
Investigating DNA-Mediated Charge Transport by
Time-Resolved Spectroscopy

Thesis by

Eric Daniel Olmon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2012

(Defended Sept 30, 2011)



ii

© 2012

Eric Daniel Olmon

All Rights Reserved



iii

Acknowledgements

As is true for any graduate student, most of this work could not have been completed

without assistance from a large number of people. First and foremost, I want to thank my

advisor, Jackie Barton, not only for her scientific guidance and her unwavering enthusiasm,

but also for the subtle instruction she provides in the many duties of academia. Not every

graduate student is given the opportunity to communicate their research, participate in

grant writing, or critically review manuscripts, but proficiency in these areas is necessary

to succeed in the academic world. Jackie has also been a strong role model. In my future

endeavors, I will seek to emulate the tenacity with which she pursues answers to scientific

questions, the boldness with which she follows her intuition, and the graciousness she shows

even at the highest levels of professional success.

I also want to express my sincere gratitude to my thesis committee and to my col-

laborators. Although I didn’t have as much interaction with them as I would have liked, I

appreciate the input and encouragement of my committee: Harry Gray, Doug Rees, Tom

Miller, and formerly Pat Collier. My collaborator Tony Vlček introduced the Barton Group
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Abstract

In all organisms, oxidation threatens the integrity of the genome. Numerous studies have

suggested that DNA-mediated charge transport (CT) may play an important role in the

sequestration, detection, and repair of oxidative damage. To fully understand the mecha-

nism of DNA-mediated CT, it is necessary to characterize transient intermediates that arise

during the reaction and to determine the lifetimes of these intermediates. Time-resolved

spectroscopy is the most appropriate experimental method for such observations. Each

intermediate has a characteristic spectrum. By observing time-dependent changes in the

absorption spectrum of the sample, it is therefore possible to determine what species are

present at a particular time and how long it exists in solution. Experiments presented here

involve the use of time-resolved spectroscopy to better understand the process of DNA-

mediated CT.

The study of DNA-mediated CT requires a robust and consistent method for trigger-

ing the CT reaction. The metal complexes that have traditionally been used for this purpose

provide several advantages over organic phototriggers: they are synthetically versatile, they

are stable in solution, they exhibit rich photophysics, and many are strong photooxidants.

However, the spectroscopic features used to follow the photochemical processes triggered by

these probes are generally broad optical bands. These can be difficult to resolve in samples

that contain several absorbing species. For this reason, we have developed a Re photooxi-

dant bearing a set of vibrationally active carbonyl ligands that can be covalently tethered to

DNA. Unlike many absorption bands in the visible range, the vibrational absorption bands

of these ligands are narrow, well-resolved, and specific. Such probes can be used to follow

the complex photophysical pathways observed in biochemical systems with good precision,

making them useful for the study of DNA-mediated CT.
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Specifically, the complex [Re(CO)3(dppz)(py-OR)]+ (dppz = dipyrido[3,2-a:2′,3′-c]-

phenazine; py′-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA

directly from the excited state. The behavior of several covalent and noncovalent Re-DNA

constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as

well as biochemical methods, confirming the ability of the complex to trigger long-range

oxidation of DNA. Optical excitation of the complex leads to population of metal-to-ligand

charge transfer excited states and at least two distinct intraligand charge transfer excited

states. Several experimental observations are consistent with charge injection by excited

Re*. These include similarity between TRIR spectra and the spectrum of reduced Re

observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR

spectra, and the eventual formation of permanent guanine oxidation products. The majority

of reactivity occurs on the ultrafast time scale, although processes dependent on slower

conformational motions of DNA, such as the accumulation of oxidative damage at guanine,

are also observed.

The photooxidation activity of this Re complex was compared directly to that of other

metallointercalators that have been used previously in our laboratory to oxidize DNA. The

complexes [Rh(phi)2(bpy′)]3+ (phi = 9,10-phenanthrenequinone diimine; bpy′ = 4-methyl-

4′-(butyric acid)-2,2′-bipyridine), [Ir(ppy)2(dppz′)]+ (ppy = 2-phenylpyridine; dppz′ = 6-

(dipyrido[3,2-a:2′,3′-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)3(dppz)(py′-OH)]+ (py′-

OH = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA. Biochemical

studies show that upon irradiation, the three complexes oxidize guanine by long-range

DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained

by spectroelectrochemistry after bulk reduction of the free metal complexes with those ob-

tained by transient absorption (TA) spectroscopy of the conjugates suggests that excitation

of the conjugates at 355 nm results in the formation of the reduced metal states. Electro-

chemical experiments and kinetic analysis of the TA decays verify that the primary factors

responsible for the trend observed in the guanine oxidation yield of the three complexes

are the thermodynamic driving force for CT, variations in the efficiency of back electron

transfer, and coupling to DNA.
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The ability of redox-active DNA-binding proteins to act as hole sinks in DNA-

mediated CT systems was also studied by time-resolved spectroscopy. Such experiments are

designed to provide support for the utilization of DNA-mediated CT in biological systems.

In studies involving the cell cycle regulator p53, photoexcitation results in the formation of

a weak transient band at 405 nm. This band, which is not observed in samples lacking the

protein, resembles the primary spectral feature of the tyrosine cation radical. Although the

signal is weak and reproducibility is inconsistent, these results suggest that photolysis of

the sample leads to DNA-mediated oxidation of tyrosine in p53. Similar experiments were

conducted on the transcriptional activator SoxR. Here, the presence of dithionite, required

in solution to keep the protein reduced, complicates the photochemistry of the system con-

siderably. Regardless, a weak absorbance at 418 nm that develops following photolysis at

355 nm provides evidence for the DNA-mediated oxidation of the protein. The behavior

of the base excision repair protein endonuclease III was also observed in the presence of

DNA and metal complex oxidants. In flash-quench studies, addition of the protein results

in the formation of a strong negative signal at 410 nm in TA traces. In studies involving

direct photooxidation by Rh, Ir, and Re complexes, no new transients are detected upon

the addition of protein, but changes in the intensities of the resultant TA spectra and in the

steady-state absorbance spectra following photolysis indicate that DNA-mediated oxidation

of the protein may be taking place.

The experiments described here comprise several new developments in the story of

DNA-mediated CT. First, proof of concept has been given for a valuable new vibrationally-

active Re probe. Further modifications on the characteristics of this complex and further

study by time-resolved vibrational spectroscopy will allow us to observe DNA-mediated CT

with high spectral resolution. Second, comparison between this Re probe and established

photooxidants shows that the Re complex is a strong photooxidant in its own right and

that this complex can be added to our growing toolbox of CT phototriggers. Third, time-

resolved studies involving redox-active proteins have provided preliminary direct evidence

for the ability of these proteins to serve as CT probes themselves. Further refinement of

the experimental methods used in these experiments will allow us to observe such processes
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with greater sensitivity, increasing our knowledge of the mechanism and applications of

DNA-mediated CT.
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