe K(X): FCU, FNN = 4;},j €{0,...,n},
so that
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(M)

(8)

(iv) 145] = j
(¥) Az T Ay for § <1

(vi)Vj <n3i<n-12Z; CYy;

(vii) Ej contains a nonempty, relatively open subset of {F € K(X): F C
U, FNN = Az}

(vill) Zj41 C Zj for j < n.

Using (vi), by the pigeonhole principle, we get j; < jo < n and g < n —1 with
2325, C Yy Let zg € Aj, \ Aj,. Then

BlZj, 2 p(Aj,) 2 p(Aj) + p({zo}).

On the other hand,
,UIZJE < Ju*(Ajl) + .U(U \ AT)!

whence, since p|Y;, is continuous,
P‘l(Yio N 7]1) o /‘(Ah) + u(U \ V).

But (7) and (8) contradict (6), since, by (viii), Z;, C Y}, ﬂ_Z:jl.
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