SPATIAL AND SPECTRAL BEHAVIOR
OF
SPECKLE IN AN IMAGING SYSTEM

Thesis by

Richard Devern Samuels Melville, dJr.

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1975

(Submitted February 18 1975)



-id-

Acknowledgments

I wish to thank my thesis advisor, Dr. Nicholas George, for
his suggestion of the research topic and for his continued support and
guidance throughout the conduct of the work.

In addition, I acknowledge the continuing influence of
Professor Emeritus Austin R. Frey of the United States Naval Post-
graduate School, and I am also most grateful for the help of Professor
Charles H. Papas and Dr. William B. Bridges during the course of this
work.

I am especially grateful for the constant encouragement and
support of my wife, Jean, and the others of my family who have en-
dured substantial disruption of their lives because of my studies.

Finally, I thank the Institute, the U. S. Air Force, and the
Northrop Aircraft Corporation for the financial support I have re-

ceived.



—iii-
ABSTRACT

When coherent illumination is reflected from or transmitted
through a medium which causes random phase changes in the illumina-
tion, a random interference éattern termed speckle results.

We have studied speckle in an imaging system and have de-
scribed and measured the effect of polarization of the illumination,
the first order statistics of speckle intensity, and the autocorrela-
tion of speckle intensity as a function of space and wavelength
variables.

We have measured the relationship between the amount of
depolarization of a plane polarized input in transmission through
opal glass diffusers of various thicknesses and the effect of this
phenomenon on the first and second order statistics of speckle
intensity. A relationship between diffuser thickness and the
probability density function for speckle intensities has been
ca]cufated and measured. The autocorrelation of speckle intensi-
ties has been calculated and measured as a function of both the
spatial dimension of the speckle pattern and the wavelength of
the illumination. We find that the spatial behavior of the auto-
correlation depends upon the 1imiting aperture of the optical
system, while the wavelength dependence is a function of the
roughness of the diffuser and is only very slightly influenced by

the imaging system.
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CHAPTER 1
INTRODUCTION

1.1 Speckle

Whenever coherent ligét is reflected from or transmitted
through a random diffusing medium which is sufficiently rough so as to
produce localized phase retardations in the direction of propagation,
the wave upon leaving the medium will consist of randomized regions of
high and Tow field. A pattern of such light and dark regions due to
the interference of the various random phases exiting the diffuser we
term speckle, or a speckle pattern, Clearly, a detailed understanding
of the characteristics of speckle phenomena will be important in the
use of any coherent optical system and although speckle is described
here in terms of a visibie optical phenomenon, the same random inter-
ference effect is found in infrared optical systems, radar and
acoustic imaging or detection systems. We emphasize that speckle
results from coherent irradiation of a rough object. With normal white
Tight illumination of a diffuse surface at optical frequencies, the
phases at each point on the object are changing randomly on the order

of 10'°

times per second, thus typical viewing systems (such as the
eye) average the random phases over many fluctuations and the speckle

disappears.

1.2 Review of Speckle Studies

The random interference effect which we call speckle has been
observed and studied for many years [1,2]. The early statistical cal-

culations found in reference [1], while given in terms of acoustics,
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provide a direct basis for the theory of the statistics of speckle.

Since the invention of the laser, the widespread use of coherent
optical systems has made the study of speckle increasingly important.
Almost immediately upon the advent of the He-Ne Tlaser, speckle was
observed and reported in the literature by a number of authors [3,4,5].
An analysis was presented showing that the average size of the 1light
and dark areas in the speckle pattern is a function of the transfer
function of the viewing system [3]. It was further pointed out that
the laser speckle phenomenon is analogous to radar "clutter" which
occurs in the reflection of radar signals from raindrops or other ran-
dom media [4].

An early treatment of the statistics of laser speckle patterns
used a set of randomly positioned antennae as a model for a diffuse
surface [6]. With this model, calculations of the first and second
order statistics of specklie intensity were made. Here we also find
the first discussion of the wavelength dependence of speckle. A dif-
ferent calculation of the spatial autocorrelation function of speckle
intensity was made for coherent Tight transmitted through a pure phase
diffuser [7]. In this diffuser model, the phase of a plane wave
illumination beam is randomized by scatterers arranged in "checker-
board" fashion across the diffuser surface. The amount of phase re-
tardation for each scattering area was a random variable uniformly
distributed over 0- 27 . It was determined theoretically and experi-
mentally verified that the spatial autocorrelation in the Fresnel zone
was equal to the two-dimensional Fourier transform of the illumination

spot distribution on the diffuser surface.
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In the field of holography, speckle occurred as an unwanted
noise phenomenon, displeasing in pictorial holography and nearly
ruinous in micro-holography where the speckles are approximately the
size of the objects to be studied. Therefore, a number of workers
advanced ideas for the reduction of speckle in holography. One tech-
nique for recording a hologram with greatly reduced granulation was
that of making a superposition hologram of the same object illuminated
by light péssed through a large number of different diffusers [8].
Photographs of holograms made with a superposition of 25 different
illuminations show marked improvement in 5mage quality.
Another method, appropriate for reduction of speckle in holograms of
planar objects, such as photographic transparencies, was the use of
spatially phase modulated illumination [9]. Experimentally, signifi-
cant speckle reduction was demonstrated using a pure phase diffuser
in very close contact with the transparency to provide the spatial
phase modulation in the illumination of the object. It was also
shown theoretically that the illumination of a planar object could be
optimized to produce lTow-noise holograms [10]. A pseudo-random dif-
fuser resembling ground glass, but specifically designed with certain
constraints given by the optimization was used to modulate the phase
of the illumination. Still another technique for speckle reduction
in holograms was that of using a grating in a collimated laser beam to
provide multiple illumination of a planar transparency [11]. In this
way it was possible to reduce speckle, but still make a hologram
relatively insensitive to dust and scratches, such as one made by

diffuse illumination.
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In a study of the noise-like structure in the image of a dif-
fusely reflecting object, the diffused object was considered to be a
planar array of independent point scatterers,and from this model, the
average intensity of the image, the standard deviation of the speckle
fluctuations and the autocorrelation of image intensity were calcu-
lated [12]. Since the phases of the reflected wave were assumed to be
uniformly distributed over 0 - 27 , the average intensity and stand-
ard deviation of intensity were found to be equal. The autocorrelation
was found to be proportional to the impulse response of the image
system. Using the same physical model for a diffuser in an image sys-
tem, but mathematically modelling the diffuser as a narrow-band noise
source, the same calculations were made using linear system theory to
describe the image system [13]. The calculations made using the
linear system approach were substantially simpler and the results were
in agreement with those in [12].

Not all of the interest in speckle has been directly oriented
toward its elimination. For example, it has been found possible to
achieve nearly diffraction limited resolution in large astronomical
telescopes by Fourier analyzing speckle intensity patterns in star
images [14]. When the radiation from a star propagates through a
turbulent atmosphere, the image which results in a telescope incorpor-
ating a narrow-band spectral filter is a speckle pattern. If a
sequence of these speckle patterns are recorded photographically, with
exposure times short compared to the changes in the turbulence, each

will contain a different speckle distribution, but the information
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about the star is present in each. By superposing these images in an

optical processor, the random data tend to be smoothed, while the de-
sired stellar information is enhanced in an additive way. This technique
has been used to measure the diameter of some previously unresolved

stars as well as previously Qnresolved binary spacings [15].

Another use of speckle has been demonstrated in the direct
Qisua] observation of surface "in-plane" vibration nodal patterns [16].
It was shown that if a vibrating surface is illuminatd with a speckle
pattern, where the surface motion is large the speckle is averaged by
the vibration, while at nodes of the vibration the speckle is distinct.
Thus it is possible to make an immediate visual assessment of surface
vibrational characteristics. Indeed this area of interest has come to
be called laser speckle metrology and a number of ideas for measure-
ment of small surface displacements and deformations have been advanced
e.g., [17,18].

Speckle reduction in imagery with laser illumination has been
achieved by use of moving diffusers in the laser beam [19,20].

Now, in most of the theoretical and all of the experimental work
previously described attention was given primarily to the spatial
character of the speckle patterns, and the effects of wavelength varia-
tion, diffuser correlations and depolarization were largely ignored.
However, it has been found that the effect of speckle in imagery may
be reduced by the use of multicolor illumination [21,22]. In the
images of various microscope specimens it was found that photographs
produced by a multiple exposure using 6 narrow illumination wavelengths

spread over 1SOOX were comparable to those taken with white 1ight [23].
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Calculations were also made to establish that two speckie patterns

produced by the same diffuse surface would be uncorrelated if the wave-
lengths used to illuminate the surface were spaced by an amount
proportional to the square of the mean wavelength divided by the
standard deviation of the heiéhts of the scatterers on the surface.

A number of experimental results have been given to support this cal-
'cuiation [24,25]. Recent significant steps in the understanding of
speckle were the introduction into the theory of the concept of frac-
tional roughness [26,27] and the inclusion of correlation length along
the diffuser [28,29].

In this thesis, the entire speckle phenomenon is studied, gen-
eralizing on the concept of varying roughness of a scattering surface.
In the analysis, herein, the diffuser model is also generalized to
include a function describing the correlation between the heights of
the scatterers on the diffuse surface. Calculations of the autocor-
relation of speckle intensity in the output of the linear system as a
function of both spatial and temporal frequency variables show that
the spatial dependence of the speckle is primarily determined by the
Tinear system transfer function, while the spectral dependence is
determined by the roughness of the diffuse surface. A number of ex-
perimental tests have also been made to support the analyses.

An outline of this work is as follows: Chapter II contains a
restatement of the theory for the characterization of speckle in a
linear, space-invariant system. In Chapter III, the effects of
polarization on speckle patterns are measured and analyzed. Chapter

IV gives theory and experiment relating to the first order statistics
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of speckle. In Chapter V, the multidimensional spatial and spectral

autocorrelation function of speckle intensity is measured.
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CHAPTER II
SPECKLE IN A SPACE-INVARIANT LINEAR SYSTEM

2.1 Statement of the Problem

In this chapter we will calculate the autocorrelation of the
output intensity of an imaged speckle pattern as a function of
sﬁatial and spectral variables. However, in this section we present

and describe a simple model for the phenomenon.

The term imaged speckle refers to an experiment as shown in

figure (2-1), in which a coherently illuminated diffuser is placed in
the input plane of the optical system and the output intensity is ob-
served in the plane which is normally associated with production of an
image of the input. Using the idea of reciprocity, we describe the
system physically in a manner inverse to that normally thought of in
imaging systems., That is, we consider the output field at a point to
be the resultant of a sum of fields emanating from within a resolution
diameter in the input plane. From this viewpoint, we can describe both
the spectral and spatial behavior of the output speckle and estimate
the form of the autocorrelation function.

We examine one resolution diameter of a phase object as in figure
(2-2). Assume that the object is a diffuser such as ground g1ass'which
creates Jocal phase disturbances in the electric field at the diffuser
surface. The amplitude of the electric field is constant over the sur-

face. Call the phase at a point ¢(x) . Now

¢(x) = knsh(x) (2.1)
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where ns js the difference in refractive index between the glass and
the air, k 1is the wave number and h(x) is the height of glass at

X measured from the minimum height as shown. We consider cases in
which there are ten or more distinct heights in a resolution diameter.
Now, by decorrelation with wavelength, we mean: by how much would we
expect to change the wavelength of the illumination on the diffuser in
order to change the intensity at a point in the speckle pattern where
we observe the interference of the various phases coming from the reso-

Tution cell? Since the intensity variations are caused only by the

interference, we examine ¢(x). From equation (2.1) we see that ¢(x)
is a product of the height and the wave number. Therefore, if the
heights in the resolution cell are large, a small change in k causes
large changes in ¢(x), whereas if the heights are small it requires a
much larger change in k to produce a comparable change in ¢(x).
Since the intensity in the output depends on the specific summation of
the ¢(x) from the resolution cell, the change in ¢(x) due to the
wavelength change will determine the change in output intensity. If
we pick as a criterion for decorrelation of the speckle that the
average phase difference between any two points on the diffuser sur-
face, Ad(x) = ¢(x1) - ¢(x2), changes by w then we see that the fre-

quency change required is

Ay v 1
T 7w othT (2.2)

where o(h) 1is the standard deviation of heights in a resolution cell,
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Equation (2.2) differs only by a factor m from results previously

given in the literature [1,2,3]. Thus, we expect that the change in
optical frequency required to decorrelate the speckle pattern is pri-
marilya function of the roughness of the diffuser as characterized by

a(h)

A similar physical reasoning can be applied to estimate the
spatial autocorrelation of the speckle pattern. We consider an imaging
system of unity magnification and ask: how far from the point X9 in
the output must we move before the intensity we measure at a new point
xé is uncorrelated with that at x,? Referring to figure (2-1), we
see that if the intensity were measured by scanning an intensity measur-
ing instrument slowly from X to xé the specific set of phase
scatterers on the diffuser contributing to the output at each inter-
mediate position x 1is constantly changing. However, it is not until

X, is at Teast one resolution diameter away from x, that we have
removed from the field of view all of the scatterers belonging to the
observation at Xo s We therefore contend that the autocorrelation of
speckle intensity at constant wavelength is a function of the Timiting
aperture of the system, which determines the size of the resolution cell,
This result is generally accepted [4,5].

We now proceed to calculate the spatial and spectral correlation

function for the speckle intensity using a linear system formalism.



-15-

2.2 Characterization of Input Fields

We consider the characteristics of speckle intensity produced
in the image plane of an optical system as shown in figure (2-1).
Following the format of George and Jain [3] we will calculate the
autocorrelation of the speckle intensity as a function of spatial and
spectral variables. In this section a description of the interaction
between illumination and the diffuse transmissive surface is given.
This interaction is the randomized input to the optical system.

The scalar component of electric field at a point on a rough

transmissive diffuser will be written

g(x,n) = a(x,n) exp(-in h(x)) (2.3)

where x is a spatial variable in the plane of the diffuser and

2my n] n0
C (cos CH ~ cos eo) (2.4)

is a normalized wave number, a function of n, and n, the indices of
refraction of the diffuser and ambient medium respectively, and 6]
and 60, the angles in the same media measured from the normal. h(x)
is a random variable representing the height of the diffuser surface
and a(x,n) is the amplitude of the field on the diffuser surface

which may also be a random variable.
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2.3 Autocorrelation of the Output Intensity

In the space-invariant system shown conceptually in figure
(2-3) we denote the input field by g(x,n) as before. The impulse
response of the system is z(x,n), and the output electric field is
given by e(x,n). Presuming coherent illumination, the output speckle

intensity is

u(x,n) = e(x,n) e*(x,n) (2.5)

where the asterisk connotes complex conjugation., We write the auto-

correlation of output intensity
R, (8%,nysn,) = <ulx+ax,n.+ 4n) u*(x,nq)> (2.6)

where the brackets <> are used to denote an expected value,

An = n,- ul and Ax = Xp= X1 As pointed out in [3], the notation
Ru(Ax,n],nZ) is specifically used to show that the process considered
is stationary in the spatial variable x , but not in the normalized
wave-number n . This stationarity is determined by the random
process h(x) . If we choose a diffuser such that h(x) is station-
ary, then g(x,n) 1is stationary in x, and by the Tinearity of the
spatial convolution between g and z , the output field will be sta-
tionary in x . Additionally, if we neglect dispersion a(x,n) can

be thought of as stationary in x . However, as is seen in equation

{2.3), n 1is a deterministic multiplier of h(x) , therefore we

expect that the autocorrelation of the output will depend upon bath
N and Ny and not simply 4An . This is readily seen by assuming

ny = 0 for one set (n1,n2) .
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Using (2.5) and (2.6) we write R, in terms of the output

electric field
Ru(Ax,n] o) = <elx+ax,ny+ an) e(x,nq)
e*(x+ Ax,ny+ 4n) e*(x,n])> (2.7)

Now if we make the assumption that we are dealing with fields which are
normally distributed we may apply Reed's [6] theorem relating an nth

order central product moment to a sum of products of covariances. Thus
R (Axsnyany) = <e(x,ny) e¥(x,ny)> <e(x+ax,ny+ An)
e*(x+ ax,ny*+ an)> + <e(x,ng) (2.8)
- e¥(x+ax,ng* An)> <e*(xqnq) e(x+ax,ny+ An)>
The first two terms of equation (2.3) are recognized as
<u(x,nq)> <u(x+ax,nq+ on)> (2.9)

and the last two terms may be written

2

| <e(x+Ax,ny*+an) e*(x,ny)>] (2.10)
which by analogy to equation (2.6) we write
2
lRe(AXm] ’n2)l (2.-”)

Therefore,



-19-

Ru(Ax,n1,n2) = <u(x,nq)> <u(x +8x,ny+ 4n)> (2.12)
+ [R_(8%,ny,m,) |2
e N5 Tlo

Now for the space-invariant system where the output field is written
as the convolution of the input with the impulse response of the sys-

tem

e(x,n) = g{x,n) * z(x,n) (2.13)
it is easily shown that
Re(Ax,n1,n2) = Rg(Ax,n],nz) * R_(8x,mq,m5) (2.14)

where Rg is the autocorrelation of the input field and RZ is the
autocorrelation of the impulse response,and the asterisk again de-
notes convolution,

Thus, the general result for the autocorrelation of the output

intensity where we assume normally distributed random processes in the

input for the space invariant linear system is

RU(AX,H]MZ) = <U(X,n})> <U(X+Ax,ﬂ]+ AT])> (2-]5)

2
+ le(Ax,n1,n2) * RZ(Ax,n1,n2)i

In this formulation we see that in order to predict the form of the
function Ru and its behavior with respect to the spatial and spec-
tral variables, we must calculate the autocorrelation of the input
field for various diffuser classes. The expected intensities at (x,n})

and at (x + bxsny + An) can be obtained from Rg*RZ and the impulse
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response z(x,n) will be a deterministic function of the spatial vari-

able x only. Following [3] we calculate Rg for a pure phase dif-

fuser and show a new calculation for a thin variable amplitude diffuser.

2.4 Autocorrelation of g{x,n) Resulting from a Thin Pure Phase
Diffuser

We define a thin pure phase diffuser as one which does not
attenuate input illumination, but merely retards the phase of the
illumination at the surface as determined by the product nh(x) .
Therefore, from equation (2.3), setting a(x,n) = 1 we have the input
field

g(x,n) = exp(-inh(x)) (2.16)

We define the random process h(x) by a joint probability density

function f(h(x), h(x+4Ax)) and solve for Rg :

Rg(Ax,n1,n2) = <9(x+-Ax,n1+ An) 9*(x,n1)> (2.17)

[e]

= | [ exelingn(07 expl-itngs an) hlx+x)]

w00

- f(h(x),h(x +4x)) dh(x) dh(x+ Ax)

From the definition of the two-dimensional characteristic function for

the process h

o}

F(p,0) = | | exp(-iphy- iany) F{ny.hy) dnydny (2.18)

-

we see that the integral in equation (2.17) is the characteristic
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function for the diffuser heights expressed as a function of N and

N2

Rg(Axsn]anz) = F(-ﬂ1,ﬂ2) (2-19)

Using this result it is possib]e to solve for the desired Ru by know-

ledge of the characteristic function of the diffuser.

2.5 Autocorrelation of q(x,n) from a Thin Amplitude Diffuser

We characterize a pure amplitude diffuser as one with a random

amplitude transmittance, but without a phase changing property. Then

g(x,n) = a(x,n) (2.20)

We further assume that the function a(x,n) is achromatic and is
normally distributed in x , We then write the joint density for

a(x]) and a(xz) with correlation coefficient r(xz—x]),

flalx;),a(x,)) = ——r!

ZWO]OZ 1—r2
(alx;) - <a(x;)>)?
1 1 1
x exp[- 5 | 5
2(71-r") ]

Zr(a(x]) - <a(X])>)(a(X2) - <a(X2)>)

919
2
. (a(x,) 2a(x2) ) 1 (2.21)
%

We choose
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O’_] = 02 = o
<alx))> = <alx,)> = a (2.22)

and solve for
Rg(Ax’n"snz) = <a(X-l) a(x2)> (2'23)

Using the notation a(x]) = a and a(xz) = a, and the assumptions

of equation (2.20) the autocorrelation of the input field is

[oe]

J f aja, exp[- ————l§;~§

1
o2 ST L 2(1-r)o

+ {(ay-a)% - 2r(a;-a)(ay-a) + (a,-a)"} ]

Rg(Ax,n],nz) =

- da, da (2.24)

1772

which can be integrated directly. However, we make use of the identity
[ 7]
<aja,> = <ay <a2!a1>:> (2.25)

where <a,|a,> denotes the conditional expectation of a, given a, .
VAR 2 1

The conditional density of a, when given a; is

1 [(ay-a) - r(a1-a)]2
flay)a)) = ————— exp{- 7 (2.26)
\/20(1~r2) 207 (1-r7)
Thus )
P (a,-a) - r(a;-a)
<a2]a]> = J’ ____._ig_.______. expl- : azza 21" i ] da2 (2.27)
- g, 2'”(]"?"2) 20 (]"‘Y‘ )
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which results in

<azla1> = 3+ r(a]—a) (2.28)
Using (2.28) in (2.25) and (2.23) we see that

Rg(Ax,n],nz) = <a1[a + r(a]—a)]> (2.29)
which can be solved by inspection.

Rg(AX’”W’nz) = <a]a> + r<a%> - r<a]a> (2.30)

and since <a]> = a we rewrite

RQ(AX’”l’”Z) = <a]>2 + r(<a$> - <a1>2) (2.31)
which is simplified to

R (Ax,n72m,) = a2 + ro’ (2.32)

g "I’Z .

This form of the autocorrelation of the input field is appropriate then
for a pure amplitude diffuser with jointly normal amplitude variations

and correlation coefficient r(x],xz) = r(Ax) .

2.6 Spatial and Spectral Autocorrelation of Speckle Intensity from a

Pure Phase Diffuser

The results of sections 2.3 and 2.4 are used to calculate the
autocorrelation function of speckle intensity for a phase diffuser
with jointly normal heights in an achromatic viewing system. The heights
hix) = hy and hix+A4ax) = h, are jointly normal random variables with
a correlation coefficient r(Ax) between them. The joint density func-

tion is [7]
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172

262 (1-r%)

h% - 2rh h+ hg
(2.33)

1
f(hy,h,) = exp { -
LR PR 2N V. )

We have assumed zero means for h1 and h2 and a common variance.
Since we are assuming an achromatic optical system, the autocorrelation

of the impulse response is

R, (A%,ny4m5) = R, (8x) (2.34)

The characteristic function for the diffuser is calculated by taking
the Fourier transform of f(h],hz) with respect to the variables

(—n],nz). Substituting (2.33) into (2.16) and integrating yields
02 2 2
F('n] snz) = exp {" "'Z‘ (ﬂ] 'Zrn]nz*' nz) } (2035)

Then from (2.15) we can write the resultant autocorrelation of speckle
intensity
R, (8%5m15my) = <ulxyng)> <ulx+ Axyng* An)>
02 2 2
+ |exp {- 77—(An + Z(T—r)n](n]+ An)} * RZ(AX)I (2.36)

Now showing the dependence of r on the spatial variable and writing

the convolution integral explicitly, the result is

R, (8x,ny,m,) = <u(x,n)> <u(x+Ax,ny* An)>

-+

" 2
| exp{- G (arf 20-r(eDny (gt o))

© R, (bx - £)dE 2 (2.37)
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We consider a particular imaging system in one dimension. Using
the notation of figure (2-1) the diffuser is placed in the (x,y) plane,

a distance s' from the lens, and the output intensity is measured in
the (xz,yz) plane, a distance. s from the lens. We use the image
condition 1/s' + 1/s = 1/f where f 1is the focal length of the lens.
The standard form [8] for the system transfer function, neglecting

slowly varying phase terms is:

(o]

2(xy,X) = g-.— f A(rsv) exp[{iam(x,+ 2—.—- x)} V] dv (2.38)

-0

where A(v) is the pupil function measured in the lens plane along v

and

<
it

(2.39)

>~ <
[%2]

Choosing as a pupil function

A(v) = rect() (2.40)

r1<

X
where the rect function represents transmissivity one over the range

~LX/2 <v< Lx/2 and transmissivity zero elsewhere, we find that

L L

= X cinel X S

Z(xz,x) = g smc[}\S (x2 + o x)] (2.47)
and _ _
L X\) LX\)

RZ(AxZ,n],nz) = EET-s1nc(—E§—Ax2) (2.42)

where v is the mean of V1 and Vo and the subscript 2 indicates
that the spatial variable is in the output plane. The function
sinc(t) is defined by sin(wt)/nt .

For the correlation coefficient r(g&) 1in (2.37) we choose a
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Gaussian shape

r(£) = expl-£2/T%} (2.43)

which has been used by Asakura et al. [9] in the calculation for
speckle intensity in the Fourier transform plane of a lens. T is

representative of the correlation length on the diffuser surface.

Then (2.37) is expressed

2
+ f J exp[- 92— (an’+ 2(1 - EXP[-QS/TZJ)m(nﬁ in)]

wCO

2
« Ma sinc(anZ- agz) dgz (2.44)

The substitutions M = S/S' and a = LXGYCS have been made and it is
noted that the correlation length T has been scaled by the factor M

for integration in the output plane.

We seek a solution of the integral expressed in equation (2.44).

Neglecting the constants and re-arranging the terms
I = exp(- UZAUZ) eXP('GZB)
T2 2,2\1 s
- [ explo”g exp(- £7/T7)] sinc(anx - ag)de  (2.45)

where the variables are expressed in the output plane and the substi-

tution

B =my (ny + 2n) (2.46)
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has been made. Now expanding the exponential in the integral I'

of (2.45)
o, 2 M
explo?s exp(-£2/19)1 = ] LBL" exp(ome?/72) (2.47)
m=0 ’
we express
¢ (%) 2,2
I'= 3 , ( exp(-mg=/T%)sinc(arx - ag)dg (2.48)
m=0 m: J

Equation (2.48) is solved by use of the convolution theorem

(%

:o -—

® 2 \m 2.2
v T -
I' = 2~ igﬁ%l--g /Gg j rect(%)exp( me uz)
m=0 e
cexp(i2mAxa) do (2.49)
Applying the definition of the rect function
a
" 2
2 \m — 2.2
I' = iE%?l_ %-//%- J exp(- T % + i2raxo)da (2.50)
a
2

Integration of (2.50) and substitution into (2.45) and (2.44) yields

(after some algebraic manipulation)
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Ru(Ax, ”}”2) = <u(x,m])> <u(x + Ax,n~1 + 4n)>

e

2\
v %-exp(— ozAnZ)exp(— GZB) { 2+ 7 (c"B)
mel ™
2 ,
.exp(_mA§ ) [%rfc(— nla . /ﬁ%Ax)
T 2/m
~erfc(d Ta_; VmTAX)}lEZ (2.51)
2 |

Now using equations (2.6} and (2.8) we recognize that
<U(Xm1)> = P\g(OﬂW]sﬂ]) * RZ(O’nl ’7"‘.'1) (252)
and

<U(X t Axsn] + Aﬂ)> = Rg(AX:nzanz) * RZ(Axanzanz) (2053)

Using (2.52) and (2.53) and (2.15) we define a normalized autocorrelation

of the output intensity

2
! IRQ(AX,U]HZ) *RZ(AX,H],nz)f

RU (AX»H]aﬂZ) =1+

(Rg(oan],n1)*Rz(0,n],n1))

1

(2.54)
RQ(AX, rz:né)*Rz(AX:nzaﬂz)

Using the result of (2.51) in the digital computer, we have made
araphs of the normalized autocorrelation function (2.54) for various

parameter choices.
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In Figs. (2-4), (2-5), and (2-6) we present computer plots of
R& vs. Ax with the spatial variable, ax = 0. AX is calculated from
An with normal incidence and the index of refraction of the diffuser
assumed to be 1.5. Figure (2-4) shows the autocorrelation with four
values of o, or roughness. We see that the change in wavelength required
to minimize R\ is strongly dependent on the roughness. Figures (2-5)
and (2-6) show the effect of varying the aperture and correlation length
respectively. Each of these figures have four curves which are very
nearly identical and thus it is seen that the wavelength dependence of
the speckle pattern is not a function of aperture size or correlation
length on the diffusion surface.

Figures (2-4, 5, 6) were plotted by a direct computation of
Eq. (2.51). However, in the solutions for Ax # 0, the arguments in the
complex error functions routine, pre-programmed in the computer, rapidly
exceeded the maximum allowable value. Rather than re-program with a new
routine to handle these large values, a new program was written to solve
the convo]ufion integral of Eq. (2.44) directly. The integrals were
computed in a program using Simpson's Rule. In this method the limits
of integration are set by the user and the range between the limits is
divided into successively smaller intervals until the difference
between the value of the integral for one number of intervals (N) and
the value at the next succeeding number of intervals (2N) is less than
a pre-determined value. We have used 10_3 as the maximum permissible
error. Although the integral in (2.44) has infinite Timits, it is

clear that most of the contribution will come from the region near ¢ = 0.
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We have therefore integrated the function numerically using -2T < ¢ < 2T
as the Timits. The computed maximum value of the integral over this
range is .194 for ax = 0. We find the remainder or error from the

truncation of the limits from the approximation

2 21,2 e
E.p <2 | explo®slexpl-(5F) 1 - 11] sinc(=g) de (2.55)
2T
The value of (2.55) will always be greater than the true error since we
have fixed £ in the exponential function. The resultant error from this

-14

approximation in the worst case is 2.44 x 10 Therefore, the error

in the calculation caused by the introduction of finite Timits is less

]2. As a test, we have varied the limits of inteara-

than one part in 10
tion from T/4 to 2T without any measurable change in the result.
Additionally we have duplicated the plots for R& as a function of wave-
length using both the formulation of Egs. (2.51) and of (2.44) and the
results were identical.

Fiaures (2-7), (2-8) and (2-9) show the computed autocorrelation
as a function of the output plane spatial variable ax with the normalized
frequency variable maintained constant. Figure (2-7) shows the effect
of the aperture size on the autocorrelation with correlation length
T and diffuser roughness (characterized by o) fixed. The distance ax
required for R& to go from maximum to minimum value is proportional to
the inverse of the aperture size. This dimension is also a measure of

the averace speckle size. Thus we see that speckle size is a function

of the system aperture. Figure (2-8) presents four curves of Ru VS AX
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for constant aperture, but with four different diffuser heights. We see
that the four curves are nearly identical, indicating that the spatial
character of the speckle is independent of the roughness of the diffuser.
In Fig. (2-9) we haye varied the correlation parameter T with fixed
aperture and o. The maximum T considered was 1/2 the resolution

diameter as necessitated by our prior assumption of normally distributed
fields. Again, we see that the correlation length has Tittle effect

upon the spatial autocorrelation function.

2.7 Autocorrelation Function for a Rough Diffuser with Small Correlation

Length

The solution to equation (2.44) which we have obtained in
(2.51) is general, but tends to obscure the form of the autocorrela-
tion for most of the diffusers we are considering. We therefore seek
an approximate solution for the case of a moderately rough diffuser
with short correlation length T.

We begin with the assumption
on >> 1. (2.56)

This means that the standard devia tion of the heights on the diffuser
surface is large on a wavelength scale. It is further assumed that

the correlation length on the diffuser surface

T << %-5- - Jé- (2.57)
X
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which means that there are many independent scatterers or heights in a
resolution diameter on the diffuser surface. Now, it is evident that
most of the contribution to the integral in (2.44) representing
R« Rz will come from values of £ very near zero. Therefore we

g
approximate

2 2
exp (- %) Tyl %2— (2.58)

and again using tne substitution B = n}(n] + An)

we have the approximate form for the integral of (2.44)

< 2.2 2
N A 2
Rg * R = Ma J exp(- < 2” ) exp(BzZ)g (2.59)

sinc(an2 - agz) de,

Making use of the convolution theorem, (2.59) becomes

o0

2, 2 f 2.2
MT
Rg * R, ¥ I pys T exp[- & An ] f rect(jgﬁ exp[- WZT fi]
o oR
exp[+ i2m Ax fX] dfx (2.60)
where fx is a spatial frequency variable. Equation (2.60) is equiva-
lent to
2 2 82 )
Rg * R, = gg B exp[- & An ] J expl~ E§I—-f§4-12w AX fX] dfx
-a/2 Sl

(2.61)

Now we examine the behavior of the exponential in fi over the range

of integration and we see that the assumptions of (2.56) and (2.57)



force

2.2

expl- HZZ fi] 29 (2.62)

L

over the range -a/2 < f < a/2 . Thus integration of (2.61) gives

2,2
Rg * R, ¥ %.v/g expl- 9~%ﬁ—i sinc(aix) (2.63)

Then substituting (2.63) into (2.44) the autocorrelation for the speckie

intensity is

V]
Ry (Bx,ny5m,) = <ulxong)> <u(x+ax,n+ an)>

2
+ gM exp(-UZAnZ) sincz(an) (2.64)

g B8

The form of (2.64) allows us to predict the behavior of the
autocorrelation with respect to either spatial or spectral variables,
For example, if the optical frequency is fixed, An = 0, the spatial
autocorrelation is seen to depend on the Timiting aperture of the sys-
tem contained in the sinc function. This result has been obtained
in several different ways by Enloe [4], Goldfischer [10], and others,
and is generally accepted. If, on the other hand we consider ax =0
it is seen that the autocorrelation of the speckle at a point in the

output is governed by
exp[—GZAné] (2.65)

indicatina that the spectral sensitivity is a function of the diffuser
heiaghts and not of the optical system parameters. These results are

essentially the same as those of Section (2.6) and a similar result
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has been given by George and Jain [3] for the phase diffuser with the

assumed correlation for diffuser heights a triangle function

A

- 1S

r(g) = . (2.66)
0 2

fv

We re-emphasize that the essential result is that spatial
characteristics of imaged speckle patterns from phase diffusers are
primarily determined by the Timiting aperture of the imaging system,
while the spectral behavior is primarily a function of the roughness of

the diffuser.

2.8 Autocorrelation Function for Gaussian Apodization of the Image

System

In Sections 2.6 and 2.7 we have calculated the autocorrelation
of speckle intensity for image systems in which the aperture transmission
is assumed to be unity across some length LX and zero elsewhere. Here
we consider a transmission function with Gaussian apodization in
which the characteristic width of the aperture is governed by the
dimension LX. Thus we define a one-dimensional transmission function

for the Tens of focal length F by

.2
A(u) = exp 1;g exp | - %Q (2.67)

Corresponding to Ea. (2.41) the one-dimensional transfer function is

defined by

(2.68)

Z(xz,x) = exp |- w—-——(x2 - ==X

1
Yr i e
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where W is an achromatic resolution diameter calculated from the average
wavelength » by

W 23S (2.69)

T oL
LIS

Again in (2.68) phase terms which vanish in the final result have been
neglected. The autocorrelation of the impulse response z(xz,x) aiven as

a function of lag Xy in the output plane is

2
exp { - %—(9%9 (2.70)

R_(AX,snq5ns,) =
Z 2 1 2 J/?—'I? W
Mow consider Eq. (2.37) with RZ given by (2.70) and the correlation

function for the diffuser heights r(x) the same exponential function as
in (2.43). MWriting only the integral reépresenting Rg * R, we have the

following:

<0

2. 2 2
P % RZ - exp{-g"in ) exp {—028 {1-exp(— 3 )}
g /or W . T
1 2
- —= (&%, - £) } dg (2.7
e 2 )

where ¢ is defined by (2.46). Using the expansion of (2.47) and re-

arrangina terms

Inteorating this expression yields
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R *R_ = exp(—ozAnz) exp(-ozg)

g Mz
-, 1/2 m
. 2" S A T ) ) _wi__j
omie + T2 S oWl + T
m=0 :
(2.73)

Using (2.73) in (2.54) the result is amenable to digital computer calcula-
tion of the dependence of the autocorrelation on space and wavelength
variables.

If we make the assumption that T << W, i.e. there are many
scattering centers in a resolution distance,and set b = ny to examine
the spatial variation of R&(Ax,n],nz),from (2.54) and (2.73) it is seen
that

2
RG(Ax,An = 0)x 1 + exp )~ é5§ f (2.74)
24

Thus the spatial variation in R& is again only a function of the resolu-
tion distance W, which in turn is determined by the aperture size Lx
in (2.69). Examination of (2.71) with the assumption 028 >> 1, and

substitution into (2.54) shows that
R'(0,nqn,)= 1 + ex ~02An2 (2.75)
TR R P /2

Thus R& (an) depends primarily upon the roughness of the diffuser which

is characterized by 52.
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Chapter III
POLARIZATION PHENOMENA IN SPECKLE PATTERNS

3.1 Introduction

In the previous chapter we have presented an analysis of
speckle in an imaging system. Implicit in the development was the
assumption of scalar diffraction theory. We now describe some
transmission and depolarization properties of a series of opal glass
diffusers and demonstrate that both input and output polarization
must be controlled in a speckle experiment if agreement with a scalar
diffraction theory model is to be realized.

It is known that the state of polarization of an electromagnetic
wave may be changed upon reflection from a rough surface [1,2] or by
transmission through a random medium [2,3]. If a plane polarized
wave interacts with a reflecting medium of surface roughness the
order of A/8 or greater or passes through a diffuser with local phase
retardations of A/4 or greater some amount of cross polarization or
depolarization will be observed.

Laser speckle patterns are generally produced by the inter-
action of plane polarized laser beams with various diffuse media.

It is therefore expected that depolarization phenomena will be
observed in the speckle patterns and must be understood in the
analysis of the patterns.

While relatively thin coarse diffusers transmit a beam of
1ight with negligible (down by 30db) cross-polarized component, as

the diffuseness increases, the cross-polarized term may become equal
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to the component retaining the input polarization. This is of
particular interest in the study of laser speckle. Since most theories
published, e.g. [4], assume only a scalar component of electric field
exits the diffuser, care mugt be taken in experiments either to use

a polarization analyzer in the output field or in some other way
‘account for the cross-polarized field. A similar problem arises in

the prediction of radar cross-sections for targets with a high degree
of randomness. Kerr [5] and Berkowitz [6] both give short discus-
sions.

We have measured spatial radiation patterns for the light
transmitted by diffusers of various thicknesses. Both the parallel
and cross-polarized output component intensities were measured for
normally incident plane-polarized monochromatic illumination. In
separate experiments, the spatial cross-correlation functions for
speckle images of different polarizations and for various diffuser

thicknesses were measured.

3.2 Depolarization in the Radiation Patterns

Consider a diffuser, D in figure (3-1) illuminated by a
normally incident, monochromatic plane wave. For a polarized input,
the field exiting the diffuser should contain both parallel and
cross-polarized field components. Also, the field amplitude will
be spatially randomized by the rough diffuser. Hence the radiation
will extend over large angles 6, and it will be highly speckled.

We can define a transmission matrix for the diffuser as follows:
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XX Xy 1
- (3.1)
|9 tyx tyy E,
where the input electric field vector E is given by
E=gky+ EyEZ , (3.2)
and the output field g is
97897 &9 (3.3)

Speckle patterns can be calculated from the scalar field components
9 and g, as in Chapter 2.

However, our interest in this section is to describe an
experiment which gives one some information about the relative sizes
of the transmission coefficients, i.e., the matrix elements in (3.1).

Beckmann [2] has given a description of backscattered radiation
from a rough reflecting surface in terms of two components: A
quasi-specular component reflected by "mirroring" elements of the
surface whose normals point toward the radiation source and a dif-
fuse component which is scattered into directions not parallel with
the incident or reflected radiation. He predicts that the cross
polarization in the quasispecular component of the scattered radia-
tion will be zero, and that only thé diffuse component will be

depolarized.
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By analogy to the rough reflector, it is expected that in
transmission through a phase diffuser the portion of a beam which
passes through undeviated will retain its original polarization and
the portion which is scatteréd out of the direction of the incident
beam will be cross polarized to some degree.

Since the analysis of Beckmann is done for the single reflec-
tion case, we would expect experimental agreement to the extent that
our diffuser is thin enough to discount multiple scattering.

For the experiments, a series of diffusers of varying thick-
nesses, hO in Fig. (3-1), was prepared from a single sheet of flashed
opal glass. Starting with an initial diffuser of 500 um thickness,
we ground and optically polished an assortment of diffusers ranging
in thickness from 5 um to 500 um.

The setup for measuring the radiation patterns of these
diffusers consists of a laser, a polarization rotator, the diffuser,
and a sensitive receiver mounted so as to facilitate precise measure-
ments of the angle 6. The incident electric field is polarized
along the x-axis. The analyzer A is adjusted to pass either the
parallel (g-axis) or the crossed-polarization (n-axis). The slit S
is chosen small enough to minimize error in the angular measurement,
but still large enough to purposely average over several speckles.

The radiation patterns for the 50 um and 500 um diffusers
are shown in Figs. (3-2) and (3-3) respectively.

The thinner diffuser has a large forward lobe of parallel-

polarized radiation; the cross-polarized component is down by 33 db.
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The actual ratio may be somewhat larger since the polarizer-
analyzer combination used was Timited to an extinction ratio of 12,000.
The thicker diffuser has almost equal radiation in either polarization.
For comparison to radiation from a blackbody, the curve of cos 6
is also shown in fig. (3-3). These results agree well with the theory
and with corresponding data for bidirectional reflectance which were
measured by Bair , et. al. for numerous surfaces at several optical
wavelengths [7].

For normally incident radiation, the directly transmitted
beam has a depolarization ratio, i.e., the ratio of the crossed to
the parallel components in intensity, varying widely from 10'4 for
the thin opal glass diffuser to unity for the 500 um, as shown in
fig. (3-4). Even at 100 um, we note that the depolarization ratio,
D, is only about 1/10. We have also measured the depolarization ratio
for the intensity in transmission and reflection at an angle 30°
from the normal (fig. 3-4). It is noticed that the depolarization
of the reflected radiation is much greater than that for the trans-
mitted beam. This is expected with the opal glass, since the
"reflection" is not a surface effect, but results from multiple
scattering in the bulk of the opalescent layer. From the geometry
of the experiment, one would expect that radiation received in the
reflected direction has undergone more scattering interactions than

the transmitted light, thus more depolarization is observed.
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3.3 fo]arization Effects in the Speckle Patterns

Chakraborty [6] has studied the cross-correlation between
speckle patterns recorded photographically as the incident plane
polarized field is rotated. "He reports decreasing correlation as
this angle increases from zero to ninety degrees, but apparently, no
analyzer was used. The experiments described herein differ in that
both the input polarization to the diffuser and the polarization of
the radiation leaving the diffuser are controlled. Additionally,
the depolarization ratio is highly dependent on the thickness of
the diffuser.

Figure (3-5) illustrates the setup used for our experiments.
The plane of polarization of the illumination from the laser L on
the diffuser D is controlled by the rotator R and the appropriate
component of the polarized term is of course highly speckled; the

controlling aperture is associated with the microscope objective.

We have measured some characteristics of speckle patterns

with various combinations of input and output polarizations. In
these experiments, we have studied the image of a diffuser by record-
ing the intensity detected by a scanning fiber optic probe as in

fig. (3-5). In fig. (3-6), the autocorrelation functions of the
intensity profiles, detected by the probe as it scans a length of

the image, are given for two different sets of polarization conffg~
urations for a 500 um diffuser. The curve labeled "polarized" is
for the illumination in the y polarized mode and the analyzer set to

pass only the y-polarized term.



*d91aWodo LW B Ag uoLsuswip X 8y3
utL nmwoe 8q ued aqoud 213do-4aqiy ayy ("J48i|dLa|nuwojoyd e Wd pue JazA|eue ue y ‘403e304 uorjezirdejod
B Y ‘49se| B SL ) AJLSuSjuUL pa3D8}3p Sy} Pue UOLJBULWN||L JBSNJILP BY3 40 suotrjezide|od JuadatiLp
404 (@ 48Shj4Lp e jo abewl papydads a9yl ul Ssaljisuajul Buitdansesw 40} dnias |ejusuisadxs ayl :G-¢ *bBL4

(X)n

/

_54-

Ad

777

«Q———+ ———

380dd /
0l11d0-434l14 X



-55-

1.0
-
% /—UNPOLARIZED
© 08
l._.
<
.
Ll
e
L o6l
O
o
5 POLARIZED
I 04} |
>—
=
w
&
W 02 =
<
ol 1y
0 100 200
AX (pm)

Fig. 3-6: Curves of the spatial autocorrelaticn of speckle in-
tensity measured in the system of Fig. 3-5. The distance Ax has
been referred to the input plane, an aperture of .94mm used in the
image system and the 500um thick opal glass diffuser used. As
predicted, the correlation of the unpolarized pattern has a higher
asymptotic value than that for the polarized pattern,
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It is noted that the autocorrelation for the unpolarized case
approaches a higher value asymptotically than the autocorrelation
for the polarized case. The ratio of the asymptotic values is
dependent primarily on the sfatistics of the speckle pattern. We
note that what is meant in this case by unpolarized is that the
fntensity recorded is of random polarization. The introduction of
the analyzer which selects a plane polarized component for viewing
allows us to describe the polarization in terms of the orthogonal
set (x,y). From this frame of reference we can proceed to calculate
the difference in the asymptotes for the autocorrelations of fig.
(3-6).

We have calculated the autocorrelations using the following:

(3.4)

z

N
Ry(K) = = TyT)

N

where I(N) is the intensity at the Nth displacement of the probe and
K is the lag. If we consider the case for K > = in a random speckle
pattern, we will be approaching the point of complete decorrelation.
Now when I(N) and I(N-K) are completely decorrelated we make use of

the fact that if two random variables x and y, are uncorrelated [7]

<XY> T <X> <y> (3-5)
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where the symbol <> denotes the expected value. Therefore we can

write
L I(N)I(N-K) = N <I(N)> <I(N-K)>
N (3.6)
Since
<I(N-K)> = <I(N)> (3.7)
we have the result
T(N)I(N-K) = N <I(N)»> 2
2INLN-K) = N <1(N)> (3.8)
Thus for the case K -~ = equation (3.4) becomes
N)>
R, () = <L 3.9
u 2(N)> ( )
which we write
2
R, () = <I; (3.10)
<I™>
The asymptote for the polarized case can then be written
<I » 2
R(w) = 3.11
x T T . ( )

Now, for the unpolarized case the intensity at a given point N is

the algebraic sum of intensities of the two orthogonal polarizations



I (N) = I_(N) + I (N) . (3.12)

<I + 1> 2
R(w) =
u 2
<(IX+ Iy) >
2
_ ( <IX> + <Iy> )
<1 %4211 +1.5%
X Xy Y
2 2
) <IX> + 2 <IX> <Iy>+ <Iy>
- 2 2
<] = 4+ <2 I > + <I ™
X X Y (3.13)

We now make two assumptions which are demonstrated experimentally in
the subsequent section. We assume that the speckle patterns for
the x and y analyzer positions have the same statistics and that

they are uncorrelated. Using these assumptions we write

y (3.14)

u 2 <1X2> b2’ (3.15)
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which is equivalent to

(3.16)

Clearly by the way we have chosen to formulate the autocorrelation
function 0 < Rx(w) < 1; therefore Ru(m) will always be greater than
' Rx(w). For the curves of fig. 3-7, the formulation of (3.16) is
in agreement within 4%. We reiterate that this formulation applies
only to the case of the thick diffuser which produces completely
random polarization.

A more general form for Ru(w) which takes account of the

statistics of the speckle pattern can be shown by utilizing equation

(3.10):
R (oo) - <I> 2
u :f}?if' (3.17)
Now
3.18
<12>-<I>2=02 ( )
is definitive, therefore
R (w) = _“ili~3~*_
u <I>2+ 02
R, (=) = n._l_._ém (3.19)
1+ CR

where CR is defined as the ratio of the standard deviation of inten-
sity to the average intensity in the speckle pattern. As we will
show subsequently, CR is a function of diffuser thickness and

polarization of the viewing system.
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We have made detailed one dimensional correlation measurements

of the various speckle patterns created by different combination of
input and output polarization. Using the system of Fig. (3-5)

we recorded intensity versus displacement on a straight line section
of the speckled diffuser 1mége. The input polarization was controlled
as well as the polarization reaching the image plane. An arbitrary

.axis x was established for the input and the parallel axis of the
analyzer is also denoted by x. The notation we use is given by

the input polarization and output analyzer position respectively:

j.e. XX, Xy, yX, yy. The correlations in fig. (3-7) were from data
obtained by setting the scanning probe to a position (N) and by

moving the polarizers and rotator, recording in order the intensities
Ixx’lxy’lyy’lyx and then returning to Ixx for closure. Then the

probe was moved to position N+1 and the operation repeated.

110-160 spatial samples spaced .04 mm apart were observed in this

way. We found that the polarizers could be reset to produce a
closure data point with much greater accuracy than by resetting

the scanning micrometer. Although for readability, not all are shown
in fig. (3-7), the autocorrelations for each of the polarization
combinations are approximately the same. Since these functions are
dependent upon the speckle contrast and the microscope aperture

we would expect the similarity. We have shown in fig. (3-7)

that there is no measurable correlation between any of the speckle
patterns of different input/output polarizations. The pattern
observed is completely determined by the particular group of

scatters within a resolution diameter of the microscope. Therefore,
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Fig. 3-7: Cross-correlations for speckle intensity in the image
plane of Fig. 3-5 are shown for the 500um diffuser. The notation
is: (x,x) = (x polarized input, x polarized output) and ® indi-
cates the cross-correlation operation. (x,x) ® (x,x) is an auto-
correlation. Little or no correlation is seen between speckle of
dissimilar polarization states
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we would expect that the scatterers would interact differently with
the different polarizations much as a glass flat placed in a

polarized beam at a random orientation will interact with orthogonal

polarizations in different ways.
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Chapter IV
STATISTICS OF SPECKLE

4.1 Introduction

In this chapter, a review of the theory predicting the
~statistics of intensity fluctuations in speckle patterns is presented.
It is then demonstrated theoretically and experimentally that the
statistics of speckle are highly dependent upon the roughness of the
diffuser producing the speckle, as well as the polarization of the
system for viewing the speckle.

In a space-invariant imaging system as shown conceptually in

fig. (2-2), the electric field at a point in the image plane will be

N
iah
r
R’Ze (4.7)
r =1

where hr is a random variable and N is the number of iso-phasic

of the form

regions in a resolution area of the imaging system. The statistics
of this function were given by Lord Rayleigh in 1880 [1] in his
paper "On the Resultant of a Large Number of Vibrations of the Same
Pitch and of Arbitrary Phase." Translating Rayleigh's result into
terms relating to speckle patterns, it is found that for large N,
the electric field probability density function for an arbitrary

phase will be
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which of course is Gaussian. It is also determined that the density
function for electric field amplitude is
le| -le]?/20°
P(le]) = ezne— el /22" y(le]) (4.3)
o
where U(|e|) is the unit step function and the density function is
named for Lord Rayleigh. In a publication in 1918, Rayleigh [2]

showed that the density function for intensity, ee*, is

P(u) = &e‘“/z U(u) (4.4)

It is noted that these results apply for large N, however
it has been shown by Burch [3] and others that these density functions
are accurate for N of order 10 or greater.

In studies of laser speckle patterns, the results above are
generally accepted [4-7]. A direct result of equation (4.4)

is that the contrast ratio of a speckle pattern, defined by

Cr = o5 (4.5)

where o is the standard deviation of intensity and <py> the mean of
intensity, will always be equal to one. Frequently the density
function of (4.4) and the resultant Cp = 1 have been presented in a
way indicating them to be definitive of laser speckle. However,
Fujii and Asakura [7] have measured probability densities for
speckle intensities from diffusers of different thicknesses and
have seen that the density function depends upon the roughness of

the diffuser. It is our purpose to explain these differences
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analytically and to show experimentally the relationship between the
probability density function and the contrast ratio to the diffuser

characteristics.

4.2 Diffuser Characteristics and Statistics

We have studied speckle patterns produced by diffusers made
of flashed opal glass of various thicknesses. For diffusers of this
kind, there are three overlapping thickness ranges of interest which
are explained physically as follows:

(1) Thick; able to produce local phase retardations greater

than A/2 and substantially randomize the polarization of
a plane polarized input.

(2) Medium; able to produce local phase retardations of

order /2, but not highly depolarizing.

(3) Thin; not capable of producing local phase retardations

of A/2 or greater and not able to depolarize a plane

polarized input.

It is understood that these descriptions are appropriate only for the
opal glass diffusers, since for other types of diffusers the relation-
ship between the thickness or roughness required to produce large
local phase variations and that required to cause significant
depolarization may be entirely different.

We consider a thick opal glass diffuser. It has been

observed that a plane polarized illumination beam incident on a
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diffuser 500 um thick will be completely depolarized by transmission
through it. It has also been observed that for an incident beam
polarized in the x-direction as in fig. (3-5j, the speckle measured
with the analyzer parallel to x and speckle measured with the analyzer
perpendicular to x have the same average intensity and are uncor-
related. We refer to these two cases as xx and Xy, respectively.

As previously mentioned, the electric field density function
for either the xx or xy speckle patterns will be Gaussian. Therefore,
the density function for the intensities in either case will be the

negative exponential,

]

1
Pxx(uxx) S exp [-u /o]

1
ny(uxy) = - exp [-uxy/a]

(4.6)

where Uy and uxy are the intensities and o« is the average intensity.
We now show that if the speckle pattern from a diffuser thick

enough to cause significant depolarization is viewed without an

analyzer, the intensity distributions will no Tonger follow the

negative exponential and the contrast ratio (4.5) will be less than

one.
In the un-analyzed viewing the intensity at each point is
u=u. ¥ Uyy (4.7)
Thus [9] U
P(u) =f PXX(u-qu) xy(uxy) Xy (4.8)
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Using (4.6) we write

u
P(u) = 1 exp (-u/a) du
OL2 3/~ Xy

t

P(u) E~é-exp[—u/oc] (4.9)

o
This result has been shown by Burch [3] in the general context of
superposition of two incoherent speckle patterns. The fact that the
two orthogonal polarizations do not interfere optically makes our
analysis analogous. For the density function (4.9) we calculate the
average intensity,
<u> = 2a

’ (4.10)

and the standard deviation

o=V2a . (4.11)

Thus the contrast ratio will be
Cp = 1/v2 (4.12)

for the speckle from the thick di ffuser.

It is noted that this treatment is consistent with the
experimental results of Fujii and Asakura [7]. In these experiments,
the diffusers were sufficiently smooth so as not to depolarize the
incoming illumination, [8] hence the resulting speckle patterns
exhibit the characteristics of those viewed with an analyzer.

We have measured the probability density for intensity in
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speckle patterns produced by the 500 um thick opal glass. The
intensity data were obtained using the experimental setup of fig.
(3-5). Rather than scanning the speckle patterns with the fiber
optic probe, we have in thesé experiments moved the diffuser in 1 mm.
steps over a matrix of 160-300 points. In this way we ensured more
éomplete randomization of the data, and fig. (4-1) shows complete
decorrelation after a lag of one data point. Data were taken with the
analyzer parallel to the input polarizer (fig. 3-5) and with the
analyzer removed. Figure (4-2) shows the experimental density
functions obtained by a computer histogram method from the data.
The differences in the functions for the two cases is clear.

We now consider the statistics of speckle from thin diffusers.
The analysis is formulated for the polarized viewing case since by
our definition of "thin," the crossed polarized component will be
very small. We choose a model for the thin diffuser by a physical
argument which presumes that a proportion of the incident light is
propagated as if unscattered, producing in essence an unspeckled beam
with a speckle pattern superposed on it. This model is analogous
to the problems of radar return from an assembly of random scatterers

plus a steady target [10]. The density function for electric field

at the arbitrary phase angle of the unscattered beam is a normal
density of nonzero mean:

P(E,) = —— exp[-(E, - n)%/20°] (4.13)

© oven

The probability density for electric field 90° out of phase with the
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Fig. 4-1: Autocorrelation of speckle intensity obtained as in Fig. (3-5) by
moving the 500 um diffuser in 1 mm. steps while the fiber optic probe in the
image plane was stationary. Complete decorrelation in one step is seen.
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unscattered beam is normal of zero mean:

P(E]) =

exp[-E,/20%] (4.14)
ovem
The resulting density for electric field amplitude is then [7,10,11]
2
POED = LEL expl-(1€]% +n%)/267]

o
(4.15)

x 1, (LEm) (e

g

where I is the modified Bessel functions of zero order. P(|E|) is
thus a joint density between a normal density of mean n and a normal
density of zero mean. The density function for intensity u is found

by the variable change
u=lEl% (4.16)

so that

0 5 (4.17)

where we note that the parameters n and o refer to the electric field.

Rewriting (4.17)

Plu) = Ly ewl-(u + §/2] 1 R (4.18)
20 u
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we solve for o and g in terms of parameters measurable in intensity.

We find that

<u> = 82 + 2@2

(4.19)
and

s = g%+ 8e%62 + 8ot (4.20)

both of which reduce to the appropriate values for the negative

exponential density when g = 0. Using (4.19) and (4.20) we determine
the following:

2@2 = <u> - /<u>2 - a?

2. ST

<u> - g

(4.21)

These parameters then are functions of the measurable average value
and variance of the speckle pattern and it is again clear that when
the contrast ratio is equal to one, then 325 0 which produces the
negative exponential density from (4.18). In fig. (4-3) we have
plotted normalized curves from equation (4.18) for 5 values of

contrast ratio CR where we have used the identities

20,

H

<w> (1 - 4 2 )
R

= <y> /ﬂ - C 2

R (4.22)

>
i
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A series of experiments were performed to determine the form
of the density function for opal glass diffusers of various thick-
nesses. Diffusers of 25 um and 50 um thickness were known [8] to
have a large intensity lobe %n the forward scattering direction, so
the statistics of these samples were measured as before with polarized
viewing and compared to those of the 100, 200 and 500um samples. Figure (4-3)
shows the density functions of the three diffusers measured as before
by the histogram method and compared to the theoretical result (4.18).

In another series of experiments, we have measured the
statistics for diffusers from 25-500 um thick with the polarization
analyzer removed from the system. From the results shown in fig.

(4-4) it is seen that the density functions for the thin diffusers
are nearly the same as those measured with the analyzer in place.
However, in the medium thickness range (~ 100 um) the contrast ratio
is high because the phase changes are great enough to produce near
nulls and the depolarization ratio is small. As the thickness
approaches 500 um the density function tends toward that of the two

incoherently combined speckle patterns of equation (4.9).

4.3 Deteymination of Diffuser Thickness

Having established that the statistics, i.e., the probability
density function for intensity, of speckle patterns are highly
dependent upon the thickness of the diffuser as well as the polariza-

tion of the viewing system, we seek a convenient parameter related to
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Fig. 4-3: Intensity density functions for a number of opal glass diffusers.
The data were obtained as in Fig.(3-5) with the polarization analyzer set
parallel to the illumination polarization.
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Fig. 4-4: Intensity density functions for a number of opal glass diffusers.
The data were obtained as in Fig. (3-5) with the analyzer removed from the
system.
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the statistics which can be measured easily and which will provide
direct information about the diffuser.
A logical choice of parameter is the contrast ratio

C, = <u>/o. Figure (4-5) gives plots of Cp vs diffuser thickness for

R
polarized and unpolarized viewing. The differences between the
curves enable a unique determination of the thickness of these
opal glass diffusers over the range 0-500p to be made from two
measurements of contrast ratio.

It is also noticed that the curve CR vs T for the polarized

viewing can be expressed to within 5% over the entire thickness range

as

Cp = 1 - exp[-T/73]
(4.23)

where T is the thickness in ym. A slightly different dependence of

C. on diffuser roughness (for a different diffuser model) has been

R
predicted by Jain [12].
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Chapter V

Measurements of Space and Wavelength
Dependence of Speckle

5.1 Design of the Experiments

We have measured the spatial and spectral behavior of the image
of a coherently illuminated diffuser as in figure (5-1). As we sybse-
quently show, if the diffuser is properly chosen the image is a yrandom
speckle pattern. The illumination source used was a continuous wave
tunable dye laser with a linewidth of less than 1/2&. The dye 1aser
along with a compensation system for power fluctuation and bean steer-
ing is fully described in Appendix A, The imaging system used was a
Leitz binocular microscope. The limiting aperture of the system was
controlled by use of a series of specially made circular pinholeg
which were mounted in the microscope objective. Speckle intensities
in the image plane were measured with a scanning micrometer eyepiece
and photomultiplier system, Thé Gamma Scientific Model 700-10 scanning
mfcrometer replaces one of the normal microscope eyepieces. A movable
fiber optic probe of 50 um diameter samples intensity in the image
plane of the objective and transmits the optical signal through 4
flexible fiber bundle to the photomultiplier. An RCA 4463 PM tybe
with S-20 response provided response flat to within 10% over the wave-
length range in the experiments. A mechanical chopper was used in the
illumination beam and the signals from the photomultiplier were de-
tected and measured with a lock-in amplifier phase locked to the
chopper. A signal-to-noise ratio of approximately 10:1 was obseprved

at all signal levels in these experiments,
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The fiber optic probe and photomultiplier system provide ex-
tremely linear response to intensity over a great range of power and
has been employed specifically because of this. Another technique,
which has been employed in a number of experiments found in the Tlitera-
ture, is the recording of speckle patterns on photographic film and
mdking subsequent measurements from the film, Unfortunately, photo-
graphic film is inherently nonlinear in response to exposure (intensity
x time) and the nonlinearity is further complicated by its sensitivity
to the film processing parameters. In Appendix B we have discussed
this problem in some detail and conclude that even with an idealized
film characteristic and ideal processing, very careful compensation
must be employed to make accurate speckle measurements from photographic
records. We have therefore avoided the use of photographic film
altogether in these experiments.

In all of the measurements described here the illumination beam
was plane polarized and a polarization analyzer parallel to the sense of
the input polarization was incorporated in the objective carrier (nose-
piece) of the microscope. The 1limiting aperture of the system was
maintained small enough at all times so that the average speckle diam-

eter was at least 250 um, or five times the fiber optic probe diameter.

5.2 Choice of Diffusers

In the experiments, we desire to examine the behavior of purely
random speckle patterns, However, in the study of speckle in an
imaging system we may expect to find the image of the diffuser surface

in addition to the speckle as the output of the optical system. We
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would then be faced with the problem of separating the speckle behavior

from the deterministic portions of the diffuser image. For this
reason, we have used diffusers in these experiments for which the sizes
of the phase scatterers are below the resolution 1imit of the micro-
scope. Thus, none of the sufface detail of the diffuser appears in
the image plane.

| We have found that common flashed opal glass has no resolvable
features in our image system and yet produces heavily speckled output.
Figure (5-2) shows microscope photographs of opal glass and Kodak
fine-ground glass both illuminated in transmission by white light. The
surface features of the ground glass are clearly resolved, while the
opal glass appears as a milky-white blur with no apparent surface
features. In figure (5-3) images of the same diffusers illuminated by

the dye laser at 57OOR are shown. Although both images are heavily

speckled, surface detail of the ground glass is well resolved and is
clearly evident. The image of the opal glass shows nothing but the
purely random speckle pattern. As previously described (Section 3.2)
we have prepared opal glass diffusers of several different thicknesses
for use in these experiments. As we shall indicate, the thickness of
the opal glass corresponds to surface roughness of a diffuser such as
ground glass.

Opal glass may be considered as producing local random phase
variations in the cross-section of the illumination beam because of
local random index of refraction differences in the material.
Opalescent glass consists of a two-phase imiscible oxide system. The

optical scattering property is caused by many tiny droplets of one



84

te

in whi

jon

t

ifica

f the opal glass surface and (b) is

hotographs at 50x magn

image o

.

Microscope p
a) is the

(

.
.

2

5.
ht.
ground glass.

lig

Fig



85

—
0
) SR
a
v O
T <
Lo 1+
JRanpy 75 ]
+
n_'a
= r—
o
jom
O r—
.-Ia
+ O
o O
(&)
—
=
e 4D
i
Y-
© O
=
[
X
O
£
o
4
© QO
£
(7200 =
Ko
Q. wn
o
S
T
QO
dd
o
£
O .
o<
O
Q.o
O~
QL
73]
O 42
S}
Q
e O
= O
e
4
ce (T
o o
| R
wn £
po]
. r—
O
o —

F

the ground glass.

18

.



-86-

phase suspended in the bulk phase [1]. The droplets or domains in

an opalescent glass are typically from 0.1 to 0.5 um in size, are
nearly spherical [1,2] and are randomly distributed throughout the
bulk of the glass. Using a scanning electron microscope, we made a
photograph [figure (5-4)] of the surface of a typical opal glass
~sample at 10,000X magnification. The scattering centers are approxi-
mately spherical in shape and are about 0.5 um in diameter,

In optical terms, the opal glass is a medium of buik index of
refraction ny s containing many small regions of a slightly differ-
ent index n, . Qualitatively, we expect that the maximum optical
phase difference we might observe between any two points in the
cross-section of a beam after transmission through opal glass will be
a function of the overall thickness of opalescent Tayer as well as

the concentration of the scattering centers. In our experiments,

since the diffusers have been prepared by varying the thickness of
pieces cut from a larger piece of opal glass it is reasonable to expect
that the maximum phase differences will be a function of the sample
thickness. In addition we hypothesize that speckle produced by phase
variations in transmission through a rough surfaced material such as
ground glass with standard deviation of surface heights o(h) will be
similar to speckle from opal glass of thickness T >> o(h) . A physical
argument to support this hypothesis is based on the fact that at the
interface between a rough surface and air the difference in the index
of refraction will be about .5, whereas in opal glass the index dif-
ference between the scattering droplets and the bulk material is

An << ,5 . Experimentally we find that the first order statistics
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which we have measured for the speckle from an opal glass 100 um thick
are similar to statistics for speckle from ground glass of .5 um

average surface roughness [3].

5.3 Spatial Autocorrelation Function

We have measured the spatial autocorrelation function of speckle
-intensity with the system of figure (5-1). Recalling the formalism of
Chapter II, where we have called the autocorrelation Ru(Ax,n],nz), we
define the spatial autocorrelation as Ru(Ax,n],n]) in which we main-
tain the optical frequency (wavelength) constant. In the experiment,
the wavelength of the dye laser was maintained constant and the inten-
sity of the speckle pattern was measured by scanning the pattern in
one dimension along a straight line with the fiber-optic probe. The
scan was made in a stepwise manner so that the resulting data set was
in the form of a sampled function. Figure (5-5) is a computer plot of
one of the experiments., The autocorrelation of the sampled function
was calculated in the computer using the equation

) I(N) I(N-K)
N

(K) =
u TOI(N) I(N) (5.1)
N

as a basis. I(N) 4s the intensity at the Nth probe displacement and
K s the lag. Figure (5-6) is a typical autocorrelation R& vs, Ax .
We have made several measurements of the spatial autocorrelation
for each diffuser thickness at each available aperture size. For each
of the curves similar to figure (5-6) the lag, Ax , required for the
function to go from the maximum value to the projected asymptotic

value was measured. This lag we arbitrarily call the decorrelation
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length. We found that the decorrelation length with respect to the
spatial variable was independent of the thickness of the diffuser
sample and of the particular portion of the diffuser viewed. However,
the decorrelation length is strongly influenced by the 1imiting aper-
ture of. the optical system. Figure (5-7) gives the decorrelation
length as a function of aperture size for three different apertures.
Each experimental point shown results from the average of four to ten
measurements. A curve representing a constant times the inverse of
the aperture size is drawn through one experimental point and shown
for comparison. The theoretical results of Chapter II for the thin
diffuser also show that the spatial decorrelation of speckle is in-

versely dependent upon aperture size.

5.4 Spectral Autocorrelation Function

In an experiment similar to that for the measurement of the spa-
tial character of the speck]e‘pattern, we have measured the
autocorrelation of speckle intensity as a function of the illumination
wavelength. This function we define by Ru(o’”1’n2)' The measurements
were made with the fiber optic probe fixed in position, and the illum-
ination wavelength was varied by tuning the dye laser in two Angstrom
unit steps over a 250-3OOR range. Thus, the data obtained represented a
sampled function of intensity vs. wavelength. A typical plot of intensity
vs. wavelenath is shown in figure (5-8). Using a similar computer code
to that previously described, plots of the autocorrelation function as a
function of the lag AX in Angstroms were made. Figure (5-9) shows the
autocorrelation vs. AXx for 3 different diffuser thicknesses. From these

autocorrelation functions we have measured the decorrelation wavelength
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defined as the wavelength span required for the autocorrelation to go
from the maximum value to the asymptotic value.

The decorrelation wavelength was seen to be independent of the
aperture dimension. Figure (5-10) shows the decorrelation wavelength as
a function of diffuser thickness. Again, each experimental point repre-
sents an average over 4-10 separate measurements. The curve shown in
the figure is a one point fit to diffuser thickness 500 ym and goes as
inverse thickness. We note that the theory for the wavelength diversity
required to decorrelate two speckle patterns predicts dependence propor-
tional to inverse roughness.

5.5 Summary of Results and Conclusions

'In this section, we summarize the essential results of the theory
and experiments described in this thesis,

In Chapter II, we have given a theory for the autocorrelation
of speckle intensity in a space-invariant linear system as a function
of spatial and wavelength variables. Calculations of the autocorrela-
tion function for a number of speckle-producing diffusers of different
surface characteristic were made and digita] computer plots of these
autocorrelation functions vs. either spatial or wavelength variables
were presented. The central result of all of these calculations is
seen in equations (2.2), (2.44), (2.64), (2.74) and (2.75) and in
figures (2-4) through (2-9). From these we theorize that the spatial
character of the autocorrelation of speckle depends on the Timiting
aperture of the optical system, while the spectral behavior of the

autocorrelation depends upon the roughness of the diffusing medium.
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In Chapter III we have examined the effect of the polarization
of the diffuser illumination and the use of a polarization analyzer 1in
viewing the speckle pattern. We have measured the extent to which a
plane polarized beam is depolarized by passage through opal glass dif-
fusers of various thicknesses. The influence of input and output
(with respect to the diffuser) polarization on the autocorrelation
function was also studied. Cross-correlations of speckle patterns ob-
served with various combinations of input/output polarizations were
measured. From these polarization studies, we conclude that in order
to assess experimental speckle information correctly, the polarization
of the illumination entering and exiting the diffuse surface must be
controlled by the experimenter.

Chapter IV describes theory and measurements of the first order
statistics of speckle in the imaging system. We determined that the
density function for speckle intensity depends upon the polarization
of the viewing system and upon the roughness of the diffuser. These

results are given in equations (4.8) and (4.18) and shown in figures

(4-2), (4-3) and (4-4). In addition, it was shown that a measurement
of the speckle contrast ratio CR , defined as the ratio between the
standard deviation of intensity and the mean of intensity could be
used to determine the thickness of the opal glass diffusers used in
our experiments. Thus, measurement of speckle characteristics may be
useful for remote determination of surface roughness or diffusivity.
Finally, in Chapter V we have measured the spatial and spectral
autocorrelations of speckle and have shown experimental results. UWe

see that the experimental results are in essential agreement with the
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theory of Chapter II.

Table (5-1) gives a summary of some experimental results which
are primarily functions of the diffuser characteristics. All of these
results have application toward use of speckle measurements to study
diffusers and diffuse surfaces. These results appear elsewhere in

this work with more detailed exp]anatioh and analysis.
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APPENDIX A
THE TUNABLE DYE LASER

A.1 Description of the Dye Laser System

In the experiments reported herein, we have used a Spectra
Physics Model 370 Tunable Dye Laser to illuminate various diffusers
and produce laser speckle patterns. A mixture of methanol and water
containing the dye Rhodamine 6G was used as the lasing medium.
Rhodamine 6G absorbs radiation in the 4800 to 53003 band and pro-
vides laser gain from 5400 to 63003. A Spectra Physics Model 165
Argon Ion Laser was used to irradiate the dye cell and was generally
operated at 1 watt output. A collimating lens inside the dye laser
cavity was set to provide the minimum linewidth across the 5600 to
60003 region. At the setting chosen for the collimating lens, the
laser manufacturers estimate of linewidth is about 1/23 and we ob-
served linewidths narrower than ]/ZR across the 5600 to 60003 spec-
trum. When operated in this mode, the dye laser provided continuous

wave output from 60-200 mw in the wavelength band of interest.

A.2 Measurements of Dye Laser Characteristics

In using the dye laser for speckle experiments, there were
several operating parameters which were considered crucial to the
accuracy of the experimental data. We therefore measured several
of these parameters and where necessary have introduced suitable

compensation into the experimental layouts.
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Qutput Power: We have measured the power output from the

dye laser as a function of wavelength with 1 watt of optical pumping
from the argon laser. Power was measured using a Coherent Radiation
Model 910 Laser Power Meter and wéve]ength monitored with a Jarrel
Ash 1/2 meter grating spectrometer. Figure (A-1) shows the plot of
pdwer vs. wavelength and it is seen that the power varies by about
3:1 over the 5600 to 60003 region.

In the speckle experiments in which the dye Taser was tuned
through a band of wavelengths we installed a power monitoring system
and a neutral density wedge to compensate for the variation in laser
power and to maintain constant intensity of illumination on the dif-
fuser samples.

Linewidth: It is noted in the manufacturers instructions
that the Tinewidth of the dye laser is very sensitive to the resona-
tor alignment. In addition, the alignment of the resonator may vary
as the output wavelength is changed. At a given wavelength,
minimum linewidth should be observed when the resonator is aligned
for maximum output power. We have measured the effect of wavelength
tuning and resonator alignment on the laser linewidth. Using the
Jarrel-Ash 1/2 meter grating spectrometer, we have measured linewidth
at a given wavelength. Then, we have tuned to a wavelength SOK away
and without any further adjustment have measured the Tinewidth at the
new wavelength. Upon re-aligning the resonator for maximum power,
another linewidth measurement was made. Figure (A-1) shows the result

of this process in the 5600 to 6000A band. Generally, a slight
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improvement (1ine narrowed) can be made by adjustment of the
resonator after tuning to a new wavelength, however the linewidths
observed were all under 0.43 which exceeds the estimate of the manu-
facturer for the operating conditions used.

In experiments in which the narrow linewidth was important
we have adjusted the resonator after wavelength changes of 25 to 503.

Tracking of the Laser Wavelength Indicator: The wavelength

indicator on the Model 370 Dye Laser is marked in 253 increments and
is mechanically driven from a knurled thumbwheel. One revolution of
the thumbwheel changes the wavelength indication by 253. We have
measured the tracking and accuracy of the indicating system after
carefully aligning the indicator at 58003 with the reference spectro-
meter. We found that we were able to reset wavelengths to within 22
at any wavelength by adding reference marks to the thumbwheel and
the tracking accuracy is such that wavelength changes as shown on
the laser indicator are accurate to within 10% across the entire
5600—6000& band. At the center of this band where most of our data
for the wavelength decorrelation of speckle were obtained, the
accuracy of the system is within 5% for 2003 changes in wavelength.

Beam Steering: It was determined that as the wavelength was

changed and when the cavity was aligned for peak power output the
direction of the Taser beam was shifted very slightly. Since it is
critical in the speckle experiments that the illumination of the
diffusers remain stationary in position and direction to a very close

approximation, we have taken the precaution to isolate the laser from
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the experiment by a mirror and pinhole spatial filter arrangement

as shown in Figure (A-2). In this setup, the 12um diameter spatial
filter defines the spatial source for the illumination beam as "seen"
by the diffuser. Using a power monitor in the output of the spatial
filter, if the output of the laser shifts slightly, the mirror is

re-positioned to give maximum power through the pinhole.
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APPENDIX B

Speckle Measurements with Photographic Film

B.1 Introduction

In the main body of this work, we have measured speckle intensity
with a fiber optic probe and photomultiplier. This system is a very
neér]y ideal intensity (square-law) detector and data obtained from it
are usable directly in the various first and second order statistical
measurements we have made.

However, it is sometimes more convenient to record speckle pat-
terns on photographic film and subsequently to measure first order
statistics or autocorrelations from the film. One advantage of this
technique in the measurement of autocorrelations is that it permits
parallel processing of a large number of speckles in two dimensions,
whereas with the probe system an enormous matrix of data points would
have to be manipulated in the computer to produce comparable results.

A significant disadvantage in the use of film is that it is inherently
nonlinear in its response to incident radiation. In this section we
present data from a computer simulation of the effect of recording a
speckle pattern on either of two commonly used laboratory films to make
a negative and then reprocessing the negative to make a positive trans-
parency from which speckle statistics and autocorrelations might be
measured.

B.2 Effect of the Photographic Process on First Order Statistics

We have used intensity data observed with the fiber optic probe

and have simulated the recording of the data on film such that for each
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value of intensity an intensity transmittance, T , will be formed. An

idealized transmittance vs. exposure curve is given by

((ut)Y + uYIF/Y .t (B.1)
(ut)¥ + g

where u 1is the measured intensity, t 1is exposure time, and o , B ,

vy , I and f are empirically chosen to provide the best fit to the

film characteristic published by the manufacturer, The simulation was
done using the characteristics of a high contrast film, Kodak 649F and

a medium contrast film, Kodak Plus-X Pan, We find that the values
o=4,6, 8= .48, vy = 3,42, T = 2.5 and f = .0022 in (B.1) give an
excellent fit to 649F curves for very short development times. The values
a=5.45, g = .00695, vy = 3, T = .53 and f = .0158 simulate the Plus-X
film. In addition, we have normalized the intensity data and assumed
exposure time to match the center of the most Tinear region of the film
characteristic. The array of points s corresponding to us then
represents a photographic negative. Again using equation (B.1) we insert
the values T; in place of u and calculate a new array of points.

This third data set represents a positive transparency of the speckle
intensity.

Now, using the three sets of data we have calculated the density
function for intensity for each. Figure (B-1) shows the three densities
derived from the original data and from the two film process simulations
with 649F. We see that this high contrast film tends to make the inten-

sity binary, that is, the transmittance of the film is either very high
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Fig. B-1:

Probability density functions for speckle intensity u, normalized

to average intensity T. The plotted points are from experimental data and

from a computer simulation of the recording of the data on Kodak 649-F film
The solid curve is from the theory (Ch.IV).
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Fig. B-2: Probability density functions for speckle intensity u, normalized
to average intensity U. The plotted points are from experimental data and
from a computer simulation of the recording of the data on Kodak Plus-X film.
The solid curve is from the theory (Ch.IV)
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or very low with few values in the middle range. In Figure (B-2) the
effect of the lower contrast Plus-X film is seen. In this case the in-
tensities tend to be grouped around the average value after two film
steps.

Thus we see that in order t; make correct measurements of the
first order statistics from speckle patterns which have been recorded
an film it is imperative that very careful compensation for the film

transfer characteristic must be made.

B.3 Effect of the Photographic Process on the Autocorrelation Function

In optical processors, as described in Appendix C, photographic
transparencies of two-dimensional functions such as speckle patterns
are generally used as the input to the system., The output of the
processors of interest to us in this context is the convolution product
of two transparencies or the self-convolution of one transparency. If,
as in the case of speckle patterns, the transparencies represent real
functions, the output of the processor is the cross-correlation of two
functions or the autocorrelation of a function.

We have simulated the way in which the photographic process in-
fluences the measurement of autocorrelations in an optical processor.
Thus, using the data representing the original intensity, the photo-
graphic negative and the positive transparency for each of the two
films, 649F and Plus-X, we have calculated the autocorrelation of each
data group. Figure (B-3) shows the autocorrelations as modified by
the 649F film curve and Figure (B-4) shows the same autocorrelations as

modified by the Plus-X film characteristic., We notice that the
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Fig. B-3: Spatial autocorrelation functions for speckle intensity. The plots
are from experimental data and from a computer simulation of the recording
of the data on Kodak 649-F film. The curves for the processed data drop to a
lower level, indicating increased contrast in the speckle (Ch. III).
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Fig. B-4: Spatial autocorrelation functions for speckle intensity. The plots
are from experimental data and from a computer simulation of the recording
of the data on Kodak Plus-X film. The curves for the processed data remain
at a high level, indication decreased contrast in the speckle (Ch. I11).
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asymptotic value of the autocorrelation Ru is strongly influenced by
the film process. This results from the changes in the first order
statistic and hence the contrast of the recorded speckle pattern. The
higher contrast is seen as a éeduction in the asymptotic value of Ru’
while lower contrast has the reverse effect, Thus, the use of uncom-
pénsated transparencies in an optical processor will generally not per-
mit accurate measurement of the autocorrelation of speckle intensity.
However, the film process does preserve the spatial form of the auto-
correlation as seen by the oscillatory period observed in the curves,
so that for measurements of the spatial characteristics of speckle pat-

terns uncompensated transparencies may be used.
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Appendix C
OPTICAL PROCESSORS

C.1 Introduction

In the study of the prope}ties of two dimensional functions,
such as speckle patterns recorded on photographic transparencies, we
consider optical systems which measure the convolution product of two
spatial functions. These systems also measure auto and cross-correla-
tions of functions when input functions are real valued.

We examine two different systems which might be used for these
purposes. The first allows us to look at the convolution of two func-
tions displayed as a two dimensional image. In doing so, we can
determine immediately the existence of periodic or deterministic
functions on the transparency which are almost totally obscured in
normal imaging. This system provides a qualitative look at the func-
tions and allows us to accept or reject transparencies for further and
more laborious measurement. The second system enables us to evaluate
the convolution of functions in two dimensions to a high degree of
accuracy. Data are taken point-by-point and the results plotted by

digital computer techniques.

C.2 Image of the Convolution Product

We examine images of the convolution of two transparencies in a
manner given by Kovasnay and Arman [1]. Although the system used in

this technique is frequently referred to as an autocorrelator, it is
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better described as a system for performing a convolution [2]. As

will be shown, the autocorrelation is obtained as a result of the
characteristics of the input to the system and not strictly from the
action of the system.

To analyze the operation of the system we refer to figure
(C-1), and we use the notation of Goodman[2]. S is a distributed,
incoherent source; lenses L] & L2 are a matched pair of focal length
f], and D is the output plane at the focal distance from LZ' The in-

tensity transmittance of an input function, t(x,y) is defined by

tx,y) = Intensity transmitted at (x,y)
24 Intensity incident at (x,y) (C.3)

and d is the distance between & & Ty The geometry of the system
is such that Tight rays from the point (—xS,—yS) on the source emerge
from L] as a parallel beam at an angle 6 with the optic axis, where

'l X

—-Sf- (c.2)

® = tan

Therefore, if we choose the optic axis as the common origin of

coordinates for 1, and t,, a ray which intercepts Ty at (-X,-y)
X

S

N
will intercept Tp at (-x + ?-d, -y + —§-d). When all of the rays

.f.'
which traverse the system are brought into focus at plane D at

(xD = X Yp = yS) the intensity at Xgs Yo is given by

oo

X N
I(Xs’ys) =k JJ T](-X,—Y)Tz(?éd-x, ?E-d-y)dxdy (C.3)

-0
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Fig. C-1: Optical system for v1ew1ng the convolution of two transparencies
of intensity transmittance t. S is an extended white-light source, Ly&lo
lenses of focal length f and D is the image plane for the convo]ut1on

MIRROR

BEAMSPLITTER

Fig. C-2: Improved system for viewing the self- convolution of a transpar-
ency t. The mirror is placed at plane C of Fig. (C-1) and the beamsplitter
is used so that the source S can be moved out of the image plane D.
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Thus, if we insert either Ty Or T, in a reflected geometry, i.e.,
1(-x,-y) then (C.3) will be the convolution of the functions T and
Ty where the effects of finite aperture are included in the func-
tions 1 and the integration is over the infinite Timits.

- We write the autocorrelation of a function g

o

Rgg(xay) = [j g(xo,yo)g*(x - XgoY =y dx Ay (Cc.4)

-~COo

Then from equation (C.3), we see that if we choose T and both

are real, the intensity in the output will be

[ * 4 d
I(xs,ys) =k JJ T(x,y)t (%.xs Xs F Y - y)dxdy (C.5)
or
I(xesy ) = kR (xo5y,) (C.6)

Figure C-2 shows an improved system used to obtain the autocorrela-
tion functions. Because of the symmetry about the axis C in

figure (C-1), we see that the output of this system is the same as
we have shown in equation (C.6) except for a multiplicative frac-
tional constant introduced by the beam-splitter. The system of
figure (C-2) is simpler for autocorrelations because we do not have
to duplicate the functions and careful spatial registry of the two

function spaces is not required.

.3 Measurement of the Convolution Product

We measure the convolution of two spatial functions in a

coherent optical processor. Since this system is linear in electric
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field amplitude and not in intensity, we characterize the inputs to

the system in terms of field amplitude transmission function, t(x,y).

These functions are defined such that

amplitude transmitted at (x,y)
amplitude incident at (x,y)

t(x,y) =

It is noted that in a photographic transparency the function t(x,y)

is related to the intensity transmittance t(x,y) by the relation [2]

t(x,y) = ?Tix,yi exp{io(x,y)?} (c.7)

where ¢(x,y) is a phase variation introduced by the recording
medium.

Figure (C-3) shows the system. An expanded and collimated
Taser beam passes through the transparency t(x,y) at plane 1. A
carefully matched pair of lenses, L] & L2, forms the inverted image
t(x,y) at plane 3. At plane 3, another transparency t or s(x,y) is
placed. This second transparency is mounted in a precision Xx-y
translation stage which can provide measureable motions of the order
of Tum. The output of the system is taken from lens L3 through the
spatial filter in the output focal plane.

In the analysis of the system we make use of repeated applica-
tion of the Fresnel zone approximation to Sommerfeld's formula [2].
In a generalized imaging system, the output field amplitude
fwt

u(x,y)e is given by
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) = - -i27 '
u(x,y exp{ 125i5' +ts )} JJ[I dedndudv  u (&,n) (C.8)

e OO

CT(u) exp{ TF [(u - 0% + (v - m°])

- exp {3%§~[(x - U)? + (y - V)ZJ}

Where (£,n) is the input field and T(u,v) is the transmission function
- of the lens which includes the spherical phase factor. The eiwt
dependence is suppressed.

In the system of figure (C-3), we make the infinite aperture
approximation, i.e.:

x

T(u,v) = exp{ 1T (u® + v¥) (c.9)

and we assume a unit amplitude plane wave illumination at plane 1.

The field at plane 1 is then t(x,y). Applying equation (C.8), we
find the field at plane 2 to be

u(x,sys) = -exp{qiﬂ (fy + f])}( p;
N )JJJ dxydyqdx dy_ u(xy,yq)
1 o
im 2 2 2 2
-exp{ 3, A N L VA

- (% = %)% - by, - v)%T) (c.10)
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We integrate over the lens plane variables (xa,ya) giving the result:

(C.11)

)
} [de]dy]t(x],y])exp{iggi(xzx] + yzy])}

We apply this result a second time to find the fields at plane 3.

f 81Tf1
U(X3a)/3) = expl'i( I + TT)}

>\21:12 inj dx}dy]dxzdy2 t(x],y1)

[oe]

. exp{i%%i [(xzx] + yzy]) + (x3x2 + y3y2)]} (C.12)

Integration over the X55¥5 variables yields

u(x3,y3) = exp {—1(4kf] + 1)}

] axgery sxnstg + xg)styy + yg)
- (C.13)

where k = g%-and § is the dirac delta function.

Therefore at plane 3 we have the field

U(xg,y5) = t(-Xg2my4) exp{-i(akfy + m))  (C.14)

which is the same as the field at plane 1 with reflected geometry
and phase delay.
At plane 3 we insert a second transparency of amplitude trans-

mission s(x3,y3). This function is mounted in the precision x-y
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translation stage enabling us to form s(x3~x,y3—y). The field

immediately past plane 3 is then given by

u'(x3,y5) = t(—x3,—y3)5(x3-x,y3-y)exp{—i(4kf] + o))
(C.15)
Application of equation (C.11) gives the field at plane 4:

U(xgy,) = exp {-i(2kf, + 1))

2 2
Afz

exp{—i(4kf] + 7}

[e}

. fj dX3dy3 t(~X3,“Y3)S(X3'XSY3—y)

-0

ik
exp{%z (x4x3 + y4y3ﬁ' (C.16)

Now at plane 4 we have placed the pinhole spatial filter, so that to

a close approximation the only field which passes to the photodetector

is that characterized by Xg =Yg = 0. Thus, the field seen by the

photodetector is

_ : 31my4
u, = exp{1(4kf] + 2kf, + 2)}

N

2

[oe]

. JJ t(-x3—y3)s(x3—x3y3-y)dx3dy3 (C.17)

-CC

If we place one of the transparencies in the system with reflected

geometry we will make the field at the photodetector proportional to
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the convolution of t and s:

oo

u, = K f{ t(x3,y3)s(x3—x,y3—y)dx3dy3 (c.18)

-00

If the functions are real, then the intensity at the photodetector
will be proportional to the cross-correlation of the intensity

transmittances of the transparencies t and s.
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