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Abstract 

 

The opportunistic pathogen Pseudomonas aeruginosa excretes phenazines, redox-

active toxins that historically have been categorized as secondary metabolites. This thesis 

addresses the possibility that pyocyanin, the most notorious phenazine produced by P. 

aeruginosa, acts as an electron acceptor for energy metabolism and exerts beneficial 

effects on P. aeruginosa physiology. The effects of phenazine production and exposure 

on P. aeruginosa strain PA14 were examined through a comparison of the physiological 

status of wild-type cells to those of a mutant defective in phenazine production, using two 

different techniques. Quantification of the intracellular NADH and NAD+ pools revealed 

that a phenazine-null mutant maintained a more reduced intracellular redox state than the 

wild type; this is consistent with the capacity of P. aeruginosa to reduce pyocyanin. 

High-performance liquid chromatography of metabolites from cultures grown in defined 

media showed that the wild type excreted pyruvate in late stationary phase, indicating 

that pyocyanin alters flux through central metabolic pathways. 

While mechanisms for pyocyanin redox cycling had been explored in other 

organisms, the mechanisms whereby P. aeruginosa catalyzes these reactions were largely 

unknown. A genetic screen was conducted to identify loci that contribute to the ability of 

P. aeruginosa PA14 to reduce ferric citrate, an activity that is phenazine dependent. This 

approach led to the identification of two loci with roles in pyocyanin reduction: (1) gpsA, 

encoding the soluble glycerol-3-phosphate dehydrogenase (GpsA), and (2) fbcFBC, 

encoding the respiratory cytochrome bc1 complex. Mutants lacking functional GpsA or 

the cytochrome c-containing subunit (FbcC) of cytochrome bc1 displayed growth defects 
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that correlate with the timing of pyocyanin production in batch cultures. The ΔgpsA 

mutant appeared to be unable to regulate its intracellular redox state and may be defective 

in pyocyanin reduction due to a lack of sufficient NADH. In contrast, the ΔfbcC mutant 

produced ample reducing power for pyocyanin reduction, raising the possibility that the 

cytochrome bc1 complex directly catalyzes pyocyanin reduction.  

Pyocyanin has previously been shown to affect the development of P. aeruginosa 

colonies on agar surfaces: phenazine-null mutants form highly structured, rugose 

colonies, while the wild type forms smooth colonies. Through experiments with this 

colony biofilm assay, we showed that the ΔgpsA mutant forms rugose colonies, consistent 

with a role for pyocyanin reduction in maintenance of redox homeostasis in densely 

packed communities. Modulation of electron acceptor availability through nitrate 

addition to the medium promoted smooth colony formation in rugose mutants. These 

results suggest roles for reduced pyocyanin and nitrate in triggering smooth colony 

formation in P. aeruginosa, and imply that colony wrinkling is an adaptation to electron 

acceptor limitation. 

The work in this thesis has provided insight into the physiological relevance of 

pyocyanin reduction in P. aeruginosa and elaborated our understanding of the 

mechanisms underlying maintenance of redox homeostasis in bacteria. In addition, it has 

uncovered new mechanisms that may be contributing to the persistence of P. aeruginosa 

during chronic infection. 
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Chapter 1 

 

Introduction 

 

1.1. Motivation 

Bacteria surviving in the natural environment experience electron acceptor 

limitation, which can arise as a consequence of substrate insolubility or slow diffusion 

through a densely packed population. One solution that allows bacteria to circumvent this 

problem is the reduction of a diffusible, redox-active compound that shuttles electrons 

from the bacterium to its substrate, and returns to the bacterium in the oxidized form. 

Many bacteria have been shown to utilize colorful natural products and/or xenobiotics to 

catalyze this type of extracellular electron transfer. For example, the reduction of 

insoluble iron hydroxides by the bacterium Shewanella oneidensis MR-1 is facilitated by 

anthraquinone-2,6-disulfonate, an analog for naturally occurring humic substances that 

turns orange upon reduction (Newman and Kolter 2000). Planktonic and biofilm cultures 

of S. oneidensis species excrete the bright yellow cofactor riboflavin, which can facilitate 

electron transfer to iron hydroxides and poised-potential electrodes in fuel cells (Marsili 

et al. 2008; Von Canstein et al. 2008). Escherichia coli can also reduce these extracellular 

substrates, using the structurally related dye neutral red (McKinlay and Zeikus 2004).  

Decades ago, microbiologists recognized the potential for phenazines, a class of 

redox-active antibiotics excreted by pseudomonads and other bacteria, to act as electron 

shuttles for their producers (Friedheim 1931). While studies were carried out to 
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demonstrate the reduction of these compounds by Pseudomonas, Staphylococcus, and 

other microorganisms, as well as cells and mitochondria isolated from mammalian tissue 

(Stewart-Tull and Armstrong 1972), the focus of research on these natural products 

shifted to their roles in virulence and agricultural significance (Lau et al. 2004; Mavrodi 

et al. 2006). Recently, researchers interested in mechanisms of reductive iron dissolution 

and current generation in mediator-facilitated microbial fuel cells have elucidated roles 

for phenazines in these processes and applications (Hernandez et al. 2004; Rabaey et al. 

2005). However, the mechanisms underlying phenazine reduction by pseudomonads, and 

the physiological relevance of this activity, remained unstudied. 

To gain a better understanding of physiology of phenazine reduction, I worked 

with the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa is the most 

extensively studied phenazine-producing bacterium. In particular, strain PA14 is 

considered a model for studies of the pathogenicity of this bacterium due, in part, to its 

ample production of phenazines (Wiehlmann et al. 2007; Winstanley and Fothergill 

2009). The goals of my research have been (1) to determine whether P. aeruginosa PA14 

derives a physiological benefit from the reduction of the blue pigment pyocyanin, its 

major phenazine product; and (2) to identify specific metabolic products and enzymes 

that contribute to pyocyanin reduction activity. 

 

1.2. Overview 

Chapter 2 reviews the extent of phenazine production across prokaryotic 

phylogeny and the roles of phenazine toxicity and redox activity in the soil environment 
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and during infection. It also covers a known physiological role for phenazines, i.e., in 

intercellular signaling, and calls into question the descriptor “secondary metabolite” for 

compounds such as phenazines and other quorum-sensing and iron-chelating compounds 

with clear and profound effects on the physiology of their producers. Chapter 3 

introduces two previously unknown effects of pyocyanin reduction in P. aeruginosa: the 

oxidation of the cytoplasm, approximated using measurements of the intracellular 

NADH/NAD+ ratio, and altered flux through central metabolism, as evidenced by the 

excretion of pyruvate in wild-type cultures but not in cultures unable to produce 

pyocyanin.  

Chapter 4 covers the results of a screen for pyocyanin reduction in P. aeruginosa 

and introduces roles for two enzymes, the soluble glycerol-3-phosphate dehydrogenase 

and the cytochrome bc1 complex of the respiratory chain, in stimulating this activity. I 

present a detailed characterization of mutants defective in production of these enzymes, 

including evidence that mechanisms underlying their contributions to pyocyanin 

reductive activity differ. Chapter 5 discusses the effects of electron acceptor availability 

and pyocyanin reduction on the morphological development of P. aeruginosa colony 

biofilms. Chapter 6 contains an overview of the results and conclusions covered in the 

thesis, and poses questions for future research into applications of these findings, 

particularly in clinical settings. 

Three appendices are included. Appendix A demonstrates the concentration 

dependence of pyocyanin reduction in P. aeruginosa and the putative role of the 

periplasmic nitrate reductase enzyme in catalyzing nitrate-dependent pyocyanin 
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oxidation. Appendix B discusses the effect of redox state on separation of pyocyanin 

from bacterial cells by centrifugation and the relevance of this partitioning for NADH 

extraction techniques and our understanding of phenazine transport across bacterial 

membranes. Finally, Appendix C presents new evidence corroborating a direct 

mechanism for activation of the transcriptional regulator SoxR, which initiates 

transcription in response to pyocyanin exposure in P. aeruginosa PA14. 
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Chapter 2 

 

Background 

 

This chapter is adapted from: 
 
Price-Whelan, A., Dietrich, L.E.P., and Newman, D.K. (2006) Rethinking "secondary" 
metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2: 71–8. 

 

2.1. Abstract 

Microorganisms exist in the environment as multicellular communities that face 

the challenge of surviving under nutrient-limited conditions. Chemical communication is 

an essential part of the way in which these populations coordinate their behavior, and 

there has been an explosion of understanding in recent years regarding how this is 

accomplished. Much less, however, is understood about the way these communities 

sustain their metabolism. Bacteria of the genus Pseudomonas are ubiquitous, and are 

distinguished by their production of colorful secondary metabolites called phenazines. In 

this article, we suggest that phenazines, which are produced under conditions of high cell 

density and nutrient limitation, may be important for the persistence of pseudomonads in 

the environment.  
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2.2. Introduction 

Historically, microbiologists and chemists alike have categorized as “secondary 

metabolites” a broad class of molecules produced at late stages of microbial growth in 

laboratory cultures. This nomenclature is, admittedly, pejorative, implying that these 

molecules are somehow less important than others to the cell that produces them. In 

particular, the traditional view is that secondary metabolites (i) do not contribute to the 

growth or survival of the producer (ii) are highly sensitive to the conditions stimulating 

their production (for example, medium composition) (iii) often have complex structures 

and (iv) have production rates that are decoupled from the doubling time of the cell 

(Madigan et al. 2000). Together, these leitmotifs present a conundrum: why would an 

organism limited for nutrients begin excreting large amounts of complex organic 

molecules? One reasonable and popular answer is that they function as antibiotics and are 

produced in copious quantities at this stage of growth to protect the producer from 

competitors (Firn and Jones 2003). In recent years, however, the idea that “secondary” 

metabolites might have other functions, ranging from controlling gene expression (Goh et 

al. 2002) to supporting growth or iron acquisition in microbial communities (Banin et al. 

2005; Hernandez et al. 2004), has become increasingly compelling. This is due, in large 

part, to the recognition that microbes typically exist in nature in biofilm communities 

(Costerton et al. 1995) and/or in a metabolically quiescent state (Kolter et al. 1993); 

because the “rules of the game” for metabolism under these conditions are virtually 

unknown, a reexamination of the function of secondary metabolites is warranted. 

To illustrate the idea that secondary metabolites have the potential to perform 

primary metabolic functions, we will focus this review on a class of compounds known 
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as “phenazines,” which have been of great interest to pharmaceutical and clinical 

research groups for the last fifty years (Laursen and Nielsen 2004). Phenazines are 

heterocyclic compounds that are produced naturally and substituted at different points 

around their rings by different bacterial species (table 2.1). Small modifications of the 

core phenazine structure give rise to a full spectrum of colors, ranging from the deep red 

of 5-methyl-7-amino-1-carboxyphenazinium betaine (aeruginosin A, 1) to the lemon 

yellow of phenazine-1-carboxylic acid (PCA, 2), to the bright blue of 1-hydroxy-5-

methylphenazine (pyocyanin, 3) (figure 2.1). The combination and variety of functional 

groups added also determine the redox potential and solubility of these compounds, thus 

affecting their biological activity (Chin-A-Woeng et al. 1998; Kerr 2000; Laursen and 

Nielsen 2004).  
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Table 2.1. Structures, solubilities, and redox potentials of some of the phenazines excreted 
by pseudomonads 
Solubilities were calculated using the KOWWIN demo program available at 
http://www.syrres.com/esc/est_kowdemo.htm. NA, not available. (Clark 1960; Mann 1969; 
Meylan and Howard 1995). 

 

 
 
Figure 2.1. Phenazines are colorful, diffusible bacterial metabolites.  
(a) Streak plate of the biocontrol strain P. aureofaciens 30-84. The phenazine 2-OHPCA turns the 
agar bright orange. (b) Aqueous solutions of some of the phenazines produced by various 
Pseudomonas strains. 
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The antagonistic effects of almost all of these derivatives are usually attributed to 

one general characteristic: redox activity. The 2-hydroxyphenazine-1-carboxylic acid (2-

OHPCA, 4) produced by Pseudomonas aureofaciens is thought to kill off competing 

fungi via the production of reactive oxygen species (Chin-A-Woeng et al. 2003). Many of 

the effects of pyocyanin and PCA on a diversity of eukaryotic hosts as well as bacteria 

are thought to result from oxidative activity or the inactivation of proteins important in 

the oxidative stress response (Lau et al. 2004a; O'Malley et al. 2003).  Regardless of 

whether they are acting as antibiotics in the soil or virulence factors during infection, the 

redox transformations of phenazines strongly influence their physiological effects in 

other organisms. A more detailed understanding of phenazine metabolism in competing 

or host cells is emerging as very recently, researchers have begun to recognize that small 

variations in the reactivity of phenazines can give rise to differences in their elicited 

response (Look et al. 2005). 

Concomitant with the development of ideas about phenazine activity during 

competition and infection, Pseudomonas aeruginosa and other phenazine-excreting 

bacteria have become popular model organisms for the study of quorum sensing and 

biofilm formation, two of the most active areas of research in the field of microbiology 

(Hall-Stoodley 2004; Juhas et al. 2005; Lazdunski et al. 2004). While pharmaceutical and 

clinical groups have been focused on the physiological effects of these compounds in 

nonproducing organisms, microbial physiologists and geneticists have typically viewed 

phenazines as metabolites that perform only secondary functions. As a result, despite 

research interest in both the biological activity of the compounds themselves, as well as 

the physiology of their producers, the primary functions of phenazines for producing 
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organisms such as the pseudomonads are still unknown. This is surprising, especially 

given that phenazine production and reduction is evident in many of the Pseudomonas 

cultures that microbiologists prepare for their work (figure 2.2), and that the mechanisms 

thought to be responsible for phenazine metabolism in nonproducers (for example, 

reduction by NADH or glutathione, or interaction with the respiratory chain) are present 

in most organisms (Armstrong and Stewart-Tull 1971; Ritz and Beckwith 2001). That 

phenazines and other excreted compounds (i) react with common primary metabolites, 

(ii) are potentially transformed by enzymes active in central metabolic pathways, and (iii) 

induce gene expression calls into question their categorization as secondary metabolites.  

We will discuss here the recent discoveries that lead to new hypotheses about the 

relevance of phenazine metabolism in the context of the lifestyles of their producers. 

 

2.3. Occurrence of Phenazine Production 

Phenazines are first mentioned in the literature as early as the 1860s, when French 

researchers and clinicians noticed a blue coloration in the pus and sputum, or respiratory 

secretion, of infected patients. Carle Gessard and others examined the pus 

microscopically and identified a rod-shaped bacterium residing in these wounds, and 

upon isolating the organism discovered that it was responsible for the bluish tint.  For this 

trait, they named the species Bacillus pyocyaneus, and it has since been renamed 

Pseudomonas aeruginosa, for the Latin aerugo, which refers to the blue-green rust of 

copper (Villavicencio 1998). P. aeruginosa is widespread in terrestrial habitats, can grow 

in both marine and freshwater environments, and is known for its ability to infect a 
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diversity of hosts, ranging from plants to humans (Pirnay 2005; Turner and Messenger 

1986; Villavicencio 1998). The P. aeruginosa laboratory strains PAO1 and PA14 are 

capable of producing at least 4 different phenazine derivatives (Mavrodi et al. 2001).  

 

 
Figure 2.2. Pseudomonads stimulate phenazine reduction 
(a) Characteristic gradient formed by standing cultures of P. aeruginosa. Bacterial respiration 
renders most of the culture anoxic. Phenazines are reduced and, in the case of pyocyanin, become 
colorless. The darker blue at the top represents oxidized pyocyanin. (b) Half reaction representing 
generic two-electron phenazine reduction. (c) Schematic of phenazine reduction and 
autooxidation responsible for gradient formation in standing cultures. Reduced phenazines are 
oxidized abiotically by oxygen, generating reactive oxygen species (ROS).  

 

Several other Pseudomonas species are also phenazine producers and are known 

for their potential in biocontrol applications, in which an organism that inhibits the 

growth of crop pathogens is enriched in the soil to enhance crop yields. Representatives 

include the strains P. chlororaphis (aureofaciens) 30-84, P. fluorescens 2-79, and P. 

chlororaphis PCL1391. Along with P. aeruginosa, these isolates all produce one or more 

phenazines and differ in their biosynthetic capabilities with respect to phenazine 

derivatization. P. chlororaphis (aureofaciens) 30-84, for example, possesses the 

monooxygenase PhzO, which converts the common pseudomonad phenazine precursor 
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PCA into 2-OHPCA, a bright orange pigment (Delaney et al. 2001). P. chlororaphis 

PCL1391, on the other hand, expresses PhzH, a transamidase that converts this precursor 

into PCN, a green, sparingly soluble pigment that precipitates out of culture media (Chin-

A-Woeng et al. 2001b). 

Phenazine biosynthesis also has been observed in different bacterial genera, 

including other proteobacteria, such as Brevibacterium, Burkholderia, and Xanthomonas, 

as well as the Gram-positive genus Streptomyces and even the archaeal genus 

Methanosarcina (Beifuss and Tietze 2005; Rao and Sureshkumar 2000; Turner and 

Messenger 1986). This review will focus on the pseudomonad phenazines, because they 

are the best studied with respect to biosynthesis, but will also include a discussion of the 

methanophenazine produced by Methanosarcina mazei Gö1, because it is the only 

phenazine thus far that has been unequivocally shown to play an important role in 

catabolism (Beifuss and Tietze 2005). 

 

2.4. Roles in Eukaryotic Physiology and Pseudomonad Persistence 

2.4.1. Phenazines in Infection 

Some of the most thorough studies that have been conducted to investigate the 

physiological consequences of phenazine exposure are those of Britigan and colleagues, 

who have reported the many effects of phenazines produced by P. aeruginosa during 

infection of the human lung (Lau et al. 2005). Phenazine production has been shown to 

play an important role in both acute and chronic P. aeruginosa lung infections, which are 

frequent causes of mortality in patients who have cystic fibrosis or otherwise impaired 
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lung function (Villavicencio 1998). Pyocyanin has been detected in the sputum of 

patients with chronic P. aeruginosa infections at concentrations as high as 27 µg/mL 

(Wilson et al. 1988), and the administration of purified pyocyanin at comparable 

concentrations in laboratory mice has been shown to induce neutrophil influx in lung 

tissue (Lau et al. 2004b). Phenazine production is a common trait in strains of P. 

aeruginosa isolated from patients with cystic fibrosis (Finnan 2004), and mutant versions 

of the P. aeruginosa strains PAO1 and PA14 that are unable to synthesize pyocyanin are 

attenuated in both acute and chronic mouse lung infection models (Lau et al. 2004a). 

The oxidative activity of phenazines in particular has been shown to be important 

in pathogenesis during P. aeruginosa lung infection (Lau et al. 2004a). Both pyocyanin 

and PCA can increase oxidant formation in human airway epithelial cells through a 

number of mechanisms including the oxidation of glutathione and NADH and inhibition 

of antioxidant enzymes (Look et al. 2005; O'Malley et al. 2003; O'Malley et al. 2004).  

Once it is reduced, pyocyanin can then react with oxygen, forming superoxide radical and 

hydrogen peroxide (Hassan and Fridovich 1980). Pyocyanin radical is also formed as an 

intermediate during its redox cycling, and can further contribute to the formation of 

reactive oxygen species (Britigan et al. 1992; Britigan et al. 1999; Hassan and Fridovich 

1979). These insults to the host cell’s internal redox balance may lead to increased 

secretion and thereby contribute to the generation of sputum, the physical and nutritional 

substrate for P. aeruginosa in the lungs of individuals with cystic fibrosis (Ohman 1982; 

Palmer 2005). The generation of radical species (of phenazines and oxygen) is potentially 

harmful to other microbes competing for resources in the lung, such as Staphylococcus 

aureus, and may help P. aeruginosa to persist in this environment (Baron and Rowe 
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1981). However, recent work has demonstrated that phenazine production is beneficial to 

the growth or survival of P. aeruginosa in mouse infection models even in the absence of 

competing organisms, implying that these compounds may additionally provide a 

physiological benefit to their producers during infection (Lau et al. 2004b). 

 

2.4.2. Phenazines in Soil Ecosystems 

The other well-studied niche for phenazine-producing pseudomonads is the 

rhizosphere, the zone surrounding the roots of plants. As is the case for P. aeruginosa in 

an infected lung, species such as P. fluorescens and P. chlororaphis compete in this 

ecosystem with other organisms for resources. More importantly, they compete for 

colonization sites on the roots of agriculturally important crops, where they thrive as 

microcolonies (biofilms) and protect the plants from pathogenic fungi. Phenazines are 

thought to be important in this competition, and consistent with this, phenazine-

producing strains of P. chlororaphis (aureofaciens) and P. fluorescens are better able to 

colonize the roots of wheat plants and persist in the rhizosphere than are phenazine-

lacking mutants (Mazzola et al. 1992). 

The toxicity of phenazines for bacteria and fungi typically present in the 

rhizosphere has been demonstrated, and again is thought to be mostly due to the 

generation of reactive oxygen species (Chin-A-Woeng et al. 2003). If biocontrol strains 

did use phenazine toxicity as a weapon to compete with indigenous soil populations for 

resources, one would expect the composition of rhizosphere communities to change 

dramatically after exposure to phenazines; however this does not occur. The overall 
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number of organisms competing with P. fluorescens for resources does not decline after 

this strain has colonized the root. This implies that it is not just the antibiotic activity of 

phenazines that is important for the ability of their producers to compete in the soil 

(Bankhead et al. 2004). As is the case for phenazines produced by P. aeruginosa, there is 

evidence indicating that phenazines have roles in the physiology and thus the ecological 

competence of the biocontrol pseudomonads. 

 

2.5. Biosynthesis of Phenazine Derivatives 

As mentioned above, the early observation that phenazines are produced in 

stationary phase in typical lab cultures led to the general view that they were unimportant 

in metabolism. However, we now know that phenazines are produced in biofilms and as a 

result are present in detectable quantities in the rhizosphere and in the lungs of cystic 

fibrosis patients. This has fueled interest in the phenazine biosynthetic pathway and the 

environmental factors that influence expression of the biosynthetic genes. The 

complexity of the regulation of phenazine biosynthesis is only just beginning to be 

appreciated and is consistent with the high degree of biological activity exhibited by 

these compounds. 

In Pseudomonas spp., the phenazine biosynthetic pathway branches off from the 

shikimic acid pathway, which is also the source for metabolites such as the aromatic 

amino acids, siderophores, and quinones (figure 2.3). Genes encoding the phenazine 

biosynthetic enzymes are arranged in one core operon, phzABCDEFG, in most 

phenazine-producing pseudomonads (Delaney et al. 2001; Mavrodi et al. 1998). Such an 
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operon exists in the genome of P. aeruginosa in duplicate, and the expression of the two 

copies of the operon is differentially regulated (Mavrodi et al. 2001). In many strains, 

additional genes involved in phenazine decoration, such as phzM, phzS, phzO, and phzH, 

are present in single copy and can be located proximally to the core operon or elsewhere 

in the genome (Chin-A-Woeng et al. 2001b); currently, little is known about how these 

genes are regulated. 

Expression of phenazine biosynthetic genes is regulated by multiple mechanisms, 

which are strongly influenced by environmental conditions. One of the primary factors 

governing phenazine production is population density, and in P. aeruginosa this 

dependency is effected by at least three quorum-sensing systems (Deziel et al. 2004; 

Whiteley et al. 1999). Bacteria participating in quorum sensing release intercellular 

signals such as N-acyl-L-homoserine lactones (AHLs, 7 and 8) and 2-heptyl-3-hydroxy-

R-quinolone (the Pseudomonas quinolone signal, PQS, 9) into the environment, where 

they can be taken up by neighboring cells of the same or different species (figure 2.4).  

Inside the cell, these compounds induce the expression of genes for their own 

biosynthesis—as well as many other genes important in virulence, competition, and 

behavior—when they accumulate to a threshold concentration (Lazdunski et al. 2004).  

The dependence of phenazine biosynthesis on cell density has also been demonstrated for 

biocontrol pseudomonads, and in these species is mediated by a seemingly less complex 

quorum-sensing network (Chin-A-Woeng et al. 2001a; Khan et al. 2005; Pierson et al. 

1994).  
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Figure 2.3. Phenazine biosynthesis and its relation to the shikimic acid pathway in 
pseudomonads. 
(Byng et al. 1979; Dewick 1984; Mavrodi et al. 2001; Vandenende et al. 2004). 

 

In addition to cell density, numerous environmental factors have been identified 

that affect the regulation of phenazine biosynthesis, including oxygen, iron, and 

phosphate concentration as well as the nature of the carbon sources available (Van Rij et 

al. 2004). For many of these effects, it is not entirely clear whether they are above 

quorum sensing in the regulatory cascade (for example, iron limitation induces quorum 

signal production, which in turn induces phenazine biosynthesis) or are the result of 

regulators acting independently of quorum sensing (Kim et al. 2005). The GacA/S two-

component system, which effects global changes in transcription, has been implicated in 

control of phenazine biosynthesis and is thought to act by regulating quorum sensing, but 

there is also evidence that it affects phenazine gene expression through other mechanisms 

(Chancey 1999; Chancey et al. 2002; Whistler and Pierson 2003). Repressors of 
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phenazine biosynthesis have been identified in the plant symbionts P. chlororaphis 

(aureofaciens) 30-84 and P. chlororaphis PCL1391. Mutations in these repressors seem 

to override the quorum-sensing regulation of phenazine biosynthesis in these organisms, 

resulting in constitutive phenazine production (Chin-A-Woeng et al. 2005; Whistler and 

Pierson 2003).  

 

2.6. Intercellular Signaling: A Regulatory Role for Phenazines 

Recent work from our laboratory has contributed to our understanding of the 

complexity of the P. aeruginosa quorum-sensing system and the place of phenazines in 

this cell density-dependent cascade. We have found that, in addition to being regulated by 

cell-cell communication, phenazines themselves can act as intercellular signals. Our work 

indicates that pyocyanin is the physiological inducer of a set of genes previously 

identified as members of the quorum-sensing regulon. Pyocyanin acts downstream of 

PQS, which previously had been deemed the terminal signal in the P. aeruginosa 

quorum-sensing cascade. Pyocyanin’s function as a quorum signal explains what was 

thought to be a delayed response in the expression of a specific set of genes in response 

to PQS (Whiteley et al. 1999). We now understand that these genes are expressed later 

than those induced directly by PQS because PQS first has to upregulate the biosynthesis 

of phenazines so that pyocyanin can subsequently induce its stimulon (Cases 2005; 

Dietrich et al. 2006) (figure 2.4).  
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Figure 2.4. Model of the quorum-sensing network in P. aeruginosa.   
The quorum-sensing network in Pseudomonas aeruginosa comprises a cascade of three types of 
signaling molecules that function in a growth-stage-dependent manner. The AHLs 3-oxo-C12-
HSL and C4-HSL are released in exponential phase and control the production of the quinolone 
PQS. PQS accumulates in late exponential phase and is required for the synthesis of phenazines.  
Recent findings from our laboratory show that the phenazine pyocyanin upregulates genes that 
have previously been demonstrated to be QS controlled, establishing pyocyanin as a signaling 
molecule (Deziel et al. 2004; Wade et al. 2005). 

 

The signaling function of pyocyanin makes it the newest addition to the growing 

list of small molecules excreted by P. aeruginosa that have been shown to perform 

multiple functions (Hooi 2004). PQS, like pyocyanin, was also long recognized for its 

antibiotic and virulence properties before its role in signaling was elucidated (Pesci et al. 

1999). Recent studies have demonstrated that certain AHL and quinolone derivatives 

chelate iron (Kaufmann 2005; Oliphant 2002), raising the possibility that these 

metabolites facilitate iron uptake in vivo. The accumulating knowledge about the 

chemistry and biological activity of small molecules excreted by Pseudomonas spp. calls 

for a reevaluation of our categorizations of these compounds. Rather than clearly 

performing one dedicated purpose, they seem to be capable of multiple roles. To 

determine the most important physiological effects of phenazines and other small 

metabolites in the environment and during infection, we will need to understand the 
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physiological conditions allowing, requiring, and regulating their activities. Elucidating 

their mechanisms of action at the molecular level may also provide indications of the 

conditions relevant for activity.  

 

2.7. Other Physiological Roles 

In addition to inducing gene expression, phenazines also act as substrates in 

intracellular redox transformations. This further metabolism of phenazines, subsequent to 

their biosynthesis, can be observed as a color change in pseudomonad cultures that have 

become limited for terminal electron acceptors.  This is because pseudomonads reduce 

their own phenazines, and changing the oxidation state of a phenazine changes its 

absorbance spectrum. In cultures of the bacterium P. aeruginosa, this is observed as a 

loss of blue coloration, because the main phenazine produced by this organism, 

pyocyanin, changes from blue to colorless upon reduction at neutral pH (figure 2.2) 

(Friedheim and Michaelis 1931). This activity has also been demonstrated in oxygen-

limited cultures of the bacterium P. chlororaphis, which can use its phenazine product, 

phenazine-1-carboxamide (PCN, 5) to reduce extracellular iron oxides (Hernandez et al. 

2004). Although a good deal of research effort has gone toward understanding phenazine 

reduction by mammalian cells, less work has been done to elucidate the mechanisms of 

the phenazine reduction that are readily observed in pseudomonad cultures. Here, we will 

discuss what is known about phenazine reduction and its physiological functions in 

phenazine producing and nonproducing prokaryotes. 
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2.7.1. Phenazines as “Respiratory Pigments”   

Based on the redox potentials, metabolism, and solubilities of phenazines, it has 

been proposed that phenazines act as electron acceptors in cellular energy generation or 

the maintenance of the intracellular redox balance (Hernandez and Newman 2001).  

Studies conducted by Ernst Friedheim in the 1930s, in which he observed that pyocyanin 

increased the oxygen consumption of cell suspensions of P. aeruginosa (Friedheim 

1931), support this idea. Several reports on the interactions of pyocyanin and 1-

hydroxyphenazine (1-OHPHZ, 6) with the mammalian respiratory chain were published 

in the decades that followed. 1-OHPHZ, but not pyocyanin, was shown to inhibit 

respiration at the level of ubiquinone in the electron transport chain of mammalian cells.  

The authors concluded from their measurements of oxygen depletion (which did not 

decrease in the presence of pyocyanin) that pyocyanin did not inhibit mammalian cell 

respiration (Armstrong and Stewart-Tull 1971; Stewart-Tull and Armstrong 1972). We 

question this interpretation, however, given that pyocyanin can accept electrons from 

NADH and transfer them to oxygen; accordingly, what was thought to be normal 

respiration may actually have been short-circuiting of the electron transport chain by 

pyocyanin. In contrast, it makes sense that oxygen depletion was not observed in the 

presence of 1-OHPHZ given that reduced 1-OHPHZ does not react with oxygen at 

appreciable rates (Muller 1995). 

Notably, the interactions of phenazines with the pseudomonad respiratory chain 

are largely unknown. Numerous groups have observed that both synthetic and natural 

phenazines are reduced by prokaryotes, but in most cases the physiological effect of this 

reduction has not been evaluated (Learoyd et al. 1992; McKinlay and Zeikus 2004).  One 
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exception is the role of phenazine reduction in the respiratory chain of Methanosarcina 

mazei Gö1 (Deppenmeier 2004). This archaeon produces methanophenazine, a phenazine 

derivative with a pentaisoprenoid side chain, and can utilize phenazines in lieu of 

quinones in electron transport. In vitro, methanophenazine has been shown to accept 

electrons from hydrogen or a reduced coenzyme via the activity of either of two 

membrane-bound dehydrogenases, one of which is homologous to the NADH 

dehydrogenase found in bacteria and mitochondria. Reduced methanophenazine can then 

donate electrons to another cofactor in a reaction catalyzed by a membrane-bound 

heterodisulfide reductase. In vivo, these respiratory enzymes couple electron transport to 

the translocation of protons, generating a proton gradient that can be used to make ATP. 

In M. mazei, therefore, phenazine reduction is not only crucial to energy metabolism in 

that it reoxidizes the NADH analogue found in methanogens, but it is also required for 

ATP synthesis (Abken et al. 1998; Deppenmeier 2004).  

 

2.7.2. Phenazines in Redox Homeostasis and Iron Acquisition 

Advances in our understanding of bacterial communities have provided an 

environmental context for the hypothesis that pseudomonads benefit by reducing 

phenazines. It has been proposed that the reduction of diffusible small molecules is 

advantageous during growth in a biofilm, a surface-attached population of bacteria 

suspended in an excreted matrix (Hernandez and Newman 2001). The diffusion rate of 

oxygen through a biofilm is thought to be slow, and cells at the base of an aerobic biofilm 

become limited for oxidants (Fu et al. 1994; Stewart 2003). Under this condition, 
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phenazines could allow bacteria to generate energy for growth or help maintain redox 

homeostasis by acting as electron acceptors for the reoxidation of accumulating NADH.  

Indeed, maintaining a proper redox balance in the pyridine nucleotide pool is essential for 

metabolism (De Graef et al. 1999), and recent work from our lab indicates that P. 

aeruginosa phenazine-negative mutants have higher intracellular NADH/NAD+ ratios in 

stationary phase than does the parent strain in planktonic cultures (Price-Whelan et al. 

2007). This suggests that an important role for phenazines could be to serve as 

intracellular redox “buffers.” 

Various research groups have recently become more interested in phenazine 

reduction by biofilm-forming bacteria because phenazines make excellent electron 

transfer mediators to electrodes in biological fuel cells (Fultz and Durst 1982). In 

biological fuel cells deployed in the environment as well as those set up in laboratories, 

bacteria often grow as biofilms attached to the electrode surface (Bond et al. 2002; Kim 

et al. 2004). That phenazines facilitate electron transfer to electrodes has been 

demonstrated by Zeikus and colleagues, who investigated the ability of Escherichia coli 

to reduce the synthetic phenazine neutral red. They showed that E. coli is able to use this 

synthetic phenazine as an electron transfer mediator in the reduction of iron oxide, and 

presented evidence indicating that hydrogenase is at least partially responsible for this 

capability (McKinlay and Zeikus 2004). Our group as well as others have shown that 

other synthetic dyes, with structures resembling those of phenazines, are reduced by 

Bacillus, Lactococcus, and Shewanella species (Hernandez et al. 2004; Learoyd et al. 

1992; Lies et al. 2005). The Verstraete group has shown that phenazine production 

enhances power output from microbial fuel cells, and that biofuel cells enrich for 
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phenazine-producing organisms; whether phenazine production influences the growth or 

survival of these bacteria in this context remains unclear (Rabaey et al. 2004; Rabaey et 

al. 2005). 

Aside from these proposed roles in energy generation, it has been suggested that 

phenazine reduction could act to make iron more available to the producing organism. 

Pyocyanin may assist infectious P. aeruginosa in the acquisition of iron by reducing it 

and freeing it from transferrin, a protein that normally sequesters iron such that it is 

available only to the human host (Cox 1986). As mentioned above, P. chlororaphis has 

been shown to reduce iron oxides via electron transfer to PCN, and it is thought that this 

ability may be important in the rhizosphere, where iron is predominantly present in an 

insoluble form (Hernandez et al. 2004). An examination of the relationship between iron 

availability and the regulation of phenazine biosynthesis, however, presents a 

complicated picture that neither refutes nor supports a role for these compounds in iron 

acquisition. Although in many cases it has been reported that phenazine production is 

enhanced in iron-deprived cultures, other studies have demonstrated a requirement for 

iron in media optimized for phenazine biosynthesis (Cox 1986; King 1954; Van Rij et al. 

2004). These differences probably arise from the high degree of variability with respect 

to other parameters, such as carbon source and the concentrations of oxygen and various 

salts. Perhaps the best way to ascertain whether or not iron availability bears relevance to 

phenazine production will be to observe its effects under conditions that imitate the most 

common habitats for phenazine-producing pseudomonads (Palmer 2005). 
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2.7.3. How Are Phenazines Reduced?   

Although we are beginning to recognize the potential physiological importance of 

phenazine redox cycling, we have yet to identify the specific mechanisms by which 

pseudomonads catalyze the reduction of these compounds. On the basis of their low 

redox potentials and the mechanisms for phenazine reduction identified in eukaryotic 

cells, we might predict that NADH or glutathione would act as electron donors in these 

reactions. Using ferric citrate reduction as a proxy for pyocyanin reduction, we have 

identified genetic loci required for full pyocyanin reduction activity in P. aeruginosa, 

including gpsA, encoding a glycerol-3-phosphate dehydrogenase, and the fbcFBC operon, 

encoding the cytochrome bc1 complex of the respiratory chain (chapter 4). The gpsA gene 

is required for maintenance of redox homeostasis; without functional GpsA, the 

intracellular NADH/NAD+ pool becomes too oxidized for pyocyanin reduction to 

proceed. The cytochrome bc1 complex is a coupling site in the aerobic respiratory chain. 

Identification of this locus in a pyocyanin reduction screen raises the intriguing 

possibility that pseudomonads could be able to couple the reduction of their own excreted 

metabolites to the generation of a proton-motive force.  

 

2.8. Conclusions 

As we learn more about the chemistry and biological activity of phenazines, we 

begin to question their categorization as “secondary” metabolites. This compels us to 

rethink secondary metabolism as a phenomenon more generally. It is striking that the 

conditions under which secondary metabolites are produced in laboratory cultures (that 
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is, stationary phase) are effectively the same as those that define many microbial habitats 

in nature (Kolter et al. 1993). Consistent with this, gene expression and physiological 

attributes appear to be very similar in stationary-phase planktonic cultures and biofilms 

(Fux 2005; Waite 2005). As we have discussed for phenazines, stationary-phase 

metabolites can allow bacteria to sense the conditions of their surroundings and induce 

appropriate changes in gene expression; moreover, they can facilitate extracellular 

electron transfer to oxidants such as insoluble iron (Hernandez et al. 2004; Mavrodi et al. 

2001) and play a role in the maintenance of redox homeostasis. Notably, phenazines are 

only one class of myriad natural products made by microorganisms (Handelsman and 

Wackett 2002), many of which bear intriguing structural resemblances to cofactors that 

play important roles in primary metabolism (figure 2.5). Now that we are beginning to 

understand stationary phase physiology and its ecological relevance, it is time to revisit 

the roles of these compounds in gene expression and survival. We suspect that such 

studies will further blur the line between primary and secondary metabolism, and lead to 

a more complete picture of the mechanisms allowing organisms to persist in dynamic 

environments. 
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Figure 2.5.  Key structural elements of secondary metabolites resemble those of cofactors 
that play critical roles in energy metabolism.  
(a) Pyocyanin. (b) Generic flavin. (c) Prodigiosin, an antibiotic produced by Serratia marcescens. 
(d) Generic heme (White 2000; Williamson 2005). 
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Chapter 3 

 

Physiological Effects of Pyocyanin in Pseudomonas aeruginosa 

 

This chapter is adapted from:  
 
Price-Whelan, A., Dietrich, L.E.P., and Newman, D.K. (2007) Pyocyanin alters redox 
homeostasis and carbon flux through central metabolic pathways in Pseudomonas 
aeruginosa PA14. J. Bacteriol. 189: 6372–81. 

 

3.1. Abstract 

The opportunistic pathogen Pseudomonas aeruginosa produces colorful, redox-

active antibiotics called phenazines. Excretion of pyocyanin, the best-studied natural 

phenazine, is responsible for the bluish tint of sputum and pus associated with P. 

aeruginosa infections in humans. Although the toxicity of pyocyanin for other bacteria, 

as well as its role in eukaryotic infection, has been studied extensively, the physiological 

relevance of pyocyanin metabolism for the producing organism is not well understood. 

Pyocyanin reduction by P. aeruginosa PA14 is readily observed in standing liquid 

cultures that have consumed all of the oxygen in the medium. We investigated the 

physiological consequences of pyocyanin reduction by assaying intracellular 

concentrations of NADH and NAD+ in the wild-type strain and a mutant defective in 

phenazine production. We found that the mutant accumulated more NADH in stationary 

phase relative to the wild type. This increased accumulation correlated with a decrease in 

oxygen availability and was relieved by the addition of nitrate. Pyocyanin addition to a 
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phenazine-null mutant also decreased intracellular NADH levels, suggesting that 

pyocyanin reduction facilitates redox balancing in the absence of other electron 

acceptors. Analysis of extracellular organic acids revealed that pyocyanin stimulated 

stationary-phase pyruvate excretion in P. aeruginosa PA14, indicating that pyocyanin 

may also influence the intracellular redox state by decreasing carbon flux through central 

metabolic pathways.  

 

3.2. Introduction 

Redox transformations are a defining feature of the creation of biomass. To form 

precursors for incorporation into cellular material, heterotrophic organisms catalyze the 

oxidation of organic carbon sources, generating reducing power. This reducing power can 

be released in fermentation products or transferred to an externally supplied oxidant via 

the respiratory chain. The fluid exchange of electrons between intra- and extracellular 

environments permits organisms to maintain a buffered intracellular redox state, a 

condition required for the stability and function of biological macromolecules (Bessette 

et al. 1999; Mossner et al. 1999). Under traditional laboratory culture conditions, electron 

donors and acceptors are often provided in excess, allowing microorganisms to control 

intracellular redox conditions. However, it is becoming clear that energy starvation, the 

limitation of substrates for oxidative or substrate-level phosphorylation, more closely 

mirrors conditions encountered by many bacteria in their natural habitats (Kolter et al. 

1993). How do bacteria maintain redox homeostasis under these conditions? 
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Bacteria of the genus Pseudomonas, like most heterotrophic bacteria (Conway 

1992; Fuhrer et al. 2005), oxidize organic carbon sources via the activity of the Entner-

Doudoroff pathway and the citric acid cycle. Several of the oxidative steps in these 

pathways are coupled to the reduction of NAD+ to NADH, and NADH must be 

reoxidized so that these pathways can proceed and generate anabolic precursors. In 

pseudomonads, the primary mechanism whereby this is accomplished is through 

reduction of one of the NADH dehydrogenases at the start of the respiratory chain, which 

ultimately transfers the electrons to oxygen or nitrate (Williams et al. 2007). It has 

therefore been assumed that pseudomonads, organisms that rely on respiration for growth 

under most conditions, accumulate NADH when terminal electron acceptors become 

limiting. 

Given that the NADH/NAD+ redox couple plays a major role in central 

metabolism, the ratio of the reduced to oxidized forms is thought to be representative of 

the intracellular redox state (De Graef et al. 1999). In previous studies, measurements of 

NADH/NAD+ in a variety of bacterial species have distinguished the opportunistic 

pathogen Pseudomonas aeruginosa from organisms such as Clostridium welchii, 

Klebsiella aerogenes, Escherichia coli, and Staphylococcus albus as the only species 

with a steady-state NADH/NAD+ ratio greater than one (Wimpenny and Firth 1972). 

However, another characteristic feature of some pseudomonad strains, which 

distinguishes them from all of the other genera mentioned above, is the ability to produce 

redox-active antibiotics known as phenazines (Mavrodi et al. 2006). Some of these 

compounds, including pyocyanin, the best-studied phenazine due to its role in the 

pathology of P. aeruginosa infections (Lau et al. 2004), have been shown to react with 
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NADH in vitro (Davis and Thornalley 1983; Kito et al. 1974). This has led to the 

hypothesis that electron transfer to phenazines may represent an adaptation that allows 

bacteria to modulate their intracellular redox state (Friedheim 1931; Price-Whelan et al. 

2006; Trutko 1989; Trutko et al. 1989). This physiological role would be consistent with 

the fact that phenazine biosynthesis is regulated such that phenazines are produced at 

high cell densities (Byng et al. 1979; Ingledew and Campbell 1969; Pierson et al. 1994; 

Whiteley et al. 1999), a condition that typically correlates with electron acceptor 

limitation (Sweet and Peterson 1978). 

Much research has focused on the toxic effects of pyocyanin as a virulence factor 

in the eukaryotic host (Lau et al. 2004; Look et al. 2005; O'Malley et al. 2003; Reszka et 

al. 2004; Stewart-Tull and Armstrong 1971) as well as in microorganisms (Baron and 

Rowe 1981; Baron et al. 1989; Hassan and Fridovich 1980; Kerr et al. 1999; Ran et al. 

2003). These effects have been attributed to the production of reactive oxygen species 

such as superoxide in the presence of pyocyanin (Gardner 1996; Hassan and Fridovich 

1979), and physiological studies have shown that P. aeruginosa resists the toxicity of this 

compound with increased superoxide dismutase and catalase activities under pyocyanin-

producing conditions (Hassett et al. 1992; Hassett et al. 1995). Additionally, recent gene 

expression studies have uncovered a role for pyocyanin in intercellular signaling 

(Dietrich et al. 2006). However, little is known about the role of this compound in 

pseudomonad metabolism, or whether P. aeruginosa derives a benefit from the utilization 

of pyocyanin as an electron acceptor. 
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The facile reversibility of phenazine redox reactions allows these compounds to 

oxidize major intracellular reductants and subsequently reduce extracellular oxidants, 

thereby acting as redox mediators (Fultz and Durst 1982; Hernandez et al. 2004; Learoyd 

et al. 1992; McKinlay and Zeikus 2004; Rabaey et al. 2005; Stams et al. 2006). The redox 

potentials of pyocyanin and phenazine-1-carboxylic acid, the two major phenazines 

produced by P. aeruginosa PA14, are −34 mV (Friedheim and Michaelis 1931) and −116 

mV (Wang and Newman 2008), respectively, versus the standard hydrogen electrode at 

pH 7. These potentials are high enough to allow reduction by NADH (E°’ = −320 mV) 

and glutathione (E°’ = −240 mV) (Aslund et al. 1997; Thauer et al. 1977), but low 

enough to allow electron transfer to environmentally relevant oxidants, including oxygen, 

nitrate, and ferric iron. Therefore, electron shuttling via phenazines may be a mechanism 

whereby pseudomonads can utilize electron acceptors that, due to low concentrations or 

solubility, might otherwise be inaccessible via conventional biochemical and enzymatic 

routes (Cox 1986; Hernandez and Newman 2001; Price-Whelan et al. 2006). The role of 

this electron transfer in P. aeruginosa energy metabolism has yet to be elucidated, but 

work carried out in another γ-Proteobacterium, Shewanella oneidensis MR-1, indicated 

that pyocyanin, as well as similarly structured small molecules, facilitates reduction of 

insoluble ferric oxyhydroxides and stimulates growth (Hernandez et al. 2004; Lies et al. 

2005). Furthermore, a critical electron carrier function has been demonstrated for a 

membrane-bound phenazine derivative present in the electron transport chains of 

methanogenic archaea (Beifuss and Tietze 2005). In an effort to better understand the 

physiological significance of phenazine reduction in pseudomonads, we characterized the 
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effects of pyocyanin on redox homeostasis and central metabolism in P. aeruginosa 

PA14. 

 

3.3. Materials and Methods 

3.3.1. Bacterial Strains and Culture Conditions 

For this study, we used P. aeruginosa strain UCBPP-PA14 (Rahme et al. 1995), 

which produces approximately ten times more pyocyanin in LB batch cultures than strain 

PAO1 (Dietrich et al. 2006). The P. aeruginosa PA14 mutant containing the MAR2xT7 

transposon inserted in the ldhA gene in a ΔexoU background was obtained from a 

publicly available mutant library (Liberati et al. 2006) and is mutant ID# 5174. 

Generation of the P. aeruginosa PA14 ΔphzA1-1G1 ΔphzA2-2G2 deletion mutant 

(hereafter referred to as the Δphz mutant) was described previously (Dietrich et al. 2006). 

P. aeruginosa PA14 wild type and mutants were grown aerobically at 37 °C in Luria-

Bertani Broth, Miller (Fisher Scientific) or modified MOPS synthetic medium (Palmer et 

al. 2005). Our modified MOPS synthetic medium contained 50 mM 

morpholinepropanesulfonic acid (MOPS, Sigma) at pH 7.2, 93 mM NH4Cl, 43 mM 

NaCl, 2.2 mM KH2PO4, 1mM MgSO4  7H2O, and 3.6 µM FeSO4  7H2O. Unless 

otherwise noted, 50 mM D-glucose was added to this medium as the sole carbon and 

energy source. Aerobic conditions were generated either through incubation with 

vigorous shaking at 250 rpm, or in a BioFlo 110 fermentor (New Brunswick Scientific) 

set to agitate at 250 rpm and bubble with 100% air at a rate of 2 L/minute. Aerobic 

culture volumes relative to vessel size are described below for specific experiments. 
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Culture densities were followed at 500 or 600 nm in a Thermo Spectronic 20D+ or 

Beckman Coulter DU 800 spectrophotometer. Cultures with optical densities greater than 

0.8 were diluted 1:10 in fresh medium to allow accurate measurements.  

 

3.3.2. Preparation of Pyocyanin for Reduction Assays and NADH/NAD+ Studies 

To maximize pyocyanin yields from P. aeruginosa cultures, we utilized a mutant, 

strain DKN370, which contains two copies of the gene phzM. PhzM converts phenazine-

1-carboxylic acid to the precursor for pyocyanin, 5-methylphenazinium carboxylate 

(Mavrodi et al. 2001). Purification of pyocyanin by organic extractions was carried out as 

described previously (Dietrich et al. 2006). HPLC analysis verified the purity of 

pyocyanin after the extraction step, so the HPLC purification step described in Dietrich et 

al. (2006) was omitted. Purified pyocyanin was dissolved in MOPS buffer (MOPS 

synthetic medium without FeSO4, MgSO4, or glucose), and filtered (0.2 µm).  

 

3.3.3. Whole Cell Suspension Assay for Pyocyanin Reduction 

Cell culture samples were concentrated or diluted in filtrates of supernatants from 

the same culture to normalize optical density at 600 nm to 0.8. In an anaerobic chamber, 

the samples were transferred to cuvettes, and an anoxic solution of oxidized pyocyanin 

(in MOPS buffer) was added for a final pyocyanin concentration of about 0.1 mM. The 

cuvettes were stoppered to minimize oxygen exposure. Pyocyanin reduction was then 

followed as a decrease in absorbance at 690 nm over time in a DU 800 Beckman Coulter 

spectrophotometer. The rate of reduction could be calculated by converting the change in 
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absorbance to micromoles pyocyanin reduced using the extinction coefficient for 

pyocyanin at this wavelength (ε =4310 M-1 cm-1 at pH 7 (O'Malley et al. 2004)) and the 

volume of sample in the cuvette (1 mL). 

 

3.3.4. Quantification of Pyocyanin 

Pyocyanin concentrations in filtrates (0.2 µm pore) from LB and MOPS synthetic 

medium cultures were quantified as described previously (Dietrich et al. 2006). Briefly, 

absorbance in LB culture filtrates was measured spectrophotometrically at 690 nm and 

pyocyanin concentrations were calculated using the extinction coefficient for pyocyanin 

(above). Pyocyanin concentrations in 200-µl sample filtrates from MOPS synthetic 

medium cultures were determined by HPLC analysis on a Waters Symmetry C18 reverse-

phase column with a gradient method (water versus acetonitrile containing 0.1% 

trifluoroacetic acid) and calculated based on absorbance values for purified standards 

diluted into MOPS buffer. 

 

3.3.5. Extraction and Quantification of Intracellular NADH and NAD+ 

Extraction of NADH and NAD+ was carried out according to the method 

described in San et al. (2002). Two × 1 mL of culture were sampled into two separate 

microcentrifuge tubes and centrifuged at 16,000 × g for 1 minute. Supernatant was 

removed and pellets were resuspended in 300 µl of 0.2 M NaOH (for NADH extraction) 

or 0.2 M HCl (for NAD+ extraction). These extracts were incubated for 10 minute at  
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50 °C, then for 10 minute on ice. While vortexing, 300 µl of 0.1 M HCl (for NADH) or 

0.1 M NaOH (for NAD+) were added drop wise to neutralize the solutions. They were 

then centrifuged for 5 minute at 16,000 × g. Supernatants were transferred to fresh tubes 

and stored at −80 °C until quantification.  

Relative or absolute NADH and NAD+ were quantified using a modification (San 

et al. 2002) of the enzyme cycling assay developed by Bernofsky and Swan (1973), 

adapted for measurement in a microtiter plate. A master reagent mix was prepared with 

1× Bicine buffer  (2.0 M, pH 8.0), 8× water, 1× 80 mM EDTA, 2× 100% EtOH, 2× 4.2 

mM thiazolyl blue (MTT), and 4× 16.6 mM phenazine ethosulfate.  The reagent mix was 

warmed to 30 °C, then 90-µl aliquots were dispensed into individual wells of a 96-well 

microtiter plate. Five microliters of standard or sample were added to each well, then the 

cycling reaction was started by the addition of 5 µl of alcohol dehydrogenase (Sigma #A-

3263) prepared at 347 units/mL in 0.1 M Bicine (pH 8.0). The microtiter plate was 

incubated at 30 °C, mixed by brief shaking, and read every 30-60 seconds for absorbance 

at 570 nm, which is the spectral peak of MTT that increases upon reduction. Slopes 

arising from plots of absorbance at 570 nm over time were generated for NADH and 

NAD+ standards as well as all samples. Standard curves were used to calculate the 

absolute concentrations in µM, and values were normalized to optical density of the 

original cell culture sample.  
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3.3.6. Relative Quantification of Dissolved Oxygen in Batch Cultures 

Oxygen was measured in batch fermentor cultures using a Clark electrode (Clark 

et al. 1953). The electrode was calibrated such that the reading obtained by the computer 

without the probe attached was equal to zero, while the initial reading for the 

uninoculated medium (after aeration and agitation for 12 hours) was set to 100 percent. 

 

3.3.7. Analysis of Small Organic Acids in Culture Filtrates 

Two hundred microliters were sampled from MOPS-glucose cultures (10 mL in 

an 18 × 150 mm test tube) at regular intervals and filtered (0.2 µm pore). In cases where 

repeated sampling from the same culture would alter the total culture volume by more 

than 10%, multiple identical cultures were inoculated from the same preculture and 

sampled sequentially. Twenty microliters of each filtrate were loaded onto a Bio-Rad 

Aminex HPX-87H column (300 × 7.8 mm) and subjected to an isocratic method in 5 mM 

H2SO4 at 35 °C, using a Waters HPLC system. Compounds were detected by UV 

absorbance at 210 nm. Absolute concentrations of pyruvate were calculated using a 

standard curve for pyruvate diluted in MOPS buffer. The identity of the pyruvate peak 

was verified by coelution of an internal standard. 

 

3.3.8. Pyruvate Fermentation Experiments 

Strains were tested for the ability to survive via pyruvate fermentation using a 

method similar to that described by Schreiber et al. (2006). Stationary-phase LB cultures 

of wild-type PA14 and the ldhA::MAR2xT7 mutant were centrifuged (8000 × g, 5 
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minutes) and resuspended at an OD (500 nm) of 11 in fresh LB. One milliliter of this 

suspension was used as an inoculum for 55 mL phosphate (100 mM, pH 7.4)-buffered LB 

in a 60-mL stoppered serum bottle. Cultures were amended with pyruvate to a 

concentration of 20 mM, or with water for negative controls, and incubated at 37 °C with 

shaking at 250 rpm. At regular intervals, 100 µl samples were drawn from anaerobic 

cultures using needles and syringes flushed with N2. These samples were diluted and 

plated for CFU as previously described.  

 

3.4. Results 

3.4.1. P. aeruginosa PA14 Catalyzes Pyocyanin Reduction 

Stationary-phase LB cultures of P. aeruginosa PA14 turn bright blue-green due to 

the production of the blue pigment pyocyanin specifically during this growth phase. P. 

aeruginosa PA14 also catalyzes the reduction of pyocyanin, a process that is readily 

observed when a stationary-phase culture is left standing without mixing or aeration by 

bubbling. Pyocyanin is converted from its blue (oxidized) form to a colorless (reduced) 

form (Cox, 1986). At the air-liquid interface, pyocyanin remains oxidized or becomes re-

oxidized by an abiotic reaction with oxygen, but respiration by the bacteria creates a 

steep oxygen gradient just below this interface such that pyocyanin below a few 

millimeters remains colorless. A demonstration of this process is depicted in Figure 3.1.A 

(tube 3). We centrifuged a stationary-phase culture and resuspended the cell pellet in a 

100 µM solution of pyocyanin in MOPS buffer, then allowed the culture to sit without 

shaking for 5 minutes at room temperature. A gradient formed that resembled those 

observed for cultures in growth media. After vortexing, the entire suspension regained its 
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original blue color (figure 3.1.A, tubes 5 and 6). A filtrate from this suspension had the 

absorbance spectrum characteristic of pyocyanin in the oxidation state most stable under 

atmospheric conditions. When we moved the culture into an anaerobic chamber and used 

a stoppered anaerobic cuvette to measure the absorbance spectrum of anaerobic culture 

filtrate, the sample showed decreased absorbance, indicating that pyocyanin had been 

reduced (figure 3.1.B).  

 

Figure 3.1. Stationary-phase P. aeruginosa PA14 cultures produce pyocyanin and directly 
catalyze its reduction.  
(A) Tube 1, exponential-phase LB culture; tube 2, stationary-phase LB culture, immediately after 
removal from a shaking incubator; tube 3, stationary-phase LB culture, left standing at room 
temperature for ~5 minutes; tube 4, 100 µM pyocyanin in MOPS buffer, left standing at room 
temperature for ~5 minutes; tube 5 same culture as in tubes 2 and 3, resuspended in buffer shown 
in tube 4 and left standing at room temperature for ~5 minutes; tube 6, same suspension as in tube 
5, after vortexing. (B) Absorbance spectra of buffer and supernatants from (A), tubes 4-6. The 
suspension from tube 5 was centrifuged and placed in a stoppered cuvette under anaerobic 
conditions. The pyocyanin/buffer spectrum overlaps almost completely with that of the 
supernatant from the aerated culture.  
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3.4.2. Pyocyanin Reduction Rates Increase in Stationary Phase 

To quantify the rate of pyocyanin reduction by whole cells and test whether this 

process, like the biosynthesis of phenazines, was growth-phase dependent, we sampled an 

LB culture at different stages of growth. Samples were diluted into their own supernatant, 

amended with pyocyanin, and transferred to an anaerobic cuvette. We followed the 

decrease in oxidized pyocyanin absorbance over time for each sample, and observed a 

marked increase in the rate of pyocyanin reduction after the appearance of pyocyanin in 

stationary phase. This result indicates that the rate of pyocyanin reduction by whole cells 

is growth-phase dependent (figure 3.2). 

 

Figure 3.2. The rate of pyocyanin reduction increases in stationary phase in P. aeruginosa 
PA14.  
A 100-mL P. aeruginosa LB culture was grown in a 500-mL Erlenmeyer flask and sampled at 
various points in the growth curve. Cells were concentrated or diluted in culture supernatant to 
normalize their OD (600 nm) to 0.8, amended with pyocyanin, then transferred to anaerobic 
cuvettes and stoppered. Absorbance at 690 nm was measured over time and was converted to the 
concentration of oxidized pyocyanin remaining in the cuvette. Gray squares indicate time points 
at which samples were taken for cell suspension assays. The black square indicates the first 
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appearance of pyocyanin in the culture. Data shown is representative of three separate 
experiments. OD, optical density. 

 

3.4.3. Pyocyanin Exposure Balances the Intracellular Redox State 

Strains of P. aeruginosa have been shown to vary in the timing and extent of 

phenazine production relative to the growth phase (Byng et al. 1979; Chang and 

Blackwood 1969; Dietrich et al. 2006). We have observed that the appearance of 

pyocyanin in wild-type P. aeruginosa PA14 LB cultures correlates with entry into 

stationary phase and that pyocyanin production plateaus in late stationary phase, reaching 

concentrations ranging from ~100 to 300 µM depending on the growth conditions 

(figures 3.3.A and 3.4.C).  

Given that NADH reacts with pyocyanin in vitro (Kito et al. 1974), one potential 

consequence of pyocyanin production and/or exposure would be a decrease in 

intracellular NADH levels. We tested this by growing cultures of P. aeruginosa wild type 

and a Δphz mutant (with in-frame deletions of both phenazine biosynthetic loci (Dietrich 

et al. 2006)) and measuring intracellular NAD(H) approximately 4 hours after the onset 

of stationary phase. The intracellular NADH/NAD+ ratio in the wild type was less than 

half that observed for the Δphz mutant. The growth curves for these cultures were 

virtually identical under the incubation conditions for this experiment (data not shown). 

Addition of 90 µM oxidized pyocyanin (the approximate concentration of pyocyanin 

produced by wild-type cultures under these conditions) to Δphz mutant cultures reduced 

the NADH/NAD+ratio to the wild-type level (figure 3.3.B). As a negative control, 

supernatant from the Δphz mutant was treated similarly and tested for an effect on 
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intracellular NAD(H) concentrations; no difference was observed between cultures 

treated with “pyocyanin” preparations from the Δphz mutant and those treated with water 

(data not shown). In titration experiments, an inverse relationship was found to exist 

between the concentration of pyocyanin added to a Δphz mutant culture and the 

NADH/NAD+ ratio (figure 3.3.C). 

To test whether the effect of pyocyanin is similar to that of a physiologically 

relevant terminal electron acceptor, we added 30 mM nitrate (a concentration sufficient to 

support growth of P. aeruginosa via anaerobic nitrate respiration (Williams et al. 1978)) 

to a wild-type culture, and nitrate with or without pyocyanin to Δphz mutant cultures in 

stationary phase (figure 3.3.B). Nitrate and pyocyanin both effected decreases in 

intracellular NADH/NAD+ ratios, apparently by catalyzing NADH oxidation, since 

decreases in absolute NADH concentrations correlated with increases in absolute NAD+ 

concentrations (figure 3.3.D). Whereas pyocyanin effected a decrease when added in the 

micromolar range, nitrate did only when added at millimolar concentrations (data not 

shown). Together, these results suggested that NADH can act as a source of electrons for 

pyocyanin reduction.  
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Figure 3.3. Pyocyanin exposure effects redox balancing in stationary phase in a manner 
analogous to that of a known physiological electron acceptor.  
(A) Growth and pyocyanin production for wild-type P. aeruginosa PA14 grown aerobically in   
10 mL LB in 18×150 mM tubes. (B) NADH/NAD+ratios for cultures grown under the same 
conditions as those described in part (A). At 7 hours, pyocyanin production in the wild-type 
cultures was visible by eye. 45 µM (half the expected final concentration) was added to the Δphz 
cultures to be tested for complementation, and 15 mM KNO3 was added to cultures to be tested 
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for the effect of an additional electron acceptor. At 9 hours, pyocyanin in the wild-type cultures 
had increased to near-maximum concentrations, so a second dose of pyocyanin or KNO3 was 
added to the appropriate cultures, for final concentrations of 90 µM and 30 mM, respectively. 
Water was added to negative controls.  Eleven hours after inoculation, and 2 hours after the 
addition of the final dose of pyocyanin, NAD(H) was extracted and assayed for each culture.  
(C) NADH/NAD+ ratios for cultures treated as in part (B), but with varying concentrations of 
pyocyanin added. (D) NADH and NAD+ concentrations for cultures described in (B), normalized 
to OD (500 nm). Error bars represent the standard deviations of triplicate samples. OD, optical 
density. wt, wild-type. 
 

3.4.4. The Intracellular NADH/NAD+ Ratio is Influenced by the Relative Availability 

of Electron Donor and Acceptor 

Our observation that other electron acceptors, i.e., pyocyanin and nitrate, 

decreased the NADH/NAD+ ratio suggested that oxygen was limiting during stationary 

phase in our cultures. This could explain the accumulation of NADH 4 hours after the 

onset of stationary phase in the Δphz mutant (figure 3.3.B). To confirm this, we grew a 

batch culture of the Δphz mutant in a fermentor, which allowed us to control temperature 

and aeration while simultaneously measuring dissolved oxygen in the culture. We 

sampled at regular intervals to measure optical density and extract NAD(H). As 

predicted, oxygen levels decreased slowly until the culture reached mid- to late- 

exponential phase, at which time it plummeted to zero. This drop in oxygen correlated 

with an increase in the intracellular NADH/NAD+ ratio (figure 3.4.A). To test whether 

the drop in oxygen depended on the availability of electron donors for oxygen reduction, 

we repeated the experiment and added 20% of the glucose concentration added to the 

medium in the initial experiment (10 mM versus 50 mM). When less electron donor was 

available, the oxygen concentration decreased in mid-exponential phase, but never 

reached zero and rapidly increased again upon entry into stationary phase (figure 3.4.B). 

This culture never reached the same growth yield achieved by the culture containing 50 
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mM glucose, implying that the carbon source was the limiting factor that led it to enter 

stationary phase. The culture experienced oxygen limitation only transiently, if at all, due 

to the lower ratio of electron donor to electron acceptor in the experiment depicted in 

Figure 3.4.B compared to Figure 3.4.A. As a result, the NADH/NAD+ ratio never reached 

the high level observed for the culture containing excess glucose.  

Finally, we tested the wild-type strain in the presence of 50 mM glucose, and 

sampled for pyocyanin concentrations in addition to NAD(H) and cell density. The wild-

type strain also exhibited increased NADH/NAD+ ratios upon entry into stationary phase, 

and these ratios correlated with oxygen limitation. However, unlike the Δphz mutant, the 

wild type showed a decrease in intracellular NADH/NAD+ that correlated with the 

appearance of pyocyanin in the culture. These results further support the hypothesis that 

pyocyanin can act as an alternate oxidant under conditions where the terminal electron 

acceptor for respiration has become limiting. This interpretation derives from the large 

difference in NADH levels observed between the wild-type strain and Δphz after about 

12 hours of incubation, and the correlation between decreasing NADH levels and 

increasing pyocyanin concentrations in culture filtrates observed upon entry into 

stationary phase (figure 3.4.C).  
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Figure 3.4. NADH accumulates in stationary phase in cultures limited for oxygen and 
defective in pyocyanin production.  
P. aeruginosa wild type and Δphz cultures were grown in 1 L MOPS synthetic medium 
supplemented with either 50 or 10 mM glucose in a 3-L fermentor with constant aeration and 
agitation. Cultures were sampled at various points in the growth curve to allow measurement of 
the optical density (OD) at 500 nm and extraction of NAD(H). Relative dissolved oxygen 
concentrations were measured throughout growth using a polarographic oxygen electrode. OD 
(500 nm), dO2, and NADH/NAD+ are shown for (A), the Δphz mutant grown in medium 
containing 50 mM glucose, and (B) the Δphz mutant grown in medium containing 10 mM 
glucose. For (C), wild-type P. aeruginosa PA14 grown in medium containing 50 mM glucose, 
these parameters plus the concentration of pyocyanin produced by the culture are shown.  
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3.4.5. P. aeruginosa PA14 Excretes, and then Consumes, Pyruvate in Late 

Stationary Phase 

For fermentative organisms such as E. coli and Propionibacterium freudenreichii, 

the addition of the synthetic redox-cycling compound ferricyanide has been shown to 

alter carbon flux through central metabolic pathways. Particularly when the reoxidation 

of this compound is coupled to electron transfer to an electrode, ferricyanide shifted the 

fermentation balance away from ethanol and propionate, products that require NADH for 

their formation, toward acetate, a more oxidized product (Emde et al. 1989; Emde and 

Schink 1990). This implies that the ferricyanide acts as an electron shuttle from major 

pools of reductant inside the cell, such as NADH, to the electrode, thereby lessening the 

need for formation of more reduced fermentation products to dissipate cellular reductant. 

To determine whether pyocyanin could play a similar role in P. aeruginosa, we 

analyzed filtered culture supernatants for small organic acids that are known fermentation 

products of P. aeruginosa metabolism. P. aeruginosa has been shown to ferment 

pyruvate under energy-starved conditions, converting it to lactate, acetate, and/or 

succinate. The production of lactate or succinate from pyruvate requires NADH as a 

substrate, while the conversion of pyruvate to acetate requires NAD+ (Eschbach et al. 

2004). Therefore, the NADH/NAD+ ratio in the wild type would be more favorable for 

acetate production, whereas the NADH/NAD+ ratio in the Δphz mutant would favor 

production of lactate and succinate. 

Surprisingly, we observed a marked difference between the wild type and the 

Δphz mutant with respect to the production of pyruvate itself. In late stationary-phase 
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(about 30 hours after inoculation) after growth in a defined medium with 50 mM glucose, 

we observed pyruvate concentrations as high as 6 mM in wild-type culture filtrates (as 

indicated by a peak eluting at about 10.5 minutes), but were unable to detect any pyruvate 

in filtrates from Δphz mutant cultures. Adding pyocyanin to the Δphz mutant upon entry 

into stationary phase complemented the pyruvate excretion phenotype (figure 3.5), 

although incompletely because we added only about half the final concentration of 

pyocyanin produced by the wild type under these conditions (50 versus 100 µM). We 

also detected citrate, lactate and acetate in both wild-type and Δphz mutant culture 

filtrates at similar concentrations, eluting at ~9.1, 14.3 and 17.0 minutes, respectively. 

The peak eluting at 7.1 minutes was the MOPS buffer from the medium. We were unable 

to identify the compounds represented by the peaks eluting at approximately 7.3 minutes 

(wild-type filtrate only), and 9.9 and 12.2 minutes (both wild-type and Δphz mutant 

filtrates). Standards containing 2-oxoglutarate and malate were run with the same 

method, but did not co-elute with any of these peaks.  
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Figure 3.5. Wild-type P. aeruginosa PA14 excretes pyruvate in stationary phase, and 
addition of pyocyanin to Δphz mutant cultures restores the pyruvate excretion phenotype.  
Cultures were inoculated into MOPS synthetic medium amended with 50 mM glucose (initial OD 
(500 nm) = 0.03). To complement pyruvate excretion, 50 µM pyocyanin was added to the Δphz 
culture at the time when pyocyanin reached its maximum concentration in the wild-type cultures 
(approximately 12 hours after inoculation). 20 µl of culture filtrates at the 24-hour time point 
were loaded onto an anion exchange column and subjected to an isocratic gradient in 5 mM 
H2SO4. Pyruvate peaks are indicated by arrows. The elution time of pyruvate drifts slightly but 
averages around 10.5 minutes. Results shown are representative of three separate experiments. 
Other peak identities are described in the text. 

 

To better constrain the timing of metabolite excretion in the wild type and the 

Δphz mutant, we sampled every 4 hours from duplicate cultures over the course of 

approximately 30 hours in stationary phase (figure 3.6). Pyruvate appeared at detectable 

levels in wild-type cultures between 22 and 26 hours after inoculation, and had increased 

to ~5 mM after 38 hours. However, by the 42-hour time point, the pyruvate in both 

replicates had decreased to levels below the detection limit (~0.05 mM) (figure 3.6.C). 

Abiotic degradation of pyruvate generates a peak eluting at approximately 8 minutes, 

which does not co-elute with any of the peaks observed in traces from our culture filtrates 
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(data not shown). Therefore, the disappearance of the pyruvate peak at the 42-hour time 

point implied that it had been metabolized by the bacteria. 

Another phenotype that became apparent under these growth conditions was the 

reproducible difference in cell yields between wild-type and Δphz mutant cultures. The 

optical densities of wild-type cultures were typically lower than those of the Δphz mutant 

cultures in stationary phase, a phenotype that becomes more apparent when the optical 

density is plotted on a linear scale (figures 3.6.A and 3.6.B).  
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Figure 3.6. P. aeruginosa PA14 cultures consume excreted pyruvate in very late stationary 
phase.  
Duplicate cultures were inoculated at OD (500 nm) ~ 0.001 in MOPS synthetic medium amended 
with 50 mM glucose. Approximately every 4 hours, 100-200 µl culture were sampled and filtered 
for HPLC analysis as described for figure 3.4. (A), OD 500 for wild-type and Δphz cultures 
plotted on a logarithmic scale. (B), same data as in (A) plotted on a linear scale to show the lower 
growth yields consistently observed for wild-type PA14 under this condition. (C) Quantification 
of pyruvate production for the “wt 1” and “wt 2” cultures, and inset, chromatograms 
demonstrating the disappearance of pyruvate at 42 hours for the “wt 1” culture. The arrow 
indicates the elution time of the pyruvate peak. wt, wild type. 
 

3.4.6. Pyruvate Fermentation Facilitates Survival in Energy-Starved P. aeruginosa 

PA14 Cultures 

Recently, Schobert and colleagues have characterized genes implicated in a 

pyruvate fermentation pathway in P. aeruginosa strain PAO1 (Eschbach et al. 2004; 

Schreiber et al. 2006). In this pathway, pyruvate is converted by multiple enzymes to 

succinate, acetate, and/or lactate. We do not suspect that these reactions were responsible 

for the consumption of pyruvate in late stationary phase in our cultures, because these 

compounds are detectable by our analytical HPLC method, and we did not see their 

concentrations increase as pyruvate disappeared (data not shown). We therefore 

hypothesize that pyruvate was completely oxidized through the utilization of the small 

amount of oxygen available to the cells. However, in environments with steep gradients 

of electron acceptor availability, such as those encountered in surface-attached or 

aggregated bacterial communities, excreted pyruvate may be utilized for substrate-level 

phosphorylation when respiratory electron acceptors become limiting. To verify that P. 

aeruginosa strain PA14 can utilize pyruvate for survival under strict anaerobic 

conditions, we incubated the wild type and an ldhA mutant, defective in the ability to 

reduce pyruvate to lactate, in stoppered serum bottles containing buffered LB amended 
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with 20 mM pyruvate. As a control, we set up a wild-type culture with no pyruvate. We 

followed colony-forming units in samples from these cultures over more than three 

weeks, and found that, as had been previously reported for P. aeruginosa PAO1 

(Eschbach et al. 2004; Schreiber et al. 2006), a mutant with a disruption in the gene ldhA 

was defective in survival on pyruvate (figure 3.7). The decline of this mutant was similar 

to that of the wild-type culture containing no added pyruvate. P. aeruginosa PA14 is 

therefore also able to survive under conditions of energy starvation through utilization of 

a lactate dehydrogenase-dependent pathway for pyruvate fermentation. 
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Figure 3.7. Pyruvate fermentation facilitates survival under anaerobic conditions in P. 
aeruginosa PA14.  
Triplicate cultures of the wild type and ldhA::MAR2xT7 ΔexoU mutant were incubated in 
stoppered serum bottles containing phosphate-buffered LB medium amended with 20 mM 
pyruvate. At regular intervals, 100 µl of each culture were sampled with N2-flushed needles, 
diluted, and plated for colony-forming units. A single replicate of the wild type lacking pyruvate 
showed a similar survival defect as that observed for the ldhA mutant. Since the ldhA mutant 
utilized in this study also contains a deletion in the exoU gene, we have compared a transposon 
insertion mutant in exoU to the wild type and found that a defect in ExoU production does not 
affect the ability of P. aeruginosa PA14 to survive under pyruvate fermentation conditions (data 
not shown). tn, transposon MAR2xT7. pyr, pyruvate. 

 

3.5. Discussion 

In this study, we have characterized the effects of a stationary phase-specific 

metabolite on the carbon and energy metabolism of P. aeruginosa cultures. Metabolites 

formed in stationary phase historically have been categorized as products of “secondary” 

forms of metabolism that bear little relevance to energy generation. However, we have 

shown that the redox activity of pyocyanin, a phenazine produced after the exponential 
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phase of growth in batch cultures, affects the metabolic status of its producer. Bacteria 

such as the pseudomonads, with limited capacities for fermentation, are generally thought 

to depend on terminal electron acceptors, and on the function of their membrane-bound 

respiratory chains, for the ability to maintain a balanced intracellular redox state. The 

redox-balancing effect of pyocyanin may be particularly important in bacterial 

communities limited for oxygen, an electron acceptor whose uptake rate outpaces its 

diffusion rate through dense cultures of respiring bacteria (Sweet and Peterson 1978; Xu 

et al. 1998). 

As part of our characterization of the physiological effects of pyocyanin reduction 

in P. aeruginosa, we found that pyocyanin reductive activity in whole cells increases 

after entry into stationary phase and the appearance of phenazines in batch cultures 

(figure 3.2). While we cannot rule out that this increase is due merely to an increase in 

the concentration of the electron donor for this reaction, we know that pyocyanin induces 

expression of genes encoding multidrug efflux pumps and oxidoreductases that could be 

involved in the redox cycling of this compound (Dietrich et al. 2006). Such gene products 

may contribute to the observed increase in the pyocyanin reduction rate. We also found 

that pyocyanin exposure in stationary phase cultures decreases the intracellular 

NADH/NAD+ ratio (figure 3.3). The increase in the NADH/NAD+ ratio that we observe 

for a mutant defective in phenazine production correlates with oxygen limitation (figure 

3.4), and is relieved by the presence of pyocyanin (figure 3.3), suggesting that pyocyanin 

plays a role in redox balancing.  
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Given that the reduction of pyocyanin by NADH is a thermodynamically 

favorable reaction, one could attribute the observed inverse relationship between 

intracellular [NADH] and pyocyanin production (figure 3.4.C) to a model such as that 

shown in Figure 3.8. In this model, stationary-phase cells accumulate NADH as a 

consequence of oxygen limitation (figure 3.8.A), and transfer electrons to pyocyanin 

when it becomes available (figure 3.8.B). Pyocyanin can subsequently be reoxidized 

through abiotic electron transfer to oxygen.  Differences in central metabolism depending 

on the presence or absence of synthetic and environmental electron shuttles have been 

reported for fermentative bacteria (Benz et al. 1998; Emde et al. 1989; Emde and Schink 

1990), and apparently arise from the effects of extracellular electron shuttling on the 

intracellular redox state. If the mechanism of redox balancing depicted in Figure 3.8.B 

were operational, we might expect a phenazine-null mutant (lacking the naturally 

produced pseudomonad electron shuttle) to be defective in complete oxidation of its 

carbon source, since flux through the citric acid cycle would be inhibited by a relatively 

reduced NAD(H) pool. Instead, we observed that the wild-type strain appears to be 

affected in its ability to mineralize its carbon source, based on the excretion of pyruvate 

in late stationary phase (figures 3.5 and 3.6). This phenomenon thus suggests an 

alternative mechanism for lowering the NADH/NAD+ ratio, in which NADH 

accumulation is avoided in the wild type by excretion of pyruvate before it can enter the 

citric acid cycle and reduce NAD+ (figure 3.8.C). Because stationary-phase P. aeruginosa 

cells both catalyze pyocyanin reduction and excrete pyruvate, maintenance of redox 

homeostasis in stationary-phase P. aeruginosa PA14 could be due to a combination of the 

mechanisms shown in Figures 3.8.B and 3.8.C.  
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Figure 3.8. Model: Pyocyanin reduction allows P. aeruginosa PA14 to maintain redox 
homeostasis under oxygen-limited conditions.  
When sufficient oxygen is available for growth (A), the aerobic respiratory chain (“resp”) can 
catalyze the reoxidation of NADH. Under conditions in which terminal electron acceptors for 
respiration are limiting (B), P. aeruginosa can couple the reoxidation of NADH to the reduction 
of pyocyanin, either directly or through an enzyme-mediated reaction as represented by 
“pyocyanin red,” a putative phenazine reductase. The electrons could be transferred from 
pyocyanin to oxygen through an abiotic extracellular reaction. (C) Also under conditions of 
oxygen limitation, the NADH/NAD+ ratio could be balanced through inactivation of the pyruvate 
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dehydrogenase complex by pyocyanin. NAD+ reduction (and therefore NADH production) would 
be avoided because pyruvate would be excreted without further oxidation. 

 

Although pyruvate excretion has been observed in cultures of other bacteria, such 

as Aerobacter aerogenes and Photobacterium fischeri (since reclassified as Enterobacter 

and Vibrio, respectively), the mechanisms underlying its regulation have not been 

elucidated (Ruby and Nealson 1977; Webb 1968). An understanding of the pyruvate 

oxidation machinery in pseudomonads provides insight into the potential mechanisms 

whereby this reaction may be inhibited in pyocyanin-producing cells. The conversion of 

pyruvate to acetyl-CoA is catalyzed by pyruvate dehydrogenase, a large multienzyme 

complex prevalent during aerobic growth in bacteria and eukarya, though there is some 

evidence for its occurrence in archaea as well (Jolley et al. 2000). All pyruvate 

dehydrogenase multienzyme complexes require dihydrolipoamide, a cofactor which is 

covalently bound to the E2 subunit, to transfer an acyl group derived from pyruvate to 

coenzyme A (CoA) and produce acetyl-CoA. Dihydrolipoamide contains a disulfide bond 

that is broken and reformed during the three-step pyruvate decarboxylation and oxidation 

mechanism (Cronan et al. 2005; De Kok et al. 1998). The one-electron reduction of each 

suflhydryl group of the lipoamide cofactor on the E2 subunit, catalyzed by superoxide 

(Bunik and Sievers 2002; Tabatabaie et al. 1996), is thought to inactivate the enzyme. 

The generation of superoxide by pyocyanin, or even the formation of pyocyanin radical 

itself (Hassett et al. 1992), may therefore inhibit the pyruvate dehydrogenase complex, 

leading to accumulation of pyruvate.  
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Regardless of whether the excretion of pyruvate by wild-type P. aeruginosa 

results from an apparently toxic side reaction, it may be beneficial under pyocyanin-

producing conditions. Excreted pyruvate that remains in the immediate environment 

could potentially be accessed later during a “last gasp” under conditions of extreme 

energy starvation. While this scenario is unlikely to occur in the soil, where other 

microorganisms might consume the pyruvate before it was metabolized by the producer, 

it may be relevant for conditions encountered by P. aeruginosa during chronic infection 

of the lung. Individuals with chronic P. aeruginosa infections resulting from impaired 

lung function harbor monocultures of this bacterium at cell densities as high as 107 

CFU/g sputum (Lyczak et al. 2002). It is thought that bacteria in the lung cavity 

experience steep gradients of electron acceptor availability (Worlitzsch et al. 2002); 

therefore, the ability to reserve a pool of substrate or transfer it to an energy-starved 

neighbor may contribute to the ability of P. aeruginosa populations to persist throughout 

the lifetime of the individual host (Schreiber et al. 2006). Pseudomonad phenazines as 

well as other high cell-density signals have been detected in the sputum of chronically 

infected patients (Singh et al. 2000; Wilson et al. 1988). An interesting avenue for future 

research, therefore, its to determine whether the physiological effects of pyocyanin on P. 

aeruginosa contribute to its long-term survival during chronic colonization of the lung. 
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Chapter 4 

 

Identification and Characterization of Pseudomonas aeruginosa Mutants Defective 

in Pyocyanin Reduction 

 

4.1. Abstract 

Pseudomonas aeruginosa catalyzes electron transfer to its own, endogenous 

phenazine antibiotics. Using ferric citrate reduction as a proxy for phenazine reduction, 

we screened a Pseudomonas aeruginosa PA14 transposon insertion mutant library for 

defects in reduction of the blue phenazine pyocyanin. In addition to the expected hits in 

pyocyanin biosynthesis and regulation, this screen uncovered genes potentially involved 

in pyocyanin transport and reduction. Our findings suggest roles in pyocyanin redox 

cycling for two metabolic enzymes that have been well characterized in other organisms: 

the biosynthetic glycerol-3-phosphate dehydrogenase, and the cytochrome bc1 complex 

of the respiratory chain. Mutants lacking these enzymes retain approximately 50% of the 

wild-type level of pyocyanin reduction activity, while a double mutant lacking both 

enzymes retained less than 40% of the wild-type activity. The biosynthetic glycerol-3-

phosphate dehydrogenase of P. aeruginosa is involved in production of cytosolic 

reducing equivalents, a prerequisite for pyocyanin reduction. Ubiquinol:cytochrome c 

oxidoreductases have been implicated in phenazine redox toxicity in mammalian cells, 



 

 

78 

fungi, and nonpseudomonad bacteria; our findings extend this role to the reduction of 

pyocyanin in its producer. 

 

4.2. Introduction 

Biochemists and physiologists routinely exploit the biological reactivities of 

synthetic redox-active dyes, such as tetrazolium salts, viologens, and phenazines, in 

colorimetric assays for in vivo and in vitro reactions. Many bacteria excrete natural 

products that share the properties exhibited by these synthetic reagents. This is the case 

for the phenazine pigments, produced by some Pseudomonas strains as well as a diversity 

of other isolates (Mavrodi et al. 2006; Turner and Messenger 1986). Synthetic 

phenazines, such as phenazine methosulfate, phenazine ethosulfate, and neutral red, are 

used in biochemical and enzymatic assays, as well as electrochemical experiments that 

require a mediator to facilitate electron transfer between cells or enzymes and electrodes 

(Kobayashi and Tagawa 2004; Park and Zeikus 2000). The phenazines naturally 

produced by Pseudomonas aeruginosa have been shown to enhance electron transfer 

between bacteria and electrodes (Pham et al. 2008; Rabaey et al. 2005). Pseudomonad 

phenazines, like synthetic phenazines, have also been shown to catalyze the reduction of 

extracellular iron, increasing its bioavailability (Hernandez et al. 2004; McKinlay and 

Zeikus 2004; Wang and Newman 2008). This has reignited earlier speculation about the 

physiological relevance of these compounds in the producing organism (Friedheim 1931; 

Price-Whelan et al. 2006; Trutko et al. 1988).  
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The similarities between naturally produced and synthetic phenazines have been 

apparent for decades, and research attention has focused primarily on the toxicity of these 

compounds. However, the bacteria that produce these compounds do not appear to 

experience toxicity. They catalyze phenazine reduction and oxidation, but rather than 

suffering or merely tolerating these compounds, they appear to benefit from their 

presence under certain conditions (Dietrich et al. 2008; Maddula et al. 2006, 2008). 

Understanding the nature of redox reactions between phenazines and intracellular 

metabolites or enzymes of the producing organism may provide insight into the 

physiological roles of these compounds and the ability of these bacteria to survive in 

diverse environments. It may also allow us to better control persistent infections 

established by opportunistic pathogens such as P. aeruginosa (Lau et al. 2004a; Lau et al. 

2004b). We conducted a genetic screen to identify loci involved in the reduction of 

pyocyanin in P. aeruginosa PA14 and further characterized the roles of two enzymes—

the biosynthetic glycerol-3-phosphate dehydrogenase and the cytochrome bc1 complex of 

the respiratory chain—in contributing to redox homeostasis and pyocyanin reduction in 

this bacterium. 

 

4.3. Materials and Methods 

4.3.1. Bacterial Strains and Culture Conditions 

Strains and mutants that were used in this study are listed in Table 4.1. Plasmids  

and primers that were used are listed in Table 4.2. Bacteria were grown either in 

Lysogeny Broth (LB) or MOPS defined medium [50 mM morpholinepropanesulfonic 
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acid (MOPS, Sigma) at pH 7.2, 93 mM NH4Cl, 43 mM NaCl, 2.2 mM KH2PO4, 1mM 

MgSO4•7H2O, and 3.6 mM FeSO4•7H2O]. Twenty millimolar D-glucose was added to 

the MOPS-buffered medium as the sole carbon and energy source. Unless otherwise 

noted, cultures were grown in 10-mL volumes in 18 × 100 mm tubes and shaken 

vigorously at 250 rpm. Culture densities were followed at 500 nm in a Thermo 

Spectronic 20D+ or Beckman Coulter DU 800 spectrophotometer. Cultures with optical 

densities greater than 0.8 were diluted 1:10 in fresh medium to allow accurate 

measurements. For the purposes of this study, “early stationary phase” refers to cultures 

grown from an optical density of 0.01 for about 12-14 hours; this corresponds to an 

optical density of approximately 2.5 for the wild type. “Late stationary phase” refers to 

cultures grown for about 18-20 hours, corresponding to an optical density of 

approximately 3.5 for the wild type.  

E. coli WM3064 was grown on  LB amended with 0.3 mM diaminopimelic acid. 

For selection and maintenance of plasmid pUCP18 and derivatives in E. coli and P. 

aeruginosa, 100 and 300 µg/mL carbenicillin, respectively, was added to LB medium. 

Selection and maintenance of E. coli containing pSMV10 was carried out on 15 µg/mL 

gentamicin sulfate. P. aeruginosa exconjugants containing pSMV10 were selected on 

100 µg/mL gentamicin sulfate. Counterselection against pSMV10 was carried out on 1% 

tryptone, 0.5% yeast extract, 10% sucrose plates. 

Culture methods specific to the screen protocols are described in sections 4.3.2 

and 4.3.3. 
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Table 4.1. Strains and mutants used in this study 
(Rahme et al. 1995) 
 

Strain or mutant Genotype and/or description Source 

P. aeruginosa   

PA14 Wild type Rahme et al. 1995 

PA14  Δphz ΔphzA1-G1 ΔphzA2-G2 Dietrich et al. 2006 

PA14 gpsA::tn gpsA::MAR2XT7; GentR Liberati et al. 2006 

PA14 fbcC::tn fbcC::MAR2ST7; GentR Liberati et al. 2006 

PA14  ΔgpsA ΔgpsA This study 

PA14  ΔfbcC ΔfbcC This study 

PA14  Δphz ΔgpsA ΔphzA1-G1 ΔphzA2-G2 ΔgpsA This study 

PA14  Δphz ΔfbcC ΔphzA1-G1 ΔphzA2-G2 ΔfbcC This study 

PA14  ΔgpsA ΔfbcC ΔgpsA ΔfbcC This study 

PA14  Δphz ΔgpsA ΔfbcC ΔphzA1-G1 ΔphzA2-G2 ΔgpsA ΔfbcC This study 

E. coli   

UQ950 DH5a λ(pir); host for cloning Douglas Lies, Caltech 

WM3064 ΔdapA1341::[erm pir(wt)]; donor strain for 
conjugation 

William Metcalf, U. of 
Illinois 
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Table 4.2. Plasmids and primers used in this study. 
(Schweizer, 1991; West et al. 1994) 
 

Plasmid or primer Genotype or sequence and description source 

Plasmids   

pUCP18 broad host range vector for complementation; CbR Schweizer 
1991; West et 
al. 1994  

pAPW3 pUCP18 containing gpsA gene cloned into EcoRI/Acc65I 
site 

This study 

pAPW5 pUCP18 containing fbcC gene cloned into SmaI/XbaI site This study 

pSMV10 oriR6K mobRP4, sacB; GentR; mobilizable suicide vector Douglas Lies, 
Caltech 

pAPW6 pSMV10 containing 2-kb fusion PCR fragment for gpsA 
deletion, cloned into SpeI site 

This study 

pAPW7 pSMV10 containing 2-kb fusion PCR fragment for fbcC 
deletion, cloned into SpeI site 

This study 

Primers   

gpsA 1 cggcGAATTCcgggtgatgatgttgatca  

gpsA 2 cggcGGATCCtcggtttgtagtcattgcg  

PA4429 1 cggcCCCGGGtttgcaccgtcctgtattt  

PA4429 2 cggcTCTAGAgttgattgaagccatgga  

gpsA 1 5’ b GCGactagtCGGCATAGTCGTGGGC  

gpsA 1 3’  cccatccactaaatttaaataTCCACTGGCGGACCGC  

gpsA 2 5’ tatttaaatttagtggatgggCGATCCTCTTCGAAGGC  

gpsA 2 3’ GCGactagtGATGACGCTTTTCGCGC  

PA4429 1a cagcttgttgattgaagccaAGTGCAGCGAATTGCTTTTT  

PA4429 1b GCGactagtGGCTGGATCATTCGCTACAT  

PA4429 2a GCGactagtCGCTGGAATGTACAGGCTCT  

PA4429 2b aaaaagcaattcgctgcactTGGCTTCAATCAACAAGCTG  
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4.3.2. Primary Screen for Ferric Citrate Reduction in P. aeruginosa PA14 

Cultures were inoculated from frozen glycerol stocks of the nonredundant P. 

aeruginosa PA14 transposon insertion mutant library (the PA14 NR Set; prepared as 

described in Liberati et al. (2006) into deep-well microtiter plates containing 500 µl LB 

per well. The deep-well plate was covered with gas-permeable film and incubated 

overnight at 37 °C with shaking at 250 rpm. After approximately 16 hours of incubation, 

the plate was moved into an anaerobic chamber containing a 95% nitrogen/5% hydrogen 

atmosphere. One hundred microliters of ferric citrate solution (80 mM citrate, 40 mM 

Fe(III), and 100 mM MOPS, pH~6.0) were added to each well, and the plate was 

incubated in the dark at room temperature in the chamber. After one hour, 100 µl of 

culture-ferric citrate mix were transferred to a microtiter plate containing 100 µl of 

FerroZine reagent (50% ammonium acetate, 0.1% FerroZine (SIGMA# P9762)) per well. 

FerroZine selectively binds ferrous iron, produced in our system by the abiotic reaction of 

reduced phenazine with ferric citrate. This plate was incubated in the chamber for 10 

minutes, then removed and transferred to a plate reader for measurement of absorbance at 

570 nm, the absorbance maximum for the Fe(II)-FerroZine complex. 

We found that some plates exhibited a high degree of variability in growth and 

ferric citrate reduction when inoculated directly from frozen stocks. Cultures from these 

plates were grown overnight to stationary phase, then used to inoculate fresh deep-well 

plates that were also incubated for approximately 16 hours. These cultures had very high 

ferric citrate reduction activity, probably because they had grown to a higher density and 

produced more pyocyanin due to inoculation from a stationary-phase culture. For these 
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plates, the ferric citrate incubation time was adjusted to two minutes to allow FerroZine 

assay measurements. 

 

4.3.3. Secondary Screen for Ferric Citrate Reduction, Growth, and Pyocyanin 

Production in Selected Mutants 

 Each of the mutants selected for the secondary screen were picked from glycerol 

stocks and streaked onto LB miniplates containing 60 µg/mL gentamicin sulfate and 

incubated overnight at 37 °C. Three individual colonies were picked from each plate and 

used to inoculate wells of a deep-well plate containing 500 µl LB. Each deep-well plate 

was also inoculated in triplicate with wild-type and Δphz mutant colonies. Plates were 

incubated as described for the primary screen and used to generate glycerol stocks for 

storage. These stocks were later used to inoculate deep-well plates and incubated as 

described for the primary screen. Stationary-phase overnight cultures were used to 

inoculate fresh cultures. The next day, 10 µl from each culture were transferred to a 

microtiter plate containing 90 µl LB per well for a measurement of optical density at  

500 nm (representing growth). Cultures were tested using the FerroZine assay after 5 

minutes of incubation with ferric citrate. The deep-well plates were then covered with an 

impermeable seal and centrifuged for 10 minutes at 8000 × g. Two hundred microliters of 

supernatant were transferred to a microtiter plate and absorbance spectra from 200 to 800 

nm were read for each culture. The absorbance spectra taken for our culture supernatants 

were affected by the presence of LB and ferric citrate, which contribute absorbance at 

690 nm. Therefore, our pyocyanin absorbance values represent relative rather than 
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absolute amounts. The background contributed by the ferric citrate and LB at 690 nm can 

be observed in the absorbance value for the Δphz mutant (figure 4.2). 

 

4.3.4. Complementation with gpsA and fbcC Genes in trans 

To clone gpsA, primers were designed using the P. aeruginosa PA14 genome 

sequence to anneal 645 base pairs upstream of gpsA and to the last 30 bases of 

PA14_43620, yielding a PCR product including the putative operon containing gpsA and 

a putative promoter region. The amplified DNA was digested using the restriction sites 

EcoRI, which was engineered within primer gpsA 1, and Acc65I, which was internal to 

the operon (in the putative ORF PA14_43630). The EcoRI/Acc65I fragment was ligated 

into plasmid pUCP18 digested with the same restriction enzymes and treated with calf 

intestinal phosphatase (Sigma). The resulting plasmid, pAPW3, contains the ~1 kb gpsA 

gene, a 645 base pair upstream “promoter” region, and 215 base pairs of ORF 

PA14_43630.  

A DNA fragment containing the gene fbcC was amplified from P. aeruginosa 

PA14 genomic DNA using primers PA4429 1 and PA4429 2, which anneal 94 base pairs 

upstream of fbcC and 100 base pairs downstream from the end of fbcC and contain 

restriction sites for SmaI and XbaI, respectively.  The PCR product was digested using 

these enzymes and ligated into plasmid pUCP18. The resulting plasmid, pAPW5, 

contains the ~0.8 kb fbcC gene. 



 

 

86 

For plasmids pAPW3 and pAPW5, cloning was carried out in E. coli UQ950 by 

standard procedures (Ausubel et al. 1992) and constructs were electroporated into P. 

aeruginosa PA14 as described previously (Bloemberg et al. 1997). 

 

4.3.5. Preparation of Pyocyanin for Reduction Assays 

Concentrated pyocyanin stocks were prepared as described previously (Price-

Whelan et al. 2007). Briefly, supernatants from LB-grown cultures of the pyocyanin 

overproducing mutant DKN370 were extracted with chloroform. The chloroform was 

then extracted against 0.01 M HCl, which protonates the pyocyanin, turning it a shade of 

fuchsia. One molar NaOH was added drop wise to the aqueous fraction until it turned 

blue, and the pyocyanin was extracted back into chloroform. Water was removed from 

the hydrophobic phase by addition of sodium sulfate. The liquid was transferred to a new 

flask and dried using a rotary evaporator. The resulting blue solid was redissolved in 

MOPS buffer (MOPS defined medium without the glucose, FeSO4, or MgSO4 added) and 

filtered (0.2 µm).  

 

4.3.6. Cell Suspension Assay for Pyocyanin Reduction 

Cultures of wild-type PA14 and various mutants were grown to stationary phase. 

Cell density was measured by optical density (OD) at 500 nm, and cultures were diluted 

in filtered supernatant from wild-type cultures to normalize the cell density to an OD500 

of 0.6. In cases where pyocyanin concentrations were affected by this dilution, 

concentrated pyocyanin prepared as in section 4.3.5 was added to normalize. Cell 
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suspensions were moved into an anaerobic chamber, transferred to anaerobic cuvettes, 

and stoppered to ensure an oxygen-free headspace. Absorbance spectra (400-800 nm) 

were followed over time for each cell suspension, and disappearance of a broad peak at 

690 nm, representing pyocyanin reduction, was observed. 

 

4.3.7. Construction of gpsA and fbcC Unmarked Deletions 

Unmarked deletions of gpsA (PA14_43640) and fbcC (PA14_57540) were 

generated according to the method described in Dietrich et al. (2006). For example, for 

the gpsA deletion,  ~1-kb regions flanking the  5’ and 3’ ends of the gene were amplified 

using primer pairs 1 (gpsA 1 5’b/ gpsA 1 3’) and 2 (gpsA 2 5’/ gpsA 2 3’), respectively. 

These flanking DNA fragments were mixed as the template for overlap extension PCR, 

resulting in the gpsA deletion construct. This product was cloned into the SpeI site of the 

mobilizable plasmid pSMV10, which contains (1) an oriR6K origin of replication, 

allowing propagation in E. coli λpir strains, (2) a gentamicin resistance gene (aacC1), 

and (3) the sacB gene, which allows for counterselection on 10% sucrose plates. The 

resulting plasmid, pAPW6, was transformed into E. coli WM3064 and mobilized into P. 

aeruginosa PA14 by biparental conjugation. Selection on gentamicin gave rise to 

merodiploids (containing the intact gpsA gene and the deletion construct) that were 

picked into LB liquid cultures and grown to early exponential phase, then plated on 10% 

sucrose plates. Colonies on sucrose plates were tested for the presence or absence of the 

wild-type allele by PCR.  
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4.3.8. Extraction and Quantification of NADH and NAD+ from P. aeruginosa 

Cultures 

Extraction and quantification of NADH and NAD+ was carried out as described in 

Price-Whelan et al. (2007) , according to the method of San et al. (2002). Cultures of 

wild-type PA14 and various mutants were grown to stationary phase. Two × 1 mL of 

culture were sampled into two separate microcentrifuge tubes and centrifuged at 16,000 

rcf for 1 minute. Supernatant was removed and pellets were resuspended in 300 µl of 0.2 

M NaOH (for NADH extraction) or 0.2 M HCl (for NAD+ extraction). These lysates 

were incubated for 10 minutes at 50 °C, then for 10 minutes on ice. While vortexing, 300 

µl of 0.1 M HCl (for NADH) or 0.1 M NaOH (for NAD+) were added dropwise to 

neutralize the solutions. They were then centrifuged for 3 minutes at 16,000 rcf. 

Supernatants were removed to fresh tubes and stored at −80 °C until quantification. 

Relative NADH and NAD+ were quantified using a modification (San et al. 2002) 

of the enzyme cycling assay developed by Bernofsky and Swan (1973). A master reagent 

mix was prepared with 1× Bicine buffer (2.0 M, pH 8.0), 8× water, 1× 80 mM EDTA, 2× 

100% EtOH, 2× 4.2 mM thiazolyl blue (MTT), and 4× 16.6 mM phenazine ethosulfate. 

The reagent mix was warmed to 30 °C, then 90-µl aliquots were dispensed into individual 

wells of a 96-well microtiter plate. Five microliters of standard or sample were added to 

each well, then the cycling reaction was started by the addition of 5 µl of alcohol 

dehydrogenase (Sigma #A-3263) prepared at 347 units/mL in 0.1 M Bicine (pH 8.0). The 

microtiter plate was incubated at 30 °C, mixed by brief shaking, and read every 30-60 

seconds for absorbance at 570 nm, which is the spectral peak of MTT that increases upon 



 

 

89 

reduction. Slopes arising from plots of absorbance at 570 nm over time were generated 

for NADH and NAD+ standards as well as all samples.  

 

4.4. Results 

4.4.1. Identification of P. aeruginosa Mutants Defective in Pyocyanin Dependent 

Reduction of Ferric Citrate 

Using ferric citrate reduction as a proxy for phenazine reduction (figure 4.1.A), 

we designed a genetic screen to identify P. aeruginosa enzymes involved in this process. 

We performed a pilot experiment to develop the screen protocol and assess the specificity 

of our ferric citrate reduction assay for P. aeruginosa phenazines. We grew cultures of 

wild-type P. aeruginosa PA14 and mutants with defects in various steps of the phenazine 

biosynthetic pathway. These included the Δphz mutant (Dietrich et al. 2006), lacking 

genes required for biosynthesis of phenazine-1-carboxylate (PCA), the precursor for all 

pseudomonad phenazines; as well as transposon insertion mutants in the genes phzM and 

phzS from the P. aeruginosa PA14 nonredundant library (Liberati et al. 2006). The phzM 

and phzS mutants cannot produce the blue phenazine pyocyanin but can still make other 

phenazine derivatives through modification of PCA (Mavrodi et al. 2001). We found that 

pyocyanin was the only phenazine that contributed to ferric citrate reduction under our 

conditions (figure 4.1.B).  

Using the conditions described above, we screened the entire P. aeruginosa PA14 

transposon insertion mutant library (Liberati et al. 2006) for pyocyanin reduction. For 

experiments with cultures from the library, we measured ferrous iron at only one time 
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point, after an hour of incubation with ferric citrate. We predicted that our screen would 

reveal defects in pyocyanin-dependent ferric citrate reduction for mutants with 

transposon insertions in several classes of genes, including: (1) those involved in 

pyocyanin biosynthesis or the regulation thereof; (2) genes required for pyocyanin 

transport across the cell membrane; and (3) those encoding enzymes that directly catalyze 

pyocyanin reduction. We identified 215 mutants with defects in pyocyanin-dependent 

ferric citrate reduction. These mutants are listed according to functional category in Table 

4.3, with mutants further characterized through a secondary screen segregated into 

separate sections. Sections 1 and 2 in the table contain mutants tested in the secondary 

screen and are discussed below (section 4.4.2 of this chapter). 

We hit 16 loci representing genes involved in the regulation of pyocyanin 

biosynthesis, e.g., quorum sensing-related genes, and pyocyanin biosynthesis. These hits 

validated our method and are listed in Section 3 (table 4.3). Section 4 contains 12 mutants 

with transposon insertions disrupting genes putatively involved in transport. These gene 

products may be directly involved in phenazine transport, or in the maintenance of a 

solute gradient that favors phenazine transport. We identified 17 new genes putatively 

involved in the regulation of phenazine biosynthesis or other aspects of pyocyanin 

reduction—these are listed in Section 5. Thirty-five of the mutants identified in the 

primary screen represent uncharacterized genes with hypothetical protein products 

(section 6). We hit 11 genes that are involved in pilus or flagellum biosynthesis or 

chemotaxis and we suspect that these mutants appeared defective due to an inability to 

access substrate (section 7). Section 8 contains 34 mutants with disruptions in genes that 

play roles in cell division, DNA maintenance, RNA turnover, or protein turnover, 
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processes that may lead to growth defects in many cases. Finally, section 9 contains 23 

uncategorized mutants with transposon insertions in gene products with no obvious role 

in pyocyanin reduction, either because the product already serves a known, dedicated 

function, or because its putative function appears unrelated to pyocyanin redox cycling. 

This section also includes 10 mutants that represent uncharacterized intergenic regions of 

the PA14 genome. 

 

 
 
Figure 4.1. Ferric citrate reduction as a proxy for pyocyanin reduction in P. aeruginosa.  
A) Scheme illustrating pyocyanin-dependent ferric citrate reduction in P. aeruginosa and 
detection by the FerroZine reagent. B) P. aeruginosa phenazines other than pyocyanin, which are 
present in cultures of the phzM and phzS transposon insertion mutants, do not contribute to ferric 
citrate reduction under the conditions utilized for the screen. This experiment was performed with 
biological triplicates; representative data are shown.  
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Table 4.3. Tranposon insertion mutants defective in pyocyanin-dependent ferric citrate 
reduction 
References relevant to annotation or phenotypes are listed for sections 1-3 (Chugani et al. 2001; 
Clark et al. 1980; Conolly and Winkler 1991; Daldal et al. 1989; Deziel et al. 2004; Evans and 
Dennis 1985; Gallagher et al. 2002; Ismail et al. 2003; Nielsen et al. 1981; Potter et al. 1987; 
Romero and Karp 2003; Vlamis-Gardikas 2008; Whiteley et al. 1999; Williams et al. 2007; Wood 
and Ohman 2006). FC, ferric citrate; GD, growth defect; PD, pyocyanin defect. 
PA14 ORF PAO1 

homo-
logue 

gene 
name 

annotation mutant 
ID 

phenotype/ 
functional 
role 

Reference 

Section 1: Mutants identified in secondary screen specifically defective in ferric citrate reduction (4) 

PA14_43640 PA1614 gpsA glycerol-3-phosphate 
dehydrogenase, 
biosynthetic 

26405 FC reduction 
defect 

Clark 1980 

PA14_57540 PA4429 fbcC putative cytochrome c1 
precursor 

35524 FC reduction 
defect 

Daldal 1989 

PA14_57560 PA4430 fbcB putative cytochrome b 30412 FC reduction 
defect 

Daldal 1989 

PA14_57570 PA4431 fbcF putative cytochrome c 
reductase, iron-sulfur 
subunit 

54834 FC reduction 
defect 

Daldal 1989 

 
Section 2: Mutants tested in secondary screen with other defects (63) 

PA14_22910 PA3194 edd 6-phosphogluconate 
dehydratase 

55842 GD; central 
metabolism 

Romero 
2003 

PA14_23090 PA3181 eda 2-keto-3-deoxy-6-
phosphogluconate aldolase 

41014 GD; central 
metabolism 

Romero 
2003 

PA14_44070 PA1580 gltA citrate synthase 34537 GD; central 
metabolism 

Romero 
2003 

PA14_66290 PA5015 aceA pyruvate dehydrogenase, 
E1 component 

39618 GD; central 
metabolism 

Romero 
2003 

PA14_62830 PA4748 tpiA triosephosphate isomerase 55256 PD; central 
metabolism 

Romero 
2003 

PA14_61400 PA4640 mqoB malate:quinone 
oxidoreductase 

39630 slight PD; 
central 
metabolism 

Romero 
2003 

PA14_70040 PA5304 dadA D-amino acid 
dehydrogenase, small 
subunit 

38569 PD; energy 
metabolism 

Williams 
2007 

PA14_54170 PA0782 putA proline dehydrogenase 
PutA 

46410 slight PD; 
energy 
metabolism 

Williams 
2007 

PA14_13040 PA3929 cioB cyanide insensitive 
terminal oxidase CioB 

48456 oxygen 
reduction 

Williams 
2007 
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defect; energy 
metabolism 

PA14_73310 PA5560 atpB ATP synthase A chain 38520 slight PD; 
oxidative 
phosphory-
lation 

Nielsen 
1981 

PA14_05310 PA0407 gshB glutathione synthetase 42799 GD; redox 
homeostasis 

Vlamis-
Gardikas 
2008 

PA14_68730 PA5203 gshA glutamate--cysteine ligase 42600 slight PD; 
redox 
homeostasis 

Vlamis-
Gardikas 
2008 

PA14_53290 PA0849 trxB2  thioredoxin reductase 2 56384 GD; redox 
homeostasis 

Vlamis-
Gardikas 
2008 

PA14_72450 PA5489 dsbA thiol:disulfide interchange 
protein DsbA 

36207 GD; redox 
homeostasis 

Vlamis-
Gardikas 
2008 

PA14_51240 PA1013 purC phosphoribosylaminoimid-
azole-succinocarboxamide 
synthase 

34993 GD; purine 
biosynthesis 

Romero 
2003 

PA14_64220 PA4855 purD phosphoribosylamine--
glycine ligase 

29794 GD; purine 
biosynthesis 

Romero 
2003 

PA14_71620 PA5426 purE phosphoribosylaminoimid-
azole carboxylase, catalytic 
subunit 

22699 GD; purine 
biosynthesis 

Romero 
2003 

PA14_64200 PA4854 purH phosphoribosylaminoimid-
azolecarboxamide 
transferase 

46986 GD; purine 
biosynthesis 

Romero 
2003 

PA14_71600 PA5425 purK phosphoribosylaminoimid-
azole carboxylase 

570 GD; purine 
biosynthesis 

Romero 
2003 

PA14_15740 PA3763 purL phosphoribosylformylgly-
cinamidine synthase 

29716 GD; purine 
biosynthesis 

Romero 
2003 

PA14_70370 PA5331 pyrE orotate 
phosphoribosyltransferase 

28409 GD; 
pyrimidine 
biosynthesis 

Romero 
2003 

PA14_70370 PA5331 pyrE orotate 
phosphoribosyltransferase 

46326 replicate Romero 
2003 

PA14_62910 PA4756 carB carbamoylphosphate 
synthetase large subunit 

32277 GD; 
pyrimidine 
biosynthesis 

Romero 
2003 

PA14_54290 PA0773 pdxJ pyridoxal phosphate 
biosynthetic protein PdxJ 

53798 GD; pyridoxal 
phosphate 
biosynthesis 

Romero 
2003 

PA14_07740 PA0593 pdxA pyridoxal phosphate 29841 GD; pyridoxal Romero 
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biosynthetic protein PdxA phosphate 
biosynthesis 

2003 

PA14_07740 PA0593 pdxA pyridoxal phosphate 
biosynthetic protein PdxA 

40435 replicate  

PA14_52580 PA0904 lysC aspartate kinase alpha and 
beta chain 

40436 GD; amino 
acid 
biosynthesis 

Romero 
2003 

PA14_23290 PA3165 hisC2 histidinol-phosphate 
aminotransferase 

56832 PD; amino 
acid 
biosynthesis 

Romero 
2003 

PA14_42230 PA1726 bglX periplasmic beta-
glucosidase 

5084 GD; 
catabolism 

Romero 
2003 

PA14_05620 PA0432 sahH S-adenosyl-L-
homocysteine hydrolase 

54793 PD; amino 
acid 
metabolism 

Romero 
2003 

PA14_05620 PA0432 sahH S-adenosyl-L-
homocysteine hydrolase 

56708 replicate  

PA14_62710 PA4740 pnp polyribonucleotide 
nucleotidyltransferase 

53333 PD Evans 1985 

PA14_62710 PA4740 pnp polyribonucleotide 
nucleotidyltransferase 

31610 replicate  

PA14_65320 PA4945 miaA delta 2-
isopentenylpyrophosphate 
transferase 

46697 PD Connolly 
1991  

PA14_27960 PA2796 tal transaldolase 31467 slight PD; 
central 
metabolism 

 

PA14_27960 PA2796 tal transaldolase 33464 replicate  

PA14_66600 PA5038 aroB 3-dehydroquinate synthase 42535 PD Romero 
2003 

PA14_66600 PA5038 aroB 3-dehydroquinate synthase 38358 replicate  

PA14_54390 PA0766 mucD serine protease MucD 
precursor 

35930 GD; alginate 
production 

Wood 2006 

PA14_54390 PA0766 mucD serine protease MucD 
precursor 

41549 replicate  

PA14_51440 PA0995 ogt  methylated-DNA-protein-
cysteine methyltransferase 

52740 PD Potter 1987 

PA14_68580 PA5192 pckA phosphoenolpyruvate 
carboxykinase 

41904 PD; central 
metabolism 

Romero 
2003 

PA14_68580 PA5192 pckA phosphoenolpyruvate 
carboxykinase 

52736 replicate  

PA14_07700 PA0590 apaH bis(5'-nucleosyl)-
tetraphosphatase 

36226 GD; 
dinucleoside 

Ismail 2003 
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polyphosphate  
metabolism 

PA14_04390 PA0336 ygdP dinucleoside 
polyphosphate hydrolase 

25921 slight PD; 
dinucleoside 
polyphosphate  
metabolism 

Ismail 2003 

PA14_50980 PA1032   probable penicillin 
amidase 

6114 PD  

PA14_61220 PA4627   putative ribosomal RNA 
small subunit 
methyltransferase C 

42280 PD  

PA14_61680 PA4664   putative methyltransferase 38864 PD  

PA14_65670 PA4968   putative esterase 25955 PD  

PA14_67970 PA5145   putative dehydrogenase 25699 PD  

PA14_29290 PA2693   putative long-chain acyl-
CoA thioester hydrolase 

55151 slight PD  

PA14_11250 PA4069   putative dTDP-4-rhamnose 
reductase-related protein 

40221 GD  

PA14_07600 PA0583   putative 2-amino-4-
hydroxy-6-
hydroxymethyldihydropter
idine pyrophosphokinase 

32431 GD  

PA14_49280 PA1171   probable transglycolase 31338 GD  

PA14_10260 PA4150   putative acetoin 
dehydrogenase E1 
component 

29150 GD  

PA14_20960 PA3332   putative isomerase 29854 GD  

PA14_05250 PA0401   noncatalytic 
dihydroorotase-like protein 

41761 GD  

PA14_44420 PA1551   putative ferredoxin 38975 slight GD  

PA14_48610 PA1214   putative asparagine 
synthase 

31864 slight GD  

PA14_68670 PA5198   putative carboxypeptidase 6442 GD  

PA14_12400 PA3976   thiamin-phosphate 
pyrophosphorylase 

41228 PD  

PA14_23310 PA3164   prephenate dehydrogenase 54211 PD  

PA14_28250     putative secreted acid 
phosphatase 

33463 PD  

Section 3: Mutants with defects in quorum sensing and phenazine biosynthesis (16) 

PA14_09400 PA4217 phzS flavin-containing 
monooxygenase PhzS 

44099 pyocyanin 
biosynthesis 

Mavrodi 
2001 
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PA14_09460 PA4212 phzC1 phenazine biosynthesis 
protein PhzC 

34606 pyocyanin 
biosynthesis 

Mavrodi 
2001 

PA14_09490 PA4209 phzM probable phenazine-
specific methyltransferase 
PhzM 

40343 pyocyanin 
biosynthesis 

Mavrodi 
2001 

PA14_39960 PA1900 phzB2 probable phenazine 
biosynthesis protein PhzB 

48282 pyocyanin 
biosynthesis 

Mavrodi 
2001 

PA14_19120 PA3477 rhlR acylhomoserine lactone 
dependent transcriptional 
regulator RhlR 

37943 QS signaling 
network 

Whiteley 
1999 

PA14_19130 PA3476 rhlI autoinducer synthesis 
protein RhlI 

33961 QS signaling 
network 

Whiteley 
1999 

PA14_51430 PA0996 pqsA probable coenzyme A 
ligase 

23621 QS signaling 
network 

Deziel 2004 

PA14_51410 PA0998 pqsC homologous to beta-keto-
acyl-acyl-carrier protein 
synthase 

32423 QS signaling 
network 

Deziel 2004 

PA14_51380 PA1000 pqsE quinolone signal response 
protein 

45262 QS signaling 
network 

Deziel 2004 

PA14_30630 PA2587 pqsH putative FAD-dependent 
monooxygenase PqsH 

47950 QS signaling 
network 

Deziel 2004 

PA14_39980 PA1898 qscR probable transcriptional 
regulator 

42798 QS signaling 
network 

Chugani 
2001 

PA14_51350 PA1002 phnB anthranilate synthase 
component II 

35669 QS signaling 
network 

Deziel 2004 

PA14_30650 PA2586 gacA response regulator GacA 34781 QS signaling 
network 

Gallagher 
2002 

PA14_62490 PA4723 dksA suppressor protein DksA 41617 regulation; PD 
expected 

Gallagher 
2002 

PA14_72560 PA5499 np20 transcriptional regulator 
np20 

42601 regulation; PD 
expected 

Gallagher 
2002 

PA14_62530 PA4725 cbrA two-component sensor 
CbrA 

57211 regulation; PD 
expected 

Gallagher 
2002 

Section 4: Mutants representing genes potentially involved in phenazine transport (12) 

PA14_41570 PA1777 oprF major porin and structural 
outer membrane porin 
OprF precursor 

23102 transport  

PA14_12300 PA3983   Putative Mg2+ and Co2+ 
transporter CorC 

25649 transport  

PA14_16890 PA3670   putative auxiliary 
component of ABC 
transporter 

54565 transport  

PA14_22350 PA3234   putative 45582 transport  
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sodium/proline:solute 
symporter 

PA14_34770 PA2309   putative ABC transporter, 
periplasmic binding 
protein 

36007 transport  

PA14_36230 PA2202   putative amino acid 
transport system permease 

56596 transport  

PA14_55770 PA4292   probable phosphate 
transporter 

26038 transport  

PA14_56470 PA4343   putative MFS transporter 57139 transport  

PA14_56890 PA4375   putative RND efflux 
transporter 

43547 transport  

PA14_58420 PA4502   putative binding protein 
component of ABC-type 
dipeptide trasnport system 

44163 transport  

PA14_67630 PA5121   putative small-conductance 
mechanosensitive channel 

30568 transport  

PA14_59860     candidate type III effector 
Hop protein 

23298 transport  

Section 5: Mutants with transposon insertions in regulatory and putative regulatory genes (17) 

PA14_72970 PA5531 tonB periplasmic protein tonB 32482 regulation  

PA14_61850 PA4675   putative TonB-dependent 
receptor 

38150 regulation  

PA14_70390 PA5332 crc catabolite repression 
control protein 

44185 regulation  

PA14_17900 PA3587 metR transcriptional regulator 
MetR 

46982 regulation  

PA14_59770   rcsB two-component response 
regulator 

42212 regulation  

PA14_67560 PA5117 typA GTP-binding protein 
TypA/BipA 

37710 regulation  

PA14_69810 PA5288 glnK nitrogen regulatory protein 
PII 

33817 regulation   

PA14_03580 PA0275   putative transcriptional 
regulator 

54298 regulation  

PA14_46850 PA1347   putative transcriptional 
regulator 

30276 regulation  

PA14_52260 PA0928   sensor/response regulator 
hybrid 

42741 regulation  

PA14_27400 PA2838   putative ranscriptional 
regulator, LysR family 

30582 regulation  

PA14_27950 PA2797   putative anti-anti-sigma 44818 regulation  
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factor 

PA14_41260 PA1799   putative two-component 
response regulator 

55775 regulation  

PA14_63210 PA4781   putative two-component 
response regulator 

55086 regulation  

PA14_70530 PA5342   putative AraC-family 
transcriptional regulator 

29156 regulation  

PA14_70560 PA5344   putative transcriptional 
regulator, LysR family 

54029 regulation  

PA14_72390 PA5484   putative two-component 
sensor 

35639 regulation  

Section 6: Mutants with transposon insertions in hypothetical proteins (35) 

PA14_04430 PA0339   conserved hypothetical 
protein 

4850 hypothetical 
protein 

 

PA14_07500 PA0575   conserved hypothetical 
protein 

38814 hypothetical 
protein 

 

PA14_07660 PA0587   conserved hypothetical 
protein 

36345 hypothetical 
protein 

 

PA14_12030 PA4005   conserved hypothetical 
protein 

23465 hypothetical 
protein 

 

PA14_12350 PA3980   conserved hypothetical 
protein 

56619 hypothetical 
protein 

 

PA14_13350 PA3908   hypothetical protein 42104 hypothetical 
protein 

 

PA14_21210 PA3310   conserved hypothetical 
protein 

56991 hypothetical 
protein 

 

PA14_25050 PA3016   conserved hypothetical 
protein 

33019 hypothetical 
protein 

 

PA14_25100 PA3012   conserved hypothetical 
protein 

41384 hypothetical 
protein 

 

PA14_25620 PA2971   conserved hypothetical 
protein 

34098 hypothetical 
protein 

 

PA14_32440 PA2490   conserved hypothetical 
protein 

42833 hypothetical 
protein 

 

PA14_33290 PA2423   hypothetical protein 25793 hypothetical 
protein 

 

PA14_40630 PA1847   conserved hypothetical 
protein 

30791 hypothetical 
protein 

 

PA14_43310 PA1639   conserved hypothetical 
protein 

31482 hypothetical 
protein 

 

PA14_45710 PA1450   conserved hypothetical 
protein 

37135 hypothetical 
protein 
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PA14_46080 PA1420   conserved hypothetical 
protein 

53031 hypothetical 
protein 

 

PA14_46720 PA1358   conserved hypothetical 
protein 

43400 hypothetical 
protein 

 

PA14_46840 PA1348   conserved hypothetical 
protein 

47948 hypothetical 
protein 

 

PA14_46900 PA1343   hypothetical protein 44264 hypothetical 
protein 

 

PA14_49320 PA1167   hypothetical protein 30058 hypothetical 
protein 

 

PA14_49930 PA1116   conserved hypothetical 
protein 

27355 hypothetical 
protein 

 

PA14_50250 PA1095   hypothetical protein 15779 hypothetical 
protein 

 

PA14_53980 PA0793   conserved hypothetical 
protein 

38302 hypothetical 
protein 

 

PA14_54340 PA0769   hypothetical protein 39775 hypothetical 
protein 

 

PA14_56130 PA4320   hypothetical protein 41647 hypothetical 
protein 

 

PA14_56180 PA4324   conserved hypothetical 
protein 

27409 hypothetical 
protein 

 

PA14_57690 PA4441   conserved hypothetical 
protein 

23324 hypothetical 
protein 

 

PA14_60870 PA4601   conserved hypothetical 
protein 

26307 hypothetical 
protein 

 

PA14_64170 PA4851   conserved hypothetical 
protein 

45918 hypothetical 
protein 

 

PA14_67540 PA5115   conserved hypothetical 
protein 

45365 hypothetical 
protein 

 

PA14_72370 PA5482   conserved hypothetical 
protein 

27725 hypothetical 
protein 

 

PA14_03370     conserved hypothetical 
protein 

33623 hypothetical 
protein 

 

PA14_15600     conserved hypothetical 
protein 

29758 hypothetical 
protein 

 

PA14_59870     conserved hypothetical 
protein 

54405 hypothetical 
protein 

 

PA14_59930     conserved hypothetical 
protein 

41833 hypothetical 
protein 

 

Section 7: Mutants representing genes involved in motility (11) 

PA14_05320 PA0408 pilG type 4 pili response 26986 pilus/flagellum  
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regulator PilG biosynthesis 

PA14_14850 PA3805 pilF type 4 fimbrial biogenesis 
protein PilF 

26873 pilus/flagellum 
biosynthesis 

 

PA14_45720 PA1449 flhB flagellar biosynthetic 
protein FlhB 

28316 pilus/flagellum 
biosynthesis 

 

PA14_50080 PA1105 fliJ flagellar protein FliJ 55510 pilus/flagellum 
biosynthesis 

 

PA14_50140 PA1101 fliF flagella M-ring outer 
membrane protein 
precursor FliF 

37699 pilus/flagellum 
biosynthesis 

 

PA14_50470 PA1078 flgC flagellar basal-body rod 
protein FlgC 

28337 pilus/flagellum 
biosynthesis 

 

PA14_66620 PA5040 pilQ type 4 fimbrial biogenesis 
outer membrane protein 
PilQ precursor 

41699 pilus/flagellum 
biosynthesis 

 

PA14_45810 PA1442   putative flagellar protein 
FliL 

25537 pilus/flagellum 
biosynthesis 

 

PA14_50110 PA1103   probable flagellar 
assembly protein 

25963 pilus/flagellum 
biosynthesis 

 

PA14_45610 PA1457 cheZ chemotaxis protein CheZ 42358 chemotaxis  

PA14_65450 PA4954 motA chemotaxis protein MotA 27981 chemotaxis  

Section 8: Mutants with insertions in genes involved in cell division, DNA maintainence, and RNA 
or protein turnover (34) 

PA14_22040 PA3243 minC cell division inhibitor 
MinC 

39233 cell division  

PA14_62870 PA4752 rrmJ cell division protein FtsJ 33950 cell division  

PA14_73370 PA5565 gidA glucose-inhibited division 
protein A 

34284 cell division  

PA14_00030 PA0003 recF DNA replication and repair 
protein RecF 

25777 DNA/RNA/ 
protein 

 

PA14_07530 PA0577 dnaG putative DNA primase 104 DNA/RNA/ 
protein 

 

PA14_07620 PA0584 cca tRNA nucleotidyl 
transferase 

43633 DNA/RNA/ 
protein 

 

PA14_08780 PA4269 rpoC DNA-directed RNA 
polymerase beta* chain 

42316 DNA/RNA/ 
protein 

 

PA14_09100 PA4239 rpsD 30S ribosomal protein S4 47143 DNA/RNA/ 
protein 

 

PA14_25110 PA3011 topA DNA topoisomerase I 25847 DNA/RNA/ 
protein 
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PA14_25230 PA3002 mfd transcription-repair 
coupling factor 

27969 DNA/RNA/ 
protein 

 

PA14_30660 PA2585 uvrC excinuclease ABC subunit 
C 

27887 DNA/RNA/ 
protein 

 

PA14_42280 PA1722 pscI type III export protein PscI 383 DNA/RNA/ 
protein 

 

PA14_51780 PA0967 ruvB Holliday junction DNA 
helicase RuvB 

48244 DNA/RNA/ 
protein 

 

PA14_51790 PA0966 ruvA Holliday junction DNA 
helicase RuvA 

30714 DNA/RNA/ 
protein 

 

PA14_55670 PA4284 recB exodeoxyribonuclease V 
beta chain 

31955 DNA/RNA/ 
protein 

 

PA14_62730 PA4742 truB tRNA pseudouridine 55 
synthase 

57118 DNA/RNA/ 
protein 

 

PA14_62900 PA4755 greA transcription elongation 
factor GreA 

48477 DNA/RNA/ 
protein 

 

PA14_65170 PA4934 rpsR 30S ribosomal protein S18 31176 DNA/RNA/ 
protein 

 

PA14_65410 PA4951 orn oligoribonuclease 36369 DNA/RNA/ 
protein 

 

PA14_66710 PA5049 rpmE 50S ribosomal protein L31 32561 DNA/RNA/ 
protein 

 

PA14_66980 PA5070 tatC sec-independent protein 
translocase TatC 

54153 DNA/RNA/ 
protein 

 

PA14_67720 PA5128 secB secretion protein SecB 46670 DNA/RNA/ 
protein 

 

PA14_68610 PA5193 hslO putative chaperonin, 33 
kDa 

29990 DNA/RNA/ 
protein 

 

PA14_69190 PA5239 rho transcription termination 
factor Rho 

34208 DNA/RNA/ 
protein 

 

PA14_69710 PA5280 sss site-specific recombinase 35643 DNA/RNA/ 
protein 

 

PA14_71870 PA5443 uvrD DNA helicase II 41306 DNA/RNA/ 
protein 

 

PA14_01100 PA0090   putative ClpA/B-type 
chaperone 

56461 DNA/RNA/ 
protein 

 

PA14_04890 PA0372   putative zinc protease 26579 DNA/RNA/ 
protein 
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PA14_05560 PA0428   putative ATP-dependent 
RNA helicase, DEAD box 
family 

42207 DNA/RNA/ 
protein 

 

PA14_05960 PA0456   putative major cold shock 
protein 

36116 DNA/RNA/ 
protein 

 

PA14_28840     putative helicase 54413 DNA/RNA/ 
protein 

 

PA14_36760 PA2150   putative KU domain 
protein 

29005 DNA/RNA/ 
protein 

 

PA14_64180 PA4852   putative tRNA-
dihydrouridine synthase 

35993 DNA/RNA/ 
protein 

 

PA14_22270     possible recombinase 47583 DNA/RNA/ 
protein 

 

Section 9: Mutants with no category (23) 

PA14_21410 PA3296 phoA alkaline phosphatase 36027   

PA14_33650 PA2399 pvdD pyocyaninverdine 
synthetase D 

5205   

PA14_71940 PA5450 wzt ABC subunit of A-band 
LPS efflux transporter 

45670   

PA14_62770 PA4745 nusA N utilization substance 
protein A 

55834   

PA14_73320 PA5561 atpI ATP synthase protein I 45399   

PA14_48970 PA0720   helix destabilizing protein 
of bacteriophage Pf1 

25542   

PA14_61840 PA4674   putative virulence-
associated protein 

26343   

PA14_31680 PA2543   putative outer membrane 
protein 

42253   

PA14_67530 PA5114   putative membrane protein 42570   

PA14_71670 PA5430   putative membrane protein 42169   

PA14_19170 PA3472   putative lipoprotein 47128   

PA14_44440 PA1549   putative cation-
transporting P-type 
ATPase 

31290   

PA14_49010       43220   

   intergenic region: 
PA14_05940 

32084   

   intergenic region: 
PA14_07490 

55726   

   intergenic region: 38436   
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PA14_07770 

   intergenic region: 
PA14_09190 

34969   

   intergenic region: 
PA14_14350 

27318   

   intergenic region: 
PA14_18560 

41885   

   intergenic region: 
PA14_39950 

40456   

   intergenic region: 
PA14_51360 

37586   

   intergenic region: 
PA14_51400 

41463   

   intergenic region: 
PA14_62950 

46072   

 

4.4.2. Selection of Mutants Representing Candidate Pyocyanin Reductases 

During our primary screen for ferric citrate reduction, we noticed that many of the 

wells in our plates contained less pyocyanin than the average, suggesting that these 

mutants were defective in growth and/or pyocyanin production. Using information 

regarding the putative functions of their gene products (obtained from the Pseudomonas 

genome database (Winsor et al. 2008)), we selected 117 mutants representing products 

with the potential for direct involvement in the pyocyanin reduction reaction, focusing on 

enzymes involved in energy metabolism, enzymes predicted to act on small organic and 

cyclic substrates, and enzymes catalyzing redox reactions. We performed a secondary 

screen with these mutants to test for defects in growth and/or pyocyanin biosynthesis. 

Fifty of the 117 mutants tested in our secondary screen did not have significant 

defects in ferric citrate reduction, i.e., they produced more than 70% of the wild-type 

level of FerroZine absorbance. Their detection in the primary screen was probably due to 
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uneven inoculation, and they have been omitted from the mutant list. The remaining 

mutants are listed in Sections 1 and 2 (table 4.3). Thirty-one of the mutants tested in our 

secondary screen showed general growth defects, while 25 showed defects specifically in 

pyocyanin biosynthesis. Eight of the mutants listed in Section 2 are replicates that came 

up twice in the primary screen. These mutants were not tested in the secondary screen 

because their corresponding replicates were shown to have growth or pyocyanin 

production defects. 

One of the mutants, with a transposon insertion in the gene cioB, appeared to be 

specifically defective in pyocyanin reduction. However, further characterization using a 

cell suspension assay for pyocyanin reduction suggested that this mutant is defective in 

oxygen consumption. A caveat to our screen protocol was that oxygen left in the culture 

after transfer to the anaerobic chamber had to be consumed by the bacteria in order to 

ensure stability of the ferrous iron produced through the pyocyanin redox cycling. Cell 

suspensions of the cioB mutant maintain the same relative absorbance (representing 

oxidized pyocyanin) for the first 30 minutes of the assay, then reduce pyocyanin at the 

same rate as the wild type (data not shown). 

We hit several genes involved in purine biosynthesis, all of which were found to 

have severe growth defects in our secondary screen. The mutant with a transposon 

insertion into the purH gene piqued our interest. This mutant appeared to overproduce 

pyocyanin despite its inability to reach a cell density level that was more than 60% that of 

the wild type. After normalization for growth, the purH transposon insertion mutant 
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produced over two times as much pyocyanin per cell as the wild type. However, this 

mutant was not pursued further due to its severe growth defect  

The secondary screen characterization left 4 mutants that represent defects that 

may be specific to the pyocyanin reduction reaction. These mutants displayed moderate 

growth defects, but despite this, they appeared to produce pyocyanin at or near wild-type 

levels (figure 4.2). These mutants are shaded in Table 4.1, Section 1 and contain 

transposon insertions in (1) PA14_43640, encoding the biosynthetic glycerol-3-phosphate 

dehydrogenase; and (2) PA14_57540, PA14_57560, and PA14_57570, encoding the 

cytochrome bc1 complex of the respiratory chain. Interestingly, orthologues of the 

glycerol-3-phosphate dehydrogenase in eukaryotes have been implicated in maintenance 

of redox homeostasis (Bakker et al. 2001; Shen et al. 2006). The identification of 

cytochrome bc1 complex mutants in a pyocyanin reduction screen also piqued our 

interest, as the potential for pyocyanin to facilitate respiration is part of a long-standing 

hypothesis regarding the physiological role of these compounds (Friedheim 1931).  
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Figure 4.2. Representative data from the secondary screen for growth, pyocyanin 
biosynthesis, and ferric citrate reduction.  
Absorbance at 690 nm measured for the Δphz mutant represents background contributed by the 
ferric citrate solution. Dark gray shading indicates the data range over which samples were 
considered within a wild-type range for each measurement. Error bars represent the standard 
deviations of biological triplicates. OD, optical density. abs, absorbance. 

 

4.4.3. The Biosynthetic Glycerol-3-Phosphate Dehydrogenase Contributes to 

Maintenance of Redox Homeostasis in P. aeruginosa 

Two types of glycerol-3-phosphate dehydrogenase enzymes have been described 

for a diversity of organisms, ranging from E. coli to humans. One is a soluble protein 

with an NADH-binding domain, whose primary function is thought to be the reduction of 

dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate, a precursor for 

phospholipid biosynthesis. This enzyme, referred to in bacteria as GpsA, is required for 

the growth of E. coli in defined media (Clark et al. 1980). We observed this phenotype 

for P. aeruginosa PA14 (figure 4.3.A), as well as a stationary-phase survival defect for 

this mutant in LB cultures (figure 4.3.B). The second glycerol-3-phophate 

dehydrogenase, called GlpD in bacteria, is a membrane-associated flavoprotein that 

couples the oxidation of glycerol-3-phosphate to the reduction of ubiquinone. This 

enzyme is required for growth of E. coli with glycerol as the sole carbon source (Austin 

and Larson 1991). The eukaryotic orthologues of these enzymes have been suggested to 

function together to balance the intracellular redox state (Bakker et al. 2001; Shen et al. 

2006). The P. aeruginosa genome contains two glpD homologues that are represented in 

the PA14 mutant library (mutant IDs 42489 and 36707). We did not observe defects in 

pyocyanin reduction for these mutants, possibly due to redundant activities. 
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We confirmed that the disruption of gpsA, rather than downstream ORFs in the 

putative operon containing gpsA, was responsible for the pyocyanin reduction phenotype 

in this mutant by cloning the gpsA gene from P. aeruginosa PA14 into plasmid pUCP18 

(creating plasmid pAPW3) and moving it into the gpsA::tn mutant. This complementation 

enhanced pyocyanin reduction activity, measured using an anaerobic cell suspension 

assay, to above-wild-type levels, probably due to the presence of the plasmid in 

multicopy (figure 4.4). Amending the growth medium with 7.5 mM glycerol also 

complemented the pyocyanin reduction defect in the gpsA transposon insertion mutant 

(data not shown). 

 
 
Figure 4.3. Growth of the gpsA::tn mutant on complex and defined media.  
(A) Titration of LB-grown and MOPS-grown cultures with glycerol. Growth is not observed for 
gpsA::tn in defined medium without glycerol amendment. (B) Growth of gpsA::tn in LB. The 
increased lag phase is abolished by inoculation from exponential-phase cultures, but the cessation 
of growth in stationary phase is only abolished by the addition of approximately 75 mM glycerol. 
Error bars represent the standard deviations of biological triplicates and are obscured by the point 
marker in some cases. 
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Figure 4.4. Provision of the gpsA gene in trans complements pyocyanin reduction activity in 
the gpsA transposon insertion mutant. 
Data set shown is representative of biological duplicates; error bars were omitted for clarity. 

 

To further characterize the effect of the gpsA mutation on P. aeruginosa 

physiology, we constructed in-frame deletions of this gene in the wild type and in a 

mutant unable to produce phenazines (P. aeruginosa PA14 Δphz (Dietrich et al. 2006)). 

These mutants displayed the same defects in growth and pyocyanin reduction that we 

observed for the gpsA transposon insertion mutant (data not shown). We extracted and 

measured NADH and NAD+ levels in these mutants. As described in Chapter 3, the P. 

aeruginosa PA14 Δphz mutant exhibited a more reduced cytoplasm (higher 

NADH/NAD+ ratio) in stationary phase than the wild type (Price-Whelan et al. 2007). 

Both the ΔgpsA mutant and the Δphz ΔgpsA mutants showed a significant oxidation of 

the cytoplasm in stationary phase relative to their parent strains (figure 4.5). At first, this 
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result appears paradoxical: if NADH is an important electron donor for pyocyanin 

reduction, a mutant unable to reduce pyocyanin would be expected to accumulate NADH. 

In contrast, the phenotype of the Δphz ΔgpsA mutant points to a redox-balancing role for 

the GpsA enzyme, which ensures sufficient NADH availability and favors the reduction 

of pyocyanin. The phenotype of the ΔgpsA mutant suggests that pyocyanin reduction 

reactions are draining reducing power from the cells despite NADH limitation.  

We were interested to examine whether the addition of glycerol to the growth 

medium, which complements growth and pyocyanin reduction defects in ΔgpsA mutants, 

could also affect the intracellular redox state. We found that glycerol restores the 

NADH/NAD+ ratio to the levels seen in the parent strains for the ΔgpsA and Δphz ΔgpsA 

mutants (figure 4.6).  

 
 
Figure 4.5. The NADH/NAD+ ratio is shifted toward a more oxidized state in mutants 
lacking the gpsA gene.  
Error bars represent the standard deviations of biological triplicates. 
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Figure 4.6. Glycerol complements the NADH/NAD+ phenotypes of the ΔgpsA and ΔgpsA 
Δphz mutants.  
Error bars represent the standard deviations of biological duplicates. 

 

4.4.4. The Cytochrome bc1 Complex of the Respiratory Chain is Required for Full 

Pyocyanin Reduction Activity 

Although the P. aeruginosa PA14 transposon insertion library generally contains 

one mutant to represent each nonessential gene in the genome, some genes are 

represented more than once by multiple insertions. The structural genes for the 

cytochrome bc1 complex are represented 4 times, with one insertion each into genes 

PA14_57540 and PA14_57570, and two insertions into PA14_57560. Sequencing 

(according to the method described in Liberati et al. (2006)) revealed that one of the 

mutants annotated as having an insertion in PA14_57560 actually contained a transposon 
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insertion elsewhere in the genome. This mutant displayed wild-type phenotypes with 

respect to ferric citrate and pyocyanin reduction. All three of the other mutants showed 

similar defects with respect to pyocyanin reduction and growth (data not shown). 

Complementation of a representative mutant defective in formation of the cytochrome c1 

subunit of the cytochrome bc1 complex (PA14_57540::MAR2xT7; “fbcC::tn” (Daldal et 

al. 1989; Williams et al. 2007)) with pAPW5, a plasmid containing the fbcC gene, 

confirmed that the pyocyanin reduction defect was due to the lack of a functional 

cytochrome bc1 complex (data not shown). Furthermore, the kinetics of pyocyanin 

reduction in this mutant, unlike those observed for the cioB transposon insertion mutant, 

did not suggest a defect in oxygen consumption. 

The fbcC transposon insertion mutant displayed a growth defect in stationary 

phase (figure 4.7) that may partially account for its dramatic pyocyanin reduction defect. 

We constructed clean deletions of the fbcC gene in the wild-type and Δphz backgrounds 

and conducted cell suspension assays for pyocyanin reduction to confirm that these 

mutants have pyocyanin reduction defects independent of their growth defects. Cell 

suspension assays normalized by cell number confirmed that the ΔfbcC mutant had a 

defect in pyocyanin reduction. We were intrigued to observe that the Δphz ΔfbcC mutant 

actually displayed a less severe defect in pyocyanin reduction than the fbcC deletion in 

the wild-type background. This difference was apparent in early stationary phase; by late 

stationary phase the Δphz ΔfbcC mutant no longer had any defect in pyocyanin reduction 

relative to its parent (figure 4.8).  
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Figure 4.7. Growth of the fbcC transposon insertion mutant. 
Error bars represent the standard deviations of biological triplicates and are obscured by the point 
marker in some cases. 

 

 
 
Figure 4.8. Pyocyanin reduction defects of the ΔfbcC and Δphz ΔfbcC mutants. 
(A) In early stationary phase, the Δphz ΔfbcC mutant showed a less-pronounced defect in 
pyocyanin reduction than the ΔfbcC mutant. (B) In late stationary phase, the Δphz ΔfbcC 
pyocyanin reduction activity was indistinguishable from that of the Δphz mutant. Error bars 
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represent the standard deviations of biological triplicates and are obscured by the point marker in 
some cases. 

 

We wondered how the fbcC deletion mutants would compare to their parents with 

respect to the cytoplasmic redox state. In contrast to the Δphz ΔgpsA mutant, the Δphz 

ΔfbcC mutant displayed a redox state that was similar to that of the Δphz mutant in early 

stationary phase. In late stationary phase, the Δphz ΔfbcC mutant appeared to accumulate 

NADH, resulting in an even more reduced cytoplasm than the parent strain (figure 4.9). 

This increase in NADH may represent an increase in reducing power available for 

residual, fbcC-independent pyocyanin reduction activity.  

Although the ΔfbcC mutation leads to an accumulation of reducing power in the 

phenazine-null background, this mutation in the wild-type background appears to oxidize 

the intracellular redox state. We have observed increased production of pyocyanin in this 

mutant (figure 4.10); we therefore attribute the shift in the ΔfbcC NADH/NAD+ pool to 

increased substrate availability for cytochrome bc1-independent reactions that consume 

reducing power and reduce pyocyanin. 
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Figure 4.9. The Δphz ΔfbcC mutant accumulates NADH in stationary phase.  
(A) In early stationary phase, the intracellular NADH/NAD+ ratio of the Δphz ΔfbcC mutant 
resembles that of the parent. (B) In late stationary phase, the Δphz ΔfbcC mutant is significantly 
shifted toward the reduced state. Error bars represent the standard deviations of biological 
triplicates. 
 
 

 
 
Figure 4.10. The ΔfbcC mutation leads to pyocyanin overproduction. 
Error bars represent the standard deviations of biological triplicates. 
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The contrasting effects of ΔgpsA and ΔfbcC deletions on the NADH/NAD+ ratio 

in the absence of pyocyanin suggest that the GpsA enzyme and the cytochrome bc1 

complex contribute to pyocyanin reduction activity via different mechanisms. To test 

whether their contributions are additive, we generated a double mutant, ΔgpsA ΔfbcC, 

and measured pyocyanin reduction activity using the anaerobic cell suspension assay. 

While the wild type took approximately 100 minutes to reduce all of the pyocyanin in the 

cell suspension, and the ΔgpsA and ΔfbcC individual mutants took about 200 minutes, the 

double mutant took approximately 260 minutes (figure 4.11). A synergistic effect occurs 

in the ΔgpsA ΔfbcC double mutant, but combining the two mutations does not have a 

fully additive effect as measured using the cell suspension assay. 

 

 
 
Figure 4.11. The pyocyanin reduction defect of the ΔgpsA ΔfbcC mutant is more 
pronounced than those of the individual gpsA or fbcC deletion mutants. 
Error bars represent the standard deviations of biological triplicates. 
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4.5. Discussion 

We set out to elucidate some of the mechanisms allowing P. aeruginosa to 

catalyze pyocyanin reduction. In screening a library of mutants for defects in pyocyanin-

dependent ferric citrate reduction, we uncovered a previously unrecognized role for the 

bacterial biosynthetic glycerol-3-phosphate dehydrogenase in regulation of the 

intracellular redox state. Glycerol-3-phosphate dehydrogenases have been implicated in 

maintenance of redox homeostasis in eukaryotic organisms ranging from Saccharomyces 

cerevisiae to Arabidopsis thaliana, to humans (Bakker et al. 2001; Ben-Yoseph et al. 

1993; Shen et al. 2006). In Arabidopsis, for example, the soluble glycerol-3-phosphate 

dehydrogenase (GPDHc1) is present in the cytosol, while the FAD-cofactored glycerol-3-

phosphate dehydrogenase (FAD-GPDH) is associated with the mitochondrial membrane. 

These two enzymes form “the glycerol-3-phosphate shuttle,” which allows transfer of 

reducing equivalents from cytosolic NADH to the quinone pool of the respiratory chain. 

When the soluble enzyme is not functional, the cytosolic redox state becomes more 

reduced, due to the accumulation of NADH.  

In contrast to the oxidative role of the soluble glycerol-3-phosphate 

dehydrogenase in eukaryotes, we found that  the P. aeruginosa homologue is required for 

a more reduced bacterial cytoplasm. Removal of the P. aeruginosa enzyme, GpsA, in 

both wild-type and phenazine-null backgrounds shifted the NADH/NAD+ ratio to a more 

oxidized state. Adding glycerol to the growth medium for these mutants restored the 

redox state to that of the parent strain. The enzyme GpsA catalyzes the oxidation of 

NADH coupled to the reduction of DHAP, producing glycerol-3-phosphate, a precursor 

for phospholipid biosynthesis. While the soluble glycerol-3-phosphate dehydrogenase 
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purified from yeast (Albertyn et al. 1992) appears to catalyze the reverse reaction, it is 

much slower in vitro, at 3% of the rate of the DHAP reduction reaction. If GpsA 

catalyzes NADH oxidation, why does the cytoplasm become more oxidized when it is 

removed? We have formulated a simple model to describe the roles of GpsA and other 

important enzymes related to glycerol metabolism in phospholipid biosynthesis and the 

production of reducing equivalents (figure 4.12).  

The critical branch point linking central metabolism to phospholipid biosynthesis 

is glyceraldehyde-3-phosphate, which is an intermediate in the Entner-Doudoroff 

pathway, the primary means whereby P. aeruginosa generates pyruvate as a substrate for 

the citric acid cycle. Glyceraldehyde-3-phosphate is converted to DHAP by triose 

phosphate isomerase, then to glycerol-3-phosphate by GpsA. When GpsA is absent, 

glycerol or glycerol-3-phosphate must be added to defined media to allow phospholipid 

biosynthesis to occur. GpsA, therefore, is the only enzyme that allows other carbon 

sources to contribute to phospholipid biosynthesis via central metabolism. Otherwise, 

only glycerol, which is converted to glycerol-3-phosphate by the kinase GlpK, and 

glycerol-3-phosphate can serve as precursors for these important anabolic products 

(figure 4.12).  
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Figure 4.12. Model for flux of carbon and reducing power through central metabolism and 
phospholipid biosynthesis in P. aeruginosa. 

 

When excess glycerol or glycerol-3-phosphate is present, the enzyme GlpD 

allows utilization of this metabolite as a carbon and energy source. The carbon atoms in 

glycerol have an average oxidation state of −0.66. It is considered a “highly reduced” 

substrate compared to other popular carbon sources for P. aeruginosa such as glucose 

and succinate, which have average oxidation states of 0 and +0.50, respectively. We have 

observed that the NADH/NAD+ ratio is particularly high in P. aeruginosa cells growing 

on glycerol as the sole carbon and energy source (data not shown). Therefore, we 

hypothesize that the production of glycerol at the tail end of the phospholipid 

biosynthetic pathway is key to the relatively reduced intracellular redox state present in 

cells with a functional GpsA. These bacteria can produce glycerol and phospholipids 

from any carbon source fed into the Entner-Doudoroff pathway before the 
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glyceraldehyde-3-phosphate step. The pool of reduced carbon present as glycerol in the 

growth medium can contribute to NAD(P)H production via the citric acid cycle.  

In bacteria lacking a functional GpsA enzyme, a larger fraction of the glycerol 

present in the medium or produced via phospholipid biosynthesis must remain in the 

glycerol-3-phosphate/phospholipid loop; as a result, less reducing power enters central 

metabolism (figure 4.12). This limits the amount of NAD(P)H available for pyocyanin 

reduction and leads to the defect in pyocyanin reduction we observe for the gpsA mutant. 

This model could be interrogated through measurements of the intracellular 

NADH/NAD+ ratios in mutants lacking the other enzymes in the glyceraldehyde-3-

phosphate/phospholipid pathway. We did not observe a phenotype for the glpD mutant 

tested in our screen; however, the P. aeruginosa genome contains another glpD 

homologue, PA14_24950, which may confer redundant activity. A double mutant lacking 

both of these genes would be expected to have a an oxidized intracellular NADH/NAD+ 

ratio due to an inability to access electrons from the glycerol pool via central metabolism. 

The identification of the cytochrome bc1 complex as a contributor to pyocyanin 

reduction activity is consistent with previous reports describing the toxicity of 1-

hydroxyphenazine, which differs from pyocyanin only in that it lacks the methyl group at 

the N5 position. This compound has been shown to act as an electron shunt from the 

respiratory chain at the site of the cytochrome bc1 complex of mouse liver mitochondria 

(Armstrong and Stewart-Tull 1971). Recent work by Ran et al. revealed that mutations in 

the cytochrome bc1 complex of the yeast mitochondrion confer resistance to pyocyanin 

(2003), raising the possibility that pyocyanin interacts directly with this protein. 
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The increasing levels of NADH present in stationary-phase cultures of the Δphz 

ΔfbcC mutant suggest that the cytochrome bc1 complex is a critical component of the 

respiratory chain present in the P. aeruginosa membrane. Based on studies pointing to 

the direct interaction between the ubiquinone pool and/or this complex and P. aeruginosa 

phenazines in other organisms, we hypothesize that this complex is playing a similar role 

in pyocyanin reduction in P. aeruginosa. However, it is also possible, given that this 

enzyme is a coupling site, that the cytochrome bc1 complex contributes to the generation 

of a proton gradient, and that the proton motive force is required for pyocyanin uptake 

across the cytoplasmic membrane. We have observed that the fbcC mutant appears to 

excrete more pyocyanin than the wild type; whether this phenotype can be attributed to 

impaired uptake of pyocyanin is not known.  

In conclusion, we have determined two mechanisms that contribute to pyocyanin 

reduction in P. aeruginosa. We showed that the respiratory chain, which has been 

proposed as an interaction site for pseudomonad phenazines in other organisms, is also 

involved in pyocyanin reduction in the producing organism. Further biochemical 

characterization will reveal whether the cytochrome bc1 complex in P. aeruginosa 

directly reduces pyocyanin and/or whether it affects the uptake of this compound. In 

addition, we discovered that modulation of the NADH/NAD+ ratio alters the availability 

of substrate for pyocyanin reduction, and therefore represents a second mechanism that 

contributes to pyocyanin reduction activity. We uncovered a potential role for the 

biosynthetic glycerol-3-phosphate dehydrogenase in a fundamental metabolic process: 

the ability for cells to maintain their intracellular redox state for optimal protein function 

(Bessette et al. 1999; Mossner et al. 1999). Other mutants identified through this screen 
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may represent proteins with previously unrecognized roles in the maintenance of redox 

homeostasis in bacteria. Future studies these mutants will further our understanding of 

the relationship between redox state and survival in P. aeruginosa and contribute to the 

overall picture of energy metabolism in this proficient pathogen. 

 

4.6. Acknowledgements 

We thank Lars Dietrich and Yun Wang for helpful discussions, and Julie Huang 

for excellent technical assistance. 



 

 

123 

4.7. References 

 
Albertyn, J., van Tonder, A., and Prior, B. A. (1992) Purification and characterization of 

the glycerol-3-phopshate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett. 
308: 130–2. 

Armstrong, A. V., and Stewart-Tull, D. E. S. (1971) The site of activity of extracellular 
products of Pseudomonas aeruginosa in the electron-transport chain in mammalian 
cell respiration. J. Med. Microbiol. 4: 263–70. 

Austin, D., and Larson, T. J. (1991) Nucleotide sequence of the glpD gene encoding 
aerobic sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J. 
Bacteriol. 173: 101–7. 

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., 
and Struhl, K. (1992) Current Protocols in Molecular Biology. New York, N.Y.: 
Green Publishing Associates and Wiley Interscience. 

Bakker, B. M., Overkamp, K. M., van Maris, A. J. A., Koetter, P., Luttik, M. A. H., van 
Dijken, J. P., and Pronk, J. (2001) Stoichiometry and compartmentation of NADH 
metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15–37. 

Ben-Yoseph, O., Badar-Goffer, R. S., Morris, P. G., and Bachelard, H. S. (1993) 
Glycerol-3-phosphate and lactate as indicators of the cerebral cytoplasmic redox 
state in severe and mild hypoxia respectively: A 13C- and 31P-n.m.r. study. Biochem. 
J. 291: 915–9. 

Bernofsky, C., and Swan, M. (1973) Improved cycling assay for nicotinamide adenine 
dinucleotide. Anal. Biochem. 53: 452–8. 

Bessette, P. H., Aslund, F., Beckwith, J., and Georgiou, G. (1999) Efficient folding of 
proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. 
Acad. Sci. USA 96: 13703–8. 

Bloemberg, G. V., O'Toole, G. A., Lugtenberg, B. J. J., and Kolter, R. (1997) Green 
fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63: 
4543–51. 

Chugani, S. A., Whiteley, M., Lee, K. M., D'Argenio, D., Manoil, C., and Greenberg, E. 
P. (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in 
Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98: 2752–7. 

Clark, D., Lightner, V., Edgar, R., Modrich, P., Cronan, J. E. J., and Bell, R. M. (1980) 
Regulation of phospholipid biosynthesis in Escherichia coli: Cloning of the 



 

 

124 

structural gene for the biosynthetic sn-glycerol-3-phopshate dehydrogenase. J. Biol. 
Chem. 255: 714–7. 

Conolly, D. M., and Winkler, M. E. (1991) Structure of Escherichia coli K-12 miaA and 
characterization of the mutator phenotype caused by miaA insertion mutations. J. 
Bacteriol. 173: 1711–21. 

Daldal, F., Tokito, M. K., Davidson, E., and Faham, M. (1989) Mutations conferring 
resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter 
capsulatus. EMBO J. 8: 3951–61. 

Deziel, E., Lepine, F., Milot, S., He, J., Mindrinos, M. N., Tompkins, R. G., and Rahme, 
L. G. (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2- alkylquinolines 
(HAQs) reveals a role for 4-hydroxy-2- heptylquinoline in cell-to-cell 
communication Proc. Natl. Acad. Sci. USA 101: 1339–44. 

Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D. K. 
(2006) The phenazine pyocyanin is a terminal signalling factor in the quorum 
sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61: 1308–21. 

Dietrich, L. E. P., Teal, T. K., Price-Whelan, A., and Newman, D. K. (2008) Redox-
active antibiotics control gene expression and community behavior in divergent 
bacteria. Science 321: 1203–6. 

Evans, S., and Dennis, P. P. (1985) Promoter activity and transcript mapping in the 
regulatory region for genes encoding ribosomal protein S15 and polynucleotide 
phosphorylase of Escherichia coli. Gene 40: 15–22. 

Friedheim, E. A. H. (1931) Pyocyanine, an accessory respiratory pigment. J. Exp. Med. 
54: 207–21. 

Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C., and Manoil, C. 
(2002) Functions required for extracellular quinolone signaling by Pseudomonas 
aeruginosa. J. Bacteriol. 184: 6472–80. 

Hernandez, M. E., Kappler, A., and Newman, D. K. (2004) Phenazines and other redox-
active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70: 
921–8. 

Ismail, T. M., Hart, C. A., and McLennan, A. G. (2003) Regulation of dinucleoside 
polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of 
Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J. 
Biol. Chem. 278: 32602–7. 

Kobayashi, K., and Tagawa, S. (2004) Activation of SoxR-dependent transcription in 
Pseudomonas aeruginosa. J. Biochem. 136: 607–15. 



 

 

125 

Lau, G. W., Hassett, D.J., Ran, H., and Kong, F. (2004a) The role of pyocyanin in 
Pseudomonas aeruginosa infection. Trends Mol. Med. 10: 599–606. 

Lau, G. W., Ran, H., Kong, F., Hassett, D. J., and Mavrodi, D. (2004b) Pseudomonas 
aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72: 4275–
8. 

Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Gang, W., 
Villanueva, J., Wei, T., and Ausubel, F. M. (2006) An ordered, nonredundant library 
of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. 
Acad. Sci. USA 103: 2833–8. 

Maddula, V. S. R. K., Pierson, E. A., and Pierson, L. S. 3rd. (2008) Altering the ratio of 
phenazines in Pseudomonas chlororaphis (aureofaceins) strain 30-84: Effects on 
biofilm formation and pathogen inhibition. J. Bacteriol. 190: 2759–66. 

Maddula, V. S. R. K., Zhang, Z., Pierson, E. A., and Pierson, L. S. 3rd. (2006) Quorum 
sensing and phenazines are involved in biofilm formation by Pseudomonas 
chlororaphis (aureofaciens) strain 30-84. Microb. Ecol. 52: 289–301. 

Mavrodi, D. V., Blankenfeldt, W., and Thomashow, L. S. (2006) Phenazine compounds 
in fluorescent Pseudomonas spp.: Biosynthesis and regulation. Annu. Rev. 
Phytopathol. 44: 417–45. 

Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G., and 
Thomashow, L. S. (2001) Functional analysis of genes for biosynthesis of pyocyanin 
and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 
183: 6454–65. 

McKinlay, J. B., and Zeikus, J. G. (2004) Extracellular iron reduction is mediated in part 
by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol. 70: 
3467–74. 

Mossner, E., Huber-Wunderlich, M., Rietsch, A., Beckwith, J., Glockshuber, R., and 
Aslund, F. (1999) Importance of redox potential for the in vivo function of the 
cytoplasmic disulfide reductant thioredoxin from Escherichia coli. J. Biol. Chem. 
274: 25254–9. 

Nielsen, J., Hansen, F. G., Hoppe, J., Friedl, P., and von Meyenburg, K. (1981) The 
nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 
subunit delta of the membrane bound ATP synthase of Escherichia coli. Mol. Gen. 
Genet. 184: 33–9. 

Park, D. H., and Zeikus, J. G. (2000) Electricity generation in microbial fuel cells using 
neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292–7. 



 

 

126 

Pham, T. H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, 
L., De Maeyer, K., Hofte, M., Verstraete, W., and Rabaey, K. (2008) Metabolites 
produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve 
extracellular electron transfer. Appl. Microbiol. Biotechnol. 77: 1119–29. 

Potter, P. M., Wilkinson, M. C., Fitton, J., Carr, F. J., Brennand, J., Cooper, D. P., and 
Margison, G. P. (1987) Characterisation and nucleotide sequence of ogt, the O6-
alkylguanine-DNA-alkyltransferase gene of E. coli. Nucleic Acids Res. 15: 9177–93. 

Price-Whelan, A., Dietrich, L. E. P., and Newman, D. K. (2006) Rethinking "secondary" 
metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2: 71–8. 

Price-Whelan, A., Dietrich, L.E.P., and Newman, D.K. (2007) Pyocyanin alters redox 
homeostasis and alters carbon flux through central metabolic pathways in 
Pseudomonas aeruginosa PA14. J. Bacteriol. 189: 6372–81. 

Rabaey, K., Boon, N., Hofte, M., and Verstraete, W. (2005) Microbial phenazine 
production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 
3401–8. 

Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., and Ausubel, F. 
M. (1995) Common virulence factors for bacterial pathogenicity in plants and 
animals. Science 268: 1899–902. 

Ran, H., Hassett, D. J., and Lau, G. W. (2003) Human targets of Pseudomonas 
aeruginosa pyocyanin. Proc. Natl. Acad. Sci. USA 100: 14315–20. 

Romero, P., and Karp, P. (2003) PseudoCyc, a pathway-genome database for 
Pseudomonas aeruginosa. J. Mol. Microbiol. Biotechnol. 5: 230–9. 

San, K. Y., Bennett, G. N., Berrios-Rivera, S. J., Vadali, R. V., Yang, Y. T., Horton, E., 
Rudolph, F. B., Sariyar, B., and Blackwood, K. (2002) Metabolic engineering 
through cofactor manipulation and its effects on metabolic flux redistribution in 
Escherichia coli. Metab. Eng. 4: 182–92. 

Schweizer, H. P. (1991) Escherichia-Pseudomonas shuttle vectors derived from 
pUC18/19. Gene 97: 109–21. 

Shen, W., Wei, Y., Dauk, M., Tan, Y., Taylor, D.C., Selvaraj, G., and Zou, J. (2006) 
Involvement of a glycerol-3-phosphate dehydrogenase in modulating the 
NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate 
shuttle in Arabidopsis. Plant Cell 18: 422–41. 

Trutko, S. M., Garagulya, A. D., Kiprianova, E. A., and Akimenko, V. K. (1988) 
Physiological role of pyocyanine synthesized by Pseudomonas aeruginosa. 
Microbiologya 57: 957–64. 



 

 

127 

Turner, J. M., and Messenger, A. J. (1986) Occurrence, biochemistry and physiology of 
phenazine pigment production. Adv. Microb. Physiol. 27: 211–75. 

Vlamis-Gardikas, A. (2008) The multiple functions of the thiol-based electron flow 
pathways of Escherichia coli: Eternal concepts revisited. Biochim. Biophys. Acta 
1780: 1170–200. 

Wang, Y., and Newman, D. K. (2008) Redox reactions of phenazine antibiotics with 
ferric (hydr)oxides and molecular oxygen. Environ. Sci. Technol. 42: 2380–6. 

West, S. E., Schweizer, H. P., Dall, C., Sample, A. K., and Runyen-Janecky, L. J. (1994) 
Construction of improved Escherichia-Pseudomonas shuttle vectors derived from 
pUC18/19 and sequence of the region required for their replication in Pseudomonas 
aeruginosa. Gene 148: 81–6. 

Whiteley, M., Lee, K. M., and Greenberg, E. P. (1999) Identification of genes controlled 
by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 
13904–9. 

Williams, H. D., Zlosnik, J. E. A., and Ryall, B. (2007) Oxygen, cyanide, and energy 
generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv. Microb. 
Physiol. 52: 1–71. 

Winsor, G. L., van Rossum, T., Lo, R., Khaira, B., Whiteside, M. D., Hancock, R. E., and 
Brinkman, F. S. (2008) Pseudomonas genome database: Facilitating user-friendly, 
comprehensive comparisons of microbial genomes. Nucleic Acids Res. in press. 

Wood, L. F., and Ohman, D. E. (2006) Independent regulation of MucD, an HtrA-like 
protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate 
gene expression. J. Bacteriol. 188: 3134–7. 

 
 

 

 

 
 



 

 

128 

 

Chapter 5 

 

The Morphological Development of Pseudomonas aeruginosa Biofilms Is Drastically 

Altered by Electron Acceptor Availability and the Ability to Reduce Pyocyanin 

 

5.1. Abstract 

Biofilm formation is recognized as an important mode of growth for 

Pseudomonas aeruginosa in a diversity of environments and is modulated in response to 

environmental conditions. One factor affecting P. aeruginosa biofilm formation is the 

production of pyocyanin, a redox-active small molecule that acts as an electron sink in 

oxygen-limited planktonic cultures. We investigated the effects of electron acceptor 

availability and pyocyanin redox cycling on P. aeruginosa biofilm development using 

media amended with nitrate—another substrate that can balance the intracellular redox 

state—and mutants defective in pyocyanin reduction. Our results indicate that wrinkled 

colony structures are an adaptation to electron acceptor limitation.  

 

5.2. Introduction 

Over the last few decades it has become apparent that homogeneous batch 

cultures are not appropriate model systems for studying the mechanisms that allow many 

infectious bacteria to colonize and persist in their hosts (Hall-Stoodley et al. 2004; Singh 

et al. 2000). One reason for this is that bacteria growing and surviving in aggregates 

experience steep gradients with respect to many environmental parameters, including 
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nutrient and electron acceptor availability, which lead to differential responses that would 

not be represented in a well-mixed culture. Under such conditions, bacteria may exploit 

strategies for energy production and conservation that are not utilized during growth in 

liquid culture conditions (Eschbach et al. 2004; Price-Whelan et al. 2006). 

Biofilm formation and intercellular signaling are multicellular behaviors that are 

critical to the pathogenicity of Pseudomonas aeruginosa (Donlan and Costerton 2002; 

Kirisits and Parsek 2006).  We and others have found that the production of phenazines, a 

class of signals produced by some pseudomonad species, has profound effects on biofilm 

development. In flow cell biofilms of Pseudomonas aureofaciens and P. aeruginosa, 

phenazine production promotes the accumulation of surface-attached biomass (Maddula 

et al. 2006; Wang and Newman 2009). In P. aeruginosa colony biofilms growing on agar 

surfaces, a lack of phenazine production leads to increased wrinkling and spreading 

relative to the wild type. Overproduction of the blue phenazine pyocyanin promotes 

formation of a smooth, compact colony, suggesting that rugosity is inversely proportional 

to pyocyanin exposure (Dietrich et al. 2008). 

Phenazines are redox-active small molecules that are reduced intracellularly and 

excreted. Under atmospheric conditions, phenazines react with molecular oxygen and can 

reenter the bacterium in their oxidized forms. As discussed in Chapter 3, this redox 

cycling contributes to the maintenance of redox homeostasis in oxygen-limited cultures 

that would otherwise accumulate intracellular reductant. We have proposed that redox 

balancing via phenazine reduction allows fundamental cellular processes, such as the 

TCA cycle, to proceed under conditions in which they would likely be inhibited by the 
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accumulation of NADH (Price-Whelan et al. 2007). The morphologies of P. aeruginosa 

colony biofilms formed by wild-type and phenazine-null strains is consistent with the 

model that phenazine production enhances fitness through increased electron acceptor 

availability. While the wild type can utilize phenazines to dispose of reducing 

equivalents, the phenazine-null mutant relies on oxygen, and may benefit from 

maximizing colony surface area for optimal oxygen exposure (figure 5.1). 

To further interrogate our model that electron acceptor availability determines 

colony architecture, we tested the effects of (1) treatment with nitrate, another respiratory 

substrate for P. aeruginosa (Williams et al. 1978), and (2) deletion of genes required for 

full pyocyanin reduction activity. Here we present morphological characterization of P. 

aeruginosa colonies grown under these conditions. It is likely that phenazines affect P. 

aeruginosa colony development in multiple ways, including modifications of gene 

expression, effects on flux through central metabolism, and modifications of the 

intracellular redox state. 
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Figure 5.1. Cartoon depicting the role of phenazine cycling in colony biofilm development. 
Bacteria surviving at depth in a colony biofilm become limited for oxygen due to slow diffusion 
rates and the respiration of bacteria at the surface. Like the snorkel used by a diver, phenazines 
may allow these bacteria to utilize oxygen by transferring electrons from the bacteria to the 
oxygen at the surface. Bacteria in a colony without phenazines would have to form canyons in the 
biofilm structure to maximize oxygen accessibility. 

 

5.3. Results and Discussion 

5.3.1. Nitrate Promotes Smooth Colony Formation in the Phenazine-Null Mutant 

We followed P. aeruginosa colony development using a standard assay 

(Friedman and Kolter 2004; Rakhimova et al. 2008). Ten microliters of overnight 

cultures were spotted onto agar plates containing 1% tryptone and 1% agar (TA medium). 

Congo Red (40 µg/mL) and Coomassie Blue (20 µg/mL) (referred to as CRCB medium) 

were added to aid visibility. Effects of these additions on colony morphology are noted; 

generally and for unknown reasons, the addition of Congo Red and Coomassie Blue 

exaggerates rugose phenotypes. Agar medium was poured into either 60 by 15 mm 

(containing 10-15 mL) or 100 by 15 mm (containing 35-40 mL) plates. A thick agar layer 
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is required for the elaborate wrinkling of rugose phenotypes. Plates were incubated at 

room temperature for 4-5 days. Potassium nitrate was added at a final concentration of 

100 mM. Colony diameters were measured using Adobe Photoshop. 

In light of our observations demonstrating a role for pyocyanin in modulating 

colony biofilm structure (Dietrich et al. 2008), we were interested to test the effects of 

another electron acceptor for P. aeruginosa energy metabolism. P. aeruginosa can grow 

anaerobically with nitrate as a terminal electron acceptor (Williams et al. 1978). We have 

shown that it can also utilize nitrate to balance the intracellular redox state in stationary 

phase, oxygen-limited “aerobic” cultures ((Price-Whelan et al. 2007) and appendix A). 

Figure 5.2 shows the effects of nitrate amendment on wild-type P. aeruginosa PA14 and 

the Δphz mutant, which is lacking 14 genes required for the production of phenazines 

(Dietrich et al. 2006b), on CRCB medium after 5 days of growth. On this medium, the 

phenazine-null mutant formed a highly rugose structure with radial ridges up to 1 mm 

high. The wild type showed some dimpling but did not form these ridges. The same 

medium with 100 mM nitrate promoted the formation of smooth, compact colonies, with 

diameters approximately 17%-18% shorter than those of colonies grown without nitrate 

(table 5.1). This result is consistent with the idea that rugosity is an adaptation to electron 

acceptor limitation. 

To confirm that bacteria at depth in a colony biofilm experience oxygen 

limitation, we used a Unisense micromanipulator fitted with a polarographic electrode to 

measure oxygen in wild-type and Δphz colonies. We found that the oxygen concentration 

rose slightly as the electrode approached the biofilm surface, then rapidly declined to 
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near-undetectable levels at a depth of approximately 300 µm. These traces were similar 

for the wild-type (figure 5.3) and Δphz (data not shown) colonies.  

 
 
Figure 5.2. Nitrate stimulates smooth colony formation in the wild-type strain and the Δphz  
mutant on CRCB medium. 
Colonies are shown after 5 days of growth and images are representative of biological triplicates.  

 

Table 5.1. Colony size measurements for the colonies shown in Figure 5.2 
Diameters are given in centimeters. 

 CRCB CRCB + 100 mM KNO3 

wt 1.00 0.83 
Δphz 1.13 0.93 
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Figure 5.3. Oxygen concentration as a function of depth in a wild-type colony grown for 5 
days on TA medium.  
A similar profile is observed for the Δphz mutant.  
 

5.3.2. Mutations Affecting Pyocyanin Reduction Have Differing Effects on Colony 

Development 

As described in Chapter 4, we identified two loci required for full pyocyanin 

reduction at the wild-type rate: (1) the gene gpsA, encoding the biosynthetic glycerol-3-

phosphate dehydrogenase, and (2) the operon fbcFBC, encoding the cytochrome bc1 

complex of the respiratory chain. We constructed clean deletions of the gpsA and fbcC 

genes in the wild-type and Δphz backgrounds and found that these mutants display 

different phenotypes with respect to redox balancing. The Δphz ΔgpsA mutant has an 

oxidized NADH/NAD+ pool relative to the Δphz mutant, indicating that loss of a 

functional glycerol-3-phosphate dehydrogenase affects redox balancing, which has a 

secondary effect on the ability to reduce pyocyanin. The Δphz ΔfbcC mutant has an even 

more reduced NADH/NAD+ ratio than the Δphz mutant, suggesting that impaired 

respiratory function has a more direct effect on pyocyanin reduction in this mutant. 
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We tested these mutants for phenotypes in the colony morphology assay. After 5 

days of growth on TA medium, the ΔgpsA mutant formed a rugose colony, while the 

wild-type colony was smooth. The Δphz ΔgpsA mutant formed an even more elaborate 

rugose structure, covering more surface area than the ΔgpsA or Δphz individual mutants. 

On CRCB medium, the ΔgpsA mutant formed a dimpled colony similar in architecture to 

the wild type, but covering a greater surface area. The Δphz ΔgpsA mutant on CRCB 

medium formed the largest colony (figure 5.4 and table 5.2). 

In contrast to the ΔgpsA mutant, the ΔfbcC mutant formed relatively small, flat, 

and smooth colonies on CRCB and TA media. This was probably due to the severe 

stationary-phase growth defect that limits the production of biomass in this mutant 

(chapter 4, figure 4.7). This was most visible in a comparison between the ΔfbcC mutant 

and wild-type colonies grown on TA medium; the ΔfbcC mutant colony was thinner and 

more transparent. The Δphz ΔfbcC double mutant was also thinner than the Δphz mutant 

on TA. On CRCB medium, the Δphz ΔfbcC mutant showed some rugosity, conferred by 

the deletion of the phz genes. The ΔgpsA ΔfbcC double mutant more closely resembled 

the ΔfbcC mutant than a combination of the two phenotypes, although the ΔgpsA 

mutation did confer some rugosity on TA medium (figure 5.4).  
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Figure 5.4. Colony morphologies of the gpsA and fbcC deletion mutants in phenazine-
producing and phenazine-null backgrounds. 
Colonies shown are 5 days old and images are representative of biological duplicates.  

 

Table 5.2. Colony size measurements for the colonies shown in Figure 5.4 
Diameters are given in centimeters. 
 CRCB TA CRCB TA 

wt 1.00 0.93 1.13 0.97 
ΔgpsA 1.13 0.98 1.25 1.18 
ΔfbcC 0.88 0.95 1.00 0.90 

ΔgpsA ΔfbcC 0.88 1.00 1.00 0.93 
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5.3.3. Provision of the gpsA Gene in trans Complements the Colony Morphology 

Phenotype of the ΔgpsA Mutant 

We had previously cloned the gpsA gene into plasmid pUCP18, creating plasmid 

pAPW3, and transformed this construct into the ΔgpsA mutant to demonstrate 

complementation of the pyocyanin reduction phenotype (chapter 4). Plasmid pUCP18 

and derivatives were maintained by carbenicillin selection. We prepared TA and CRCB 

plates containing carbenicillin at a concentration of 300 µg/mL and spotted them with 

cultures of the wild-type strain, the Δphz mutant, and the ΔgpsA mutant containing 

pUCP18, as well as the ΔgpsA mutant containing pAPW3. After 5 days of growth, the 

wild type and mutants containing pUCP18 formed colonies with structures that were 

similar to those formed in the absence of carbenicillin. The ΔgpsA mutant containing 

pAPW3 formed colonies with structures closely resembling those of the wild type 

containing the empty vector, demonstrating that loss of the gpsA gene alone is 

responsible for the colony morphology phenotype of this mutant (figure 5.5, table 5.3). 
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Figure 5.5. Complementation of the ΔgpsA mutant by pAPW3.  
Colonies shown are 5 days old and images are representative of biological triplicates.  
 

 

Table 5.3. Colony size measurements for the colonies shown in Figure 5.5 
Diameters are given in centimeters. 
 CRCB 

pUCP18 
CRCB 

pAPW3 
TA 

pUCP18 
TA 

pAPW3 
wt 1.00 - 0.85 - 

Δphz 1.20 - 1.00 - 
ΔgpsA 1.05 0.98 0.90 0.85 
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5.3.4. Nitrate Complementation of the ΔgpsA Mutant Is Affected by Medium 

Composition 

Although the Δphz and ΔgpsA mutations both lead to increases in surface area 

and/or enhanced wrinkling, the morphologies were qualitatively different. We were 

interested to see whether the addition of nitrate could also promote the formation of 

smooth colonies in the ΔgpsA background. Colonies of the ΔgpsA mutant grown in the 

presence and absence of nitrate are shown in Figure 5.6. Nitrate amendment 

complemented the rugose phenotype of the ΔgpsA mutant grown on TA medium, and 

allowed radial spreading from the colony, which was also observed in the wild type under 

these conditions. However, nitrate addition did not appear to complement the phenotype 

of the ΔgpsA mutant on CRCB medium. Colonies of this mutant on CRCB plus nitrate 

covered a slightly smaller surface area, but they more closely resembled the wild type 

grown on CRCB without nitrate than the wild type grown on CRCB with nitrate. Finally, 

the nitrate addition also significantly decreased wrinkling in the Δphz ΔgpsA background 

when grown on TA medium, which we would expect based on the individual phenotypes 

of these mutants under this condition. On CRCB medium, nitrate treatment gave rise to a 

colony with a smaller diameter and dimpled architecture, similar to the ΔgpsA mutant on 

nitrate (table 5.4).  
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Figure 5.6. Colony morphologies of the gpsA deletion mutant in phenazine-producing and 
phenazine-null backgrounds, with and without nitrate. 
Colonies shown are 4 days old and images are representative of biological triplicates.  

 

Table 5.4. Colony size measurements for the colonies shown in Figure 5.6 
Diameters are given in centimeters. 
 CRCB 

 
TA CRCB + KNO3 TA + KNO3 

wt 0.85 0.77 0.74 0.93 
ΔgpsA 1.00 0.77 0.93 0.88 

Δphz ΔgpsA 1.15 1.00 0.95 0.90 
 

Our results demonstrate that the availability of electron acceptors determines the 

morphological development of P. aeruginosa colony biofilms. In Figure 5.7.A, we 

present a model for the reactions contributing to intracellular redox balancing for bacteria 

growing and surviving in a biofilm. For wild-type P. aeruginosa colonies on plates 

containing nitrate, bacteria at the surface of the colony or near the surface of the plate can 
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respire oxygen or nitrate, respectively (reactions 1 and 2). Bacteria limited for respiratory 

substrates can oxidize NADH via pyocyanin reduction (reaction 3) and this pyocyanin 

can be reoxidized in one of two ways. First, it can react with oxygen abiotically at the 

biofilm surface (reaction 4). Alternatively, as discussed in Appendix A, we have shown 

that P. aeruginosa can catalyze nitrate-dependent pyocyanin oxidation in the absence of 

oxygen in a reaction requiring the periplasmic nitrate reductase (Nap) system (reaction 

5).  

Standing liquid P. aeruginosa cultures form gradients where bacterial respiration 

renders most of the medium anoxic and pyocyanin reduction abolishes its blue color; 

only in the top few millimeters of the culture is pyocyanin reoxidized and visible. We 

propose that a similar stratification of pyocyanin redox state occurs in colony biofilms. 

Pyocyanin is likely produced throughout colony development so that it is evenly 

distributed within the biofilm, but its redox state will be dependent on the presence of 

either oxygen or nitrate. While it seems reasonable to suggest that there is pyocyanin 

turnover between the aerobic and anaerobic zones of liquid cultures, the degree of 

turnover in a colony may be hampered by the viscosity of the matrix. In this context, 

another mechanism that may allow bacteria to reduce oxygen or nitrate via phenazines is 

through direct electron transfer between phenazine molecules in a conducting chain. The 

rate of electron transfer to phenazines would be constrained by phenazine uptake and 

excretion rates, the reactivity of phenazines within the cell, and the kinetics of electron 

trnasfer between reduced and oxidized forms of pyocyanin and other phenazine 

derivatives. 
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When nitrate is absent, pyocyanin will be oxidized in the top 200-300 µm of the 

biofilm and reduced in the anaerobic portion of the biofilm. When nitrate is present, 

pyocyanin can be oxidized through the activity of the Nap enzyme. The distribution of 

nitrate in a colony biofilm growing on an agar plate amended with nitrate can be 

estimated using the equation  

 
 

where De is the effective diffusion coefficient for nitrate in a biofilm, So is the 

concentration of solute at the biofilm-agar interface, and ko is the volumetric reaction rate 

of nitrate in the biofilm (Stewart 2003).  De for nitrate has been measured in a variety of 

biofilm types, including mixed-species biofilms and biofilms with and without 

denitrification activity. For denitrifying biofilms such as those containing P. aeruginosa, 

the De varies from approximately 46-68% of the diffusion coefficient for nitrate in water 

(1.4 ╳ 10-5 cm2/s at 25 °C) (Stewart 1998; Yeh and Wills 1970). We will approximate De 

as 8 ╳ 10-4 cm2/s. The concentration of nitrate in the agar medium for our experiment was 

100 mM, and the maximum consumption rate of nitrate for denitrifying P. aeruginosa 

cultures has been reported at 140 nmol min-1 mg protein-1 (Hernandez and Rowe 1987). 

Finally, we have measured protein concentrations in P. aeruginosa biofilms that are 

approximately 50 mg protein per mL of colony. Using these values, we estimate that 

nitrate would diffuse from the agar surface through 1.2 mm of the colony. If 10 mM 

nitrate was provided, nitrate would diffuse only across 0.35 mm of the colony. Consistent 

with this, we have seen that provision of nitrate at concentrations less than 100 mM does 
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not fully complement rugose colony formation in the Δphz and ΔgpsA mutants (data not 

shown). 

Previous observations regarding the effects of pyocyanin and nitrate reduction 

have shown that both of these substrates contribute to maintenance of redox homeostasis 

in P. aeruginosa under oxygen-limited conditions (chapter 3 and appendix 4); 

furthermore, both of these factors stimulate smooth colony formation in P. aeruginosa.  

While the rugose-smooth colony transition may represent an adaptation to changes in 

electron acceptor availability, the phenotypes of the ΔgpsA and Δphz ΔgpsA mutants rule 

out the possibility that the NADH/NAD+ ratio is the only signal triggering this behavioral 

response (chapter 4). These mutants have oxidized cytoplasms and, in such a model, 

would be predicted to form smooth colonies even in the absence of pyocyanin. Therefore, 

we propose that reduced pyocyanin and nitrate are independent signals that lead to the 

formation of smooth colonies (figure 5.7.B). RNA array studies have demonstrated that 

the phenazines pyocyanin and phenazine-1-carboxylate affect gene expression in 

stationary-phase planktonic cultures (Dietrich et al. 2006a; Dietrich et al. 2006b), but 

whether there are differential responses to oxidized and reduced pyocyanin has not been 

investigated. The effect of nitrate on colony morphology may be mediated via sensors 

linked to the redox state of the quinone pool or other indicators of respiratory activity. 

Future studies are aimed at elucidating the regulatory mechanisms that allow P. 

aeruginosa to alter biofilm architecture in response to changing environmental 

conditions. 
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Figure 5.7. Energy metabolism and signaling in P. aeruginosa biofilm formation. 
(A) Reactions tuning the intracellular redox state in P. aeruginosa biofilms. (B) Signals 
controlling P. aeruginosa biofilm architecture: in the absence of reduced pyocyanin and nitrate, 
P. aeruginosa forms a rugose colony. Either reduced pyocyanin or nitrate is sufficient to promote 
smooth colony formation. 
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Chapter 6 

 

Conclusions 

 

6.1. Summary and Implications 

Stationary-phase cultures of Pseudomonas aeruginosa form a characteristic color 

gradient, familiar to the many microbiologists who have worked with this proficient 

pathogen. Ernst Friedheim identified pyocyanin reduction as the process underlying this 

phenomenon in 1931; however, the work described in this thesis was the first to approach 

P. aeruginosa pyocyanin reduction at the molecular level in detail. This work has 

contributed to our understanding of the physiological relevance of pyocyanin reduction 

and provided insight into the mechanisms underlying this reaction. The physiological 

roles of pyocyanin have implications for P. aeruginosa virulence and raise broad 

questions about the meaning of the term “secondary metabolite.” Furthermore, they draw 

attention to a fundamental biological problem that has received limited research attention: 

what is redox homeostasis for a bacterium? 

 

6.1.1. Pyocyanin Metabolism and P. aeruginosa Virulence 

A major contribution of this work is the finding that pyocyanin affects redox 

balancing in P. aeruginosa in a manner consistent with the effects of well-known 

respiratory substrates. This effect appears to translate into the formation of dense, smooth 

colony biofilms, where oxygen limitation normally would lead to wrinkled colony 
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architectures, and is particularly interesting in the context of P. aeruginosa infections. P. 

aeruginosa forms biofilms in the airways of patients with impaired lung function, and the 

densely packed bacteria in these aggregates become limited for electron acceptors such as 

oxygen and nitrate. While many factors probably contribute to the enhanced 

pathogenicity of pyocyanin-producing strains, including toxicity in other bacteria and 

inhibition of the host immune response, the redox balancing role of pyocyanin in this 

environment may represent a previously unrecognized mechanism for survival that is 

directly related to P. aeruginosa physiology.   

 

6.1.2. What Is a “Secondary Metabolite”? 

The term “secondary metabolite” generally refers to a small molecule produced 

during the stationary phase of the growth curve in laboratory batch cultures. That such 

compounds are not required for exponential growth under traditional laboratory 

conditions, and that their biosynthesis is often sparsely distributed throughout members 

of a species or genus, are often cited as reasons for their categorization as “secondary.” 

But, when we consider that these compounds can be critical for colonization of host 

tissues, and directly affect substrate availability for central metabolism, they take on 

primary importance. This work has elaborated the role of pyocyanin, a notorious 

secondary metabolite produced by the pathogen P. aeruginosa, in altering flux through 

central metabolism. Pyocyanin exposure leads to the excretion of pyruvate, a compound 

that can later be used via a fermentative pathway in P. aeruginosa, or as a carbon source 

for other organisms present in the environment.  
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The recognition that stationary phase, cellular aggregation, and nutrient limitation 

are environmentally relevant incubation conditions has changed the way we view the 

physiological relevance of metabolisms that were once considered peripheral. With 

further investigation into the effects of other natural products on gene expression and 

metabolic processes, the microbiology community has begun to recognize that, rather 

than denoting a metabolite as “primary” or “secondary,” a more useful categorization 

requires a description for the role of a given metabolite under discrete conditions. There 

is good reason to be optimistic that this insight will lead to advances in the industrial 

application of bacterial metabolism and the treatment of bacterial infections, by allowing 

us to manipulate bacterial metabolism in more predictable ways. 

 

6.1.3 Redox Homeostasis in Bacteria 

Another major contribution of this work is that it refined our thinking about 

mechanisms underlying P. aeruginosa pyocyanin reduction. I have characterized two 

mutants with defects in catalyzing pyocyanin reduction. One of these, lacking a 

functional cytochrome bc1 complex, echoes a theme salient in research regarding the 

toxicity of this compound in eukaryotes—that pyocyanin and the related compound 1-

hydroxyphenazine inhibit or “short-circuit” respiration at this site in the electron transport 

chain. The second, lacking the biosynthetic glycerol-3-phosphate dehydrogenase, lead us 

to develop a new model for the role of glycerol in modulating the P. aeruginosa 

intracellular redox state. Further, in combination with our previous observation that 
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pyocyanin alters the NADH/NAD+ ratio in P. aeruginosa, it raises the bigger question of 

what redox homeostasis really means for this bacterium and indeed, all bacteria.  

I and others have observed that the NADH/NAD+ ratio during growth under the 

same conditions differs substantially in P. aeruginosa and Escherichia coli. What 

determines the optimal NADH/NAD+ ratio for a bacterial strain? How do redox buffers 

such as NADH, NADPH and glutathione shift their reduced and oxidized pools in concert 

to maintain an optimal cytoplasmic E°’? What are the consequences of grossly different 

intracellular redox states for the regulation of redox-sensitive transcription factors and 

metabolic reactions in different bacterial species? Investigating these fundamental 

questions will contribute significantly to our comprehension of metabolic diversity and 

niche adaptation in the bacterial domain. 

 

6.2. Future Directions 

6.2.1. Physiological Roles for Other P. aeruginosa Phenazines 

This thesis has focused on the phenazine pyocyanin, but a variety of other 

phenazine products are excreted by P. aeruginosa. These compounds vary widely in their 

hydrophobicities and redox potentials. We have proposed that their physiological roles 

depend on these properties and vary as a consequence. Of particular interest are the red 

phenazines, including aeruginosins A and B, which are relatively understudied with 

respect to their redox chemistry and roles in the pathogenicity of P. aeruginosa during 

persistence within the host. A more extensive characterization of these compounds at the 

levels of their chemical properties and physiological effects may unveil novel interacting 
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sites within the cell and new mechanisms contributing to P. aeruginosa survival during 

chronic lung infections. 

 

6.2.2. Regulation of Pyocyanin Production, Transport, and Localization 

Phenazine biosynthesis is known to be regulated via quorum sensing such that 

production does not occur until the stationary phase of growth in a batch culture. 

However, a series of other environmental factors influence phenazine production in the 

strain Pseudomonas chlororaphis PCL1391, and these have not been studied extensively 

in P. aeruginosa. Furthermore, P. aeruginosa is an intriguing anomaly among 

pseudomonad phenazine producers in that it possesses two differentially regulated copies 

of the phzABCDEFG operon, and at least three genes—phzS, phzM, and phzH—involved 

in the decoration of the phenazine core structure. The transcription factors and other 

regulatory mechanisms responsible for modulating expression of these ORFs are 

currently under study. The intriguing possibility that these ORFs could be induced in 

response to electron acceptor limitation through the activity of a redox-sensitive 

regulatory system has not been addressed. 

 

6.2.3. Electron Shuttling in the Cystic Fibrosis Airway 

The transition to culturing models involving nutrient limitation or surface 

attachment is a significant step toward approximating environmentally relevant 

conditions. However, researchers have recognized that additional parameters must be 

modified to mimic chronic lung infection. Replicating this environment is a challenge 
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due to deficiencies in our characterization as well as the innate heterogeneity of the lung 

environment. With these caveats in mind, microbiologists are establishing synthetic 

media that resemble the nutrient sources utilized by P. aeruginosa during infection of 

patients with the inherited disease cystic fibrosis. The work presented in this thesis 

suggests that phenazine reduction may play a physiological role in the persistence of P. 

aeruginosa during chronic infections. However, the physiological relevance of this redox 

reaction under conditions designed to mimic the cystic fibrosis lung environment has not 

been explored. If pyocyanin reduction can be shown to support survival of P. aeruginosa 

utilizing this combination of nutrients, strategies should be developed to limit this 

metabolism, perhaps in combination with antibiotic treatment, as a therapeutic approach.  
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Appendix A 

 

Characterization of Pyocyanin Reduction and Nitrate-Dependent Pyocyanin 

Oxidation Activities in Pseudomonas aeruginosa PA14 

 

A.1. Introduction 

Pseudomonas aeruginosa infections are the leading cause of morbidity and 

mortality in patients with the inherited disease cystic fibrosis. In cystic fibrosis, impaired 

function of an ion channel present in epithelial cell membranes leads to the accumulation 

of mucus in the lung cavity. This nutrient-rich environment favors the growth and 

survival of colonizing P. aeruginosa strains, and 70 to 80 percent of cystic fibrosis 

patients are chronically infected by their teen years (Lyczak et al. 2002). The 

characteristics of the lung environment that specifically favor P. aeruginosa colonization 

and persistence are not fully understood, and microbiologists have recently become more 

interested in elucidating the physiological status of P. aeruginosa in the cystic fibrosis 

lung (Alvarez-Ortega and Harwood 2007; Hassett et al. 2002a; Palmer et al. 2005).  

P. aeruginosa is a heterotrophic bacterium that grows optimally by respiring 

oxygen or nitrate. Low levels of growth have also been reported with arginine as a 

fermentable substrate in complex media, and survival, but not growth, can be achieved 

through the partial fermentation of pyruvate (Eschbach et al. 2004; Mercenier et al. 

1978); however, no other terminal electron acceptors or fermentable substrates have been 

identified for this bacterium. In light of this somewhat limited catabolic capacity, 
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researchers are currently endeavoring to better understand how exactly P. aeruginosa 

generates energy for survival during chronic airway infection. In situ measurements of 

oxygen concentrations in lung specimens from patients with cystic fibrosis have revealed 

that the mucus environment is oxygen limited, particularly in areas with densely packed 

populations of bacteria (Worlitzsch et al. 2002). Sputum samples from individuals with 

cystic fibrosis contain up to 400 µM nitrate and 300 µM arginine (Palmer et al. 2007). 

The slow doubling time of P. aeruginosa growing on arginine makes it unlikely that 

arginine fermentation is a major mode of growth in the cystic fibrosis lung.  However, 

whether the lung conditions favor aerobic respiration or nitrate respiration is a subject of 

debate (Alvarez-Ortega and Harwood 2007; Hassett et al. 2002b; Palmer et al. 2007). 

We have suggested that an alternate mechanism whereby P. aeruginosa might be 

able to sustain metabolism under conditions of oxygen limitation is through the reduction 

of phenazine derivatives, a class of virulence factors produced by this organism. We have 

shown that the phenazine pyocyanin can act as an alternative oxidant in the catabolism of 

P. aeruginosa by consuming excess reducing equivalents, which accumulate in the 

absence of respiratory substrates at concentrations required for growth (chapter 3). This 

mechanism for reoxidizing intracellular reductant allows the bacterium to maintain a 

balanced intracellular redox state, which is important for the functioning of many 

metabolic processes (Green and Paget 2004), and would be particularly relevant in the 

heterogeneous environments that P. aeruginosa is now appreciated to inhabit. 

Pyocyanin reduction can be observed in standing cultures of P. aeruginosa as the 

formation of a color gradient near the air-liquid interface. Colorless, reduced pyocyanin is 
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stable in the lower portion of the culture, rendered anaerobic due to the rapid respiration 

rate of the bacteria. At the surface, pyocyanin reacts abiotically with oxygen and regains 

its blue color in the oxidized state. We developed an assay to directly quantify the color 

change that occurs during P. aeruginosa-catalyzed reduction. During our characterization 

of the kinetics of this process in anaerobic cell suspensions, we found that P. aeruginosa 

also catalyzes nitrate-dependent pyocyanin oxidation. This activity is absent in a mutant 

lacking the gene for the periplasmic nitrate reductase, an enzyme that has been implicated 

in redox balancing in Escherichia coli and other bacteria. Measurements of the 

intracellular redox state as well as quantitative real-time PCR (Q-RT-PCR) experiments 

support the model that periplasmic nitrate reduction is an additional tactic that P. 

aeruginosa can use to maintain redox homeostasis for survival. Furthermore, nitrate-

dependent pyocyanin oxidation allows P. aeruginosa to reoxidize pyocyanin under 

anaerobic conditions, and may contribute to pyocyanin cycling in the cystic fibrosis 

airway. 

 

A.2.  Materials and methods 

A.2.1. Bacterial Strains and Culture Conditions 

Strains and mutants used in this study are listed in Table A.1. All cultures were 

grown in Lysogeny Broth (LB) at 37 °C, shaking at 250 rpm. Unless otherwise noted, 

culture volumes were 10 mL each in 18 × 150 mm tubes. Plasmids and primers used in 

this study are listed in Table A.2. For maintenance of plasmid pMQ72 and derivatives, 
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gentamicin sulfate was added to LB at a concentration of 100 µg/mL for P. aeruginosa 

and 15 µg/mL for E. coli.  

 

Table A.1. Strains and mutants used in this study. 
(Dietrich et al. 2006; Rahme et al. 1995; Rahme et al. 1997) 

Strain or mutant Description or genotype Source 

P. aeruginosa strains   

PA14 Wild type Rahme et al. 1995 

PA14 mutants ΔphzA1-G1 ΔphzA2-G2 Dietrich et al. 2006 

 napA::tn napA::TnphoA; KnR Rahme et al. 1997 

 narG::tn  narG::TnphoA; KnR Rahme et al. 1997 

E. coli strain     

UQ950 E. coli DH5a λ(pir) host for cloning Douglas Lies, Caltech 
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Table A.2. Plasmids and primers used in this study. 
(Shanks et al. 2006) 
Plasmid Description or sequence Source 

pMQ72 pBad shuttle vector; GmR Shanks et al. 2006 

pAPW1 pMQ72 with napEFDABC operon insert This study 

Cloning primers   

nap operon f 5’-CGGCAAGCTTCTACCAGCCCTTCACCCCG-3  

nap operon r 5’-CGGCGCTAGCGGTGTCGGAGATGTTCTCGT-3’  

Q-RT-PCR primers   

napA 5’ 5’-GAATTCTCCAAGCGCTTCAC-3’  

napA 3’ 5’-CAGCACGTCGTAGAGGGTCT-3’  

clpX 5’ 5’-CCTGTGCAATGACATCC-3’  

clpX 3’ 5’-AGGATGGTGCGGATCTCTTT-3’  

recA 5’ 5’-CTGCCTGGTCATCTTCATCA-3’  

recA 3’ 5’-ACCGAGGCGAGAACTTCAG-3’  

 
 

A.2.2. Whole Cell Suspension Assay for Pyocyanin Reduction 

Cell culture samples were  concentrated or diluted in filtrates of supernatants from 

the same culture to normalize optical density at 600 nm to 0.8. The samples were then 

transferred to anaerobic cuvettes, and an anaerobic pyocyanin solution (in MOPS buffer; 

50 mM morpholinepropanesulfonic acid (MOPS, Sigma) at pH 7.2, 93 mM NH4Cl,  
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43 mM NaCl, 2.2 mM KH2PO4) was added for a final pyocyanin concentration of about 

0.1 mM unless otherwise noted. The cuvettes were stoppered in the anaerobic chamber to 

minimize oxygen exposure. Pyocyanin reduction was followed as a decrease in 

absorbance at 690 nm over time.  

 

A.2.3. Complementation of the napA Transposon Insertion Mutant 

Primers were designed using the P. aeruginosa PAO1 genome sequence to anneal 

490 base pairs upstream of napE and to the last 19 bases of napC, yielding a PCR product 

including the napEFDABC operon and a putative promoter region. The amplified DNA 

was digested using restriction sites (HindIII and NheI) engineered within the primers. It 

was then ligated into plasmid pMQ72 digested with the same restriction enzymes and 

treated with calf intestinal phosphatase (Sigma). The resulting plasmid, pAPW1, contains 

the napEFDABC operon under the control of its native promoter. Cloning was carried out 

in E. coli UQ950 by standard procedures (Ausubel et al. 1992) and constructs were 

electroporated into P. aeruginosa PA14 as described previously (Bloemberg et al. 1997). 

 

A.2.4. Whole Cell Suspension Assay for Pyocyanin Oxidation 

Optical densities at 600 and 690 nm were measured for overnight cell cultures to 

verify similar amounts of pyocyanin production relative to cell density. Cell culture 

samples were diluted with the addition of fresh LB, yielding an optical density at 600 nm 

near 1.6. They were then transferred to an anaerobic chamber and incubated for 

approximately 15 minutes to allow for reduction of the majority of the pyocyanin present 
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in the culture. Eight hundred microliters were transferred to an anaerobic cuvette and 

amended with 12.8 µl 2.5 M potassium nitrate (to give a final concentration of 40 mM) or 

12.8 µl water. The cuvettes were stoppered, and pyocyanin oxidation was followed as an 

increase in absorbance at 690 nm over time.  

 

A.2.5. Quantitative Real-Time PCR (Q-RT-PCR) Analysis of Gene Expression 

P. aeruginosa was grown aerobically in LB medium (50 mL in a 100 mL 

Erlenmeyer flask) to an OD at 600 nm of 0.4 (exponential phase) or 1.4 (stationary 

phase). One volume of culture was mixed with two volumes of Bacterial RNAProtect 

(Qiagen), incubated for 5 minutes at room temperature, and centrifuged for 10 minutes at 

5000 rcf. Total RNA was extracted from the cell pellet using the RNAEasy Mini kit 

(Qiagen), according to the manufacturer’s instructions, including the optional DNase 

treatment step. cDNA was generated using the extracted RNA as template for a Taqman 

(ABI Biosciences) random-primed reverse-transcriptase reaction following the 

manufacturer’s protocol. The cDNA was used as template for Q-RT-PCR (Real Time 

7300 PCR Machine, Applied Biosystems) using the Sybr Green detection system 

(Applied Biosystems). Samples were assayed in triplicate. Signal was standardized to 

recA using the following equation: Relative expression = 2(CTstandard –CTsample), where CT 

(cycle time) was determined automatically by the Real Time 7300 PCR software 

(Applied Biosystems). Primers (Integrated DNA Technologies) for Q-RT PCR were 

designed using Primer3 software (Rozen and Skaletsky, 2000) and sequences are shown 
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in Table A.2. Criteria for primer design were a melting temperature of 60oC, primer 

length of 20 nucleotides, and an amplified PCR fragment of 100 base pairs.  

 

A.3. Results 

A.3.1. P. aeruginosa Pyocyanin Reduction Rates Under Anaerobic Conditions Are 

Concentration Dependent 

While the reduction of pyocyanin by stationary-phase P. aeruginosa cultures is a 

familiar phenomenon to microbiologists working with this organism, an assay had not 

been developed to follow this reaction directly. We tested the ability of stationary-phase 

cell suspensions to reduce pyocyanin across a range of concentrations representing the 

amounts typically produced by late stationary phase LB cultures. We found that the initial 

reduction of pyocyanin after the first 10 minutes of anaerobic incubation correlated 

linearly with the amount of pyocyanin in the suspension (figure A.1). 

 



 

 

162 

 
Figure A.1. P. aeruginosa pyocyanin reduction rates are concentration dependent. 
(A) Relative absorbances of anaerobic cell suspensions, containing varying concentrations of 
pyocyanin, over time. (B) The initial change in absorbance of pyocyanin as it is reduced by P. 
aeruginosa correlates with pyocyanin concentration. PYO, pyocyanin. 
 
 
A.3.2. P. aeruginosa Catalyzes Nitrate-Dependent Pyocyanin Oxidation 

While investigating the production of phenazines in cultures grown aerobically or 

anaerobically on nitrate, we pregrew cultures aerobically in the presence of nitrate to use 

as inocula for anaerobic cultures. We were surprised to find that, in the presence of 

nitrate, aerobic stationary-phase cultures appeared to be defective in their ability to 

reduce pyocyanin. At first, this observation was made in aerobic stationary-phase cultures 

that had been allowed to sit on the bench top for approximately one hour. During this 

time, the wild-type strain typically consumes most of the oxygen present in the medium, 

and reduces pyocyanin to its colorless form. Only the pyocyanin at the top of the tube, 

which is exposed to oxygen, remains blue because it is reoxidized abiotically by oxygen 
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(Friedheim 1931). In the presence of nitrate, this pyocyanin color gradient does not form 

(figure A.2). 

The P. aeruginosa genome contains two operons with the potential to confer 

nitrate reductase activity: (1) narGHJI, encoding a membrane-bound respiratory nitrate 

reductase (Sharma et al. 2006), and (2) napEFDABC, encoding a putative periplasmic 

nitrate reductase (Potter et al. 2001; Vollack et al. 1998). We reasoned that the  apparent 

inhibition of pyocyanin reduction arose from competition between a putative “phenazine 

reductase” and a nitrate reductase for electron donor (figure A.2.A). We obtained 

transposon insertion mutants lacking each of the Nar and Nap systems and tested them 

for the same phenotype observed in the wild type, i.e., nitrate-dependent inhibition of 

pyocyanin reduction. We found that the narG mutant still displayed the phenotype 

observed for wild-type PA14 (data not shown), whereas the napA mutant differed from 

the wild type in that it did not show inhibition by nitrate. We cloned the entire 

napEFDABC operon and its promoter into plasmid pMQ72 and transformed this 

construct, pAPW1, into the napA transposon insertion mutant (hereafter referred to as 

napA::tn). In this complemented mutant, inhibition of gradient formation by nitrate was 

re-established (figure A.2.B). 
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Figure A.2. Pyocyanin gradient formation in P. aeruginosa cultures is inhibited by nitrate in 
a Nap-dependent manner.  
(A) Model depicting competition between putative nitrate and pyocyanin reductases for reducing 
power. (B) Functional NapA is required for nitrate-dependent inhibition of pyocyanin reduction. 
“phz red” represents a putative phenazine reductase. 

 

The observation that a putative periplasmic nitrate reductase was responsible for 

the gradient formation phenotype lead us to rethink the hypothesis that this result was due 

to an inhibition of pyocyanin reduction. Nap enzymes in other bacteria are capable of 

coupling nitrate reduction to the oxidation of the redox-active, heterocyclic compound 

methyl viologen (Sears et al. 2000). We therefore wondered if the Nap enzyme of P. 

aeruginosa was capable of coupling nitrate reduction to oxidation of pyocyanin. This 

activity could also give rise to the gradient formation phenotype we observed for the 

napA::tn mutant. 
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A.3.3. The P. aeruginosa Periplasmic Nitrate Reductase (Nap) Is Involved in 

Nitrate-Dependent Pyocyanin Oxidation 

To confirm that Nap contributes to pyocyanin oxidation, we compared the wild-

type strain, the napA::tn mutant, and the napA::tn mutant containing the complementing 

plasmid for pyocyanin oxidation activity in the presence of nitrate. After incubating 

stationary-phase cultures under anaerobic conditions to allow them to reduce the 

pyocyanin present in the medium, we added nitrate or water and followed the oxidation 

of pyocyanin spectrophotometrically over time. This quantification revealed the ability of 

the wild-type strain to couple nitrate reduction to pyocyanin oxidation, and demonstrated 

that this activity was Nap dependent (figure A.3). An even higher rate of pyocyanin 

oxidation was observed for the complemented napA::tn mutant than the wild type, and we 

attribute this higher activity to provision of the complementing napEFDABC operon in 

multicopy. We observed a decrease in the concentration of oxidized pyocyanin for the 

wild-type strain with no nitrate, as well as for the napA::tn mutant and the napA::tn 

mutant containing the empty vector pMQ72, because residual oxidized pyocyanin 

remaining in these cell suspensions at the start of the assay was reduced. 



 

 

166 

 
 

Figure A.3. Nap is involved in nitrate-dependent pyocyanin oxidation. 
Error bars represent the standard deviations of biological triplicates. 
 
 
A.3.4. Nitrate Reduction, via Nap, Balances the Intracellular NADH/NAD+ Ratio 

P. aeruginosa napA is homologous to a gene encoding the functional subunit of 

the periplasmic nitrate reductase complex characterized in E. coli, Paracoccus 

pantotrophus, Rhodobacter sphaeroides, and other bacteria (Potter et al. 2001). In E. coli 

and P. pantotrophus, it has been suggested that Nap functions to maintain redox 

homeostasis in stationary phase (Potter et al. 1999; Sears et al. 2000). To test the idea that 

Nap may play this role in P. aeruginosa, we incubated cultures of the wild-type strain, 

the napA::tn mutant, and the complemented napA::tn mutant in the presence of 40 mM 

nitrate for approximately 4 hours beyond entry into stationary phase and measured the 

intracellular NADH/NAD+ ratios for each. We found that nitrate addition decreased the 

NADH/NAD+ ratio when added to the wild type as well as the complemented Nap 

mutant (figure A.4). The addition of nitrate to the napA::tn mutant, however, had less of 
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an effect; these cells were unable to use nitrate to bring the intracellular NADH/NAD+ 

ratio down to the wild-type level. The decrease in the intracellular NADH/NAD+ ratio 

that we still observed when nitrate was added to the Nap mutant must derive from 

another activity that allows for the reoxidation of intracellular NADH as a consequence 

of nitrate reduction. We suspected that this activity might result from induction of the Nar 

system, but performing the same experiment with the narG mutant yielded results 

identical to those for the wild type (data not shown), indicating that this activity is not 

responsible for the decrease in NADH/NAD+ ratio observed for the napA::tn mutant in 

the presence of nitrate. 

 
 
Figure A.4. Nap facilitates redox balancing in oxygen-limited, nitrate-amended cultures. 
Error bars represent the standard deviations of biological triplicates. 
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A.3.5. The Nap Operon is Upregulated in Stationary Phase 

We previously described another system that balances the intracellular redox state 

in P. aeruginosa: electron transfer to the virulence factor pyocyanin (chapter 3). Based on 

the observations that the biosynthesis of pyocyanin is induced in stationary phase, and 

that the Nap system has a physiological effect similar to that of pyocyanin reduction, we 

wondered if the P. aeruginosa Nap system might also be upregulated under stationary-

phase conditions. To test this, we grew the wild-type strain aerobically to an optical 

density (at 600 nm) of 0.4 (exponential phase) or 1.4 (stationary phase), and removed 

aliquots for RNA extraction. After preparation of cDNA, Q-RT PCR was performed to 

analyze expression of napA and the constitutively expressed genes clpX and recA. We 

found that expression of the gene napA was 52.5 ± 11.5–fold higher in stationary phase 

relative to exponential phase, while the control gene clpX showed only a 1.04 ± 0.06 

change in expression (figure A.5). Changes in gene expression were normalized to the 

control gene recA, and the standard deviations for these values represent biological 

triplicates.  

This experiment was done in the absence of nitrate, and we have also observed 

that preincubation with nitrate is not necessary for the inhibition of pyocyanin reduction 

by nitrate (data not shown). This suggests that the expression of the nap operon is not 

dependent on nitrate and is induced by other environmental conditions, such as oxidant 

limitation and/or cell density. Consistent with this, nap genes have been identified in the 

regulon of RpoS, a stationary phase-specific sigma factor (Schuster et al. 2004). 
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Given that pyocyanin reduction and nitrate reduction via Nap have seemingly 

redundant physiological effects, we might expect the production of their machineries to 

be cross-regulated such that only one system is active under specific conditions. In 

support of this idea, the stationary-phase regulator RpoS has been shown to upregulate 

Nap but downregulate expression of one of the operons involved in phenazine 

biosynthesis; hence, an RpoS mutant overproduces pyocyanin (Suh et al. 1999). Such a 

mutant would be defective in nitrate reduction via Nap, but might be able to complement 

this defect in redox balancing by channeling more reducing power to the machinery 

involved in pyocyanin reduction. On the other hand, we observe an additional activity for 

Nap that suggests that cells may benefit from the simultaneous activity of both systems: 

Nap reoxidizes pyocyanin in a nitrate-dependent fashion, regenerating substrate for 

pyocyanin-dependent NADH oxidation. Nap therefore allows pyocyanin to act as an 

electron shuttle between intracellular NADH and nitrate, and provides an additional route 

for the disposal of excess reducing equivalents. Whether this redox cycling is a spurious 

lab artifact or leads to synergistic NADH reoxidation (under conditions where oxidants 

for reduced pyocyanin are limiting) remains to be determined. Additionally, the 

differential expression of these activities across concentration gradients in communities 

of bacteria may have beneficial effects that are not apparent in well-mixed batch cultures 

of planktonic cells.  
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Figure A.5. Wild-type P. aeruginosa shows increased nap expression in stationary phase. 
Error bars represent the standard deviations of biological triplicates. 

 

A.4. Discussion 

Pseudomonads are popular model organisms for the study of biofilms, which are 

known for their persistence in the face of changing environmental conditions and assaults 

with toxic compounds (Anwar et al. 1990; Morris and Monier, 2003; O'Toole and Kolter, 

1998). The respiratory activity of cells in these aggregates, as well as the production of 

extracellular polymers that limit diffusion, quickly leads to oxygen limitation for cells in 

the center of the biofilm (Worlitzsch et al. 2002). Researchers have recently become 

focused on the relevance of anaerobic metabolism to the ability of P. aeruginosa to 

colonize the lung (Eschbach et al. 2004; Hassett et al. 2002b; Schreiber et al. 2006; Yoon 

et al. 2002). We have identified two ways in which the putative P. aeruginosa Nap 

system may contribute to survival under conditions of oxygen limitation by facilitating 
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redox balancing. In one mechanism, Nap transfers electrons directly from the quinone 

pool to nitrate. In the second mechanism, Nap couples the oxidation of pyocyanin to 

nitrate reduction, regenerating pyocyanin as an electron acceptor for NADH oxidation.  

The finding that the nap operon in P. aeruginosa encodes genes required for 

nitrate-dependent reoxidation of the NAD(H) pool is consistent with previous work in 

Alcaligenes eutrophus H16 (since renamed Ralstonia eutropha) and in P. pantotrophus, 

in which homologues of the P. aeruginosa nap genes have been shown to play roles in 

maintenance of redox homeostasis (Sears et al. 2000; Siddiqui et al. 1993). However, in 

organisms such as E. coli and Pseudomonas sp. strain G-179 (actually a Rhizobium 

species), Nap can or does function as the primary nitrate reductase in nitrate respiration 

(Bedzyk et al. 1999; Potter et al. 1999; Potter 2000; Stewart et al. 2002). In addition to 

this variation in metabolic capacity, differential expression of the nap genes in response 

to environmental conditions such as oxygen concentration and nitrate availability have 

been demonstrated in different bacteria. In P. aeruginosa, expression of the nap operon 

has not been observed in stationary phase during anaerobic growth on nitrate (Filiatrault 

et al. 2005), and we have not observed that prior incubation with nitrate is required to 

observe Nap activity. Therefore, we propose that in this organism Nap is expressed 

specifically as a mechanism to balance the intracellular redox state during stationary 

phase in aerobically grown cultures. 

We have previously reported a role for pyocyanin reduction in the maintenance of 

redox homeostasis in P. aeruginosa (figure A.6.A). Here we report a similar role for the  

P. aeruginosa Nap system (figure A.6.B). One might suspect that, given that both 
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mechanisms ultimately decrease the intracellular NADH concentration, they might be 

competing for substrates, and that the mechanism with a higher binding affinity for 

NADH would inhibit the activity of the other (figure A.2.A). However, we have also 

observed that nitrate and pyocyanin can act synergistically to balance the intracellular 

redox state in a mutant unable to produce pyocyanin (chapter 3, figure 3.3.B). This 

suggests that nitrate-dependent pyocyanin oxidation is an alternate mechanism for 

pyocyanin regeneration under conditions where oxygen is unavailable (figure A.6.C). 

 
 

Figure A.6. Model: Pyocyanin reduction (A), Nap-dependent nitrate reduction (B), and 
Nap-dependent pyocyanin oxidation (C) contribute to P. aeruginosa redox homeostasis 
under oxygen-limited conditions. 
“phz red” represents a putative phenazine reductase. 
 
 

Our results, combined with previously reported observations, indicate that P. 

aeruginosa Nap transfers electrons from the quinone pool in the electron transport chain 

to nitrate (Potter et al. 2001), leading ultimately to the reoxidation of intracellular NADH. 
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We have used a genetic approach to identify enzymes involved in electron transfer to 

pyocyanin, and identified two enzymes that contribute to pyocyanin reduction activity in 

P. aeruginosa. The first, the biosynthetic glycerol-3-phosphate dehydrogenase GpsA, 

represents an additional mechanism for redox balancing in this organism, as mutants 

lacking this enzyme showed a decreased NADH/NAD+ ratio compared to the parent 

strain, which may  limit the availability of NADH for pyocyanin reduction. The second 

enzyme identified through our screen, the cytochrome bc1 complex of the respiratory 

chain, may directly catalyze pyocyanin reduction. As we move closer toward a 

comprehensive list of mechanisms contributing to P. aeruginosa redox balancing under 

oxygen-limited conditions, we gain a better understanding of the metabolic potential of 

this pathogen. This gives us a better picture of the many ways in which P. aeruginosa 

may adapt to the conditions of the cystic fibrosis airway and will inform our thinking 

about therapeutic approaches. 
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Appendix B 

 

The Redox State of Pyocyanin Affects Partitioning into Bacterial Cell Pellets 

 

B.1. Introduction 

The opportunistic pathogen Pseudomonas aeruginosa produces virulence factors 

that contribute to its ability to colonize a diversity of hosts, ranging from microscopic 

fungi to plants and animals (Hogan and Kolter 2002; Mahajan-Miklos et al. 1999; Rahme 

et al. 1995). Among these factors are a class of redox-active antibiotics called phenazines. 

The toxicity of these compounds is usually attributed to their ability to accept electrons 

from intracellular redox buffers, such as NADH and glutathione, and then react with 

oxygen to form radical intermediates (Hassan and Fridovich 1980; O'Malley et al. 2004; 

Reszka et al. 2004). Given that these reductants are common metabolic substrates for 

most organisms, including P. aeruginosa, one might expect the toxicity of phenazines to 

be universal. However, the effects of phenazine exposure on P. aeruginosa growth and 

survival are negligible under traditional batch culture conditions (Baron and Rowe 1981; 

Price-Whelan et al. 2007), and phenazines have been shown to promote survival when P. 

aeruginosa is incubated anaerobically with a poised-potential electrode as the sole 

electron acceptor (Wang et al. 2008). It appears that P. aeruginosa has evolved 

mechanisms for tolerating, and benefiting from, the production of these reactive 

compounds.  
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Several characteristics of P. aeruginosa have been cited as contributing to its 

tolerance of many antibiotics and phenazines specifically, including decreased outer 

membrane permeability and high numbers and expression levels of efflux pumps (Hassett 

et al. 1992; Mesaros et al. 2007). However, studies examining the effects of P. 

aeruginosa phenazines on gene expression and central metabolism suggest that 

phenazines do enter the cytoplasm at levels that are physiologically relevant. We have 

proposed that, rather than merely ensuring that all antibiotics are indiscriminately 

pumped out, P. aeruginosa executes control over the uptake, efflux, localization, and 

reactivity of its phenazine products that allows a coordinated physiological response 

(Dietrich et al. 2006; Dietrich et al. 2008).  

Although all of the phenazines produced by P. aeruginosa are roughly the same 

size, they vary in net charge and hydrophobicity, which are also properties that affect 

transport. Phenazine-1-carboxylate has a deprotonated carboxyl group and a negative 

charge at neutral pH, making it the least hydrophobic and most soluble P. aeruginosa 

phenazine. The other three well-characterized phenazines produced by P. aeruginosa—

phenazine-1-carboxamide, 1-hydroxyphenazine, and pyocyanin—are more hydrophobic, 

with predicted logP values ranging from 1.04 to 1.81. The production of pyocyanin, 

which is an intense blue color, during chronic lung infections has made it the most 

recognizable small molecule produced by P. aeruginosa (Villavicencio 1998). Aside 

from its coloration, pyocyanin is also unique in that it is a zwitterion that can tautomerize 

to form an uncharged species. The diffusion rate of pyocyanin across bacterial or 

eukaryotic cell membranes has not been studied experimentally; the chemical structure 

and zwitterionic nature of this compound is cited as sufficient support for the assumption 
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that it can diffuse freely across biological membranes (Lau et al. 2004; Look et al. 2005; 

Rada et al. 2008; Schwarzer et al. 2008). Table B.1 lists predicted logP values for P. 

aeruginosa phenazines and other small molecules that have been studied with respect to 

their transport across biological membranes. 

During an experiment testing NADH and NAD+ levels in anaerobically incubated 

cultures, we uncovered a previously unacknowledged parameter—redox state—that may 

affect the transport of pyocyanin across the cytoplasmic membrane. Implications for 

putative mechanisms underlying pyocyanin uptake in P. aeruginosa are discussed. 
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Table B.1. Predicted logP values for heterocyclic and aromatic compounds of interest. 
LogP values were estimated using the KOWWIN software 
(http://www.syracuseresearch.com/esc/est_kowdemo.htm). NA, not applicable (compound has a 
net charge at neutral pH). 
 

compound 
and 
structure 
references 

structure logP 
(KOWWIN 
prediction) 

known transport mechanisms 
and references 

phenazine-1-
carboxylate 
(Mavrodi et 
al. 2001) 

N

N

C
O O

 

NA  

phenazine-1-
carboxamide 
(Mavrodi et 
al. 2001) N

N

C
O NH2

 

1.04  

1-hydroxy-
phenazine 
(Mavrodi et 
al. 2001) N

N

OH

 

1.81  

pyocyanin 
(oxidized) 
(Mavrodi et 
al. 2001) N

N

O

CH3  

1.60  

pyocyanin 
(reduced) 
 

N

H

N

CH3

OH

 

2.89  

anthracene 

 

4.35 uptake by passive diffusion; active 
efflux (Bugg et al. 2000) 

fluoranthene 

 

4.93 uptake by passive diffusion; active 
efflux (Bugg et al. 2000) 

naphthalene 

 

3.17 passive uptake and release (Bugg 
et al. 2000) 
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DHK 
 

O

O

CO2
-

OH CH3

O  

NA dedicated efflux pump (Tahlan et 
al. 2007) 

(S)-DNPA 
 

O

O

CO2
-

OH CH3

 

NA dedicated efflux pump (Tahlan et 
al. 2007) 

tetracycline 
(Anderson et 
al. 2005) O

NH2

OOOH

HO CH3

H
N

OH
OH O

CH3H3C

 

-1.41 uptake by passive diffusion; active 
efflux (Anderson et al. 2005; 
Sigler et al. 2000) 

2,6-anthra-
quinone 
disulfonate 

O3S

SO3

O

O

 

NA efflux pump (Shyu et al. 2002) 

streptomycin 
(Wright and 
Thompson, 
1999) 

O

O

OH

HO

O

NH

CH3

HO

C

H

O
O

HO

HN

N
H

HO

HO OH

NH3

NH

NH3

NH

 

NA active uptake and efflux (Taber et 
al. 1987) 

 

B.2. Results and Discussion 

Acid-base extraction, followed by measurement using an alcohol dehydrogenase-

based enzyme cycling assay, constitutes a standard protocol for quantification of 

individual pools of NADH and NAD+ from bacteria and yeast (Leonardo et al. 1996; 

Vemuri et al. 2007). In this method, cells are pelleted by a 1-minute spin at maximum 
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speed in a microcentrifuge, and supernatant is removed. Cells are then resuspended in 

either 0.2 M NaOH (for NADH extraction) or 0.2 M HCl (for NAD+ extraction). The 

sample is incubated at 50 °C for 10 minutes, then cooled on ice for 10 minutes. For 

NADH extractions, 0.1 M HCl is added, while for NAD+ extractions, 0.1 M NaOH is 

added, drop wise with gentle vortexing to partially neutralize the solutions. The 

extractions are then centrifuged at 16,000 rcf for 5 minutes, and supernatants are removed 

and assayed according to the method of Bernofsky and Swan (1973).  

We have used this method to show that relative availabilities of electron donors 

and acceptors affect the intracellular redox balance of P. aeruginosa, and that pyocyanin 

contributes to the oxidation of the cytoplasm under conditions of electron acceptor 

limitation (Price-Whelan et al. 2007). One concern that arose during these experiments 

was the possibility that pyocyanin carryover from bacterial cell pellets could affect 

NADH extraction efficiency. NADH can react directly with pyocyanin producing NAD+ 

(Kito et al. 1974), so samples affected by pyocyanin carryover would appear to have 

more oxidized NADH/NAD+ ratios than samples without phenazine.  

To test the effect of pyocyanin on the NADH/NAD+ extraction protocol, we 

added increasing concentrations of pyocyanin to samples from a phenazine-null culture at 

the same time that we initiated the extraction by resuspension in base or acid. We found 

that  more than 5 µM pyocyanin was required in the extraction step in order to observe an 

effect on the amounts of NADH, and more than 10 µM pyocyanin was required for a 

measurable effect on the NAD+ value (figure B.1). Given that our samples typically 

contain 50-100 µM pyocyanin, this would represent a carryover greater than 10%. 
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During an experiment that required anaerobic culture incubation, we carried out 

the initial centrifugation step of the extraction under anaerobic conditions, then moved 

the cell pellets into an oxygen-containing atmosphere for resuspension. We found that the 

absence of oxygen during this initial step drastically affected our results: the NAD(H) 

pool appeared to be more oxidized than pools for samples prepared entirely in the 

presence of oxygen. To confirm that this effect was specific, we grew a wild-type P. 

aeruginosa culture aerobically to stationary phase, split it into two fractions, and placed 

one fraction in the anaerobic chamber. After approximately 1 hour, two 1-mL samples 

were taken from each fraction and centrifuged as described in either anaerobic or aerobic 

conditions. The supernatant was removed from the anaerobic cell pellet, and the pellet 

was moved into atmospheric conditions. We resuspended all pellets in 1 mL of water 

instead of acid or base, and measured the concentration of pyocyanin before and after 

extraction using a previously reported HPLC method (Price-Whelan et al. 2007). Samples 

centrifuged under anaerobic conditions, then extracted under aerobic conditions, retained 

much more of the pyocyanin in the cell pellet than samples that had been centrifuged 

under aerobic conditions (figure B.2). (Bernofsky and Swan, 1973) 
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Figure B.1. Effect of pyocyanin addition on NADH assay under aerobic conditions. 
(A) Relative amounts of NADH and NAD+ for each sample. (B) NADH/NAD+ ratio calculated 
from the values shown in (A). 
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Figure B.2. Pyocyanin concentrations in supernatants and washes from the NADH/NAD+ 
extraction method. 
“Wash” refers to pyocyanin extracted from the cell pellet. Error bars represent standard 
deviations of triplicate samples. 

 

To test whether the anaerobic centrifugation effect alone was sufficient to 

significantly alter the levels of NADH and NAD+ measured in the samples, we carried 

out the same experiment described above, but subjected the cell pellets to base or acid 

extractions to isolate the NADH and NAD+. Samples that were centrifuged under 

anaerobic conditions contained lower levels of NADH and higher levels of NAD+ than 

samples centrifuged under aerobic conditions, resulting in a NADH/NAD+ ratio that was 

almost 5-fold lower than that observed for the aerobically centrifuged sample (figure 

B.3). These results demonstrate that exposure to oxygen affects partitioning of pyocyanin 

into pellets of P. aeruginosa, and is a confounding factor in the NAD(H) extraction 
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protocols that must be considered when designing future experiments. This caveat did not 

affect the experimental results presented in Chapter 3, however, because all extractions 

were carried out on vortexed samples under normal atmospheric conditions. 

 

 
 

Figure B.3. Effect of pyocyanin carryover on relative NADH and NAD+ levels under aerobic 
and anaerobic conditions. 
Error bars represent standard deviations of triplicate samples. 
 

The propensity of pyocyanin to remain associated with P. aeruginosa specifically 

under anaerobic conditions may be a clue to the transport mechanisms determining 

intracellular pyocyanin concentrations. While the general principles governing the 

diffusion and/or transport of small organic compounds across the bacterial cytoplasmic 

membrane are poorly understood, microbiologists have addressed the uptake of small 
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molecules on an individual basis, making predictions based on the size, charge, and 

polarity of the compound and testing these predictions empirically. Examples of 

molecules for which uptake mechanisms have been examined include the antibiotics 

tetracycline and streptomycin as well as environmental contaminants such as polycyclic 

aromatic hydrocarbons (PAHs). Tetracycline and some PAHs have been shown to 

passively diffuse across the membrane, but require active transport for maximal efflux 

rates (Sigler et al. 2000). PAHs diffuse across the membrane at rates consistent with their 

predicted logP values (Bugg et al. 2000). Streptomycin is thought to require active 

transport for uptake and efflux; therefore, the toxicity of this compound depends on the 

ability of the target bacterium to produce sufficient energy for import (Taber et al. 1987).   

The predicted logP values for pyocyanin fall between those of the hydrophobic 

PAHs and the hydrophilic antibiotics streptomycin and tetracycline (table B.1). 

Pyocyanin is taken up and reduced by P. aeruginosa, then released to the extracellular 

space where, under normal atmospheric conditions, it can abiotically react with oxygen to 

become reoxidized. If oxidized and reduced pyocyanin had the same ability to cross the 

cytoplasmic membrane, we would expect to recover the same amount of pyocyanin after 

centrifugation under aerobic and anaerobic conditions. However, the higher logP value of 

reduced pyocyanin suggests that it would diffuse across the membrane more readily than 

oxidized pyocyanin. The higher concentration of pyocyanin observed in the wash fraction 

from cells centrifuged in the presence of reduced pyocyanin is consistent with this model 

(figure B.4). 
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Figure B.4. Model for distribution of reduced and oxidized pyocyanin across the cell 
membrane under anaerobic and aerobic conditions. 
Percent distribution values for pyocyanin represent approximations of values presented in Figure 
B.2.  

 

Although the logP values of reduced and oxidized pyocyanin are probably high 

enough to allow diffusion across the membrane, preliminary evidence suggests that active 

transport does play a role in the localization of at least some of the P. aeruginosa 

phenazines. As we have previously reported, deletion of the mexGHI-opmD operon, 

encoding a putative efflux pump that is expressed in response to pyocyanin exposure, 

leads to a lag phase-specific growth defect in P. aeruginosa that is absent when the 

operon is deleted in a phenazine-null background. Furthermore, mutants lacking a 

functional MexGHI-OpmD pump are defective in the excretion of an uncharacterized red 

pigment that is probably a combination of aeruginosin A and derivatives, charged 
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phenazines that are produced by P. aeruginosa under some conditions (Dietrich et al. 

2008; Herbert and Holliman 1969; Holliman 1969). Finally, we cannot rule out that the 

intracellular accumulation of pyocyanin under anaerobic conditions is due to an energy 

requirement for pyocyanin efflux that depends on oxygen as an electron acceptor. Further 

experiments with respiratory inhibitors and radiolabelled pyocyanin (allowing direct 

measurement of the intracellular fraction) are required to examine this possibility.  
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Appendix C 

 

The Transcriptional Response to Oxidation of the NADH/NAD+ Pool Supports a 

Direct Activation Model for Pyocyanin and SoxR 

 

C.1. Introduction 

Bacteria experience abrupt changes in the relative availability of electron donors 

and acceptors, including strong oxidants such as oxygen and its derivatives. During these 

transitions, cells must maintain an intracellular balance of major redox buffers that allows 

maintenance activities, such as protein turnover and DNA repair, to proceed. For some 

species, transcriptional regulators that respond to the intracellular redox state have been 

identified, but in most cases the phylogenetic distributions as well as the prevalence of 

their functions have not been explored (Green and Paget 2004). The redox-sensitive 

transcription factor SoxR is an exception. This protein is encoded in 176 sequenced 

bacterial genomes, and has been shown to respond to treatment with exogenous and/or 

endogenous redox-active small molecules in divergent bacterial species such as 

Escherichia coli, Pseudomonas aeruginosa, and Streptomyces coelicolor (Dietrich et al. 

2008; Gaudu et al. 1997).  

SoxR is a homodimer composed of a DNA-binding domain and an activation 

domain with exposed iron-sulfur clusters (Watanabe et al. 2008). The protein is bound to 

DNA, regardless of its redox state, at a specific promoter sequence known as the 

soxRbox. When the iron-sulfur clusters become oxidized, a conformational change in the 
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homodimer contorts the DNA and enables transcription of the downstream gene. The 

structure and mechanism of transcriptional activation are well conserved, as 

demonstrated through complementation experiments in which Pseudomonas putida SoxR 

was shown to fully complement an E. coli soxR mutant (Park et al. 2006). 

While the modes of activation for divergent SoxR orthologues are superficially 

similar, the function of the SoxR regulon appears to be different in enteric bacteria such 

as E. coli compared to other bacterial families. E. coli SoxR activates transcription of 

soxS, which encodes another transcription factor. SoxS activates transcription of many 

genes, including those involved in superoxide detoxification (Pomposiello and Demple, 

2000). Thus, the paradigm for SoxR activation has been that xenobiotics such as methyl 

viologen (paraquat) trigger production of superoxide, which oxidizes SoxR and 

stimulates transcription of soxS (figure C.1.A). However, the SoxR regulons of other 

bacteria do not contain soxS or any other transcription factors. They typically contain 1-3 

genes that are involved in small molecule metabolism and transport (Dietrich et al. 2008; 

Palma et al. 2005). Furthermore, recent work has indicated that endogenous redox-active 

compounds, such as the antibiotics produced by Pseudomonas species, can oxidize SoxR 

directly. In P. aeruginosa, SoxR-dependent transcription of mexG, a gene encoding part 

of an efflux pump, occurs under anaerobic conditions, eliminating the need for 

superoxide generation in the SoxR-activation model (Dietrich et al. 2006).  

Two different superoxide-independent models have been proposed for SoxR 

activation at the molecular level. In the first model, depicted in Figure C.1.B, a reductase 

system is required to maintain the iron-sulfur clusters in their inactivated state, and SoxR 
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oxidation occurs by default when this reductase system is limited for electron donor 

(Kobayashi and Tagawa 1999; Koo et al. 2003). In the second model, redox-active small 

molecules accept electrons directly from the SoxR iron-sulfur clusters, leading to 

activation (figure C.1.C). The activation of the SoxR regulon in P. aeruginosa, which 

depends on exposure to redox-cycling compounds, is consistent with both of these 

proposed models. P. aeruginosa produces several phenazine derivatives, redox-active 

small molecules that are required for endogenous SoxR activation (Dietrich et al. 2006). 

As discussed in Chapter 3, P. aeruginosa also catalyzes the reduction of its own 

phenazine products, including the blue phenazine pyocyanin, and this is coupled to an 

oxidation of the intracellular redox state (Tsaneva and Weiss 1990). Pyocyanin and the 

synthetic phenazine safranine O have both been shown to allow electron transfer from 

SoxR to a cathode in three-electrode amperometric cells (Ding et al. 1996; Kobayashi and 

Tagawa 2004), demonstrating that the direct reduction of phenazines by SoxR is possible.  

Here we present studies aimed at delineating the effects of redox-cycling drugs on 

the intracellular redox state and their direct interaction with SoxR. This work supports the 

hypothesis that electron transfer from SoxR to pyocyanin is required for SoxR activation 

in P. aeruginosa, and that exposure to a redox-active small molecule such as pyocyanin 

or methyl viologen is the major determinant of SoxR oxidation state in vivo. 
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Figure C.1. Cartoon depicting models for SoxR activation.  
SoxR is bound to DNA regardless of its activation state, but activates transcription only in its 
oxidized form. (A) Until recently, the major oxidant for SoxR was thought to be superoxide. (B) 
An alternate model for SoxR activation posits that the cytoplasm itself is not reduced enough to 
maintain SoxR in the inactive state and that an NADH-dependent reductase system is required. In 
the presence of a redox-cycling compound such as methyl viologen or pyocyanin, NADH is 
depleted and SoxR becomes oxidized by default. (C) In a third model, pyocyanin or another 
redox-active compound directly interacts with the iron-sulfur cluster to oxidize SoxR. 
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C.2. Results and Discussion 

In addition to methyl viologen, the xenobiotic compounds plumbagin, menadione, 

and phenazine methosulfate have been shown to activate expression of the SoxRS 

regulon in E. coli (Greenberg et al. 1990; Tsaneva and Weiss 1990; Walkup and Kogoma 

1989). While all of these compounds are categorized as redox-cycling drugs and are 

assumed to generate superoxide under the conditions used for each study, their effects on 

the intracellular redox state have not been explored. We inoculated two sets of cultures of 

E. coli MG1655 growing aerobically on LB, and added methyl viologen to a 

concentration of 200 µM to one set. Methyl viologen did not affect exponential-phase 

growth of E. coli (figure C.2A). In late exponential phase, after approximately 3.5 hours 

of growth, samples were taken from each culture and subjected to acid/base protocols for 

NADH or NAD+ extraction. The NADH and NAD+ samples were analyzed using an 

alcohol dehydrogenase-based enzyme cycling assay. Extraction and assay procedures 

were developed based on the methods published by Bernofsky and Swan (1973) and are 

described in Price-Whelan et al. (2007). (Bernofsky and Swan, 1973) 

As shown in Figure C.2B, exposure to methyl viologen lead to an oxidation of the 

intracellular redox state in E. coli. This result is consistent with a role for an NADH-

dependent SoxR reductase system in determining the oxidation state of SoxR, as methyl 

viologen, like pyocyanin in P. aeruginosa, would be expected to decrease the amount of 

reductant available for this enzyme.  However, it does not rule out the possibility that the 

major oxidant for the SoxR enzyme itself is the redox-active compound. To test this 

hypothesis, a system that decouples the oxidation of the NAD(H) pool from the presence 

of a redox-cycling compound is required. 
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Figure C.2. Methyl viologen oxidizes the cytoplasm of E. coli.  
E. coli cultures were grown in LB and sampled at 3.5 hours (A) for NAD(H) extraction and 
quantification (B). Error bars represent biological triplicates and may be obscured by the marker 
for some time points in (A). MV, methyl viologen. 

 

During a screen for P. aeruginosa PA14 mutants defective in pyocyanin 

reduction, we identified a mutant with a constitutively oxidized cytoplasm. This mutant, 

which is lacking a functional biosynthetic glycerol-3-phosphate dehydrogenase (GpsA), 

is unable to produce sufficient reducing power to catalyze electron transfer to pyocyanin 

at the same rate as the wild type. It therefore has an oxidized intracellular redox state 

even when it is unable to produce pyocyanin as a redox sink (chapter 4, figure 4.5), and 

thus allows us to test whether an altered NADH/NAD+ ratio is sufficient to activate SoxR 

in vivo. 

We grew the P. aeruginosa PA14 wild type, a mutant that is defective in 

pyocyanin production (Δphz), the glycerol-3-phosphate dehydrogenase mutant (ΔgpsA) 
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and a mutant lacking both pyocyanin and GpsA (Δphz ΔgpsA) to stationary phase in LB. 

RNA was extracted from these samples and cDNA was prepared according to the method 

described in Dietrich et al. (2006). We set up quantitative real-time PCRs (Q-RT-PCRs) 

with primers designed to amplify the genes mexG, recA, and clpX. mexG is a SoxR target 

gene with an upstream soxRbox, while recA and clpX are standard control genes for Q-

RT-PCR experiments in P. aeruginosa. The Q-RT-PCR program, primer sequences, and 

analytical methods have been described previously (Dietrich et al. 2006).  

Analysis of the Q-RT-PCR data, normalized to recA, revealed that mexG gene 

expression is induced 127 (±18)– and 83 (±6)–fold in wild-type and ΔgpsA pyocyanin-

producing cultures, respectively, compared to Δphz culture. The Δphz ΔgpsA culture 

showed the same expression level as the Δphz culture (figure C.3). Normalization to clpX 

expression levels gave similar results. The induction of mexG expression in the wild type 

compared to the Δphz mutant was as previously reported (Dietrich et al. 2006). Despite 

the decreased NADH/NAD+ ratio of the Δphz ΔgpsA mutant, SoxR does not activate 

mexG gene expression under this condition. This result strongly supports a direct-

interaction model for the activation of SoxR in P. aeruginosa, and indicates that SoxR is 

present in its reduced, inactivated state even when intracellular NADH becomes limited.  
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Figure C.3. Relative differences in expression of the mexG gene in various mutants 
compared to the Δphz mutant. 
NADH/NAD+ values are taken from Figure 4.5 (chapter 4). Error bars represent the standard 
deviations of biological triplicates. 

 

Although the intracellular NADH/NAD+ ratio is often used as an indicator of the 

cytoplasmic redox state, a major caveat to our work lies in the possibility that changes in 

the NADPH/NADP+ pool may not correlate with the overall intracellular redox potential, 

and NADPH is the relevant electron donor for SoxR reduction. Our assay is specific for 

the nonphosphorylated pyridine nucleotides, and further study of the NADPH pool is 

required to confirm its relevance in this context. Furthermore, while this work suggests 

that a reductase system is not required to maintain SoxR in a reduced state under 

conditions of abundant electron donor and acceptor availability, it is still possible that a 
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similar SoxR reductase is present in the cell that facilitates recovery of the reduced form 

of the enzyme after an oxidation event. Work by Koo et al. (2003) presents genetic 

evidence that such an enzyme exists in E. coli. (Koo et al. 2003) 

Our results indicate that phenazines are the major determinant of SoxR oxidation 

state in stationary-phase P. aeruginosa. Further work is required to pin down the major 

determinant of SoxR redox state in E. coli. Several studies have suggested that 

superoxide can directly activate SoxR in this organism, but that it is not required (Fee 

1991; Liochev and Fridovich 1992; Touati 2000). Experiments similar to the anaerobic 

activation experiment performed in P. aeruginosa must be carried out in E. coli to test 

whether methyl viologen alone can oxidize E. coli SoxR. While depletion of NADH 

alone is not sufficient to oxidize the enzyme in P. aeruginosa, the different steady-state 

NADH/NAD+ ratios in pseudomonads compared to the enterics (Wimpenny and 

Firth,1972), as well as differences in central metabolic pathways in these bacteria (Fuhrer 

et al. 2005), may correlate with differences in their ability to manage SoxR oxidation. 

Studies comparing the expression of soxS in a mutant with a constitutively oxidized 

cytoplasm to the wild type will address whether SoxR responds to the intracellular 

oxidation state in E. coli. This future work will allow us to conclude whether the diverse 

functionalities of SoxR in enterics versus other bacterial families correspond to 

differences in activation mechanisms. 
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