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Abstract

We show that for all integers t ≥ 8 and arbitrarily small ε > 0, there exists a graph property Π

(which depends on ε) such that ε-testing Π has non-adaptive query complexity Q = Θ̃(q2−2/t),

where q = Õ(ε−1) is the adaptive query complexity. This resolves the question of how bene�cial

adaptivity is, in the context of proximity-dependent properties ([GR07]). This also gives evidence

that the canonical transformation of Goldreich and Trevisan ([GT03]) is essentially optimal when

converting an adaptive property tester into a non-adaptive property tester.

To do so, we consider the property of being decomposable into a disjoint union of subgraphs, each

of which is a (possibly unbalanced) blow-up of a given base-graph H. In [GR09], Goldreich and

Ron proved that when H is a simple t-cycle, the non-adaptive query complexity is Ω(ε−2+2/t), even

under the promise that G has maximum degree O(εN). In this thesis, we prove a matching upper

bound for the non-adaptive complexity and a tight (up to a polylogarithmic factor) upper bound

on the adaptive complexity.

Speci�cally, we show that for all H, testing whether G is a collection of blow-ups of H and has

maximum degree O(εN) requires only O(ε−1 lg3 ε−1) adaptive queries or O(ε−2+1/(δ+2) + ε−2+2/W )

non-adaptive queries, where δ = ∆(H) is the maximum degree of H and W < |H|2 is a bound on

the size of witnesses against H.
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Chapter 1

Introduction

1.1 Sublinear Algorithms and Property Testing

In recent decades, the amount of data being generated and processed has grown exponentially. As

a result, in many situations �polynomial-time� is no longer a su�cient criteria for an algorithm to

be considered e�cient. Indeed, even quasi-linear time can be prohibitively slow for many datasets.

In other situations, such as biology or sociology, the total amount of data may be only moderately

large, but obtaining a single piece of data requires running an expensive experiment.

Sublinear algorithms attempt to circumvent these di�culties by considering only a minuscule random

subset of the data, in the hopes of getting an approximately-correct answer far faster than would be

required to obtain the exact answer. A classic example of this tradeo� is determining the mean of a

list of numbers. Calculating the mean exactly requires linear time. However, by randomly sampling

from the list O(ε−2) times, we can obtain an answer that is accurate to within a multiplicative

factor of 1 + ε with high probability. This observation provides the statistical justi�cation to most

population surveys. More modern examples include estimating the weight of the minimum spanning

tree of a graph ([CRT05]) and estimating the distance from uniform of a given distribution ([GR00]).

In addition to estimating large-scale parameters of the input, we also might be interested in deter-

mining structural properties for the data. For example, given a list of numbers, we may wish to

determine whether the list is sorted. As in the case of calculating the mean, determining the answer

with certainty requires inspecting the entire input. However, unlike when approximating the mean,

the answer in this case is boolean and so the idea of approximating the answer no longer makes

sense. We overcome this by moving the approximation from the output to the input. Originally
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formalized in [BLR90] and [RS96], a property tester attempts to di�erentiate inputs which satisfy

the property (the list is sorted) from inputs which are far from satisfying the property (at least an

ε-fraction of the elements are out of place). For inputs which are close to satisfying the property,

either answer is allowed � technically, the list is not sorted, but for all practical purposes it might

as well be.

The formal de�nition of a property tester is as follows. Let FN be the set of functions [N ]→ R, for

some rangeR. A property Π is an arbitrary subset of
⋃∞
N=1FN . We say that a function f : [N ]→ R

is ε-far from Π if, for any g ∈ Π, |{x ∈ [N ] : f(x) 6= g(x)}| > εN .

For example, viewing f ∈ FN as de�ning a list, we can let Π be the set of sorted lists. Then a

function f is ε-far from Π if at least εN elements are incorrectly sorted.

De�nition 1 (Property Tester). An algorithm A is a property tester for Π if, given ε > 0 and

query access to f ,

• Pr[A(f) = 1] > 2
3 for all f ∈ Π

• Pr[A(f) = 1] < 2
3 for all f which are ε-far from Π.

The tester is considered e�cient if the query-complexity Q = Q(N, ε) is a function of only ε. If

Pr[A(f) = 1] = 1 for all f ∈ Π, the tester is said to have one-sided error ; otherwise, it has two-sided

error.

This framework was �rst applied to combinatorial structures in [GGR98], speci�cally with respect

to graph properties. A graph property is a property which is preserved under permutation of

the underlying graph (ie, the property is of the graph itself, and not of the particular labeling of

the graph). In this context, graphs are generally represented using one of three di�erent models,

according to the �standard� edge-density of the graphs under consideration and the types of queries

which will be allowed.

In the dense-graph model ([GGR98], the graph is viewed as a function f : [N ] × [N ] → {0, 1}. In

other words, the tester is given access to the graph via its adjacency matrix. Note that the domain

has size N2 and so a graph is ε-far from a given property if at least εN2 edges must be added

or removed to �correct� the graph. This model is most appropriate for situations in which graphs

typically have degree Ω(N).

The bounded-degree model ([GR97]), on the other hand, is used for constant-degree graphs. In this
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model, the graph is represented via a series of incidence lists. Formally, the tester has access to a

function f : [N ] × [d] → [N ] ∪ {⊥}, where f(x, i) = y means that y is the i-th neighbor of x and

f(x, i) =⊥ means that x has less than i neighbors. Since the domain has size dN , a graph is ε-far

from a given property if at least εdN edges must be added or removed to �correct� the graph. When

analyzing the e�ciency of a tester in the bounded-degree model, d is generally viewed as a (small)

constant.

More recently, [PR02] and [KKR04] have proposed a general-graph model in which the tester is

given query access to both the adjacency-matrix and the incidence-list representations of the input

graph. Distance, in this model, is measured with respect to |E|, which means that the absolute

number of allowable �incorrect� edges cannot be a priori bounded.

In this thesis, we focus exclusively on the dense-graph model.

1.2 Adaptivity, Non-adaptive, and Canonical Algorithms

Query algorithms can be broadly classi�ed into two types according to how the queries are deter-

mined. In an adaptive algorithm, the results of previous queries may be used when determining

which query to make next. A non-adaptive algorithm, on the other hand, determines all of its

queries in advance.

In general, adaptive algorithms require far fewer queries than non-adaptive algorithms. For example,

approximating the threshold value of a step function to within ε requires only O(lg ε−1) adaptive

queries (by binary search) but requires Ω(ε−1) non-adaptive queries (since there must be a query

within every interval of diameter 2ε). Indeed, in the bounded-degree model, any graph property

which does not depend solely on the degree distribution requires Ω(
√
n/d) queries ([RS06]).

In the dense graph model, however, the maximum gap between the adaptive and non-adaptive query

complexities are separated by at most a quadratic factor.

Theorem 2 (canonical-testers). Let Π be a property which is testable in the dense-graph model using

at most q = q(N, ε) (adaptive) queries. Then there exists a non-adaptive tester for Π with query

complexity O(q2). Furthermore, this non-adaptive tester operates by querying the entire subgraph

induced by 2q random vertices.

The theorem follows immediately from the observation that any algorithm that makes q queries
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touches at most 2q vertices. By applying a random permutation to G before running the adaptive

algorithm, the set of touched vertices is uniformly random. It therefore su�ces to query a random

induced subgraph and then simulate the adaptive algorithm locally. An algorithm of this form is

known as a canonical algorithm.

Let q denote the adaptive query-complexity, Q denote the non-adaptive query complexity, and Q̃

denote the canonical query complexity. By de�nition, q ≤ Q ≤ Q̃. Theorem 2 shows that Q̃ = O(q2).

A natural question, then, is to determine the exact relationship between these parameters.

It is easy to see that there exist properties with Q̃ = Ω(Q2). Speci�cally, let Π consist solely of the

empty graph. Querying Ω(ε−2) random edges clearly su�ces to di�erentiate the empty graph from

one with at least εN2 edges. However, any canonical algorithm must touch Ω(ε−1) vertices, and

therefore has query complexity Ω(ε−2). Indeed, [GR09] showed that any non-trivial property has

canonical query complexity Ω(ε−2).

Similarly, we can consider the relative power of adaptive versus non-adaptive (but not necessarily

canonical) property testers. It is widely believed that the canonical transformation remains optimal,

in the worst case, even for this more modest goal. In other words, it is believed that there exist

properties such that Q = Ω(q2). However, proving such a separation between the adaptive and

non-adaptive complexities has proven elusive � no unconditional gap was known until Goldreich

and Ron demonstrated a property where Q = Ω̃(q3/2) in [GR09].

In light of this di�culty, researchers have considered two modi�cations of the problem. The �rst

approach, used by [GR07], considers proximity-dependent properties, properties which depend (nat-

urally) on the tolerance parameter ε. In particular, they considered the combined property of being

bipartite and having degree at most O(εN), and achieved a gap of Q = Θ̃(q4/3).

The second approach, used by [GR09], is to consider promise problems. In this context, the au-

thors showed that there exist properties such that Q = Ω(q2−δ) for all δ > 0, exhibiting the �rst

nearly-quadratic gap between adaptive and non-adaptive queries in the dense-graph model. More

speci�cally, the authors demonstrated a hierarchy of gaps of the form Q = Θ(q2−2/t) for each integer

t ≥ 2. Unfortunately, the promise they use, while natural, is quite strong, and it is currently unclear

how to remove the promise.

In this thesis, we achieve a nearly-quadratic gap without using a promise, at the expense of making

the properties proximity-dependent. This proves that for all δ > 0 and arbitrarily small ε, there
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exists a property Π (which depends on ε), such that ε-testing Π requires Q > q2−δ non-adaptive

queries, where q is the adaptive query complexity. As in [GR09], we also strengthen the result and

establish a hierarchy of relationships between the adaptive and non-adaptive query complexities.

Theorem 3 (Main Theorem). For all t ≥ 8 and arbitrarily small ε, there exists a graph property Π

(which depends on ε) such that ε-testing Π has non-adaptive query complexity Q = Θ̃(q2−2/t), where

q = Θ̃(ε−1) is the adaptive query complexity.

Theorem 3 and [GR09] both provide strong evidence that the canonical transformation is optimal

in the general case. Although each result technically leaves open the possibility of a better transfor-

mation between adaptive and non-adaptive testers, each does so in a di�erent, and very restricted,

way. As a result, any such transformation would have to be very unnatural and would have to

depend sensitively on the internal structure of the adaptive tester.

1.3 Graph Blow-Ups and Blow-Up Collections

Informally, a graph blow-up consists of replacing each vertex of a graph with a cluster of vertices

and replacing each edge with a complete bipartite graph (a rigorous de�nition is given in section

2.1). This operation has been used frequently in studying the dense-graph model, for constructing

both upper- and lower-bounds (see, for example, [Alo01], [AS06], and [GKNR09]).

The complexity of testing whether a graph is a blow-up of a �xed graph H was essentially resolved

in [Avi09] (see also [AG11]), where it is shown that, for any H, the adaptive query complexity is

O(ε−1) and the non-adaptive query complexity is Õ(ε−1).

A graph is a blow-up collection if it can be partitioned into disjoint subgraphs, each of which is a

blow-up of H. This notion was implicitly introduced in [GR09], which showed the following lower

bound.

Lemma 4 ([GR09], Lemma 5.6). Let H be a simple t-cycle, with t ≥ 4. Testing whether G is a

blow-up collection of H requires Ω(ε−(2−2/t)) non-adaptive queries, even given the promise that G

has maximum degree 2tεN .

The authors also showed a lower bound of Ω(ε−4/3) when H is a single loop.

To prove a nearly-quadratic gap between adaptive and non-adaptive query complexities, it therefore
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su�ces to show an Õ(ε−1) upper-bound on the adaptive query complexity for testing whether a

graph is a blow-up collection, for arbitrary H. In [GR09], the authors showed such an upper bound

for the cases where H is a single loop and H is a single edge. Unfortunately, they were unable to

show such an upper bound for larger H.

In this thesis, we prove tight upper-bounds for both the adaptive and non-adaptive cases under

the promise that G has maximum degree O(εN). Speci�cally, we show that a tester can determine

whether G is a blow-up collection of any given H, given that promise on the degrees, using only

O(ε−1) adaptive queries or O(ε−2+1/(∆+2) + ε−2+2/W ) non-adaptive queries, where ∆ and W are

parameters depending only on H. When H is a simple t-cycle, ∆ = 2 and W = t, and the

non-adaptive upper bound reduces to O(ε−2+2/t), matching the lower bound in Lemma 4.

Indeed, our result holds even if G is only O(ε)-close to satisfying the promise. Since [GR07] gives

an e�cient non-adaptive tester for the property of having maximum degree O(εN), we obtain the

following two theorems.

Theorem 5 (Adaptive Tester). For all graphs H and constants c > 1, there exists an adaptive prop-

erty tester (with two-sided error) for the (proximity-dependent) combined property of having maxi-

mum degree cεN and being a blow-up collection of H. The tester has query complexity O(ε−1 lg3 ε−1).

Since any tester must make Ω(ε−1) queries, Theorem 5 is optimal up to a polylogarithmic factor.

Theorem 5, combined with Lemma 4, su�ces to show a gap of size Q = Ω(q2−δ) for all δ > 0. In the

following theorem, we strengthen this result by proving a tight upper-bound on the non-adaptive

query complexity. This shows that there is an in�nite hierarchy of achievable relationships between

the adaptive and non-adaptive query complexities of proximity-dependent properties.

Theorem 6 (Non-Adaptive Tester). For all graphs H and constants c > 1, there exists a non-

adaptive property tester (with two-sided error) for the (proximity-dependent) combined property of

having maximum degree cεN and being a blow-up collection of H. The tester has query complexity

O(ε−2+1/(∆+2) + ε−2+2/W ), where ∆ = deg(H) is the maximum degree of H and W < |H|2 is a

bound on the size of a witness against H (see De�nition 12).

The proofs of Theorems 5 and 6 are given in Chapter 2.

As mentioned previously, when H is a simple t-cycle, ∆ = 2 and W = t. Therefore, combining

Theorems 5 and 6 with Lemma 4 yields Theorem 3.
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Treating c and |H| as constants, we note that the algorithms in both theorems have running time

polynomial in the query complexity. In the adaptive case, the query complexity can also be made

polynomial in c and |H|, although we do not do so here.
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Chapter 2

A Hierarchy of Tradeo�s Between

Adaptive and Non-adaptive Query

Complexities

In this chapter, we prove theorems 5 and 6, thereby establishing theorem 3.

2.1 Notation and Basics

All graphs are assumed to be undirected. Following standard graph-theoretic notation, we let

Γ(v) = {u : (u, v) ∈ E} denote the neighbors of v. Given S ⊂ V , we let G|S denote the subgraph

induced by S and ΓS(v) = Γ(v) ∩ S denote the neighbors of v in S. Given S, T ⊂ V , we let

E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T} denote the set of edges between S and T and S M T denote

the symmetric di�erence of S and T .

De�nition 7 (Graph Blow-Up). A graph G = ([N ], E) is a blow-up of the graph H = ([h], F ) if

there exists a partition of [N ] into V1, . . . , Vh such that for every i, j ∈ [h] and (u, v) ∈ Vi × Vj,

(u, v) ∈ E if and only if (i, j) ∈ F . We denote the set of blow-ups of H by BU(H).

Note that no requirement is made as to the relative sizes of the Vj . In particular, we allow the case

where |Vj | = 0. Also note that H is allowed to contain self-loops, in which case G is obtained from

H by replacing the vertices with self-loops with cliques instead of independent sets.

De�nition 8 (Blow-Up Collection). A graph G = ([N ], E) is a blow-up collection of the graph H

if there exists a partition of [N ] into V 1, . . . , V k, for some k, such that V i ∈ BU(H) for all i and

E(V i, V j) = ∅ for all i 6= j. We denote the set of blow-up collections of H by BUC(H).
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When H is a single loop, [GR09] refers to BUC(H) as clique collection. Similarly, when H is a single

edge, they refer to BUC(H) as biclique collection.

Throughout this thesis, H will be an arbitrary �xed graph and c > 1 will be an arbitrary �xed

constant. We let h = |H| denote the number of vertices in H and ∆ = deg(H) denote the maximum

degree of H.

De�nition 9 (Low-Degree Graph). Given c > 1 and ε > 0, let LDcε = {G : deg(G) ≤ cεN}

denote the set of graphs with maximum degree cεN .

To prove Theorems 5 and 6, we will repeatedly use the concept of a vertex being (k, α)-partitionable.

Informally, a vertex is (k, α)-partitionable if almost all of its neighbors can be partitioned into k

groups, such that all of the vertices within a part have essentially the same neighbors in G. The

formal de�nition is given in De�nition 11, after we introduce notation for such partitions.

De�nition 10. Given v ∈ V and α > 0, let Cv,α(u) = {w ∈ Γ(v) : |Γ(w) M Γ(u)| < αεN}.

In other words, Cv,α(u) consists of all vertices in Γ(v) which have �essentially the same� neighbors

as u. When v and α are clear from context, we will omit the subscripts and write C(u) for Cv,α(u).

De�nition 11 ((k, α)-Partitionable). A vertex v is (k, α)-partitionable if there exist representatives

u1, . . . , uk ∈ Γ(v) such that
∣∣∣⋃k

i=1Cv,α(ui)
∣∣∣ ≥ |Γ(v)| − αεN .

Note that if G ∈ BUC(H), then every vertex is (deg(H), 0)-partitionable.

Finally, we need the idea of a minimal witness against BUC(H). Informally, a minimal witness is a

set of vertices such that the induced subgraph proves that G is not a valid blow-up collection, while

any subset does not su�ce.

De�nition 12 (Minimal Witness). A set S ⊆ V is a minimal witness against BUC(H) if G|S 6∈

BUC(H), but for any S′ ( S, G|S′ ∈ BUC(H).

Note that, for any S ⊆ G, G|S 6∈ BUC(H) implies that G 6∈ BUC(H). Furthermore, any minimal

witness against BUC(H) must be connected, since we could otherwise replace the witness with one

of its connected components.

Given H, we let W = W (H) denote the maximum size of a minimal witness. It is easy to see that

W < (h+ 1) +
(
h+1

2

)
< h2. When H is a simple t-cycle, t ≥ 4, W = |H|.
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Handling Technicalities Throughout this thesis, we allow some small informalities for ease of

exposition. For example, we often state that an event occurs �with high probability,� without

specifying the exact failure probability. This is taken to mean that the probability of failure is

small enough that taking a union-bound over all (constantly-many) such cases yields a total failure

probability of at most, say, 0.01. Similarly, when selecting a random set of vertices, we treat the

sampling as being performed with replacement. Since these sets will always be of size O(1) and

we will only perform such sampling O(1) times (as a function of N), the odds of a collision are

negligible.

2.2 Adaptively Testing BUC(H) Given a Promise

We begin by showing how to adaptively test whether a graph G is in BUC(H), given the promise

that G is O(ε)-close to LDcε. We view G and ε as inputs to the algorithm, and H and c as �xed

parameters.

The algorithm consists of two stages. The �rst stage (steps 2-8 of Algorithm 13) tests whether most

vertices are (∆, 0)-partitionable, where ∆ = deg(H). To do so, it repeatedly selects a vertex and

then attempts to �nd ∆ + 1 neighbors of that vertex which have mutually distinct neighborhoods

(see Figure 2.1(a)). If it �nds such a set of vertices, they act as a witness against being in BUC(H)

and the algorithm can reject with certainty in step 7.

If the algorithm fails to �nd such a witness, then most vertices must be (∆, α)-partitionable, where

α is a small constant. This implies that the graph must be close to being a blow-up of some base

graph. In other words, almost all of the vertices can be clustered such that each pair of clusters is

either almost disjoint or almost forms a complete bipartite graph. The second stage of the algorithm

(steps 9-16) checks if this high-level structure is consistent with BUC(H) (see Figure 2.1(b)). It does

so by performing a random search in G for W = W (H) steps, where each step selects a random

neighbor of the previously selected vertices. If the resulting W vertices form a witness against

BUC(H), the algorithm rejects in step 15.

Algorithm 13. AdaptiveBlowUpCollectionTestH,c(G; ε)

1: Let ∆ = deg(H), W = W (H), and α = (16∆ |H|2)−1.

\\ Test whether most vertices are (∆, 0)-partitionable.
2: for O(c) iterations do
3: Select a random vertex v.
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Γ(𝑣) 

𝑣 

𝑢1 𝑢2 𝑢Δ 𝑢Δ+1 
. . . 

Γ(𝑢1) △ Γ(𝑢2) Γ(𝑢𝑖) △ Γ(𝑢𝑗) Γ(𝑢Δ) △ Γ(𝑢Δ+1) 

. . . . . . 

𝐶𝑣,𝛼(𝑢1) 
𝐶𝑣,𝛼(𝑢2) 𝐶𝑣,𝛼(𝑢Δ) 

𝐶𝑣,𝛼(𝑢Δ+1) 

𝑤12 𝑤𝑖𝑖 𝑤Δ,Δ+1 

(a) A witness against v being (∆, 0)-partitionable consists of two sets of vertices. The �rst
set consists of ∆ + 1 vertices u1, . . . , u∆+1 ∈ Γ(v). The second set consists of

(
∆+1

2

)
vertices

wij such that wij ∈ Γ(ui) M Γ(uj) for each i 6= j. When v is not (∆, α)-partitionable, there
exist αεN choices for each ui such that ui 6∈ Cv,α(uj) for any j 6= i, so Algorithm 13 can �nd
such vertices e�ciently. Having chosen such a set, there exist αεN choices for wij for each
i 6= j, allowing algorithm 13 to complete the witness e�ciently. Steps 2-8 search for witnesses
of this type.

𝑣1 

𝑣2 𝑣3 

𝑣4 
𝑉1𝑖 

𝑉2𝑖 

𝑉4𝑖 

𝑉3𝑖 

(b) If G has not been rejected by the �rst half of Algorithm 13, then V can be partitioned into clusters
V ij , such that each pair of clusters either nearly forms a complete bipartite graph or is nearly disjoint. A
minimal witness against having the correct high-level structure consists of a representative vertex from
each set such that the induced subgraph is inconsistent with BUC(H). For example, when H = K4 is the
complete graph on 4 vertices, the four vertices shown here form a minimal witness. Steps 9-16 search for
witnesses of this type.

Figure 2.1: The two types of witnesses used by Algorithm 13 to determine whether G is a member
of BUC(H). In each diagram, a line indicates that the algorithm queried that edge, with a solid line
indicating the presence of an edge and a dashed line indicating the absence of an edge.
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4: Select a random set S of O(∆α−1ε−1) vertices, and query {v} × S.
5: Let S be a random subset of ΓS(v) of size (at most) c∆α−1.
6: Select a random set T of O(∆2α−1ε−1) vertices, and query S × T .
7: If the current view of G is inconsistent with BUC(H), Reject. Speci�cally, reject if there

exist u1, . . . , u∆+1 ∈ S such that ΓT (ui) 6= ΓT (uj) for all i, j.
8: end for

\\ If G has not yet been rejected, most vertices must be (∆, α)-partitionable.
\\ Test that G has a high-level structure consistent with H.

9: for O(Wc)O(W ) iterations do
10: Select v1 at random, and let U = {v1}.
11: for j = 2 to W do

12: Select a random set Tj of O(∆ε−1) vertices, and query U × Tj .
13: If ΓTj (U) = ∅, break. Otherwise, randomly select vj ∈ ΓTj (U) and let U = U ∪ {vj}.
14: end for

15: If G|U 6∈ BUC(H), Reject.
16: end for

17: If the algorithm hasn't yet rejected, Accept.

Algorithm 13 has query complexity O(ε−1), as desired. Furthermore, it only rejects if it �nds a

witness against BUC(H), so the algorithm accepts valid blow-up collections with probability 1. The

following lemma asserts that it rejects graphs which are far from BUC(H) with high probability.

Lemma 14. Let G be ε
8 -close to LDcε and ε-far from BUC(H). Then Algorithm 13 rejects with

probability at least 2/3.

The proof is the content of section 2.2.1.

2.2.1 Proof of Lemma 14

We �rst note that if G contains many vertices which are not (∆, α)-partitionable, then G is rejected

with high probability.

Lemma 15. Let ∆ = deg(H), W = W (H), and α = (16∆ |H|2)−1. Suppose that G is ε
8 -close

to LDcε and contains at least 1
4cN vertices which are not (∆, α)-partitionable. Then Algorithm 13

rejects in step 7 with probability at least 2/3.

Proof. Consider the 1
4cN vertices which are not (∆, α)-partitionable. By assumption, at most 1

8cN of

them have degree greater than 3cεN . For otherwise, 2cεN edges would have to be deleted from each

such vertex to make G low-degree, meaning that G would have distance at least 1
2 ·2cεN ·

1
8cN = ε

8N
2

from LDcε.
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Therefore, with high probability, some iteration chooses a vertex v in step 3 that is not (∆, α)-

partitionable and has degree at most 3cεN . Consider that iteration. Note that since v is not

(∆, α)-partitionable, |Γ(v)| > αεN .

We view S in step 4 of the algorithm as S1∪ . . .∪S∆+1, with |Si| = α−1ε−1. With high probability,

ΓS1(v) 6= ∅, so let u1 be an arbitrary vertex in ΓS1(v). Since v is not (∆, α)-partitionable, Γ(v)

contains at least αεN vertices u′ such that |Γ(u1) M Γ(u′)| > αεN , and so with high probability

ΓS2(v) contains such a vertex. Let u2 be that vertex. We continue in this manner, selecting vertices

u3, . . . , u∆+1 such that |Γ(ui) M Γ(uj)| > αεN for all i 6= j.

If |ΓS(v)| < c∆α−1, then S = ΓS(v). Otherwise, the probability that each vertex in S is a valid

choice for ui, given u1, . . . , ui−1, is at least
α
3c , so with high probability S contains the desired ∆ + 1

vertices.

Viewing T as
⋃∆+1
i,j=1 Tij , we see that, with high probability, T contains a vertex in Γ(ui) M Γ(uj) for

all i 6= j. The resulting view of G is therefore inconsistent with BUC(H) and the algorithm rejects,

as desired.

We now show that if G has at most 1
4cN vertices which are not (∆, α)-partitionable, then G can be

partitioned into components such that, for each pair of components, either the edges between them

almost form a complete bipartite graph or the components are almost disjoint.

Lemma 16. Let ∆ = deg(H) and α = (16∆ |H|2)−1. Suppose that G is ε
8 -close to LDcε and

contains at most 1
4cN vertices which are not (∆, α)-partitionable. Then G is 5ε

8 -close to a graph

G̃ = (V, Ẽ) for which the following holds: V can be partitioned into
⋃
i,j V

i
j ∪ L such that

1. Γ̃(v) = ∅ for all v ∈ L,

2. E(V i, V i′) = ∅ for all i 6= i′,

3. For all i, j, Γ̃(u) = Γ̃(v) for all u, v ∈ V i
j , and

4.
∣∣∣V i
j

∣∣∣ > ε
16∆N for all i, j,

where V i =
⋃
j V

i
j and Γ̃(u) is the neighborhood of u in G̃. Furthermore,∣∣∣ΓV i(u) M Γ̃V i(u)
∣∣∣ < αεN for all u ∈ V i.

Proof. First, delete all edges adjacent to any vertex which is not (∆, α)-partitionable and add those

vertices to L. The total cost of doing so is at most 1
4cN · cεN + ε

8N
2 = 3ε

8 N
2, since G is ε

8 close to
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LDcε.

The construction now proceeds in stages, with each stage constructing a V i =
⋃
j V

i
j such that

Ẽ(V i, V \V i) = ∅.

To construct V 1 =
⋃
j V

1
j , choose an arbitrary vertex v with |Γ(v)| > ε

8N and (∆, α)-partition Γ(v)

into
⋃∆
j=1C(uj). For any j such that |C(uj)| > ε

16∆N , add C(uj) to V
1 as a distinct V i

j . Note that

since |Γ(v)| > ε
8N , there must be at least one partition of that size.

While there exists a uj in V
1 such that

∣∣Γ(uj)\V 1
∣∣ > ε

8N , choose such a vertex. For consistency of

notation, we relabel uj to v. Let
⋃∆
j=1C(uj) be a (∆, α)-partitioning of Γ(v). Again, there must

be a component such that
∣∣C(uj)\V 1

∣∣ > ε
16∆N . We add those C(uj)\V 1 to V 1 as distinct V i

j s.

Once every uj in V
1 has

∣∣Γ(uj)\V 1
∣∣ < ε

8N , we are ready to �nalize V 1. We begin by separating V 1

from V \V 1 by deleting E(V 1, V \V 1), at a cost per vertex of at most ε
8N + αεN . We next ensure

that E(V 1
j , V

1
j′) is either V

1
j × V 1

j′ or the empty set, for all j, j′. This can be easily shown to require

at most αεN edits per vertex.

Note that V 1 now satis�es conditions 2-5, by construction.

We now repeat this entire process on the remaining vertices, creating V 2, V 3, . . ., until every vertex

in V has either been covered or has degree at most ε
8N . Finally, we delete all edges adjacent to the

leftover vertices, at a cost of ε
8N per vertex, and add those vertices to L.

The total cost of this procedure is bounded by ( ε8N + 2αεN)N < ε
4N

2, for a �nal cost of 5ε
8 N

2, as

desired.

Note that the bound on
∣∣∣ΓV i(u) M Γ̃V i(u)

∣∣∣ in the lemma implies that G̃ is ε8 -close to having maximum

degree 2cεN , since G is ε
8 -close to having maximum degree cεN and the degree of each vertex

increases by at most αεN when going from G to G̃. Therefore, conditions 3 and 4 imply that most

of the components V i
j are connected to at most 32c∆ other components and have size at most 2cεN .

Intuitively, these conditions allow us to view each cluster V i
j as a supernode and each bipartite

graph as an edge. From this viewpoint, G̃ becomes a bounded-degree graph, with maximum degree

32c∆. Since each supernode contains Ω(εN) vertices (by condition 4 in the lemma), we can simulate

neighbor queries by queryingO(ε−1) random vertices and choosing a random neighbor. Furthermore,

if G̃ is Ω(ε)-far from BUC(H) when viewed as a dense graph, the corresponding bounded-degree

graph is Ω(1)-far from BUC(H).
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To formalize this intuition, we �rst show that the set of witnesses against G̃ covers a constant

fraction of V .

Lemma 17. Let G̃ be as in Lemma 16, and suppose that G̃ is 3ε
8 -far from BUC(H). Then there

exist at least (16Wc2ε)−1 disjoint sets W̃k =
⋃
` V

ik
jk,`

such that G|
W̃k

is a witness against BUC(H).

Proof. First, delete ε
8N

2 edges so that G̃ is in LD2cε. Note that the resulting graph is still ε
4 -far

from BUC(H).

Consider some W̃k. Completely disconnecting all vertices contained in W̃k requires at mostW (2cεN)2

deletions, since there are at most W components and, by Lemma 16, each component contains at

most 2cεN vertices and each vertex has degree at most 2cεN .

Therefore, if there are less than (16Wc2ε)−1 disjoint W̃k, the total cost of deleting all witnesses in

G̃ is at most (16Wc2ε)−1 ·W (2cεN)2 = ε
4N

2. This contradicts the assumed distance to BUC(H),

and the lemma follows.

We are now ready to show that the second half of Algorithm 13 �nds a witness against G with high

probability.

Informally, by Lemma 17, step 10 of the algorithm selects a vertex v1 ∈ V i
j1

corresponding to a

witness with high probability. Having chosen v1, we wish to bound the probability that v2, . . . , vW

are chosen so as to form a complete witness. Recalling that any minimal witness is connected,

there must exist a v2 ∈ V i
j2

which extends the witness in G̃. By condition 3 of Lemma 16, any

vertex in V i
j2

can be used in place of v2 to extend the witness. However, since
∣∣∣V i
j2

∣∣∣ > ε
16∆N and∣∣∣ΓV i(u) M Γ̃V i(u)

∣∣∣ < αεN < 1
2W

∣∣∣V i
j2

∣∣∣, at least half of V i
j2

is a valid choice to extend the witness in

G. Furthermore, most of these must have degree O(cεN).

Iterating this procedure, we see that there are always at least Ω( ε∆N) choices for vj which extend

the witness in G. Furthermore, since each previous vj′ was chosen to have degree O(cεN), there are

at most O(WcεN) potential choices for vj . Therefore, with probability Ω((W 2c)−1), Algorithm 13

chooses a good vj at each step and �nds a complete witness in G.

The formal proof is as follows.

Proof of Lemma 14. If G is rejected with probability at least 2/3 by the �rst part of Algorithm

13, then we are done. So suppose otherwise. Then by Lemma 15, there exists G̃ satisfying the
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conclusion of Lemma 16. Since G is ε-far from BUC(H), G̃ is at least 3ε
8 -far from BUC(H).

By Lemma 17, there exist (16Wc2ε)−1 sets W̃k =
⋃
` V

ik
jk,`

corresponding to witnesses. Call a W̃k

high-degree if, for some V ik
jk,`
⊂ W̃k contains ε

64∆N vertices of degree greater than 65∆Wc2εN .

We note that at most half of the W̃k are high-degree. Otherwise, G would have distance at least

1
2 · (16Wc2ε)−1 · 64∆Wc2εN · ε

64∆N = ε
32N

2 to LDcε, contrary to assumption.

We therefore restrict our attention to the (32Wc2ε)−1 witnesses which are not high-degree.

Let V i
1 , . . . , V

i
` , ` < W , be components corresponding to a partial witness in G̃. In other words,

(V i
1 , . . . , V

i
` ) = (W i∗

j1
, . . . ,W i∗

j`
), for some i∗ and j1, . . . , j`. Let v1, . . . , v` be arbitrary vertices in

V i
1 , . . . , V

i
` , respectively, such that |Γ(vj)| < 65∆Wc2εN for each j ≤ `. Let V i

`+1 be a component

adjacent to
⋃`
j=1 V

i
j which extends the partial witness in G̃. Such a component must exist, since

witnesses are connected.

Since
∣∣V i
`+1

∣∣ > ε
16∆N , there are at least ε

16∆N vertices which extend the witness (in G̃). Recall

that if V i
j is adjacent to V i

j′ in G̃, then every vertex in V i
j must be adjacent in G to all but at most

αεN vertices in V i
j′ (and similarly if V i

j is not adjacent to V i
j′). Therefore, since W < 1

2 |H|
2 and

α = (16∆ |H|2)−1, there must be at least ε
16∆N −WαεN > ε

32∆N choices for v`+1 ∈ V i
`+1 such that

E(vj , v`+1) = Ẽ(vj , v`+1) for all j ≤ `, which means that v`+1 extends the witness in G as well. Of

these, at least ε
64∆N must also have degree at most 65∆Wc2εN .

Since |Ti| = O(∆−1ε−1), with high probability ΓTi(U) contains such a vertex in step 13. Since each

of the ` vertices selected so far is adjacent to at most 65cεN vertices, there are at most `65cεN

candidates for v`+1, and so the probability that the selected v`+1 extends the witness in G is at

least ε/32∆
`65cε = Ω((W 2c)−1).

Therefore, with high probability, the algorithm �nds a complete witness in some iteration of steps

10-14 and rejects G.

2.3 Non-adaptively Testing BUC(H) Given a Promise

We now show how to non-adaptively test whether a graph is in BUC(H), given the promise that G

is O(ε)-close to LDcε.

As in the adaptive case, the �rst stage of the algorithm veri�es that most vertices are (∆, α)-
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partitionable. Assuming the graph passes the �rst stage, the second stage checks that the high-level

structure of G is consistent with BUC(H).

Since we can no longer adaptively restrict our queries to neighbors of a given vertex, we instead

rely on the birthday paradox to achieve sub-quadratic query complexity. Recall that the birthday

paradox says that, given a discrete domain D, O(|D|1−1/k) uniformly-chosen samples su�ce to

obtain a k-wise collision with high probability.

We give a slightly generalized version here that will be useful for the following proofs.

Lemma 18 (Birthday Paradox). Let D be a �nite domain, and let {µi} be a set of probability

distributions over D with µi(d) = Ω(1/ |D|) for all i and d ∈ D. Suppose that the i-th sample

is drawn according to µi. Then O(|D|1−1/k) samples su�ce to obtain a k-wise collision with high

probability.

Proof. By assumption, there exists a �xed 0 < c < 1 such that µi(d) > c
|D| for all i and d ∈ D. Let

α = c
|D| .

Considering the following process. At step i, we select a sample according to µi. For each d ∈ D, we

keep the sample with probability α
µi(d) and discard it otherwise. Note that this process is equivalent

to sampling from the distribution µ̃ over D ∪ {⊥} which selects d ∈ D with probability α and ⊥

with probability 1− c and discarding any ⊥s.

With high probability, 2c−1M samples from µ̃ su�ce to obtain M non-discarded samples. Since

the non-discarded samples are uniformly distributed, it follows from the standard birthday paradox

that 2c−1 ·O(|D|1−1/k) = O(|D|1−1/k) samples from µ̃ su�ce to obtain a k-wise collision with high

probability.

Since discarding samples can only increase the number of samples required to achieve a k-wise

collision, the lemma follows.

Very informally, in our setting a collision will correspond to choosing multiple vertices from a single

witness in such a way that aW -wise collision corresponds to a complete witness. Assuming that the

set of disjoint witnesses has size O(ε−1) and that we can sample from that set with only constant

overhead, the birthday paradox implies that O(ε−1+1/W ) random vertices su�ce to �nd all W

vertices corresponding to a complete witness. Querying the entire induced subgraph then yields the
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desired result. The primary challenge, therefore, is to show that when G is ε-far from BUC(H), the

algorithm can e�ciently sample from the space of witnesses.

The structure of the non-adaptive algorithm parallels the structure of the adaptive algorithm, es-

pecially with regards to proving correctness. Steps 2-4 of Algorithm 19 correspond to steps 2-8 of

Algorithm 13 and check that most vertices are (∆, 0)-partitionable, where ∆ = deg(H). Steps 5-6

correspond to steps 9-16 of Algorithm 13 and check that the high-level structure of G is consistent

with BUC(H).

Algorithm 19. NonAdaptiveBlowUpCollectionTestH,c(G; ε)

1: Let ∆ = deg(H), W = W (H), and α = (16∆ |H|2)−1.
\\ Check that most vertices are (∆, 0)-partitionable.
2: Select a set S of O((αε)−1+1/(∆+2)) random vertices, and query S × S.
3: Select a set T of O(∆2α−1ε−1) random vertices, and query S × T .
4: If the current view of G is inconsistent with BUC(H), Reject. Speci�cally, reject if there exist
v ∈ S and u1, . . . , u∆+1 ∈ ΓS(v) such that ΓT (ui) 6= ΓT (uj) for all i, j.

\\ Check that G has a high-level structure consistent with H.

5: Select a set S of O((∆c2ε)−1+1/W ) random vertices and query S × S.
6: If G|S 6∈ BUC(H), Reject.
7: If the algorithm hasn't yet rejected, Accept.

Algorithm 19 has query complexity O(ε−2+1/(∆+2) + ε−2+2/W ), as desired. Since it only rejects if it

�nds a witness against G, it accepts all graphs in BUC(H) with probability 1. It remains to show

that it rejects graphs which are far from BUC(H) with high probability.

Lemma 20. Let α = (16∆ |H|−2)−1, as in Algorithm 19, and let G be αε
16c -close to LDcε and ε-far

from BUC(H). Then Algorithm 19 rejects with probability at least 2/3.

The proof is the content of section 2.3.1.

2.3.1 Proof of Lemma 20

The proof closely follows the structure of the proof for the adaptive case given in section 2.2.1.

Because the arguments used in the non-adaptive case are more sensitive to the degrees of selected

vertices than in the adaptive case, we will assume that G is αε
16 -close to LDcε, instead of only being

ε
8 -close as in the adaptive case, where α < 1 is a �xed constant.

As in the adaptive case, we begin by noting that if G contains many vertices which are not (∆, α)-

partitionable, then G is rejected with high probability.
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Lemma 21. Let ∆ = deg(H), W = W (H), and α = (16∆ |H|2)−1. Suppose that G is αε
16c -close

to LDcε and contains at least 1
4cN vertices which are not (∆, α)-partitionable. Then Algorithm 19

rejects in step 4 with probability at least 2/3.

Proof. For ease of exposition, we begin by proving the claim under the stronger assumption that

G ∈ LDcε. We then show how to modify the argument to only require that G be O(ε)-close to LDcε.

We view the algorithm as choosing S one vertex at a time until a particular event occurs. We

emphasize that this is merely a proof technique, since the algorithm is non-adaptive, and so the

actual queries performed will be a superset of the ones described in the proof. Since witnesses are

preserved under additional queries, this su�ces to prove the lemma.

As the samples are chosen, we will maintain an approximate partitioning of V into Θ(ε−1) sets, such

that each vertex belongs to at most ∆ sets and each set has size Ω(εN), and therefore a constant

fraction of V is always covered. Intuitively, selecting a vertex from the k-th set will correspond to

selecting the next vertex in the k-th witness, until a complete witness has been found.

Formally, we initially partition the 1
4cN vertices which are not (∆, α)-partitionable into

⋃(αε)−1

k=1 Uk,

with |Uk| = αε
4cN . For each k, we initially say that Uk is uninitialized. The �rst time that we select

v ∈ Uk, we say that Uk becomes initialized with seed v, after which we will require that Uk ⊆ Γ(v).

We now proceed to sample vertices at random. If the selected vertex u does not belong to any

Uk, we discard that sample and try again. If u ∈ Uk for some k, we update the partitioning as

follows. If Uk is uninitialized, then u must not be (∆, α)-partitionable (by construction), and we

set Uk = Γ(u). Note that since u is not (∆, α)-partitionable, |Uk| > αεN as required. We also

update the remaining uninitialized Uk′ by removing any vertex v ∈ Uk′ such that v ∈ Γ(u) or

|Γ(u) M Γ(v)| < 1
2αεN . Finally, we rebalance the sizes of the uninitialized Uk′ . Supposing for the

moment that G ∈ LDcε, we remove at most |Γ(u)| · cεN/1
2αεN < 2c2α−1εN vertices in total from⋃

Uk.

If Uk has been initialized with seed v, we proceed as follows. Let u1, . . . , u` ∈ Γ(v), ` ≤ ∆, be the

(non-seed) vertices which have been selected from Uk so far. We set

Uk = Γ(v)\
⋃̀
i=1

Cv,α(ui).

Note that this ensures that ui ∈ Γ(v) and |Γ(ui) M Γ(uj)| > αεN for all i, j. Furthermore, since the
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seed v is not (∆, α)-partitionable, we have |Uk| > αεN . All other Uk′ are unchanged.

We continue this way until either (i) ∆ + 2 samples have been chosen from a single Uk or (ii) at

least half of the vertices in some initialized Uk belong to at least ∆ other initialized Uk′ . We claim

that this occurs, with high probability, within O(ε−1+1/(∆+2)) steps.

To see this, suppose that condition (ii) has not occurred. First note that either (8c3α−1ε)−1 of the

Uk have been initialized, or at least 1
8cN vertices are contained in the uninitialized Uk. Therefore,∣∣∣∣∣⋃

k

Uk

∣∣∣∣∣ > (8c3α−1ε)−1 · αε
2∆

N =
α2

8c3
N = Ω(N),

so O(1) samples from V su�ce to sample from
⋃
k Uk with high probability. By the birthday

paradox, it follows that O((∆
α ε)
−1+1/(∆+2)) = O(ε−1+1/(∆+2)) samples su�ce to obtain the desired

(∆ + 2)-wise collision, with high probability. In other words, after O(ε−1+1/(∆+2)) steps, either

condition (ii) has occurred or we have selected v, u1, . . . , u∆+1 from some Uk.

Suppose that we selected v, u1, . . . , u∆+1 from some Uk. Then with high probability, T contains a

vertex from Γ(ui) M Γ(uj), for each i, j, and the algorithm rejects in step 4.

If, instead, condition (ii) occurred, then there exist αε
2 N vertices which are adjacent to ∆ + 1 of

the seed vertices. With high probability, T contains such a vertex u. Let v1, . . . , v∆+1 be the

corresponding seed vertices. Recall that, by construction, |Γ(vi) M Γ(vj)| > 1
2αεN for all seed

vertices vi, vj . Therefore, with high probability, T contains a vertex in Γ(vi) M Γ(vj) for each i 6= j,

and the algorithm rejects in step 4.

Note that in the preceding argument, we only assumed that G ∈ LDcε when bounding the number

of vertices discarded after each step from the unitialized Uk′ . Note, however, that each additional

discarded vertex implies an additional 1
2αεN distance from LDcε. Since G was assumed to be αε

16c -

close to LDcε, we therefore delete at most an additional 1
16cN vertices from

⋃
Uk, in total over

all steps. It follows that |
⋃
k Uk| = Ω(N), as required, and the rest of the proof goes through

unchanged.

By Lemma 21, either G is rejected with high probability by step 4 or we can apply Lemma 16 (since
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αε
16c <

ε
8) to obtain G̃, as in the adaptive case. By Lemma 17, it follows that there are many disjoint

witnesses against G̃, which allows us to again apply the birthday paradox.

Speci�cally, let D = {W̃k} be the set of witnesses guaranteed by Lemma 17. As was shown in the

adaptive case, for any choice of v1, . . . , v` corresponding to some W̃k, there exist at least ε
32∆N

choices for v`+1 which correctly extend W̃k in G. Therefore, O(Wc2∆) samples su�ce to obtain

a vertex which extends some witness. Applying the birthday paradox, we see that step 5 �nds a

complete witness with high probability, in which case the algorithm rejects in step 6.

We now formalize this argument.

Proof of Lemma 20. If G is rejected with probability at least 2/3 by the �rst part of Algorithm 19,

then we are done. So suppose otherwise. Then by Lemma 21, G contains at most 1
4cN vertices

which are not (∆, α)-partitionable, and so there exists G̃ satisfying the conclusion of Lemma 16. So

by Lemma 17, there exist at least (8Wc2ε)−1 distinct witnesses W̃k.

As in the proof of Lemma 14, let V i
1 , . . . , V

i
` , ` < W , be components corresponding to a partial

witness in G̃. In other words, (V i
1 , . . . , V

i
` ) = (W i∗

j1
, . . . ,W i∗

j`
), for some i∗ and j1, . . . , j`. Let

v1, . . . , v` be arbitrary vertices in V i
1 , . . . , V

i
` , respectively. Let V i

`+1 be a component adjacent to⋃`
j=1 V

i
j which extends the partial witness in G̃. Such a component must exist, since minimal

witnesses are connected.

Since
∣∣V i
`+1

∣∣ > ε
16∆N , there are at least ε

16∆N vertices which extend the witness (in G̃). Also recall

that if V i
j is adjacent to V i

j′ in G̃, then every vertex in V i
j must be adjacent in G to all but at most

ε
16∆h2 vertices in V i

j′ (and similarly if V i
j is not adjacent to V i′

j′ ). Therefore, since W < 1
2h

2, there

must be at least ε
16∆N −W

ε
16∆h2N > ε

32∆N choices for v`+1 such that E(vj , v`+1) = Ẽ(vj , v`+1)

for all j ≤ `, which means that v`+1 extends the witness in G as well.

We now map step 5 onto the birthday paradox. Given vertices vk1 , . . . , v
k
` in V ik

jk,1
, . . . , V ik

jk,`
, respec-

tively, let Uk ⊆ V ik
jk,`+1

be the set of vertices which extend W̃k in G.

We let D = {Uk} and µi be the probability distribution induced by selecting vertices uniformly at

random. Since |Uk| > ε
32∆N for all k and the Uk are disjoint, O(Wc2∆) samples from V su�ce to

obtain a sample from D. Therefore, by Lemma 18, O(ε−1+1/W ) samples su�ce to obtain a complete

witness, which means that S contains a complete witness with high probability and the algorithm

rejects in step 6.
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2.4 Removing the Low-Degree Promise

We now show how to test the combined property of being a valid blow-up collection and having

low-degree.

In [GR07], the authors give an Õ(ε−1)-query algorithm for testing whether the input has maximum

degree O(εN).

Lemma 22 ([GR07], Theorem 3). Fix c > 1 and β > 0. There exists a non-adaptive tester with

query complexity Õ(ε−1) and two-sided error which accepts graphs with maximum degree cεN with

probability at least 2/3 and rejects graphs which are βε-far from having maximum degree cεN with

probability at least 2/3.

To test whether G is in BUC(H) ∩ LDcε, we therefore run the tester from Lemma 22, and if it

accepts, we then run either the adaptive or non-adaptive tester for BUC(H).

All that remains is to show that if G is ε-far from BUC(H) ∩ LDcε, then it must be Ω(ε)-far from

BUC(H) or Ω(ε)-far from LDcε.

Lemma 23. Suppose that G is ε
18c∆2 -close to LD and ε

3 -close to BUC(H). Then G is ε-close to

LD ∩ BUC(H).

Proof. Let ε1 ≤ ε
18c∆2 be the distance to LDcε and ε2 ≤ ε

3 be the distance to BUC(H). Let V =
⋃
V i
j

be an optimal decomposition of G with respect to BUC(H).

First, we completely disconnect all V i
j such that

∣∣∣V i
j

∣∣∣ < ε
3∆N . Next, we delete all super�uous edges

and add all missing edges so that G ∈ BUC(H), at total cost at most ε2N
2. Note that since

⋃
V i
j is

an optimal decomposition, every vertex must have been connected to at least half of its neighbors

(otherwise we could reduce the cost by assigning that vertex to its own component). Therefore, at

worst this doubled the degree of every vertex, thereby doubling the distance to LD. Note that G is

now a valid blow-up collection.

The total cost of the edits so far is bounded by ε2N
2 +

∑∣∣∣V i
j

∣∣∣∆ ε
3∆N = ε2N

2 + ε
3N

2, since each

component is adjacent to at most ∆ other components.

For each i, j, if
∣∣∣V i
j

∣∣∣ > cεN , delete
∣∣∣V i
j

∣∣∣− cεN vertices from V i
j . This clearly preserves membership

in BUC(H). Furthermore, the cost of doing the deletion is exactly equal to the decrease in distance

to LDcε. To see this, note that every neighbor of V i
j needed to delete at least

∣∣∣V i
j

∣∣∣− cεN into V i
j to
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become low-degree, and so without loss of generality, we can assume that they all delete the edges

going to the same
∣∣∣V i
j

∣∣∣− cεN vertices.

Finally, while any high-degree vertices remain, we do the following. First, choose u ∈ V i
j such that

|Γ(u)| > cεN and v ∈ Γ(u), and delete v. Note that the cost of doing so is, at most, cεN ·∆ and

the decrease in distance is at least
∣∣∣V i
j

∣∣∣ > ε
3∆N , for a net multiplicative overhead of 3c∆2.

The total cost of removing the high-degree vertices is therefore bounded by 3c∆2 · 2ε1N2, which

means that the �nal cost is bounded by (ε2N
2 + ε

3N
2) + (3c∆2 · 2ε1N2) ≤ εN2 as desired.

We now prove Theorems 5 and 6.

Proof of Theorems 5 and 6. We �rst run the tester from Lemma 22 with β = (18c∆(H)2)−1. If

it accepts, we then run Algorithm 13 (in the adaptive case) or Algorithm 19 (in the non-adaptive

case) with tolerance ε
3 .

If G ∈ LDcε ∩ BUC(H), then the low-degree tester accepts with probability at 2/3 and blow-up

collection tester accepts with probability 1. So G is accepted with probability at least 2/3.

Suppose that G is ε-far from LD ∩ BUC(H). By Lemma 23, either G is ε
18c∆2 -far from LD or G

is ε
3 -far from BUC(H). In the �rst case, the low-degree tester rejects with probability at least 2/3.

In the second case, the blow-up collection tester rejects with probability at least 2/3, by Lemma 14

(in the adaptive case) or Lemma 20 (in the non-adaptive case).
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Chapter 3

An Alternate Proof that

CliqueCollection has Adaptive Query

Complexity Õ(ε−1)

In [GR09], the authors prove that testing the complexity of BUC(H) is Õ(ε−1), without any promise

on the degree bound, for the special cases where H is a self-loop and or H is a single edge. In the

�rst case, this corresponds to partitioning the graph into a disjoint collection of cliques, while the

second case corresponds to a disjoint collection of bicliques.

In both cases, the proof of correctness in [GR09] proceeds by assuming that the algorithm accepts

with probability at least 1
3 and then constructs a partitioning with few incorrect edges.

We now give an alternate proof for the case that H is a self-loop. Rather than show how to construct

a good partitioning from the assumption that the graph was accepted with high probability, we

instead directly show that if G is ε-far from BUC(H), then G is rejected with high probability.

3.1 The Adaptive Algorithm

Informally, the algorithm begins by guessing the distribution of edits. It then �nds a vertex with

many adjacent edits. Finally, it queries a small neighborhood of that vertex in order to verify the

proposed witness. Although the algorithm stated here uses polylogarithmically fewer queries than

the one given in [GR09], it is best viewed as a slight rephrasing of the one given in [GR09].

Algorithm 24. CliqueCollection(G; ε)

1: for i = 1 to lg 1
ε +O(1) do
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2: for O(2i) trials do
3: Select u at random.
4: Select S at random, with |S| = O(1

ε lg 1
ε/2

i).
5: Query (u, s) for all s ∈ S.
6: Select T ⊂ ΓS(u), with |T | = O(1).
7: Query T × T , and Reject if any queries return 0.
8: Query T × S\T , and Reject if any queries return 1.
9: end for

10: end for

11: Accept.

The query complexity is clearly O(1
ε lg2 1

ε ).

The algorithm clearly accepts all G ∈ CC. It remains to show that it rejects with probability at

least 2/3 whenever G is ε-far from CC.

Theorem 25. If G is ε-far from CC, then CliqueCollection rejects with probability at least 2/3.

To prove Theorem 25, we will frequently refer to the number of edits adjacent to a vertex. Formally,

letting G̃ = arg minH∈CC d(G,H), we de�ne the number of edits to be
∣∣∣Γ(u) M Γ̃(u)

∣∣∣.
The key lemma for proving Theorem 25 is the following.

Lemma 26. Let γi = 2iε
lg 1
ε

. If the vertex u selected in step (3) has γiN ≤
∣∣∣Γ(u) M Γ̃(u)

∣∣∣ ≤ 2γiN ,

then CliqueCollection rejects with probability at least 1/3.

Proof of Theorem 25. Note that since G is ε-far from CC, there exists p, γ, with ε ≤ p, γ ≤ 1 and

pγ ≥ ε/ lg 1
ε , such that at least pN vertices are adjacent to between γN and 2γN edits.

Consider the iteration of the outer loop in which 2i ≈ p. With high probability, Ω(1) vertices are

selected in step (3) which are adjacent to between γN and 2γN vertices. Therefore, by Lemma 26,

CliqueCollection rejects with probability at least 1− (2
3)Ω(1) > 2/3.

3.2 Proof Of Lemma 26

The proof is essentially a case analysis of the ways in which G can be ε-far from BUC(H).

Given a graph G, let G = arg minH∈CC d(G,H) be the clique collection closest to G. By a slight

abuse of notation, we refer to the induced V i as the �cliques� of G. We will generally refer to the

V i without explicit reference to G.1

1We assume that ties are broken in a canonical way, so this is well-de�ned.
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For ease of notation, we let Γi(u) = Vi∩Γ(u), Γi(v) = V i\Γ(u), and Γ′(u) = Γ(u)\V i, where u ∈ V i.

Since G minimizes d(G,G), we have the following observations.

Observation 27. For all Γ ⊂ V i,
∣∣E(Γ, V i\Γ)

∣∣ ≥ 1
2 |Γ|

∣∣V i\Γ
∣∣.

Observation 28. For all i 6= j,
∣∣E(V i, V j)

∣∣ ≥ 1
2

∣∣V i
∣∣ ∣∣V j

∣∣.
For Observation 27, we could otherwise reduce the distance by splitting V i. For Observation 28, we

could otherwise reduce the distance by joining V i and V j .

Lemma 29. Given Γ = {v1, . . . , vn} such that
∣∣V i
∣∣ < n/6 for all i such that Γ∩V i 6= ∅, Pr[(vj , vk) ∈

E] < 3
4 .

Proof. Let p = Pr[(vj , vk) ∈ E], and let ni =
∣∣V i ∩ Γ

∣∣. Then the cost of moving Γ into its own

clique is bounded above by

(∑
i

ni
∣∣V i
∣∣− (ni2 ))+ (1− p)

(
n
2

)
−
(
p
(
n
2

)
−
∑
i

(
ni
2

))

which is bounded by

n · n
6

+ (1− p)
(
n
2

)
− p
(
n
2

)
< 2

3n
2 − pn2 + pn

This is negative for p ≥ 3
4 and su�ciently large n.

We are now ready to prove the lemma.

Let u be a vertex selected in step 3 which is adjacent to between γN and 2γN edits. Note that

since |S| = Ω(1/γ), with high probability S contains Ω(1) vertices v such that (u, v) is an incorrect

edge (ie, is in Γ(u) M Γ̃(u)).

Let V i be the clique containing u.

Case 1:
∣∣Γi(u)

∣∣ ≥ |Γ′(u)|

Since |Γi(u)| ≥
∣∣Γi(u)

∣∣, it follows that, with high probability, |Γi(u) ∩ ΓS(u)| ≥ 1
4 |ΓS(u)|. Fur-

thermore, |ΓS(u)| = Ω(1), since |Γi(u)| > γ
2N . Therefore, with high probability, T contains Ω(1)

vertices in V i.

Since
∣∣Γi(u)

∣∣ ≥ γ
2N ,

∣∣Γi(u) ∩ S
∣∣ = Ω(1), with high probability.
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We therefore have that step (8) contains Ω(1) queries between Γi(u) and Γi(u). By Observation 27,

each of these queries causes the algorithm to reject with probability at least 1/2.

Case 2: |V i| ≥ γ
100
N and

∣∣Γi(u)
∣∣ < |Γ′(u)|

First, note that since
∣∣V i
∣∣ > γ

100N and |Γ′(u)| < 2γN , |Γi(u)| ≥ 1
200 |Γ

′(u)|. Therefore, with high

probability, G contains Ω(1) vertices in V i.

Next, note that with high probability, there exists v ∈ ΓS(u) ∩ V j , for some j 6= i.

We have multiple cases, depending on the values of Γi(u), Γi(v), Γj(u), and Γj(v). We �rst note

that if Γi(v) > 0.9ni, then
∣∣V j
∣∣ ≥ 0.8

∣∣V i
∣∣. For if not, the cost of moving v to V i would be

upper-bounded by 0.1ni + nj − 0.9ni < 0.8ni − 0.8ni = 0.

Case 2a: Γi(u) < 0.95
∣∣V i
∣∣

Then
∣∣Γi(u) ∩ S

∣∣ = Ω(1), with high probability. We therefore make Ω(1) queries between Γi(u) and

Γi(u) in step (7). By Observation 27, each of these causes the algorithm to reject with probability

at least 1/2.

Case 2b: Γi(u) > 0.95
∣∣V i
∣∣ and Γi(v) < 0.9

∣∣V i
∣∣

Then
∣∣Γi(u) ∩ Γi(v) ∩ S

∣∣ = Ω(1), with high probability. We therefore reject in step (7) with cer-

tainty.

Case 2c: Γi(u) > 0.95
∣∣V i
∣∣, Γi(v) > 0.9

∣∣V i
∣∣, and Γj(u) < 0.75

∣∣V j
∣∣

First, note that
∣∣V j
∣∣ > 0.8

∣∣V i
∣∣, for otherwise we would move v into V i. Therefore, with high

probability, S contains a vertex w ∈ Γj(u).

Since v was uniformly chosen from Γj(u), Pr[(v, w) ∈ E] ≥ 1
2 , by Observation 27.

Case 2d: Γi(u) > 0.95
∣∣V i
∣∣, Γi(v) > 0.9

∣∣V i
∣∣, and Γj(v) ≥ 0.6

∣∣V j
∣∣

With high probability, S contains Ω(1) vertices in Γj(v). We therefore query Ω(1) random edges

between 0.95V i and 0.6V j in step (7). But E(V i, V j) ≤ 1
2

∣∣V i
∣∣ ∣∣V j

∣∣, so each such query cause a
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rejection with probability at least

0.95
∣∣V i
∣∣ · 0.6 ∣∣V j

∣∣− 1
2

∣∣V i
∣∣ ∣∣V j

∣∣
0.95 |V i| · 0.6 |V j |

≈ 0.12

Case 2e: Γi(u) > 0.95
∣∣V i
∣∣, Γi(v) > 0.9

∣∣V i
∣∣, Γj(u) > 0.75

∣∣V j
∣∣ and Γj(v) < 0.6

∣∣V j
∣∣

Since
∣∣∣Γj(u) ∩ Γj(v)

∣∣∣ > 0.15
∣∣V j
∣∣ ≥ γ

25N , with high probability S contains Ω(1) such vertices. Each

of these causes the algorithm to reject with certainty.2

Case 3: |V i| < γ
100
N ,
∣∣Γi(u)

∣∣ < |Γ′(u)|

We have two subcases, depending on whether Γ′(u) is primarily contained in large or small cliques.

Given v ∈ Γ′(u), let V j 3 v.

Case 3a: Pr[
∣∣V j
∣∣ ≥ γ

24N ] ≥ 1/2

With high probability, T contains a vertex v ∈ V j such that
∣∣V j
∣∣ ≥ γ

24N .

Note that
∣∣Γj(u)

∣∣ > γ
100N . So with high probability, there exists w ∈ S∩Γj(u). By Observation 27,

Pr[(v, w) ∈ E] ≥ 1
2 , so the algorithm rejects in step (8) with high probability.

Case 3b: Pr[
∣∣V j
∣∣ ≥ γ

24N ] < 1/2

Let Γ̃ = {v ∈ Γ′(u) :
∣∣V j
∣∣ > γ

8N}. By assumption,
∣∣∣Γ̃∣∣∣ ≥ γ

4N . With high probability, T contains

Ω(1) vertices in Γ̃. Therefore, in step (7), we makes Ω(1) queries from Γ̃× Γ̃, each of which causes

the algorithm to reject with probability at least 1/4, by Lemma 29. �

2Case 2e cannot actually happen. For if Γi(v) > 0.9ni and Γj(v) < 0.6nj , then the cost of moving v to V i is
bounded by 0.1ni + 0.6nj − 0.9ni − 0.4nj = 0.2nj − 0.8ni, which means that nj > 4ni. But then the cost of moving
u to V j is bounded by ni + 0.25nj − 0.75nj < 0.25nj + 0.25nj − 0.75nj < 0.
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Chapter 4

Towards Proving an Upper Bound on

the Adaptive Query Complexity of

BUC(H) for Arbitrary H

Although the results given in [GR09] and Chapter 2 provide strong evidence that the canonical

transformation is essentially optimal, proving that result for properties which are neither promise

problems nor proximity-dependent remains open. In this section, we restate the main structural

lemmas of [GR09], used in that paper for proving the query complexity of BUC(H) when H is a

single loop or single edge, in the context of general H. Although these proofs are essentially direct

adaptations of those given in [GR09], we feel that formally stating the general case yields additional

insight as to the key combinatorial di�culties.

The two key concepts needed to discuss blow-up collections of an arbitrary base graph are skeletons

and inconsistent edges. Informally, a skeleton is a set of vertices which are believed to belong to

di�erent components of the blow-up collection. An inconsistent edge, relative to a skeleton, is an

edge which contradicts the proposed decomposition.

De�nition 30 (Skeleton). A set T ⊆ V is a skeleton if ΓT (u) 6= ΓT (v) for all u, v ∈ T . Given

S ⊆ V , skeleton(S) ⊆ S is the largest skeleton contained in S.

Note that a skeleton of size |H|+1 is a witness against BU(H) and a connected skeleton is a witness

against BUC(H). Also note that if S is connected, skeleton(S) is connected.

De�nition 31 (Inconsistent Edge). Fix T ⊆ V . An edge (v, w) is inconsistent with T if ΓT ′(v) 6=

ΓT ′(u) for all u ∈ T , where T ′ = T ∪ {v, w}.
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Given these two de�nitions, we conjecture that the following algorithm, informally described in

[GR09] for the case that H is a simple cycle, correctly tests BUC(H) for all H.

Algorithm 32. SubTest(u; δ)

1: Let T = {u}.
2: while |T | ≤ |H| do
3: Choose O(1

δ ) vertices S.
4: Query T × S.
5: Choose O(1

δ ) edges uniformly from ΓS(T )× ΓS(T ) and query them.
6: Choose O(1

δ ) edges uniformly from ΓS(T )× S\ΓS(T ) and query them.
7: If an inconsistent edge (v, w) was found in steps 4-6, T ← skeleton(T ∪ {v, w}).
8: Else break.
9: end while

10: If G|T 6⊆ H, reject. Otherwise, accept.

Algorithm 33. BlowUpCollection(G; ε)

1: for i = 1 to lg 1
ε +O(1) do

2: Run SubTest(u; 2iε) for O(2i) randomly chosen u.
3: end for

4: Accept if all calls to SubTest accepted. Reject if any call rejected.

4.1 Basic Behavior of SubTest

Before stating the key lemmas, we formally de�ne the two ways in which a graph can fail to be a

valid blow-up collection.

De�nition 34. Given C ⊆ V , let EI(C) = d(G|C ,BUC(H)) be the number of edits required to make

C a valid blow-up collection of H, and let EE(C) = |E(C, V \C| be the number of edits needed to

disconnect C from the rest of G. Let E(C) = EI(C) + EE(C).

Given a skeleton T ⊆ C such that C = Γ(T ), note that E(C) is at most the number of edges in C

that are inconsistent with T .

Given a skeleton T , we say that T is terminal if SubTest terminates on T . Unless otherwise

speci�ed, all skeletons are assumed to be terminal.

Let CT = {u ∈ Γ(T ) : |Γ(u)\Γ(T )| < 1
5 |Γ(T )|}.

The following 3 lemmas and their proofs are essentially restatements of the proofs in [GR09], Claims

3.2.2 and 3.2.4 (and the surrounding discussion).
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Lemma 35. Fix T such that |Γ(T )| > δN and steps 4-6 fail to �nd any inconsistent edges with

probability 1/3. Then |Γ(T )\CT | < δ
10N .

Proof. Suppose otherwise. Then there are α |Γ(T )| vertices connected to βN external edges, where

α = δN
10|Γ(T )| and β = |Γ(T )|

10N .

By a Cherno� bound, S contains at least

1

2
· α |Γ(T )|

N
· c
δ
>
c

8

such vertices with high probability. Consider such a high-degree vertex u. By a Cherno� bound,

|Γ(u) ∩ S| > β
2
c
δ with high probability

Therefore, with high probability, (Γ(T ) ∩ S)× (S\Γ(T )) contains at least

α

2
|Γ(T ) ∩ S| · β

2
|S\Γ(T )| > δ

16
|Γ(T ) ∩ S| · |S\Γ(T )|

edges. So with high probability, step 6 �nds such an edge.

Lemma 36. Fix T such that |Γ(T )| > δN and steps 4-6 fail to �nd any inconsistent edges with

probability 1/3. Then EE(CT ) < δ |CT |N .

Proof. By lemma 35, |E(CT ,Γ(T )\CT )| ≤ |CT | |Γ(T )\CT | < δ
10N |CT |.

We claim that |E(CT , V \Γ(T ))| < δ
2N |CT |.

Suppose otherwise. Then there must be at least α |Γ(T )| vertices in CT which are connected to at

least βN vertices in V \Γ(T ), where αβ = δ
4 . Note that since βN < 1

5 |Γ(T )|, α > δN
4|Γ(T )| . Therefore,

by the same calculation as in the proof of lemma 35, with high probability step 6 �nds such an

edge.

Lemma 37. Fix T such that |Γ(T )| > δN and steps 4-6 fail to �nd any inconsistent edges with

probability 1/3. Then EI(CT ) < δ |CT |N .

Proof. Suppose otherwise, and let

ρ =
δ |CT |N
|Γ(T )|

>
δ |Γ(T )|N
2 |Γ(T )|2

=
δN

|Γ(T )|
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denote the lower bound on the fraction of inconsistent edges in Γ(T )× Γ(T ).

Clearly, E[|ΓS(T )|] = |Γ(T )|
N · cδ , and so with high probability, |ΓS(T )| > |Γ(T )|

N · c2δ . We assume that

this is the case, and let n = |ΓS(T )|. Note that |ΓS(T )| > c
2 .

For each pair of vertices vi, vj ∈ ΓS(T ), de�ne an indicator variable ζij which is 1 if (vi, vj) is

inconsistent with T . By assumption, E[ζij ] ≥ ρ. We now bound V[
∑
ζij ]/E[

∑
ζij ]

2; it then follows

that the fraction of inconsistent edges in ΓS(T ) × ΓS(T ) is at least ρ/2 with high probability, and

so step 5 �nds such an edge with high probability.

Note that ζij and ζi′j′ are independent if {vi, vj} ∩ {vi′ , vj′} = ∅. Let ρ̃ = E[ζij ]. We have

E
[∑
i,j

ζij

]
=

(
n

2

)
r̃ho >

n2ρ̃

3

and

V
[∑

ij

ζij

]
= E

[(∑
i,j

ζij

)2]
− E

[∑
i,j

ζij

]2

= E
[ ∑
i,j,i′,j′

ζijζi′j′

]
−
∑
iji′j′

E[ζij ]E[ζi′j′ ]

=
∑
i,j,i′,j′

disjoint

E[ζij ]E[ζi′j′ ] +
∑
i,j,i′,j′

otherwise

E[ζijζi′j′ ]−
∑
iji′j′

E[ζij ]E[ζi′j′ ]

<
∑
i,j,i′,j′

disjoint

E[ζijζi′j′ ] < 4
∑
i,j,j′

E[ζijζij′ ]

≤ 4
∑
i,j,j′

E[ζij ] = 4n
∑
i,j

E[ζij ]

= 4n

(
n

2

)
ρ̃ < 2n3ρ̃

Combining these bounds, and the fact that ρ̃ ≥ ρ, we get

V[
∑

i,j ζij ]

E[
∑

i,j ζij ]
2
<

2n3ρ̃

(n2ρ̃/3)2
<

18

nρ̃
≤ 18

nρ
< 18

|Γ(T )|
δN

2δN

c |Γ(T )|
=

36

c

which can be made arbitrarily small.

We now combine the previous three lemmas to show that if SubTest(v; δ) accepts with reasonable

probability, then we can construct a component containing v which is close to being an isolated
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blow-up.

Corollary 38. If SubTest(v; δ) accepts with probability at least 1
3 , then there exists C 3 v such

that E(C) < 2δN · |C|.

Proof. If |Γ(v)| < δN , then let C = {v}.

Otherwise, let T be a skeleton containing v such that SubTest terminates with high probability.

Note that such a T must exist, since otherwise SubTest would have rejected after |H|+1 iterations.

Set C = CT .

By lemmas 37 and 36, E(CT ) = EI(CT ) + EE(CT ) < 2δ |CT |N , as desired.

4.2 Sketch of the Reconstruction Procedure

Given a skeleton T , we say that T is δ-good if steps 4-6 fail to �nd an inconsistent edge and T is

consistent with H. Similarly, we say that T is not δ-good if T is not consistent with H. Otherwise,

we recursively say that T is δ-good if and only if, with high probability over the choice of inconsistent

edge (v, w) in step 7, skeleton(T ∪ {v, w}) is δ-good.

Call a vertex u δ-good if {u} is δ-good and |Γ(u)| > δN .

Lemma 39. If algorithm 33 accepts with probability at least 1/3, then there are at most 2−iN

vertices which are not 2iε-good and have degree at least 2iεN , for each i < lg ε−1.

The lemma follows immediately from the de�nition of i-goodness.

Informally, we now show how to construct a blow-up collection close to G. The procedure progresses

in rounds. In the initial round, while there remains an uncovered vertex v which is ε-good, let C be

the component guaranteed by lemma 38 and ��x� that component. Once all ε-good vertices have

been covered, disconnect all uncovered low-degree vertices and then go on to the next round.

In general, during the i-th round, we �x any remaining 2iε-correct vertices and then disconnect any

leftover low-degree vertices.

Suppose that the components constructed in this procedure were actually disjoint. Then the total
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cost of the procedure would be bounded by

∑
i

∑
C

2iε |C|N <
∑
i

2iε · 2−iN ·N = εN2

since at most 2i vertices are incorrect at the start of the i-th round.

All that remains, therefore, is to show that we can select the components to be essentially disjoint (ie,

such that |
⋃
C| ≈

∑
|C|), while still covering most of the i-good vertices in each round. Speci�cally,

we will require that each additional component constructed by the reconstruction procedure contain

a constant fraction of new vertices. The challenge will then be to ensure that enough vertices are

covered during each round.

Since the reconstruction will not yield a strict partitioning, the following observation will be needed.

Lemma 40. Let C =
⋃
iCi, with the Cis not necessarily disjoint. Then E(C) <

∑
E(Ci).

Proof. Consider the partitioning of C obtained by assigning each v ∈ C arbitrarily to some Ci which

contains it. Within each partition C̃i ⊆ Ci, use the structure inherited from Ci.

Note that
∑
EI(C̃i) ≤

∑
EI(Ci). Similarly,

∑
EE(C̃i) ≤

∑
EE(Ci).

Since any partitioning provides an upper bound on E(C), it follows that E(C) ≤
∑
EI(Ci) + EE(Ci) =∑

E(Ci), as desired.

4.3 The Reconstruction Procedure

As stated in the previous discussion, the reconstruction proceeds in rounds i = 1 . . . , lg 1
ε .

Throughout this section, we informally let C be the set of vertices which have been �covered� by

the reconstruction, Fi be the set of skeletons used in round i, Ri be the set of vertices which are not

yet covered at the start of round i, Li be the set of vertices discarded as �low-degree� at the end of

round i, and L =
⋃
j<i Lj be the vertices which have been discarded as �low-degree� so far. These

will be formally de�ned later.
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4.3.1 Cliques

We begin with a discussion of the simplest case, in which H is a single loop. This proof was given

in [GR09], but we give it here for completeness, and for comparison to the general case.

1. Pick an arbitrary vertex v ∈ Ri−1\C such that

(a) v is δ-good

(b) |Γ(v)| > δN

(c) |Γ(v) ∩ (C ∪ L)| ≤ 1
10 |Γ(v)|

2. For a vertex v selected in step 1, update Fi ← Fi ∪ {T} and C ← C ∪ Cv.

3. If no such vertices remain, set Li = {v ∈ Ri−1\C : |Γ(v)| < δN} and Ri = Ri−1\(C ∪ Li).

Update L← L ∪ Li.

We now show that this yields a good partitioning of most remaining vertices.

Lemma 41. Suppose |Ri−1| < 2−i−1N . Then
∑

v∈Fi E(Cv) < εN2.

Proof. Consider v ∈ Fi. Since |Γ(v)| > δN and |Cv ∩ (C ∪ L)| < 1
10 |Γ(v)| (by condition (1c)),

|Cv ∩ (C ∪ L)| < 1
10 |Γ(v)|. By lemma 35, it follows that Cv is at least half �new� vertices.

Therefore,
∑

v∈Fi |Cv| < 2 |Ri|, and the result follows from corollary 38.

We now show that, despite condition (1c), most high-degree vertices are still covered.

Lemma 42. For all i,
∣∣Ri∣∣ < 2−iN .

Proof. We proceed by induction on i. For i = 0, the claim is trivial.

Any vertex in Ri is either not δ-good, or has |Γ(v)| > δN and |Γ(v) ∩ (C ∪ L)| > 1
10 |Γ(v)| > δ

10N .

By lemma 39, there are at most 1
22−iN vertices which are not δ-good.

Let R̃i ⊂ Ri be the set of δ-good vertices which remain at the end of round i, and consider some

v ∈ R̃i. Since v is δ-good, at most 1
2 of it's neighbors have degree less than δN , which means that it

has at least δ
20N neighbors in C. The total number of edges between Ri and C is therefore at least∣∣∣R̃i∣∣∣ δ10N . But by lemma 41, the total number of such edges is at most εN2. So

∣∣∣R̃i∣∣∣ < 1
22−iN .
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The key simpli�cation that occurs in this case, as opposed to general H, is that Cv has large overlap

with C ∪ L if and only if Cv has large overlap with C.

4.3.2 General H

We now consider the general case. As with the case for cliques, we again use a more stringent

selection criteria, and then attempt to argue that Ri remains small.

1. Pick an arbitrary vertex v ∈ Ri−1\C and u1, . . . , uk such that uj ∈ Γ(v ∪
⋃
`<j u`) such that

(a) T = {v, u1, . . . , uk} is δ-good

(b) |Γ(v)| > δN

(c) |Γ(v) ∩ (C ∪ L)| ≤ 1
10·2H |Γ(v)|

(d) |Γ(T ) ∩ (C ∪ L)| < 1
10·2H−j |Γ(T )|

2. For a skeleton T selected in step 1, update Fi ← Fi ∪ {T} and C ← C ∪ CT .

3. If no such skeletons remain, set Li = {v ∈ Ri−1 : |Γ(v)| < δN} and Ri = Ri−1\(C ∪ Li).

Update L← L ∪ Li.

As in the case of cliques, it su�ces to bound the size |Ri|, as shown by the following lemma.

Lemma 43. Suppose |Ri−1| < 2−i−1N . Then
∑

T∈Fi E(CT ) < εN2.

Proof. Let δ = 2iε and consider T ∈ Fi. Since |Γ(T )| > δN and |CT ∩ (C ∪ L)| < 1
5 |Γ(T )| (by

condition (1d)), |CT ∩ (C ∪ L)| < 1
5 |Γ(T )|. By lemma 35, it follows that CT is at least half �new�

vertices.

Therefore,
∑

T∈Fi |CT | < 2 |Ri|, and the result follows from corollary 38.

Unfortunately, we do not know how to show that most high-degree vertices are still covered, despite

conditions (1c) and (1d).

Conjecture 44. For all i,
∣∣Ri∣∣ < 2−iN .

The key di�culty in proving Conjecture 44 is that a good vertex can have many neighbors which are

low-degree. Speci�cally, we have that each δ-good vertex which has not been covered after round i
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has at least δN edges into C ∪L. To obtain the bound on |Ri|, we therefore want to show that the

total number of edges leaving C ∪ L is at most δN · 2−iN = εN2.

For the special case where H is a clique, we argued that most of the edges between v and C ∪ L

were actually between v and C. Since the number of edges leaving C is bounded by the number

of edits allowed, and that tolerance is essentially a free parameter of the algorithm/reconstruction,

we could force the upper bound to be as small as necessary. In this case, however, the edges could

be from v to L. As a result, both the upper- and lower-bound depend on the degree bound used to

de�ne L.
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Chapter 5

Conclusions and Open Problems

We have shown that there exist proximity-dependent graph properties for which a non-adaptive

tester must su�er an almost-quadratic increase in its query complexity over an adaptive tester.

This gives evidence that the canonical transformation is essentially optimal, in the worst case.

The primary open problem is to remove the proximity-dependence from the graph properties used

in Theorem 3. In particular, for any δ > 0, does there exist a single graph property Π such that

testing Π requires Q = Ω(q2−δ) queries for all ε > 0? It also remains to determine whether there

exists a nearly-quadratic separation when the adaptive algorithm is only allowed one-sided error.

One approach to both of these questions is to prove an Õ(ε−1) upper-bound for the adaptive query

complexity of BUC(H) for general graphs, as sketched in chapter 4.

We also reiterate the intriguing question raised in [GR09] as to what relationships are possible

between the adaptive and non-adaptive query complexities. Speci�cally, do there exists properties

such that Q = Θ̃(q2−δ), with δ 6= 2
t ? In particular, is it true that Q must either be Θ̃(q) or Ω̃(q4/3)?

Finally, it remains to determine whether a gap exists between adaptive and non-adaptive property

testers for properties with adaptive query complexity Ω(ε−2). In particular, does there exist a gap

when q = Ω(1) as a function of N? A plausible conjecture is that the non-adaptive query complexity

is Q = Õ(ε−1 · q), or potentially even that the canonical query complexity is Q̃ = Õ(ε−1 · q).

Unfortunately, we do not currently have any idea how to prove (or disprove) such a conjecture.
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