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ABSTRACT 

Let A = (A, ... ) be a relational structure. Say that A has condensation if 

there is an F : A <w --+ A such that for every partial order P, it is forced by P 

that substructures of P which are closed under F are isomorphic to elements 

of the ground model. Condensation holds if every structure in V , the universe 

of sets, has condensation. This property, isolated by Woodin, captures part of 

the content of the condensation lemmas for L, K and other "L-like" models . 

We present a variety of results having to do with condensation in this abstract 

sense. Section 1 establishes the absoluteness of condensation and some of its 

consequences. In particular, we show that if condensation holds in M, then 

M F GC H and there are no measurable cardinals or precipitous ideals in 

M. The results of this section are due to Woodin. Section 2 contains a proof 

that condensation implies OK (E) for /'i, regular and E ~ /'i, stationary. This 

is the main result of this thesis. The argument provides a new proof of the 

key lemma giving GC H. Section 2 also contains some information about the 

relationship between condensation and strengthenings of diamond. Section 

3 contains partial results having to do with forcing "Cand(A)", some further 

discussion of the relation between condensation and combinatorial principles 

which hold in L, and an argument that Cand(G) fails in V[G], where G is 

generic for the partial order adding W2 cohen subsets of Wt • 

v 



CONTENTS 

Acknowledgments 

Abstract 

Introduction 

1 Some basic facts 

1.1 Absoluteness. 

1.2 Some consequences of condensation. 

1.3 Two examples. 

2 

3 Forcing condensation 

3.1 Coding to add Cond(A). 

3.2 Condensation and morasses. 

3.3 QA,F and an example. 

Bibliography 

VI 

IV 

V 

1 

5 

15 

21 

33 



Introduction 

Let A be a relational structure. Woodin [Wo] has isolated a property of 

A which captures part of the content of the condensation lemma for levels 

of the constructible hierarchy-viz., that suitable hulls collapse to elements 

of L no matter where these hulls are taken. 

Definition . Let A = (IAI, ... ) and F : IAI<w ~ IAI. Cond(A j F) is the 

statement: For every partial order (p.o.) IP 

IPII-VX.X --<F A ~:38 E V.A r X ~ B 

In other words, for any p.o. IP it is forced by IP that F-closed substructures 

of A are isomorphic to structures in V. Cond(A) holds iff 3F.Cond(Aj F). 

We will be concerned with condensation for structures of the form A = 

(X, E, ... ) where X is a transitive set. (Notations for such structures will 

typically suppress the "E".) C ond( Aj F) will hold for such structures just in 

case F-closed substructures collapse to elements of V. 

If Cond(A) holds we say that A has condensation. Let M be a transitive 

model of ZFC. If M F= Cond(A), A has condensation in M. Condensation 

holds in M iff M F= Va Cond(Vo). Equivalently, since M F= AC, condensa­

tion holds in M iff M F= VKVA ~ K Cond(K, A). For ordinals a, Cond(a) iff 

VA ~ a . Cond(a, A). And if A is a subset of a, Cond(A) iff Cond(a, A) (iff 

Cond( (a, E, A))). 

Any other uses of the term "condensation" should be self-explanatory. 

Section 1 establishes the absoluteness of condensation and some of its 

consequences. In particular, we show that if condensation holds in M, then 

M F= eCH and there are no measurable cardinals or precipitous ideals in M. 

The results of this section are due to Woodin [Wo]. Section 2 contains a proof 

that condensation implies O,,(E) for K regular and E ~ K stationary. This 

is the main result of this thesis. The argument provides a new proof of the 

key lemma giving eCHo Section 2 also contains some information about the 
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relationship between condensation and strengthenings of diamond. Section 

3 contains partial results having to do with forcing "Cond(A)", some further 

discussion of the relation between condensation and combinatorial principles 

which hold in L, and an argument that Cond( G) fails in V[G], where G is 

generic for the partial order adding W2 cohen subsets of WI • 

Notations are fairly standard. [X]" is the collection of subsets of X of size 

K.. [X]<" is the collection of subsets of X of size less than K.. X<w is the 

collection of finite sequences from X. H" is the collection of sets hereditarily 

of size less than K.. HC = Hw,. If F : X<w ---+ X, CF = {U C; X I 

F"U<w C; U}. (Occasionally, CF will refer to closed sets meeting some size 

restriction.) clF(U) is the closure of U under F . For any set X, trx is the 

collapsing map associated with X. C;e refers to end-extension. Coll( K: , X) 

is the partial order adding a function f : K. ~ X with conditions of size 

< K. . If t is a set-theoretic expression (t)M is the result of evaluating tin M. 

Similarly, if <I> is a formula (<I»M is the restriction of <I> to M. Thus "(<I»M" 

and 14M F cP" have the same meaning. In expository contexts 'V' refers to 

the universe of sets . In statements of a forcing language 'V ' refers to the 

ground model. Other notations will be handled as they arise. 

We make a few preliminary remarks and observations. If F, G : X<w ---+ 

X define F :::; G iff G ~ F iff Cc C; CF. 

Lemma 0.1. If Cond(A; F) and F :::; G then Cond(A; G). .., 

Say that F is efficient if clF(U) = F"U<w. It is sometimes convenient to 

know that 

Lemma 0.2. For any F there i.! an efficient G ~ F. 

Proof. Define cPk : V<w ---+ V by cPk( 8) = 8k if k < e( 8), and cPk( s) = 80 

if k ~ e(8). Let;:k be the closure under composition of {F, cPo, ... cPd and 

:F = Uk ;:k. Let (Fn I n < w) list;: so that if p(n) is the least k such that 

Fn E ;:k, then p( n) < n. Define G by G( 8) = Fl (.)( 8). It is straightforward 

to check that Cc C; CF and clc(U) = G"U<w. .., 
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Condensation for sets of size S; WI is trivial. Thus the structures A which 

come up for attention will have domains at least that size when viewed 

from within a model in which Cond(A) is to be evaluated. Another property 

common to the domains of structures we consider is closure under u f-> rk( u). 

So in every case we will have rk(A) = A n OR ~ w. Also one may always 

assume of a potential witness F to Cond(A) that clF(U) n Q+ = Q where 

Q = min(OR \ clF(U ». 

Lemma 0.3. The following are equivalent: 

(1) Cond(A). 

(2) Let Q = rk(A) . There is a u such that for every () ~ Q and p.o. IP', 

letting N = VB, IP' II- 'Ix. u,A E X -< N ==> 7rx(A) E N. 

(3) There is a u and a () > Q such that for every p. o. IP', letting N = VB, 

IP' II- 'Ix. u,A E X -< N ==> 7rx(A) E N. 

Proof. Let A = (A, E, R, .. . ). 

(1) ==> (2). Let u = F. 

(2) ==> (3). Trivial. 

(3) ==> (1). Pick u and let F be an efficient Skolem function for (VB, {A, u } ). 

Let G: A<w --+ A be defined by G(s) = F(s) if F(s) E A and G(s) = 0 

otherwise. If X E CG then AnclF(X) = X. So 7rx(A) = 7rclF(x)(A), where 

7rx(A) = (7rX II A, 7rX" E nA2, 7r x" R, ... ). 

Thus C ond( Ai G) holds. -1 

Lemma 0.4. If A is a transitive set, Cond(A) holds and B E A, then 

Cond(B). 

Proof. Take u as in 0.3(2) and let ii = {u,A}. If ii,B E X -< VB then 

u, A E .Y . And 7rx(B) E {7rx(v) I v E A n X} = 7rx(A). So Cond(B) holds 

by 0.3. -1 

Lemma 0.5. The following are equivalent: 

(1) For all Q, Cond(Vo ). 

(2) {Q I Cond(Vo )} is unbounded in OR. 

(3) For alll'i., for all A ~ I'i., Cond(l'i., A). 
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Proof. Clear. -1 

It should be noted in connection with Lemma 0.5 that, conceivably, con­

densation may hold for some set yet fail for every set of ordinals which code 

that set. We touch upon this point again briefly in section l. 

Finally, 

Lemma 0.6. Let A be a 3et of ordinal3 and B E L[A]. Then Cond(A) 

imp/ie" Cond(B). 

Proof. Choose B > sup (a) so that B E Lo[A]. If A, B E X -< Vo then 

7l"x(B) E L[7l"x (A)]. Apply lemma 0.3(3) with this Band u = {F, A} , with F 

a witness to Cond(A). -1 
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Section 1 

§1.1 Absoluteness 

Lemma 1.1. Let M be a tran3itive model of ZFC, F : ",,<w --> "", A <:::; "" 

with F, A E M. Supp03e that there i3 an X E CF 3uch that (X, X n A) 

collap3e3 to (A, A) fJ: M. Then there i3 3uch an X in M[G] where G i3 

M-generic for P = Coll (w, p(",,)M). 

Proof. Work in a model in which p(p)nM is countable. Let G be P-generic 

over M. And let (*) be the statement: 3X.X E CF and 1l'x"A fJ: p(",,)M. In 

M[G], let x be a real coding (A, F, p(",,)M) in such a way that it is ~l(x) to 

decide whether X E CF and rrx"A E p(",,)M . Then, (*) holds and is L:l(x) , 

hence holds in M[G] by absoluteness of L:l relations. Thus (P II- (* »M. -1 

Corollary 1.2. If Cond(A) fail3 in M , then for any F E M there i3 a 

counterexample to Cond(A; F ) in M[G], where G i3 Coll(w, P (",,) M)-generic 

over M. 

Proof. Assume Cond(A), A <:::; "" fails in M. Let F : ",,<w --> "" E M . Pick 

Q E M such that (Q II- 3X.X E CF & 1l'X" A fJ: V)M. Let H be Q-generic 

over M and apply lemma 1.1 in M[H]. -1 

Remark: In Lemma 1.1 it is not necessary that M satisfy all of ZFC 

since the facts about forcing , and L:l-absoluteness used in the proof hold in 

a sufficiently strong finite fragment of Z FC. 

It may be worth drawing the analogy with condensation in L at this point. 

L:1-substructures of limit levels of L , wherever they are found, collapse to 

elements of L. Similarly if M F Cond(A ; F) then an F-closed substructure 

of A in any end-extension of M collapses to an element of M. Cond(A; F ) 

asserts that this is true for generic extensions. With this restriction the 

preceding property of L is first-order expressible. Lemma 1.1 shows that this 

restriction is only apparent for suitable M. 

By lemma 1.1 we have that if M F Cond(A; F) then Cond(A; F) holds. 

The converse is also true. 
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Lemma 1.3. Cond(Aj F) iff L[A, F] F= Cond(Aj F). 

Proof. The "if' direction follows from lemma 1.1: if there is a counterexam­

ple to Cond(Aj F) which is V-generic, then there is one which is L[A, F]-

generic. 

So suppose L[A, F] F= -,Cond(Aj F). Let M = L[A, F] and K. be such that 

A C; K., F : K.<w ----t K. . Since M F= ..,Cond(A j F), there are P E M and P­

names a,T E M, such that in M, P If- (T E CF & 17 = 7r/'A & 17 f/:. V) . If 

G, H are filters on P which are mutually generic over M, then aG -I- 17 H . Let 

Q be a forcing notion which makes both p(p)M and (true) P(K.) countable. 

If G is Q-generic over V then in V[G], there is a collection C of size 2W 

consisting of filters on P which are pairwise mutually generic over M . The 

map H I-> aH is I-Ion C. Since IP(K.)VI = w, there is a filter H E C such 

that aH f/:. V. But TH E CF . Thus it is not forced by Q that images of A by 

collapses of F-closed sets lie in V. So Cond(A j F) fails . .., 

The next result improves on corollary 1.2. 

Lemma 1.4. Let A , F E M C; N, where M and N are models of (a strong 

enough fragment of) ZFC. Assume that M F= -'Cond(Aj F) and that there 

is a real in N \ M. Then in N there is a counterexample to Cond(Aj F)M ­

i. e., an X E C F with 7r x" A f/:. M . Furthermore, X can be found with 

M -countable order-type . 

Proof. Work in M. Let B > K. be such that VB reflects "Cond(Aj F)" together 

with enough of ZFC. Let P = Coll(w, P(K.» and find W with K. , A, F, P E 

W -( VB, IWI = w. Let 7r = 7rw : W ----t M be the transitive collapse of W 

and 7r(K., A, F, P) = (K , A, F, P) . So M F= -,Cond(Aj F) and by Lemma 1.1 , 

M F= "P If- 3X E CF . 7r x" A f/:. v." In M there are P-names 17, T such that 

Plf-(TC;K & TECF & a=7r/'A & af/:.V). Thenamesa,Tcan 

be used to construct a "continuous" 1-1 map f: W2 ----t {(TG,aG) I G is P­

generic over M} so that given (f(u»J = aGu' U can be recovered. Then 

(f(u»o = TG u lifts to an F-closed set via 7r, 7r-
J "TGu' which collapses to 

aG u. Do this as follows. 
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Define a map S f-+ (p.,a.) from 2<w into P x OR so that 

(1) s.lt =:} P • .lPIl 

(2) s ~ t =:} PI ~ p., 

(3) Pib II- a. ti 17 and P'-l II- a. E 17 and, 

(4) for s E w2, (P. I s ~ x) is M-generic (generates a P -generic filter over 

M). 

Let (Dn I nEw) list the dense subsets of P in M. Given P. choose a. 

and P.-i. i = 0,1 as follows. Since P II- 17 ti V there is an ordinal 0 and there 

are conditions q, r ~ p. such that q II- a ti 17 and r II- a E 17. (Since p. does 

not decide "0 E 17", a i= au for u S;; s .) Now pick if ~ q and r ~ r in D l (.), 

where f(s) = length of s, and let a. = a, p.-o = if, and P'-l = r. 
If u E w2, let Gu = {p E Pip is compatible with P. for some s ~ u} 

and let feu ) = (TG.,I7G.). G u is M-generic. Since ( P II- T E CF)M, TG. 

is F-closed and 7r-
III

TG. is F-closed with collapse I7G •. u can be recovered 

from I7G. recursively. Thus if u E W2 n N \ M then X = TG. is an F-closed 

set in N wi th 7r X II A. = 17 G. ti M. And the order- type of X is countable in 

M. ., 

Now as an improvement of corollary l.2 we have, 

Corollary 1.5. If Cond(A) fail3 in M, then for any F E M there is a 

counterexample to Cond(A ; F) in M[G] which i3 of countable order-type in 

M where G i3 (2<w,~)-generic over M . ., 

§1.2 Some consequences of condensation. 

Lemma 1.6. If a i3 countable , A ~ pea) and Cond(A), then IAI ~ WI. 

We present two arguments for this lemma in this section and a third ar­

gument in section 2. Each argument is of interest . The second introduces a 

fact used again in section 3. 

Lemma l.6 has the following immediate consequence. 
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Theorem 1.7. Let K be an infinite cardinal. Cond(P(K» implie3 2" = K+. 

Hence conden3ation implie3 GC H. 

Proof. Let P = Coll(w , K) and G be P-generic. Apply lemma 1.6 in V[G] 

taking A = P(K)V. If V 1= IP(K)I ~ K++ then V[G] 1= IAI ~ W2 ' By lemma 

1.6, Cond(A) must fail in V[G], hence in V by absoluteness. -i 

Corollary 1.8. CH i3 equivalent to Cond(P(w». -i 

Proof of 1.6. Choose F: A<w -----+ A to witness Cond(A) so that if X E CF 

then X is transitive. This is possible since a is countable. Suppose A ~ W2. 

Let (A'I I 17 < 8) list A without repetition, 8 ~ W2' Let G be generic for 

Namba forcing ([J], p.289). So V[G] 1= IWI vI = WI and Cf(W2 V) = w. In 

V[G], let 5 <;;: W2 V be cofinal with order-type w. And let X = elF( {A'I 117 E 

S}). Since Cond(A; F ) holds and X is transitive, X E V . In V, IXI ~ W2 

since {17 I A'I E X} is cofinal in W2' Thus V[G] 1= IXI ~ IW2VI = WI' But in 

V[G], X is the closure of a countable set, hence countable. Contradiction. 

-i 

The next argument depends on the following fact . 

Lemma 1.9. Let M, N be tran3itive model3 of ZFC, M <;;: N, F : A<W -+ 

A, FE M , M 1= IAI ~ W2. If there i3 a real in N\M then CFnN\M =I 0 . 

Proof. (This is adapted from [V] where a stronger statement is proved.) Let 

h : 8 -----+ A be a bijection. Extend h to 8<w by h( 5) = (h( 50), . .. h( 5 n » and 

let F = h- I 
0 F 0 h : 8<w -----+ 8. Let G be the following two person game 

of length w : player I plays intervals In = [an,,Bn] <;;: W2 and player II plays 

ordinals "in < W2 so that ,Bn < "in < an+l. Player I moves first and wins a 

play iff el F( an I n < w) n W2 <;;: UnIn. This game is open for player II, hence 

determined, by Gale-Stewart. 

Player II cannot have a winning strategy. Let a be a strategy for player 

II. Let 8 > W2 be large and choose a sequence X I --< X 2 --< ... --< Vo of 

elementary submodels of Vo such that F, h,a E Xl, and Xn nW2 = an < W2 

is an ordinal with cf(an) = WI. Let z = elF-(an In < w). Then z n an is 

bounded in an' Let ,Bn = 5Up(Z n an+l) and In = [an,,Bn] for nEw, taking 
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ao = O. And let In = (1(10, .•• , In). Since 10 , ••• , In, (1 E X n+1 -< VB, it 

follows that In < an+l, Thus ((1n, In) In < w) is a run of G which player I 

wins, since clf(an In < w) ~ Unln. So (1 is not winning for II. 

So player I has a winning strategy (1 • Let 10 < II < ... < W2 be the 

first w ordinals closed under each of a ,F, and h (hence under F) in the sense 

that, e.g., clFC'Yi) n W2 ~ Ii. If a ~ w, let Xa = clf(an I n < w) where 

(an' !3nl = In is obtained by using (1 against II 's play (,n I n E a). Let 

Xa = h"Xa. Then n E a iff Xa nC'Yn" n+l) # 0. So a can be recovered 

from Xa. 

Carrying out this argument in M and using a real a E N \ M yields a set 

Xa E CF n N \ M, hence lemma 1.9. ., 

Proof of 1.6 (2nd). Choose F as before. The result is immediate from lemma 

1.9 . ., 

Theorem 1. 7 is not stated optimally. It is easy to see that C ond(P( K)) 

implies Cond(P(A)) for A ::; K: if 7r is a collapsing map then rr(P(A)) 

{A n 7r(A) I A E 7r(P(K))}. Thus Cond(P(K)) ~ 2'\ = A+ for all A::; K. 

Definition. Let A = (A, ... ) with A transitive and let a ::; A n OR and 

F:A<w -----> A. 

(1) < a-Cond(A; F) iff for all P , P II- "IX. X E CF & X n a E a -----> 

rrx(A) E V . 

(2) a-Cond(A; F ) iff for all P , P II- "IX. X E CF & a ~ X -----> rrx(A) E 

V. 

a-Cond( A) iff there is an F such that a-Cond(A; F) and < a-Cond(A) there 

is an F such that <a-Cond(A;F) . 

< K+-Cond(A) is equivalent to K-Cond(A). Lemmas 1.1 and 1.3 hold for 

these notions with no change of argument. We have the following refinement 

of theorem 1. 7. 

9 



Theorem 1.7.1. 

(1) K-Cond(P(>-)) implies 26 = 5+ for all 5 E [K, >-1 . 

(2) K-Cond(P(K)) iff 2" = K+. 

Proof. Clear from foregoing arguments. ., 

Next, a few results concerning the effect of condensation on embeddings. 

Lemma 1.10. Let M be a transitive model of ZFC, A E M, A ~ K. If 

M F Cond(A) and j : M --+ N is elementary, then A E N. 

Proof. Let M F Cond(A ; F) . Then N F Cond(j(A);j(F)). It is easy to 

check that j" K is closed under j(F). Letting X = j" K, X n j(A) = j" A. So 

A = 7rx"j(A) EN . ., 

The next two corollaries are immediate. 

Corollary 1.11. If condensation holds in M and j : lvf --+ N 1S elemen­

tary, then M ~ N. ., 

Remark: This is best possible: one cannot prove in ZFC that M = N. 

For example, assume V = L[J.Ll with K the unique measurable cardinal. We 

will see shortly that condensation holds in V". Let X -< V" be Jonsson. 

Thus IXI = K and K \ X -1= 0. The inverse of 7rx is a non-trivial elementary 

embedding j : M --+ V" with critical point a < K. Condensation holds in 

M. Mis cofinal in V". And M -1= V" since a is not measurable. Stretch this 

to a class embedding using the embedding induced by J.L. 

Corollary 1.12. If condensation holds then there are no measurable cardi­

nals. ., 

Corollary 1.13. Cond(w2)+2w1 = W2 implies that there are no precipitious 

ideals on WI . 

Proof. Let I be a countably complete ideal on WI and let j : V --+ M = 

VW1IG be the generic embedding. Suppose that M is well-founded. Then 

W2 v ~ j(wl V) < j(W2 V) < W3 v, since 2W1 = W2 . In V , let A ~ W2 code a 

well-ordering of length a E (j (W2 V), W3 V). Since j (W2 V) is a cardinal in M , 

by the preceding inequality A rt. M. Hence Cond(A) must fail in V . ., 
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§1.3 Two examples 

The rest of this section is given to discussion of two examples: briefly, 

condensation in L[Jl]' and in more detail, condensation in HODL(R) under 

suitable hypotheses. 

Example 1. In L[Jl] the following hold: 

(1) Cond(V,,+d 

(2) -,Cond(Jl). 

L[Jl] F -,Cond(Jl) by lemma 1.10 (here regarding Jl = Jl n L[Jl] E L[Jl]). 

Digression: one may take the statement Cond(Jl) to be Cond(A) for any 

transitive structure A in L[Jl] such that L[Jl] = L[A]. To be specific, take the 

simplest. Let A = Jl U Ii and A = (A, E). Then L[Jl] F -,Cond(A). Since AC 

holds in L[Jl] and L[Jl] F 2" = Ii+ , equivalently L[Jl] F -,Cond(I\:+, D) for 

any D ~ I\:+L[I') in L[Jl] which codes Jl. Although, in general there seems no 

reason to suppose that the failure of condensation for every set of ordinals 

coding a set S implies the failure of condensation for S (or for TC(S)) . Thus 

one might ask the following: 

QUESTION. 13 it consistent that Cond(P(I\:)) holds and Cond(A) fails for 

every set of ordinals coding P( 1\:), for some I\:? 

Choice would have to fail in L(P(I\:)) in a model giving a positive answer. 

For Cond(V,,+d, first argue that Cond(Va) holds in L[Jl] for 0' < Ii. This 

is an easy application of techniques of Kunen [K]. Let B > I\: be large, and 

Va E X -: Le[Jl], 0' < Ii. Let 7r = trx : X ----+ Li/[p], Li/[p] is clearly 

iterable. So let 8 > 1\:+ be regular and iterate L[Jl] and Li/[p] up to L[F6] and 

L-y[F6] respectively, where F6 is the club filter on 8. Since 0' < Ii, Li/[p] F 
\7r(Va)\ < 7r(Ii). So 7r(V,,) is fixed in the iteration of Li/[p], hence an element 

of L-y[F6] ~ L[F6] ~ L[Jl] . This argument is independent of setting. In 

particular it holds in generic extensions of L [Jl]. So L [Jl] F Va < Ii C ond( Va ). 

Now let j : L[Jl] ----+ L[j(Jl)] be the ultrapower embedding. L[j(Jl)] F Va < 
j(Ii) Cond(Va). Since Ii + 1 < j(Ii), L[j(Jl)] F Cond(V,,+l) ' By absoluteness 
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L[J.l] F Cond(V:~~I')J) . Finally, Cond(V~~I) = Cond(V:~~I')J) . SO L[J.lJ F 
Cond(V,,+1 ). 

Applying theorem 1.7.1 , the GCH holds for cardinals .A ~ /'i, in L[J.l] . The 

usual argument that the GCH holds in L[J.l] for .A 2: /'i, establishes that for 

.A 2: /'i" /'i,-Cond(P(.A)) holds . Note the duplication at /'i,. 

Example 2. Let ('J) be the following statement: V = L(JR) + Scalep::i)+ 

There are no uncountable sequences of reals . With ZF + DC as background 

theory, ('J) implies that HOD F Cond(HOD,,), where /'i, = WI and HOD" = 

HOD n V" . 

Thus for the rest of this discussion tend to assume Z F + DC is in effect . 

"Scale( L:i)" is the statement that every L:i relation on JR has a ~i-scale . It 

is a direct consequence of Scale(L:i) that every L:i set is the projection of a 

tree in HOD. That is , if A ~ JR is L:i, then there is a tree T ~ (w x .A) <w for 

some.A with T E HOD and A = p[T] = {x E Ww I ~f : W --+ .A. "In (x r n, f r 
n) E T} . (And something similar goes for L:i relations A ~ JRn . We identify 

JR with w w .) In other words every L:i set is Suslin over HOD . (Assuming 

V = L(JR) , Scale(L:i) is equivalent to the statement that every L:i set is 

Suslin over HOD.) For the needed background from descriptive set theory 

see [M], [M-S], [S]. 

It might be worthwhile to put things somewhat into context before pro­

ceeding with the argument. Woodin has proved that 'J is equivalent to 

ADL(JR). Assuming ADL(JR), HOD and L[J.l] are alike in that condensa­

tion holds up to the least measurable. HOD is the richer model, of course. 

Woodin has shown that () is Woodin in HOD, where () is the supremum of 

order-types of prewellorderings of JR. HODwl is an analogue of LWI corre­

sponding to the pointclass L:i. The fact that HODwl is a model of conden­

sation supports the analogy. 

Assume 'J and let /'i, = WI' Since there are no uncountable sequences of 

reals, /'i, is inaccessible in HOD. HOD" F ZFC , hence can be identified 

with its sets of ordinals . Also, if P E HOD" then there are filters G ~ P 

generic over HOD below any condition. It is left to the reader to verify 
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that sets of reals claimed to be I:i below really are. This is straightforward 

using reflection in the L(IR)-hierarchy and section 1 of [S], in particular that 

(I:i)L(IR) = I:l (L(IR), {!R})- i.e., in L(!R), I:i sets of reals are those which 

are I:l definable with IR as a parameter. 

Choose a reasonable coding of countable ordinals and their subsets by 

reals: II~ sets W , C coding countable ordinals and their subsets respectively. 

If x E W let (J;c. be the ordinal coded by x . If x E C let U;c. be the set 

coded by x. Let H = {x E C I U;c. E HOD}. H is a I:i set of reals which 

codes HOD n [K]<" (essentially HOD,,). Let <OD be the well-ordering 

of ordinal definable sets given by: U <OD V iff for every (cx,(J,¢) with 

V = D(cx,(3,¢) there is (cx ' ,(3' ,¢' ) <lex (cx ,(3,¢) with U = D (cx' ,(3' ,¢' ) 

where D(cx,(3,¢) = {x I Lo( !R) F ¢(x,(3)}. (Formulas ¢ are identified with 

elements of w in a suitable way.) <OD induces a I:i prewellordering on H by 

x :S y iff x, y E H , and Ux :SOD Uy. Also, there is a IIi rela tion :S* such that 

y E H implies that {x I x :S * y} = {x I x :S y} C; H. Thus :S, in turn, yields 

a I:i-norm on H , ¢ : H ---+ A, for some A. (See [M]. ) Define A C; !R2 by 

(x, z) E A iff z codes an initial segment ofP«(3x)nHOD under :SOD. A is I:i­

To see this let (z )n( k) = z( (-, .)), (-, .) a recursive pairing function. (x, z) E A 

iff Vn [U(Z)n E H & Vy(Uy C; (3x & y :S* (z) n ---+ 3mUy = U(Z)m)] ' By 

Scale(I:i) there is a tree T C; (w 2 X A)<w for some A with A = p[T]. 

Let 8 > K be large and let K, T E X ~ HOD6 , 7r : X ---+ M, 7r(K, A, T ) = 
(~,~, T ) and M = 7r(HOD,,) . M is a transitive model of ZFC, hence can 

be identified with its sets of ordinals. Under this identification: 

Claim. M is an initial segment of U{J<;c P «(3) n HOD under <OD · 

Let P{J = Coll(w , (3) and If-{J be the associated forcing relation. We have 

HOD F V(3 < K,U C; (3 .31' If--y (3x ,z,n. (3 = (3x & (x,z) E p[T] & U = 
U(Z)n)' To see this let l' = (2{J) HOD and G be P-y=generic over HOD. In 

HOD[G] pick x coding (3 and z coding P«(3) n HOD. Then (x, z) E p[T] . 

Hence by absoluteness, HOD[G] F (x, z) E p[T]. (T(x, z) is well-founded iff 

well-founded in HOD[G] . And (x, z) E p[T] iff T(x , z) is not well-founded . 

T(x ,z) = {s E A<w I (x f I(s),z f I(s),s) E T} .) Thus M F V(3 < ~,U C; 
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f3. 3{11-,. (3x ,z,n. f3 = f3r & (x,z) E p[T] & U = U(Z)n). Let U E M, 

U ~ f3 < K. Pick a suitable { < K and let G be P ,.-generic over M. In 

M[G] pick (x, z) E p[T] with U = U(Z)n for some n. Let f: w --+ >. witness 

(x, z) E p[T]. Define f : W --+ A by fen) = 7r- 1Cf(n)). Applying 7r-
1 

pointwise for all n, (x r n,z r n,f r n) E T. Thus (x,z) E p[T] = A. So 

(z)n E Hand U = U(Z)n E HOD . At this point we have M ~ HOD . Now 

let V ~ f3' < K, V E HOD , V <OD U. Clearly one can take f3 > f3' above. 

Thus for some m, U(Z)m = V . So V E M[G]. But this does not depend on 

the particular generic G chosen. Thus V E M and the claim is established. 

It is immediate from the claim that ME HOD. That HOD F Cond(HOD,, ) 

follows using lemma 1.4, since IR \ HOD i- 0. 
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Section 2 

In this section we present the main result of th is thesis, theorem 2.2, that 

condensation implies O. The argument supplies a new proof of lemma 1.6. 

Also, we discuss the relationship between condensation and 0* , and present 

a gap-2 version of 0* which implies Cond(w2)' 

If I\. is a regular cardinal and E <; I\. is stationary, recall that 01< (E) asserts 

that there is a sequence (Sa 1 a < 1\.) such that (1) for all a, Sol <; a and 

(2) for every A <; 1\., {a EEl A n a = Sol} is stationary in 1\.. 01< = 0,, (1\.) . 

If I\. = WI the subscript is supressed. O,,(E) is equivalent to the assertion 

that there is a sequence (Sa 1 a < K) such that (1) for all a, Sol <; p ea) and 

ISal :S a and (2) for every A <; 1\., {a EEl A n a E Sol} is stationary in K 

[D]. 

Let A = (A, E, ... ) be a structure with A transitive. For A , F E X let 

7rx : X --+ Mx be the transitive collapse of X, Ax = 7rx(A), Fx = 7rx(F) . 

The next lemma is just a special case of lemma 1.1. 

Lemma 2.1. A33ume Cond(A; F ). Let 8 be 3uch that Ve F Cond(A; F )+ T 

with T a 3ufficiently 3trong fragment of ZFC. If A , F E X <; Y and X, Y -< 
Ve then Ax E My. 

Proof. Let X = 7rY"X. My F Cond(Ay;Fy) + T and X n Ay is closed 

under Fy. Applying lemma 1.1 (and the remark following its proof) with 

M = My we must have Ax = 7r x (Ay ) E My. ., 

Theorem 2.2. Let <l be a well-ordering of HW2 of minimal order-type and 

A = (Hw21 <l). A33ume Cond(A) . Th en for every 3tationary E <; WI, O(E) 

hold3. 

Proof. By theorem 1.7, 2w, = W2' SO IHw21 = W2 and <l has order-type W2' 

Every initial segment of <l is an element of H W2 ' 

Let F : H::'w --+ HW2 witness Cond(A) and take Ve as in lemma 2.1, with 

cf(8) > WI. Let H : Ve<w --+ Ve be a skolem function for (Ve, {A , F} ). So 

if X E C H then A , FE X -< Ve. H can be chosen so that for any X <; Ve, 
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clH(X) = H"X<w. Let C = {X E [Vu]W I X -( (Vu,H)}. C is club in [Vu]w. 

If X E C then X E CH, X n HW2 E CF n [HW2 ]W and X n WI is an ordinal 

ax < WI· 

For X -( Vulet X+ = {J(ax) I j E W1VnX}. If X E C then X+ = 

clH(X U {ax}). X+ ~ clH(X u {ax}) is clear. For the reverse inclusion 

let P E [Vu]<w and define jp(a) = clH(pU {a}) for a < WI. jp E Vu since 

cj(B) > WI . If P EX E C then jp E X . Now let u E clH(X U {ax}) = 

H"(X U {ax} )<w . Then u = H(s) for some s E (p U {ax} )<w with p EX. 

Thus u E jp( ax) E X+ . Furthermore, each jp( a) is countable. So there is 

agE X such that for all a < WI, g(a) : W ~ jp(a). Then g(ax) E X+ . 

Also W ~ X ~ X+ . Thus jp(ax) ~ X+ and u E X+. 

It follows that if X E C then A ,F E X+ -( Vu. Hence by lemma 2.1, 

for X E C, Ax E Mx+. Thus Ax = 7rx+(J(ax)) for some j E X . Let 

a = ax, Ax = (Ax,<lx). By elementarity j(a) = (AO',<lo) where Ao F= 
a = WI + "J am H W2 " . <lo well-orders Ao and every initial segment of 

<lo is an element of Ao. Also a is countable in X+ . So 7rx+ fixes every 

element of Ao n X+. So Ao n X+ is a <lo-initial segment of Ao and Ax = 
7r x+(J(a)) = j(a) I X+ = (Ao n X+, <lo I ax+) where <lo I f3 is the length 

f3 initial segment of <lo . (Note: possibly Ao is countable, in which case 

7rx+(J(a)) = j(a) = Ax. We cannot, at t l i point, prove that Ao is 

countable, however. It is clear that e( <lo) :S WI . Whether e( <lo) < WI 

relates to the question of whether condensation implies 0·. See theorem 

2.4). 

Let E ~ WI be stationary. The set So = {X E C I ax E E} is stationary 

in [Vu]w. By Fodor's theorem there is a single j and a stationary S ~ So 

such that for XES, Ax = 7r;u(J(ax )) . Define a O(E) sequence using this 

j in the usual way: given 5 r a let (50' Co) be the <lo-least pair of subsets 

of a such that Co is club in a and f3 E CO' n E implies that 50 n f3 -j. 5{3, 

if such exists, and 0 otherwise. Let 5 = (50 I a < WI) . Suppose that 5 

fails to be a O(E) sequence. Let (U, D) be the <l-least counterexample. Take 

XES with 5,U,D,E E X . Then X F= "(U,D) is the <l-least pair showing 

that 5 is not O(E)." So Mx F= " (Una,Dna) is the <lx-least pair showing 
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that S r a is not O(E n a)," where a = ax . Since XES, <lx is an initial 

segment of <lao Thus (U n a, Dna) satisfies the definition of (S"t> Co). So 

Una = So. On the other hand, since DE XES, a E D n E, contradicting 

the choice of U and D. So S is a O(E) sequence. ., 

Remark: One can avoid the use of X+ above (and hence the need to 

assume that cf(8) > wd as follows. Let X· = clH(X U {ax}). Then 

X <;;: x· and A,F E x· -< Vo. By lemma 2.1 , Ax = 7rx.(H(s» for some 

S E (X U {ax})<"'. For some p EX, s E (pU {ax})<"' . Thus, although 

s ¢ X, there is a parameter matix m E X such that s = m( ax). Fix this m 

on a stationary subset of So , and define f on WI by f(a) = H(m(a» . Then 

f can be used as above to define a O(E) sequence. 

Theorem 202(b). Let" be a regular cardinal and <l be a well-ordering of 

H,,+ of minimal order-type. Let A = (H,,+, <l) and a3.mme < ,, -Cond(A ) 

hold3. Then for every 3tationary E <;;: ", O,,(E) hold3. 

Proof. The proof, with the obvious changes, is identical. In choosing Cone 

must stipulate that X n " is an ordinal. ., 

Corollary 2.3. A33ume Cond(P(A». Then for every regular K < A and 

3tationary E <;;: " , O,,(E) hold3. ., 

The proof of 2.2 contains a proof that Cond(H"" , <l) + 2"'1 = W2 implies 

CH. This by itself is no improvement on theorem 1.7 which assumes only 

Cond(P(w». But the argument is of a different type. In fact the method of 

argument supplies another proof of lemma 1.6 (hence, that Cond(P(w» is 

suffici ent for C H). 

Proof of lemma 1.6 (3rd). Let a < WI, A <;;: P(a) and assume Cond(A ). 

The only new observation needed is that if R is a relation on A, then also 

Cond(R) holds. (This is not necessarily true if a 2 WI. E.g., if there is an 

inner model with a measurable cardinal then the measure in L[fll gives a 

counterexample. The large cardinal assumption is probably irrelevant .) To 

see this let R <;;: An and choose F witnessing Cond(A) so that if X E CF 

then X is transitive. Let R, A, F E X -< Vo . Since 7r X is the identity on 
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Pea) we have 7rx(R) = {a I a ERn X} = {a I a ERn (An n X)} = {a I 

a ERn (A n x)n}. Thus 7rx(R) is definable from R and A n X = 7rx(A). 

So Cond(R) holds. 

Now assume IAI ~ W2. Let <l be a well-ordering of a subset of A of length 

W2' By the preceding Cond( <l) holds. As in the proof of 2.2 find C C; [V8]W 

such that X E C implies that <l,F E X+ -( V8 so that <lx= 7rx(<l) E Mx+ . 

So there is an f E X such that <lx= 7rx+(f(ax» = f(ax) n X+. Since 

Mx F ot( <lx) = W2 and ax is countable in M x +, Mx+ F ot( <lx) ::; WI' 

Thus by elementari ty f (a x) = <l0' x orders a subset of P( a) and ot(f (a x» ::; 

WI. Now fix f on a stationary set S. W .l.o.g., for all a ::; WI, If(a)1 ::; WI . 

Let a E fldC<l). Take XES with a E X. Then a E fld(<lO'x) . So 

f ld ( <l) C; U {J ld ( <l0') I a < wd· This implies that I <l I = WI contradicting 

the choice of <l. Thus IAI ::; WI' .., 

Let K, be a regular cardinal , F a normal filter on K, . E C; K, is F -positiv e 

if K. \ E ~ F. O*(F) is the statement: there is a sequence (So I a < K.) 

such that (1) for all a < K,,50' C; pea) and 150'1::; a, and (2) for all A C; K" 

{a I A n a E Sa} E F. O~ = O*(Cub,,) where Cub" is the club filter on K,. 

wCCCK.) is the statement that for every A = CA, ... ) with K.+ C; A there is 

an a such that sup{otCX n K,+) I X -( A & X n K, = a} ~ a+. wCC(K.) is 

the weak Chang conjecture for K,. wCC is WCC(WI)' 

It is easy to see that for every normal filter F on K, and F-positive E , 

O~ ==} O*(F) ==} O,,(E) ==} 0". Here are some facts relating O~ and 

wCC(K.). (See [B], [D-KJ, [D-L].) 

(1) wCC(K,) implies ...,O~. 

(2) Assuming V = L, wCC( K.) iff ...,O~ iff K, is ineffable. 

(3) If K, ~ W2 is a successor cardinal and wCC( K,) holds, then at exists. 

As a corollary to the proof of 2.2 we have: 

Theorem 2.4. Let A be as in 2.2. Assume Cond(A) and ...,wCC. Then 

for every stationary E C; WI there is a normal filter F such that E E F and 

O*(F) holds. 
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Proof. Take f as In the proof of 2.2. So on a stationary set S ~ So = 

{X I ax E E}, Ax = 7rx+(f(ax)). Let £ = {p(CA nS) I A ~ wd where 

C A = {X I A E X} and p(U) = {ax I X E U}. Then £ generates a non­

trivial normal filter F on WI with E E F. p(CA n S) ~ peS) ~ peSo) = 
E. So E E:F. To check that F is normal let Ba E F for a < WI and 

B = 6aBa = {.B I .B E na<f3 Ba} · Let p(CAa n S) ~ B a. And let A 

code (Aa I a < WI) so that on a club C ~ (VB]"', A E X E C implies that 

(Aa I a < WI) E X. If X E CA n S then for a < ax, Aa E X so that 

ax E p(CAa n S) E B a. Thus ax E B and p(CA n S) ~ B. This gives 

B E :F. F is clearly nontrivial. 

Since wCC fails, by shrinking S if necessary one can, for each a < WI, 

bound the order-type of X n W2 for XES with ax = a independently of 

X . Let b (a) give this bound. One can assume also that b E X so that 

b(ax) < ax+. So for XES, Ax = 7rx+(f(ax)) = I (ax). I can be 

chosen so that I (a) is countable for all a. It is now easy to check that 

Sa = pea) n I(a) defines a O*(F) sequence. ., 

Again nothing in this argument depends on the fact that WI is the least 

uncountable cardinal. Thus more generally: 

Theorem 2.4(b). Let A = ( H" , <J) where", i3 regular and <J i3 a well­

ordering of H" of minimal type. A33ume < ",-Cond(A) and .wCC(",). Th en 

for every 3tationary E ~ K. there i3 a normal filter F 3uch that E E F and 

O*(F) hold3. 

This is a partial converse of (1). By (2) the full converse holds in L. 

Theorem 2.4 itself is a little odd. wCC( "') is a large cardinal property in L . 

By (3), in K if wCC( "') holds then'" is at least inaccessible. And 0* holds 

(hence wC C fails ) in the model of exam pie 2 in section 1. So it seems likely 

that condensation simply refutes wCC and wCC(",+) more generally. 

0* has the following equivalent formulation: there is a sequence S = (Sa I 
a < wt) such that (1) ISol = wand (2) for every A ~ WI, {X E [H"'2]'" I 
7rx(A) E Sax} is club. Boost this a bit to get a "gap-2" strong diamond 

principle 0 2 • 
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Definition. 0 2 is the statement: there is a sequence 5 = (50/ I a < WI) such 

that (1) 150/1 = wand (2) for every A <:::; W2, {X E [HW3]W I 7rx(A) E SO/x} is 

club. 

Theorem 2.5. 

(a) L, L[J.L] F02 . 

(b) 0 2 implies Cond(w2)' 

Proof. (a) In L, let 50/ = L{3 where /3 is least such that LfJ F a is countable. 

It is easy to verify that this defines a 0 2 sequence. So turn to L[J.L]. 

Working in L[J.L]' let K be the measurable. Let F = Cubwi ' Note that 

IR <:::; L[F] . So WI L[F) = WI' For a < WI let 7]0/ be the least T/ such that 

L'I[F] F lal = W, /0/ = WI L'a [F) and let /30/ be the least /3 such that L {3 [F] F 
I/O/I = w. Take 50/ = (HC )Lpa[F). This will do. 

We show that 50/ is countable. Let a <:::; W code T ~ a. Let () > K be large 

and a E X ~ Le[J.L]' with IXI = w. 7rX : X ---+ Lo[p] with K = 7rX(K). Thus 

a < WI L/[il) < K < WI and Lo[p] is iterable. Iterate Lo[p] up to Lo[F]. Then 

{j ~ T/O/ and /0 :::; WI L6[F) = WI L,;-[il). So /0/ is countable and we may assume 

that T ~ /0/ ' So {j ~ /30 ' Now 50/ = (HC)LPa[F) <:::; (HC)L6[F) = (HC)Li[il) 

is countable. 

Let A <:::; W2 and C = {Y n HW3 I A E Y ~ Le[J.L]} . C is club in [HW3]w, 

Let X E C and X = Y n H W3 ' Ax = 7rx(A) = 7ry(A). Let a = ax = ay. 

7ry : Y ---+ Lo[p] F a = WI. Iterate this model to Lo[F] . Also Lo[F] Fa = 

WI' Let v = W2 L6 [F) = W2 L/[il). Then Ax <:::; v:::; WIL.a[F) = /0' Since v < K, 

v and Ax are fixed in the iteration of Lo[p] . So Ax E Lo[F] <:::; L{3a [F] F 
Ivl = w. It follows that Ax E 50/' So (50/ I a < WI) is 0 2

• 

(b) Let A <:::; W2 and assume C ond( A) fails. A review of the proof of lemma 

1.4 shows that for any F : W2 <w ---+ W2 there is an a (hence a stationary set 

of a) such that there is a "perfect set" of distinct images of A by X E C F 

with ax = a. So there can be no 0 2 sequence. .., 
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Section 3 

This section addresses the problem of obtaining Cond(A) by forcing . One 

would like, assuming GCH , to add Cond(A) with set forcing, without col­

lapsing cardinals. The immediate motivation for this is corollary 1.13. A 

small forcing notion which adds Cond(w2) + 2w , = W2 shows that the ex­

istence of a precipitous ideal is not a consequence of large cardinal axioms. 

This problem has been attacked from more than one direction now. And 

to our knowledge is still open. Thus we speculate that the difficulty of this 

problem is related to the difficulty of forcing Cond(A). But the matter of 

forcing Cond( A) retains its interest in spite of this question about precipitous 

ideals. It was raised in a slightly different guise in Lee Stanley 's thesis [Stn] . 

Stanley shows how to force the existence of higher-gap morasses, noting that 

these forced morasses lack some of the properties of the "natural" morasses 

which can be constructed in L, f{ and higher core models. (See [W].) These 

properties are precisely the ones needed to verify that the forced morasses 

have condensation. This is notable since a gap-2 morass at WI which has 

condensation kills all precipitous ideals on WI. 

Jensen's coding theorem shows that condensation can be added globally 

without collapsing cardinals, assuming eCHo The argument is essentially 

top down or "Easton style" using a class partial order to produce a model 

of V = L[a], a <; W. The basic strategy is to code A <; 1\:+ by B <; 1\:, in the 

sense that A E L[B] . The distributivity arguments involved in adding this B 

require the assumption V = L[A], hence the success of coding from 00 down 

to 1\:+. Some such assumption is evidently necessary. For example, if >. is 

measurable, I\: < >. and A <; 1\:+ is such that (I\:+)L[AJ = 1\:+, then there is no 

P E VA which adds B <; I\: with A E L[B] without collapsing 1\:+. The reason 

is that BI exists after forcing with P . So (I\:+)v = (I\:+)L[AJ S; (1\:+)L[8J < 
(1\:+) V[GJ. Thus one cannot in general apply the preceding strategy locally to 

add Cond(A). On the other hand if there is an object C with condensation 

which computes that 1\:+ is "accessible", one might try to add Cond(A) for 

A <; 1\:+ by reworking the coding relative to C. 
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§3.1 Coding to add Cond(A). 

Recall almost disjoint (adj) coding. Let b = (b" I v < 11:+) be an almost 

disjoint sequence of subsets of 11:: if v t J-l then Ib" n bl'l < 11:. Let P consist 

of pairs (b, u) with b ~ 11:, U ~ 11:+ and Ibl, lui < 11:. And let (b, u) SA (b, u) if 

b ~e b, u ~ u and for v E unA, (b\b)nbv = 0. Let PA = P(b, A) = (P, SA). 

PA is II:-closed and, if 11:<1< = 11:, satisfies the II:+-c.c. PA adds a set B ~ II: 

such that v E A iff IB n b" I < 11:. If this last condition is fulfilled , say that 

the pair (b , B) codes A. 

Lemma 3.1. If (b , B ) ha3 conden3ation and code3 A, then A ha3 conden­

Mtion. 

Proof. A E L[b , B] . -l 

Lemma 3.2. (GCH) Let bl, ... , bn be adj 3equences with conden3ation, 

bk = (b~ I v < Wk+I) , bt ~ Wk. Let A ~ Wn+l. Taking Bn+1 = A , supp03e 

that Bk i3 P(b k , Bk+d-generic over V[Bn , . . . , Bk+d, 1 < II: S n. then A 

ha3 conden3ation in V[Bn, . .. , Bd. 

Proof. By induction working in V[Bn, ... , Bd. BI ~ WI has condensation. 

Assume B k has condensation. (b k , B k) codes B k+ I . SO B k+ I has condensa­

tion by 3.1. -l 

Lemma 3.3. (CCH) A33ume that W2 , . . . ,Wn+1 are accessible in LICl for 

30me C such that Cond(C) hold3. Then for A ~ Wn+1 there i3 a p.o. P 

such that if G is P-generic over V , then V[G] F Cond(A) and P preJerveJ 

cardinalJ. 

Proof. Let Wi+1 = (tSt)L[Cl, 1 SiS n. Choose a ~ Wn such that for 

1 SiS n , ItS i IL[anw;J = Wi and let ai = a n Wi. L[C, ail correctly computes 

Wi+l. So there is an adj sequence b i E L[ C, ad for coding subsets of Wi+1 by 

subsets of Wi. Note Cond(b l ) holds. At this point one could iterate lemma 

3.2 getting Cond(ai) hence Cond(b i ) successively. But this is inefficient . 

Instead just code from Wn+1 to WI using the bi 'S. Code A by Bn ~ Wn using 

bn E L[C, an] . Then code the pair (ak+l, Bk+d by Bk using bk E L[C, ak] for 

1 S k < n. After n steps one has BI ~ WI such that A E L[C, aI, Bd . Since 
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C has condensation and aI, BI <;;: WI, (C, aI, Bd has condensation. Thus 

Cond(A) holds. The required P is the finite iteration which accomplishes 

this. ..., 

Lemma 3.3 can be improved upon considerably in two ways. The coding 

can be pushed past W W ' And the condition "/\:+ is accessible in L[C]" can be 

replaced by the condition: for some B, 

The next two lemmas give examples. 

Lemma 3.4. (GCH) A33ume Cond(C) and that for n < w, Wn i3 acce33t­

ble in L[C] . Then for any A <;;: Ww , there i3 a partial order P which add3 

Cond(A) and pre3erve3 cardinal3. 

Proof. One can assume that L[A n wn] correctly computes Wn and that 

L[A n wn] F= 16n l = Wn, where Wn+l = (6;!")L[CI. Let An = An Wn. So 

L[C, An] correctly computes Wn+I' And there is an adj sequence bn = (b~ I 
v < Wn+l) E L[C, An] for coding subsets of Wn+1 by subsets of W n. Let bn 

be the <L[c,An]"least such sequence. 

Define P as follows. A condition is P = (Pn I 1 :s n < w), pn = 
(bn , un) with bn <;;: Wn, Un <;;: Wn+l and Ibnl,lunl < wn. p:S P iff for all 

n, Pn :S(bn+1,An+1) Pn - i.e. , for all n, 

(1) bn <;;:e bn,u n <;;:un 

(2) If v E Un n (bn+I,An+1 ) then bn \ bn n b~ = 0 

where (5, T) = {21] 11] E 5} U {21] + 1 11] E T}. P is as required. 

The following sets are dense. For v < Wn+b E~ = {p I v E un}. For 

1] < Wn,v < wn+l,D~'v = {p I supbn > 1] and if v rt (bn+I,An+d then bn n 
b~ \ 1] # 0}. 

If p, P agree in their first components they are compatible. Thus E~ IS 

dense. 

Let PEP, 1] < Wn, V < Wn+l. Let Pk = Pk if k # n and let Un = Un. 

If V rt (bn+l , A n+I ), let T = v. Otherwise let T E Wn+l \ (bn+1 , A n+1 ) be 

any ordinal. b~ is adj from each b~ , v # To Let 1] v = SUp (b~ n b~) and 
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ij = SUp{T)v I v E Un n (bn+I,An+I)}' Since Iunl < wn,ij < Wn. Now take 

~ E b~, ~ > T), ij and let bn = bn U {o. Then p :s p and p E D~'v. 

Let G be P-generic, Bn = U{(Pn)o I pEG} . Using the density of E~ 

and D~'v it is easy to check that for all n, (bn, Bn) codes (Bn+b A n+I). If 

v E (Bn+I' A n+l ) pick pEG with v E (bn+I , A n+l ) and pi :s p,pl E G n E~. 
If p:S pi then (bn,u n ) ::;(b~+l,An+l) (b~,u~). So since v E Un n (b'n+I,A n+I ), 

bnnb~ ~ supb~. Thus Bnnb~ ~ b~ and IBnnb~1 < wn. If v ~ (Bn+I' A n+I ), 

let T) < Wn and take pEG n D~' v. Then bn n b~ \ T) -I 0. Thus Bn n b~ is 

unbounded in W n . 

A E L[C,AI,Bd. To see this, working in L[C,AI,BI] recursively decode 

the sequence ((Bn, An) 11 :s n < w) using the fact that bn is < L[c,Antleast, 

and that (bn,Bn) codes (Bn+I,A n+I ). So the sequence is in L[C,AI,Bd. 

Then obviously T) E A iff 2TJ + 1 E (Bn' An) whenever TJ < Wn. As before , 

since C has condensation and AI,BI ~ WI, (C,AI,B I) has condensation. 

Since A E L[C, AI , Bd , Cond(A) holds. 

It remains to show that P preserves cardinals. Let Pn = {p r [n,w) I p E 

P} and :Sn=:S r Pn. For D ~ Wn, let Pfj = {p r nip E P} and define 

:So on Pfj by p :So p iff (1) for 1 :s i < n - I, (bi , Ui) :S(i;,+l,A,+l) (bi , Ui) 

and (2) (bn-I,un-d :S(D,An) (bn-I,un-d. Now let p(n) consist of those 

pEP with SUp Un_1 < SUp (bn, 0). p(n) is dense in P . To see this, let 

pEP. c = Wn \ U{b~ I v E un} is unbounded in Wn since Iunl < Wn and 

(b~ I v < Wn+l) is adj. Let 8 be least in c \ SUp Un-I, b~ = bn U {8}, 

p~ = Pk if k -I n, and p~ = (b'n ' un) . Then pi E p(n). For v E Un, 

b~ \ bn n b~ = {8} n b~ = 0. So p~ :S(bn+1 ,An+l) Pn . Since pi differs from p 

only in the n-th coordinate, pi :s p. So p(n) is dense. Claim: for p,p E p(n), 

(1) p r [n,w) II-Pn p r n E PIL, and 

(2) p:S P iff p r [n,w) :Sn P r [n ,w) and p r [n,w) II-Pn P r n :SEn p r n. 

(1) is trivial. For (2), let p :s p. p r [n,w) :Sn P r [n,w) is clear. p 

[n, w) II- Pn P r n :SEn p r n will hold if for all q :Sn p r [n , w), letting 

b~ = (qn)O, Pn-I :S(b~,An) Pn-I' Note that if p E p(n) and B 2. bn, then 

Un-I n (B,An) = Un-I n (bn,An) . Thus for any pEP, Pn-I :S(B,An) 

Pn-I iff Pn-I :S(bn,An) Pn-I· But if q :Sn p r [n,w) , then b~ 2. bn. So 
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pn-I :S(b~,An) Pn-I· For the converse, p r [n,w) If-Pn P r n :San P r n 

implies that pn-I :S(bnoAn) Pn-I, hence that pn-I :S(i;noAn) Pn-I. Adding the 

condition p r [n,w) :Sn P r [n,w) will ensure that p:S p. The claim follows. 

So for every n, forcing with P is equivalent to forcing with the two-step 

iteration Pn * PIt. Pn is wn-closed. And since conditions in PJj are com­

patible if their first components are, Pn If- PIt has the wn-c.c. So Wn is not 

collapsed. Since for all n < W, Wn is not collapsed, neither is WW . And P has 

the Ww+I-C.C. So cardinals> Ww are preserved. -1 

Lemma 3.5. (GCH) Assume Cond(C) . Let" = W2 and assume that for 

some B ~ "+, (*)~,B holds . Then for any A ~ W3 there is a P which adds 

Cond(A) and preserves cardinals. 

Proof. One can assume that A E L[C, B] and that H" = L,,[B n "-1- The 

first step is to add D ~ K. such that B E L[C, D] . Then by lemma 3.6 below 

one can add Cond(D ). In the resulting model Cond(A) will hold. 

Add D exactly as in [B-J-W] (p.9ff). In L[C,B n K.]let h : H" --+ K. 

be a bijection. For any b ~ K. let S(b) = {h(b n 8) I 8 < K.}. If b =I b' , 

then S(b) n S(b' ) is bounded in K.. Define a sequence (b. I 8 < K.+), b. ~ K., 

as follows. Given (b" I lJ < 8), let b. be the <L[c,Bnwleast b ~ K. such 

that b =I b" for lJ < 8. b6 exists since b r 8 is uniformly definable from C 

and B n 8 and L[C, B n 8] F 181 = K.. Now let D code B relative to the 

sequence ( S (b.) I 8 < K.). Then B E L[C, B n K., D] . To see this, working 

in L[C, B n K., DJ, B n K. is available. Given B n 8, 8 E B iff D n S(b.) is 

bounded. And b. is uniformly defined from B n 8 and C . So B n 8 + 1 is 

decided. Since the definitions are uniform, the sequence (B n 8 I 8 < K.+) is 

in L[C, B n K. , D]. Thus B E L[C, B n K., D] . Now code B n K. into D to get 

the required subset of K.. -1 

The last two arguments are just direct adaptations from [B-J -W]. The 

point here is that under certain conditions these arguments can be localized 

to add condensation. Here is a guess at a more general fact of this sort: 

Conjecture. (GCH) Assume Cond(C) . Let A be a cardinal. Suppose that 

there is a B such that for every cardinal K. < A, (* )~,B holds. Then for 
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any A ~ ,\ there 13 a partial order P which add3 Cond(A) and pre3erve3 

cardinal3. 

"Proof". It is the need to ensure (* )~,A in order to code from ,,+ to " which 

is responsible for introducing the assumption V = L[A] in [B-J-W] . 

We haven't seen any reason to develop this argument . Our immediate goal 

has been to force Cond(A ) for some A ~ W3 which computes W3 correctly 

thereby killing all precipitous ideals on WI. SO we are more interested in the 

question: when does C exist? Or, are there large cardinal assumptions which 

imply that the conditions of lemma 3.5 cannot be satisfied? 

§3.2 Condensation and morasses. 

Given some condensation one can add more. For A ~ W2 condensation 

can be added outright . An (W I , I)-morass has condensation. Only "coarse" 

properties of the morass are needed for this. The partial order used in the 

following argument is distilled from the one Jensen used to add an (W I , 1)­

morass [Stn] . It adds what we will call an (WI, 1, A)-weak-morass, for the 

purpose of discussion later. 

Lemma 3.6. (CH) For any A ~ W2 there i3 a partial order P 3uch that if 

G i3 P-generic then V[G] F Cond(A) , and P pre3erve3 cardinal3. 

Proof. Fix A ~ W2. Let F : H:5:,w --+ Hw, be a skolem function for Hw, 

and CF = {X n W2 IIXI = wand X is closed under F} . For a < WI, let 

C'F = {X E CF I ax = a} where, as before, ax = xnwi. Let Ax = 7rx"A , 

QA ,F = Q = {Ax I X E CF} , and Qa = {Ax I X E C'F} . For a < WI and 

II E (W I,W2), let X~ = clF(a U {II}) , D" = {a I X~ n WI = a}, 7r~ = 7rx~, 

and A~ = 7r~" A . Note that ~ and ~e agree on C'F, and that (C'F,~) is a 

tree. Also, for each a, (Qa, ~e) is a tree with height::; WI. 

Define P as follows. Conditions are pairs p = (s, U) satisfying: 

(1) s : d --+ Q where d is a closed and bounded subset of WI, and for 

a E d, s(a) is a branch in Qa of length < WI. Let a p = max(d). 
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(2) U ~ U{D" x {v} I v E (WI,W2)}. 

(3) 181 = lUI = w. 

(4) If (a, v) E U then A~ E sea). 

(5) If (a,v) E U then (ap,v) E U. And if a ~ fJ ~ a p and fJ E dn D" 

then (fJ,v) E U. 

(s, U) ~ (t, V) ift ~ s and V ~ U. Any two conditions (8, U) and (s, V) are 

compatible. So P has the W2-C.C. since C H holds. Also P is wI-dense. So 

cardinals are preserved. In fact P has an wI-closed dense subset p.. The 

conditions in p. satisfy the additional constraint: 

(6) If v, v' E UI and v < v' then v E X~' , 
p 

where UI = {v I 3a (a, v) E U}. This ensures that if Po ~ PI ~ ... , 

a = supnapn and v,v' E (Un Un), with v < v', then v E X~'. Hence 

A~ ~e A~'. And Un Sn can be extended to a condition with a E dome s). 

Let G be P-generic, S = U{s I (s, U) E G for some U}, U = U{U I 
(8,U) E G for some s}. Then S: D --+ Q where D ~ WI is club and for 

a < WI, Sea ) is a branch in Qo of length < WI. The key property of S which 

entails Cond(A) is this : letting Ao = US(a), 

(*) for all v E (WI,W2), {a I A~ ~e Ao} contains a club. 

To see that (*) implies Cond(A), let B" = {a I A~ ~e Ao}, B = (B" I 
v E (WI,W2») and let F,A,S,B E X -< Ve. Let a = ax. If v E XnW2 

then a E B" and A~ ~e Ao . Thus Ax = U{A~ I v E X n W2} ~e Ao. To 

verify that (*) holds in V[ G], note that if P = (s, U) and (a, v) E U then 

P If- (D n D,,) \ a ~ B" . And for each v the set of P with (a, v) E U for some 

a is dense. .., 

It goes without saying by now that lemma 3.6 has the obvious "gap- I " 

generalization: 

Lemma 3.6(b). Suppose that K, is regular and ",<K = "'. For any A ~ ",+ 

there is a partial order P such that if G is P-generic then V[G] F < "'­
Cond(A), and P preserve.! cardinals. 

Remarks: (1) It is a consequence of work of Shelah and Stanley [S-Stn] 
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that, in the absence of 0#, one can force to add B ~ W3 such that (* )~;B 

holds without changing cofinalities. Thus assuming ..,0#, by lemmas 3.5 and 

3.6, one can force to add Cond(A) for any A ~ W3 without collapsing cardi­

nals. This can be improved somewhat, but again apparently short of what 

is needed to kill all precipitous ideals on WI with set forcing. 

(2) Let A" = US(a) as in the foregoing argument. Note that in V[G], the 

following holds: 

v E A iff 3h: WI ~ v. {a I ot(h"a) E A,,} contains a club. 

iff Vh: WI ~ V. {a I ot( h" a) E A,,} contains a club 

Thus A is ~I-definable over HW2 in the parameter S. (Solovay observed that 

this holds for the top of a morass.) So one cannot simply iterate the partial 

order of lemma 3.6 to add Cond(w2) without violating 2Wl = W2' 

Instead one might try to add C ond( W2) by adding C ond( A) for some A ~ 

W3 which codes A. A natural object to consider for accomplishing this is a 

gap-2 morass at WI which codes A . Unfortunately, as mentioned, generic gap-

2 morasses lack the needed condensation properties. (This point is observed 

in [Stn], p. 75f.) Short of introducing the rather elaborate definition of a 

gap-2 morass, we can indicate the problem by attempting to step-up lemma 

3.6 as follows: given A ~ [W2,W3), use 3.6(b) to obtain an (W2' 1, A)-weak­

morass. This can be coded by a set A· ~ W2. Apply 3.6 again to obtain an 

(WI, 1, A· )-weak-morass. (Though more ideas are involved, this is, roughly 

speaking, the basic strategy for adding a gap-2 morass at WI : add an (W2' 1)­

morass M, then an (WI, I)-morass which codes the bottom part of M .) One 

can extract from this a family M = (A",v I a S WI,V < W2) satisfying (1) 

for J.1- E [W2,W3), 

(*)! {v I A~ ~e AW"v} = B~ contains a club, 

and (2) for v E [WI,W2), 

(*)1 {a I (AW1 ' V)~ ~e A",;;} = Bt contains a club, 

where iJ = 7r~(v), S~ = 7r~" S, and 7r~ is the collapse of X~ = clF(U Up), 

with p a finite set of ordinals, for some suitable F. If p = {vo, ... , vd, 

X vo, ... ,v. - xP 
U - U· 
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For J.l E [wz, W3), let <l> I' be the directed system (7r~, Vl lv, v' E B! , v < v'), 

with 7r~ v' = 7r~' 0 (7r~)-1 : A~ --+ A~" The limit of this system is an initial , 
segment of A. 

Let M,A,F E Y -< Ve, Y countable. Let 0 = Oy = Y n WI ' The 

preceding conditions permit the conclusion that for J.l E [wz, W3) n Y, 7ry (<l> 1' ) 

is a directed system through the sequence (Aa ,v \ v < va), where Va = 
sup {v \ Aa,v =1= 0} < WI' And the limit of 7ry(<l>I') is an initial segment 

of 7ry(A). But this is the extent of the control the conditions exert . One 

can't conclude that the limit is also an initial segment of some target set . 

Or from another point of view, the conditions do not seem to control the 

collapse of B!. The additional structure of a gap-2 morass does not improve 

the situation. 

What is needed in place of the conditions (*)~ and (*) ~ to lift the argument 

of 3.6 is something like this : a map X >-+ Ax defined on [wz]W such that for 

J.l E [WZ,W3), 

(**) {X \ A~ ~e Ax} contains a club in [wz]w . 

h . AI' I' "A w ere , again, X = 7r X . 

§3.3 QA, F and an example. 

There are several things one can ask or say about the trees ( Q~,F, ~e) = 
Qa used in the proof of 3.6. For example wCC implies that {o \ ht(Qa) ::::: 

WI} is stationary. In the extension V[G] of 3.6 , F can be chosen so that 

each Qa is a countable well-ordering (viz., S (o» . But Cond(A) doesn't 

require this much. In fact, if 2W1 = Wz this case must be far from typical by 

the observation that it implies that A is ~l-definable over H W2 ' Assuming 

Cond(A, F) then, what are the possibilities for Qa? The next lemma is a 

precursor to lemma 1.4. To some extent it just unpacks the definition of 

Cond(A). It has as an immediate consequence that for A ~ Wz, if Cond(A ) 

fails then for any F a counterexample to Cond(Aj F ) appears with any new 

real. Let h : X >-+ A x = 7rX" A, A ~ Wz. 
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Lemma 3.7 . ..,Cond(A) iff for every F: W2<w ----+ W2 there i3 an 0 and a 

perfect 3ubtree of C'F which i3 pre3erved by h. 

Proof. Assume C'F contains a perfect subtree which is preserved by h. So 

there is an embedding e : 2<w ----+ C'F such that hoe: 2<w ----+ (Q"" ~e) 

is also tree preserving. If a E w2 n V[G] \ V, then h(Xa) rt. V, where 

Xa = U.~a e(s). So ..,Cond(A; F). 

For the converse the argument is like that of 1.4. Assume ..,Cond(A) . Let 

F : W2 <w ----+ W2. One can assume that if X is closed under F t hen X n W2 

is an ordinal and if Wj ~ X then X n W2 is an ordinal. Since ..,Cond(A; F ) 

pick P, pEP, and P-names a and T such that p II- T E C F & 7r /' A = a rt. 
V & TnW2 = o. Ifwj ~ X then 7rx".4 = AnsupX. So 0 < Wj. Now 

using the fact that p II- a rt. V , build the embedding e : 2<w ----+ C'F as in the 

proof of lemma 1.4. ., 

We conclude this section with an example running in the opposite direction 

which pu tS lemma 3.7 to a little use. GCH and <> hold in V[G]. 

Theorem 3.8. Let P be the forcing notion which add3 W2 Cohen 3ub3et3 of 

Wj. Then Cond(G) fail3 in V[G]. 

We shall need a slightly stronger version of lemma 1.9. Let F : W2 <w ----+ 

W2. For 0 < WI let G", be the following game: player I plays intervals 

In = [on' 'sn] :::; W2 and player II plays ordinals In so that 'sn < In < On+j· 

Player I moves first and wins a play iff X = clF(o U {on In < wd) ~ Un In 

and X nWj = o. 

Fact 3.9. For any F : W2 <w ----+ W2. there i3 an 0 < Wj 3uch that I wins 

the game G",. 

Proof. Suppose otherwise. For each 0, G", is determined. Let T", be a win­

ning strategy for II in G ",. Note that if T dominates T"" T is also a winning 

strategy for II in G", . So there is a single strategy which is winning for II in 

GOt for every 0 < Wj. Now let a be a winning strategy for I in the game G 

used in the proof of 1.9. Playa against T to get In = [On' 'sn], n < w. Since 
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a is winning, X = cl(an In < w) <; Un In. Let a = X nWI' Then a beats T 

in G "" Contradiction. --1 

Proof of 9.8. The idea is to verify the condition for -,Cond(G) given in lemma 

3.7. (Actually this is not quite what happens.) We can assume CH without 

loss of generality: add a single Cohen subset of WI getting C H, then W2 more. 

This is the same as just adding W2 Cohen subsets of WI. 

Let P = {p : a --+ 2 I a <; W2 & lal = w} and F be a name for a 

potential witness to Cond(G) in V[G]. By CH, let w = (w v Iv < W2) list 

[W2]w. Let q E P,8 be large and A = (Vo,{F,P,w,q}, ... ). Let C = {X--< 

A IIXI = w}, C'" = {X E C I X nWI = a}, C r W2 = {X nW2 I X E C} and 

COt r W2 = {X n W2 I X E COt}. 

H <; X n P is X -generic if H consists of compatible conditions and meets 

every dense set D E X in X - i.e., H n D n X # 0 for every DE X with D 

dense in P. If Mx is the collapse of X, then 7r X /I H is 7r X (P)-generic over 

Mx in the usual sense. 

If X --< A, G is V-generic and X n G is X-generic, then X[G] is closed 

under Fe. Here X[G] = {TC IT E v P n X}, TC = the G-interpretation of T. 

Note the following about the elements of COt . If X, Y E COt and TJ < 
W2,TJ E XnY then [TJ]WnX = [TJ]WnY . If X <; Y and v = min(Y\X) then 

XnW2 =ynvandc!(v) =WI iffXnw2 isboundedinv. SoifX <; Y , v= 

min (Y \ X) and X is bounded in v, then for every a E [W2]W n Y, a n X E X . 

Using 3.9 we can get an embedding e : 2<w --+ COt r W2 for some a with 

the following properties: 

(1) s <; t ~ e(s) <;e e(t), 

(2) e(s) n e(t) = e(u) where u = s nt, 

(3) e(s) is bounded in v = min (e(3-i) \ e(s)). 

Take X E COl such that e( s) = X n W2. X. can be chosen minimally. So 

s <; t implies X. <; Xt . By the preceding, if v = min (e(3-i) \ e(s)) then 

cf(v) =WI. And if s <; t and p E X t then pnxt EX •. 

If a E w2 let e(a) = U{e(s) I s <; a}, Xa = U{X. I s <; a}, and X = 

U{X. Is E 2<W}. For s E 2<w choose D. EX. dense in P so that if a E w2 , 

31 



(D, I s ~ a) lists all the dense subsets of P E Xa. Note Xa E COt. 

Now choose conditions P. E X.nD. all compatible so that if v = min (X.-i , X. ) 

then P.-i(V) = i. Assume this is done. Let H = {Po Is E 2<W} and P = U H . 

Ha = H n Xa = {Po I 5 ~ a} is Xa-generic, for a E w2. Let G be P-generic 

with pEG. Then H ~ G. So G n Xa is Xa-generic. Thus Xa[G] is closed 

under Fc. Also Xa[G] n W2 = e(a). Thus 7rx.[cj"G = 7re(atG, regarding 

G as a subset of W2: v E G if p(v) = 1 for some pEG. To recover a 

from 7rx.[C] = Ga proceed by induction. Suppose it has been computed that 

s ~ a. Let Vi = min (e(ri) \ e(5)). Then 7re(io)(Vo ) = 7re(il)(V,) = (3. Thus 

so ~ a iff (3 ti Ga and rl ~ a iff (3 rt. Ga. So P if- .Cand(G; F). And P :::; q 

since q E X for any X E C. The set of P which force .Cand(G; F), therefore, 

is dense. And P if- .C and( G; F). 
For s, t E 2<w let 5 -< t if e(5) < e(t) or e(5) = e(t) and 5 <lex t. Choose 

P. by induction along -<. Fix 5. By hypothesis {Pt I t -< 5} is a set of 

compatible conditions in X • . Let p = U{Pt n X. I t -< 5} . Then p EX • . 

In fact, letting 5 = s~i , we have p E X j . So dam(p) ~ v = min (X. \ Xj). 

Let q = pU {(v,i)} . q E X. extends to an element of D •. Let P. be such 

a condition. p. is clearly compatible with each Ph t -< 5. This finishes the 

argument. -1 
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