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Abstract

In the first part of this work we deal with the classification of definable
equivalence relations on Polish spaces, where we take definable to mean inside
some model of determinacy: We work in ZF+DC+ADx. The classification is
up to bireducebility (denoted by E ~ F), that is if E and F are equivalence
relations on the Baire space A, then E ~ F, if there is a mapping f : N' = N
with Vz,y € N (zEy & f(z)Ff(y)), called a reduction of E into F, and
vice versa.

As two equivalence relations on Polish spaces are bireducible just in case
there is a bijection between their quotient spaces, our results apply to de-
finable cardinality theory, too. We show that up to bireducibility there are
only four infinite hypersmooth equivalence relations: equality on the integers,
equality on the Baire space, Ej on the Cantor space 2¢ given by

aEyf & In € wVm >n (a(m) = B(m)),
and F; on the countable product of Cantor space (2¥)“ given by
&Eof © 3n € w¥m > n (am = Bm).

Even though we only develop the theory for the context of ADg, it is
clear from the proofs that our results apply to a variety of other settings,
such as the one encountered in the second part.

In the second part of the thesis we deal with countable Borel equivalence
relations £ on Polish spaces X, that is with equivalence relations which have
countable classes and Borel graphs. The space M of probability measures
on these spaces is again Polish. Of special interest are invariant measures
(i.e. those which are preserved under bijections f : X — X with f(z)Ez, so
called automorphisms), quasiinvariant measures (i.e. those whose measure
class is preserved under automorphisms), and ergodic measures (i.e. those
which assign full or null measure to E-invariant Borel sets).

We show that the collections of ergodic measures and of ergodic quasiin-
variant measures are Borel. We also classify the complexity of the o-ideal of
nullsets with respect to all invariant measures, showing that this ideal is IT}
in the codes of A} and ¥1 sets, and that the o-ideal of compact nullsets with
respect to all invariant measures is ITJ if the collection of invariant ergodic
measures is at most countable, and IT}-complete otherwise.



Chapter 1

Dichotomy Theorems

In this chapter we prove two dichotomy theorems about the reducibility and
embeddability relations of equivalence relations. Let us first consider an
example: Consider the space X of normal multiplicity free operators on a
separable Hilbert space and the equivalence relation E of unitary equivalence.
It is well known that two such operators are unitarily equivalent iff their
spectral measures are in the same measure class, i.e., have the same null sets.
Thus the map f on X into the space Y of measures satisfies the condition

zEr & f(z)Ff(z') forall z,2" € X,

where F' is the relation of being in the same measure class. We call a map
satisfying the above condition a reduction of E into F, and an embedding
if it is in addition injective.

Under the axiom of choice reducibility and embeddability are trivial no-
tions which depend only on the cardinalities of the quotient spaces, and on
the cardinality of the equivalence classes for embeddability.

We are interested here in these notions for “definable” objects on Polish
spaces, i.e., where the spaces are Polish spaces and the equivalence relations
and maps are “definable”. In this context we want to classify “definable”
equivalence relations up to “definable” reducibility and embeddability. “De-
finable” means in some pointclass such as projective, inductive, inside L(R)
or some inner model, etc.

We can also apply our theory to the study of “definable” cardinality
theory. Here one investigates the cardinalities of sets I which are “definable”
surjective images of the reals, or equivalently, which are “definable” quotient



spaces of the reals. Such sets, say I and J, are compared via “definable”
injections and bijections:

I <pJ <« thereisa “definable” injection from I into J
I ~pJ & thereis a “definable” bijection from [ onto J
& I<pJand J<pl.

An appropriate context for this theory is to take all definable objects to be
inside an inner model of ZF+DC+ADgz, the axiom of dependent choice plus
determinacy of games of reals. In such models one has full uniformization;
thus injections between quotient spaces of the reals correspond exactly to
reductions of the equivalence relations giving the quotient spaces.

Let us work from now on in an inner model of ZF+DC+ADx. It will
be clear that our discussion also applies to the other cases mentioned above,
provided we have the appropriate level of determinacy.

Our results concern the equivalence relations Ey on 2“, the space of in-
finite {0, 1}-sequences, and E, on (2“)*, the space of sequences of such se-
quences. Since 2“ is homeomorphic to the Cantor set, we may also think of
(2¥)“ as sequences of elements of the Cantor set.

Two elements a,a’ € 2“ are said to be Ey-equivalent iff

3k € w¥n > k(a(n) = o/(n)),

l.e., if they eventually agree. The importance of Ey stems from the fact that
it has two properties: Fjy is not A-smooth for any A < O (i.e., the supremum
of the lengths of prewellorderings of the reals), i.e., there is no reduction of
Ej to equality on 2*. Also call E smooth if it is w-smooth and ©-smooth if
E is A-smooth for some A < ©. Thus in this terminology Fy is not ©-smooth.
On the other hand, Fj is the increasing union of equivalence relations with
finite classes, namely, those equivalence relations on 2 which relate elements
which agree after a fixed point k € w. We call equivalence relations with
finite equivalence classes finite, and the increasing union of finite equivalence
relations hyperfinite. There are several equivalent definitions of this notion:

1. E is hyperfinite, i.e., the increasing union of finite equivalence relations.

2. E is countable and hypersmooth, i.e., the equivalence classes are
countable, and E is the increasing union of smooth equivalence rela-
tions.



3. There is a bijection T of X with itself such that E is the orbit equiva-
lence relation of T'.

We now have the following generalization of a result for the Borel context by
Harrington-Kechris-Louveau [90]. We have recently learned that Foreman-
Magidor (unpublished) have found the result below independently.

Theorem 1 (ZF+DC+ADg) Let E be an equivalence relation on a Polish
space. Then either E is ©-smooth or Ey embeds into E via a continuous
function.

The equivalence relation F; on (2¢)“ is given by
aE & & 3k € wVn > k(a, = al)

for all &,&’ € (2¥)¥. Like Ey, E, is hypersmooth, but it is not countable; in
fact, it is not reducible to any countable equivalence relation, in particular,
not to any hyperfinite equivalence relation. We have the following well known

Fact 2 E is hypersmooth if and only if E is embeddable into E, if and only
if E is reducible to E;.

Proof: For the forward direction let E = |J,, F,, be a hypersmooth equiv-
alence relation on X, where F, is smooth and increasing, and let f, reduce
F, to equality on 2*. Then define f: X — (2*)¥ by

f(a)n+1 = fn(a)
and
fla) = a.
Clearly, f embeds E into Ej.
For the backward direction assume that f : X — (2¥)“ reduces E to Ej.
Let Fi be given on (2¢)* by
aFd & Vn > k(a, = o).
Let E, be the pullback of Fi via f; i.e., for z,z’ € X set
zFx’ o f(x)Fof(2).

Since £y = Ui Fr, we have E = J, F,, and both are increasing unions of
smooth equivalence relations. Thus F is hypersmooth. O

We now have a generalization of a result by Kechris-Louveau [a] for the
Borel context:



Theorem 3 (ZF+DC+ADy) Let E be an equivalence relation on a Pol-
ish space. If FE 1s hypersmooth, then either E is reducible to Ey, or E; is
embeddable into E via a continuous function.

Thus up to reducibility, F, is the only non-hyperfinite hypersmooth equiv-
alence relation, and this depends on whether or not E is reducible to a count-
able equivalence relation.

Recall now the following unpublished

Theorem 4 (Dougherty-Jackson-Kechris) (ZF+DC+ADy) Let E be a
countable @-smooth equivalence relation on a Polish space. Then E is smooth.

Then we have the following picture of equivalence relations on Polish
spaces, where < indicates that the former relation is reducible into the latter
but not vice versa:

(= w) < (=,2%) < (B, 2%) < (E1,(2°)°).

And there are no other equivalence relations between these. This picture
translates immediately into the following CH-type result for definable cardi-
nality theory, where 79 and 7; are the cardinalities of the quotient spaces of
Ey and Ey, respectively:

Ro < 2% < g < 1,

with no other cardinalities in between.

Let us now summarize the organization of the rest of the chapter. In Sec-
tion 2 we give some facts about hyperfinite equivalence relations, which we
need later. In Section 3 we construct the pointclasses in which the construc-
tions take place. We also summarize the properties of the pointclasses, which
we need later. All constructions will use the combinatorial concept of a tree
structure, which we introduce in Section 4. We prove theorem 1 in Section
5 and theorem 3 in Section 6. Finally, in Section 7 we give a generalization
of a result by Harrington-Sami [79] to n-ary relations. There are also some
applications of this result.



1.1 Hyperfinite Equivalence Relations

We give here some results about hyperfinite equivalence relations, which we
need later, and which may be found with references in Dougherty-Jackson-
Kechris [a]:

Theorem 5 (ZF+DC+ADy) Assume that E is a countable equivalence re-
lation on a Polish space X, and E = \J, E,, where E, C E,.; are smooth
equivalence relations. Then E embeds into Ey.

We will show (lemma 6) that such E are hyperfinite, i.e., the increasing
union of finite equivalence relations. This will imply (lemma 7) that E is
induced by an action of Z. All equivalence relations E induced by Z-actions
embed into E(Z,“2) C (“’2)2, where

aE(Z,“2)3 & 3n € Z2Ym € Z(amn = Bm),

by the following map f: X — (”2)3: Let {U; : ¢ € w} be a family of subsets
of X separating points. For £ € X and m € Z, let m.z be the action of m
on z. Then

flx)(m)(i) =1 max e U,.

Since E(Z,“2) C E, by theorem 7.1. of Dougherty-Jackson-Kechris [a], all
that remains is to show the above-mentioned lemmas.

Lemma 6 (ADgr) Assume that E is a countable equivalence relation on a
Polish space X. Then there is a countable group G and a group action of G
on X such that E = Eg.

Proof: Let E = U, F,, where F, is the graph of a total function. (To find
the F,, let R C X x “X be given by (z,7) € R & {y. : n € w} = [z]p,
let R* uniformize R and let (z,y) € F, & 37((z,9) € R*AJn = y).) Let
{Rk : k € w} be a sequence of rectangles, where Ry = Iy x J; with I and
Ji. disjoint, such that U, Ry = X2 — {(z,z) : ¢ € X}. Let F, be given by
(z,y) € Fp & (y,z) € Fn. Let Gumis = Fo N Fp O Ri. Note that Gy
is the graph of a partial E-invariant function g;,m,kwith disjoint domain and
range. Furthermore, U, ;nx Gnmi = E. Define g, mr : X — X by

9o mi(x) if z is in the domain of g;, , .
Gnmi(T) = g'nri(x) if z is in the range of g 4,
z otherwise.

3



Let G be the group generated by the g, m . Since the union of the graphs of
the gnmi is £, Eg = E. O

Lemma 7 (ADg) Assume that E = U, E, is a countable equivalence rela-
tion which is the increasing union of smooth equivalence relations E,. Then
E is hyperfinite; i.e., E is the union of an increasing sequence of finite equiv-
alence relations.

Proof: Let s, be a selector (i.e., for all z and y, s,(z)E,z and s,(z) = s,(y)
whenever zE,y) of E,, G, = {¢* : k € w} be a group inducing E, with g%
the identity map, and define F, by

Fy © 3Im<nlzE,y
ATkg, ... kn < n(z = gs0g ... g sm(T))
Ao, ... lm < n(y = gf,“sogi‘ v g s ()]

We will show that
1. F, € Foy,
2. F, CEy,
3. ECU,Fy,
4. F), is an equivalence relation,
5. F, is finite.

1. and 2. are immediate. For 3., note that if zEy, then there are m and
ko, ... ,kyn and lp, ... ,l,, such that zE,,y and z = gf‘s,-(x) and y = g¥s;
for 0 <7 < m. Let n = max{m, ko, ... ,km,lo, ... ,lm}. Then zF,y.

For 4.: Clearly, F, is symmetric and reflexive. Let us check that F, is
transitive. Say that xF,y and yF,z. Let m, 1o, ... ,im, Jo, --+ »Jm, ™/,

ko ... kmi, lo, ..., lm < n be such that

zFay A 2=gPs0gi ... gimsm(z) A Y=g’ s0gt ... girsm(y)

and
k. -
yYFmz N y= g’g"sog'f‘ e G sme(y) Nz = gf,°sog'1‘ o Gy S (2).
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If m = m/, there is nothing to show. Assume without loss of generality that

Kom Py . P
m <m'. Lety = g, Sm41 -+ - ot Sme(y). Sincey = a0 sogt .. g sm(y)-

= g°s09 ... gk sp(y'), we have Y FoyF.z. Thus su(y) = sn(z) and
8m'(¥) = $m(x). Thus we have
z = gPsogl - G Sm()
= 95°s09) --- g Sm(¥)
i i im km k.
90 S091 -+ - G SmGmet Sm41 - - - Gyt Smr(Y)

_ i i i km+1 k..
= 958091 - Gm SmImi1 Sm+1 -« Gt Smi(T)-

This proves that 2 F, z, and thus transitivity.

For 5.: Fix z. Assume that yF,z and that m, ko, ... ,km,lo, ... ,Im
witness this fact. Then s,(z) = sm(y), so that y = g segl! ... gmsm(z); ie.,
y is completely determined by m,ly, ... ,[,. Since all are bound by n, the

F,-equivalence class of z is finite. O
Lemma 8 (ADg) If E is hyperfinite, then there is a Z-action inducing E.

Proof: Assume without loss of generality that E is an equivalence relation
on X = “2. Let us first see that it suffices to find a relation R C E such
that for each E-equivalence class C, RN C? is a linear ordering of C of either
ordertype Z or of finite ordertype. For assume that we have such an R, then
we can define T : X — X as follows:

T(z) =y & [(zRy AVz=(zRzRy)) V (yRz AVz=(2Rz V yR2)};

i.e., T(z) is the successor of z in RN[z]% or if z is the last element, then T(z)
is the first element. Now let ¢ act on z by T*. Clearly, this action induces E.

Let E be the increasing union of finite equivalence relations E,. In order
to find R, we will find {R, : n € w} such that

1. Rn (_; Rn+1 g En+17
2. For every E,-equivalence class C, R, N C? is a linear ordering of C,

3. If xR,y and —~(zE,z), then for all m, ~(xRnzRnYy).



Let us first see that this suffices. Let R’ = U, R,. Clearly, R' C E and
RN C? is a linear ordering of C for every E-equivalence class C. Note that 3.
implies that if zR'y, then there are at most finitely many elements between
z and y. The only linear orderings (up to isomorphism) which satisfy this
property are finite orderings, Z, w, and w*, the reverse ordering of w. Thus
let us define R by the following rules:

1. If [z] g has ordertype Z or is finite, then let R agree with R’ on [z]g.

2. If [z]g has ordertype w, let for y, z € [z]g yRz iff y, z both have an even
number of R'-predecessors and yR'z or y, z both have an odd number
of R'-predecessors and zR'y or y has an odd number of R’-predecessors
and z has an even number of R'-predecessors.

3. If [z]g has ordertype w*, then apply the above definition to the reverse
order of R' N [z]%.

Clearly, R is as desired.

We construct R, by induction on n: For Ry put 2Ry iff xEgy and z < y
in the lexicographical ordering. Put R,y iff zR,y or E, 1y and not 2,y
and the R,-least element in [z]g, is lexicographically less than the R,-least
element in [y, .

It is clear that the R, satisfy 1. - 3.. O

1.2 Auxiliary Pointclasses

We introduce here some pointclasses for later use. The approach is well-
known; see e.g., Harrington-Sami [79]. Assume that A < @ is a cardinal and
A={A;:ic to} is a finite sequence of A-Suslin subsets of the spaces N'™,
n; € w, for ¢ € ig. Then we can find for each i € iy a tree T* on W™ X A
such that A; is the projection of the collection of paths through T%; i.e.,
A =p[T) ={a e N™ : 33 € \*Vk € w((a|k,B|k) € T*)}. Let k > X be the
least ordinal such that L,(N U {T* :i € 7p}) is admissible. We call the class
I' of I,-definable subsets in Upe, P((N U A)"*) over LN U{T" : i € ig})
with parameters in AU {\, N} U {T* : i € iy} the auxiliary class for A.
We let T' denote its dual class, i.e., the class of complements of sets in T,
and A = ' N[ the ambiguous class of I'. The classes have the following
properties:



. I is closed under V, A, 3¢, v, 3%, V*, HN, VN.

. T is closed under substitution of elements from A, and under permuta-
tion, identification and addition of variables.

.A;eT foralli € i, and vin fact for all 7 € i, for qll s € "), and
for all t € *(w™) p[Ti ) € I'. Here T;, = {(s',t') € T* : s and &' are
compatible and ¢ and t’ are compatible}.

. There is a pairing function A x A — A in A. Proof: The canonical
well-ordering of OrdxOrd given by (a,8) < (v,9) iff max{a,f} <
max {7y, 6} or max{a, 8} = max{v,8} and (a, ) < (v, 6) in the lexico-
graphical ordering has a A definition. Now define g : Ord xOrd — Ord
by ¢(v,6) = the ordertype of {(a,8) € Ord x Ord : (o, 8) < (7,6)},
which has a ¥;-definition. Since )\ was least such that A was A-Suslin,
A is a cardinal and thus g(«, ) < A forall o, < A. O

. I'is A-parameterized. Proof: Enumerate the ¥;-formulas with constant
symbols for elements from A U {A\, N, T} effectively. O

. T is normed with norms into k. Proof: Let B € T' be defined by
Jz¢(z,y), where ¢ is Ag. Let ¢ : B — « be given by 9(b) = the least
€ such that L,(AU {A\,N,T}) | 3z € Le(AU {A\N,T})é(z,b). This

works.O

. T has the reduction property and I' has the separation property. Proof:
This follows from Moschovakis [80], p. 204, 4B.10 and 4B.11.0

. There is avF—ching of A-sets: There are C C A, D,D C XxWN,
C,DeTl,DeT, such that

(a) If € € C, then D; = Dg.
(b) For every B € A, B C N, there is £ € C with B = D;.

Proof: Let U be I'universal for N, U C A x N. Let ¢ : A2 — X be
the pairing function, ¢, @2 : A — A be such that (¢, ¢2) is its inverse.
Then put

Vi(¢,z) & U(a(§),2),
Va(€,2) & U(¢2(8),2).

9



10.

Let Dy, Dy reduce Vi, V5 and put
£ € C & Vz(Vi(&z) V Va(é, 2)).

Then let D = Dy and D = (A x N') — D,. These work. O

. The recursion theorem holds: There is a -universal set U C Ax (AUN)

such that for any I-recursive function f : A — A there is £ € A such
that Ug = Ugey and for any V C A x (AUN) in T thereis f: A — A
such that V€ € )\(‘/5 = Uf({))'

The reflection theorem holds: Assume that A C P(N)isT on T, i.e,,
{v € A:U, €T} €T for the universal set U. Thenif Y € A, Y €T,
there is X € A, X € A, X C Y. Proof: Let U C A x (AUN) be
universal such that the recursion theorem holds. Let ¢:U — Kk be a
[-norm. Let &, € A be such that U, = {y: U, € A} and Usg =Y.
Consider the I'-set V' C A x (A UN) given by

V(6,y) & ¢(8,y) < ¢(e, 6).

Let f : A — A be given by the s —m — n-theorem such that V¢ € A(Ve =
Use)). Then find by the recursion theorem 6 such that Vs = Uys) = Us.
If Us € A, then § & U,; thus ¢(a, ) = oo; thus

V(dy) & #B,y) <oo
& (B,y)eU
= yGUﬁ=Y;

thus Us = V; =Y € A, a contradiction.

Thus U; € A; thus ¢(a,§) < oo; thus V5 € A. Since V5 C Y, this
completes the proof. O

1.3 Trees And Tree Structures

Definition 9 If T is a directed tree, we denote the vertex set by V(T') and
the edge set of T by E(T). If e € E(T) is an edge of T, then we denote by
eo and e; the source and the target of e, respectively. If I is a (lightface)

10



pointclass and X € I is nonempty, a I'-tree structure on X is a triple
(T, A,R), where T is a finite directed tree, A is an assignment v — A,
of nonempty [-subsets of X to the vertices of T', and R is an assignment of
I-relations e — R, to the edges of T such that we have for all edges e € E(T)

AcyReAe,,

le.
Vz € A, 32’ € A, 2Rz’ A V2’ € A, Iz € A zRT.

If (T, A,R) is a tree structure, then (T, A’,R') is said to refine (T, A, R) if
for each vertex v € V(T) A, 2 A, and for each edge e € E(T) R, 2 R..

We now have the following

Lemma 10 Let T be a pointclass which is closed under finite intersections,
finite unions and ezistential quantification over N'. Let X € T be a nonempty
subset of N with standard basis B such that B CT'. Let (T, A, R) be a T'-tree
structure on X.

1. If v € V(T), B C A; is a nonempty I'-set, then there is a refinement
(T, A", R) with A, = B.

2. If {x, : v € V(T)} is a collection of points and {B, : v € V(T)} is a
collection of I'-sets such that

z, € B, C A, for allv e V(T)

and
TeoRexe, for all e € E(T),

then there is a refinement (T, A", R) of (T, A, R) with
z, € A, C B, for allv e V(T).
3. There is a collection {z, : v € V(T)} of points such that

z, € A, for allv € V(T)

and
Tey Rexe, for all e € E(T).

11



If € > 0, then there is a refinement (T, A", R) of (T, A, R) such that A,
has diameter < € for allv € V(T).

Ifé e E(T), SC R;, B C A;, C C A; are nonempty I'-sets with
BSC, then there is a tree structure (T, A", R’) refining (T, A, R) with
B=A,,C=A;, R: =S and R, = R, for e # é.

€p’

Assume that € € E(T), R: is an equivalence relation with R. C Re for
all e € E(T), the path between the vertices s,t € V(T) in T contains
é, and B C A,, C C A, are nonempty I'-sets with BR;C. Then there
is a refinement (T, A", R) of (T, A,R) with A, = B and A, =C.

Proof:

1.

We define A, by induction on the distance of v to 4. Let e € E(T).
If A, is already defined, let A, = m[(A;, x Ae,) N R). If Ay is
already defined, let A, = mo[(A., x A,,) N R.]. Here my and 7, are the
projections onto the first and second coordinate of the product space,
respectively.

. Fix ©» € V(T). We define A! by induction on the distance of v to 9. If

A, is already defined, let A, = m[(A], x B.,) N R,]. If A, is already
defined, let A} = mo[(Be, X A, )N R,]. In the first case we know that
Te, € A, . Similarly, in the second case.

Fix v € V(T) and z; € A;. Then pick z, by induction on the distance
to . '

Use 3. to find a collection {z, : v € V(T')} with the guaranteed prop-
erties. Find a collection {B, : v € V(T)} C B of basic open sets with
diameter < € and with z, € B, for all v € V(T). Then use 2. on the
collections {z, : v € V(T)} and {B,N A, : v € V(T)} to find A'.

Let Ty and 7} be the two subtrees of T, which remain if € is removed
from E(T). Assume that & € V(T;). Note that (T}, A|V(T;),R|E(T}))
for ¢ = 0,1 are tree structures, so find refinements (T;, A'|V(T;),-
RIE(T;)) with A} = B and A} = C. Since BSC, (T, A, R') with
R’ as in the statement is a tree structure with the desired properties.
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6. Let Ty and T be the two subtrees of T' which remain if € is removed
from E(T). Assume that s € V(T) and t € V(T7). Again we know
that (T3, A|V(T;), R|E(T;)) for ¢ = 0,1 are tree structures, so find re-
finements (T3, A'|V(T:), R|E(T;)) with A, = B and A} = C. For all
u,v € V(T;) we have A, R;A! by induction on the distance between
them, using transitivity of R;. Since A,R:A}, we have A, R:A, for
all w,v € V(T). In particular, A} R:A} , so that (T, A", R) is a tree
structure.

1.4 The First Dichotomy Theorem

We prove here the first dichotomy theorem, working in ZF+DC+ADx through-
out. We draw here from ideas of Harrington-Kechris-Louveau [90], Harrington-
Sami [79], and Foreman [89]. Let E be an equivalence relation on N'. By
Woodin [a] let A < O be the least cardinal such that E and £ = N? — E are
both A-Suslin, and let T, T be trees on w? x A which prove this. Let I' be
the auxiliary class for E, E, as guaranteed by Section 1.2.

We can define the following A-smooth equivalence relation R containing
E. Tt is in fact the smallest such equivalence relation in I'.

Definition 11 Let R C N? be given by

zRy & VB € A[B E-invariant = (z € B & y € B)]
& VB e A[(Vv,w € N(ve BAvEw = w € B))
= (z € B & y € B)),

and X C N by

tr€X & R, #E,
& Jy(zRy A zEy).

Since there is a I-coding of A-sets and I' is closed under universal quan-
tification, R and X are in I'. If X = 0, then F is A-smooth and there is
nothing to show. Thus assume that X # 0.

13



1.4.1 The Embedding

We will construct the continuous embedding f of Ej into £ ]X’ by constructing
a sequence {i, : n € w} of positive integers and a perfect binary tree {A: -
i <i,,5 € 2", n € w} of I'-subsets of X such that

(A) distinct paths through the tree are disjoint; i.e., Ai»NA» = Qif s, t € 27,
s #t, and

(B) the sets along one path are decreasing; i.e., AL 2 A] if (s =¢ € 2 and
i <j<ip)orif(sCtands#t), and

(C) for s € 2", the diameter of A** is at most 1/(n + 1).

We then set f(a) to be the unique element in N,e, A-i:‘ln' By (B) and
(C) f is well defined, by (C) f is continuous, and by (A) f is injective. In
order for f to be an embedding, it in fact suffices that it satisfies the two
conditions of the following lemma.

Lemma 12 (Embedding Lemma) If a function f : 2¥ — N satisfies

Ly (VY = F(VEF(Y)),
2. Yk (f(05"0°y)Ef(05"1")),
then it is an embedding of Ey into E.
Proof: We prove the statement
Vst € 28y (f(s"7)Ef(t™7))

by induction on k. For k& = 0 there is nothing to show. Assume the statement
for k and let s,t € 2¥*1, If s(k+ 1) = t(k + 1), then the induction hypothesis
already implies the claim. Thus assume w.l.o.g. that s(k +1) = 0 and
t(k+1) = 1. Then

F(s™)EF(050" ) EF(0* 1" ) Ef(t"7).
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1.4.2 The Game G

In order to ensure 1. of the embedding lemma, we will play the following
game:

G: 1 Ao,BO AQ,BQ
11 A1, B A3, By o

where A, B; € T, 0 # Ay C A C X, 0 # Biyy € Bi C X, AiRB,,
diam(Agi1) < 1/(¢ + 1), diam(Ba;41) < 1/(i 4+ 1). Whoever violates these
rules first, loses. If both follow these rules, then I wins iff N; A;E N, B;. (Here
A is the topological closure of A.)

Since we want to apply ADz to conclude that II has a winning strategy
in this game, we should play a coded version of this game, i.e., one where the
players play reals instead of ordinals. For this we should fix a prewellordering
of the reals of length A and should code the ordinals by reals with the ap-
propriate rank with respect to this prewellordering. It is easy to modify the
argument below to work with the coded version of the game. For simplicity
we continue to pretend to play G and assume that it is determined. In order
to show that I does not have a winning strategy, and for later use, we need
the following lemma.

Lemma 13 1. IfAel, A2NR=A%NE, then thereis B€ A, AC B,
with BENR=B2NE.

2. IfA€ A, A’NR = A2NE, then there is B € A, [Alg C B, with
B’NR=B*NE.

3. IfAel, A2 NR=A’NE, then ANX =0.

4. Let A, B be I'-sets with (A x BYNR#®. Then (Ax B)NE # §.
Proof: Let C(A) denote the statement A2NR = A’NE.

1. Consider A C I'|A/ defined by

A(A) & (mA?NRCE
& VaVy|[(z € ANy € AAzRy) = zEy).

Note that A is T on I'. Now let A € I' with C(A). Then A(=A); thus
by reflection there is B € A, B C - A, A(-B). But then A C B and
C(B).
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2. Apply 1. to [A]E.

3. By 1. find B € A, [A]g € B, C(B'). Then inductively find an
effectively A-sequence < B,, : n € w> of A-sets such that

BO = Bla Bn+1 2 [Bn]E, C(Bn)7

using the fact that 1. holds uniformly. If B = U, B,, then B € A,
A C B, B is E-invariant and C(B). Thus BN X = .

4. Assume that A, B € ' with (A x BYN E = . Then find by effective
I-separation a A-sequence of A-sets C,, such that

(a) [A]g € Cy CN - [Blg,
(b) [Cule € Chy1 SN — [Blg.

Let C = U, Cn. Then C separates A and B by (a), is E-invariant by
(b), and C € A. Thus C is R-invariant and thus (A x B)N R = 0.

We now have
Lemma 14 [ has no winning strategy in G.

Proof: Assume that o is a strategy for I. We will play two runs of G, call the
players I, I, I and II and their moves A;, B; and Al, B}. I and I’ will follow
o. We indicate the moves in a diagram after the description of stage n:

Stage 0: I and I' play their first moves. They are identical. Thus
So=p[T)N RN By x Bj # 0 by lemma 13.3. Let sg = to = ug = 0.

Stage n: Assume that the runs have proceeded to the (2n — 2)nd move
and that sequences s;,t; € w' and u; € A" and sets S; € FN X% have been
defined for ¢ < n such that

1. I, T’ have followed o and no player has lost for trivial reasons.
2. 8 C Sipry 6 C tigr, U C uigy

3. p[Ts;,t,‘,u.'] 2 Si
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4. RD S5; D Sia
5. By; D myS;, By, = mS;
6. Agii1 2 Agi D Ab_ ) DAY D Agip

Then find sequences s,,t, € w" and u, € A\" extending s,_;,t,-1 and u,_1,
respectively, such that

5111 = p[Tsn,tn,un] N Sn—l ?é 0

Let
A= A’2n——2

and
B = ’/TQS;.

If z € B, then using 4. and 5. there is y € Bj,_, such that (z,y) € S,-1 C R
and z € A} _, = A such that yRz, thus zRz. Thus we can shrink A and
B down to Ag,_, and Bj,_; such that As,_iRBs,_1, and they are both
sufficiently small. Let Ay, and By, be given by 0. Then let

S;I’—-—SLOBQ,,XN

and
A= A2n

and
B = 71'151/:.

Again by transitivity of R we have (A x B) N R # (. Thus shrink A and B
down to sufficiently small A}, _, and Bj,_, such that A}, _RB), ;. Let A},
and Bj, be given by ¢ and finally set

S, =SINN x Bj,.

This completes stage n.
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LI Ay B, Ay, B, So=plI]N(BoxBy)NR

o> - "”S{ = Sonp[Tsl,tl,ul]
— 1ty

n 4 BE
I Az B,
!fSi'.—_ S{ ﬂBz XN
LﬁTﬂ'
Ir A} B;
I Al B,
Sy =5{nN N x B;
(i\, _ - ’S; =50 p[T82,t2'u2]
¢c-" " " Yo
II As B3
I Ay By
,,,/Sé'=S§ﬂB4 XN
My
Ir A B'I‘
) > >
I Al B,

Sy =S!NN x B,

-7 S:z = Sﬂ—l N p[T-’mtn.“n]

- ’[Tro -
I Ay B
1 A Ban
~S"=8" N By x N
e
II’ A’2n—l B;n—l
r Ay, By,

S.=SINN x B,

Now let a, 3,a’, ' be the reals produced in the two runs. Then by 3. we
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see that SF03', by 6. @ = o/. Thus we must either have Bfa or §'Fo'; thus
o was not a winning strategy. O
Thus fix a winning strategy 7 for II.

1.4.3 The Game &'

In order to ensure 2. of the embedding lemma, it will be convenient to play
the following game:

G: 1 AQ,BO A2,32
II AlaBlaRl A3,B3aR3 ey

where players I and II take turns playing pairs of nonempty decreasing (i.e.,
Ai D Aiy1, Bi 2 Biiy) I'-subsets A;, B; of X, and II plays in addition
nonempty decreasing binary I'-relations R, 2 such that

AoRBy A Agiy1Roiv1Boivi AN AsipoRoiy1Baiyo.

If either player violates these rules, the first to do so loses. If both players
play according to the rules, player II wins if N, A,E N, Bn.
Using lemma 13 and the tree T proving that E is A-Suslin, we have

Lemma 15 Player II has a winning strategy in G'.

Proof: We will describe the strategy of II, which is winning. Assume
that player I plays nonempty [-subsets Ag, By of X with AgRB,. Let Sp =
(Ao X By)NE, which is nonempty by lemma 13. Since E = p[T, player II can
pick s1,t; € w' and u; € A! such that Ry = p[T,, 1, ,4,)] intersects Ag x By.
Player II plays A; = mo[(Ao x By) N Ry] and By = m[(Ap X By) N Ri]
and R;. Assume that player I responds with legal moves Ay, By. Since
AR B,, player II can find s3,t3 € w? extending s; and ¢;, respectively, and
uz € A® extending u; such that Ry = p[T{s,,1,44)] intersects Ay x By. Player
IT plays A3 = m[(A2 X By) N R3] and By = m[(A2 X By) N R3] and Rj.
He continues in the same manner. At the end of the run II assured that
ﬂn An = {Un Sn} and ﬂn Bn = {Un tn} and (Un SnaUn tnaUn un) € [T y SO
that indeed N, A, E N, Bn, and II wins the run. O
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1.4.4 'Trees on 2"

Before we can give the construction of the complete binary tree of ['-subsets
{Ai} of X, we will need to construct a directed tree 7™ on each 2". If s,t € 2"
are linked by an edge in T, then this will indicate that there will have to
be one round of a run of G’ among the A%, A}. But let us construct the trees
first. Tp has just one vertex and no edges. Assume that 7™ is given. We
obtain T"*! by taking two copies of T}, and joining their zeros:

Vi,j € {0,1}Vs,t € 2*[(s"<i>,t"<j>) € E(T"") &

(i=jA(s,t) EET")V(i=0Aj=1As=t=0"))).
We have:
TO (o)

Tl O o}

T2 i————o ?——-———o

B e e
In fact, we can also give a direct definition of T, though it is not imme-
diate from it that 7" is indeed a directed tree:

V(") = 2
{(5,t) 2" x 2" : Tk < nFu € 2" +D(s = 0k 0" u At = 0F"1"w)}.

pe
=

=
I

1.4.5 Construction of the binary tree

We are now ready to construct the {4} and I-relations {R: : i < in,e €
E(T™),n € w} such that in addition to (A)-(C) of the above, we have:
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(D) There is a sequence {j,; : 3n € w(s,t € 2" As(n — 1) # t(n — 1))} of
indices such that for each pair v,v' € 2% with v/, if {ne : k € w} is
the increasing enumeration of {n : v(n) # +4/(n)}, then

J J
I A‘rolno A‘Yolno A‘rlnl A“/ Iny

Jo+1 Jo+1 J1+1 i+l
I Aﬂno A“/’lno A‘rinl A‘r dic

is a run of G where II follows 7, and none of the players loses for trivial
reasons, where J; = jyn; y|n; for ¢ € w.

(E) Note that for each v € 2 and each n € w (0" 0"v|k,0* 1" v|k) is
n+1+k i : o qs
an edge of T . Thus R(o»‘o“ﬂk,ok“l“ﬂk) exists. There are indices
{j? :n € w,s € 2<¥} such that for each v € 2¥ and each n € w

I II
A]o A]o
o 0" Ton 1
AJO+1 AJo+1 RJo+1

) , o "0 on 17 "o " 0,00 " 1)
J1 J1
0" "0 y1” o "1 741 ‘ _

A11+1 i+l i+l L
om0 1 TTom "1 17 T "0 41,05 "1 4]1)

is a run of G’ where II follows 7/, and none of the players loses for
trivial reasons, where j; = jJ; for all i € w.

(F) (T, AL RY) is a tree structure for each n € w and each i < ip.
0 rogn, = R foralln € w, where A} = {4] : s € 2"} and

R: ={R.:e€ E(T")}.
Condition (D) guarantees 1. of the embedding lemma and condition (E)
guarantees 2. of the embedding lemma. Condition (F) is used to ensure that

the construction can be carried on. Let us construct at stage n the Ai and
Ry and 1, forse€ 2® and i < 1,,.

1.4.6 StageO
Let AY = X, jO =iy = 0.
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1.4.7 Stage 1

In order to find two disjoint, R-related [-subsets of X, we show

Lemma 16 (Splitting Lemma) Let A,B C X be in T, A, B nonempty,
ARB. leen there are nonempty, disjoint C € A, D C B i I" with CRD
and CND =0.

Proof: Assume first then (A x B) N R € {(z,z) : z € N'}. Then find
two distinct, R-related points a € A, b € B, choose disjoint neighborhoods
V,W about them and let C = m[RN ((ANV) x (BNW))] and D =
m[BRN((ANV) x (BNnW)).

But we cannot have A x BN R C {(z,z) : £ € N'}. Otherwise we have
A = B, and thus AN R = A2N F; thus AN X =0, a contradiction. O

Thus we can find by the splitting lemma two disjoint nonempty [-subsets
A, A} of X which are R-related. Let R}, = R. Let Aj, A} be the answer
according to 7 in the situation

I ALA
II

of G and R}, = R. Let jo, = 0. This satisfies (D). Let A3, A}, R}, be the
answer according to 7' in the situation

I Ag A
II

of G'. Let j§ = 1. This satisfies (E). We played such that (F) is satisfied till
now. Use the lemma 10.4 of Section 1.3 to shrink the A2 to have sufficiently
small diameter in order to satisfy (C) and such that (F) remains satisfied.
This completes stage 1; thus 7; = 3.

1.4.8 Stagen+1

Set RSA“AI, = Rin Rgv-‘oo"H = Rfors € 2"and i € 2; set Ag*i = Al» fore =
(s,t) € E(T") and i € 2. Thus we have the tree structure (7"+%, 4%, R3 ;)
with A,y = {A): s € 2"*'} and Ry, = {R{: e € E(T™)}.

Let {s; : i < 2"} enumerate 2". We set out to shrink the A% to ensure
(A), i.e., that the closures of the Al»+! are pairwise disjoint. For s,t € 2"
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with s # t and 7,5 € 2 we have A0 ﬂAO = A N A = (. We will
proceed by induction on 1 < 2" such that Az+1 N A”’l1 = @ and such that

(T, AL RIEL) is a tree structure. Assume that we have defined A%, ;.
Since all the R} are contained in R, and (7", A% |, RL, ) is a tree structure,
we have A'SRA' for all 5,t € 2"*!. By the above splitting lemma, find subsets
B; C A;g]_ such that Bo N B, = 0 and ByRB;. Then use lemma 10 to find

a tree structure (T"+!, AMtL Ri*L) refining (T7+}, AL, RE,,) with B; =

Ai“] Thus we can guarantee (A), and at the end of this induction we have

constructed An+1 and Rn+1 for : < 2™,

In order to guarantee (C), just use lemma 10 on each of the vertices of
T™+! successively. This takes 2"*! steps, so that we have constructed Af .,
and RE,, for ¢ < 2" 4 2nFL

We now set out to guarantee (D). Let {(sm,tm) : m € 2**} be an enu-
meration of 2" x 2". Assume that A}, and R}, have been defined for
i = 2"+ 2"+ m. Let {lp ... [} enumerate {{ < n : s,(I) # t(1)} in
increasing order. Note that

I II
Jo Jo
Asm“o ’ Atmllo 1
Jo+ Jo
A |Io’ tm|lo

J J1
A8m|11 ? A!mlll . X
AJ:+1 J1+1
amlll’ tm|11

e+l pqtl
Asm“k’ tm“k

with J; = j, .. 1S & partial run of G, where neither player lost for trivial
reasons and II followed his winning strategy 7. Set j ~,,~; = 2" 422t =4
and note that A* . | A' . is alegal move of I. Let By, B) be the answer of

Sm 0’ tm 1 . .
7 to this move and use lemma 10 to find a tree structure (7°*!, A:,tll, A;’:}l)

refining (T"+}, {At}, {R!}) with A”’1 = By and A""1 = B, and Ri*! = R}

for alle € E(T™!). After 22" of these steps, we have deﬁned Al and R},
and {j,,} for i < 2™ + 2"*! 4+ 22" and we ensured (D) for this stage.

We are left with ensuring (E). Enumerate the edgeset E(Tr+) = {e™
m < mg}. Assume that A%, and R, have been defined for i = 2" +2"+! +
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22" + m. Recall that e and e* denote the ends of e™. Let Iy be such that
e™ = (0°7170"w, 071 "1 u) for some u € 2"*'~h. Note that Ajm, Al is a
legal move for I in the situation

I II
Jo Jjo

Agmiigr Aem g .
o+1 AJo+1 R_70+1
; m“o’ ePllo? ~e™|lo

J

AL At , ‘
A11+1 J1+1
3m|11’ tm“l

Jn~tg Adk+l pio+l
Ael')"lrf ’ Agf"]n’ Ri{”"]n

of G', where j; = Jup- Let ji =i, and By, By, R® be the response to this
move of I by II, who is following 7'. Then use lemma 10 to find a tree
structure (T™+! AGEL | AMELY refining (7741, {Al}, {Ri}) with A:H‘o = By
and A:'“Al = B; and R\ = R® and Ri*! = R! for e # e™. We are done
after mg steps in ensuring (E), and we set i, = 2" + 27+l 4 22" 4+ my. This
completes the construction of the n + 1st stage and thus the proof.

1.5 The Second Dichotomy Theorem

We prove here the second dichotomy theorem. First we need

Lemma 17 Let E be an equivalence relation on a Polish space X. Then E
1s hypersmooth iff E < F\ iff E C E|.

Proof: Assume that E < E;. Let F, = {(z,y) € (2*)* x (2¥)¥ : Vk >
n(Zn =ya)}. Let f: X — (29) reduce E to E,. Let F, = (f >< )~ 1[Fn] =
{(z,y) € X% : (f(z), f(y)) € F,}. Since F, < F, and F, is smooth, so is F},.
Clearly, E is the increasing union of the F,, so that E is hypersmooth.

Assume on the other hand that F is hypersmooth, and let E be the in-
creasing union of an increasing sequence {I:’,, ‘n €w} of smooth equivalence
relations, and let f,4; : X — 2“ be a reduction of F, to equality. Let
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fo: X — 2¥ be an injection. Then f : X — (2¥) given by f(z), = fa(z) is
an embedding of F into F;. O

Since any hypersmooth equivalence relation F is isomorphic to E;|A for
some A C (2¢¥), it suffices to consider Ej|A for A C (2¢)“. By Woodin
[a] let A < 6 be the least ordinal such that A is A-Suslin and let T be a
tree on 2 x A such that A = p[T’], where we identify (2)“ with 2% via the
recursive isomorphism & — @ and a(<n,m>) = @(n)(m) with <n,m> =
1/2(m+n)(m +n+1) +n. Let T be an auxiliary pointclass for {A} given
by Section 1.2.

Let form > n

Yn,m = U{BEFB2nFman}7
Xom = A=Y, m,
Xn = U 'Xn,m’

m>n

= ﬂXn.

n

By a reflection argument we have
Yom = {BeTNT:B’NF, CF,};
thus
yeY,m © IBelNl(ye BAB*NF,CF,)

& 3¢ € C(y € De AVVZ'((z € D
A 2’ € D¢ A zFpa’) = zF,1")),
which is in I". Thus X, ,, € I, and thus so are X, and X.

We will show that X = () implies that E;|A is reducible to Ey and that
X # 0 implies that E; is continuously embeddable into E;|A.

1.5.1 Casel: X =10

Note that X = A~ U, Nmsn Yam; thus Y = U, Ninsn Ya,m contains A. Since
Y €T, we can find by the separation property an A’ € I'NT with A C 4’ C
Y. Since A" = U,(A' N Nyesp Yam), we can find by the effective reduction
property a uniformly I' collection {A, : n € w} such that A" = |, An
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and A, € A'NNmson Yam. Thus {4, : n € w} is uniformly I' N T, since
Now define F, on A’ by

eFly & [(z,y € | Amn AzFay)VIm > n(z,y € Ap A zFny)].

m<n
Note that F., € I'NT uniformly and that Ej|A’ = U, Fa|A’ = Un Fa|A". Also
note that F, is uniformly smooth; i.e., we have uniformly I" N I-recursive
reductions ¢, of F,. to equality on 2¥. Let A” = ¢o[A’]. Thus A” € I". Let

{B2}knew be a uniformly I' N T family such that {B}}e., is a separating
family for F).. Define equivalence relations F on A” and C}! C A” by

aF)f <« 3z3y[ee(z) = a A ¢o(y) = B A zF,y
& VaVyl(do(z) = a A ¢o(y) = B) = zFy],
a€Cp & 3z[po(z)=aAz € B}
& Vz[go(z) =a =z € BE.

Let E” = J, F}. We also have the following:
Lemma 18 F}/ is countable.

Proof: Let a € A" and z € A’ such that ¢o(z) = a. Let n be such that
T € A,. Note that since A, and ¢y are Fj-invariant, n does not depend on
z, but only on a. If n > k, let g(a) = (n,0). If n <k, thenz € A, C Y, =
MNim<n Ya,m C Yoi. Let € be least such that

z € [Delp, NDN F C Fy.

Let g(a) = (n,£).

We will show that g|[a]zr is injective. Let 8, 8’ € [o]pr with g(8) = g(5).
Let z,2" € A’ with ¢o(z) = 8 and ¢o(z’') = §’. Let n be such that z,z’ € A,.

If n > k, then the definition of F} implies that zFz’; thus zFjz’; thus
B = ¢o(z) = ¢o(a') = f'.

If n < k, let £ be such that z,2' € [D¢]p, and Dg NF, C F,. Let
¥,y € Dg¢ be such that zF,y and z'F,y. Since §,3' are in the same F{-
equivalence class, we have zF)z’; thus by transitivity yFjy'. But then we
have yF,y/, since y,y € D,. Thus by transitivity zF,z’; thus zFyz’; thus
8 = do(z) = du(s') = 7.
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Thus g maps every F}/-equivalence class injectively into A; thus each class
has to be countable. O

Furthermore {C}}ie. is a separating family for F); thus F, is smooth
via the map ¢, : A” — 2¥ given by

on(r) ={kew:z e C}

Thus E” = U, F) C E, by theorem 5 of Section 1.1. Since E;|A is reducible
to £”) it is also reducible to Ej.

1.5.2 Case II: X # 0

Similarly to the recursive isomorphism between 2* and (2¢)¥, we get an
injection 2<% — (2<¥“)* | s+ § = <s,, : M € w>, given for s € 2P by

s (k)_{s(<m,k>) if<m,k><p
=T if <m, k> > p;

l.e., s codes a finite number of finite sequences followed by empty sequences.
For p € w let L(p) be the least m such that s,, = @ for any (or equivalently
for all) s € 2P, Let ~; be the following equivalence relation on 2<«:

s~it e Vm > j(sy =tm).
Note that with the above identification 2¥ — “(“2), we have
aF;B < Vp(alp ~; BIp)

(i.e., we consider Fj as living on 2“ pulled back via the bijection above.
Similarly for 4 and E;.) Furthermore, it is clear that for any p we have

~g |2P C~y |22 C ... Cppy |27,

and ~q |27 is equality and ~ ) |2P is 2P x 2P.

In order to find the continuous embedding f of E) into E;|A, we will
construct a strictly increasing function M : w — w and a collection U =
{Us}sea<w of nonempty I-subsets of X such that

(a) Vs € 2“0 £ U, C X A (U, 2U,-,UU,~,) A diam(U,) < 2-10) A
(0,-,n0,~) =10],
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(b) Va € 2¢(N, Uy C A),
(c) Vp € wV¥s,t € 2°V5 < L(p)(s ~; t = U,FyUs),
(d) Vp e wVs,t € 2°Vj < L(p)[~(s ~j t) = (U, x U;) N Fj = @].

Assume that this can be done. Define f : 2 — A as follows: For
a € 2¥ (a) implies that {Uy,), : p € w} is a decreasing sequence of closed
sets whose diameter tends to 0; thus N, Uah, is a singleton {f(a)}. Clearly,
f is continuous, and by (b) it is into A.

If a,8 € 2%, —=(aE13), then for infinitely many j there is p such that
=(al|p ~; Blp); thus —~( f(a)F; f(3)) for infinitely many j; thus =( f(a) E; f(8)).

If o, 8 € 2%, aE, 3, then there is j > 0 such that for all p € w, alp ~; B|p;
thus f(a)Fuyf(B) by (c) and by the fact that Fyjy is closed.

Thus we are done, once we show that we can construct U and M satisfying
(a) - (d).

In order to ensure (b), it is convenient to consider the following game G
and to use the fact that A is A-Suslin to show that II has a winning strategy.
Alternatively, one could use the argument given in the proof below directly
in the construction.

G: I Bl 32
I B, B

In a run of G, players I and II take turns playing nonempty I-sets as
indicated above such that X D B; 2 B! D B;;;. Player II wins the run iff
N: B: C A.

We will now describe II’s winning strategy 7. Let T be a tree on 2 x A
such that p[T] = A and for all n € w, s € 2" and t € A" p[T.,] € L.

Assume that I plays By C X C A. Let z; € By and t; € A\! such that
z1 € p[Teyn] N By = By. Let Il play B and I answer with B,. Let zo € Bs
and to € A? such that ¢, D ¢; and z9 € p[Ty,2,4,] N B2 = Bj. Continue in the
same fashion. _

Let z = U; ;)¢ = lim; z;. Since z; € B; for j > i, we have r € B; for
all j. By construction the diameter of B! is < 2. Thus ; B; = {z}. But
(z|i,t;) € T for all ¢; thus z € A. Thus 7 is winning.

To ensure (b) we will also find collections V = {V, : s € 2“} and V' =
{V] : s € 2} such that
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(bl) For all a € 2¢,

I Vyo Van
II Vo Vi

« «

is a run of G where II followed 7.
(b2) Vp € w¥s € 2?Vi € 2(U, D V-2 Vs’"i 2U,-,)

Definition 19 A labeled tree is a pair (T,lr), where T is a directed tree
and Iy : E(T) — w is a labeling of the edges of T. If (T, lr) is a labeled tree,
we say that vertices s,t € V(T') are n-linked if there is an edge with label n
between them, and we denote this by s-2-¢. If all edges in the path between s
and ¢t have labels < n, we say that s and ¢t are n-connected and write s-"-£.

We have

Lemma 20 Let S be a finite nonempty set and ~gC~1C ... C~y equiva-
lence relations on S such that ~g is equality and ~ 1s S x S. Then there is
a finite tree T with vertex set S such that for all s,t € S and 0 <i <k

S~ t & st

Proof: We proceed by induction on k. For k = 1 take T to be any tree on S
and set all labels of T to 1. Assume that the lemma is known for k£ and that
~oC~1C ... C~yy4g satisfy the assumptions of the lemma. Let Cy, ... ,C)
be the ~-equivalence classes of S. We can apply the assumption to each of
the C; and the equivalence relations ~gC~1C ... Cr~y restricted to C; to
obtain a tree T} for which the lemma holds. Now pick a vertex ¢; € V¢, for
each j € 0, ...,l, let T" be a tree on {c; : 0 < j <} and label all edges of
T with k + 1.

Let T be the following labeled tree on S: If s,t € Cj, then let s,t be
n-linked in T iff s,t are n-linked in Tj. If s € Cy, t € C; and ¢ # j, then let
s,t be n-linked iff n = k 4+ 1 and s = ¢; and t = ¢;. It is easy to check that
T works. O

Since {~; |27 : j < L(p)} satisfies the prerequisites of the previous lemma,
we fix for each p a labeled tree T}, on 2P guaranteed by the lemma.

Using the fact that M : w — w will be strictly increasing and that the F;,
are increasing equivalence relations, we can rewrite (c) as
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(c') (T, U|2P, F) is a tree structure for all p € w, where Fp = { Frn(ir, (o) }-

We will construct M, U, V, and V in stages. At the end of stage p we
will have constructed M|(L(p)+ 1), U|25P, V|2<P, and V|25P. But conditions
(a),(b1),(b2),(c'),(d) are not strong enough to ensure the induction step.
Thus we impose in addition conditions

(e1) VBeT(0 #£ BC Uy = (B2N Ewy) € Eo),

(€2) Vp € w¥j < L(p+1WB € [0 # B C User Us = (BN Fu(y) L F).
We now consider the following 3 cases separately:

(A) The construction of Vy, V4, Up, and M(0).

(B) The construction of V|2¢*!, V|2rtt y|2e+l and M(L(p + 1)), given
V|2<p+l P)2<rl 14|2<P1 and M|(L(p)+1), in the case that L(p+1) >
L(p).

(C) The construction of V|2P+!, D|2P+L and U|2P+), given V|2<Pt1 P|2<ptl
U2<P*1 and M|(L(p) + 1), in the case that L(p + 1) = L(p).

Case (A):

Lemma 21 Let BeT|X, z;, ...,z € B. Letn € w. Then thereism > n
and a nonempty B’ € '| B such that

VCeT|B(C#0=C’NF,¢ZF,)
and xy, ...,T € B'.

Proof: Since X = N, Umsn Xmns B C Upsp Xma. Since the X, are
increasing in m, find m such that z,, ... ,z4 € X;n,. Let B = BN X, 5.
Then B’ is as desired. O

Apply the lemma to X and n = 0 and some z € X. Thus there is M(0)
and Vp € I, § # Vp C X such that (el) holds for V; is place of Up. Let Vp be
the reply of II to Vj according to 7. Let Uy C Vj be a nonempty I'-set with
diameter < 1. This completes stage 0.
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Case (B): Let B = J,c0» U, and pick by lemma 10 for each s € 2P z, € U,
such that

Vi € (L(p) + I)Vs € 2PVt € QP(S ~it= xsFM(j)xt)-

By lemma 21 we can find B’ € ', B’ C B, which contains all the z, and
m = M(L(p + 1)) > M(L(p)) such that

VC eT|B' [C #0 = C*N F,, C Frpi1)-

Then use lemma 10 to find a refinement (T,U’|2P, F,) of (T,U|2?,F,) such
that U,cor U, C B'. By lemma 10 we may assume that (a) is satisfied. (c)
and (d) are satisfied by construction. We have

Lemma 22 There are collections U' = {U:! : s € 2°} for 1 =0, 1 of ['-sets
such that

(1) Vs,t € 2?Vi, i € 2 (UIE,UY),
(2) (T,U*,F,) are tree structures refining (T,U'|2P, F),
(3) Vs,t € 27(U2 x UH N Frpe1y = 0.
We first show
Lemma 23 Assume that® # B € T', n < m € w such that
VCel(@#CCB=CNF, ZF,).

Assume that § # C,D C A, C,D € I' such that CF,D. Then there are
nonempty C',D' e T withC' C C, D' C D, C'F, D', and (C' x D')NF, = 0.

Proof: First note that
(CxD)NF,CF,=C*NF,CF,.

To see this, let ¢, ¢’ € C with cF,,c. Since CF,,D, let d € D with cF,,d. By
transitivity ¢ Fi,d, and then by assumption, cF,d and ¢ F,d. Thus cF,c.
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Thus we have (C x D)NF,, £ F,. Let c€ C and d € D with ¢F,,d and
—(cF,d). Then there must be k¥ € [n,m) and ! € w such that C<k,l> #

d< k1> Let i
C=Cn{z: 2 1> =ccki>h
D=Dn{z:ocp s =deg >}
Clearly, 5’3( D NF, =0 and (c,d) € (C x D)NF,. Then C' = CN[D]F,
and D' = DN [C]F,, are as desired. O
Proof: (of lemma 22) Let {(s;,t;): j =1, ..., jo} be an enumeration of
2P x 2P. We will find collections U™ = {U¥ : s € 2P} of I'-sets such that

(i) (Tp, U™, F,) is a good tree structure,
p

(i) U, = U2 = UM for all s € 27,

(iii) (T, U™, F,) refines (T, U™, F,),

(iv) for 7 >0 (USOJ_’j X Utlj’j) N Frpey = ()

(v) forj>0 (USOJ.’ijU,Ij’j).

Assume that this can be done. Let Ut = U, If i = ¢/, then (1) holds since
(T, {Ui : s € 2P}, F,) is a tree structure. We also have U, FoU. by (v).
Since m > M(L(p)), tran51t1V1ty yields (1 ) (2) holds by (i); ( ) 3) holds by (iv)
since Uy, x U}, = Ud# x U JC Ui x Ut 7 which is disjoint from Fpepe1).
Thus we are left thh constructmg the Ui,

U0 is given by (ii). Assume that U’ are given. Note that the above
argument shows that

Vs, t € 2°V4,i' € 2 (UM F,U ).

In particular, UOJ Fn Utl’il By lemma 23 find C C Ufj’_{1 and D C Utl,il
such that
CF,DA (C—' X D)ﬂFL(p+1) = {.

Then use lemma 10 to find U*/*! such that (T, UHHL F,) is a tree structure
refining (T, U™, F,) with C = U7+ and D = Ul""'1

Now apply lemma 22 to {U’ : s € 27} to obtain {UO s € 2P} and {U; -
s € 2P} as guaranteed. Put U, = Uslgf) for s € 201, Then (Tpy1,U|2P*, Fpi1)
is a tree structure to which the following lemma applies:
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Lemma 24 Let M : L(p + 1) — w be increasing. Assume that U = {U, :
s €2t Y ={V,:5 € 2%}, and V' = {V/ : s € 25P} are collections of
nonempty ['-sets such that

(1) (Tps1,UI2PTY, Fprr) is a tree structure.
(ii) For all s € 2P,

I Vo Viiz e Vs

15 a partial run of G where II followed T,
(iii) Vs € 2PtY(U, C Vi)

Then there are collections U' = {U, : s € 2?1}, V = {V, : s € 2°*'}, and
V' = {V!:s € 2Pt} of nonempty I'-sets such that

(1) (Tpu1,U'|2P* Fpy1) is a tree structure refining (Tpy1,U|2P+Y, Fpy1)-

(ii) For all s € 2P+1,

I Vo Vi Vs
I Ve Ve . W
15 a partial run of G where II followed T.
(i) Vs € 204} (U; C V] C V. C T,).
Proof: Let {s; : 0 < j < 2P*!} enumerate 2P*!. We will construct families
UT = {U] s € 2Pt} for 0 < j < 2P*! such that
(1) (Tp41,U ™ Fpr1) is a tree structure refining (Tpy1,U7, Fpr1),
(2)
I Vi Vasipt Ui
I1 o0 . V lo-1 Uit

is a partial run of G where II followed T,

(3) U? =U, for all s € 2°*1,

33



If this can be done, then we can set U/ = UZ"', V, = Ug'j, and V| =
U j].“. Thus we are left with the construction of the U’, which we produce
by induction on j. Assume that 7 is given. Let Ug;,“ be the move of II

according to 7 in the situation

I Vi Viil2 s Viilp-1 Usjj
I Vsljm Vs’jI? e Vsljlp—l
Then find UJ*! for s # s; by lemma 10. D

Apply lemma 22 to m = M(L(p + 1)) and U’'|2P*! to obtain U|2PF,
{V,:s €2t} and {V] : s € 2PT!} such that (bl) and (b2) are satisfied and
(a),(c),(d), and (e2) remain satisfied. Thus we are done with case (B).

Case (C): The construction is similar to case (B).
Lemma 25 Let (T,,U|27, Fp11) be a tree structure, n < L(p). Assume that

VBel@#BC |J U, = (BN Fu(nt1)) € Fur1)-

s€2P

Then there are two collections U’ = {U? : s € 2°} andU* = {U] : s € 2} of
['-sets such that

(1) (T,,U*, Fpi) is a tree structure refining (T, U|2P, Fpiq) fori=0, 1,
(2) Vs € 2° (U)Fymn)Us),
(3) Vs,t € 2P (s-"t = (USx UNN Fpyy = 0.

Proof: We prove the statement of the lemma for subtrees T' of T, by
induction on the number of -"--equivalence classes of V(T'). The case V(T')
having one -"--equivalence class has been shown in lemma 22. Assume T is
a subtree such that V(T') has k + 1 -"--equivalence classes Cy, ... ,Ck. Let
T’ be a labeled tree on {C; : i < k} given by C;-*-C; iff there are vertices
¢i € C; and ¢; € C; with ¢;-*~c; in T. Assume without loss of generality that
Cr is an endnode of T and that Ci_,; is m-linked to Ci. Let e be the unique
edge in T between Ci_; and C,. We may assume without loss of generality
that eg € Cr-1 and e; € Cx. We have m = M(lg,(e)) > n. Let T” be the
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subtree of T with vertexset CoU ... U Cr_; and T" the subtree of T with
vertexset C. Since T” has k -"—equivalence classes, we can apply the lemma
to (T, UIV(T”) Fp+1|E(T")}) to obtain U']V(T”) satisfying (1), (2) (3) for
T". Let U = U1 = 7r1[(U0 X Ue,) N Frg(my]. Then we have U0 FM(,,,)U
and U FM(m)U by transitivity and (2). Now apply lemma 22 to obtain tree
structures (T, U*|Cy, Fysi|E(T")) with U? = U} for s € Cx. Then apply
lemma 22 to U°|Cy to obtain {U! : s € Ck} satisfying (1) - (3) for 7" and
refining U°|Cy. Put
Ul --7r0[(UO x U2) N Fy,]

and )
U1 =T [(U1 X Ul)ﬂFm]

and then find U*[V(T") such that (T, U|V(T"), Fps1| E(T")) is a refinement
of (T",U|V(T"), Fps1|E(T")) by lemma 10. This completes the induction
step and the proof of the lemma. O Now we proceed as in case (B).

1.6 A Perfect Set Theorem for n-ary Rela-
tions

In Harrington-Sami [79] it was shown under the axiom of determinacy ADg
that every equivalence relation on a Polish space either has a perfect set of
pairwise inequivalent elements or its equivalence classes are wellorderable.
We generalize this theorem to n-ary relations.

Theorem 26 (ZF+DC+ADg) Let A < ©. Let A be a A-Suslin subset of N
and R C R’ be co-\-Suslin relations on N™ such that

Vz € [N]""Vg € N*[(Vi < (n — 1)R(E,u:)) = R'(¥)],

and R is closed under permutation of arqguments. Then either there is a
sequence {A¢ 1 £ < A} of A-Suslin subsets of A with A¢ C R' or there is a
perfect set P C A such that [P]*N R = 0.

Here are some applications (which extend corresponding results of H.
Friedman and K. Kunen - A. Miller for the Borel and analytic case respec-
tively):

35



Corollary 27 Letd: X x X — R{ be a distance function on a Polish space
X. Then either the metric space induced by d is separable or there is some
€ > 0 and a perfect set A C X of points such that Vz,z' € A (x # ' =
d(z,z') > €).

Proof: Take the relations R, on X the collection of pairs which have d-
distance at least 27™. Then apply the perfect set theorem to each pair R,
and R,;. DO

Corollary 28 Let R C R?2 x R? x R? be the relation of colinearity, i.e., say
R(z,y,2) iff x,y,z are contained in a single line. Then any subset of the
plane is either contained in countably many lines or contains a perfect set of
points no 3 of which are colinear.

Proof: Apply the perfect set theorem. O

1.6.1 Proof of the Perfect Set Theorem

For simplicity of notation we assume that n = 3 and A = N. There are no
additional difficulties encountered in the general case.

Let T and T" be trees on A x w® such that N® — R = p[T] and N3 — R’ =
p[T"). Let T be an auxiliary class for N — R and N — R’. We denote by A

its ambiguous class of I and set

X = {zeN:JAeA(z e ANA*C R}, (1.1)
Y = N-X. (1.2)
Note that X € Tand Y € I". If Y = 0, then we are done. Thus assume

that Y # 0.
In order to ensure that every triple of our perfect set is not R-related, we
play the following game G:

I AS,Ab A3 AY, A, A3
I A9, A A2

where I and II play sets in I' satisfying @ # A} C Y, Aj,, C A} and
diam(Aj;,;) < 1/(j +1). The first player who violates these rules loses.
If both players play within the rules, then
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I wins iff R(@), where {a;} =N; A;

Since we want to use determinacy to conclude that II has a winning
strategy, we should play a coded version of G: We should fix a surjection
¢ : R — A, and the players should play reals which via ¢ and the I-universal
set code I'-sets. For simplicity of notation we continue to use G and assume
that it is determined. It is easy to modify the argument below to work with
the coded version of the game. Thus by the following lemma, II has a winning
strategy 7.

Lemma 29 [ does not have a winning strategy in G.
We first show:
Lemma 30 (Splitting Lemma) IfAe T, 0 # A CY, then A*N-R # 0.
Proof: Let A={A €T :(-A4)® C R’} and note that
A(A) & VI|(Vi € 3(z; ¢ A)) = R'(7)]

isTonT. Nowif A€, ACY, A* C R/, then A(—A); thus by [-reflection
there is a =B C =A, =B € A, A(~B). But then BD A, B A, B3 CR.
Thus B C X;thus BNY =0, thus A=0. O

Proof: (of lemma 29) Assume otherwise and let o be a winning strategy
for I. We will play 3 runs of G. Call the players in the ith run I' and IT'. T'
will follow o. Call the reals produced in the ith run (¢!, 3%,7*). The games
will be played in such a manner that of = o, §' = 8%, and =R(y%,v%, 7).
Since I' followed o, we have Vi R(a',',7'), and we get a contradiction to
the premises of the theorem.

We will play the games in stages. In stage 0 we will play the Oth moves
of the games, in stage k the 2k — 1st and the 2kth moves of the games. We
will also at stage k find nonempty S and S} (i < 3) in I|AV® and sequences
Sk tk, Uk € w* and v € A, such that S C p(T}, ;. 4] © (NV° = R)).

We will denote the kth move in the ith game by A%, Bi,Ci. The reader
may want to refer to the diagram of the run of the game, which is given after
the description of the moves:
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Stage 0: Players I°,1', 1> make their first moves A}, B§,Ci. They are
identical. Let sqg =ty = ug = vo = 0,

SQZ(NS“R,)OHC;)

Note that Sy # @ by the Splitting Lemma, since C} = Cj .
Stage k: Find sg C sg_1, tx C tp_1, ug C ug_1, and vg D vy such that

Sk-‘sk 1np[ s;,tkukvk]¢@

Let A, _,, B3, _, be obtained as a subset of A2, _,, B%._, by some standard
procedure such that the diameter of A3, _, and BY,_, is at most 1/2 the diam-
eter of A3, _, and B3, _,. Let C3,_, = [T} ]. Find the A3, B3, C3;

Sk bk Uk,
Vla ag.

Let

Si = 51? (Cgkx_/\ﬂ),

CQIIc—l = m [Sli]

Let
S3 (N x Ca x N)
A‘gk‘——l - 4%/@4
B?Ic-—l = Bék,

C22k—1 = ”2[513]‘

Then find A%, BS,,C3, via 0. Finally, let S, = S? 0 (N? x C%,). This
completes stage k.
Note that the construction is such that

A3 s DAY DAY D AN DAL DAL DAY

38



and

2 1 1 2
B2k—2 2 ng—l 2 ng :—> ‘B2k—l 2 B2k 2 B2k-—1 2 B22k’

Thus @ = a! = o? and ° = B* = B2

Also, the construction of the Sj guaranties that —R'(y°,~!,42), since
7® = Uk Sky 7' = Urtk, 72 = Ui ux and the vy witness that (7°,7!,72%) €
p[T'] = ~R. Thus =R(c}, B,7') for some ¢ = 0,1,2. Thus o was not

winning.

P, 12 Ag,jg,cg AL BL,CY A2, B C2 Sy =p[T"]N(CS x CL x C2)
4

3 1 -
“ "/ (7; ————— S? = p[Tall,tl ,ul] N S()

I A, B,CY
Io Ag’ Bg’ Cg (\"

L____._}{“—"_; ST TSl =500 (00 x )
I 1B, O}
r A3 B}, Ch N

L 77— [ Si =80 (N xC}xN)
I A}, B}, C}
I , A3, B}, C}
2 | S, = S2N(N? x C2)
[T AT STl
W

I° A3, B3,C3
I° A}, B CY |

1___:{“—‘1 5= 81=5n(Cs x N?)
Ir » B3, C3
I Al Bl C!

) S22 SIn(W X G x N)

I A3, B3,C3
I A}, B}, CY

Sy =820 (N? x C2)

Here a solid arrow indicates that the set at the head of the arrow has
been copied and equals the set at the tail of the arrow. A solid arrow with
1/2 inserted in the middle indicates that the set at the head is a nonempty
subset of the set at the tail with at most half the diameter. A broken arrow
indicates that the set at the head is a projection of the set at the tail. We
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show which projection was used. O

Let Hi be the collection of all lexicographically strictly increasing 3-
sequences of 2%. Let hy : Hy — I be a bijection, where I, is the cardinality
of Hi. Let h = Uy hg. Let [ : 2<“ — w, s +— I, where k is the length of s.

We will find collections {A% : s € (2<¥ —2<2),i < (s)} and {B! : s €
(2<% —2<%)/4 < I(s)} of I'-sets contained in Y such that

1. BEC AL C B CAlforsDt.

38
2. B:C AL C BI C Al fori > j.

3. If v0,71, 72 is a lexicographically strictly increasing sequence in 2* and
ko is the least integer k such that volk,y1|k, 72|k are pairwise dis-

tinct, then {(A, hhlk) A:l(rk'k ,A:z(l:’klk)) : k > ko} are the moves of I and

{(B:(fl"klk),B:l(mk),B:;?,Jk)) : k > ko} are the moves of II in a run of G
where II followed 7.

4. Vk>2Vs,te2F (s#£t= A'n A =0).

Assuming that this can be done, we find an injective continuous map
f 2% — N given by v+ ) A, which satisfies

vy € [2°P=R(f(0), f(m1), f(72))

by 3. Thus we have the desired perfect set, once we have constructed the A’
and the B,

The inductive construction of the collection {A! : s € 2<¥|I <
5)} :and {B':s€2<“ 1< I(s)}: Let A? for s € 22 be disjoint, nonempty
subsets of Y.
Assume that A? has been defined for s € 2" with n > 2. We will construct
Al, B! for s € 2" and A? for s € 2"*!. The A}, B} are defined by induction on
i. Let h;1(i) = (sg,s1,52). Let | be the least integer such that so|l, s1|l, sa|l

are pairwise incompatible. Consider ’1;07‘4;1"4;2 as the next move of I in
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the run

I II
h(3l1) 2R3l 4RGS0
A.‘?o“ ? A31 Il A82“

h(3}l h(3l) Rh(3)l
BHED phaid phish)

APl 4hGI1) 4h(sl+1)

sojl+1 Y “is i+l sajl+1
phsi+1) BhGlH+1) ph(zli+1)
8o|l+1 L 71 |l+1 82|l+1
1 1 1
Aso’ Asl ’ Asz

and let By, By, B, be the next move of II in this run according to 7. Then
define

B = { Al if s # 89,81, 82
s B; ifs=s;
A = B.

Assume finally that all the A%, B: for s € 2" and ¢ < I, have been found. For
each s € 2" and let A% and A%. be nonempty I' subsets of Bl»~1,

The first few levels of the construction:
A° ° ’ T °
BO = Al ® ] Q

B! = A? »

Bz='A3 »

?
R
- (1)
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The solid dots indicate that the sets have been obtained from the previous
ones by shrinkage; the others have just been copied. This completes the
construction of the A’ and the B! and thus the proof of the theorem.
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Chapter 2

Measures for Countable Borel
Equivalence Relations

2.1 Ergodic Measures for Countable Borel
Equivalence Relations

We will discuss here countable Borel equivalence relations E on a standard
Borel space X, i.e., relations with countable equivalence classes which are
Borel subsets of the product space X x X.

Consider a countable group G and a Borel action of G on X, ie., a
homomorphism from G into the group Aut(X) of Borel automorphisms (i.e.,
Borel bijections) of X. Then the orbit equivalence relation £ = Eg on X is
Borel. Feldman and Moore showed that every countable Borel equivalence
relation is of this form:

Theorem 1 (Feldman-Moore [77]) Let E be a countable Borel equivalence
relation on a standard Borel space X. Then there is a countable Borel group
action such that E is the orbit equivalence relation of that action.

Thus assume that E is the orbit equivalence relation of a Borel group
action of a group G. Let M = M(X) denote the space of probability
measures on X. Let B denote the Borel o-algebra of X. M becomes a
standard Borel space with the smallest o-algebra A which makes all the
functionals u — p(B) for B € B measurable. A measure 4 € M is called
non-atomic if p({z}) = 0 for all z € X, E-invariant if gu = p for every

43



g € G, and E-quasi-invariant if gu ~ p for every g € G. (It can be easily
shown that these notions are independent of G; see e.g., Dougherty-Jackson-
Kechris [a].) A measure y is called E-ergodic if u(A) = 0 or 1, for every
Borel E-invariant (i.e., A is the union of E-equivalence classes) set A C X.
As usual, we omit mentioning £ when it is clear from the context. It can
be shown (see e.g. Dougherty-Jackson-Kechris {a]) that the sets Z and £Z of
E-invariant and E-ergodic E-invariant measures, respectively, are Borel in
M(X), and so is Q, the set of E-quasi-invariant measures.
We show:

Theorem 2 Let E be a countable Borel equivalence relation on a standard
Borel space X. Then the set £ of ergodic probability measures is Borel in
the space of probability measures M on X. In particular, the set of quasi-
mvariant ergodic probability measures EQ = £ N Q is Borel.

This improves on a result by Krieger [71, p.187], who computed that the
set of quasi-invariant, ergodic probability measures is I1}.

In fact we can use a result of A. Kechris to extend this result to orbit
equivalence relations of locally compact group actions:

Corollary 3 Let G be a locally compact Polish Group acting in a Borel way
on a Polish space X . Let F be the orbit equivalence relation of G on X. Then
the set of ergodic probability measures £ is Borel in the space of probability
measures M on X.

Proof: By Kechris [a] there is a Borel subspace Y of X with ¥ N [z]g
countable for each x € X and a Borel reduction f : X — Y reducing E
to E|Y. Now the mapping u — fu is Borel and reduces the set of ergodic
measures of E to the set of ergodic measures of E|Y. O

Let us first notice that we can reduce the set £ of ergodic probability
measures to the set of quasi-invariant, ergodic measures. Consider the map-
ping which maps u to u* = ¥2,2 g, where G = {g; : ¢ € w} is some
enumeration of G. This map is clearly Borel and maps into Q. Furthermore,
since u is translated only by elements of G, u(A) = 0 iff p*(A4) = 0 for any
G-invariant A. Thus u is E-ergodic iff u* is E-ergodic. Thus for any E, £ is
Borel-reducible to £Q, so it suffices to show that £Q is Borel. For our proof
we will use an ergodic-decomposition-theorem patterned after the following
well-known result of Varadarajan, which holds in even greater generality:
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Theorem 4 (Varadarajan [63], p.208) Let E be a countable, Borel equiv-
alence relation on a standard Borel space X. Let ET be the set of E-invariant
E-ergodic measures on X. If there is an E-invariant measure on X, then
EZ s nonempty Borel, and there is a function 3 : X — EI, B : x — [, such
that

(i) B is a Borel measurable map from X onto €I,
(ii) B is E-invariant; i.e., By = By for all z,y € X with zEy,
(ii) If Xc.={z € X : 0, =¢€} fore in EL, then e(X,) =1 for all e,

(iv) For any E-invariant measure p,

wA) = [ B.(4) du(x)
for any Borel A.

Furthermore, if §' is another map with the above properties, then § =
p-a.e. for all E-invariant measures p.

Kifer-Pirogov proved a similar result for quasi-invariant measures which
share a common Radon-Nikodym derivative of Borel Z-actions, using results
from Dynkin [71]:

Theorem 5 (Kifer-Pirogov [72], p.80) Let E be a countable Borel equiv-
alence relation on a standard Borel space X induced by a Z-action 7. Assume
that p: Z x X — Rt (here R* denotes the set of strictly positive reals) is
Borel such that

pirs = pe(x)ps(T'2).

Let Q7 be the set of quasi-invariant measures u on X such that dr~tu/dp = p,
p-a.e.. If Q° is nonempty, then the set £EQF of ergodic measures in Q° is
nonempty Borel, and there is a function §: X — £QFP, B : x — [, such that

(1) B is a Borel measurable map from X onto £Q°,
(ii) B is E-invariant; i.e., B, = B, for all z,y € X with zEy,
(i) If Xe={z e X :8,=¢} fore in EQP, then e(X.) =1 for all e,
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(iv) For any measure p € Q°,

w(A) = [ B.A) du(z)
for any Borel A.

Furthermore, if 3’ is another map with the above properties, then § = '
p-a.e. for all measures p € Q°.

We will combine the methods of Varadarajan and Kifer-Pirogov with
descriptive set theory to obtain the following more general version of the
ergodic decomposition:

Theorem 6 Let E be a countable, Borel equivalence relation on a standard
Borel space X induced by a countable group G of Borel automorphisms. Let
p:Gx X — R* be Borel such that for allz € X and all g and h € G,

p(gh,z) = p(h, z)p(g, hz).

Let Q° be the Borel set of all quasi-invariant measures p on X such that for
all g € G,

dg~'u/dp = p,.
If Q° is nonempty, then there is a map B : X — QF, & — (% such that

(i) B is a Borel measurable map from X onto £QP,
(ii) B is E-invariant; i.e., B, = B, for all z,y € X with zEy,
(iii) If X, ={z € X : 3, =e} fore in £EQ°, then e(X.) =1 for alle,

(iv) For any measure u € Q°,
u(A) = [ Be(4) dulz)

for any Borel A.

Furthermore, if §' is another map with the above properties, then § = [
p-a.e. for all measures p € Q°.
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In particular, we have:
Corollary 7 If Q? is not empty, then it contains some ergodic measures.

Corollary 8 For each p satisfying the above product rule, the set of quasi-
tnvariant, ergodic measures with p as a Radon-Nikodym derivative is Borel.

Let us mention that, for specific examples, a more careful analysis of the
proof yields concrete upper bounds for the Borel complexity of the space of
ergodic measures. For the shift of Z on 92 one finds that & is 13, and for
the shift of F; on 2f2 one finds that &£ is TI2_ ;. Recently A. Kechris showed
that in the first case £ is indeed Hg-complete. For the action of Fy it is not
known whether £ is T2, -complete.

The proof that £ is Borel runs via a reduction to Q€. We would like to
know:

Question 9 Is there a direct proof showing that £ is Borel?

Since any two uncountable, standard Borel spaces X and Y are Borel-
isomorphic via a Borel measurable bijection f, we may and do assume in
the rest of the paper that we are dealing with perfect Polish spaces. Such
an f also induces a Borel isomorphism between M(X) and M(Y). We
will at times even assume that we are in a particular Polish space, when
this seems desirable. An important Polish space is the Baire space N of
all functions from w to w, with the product topology, taking w to have the
discrete topology.

2.1.1 Uniformities

In order to state precisely what we mean by a theorem to hold uniformly,
we need codings: A coding of a set A is a pair (C, 7), where C is a subset
of a Polish space, and 7 : C — A is a surjection onto A. Let A, B be sets
with codings (C,n) and (C’,7’), respectively, where C C Y and C’' C Y’,
X, X' are Polish spaces. We say that f : X x A— X'andg: X x A — B
are Borel in the codes if there are Borel functions f : X x Y — X’ and
g:X xY — Y such that

~

Vz € XVy € C (f(z,7(y)) = f(z,y))
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and

Vr € XVy € C (g(z,m(y)) = 7'§(z,y)).

In a Polish space X a set is 1 if it is the image of a closed subset of some
Polish space under a continuous function. It is II} if it is the complement
of a ] set. It is well known that a subset of a Polish space is Borel iff it is
¥1 and I1}. This gives rise to a standard way of coding Borel subsets in a
Polish space X: We can find IT} sets C C N and D, D C N x X such that

1.

foralla € C, Dy = X ~ D, and

2. for every Borel set A C X, there is an a € C such that A = D,,.

This yields a coding C — B, a — D,. C is called the set of Borel codes
for X. We may choose (C, D, D) in such a manner that:

1.

ABw— ANB, ABr AUB, A X — A, ACwx X — U A,
A CwxX ;A are Borel in the codes, by Moschovakis [80, Section
7.B].

For each Borel A C Y x X, where Y is Polish, the function y — A, is
Borel in the codes, by Moschovakis [80, Section 7.B].

Let B denote the collection of Borel subsets of X . It is well known that
M x B — R* given by (u, A) — p(A) is Borel in the codes.

. If we code Fy(X,R), the set of bounded, real-valued Borel functions

on X by C' = {a € C: D, is the graph of a bounded real valued Borel
function on X}, then it is well known that M x F(X,R) — R given
by (u, f) — u(f) is Borel in the codes.

The collections of Borel in the codes functions are closed under com-
position.

2.1.2- Proof of Theorem 2

Fix now a countable group G acting in a Borel way on a perfect space X,
inducing an equivalence relation E. Call a Borel function p: g x X — R* a
strict cocycle ifforallz € X and all g,h € G

p(gh,z) = p(h, z)p(g, hz).
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We code strict cocycles by the Borel codes of their graphs and denote the
collection of strict cocycles by C. If p is a strict cocycle, let Q” be the collec-
tion of all quasi-invariant measures p such that for all g € G dg~'p/du = g,
p-a.e. Let £QF denote the collection of ergodic measures in Q7. We will
actually show the following stronger effective version of theorem 5:

Theorem 10 (Effective Ergodic-Decomposition Theorem) There isa
Borel in the codes function D : Q x C x X — Q such that for any u € Q and
any p € C with p € Q°, we have for D, , : x + p*:

1. Vx € XVg € G (p* = p9* € QF),
2.Vwe Q[(vX,)=1leovefl), where X, = {z € X : u* = v}],
3 WweQ (w{zreX: p*e&})=1),
4. Vv e QVAeB
V(A) = / u*(A)du(z).

From this we will deduce theorem 2, using the following lemma:

Lemma 11 There is a Borel in the codes function @ — C, u — p*, such
thatVu € Q (u € Q7).

Proof: (of lemma 11) Assume without loss of generality that X = [0, 1].
Let us first show how to find a strict cocycle for non-atomic measures: Let A
denote the collection of atomic measures, N'A be the collection of non-atomic
measures. Let f: (WA x X) — [0,1] be given by f*:z + u([0,z)). Then

1. f is Borel,

2. f*# is continuous,

3. f* is increasing,

4. ffu = m, the Lebesgue measure,
5. u~v = flu~ fhy,

6. u~v=>dv/du=(dffv/df*p) o f* p-ae.
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Consider now the function D : M([0,1]) x [0,1] — R* given by

1 U(B ,,(I)) ep e R
D(v,z) = { limy —.co m if it exists,
1 otherwise,

where B,(z) = (z — r,z + ), and m is the Lebesgue measure on [0.1]. The

function (v, z,n) 7:%6%)—) is clearly Borel, and so D is Borel.

Using the results of the previous section, we see now that p: (M X G X
[0,1]) —» R* given by

7(g,x) = D(f*(g~ p))(x),

is Borel. By Rudin [87, Chapter 7] D(v, ) is the symmetric derivative of v at
x, which is equal, for v absolutely continuous with respect to m, to dv/dm m-
a.e. Thus if welet 5: M x G x X — R* be given by p#(g,z) = p*(g, f*(z)),
and A C M x X be given by A, = {z € X : g € G3h € G (p*(gh,z) #
p*(h, z)p*(g, hz))}, then p and A are Borel, A, is y-null and p# = dg~'p/dp
p-a.e. Thus if we set

_f g, x) ifxg[A]
p“(g’x)—{l I lfl'E[AP]z,

then p +— p* is as desired for non-atomic measures p.

In order to deal with general measures, we will decompose them effectively
into atomic and non-atomic parts. In fact, there is a Borel function @ —
(QNA)x (QNNA), u— (u,n") such that p = (1 — M)y’ + Ay, where
A=Y .ex #({z}). In order to see this, note that p +— A,, where A, = {r €
X : p({z}) > 0}, is Borel in the codes. Let y” be the unique atomic measure
with @”({z}) = A tu({z}) for z € A u. Let p' = (1 = A)~"H(u — Ap").

There is easily a Borel in the codes function QN A — C, y — p*, such
that 1 € Q. We then can set for any u € Q

o= P a) ifp({z}) =0,
#a.2) {p“"(g,x) if u({z}) > 0.

Here 4/ and y” are the non-atomic and atomic parts of u as given by the
above. This clearly works. O
Theorem 2 easily follows:
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Proof: (of theorem 2) We assume theorem 10. Then we have

pe€Q & (u({z:D,ym(z)=p})=1),

which is Borel. O
It remains to prove theorem 10.

2.1.3 Some Ergodic Theory

We collect here three results from probability and ergodic theory. Let (X, B, u)
be a measure space, i.e., X a set, B a o-algebra on X, and p a measure on
B. Let A C B be a o-algebra and f € L'(u). A function f € L'(u) is called
the conditional expectation of f with respect to A, denoted by u(f|.A),
if f is A-measurable, and for any A € A Jufdu= [4 f dp. The conditional
expectation is determined uniquely p-a.e.. An operator T': L!(u) — L(u) is
a conditional-expectation operator if T(f) = p(f|A) for all f and some
fixed A. We have the following results about limits of conditional-expectation
operators:

Theorem 12 (Billingsley [86, p.493]) Let (X,B, ) be a measure space
and f € L'(u). Assume that {A, : n € w} is a decreasing sequence of
o-algebras such that N, A, = A. Then u(f|An) converges to p(f|A) p-a.e.

Theorem 13 (Burkholder-Chow [61, p.494]) Let (X,B,u) be a proba-
bility measure space and T and T' be conditional-ezpectation operators on
LYp) associated with the o-algebras A and A'. Let S, be given by So = T,
52n+l = TlSQn and SQn+2 = TSQ,H_I. Then fO’l" any f € L2(/,L), hmn Snf =
p(fIANA') p-a.e. and in the L*(p)-norm.

We can use the Hurewicz Ergodic Theorem and the Hopf Decomposi-
tion Theorem to compute the conditional expectation with respect to the
o-algebra of invariant sets with respect to a single Borel automorphism. The
following is well known, but we could not find a convenient reference.

Theorem 14 Let T be a Borel transformation of a standard Borel space X
with a quasi-invariant probability measure u, p* : X — R* be Borel such
that for n,m € Z

P = pm(p" 0 TT)
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and

n_ AT "p
pt = " p-a.e.

Let [B]r denote the o-algebra of T-invariant Borel sets. Then for any f €
e (T ()pte)

I N ¢ L N C:

f(z) = lim e .

@)= T )
is u( f|[Blr).

Proof: In order to prove this theorem, let X, T', u, p satisfy the assump-
tions and let E be the orbit equivalence relation of T on X. Call a Borel
set A C X a partial transversal if it intersects each E-equivalence class
in at most 1 point. Say that A C X is smooth (or dissipative) if it is the
T-closure of a partial transversal. Hurewicz calls a set A C X conservative
if it contains no partial transversals of positive measure. We now have by a
standard exhaustion argument:

Lemma 15 Let u be a probability measure on X which is quasi-invariant
with respect to T. Then there is a unique p-a.e. decomposition of X into
T -invariant Borel sets Cr and Dy such that T is conservative on Cr and
dissipative on Dr.

The Hopf Decomposition Theorem will allow us to compute Cr and Dy
effectively:

Theorem 16 (Hopf, see Petersen [83], p.125) Let T be a positive con-
traction of LY (), u € L}(u) be strictly positive and

C={zeX:Y Tu(z)= oo}
i=0
Then

1. C 1s independent of u; i.e., if u’' satisfies the assumptions of the theo-
rem, and C' is defined by replacing u by v’ in the definition of C, then
C =C" p-a.e.
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2. For all nonnegative u € L*(u),

Y Tiu(z) < oo p-a.e. onX —C,
=0

Write Cy for C and Dy for X — C.

Since the Hopf Decomposition Theorem applies to positive contractions
of L(u), we associate with T the positive isometry T : L'(u) — L!(u) given
by

T(f)(x) = f(Tz) p'(2).

We have the following fact about the relationship between the conserva-
tive and dissipative parts of T, T, and T~!. Equalities and inclusions below
are p-a.e.:

Lemma 17
CT = CrfUCff—l

{zreX: ipi(a)) =oco}U{zeX: _i::pi(a:) = 00},
=0 i=

Dr = DN D;.,

{reX: ipi(az) < o0}

i=00

Proof: (of lemma 17) Note that if S is a partial transversal, then

0< Y Tixs<oo
on UZ_,, T¢[S]. Thus Dy N(C;U Cj-1) =@ and Dy C Dj N Dj-, by the
Hopf Decomposition Theorem. In order to see Dy 2 Dj N Dj_,, assume
that this is false and that A = (Dj N Dj-,) — Dr has positive measure. By
shrinking A we may assume without loss of generality that 3% _ pi(z) < M

=00
on A for some M > 0. But then we have

o> [ pip = ¥ [ padut)

i=-—00 i=—o00
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> [,

= S WTA.

1=—00

Since the integral is finite, B, given by
B = {z € X : z € T™*[A] for infinitely many i € £},

must have measure 0, and we may shrink A to ensure B = . For z € A, let
ir be the greatest integer i such that 7%=z € A, and put

S={T=z:z € A}.

Since the T%[S], i € Z, cover A, S has positive measure. S is clearly a subset
of A. Assume that £ € S and T'z € S with i # 0. Assume that ¢ > 0;
otherwise let z = Tz € S with T~'2 = z € S. By the definition of S there
is y € A with Ty = z. But then T%*'y = T’z € § C A, a contradiction
to the maximality of ¢,. Thus S is a partial transversal of positive measure.
But this contradicts AN Dy = 0. O

For the conservative part of T, the Hurewicz Ergodic Theorem yields
theorem 12:

Theorem 18 (Hurewicz [44], p.195) LetT be a transformation of X with
quasi-invariant measure p and p™ : X — R* be Borel such that

Pt =dT "pldy p-a.e.,
and
prT = (p" o T™) p™.
Let f € LY(pn). Then:
1.

f= lim Z:?=0 f'(T'.'L')pz(l')
M S )

ezists and is finite p-a.e. on Cr, the conservative part of T.
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2. f is T-invariant y-a.e. on Cp

3. f = u(fl[Blr) on Cr; i.e., for all Borel T-invariant subsets A of X
with A C Cr p-a.e., we have [, fdu = [, fdu.

For the dissipative part of T, we have for any nonnegative f € L'(u)

0< Z T'(f)(z) < oo p-a.e. on Dr;

i=—00

thus -
> f(T(z))p'(z) < 0o p-ae. on Dr,

i=—0c0

so in particular, 0 < ¥2___ p'(z) < oo p-a.e. on Dr. Thus for f € L(u),

YR f(T)p(a)
1) = =5

exists p-a.e on Dr, and is a version of p(f|[B]r) on Dr, i.e., is T-invariant p-
a.e. and [, fdu = [, fdu for all Borel T-invariant subsets A of Dr: Indeed,
on Dy we have p-a.e.

Y2 o [(T'Tx)p'(Tx)
Z{‘i-oo pi(Tz)
o [(T'Tz)p (Tz)p(x)
Y32 o P(Tz)p} ()
TR o [T z)p ()
T2 o PH(z)
= f(z)

and for any Borel T-invariant A C Dr,

J, o = /Zv-goi_wp(»)wx)

) (T)(E) |
= _2_200/ J__oopf(x) =) o)

f(Tz) =
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~ f(z)
= / SE s du(z)

= it
= ,_20/ TR @)
_ TR Pz ) .

= [J@FE=50 e
= [ f@)du(a).

This completes the proof of theorem 14.

2.1.4 Proof of the Effective Ergodic Decomposition
Theorem

We will need the following lemma:

Lemma 19 There is a Borel in the codes function ¢ : C X Fyp(X,R) —

Fo(z,R), such that for each strict cocycle p, c, : f — f satisfies

1. f is G-invariant, f = f if f is G-invariant, ﬁz = fh if h is G-

mnvariant,

2. |flleo < 11flo; |
3. V€ QPNVAE€ [Blg (Ju fdu= [, fdp), ie., f=p(f|[Bls))-

Proof: In order to prove the lemma, we will first verify it for cyclic sub-
groups of G and then apply the results of Burkholder-Chow mentioned in
the previous section. Let {g, : n € w} be some enumeration of G and let
Gp=<g;:1<n>.

Lemma 20 There is a Borel in the codes function ¢ : w x C x Fy(X,R) —
Fo(z,R), such that for each strict cocycle p, ¢, ,: f +— f satisfies

1. fis < gn>-invariant, f = f if f is <g, >-invariant, ﬁz = fh if h is
< g, >-tnvariant,

2 1 flloo < 1flleo
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3. Vu € QA€ [Bl<g,> (Ja fdu= [, fdp), ie., f = E(f|[Bl< g, >]-
Proof: To define c’n,p : Fy — Fp, put for f € Fp
F(z) = {umm_.oo Ligep {2 it this limit exists
0 . otherwise

and . . .
o) = { @) i1vi€ 2(/(ge) = flo)
0 otherwise.

By theorem 14 ¢; ,: f f is as desired. ¢ is clearly Borel in the codes. O

We will now show that lemma 19 holds for G replaced by G,, uniformly
in n. By induction on n, assume that &, : C x F, — F; is given for G, (the
case n = 0 is covered by the previous lemma), and ¢ is given by the previous
lemma. For p € C, let é,41, : 7, — F be given by

2k factors

P

Cat1,(f)(z) = { limg_ oo %:n,p o c’nH’p 08pp0 ... 0 C:,+1,p(f)(-’l7)‘ if it exists,
0 otherwise.

By the theorem of Burkholder-Chow on iterates of conditional-expectation
operators mentioned in the previous section,

én+1,P(f) = lu(fl[B]Gu-H) H-a.e.

for every quasi-invariant measure 4 € Q°. Thus put

Ens1o(f)(@) = {5n+1,p(f)($) if Vg € Gny1 (Eat1,(f)(97) = En1,0(f)(2))

0 otherwise.

Finally, let ¢, : F, — F be given by

o(f)(x) = {1imn_*°° Cap(f)(z) if it exists and is the same for each y € [z]¢
g 0 otherwise.

By the reverse martingale theorem, c is as desired. This completes the proof
of lemma 19.

We are now ready to prove the Effective Ergodic Decomposition Theo-
rem 10:

Proof: Assume without loss of generality that X = “2. Let W be a
countable, -linear space such that:
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(A) 1 e W C C(X,R), W separates probability measures.

(B) Ift W € H C F, with H is a Q-subspace and closed under uniformly
bounded, pointwise limits, then H = F,.

(C) W is closed under composition with elements of G; i.e., if f € W and
g € G,then foge W.

FixpeCandpue Q° Letc,: fr f Consider
R={z e X:3cd € QIf, f € W(cf+ f)(z) # cf(z) + ¢ f(x)},

which is Q°-null (i.e., p € Q” = u(R) = 0) by the conditional-expectation
properties. Thus its G-closure R is Q”-null. By setting f=0on R, we can
and do assume that the above equality holds everywhere; i.e., we can assume
that ¢, is Q-linear on W. For z € X — R let u* be the unique probability
measure in Q such that

Vfe W (f) = f(a)).

For z € R, let u® = p. Let us verify that except for a Q-null set, u* is in
Q*. For that notice that u(u*(fh)) = u(p®(f)h) for h G-invariant, p € Q°,
f € W, so p*(f) = p(fl|[B]g) for all f € Fp, except on a Q°-null set. Since
for p € Q° u(f ogl[Blg) = u(pyfl[Ble) p-a.e., we have p*(f o g) = p*(pyf)
for all f € F,, except on a QP-null set. So u® € Q°, except on a Q°-null
set. We can then change p* on an E-invariant Q”-null set y, to ensure that
p* e @Qf forall z € X.

Since R is G-invariant and c,’s range is contained in the set of G-invariant
functions, 1. (of theorem 10) holds.

In order to verify 2.(of theorem 10), we show that the following are equiv-
alent for v € Q°:

(a) v is ergodic.
(0) v({z:v=p}) =1
(c) Vf e W (u*(f) = v(f) v-ae.).

o8



The equivalence of (b), (c) is immediate.
To see (a) = (c): Assume that v is ergodic and let f € W. Then p*(f)
is constant v-a.e., as it is invariant. Thus v(z — p*(f)) = p*(f) v-a.e. Thus

w(f) = [uw(Hdua) v-ae.

= /fdz/(:v) v —a.e.

= v(f) v—ae.

il

To see (b) = (a): Let A € [B]g. Then v(A) = p®(A) = v(A|[Ble) = xa
v-a.e.; thus v(A) =0 or 1.

3. (of theorem 10) follows from 2. and 4.

To see 4. (of theorem 10), note that for any f € W and any v € Q°,

W) = [fav

I
\
=
8
~~
<
N
QU
<
—_~
8
~

By the Bounded Convergence Theorem, the space H of bounded Borel func-
tions f satisfying

v(f) = [w(f)dv(a)

is closed under uniformly bounded, pointwise limits; thus by property (B) of
W and the above, H = F;. 4. follows by applying this to x4.
The proof that D is Borel in the codes is straightforward. O
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2.2 Ideals of Compressible Sets

Let X = 2¥ and E be a countable, Borel equivalence relation on X; i.e., &
has countable equivalence classes and F is a Borel subset of X x X.

Call a function f : X — X E-invariant if Vx € X (f(z)Ez). A prob-
ability measure g on X is said to be E-invariant if for every E-invariant,
Borel-measurable bijection f : X — X, we have fu = u. Let Z denote the
collection of E-invariant probability measures. We will study the o-ideals

T ={AC X :VueI(uA)=0)},
and
J={AC X :Aiscompact and A € J}.

In our analysis we will obtain similar results as C. Uzcdtegui [90] ob-
tained in his Ph.D. thesis for smooth sets. We will also frequently use results
from Kechris-Louveau-Woodin [87], who study o-ideals of compact sets in a
general setting.

Our main tool will be the following characterization of A} equivalence
relations without invariant measure, which is a direct effectivisation of the
corresponding Borel result by Nadkarni [91]:

Theorem 1 Let E be a countable A} equivalence relation on a recursively
presented Polish space Y. Then the following are equivalent:

1. E has no invariant probability measures,

2. There is an E-invariant A} f: Y — Y, which maps each E-equivalence
class into a proper subset of itself; i.e., Vzx € X3z’ € [z]g (z ¢
range of f).

This result relativizes. Let E be a A] countable equivalence relation X.
Call a function f : A — A an a-compression iff A, f € Al(a) and f maps
equivalence classes into proper subsets of themselves; i.e., Vz € A (f(z)Ex)
and Vz € A3z’ € ([z]g N A) (2’ & range of f). Call f a compression if f is
a 0“-compression. From the theorem we easily obtain:

Corollary 2 Let E be a countable equivalence A} relation on X. Then the
following are equivalent for A € Al(a):
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1. AeJ,

2. There is a Al(a)-compression of [A]g.

Proof: 2 = 1 is immediate. To see 1 = 2: If A € A}(a), then [A]g €
Aj(a), and there is a A}(a) bijection g : [A]g — 2*. With this bijection
we can pull back E|[A]g to a Al(a) equivalence relation F. Since {A]g is
in J, there is no F-invariant probability measure. Thus we find a A{(a)
compression for F, which we can transfer via g to a A}(a) compression of
[A]lg. O

This enables us to compute the complexity of J:

Corollary 3 J is I} in the codes on the Al and T} sets.
Proof: For Al sets A, we have
Ae J & 3f € A}(A) (f : [A]lg — [A]g is an A-compression),

which is clearly T} in the codes.

In order to compute the complexity of J for £} sets, we use that for any
Yi-set G C N x X, the relation u(Gg4) > ris &} in u, a,r. Thus we have for
any set G N-universal for the $1-subsets of X

Go € J & JueIre(0,1] (WGsa)>r).

Here 7 is the set of E-invariant measures, which is A} in the Polish space of
all probability measures on X with the weak*-topology. O
From this we have immediately by Uzcategui [90, theorem 1.1.16].

Corollary 4 J has a largest I} set; i.e., there is a I1} set A € J which
contains every I1} set in 7.

We now turn to J. Recall that the collection X(X) of compact subsets of
a compact metric space X is again a compact metric space with the Hausdorft
topology, i.e., the topology generated by sets of the form

(K e K(X): KNU # 0}

and
{KEIC(X):KQU},
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where U is open.

A o-ideal I of compact sets is called thin if any pairwise, disjoint collec-
tion of sets in [ is countable. [ is called calibrated if for all K, K, € K(X)
with K, € I and K(K — U,e, K») € I, we have K € I. [ is strongly
calibrated if for any K ¢ I and any P € II3|(X x 2¥) with 3*P C K
(i.e., 3a € 2“P(z,a) = K(z)), there is a K’ € K(P) with 3K’ ¢ I. Say
that a collection A of subsets of X is compatible with a o-ideal I of com-
pact subsets, if the smallest o-ideal Z of subsets of X containing I and A
has no additional compact subsets over I; i.e., K(X)NZ = I. A o-ideal is
controlled if there is a &} in the codes of IT3-sets collection A of I13-sets
compatible with I and with @ € A.

If £, the collection of E-ergodic, E-invariant measures on X, is count-
able, then J = N,¢ez Ju, where J, is the o-ideal of nullsets of u. Each J, is
19, thus J is I19. In this case J is thin, calibrated, strongly calibrated, and
controlled.

If £7 is uncountable, we still have J = N eez Jy, and 7 : P(X) — [0, 1]
given by y(A) = sup{p* : u € T} is an analytic submeasure, so that J is IT}.
But J is not thin, since the ergodic measures have pairwise disjoint support.
So J cannot be controlled and thus is not II3. Thus J is truly II} by the
dichotomy theorem for o-ideals. J is still strongly calibrated and calibrated.
J is not T} on the codes of Al, IT}, or £1-sets, however, since this would
imply that J is controlled.

2.2.1 Proof of Theorem 1

We will assume that E is a countable A} equivalence relation on X, which
is not compressible. By Feldman-Moore [77], we may assume that we have
a countable group G acting in a Al-way on X such that E is the orbit
equivalence relation of that G-action. We will say that a property P holds
almost everywhere if [{x € X : P(z)}]|g is compressible, and we will write
V*z P(z) in this situation. If P is a property of Al-sets and points in X, i.e.,
P C AflY; x ... x Al]Y,, x X for each Y; is w, X, or N, we will say that P
holds uniformly almost everywhere if for each A € Al|Y; x ... Al]Y, we can
compute codes of a compressible Al-set C and a A} compressionc: C — C
recursively from a code of A such that Vz'¢ R [P(A4, ).

The construction of the E-invariant probability measure is similar to the
construction of the Haar measure on a compact group. Here we compare the
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size of Al-sets via E-invariant functions; i.e., if between A and each of the
Ay, ... A, there is an E-invariant bijection and the A; are pairwise disjoint,
then U;_; A; will have n times the measure of A. But things get a little
messier since our results only hold almost everywhere. We show:

Key Lemma 5 There is a partial function m : A}|(X) x X — [0,00),
(A,z) — m*(A) such that we have uniformly, for every A € A}(X) and
every B € Al|(w x X) with pairwise disjoint sections,

V'z (0 < m®(A) < 1), (2.1)
Yz (mz(L_JOBz) = ;)mz(B,')), (22)
V' Vg € G (m*(A) = m®(gA)). (2.3)

Assuming the key lemma, we apply it to a countable algebra of sets which
is uniformly A!l, given by the following lemma:

Lemma 6 There is a C = {C, : n € w} € Al|X, a Polish topology T, a
complete metric d on X, and recursive functions f : w3 — w and f3: W? - w
such that

1. C 1is a Boolean algebra, Cy = X,

2. d induces 7; C is a clopen basis for T,

3. Vk,m(Cr = Ui Cryk1m)),

4. k(g7 M [Cl] = Crawp),

5. Vk,l,m the d-diameter of Cy,(x1m) < 1/(m + 1).
Here G = {g;: | € w} is some A} enumeration of G.

By the key lemma pick z € X such that

1. Vn [m*(C,) € [0,1]],

2. Vk,m [m*(Ci) = (X2 m*(Cry(ktom)))],

3. Yk, [m*(q:Ck) = m*(Crkp)]-

63



This is possible since the set of points x € X for which one of these
fails is compressible. We now apply the following, immediate consequence
of theorems 13.2 and 13.8 of Munroe {71] to find the G-invariant probability
measure on X easily.

Theorem 7 Let (X,d) be a metric space and G a countable group of bijec-
tions of X. Assume that C C P(X) and m : C — [0,1] are such that

1. For every € > O there is a countable cover of X by sets from C, each
with d-diameter < . VA C XVe > 03{C, :n € w} CC (A CU{Cx :
n € w} AVn (diameter(C,) < €)),

2. C is closed under G; i.e., VC € CVg € G (g7 }[C] € C),

3. Ve>0W6>0WC e€CI{C,r:new} (CCU{Cr:newny,m(C,) <
m(C) + 6 AVn (diameter(C,) < €)),

4. m is G-invariant; i.e., VC € CVg € G (m(g7![C]) = m(C)).

Then there is a G-invariant measure p such that every Borel set is -
measurable.

Thus we are done, once we prove the lemmas.

2.2.2 An Algebra of Aj-Sets

Before we prove lemma 6, we need two well-known facts, which we prove
since we did not find a convenient reference. Let X be a recursively presented
Polish space, E a countable Al equivalence relation induced by a A} group
action of a countable group G. Let {g; : i € w} be a A} enumeration of G
with go the identity function.

Fact 8 There is a recursive in the Al-codes operation C — C' such that if
C C X, then there is a complete metricd on X and C' C w X w X X such
that

1. C 1is clopen in the metric topology of d,

2. {Cim} is a clopen basis for this topology,
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3. VkVm (Cy,, has d-diameter < 1/(k + 1)),

4. Yk [(Um Chi = X)), and this union is disjoint],
5. Vk (U Crom = C),

6. Yk (U Chigmsr = X = C),

7. The original topology and the metric topology of d have the same Borel
sets.

Proof: Fix C. Let C = ({0} x C) U ({1} x (X — C)). Effectively find
GCN x2x X, G eTl? such that

C(i,z) ® 3JaeN Gla,i,x)
& 3la e N Gla,i,z).

Find N = <Nin:k,m€w> in A} a basis for N x 2 x X such that
Vk, m(Nim has diameter < 1/(k + 1) in the usual bounded metric of N x
2 X X), Vk(um Nk,Qm =N x {0} X X), and Vk(Um Nk,2m+1 =N X {1} X X)
Let

Crm © Fi3a(G(a,i,z) A Nem(a, i, 2)).
Clearly, this operation is effective. If we put the subspace topology on G,
then G is complete, { N, NG} is a basis, and the usual metric on N'x 2 x X

restricted to G is complete. Thus we can transfer this structure by the
projection onto X, which is a bijective from G onto X. O

Fact 9 There is a recursive in the Aj-codes operation Oy : C — C’ and
recursive functions g : w? — w and h : w? — w such that if C C w x X, then
C' C w x X, and there is a complete metric d on X, inducing a topology T
such that

1. 7 is a Polish topology with the same Borel sets as the original topology
on X,

2. {C!} is a clopen basis for T,
3. V1,5, k(Cyi sk and Ch;yy have d-diameter < 1/(k + 1)),

4. U Cgigpy = Ci
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5- LJ]' C”l(j,k) = X.

Proof: For each i, let (C?, d;, 7;) be given by the previous fact for C;. Let
C =<C':icw>. Letd=sup{d;i/(i+1):i€ w}. Then the topology 7
induced by d is Polish, has the same Borel structure as the original topology
on X, and C* = {C} ,} is a subbasis for .

Note that the d;-diameter of C’,fnm is < 1/(k+1). Thus the d-diameter of
any

~ k_l ~ .
_ i
Cﬁl - n k,m,-
i=0

is at most 1/(k + 1) for m € w*. Furthermore, the collection {C, : /i € w*}
1s pairwise disjoint and covers X.

Thus let C' enumerate all the C,,, taking care that the enumeration of
the sequences m is recursive in such a manner that we can guarantee 3.-5.
from 3.,5.,6. of the previous fact. O

We are now ready to prove lemma 6.

Proof: Since A}-sets are closed uniformly under Boolean operations and
taking preimages under Al-functions, there is a recursive in the Aj-codes
operation O; : C' — C” such that if C’ is a A}-sequence of sets, then C”
enumerates the smallest Boolean algebra containing C' and is closed under
preimages by elements of G. Now put C? to be the standard basis for X, and
put inductively C**! = 0,(02(C™)). Let d, be the metric for the topology
generated by C” given by fact 9 and then proceed as there by setting d =
sup{d;/(i+1):1 €w}. D

2.2.3 Proof of the Key Lemma

We first fix some notation. We write )
f: A= B if f € Al is injective and preserves E-equivalence classes,

f:A<B if f:A< Band B - f[A]isfull in B,

f:A~B if fisa Al-bijection preserving E-equivalence classes,

AQ for AN Q if Q is E-invariant. ‘
As a first step we show:

Lemma 10 For every pair A, B of Al-subsets of X we can find A{-sets
Q Cwx X and C C X and Al-functions f : A — B and ¢ : C — C such
that
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(a) C and all Qr are E-invariant, and these sets partition [Alg N [B]g.
(b) ¢ is a compression of C. f and ¢ are E-invariant.

(c) f~Y(b) has cardinality k or k +1 for each b € QN B, and there is some
b € [blg N B such that f~1(¥') has cardinality k.

Codes for Q, C, f,c can be computed recursively from codes for A and B. Fur-
thermore, if A, B are assigned Q,C, f,c and A', B' are assigned Q',C’, f',c;
then we have:

1. If P € Al 1s E-invariant and A¥ = A'’P and BP = B'P, then QN (w x
P)=Q' N(wx P) and fl(PN A) = f|(P N A).

2.Ifg:A~ A" and h: B~ B, then C" = U,(Q.AQ’,) is compressible
via a compression ¢’. The codes for C" and ' can be computed recur-
swely from codes of A, B, A’, B'.

3. If P € Al is E-invariant and A” = B?, then P C Q, and f|AF is the
identity.

This lemma allows us to compare the sizes of sets. On part Qy, B fits
into A k-times but not k + 1-times.

Proof: Assume w.l.o.g. that [A]g C [B]g. First assume that there is a
function f : A > w x B in A} such that

(1) f is injective and f, the second coordinate function, is E-invariant.

(2) If (n +1,y) is in the range of fand ¢ € [y} N B, then (n,y') is also in
the range of f.

Furthermore, assume that a code for f can be found recursively in the codes
of Aand B. Let f = fyand C = {z € A:Vn € w ((n,r) is in the range of
f)}. Then the mapping ¢ : A® < A€ given by

o(z) = f7H(filz) +1, fol2))

is a compression of A®, and on the remainder f is as desired. Put

Q(n,z) & Yy € ([z]e N B) ((n,y) € range(f)).
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Then @Q is as desired.
In order to show that f can be found effectively, let us show that given
A, B € Al, there is a partition of [A]g into E-invariant Al-sets P; and P, and
a partition of A®* into A}-sets A’ and A” such that there are Aj-functions
hy : AP < BP and hy : A” ~ B2, In particular [A"]g = P,. Furthermore,
codes of all these objects can be found recursively in the codes of A and B.
Once this is done, we can set inductively

A = A,
An+1 = A:w
fil(A, = A,41) = neverywhere,
fo|(An — Any1) = hy U hy for the pair (A,, B).

Since [A]g € B, we see by an easy induction that f|(A — Api1)4+1)& has
range (n + 1) x BlA~nlE 5o that f indeed satisfies (2). (1) is clear from the
definition.

Thus assume that A, B € Al are given. We have to find P, P, 4, A",
hi, hs. By induction, let

FO = (AXB)OG(),
Fapi = (AXB)NGupr — (mo[J F] x m[UJ £,

1=0 =0
UF.

1€w

F

Recall that G, was the graph of g,, where g, was the n-th function in the
enumeration of a group inducing FE such that go was the identity map. Note
that F is the graph of a partial bijection. If £ € A and y € B were E-related
and if neither z were in the domain of F nor y in the range of F, then
(z,y) € G, for some n, and thus (x,y) € F,, a contradiction. Thus for each
z € [A]g N[B]E, either [z]g N A is exhausted by the domain of F or [z} N B
is exhausted by the range of F'. Let

Py = {z € ([A]e N [B)E) : [z]g N B is not exhausted by the range of F},

and let h, have graph FN (AP x BRt). By the definition of P, f : A < BF,
Let P, = [A]g — P,. Put A” = domain of F N (AP n BM), and let hy have
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graph F N (A” x BPY). Then hy : A” ~ BP? since B is exhausted on P, by
the range of F. Let A’ = AP — A",

Finally, let us check that 1.-3. are satisfied. 1. is clear, since all the
constructions were local; i.e., the construction on a specific equivalence class
depended only on the intersection of that equivalence class with A and B. To
see 2., look at Q,,NQ}, for m < n. The following mapping c is a compression
of A9m"@n: For z € A9mN% assume that z is the kth element (in the
lexicographical ordering) in the preimage of f(x) under f. Then k < m+1 <
n, so since g o f(z) has at least size n, let y be the kth element (in the
lexicographical ordering) of the preimage f'~!(g o f(z)). Let c¢(z) = g7} (y).
To see 3. assume by 1. that A = B. Then the identity function gy is a
bijection between A and B; thus F = Gy N (A x B), and thus A = A” (for
the pair A, B), and hy is the identity on A. From this it follows that f is the
identity. O

Let us introduce the following notation.

Definition 11 For A, B € Al, define

i ifreq;
[A/B](z) = {0 if Vi(z & Q:),

where  is given by the above lemma.
We observe the following:
Lemma 12 1. IfA, A", B € Al and A0 A’ = 0, then uniformly
vz ([A/B](z) + [A'/B)(z) < [(AUA')/B|(z)
< ([A/B](z) +[A'/B](z) +2)).
2. If A,B,C € A! and [Alg N [C]s C [Blg, then
v'z ([4/B)(z)[B/C)(z) < [4/C)(x)

< ([A/Bl(z) + 1)([B/C](z) +1)).

Proof: We show that the first inequality of 1. holds almost everywhere.
The other inequalities are proved by similar arguments. Fix A, A", B. Let C
be the collection of points where the first inequality of 1. fails. Thus we have

Vz € C ([(AU A")/B](z) < [A/B(z) + [A/ B](z))-
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Let Q,f, @, f', and Q", f" be given for A,B, A',B, and AU A", B by
lemma 10. On Q,NQ,, NQ{ withl < n+m, defineh: AUA" — (I+1)x B
by h(z) = (k, f’(x)), where z is the (k + 1)st element in the lexicographical
ordering of f"~!(f"(z)). Define g: (n+ m) x B — AU A’ by

(k,z) = the k + 1st element in the lex. ord. of f'~!(z) ifk <n,
THLIZ A the (k — n) + 1st element in the lex. ord. of f"~}(z) if k > n.

Thus on Q,NQ!, NQ"l, h and g are injective and h is not surjective on each
equivalence class. Thus on @, N @, N Q"l, ¢ = g o h is a compression of
AUA’, which can be extended to a compression of @, N Q! NQ"l by setting
it to be the identity. O
We now construct a decreasing A}-sequence {F} : k € w} of almost full
sets such that
V*'aVk € w ([Fk/Fk+1](l') > 2)

We call these reference sets. It clearly suffices to show that for each A € A}
we can find a subset A’ € Al such that A’ is almost full in A and

V'z € [Al ([4/4](2) 2 2),

and that we can find a code for A’, the exceptional set and its compression
recursively from a code of A. So fix A € Al and set

Su(z) & [z € AAVy € ([z]g N A) (z|n <jex yln),

where <|oy is the lexicographical ordering on 2<“. Then S,(z) holds for all
n iff x € A is the lexicographically least point of [z} N A. Thus N, S, is
a partial transversal, i.e., a set which intersects each equivalence class in at
most one point.

Lemma 13 IfT € A} is a partial transversal, then [T)g is compressible. A

code for [T|g and its compression may be computed recursively from a code
of T.

Proof: Put an order of ordertype w on each equivalence class of [T]g by
setting

r<y & (zEyAIn€w (ga(z) e TAYM < n gn(y) € T)),
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where G = {g,} is the group inducing E. Then the map taking each z € [T)g
to its successor is a compression on [T]g. O
Thus we may assume that M, S, = . Now put

Ai(z) © In(Sn(z) A n is least such that Iy € ([z]g N A)~Sa(y))

and
A2 =A- Al.

The A; partition A into full subsets, and we pick for A’ in each equivalence
class the smaller of the two parts:

A,(l) =4 (LU € A A [AQ/A]](.Z‘) > 1)V,
Clearly, a code for A’ may be computed recursively from a code for A. Put
Ci = {l‘ € [A]E : [Az/AI](l‘) > 1},.
CQ = {.’E € [A]E : [Az/Al](l‘) < 1}
Then we have for almost all z € C),
[A/A(z) = [4/Ail(=)
(A1 U A2)/Ai)(2)
[A1/Ai](z) + [A2/Ai](2)

i}

—>_ 2’
and for almost all z € Cs,
[A/A](z) = [A/A9(2)
= [(A1U A2)/A)(z)
= [A1/A)(z) + [A2/A0)(2)
> 2,

since the set of point in [A;]gN[As]g 2 Ca where [4;/As](z) = [A2/Ai](z) =
0 is clearly compressible, and thus [A4;/As](z) > 0 for almost all z € Cb.

Thus A’ is as desired, and we can fix a sequence of reference sets. Now put
) q

for Ae AjX and z € X,
: A/F. (= . . .. .
m*(A) = { hmn_»og [L)é—g_'}i(;% .1f th}s l}mTt exists, .
0 if this limit does not exist.
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Since [A/B] is E-invariant, we have m® = mV for zEy. Clearly, m® is
nonnegative and almost everywhere [X/F,] = [A/F,] + (X — A)/F,] 2>
[A/F,], so that m*(A) € [0, 1] almost everywhere.

Lemma 14 Let A € Al. Then

o AIFal(2)
% [X/F(@)

exists for almost all x, uniformly in A and the sequence of reference sets.

Proof: By lemma 12 and the properties of the reference sets, we have almost
everywhere

1. [A/F[F;/Fiyj] < [A/Fij) < ([A/F] + D)([Fi/ Fivg] + 1),
2. [X/F|[Fi/ Firj] < [X[Fi] < ((X/F] + 1)([Fi/ Fisg) + 1),
3. [X/Fa] — pointwise,
4. [Fo/Fuim] — oo pointwise.

Thus we have almost everywhere

[A/Fiys] _ [A/F]+1[F/Fiyj) +1
(X/Fiv] = [X/F]  [Fi/Fuy]

and since lim;_, ([Fi/ Fiy;] + 1)/[Fi/ Fiy;] = 1, we have
[A/Fis]  [A/F]+1

lim sup < ,
oo | X[ Fiy;] [X/F]
and thus
lim sup [A/F] < limi f—[—éﬁ]—i—l = lim M =m(4, ).

ot [XJE)] = i [X/F] imes [X/F]

Since the set of points where the limit does not exist is at most the set
where lemma 12 fails or where the sequence of reference sets does not have
the required properties, we can recursively find a code for this set and for a
compression of it from a code of A and the sequence of reference sets. D
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We already checked that m® takes values in [0,1]. Since for any A € A}
and any g in the group G inducing E we have [A/F,] = [gA/F,] almost every-
where, we have m*(A) = m®(gA) almost everywhere by the above lemma.
Thus in order to verify that m satisfies the Key Lemma, we are left with
showing that m?® is almost everywhere o-additive. We know from lemma 12
that m® is almost everywhere finitely additive.

Fix a disjoint Al-sequence {4; : i € w}. By finite additivity we have
Vi (mr(UA,-) > Zm’(Ai)).

Put P(n,z) iff m*(U; A;) > 3, m*(A;) + 27 ™. It clearly suffices to show that
P, is uniformly compressible. Note that P, is E-invariant. Let A = {72, A;.
By the properties of reference sets we have

vz ([X/F)(z) 2 27)
uniformly, and thus uniformly
Ve (m*(F,) < 2").

Thus almost everywhere on P, we have m*(F,) < m*(A) and so we can
apply the following lemma.

Lemma 15 Assume that P € A} is E-invariant and A, B € A} with
Vz € P(m®(A) < m®(B)).

Then there is an f : AP < BY almost everywhere and furthermore, codes for

f, the exceptional set, and its compression can be found recursively in the
codes of A, B, and P.

Proof: Let n : P — w be given by n(r) is the least integer m such that
[A/F)(z) < [B/Fn)(z). Let f™,Q™ and f™,Q™ be given by lemma 10 for
A, F, and B, F,, respectively. Define f : A — B by

the k-th element in the lexicographical ordering of
f(z) = { (fr@)-1(f=)(2)), where z is the kth element in the
lexicographical ordering of (f*(®)~1(f"®)(z)).
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This works O
Thus find a subset A’ of A such that A'NP, ~ F,N P, almost everywhere,
and thus
V*z € P (m*(A") = m*(F,)).

Since A = A'U (A — A’), we know by finite additivity and the fact that
V*z (m*(F,) £ 27") (uniformly), that
V'z € P, (m*(A—A") > m*(A)).

=0

Thus we are done once, we show the following lemma.

Lemma 16 Assume that A; is a Al-sequence and B € Al, P € A} is E-
wnvariant. If

V*z € P (m*(B) > Y_m*(A;)),
=0
then we can find uniformly a mapping f : U2, A; <X B.

Proof: Since
V*z € P (m*(B) > m*(Ap)),

find fy: A9 X B by lemma 15. Let B' = B — fy[Ao]. Then
V'z € P (m*(B') > > m*(A;) > m*(A1));
i=1

thus find f, : A; < B by lemma 15. Continue in the same manner. O
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