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Abstract 

In the first part of this work we deal with the classification of definable 
equivalence relations on Polish spaces, where we take definable to mean inside 
some model of determinacy: We work in ZF+DC+ADn . The classification is 
up to bireducebility (denoted by E rv F), that is if E and F are equivalence 
relations on the Baire space N, then E rv F, if there is a mapping f : N ~ N 
with "ix, yEN (xEy {:} f(x)F f(y)), called a reduction of E into F, and 
VIce versa. 

As two equivalence relations on Polish spaces are bireducible just in case 
there is a bijection between their quotient spaces, our results apply to de­
finable cardinality theory, too. We show that up to bireducibility there are 
only four infinite hypersmooth equivalence relations: equality on the integers, 
equality on the Baire space, Eo on the Cantor space 2W given by 

aEof3 {:} ~n E wVm > n (a(m) = f3(m)), 

and EI on the countable product of Cantor space (2W)W given by 

O:.Eo13 {:} ::In E wVm > n (Qm = f3m). 

Even though we only develop the theory for the context of ADn, it is 
clear from the proofs that our results apply to a variety of other settings, 
such as the one encountered in the second part. 

In the second part of the thesis we deal with countable Borel equivalence 
relations E on Polish spaces X, that is with equivalence relations which have 
countable classes and Borel graphs. The space M of probability measures 
on these spaces is again Polish. Of special interest are invariant measures 
(i.e. those which are preserved under bijections f : X ~ X with f(x)Ex, so 
called automorphisms), quasiinvariant measures (Le. those whose measure 
class is preserved under automorphisms), and ergodic measures (i.e. those 
which assign full or null measure to E-invariant Borel sets). 

We show that the collections of ergodic measures and of ergodic quasiin­
variant measures are Borel. We also classify the complexity of the a-ideal of 
nullsets with respect to all invariant measures, showing that this ideal is II} 
in the codes of A~ and :E} sets, and that the a-ideal of compact nullsets with 
respect to all invariant measures is IIg if the collection of invariant ergodic 
measures is at most countable, and II~-complete otherwise. 
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Chapter 1 

Dichotomy Theorems 

In this chapter we prove two dichotomy theorems about the reducibility and 
embeddability relations of equivalence relations. Let us first consider an 
example: Consider the space X of normal multiplicity free operators on a 
separable Hilbert space and the equivalence relation E of unitary equivalence. 
It is well known that two such operators are unitarily equivalent iff their 
spectral measures are in the same measure class, i.e., have the same null sets. 
Thus the map f on X into the space Y of measures satisfies the condition 

xEx' {:} f(x)F f(x') for all x, x' E X, 

where F is the relation of being in the same measure class. We call a map 
satisfying the above condition a reduction of E into F, and an embedding 
if it is in addition injective. 

Under the axiom of choice reducibility and embeddability are trivial no­
tions which depend only on the cardinalities of the quotient spaces, and on 
the cardinality of the equivalence classes for embeddability. 

We are interested here in these notions for "definable" objects on Polish 
spaces, i.e., where the spaces are Polish spaces and the equivalence relations 
and maps are "definable". In this context we want to classify "definable" 
equivalence relations up to "definable" reducibility and embeddability. "De­
finable" means in some pointclass such as projective, inductive, inside L(R) 
or some inner model, etc. 

We can also apply our theory to the study of "definable" cardinality 
theory. Here one investigates the cardinalities of sets I which are "definable" 
surjective images of the reals, or equivalently, which are "definable" quotient 
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spaces of the reals. Such sets, say I and J, are compared via "definable" 
injections and bijections: 

I ::; D J ¢} there is a "definable" injection from I into J 

I rv D J ¢} there is a "definable" bijection from I onto J 

¢} I:;D J and J :;D I. 

An appropriate context for this theory is to take all definable objects to be 
inside an inner model of ZF+DC+ADn , the axiom of dependent choice plus 
determinacy of games of reals. In such models one has full uniformization; 
thus injections between quotient spaces of the reals correspond exactly to 
reductions of the equivalence relations giving the quotient spaces. 

Let us work from now on in an inner model of ZF+DC+ADn . It will 
be clear that our discussion also applies to the other cases mentioned above, 
provided we have the appropriate level of determinacy. 

Our results concern the equivalence relations Eo on 2w , the space of in­
finite {a, l}-sequences, and El on (2W)W, the space of sequences of such se­
quences. Since 2w is homeomorphic to the Cantor set, we may also think of 
(2W)W as sequences of elements of the Cantor set. 

Two elements a, a' E 2W are said to be Eo-equivalent iff 

3k E wVn ;::: k(a(n) = a'(n)), 

i.e., if they eventually agree. The importance of Eo stems from the fact that 
it has two properties: Eo is not A-smooth for any A < 8 (i.e., the supremum 
of the lengths of prewellorderings of the reals), i.e., there is no reduction of 
Eo to equality on 2A. Also call E smooth if it is w-smooth and 8-smooth if 
E is A-smooth for some A < 8. Thus in this terminology Eo is not 8-smooth. 
On the other hand, Eo is the increasing union of equivalence relations with 
finite classes, namely, those equivalence relations on 2W which relate elements 
which agree after a fixed point k E w. We call equivalence relations with 
finite equivalence classes finite, and the increasing union of finite equivalence 
relations hyperfinite. There are several equivalent definitions of this notion: 

1. E is hyperfinite, i.e., the increasing union of finite equivalence relations. 

2. E is countable and hypersmooth, i.e., the equivalence classes are 
countable, and E is the increasing union of smooth equivalence rela­
tions. 
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3. There is a bijection T of X with itself such that E is the orbit equiva-
lence relation of T. 

We now have the following generalization of a result for the Borel context by 
Harrington-Kechris-Louveau [90]. We have recently learned that Foreman­
Magidor (unpublished) have found the result below independently. 

Theorem 1 (ZF+DC+ADR ) Let E be an equivalence relation on a Polish 
space. Then either E is 8-smooth or Eo embeds into E via a continuous 
function. 

The equivalence relation E1 on (2wy" is given by 

iiEl ii' {::> :3k E I..r..i'in ~ k( an = a~) 

for all ii, ii' E (2W)w. Like Eo, E1 is hypersmooth, but it is not countable; in 
fact, it is not reducible to any countable equivalence relation, in particular, 
not to any hyperfinite equivalence relation. We have the following well known 

Fact 2 E is hypersmooth if and only if E is embeddable into E1 if and only 
if E is reducible to E1 • 

Proof: For the forward direction let E = Un Fn be a hypersmooth equiv­
alence relation on X, where Fn is smooth and increasing, and let fn reduce 
Fn to equality on 2W. Then define f : X ---+ (2W)W by 

f(a)n+1 = fn(a) 

and 
f( a)o = a. 

Clearly, f embeds E into E1 • 

For the backward direction assume that / : X ---+ (2W)W reduces E to E1. 
Let Fk be given on (2W)W by 

iiFkii' {::> 'in ~ k( an = a~). 
Let Fk be the pullback of Fk via /; i.e., for x, x' E X set 

xFkx' {:} f(x)Fk/(x'). 

Since E1 = Uk Fk , we have E = Uk Fk, and both are increasing unions of 
smooth equivalence relations. Thus E is hypersmooth. 0 

We now have a generalization of a result by Kechris-Louveau [a] for the 
Borel context: 
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Theorem 3 (ZF+DC+ADn) Let E be an equivalence relation on a Pol­
'ish space. If E is hypersmooth, then either E is reducible to Eo, or E1 is 
embeddable into E via a continuous function. 

Thus up to reducibility, E1 is the only non-hyperfinite hypersmooth equiv­
alence relation, and this depends on whether or not E is reducible to a count­
able equivalence relation. 

Recall now the following unpublished 

Theorem 4 (Dougherty-Jackson-Kechris) (ZF+DC+ADn) Let E be a 
countable 8-smooth equivalence relation on a Polish space. Then E is smooth. 

Then we have the following picture of equivalence relations on Polish 
spaces, where < indicates that the former relation is reducible into the latter 
but not vice versa: 

(=,w) < (=,241 ) < (Eo, 241) < (E1,(2w)""). 

And there are no other equivalence relations between these. This picture 
translates immediately into the following CH-type result for definable cardi­
nality theory, where TJo and TJ1 are the cardinalities of the quotient spaces of 
Eo and E1 , respectively: 

~o < 2~o < TJo < TJ1, 

with no other cardinalities in between. 
Let us now summarize the organization of the rest of the chapter. In Sec­

tion 2 we give some facts about hyperfinite equivalence relations, which we 
need later. In Section 3 we construct the point classes in which the construc­
tions take place. We also summarize the properties of the pointclasses, which 
we need later. All constructions will use the combinatorial concept of a tree 
structure, which we introduce in Section 4. We prove theorem 1 in Section 
5 and theorem 3 in Section 6. Finally, in Section 7 we give a generalization 
of a result by Harrington-Sami [79] to n-ary relations. There are also some 
applications of this result. 
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1.1 Hyperfinite Equivalence Relations 

We give here some results about hyperfinite equivalence relations, which we 
need later, and which may be found with references in Dougherty-Jackson­
Kechris (al: 

Theorem 5 (ZF+DC+ADR ) Assume that E is a countable equivalence re­
lation on a Polish space X, and E = Un En, where En ~ En+! are smooth 
equivalence relations. Then E embeds into Eo. 

We will show (lemma 6) that such E are hyperfinite, i.e., the increasing 
union of finite equivalence relations. This will imply (lemma 7) that E is 
induced by an action of Z. All equivalence relations E induced by Z-actions 
embed into E(Z, "'2) ~ ("'2)Z, where 

iiE(Z, "'2)13 ¢:> ::In E ZVm E Z(Qm+n = f3m), 

by the following map f : X -+ ("'2)Z: Let {Ui : i E w} be a family of subsets 
of X separating points. For x E X and m E Z, let m.x be the action of m 
on x. Then 

f(x)(m)(i) = 1 ¢:> m.x E Ui. 

Since E(Z, "'2) ~ Eo by theorem 7.1. of Dougherty-Jackson-Kechris [a], all 
that remains is to show the above-mentioned lemmas. 

Lemma 6 (ADR ) Assume that E is a countable equivalence relation on a 
Polish space X. Then there is a countable group G and a group action of G 
on X such that E = Ea. 

Proof: Let E = Un Fn, where Fn is the graph of a total function. (To find 
the Fn, let ReX X wx be given by (x,y) E R ¢:> {Yn : nEw} = [X]E' 
let R* uniformize R and let (x, y) E Fn ¢:> 3y((x, y) E R* 1\ Yn = y).) Let 
{Rk : k E w} be a sequence of rectangles, where Rk = h X Jk with hand 
Jk disjoint, such that Uk Rk = X 2 

- {(x, x) : x E X}. Let Fn be given by 
(x, y) E Fn ¢:> (y, x) E Fn. Let Gn,m,k = Fn n Fm n Rk. Note that Gn,m,k 
is the graph of a partial E-invariant function g~ m k with disjoint domain and 
range. Furthermore, Un,m,k Gn,m,k = E. Define 9n:m,k : X --+ X by 

if x is in the domain of g~ m k' , , 
if x is in the range of g~ m k' , , 
otherwise. 
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Let G be the group generated by the gn,m,k. Since the union of the graphs of 
the gn,m,k is E, Ec = E. 0 

Lemma 7 (ADn) Assume that E = Un En is a countable equivalence rela­
tion which is the increasing union of smooth equivalence relations En. Then 
E is hyperfinite; i.e., E is the union of an increasing sequence of finite equiv­
alence relations. 

Proof: Let Sn be a selector (i.e., for all x and y, sn{x)Enx and sn{x) = sn{Y) 
whenever xEnY) of En, Gn = {g~ : k E w} be a group inducing En with g~ 
the identity map, and define Fn by 

xFnY ¢:> 3m S; n[xEmY 

/\3ko, ... ,km S; n(x = g~OsOgfl ... g~msm(x» 

/\3lo, '" ,1m S; n(y = gbO sogil ... g!: sm{Y»]· 

We will show that 

4. Fn is an equivalence relation, 

5. Fn is finite. 

1. and 2. are immediate. For 3., note that if xEy, then there are m and 
ko, ... ,km and 10, ... ,1m such that xEmY and x = g~iSi(X) and Y = g~isi 
for 0 S; i S; m. Let n = max{ m, ko, ... ,km' lo, ... ,1m}. Then xFnY. 

For 4.: Clearly, Fn is symmetric and reflexive. Let us check that Fn is 
transitive. Say that xFnY and yFnz. Let m, io, ... ,im, )0, '" ,)m, m', 
ko ... ,km" 10 , ... ,1m' S; n be such that 

and 

F A ko kl k, () A 10 II 1m' () Y m' Z 1\ Y = go sOg1 ... gm": Sm' Y 1\ Z = go sOg1 ... gm' Sm' Z • 
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If m = m', there is nothing to show. Assume without loss of generality that 
I L t I km+l km, () S' ko kl km, () m < m. e y = gm+l Sm+1 ... gm' Sm' y. lUce y = go sOg1 ... gm' Sm' Y -

- ko kl km (') h' I 17' 17' Th ( ') - () d - go sOg1 '" gm Sm Y ,we ave y rmyrmX. us Sm Y - Sm X an 
sm'(Y) = sm'(X), Thus we have 

This proves that xFnz, and thus transitivity. 
For 5.: Fix x. Assume that yFnx and that m, ko, ... ,km' 10 , ... ,1m 

witness this fact. Then sm(x) = sm(y), so that y = g&OsOgil ... g!;;sm(x); i.e., 
y is completely determined by m,lo, '" , 1m. Since all are bound by n, the 
Fn-equivalence class of x is finite. 0 

Lemma 8 (ADn) If E is hyperjinite, then there is a Z -action inducing E. 

Proof: Assume without loss of generality that E is an equivalence relation 
on X = W2. Let us first see that it suffices to find a relation R S; E such 
that for each E-equivalence class C, R n C2 is a linear ordering of C of either 
ordertype Z or of finite ordertype. For assume that we have such an R, then 
we can define T : X -t X as follows: 

T(x) = y ~ [(xRy /\ VZ-'(:L'RzRy)) V (yRx /\ Vz-,(zRx V yRz)]; 

i.e., T(x) is the successor of x in Rn [xl~ or if x is the last element, then T(x) 
is the first element. Now let i act on x by Ti. Clearly, this action induces E. 

Let E be the increasing union of finite equivalence relations En. In order 
to find R, we will find {Rn : nEw} such that 

2. For every En-equivalence class C, Rn n C 2 is a linear ordering of C, 

3. If xRnY and -,(zEnx), then for all m, -,(xRmzRmY). 
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Let us first see that this suffices. Let R' = Un Rn. Clearly, R' ~ E and 
R n C 2 is a linear ordering of C for every E-equivalence class C. Note that 3. 
implies that if xR'y, then there are at most finitely many elements between 
x and y. The only linear orderings (up to isomorphism) which satisfy this 
property are finite orderings, Z, w, and w*, the reverse ordering of w. Thus 
let us define R by the following rules: 

1. If [XJE has ordertype Z or is finite, then let R agree with R' on [X]E. 

2. If [X]E has ordertype w, let for y, Z E [XJE yRz iff y, z both have an even 
number of R'-predecessors and yR' z or y, z both have an odd number 
of R'-predecessors and zR'y or y has an odd number of R'-predecessors 
and z has an even number of R'-predecessors. 

3. If [X]E has ordertype w*, then apply the above definition to the reverse 
order of R' n [x]1. 

Clearly, R is as desired. 
vVe construct Rn by induction on n: For Ro put xRoY iff xEoY and x < y 

in the lexicographical ordering. Put xRn+1y iff xRnY or xEn+1y and not xEnY 
and the Rn-least element in [X]En is lexicographically less than the Rn-least 
element in [yJEn • 

It is clear that the Rn satisfy 1. - 3 .. 0 

1.2 Auxiliary Pointclasses 

We introduce here some pointclasses for later use. The approach is well­
known; see e.g., Harrington-Sami [79]. Assume that A < () is a cardinal and 
A = {Ai : i E io} is a finite sequence of A-Suslin subsets of the spaces Nn j

, 

l1i E w, for i E io. Then we can find for each i E io a tree Ti on wnj X ). 

such that Ai is the projection of the collection of paths through Ti; i.e., 
Ai = p[Ti] = {a E Nn j 

: 3{J E AWVk E w((alk,{Jlk) E Tin. Let K, > A be the 
least ordinal such that L,,(N U {Ti : i E io}) is admissible. We call the class 
r of E1-definable subsets in UnEw P((N U A)n) over L,,(N U {Ti : i E io}) 
with parameters in AU {A,N} U {Ti : i E io} the auxiliary class for A. 
We let t denote its dual class, i.e., the class of complements of sets in r, 
and 6. = r n t the ambiguous class of r. The classes have the following 
properties: 
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2. r is closed under substitution of elements from A, and under permuta­
tion, identification and addition of variables. 

3. Ai E f' for all i E i o, and in fact for all i E i o, for all sEn A, and 
for all t E n(wni ) p[T;tJ E t. Here T;t = {(s',t') E Ti : sand s' are 
compatible and t and t' are compatibl~}. 

4. There is a pairing function A x A -+ A in~. Proof: The canonical 
well-ordering of OrdxOrd given by (a,{3) < (1,8) iff max{a,{3} < 
max{"o} or max{a,{3} = max{,,8} and (a,{3) < (1,8) in the lexico­
graphical ordering has a ~o definition. Now define g : Ord x Ord -+ Ord 
by g(l,8) = the ordertype of {(a,p) E Ord x Ord: (a,p) < (I,8)}, 
which has a E1-definition. Since A was least such that A was A-Suslin, 
). is a cardinal and thus g( a, j3) < A for all a, j3 < A. 0 

5. r is A-parameterized. Proof: Enumerate the E1-formulas with constant 
symbols for elements from AU {A,N, T} effectively. 0 

6. r is normed with norms into K. Proof: Let B E r be defined by 
:3x¢(x, y), where ¢ is ~o. Let 7jJ : B -+ K be given by 7jJ(b) = the least 
~ such that LK(A U {A,N,T}) F:3x E L~(A U {A,N,T})¢(x,b). This 
works. 0 

7. r has the reduction property and t has the separation property. Proof: 
This follows from Moschovakis [80], p. 204, 4B.I0 and 4B.ll.D 

8. There is a r-coding of ~-sets: There are C ~ A, D, iJ ~ A x N, 
C, D E r, bEt, such that 

(a) If ~ E C, then D~ = iJ~. 
(b) For every B E ~, B ~ N, there is ~ E C with B = D~. 

Proof: Let U be r-universal for N, U ~ A x N. Let ¢ : A2 -+ A be 
the pairing function, ¢1, ¢2 : A -+ A be such that (¢1, ¢2) is its inverse. 
Then put 

VI (~, x) ¢:> U( ¢1 (~), x), 
V2(~,.r) ¢:> U(¢2(~),x). 
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Let D l , D2 reduce Vl , V2 and put 

Then let D = Dl and iJ = (A x N) - D2 . These work. 0 

9. The recursion theorem holds: There is a r-universal set U ~ A x (AuN) 
such that for any r-recursive function f : A - A there is ~ E A such 
that U{ = UfW and for any V ~ A x (A UN) in r there is f: A - A 
such that V~ E A(~ = Uf(O). 

10. The reflection theorem holds: Assume that A ~ P(N) is r on r, i.e., 
h E A : UI E r} E r for the universal set U. Then if YEA, Y E r, 
there is X E A, X E ~, X ~ Y. Proof: Let U ~ A x (A uN) be 
universal such that the recursion theor~m holds. Let ¢ : U - K be a 
r-norm. Let a,/3 E A be such that Ua = {, : U-y E A} and Uf3 = Y. 
Consider the r -set V ~ A x (A uN) given by 

V(b,y) {:} ¢(/3,y) < ¢(a, b). 

Let f : A - A be given by the s - m - n-theorem such that V~ E A(~ = 
Uf(O). Then find by the recursion theorem b such that V6 = Uf(b) = Ub. 
If Ua ~ A, then b ~ Ua; thus ¢(a,b) = 00; thus 

V( b, y) {:} ¢((J, y) < 00 

{:} (/3, y) E U 

{:} Y E Uf3 = Y; 

thus Ua = V6 = YEA, a contradiction. 

Thus Ua E A; thus ¢(a, b) < 00; thus V6 E ~. Since V6 ~ Y, this 
completes the proof. 0 

1.3 Trees And Tree Structures 

Definition 9 If T is a directed tree, we denote the vertex set by V(T) and 
the edge set of T by E(T). If e E E(T) is an edge of T, then we denote by 
eo and el the source and the target of e, respectively. If r is a (lightface) 
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pointclass and X E r is nonempty, a r-tree structure on X is a triple 
(T, A, R), where T is a finite directed tree, A is an assignment v H Av 
of nonempty r-subsets of X to the vertices of T, and R is an assignment of 
r-relations e H Re to the edges ofT such that we have for all edges e E E(T) 

l.e. 

'VX E Aeo:lx' E Ae1xRx' A 'Vx' E Ae1:lx E AeoxRx'. 

If (T, A, R) is a tree structure, then (T, A', R') is said to refine (T, A, R) if 
for each vertex v E V(T) Av ;2 A~ and for each edge e E E(T) Re ;2 R~. 

We now have the following 

Lemma 10 Let r be a pointciass which is closed under finite intersections, 
finite unions and existential quantification over N. Let X E r be a nonempty 
subset of N with standard basis B such that B ~ r. Let (T,A, R) be a r-tree 
structure on X. 

1. If v E V (T), B ~ Au is a nonempty r -set, then there is a refinement 
(T, A', R) with A~ = B. 

2. If {xv: v E V(T)} is a collection of points and {Bv : v E V(T)} 1,S a 
collection of r -sets such that 

Xv E Bv ~ Av for all v E V(T) 

and 
xeoRexel for all e E E(T), 

then there is a refinement (T, A', R) of (T, A, R) with 

Xv E A~ ~ Bv for all v E V(T). 

3. There is a collection {xv: v E V(T)} of points such that 

Xv E Av for all v E V(T) 

and 
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4· If E > 0, then there is a refinement CT, A', n) of CT, A, n) such that A~ 
has diameter < E for all v E VeT). 

5. If e E E(T), S ~ Re, B ~ Aeo , C ~ Ael are nonempty r-sets with 
BSC, then there is a tree structure (T,A', n') refining (T,A, n) with 
B = A~o' C = A~l' Re = S and R~ = Re for e =I e. 

6. Assume that e E E(T), Re is an equivalence relation with Re C Re for 
all e E E(T), the path between the vertices s, t E VeT) in T contains 
e, and B ~ As, C ~ At are nonempty r-sets with BReC. Then there 
is a refinement (T, A', n) of (T, A, n) with A: = B and A~ = C. 

Proof: 

1. We define A~ by induction on the distance of v to v. Let e E E(T). 
If A~o is already defined, let A~l = 7rd(A~o X Ae1 ) n Re]. If A~l is 
already defined, let A~o = 11"o[(Aeo X A~J n Re]. Here 11"0 and 11"1 are the 
projections onto the first and second coordinate of the product space, 
respectively. 

2. Fix v E VeT). We define A~ by induction on the distance of v to v. If 
A~o is already defined, let A~l = 7rd(A~o X Bel) n Re]. If A~l is already 
defined, let A~o = 7ro[(Beo X A~J n Re]. In the first case we know that 
x e1 E A~l' Similarly, in the second case. 

3. Fix v E VeT) and Xv E Av. Then pick Xv by induction on the distance 
to v. 

4. Use 3. to find a collection {xv: v E VeT)} with the guaranteed prop­
erties. Find a collection {Bv : v E VeT)} ~ B of basic open sets with 
diameter < E and with Xv E Bv for all v E VeT). Then use 2. on the 
collections {xv: v E VeT)} and {Bv n Av : v E VeT)} to find A'. 

5. Let To and Tl be the two subtrees of T, which remain if e is removed 
from E(T). Assume that ei E V(Ti). Note that (Ti' AIV(T;),nIE(Ti )) 

for i = 0,1 are tree structures, so find refinements (Ti' A'IV(T;),­
nIE(Ti )) with A~o = B and A~l = C. Since BSC, (T,A', n') with 
n' as in the statement is a tree structure with the desired properties. 
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6. Let To and Tl be the two subtrees of T which remain if e is removed 
from E(T). Assume that s E V(To) and t E V(Td. Again we know 
that (Ti , AIV(7i), RIE(Td) for i = 0,1 are tree structures, so find re­
finements (Ti , A'IV(Ti ), RIE(Ti)) with A~ = B and A~ = C. For all 
U, v E V(Ti) we have A~ReA~ by induction on the distance between 
them, using transitivity of Re. Since A~ReA~, we have A~ReA~ for 
all u, v E VeT). In particular, A~oReA~l' so that (T, A', R) is a tree 
structure. 

1.4 The First Dichotomy Theorem 

We prove here the first dichotomy theorem, working in ZF+DC+ADn through­
out. vVe draw here from ideas of Harrington-Kechris-Louveau [90], Harrington­
Sami [79], and Foreman [89]. Let E be an equivalence relation on N. By 
Woodin [a] let A < 8 be the least cardinal such that E and E = N2 - E are 
both A-Suslin, and let T, t be trees on w2 x A which prove this. Let r be 
the auxiliary class for E, E, as guaranteed by Section 1.2. 

We can define the following A-smooth equivalence relation R containing 
E. It is in fact the smallest such equivalence relation in r. 

Definition 11 Let R ~ N"2 be given by 

xRy ¢:} \I B E .6.[B E-invariant ~ (x E B ¢:} Y E B)] 

¢:} \lB E .6. [(\Iv, wE N(v E B 1\ vEw ~ WEB)) 

~ (x E B ¢:} Y E B)], 

and X ~Nby 

x EX¢:} Rx"# Ex 
¢:} 3y(xRy 1\ xEy). 

Since there is a r -coding of .6.-sets and r is closed under universal quan­
tification, R and X are in I'. If X = 0, then E is A-smooth and there is 
nothing to show. Thus assume that X "# 0. 

13 



1.4.1 The Embedding 

vVe will construct the continuous embedding f of Eo into EIX by constructing 
a sequence {in : nEw} of positive integers and a perfect binary tree {A~ : 
i ::; in, S E 2n, nEw} of f-subsets of X such that 

(A) distinct paths through the tree are disjoint; i.e., A!nnA~n = 0 if s, t E 2n
, 

s =1= t, and 

(B) the sets along one path are decreasing; i.e., A! 2 Ai if (s = t E 2n and 
i < j ::; in) or if (s C t and s =1= t), and 

(C) for s E 2n
, the diameter of Ain is at most 1/(n + 1). 

We then set 1(0'.) to be the unique element in nnEw A~n' By (B) and 
(C) I is well defined, by (C) I is continuous, and by (A) I is injective. In 
order for I to be an embedding, it in fact suffices that it satisfies the two 
conditions of the following lemma. 

Lemma 12 (Embedding Lemma) If a function f : 2W ~ N satisfies 

1. V",' ([Ito,':::;. f([)Itf(['», 

2. V,Vk (f(Ok~O~,)EI(Ok~l ~,», 

then it is an embedding of Eo into E. 

Proof: We prove the statement 

by induction on k. For k = 0 there is nothing to show. Assume the statement 
for k and let s, t E 2k+ 1. If s( k + 1) = t( k + 1), then the induction hypothesis 
already implies the claim. Thus assume w.l.o.g. that s(k + 1) = 0 and 
t(k + 1) = 1. Then 

l(s~,)EI(Ok~O~,)Ef(Ok~1 ~/)Ef(r,), 

o 
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1.4.2 The Game G 

In order to ensure 1. of the embedding lemma, we will play the following 
game: 

G: I Ao, Bo A z, Bz 
II AI, BI A3 , B3 ... , 

where Ai, Bi E t, 0 ::j:. A i+l ~ Ai ~ X, 0 ::j:. Bi+l ~ Bi ~ X, AiRBi, 
diam(A2i+l ) < l/(i + 1), diam(B2i+d < l/(i + 1). Whoever violates these 
rules first, loses. If both follow these rules, then I wins iff ni AiE ni Ri . (Here 
A is the topological closure of A.) 

Since we want to apply ADn to conclude that II has a winning strategy 
in this game, we should playa coded version of this game, i.e., one where the 
players play reals instead of ordinals. For this we should fix a prewellordering 
of the reals of length A and should code the ordinals by reals with the ap­
propriate rank with respect to this prewellordering. It is easy to modify the 
argument below to work with the coded version of the game. For simplicity 
we continue to pretend to play G and assume that it is determined. In order 
to show that I does not have a winning strategy, and for later use, we need 
the following lemma. 

Lemma 13 1. If A E t, A2 n R = A2 n E, then there is B E ~, A ~ B, 
with B2 n R = B2 n E. 

2. If A E ~, A2 n R = A2 n E, then there is B E ~, [AlE ~ B, with 
B2 n R = B2 n E. 

3. IfAEt,A2 nR=A2 nE, thenAnX=0. 

4. Let A, B be ['-sets with (A x B) n R::j:. 0. Then (A x B) n E::j:. 0. 

Pr-ooj: Let C(A) denote the statement A2 n R = A2 n E. 

1. Consider A ~ rjN defined by 

A(A) {::} (-,A)2 n R ~ E 

{::} \fx\fy[(x ~ A 1\ Y ~ A 1\ xRy) :::} xEyJ. 

Note that A is r on r. Now let A E t with C(A). Then A(-,A); thus 
by reflection there is B E ~, -,B ~ -,A, A( -,B). But then A ~ Band 
C(B). 
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2. Apply 1. to [AlE. 

3. By 1. find B' E .6., [AlE ~ B', C(B'). Then inductively find an 
effectively .6.-sequence < Bn : nEw> of .6.-sets such that 

using the fact that 1. holds uniformly. If B = Un Bn , then B E .6., 
A ~ B, B is E-invariant and C(B). Thus B n X = 0. 

4. Assume that A, BEt with (A x B) n E = 0. Then find by effective 
t -separation a .6.-sequence of .6.-sets Cn such that 

(a) [AlE ~ Co ~ N - [BlE, 

(b) [Cnl E ~ Cn+1 ~ N - [BlE. 

Let C = Un Cn. Then C separates A and B by (a), is E-invariant by 
(b), and C E .6.. Thus C is R-invariant and thus (A x B) n R = 0. 

We now have 

Lemma 14 I has no winning strategy in G. 

Proof: Assume that a is a strategy for 1. We will play two runs of G, call the 
players I, II, I' and II' and their moves Ai, Bi and A~, B~. I and l' will follow 
a. We indicate the moves in a diagram after the description of stage n: 

Stage 0: I and I' play their first moves. They are identical. Thus 
So = p[t] n R n Bo x B~ =1= 0 by lemma 13.3. Let So = to = Uo = 0. 

Stage n: Assume that the runs have proceeded to the (2n - 2)nd move 
and that sequences Sj, tj E wi and Uj E Ai and sets 5 j ~ Itn X 2 have been 
defined for i < n such that 

1. I, I' have followed a and no player has lost for trivial reasons. 

3. p[Ts· t u·] ~ Sj 1'1,. -
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6. A 2i - 1 2 A2i 2 A~i-l 2 A~i 2 A2i+1 

Then find sequences Sn, tn E wn and Un E An extending Sn-l, tn-l and Un-I, 

respectively, such that 

Let 

and 
B = 7roS~. 

If x E B, then using 4. and 5. there is y E B~n-2 such that (x, y) E Sn-l ~ R 
and z E A~n_2 = A such that yRz, thus xRz. Thus we can shrink A and 
B down to A2n- 1 and B2n - 1 such that A2n-IRB2n-l, and they are both 
sufficiently small. Let A2n and B2n be given by f7. Then let 

and 

and 
B = 7rlS~. 

Again by transitivity of R we have (A x B) n R "1= 0. Thus shrink A and B 
down to sufficiently small A~n_l and B~n_l such that A~n-l RB~n_l. Let A~n 
and B~n be given by f7 and finally set 

This completes stage n. 
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I, I' 

II 
I 

II' 
I' 

II 
I 

II' 
I' 

II 
I 

II' 
I' 

A' 3 

A' 4 

,..,-,'S~ = s~ n B4 X N 
II~ 

,," ".s-

B' 3 

B' 4 

""'S~ = S~ n B2n X N 
lr. ... '1-

B~n-l 
B;n 

Now let 0:, /3, 0:', /3' be the reals produced in the two runs. Then by 3. we 
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see that (31(3', by 6. a = a'. Thus we must either have (3 lfb or (3' lfb'; thus 
a was not a winning strategy. 0 

Thus fix a winning strategy T for II. 

1.4.3 The Game G' 

In order to ensure 2. of the embedding lemma, it will be convenient to play 
the following game: 

G': I Ao,Bo A2,B2 
II AI, B1, R1 A3, B3, R3 ... , 

where players I and II take turns playing pairs of nonempty decreasing (i.e., 
Ai ~ A+1, Bi ~ Bi+d r-subsets Ai, Bi of X, and II plays in addition 
nonempty decreasing binary r-relations R2i+2 such that 

If either player violates these rules, the first to do so loses. If both players 
play according to the rules, player II wins if nn AnE nn Bn. 

Using lemma 13 and the tree T proving that E is A-Suslin, we have 

Lemma 15 Player II has a winning strategy in G'. 

Proof: We will describe the strategy of II, which is winning. Assume 
that player I plays nonempty r-subsets Ao, Bo of X with AoRBo. Let So = 
(Ao x Bo)nE, which is nonempty by lemma 13. Since E = p[TJ, player II can 
pick 81, tl E WI and UI E Al such that RI = P[T(Sl,it,udJ intersects Ao x Bo. 
Player II plays Al = 7ro[(Ao x Bo) n RIJ and BI = 7rd(Ao x Bo) n RIJ 
and R 1 . Assume that player I responds with legal moves A2 , B2 • Since 
A 2 R I B2 , player II can find 83, t3 E w3 extending Sl and tl, respectively, and 
U3 E A3 extending U1 such that R3 = P[T(S3,t3,U3)J intersects A2 x B2. Player 
II plays A3 = 7ro[(A2 x B2) n R3J and B3 = 7rd(A2 x B2) n R3J and R3. 
He continues in the same manner. At the end of the run II assured that 
nn An = {Un 8n} and nn Bn = {Un tn} and (Un 8 n, Un tn, Un Un) E [TJ, so 
that indeed nn AnE nn Bn, and II wins the run. 0 
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1.4.4 Trees on 2n 

Before we can give the construction of the complete binary tree of r-subsets 
{ A ~} of X, we will need to construct a directed tree Tn on each 2n. If s, t E 2n 

are linked by an edge in Tn, then this will indicate that there will have to 
be one round of a run of G' among the A~, A;. But let us construct the trees 
first. To has just one vertex and no edges. Assume that Tn is given. We 
obtain Tn+l by taking two copies of Tn and joining their zeros: 

\iVe have: 

Vi,j E {O,l}Vs,t E 2n[(sA<i>,r<j» E E(Tn+l) ¢:> 

(( i = j /\ (s, t) E E(Tn)) V (i = 0/\ j = 1 /\ s = t = on))]. 

To o 

O~------__________ O 

9~~~~:::=~O ________ ~?--------O 

° ft-___ O_---I?--..O 

In fact, we can also give a direct definition of Tn, though it is not imme­
diate from it that Tn is indeed a directed tree: 

V(Tn) 2n 

E(Tn) {(s, t) E 2n x 2n ::3k < n:3u E 2n-(k+1)(s = OkAOAu /\ t = okAl AU)}. 

1.4.5 Construction of the binary tree 

We are now ready to construct the {A~} and r-relations {R~ : i ~ in, e E 

E(Tn),n E w} such that in addition to (A)-(C) of the above, we have: 
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(D) There is a sequence {js,t : :In E w(s, t E 2n 1\ s(n - 1) i= t(n - 1»)} of 
indices such that for each pair" " E 2w with ,~,', if {nk ; k E w} is 
the increasing enumeration of {n : ,( n) i= " ( n ) }, then 

I 
II 

is a run of G where II follows r, and none of the players loses for trivial 
reasons, where ji = j,lni,,'lni for i E w. 

(E) Note that for each, E 2w and each nEw (on~O~,lk,Ok~1~,lk) is 
an edge of Tn+l+k. Thus R(i ~ ~ I ,,~~ I ) exists. There are indices 

On 0 ,k,O 1, k 

{j~ : nEw, s E 2<W} such that for each, E 2W and each nEw 

I 
Aio ~ Aio ~ on 0' on 1 

II 

is a run of G' where I I follows r', and none of the players loses for 
trivial reasons, where ji = j;li for all i E w. 

(F) (Tn,A~,n~) is a tree structure for each nEw and each i ::; in. 
R~"~oon~l = R for all nEw, where A~ = {A~ : s E 2n} and 

n~ ='{R! : e E E(Tn)}. 

Condition (D) guarantees 1. of the embedding lemma and condition (E) 
guarantees 2. of the embedding lemma. Condition (F) is used to ensure that 
the construction can be carried on. Let us construct at stage n the A~ and 
Ro and in for s E 2n and i ::; in. 

1.4.6 Stage 0 

Let A£ = X, j~ = io = o. 
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1.4.7 Stage 1 

In order to find two disjoint, R-related r-subsets of X, we show 

Lemma 16 (Splitting Lemma) Let A, B ~ X be in r, A, B nonempty, 
ARB. Then there are nonempty, disjoint C ~ A, D ~ B in r with CRD 
and (; n b = 0. 

Proof: Assume first then (A x B) n R ~ {(x,x) : x EN}. Then find 
two distinct, R-related points a E A, b E B , choose disjoint neighborhoods 
V, W about them and let C = 1fo[R n ((A n V) x (B n W))] and D = 
1fdR n ((A n V) x (B n W))]. 

But we cannot have A x B n R ~ {(x,x) : x EN}. Otherwise we have 
A = B, and thus A2 n R = A2 n E; thus A n X = 0, a contradiction. 0 

Thus we can find by the splitting lemma two disjoint nonempty r-subsets 
Ag, A~ of X which are R-related. Let Rg,l = R. Let AA, At be the answer 
according to 7 in the situation 

of C and R6,1 = R. Let jO,l = O. This satisfies (D). Let A5, AI, R5,1 be the 
answer according to 7' in the situation 

I AA,At 
II 

of C'. Let jg = 1. This satisfies (E). We played such that (F) is satisfied till 
now. Use the lemma 10.4 of Section 1.3 to shrink the A; to have sufficiently 
small diameter in order to satisfy (C) and such that (F) remains satisfied. 
This completes stage 1; thus i l = 3. 

1.4.8 Stage n + 1 

SetRO, , =Rin RO, ,=RforsE2n andiE2'setAO, =Ainfore= s i,t ie' On O,on 1 ' sis 
(S, t) E E(Tn) and i E 2. Thus we have the tree structure (Tn+I,A~+l' R~+l) 
with A~+l = {A~: s E 2n+l} and R~+l = {R~: e E E(Tn+l)}. 

Let {Si : i < 2n} enumerate 2n. We set out to shrink the A~ to ensure 
(A), i.e., that the closures of the A~n+J are pairwise disjoint. For s, t E 2n 
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with 5 =1= t and i,j E 2 we have AO~. n AO~. = A~" n A~" = 0. We will 
s, t ) 

proceed by induction on i < 2n such that Ai+} n Ai+} = 0 and such that 
- S; 0 8; 1 

(Tn+1, A~~\, n~~\) is a tree structure. Assume that we have defined A~+1' 
Since all the R~ are contained in R, and (Tn+1, A~+l' n~+1) is a tree structure, 
we have A~RA~ for all 5, t E 2n+l. By the above splitting lemma, find subsets 
B j C A:; ~j such that Bo n Bl = 0 and BoRBl' Then use lemma 10 to find 

t t t (Tn+l Ai+l 'Oi+l) fi' (Tn+l Ai 'Oi ) 'th B -a ree s ruc ure 'n+l, ''-n+l re nlng 'n+l' ''-n+l WI i -
A:72J' Thus we can guarantee (A), and at the end of this induction we have 

constructed A~+1 and n~+l for i ::; 2n. 
In order to guarantee (C), just use lemma 10 on each of the vertices of 

Tn+l successively. This takes 2n+1 steps, so that we have constructed A~+1 
and n~+l for i ::; 2n + 2n+l. 

We now set out to guarantee (D). Let {(sm' tm) : m E 22n} be an enu­
meration of 2n x 2n. Assume that A~+l and n~+l have been defined for 
i = 2n + 2n+1 + m. Let {lo ld enumerate {l < n : sm(l) =1= tm(l)} in 
increasing order. Note that 

I II 
Ajo Ajo 

8 m 110' tm 110 

Aik+1 Aik+1 
Sml1k' tml1k 

with jj = jsmll;,tmll; is a partial run of G, where neither player lost for trivial 
reasons and II followed his winning strategy T. Set j S ~ O,t ~ 1 = 2n + 22n + m = i 
and note that Ai ~ ,Ai ~ is a legal move of I. Let B o, Bl be the answer of 

Sm 0 tm 1 

T to this move and use lemma 10 to find a tree structure (Tn+1,A~~\,A~~\) 
refining (Tn+! {Ai} {Ri}) with Ai+l~ = B and Ai+~ = Band Ri+l = Ri 

, S' e Sm 0 0 tm lIe e 

for all e E E(Tn+1). After 22n of these steps, we have defined A~+1 and n~+l 
and {js,t} for i ::; 2n + 2n +1 + 22n , and we ensured (D) for this stage. 

We are left with ensuring (E). Enumerate the edgeset E(Tn+1) = {em: 
m < mo}. Assume that A~+ 1 and n~+1 have been defined for i = 2n + 2n+1 + 
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22n + m. Recall that eo and e1 denote the ends of em. Let 10 be such that 
em = (010 - 1 ' 0' U, 010 - 1 ' 1 'u) for some u E 2n+!-lo. Note that A!m, A!m is a 

o 1 

legal move for I in the situation 

II 

of G', where jl = j~II' Let j~ = i, and Bo, B 1 , RO be the response to this 
move of I by II, who is following r'. Then use lemma 10 to find a tree 
structure (Tn+l Ai+! A i+1 ) refining (Tn+l {Ai} {Ri}) with Ai+!, = B , n+l' n+l , s' e 8 m 0 0 

and Ai+1, = Bl and Ri1;.l = R O and Ri+1 = Ri for e ...J. em We are done 
tm 1 e eel . 

after mo steps in ensuring (E), and we set in = 2n + 2n+! + 22n + mo. This 
completes the construction of the n + 1st stage and thus the proof. 

1.5 The Second Dichotomy Theorem 

We prove here the second dichotomy theorem. First we need 

Lemma 17 Let E be an equivalence relation on a Polish space X. Then E 
is hypersmooth iff E ::; El iff E ~ E 1• 

Proof: Assume that E ::; E 1 • Let Fn = {(x, y) E (2W)W x (2W)W : Vk ~ 
n (xn = Yn)}. Let f : X -. (2W)W reduce E to E1. Let Fn = U X f)-I [Fnl = 
{(x, y) E X 2 

: U(x), f(y)) E Fn}. Since Fn :::; Fn and Fn is smooth, so is Fn. 
Clearly, E is the increasing union of the Fn , so that E is hypersmooth. 

Assume on the other hand that E is hypersmooth, and let E be the in­
creasing union of an increasing sequence {Fn : n EW} of smooth equivalence 
relations, and let fn+l : X -. 2W be a reduction of Fn to equality. Let 
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fo : X --+ 2W be an injection. Then f : X --+ (2W)W given by f(x)n = fn(x) is 
an embedding of E into E1 . 0 

Since any hypersmooth equivalence relation E is isomorphic to EllA for 
some A ~ (2W)W, it suffices to consider EdA for A ~ (2W)"'. By Woodin 
[a] let A < () be the least ordinal such that A is A-Suslin and let T be a 
tree on 2 x A such that A = p[T], where we identify (2W)W with 2W via the 
recursive isomorphism Q 1-+ Q and Q( < n, m » = Q( n)( m) with < n, m> = 
1/2(m + n)(m + n + 1) + n. Let r be an auxiliary pointclass for {A} given 
by Section 1.2. 

Let for m > n 

m>n 

n 

By a reflection argument we have 

thus 

Y E Yn,m {:> ~B Ern t(y E B A B2 n Fm ~ Fn) 

{:> 3( E C(y E DE, A V'XV'X'((X E bE, 

A x' E bE, A xFmx') ~ xFmx')), 

which is in r. Thus Xn,m E t, and thus so are Xn and X. 
We will show that X = 0 implies that EllA is reducible to Eo and that 

X # 0 implies that E1 is continuously embeddable into EllA. 

1.5.1 Case I: X = 0 
Note that X = A - Un nm>n Yn,m; thus Y = Un nm>n Yn,m contains A. Since 
Y E r, we can find by the separation property an A' Ern t with A ~ A' ~ 
Y. Since A' = Un(A' n nm>n Yn,m), we can find by the effective reduction 
property a uniformly r collection {An : nEw} such that A' = Un An 
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and An ~ A' n nm>n Yn,m' Thus {An: nEw} is uniformly r n t, since 
An = A' - Un#m Am. 

N ow define F~ on A' by 

xF~y ¢:} [(x, y E U Am /\ xFnY) V 3m > n(x, y E Am /\ xFmY)]. 
m-:;n 

Note that F~ Ern r uniformly and that EdA' = Un FnlA' = Un F~IA'. Also 
note that F~ is uniformly smooth; i.e., we have uniformly r nt-recursive 
reductions ¢n of F~ to equality on 2W. Let A" = ¢o[A'J. Thus A" E t. Let 
{B;: h,nEw be a uniformly r n t family such that {B;: hEw is a separating 
family for F~. Define equivalence relations F: on A" and C;: ~ A" by 

aF~f3 ¢:} 3x3y[¢o(x) = a /\ ¢o(Y) = f3/\ xF~y] 

¢:} VxVy[(¢o(x) = a A ¢o(y) = (3) ~ xF~yJ, 
a E C;: ¢:} 3x[¢0(x) = a /\ x E Bk] 

¢:} Vx[¢o(x) = a ~ x E B;:]. 

Let E" = Un F:. We also have the following: 

Lemma 18 F~ is countable. 

Proof: Let a E A" and x E A' such that ¢o(x) = a. Let n be such that 
x E An. Note that since An and ¢o are F~-invariant, n does not depend on 
x, but only on a. If n 2: k, let g(a) = (n, 0). If n < k, then x E An ~ Yn = 
nm<n Yn,m ~ Yn,k' Let ~ be least such that 

x E [DdFn /\ Dl n Fk ~ Fn· 

Let g(a) = (n,O. 
We will show that gl[a]FL' is injective. Let f3, f3' E [a]F~' with g(f3) = g(f3'). 

Let x,x' E A' with ¢o(x) = f3 and ¢o(x') = f3'. Let n be such that x,x' E An. 
If n 2: k, then the definition of F~ implies that XF~X'; thus xF~x'; thus 

f3 = ¢o(x) = ¢o(x') = f3'. 
If n < k, let ~ be such that x, x' E [DdFn and Dl n Fk ~ Fn. Let 

y, y' E Df, be such that xFnY and x' Fny'. Since f3, f3' are in the same F~­
equivalence class, we have xF~x'; thus by transitivity yF~y'. But then we 
have yF~y', since y, y' E Df,. Thus by transitivity xF~x'; thus xF~x'; thus 
f3 = ¢o(x) = ¢o(x') = f3'. 
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Thus 9 maps every Ff-equivalence class injectively into A; thus each class 
has to be countable. 0 

Furthermore {Cr} kEw is a separating family for F:; thus F: is smooth 
via the map <Pn : A" -+ 2w given by 

<Pn ( x) = {k E W : x E C;:}. 

Thus E" = Un F: ~ Eo by theorem 5 of Section 1.1. Since EdA is reducible 
to E", it is also red uci ble to Eo. 

1.5.2 Case II: X i= 0 
Similarly to the recursive isomorphism between 2W and (2W)W, we get an 
injection 2<w -+ (2<W)W, S ~ S = < Sm : mEw>, given for S E 2P by 

Sm (k) = { s( < m, k > ) if < m, k> < p 
T if <m,k> ~ p; 

i.e., s codes a finite number of finite sequences followed by empty sequences. 
For pEw let L(p) be the least m such that Sm = 0 for any (or equivalently 
for all) S E 2P• Let "'j be the following equivalence relation on 2<w: 

S "'j t {:} 'tim ~ j(sm = tm). 

Note that with the above identification 2w -+ W(W2), we have 

(i.e., we consider Fj as living on 2W pulled back via the bijection above. 
Similarly for A and Ed Furthermore, it is clear that for any p we have 

and """0 12P is equality and "'L(p) 12P is 2P x 2P • 

In order to find the continuous embedding f of EI into EllA, we will 
construct a strictly increasing function M : w -+ wand a collection U 
{Us }SE2<w of non empty {'-subsets of X such that 

(a) Vs _E 2<W[~ i= Us ~ X A (Us ;2 US AO U US AI) A diam(Us) :::; 2-lh(s) A 
(Us A 0 n Us A I) = 0], 

27 



(b) Va E 2W (np Unlp ~ A), 

(c) Vp E wVs, t E 2PVj ~ L(p)(s '"Vj t =* Us FM(j)Ut), 

(d) Vp E wVs, t E 2PVj ~ L(p)[-,(s '"Vj t) =* (Os x Ut) n Fj = 0J. 
Assume that this can be done. Define f : 2W --+ A as follows: For 

a E 2W (a) implies that {U nip : pEW} is a decreasing sequence of closed 
sets whose diameter tends to 0; thus np Unlp is a singleton {f(a)}. Clearly, 
f is continuous, and by (b) it is into A. 

If a, f3 E 2w , -,( aE1 f3), then for infinitely many j there is p such that 
-,( alp '"Vj f3lp); thus -,(J( a )Fj f(f3» for infinitely many j; thus -,(J( a )El f(f3». 

If a, f3 E 2w
, aE l f3, then there is j > 0 such that for all pEw, alp "'j f3lp; 

thus f(a)FM(j)/(f3) by (c) and by the fact that FM(j) is closed. 
Thus we are done, once we show that we can construct U and M satisfying 

(a) - (d). 
In order to ensure (b), it is convenient to consider the following game G 

and to use the fact that A is A-Suslin to show that II has a winning strategy. 
Alternatively, one could use the argument given in the proof below directly 
in the construction. 

G: I 
II 

In a run of G, players I and II take turns playing nonempty f-sets as 
indicated above such that X ;2 Bi ;2 B~ ;2 B i +1. Player II wins the run iff 
nj Bj ~ A. 

We will now describe II's winning strategy 7. Let T be a tree on 2 x A 
such that p[T] = A and for all nEw, s E 2n and t E An p[Ts,tJ E f. 

Assume that I plays Bl ~ X ~ A. Let Xl E Bl and tl E Al such that 
Xl E P[TX1II.tJJ n Bl = B~. Let II play B~ and I answer with B2. Let X2 E B2 
and t2 E A2 such that t2 ;2 tl and X2 E P[TX212h] n B2 = B~. Continue in the 
same fashion. 

Let X = U Xiii = limi Xi. Since Xi E B j for j > i, we have X E Bj for 
all j. By construction the diameter of B~ is ~ 2-i . Thus ni Bi = {x}. But 
(xli, t i ) E T for all i; thus X E A. Thus 7 is winning. 

To ensure (b) we will also find collections V = {Vs : s E 2W} and V' = 
{V; : s E 2W} such that 
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(bl) For all a E 2w
, 

I Vola Vall 
II V~IO V~II 

is a run of G where II followed T. 

(b2) Vp E wVs E 2PVi E 2(Us ~ V'>i ~ V:~i ~ Us~J 

Definition 19 A labeled tree is a pair (T, IT), where T is a directed tree 
and IT : E(T) -> w is a labeling of the edges of T. If (T, IT) is a labeled tree, 
we say that vertices s, t E V(T) are n-linked if there is an edge with label n 
between them, and we denote this by s..ILt. If all edges in the path between s 
and t have labels ~ n, we say that sand tare n-connected and write s-n_t. 

We have 

Lemma 20 Let S be a finite nonempty set and ""OS""1 S ... S""k equiva­
lence relations on S such that rvo is equality and"" k is S x S. Then there is 
a finite tree T with vertex set S such that for all s, t E Sand 0 < i ~ k 

Proof: We proceed by induction on k. For k = 1 take T to be any tree on S 
and set all labels of T to 1. Assume that the lemma is known for k and that 
""O~rvl~ '" ~"'k+l satisfy the assumptions of the lemma. Let Co, ... ,C1 

be the ""k-equivalence classes of S. We can apply the assumption to each of 
the Gj and the equivalence relations ""OS""l S ... S""k restricted to Gj to 
obtain a tree Tj for which the lemma holds. Now pick a vertex Cj E VCj for 
each j E 0, ... ,I, let T' be a tree on {Cj : 0 ~ j ~ I} and label all edges of 
T' with k + l. 

Let T be the following labeled tree on S: If s, t E Gj , then let s, t be 
n-linked in T iff s, tare n-linked in Tj . If s E Gi , t E Gj and i -=I j, then let 
s, t be n-linked iff n = k + 1 and s = Ci and t = Cj. It is easy to check that 
T works. 0 

Since {""j 12P : j ~ L(p)} satisfies the prerequisites of the previous lemma, 
we fix for each p a labeled tree Tp on 2P guaranteed by the lemma. 

Using the fact that M : w -> w will be strictly increasing and that the Fn 
are increasing equivalence relations, we can rewrite (c) as 
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We will construct M, U, V, and V in stages. At the end of stage p we 
will have constructed M/(L(p) + 1), U/2~P, V/2~P, and V/2~p. But conditions 
(a),(b1),(b2),(c'),(d) are not strong enough to ensure the induction step. 
Thus we impose in addition conditions 

(el) VB E f(0 =1= B ~ U0 => (B2 n EM(o») SS Eo), 

(e2) Vp E wVj ::; L(p+ l)VB E f(0 =1= B ~ UsE2P Us => (B2 n FM(j») SS Fj ). 

We now consider the following 3 cases separately: 

(A) The construction of V0, V0, U0, and M(O). 

(B) The construction of VI2p+l , V12p+l, U12p+l, and M(L(p + 1)), given 
V/2<p+l, VI2<P+l, UI2<p+l, and MI(L(p)+l), in the case that L(p+1) > 
L(p). 

(C) The construction of V/2P+I, V/2p+l, and U/2P+1, given V/2<p+l, V/2<p+l, 
UI2<p+l, and M/(L(p) + 1), in the case that L(p + 1) = L(p). 

Case (A): 

Lemma 21 Let BE fiX, Xl, ... ,X/c E B. Let nEw. Then there is m > n 
and a nonempty B' E fiB such that 

andXI, ... ,x/cEB'. 

Proof: Since X = nn Um>n Xm,n, B ~ Um>n Xm,n. Since the Xm,n are 
increasing in m, find m such that Xl, ... ,X/c E Xm,n. Let B' = B n Xm,n. 
Then B' is as desired. 0 

Apply the lemma to X and n = a and some X E X. Thus there is M(O) 
and V0 E f, 0 =1= V0 ~ X such that (e 1) holds for V0 is place of U0. Let V0 be 
the reply of II to V0 according to T. Let U0 ~ ~ be a nonempty f-set with 
diameter::; 1. This completes stage o. 
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Case (B): Let B = UsE2P Us and pick by lemma 10 for each s E 2P Xs E Us 
such that 

By lemma 21 we can find B' E r, B' ~ B, which contains all the Xs and 
m = M(£(p + 1)) > M(£(p)) such that 

VG E tlB' [G =I 0 ::::} G2 n Fm ~ FL(p+1)j. 

Then use lemma 10 to find a refinement (T,U'12P,Fp ) of (T,UI2P,Fp ) such 
that USE2P U~ ~ B'. By lemma 10 we may assume that (a) is satisfied. (c) 
and (d) are satisfied by construction. We have 

Lemma 22 There are collections U i = {U; : s E 2P } for i = 0, 1 of r-sets 
such that 

(1) "Is, t E 2PVi, i' E 2 (U;EmUt), 

(2) (T,U i
, Fp) are tree structures refining (T,U'12P , Fp), 

(3) "Is, t E 2P(U~ x Un n FL(p+l) = 0. 

We first show 

Lemma 23 Assume that 0 i= B E f, n < mEw such that 

Assume that 0 =I G, D ~ A, G, D E t such that GFmD. Then there are 
nonempty G',D' E t with G' ~ G, D' ~ D, C'FmD', and (6' x [Y)nFn = 0. 

Proof: First note that 

To see this, let c, c' E G with cFmc'. Since G FmD, let d E D with cFmd. By 
transitivity c' Fmd, and then by assumption, cFnd and c' Fnd. Thus cFnc'. 
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Thus we have (C x D) n Fm ~ Fn. Let c E C and d E D with cFmd and 
-,( cFnd). Then there must be k E [n, m) and 1 E w such that c< k, 1 > :i= 
d<k I>· Let , 

6 = Cn {x: x<k,l> = c<k,l>}' 

jj = D n {x: x<k,l> = d<k,l>}' 

Clearly,6 x D n Fn = 0 and (c, d) E (6 x D) n Fm. Then C' = C n [D]Fm 
and D' = D n [C]Fm are as desired. 0 

Proof: (of lemma 22) Let {(Sj, tj) : j = 1, ... ,jo} be an enumeration of 
2P x 2P• We will find collections ui,j = {V;,j : S E 2P } of r-sets such that 

(i) (Tp,Ui,j,Fp) is a good tree structure, 

(ii) V = Vo,o = V 1,0 for all s E 2P 
S s s , 

(iii) (Tp,Ui,j+l, Fp) refines (Tp, Ui,j, Fp), 

(iv) for j > 0 ([J~/ X [Jt~,j) n FL(p+l) = 0, 

(v) for j > 0 (V~,j FmVt1,j). 
) ) 

Assume that this can be done. Let Vi = vi,jo. If i = if, then (1) holds since 
(Tp, {V; : s E 2P},f,p) is a tree structure. We also have V~ FmVl by (v). 

p p 

Since m > M(L(p», transitiv:ity yields (1); (2) holds by (i); (3) holds by (iv) 
since V~ x Vl = V~?jo x V/,JO C V~,j X vl.,J, which is disjoint from FL(p+1)' 

) ) ) ) -) ) 

Thus we are left with constructing the vi,j. 
Vi,o is given by (ii). Assume that vi,j are given. Note that the above 

argument shows that 
. . " . 

Vs t E 2PVi if E 2 (VI,J F, VI,J) , , 8 m t . 

In particular VO:j F, V 1,j . By lemma 23 find C C VO,j and D ~ Vt
1).,+jl 

, 8)+1 m t1+1 - 8 1 +1 

such that 
CFmD /\ (6 x iJ) n FL(p+!) = 0. 

Then use lemma 10 to find U i,j+l such that (Tp,Ui,j+l,Fp) is a tree structure 
refining (1'. ui,j :F) with C = UO,j+l and D = V 1,j+1. 0 

P' 'P Sj+l t1+1 

Now apply lemma 22 to {Vf : s E 2P} to obtain {V~ : S E 2P} and {V; : 
S E 2P } as guaranteed. Put Us = U;I;) for s E 2p+l. Then (Tp+l,UI2p+l,Fp+d 
is a tree structure to which the following lemma applies: 
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Lemma 24 Let M : L(p + 1) -+ w be increasing. Assume that U = {Us: 
s E 2P+1

}, V = rv. : s E 2:SP }, and V' = {V; : s E 2:SP } are collections of 
nonempty t -sets such that 

(i) (Tp+l,UI2p+1
, Fp+l) is a tree structure. 

(ii) For all s E 2P , 

I "Vslo "Vs12 
II V;lo V;12 

is a partial run of G where II followed r, 

(iii) Vs E 2P+1(U C V' ) S _ sip' 

V' 
8 

Then there are collections U' = {U; : s E 2P+l}, V = {'V, : s E 2p+l} , and 
V' = {V: : s E 2P+1} of nonempty t -sets such that 

(i) (Tp+l,U'12p+l,Fp+l) is a tree structure refining (Tp+1,UI2p+l,Fp+l)' 

(ii) For all s E 2P+1 , 

I Vslo "Vs12 
II V;lo V:12 V' 

8 

is a partial run of G where II followed T. 

(iii) Vs E 2p+l(U; ~ V: ~ 'V, ~ Us). 

Proof: Let {Sj : 0 ~ j ~ 2p+l} enumerate 2p+l. We will construct families 
uj = {Ui : s E 2P+1} for 0 ~ j ~ 2P+1 such that 

(2) 

I 'V,jlO 'V,jlp-l Uij 

I I V:jIO 

is a partial run of G where II followed r, 

(3) U~ = U8 for all s E 2P+1. 
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2P+1 . If this can be done, then we can set U~ = Us , Vs)O = U;., and V; = 
) J 

U1+1. Thus we are left with the construction of the uj, which we produce 
) 

by induction on j. Assume that U j is given. Let U1+ 1 be the move of II 
) 

according to T in the situation 

u1-
) 

Then find U1+ 1 for s =J Sj by lemma 10. 0 
Apply lemma 22 to m = M(L(p + 1)) and U'12p+l to obtain UI2 p+1, 

{Vs: s E 2P+1
}, and {V;: s E 2P+1

} such that (bl) and (b2) are satisfied and 
(a),(c),(d), and (e2) remain satisfied. Thus we are done with case (B). 

Case (C): The construction is similar to case (B). 

Lemma 25 Let (Tp,UI2P,Fp+d be a tree structure, n < L(p). Assume that 

\:I B E f(0 =J B ~ U Us ~ (B2 n FM(n+l») ~ Fn+l)' 
sE2P 

Then there are two collectionsUo = {U~: s E 2P} andUI = {U; : s E 2P} of 
f -sets such that 

(1) (Tp,Ui,Fp+d is a tree structure refining (Tp,UI2P,Fp+l) for i = 0, 1, 

(2) \:Is E 2P (U~ FM(n+1)U;), 

(3) \:Is, t E 2P (s-n_t ~ (D~ X Dl) n Fn+l = 0. 

Proof: We prove the statement of the lemma for subtrees T of Tp by 
induction on the number of _n--equivalence classes of V(T). The case V(T) 
having one _n--equivalence class has been shown in lemma 22. Assume T is 
a subtree such that V(T) has k + 1 _n--equivalence classes Co, ... , Ck. Let 
T' be a labeled tree on {C : i ::; k} given by C-k-Cj iff there are vertices 
Ci E Ci and Cj E Cj with Ci-k-Cj in T. Assume without loss of generality that 
Ck is an end node of T' and that Ck- l is m-linked to Ck. Let e be the unique 
edge in T between Ck - 1 and Ck . We may assume without loss of generality 
that eo E Ck - 1 and el E Ck . We have m = M(lTp(e») > n. Let Til be the 
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subtree of T with vertexset Co U '" U Ck - 1 and Till the subtree of T with 
vertexset Ck • Since T" has k _n--equivalence classes, we can apply the lemma 
to (T", UIV(T"), Fp+dE(T")}) to obtain [JiIV(T") satisfying (1),(2),(3) for 

" -0 -1 -0 -0 -0 T . Let UEI = U
EI 

= 7l'd(Ueo x Uel ) n FM(m)]' Then we have UeoFM(m)Uel 
and U;oFM(m)U;1 by transitivity and (2). Now apply lemma 22 to obtain tree 
structures (T''',UiICk, Fp+IIE(TIII)) with [;~ = [r,; for SECk. Then apply 
lemma 22 to uO I C k to obtain {U; : s E Cd satisfying (1) - (3) for Till and 
refining [r°ICk • Put 

and 
1 - 1 1 Ueo = 7l'0[(Ueo X UeJ n Fm] 

and then find UiIV(T") such that (T", UiIV(T"), Fp+dE(T")) is a refinement 
of (T",UiIV(T"),Fp+IIE(T")) by lemma 10. This completes the induction 
step and the proof of the lemma. 0 Now we proceed as in case (B). 

1.6 A Perfect Set Theorem for n-ary Rela­
tions 

In Harrington-Sami [79] it was shown under the axiom of determinacy ADn. 
that every equivalence relation on a Polish space either has a perfect set of 
pairwise inequivalent elements or its equivalence classes are wellorderable. 
We generalize this theorem to n-ary relations. 

Theorem 26 (ZF+DC+ADn ) Let A < e. Let A be a A-Buslin subset of N 
and R ~ R' be cO-A-Buslin relations on Nn such that 

and R is closed under permutation of arguments. Then either there is a 
sequence {A~ : ~ < A} of A -Buslin subsets of A with A~ ~ R' or there is a 
perfect set P ~ A such that [p]n n R = 0. 

Here are some applications (which extend corresponding results of H. 
Friedman and K. Kunen - A. Miller for the Borel and analytic case respec­
tively): 
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Corollary 27 Let d : X x X - 1(.t be a distance function on a Polish space 
X. Then either the metric space induced by d is separable or there is some 
E > 0 and a perfect set A ~ X of points such that Vx, x' E A (x =j: x' ~ 
d(x, x') > E). 

Proof: Take the relations Rn on X the collection of pairs which have d­
distance at least 2-n • Then apply the perfect set theorem to each pair Rn 
and Rn +1• 0 

Corollary 28 Let R ~ 1(.2 X 1(.2 X 1(.2 be the relation of co linearity, i.e., say 
R( x, y, z) iff x, y, z are contained in a single line. Then any subset of the 
plane is either contained in countably many lines or contains a perfect set of 
points no 3 of which are colinear. 

Proof: Apply the perfect set theorem. 0 

1.6.1 Proof of the Perfect Set Theorem 

For simplicity of notation we assume that n = 3 and A = N. There are no 
additional difficulties encountered in the general case. 

Let T and T' be trees on A x w3 such that N 3 
- R = p[T] and N 3 

- R' = 
p[T']. Let r be an auxiliary class for N 3 

- Rand N 3 
- R'. We denote by ~ 

its ambiguous class of r and set 

X 

Y 

{x EN: 3A E ~(x E A t\ A3 ~ R')}, 
N-X. 

(1.1 ) 

(1.2) 

Note that X E rand Y E I'. If Y = 0, then we are done. Thus assume 
that Y i= 0. 

In order to ensure that every triple of our perfect set is not R-related, we 
play the following game G: 

I ~,4,~ ~,~,~ 
II A?,At,Ai ... , 

where I and II play sets in t satisfying 0 1= A; C Y, A;+l ~ A; and 
diam(A~j+l) < 1J(j + 1). The first player who violates these rules loses. 
If both players play within the rules, then 
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Since we want to use determinacy to conclude that II has a winning 
strategy, we should play a coded version of G: We should fix a surjection 
¢ : R -+ A, and the players should play reals which via ¢ and the t-universal 
set code t -sets. For simplicity of notation we continue to use G and assume 
that it is determined. It is easy to modify the argument below to work with 
the coded version of the game. Thus by the following lemma, II has a winning 
strategy T. 

Lemma 29 I does not have a winning strategy in G. 

We first show: 

Lemma 30 (Splitting Lemma) If A E t, 0 =I A ~ Y, then A3 n -,R' =I 0. 

Proof: Let A = {A E r : (-,A)3 ~ R'} and note that 

A(A) {:} Vx[(Vi E 3(Xi ¢ A)) =} R'(x)] 

is f on f. Now if A E t, A ~ Y, A3 ~ R', then A(--,A); thus by f-refiection 
there is a -,B ~ -,A, -,B E ~, A( ,B). But then B 2 A, B E ~, B3 ~ R'. 
Thus B ~ X; thus B n Y = 0, thus A = 0. 0 

Proof: (of lemma 29) Assume otherwise and let a be a winning strategy 
for 1. We will play 3 runs of G. Call the players in the ith run Ii and IIi. Ii 
will follow a. Call the reals produced in the ith run ((i,f3i ,"/). The games 
will be played in such a manner that a i = ai', f3i = pi', and -,R(')'l, /2, /3). 
Since Ii followed (J, we have Vi R( ai, f3i, Ii), and we get a contradiction to 
the premises of the theorem. 

We will play the games in stages. In stage 0 we will play the Oth moves 
of the games, in stage k the 2k - 1st and the 2kth moves of the games. We 
will also at stage k find nonempty Sk and Si (i < 3) in tlN3 and sequences 
Sk, tk, Uk E wk and Vk E ).k, such that Sk ~ P[T~k tk uk,vJ ~ (N3 

- R'). 
We will denote the kth move in the ith gam~ by Ai, Bi, Ck. The reader 

may want to refer to the diagram of the run of the game, which is given after 
the description of the moves: 
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Stage 0: Players 10
, 11 ,12 make their first moves Ah, Bb, C~. They are 

identical. Let So = to = Uo = Vo = 0, 

So = (N3 
- R') n II C~. 

i 

Note that So =J 0 by the Splitting Lemma, since C~ = C~'. 
Stage k: Find Sk ~ Sk-I, tk ~ tk-l, Uk ~ Uk-I, and Vk 2 Vk-I such that 

Let Agk _ 1 , Bgk - 1 be obtained as a subset of A~k_2' Bik-2 by some standard 
procedure such that the diameter of Agk - 1 and Bgk - 1 is at most 1/2 the diam­
eter of A~k-2 and Bik-2. Let Cgk- 1 = 11"O[T~k.tA"Uk,vJ Find the Agk, Bgk, cgk 
Via CT. 

Let 

Sf 
A~k-l 
B~k-l 
C4k-1 

Then find A~k' Bik' Cik via CT. 

Let 

s2 n (cgk x N 2), 

Agb 

Bgk , 

11"dSf]· 

Sf n (N x C4k x N), 

A~k' 
Bib 

11"2 [S2J· 

Then find A~k' Bik' Cik via CT. Finally, let Sk = Sf n (N2 x Cik). This 
completes stage k. 

Note that the construction is such that 
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and 
Bik-2 ;2 B~k-l ;2 B~k ;2 B~k_l ;2 Bik ;2 Bik-l ;2 Bik' 

Thus 0:0 = 0:1 = 0:2 and Jfl = ;31 = ;32. 

Also, the construction of the 5k guaranties that -,R'( ",/,,1, ,2), since 
,0 = Uk Sk, ,I = Uk tk, ,2 = Uk Uk and the Vk witness that (,0,,1, ,2) E 
p[T'] = -'R. Thus -,R( o:i, ;3i, ,i) for some i = 0, 1,2. Thus u was not 
wmmng. 

r---

- - - II}, - ~ -5t = 5r n (C~ x .A(2) 

52 = 5i n (.Af2 x Cl) 

Here a solid arrow indicates that the set at the head of the arrow has 
been copied and equals the set at the tail of the arrow. A solid arrow with 
1/2 inserted in the middle indicates that the set at the head is a nonempty 
subset of the set at the tail with at most half the diameter. A broken arrow 
indicates that the set at the head is a projection of the set at the tail. We 
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show which projection was used. 0 

Let H k be the collection of all lexicographically strictly increasing 3-
sequences of 2k. Let hk : Hk ---+ lk be a bijection, where lk is the cardinality 
of H k . Let h = Uk h k . Let l : 2<w ---+ w, s ~ lk, where k is the length of s. 

We will find collections {A~ : s E (2<w - 2<2), i < l( s)} and {B! : s E 

(2<w - 2<2), i < 1(8)} of [-sets contained in Y such that 

1. B~ ~ A~ ~ B{ ~ A{ for 8 2 t. 

2. B~ ~ A~ ~ Bt ~ A~ for i > j. 

3. If ,0,,1,,2 is a lexicographically strictly increasing sequence in 2W and 
ko is the least integer k such that ,olk, ,dk, ,21k are pairwise dis­
tinct then {(Ah(il k) Ah(ilk) Ah(ilk)) : k > k } are the moves of I and 

, 'Yolk , 'Y11k , 'Y21k - ° 
{( Bh(ilk) Bh(ilk) Bh(il k)) : k > k } are the moves of II in a run of G 

'Yolk , "YIik , 'Y21k - ° 
where II followed T. 

4. \lk > 2 \18, t E 2k (8 :I t ~ A~ n A~ = 0). 

Assuming that this can be done, we find an injective continuous map 
f : 2w 

-+ N given by , ~ nk A~lk' which satisfies 

by 3. Thus we have the desired perfect set, once we have constructed the A~ 
and the B!. 

The inductive construction of the collection {A~ : 8 E 2<w, I < 
l( 8)} : and {B! : 8 E 2<w, I < l( 8)} : Let A~ for 8 E 22 be disjoint, nonempty 
subsets of Y. 

Assume that AO has been defined for s E 2n with n > 2. We will construct s -

A~, B! for 8 E 2n and A~ for 8 E 2n+l. The A~, B! are defined by induction on 
i. Let h;;l(i) = (80,81,82). Let I be the least integer such that 8011,8111,8211 
are pairwise incompatible. Consider A~o' A!l ' A~2 as the next move of I in 
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the run 

I II 
Ah(sll) Ah(sll) Ah(sll) 

So II 'stll 8211 

and let Bo, Bll B2 be the next move of II in this run according to T. Then 
define 

Bi - { A~ if 8 =1= 80, 8}, 82 
8 B· if 8 = 8i , 

Ai+! - B!. 8 

Assume finally that all the A~, B! for s E 2n and i < In have been found. For 
each s E 2n and let AO A and AO A be nonempty t subsets of B!n-I. 

8 ° 8 I 

The first few levels of the construction: 

AO 
i • 

I BO= Al 

1 BI = A2 
j 

B2 = A3 

B3 

/\ AO 

1 I BO= Al 
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The solid dots indicate that the sets have been obtained from the previous 
ones by shrinkage; the others have just been copied. This completes the 
construction of the A~ and the B~ and thus the proof of the theorem . 
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Chapter 2 

Measures for Countable Borel 
Equivalence Relations 

2.1 Ergodic Measures for Countable Borel 
Equivalence Relations 

We will discuss here countable Borel equivalence relations E on a standard 
Borel space X, i.e., relations with countable equivalence classes which are 
Borel subsets of the product space X x X. 

Consider a countable group G and a Borel action of G on X, i.e., a 
homomorphism from G into the group Aut(X) of Borel automorphisms (Le., 
Borel bijections) of X. Then the orbit equivalence relation E = EG on X is 
Borel. Feldman and Moore showed that every countable Borel equivalence 
relation is of this form: 

Theorem 1 (Feldman-Moore [77]) Let E be a countable Borel equivalence 
relation on a standard Borel space X. Then there is a countable Borel group 
action such that E is the orbit equivalence relation of that action. 

Thus assume that E is the orbit equivalence relation of a Borel group 
action of a group G. Let M = M(X) denote the space of probability 
measures on X. Let B denote the Borel a-algebra of X. M becomes a 
standard Borel space with the smallest a-algebra A which makes all the 
functionals p H p(B) for B E B measurable. A measure p E M is called 
non-atomic if p( {x}) = 0 for all x EX, E-invariant if gp = p for every 
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g E G, and E-quasi-invariant if gf-l '" f-l for every g E G. (It can be easily 
shown that these notions are independent of G; see e.g., Dougherty-Jackson­
Kechris [aJ.) A measure f-l is called E-ergodic if f-l(A) = 0 or 1, for every 
Borel E-invariant (i.e., A is the union of E-equivalence classes) set A ~ X. 
As usual, we omit mentioning E when it is clear from the context. It can 
be shown (see e.g. Dougherty-Jackson-Kechris (a]) that the sets I and £Iof 
E-invariant and E-ergodic E-invariant measures, respectively, are Borel in 
M(X), and so is Q, the set of E-quasi-invariant measures. 

We show: 

Theorem 2 Let E be a countable Borel equivalence relation on a standard 
Borel space X. Then the set £ of ergodic probability measures is Borel in 
the space of probability measures M on X. In particular, the set of quasi­
invariant ergodic probability measures £ Q = £ n Q is Borel. 

This improves on a result by Krieger [71, p.lS7], who computed that the 
set of quasi-invariant, ergodic probability measures is Ill. 

In fact we can use a result of A. Kechris to extend this result to orbit 
equivalence relations of locally compact group actions: 

Corollary 3 Let G be a locally compact Polish Group acting in a Borel way 
on a Polish space X. Let E be the orbit equivalence relation of G on X. Then 
the set of ergodic probability measures £ is Borel in the space of probability 
measures M on X. 

Proof" By Kechris [aJ there is a Borel subspace Y of X with Y n [XJE 
countable for each x E X and a Borel reduction f : X -+ Y reducing E 
to ElY. Now the mapping f-l -+ ff-l is Borel and reduces the set of ergodic 
measures of E to the set of ergodic measures of ElY. 0 

Let us first notice that we can reduce the set £ of ergodic probability 
measures to the set of quasi-invariant, ergodic measures. Consider the map­
ping which maps f-l to f-l* = E~o 2-(i+l)gif-l, where G = {gi : i E w} is some 
enumeration of G. This map is clearly Borel and maps into Q. Furthermore, 
since p, is translated only by elements of G, p,(A) = 0 iff f-l*(A) = 0 for any 
G-invariant A. Thus f-l is E-ergodic iff f-l* is E-ergodic. Thus for any E, £ is 
Borel-reducible to £Q, so it suffices to show that £Q is Borel. For our proof 
we will use an ergodic-decomposition-theorem patterned after the following 
well-known result of Varadarajan, which holds in even greater generality: 
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Theorem 4 (Varadarajan [63], p.208) Let E be a countable, Borel equiv­
alence relation on a standard Borel space X. Let eX be the set of E -invariant 
E -ergodic measures on X. If there is an E -invariant measure on X, then 
eX is nonempty Borel, and there is a function /3 : X -t EX, /3 : x f--+ /3x such 
that 

(i) /3 is a Borel measurable map from X onto £'I, 

(ii) /3 is E-invariant; i.e., /3x = /3y for all x, y E X with xEy, 

(iii) If Xe = {x EX: /3x = e} for e in £'I, then e(Xe) = 1 for all e, 

(iv) For any E-invariant measure J-l, 

for any Borel A. 

Furthermore, if /3' is another map with the above properties, then /3 = /3' 
J-l-a.e. for all E-invariant measures J-l. 

Kifer-Pirogov proved a similar result for quasi-invariant measures which 
share a common Radon-Nikodym derivative of Borel Z-actions, using results 
from Dynkin [71]: 

Theorem 5 (Kifer-Pirogov [72], p.80) Let E be a countable Borel equiv­
alence relation on a standard Borel space X induced by a Z -action r. Assume 
that p : Z x X -t R+ (here R+ denotes the set of strictly positive reals) is 
Borel such that 

Pt+s = Pt(x)ps(rt x ). 

Let QP be the set of quasi-invariant measures J-l on X such that dr- t J-l/ dJ-l = Pt 
J-l-a. e.. If QP is nonempty, then the set £ QP of ergodic measures in QP is 
nonempty Borel, and there is a function /3 : X -t £ QP, /3 : x f--+ /3x such that 

(i) /3 is a Borel measurable map from X onto £ QP , 

(ii) /3 is E-invariant; i.e., /3x = /3y for all x, y E X with xEy, 

(iii) If Xe = {x EX: /3x = e} for e in £QP, then e(Xe) = 1 for all e, 
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(iv) For any measure f-l E QP, 

for any Borel A. 

Furthermore, if /3' is another map with the above properties, then /3 = /3' 
f-l-a. e. for all measures f-l E QP. 

We will combine the methods of Varadarajan and Kifer-Pirogov with 
descriptive set theory to obtain the following more general version of the 
ergodic decomposition: 

Theorem 6 Let E be a countable, Borel equivalence relation on a standard 
Borel space X induced by a countable group G of Borel automorphisms. Let 
p: G x X -> R+ be Borel such that for all x E X and all g and hE G, 

p(gh,x) = p(h,x)p(g,hx). 

Let QP be the Borel set of all quasi-invariant measures f-l on X such that for 
all 9 E G, 

dg-1f-l/df-l = pg. 

If QP is nonempty, then there is a map j3 : X -> QP, X t-t j3x such that 

(i) j3 is a Borel measurable map from X onto £QP, 

(ii) j3 is E-invariant; i.e., /3x = /3y for all x, y E X with xEy, 

(iii) If Xe = {x EX: /3x = e} for' e in £QP, then e(Xe) = 1 for all e, 

(iv) For any measure f-l E QP, 

for any Borel A. 

Furthermore, if /3' is another map with the above properties, then /3 = /3' 
f-l-a. e. for all measures f-l E QP. 
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In particular, we have: 

Corollary 7 If QP is not empty, then it contains some ergodic measures. 

Corollary 8 For each p satisfying the above product rule, the set of quasi­
invariant, ergodic measures with p as a Radon-Nikodym derivative is Borel. 

Let us mention that, for specific examples, a more careful analysis of the 
proof yields concrete upper bounds for the Borel complexity of the space of 
ergodic measures. For the shift of Z on 2Z one finds that E is ng, and for 
the shift of F2 on 2F2 one finds that E is rr~+l. Recently A. Kechris showed 
that in the first case E is indeed rrg-complete. For the action of F2 it is not 
known whether E is n~+l-complete. 

The proof that E is Borel runs via a reduction to QE. We would like to 
know: 

Question 9 Is there a direct proof showing that E is Borel? 

Since any two uncountable, standard Borel spaces X and Yare Borel­
isomorphic via a Borel measurable bijection f, we may and do assume in 
the rest of the paper that we are dealing with perfect Polish spaces. Such 
an f also induces a Borel isomorphism between M(X) and M(Y). We 
will at times even assume that we are in a particular Polish space, when 
this seems desirable. An important Polish space is the Baire space N of 
all functions from w to w, with the product topology, taking w to have the 
discrete topology. 

2.1.1 Uniformities 

In order to state precisely what we mean by a theorem to hold uniformly, 
we need codings: A coding of a set A is a pair (G, 1r), where G is a subset 
of a Polish space, and 1r : G - A is a surjection onto A. Let A, B be sets 
with codings (G,1r) and (G',1r'), respectively, where G ~ Y and G' ~ Y', 
X, X' are Polish spaces. We say that f : X x A - X' and g : X x A - B 
are Borel in the codes if there are Borel functions j : X X Y - X' and 
9 : X X Y - Y' such that 

Vx E XVy E G (J(x, 1r(Y)) = j(x, y)) 
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and 
Vx E XVy E C (g(x,7f(Y)) = 7f'g(x, y)). 

In a Polish space X a set is :E~ if it is the image of a closed subset of some 
Polish space under a continuous function. It is II} if it is the complement 
of a :Ei set. It is well known that a subset of a Polish space is Borel iff it is 
:Et and II~. This gives rise to a standard way of coding Borel subsets in a 
Polish space X: We can find II~ sets C ~ Nand D, b ~ N X X such that 

1. for all Q E C, Do: = X - Do:, and 

2. for every Borel set A ~ X, there is an Q E C such that A = Do:. 

This yields a coding C -t B, Q ~ Do:. C is called the set of Borel codes 
for X. We may choose (C, D, b) in such a manner that: 

1. A,B ~ An B, A,B ~ AU B, A ~ X - A, A ~ w X X ~ UiAi, 
A ~ w x X ~ ni Ai are Borel in the codes, by Moschovakis [80, Section 
7.B]. 

2. For each Borel A C Y xX, where Y is Polish, the function y ~ Ay is 
Borel in the codes, by Moschovakis [80, Section 7.B]. 

3. Let B denote the collection of Borel subsets of X. It is well known that 
M x B -t n+ given by (/-l, A) ~ /-leA) is Borel in the codes. 

4. If we code Fb(X, n), the set of bounded, real-valued Borel functions 
on X by C' = {Q E C : Do: is the graph of a bounded real valued Borel 
function on X}, then it is well known that M X Fb(X, n) -t n given 
by (/-l, f) ~ /-l(f) is Borel in the codes. 

5. The collections of Borel in the codes functions are closed under com­
position. 

2.1.2- Proof of Theorem 2 

Fix now a countable group G acting in a Borel wayan a perfect space X, 
inducing an equivalence relation E. Call a Borel function p : 9 X X -t n+ a 
strict co cycle if for all x E X and all g, h E G 

p(gh,x) = p(h,x)p(g,hx). 

48 



We code strict co cycles by the Borel codes of their graphs and denote the 
collection of strict cocycles by C. If p is a strict cocycle, let QP be the collec­
tion of all quasi-invariant measures I-" such that for all g E G dg-11-"/ dl-" = pg 
It-a.e. Let EQP denote the collection of ergodic measures in QP. We will 
actually show the following stronger effective version of theorem 5: 

Theorem 10 (Effective Ergodic-Decomposition Theorem) There is a 
Borel in the codes function D : Q x C x X -+ Q such that for any I-" E Q and 
any p E C with I-" E QP, we have for DI-',p : x ....... I-"X: 

1. Vx E XVg E G (I-"x = I-"gx E QP), 

2. Vv E QP [(v(Xv) = 1 ¢:} v E E), where Xv = {x EX: I-"x = v}], 

3. Vv E QP (v({x EX: I-"x E E}) = 1), 

4. Vv E QPV A E B 

v(A) = J I-"X(A)dv(x). 

From this we will deduce theorem 2, using the following lemma: 

Lemma 11 There is a Borel in the codes function Q -+ C, I-" ....... pI-', such 
that VI-" E Q (I-" E QPI'). 

Proof: (of lemma 11) Assume without loss of generality that X = [O,lJ. 
Let us first show how to find a strict co cycle for non-atomic measures: Let A 
denote the collection of atomic measures, N A be the collection of non-atomic 
measures. Let f : (N A x X) -+ [0, lJ be given by fiJ : x ....... 1-"([0, x)). Then 

1. f is Borel, 

2. fl-' is continuous, 

3. fl-' is increasing, 

4. fiJI-" = m, the Lebesgue measure, 
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Consider now the function D : M([O, 1]) x [0,1] --t n+ given by 

if it exists, 
otherwise, 

where Br(x) = (x - r, x + r), and m is the Lebesgue measure on [0.1]. The 

function (v,x,n) 1-+ :~~~//nn~~l) is clearly Borel, and so D is Borel. 

Using the results of the previous section, we see now that p: (M x G x 
[0,1]) --t n+ given by 

p{l(g,x) = D(f{l(g-lJ-l))(x), 

is Borel. By Rudin [87, Chapter 7] D(v, x) is the symmetric derivative of vat 
x, which is equal, for v absolutely continuous with respect to m, to dv/dm m­
a.e. Thus if we let p: M x G x X --t R+ be given by p{l(g,x) = p{l(g,j{l(x)), 
and A ~ M x X be given by A{I = {x EX: 3g E G3h E G ({f'(gh,x) =I 
(f'(h,x){f'(g, hx))}, then p and A are Borel, A{I is J-l-null and fI; = dg-1/l/d/l 
/l-a.e. Thus if we set 

,.JJ.( x) _ {{f'(g,x) if x ¢ [A{I]E 
p g, - 1 if x E [A{lJE ' 

then /ll-+ p{l is as desired for non-atomic measures /l. 
In order to deal with general measures, we will decompose them effectively 

into atomic and non-atomic parts. In fact, there is a Borel function Q --t 

(Q n A) x (Q n N A), J-l 1-+ (J-l',J-l") such that J-l = (1 - )")J-l' + )..J-l, where 
).. = ExEx J-l({x}). In order to see this, note that /ll-+ A{I' where A{I = {x E 
X : J-l( {x}) > O}, is Borel in the codes. Let J-l" be the unique atomic measure 
with /l"({x}) = )..-1/l({X}) for x E Amu. Let /l' = (1- )..)-1(/l- )../l"). 

There is easily a Borel in the codes function Q n A --t C, J-l 1-+ rf', such 
that J-l E QPP. We then can set for any f-l E Q 

~( )_{rf"(g,X) if/l({x}) =0, 
g,x- ppll(g,X) if/l({x}) >0. 

Here f-l' and f-l" are the non-atomic and atomic parts of J-l as given by the 
above. This clearly works. 0 

Theorem 2 easily follows: 
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Proof: (of theorem 2) We assume theorem 10. Then we have 

which is Borel. 0 
It remains to prove theorem 10. 

2.1.3 Some Ergodic Theory 

We collect here three results from probability and ergodic theory. Let (X, B, J-l) 
be a measure space, i.e., X a set, B a a-algebra on X, and J-l a measure on 
B. Let A ~ B be a a-algebra and f E L1(J-l). A function j E L1(J-l) is called 
the conditional expectation of f with respect to A, denoted by J-lUIA), 
if j is A-measurable, and for any A E A fA j dJ-l = fA f dJ-l. The conditional 
expectation is determined uniquely J-l-a.e .. An operator T : L1 (J-l) -+ L1 (J-l) is 
a conditional-expectation operator if TU) = J-lUIA) for all f and some 
fixed A. We have the following results about limits of conditional-expectation 
operators: 

Theorem 12 (Billingsley [86, p.493]) Let (X, B, J-l) be a measure space 
and f E L1 (J-l). Assume that {An : nEw} is a decreasing sequence of 
a-algebras such that nn An = A. Then J-lUIAn) converges to J-lUIA) J-l-a.e. 

Theorem 13 (Burkholder-Chow [61, p.494]) Let (X, B, J-l) be a proba­
bility measure space and T and T' be conditional-expectation operators on 
L1(J-l) associated with the a-algebras A and A'. Let Sn be given by So = T, 
S2n+l = T'S2n and S2n+2 = TS2n+1• Then for any f E L2(J-l), limnSnf = 
J-lUIA n A') J-l-a.e. and in the L2(J-l)-norm. 

We can use the Hurewicz Ergodic Theorem and the Hopf Decomposi­
tion Theorem to compute the conditional expectation with respect to the 
a-algebra of invariant sets with respect to a single Borel automorphism. The 
following is well known, but we could not find a convenient reference. 

Theorem 14 Let T be a Borel transformation of a standard Borel space X 
with a quasi-invariant probability measure J-l, pn : X - R+ be Borel such 
that for n, m E Z 
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and 
dT-n 

pn = I-" I-"-a.e. 
dl-" 

Let [B]r denote the a-algebra of T-invariant Borel sets. Then for any f E 
£1(1-"), 

is I-"UI [B]T ). 

Proof: In order to prove this theorem, let X, T, 1-", P satisfy the assump­
tions and let E be the orbit equivalence relation of T on X. Call a Borel 
set A ~ X a partial transversal if it intersects each E-equivalence class 
in at most 1 point. Say that A ~ X is smooth (or dissipative) if it is the 
T-closure of a partial transversal. Hurewicz calls a set A ~ X conservative 
if it contains no partial transversals of positive measure. We now have by a 
standard exhaustion argument: 

Lemma 15 Let I-" be a probability measure on X which is quasi-invariant 
with respect to T. Then there is a unique I-"-a.e. decomposition of X into 
T -invariant Borel sets CT and DT such that T is conservative on CT and 
dissipative on DT . 

The Hopf Decomposition Theorem will allow us to compute CT and DT 

effectively: 

Theorem 16 (Hopf, see Petersen [83], p.125) Let T be a positive con­
traction of Ll (I-"), u E Ll (I-") be strictly positive and 

00 

C = {x EX: ETiu(x) = oo}. 
i=O 

Then 

1. C is independent of u; i.e., if u' satisfies the assumptions of the theo­
rem, and C' is defined by replacing u by u' in the definition of C, then 
C = C' I-"-a.e. 
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2. For all nonnegative u E £1(11), 

00 

Ltiu(x) < 00 l1-a.e. on X - C, 
i=O 

Write Ct for C and Dj for X - C. 

Since the Hopf Decomposition Theorem applies to positive contractions 
of £1(11), we associate with T the positive isometry f : £1(J-l) ---+ L1(J-l) given 
by 

TU)(x) = f(Tx) p1(X). 

We have the following fact about the relationship between the conserva­
tive and dissipative parts of T, f, and f-l. Equalities and inclusions below 
are J-l-a.e.: 

Lemma 17 

00 -00 

{x EX: Lpi(X) = oo} U {x EX: Lpi(x) = oo}, 
i=O i=O 

DT Dj n Dj-J 
00 

{x EX: :L pi (x) < oo}. 
i=oo 

Proof: (of lemma 17) Note that if S is a partial transversal, then 

00 

0< L tiXs < 00 

i=-oo 

on U~-oo Ti[S]. Thus DT n (Cj U Cj-J) = 0 and DT ~ Dj n Dj-l by the 
Hopf Decomposition Theorem. In order to see DT 2 Dj n Dj-l, assume 
that this is false and that A = (Dj n Dj-l) - DT has positive measure. By 
shrinking A we may assume without loss of generality that E~oo pi(x) < M 
on A for some M > O. But then we have 
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00 

L JL(T-i[A]). 
i=-oo 

Since the integral is finite, B, given by 

B = {x EX: x E T-i[Aj for infinitely many i E Z}, 

must have measure 0, and we may shrink A to ensure B = 0. For x E A, let 
ix be the greatest integer i such that Tix x E A, and put 

Since the Ti[S], i E Z, cover A, S has positive measure. S is clearly a subset 
of A. Assume that xES and Tix E S with i =f. O. Assume that i > 0; 
otherwise let z = Tix E S with T- i z = xES. By the definition of S there 
is yEA with Tiyy = X. But then Tiy+iy = Tix E S S;;; A, a contradiction 
to the maximality of iy • Thus S is a partial transversal of positive measure. 
But this contradicts A n DT = 0. 0 

For the conservative part of T, the Hurewicz Ergodic Theorem yields 
theorem 12: 

Theorem 18 (Hurewicz [44], p.195) LetT be a transformation of X with 
quasi-invariant measure JL and pn : X - R+ be Borel such that 

and 

Let f E U(JL). Then: 

1. 

exists and is finite JL-a. e. on CT , the conservative part of T. 
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2. j is T -invariant p-a. e. on GT 

3. J = p(fI[B]T) on GT ; i.e., for all Borel T-invariant subsets A of X 
with A ~ GT p-a.e., we have fA fdp = fA jdp. 

For the dissipative part of T, we have for any nonnegative f E Ll(p) 

00 

o < L ti(f)(X) < 00 /-l-a.e. on DT; 
i=-oo 

thus 
00 

L f(Ti(x))/(x) < 00 p-a.e. on DT , 
i==-<X) 

so in particular, 0 < L::~-oo pi(X) < 00 p-a.e. on DT . Thus for f E L1(/-l), 

exists /-l-a.e on DT , and is a version of /-lUI [BjT ) on DT, i.e., is T-invariant /-l­
a.e. and fA jd/-l = fA Jdp for all Borel T-invariant subsets A of DT: Indeed, 
on DT we have p-a.e. 

j(Tx) 
L::~-oo Ji(TiTx)pi(Tx) 

L::~-oo pi(Tx) 
L::~-oo Ji(TiTx)pi(Tx)p(x) 

L::~-oo pi(Tx)pl(x) 

L::~-oo t(Ti+1 x)pi+1(x) 
L::~-oo pi+1(X) 

J(x) 

and for any Borel T-invariant A ~ DT , 

1 jd/-l = 
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This completes the proof of theorem 14. 

2.1.4 Proof of the Effective Ergodic Decomposition 
Theorem 

We will need the following lemma: 

Lemma 19 There is a Borel in the codes function c : C x fb(X, R) -
fb( x, R), such that for each strict cocycle p, cp : f 1-+ j satisfies 

1. j is G-invariant, j = f if f is G-invariant, jh = jh if h is G­
invariant, 

2. Iljlloo ~ Ilflloo, 
3. '<iJ-L E QP['<iA E [8]c (fA jdJ-L = fA fdJ-L), i.e., j = J-LUI[Blc)l· 

Proof: In order to prove the lemma, we will first verify it for cyclic sub­
groups of G and then apply the results of Burkholder-Chow mentioned in 
the previous section. Let {gn : nEw} be some enumeration of G and let 
Gn=<gi:i~n>. 

Lemma 20 There is a Borel in the codes function d : w x C x fb(X, R) -
fb(X, R), such that for each strict cocycle p, dn,p : f 1-+ j satisfies 

1. j is < gn > -invariant, j = f if f is < gn > -invariant, jh = j h if h is 
< gn > -invariant, 
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Proof: To define c'n,p : Fb ~ Fb, put for f E Fb 

- { 1· L:~_", f(g~x)p(g~,x) 
!(x) = Imrn --> 00 "m ( • x) 

L...J,=-m P 9n' 

o 
if this 1imi t exists 

otherwise 

and 

j(x) = {t(x) if Vi E Z(j(gi(X)) = j(x)) 
otherwise. 

By theorem 14 c~,p : f 1--+ j is as desired. c' is clearly Borel in the codes. 0 
We will now show that lemma 19 holds for G replaced by Gn , uniformly 

in n. By induction on n, assume that en : C X Fb ~ Fb is given for Gn (the 
case n = 0 is covered by the previous lemma), and c' is given by the previous 
lemma. For pEe, let Cn+l,p : Fb ~ Fb be given by 

{ 

2k factors 

Cn+l,p(f)(X) = limk-->oo ~n,p 0 C~+l,p 0 Cn,p 0" ... 0 C~+l'P(f)(X)' if it exists, 
o otherwise. 

By the theorem of Burkholder-Chow on iterates of conditional-expectation 
operators mentioned in the previous section, 

for every quasi-invariant measure J1 E QP. Thus put 

if Vg E Gn+l (cn+l,p(f)(gx) = Cn+l,p(f)(X)) 
otherwise. 

Finally, let cp : Fb ~ Fb be given by 

cp(f)(x) = {limn-->oo cn,p(f)(x) if it ex~sts and is the same for each y E [xle 
o otherwIse. 

By the reverse martingale theorem, C is as desired. This completes the proof 
of lemma 19. 

We are now ready to prove the Effective Ergodic Decomposition Theo­
rem 10: 

Proof: Assume without loss of generality that X = w2. Let W be a 
countable, Q-linear space such that: 
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(A) 1 E W ~ C(X, R), W separates probability measures. 

(B) If W ~ H ~ Fb with H is a Q-subspace and closed under uniformly 
bounded, pointwise limits, then H = Fb. 

(C) W is closed under composition with elements of G; i.e., if ! E Wand 
9 E G, then fog E w. 

Fix pEe and J-l E QP. Let cp : f I---t f. Consider 

R = {x EX: 3c,c' E Q31,1' E W(c!+e!')(x) #- cj(x) + c'i'(x)} , 

which is QP-null (i.e., J-l E QP =} J-l(R) = 0) by the conditional-expectation 
properties. Thus its G-closure R is QP-null. By setting j = 0 on R, we can 
and do assume that the above equality holds everywhere; i.e., we can assume 
that cp is Q-linear on W. For x E X - R let J-lx be the unique probability 
measure in Q such that 

For x E R, let J-lx = J-l. Let us verify that except for a QP-null set, J-lx is in 
QP. For that notice that J-l(J-lx(Jh)) = f-l(f-lx(J)h) for h G-invariant, f-l E QP, 
1 E W, so J-lx(J) = J-l(JI[B]G) for all f E Fb, except on a QP-null set. Since 
for J-l E QP J-l(J 0 gI[B]G) = J-l(pgfI[B]G) J-l-a.e., we have J-lx(J 0 g) = J-lX(PgJ) 
for all f E F b, except on a QP-null set. So J-lx E QP, except on a QP-null 
set. We can then change J-lx on an E-invariant QP-null set J-l, to ensure that 
J-lx E QP for all x E X. 

Since R is G-invariant and cp's range is contained in the set of G-invariant 
functions, 1. (of theorem 10) holds. 

In order to verify 2.( of theorem 10), we show that the following are equiv­
alent for v E QP: 

(a) v is ergodic. 

(b) v( {x : v = J-lX}) = 1. 

(c) VIE W (J-lX(J) = v(J) v-a.e.). 
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The equivalence of (b), (c) is immediate. 
To see (a) ::} (c): Assume that v is ergodic and let fEW. Then J.lx (f) 

is constant v-a.e., as it is invariant. Thus vex 1-+ J.lx(J)) = J.lx(J) v-a.e. Thus 

J.lX(J) J pX(f)dv(x) v - a.e. 

J jdv(x) v - a.e. 

v(f) v - a.e. 

To see (b) ::} (a): Let A E [B]c. Then v(A) = J.lX(A) = v(AI[B]c) = XA 
v-a.e.; thus v(A) = 0 or l. 

3. (of theorem 10) follows from 2. and 4. 
To see 4. (of theorem 10), note that for any fEW and any v E QP, 

v(J) J f dv 

J j dv 

J J.lX(f) dv(x). 

By the Bounded Convergence Theorem, the space H of bounded Borel func­
tions f satisfying 

v(J) = J J.lx(J)dv(x) 

is closed under uniformly bounded, pointwise limits; thus by property (B) of 
Wand the above, H = Fb. 4. follows by applying this to XA. 

The proof that D is Borel in the codes is straightforward. 0 
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2.2 Ideals of Compressible Sets 

Let X = 2W and E be a countable, Borel equivalence relation on X; i.e., E 
has countable equivalence classes and E is a Borel subset of X x X. 

Call a function f : X - X E-invariant if'Vx E X (f(x)Ex). A prob­
ability measure J-l on X is said to be E-invariant if for every E-invariant, 
Borel-measurable bijection f : X - X, we have f J-l = J-l. Let I denote the 
collection of E-invariant probability measures. We will study the u-ideals 

:J = {A ~ X: 'VJ-l E I(J-l(A) = a)}, 

and 

J = {A ~ X : A is compact and A E :J}. 

In our analysis we will obtain similar results as C. Uzcategui [90] ob­
tained in his Ph.D. thesis for smooth sets. We will also frequently use results 
from Kechris-Louveau-Woodin [87], who study u-ideals of compact sets in a 
general setting. 

Our main tool will be the following characterization of .6.1 equivalence 
relations without invariant measure, which is a direct effectivisation of the 
corresponding Borel result by Nadkarni [91]: 

Theorem 1 Let E be a countable .6.1 equivalence relation on a recursively 
presented Polish space Y. Then the following are equivalent: 

1. E has no invariant probability measures, 

2. There is an E-invariant.6.t f : Y - Y, which maps each E-equivalence 
class into a proper subset of itself; i.e., 'Vx E X3x' E [X]E (x r;. 
range of f). 

This result relativizes. Let E be a .6.t countable equivalence relation X. 
Call a function f : A - A an a-compression iff A, f E .6.1 (a) and f maps 
equivalence classes into proper subsets of themselves; i.e., 'Vx E A (f(x )Ex) 
and 'Vx E A3x' E ([X]E n A) (x' r;. range of f). Call f a compression if f is 
a OW-compression. From the theorem we easily obtain: 

Corollary 2 Let E be a countable equivalence.6.1 relation on X. Then the 
following are equivalent for A E .6. U a) : 
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1. A E :1, 

2. There is a ~t(a)-compression of [AlE. 

Proof: 2 => 1 is immediate. To see 1 => 2: If A E ~t(a), then [AlE E 
.6.t(a), and there is a ~iCa) bijection g : [AlE ~ 2W. With this bijection 
we can pull back EI[AlE to a ~Ha) equivalence relation F. Since [AlE is 
in :1, there is no F-invariant probability measure. Thus we find a ~Ha) 
compression for F, which we can transfer via g to a ~Ha) compression of 
[AlE. 0 

This enables us to compute the complexity of :1: 

Corollary 3 :1 is ITt in the codes on the ~l and ~l sets. 

Proof: For ~l sets A, we have 

A E :1 ¢:} 3f E ~HA) (f : [AlE ~ [AlE is an A-compression), 

which is clearly ITt in the codes. 
In order to compute the complexity of :1 for ~l sets, we use that for any 

l:t-set G ~ N x X, the relation p..(Go ) > r is l:t in /J, a, r. Thus we have for 
any set G N-universal for the ~l-subsets of X 

Here I is the set of E-invariant measures, which is ~t in the Polish space of 
all probability measures on X with the weak*-topology. 0 

From this we have immediately by Uzcategui [90, theorem 1.1.16]. 

Corollary 4 :1 has a largest ITt set; i.e., there is a ITt set A E .:J which 
contains every ITt set in :1. 

We now turn to J. Recall that the collection K(X) of compact subsets of 
a compact metric space X is again a compact metric space with the Hausdorff 
topology, i.e., the topology generated by sets of the form 

{K E K(X) : K n U # 0} 

and 
{K E K(X) : K ~ U}, 
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where U is open. 
A O"-ideal I of compact sets is called thin if any pairwise, disjoint collec­

tion of sets in I is countable. I is called calibrated if for all K, Kn E JC(X) 
with Kn E I and JC(K - UnEw Kn) ~ I, we have K E I. I is strongly 
calibrated if for any K rt I and any P E rrgl(X x 2W) with 32

'"' P ~ K 
(i.e., 3ex E 2W P(x, ex) ~ K(x)), there is a K' E JC(P) with 32'"' K' ¢ I. Say 
that a collection A of subsets of X is compatible with a O"-ideal I of com­
pact subsets, if the smallest O"-ideal I of subsets of X containing I and A 
has no additional compact subsets over I; i.e., JC(X) n I = I. A O"-ideal is 
controlled if there is a Et in the codes of rrg-sets collection A of rrg-sets 
compatible with I and with 0 E A .. 

If EI, the collection of E-ergodic, E-invariant measures on X, is count­
able, then J = nl-'E£I JI-" where JI-' is the O"-ideal of nullsets of J-l. Each JI-' is 
rrg, thus J is rrg. In this case J is thin, calibrated, strongly calibrated, and 
controlled. 

If EI is uncountable, we still have J = nl-'E£I JI-" and I : P(X) ~ [0,1] 
given by ,(A) = sup{J.L* : J-l E I} is an analytic submeasure, so that J is Ill. 
But J is not thin, since the ergodic measures have pairwise disjoint support. 
So J cannot be controlled and thus is not IIg. Thus J is truly III by the 
dichotomy theorem for O"-ideals. J is still strongly calibrated and calibrated. 
J is not E} on the codes of Al, rrl, or :El-sets, however, since this would 
imply that J is controlled. 

2.2.1 Proof of Theorem 1 

We will assume that E is a countable .6.l equivalence relation on X, which 
is not compressible. By Feldman-Moore [77], we may assume that we have 
a countable group G acting in a .6.~-way on X such that E is the orbit 
equivalence relation of that G-action. We will say that a property P holds 
almost everywhere if [{x EX: P(X)}]E is compressible, and we will write 
V*x P(x) in this situation. If P is a property of .6.t-sets and points in X, i.e., 
P ~ .6.~ IY1 X ... x.6.~ IYn x X for each Y; is w, X, or N, we will say that P 
holds uniformly almost everywhere if for each A E .6.t!Y1 X ... .6.~IYn we can 
compute codes of a compressible .6.t-set C and a .6.t compression c : C ~ C 
recursively from a code of A such that Vx'¢ R [P(A, x)]. 

The construction of the E-invariant probability measure is similar to the 
construction of the Haar measure on a compact group. Here we compare the 
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size of ~t-sets via E-invariant functions; i.e., if between A and each of the 
AI, ... An there is an E-invariant bijection and the Ai are pairwise disjoint, 
then U~I Ai will have n times the measure of A. But things get a little 
messier since our results only hold almost everywhere. We show: 

Key Lemma 5 There is a partial function m : ~iI(X) x X -+ [0,00), 
(A, x) 1-+ mX(A) such that we have uniformly, for every A E ~HX) and 
every B E ~Ww x X) with pairwise disjoint sections, 

00 00 

V*x (mX(U B i ) = LmX(Bi )), 

i=O i=O 

(2.1) 

(2.2) 

(2.3) 

Assuming the key lemma, we apply it to a countable algebra of sets which 
is uniformly ~t, given by the following lemma: 

Lemma 6 There is a C = {Cn : nEw} E ~UX, a Polish topology T, a 
complete metric d on X, and recursive functions It : w3 -+ wand fz : w2 -+ w 
such that 

1. C is a Boolean algebra, Co = X, 

2. d induces T; C is a clopen basis for T, 

3. Vk, m(Ck = UI C!t(k,l,m)), 

4· \ik, l(gl-I [CkJ = C!2(k,I)), 

5. Vk, l, m the d-diameter of C/!(k,l,m) < 1/(m + 1). 

Here G = {gl : lEW} is some ~t enumeration of G. 

By the key lemma pick x E X such that 

1. \in [mX( Cn) E [0,1]]' 

2. \ik, m [mX( Ck) = (E~o mX( C!I(k,l,m)))], 

3. \ik, l [mX(gICk) = mX( C!2(k,I))]. 
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This is possible since the set of points x E X for which one of these 
fails is compressible. We now apply the following, immediate consequence 
of theorems 13.2 and 13.8 of Munroe [71] to find the G-invariant probability 
measure on X easily. 

Theorem 7 Let (X, d) be a metric space and G a countable group of bijec­
tions of X. Assume that C ~ P(X) and m : C - [0,1] are such that 

1. For every f > 0 there is a countable cover of X by sets from C, each 
with d-diameter < €. VA ~ XVf > 03{Cn : nEw} ~ C (A ~ U{Cn : 

nEw} /\ Vn (diameter{Cn ) < f)), 

2. C is closed under G; i.e., VC E CVg E G (g-l [C] E C), 

3. Vf > OV8 > OVC E C3{ Cn : nEw} (C ~ U{ Cn : nEw} /\ 2:n m( Cn) ~ 
m(C) + 8 /\ Vn (diameter{Cn) < f)), 

4. m is G-invariant; i.e., VC E CVg E G (m(g-l[C]) = m(C)). 

Then there is a G-invariant measure 11- such that every Borel set is 11-­
measurable. 

Thus we are done, once we prove the lemmas. 

2.2.2 An Algebra of .6.i-Sets 

Before we prove lemma 6, we need two well-known facts, which we prove 
since we did not find a convenient reference. Let X be a recursively presented 
Polish space, E a countable ~t equivalence relation induced by a ~t group 
action of a countable group G. Let {gi : i E w} be a ~t enumeration of G 
with go the identity function. 

Fact 8 There is a recursive in the ~i -codes operation C 1-+ C' such that if 
C ~ X, then there is a complete metric d on X and C' ~ w X w x X such 
that 

1. C is clopen in the metric topology of d, 

2. {ctm} is a clopen basis for this topology, 
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3. VkVm (G~,m has d-diameter ::::; 1/(k + 1)), 

4. Vk [(Um G;",k = X), and this union is disjoint], 

5. Vk (Um G~,2m = G), 

6. Vk (Um G~,2m+l = X - G), 

7. The original topology and the metric topology of d have the same Borel 
sets. 

Proof: Fix G. Let C = ({O} x G) U ({1} x (X - G)). Effectively find 
G ~ N x 2 x X, G E rr~ such that 

C(i, x) ~ ~a EN G(a, i, x) 

~ ~!a EN G(a,i,x). 

Find N = <Nk,m: k, mEw> in .6.? a basis for N x 2 x X such that 
Vk, m(Nk,m has diameter < 1/(k + 1) in the usual bounded metric of N x 
2 x X), Vk(Um N k,2m = N x {O} x X), and Vk(Um N k,2m+l = N x {1} x X). 
Let 

G~,m ~ 3i3a(G(a,i,x) /\ Nk.m(a,i,x)). 

Clearly, this operation is effective. If we put the subspace topology on G, 
then G is complete, {Nk,m n G} is a basis, and the usual metric on N x 2 x X 
restricted to G is complete. Thus we can transfer this structure by the 
projection onto X, which is a bijective from G onto X. 0 

Fact 9 There is a recursive in the .6.~ -codes operation 0 1 : C 1-+ C' and 
recursive functions g : w3 --+ wand h : w2 --+ w such that if G ~ w x X, then 
G' ~ w x X, and there is a complete metric d on X, inducing a topology T 

such that 

1. T is a Polish topology with the same Borel sets as the original topology 
onX, 

2. {Cn is a clopen basis for T, 

3. Vi,j, k(G~(i,j,k) and G~(j,k) have d-diameter ::::; 1/(k + 1)), 

4· Uj G~(i,j,k) = Gi , 
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5. Uj C~(j,k) = X. 

Proof: For each i, let (C i , di , Td be given by the previous fact for C i . Let 
C = <Ci 

: i E w>. Let d = sup{dd(i + 1) : i E w}. Then the topology T 

induced by d is Polish, has the same Borel structure as the original topology 
on X, and Ci = {Ck,m} is a subbasis for T. 

Note that the di-diameter of Ck,m is ::; 1/( k + 1). Thus the d-diameter of 
any 

k-1 

em=ne~m. , . 
i=O 

is at most 1/( k + 1) for m E wk. Furthermore, the collection {em: m E wk } 

is pairwise disjoint and covers X. 
Thus let C' enumerate all the em. taking care that the enumeration of 

the sequences m is recursive in such a manner that we can guarantee 3.-5. 
from 3.,5.,6. of the previous fact. 0 

We are now ready to prove lemma 6. 
Prool: Since ~~-sets are closed uniformly under Boolean operations and 

taking preimages under ~i-functions, there is a recursive in the ~i-codes 
operation 0 1 : C' 1--+ C" such that if C' is a ~i-sequence of sets, then C" 
enumerates the smallest Boolean algebra containing C and is closed under 
preimages by elements of G. Now put Co to be the standard basis for X, and 
put inductively cn+1 = 01(02(cn)). Let dn be the metric for the topology 
generated by cn given by fact 9 and then proceed as there by setting d = 
sup{d;j(i+l):iEw}.D 

2.2.3 Proof of the Key Lemma 

We first fix some notation. We write 
I : A j B if I E ~i is injective and preserves E-equivalence classes, 
I : A -< B if I : A j Band B - I[A] is full in B, 
I : A rv B if I is a ~i-bijection preserving E-equivalence classes, 
AQ for An Q if Q is E-invariant. 

As a first step we show: 

Lemma 10 For every pair A, B 01 ~} -subsets 01 X we can find ~i -sets 
Q ~ w x X and C c X and ~i-Iunctions I : A --+ Band c : C --+ C such 
that 
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(a) G and all Qk are E-invariant, and these sets partition [AlE n [BlE' 

(b) c is a compression of G. f and care E-invariant. 

(c) f- 1 (b) has cardinality k or k + 1 for each b E Q k n B, and there is some 
b' E [b]E n B such that f-1(b' ) has cardinality k. 

Codes for Q, G, f, c can be computed recursively from codes for A and B. Fur­
thermore, if A, B are assigned Q, G, I, c and A', B' are assigned Q', G', I', d; 
then we have: 

1. If P E ~l is E-invariant and A P = A'P and B P = B'P, then Q n (w x 
P) = Q' n (w X P) and flCP n A) = f'1(P n A'). 

2. If g : A rv A' and h : B rv B', then Gil = Un(Qn~Q~) is compressible 
via a compression d'. The codes for G" and d' can be computed recur­
sively from codes of A, B, A', B'. 

3. If P E ~t is E-invariant and A P = B P, then P ~ Q1 and flAP is the 
identity. 

This lemma allows us to compare the sizes of sets. On part Qk, B fits 
into A k-times but not k + l-times. 

Proof: Assume w.l.o.g. that [A]E ~ [B]E. First assume that there is a 
function 1: A - w x B in ~i such that 

(1) 1 is injective and 12, the second coordinate function, is E-invariant. 

(2) If (n + 1, y) is in the range of 1 and y' E lYlE n B, then (n, y') is also in 
the range of j. 

Furthermore, assume that a code for 1 can be found recursively in the codes 
of A and B. Let f = 12 and G = {x E A: Vn E w (n,x) is in the range of 
I)}. Then the mapping c : AC -< AC given by 

c(x) = 1-1(h(x) + 1, hex»~ 

is a compression of AC, and on the remainder I is as desired. Put 

Q( n, x) ¢:> Vy' E ([xlE n B) « n, y') E range(j). 
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Then Q is as desired. _ 
In order to show that f can be found effectively, let us show that given 

A, B E 6.t, there is a partition of [AlE into E-invariant 6.~-sets PI and P2 and 
a partition of AP

2 into 6.t-sets A' and A" such that there are 6.t-functions 
hI : API -< BPI and h2 : A" ,...., B P

2. In particular [A"JE = P2. Furthermore, 
codes of all these objects can be found recursively in the codes of A and B. 

Once this is done, we can set inductively 

Ao 

A n +1 

A, 

- A~, 
fll(An - A n+1) 

hl(An - An+d 

n everywhere, 

hI U h2 for the pair (An' B). 

Since [AlE ~ B, we see by an easy induction that II(A - An+l)[An+dE has 
range (n + 1) X B[An+d E , so that f indeed satisfies (2). (1) is clear from the 
definition. 

Thus assume that A, B E 6.~ are given. \Ve have to find PI, P2 , A', A", 
hI, h2 . By induction, let 

Fo - (A x B) n Go, 
n n 

Fn +1 (A x B) n Gn +1 - (7ro[U Fd x 7rdU Fi]), 
i=O i::::O 

Recall that Gn was the graph of gn, where gn was the n-th function in the 
enumeration of a group inducing E such that go was the identity map. Note 
that F is the graph of a partial bijection. If x E A and y E B were E-related 
and if neither x were in the domain of F nor y in the range of F, then 
(x, y) E Gn for some n, and thus (x, y) E Fn, a contradiction. Thus for each 
x E [AlE n [BlE' either [X]E n A is exhausted by the domain of For [X]E n B 
is exhausted by the range of F. Let 

PI = {x E ([AJE n [B]E) : [XJE n B is not exhausted by the range of F}, 

and let hI have graph Fn(API x BPI). By the definition of PI 1 : API -< BPI. 
Let PI = [A]E - Pl. Put A" = domain of F n (API n BPI), and let h2 have 
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graph F n (A" x BPI). Then h2 : A" I'V BP
2, since B is exhausted on P2 by 

the range of F. Let A' = API - A". 
Finally, let us check that 1.-3. are satisfied. 1. is clear, since all the 

constructions were local; i.e., the construction on a specific equivalence class 
depended only on the intersection of that equivalence class with A and B. To 
see 2., look at Qm n Q~ for m < n. The following mapping c is a compression 
of AQmnQ~: For x E AQmnQ~, assume that x is the kth element (in the 
lexicographical ordering) in the preimage of f (x) under f. Then k ~ m + 1 ~ 
n, so since 9 0 f(x) has at least size n, let y be the kth element (in the 
lexicographical ordering) of the preimage J'-l(g 0 f(x)). Let c(x) = g-l(y). 
To see 3. assume by 1. that A = B. Then the identity function go is a 
bijection between A and B; thus F = Go n (A x B), and thus A = A" (for 
the pair A, B), and h2 is the identity on A. From this it follows that f is the 
identity. 0 

Let us introduce the following notation. 

Definition 11 For A, B E ~L define 

{ 
i if x E Qi 

[Aj B](x) = 0 if 'Vi(x ~ Qi), 

where Q is given by the above lemma. 

We observe the following: 

Lemma 12 1. If A, A', B E ~i and A n A' = 0, then uniformly 

'V*x([AjB](x)+[A'jB](x) < [(AUA')jB](x) 
< ([AjB](x) + [A'jB](x) +2)). 

2. If A, B, C E ~i and [A]E n [C]E ~ [B]E, then 

'V*x ([Aj B](x)[BjC](x) < [AjC](x) 
< ([AjB](x) + l)([BjC](x) + 1)). 

PlOOf: We show that the first inequality of 1. holds almost everywhere. 
The other inequalities are proved by similar arguments. Fix A, A', B. Let C 
be the collection of points where the first inequality of 1. fails. Thus we have 

Vx E C ([(A U A')j B](x) < [Aj B](x) + [A' j B](x)). 
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Let Q,f, Q',!" and Q",f" be given for A,B, A',B, and AU A',B by 
lemma 10. On Qn n Q'm n Q~' with I < n + m, define h : A U A' -; (I + 1) X B 
by h( x) = (k, 1" (x)), where x is the (k + 1 )st element in the lexicographical 
ordering of 1"-l(J"(x)). Define 9 : (n + m) x B -; A U A' by 

(k ) _ {the k + 1st element in the lex. ord. of !,-l(X) if k < n, 
9 ,x - the (k - n) + 1st element in the lex. ord. of 1"-l(x) if k ~ n. 

Thus on Qn n Q'm n Q"I, hand 9 are injective and h is not surjective on each 
equivalence class. Thus on Qn n Q'm n Q"I, c = 9 0 h is a compression of 
A U A', which can be extended to a compression of Qn n Q'm n Q"I by setting 
it to be the identity. 0 

We now construct a decreasing ~~-sequence {Fk : k E w} of almost full 
sets such that 

\:I"x\:lk E w ([Fk/ Fk+1J(x) ~ 2). 

We call these reference sets. It clearly suffices to show that for each A E ~~ 
we can find a subset A' E 6.t such that A' is almost full in A and 

\:I"x E [A]E ([A/A'](x) ~ 2), 

and that we can find a code for A', the exceptional set and its compression 
recursively from a code of A. So fix A E ~~ and set 

Sn(x) {::} [x E A 1\ \:Iy E ([X]E n A) (xln :S;lex yin), 

where :s; lex is the lexicographical ordering on 2<w. Then Sn (x) holds for all 
n iff x E A is the lexicographically least point of [xlE n A. Thus nn Sn is 
a partial transversal, i.e., a set which intersects each equivalence class in at 
most one point. 

Lemma 131fT E ~t is a partial transversal, then [T]E is compressible. A 
code for [T]E and its compression may be computed recursively from a code 
ofT. 

Proof: Put an order of ordertype w on each equivalence class of [T]E by 
setting 

x < y {::} (xEy 1\ 3n E w (gn(.'r) E T 1\ \:1m :s; n gm(Y) f. T)), 
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where G = {9n} is the group inducing E. Then the map taking each x E (T1E 
to its successor is a compression on [TJE' 0 

Thus we may assume that nn Sn = 0. Now put 

Al(X) {:} 3n(Sn(x) /\ n is least such that 3y E ([X}E n A)""Sn(Y)) 

and 

A2 = A - AI' 

The Ai partition A into full subsets, and we pick for A' in each equivalence 
class the smaller of the two parts: 

A'(x) {:} (x E Al /\ [A2/A 1](x) 2: 1)V, 

(x E A2 /\ [A2/Ad(x) < 1). 

Clearly, a code for A' may be computed recursively from a code for A. Put 

C1 = {x E [A]E : [A2/Ad(x) 2: 1},. 
C2 = {x E [A]E : [A2/Ad(x) < 1} 

Then we have for almost all x E C 1, 

[A/A'](x) - [A/Ad(x) 

and for almost all x E C2 , 

[(AI u A2 )/Ad(x) 
- [AdAd(x) + [AdAI](X) 
> 2, 

[A/A'](x) - [A/A2](x) 

[(AI U A2)/A2](x) 

- [A 1/A2](x) + [A2/A2](x) 
> 2, 

since the set of point in [AdEn[A2JE;2 C2 where [AdA2](X) = [A2/Ad(x) = 
o is clearly compressible, and thus [AJ/A2](x) > 0 for almost all x E C2. 
Thus A' is as desired, and we can fix a sequence of reference sets. Now put 
for A E ~tlX and x EX, 

mX(A) = Imn ..... co [XjFn]{X) 1 IS Iml eXIS S, { 
1· [A/Fn]{x)'f thO l' 't . t 

O' if this limit does not exist. 
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Since [A/ BJ is E-invariant, we have mX = mY for xEy. Clearly, mX is 
nonnegative and almost everywhere [XI FnJ = [AI FnJ + [(X - A)I FnJ ~ 
[A/ FnJ, so that mX(A) E [0,1] almost everywhere. 

Lemma 14 Let A E 6t. Then 

exists for almost all x, uniformly in A and the sequence of reference sets. 

Proof: By lemma 12 and the properties of the reference sets, we have almost 
everywhere 

1. [A/Fi][F;fFi+j] :::; [A/Fi+j] :::; ([A/Fi] + l)([F;fFi+j] + 1), 

2. [XI Fi][F;f Fi+j] :::; [XI Fi+j] :::; ([X/ Fi] + l)([F;f Fi+j] + 1), 

3. [XI Fn] --+ pointwise, 

4. [Fnl Fn~m] --+ 00 pointwise. 

Thus we have almost everywhere 

[AI Fi+j] < [AI F;J + 1 [F;f Fi+j] + 1 
[XIFi+j] - [XIFd [F;fFi+j] ' 

and since limj-+oo ([Fd Fi+j] + l)/[Fd Fi+j] = 1, we have 

1
. [A/ Fi+j] [AI Fi] + 1 
lmsup ~ , 
j-+oo [X I Fi+j] [X I Fd 

and thus 

[AIY] [AI Y] + 1 [AI Y] 
lim sup J < liminf J = lim J = m(A,x). 

j-+oo [X I Fj] - j-+oo [X I Fj] j-+oo [X I Fj] 

Since the set of points where the limit does not exist is at most the set 
where lemma 12 fails or where the sequence of reference sets does not have 
the required properties, we can recursively find a code for this set and for a 
compression of it from a code of A and the sequence of reference sets. 0 
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We already checked that mX takes values in [0,1]. Since for any A E .6.i 
and any g in the group G inducing E we have [AI Fn] = [gAl Fn] almost every­
where, we have mX(A) = mX(gA) almost everywhere by the above lemma. 
Thus in order to verify that m satisfies the Key Lemma, we are left with 
showing that mX is almost everywhere O"-additive. We know from lemma 12 
that mX is almost everywhere finitely additive. 

Fix a disjoint .6.~-sequence {Ai: i E w}. By finite additivity we have 

V*x (mX(UA i ) 2: 2:: mX(A j )). 

i i 

Put P(n,x) iff mX(Ui Ai) > Li mX(Ai) +2-n. It clearly suffices to show that 
Pn is uniformly compressible. Note that Pn is E-invariant. Let A = U~O Ai. 
By the properties of reference sets we have 

uniformly, and thus uniformly 

Thus almost everywhere on Pn we have mX(Fn) < mX(A) and so we can 
apply the following lemma. 

Lemma 15 Assume that P E .6.t is E-invariant and A, B E .6.t with 

Then there is an f : AP j B P almost everywhere and furthermore, codes for 
f, the exceptional set, and its compression can be found recursively in the 
codes of A, B, and P. 

Proof: Let n : P --+ w be given by n( x) is the least integer m such that 
[AIFm](x) < [BIFm](x). Let fm,Qm and jm,ijm be given by lemma 10 for 
A, Fm and B, Fm, respectively. Define f : A --+ B by 

{

the k-th element in the lexicographical ordering of 
f(x) = (jn.(x)tl(f~(X)(x)), ",:here x is the kth element in the 

lexicographical ordenng of (fn(x))-l(fn(x)(x)). 
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This works 0 

Thus find a subset A' of A such that A'nPn "-' FnnPn almost everywhere, 
and thus 

V*x E P (mX(A') = mX(Fn)). 

Since A = A' U (A - A'), we know by finite additivity and the fact that 
V·x (mX(Fn) :S 2-n) (uniformly), that 

00 

V·x E Pn (mX(A - A') > L mX(Ai)). 
i=O 

Thus we are done once, we show the following lemma. 

Lemma 16 Assume that Ai is a ~t -sequence and B E ~L P E ~t is E­
invariant. If 

00 

i=O 

then we can find uniformly a mapping f : U~O Ai ~ B. 

Proof: Since 
V*x E P (mX(B) > mX(Ao)), 

find fo : Ao ~ B by lemma 15. Let B' = B - fo[Ao]. Then 

00 

V*x E P (mX(B') > L mX(Ad ~ mX(Ad); 
i=1 

thus find II : Al ~ B by lemma 15. Continue in the same manner. 0 
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