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Abstract

The functionalities of every living organism are wired in the biochemical interactions among pro-

teins, nucleic acids, and all the other molecules that constitute life’s building blocks. Understanding

the general design principles of this “hardware of life” is an exciting and challenging task for modern

bioengineers. In this thesis, I focus on the topic of molecular network robustness: I investigate

several design rules guaranteeing desired functionalities in specific systems, despite their compo-

nents variability. Experimental verifications of such design schemes are carried out using in vitro

transcriptional circuits, a minimal analogue of cellular genetic networks.

The first problem I consider is flux control, which is a fundamental feature for the correct

performance of biochemical systems. I describe a simple model problem where two reagents bind

stoichiometrically to form an output product. In the absence of any regulation, imbalances in the

reagent production rates can cause accumulation of unused molecules, and limit the output flow. To

match the reagents’ flux robustly with respect to the open loop rates, I propose the use of negative

or positive feedback schemes that rely on competitive binding. Such schemes are modeled through

ordinary differential equations and implemented using transcriptional circuits; data are presented

showing the performance of the two approaches.

The second topic I examine is the functional robustness of interconnected networks. Molecular

devices characterized in isolation may lose their properties once interconnected. This challenge

is illustrated with a case study: a synthetic transcriptional clock is used to time conformational

changes in a molecular nanomachine called DNA tweezers. Mass conservation introduces parasitic

interactions that perturb the oscillator trajectories proportionally to the total amount of tweezers

“load”. To overcome this problem, we can use a transcriptional switch that acts as a buffer amplifier,

achieving signal propagation and at the same time reducing the perturbations on the source of signal.

Finally, I describe a general class of control-theoretic methods to analyze structural robustness

in natural biological systems. Using Lyapunov theory and set invariance, the stability properties

of several well-known case studies are analytically demonstrated. The key feature of this analysis

is its reliance on parameter-independent models, which only capture essential dynamic interactions

between molecular species.
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Chapter 1

Introduction

1.1 Design principles for robust molecular networks

All living organisms, from bacteria to humans, share a remarkable feature: to survive, they must

be able to sense external stimuli and implement adequate responses. The ability to effectively

control their own behavior based on the “measured” environment is what makes individuals fit and

successful. But how do living things make decisions that are crucial to their survival? This question

branches out in many directions: from neuro-economics to ethology to molecular biology, several

research fields have focused on different aspects of how “control” happens at every layer of what we

call life.

At the simplest level, we find that single cells are individually capable of interacting with their

surroundings: in this context, decision making and control are embedded in biochemical events. One

of the most classical examples is given by the famous experiments of Jacob and Monod [53] in the

1960s, which showed that E. coli adapts its gene expression profile to the type of nutrient available.

When lactose is abundant, but glucose is not, a set of genes called the lac operon is activated

through a lactose-dependent cascade of reactions. The proteins expressed from the lac operon allow

the cells to metabolize lactose and grow. In the absence of lactose, or when glucose is present at

high concentrations, the lac operon genes are repressed: thus, cells do not waste energy to produce

unnecessary lactose-digesting enzymes. This is a clear example of how the control center of a cell is

in large part constituted by chemical reactions. It is appropriate to classify a set of molecules that

interact and thereby induce specific cellular behaviors as a molecular or biochemical network.

Continuing with our example, the metabolites, genes, and proteins involved in the lac operon

genetic switch should respond consistently to variations in the available nutrient. However, cells

generally differ from each other in size, and therefore in the number and distribution of metabolites

and proteins present. Moreover, the intracellular environment is crowded and its content is affected

by several parameters, such as temperature and external inputs. Potentially, undesired interactions

between the lac operon network components and other molecules may slow down or disrupt the
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network behavior.

So are there features that confer robustness to a biochemical network? Although evolution op-

erates more as a tinkerer than as an engineer [6], several examples of engineering design principles

have been identified in biological systems. For example, negative feedback is the control theorists’

favorite tool to confer robustness to a system [12], because it structurally reduces the impact of

parametric uncertainty and disturbances. In the biological world, there is evidence that negative

auto-regulation in gene expression reduces the variability of protein concentration in cellular popu-

lations [16]. Negative feedback has also been related to the response robustness (and speed) of the

heat shock response in E. coli [31].

A classical example of robust molecular circuitry is probably given by bacterial chemotaxis [14,

9, 117]. The action of the flagellar motor of E. coli is driven by a cascade of signaling proteins, whose

active or inactive state is determined by the presence of nutrient in the environment. Both analysis

on a simplified ordinary differential equation (ODE) model [14] and experiments [9] showed how the

E. coli flagellar motion presents a robustly stable steady-state: steps in the nutrient concentration

only temporarily alter the motor equilibrium. Cells are therefore sensitive to nutrient gradients,

but always return to their steady state motion (such property is also referred to as adaptability).

Such stable steady state can be described as a function of the concentrations of the signaling cas-

cade protein components and a few binding rates, and is therefore independent of external inputs.

Further analysis also demonstrated how integral feedback is present in the chemotaxis network, and

guarantees robustness (perfect adaptation) of the equilibrium [134].

Experimental and theoretical studies aimed at unraveling the design principles of existing biologi-

cal networks generally fall under the category of systems biology. A different approach is represented

by synthetic biology [87], which instead focuses on the design of new biological circuits. However,

creating new functionalities can be also useful for probing existing systems. On the one hand, for

instance, bacteria and yeast have been engineered to become micro-scale factories to produce fuel,

anti-malarial drug precursors, insulin, and even silk [69, 100, 131]. On the other hand, we can cite

the example of the MAPK pathway synthetic re-wiring, which has been extremely helpful in clari-

fying the role of several proteins involved in the cascade [17, 15]. Another class of examples is given

by the many artificial oscillators synthesized in the past decade [13, 25, 33, 44, 128], which provide

insights into the design principles underlying natural cellular clocks and circadian rhythms. Robust-

ness of negative-feedback-loop-based oscillators, for instance, has been experimentally linked to the

presence of delays [122], in agreement with classical control theory results [99, 11]. The synthetic

approach has also given interesting insights regarding organism-level network robustness: in [52],

for instance, it was demonstrated that survival of E. coli was not significantly altered by promoter

recombinations adding new links across different networks. Some of the re-wired networks actually

conferred a fitness advantage under various selection pressures.
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It is imperative to characterize and study molecular networks in their own operational context,

the cell. However, the complexity of the cellular environment may be an insurmountable obstacle to

a detailed understanding of molecular interactions. In fact, quantitative predictions on the dynamic

behaviors of in vivo molecular networks are limited to small systems, mostly due to the lack of

knowledge of the system parameters and to the presence of unmodeled reactions. Synthetic, cell-free

biochemical approaches offer a bottom-up, simplified alternative to the study of molecular circuitry.

1.2 Cell-free methods

Operating in an in vitro environment with a limited number of biological parts offers several ad-

vantages. First, many layers of complexity present in vivo may be eliminated, allowing scientists

to focus on specific phenomena more quantitatively. Second, fully artificial biological design princi-

ples and chemistries can be explored, opening new doors for technology and for understanding the

evolution of life.

Cell-free transcription and translation regulatory circuits have been successfully reproduced

in [90], with the purpose of achieving a high level of detail (relative to in vivo studies) in the

investigation of genetic network behaviors. A good example of how in vitro assays can reveal new

information about natural networks is given by [88], where the reconstruction of circadian oscilla-

tions of cyanobacterial KaiC phosphorylation showed that this process is independent of transcrip-

tion and translation. Recently, a similar in vitro set of experiments showed that the dynamics of

this oscillator are determined by intermolecular associations: for instance, mutations altering the

binding rates of KaiB to KaiC will modulate the oscillator period [96]. A faithful reproduction

of in vitro cellular environment is still challenging, requiring many components [112] or not-well-

characterized extracts [90]. However, transcription-translation kits for cell-free protein production

are now commercially available; such kits are particularly useful for the synthesis of unnaturally

modified aminoacids [114, 113].

The quest for the minimal biochemistry that supports life [125, 73] is another area where in vitro

experiments are essential. A related topic of great interest is the role of nucleic acids in general, and

of RNA in particular, in the development of life and regulation of gene expression [38, 22].

In vitro synthetic biology and nanotechnology are rapidly evolving [119, 30] in many directions:

one relevant trend is the use of nucleic acids for the implementation of natural algorithms and

chemical reaction networks. The most attractive property of nucleic acids is programmability [118]:

established methodologies are available to reliably predict structure and hybridization pathways of

an oligonucleotide molecule, starting from its plain sequence information [141, 80, 2, 28]. If we

can predict the structure of a given nucleic acid strand, the ability to design systems of strands

that interact according to desired reaction pathways is only a few steps further. Large sets of
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nucleic acids have been designed to self-assemble into arbitrary shapes [102, 59]; to create devices

moving on programmed paths [74, 137] and performing tasks [47]; and to construct biochemical logic

circuitry [110, 140] and molecular machines [139, 24].

The programmability of nucleic acids makes them an ideal candidate for theoretical and experi-

mental studies regarding general chemical reaction networks. In [120], the authors propose motifs for

the implementation of arbitrary chemical dynamics with nucleic acids: such dynamics are generated

through toehold-mediated branch migration [138, 111], and their speed can be tuned by suitably

choosing the length of the toehold domains. (I will return to the topic of branch migration in Sec-

tion 1.2.1.) Numerical tools for the automated generation of DNA strands implementing a desired

reaction network are also available [93].

Although nucleic acid catalytic devices are available, it is interesting to explore the computational

and dynamical capabilities of systems integrating proteins and nucleic acids. This is an attractive

setup for two main reasons: first, we have a chance to work with molecular network scenarios that

may be closer to those of natural networks; second, we can develop useful ground knowledge for

the simultaneous programmability of both nucleic acids and amino-acid sequences. Predicting and

programming enzyme folding and function is a very active research area [77]: however, custom

protein synthesis (with a specified structure and function) is still not possible.

One of the first attempts to construct in vitro molecular circuitry using DNA and proteins is the

predator-prey system in [4], which consisted of DNA templates and only three proteins: T7 RNA

polymerase, M-MLV reverse transcriptase, and RNase H cloned from E. coli. The accumulation

of sequence mutations is one of the likely reasons for the limited success of those experiments.

More recently, logic gates using several enzymes [126] and full metabolic platforms [55] have been

characterized. Transcriptional circuits, developed by J. Kim in the Winfree lab at Caltech, are a

versatile tool for building molecular networks, and will be described in detail in the next section.

1.2.1 In vitro transcriptional circuits

Synthetic in vitro genetic transcriptional circuits [61, 63] consist of nucleic acids and two protein

species, T7 RNA polymerase (RNAP) and E. coli RNase H. Here I will describe their general

features, providing the relevant background information for Chapters 2 and 3 of this thesis. Starting

with Figure 1.1 A, from now on nucleic acids will be graphically represented as linear strings of

letters corresponding to their bases (the helical geometry of double-stranded DNA and RNA will

not be shown); the backbone 5’-3’ direction will be indicated with an arrow at the 3’ end. When

appropriate, specific functional areas, or domains, of a nucleic acid strand will be associated with

different colors (e.g., domains d1 and d2 in Figure 1.1 A); complementary strands will have the same

color (e.g., domains d1 and d1’ in Figure 1.1 A).

The fundamental components of a transcriptional network are biochemical switches accepting
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Figure 1.1: A. Double-stranded nucleic acids present the well-known double helical structure.
In this thesis, nucleic acids will be represented by strings of letters and graphically sketched
as shown on the right. The sugar backbone will be marked with an arrowhead indicating the
5’-3’ direction. Contiguous sequences having a specific function will be associated with an
identifying color (e.g., d1 vs d2); complementary domains are associated with the same color
(e.g., d1 and d1’). B. Transcription of a DNA sequence can be inhibited if the promoter region
is partially single-stranded and missing part of the template strand. When the template strand
is completed by binding of an activator strand, the binding affinity of this site to RNAP is
restored. C. Schematic representation of branch migration reaction. The exposed cyan region
in the complex X·Y is called a toehold: the complementary cyan region of strand Z will bind
to the toehold and initiate the branch migration process, which is accompanied by an overall
decrease in the system’s free energy. (The reverse binding rate k− is negligible.) D. General
domains and their lengths for in vitro genelets. E. Scheme for resulting reactions in a genelet
when an activator and an inhibitor are present. Note that inhibitors can be RNA species.
Reactions 1.1 correspond to this figure panel.
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one (or more) inputs and generating one (or more) outputs, which can be used to interconnect

different switches [61]. Such switches can be implemented as short, linear, synthetic genes whose

activity can be turned on and off by altering their promoter region. From now on I will refer to

these short artificial genes in transcriptional networks as templates or “genelets”, a term originally

suggested by Prof. E. Klavins. I will now introduce two notions that are helpful for understanding

how the state of such genelets can be systematically switched.

• Switching promoter activity: Promoters are double-stranded genetic domains having a high

binding affinity for RNA polymerase. The binding affinity can be lost when the structure [57] or

sequence [49] of the promoter region is altered, resulting in weaker transcription of the downstream

region. A promoter that is partially single-stranded, where the template strand is missing, does

not represent a good binding site for RNAP [57]. Referring to Figure 1.1 B, top, if the non-coding

strand of the promoter is single-stranded, the genelet can be effectively considered off. The tran-

scription rate of this incomplete promoter is, in general, below 10% of the transcription rate of

a fully double-stranded promoter. This residual transcription activity is here called transcription

“leak”, and we find that it is dependent on the promoter flanking sequences 3.7.13. When a DNA

strand complementary to the promoter single-stranded domain is added in solution, the transcrip-

tion efficiency is recovered and the gene can be considered on. (Data comparing the on and off

transcription efficiency of some of the genelets used in this thesis are shown in Section 3.35.) The

single-stranded DNA species switching on the genelet will be called an activator. Details regarding

the optimal design of the nicked promoter can be found in [61], Section 3.4. So far, only the bacte-

riophage T7 promoter has been used in transcriptional circuits, due to its high binding affinity and

transcription efficiency for the T7 RNA polymerase enzyme, which is commercially available from

most biotechnology vendors.

• Branch migration: Consider the two nucleic acid complexes shown in Figure 1.1 C, top. One is

formed by strands X and Y, the second is a single-stranded species Z, which is fully complementary

to X. The complex formed by strands X and Y is partially single-stranded: the blue overhang

is an exposed domain, to which the corresponding blue domain of strand Z will initiate binding,

subsequently peeling off X from Y. In fact, the system switches quickly to a final, thermodynamically

more favorable configuration, where X is bound to its complement Z=X’ and Y is released in solution.

The blue overhang, where the migration of strands is initiated, is called a toehold. The speed of

the reaction is determined by the length of the toehold, as shown in [138] through fluorescence

experiments.

The two above notions can be combined: a genelet may be designed to be switched on by

an activator strand added in solution, and switched off by branch migration. Branch migration

is operated by a single-stranded inhibitor binding to the exposed toehold of an activator/genelet
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complex, stripping off the activator strand. General genelet design specifications for the required

domains and their lengths, are shown in Figure 1.1 D. The overall mechanism for switching on and

off a genelet is depicted in Figure 1.1 E.

Genelets can be interconnected through their RNA outputs by means of an inhibition or acti-

vation pathway. The RNA output of a genelet can serve as an inhibitor for a downstream genelet;

alternatively, the RNA output can be used to release an activator otherwise sequestered in an ac-

tivator/inhibitor complex. RNA has the potential to activate a DNA template by binding to the

single-stranded activation domain, thereby completing the promoter; however, due to the constraints

of our system, this is pathway is not used [82]. Degradation is introduced in the system using the

endonuclease RNase H, which targets DNA-RNA hybrids, hydrolyzing the RNA strand and releasing

the DNA strand.

The general theoretical foundations for transcriptional circuits were laid out in [62], where the

computational capability of these molecular networks is demonstrated to be equivalent to that

of neural networks. In general, it is possible to systematically model these circuits using ODEs.

(Typically, transcriptional circuits experiments are run at high molecular counts: stochasticity can

be safely neglected.) For instance, referring to Figure 1.1 E, consider a genelet T having a DNA

activator A, an RNA inhibitor I, and an RNA output O. The chemical reactions expected to occur

by design are:

Activation T + A
kTA
→ T ·A

Inhibition T ·A + I
kTAI
→ T + I ·A

Annihilation A + I
kAI
→ A · I

Transcription: on state RNAP + T ·A
k+
ON→
←

k−
ON

RNAP · T ·A kcatON
→ RNAP + T ·A + O (1.1)

Transcription: off state RNAP + T
k+
OFF→
←

k−
OFF

RNAP · T kcatOFF
→ RNAP + T + O

Degradation RNaseH + A · I
k+
H→
←
k−
H

RNaseH ·A · I kcatH
→ RNaseH + A.

(All hybridization reactions are reversible, but the reverse reaction is extremely slow and can be

neglected in practice.) The corresponding ODEs can be derived immediately, following the general

rules for mass action kinetics. In general, nucleic acid hybridization rates can be measured or

estimated from the literature, while enzymatic parameters are more difficult to establish and have a

higher variability [61, 63, 64]. (Enzymatic parameter uncertainty will be discussed in particular in

Chapter 3.)



8

The concentrations of activators and inhibitors represent tunable thresholds. Branch migra-

tion reactions yielding inhibition, annihilation, or activation are stoichiometric, competitive binding

processes. Competitive binding easily generates ultrasensitive responses of the switches [21, 81]:

this is an important design feature of transcriptional circuits, and is particularly crucial to achieve

oscillatory dynamics.

Several networks have been experimentally characterized using transcriptional circuits: self-

inhibiting and self-activating genelets [61], a bistable toggle switch [63], and negative-feedback-based

oscillators differing for their topology [64]. In this thesis, I will use this tool kit to construct systems

achieving robust properties to be defined later.

1.3 Thesis overview and contribution

Let us go back to our initial question: what are the features that confer robustness to a biochemical

network? In this thesis, I will focus on three different topics related to this question. Two chapters

include work that follows a “synthetic”, bottom-up approach: I will consider specific robust design

objectives for biochemical networks, followed by synthesis using transcriptional circuits. The last

chapter will instead follow a “systems” approach, reporting more general theoretical robustness

results for existing molecular pathways.

• Chapter 2: Flux control for molecular networks. Flux control is a fundamental feature

for the correct performance of large scale networks, of which familiar examples are the Internet,

power grids, or even pipe networks. In the biological world, cells rely as heavily for their survival

on a regulated flow of nucleic acids, transcription factors, and other metabolites. It is therefore

interesting to explore and understand molecular flow rate control at the molecular level, especially

to develop systematic design principles for large biochemical circuits.

In this chapter I will propose two network architectures based on negative and positive feedback, to

regulate and match the output flow rate of two interconnected systems. Feedback is implemented

through mass action chemical reactions, which down- or up-regulate the activity of the molecules

generating the network output. To my knowledge, this design has not been considered elsewhere

in the literature. First, negative auto-regulation and positive cross-regulation will be introduced

through a very simple, intuitive ODE model. Then, I will describe the implementation of these

networks using transcriptional circuits, showing preliminary experimental results. Numerical sim-

ulations and data suggest that feedback confers robustness to the system with respect to certain

parametric variations and to initial conditions.

The general idea of flux control through positive and negative feedback has been previously presented

in two conference papers [40, 42]. I developed the initial design idea and implementation details for
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the negative auto-regulation circuit; the first experiments and numerical simulations were carried

out by an undergraduate student, Per-Ola Forsberg (SURF program at Caltech). Richard Murray

suggested studying the cross-activation scheme. All the analysis, data, and numerical simulations

reported in this thesis were performed by me.

• Chapter 3: Modularity of interconnected systems. An important research direction in

synthetic biology is the systematic design and construction of large molecular networks. Ideally,

biological devices should behave modularly, i.e., they should maintain their functionalities (charac-

terized in isolation) when interconnected to other devices. This can be rephrased as a question of

robustness: by design, the properties of a system should not be disrupted by the interconnection with

other systems. Achieving modularity is a challenge in most engineering fields: classical examples

include voltage drops at the output of non-ideal voltage generators, pressure losses in pipe networks

and level changes in systems of tanks.

This chapter is dedicated to the experimental study of a molecular oscillator to be used as a clock for

a downstream molecular device. Mathematical modeling and experiments show that interconnecting

the oscillator to its load in a direct manner, i.e., by stoichiometric binding and release, results in

undesired back-action effects and loss of the original signal. Loosely speaking, the back-action is

primarily caused by mass conservation constraints. This issue is mitigated by the introduction of a

molecular insulator, a node draining a small amount of molecules from the oscillator and using them

to amplify its signal [27]. Experiments are carried out using the tool kit of transcriptional circuits.

The project presented in this chapter was developed in close collaboration with the group of Prof.

Friedrich Simmel at the Technical University in Munich. F. Simmel and E. Friedrichs had the original

idea of using the transcriptional oscillator proposed in [64] to time conformational switching in the

well-known molecular tweezers system [139]. Jongmin Kim initially suggested connecting another

genelet to the oscillator, using its RNA output to induce switching in the tweezers; this eventually

became our insulator design. My contribution was the idea of using this system as a benchmark to

study the general challenges of molecular modularity and insulation; such idea was largely inspired

by [27] and by several discussions with Prof. Domitilla Del Vecchio. While several experiments I

performed were originally designed by the group at TUM, I developed many control experiments to

better understand the retroactivity effects and the tweezers behavior. Specific challenges I tackled

were data reproducibility, oscillation frequency and amplitude tuning, and the development of a

new transcription protocol to avoid the use of commercial kits. In this thesis I will only report

experiments performed by me at Caltech, unless explicitly noted in the text or figures. I also

contributed the analysis on the simplified model system illustrating the challenge of retroactivity in

Section 3.2. Detailed first principles models and parameter fitting were performed by J. Kim and

R. Jungmann. In this chapter I will use materials from [41]. The general idea of insulation in the
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context of transcriptional circuits was also presented in [39].

• Chapter 4: Robust properties of natural networks. As already noted, the molecular

circuitry of living organisms performs remarkably robust regulatory tasks, despite the intrinsic vari-

ability of its components. A large body of research has in fact highlighted that robustness is often

a structural property of biological systems. However, there are few systematic methods to mathe-

matically model and describe structural robustness. With a few exceptions, numerical studies have

been the de facto standard for this type of investigation.

In this chapter I will highlight how robust stability of equilibria in biological networks can be

analyzed using Lyapunov and invariant sets theory. In particular, the analysis is focused on the

structure of ODE models rather than on their specific functional expressions. Without resorting to

extensive numerical simulations, the stability properties of well-known biological networks will be

rigorously proved to be robust. Several case studies will be considered, including the lac operon and

the mitogen-activated protein kinase (MAPK) pathway.

This project was developed with Prof. Franco Blanchini at the University of Udine. F. Blanchini

and I conceived together the general idea of structural analysis of biological models using Lyapunov

functions. F. Blanchini mainly focused on the technical results; I contributed the models and assessed

the key assumptions and interpretations of the results in a biological context. This chapter reports

results from [19].
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Chapter 2

Flux control for biochemical
networks

2.1 Introduction

Cellular pathways rely heavily on a regulated flux of nucleic acids, transcription factors, and other

metabolites. In the era of synthetic biology, it is important to understand and optimize the mecha-

nisms that control and optimize molecular flows. This will contribute to the formulation of systematic

design rules for constructing large biochemical networks [92]. (In the following I will use the words

flux and flow interchangeably.)

Here, I will consider a simple model problem: given two reagents that bind to form a product,

how can we equate their flow through the design of suitable feedback loops? If the two flows are

not matched, we could fall in a scenario where (1) the reagent with the higher flux will accumulate,

creating a potentially harmful excess of such species and (2) the flow of product will be limited by

the lower reagent flux. Two different network design solutions to these problems will be proposed,

both based on the use of feedback. A desirable feature of such designs would be their robustness

(low sensitivity) with respect to the open loop production rate of the reagents.

The first scheme relies on the use of negative auto-regulation: either species in excess is designed

to down-regulate its own production rate. Situation (1) is therefore avoided. The second scheme is

based on positive cross-regulation: if one of the reagents is in excess, it will increase the production

rate of the second reagent. This second architecture aims at avoiding point (2). The main feature

of both these schemes is that feedback is implemented using stoichiometric reactions and without

making time-scale separation arguments, which typically yield Michaelis-Menten or Hill functions.

The flux-matching problem and the outlined solutions will first be described with a simple sys-

tem of ODEs. Then, I will outline how the properties of these feedback schemes can be assessed

experimentally using transcriptional circuits. Experiments on the implementation of the negative

auto-regulation scheme satisfactorily agree with the numerical predictions, and suggest that flow-
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matching is achieved robustly with respect to the open loop rates. On the contrary, the positive

cross-regulatory scheme presents several design challenges and the data currently available do not

verify the flux matching property conclusively.

2.2 Problem formulation

Consider a simple chemical reaction network

T1
β1
⇀R1 + T1,

T2
β2
⇀R2 + T2,

R1 + R2
k
⇀P. (2.1)

Two chemical species T1 and T2 produce, respectively, reactants R1 and R2, at rates β1, β2. The

reactants then bind to form an output product P. T1 and T2 could be, for instance, two genes

whose mRNA or protein outputs R1 and R2 must interact stoichiometrically to form a complex

useful for a downstream process. A pictorial representation of the network is given in Figure 2.1 A.

The differential equation corresponding to the dynamics of Ri is:

d[Ri]

dt
= βi · [Ti]− k [Ri][Rj], i, j ∈ {1, 2}, i 6= j. (2.2)

The build-up of the product P is clearly conditioned by the rates β1, β2 and the concentrations

[T1] and [T2]. If the production rates for R1 and R2 are significantly different, one can make two

observations. First, the reactant produced at the higher rate will accumulate in the system. Second,

the lower production rate becomes a bottleneck for the formation of P. For instance, if [T1]� [T2],

the concentration of R2 builds up; at the same time the yield of P is limited by the production rate

of R1. If reactions (2.1) represent a genetic circuit in a cellular host, an excess of R2 could harm the

organism, besides causing a waste of resources. Ideally, biochemical or metabolic networks should

include feedback loops able to eliminate excess production of molecules that are not utilized by the

system, and increase insufficient production of molecules in high demand. The solution trajectories

for equation (2.2) are shown in Figure 2.2. Parameters were chosen as βi = 0.01/M, k = 2 ·103/M/s,

T1 = 100 nM, T2 = 200 nM.

In this work, I will consider the model system (2.1) when the production rates for Ri are not

balanced. The question that will be asked is: If we could design R1 and R2 to interact with the

generating species T1 and T2, could we achieve self-regulation and matching of the flux rates for

the two reactants, robustly with respect to the open loop rates? I will investigate this question by

looking at the effects of the feedback loops that can be generated by R1 and R2. In particular, I will

study the cases where the two reactants self-repress (scheme shown in Figure 2.1 B) or cross-activate
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BA C

T1
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T1

R1

R2

T2

P

[R1] > [R2]

[R2] > [R1]

Figure 2.1: A. Schematic representation for our model problem (2.1). B. Negative feedback
scheme to control the flow of R1 and R2, corresponding to equations (2.3). The comparison
between the concentrations of R1 and R2 is implicit, due to the formation of the product
P. C. Positive feedback interconnection to control the flow of R1 and R2, corresponding to
equations (2.7).
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Figure 2.2: Numerical solution to the differential equations (2.2). Bottom right: absolute
value of the flux mismatch between the total amount of species Rtot

1 and Rtot
2 .

(Figure 2.1 C). I will assume that the feedback occurs by mass action chemical reactions.

2.2.1 Self-repression

Free molecules of Ri, i = 1, 2, bind to active Ti thereby inactivating it:

Ri + Ti
δi
⇀T∗i ,

T∗i
αi
⇀Ti,

where T∗i is an inactive complex. We assume that Ttot
i = Ti + T∗i , and that T∗i naturally reverts to

its active state with a first-order rate αi. The total amount of Ri is [Rtot
i ] = [Ri] + [T∗i ] + [P]. A

pictorial representation of this feedback interconnection is shown in Figure 2.1 B. The corresponding



14

differential equations are:

d[Ti]

dt
= αi ([Ttot

i ]− [Ti])− δi [Ri][Ti],

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δi [Ri][Ti]. (2.3)

For illustrative purposes, the above differential equations are solved numerically. The parameters

chosen are: α1 = α2 = 3 · 10−4 /s, β1 = β2 = 0.01 /s, δ1 = δ2 = 5 · 102 /M/s, and k = 2 · 103/M/s.

An imbalance in the production rates of R1 and R2 is created by setting [T1](0) = [Ttot
1 ] = 100 nM

and [T2](0) = [Ttot
2 ] = 200 nM, while [R1](0) = [R2](0) = 0. The overall result of this feedback

interconnection is that the mismatch in the flow rate of R1 and R2 is reduced, as shown in Figure 2.3.

The flow rate is defined as the derivative of the total amount of [Rtot
i ]. The flow rate mismatch is

defined as the absolute value of the difference between the two fluxes. The effect of changing the

feedback strength, for simplicity chosen as δ1 = δ2, is shown in Figure 2.4: the figure shows the

mean active fraction of [Ti] and the mean flow mismatch over a trajectory simulated for 10 hours.

The mean is shown, rather than steady-state values, to capture the behavior of the system over the

whole trajectory.

It is possible to examine the nullclines relating T1 and T̄2, and find the equilibria T̄1 and T̄2 as

intersection of these nullclines:

Ṫi = 0 =⇒ Ri =
αi(T

tot
i − Ti)

δiTi
,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δiTi
.

To simplify the derivation, we set δ1 = δ2 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two

expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):

(α
δ

)2

k

(
Ttot

i − Ti

Ti

)(
Ttot

j − Tj

Tj

)
+ α(Ttot

i − Ti)− βTi = 0.

We can find an expression of the nullclines by introducing a change of variables u =
(

Ttot
1 −T1

T1

)
and

v =
(

Ttot
2 −T2

T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αTtot

1 , ψ2 = αTtot
2 , φ3 = βTtot

2 , and finally

ψ3 = βTtot
1 :

u2(φ1v) + u(φ1v + φ2 − φ3
1

1 + v
)− φ3

1

1 + v
= 0, (2.4)

v2(ψ1u) + v(φ1u + ψ2 − ψ3
1

1 + u
)− ψ3

1

1 + u
= 0. (2.5)
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The roots of the equations above represent the nullclines of the system. Because all the param-

eters in these equations are positive, there is always a single root. The nullclines are numerically

solved, for varying δ, in Figure 2.5.

A condition for flow matching at steady-state can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ1T1R1 = β2T2 − δ2T2R2.

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 − α1(Ttot
1 − T̄1) = β2T̄2 − α2(Ttot

2 − T̄2).

Taking α1 = α2 = α, β1 = β2 = β we get:

T̄2 = T̄1 +
α

α+ β
(Ttot

2 − Ttot
1 ). (2.6)

The flow matching condition above is shown in Figure 2.5, red dashed line. If β � α, i.e., the

production of Ri is much faster than the generating species Ti inactivation rate, then the condition

can be rewritten as:

T̄1 ≈ T̄2.
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Figure 2.3: Numerical simulation showing the solution to the negative feedback architecture
(Figure 2.1 B) modeled with equations (2.3). The flow mismatch between R1 and R2 is shown
in the bottom-right panel.
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2.2.2 Cross-activation

Free molecules of Ri bind to inactive Tj and activate it:

Ri + T∗j
δij
⇀ Tj

Ti
αi
⇀T∗i ,

where again T∗i is an inactive complex and Ttot
i = Ti + T∗i . The total amount of Ri is [Rtot

i ] =

[Ri]+[Tj]+[P]. We now assume that Ti naturally reverts to its inactive state with rate αi. Figure 2.1

B shows the scheme associated with this feedback interconnection. The corresponding differential

equations are

d[Ti]

dt
= −αi [Ti] + δji [Rj]([T

tot
i ]− [Ti]),

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δij [Ri]([T

tot
j ]− [Tj]). (2.7)

The above differential equations were solved numerically. The parameters were chosen for il-

lustrative purposes as α1 = α2 = 3 · 10−4 /s, β1 = β2 = 0.01 /s, δ1 = δ2 = 5 · 102 /M/s, and

k = 2 · 103/M/s. The total amount of templates was chosen as [Ttot
1 ] = 100 nM, [Ttot

2 ] = 200

nM. The initial conditions of active [Ti] are set as [T1](0) = 10 nM and [T2](0) = 160 nM, while

[R1](0) = [R2](0) = 0. The overall result of this positive feedback interconnection is shown in Fig-

ure 2.6. The flow rate is defined again as the derivative of the total amount of [Rtot
i ]. The flux

mismatch is defined as the absolute value of the difference between the two flow rates. The effect of

changing the feedback strength, where for simplicity δ1 = δ2, is shown in Figure 2.7, which plots the

mean active fraction of [Ti] and the mean flow mismatch over a trajectory simulated for 10 hours.

The mean is shown, rather than steady-state values, to capture the behavior of the system over the

whole trajectory. The right panel in Figure 2.7 seems to indicate that the flux mismatch of the two

circuits is minimized for a certain range of δ around the nominal value of δ = 5 · 102. However,

for values of δ that are much smaller or much larger than the nominal value of 5 · 102, the system

dynamics do not reach steady-state within the simulated 10 hours. We will further explore the

behavior of the system’s equilibria and flow matching conditions, as done for the negative feedback

scheme.

The nullclines of the system in the T1-T2 space can be calculated as done for the negative

feedback design. Taking equations (2.7), we find:
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Ṫj = 0 =⇒ Ri =
αjTj

δij(Ttot
j − Tj)

,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δij(Ttot
j − Tj)

.

To simplify the derivation, we set δ12 = δ21 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two

expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):

(α
δ

)2

k

(
Ti

Ttot
i − Ti

)(
Tj

Ttot
j − Tj

)
+ αTi − βTj = 0. (2.8)

We can find an expression of the nullclines by introducing a change of variables z =
(

T1

Ttot
1 −T1

)
and

w =
(

T2

Ttot
2 −T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αTtot

1 , ψ2 = αTtot
2 , φ3 = βTtot

2 , and finally

ψ3 = βTtot
1 :

z2(φ1v) + z(φ1w + φ2 − φ3
w

1 + w
)− φ3

w

1 + w
= 0, (2.9)

w2(ψ1z) + w(φ1z + ψ2 − ψ3
z

1 + z
)− ψ3

z

1 + z
= 0. (2.10)

The roots of the equations above represent the nullclines of the system. Because all the param-

eters in these equations are positive, there is always a single root. The nullclines are numerically

solved, for varying δ, in Figure 2.8.

A condition for flow matching at steady-state can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ21R1(Ttot
2 − T2) = β2T2 − δ12R2(Ttot

1 − T1).

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 −
δ21

δ12
α2T̄2 = β2T̄2 −

δ12

δ21
α1T̄1.

Taking α1 = α2 = α, β1 = β2 = β, and δ12 = δ21 = δ we get:

T̄2 = T̄1. (2.11)

This flow matching condition is shown in Figure 2.8 in the red dashed line. Decreasing α (inactivation
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rate for the generating species) or increasing δ (speed of the positive feedback), with respect to the

nominal values chosen here, causes the equilibrium of the system to be pushed toward the upper right

corner of Figure 2.8. Moreover, when decreasing α or increasing δ the system reaches equilibrium

on a timescale in the order of several dozens of hours. Explicit tradeoffs on the effects of α and δ

may be found by further analysis on the nullclines and on the locus of equilibria in equation (2.8).
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Figure 2.6: Numerical simulation showing the solution to the positive feedback architecture
(Figure 2.1 C) modeled with equations (2.7). The flow mismatch between R1 and R2 is shown
in the bottom-right panel.
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reach steady-state within the simulated 10 hours. Figure 2.8 shows the numerically computed
nullclines of the system and the corresponding equilibria for varying δ.
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Figure 2.8: Numerical simulation: nullclines of the positive feedback scheme (2.7) in the T1-
T2 plane, calculated for different values of δ finding the roots of equations (2.9) and (2.10).
The equilibrium corresponding to the set of nominal parameters (trajectories in Figure 2.6) is
circled in black. The flow matching condition (2.11) is shown in the red dashed line. The flow
matching condition is satisfied by the equilibria T̄1 and T̄2 for δ = 5 · 103.
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2.3 Implementation with transcriptional circuits

Repression or 
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Figure 2.9: Scheme highlighting the general idea behind the transcriptional circuits implemen-
tation of the two feedback interconnections shown in Figures 2.1 B and C. Two RNA species
bind to form a product, and their regulatory domains are sequestered. The feedback loops are
active when either species is in excess, and therefore its regulatory domains are not covered.

The model problem described above can be experimentally tested using transcriptional circuits.

The two species T1 and T2 correspond to two switches, whose RNA transcripts are the output

reagents R1 and R2. Such transcripts are designed to bind and form an RNA complex P. Since the

focus of this work is the investigation of the effects of feedback, the structure of P and its functionality

as a standalone complex will be neglected. Depending on the feedback scheme to be implemented,

the RNA species R1 and R2 will be designed to have different domains. However, once R1 and R2

are bound and form P, it will be required that the complex is inert and all the regulatory domains

for negative auto-regulation or cross-activation are covered. This idea is depicted in Figure 2.9.

2.3.1 Self-repression

A graphical sketch of the domain-level design for the self-repression interconnection is shown in Fig-

ure 2.10 A. The RNA outputs of each genelet are designed to be complementary to the corresponding

activator strand. However, the two RNA species are also complementary. This specification on the

design of the transcripts introduces a binding domain between Ti and Rj, which is considered another

off state, as shown in Figure 2.10 B. Such complex is a substrate for RNase H and the RNA strand is

degraded by the enzyme, releasing the genelet activation domain. We assume that the transcription

efficiency of an RNA-DNA promoter complex is very low. This hypothesis was not experimentally

challenged for this specific system; however, in Section 3.7.14 we show that this assumption is valid

for other genelets with the same promoter domain.

The self-inhibitory genelet design was first characterized in [61]. The circuit design proposed
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here, with two-domain RNA transcripts, was originally presented in [40].
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Figure 2.10: General reaction scheme representing a transcriptional circuit implementation
of the negative feedback scheme in Figure 2.1 B. Complementary domains have the same color.
Promoters are in dark gray, terminator hairpin sequences in light gray. The RNA output of
each genelet is designed to be complementary to its corresponding activator strand. The two
RNA species are also complementary. A. Desired self-inhibition loops. B. Undesired cross-
hybridization and RNase H mediated degradation of the RNA-template complexes.

2.3.1.1 Modeling

Based on the outlined design specifications and the resulting molecular interactions, we can build a

model for the system. The switches Ti and Tj can have three possible states: the on state where

activator and template are bound and form the complex TiAi; the off state given by free Ti; the off

state represented by Rj bound to Ti forming TiRj. An off state still allows for RNAP weak binding

and transcription. Throughout this derivation, the dissociation constants are omitted when assumed

to be negligible. It is hypothesized that the concentration of enzymes is considerably lower than that

of the DNA molecules, allowing the classical steady-state assumption for Michaelis-Menten kinetics.
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The overall reactions are, for i ∈ {1, 2}, j ∈ {2, 1}:

Activation Ti + Ai
kTiAi
⇀ Ti ·Ai

Inhibition Ri + Ti ·Ai
kRiTiAi
⇀ Ri ·Ai + Ti

Annihilation Ri + Ai
kRiAi
⇀ Ri ·Ai

Output formation Ri + Rj
kRiRj
⇀ Ri · Rj

Undesired hybridization Rj + Ti
kRjTi
⇀ Rj · Ti.

The enzymatic reactions are, for i ∈ {1, 2}, j ∈ {2, 1}:

Transcription: on state RNAP + Ti ·Ai

k+
ONii
⇀
↽

k−
ONii

RNAP · Ti ·Ai
kcatONii
⇀ RNAP + TiAi + Ri

Transcription: off state RNAP + Ti

k+
OFFii
⇀
↽

k−
OFFii

RNAP · Ti
kcatOFFii

⇀ RNAP + Ti + Ri

Transcription: off state, undesired RNAP + Rj · Ti

k+
OFFji
⇀
↽

k−
OFFji

RNAP · Rj · Ti
kcatOFFji

⇀ RNAP + Rj · Ti + Ri

Degradation RNaseH + Ri ·Ai

k+
Hii
⇀
↽

k−
Hii

RNaseH · Ri ·Ai
kcatHii
⇀ RNaseH + Ai

RNaseH + Rj · Ti

k+
Hji
⇀
↽

k−
Hji

RNaseH · Rj · Ti
kcatHji
⇀ RNaseH + Ti.

Given the above reactions, it is straightforward to derive a set of ODEs as follows:

d

dt
[Ti] =− kTiAi [Ti] [Ai] + kRiTiAi [Ri] [Ti ·Ai]− kRjTi [Rj] [Ti] + kcatHji [RNaseH · Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kRiAi
[Ri] [Ai] + kcatHii [RNaseH · Ri ·Ai],

d

dt
[Ri] =− kRiRj

[Ri] [Rj]− kRiTiAi
[Ri] [Ti ·Ai]− kRiTj

[Ri] [Tj]− kRiAi
[Ri] [Ai]

+ kcatONii [RNAP · Ti ·Ai] + kcatOFFii [RNAP · Ti] + kcatOFFji [RNAP · Rj · Ti],

d

dt
[Ri · Rj] = + kRiRj

[Ri] [Rj],

d

dt
[Rj · Ti] = + kRjTi

[Rj] [Ti]− kcatHji[RNaseH · Rj · Ti].

(2.12)

The molecular complexes that appear in the right-hand side of the above equations can be expressed

using mass conservation: [Ti ·Ai] = [Ttot
i ]− [Ti]− [Rj · Ti] and [Ri ·Ai] = [Atot

i ]− [Ai]− [Ti ·Ai].
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We assume that binding of enzymes to their substrate is faster than the subsequent catalytic step,

and that the substrate concentration is much larger than the amount of enzyme. This allows us to

use the standard Michaelis-Menten quasi-steady-state expressions. We need to define the Michaelis-

Menten coefficients: for instance, for the ON state of the template, define: kMONii =
k−
ONii+kcatONii

k+
ONii

.

Then the following expressions hold:

[RNAPtot] =[RNAP]

(
1 +

[T1 · A1]

kMON11
+

[T1]

kMOFF11
+

[T2 · A2]

kMON22
+

[T2]

KMOFF22
+

[R2 · T1]

kMOFF21
+

[R1 · T2]

kMOFF12

)
,

[RNaseHtot] =[RNaseH]

(
1 +

[R1 · A1]

kMH11
+

[R2 · A2]

kMH22
+

[R2 · T1]

kMH21
+

[R1 · T2]

kMH12

)
.

We can easily rewrite the above equations as [RNAP] = [RNAPtot]
P and [RNaseH] = [RNaseHtot]

H , with

a straightforward definition of the coefficients P and H. Finally:

[RNAP · Ti ·Ai] =
[RNAPtot] [Ti ·Ai]

P · kMONii
,

[RNAP · Rj · Ti] =
[RNAPtot] [Rj · Ti]

P · kMOFFji
,

[RNAP · Ti] =
[RNAPtot] [Ti]

P · kMOFFii
,

[RNaseH · Ri ·Ai] =
[RNaseHtot] [Ri ·Ai]

H · kMHii
,

[RNaseH · Rj · Ti] =
[RNaseHtot] [Rj · Ti]

H · kMHji
,

which can be substituted in equations (2.12).

The nonlinear set of equations (2.12) is analyzed numerically. The parameter values used in these

simulations are reported in Table 2.1. Such parameters are consistent with those in [63]; this is a fair

assumption since the design of this system is essentially identical to that of a repressible switch. For

simplicity we assume that the circuits are symmetric, and their parameters are therefore identical.

We can assess the performance of the circuit by just creating an imbalance in the concentration of the

templates. Figure 2.11 shows the system trajectories that correspond to zero initial conditions for

[Ai] and [Ri], while the complexes [T1A1] = [Ttot
1 ] = 100 nM, [T2A2] = [Ttot

2 ] = 50 nM, [Atot
1 ] = 100

nM and [Atot
2 ] = 50 nM. (The simulation first allows for equilibration of all the DNA strands in the

absence of enzymes. Only the portion of trajectories after addition of enzymes is shown.) The total

concentration of enzymes is assumed to be [RNAPtot] = 80 nM and [RNaseHtot] = 8.8 nM. The

RNAP and RNase H concentrations were chosen based on typical experimental conditions. (For a

brief discussion on estimating enzyme concentrations, see Table 3.3, Section 3.7.4.) Note that the

concentration of RNAP is not negligible relative to the total amount of genelets present: this means

that the Michaelis-Menten approximation may not be accurate in this case. The simulation results

are shown in Figure 2.11 and are consistent with the traces obtained for the simple model system
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shown at Figure 2.3.

Table 2.1: Simulation Parameters for Equations (2.12)

Units: [1/M/s] Units: [1/s] Units: [M]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiRi = 5 · 104 kcatOFFii = 1 · 10−3 kMOFFi = 1 · 10−6

kAiRi = 5 · 104 kcatOFFij = 1 · 10−3 kMOFFij = 1 · 10−6

kRiTj = 1 · 103 kcatHii = .1 kMHii = 50 · 10−9

kRiRj = 1 · 106 kcatHji = .1 kMHji = 50 · 10−9
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Figure 2.11: Numerical simulation for equations (2.12). Parameters are chosen as in Table 2.1.
[T1A1] = [Ttot

1 ] = 100 nM, [T2A2] = [Ttot
2 ] = 50 nM, [Atot

1 ] = 100 nM, and [Atot
2 ] = 50 nM,

[RNAPtot] = 80 nM, and [RNaseHtot] = 8.8 nM. These results are consistent with those of the
simple model proposed in equations (2.3), and analyzed numerically in Figure 2.3.

2.3.1.2 Experimental results

We expect the feedback scheme to downregulate the production of either RNA species when in excess

with respect to the other. For instance, if the concentration of [T1 · A1] is twice the concentration

of [T2 ·A2], the concentration of R1 produced will clearly exceed that of R2. If the feedback scheme

is working correctly, we expect to notice a decrease in the percentage of template [T1 · A1]. We

can easily verify this hypothesis by labeling the 5’ end of the non-template strand of the genelets

with different fluorescent dyes, and by labeling the corresponding activator strand with a quencher

on the 3’ end. Inactive templates will emit a high fluorescence signal, while the signal of active
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templates will be quenched. For instance, when A1 is stripped off T1, the T1 fluorescence signal will

increase. For convenience, the fluorescence traces will be processed to map the measured signal to

the corresponding active genelet concentrations. In all the fluorescence traces shown here, the total

amount of activators is stoichiometric to the total amount of templates: [Atot
i ] = [Ttot

i ].

Figure 2.12 A shows the behavior of the two genelets in isolation: we can verify that each

genelet self-inhibits after the enzymes are added. (For details on the data normalization procedure,

refer to Section 2.3.1.3.) The concentration of RNA present in solution can be measured through gel

electrophoresis, as shown in Figure 2.12 B: lanes 1 and 2 show that transcription is effectively absent.

When the two genelets are present in solution in stoichiometric amount, their RNA outputs bind

quickly to form a double-stranded complex, and therefore the feedback loops become a secondary

reaction (by design thermodynamically less favorable than the R1 ·R2 complex formation). As shown

in Figure 2.12 C, the two genelets only moderately self-repress. The total RNA concentration in

solution is high, as shown in the denaturing gel in Figure 2.12 B, lanes 3 and 4. A discussion on the

accuracy of the gel data is in Section 2.3.1.3.

When the templates [Ttot
1 ] and [Ttot

2 ] are in different ratios, the system behavior is shown in

Figure 2.13 A. We can plot the resulting initial active template ratio (which corresponds to the total

template ratio) versus the steady-state one: we find that the system behaves symmetrically and the

steady-state ratio is close to one across all the initial ratios. Therefore, given open loop transcription

rates that differ across a factor of 1–3, these results suggest that the system robustly matches the

flux of R1 and R2. If the concentration of [Ttot
i ] and [Atot

i ] is changed over time, the steady-state

concentration of active genelets adjusts as shown in Figure 2.14 A and B. Samples from this set of

experiments were analyzed using a denaturing gel: the results are shown in Figure 2.14 C and D

(corresponding to the traces in Figure 2.14 A and B, respectively) and show the total RNA amount

in solution and that [Rtot
1 ] ≈ [Rtot

2 ], as desired (Figure 2.14 E and F).

The data in Figure 2.13 A were fitted using MATLAB, restricting the search algorithm to optimize

a subset of parameters that are shown in Table 2.2. This subset of parameters was chosen to assess

whether varying the branch migration rates and the enzyme speeds could satisfactorily explain the

data collected. Such parameters were used to numerically compute equations (2.12), generating the

simulated time traces shown in dashed lines in Figures 2.12 and 2.13. The fitted parameters differ

from the initially postulated parameters: in particular, the binding rates for activation, inhibition,

and output formation are much faster than what initially was assumed (Table 2.1); in particular,

the fitted output formation rate is too high and not physically acceptable. Clearly, the current fits

may be improved by extending the parameter space; this will be part of the future work on this

system.
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Figure 2.12: A. Experimental data showing the isolated active genelet concentrations as a
function of time: the self-inhibition reaction turns the switches off, and the RNA concentration
in solution is negligible, as verified in the gel electrophoresis data in panel B, lanes 1 and 2
(samples taken at steady-state after 2 h). Dashed lines represent numerical trajectories of
equations (2.12), using the fitted parameters in Table 2.2. B. Denaturing gel image: lanes 1 and
2 show that the switches in isolation self-inhibit and no significant transcription is measured.
Lanes 3 and 4 show the total RNA amount in samples from the experiment shown at panel
C, taken at steady-state after 2 h. When the genelets are in stoichiometric amount, their flow
rates are already balanced and there is only a moderate self-inhibition.

Table 2.2: Fitted Parameters for (2.12)

.

Units: [1/M/s] Units: [1/s]

kTiAi = 2.9 · 105 kcatONii = 0.06

kTiAiRi = 5 · 105 kcatHii = .09

kAiRi = 5 · 104 kcatHji = .09

kRiTj = 1 · 103

kRiRj = 2 · 107
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Figure 2.13: A. Concentration of active genelets over time at different total templates concen-
tration. The concentration of activators is always stoichiometric to the amount of corresponding
template. B. Overall plot for the total/initial ratio of templates versus the final ratio of active
templates. Dashed lines in all the figures correspond to numerical simulations for model (2.12),
using the parameters in Table 2.2.
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Figure 2.14: A and B. Fluorescent traces showing the adaptation of the active fraction of
genelets, when the total amount of templates is varied over time. C and D. Samples from the
experiments shown in panels A and B, respectively, were analyzed with gel electrophoresis. E
and F show the concentrations of RNA species, estimated from the gel samples. The RNA
concentration was estimated using the DNA ladder as a control. For a brief discussion on the
accuracy of the RNA concentration estimates, refer to Section 2.3.1.3.
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2.3.1.3 Materials and methods

DNA oligonucleotides and enzymes

The DNA strands were designed by thermodynamic analysis using the Winfree lab DNA design

toolbox for MATLAB, Nupack [2] and Mfold [141]. The strands were optimized to yield free energy

gains favoring the desired reactions, and to avoid unwanted secondary structures and crosstalk.

Further constraints on the length and structure of the strands, which can affect the transcription

efficiency and fidelity, were taken into account referring to [61], Chapter 3.4. All the strands were

purchased from Integrated DNA Technologies, Coralville, IA [1]. T1−nt is labeled with TAMRA at

the 5′ end, T2 − nt is labeled with Texas Red at the 5′ end, both activators A1 and A2 are labeled

with the IOWA black RQ quencher at the 3′ end. The transcription buffer mix was prepared prior

to each experiment run (two to four samples) using the T7 Megashortscript kit (#1354), Ambion,

Austin, TX which includes the T7 RNA polymerase enzyme mix, the transcription buffer, and

rNTPs utilized in the experiments. E. coli RNase H was purchased from Ambion (#2292).

Transcription protocol

The templates were annealed with 10% (v/v) 10× transcription buffer from 90◦C to 37◦C for

1 h 30 min at a concentration 5–10× the target concentration. The DNA activators were added

to the annealed templates from a higher concentration stock, in a solution with 10% (v/v), 10×
transcription buffer, 7.5 mM each NTP, 4% (v/v) T7 RNA polymerase, and .44% (v/v) E. coli

RNase H. Each transcription experiment for fluorescence spectroscopy was prepared for a total

target volume of 70 µl. Samples for gel studies were stopped by denaturing dye (80% formamide,

10 mM EDTA, 0.01g XCFF).

Data acquisition

The fluorescence was measured at 37◦C every two minutes with a Horiba/Jobin Yvon Fluorolog 3

system. Excitation and emission maxima for TAMRA were set to 559 nm and 583 nm, respectively,

according to the IDT reccommendation; for Texas Red the maxima for the spectrum were set to 598–

617 nm. Slit widths were set to 2 nM for excitation and 4 nM for emission. The raw fluorescence

data Φ(t) were converted to estimated switch activity by normalizing with respect to maximum

fluorescence Φmax(measured before adding activators and enzymes) and to minimum fluorescence

Φmin (measured after adding activators and before adding enzymes):

[TiAi](t) = [Ttot
i ] ·

(
1− Φ(t)− Φmin

Φmax − Φmin

)
.

No correction for the dilution caused by the addition of enzymes (roughly 7%) was implemented.

Denaturing polyacrylamide gels (8% 19:1 acrylamide:bis and 7 M urea in TBE buffer, 100 mM

Tris, 90 mM boric acid, 1 mM EDTA) were run at 67◦C for 45 min with 10 V/cm in TBE buffer.

Samples were loaded using Xylene Cyanol FF dye. For quantitation, denaturing gels were stained
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with SYBR Gold (Molecular Probes, Eugene, OR; #S-11494). In the control lane a 10-base DNA

ladder (Invitrogen, Carlsbad, CA; #1082-015) was utilized. The DNA ladder 100 bp band was used

as a control to estimate the concentrations of the RNA species in solution in Figure 2.14 E and F.

Gels were scanned using the Molecular Imager FX (Biorad, Hercules, CA) and analyzed using the

Quantity One software (Biorad, Hercules, CA). Note that comparing the intensity of DNA and RNA

bands may result in inaccurate concentration estimates. Also, the high amount of RNA produced

may have caused saturation in the gel data processing, which has been neglected so far. Additional

experiments are needed to clarify these issues.

Numerical simulations

The system was numerically analyzed using MATLAB (The MathWorks). Differential equa-

tions were solved using the ode23 routine. The preliminary numerical studies to obtain some in-

sight on the circuit behavior were performed taking the parameters from [63] and the references

cited therein. After collecting the fluorescence traces shown in Figures 2.12 and 2.13, a subset of

the parameters was fit using the MATLAB fmincon routine. The parameters fitted are the rates

kTiAi , kTiAiRi , kAiRi , kR1R2 , kRiTj , and the parameters kcatONii and kcatHij . This specific subset of

parameters was chosen to gain intuition on the effects of the branch migration rates (which are

tunable by design of the toehold lengths), and of the enzyme speed. Clearly, the data fits shown

could be improved, and to this purpose future fits will be performed on a larger set of parameters,

including additional fluorescence and gel electrophoresis data. The amount of RNAP in the fit is

fixed at 80 nM, wile that of RNase H is 8.8 nM, based on estimates for stock enzyme concentra-

tions of around 1.25 µM (for more discussions on estimating enzyme concentrations, see Table 3.3,

Section 3.7.4). The parameters used in this paper are reported in Tables 2.1 and 2.2.

Oligonucleotide sequences

Due to technical constraints of the supplier IDT DNA, T1-nt and T2-nt were shortened with

respect to the nominal design to have a length of 125 bases. The strands used in the experiments

are those denoted below as “Short”. These modifications did not alter the regulatory domains of

the transcripts R1 and R2. Also the full length of the main transcription products was not affected,

as verified by gel electrophoresis in Figure 2.12 B.

T1-nt Full (134-mer) 5’-CTA ATG AAC TAC TAC TAC ACA CTA ATA CGA CTC ACT ATA

GGG AGA AAC AAG AAC GAC ACT AAT GAA CTA CTA CTA CAC ACC AAC CAC AAC TTT

ACC TTA ACC TTA CTT ACC ACG GCA GCT GAC AAA GTC AGA AA-3’ (not synthesized)

T1-nt Short (125-mer) 5’-Tamra-CT AAT GAA CTA CTA CTA CAC ACT AAT ACG ACT CAC

TAT AGG GAG AAA CAA GAA CGA CAC TAA TGA ACT ACT ACT ACA CAC CAA CCA

CAA CTT TAC CTT AAC CTT ACT TAC CAC GGC AGC TGA CAA-3’

T1-t (107-mer) 5’-TTT CTG ACT TTG TCA GCT GCC GTG GTA AGT AAG GTT AAG GTA

AAG TTG TGG TTG GTG TGT AGT AGT AGT TCA TTA GTG TCG TTC TTG TTT CTC



32

CCT ATA GTG AGT CG-3’

A1 (35-mer) 5’-TAT TAG TGT GTA GTA GTA GTT CAT TAG TGT CGT TC-3’

T2-nt Full (126-mer) 5’-GGT TAA GGT AAA GTT GTG GTT GTA ATA CGA CTC ACT ATA

GGG AGA AAC AAG TAA GTA AGG TTA AGG TAA AGT TGT GGT TGG TGT GTA GTA

GTA GTT CAT TAG TGT CGT TCC TGA CAA AGT CAG AAA-3’ (not synthesized)

T2-nt Short (126-mer) 5’-TexasRed-GG TTA AGG TAA AGT TGT GGT TGT AAT ACG ACT

CAC TAT AGG GAG AAA CAA GTA AGT AAG GTT AAG GTA AAG TTG TGG TTG GTG

TGT AGT AGT AGT TCA TTA GTG TCG TTC CTG ACA AAG TCA GAA-3’

T2-t (99-mer) 5’-TTT CTG ACT TTG TCA GGA ACG ACA CTA ATG AAC TAC TAC TAC

ACA CCA ACC ACA ACT TTA CCT TAA CCT TAC TTA CTT GTT TCT CCC TAT AGT

GAG TCG-3’

A2 (35-mer) 5’-TAT TAC AAC CAC AAC TTT ACC TTA ACC TTA CTT AC-3’

R1 (95-mer) 5’ - GGG AGA AAC AAG AAC GAC ACU AAU GAA CUA CUA CUA CAC ACC

AAC CAC AAC UUU ACC UUA ACC UUA CUU ACC ACG GCA GCU GAC AAA GUC AGA

AA -3’

R2 (87-mer) 5’-GGG AGA AAC AAG UAA GUA AGG UUA AGG UAA AGU UGU GGU UGG

UGU GUA GUA GUA GUU CAU UAG UGU CGU UCC UGA CAA AGU CAG AAA -3’

2.3.2 Cross-activation

The implementation of the model system (2.7), graphically represented in Figure 2.1 C, presents

several challenges. The general design idea that has been pursued for this systems is sketched in

Figure 2.15 A. Both genelets are constitutively inhibited by a DNA inhibitor Ii. Each RNA output Ri

is designed to bind to the inhibitor Ij (domains indicated as qj-aj-tj), thereby releasing the activator

Aj for binding to Tj. Because Ri should also cover the active domain of Rj in the formation of P,

then Ri must also be complementary to Ai (domains t′i-a
′
i-q
′
i): therefore, this design is structurally

affected by binding of RNA to templates (as for the self-repressing circuit), and by RNA-mediated

self-inhibition loops, as shown in the reaction scheme in Figure 2.15 C. Both design challenges depend

on the length and sequences of the complementarity domains shared by Ri and Rj. For instance,

we could avoid inserting in the RNA species the toehold sequences t1, t′1, t2, and t′2 to minimize

the self inhibition; however, this would facilitate the formation of complexes Ai · Ii · Rj that would

slow down the release of Ai. In this thesis, I will report only the data taken on the most successful

experimental design so far.

2.3.2.1 Modeling

To construct a dynamic model for the cross-activating circuit represented in Figure 2.15 A, we start

from a list of all the chemical reactions that can occur.
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Figure 2.15: General reaction scheme of the adopted transcriptional circuits implementation
for the positive feedback scheme in Figure 2.1 C. Complementary domains are represented with
the same color. Promoters are colored in dark gray domains, while hairpin terminator sequences
are in light gray. A. Desired cross-activation loops. The activation reaction arrows are colored
in red. B. Undesired cross-activation and RNase H-mediated degradation of the RNA-template
complexes. C. Undesired self-inhibition. The inhibition pathway in cyan arrows nominally
should not occur, since there is no exposed toehold to favor it. However, this reaction has been
observed in preliminary experiments not shown in this thesis and is therefore also included in
the models.



34

Activation Ti + Ai
kTiAi→ Ti ·Ai

Inhibition Ti ·Ai + Ii
kTiAiIi→ Ti + Ii ·Ai

Annihilation Ai + Ii
kAiIi→ Ai · Ii

Release Ri + Aj · Ij
kRiAjIj
→ Ri · Ij + Ai

Annihilation Ri + Ij
kRiIj
→ Ri · Ij

Output formation Ri + Rj
kRiRj
→ Ri · Rj

Undesired interactions Ri + Ai
kRiAi→ Ri ·Ai

Ri + Tj
kRiTj
→ Ri · Tj

Transcription: on state RNAP + Ti ·Ai

k+
ONii→
←

k−
ONii

RNAP · Ti ·Ai
kcatONii→ RNAP + Ti ·Ai + Ri

Transcription: off state RNAP + Ti

k+
OFFi→
←

k−
OFFi

RNAP · Ti
kcatOFFi→ RNAP + Ti + Ri

RNAP + Ri · Tj

k+
OFFij
→
←

k−
OFFij

RNAP · Ri · Tj
kcatOFFij
→ RNAP + Ri · Tj + Rj

Degradation RNaseH + Ri · Ij

k+
HIj
→
←

k−
HIj

RNaseH · Ri · Ij

kcatHIj
→ RNaseH + Ij

RNaseH + Ri ·Ai

k+
HAi→
←

k−
HAi

RNaseH · Ri ·Ai

kcatHAi→ RNaseH + Ai

RNaseH + Ri · Tj

k+
HTj
→
←

k−
HTj

RNaseH · Ri · Tj

kcatHTj
→ RNaseH + Tj.
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The resulting set of ordinary differential equations is:

d

dt
[Ti] =− kTiAi

[Ti] [Ai]− kRjTi
[Rj] [Ti] + kTiAiIi [Ti ·Ai] [Ii] + kcatHTi

[RNaseH · Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kAiIi [Ai] [Ii]− kRiAi
[Ri] [Ai] + kcatHAi

[RNaseH · Ri ·Ai],

d

dt
[Ii] =− kAiIi [Ai] [Ii]− kTiAiIi [Ti ·Ai] [Ii]− kRjIi [Rj] [Ii] + kcatHIi

[RNaseH · Rj · Ii],

d

dt
[Ri] =− kRiAjIj [Ri] [Aj · Ij]− kRiRj [Ri] [Rj]− kRiTj [Ri] [Tj]− kRiIj [Ri] [Ij]− kRiAi [Ri] [Ai]

+ kcatONii
[RNAP · Ti ·Ai] + kcatOFFi

[RNAP · Ti] + kcatOFFji
[RNAP · Rj · Ti],

d

dt
[Ri · Tj] = + kRiTj [Ri] [Tj]− kcatHTj

[RNaseH · Ri · Tj],

d

dt
[Ri · Rj] = + kRiRj

[Ri] [Rj].

(2.13)

As previously done for the self-inhibiting circuit model, we can express the enzyme-substrate com-

plexes using the Michaelis-Menten approximation. For the RNAP substrate, for instance, we find:

[RNAP · Ti · Ai] =
[RNAPtot](

1 +
∑

i,j
[Ti·Ai]
kMONii

+ [Ti]
kMOFFi

+
[Ri·Tj]

kMOFFij

) .
(2.14)

Analogous expressions can be derived for all other complexes.

Equations (2.13) are numerically solved using the MATLAB ode23s solver. Table 2.3 shows

the parameters used for the simulations. Such generic parameters are consistent with the those

in [63]. For simplicity we assume that the two sub-circuits are symmetric and have the same binding

rates. We check the behavior of the system by creating an imbalance in the total concentration of

inhibitors: [Ttot
1 ] = [Atot

1 ] = 50 nM, [Ttot
2 ] = [Atot

2 ] = 100 nM, while [Itot
1 ] = 20 nM and [Itot

2 ] = 120

nM. The simulation first allows for equilibration of all the DNA strands in the absence of enzymes.

The plot shows the trajectories after addition of the enzymes, whose total concentration is assumed

to be [RNAPtot] = 80 nM and [RNaseHtot] = 8.8 nM, based on typical experimental conditions

(for a brief discussion on estimating enzyme concentrations, see Table 3.3, Section 3.7.4). As noted

before for the self-inhibitory scheme, the concentration of RNAP is not negligible relative to the total

amount of genelets present and therefore the Michaelis-Menten approximation may not be accurate

in this case. The simulation results are shown in Figure 2.16 and are consistent with the traces

obtained for the simple model system shown at Figure 2.6: the templates cross activate and reach

an equilibrium where the flow of total RNA is matched. A comparison between the performance of

the transcriptional negative and positive feedback circuits models was also done in [42].
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Table 2.3: Parameters for the Initial Numerical Analysis of the Cross Activating Circuit

Units: [1/M/s] Units: [1/s] Units: [M]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiIi = 5 · 104 kcatOFFi = 1 · 10−3 kMOFFi = 1 · 10−6

kAiIi = 5 · 104 kcatOFFij = 1 · 10−3 kMOFFij = 1 · 10−6

kRjAiIi = 5 · 105 kcatHIi
= .1 kMHIi

= 50 · 10−9

kRiIi = 5 · 105 kcatHTi
= .1 kMHTi

= 50 · 10−9

kRiTj = 1 · 103 kcatHAi
= .1 kMHAi

= 50 · 10−9

kRiAi = 1 · 103

kRiRj = 2 · 105
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Figure 2.16: Numerical simulation for equations (2.13). Parameters are chosen as in Table 2.3.
[Ttot

1 ] = [Atot
1 ] = 50 nM, [Ttot

2 ] = [Atot
2 ] = 100 nM, while [Itot

1 ] = 20 nM, and [Itot
2 ] = 120 nM.

[RNAPtot] = 80 nM and [RNaseHtot] = 8.8 nM. These numerical results are in general consistent
with those obtained for the simple model (2.7), shown in Figure 2.6.
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2.3.2.2 Preliminary experimental results

I will report here preliminary results obtained on the most satisfactory transcriptional circuit design

that has been considered so far. As previously noted, the challenge is to generate the cross-activation

loops without introducing undesired self-inhibition or other side complexes.

The time traces shown in this section are obtained using fluorescence spectroscopy: the two

genelet non-template strands were labeled on the 5’ end of their activation domain with fluorescent

dyes, and their corresponding activators were labeled with quenchers on the 3’ end. The data were

processed to represent the fraction of the genelets in their on state.

The current circuit design is not immune from the self-inhibition problem: Figure 2.17 A shows

the concentration of the two activated switches in separate samples, with the addition of RNA

polymerase and RNase H in sequence. Both panels show a decrease in the concentration of active

genelets after addition of RNAP; such effect is more dramatic for the active T2 switch. Addition of

RNase H reduces the observed self-inhibition (although not completely for the T2 switch, a detail

which has still not been explained), confirming that it is due to RNA-DNA interactions.

The circuit was still tested (as done in the self-repression design) by observing the behavior of

the two genelets when present in solution at different concentrations. To overcome the self-inhibition

problem, I decided to implement three experimental strategies: use a high concentration of DNA

inhibitors, a high concentration of RNase H, and lengthen the toeholds for the branch migration

reaction of oligos A2 and I2 (toehold t2, in reference to Figure 2.15.)

All traces shown in Figure 2.17 B were measured with a concentration of [Atot
1 ] = [Atot

2 ] = 300 nM,

and [Itot
1 ] = [Itot

2 ] = 1 µM: this means that initially both genelets, regardless of the template con-

centrations, should be in a fully inhibited state. However, the leak in the off-state transcription

appears to be sufficient to trigger cross-activation of the two circuits. This is particularly evident

for the genelet at lower concentration, which is activated in most traces. The resulting ratio of the

steady-state on fraction versus the total ratio of the genelets in solution is plotted in Figure 2.17 C.

The reasons behind the circuit asymmetry are currently not clear. However, the data presented are

encouraging and suggest that this feedback scheme, once properly debugged, may provide a robust

method to maximize and match the flux of R1 and R2 across a range of open loop transcription

rates.

The preliminary data shown in Figure 2.17 B were compared to the predictions of the dynamic

model (2.13), using a set of modified parameters and an additional reaction, which has been observed

to occur in preliminary data not reported here:

Ri + Ti ·Ai
kRiTiAi→ Ti + Ri ·Ai.

The activation, inhibition, product formation, and transcription rates were adjusted to the parame-
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ters shown in Table 2.4. All other parameters are unchanged with respect to Table 2.3. The adjusted

set of parameters was chosen to explore whether variations in the branch migration speeds and the

transcription rates from an off state could easily explain the observed data. These data fits, however,

do not fully explain the circuit behavior. Systematic fitting on additional experimental data, and

on a larger set of parameters, is necessary to improve our understanding of the system’s dynamics.

Additional experiments on the current design are needed to address primarily two issues: 1) The

leaky transcription from the inhibited switches must be characterized with separate gel experiments.

The off-state transcription, in the absence of activators and inhibitors, has been tested and is negli-

gible. Therefore, the inhibition efficiency of the current designs for I1 and I2 might not be sufficient

to keep the circuits fully inactive. 2) The cross-activation binding rates must be assessed in isolation

using the RNA transcripts, to branch migrate fluorescently labeled DNA activators and inhibitors.

Future and ongoing work on this project are further described in Section 5.1.

Table 2.4: Parameters for the Numerical Analysis of the Cross Activating Circuit after Fitting

Units: [1/M/s] Units: [1/s]

kTiAi = 9 · 104 kcatONii = 0.2

kTiAiIi = 1.3 · 104 kcatOFFi = 1 · 10−2

kAiIi = 1.3 · 104 kcatOFFij = 1 · 10−2

kRjAiIi = 1 · 105

kRjIi = 1 · 105

kRiTj = 1 · 103

kR1A1 = 1 · 103

kR2A2 = 1 · 104

kR1T1A1 = 1 · 103

kR2T2A2 = 1 · 104

kR1R2 = 1 · 106

2.3.2.3 Materials and methods

DNA oligonucleotides and enzymes

The DNA strands were designed using the Winfree lab DNA design toolbox for MATLAB,

Nupack [2] and Mfold [141], following the constraint guidelines in [61], Chapter 3.4. All the strands

were purchased from Integrated DNA Technologies, Coralville, IA [1]. T1 − nt is labeled with TYE

563 at the 5′ end, T2 − nt is labeled with TYE665 at the 5′ end, both activators A1 and A2 are

labeled with the IOWA black RQ quencher at the 3′ end. T7 RNAP was purchased from Epicentre

Biotechnologies, Cat. n. TM910K (200 U/µl). E. coli cloned RNase H was purchased from Ambion,

Cat. n. AM2292 (10 U/µl). Inorganic lyophilized pyrophosphatase added to the transcription
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Figure 2.17: A. The current design for the transcriptional cross-activation scheme suffers from
a self-inhibition side reaction. The two circuits were here considered in isolation. Self-inhibition
is particularly strong for the genelet T2, right panel. Note that adding RNase H to the active
genelet T2 does not allow recovery of the fully-on state; we do not have a good explanation for
this behavior yet. B. Fluorescent traces showing the behavior of the two genelets simultaneously
in solution, for different total amounts of templates. [Atot

i ] = 300 nM, [Itot
i ] = 1 µM in all the

experimental traces. Dashed lines represent numerically computed traces, using model (2.13)
and the adjusted parameters in Table 2.4. C. Plot showing the steady-state ratio versus total
ratio of the genelets for the data collected at B.
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protocol was purchased from Sigma Aldrich, Cat. n. I1891-100UN.

Transcription protocol

The transcription buffer mix was prepared prior to each experiment run (for four samples), mixing

reagents to the following final concentrations: 1x Transcription Buffer and 10 mM dithiothreitol

(DTT) (Epicentre Biotechnologies, Cat. n. BP1001), 7.5 mM each rNTP (Epicentre Biotechnologies,

Cat. n. RN02825), 35 mM MgCl2, and 0.015 U/µl pyrophosphatase (resuspended in Tris HCl 20

mM, pH 7.2, 50% glycerol (v/v)). The templates were annealed in 1× Epicentre transcription buffer

from 90◦C to 37◦C for 1 h 30 min at a concentration 5–10× the target concentration. The annealed

templates, DNA activators, and inhibitors were added to the transcription buffer mix and incubated

at 37◦C. Each transcription experiment for fluorescence spectroscopy was prepared for a total target

volume of 60 µl. Enzymes were pre-mixed before each experimental run (two or four samples), with

a volume ratio of 5:1, and 4 µL of the pre-mix was added to each cuvette.

Data acquisition

All fluorescence experiments were performed on a Horiba/Jobin Yvon Fluorolog 3 system, using

45 µL sample chamber quartz cuvettes. Fluorescence was measured at 37◦ C every two minutes.

Excitation/emission for TYE563 (T1) were set to the maxima 549–563 nm, those for TYE665 (T2)

at 645–665 nm, as recommended by the manufacturer IDT DNA. Slit widths were set to 2 nM for

excitation and 4 nM for emission. The raw measured data were converted to estimated switch activity

by normalizing with respect to maximum fluorescence Φmax (measured before adding activators,

inhibitors and enzymes) and to minimum fluorescence Φmin (measured after adding activators and

before adding inhibitors and enzymes):

[TiAi](t) = [Ttot
i ] ·

(
1− v(t) · Φ(t)− Φmin

Φmax − Φmin

)
,

where v(t) is a correction factor that takes into account the percent volume dilution introduced by

the addition of activators and inhibitors. For the data in Figure 2.17 A, v = 1. For the data in

Figure 2.17 B and C, after the addition of activators and inhibitors, v(t) is taken to be 1.15; after

addition of enzymes v(t)=1.2. (Dilution was very high due to the low concentration of stock aliquots

and to the high target concentration of activators and inhibitors.)

Numerical simulations

The system was numerically analyzed using MATLAB (The MathWorks). Differential equations

were solved using the ode23 routine. The initial numerical studies to obtain some insight on the

circuit behavior were performed using the parameters in Table 2.3, which are consistent with [63]

and the references cited therein. After data collection, a subset of the parameters was tuned. The

adjusted parameters are the rates kTiAi
, kAiIi , kTiAiIi , kRiAiIi , kRiAi

, kRiRj
, kRiTj

, and the parameters

kcatONii
, kcatOFFi

, kcatOFFij
; their values are in Table 2.4. The total amount of RNAP was fixed at
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80 nM, the total amount of RNase H at 11 nM (to reflect on the higher volume of RNase H used in

this set of experiments, relative to the negative auto-regulation project).

Oligonucleotides sequences

Due to technical constraints of the supplier IDT DNA, T1-nt and T2-nt were shortened (with

respect to the nominal design) to a length of 100 bases. These modifications do not alter the

regulatory domains of the transcripts. The full length of the main transcription products was

not affected, as verified by gel electrophoresis (data not shown). A2 and I2, V1 were used for

the experiment in Figure 2.17 A. A2 and I2, V2 were instead used for the all the experiments in

Figure 2.17 B and C.

T1-nt Full (121-mer) 5’-CAT TAG TGT CGT TCG TTC ATA ATA CGA CTC ACT ATA GGG

AGA AGT GGT TAA GGT ATA GTT AGA TAG GTA AGG CAT GTT CAT TAG TGT CGT

TGT GTA GTG TTG CTG ACT AAA AGT CAG AAA A-3’ (not synthesized)

T1-nt Short (99-mer) 5’-TYE563-CAT TAG TGT CGT TCG TTC ATA ATA CGA CTC ACT

ATA GGG AGA AGT GGT TAA GGT ATA GTT AGA TAG GTA AGG CAT GTT CAT TAG

TGT CGT TGT GTA GTG -3’

T1-t (97-mer) 5’-TTT TCT GAC TTT TAG TCA GCA ACA CTA CAC AAC GAC ACT AAT

GAA CAT GCC TTA CCT ATC TAA CTA TAC CTT AAC CAC TTC TCC CTA TAG TGA

GTC G-3’

T2-nt Full (116-mer) 5’- CCT TAC CTA TCT AAC TAT ATA ATA CGA CTC ACT ATA GGG

AGA CAA CAC TAC ACT GAA CGA ACG ACA CTA ATG AAC ATG CCT TAC CTA TCT

ACC TTA ACC ACT TGA CAA AGT CAA AA-3’ (not synthesized)

T2-nt Short (99-mer) 5’- TYE665-CCT TAC CTA TCT AAC TAT ATA ATA CGA CTC ACT

ATA GGG AGA CAA CAC TAC ACT GAA CGA ACG ACA CTA ATG AAC ATG CCT TAC

CTA TCT ACC TTA ACC -3’

T2-t (92-mer) 5’-TTT TGA CTT TGT CAA GTG GTT AAG GTA GAT AGG TAA GGC ATG

TTC ATT AGT GTC GTT CGT TCA GTG TAG TGT TGT CTC CCT ATA GTG AGT CG-3’

A1 (30-mer) 5’-TAT TAT GAA CGA ACG ACA CTA ATG AAC TAC-IOWA black RQ-3’

I1 (36-mer) 5’-GTA GTT CAT TAG TGT CGT TCG TTC AGT GTA GTG TTG-3’

A2 V1 (30-mer) 5’-TAT TAT ATA GTT AGA TAG GTA AGG CAT TAG-IOWA black RQ-3’

I2 V1 (36-mer) 5’-CTA ATG CCT TAC CTA TCT AAC TAT ACC TTA ACC ACT-3’

A2 V2 (33-mer) 5’-TAT TAT ATA GTT AGA TAG GTA AGG CAT TAG TAG -IOWA black RQ-3’

I2 V2 (39-mer) 5’-CTA CTA ATG CCT TAC CTA TCT AAC TAT ACC TTA ACC ACT -3’
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2.4 Discussion

Regulating the flux of reagents in a molecular network is a relevant problem in the context of synthetic

biology. Here, a model problem for matching the flow of two reagents has been formulated using

simple ODEs. The results reported suggest that flux-matching can be achieved by programming

this small network to include feedback loops. Self-repression is useful to eliminate excess of unused

reagents, while cross-activation is a design more suited to maximizing both flows.

Reactions analogous to the model problem (2.1) are typically used to model the small regulatory

RNA (sRNA) pathway (considered in this thesis in Section 4.3.2). The main feature of this pathway

(present in many bacteria and eukaryotes) is that a single regulatory small RNA can bind to and

down-regulate the translation of several other target mRNA species. This gene expression control

strategy is advantageous when cells starve on specific nutrients or minerals, and all non-essential

pathways relying on the scarce resource should be quickly shut down. Several studies have been

recently published to compare the quantitative features of this pathway to protein-mediated tran-

scriptional control [70, 83, 85]. In particular, advantages of RNA-based control of gene expression

are speed and ultrasensitivity.

In the sRNA pathway, the complex formed by the regulatory RNA and its target is simply de-

graded, blocking translation. To my knowledge, the schemes proposed in this chapter have no cor-

respondence with in vivo RNA-mediated feedback loops that can regulate RNA transcription [51].

However, it is conceivable that similar self-repression and cross-activation loops could be imple-

mented in vivo by substituting the promoter structural alteration characteristic of transcriptional

circuits, with a post-transcriptional control mechanism, such as cleavage through ribozymes or al-

teration of the ribosome binding site [50, 43]. These schemes could be useful when large synthetic

pathways are integrated into a host: it is likely that minimization of the translation burden of unnec-

essary enzymes (negative feedback) or maximization the output of the pathway (positive feedback)

would be possible without tuning promoter strengths in open loop. An in vivo version of these

schemes might be robust with respect to promoter strength or plasmid copy number. Clearly, the

main challenges to such implementation are posed by the diffusion limits, spatial anisotropy, and

nonspecific binding sites in the cellular environment.

I will make a few further remarks regarding the negative feedback scheme. In his pioneering work

on design of genetic networks, M. Savageau indicated that negative auto-regulation is the best control

strategy for genes in low demand. The results presented here suggest that negative auto-regulation

by means of stoichiometric binding is useful to adjust the production rate of a species to a level

that is close to the flux effectively needed by the compartment. A formalization and generalization

of this concept is currently being investigated. Catalytic self-repression has been shown to speed

up the rise time of transcriptional networks [101], and in general to increase the robustness of gene
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expression profiles at the population level [16]. A thorough mathematical comparison between the

properties of stoichiometric and catalytic negative regulation will be considered in the future.

The positive feedback scheme presented here is useful to maximize output formation; therefore,

this scheme would be appropriate if circuit design specifications required a high amount of product.

This is consistent with M. Savageau’s theory in the context of control of gene expression: positive

regulation is the best strategy for genes in high demand [108]. Positive auto-regulation in tran-

scriptional control of gene expression is a motif exhibiting a slow response time [8]. In feedforward

loops, which are perhaps more similar to our cross-activation structure, positive regulation intro-

duces a delay in the network; this delay is programmable by defining the activation thresholds [8].

Based on numerical analysis not shown in this thesis, tuning the concentration of DNA inhibitor

in an activated genelet achieves the same tunable delay property. One of the main drawbacks of

our cross-activation design is the undesired self-inhibition pathway; this issue might be solved using

DNA translation gates [120] or a pair of decoupling genelets within the activation pathway.

In summary, this chapter was dedicated to the analysis of two different feedback schemes to

achieve flux matching for two biochemical species interacting to form a product. The modeling

and experimental results suggest that feedback confers robustness to the system with respect to the

open loop production rate of the reagents. Ongoing and future work on this project are outlined in

Section 5.1.
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Chapter 3

Modular biochemical networks:
timing molecular devices with a
transcriptional clock

3.1 Introduction

Circadian clocks, which time the functionalities of a whole organism [133], are probably the best

example of a biochemical oscillatory system. To explore the features and properties of biochemical

oscillators, in the last decade several synthetic clock systems with a reduced number of components

have been constructed in vivo [13, 25, 33, 44, 122, 128]. However, most of these artificial oscillators

are still relatively complex and difficult to understand quantitatively, since they interact with the

complex and uncertain environment of their host, and rely on the full transcriptional machinery of

the cell. At the other extreme, inorganic oscillators can be quite robust, but difficult to systematically

couple to a wide range of downstream processes [67, 71].

Recently, molecular oscillatory circuits have been designed and implemented in the in vitro

context [64, 86], opening the possibility to use in vitro clocks to drive other circuits or devices.

In this chapter, the transcriptional oscillator proposed in [64] is used to time downstream molec-

ular processes and explore the general challenges arising in coupled biochemical reaction networks.

In particular, the focus is on how a downstream process can perturb the dynamic behavior of the

“core oscillator”, and how this “retroactivity” phenomenon [106, 27, 39] can be reduced.

As a simple “load” for the biochemical oscillator, a DNA nanomechanical device called “DNA

tweezers” [139] was designed to selectively bind to a specific oligonucleotide component of the os-

cillator. These tweezers are built with two double-helical domains connected by a hinge, and have

two single-stranded “hands”. The hands can be designed to bind to a targeted single-stranded nu-

cleic acid and thereby close the tweezers. The perturbation introduced by the chemical interactions

between the oscillator and the tweezers are proportional to the total amount of tweezers present in
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solution. To increase the robustness of clock with respect to this molecular load, an “insulator cir-

cuit” was developed to put only a small load on the oscillator, amplify the measured signal, and drive

larger downstream loads. The project presented in this chapter was developed in close collaboration

with J. Kim, E. Winfree and the group of Prof. Friedrich Simmel at the Technical University in

Munich. The data presented here were collected by me, unless otherwise noted. Figures are adapted

from [41].

3.2 Problem formulation

To highlight the challenges that arise when coupling molecular systems, I will start by illustrating a

model problem. First, I will introduce a simple molecular oscillator model, which has been previously

proposed in [64] to describe the transcriptional clock used in this project. Then, such model will be

extended to include coupling of the oscillator to an additional molecular species, with the general

purpose of transmitting its oscillatory signal to a downstream device. The objective here is to

emphasize how the structure of the resulting biochemical reaction network is perturbed, and how

such perturbation can be reduced by suitably modifying the coupling mechanism. We will consider

the following equations, proposed in [64], as a simple model for our oscillator:

d[rA1]

dt
= kp[SW12]− kd[rA1],

τ
d[SW21]

dt
= [SW21tot]

[rA1]m

KAm

1 + [rA1]m

KAm

− [SW21],

d[rI2]

dt
= kp[SW21]− kd[rI2],

τ
d[SW12]

dt
= [SW12tot]

1

1 + [rI2]n

KIn

− [SW12].

The species rA1 and rI2 are RNA molecules that interact through two genelet switches that produce

them, respectively, SW12 and SW21. In particular, rA1 is an activator for SW21, while rI2 is an

inhibitor for SW12 (Figure 3.1 A). The effectiveness of the RNA species in activating or repressing

the switches is modulated by the thresholds KA and KI, and by the Hill coefficients m and n. The

relaxation constant τ scales the speed of the switches dynamics. The concentration of each species

oscillates for suitable choices of the parameters. For this system, the existence of an oscillatory

solution can be shown to be equivalent to the instability of the sole equilibrium point for the system

(see Appendix, Section 3.7.1). By linearizing the dynamics around such equilibrium, and by exam-

ining the eigenvalues of the Jacobian, it is possible to numerically assess the oscillatory domain. In

particular, this domain is defined by the Hill coefficients m and n and by the lumped parameters

β = (kp/kd)[SW21tot]/KI and α = (kp/kd)[SW12tot]/KA. Figure 3.1 D shows the numerically
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computed oscillatory domain when m = n and α = β. Unless otherwise noted, from now on the

operating point of this oscillator model is defined by the parameters kp = 0.05/s, kd = 0.002/s,

KA=KI=0.5µM, [SW21tot] = [SW12tot] = 100 nM, m=n=5, and τ = 500 s.

We want to use one of the oscillator component species to bind to a “load” molecule L, driving

the periodic formation of an “active” complex La. We assume that [Ltot] = [L] + [La]. We will make

a distinction on whether the mass of the oscillator component driving the load is consumed or not

by binding to the load. Such a distinction is relevant with respect to our experimental system, as

we will remark later. Without loss of generality, we will consider the case where the species rI2 is

coupled to the load L. Additional chemical reactions are now present in the system. The active form

of the load is produced according to the second-order reaction: rI2+L
kf
−→La. The active load decays

to its inactive form: La kr
−→L. If the mass of the oscillator species is not consumed, the previous

reaction is replaced by: La kr
−→ rI2 + L. In both cases, the concentration dynamics for L are:

d[La]

dt
= −kr · [La] + kf · [L][rI2]. (3.1)

The rI2 concentration dynamics are perturbed by the new reactions:

d[rI2]

dt
= kp · [SW21]− kd · [rI2] +kr · [La]

consumptive︷ ︸︸ ︷
−kf · [L][rI2]︸ ︷︷ ︸

non−consumptive

, (3.2)

where the braces highlight the additional terms appearing in the consumptive and non-consumptive

coupling cases.

Let us for now ignore the perturbation introduced by the presence of L on the oscillator, and

assume that [rI2(t)] is unaffected by L. Then, we can approximate the solution of equation (3.1)

with the quasi-steady-state expression:

[L̂a](t) = [Ltot]

(
1− kr

kr + kf [rI2(t)]

)
. (3.3)

The above approximation is satisfactory when the load binding rates are faster than the timescale

of the oscillator, as shown in detail in the Appendix, Section 3.7.1.2. Here, for illustrative purposes,

we choose kr ≈ kd = 0.006/s. Therefore, the load dynamics are always faster than the dynamics

of rI2, and converge to a periodic orbit forced by the oscillatory input (this is demonstrated in the

Appendix, Section 3.7.1.2.

Referring to equation (3.3), we can make some considerations on the “signal propagation” from

the oscillator to the load. Suppose [rI2](t) ≈ A0+A1 sinωt: then, the ratio of kr and kf [rI2] influences
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Figure 3.1: Circuits and simulations for a simple oscillator system coupled to a load. Unless
otherwise noted, the parameters used for all simulations in this panel are: kp = 0.05/s, kd =
0.002/s, KA=KI=0.5µM, [SW21tot] = [SW12tot] = 100 nM, m=n=5, τ = 500 s, kr = 0.006/s,
kf = 7.9 · 103/M/s. For the insulating gene, the RNA output production rate is ki

p = 0.15/s,

and the RNA degradation rate is ki
d = 0.006/s. The consumptive binding rates of the insulator

and rI2 are chosen as kr = 0.006/s and kf = 7.9 · 103/M/s. The binding rates of the insulator
RNA output and the load are chosen as ki

r = 0.006/s and ki
f = 6 · 103/M/s. A. Diagram for

the simple model for the oscillator. B. Time traces for the oscillator species rA1 and rI2. C.
Time traces for the oscillator species SW12 and SW21. D. Oscillatory domain of the simple
model as a function of the non-dimensional parameters α = β and m = n. E. Oscillator scheme
with consumptive load coupled to rI2. F and G. Time traces for the oscillator and load for
consumptive coupling on rI2. H. The oscillatory domain shrinks as a function of [Ltot] for the
consumptive coupling to rI2. I. Mean and amplitude of the active load [La] as a function of the
ratio of kr and kf , when the driving input is rI2 = A0 + A1 sinωt, with A0 varying between 0.81
(light color) and 1.3µM, and A1 = .8µM, ω = 0.001 rad/s. J. Mean and amplitude of the active
load signal [La] as a function of the baseline A0 for the input oscillating signal, for ratios kr/kf

varying between 0.05 and 1 µM. K. Oscillator scheme with consumptive insulating circuit and
consumptive load. L and M. Time traces for the oscillator and load when the insulating genelet
is used to amplify rI2. N. The perturbation of the oscillatory domain is reduced by using a
small amount of an additional genelet (insulator) that amplifies the oscillatory signal. Figure
reproduced from [41]
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the amplitude of the load signal as shown in Figure 3.1 I and J. In particular, we can derive the

ratio kr/kf =
√

(A2
0 −A2

1), which maximizes the amplitude of [L̂a]. Therefore, for A0 ≈ 1.1µM

and A1 ≈ 0.8µM, if we choose kr = 0.006 ≈ 3 · kd, then kf ≈ 7.9 · 103 is the optimal binding rate.

However, a larger kf will increase the mean value of [La]. Another observation is that a high mean

A0 results in a lower load amplitude (Figure 3.1 I and J).

Under the assumption that the load dynamics are well approximated with their stationary solu-

tion, we can write new expressions for the perturbed dynamics of rI2. For the consumptive case we

have:

d[r̂I2]

dt
= kp · [SW21]− kd · [r̂I2]− kr · [Ltot] kf [r̂I2]

kr+kf [r̂I2]
, (3.4)

where the box highlights the stationary perturbation term. This term is bounded by the constant

kr[L
tot], and converges to it for large values of kf [r̂I2]. Loosely speaking, adding the load is similar

to introducing in the rI2 dynamics a new degradation term, directly proportional to the total load

amount. While the approximated trajectory (3.4) provides qualitative insight on the system behav-

ior, we report the full numerical simulations of the five ordinary differential equations describing the

oscillator with load in Figure 3.1, which shows the rI2 and load trajectories for increasing [Ltot].

The oscillatory domain of the system is consequently altered as shown in Figure 3.1 H. Numerically

simulated time traces of the oscillator and of the load are shown in Figure 3.1 F and G.

For the non-consumptive case, it is easy to see that the sum of the approximated perturbation

terms is equal to zero. Therefore, we can conclude that after a transient the dynamics of the

oscillator are unaffected by the presence of the load. Numerical simulations that testify this result

are reported in the Appendix, Figure 3.10.

It is important to emphasize that the non-consumptive case has been previously analyzed in [27].

By assuming rigorous time-scale separation of the load dynamics relative to the driving chemical

species, the authors were able to derive a general expression for the “retroactivity” caused by the

load. Although not derived under the same assumptions on the parameters, our conclusions are

consistent with the results reported in that work, where the retroactivity can be minimized by

choosing appropriately fast binding rates and by reducing the total load amount.

In practical cases it may be impossible to couple non-consumptively a signaling molecule to

the desired load. It may also not be possible to adjust the binding rates arbitrarily to provide

small retroactivity and good signal transmission. If we fall in the consumptive load coupling case

with limited freedom in tuning kf and kr, expression (3.4) shows that the only way to bound the

perturbation on rI2 is to reduce [Ltot]. We can overcome this limit by using rI2 to activate another

genelet, whose RNA output amplifies the oscillator signal and can drive larger amounts of [Ltot].
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The genelet effectively acts as an “insulator” and will be denoted as Ins. We assume that the genelet

Ins binds to rI2 consumptively: rI2 + Ins
kf
−→ Insa, Insa kr

−→ Ins. The active genelet Insa produces an

RNA output similarly to the oscillator switches: Insa ki
p
−→ Insa + InsOut. We finally assume that the

RNA output, which in practice amplifies the oscillatory signal, in turn activates the desired load by

the usual consumptive binding mechanism: InsOut + L
ki
f−→La, La ki

r−→L. The RNA output is also

degraded as the other RNA species in the system: InsOut
ki
d−→ ∅. The full set of dynamic equations

are reported in the Appendix, Section 3.7.1.3. For illustrative purposes we assume that ki
p = 0.16 /s,

ki
r = 0.006 /s, and ki

f = 6 · 103 /M/s. As shown in Figure 3.1 L and M, using a small amount of

insulator genelet it is possible to drive large amounts of load introducing negligible perturbations.

The oscillatory domain of the system is not significantly affected, as shown in Figure 3.1 N.

3.3 Experimental results

3.3.1 Synthesis of a molecular oscillator using transcriptional circuits

Two transcriptional circuits can be interconnected through their RNA transcripts according to the

scheme considered in our problem formulation. Figure 3.2 A shows the design specifications to

achieve activation of the switch SW21 through the RNA activator rA1 (output of template T12),

and inhibition of SW12 through the RNA inhibitor rI2 (output of template T21). This design has

been proposed in [64], and builds up on earlier work on transcriptional circuits [62, 63, 124]. The

DNA species A1, A2, and dI1 generate ultrasensitive responses in the activation and inhibition of

the switches [21, 81]. This feature is consistent with the oscillatory response of the simple model

considered in Section 3.2, where high Hill coefficients are needed to guarantee the existence of a

stable periodic orbit (see Figure 3.1 D). dI1 and A2 are added in excess over their complementary

counterparts A1 and T12, respectively. As shown in Figure 3.2 B, such high concentrations represent

tunable thresholds that influence the dynamic behavior of the oscillator.

The total concentration of templates and thresholds, together with the concentration of enzymes,

determine the stable or oscillatory behavior of the system. We choose the operating point of the

oscillator as 4–6 large amplitude oscillations within 15 hours, as shown in Figure 3.2 C. Specific

experiments highlighting the influence of enzymes and thresholds on the oscillatory regime are shown

in the Appendix, Sections 3.7.16 and 3.7.17. Loosely speaking, we could compare the concentration

ratio of RNAP/RNase H (production/degradation ratio) to the “loop gain” of the system [123],

and the thresholds as parameters introducing a delay in the system (the RNA species have to build

up for some time and exceed the thresholds before they perform their activatory/inhibitory action

on the switches). This analogy is inspired by the theoretical results in [11], and is currently being

developed in further detail.
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Figure 3.2: A. Operation scheme of the transcriptional oscillator system. Colors indicate
complementary DNA and RNA domains. Sequences are given in Section 3.6 and detailed
reaction diagrams can be found in Figures 3.13–3.14 of the Appendix, Section 3.7.2. When
switch SW21 is turned on, RNA polymerase (RNAP) transcribes regulatory RNA (rI2) from
the genelet template T21. RNA strand rI2 inhibits transcription from switch SW12 by removal
of DNA strand A2 from template T12, resulting in an incomplete promoter region. On the
other hand, RNA species rA1, which is transcribed from SW12, activates transcription from
SW21 by releasing A1 from the A1·dI1 complex. RNA levels in the system are controlled by
RNase H-mediated RNA degradation. By fluorescently labeling strand T21 with Texas Red or
TYE665 (red dot), strand T12 with TAMRA or TYE563 (green dot), and activation strands
A1 and A2 with Iowa Black RQ quenchers (black dots), the genelet states can be monitored by
fluorescence measurements–high signals correspond to low transcription activity. B. Thresholds
are set by adding threshold strands dI1 and A2 in excess over A1 and T12, respectively. In a
typical experiment, the concentrations were [T21tot] = 250 nM, [A1tot] = 250 nM, [dI1tot] = 700 nM,

[T12tot] = 120 nM, [A2tot] = 500 nM. C. Oscillator traces showing T21 levels for typical oscillations
obtained in several, separate experiments. Note the good reproducibility of the oscillations.
T12 has lower amplitude oscillations and is not shown. Figure adapted from [41]. All data
shown were taken by me at Caltech.
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Figure 3.3: In the context of transctiptional circuits, the open–closed conformation of the
molecular tweezers can be cycled through three basic reaction pathways. A. The tweezers can
be closed by binding to a DNA species: if the closing strand is provided with a toehold, it
can then be branch migrated from its complement, thereby opening the tweezers. The closing
strand may be released in solution by another branch migration reaction (displacing species not
shown) and recycled to close the tweezers. B. The DNA closing strand can be branch migrated
by an RNA species, opening the tweezers, and released in solution after RNAse H degradation.
C. An RNA species closes the tweezers, which are then opened by RNase H degradation.

The active or inactive state of the oscillator templates T12 and T21 can be measured using flu-

orescent probes attached to the 5’ end of their non-template strand. When an activator strand (A1

or A2, respectively), 3’ labeled with a quencher, binds to the template (forming transcriptionally

active complexes T12·A2 or T21·A1), fluorescence is quenched. Low fluorescence therefore corre-

sponds to an active genelet, whereas high fluorescence corresponds to an inactive genelet. Here, only

the fluorescence traces of T21, shown in Figure 3.2 C, will be utilized. The oscillatory signal of T12

has a very limited amplitude and is therefore not considered for data processing; Section 3.7.6 in

the Appendix is dedicated to this topic.

3.3.2 A simple load mechanism: molecular tweezers

As a load for the oscillator, we used the DNA tweezers system first described in [139]. The tweezers

are a structure composed of three DNA strands, which bind to form two 18 base long double-

stranded “arms” connected by a 4 base “hinge”. The double-stranded arms can be extended with

single-stranded “hands” of variable length, whose sequences can be freely designed to bind a desired

target oligonucleotide. When bound to their target, the tweezers are in a closed conformation. As

in previous works [139, 29], the tweezers are also labeled with a distinct fluorophore-quencher pair:

open tweezers display a high fluorescence, while closed tweezers exhibit low fluorescence. The tweezer

state is measured simultaneously with the T21 genelet state.

Figure 3.3 shows how the tweezers can be opened and closed in the context of transcriptional

circuits. The tweezers can be closed by binding of a DNA strand, and opened through branch

migration operated by DNA (A) or RNA (B). This can be considered a non-consumptive binding

mechanism with respect to the closing molecule, which will be eventually released back in solution.

Alternatively, the tweezers can be closed by RNA binding and opened through RNAse H degradation.
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This mechanism can be considered consumptive, as the tweezers’ target is effectively depleted. We

have used the oligonucleotides of our molecular oscillator to open and close the tweezers with the

three mechanisms shown in Figure 3.3, as described in detail in the next section.

3.3.3 Coupling the oscillator to the tweezers load: signal transmission

and back-action

The transcriptional oscillator shown in Figure 3.2 is constituted by two switches and by several

single-stranded oligonucleotide species: A1, dI1, rI1, A2, and rI2. Each of these single-stranded

species has been used directly as a closing strand for the molecular tweezers, by redesigning the

tweezers’ arms. We can thus define a tweezers driving “mode” for each species being targeted.

Table 3.1 summarizes the different direct coupling modes that have been tested. Detailed strand

schemes and the reaction pathways that occur between the oscillator and the different tweezers

modes are shown in the Appendix, Figures 3.15–3.18.

Table 3.1: Summary of Directly Coupled Tweezers Modes

.

Mode: mode I mode II mode II∗ mode III mode IV

Target species: dI1 A1 A2 rI2 rI1

We can evaluate the performance of each mode with respect to two criteria: (1) The amplitude

of the oscillations transmitted to the tweezers. (2) The perturbation on the oscillator dynamics

introduced by the tweezers. In the brief analysis that follows, I will refer to the features of the

simple model considered in Section 3.2. Such model in fact provides several insights on the behavior

of the implementation with transcriptional circuits. Clearly, the experimental system is far more

complex than the intuitive model: therefore, all analogies must be drawn with some caution.

Signal transmission

Figure 3.4 shows the schemes and the experimental results for modes I, II, and III. Modes I and II

were the most successful modes in terms of load amplitude, while mode III represents an example of

a “failure” mode, given the modest amplitude of the tweezers’ oscillations. Modes II∗ and IV suffered

from the same amplitude failure, and are therefore not shown in this section: the corresponding data

sets are in the Appendix, Figures 3.43 and 3.45.

The phase relationship (Figure 3.4 C and H) between the oscillator T21 fluorescent signal and

the tweezers signal can be explained easily. In mode I, the tweezers are opened by rA1 binding to

the dI1 toehold. In the oscillator circuit, rA1 binds to the complex releases A1·dI1, thereby releasing

A1 which can activate (quench) SW21. Thus, high tweezers fluorescence (open state) corresponds to

low SW21 fluorescence, and vice versa, resulting in a phase shift by a half period of the oscillator. In
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Figure 3.4: Three different ways of coupling a load to the oscillator. A. In the simple model
scheme, mode I couples to the rA1 node. B. Molecularly, mode I uses dI1 to close the DNA
tweezers, and rA1 to open them. C. Oscillator traces (T21 levels) and mode I tweezers oscilla-
tions superimposed for a load of 100 nM tweezers. D. Load dependence of the core oscillator
(load 0–400 nM) E. Corresponding oscillations of the tweezers load. F. In the simple model
scheme, mode II also couples to the rA1 node. G. On the molecular level, mode II uses A1 to
close the tweezers and dI1 to open them. H. Oscillator traces and mode II tweezers oscillations
superimposed for 100 nM load. I and J. Oscillations of the core oscillator and the tweezers load
for different load concentrations. K. In the simple model, mode III couples to the rI2 node.
L. Mode III uses rI2 to close the tweezers and RNaseH to open them. M. Oscillator traces
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different load concentrations. Figure adapted from [41]. All data shown were taken by me at
Caltech.
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mode II, A1 molecules are also released by rA1 in the same way as in mode I. In this case, however,

A1 is used to close the tweezers (quenched state): therefore, the fluorescent signals of the oscillator

and the tweezers are in phase.

The simplified oscillator model can provide a high-level interpretation of these results. Refer to

the quasi-steady-state approximation of the load dynamics (3.3):

[L̂a](t) = [Ltot]

(
1− kr

kr + kf · u(t)

)
,

where u(t) is the input concentration. Assuming that u(t) = A0 + A1 sinωt, we found that the

amplitude of the load oscillations depends strongly on the mean A0 and amplitude A1 and on the

effective coupling constant kr/kf (see Figure 3.1 I and J). In this respect, mode I is driven by the

available dI1 concentration, which can have a maximum amplitude A1 of around 700 nM, while in

mode II the amplitude of the activator A1 is at most 250 nM. Indeed, mode I appears to work better

than mode II.

Regarding the failure modes II∗, III, and IV, in all cases the tweezers remained almost fully

open. For mode II∗, we know that at our operating point rI2 concentrations are high, presumably

sequestering A2 most of the time (in fact, on average only 20 nM of SW12 are active, see Section 3.7.6

in the Appendix). Hence, the closing strand concentrations are simply too low in this mode to actuate

tweezers efficiently (low A0 and A1). For modes III and IV, I examined the interactions between

enzymes and tweezers in the absence of the core oscillator (see Section 3.7.15 in the Appendix).

We were concerned that RNase H could only partially degrade RNA fuel strands when complexed

with the DNA device, resulting in “poisoned” DNA tweezers that are always open. Surprisingly,

several (if not all) tweezers designs served as substrates for promiscuous RNAP activity that caused

tweezers opening. In the case of modes I and II, RNase H eliminated this effect and restored function

to the DNA closing strand. However, the RNA closing strands for modes III and IV were not fully

effective, even in the presence of RNase H, helping to explain the poor performance of these modes

when driven by the oscillator circuit. In addition to partial degradation of RNA closing strands,

it was found in [64] that even in the core oscillator, RNase H leaves partial degradation products

that can accumulate to reach micromolar concentrations; these are predicted to have sequences

complementary to one hand of the tweezers for both modes III and IV (see Figures 3.17 and 3.18).

Carrying on the simple model analogy, a high mean RNA concentration (high A0) relative to the

tweezers concentration also contributes to the observed small oscillations in the load.

Retroactivity

Referring to Figure 3.4, increasing the load generally affects both amplitude and frequency of the

oscillator. The influence on the oscillations is smaller for coupling mode II (Figure 3.4 I) than

for coupling mode I (Figure 3.4 D), both in terms of amplitude and period perturbation: this is
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quantified more specifically in Figure 3.7. Making another analogy with our simplified model, one

could classify modes I and II with respect to the release speed of their input species. In mode

I, strand dI1 is sequestered by the tweezers: before being released again it must be displaced by

rA1 and subsequently processed by RNase H within the dI1·rA1 complex (one branch migration

reaction, and one enzymatic degradation step). In mode II, strand A1 bound to the tweezers is first

displaced by dI1, and subsequently released by rA1 (two branch migration reactions). Although

not rigorous, we can make an analogy with the simple model in terms of consumptive versus non-

consumptive load. Loosely speaking, if the oscillator species is released slowly, in the limit we fall

into the consumptive case, which has a high back-action compared to the non-consumptive case.

Presumably, the two branch migration steps necessary to release A1 in mode II are faster than the

branch migration and enzymatic processing required to release dI1 in mode I. Hence the smaller

back-action of mode II relative to mode I.

Even though coupling modes III and IV do not lead to a satisfactory oscillatory actuation of the

tweezers, the oscillator dynamics are strongly affected by the presence of the DNA device (Figure 3.4

N, and Figures 3.44 and 3.45 in the Appendix). This is consistent with the hypothesis that partially-

degraded transcripts bind to one hand, keeping the tweezers open, while the other hand is still active

in binding new transcripts and serving as a substrate for RNase H (pathway shown in Figure 3.17

and 3.18 of the Appendix). Finally, RNase H degradation results in a consumptive processes that

permanently removes the RNA oscillator species from the system.

As explained in detail in the Appendix, Section 3.7.12, due to the specific concentration dynamics

of the core oscillator strands, mode IV affected the oscillations more drastically than all other modes.

For a similar reason, mode II* had only a negligible effect, but also resulted in very inefficient load

coupling.

Most of the behavior of the oscillator under load can also be heuristically understood in terms of

changes of threshold strand concentrations [A2] and [dI1] caused by the reaction pathways with the

tweezers. For instance, in mode I, tweezers are closed by dI1 and opened in a strand displacement

reaction by rA1 (see Figure 3.4 B). As can be seen from the core oscillator reaction scheme in

Figure 3.2 A, strand A1 is similarly bound by dI1 and freed by a strand displacement reaction with

rA1. An increase in the concentration of mode I tweezers therefore is roughly equivalent to an

increase in [A1], which in turn corresponds to an effective reduction of the threshold set by [dI1]. By

contrast, in mode II (Figure 3.4 G) a fraction of activator strands A1 is bound to the tweezers rather

than to template T21. The effective reduction in [A1] should therefore be analogous to an increase in

threshold [dI1]. Finally, an increase of tweezers concentrations in mode III (Figure 3.4 L) is similar

in effect as an increase in [A2], as rI2 interacts with A2 in the core oscillator. We experimentally

confirmed this heuristic argument by changing the concentrations of threshold strands in the core

oscillator and found that indeed this reproduces most of the general trends in amplitude and period
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observed in Figures 3.4 D, I, and N (see Appendix, Section 3.7.17). Similar reasoning can be applied

to all other coupling modes.

Regarding retroactivity of the load in terms of the simplified model, an effective change of

thresholds as discussed above will change parameters α, β, and also the steepness of the response

functions (see Figure 3.2 B) that define the oscillatory domain of the system.

3.3.4 Implementing an insulation component

The data in Figure 3.4 emphasize that the back-action, or retroactivity, caused by the tweezers

is proportional to the total amount of load present. Following the idea presented in our simple

model, it is possible to reduce such retroactivity effects by the isolation of source components from

downstream loads using buffering and amplification stages. A simple implementation of this strategy

for our oscillator system is displayed in Figure 3.5, and has been termed “mode V”.

A third genelet, which we call “insulator” genelet, is operated in parallel with oscillator switch

SW12, i.e., it is activated by A2 and deactivated by rI2 (Figure 3.5 A). The insulator is designed

to produce a new RNA species InsOut, which in turn displaces the tweezers mode V closing strand,

termed TwCls. Figure 3.5 C–D shows load experiments where tweezers and insulator genelet are

added in a ratio of 4:1. Transcription from the insulator genelet acts as an amplifier: a small increase

in the concentration of the insulator genelet (which incurs a small disruption of the core oscillator

dynamics) results in a large increase in the RNA available to drive the tweezers. Furthermore, this

design effectively decouples the tweezers design and operation from the oscillator. Even when there

are more tweezers than can be effectively driven, the absence of specific interactions between the

tweezers and the core oscillator strands leaves the core oscillator dynamics relatively intact (see

Figure 3.46 in the Appendix). These features allow mode V to drive much larger loads than the

direct coupling modes.

As shown in Figure 3.5 C, even excessive loading of the circuit with 800 nM tweezers (and, hence,

200 nM insulator genelet) does not affect the oscillator dynamics significantly. At the same time,

the amplitude of the insulated DNA tweezers is satisfactory (Figure 3.5 D). In contrast, tweezers in

modes I and II (Figure 3.4 D–E and I–J), strongly affected the load at much lower concentrations.

The overall comparison of direct and insulated modes in terms of load amplitude and perturbation

of oscillator period and amplitude is shown in Figure 3.7.

A second insulation pathway was tested, where the insulator genelet was operated in parallel to

SW21. This mode was termed mode V∗ (see Appendix, Figures 3.19 and 3.47), and was successful in

reducing the period perturbation; however, the amplitude of the core oscillator was increased, even at

very small insulator amounts. One possible explanation for this unexpected behavior is the high leak

and transcription rate exhibited by the mode V∗ genelet (Section 3.7.13 of the Appendix). Higher

affinity for RNAP and very large amounts of InsOut RNA bound to its target TwCls (additional
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parallel with SW12. It is activated by A2 and deactivated by rI2. Transcription of Ins results in
RNA signal InsOut which opens tweezers previously closed by DNA strand TwCls. (“Load” for
mode V is defined as closed tweezers with a 50 nM excess of TwCls, in contrast to modes I–IV
where the load consists only of open tweezers.) The RNA part of hybrid duplex TwCls·InsOut
is degraded by RNase H, resulting in free TwCls. This operation principle is analogous to mode
I tweezers. B. Oscillator (red) and tweezers (green) traces for 100 nM insulator genelet and 400
nM tweezers load. C. Core oscillator traces for 0 nM Ins and 100 nM tweezers load (black),
and 200 nM (dark red), 400 nM (red), and 800 nM (orange) tweezers load and a 4:1 ratio of
tweezers:Ins. D. Tweezers signal for 200 nM (dark green), 400 nM (green), and 800 nM (light
green) tweezers load. Figure adapted from [41]. All data shown were taken by me at Caltech.
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substrate for RNase H) could represent a significant burden for the enzymes shared in the circuit.

Therefore, it is plausible that the pathways introduced by mode V∗ deplete the overall enzyme levels

and introduce a different type of “global” retroactivity.

3.4 Modeling

The simple model proposed in Section 3.2 is a useful representation of the main features of a chemical

load coupled to an oscillating system. However, as noted before, the simple model cannot capture

the complexity of the system’s experimental implementation nor all the data trends observed.

A more detailed model for the oscillator and tweezers can be constructed by listing the most

significant biochemical pathways occurring in the system, and systematically deriving the corre-

sponding set of ODEs. Such equations can be then numerically solved and their parameters fitted

using standard software tools. The detailed numerical models’ derivation and corresponding data

fits were carried out by J. Kim and R. Jungmann.

First, a model was generated and fitted for the transcriptional oscillator in isolation, to capture

the trends observed when varying the DNA thresholds concentrations. Then, the data for modes

I, II, and V were also fitted in a similar manner, clearly including additional parameters describing

the load and insulator related reactions. In the Appendix, the captions for Figures 3.13–3.21 lists

the reaction pathways used to construct the detailed numerical models for the system.

The detailed models overall semi-quantiatively reproduce the experimental data, as shown in

Figure 3.6. One notable discrepancy is that frequency change introduced by the load in modes

I and II is comparable in simulations, while experiments show that such change is much greater

in mode I than in mode II. Sources of uncertainty for the model fits are mainly: 1) Unmodeled

side reactions, including spurious hybridization, incomplete transcription and degradation products,

and dimerization of the tweezers [139]. 2) Uncertainty and variability of the enzymatic activity

parameters. For instance, the rate of RNAP synthesis varies over time, showing an initial burst

stage [56]; oxidation of Cys residues produces a continuous decrease in activity over time [23, 65].

Moreover, after termination the enzyme has to revert to a competent state (“recycling”) [35].

Further details regarding the challenges encountered in the detailed models fits can be found

in [41] and its Supplementary Appendix, Section 24 and following.
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Figure 3.6: Simulations of the core oscillator and oscillator driving loads, using the mechanistic
mass-action model described in the SI Appendix, Sections 24–33, for initial DNA concentra-
tions identical to those in several experiments. A and B. See Figure 3.4 D and E. C and D.
See Figure 3.4 I and J. E and F. See Figure 3.5 C and D. Figure adapted from [41]. These
simulations were done by J. Kim.



60

3.5 Discussion

In this work, a synthetic transcriptional oscillator has been used to drive conformational changes

of a DNA nanodevice. Such an oscillator is constructed from two genelets interconnected through

their transcripts, with an overall negative feedback loop. The output rI2 of switch SW21 inhibits

SW12, while the output rA1 of SW12 activates SW21. The DNA species A1, A2, and dI1 repre-

sent activation/inhibition thresholds. This transcriptional oscillator has been directly coupled to

the well-known DNA tweezers system [139] through all of its single-stranded components, yielding

coupling mode I (coupling to dI1), mode II, mode III (rI2), mode II* (A2), and mode IV (rA1). Each

connection channel resulted in different efficiency of the transmission of the oscillatory signal and

different perturbations (or retroactivity) of the oscillator dynamics. With respect to signal propa-

gation, mode I is the best. The retroactivity of the different modes is summarized in Figure 3.7:

in all coupling modes the oscillations tend to get slower with increasing load (Figure 3.7 A). This

might be due to the fact that the parameters of the oscillator in isolation were initially optimized for

fast oscillations. Hence, any perturbation typically moves the dynamics away from these optimum

settings. For modes I and II the amplitude of the oscillations decreases with increasing load, while

for mode III the amplitude increases (Figure 3.7 B). Mode I seems to affect the oscillator dynamics

most strongly; presumably this is related to the fact that in this mode a larger fraction of the load is

driven than in mode II (compare also amplitudes in Figure 3.4 E and J). The period and amplitude

change were therefore plotted with respect to the “effective load” – the maximum amplitude swing

induced in the tweezers. When only the influence of the effective load is considered, modes I and

II affect the oscillator similarly (Figure 3.7 C, D). One of the most important contributions of this

work is the implementation of an insulator genelet (mode V). The insulator acts as an amplifier that

diverts a small amount of an oscillator species and amplifies it to drive downstream load processes.

As shown in Figure 3.7, the insulator renders the system almost insensitive with respect to load.

Several features of this system can be understood on the basis of the simple theoretical model

proposed at the beginning of this chapter. For example, this simple model relates the load coupling

efficiency to the mean value and amplitude of the input oscillating species, it predicts the reduction

of the oscillatory space in the presence of a load process, and it predicts that retroactivity can be

remedied by an insulator concept. The simple model, however, does not provide a quantitative

description of the experiments. To this purpose, a mechanistic numerical model was formulated

that includes most of the occurring chemical reactions. This detailed model semi-quantitatively

reproduced all of the experimental data with a single set of physically acceptable parameters.

Our results represent a step forward in two directions:

1. We improved our general understanding of the challenges arising when coupling biochemical

systems: if mass is conserved, transmitting a signal means simultaneously introducing a perturbation
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Figure 3.7: Analysis of the influence of load on the oscillation amplitude and period. A and B.
Relative period change as a function of the nominal (A) and effective (B) load concentrations.
C and D. Relative amplitude change as a function of the nominal (C) and effective (D) load
concentrations. Figure adapted from [41]. The data points shown combine experimental results
collected both at Caltech and TUM on modes I, II, and III. A complete overview of all coupling
modes data is found in the Appendix, Section 3.7.18. The equivalent of Figure 3.7, including
all other modes presented in this thesis, is also in the Appendix, Figure 3.32.
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in the original chemical source of such signal. Biochemical devices that overcome mass conservation

through amplification of their input are a possible solution to this problem.

2. A programmable clock has been tested for potential use in the context of orchestrating

synthetic molecular processes and artificial cells [91, 72]. Our synthetic gene regulatory system

with only two enzymes and a handful of DNA oligonucleotides already results in complex molecular

interactions. Brute-force attempts to design, analyze, and experimentally characterize molecular

systems may not be successful. In synthetic biology, there is a need for systems design principles to

achieve robustness, fault tolerance, and avoidance of undesired dynamics. In this study, a first step

towards such robustness has been demonstrated by the insulator circuit. The next steps include

the construction of an improved system that is not sensitive to enzyme activities, that can provide

a stable rhythm regardless of the source or age of the enzyme batch used and that is separately

tunable in frequency and amplitude. Future insulator subcircuits should be characterized to drive

dynamically changing loads.

In summary, our synthetic oscillator coupled to a load represents one of the first realizations of

an in vitro biochemical clock that is used to drive other processes. This could serve as a model

system for the study of modularity, coupling of subcircuits, and robustness in biochemical networks.

3.6 Materials and methods

DNA oligonucleotides and enzymes

The DNA sequences were ordered from IDT DNA (Coralville, IA, USA). (For the experiments run

at TUM, strands were ordered from IDT DNA (Belgium), IBA (Göttingen, Germany), or biomers.net

(Ulm, Germany).) RNA polymerase was purchased from Ambion, Austin, TX, as part of the T7

Megashortscript kit (#1354), or from Epicentre Biotechnologies, Cat. n. TM910K (200 U/µl). E.

coli RNase H was purchased from Ambion (#2292). Inorganic lyophilized pyrophosphatase was

purchased from Sigma Aldrich, Cat. n. I1891-100UN.

Transcription protocol

Transcription was run at 37◦C, either using the T7 Megashortscript kit (#1354), Ambion, Austin,

TX (which includes T7 RNA polymerase enzyme mix, transcription buffer and rNTPs), or a tran-

scription mix composed of: 1x Transcription Buffer and 10 mM dithiothreitol (DTT), (Epicen-

tre Biotechnologies, Cat. n. BP1001), 7.5 mM each rNTP (Epicentre Biotechnologies, Cat. n.

RN02825), 35 mM MgCl2 and 0.015 U/µl pyrophosphatase (resuspended in Tris HCl 20 mM, pH

7.2, 50% glycerol (v/v)), and T7 RNAP purchased from Epicentre Biotechnologies, Cat. n. TM910K

(200 U/µl). More details on the transcription protocol and sample preparation are given in the Ap-

pendix, Section 3.7.4.
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Data acquisition

Concentrations of nucleic acids were determined by absorption measurements (Nanodrop 2000c,

Thermo Scientific, DE, USA), using sequence-dependent extinction coefficients.

All fluorescence experiments were performed on a Horiba/Jobin Yvon Fluorolog 3 system, using

45 µL sample chamber quartz cuvettes. Fluorescence emission of the dye/quencher pair labelled

DNA strands was recorded every two minutes. A sample temperature of 37◦C was maintained using

a water circulation thermostat. Excitation/emission for TYE563 (T12) was set to its maxima at

549–563 nm, those for TYE665 (T21) at 645–665 nm, and Rhodamine Green (Tweezers) emission

and excitation maxima were set at 504 nm–531 nm, according to the recommendation of the supplier

IDT DNA. The raw fluorescence measurements recorded with the Horiba Fluorolog 3 were converted

into molar concentrations according to the procedure described in the Appendix, Section 3.7.5.

Denaturing polyacrylamide gels were either cast in house, using 8%–10% 19:1 acrylamide:bis

and 7 M urea in TBE buffer, 100 mM Tris, 90 mM boric acid, 1 mM EDTA, or purchased pre-cast

from Invitrogen. Gels were run at 23◦C for 45–50 min with 10 V/cm in TBE buffer. Samples were

loaded using Xylene Cyanol FF dye. For quantitation, denaturing gels were stained with SYBR Gold

(Molecular Probes, Eugene, OR; #S-11494). In the control lane a 10-base DNA ladder (Invitrogen,

Carlsbad, CA; #1082-015) was utilized. Gels were scanned using the Molecular Imager FX (Biorad,

Hercules, CA).

Numerical simulations

The numerical analysis on the simple model considered in Section 3.2 was performed using

several scripts written by me in MATLAB. The experimental data sets were fitted by J. Kim and R.

Jungmann, using ordinary differential equation models derived from first principles. Specifically, the

DNA and RNA hybridization reactions, branch migration reactions, and Michaelis–Menten enzyme

reactions for the core oscillator are identical to those used in the extended model of the Design I

oscillator in [64]. The standard mass action kinetics and Michaelis–Menten approximations were used

to convert these reaction equations to a set of ordinary differential equations as outlined in [64]. In the

Appendix, Section 3.7.2, a list of the relevant interactions among nucleotides is reported, specifying

which reactions were used to build numerical fits. More details on the numerical simulations can be

found in the Supplementary Appendix of [41].

Oligonucleotide sequences

Oscillator sequences: The oscillator sequences are taken from [61] and [64].

T12-t 5’-TTT CTG ACT TTG TCA GTA TTA GTG TGT AGT AGT AGT TCA TTA GTG TCG

TTC GTT CTT TGT TTC TCC CTA TAG TGA GTC G

T12-nt 5’-TYE563-AAG CAA GGG TAA GAT GGA ATG ATA ATA CGA CTC ACT ATA GGG

AGA AAC AAA GAA CGA ACG ACA CTA ATG AAC TAC TAC TAC ACA CTA ATA CTG
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ACA AAG TCA GAA A

T21-t 5’-TTT CTG ACT TTG TCA GTA TTA TCA TTC CAT CTT ACC CTT GCT TCA ATC

CGT TTT ACT CTC CCT ATA GTG AGT CG

T21-nt 5’-TYE665-CAT TAG TGT CGT TCG TTC ACA GTA ATA CGA CTC ACT ATA GGG

AGA GTA AAA CGG ATT GAA GCA AGG GTA AGA TGG AAT GAT AAT ACT GAC AAA

GTC AGA AA

dI1 5’-GTG TGT AGT AGT AGT TCA TTA GTG TCG TTC GTT CAC AG

A1 5’-TAT TAC TGT GAA CGA ACG ACA CTA ATG AAC TAC TAC-Iowa Black RQ

A2 5’-TAT TAT CAT TCC ATC TTA CCC TTG CTT CAA TCC GT-Iowa Black RQ

rA1 (RNA) 5’-GGG AGA AAC AAA GAA CGA ACG ACA CUA AUG AAC UAC UAC UAC

ACA CUA AUA CUG ACA AAG UCA GAA A

rI2 (RNA) 5’-GGG AGA GUA AAA CGG AUU GAA GCA AGG GUA AGA UGG AAU GAU

AAU ACU GAC AAA GUC AGA AA

For the data collected in sets 1, 2 and 3, collected at TUM (for details on the data sets, refer to

Section 3.7.3), T12-nt was labeled with the dye TAMRA instead of TYE563 and T21-nt with Texas

Red instead of TYE665.

For set 6, due to technical constraints of the supplier IDT DNA, T21-nt and T12-nt were, respectively,

shortened 1 and 6 bases from the 3’ end, to have a length of 100 bases. These modifications do not

alter the regulatory domains of the transcripts. Also the full length of the main transcription

products was not affected, as verified by gel electrophoresis.

Tweezers subsystem (mode I–mode IV):

TW A 5’-RhodamineGreen-TGC CTT GTA AGA GCG ACC ATC AAC CTG GAA TGC TTC

GGA T-BHQ1

TW B (I) 5’-CTG TGA ACG AAC GAC ATC CGA AGC ATT CCA GGT

TW C (I) 5’-GGT CGC TCT TAC AAG GCA ACT AAT GAA CTA CTA

TW B (II) 5’-GTT CAT TAG TGT CGT ATC CGA AGC ATT CCA GGT

TW C (II) 5’-GGT CGC TCT TAC AAG GCA TCG TTC ACA GTA ATA

TW B (II∗) 5’-TGA AGC AAG GGT AA ATC CGA AGC ATT CCA GGT

TW C (II∗) 5’-GGT CGC TCT TAC AAG GCA GAT GGA ATG ATA ATA

TW B (III) 5’-TAT CAT TCC ATC TTA CCC TAT CCG AAG CAT TCC AGG T

TW C (III) 5’-GGT CGC TCT TAC AAG GCA TGC TTC AAT CCG TTT TAC T

TW B (IV) 5’-GTA GTA GTT CAT TAG ATC CGA AGC ATT CCA GGT

TW C (IV) 5’-GGT CGC TCT TAC AAG GCA TGT CGT TCG TTC TTT GTT T
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Tweezers insulating subsystem (mode V):

Ins∗-nt 5’-CAT TAG TGT CGT TCG TTC ACA GTA ATA CGA CTC ACT ATA GGG AGA TCA

AAT TTA CAA CGC AAC TAA CAT ATA ATC GAA GAC TTA ATA CTG ACA AAG TCA

Ins∗-t 5’-TTT CTG ACT TTG TCA GTA TTA AGT CTT CGA TTA TAT GTT AGT TGC GTT

GTA AAT TTG ATC TCC CTA TAG TGA GTC G

Ins-nt 5’-AAG CAA GGG TAA GAT GGA ATG ATA ATA CGA CTC ACT ATA GGG AGA TCA

AAT TTA CAA CGC AAC TAA CAT ATA ATC GAA GAC TTA ATA CTG ACA AAG TC

Ins-t 5’-TTT CTG ACT TTG TCA GTA TTA AGT CTT CGA TTA TAT GTT AGT TGC GTT

GTA AAT TTG ATC TCC CTA TAG TGA GTC G

InsOut (RNA) 5’-GGG AGA UCA AAU UUA CAA CGC AAC UAA CAU AUA AUC GAA GAC

UUA AUA CUG ACA AAG UCA GAA A

TwCls 5’-AAG TCT TCG ATT ATA TGT TAG TTG CGT TGT AAA TTT GA

TW B (V) 5’-TCA AAT TTA CAA CGC ATC CGA AGC ATT CCA GGT

TW C (V) 5’-GGT CGC TCT TAC AAG GCA AAC TAA CAT ATA ATC

Note that Ins∗-t and Ins-t are identical. Mode I tweezers are constructed by hybridizing the arms

of the central strand (TW A) with the two flanking strands TW B (I) and TW C (I). Mode II -

V tweezers are constructed analogously. The 3’ ends of the insulators non-template strands are a

few bases shorter than their template strand. This is shown in Figures 3.19 and 3.20. This did not

affect their regulatory domains nor the length of their transcription products.

3.7 Appendix

3.7.1 Simple model for the oscillator: load coupling and insulation

In this section, we will provide further details on the simple oscillator model presented in the main

paper.

3.7.1.1 A simple model for the transcriptional oscillator and its non-dimensional ver-

sion

Equations (3.5)–(3.8) were proposed in [64] as a simple model for our transcriptional oscillator:
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d[rA1]

dt
= kp[SW12]− kd[rA1], (3.5)

τ
d[SW21]

dt
= [SW21tot]

[rA1]m

KAm

1 + [rA1]m

KAm

− [SW21], (3.6)

d[rI2]

dt
= kp[SW21]− kd[rI2], (3.7)

τ
d[SW12]

dt
= [SW12tot]

1

1 + [rI2]n

KIn

− [SW12]. (3.8)

A scheme representing the above equations is shown in Figure 3.8 A. The species rA1 and rI2

are RNA molecules that interact through two “genelet” switches that produce them, respectively,

SW12 and SW21. In particular, rA1 is an activator for SW21, while rI2 is an inhibitor for

SW12. The effectiveness of the RNA species in activating or repressing the switches is modu-

lated by the thresholds KA and KI, and by the Hill coefficients m and n. The relaxation constant

τ scales the speed of the switches’ dynamics. Unless otherwise noted, from now on the oper-

ating point of this oscillator model is defined by the parameters kp = 0.05 /s, kd = 0.002 /s,

KA=KI=.5µM, [SW21tot] = [SW12tot] = 100 nM, m=n=5, τ = 500 s. Figure 3.8 B and C

show the system trajectories generated using the MATLAB ode23 routine from initial conditions

[rA1](0) = 0µM, [SW21](0) = 0 nM, [rI2](0) = 0µM, [SW12](0) = 100 nM.

Non-dimensional model

The above model can be mapped to a set of non-dimensional differential equations as follows:
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Non-dimensional variables

x =
[rA1]

KA
v =

[SW21]

[SW21tot]

y =
[rI2]

KI
u =

[SW12]

[SW12tot]

Time rescaling

t̃ = t/τ

Non-dimensional parameters

α =
kp [SW12tot]

kd KA
β =

kp [SW21tot]

kd KI

γ =
1

kd τ

Non-dimensional equations in t̃

γ ẋ = αu− x

v̇ =
xm

1 + xm
− v

γ ẏ = βv − y

u̇ =
1

1 + yn
− u

Given our choice of the parameters, γ = 1. A value of γ ≈ 1 is required to achieve oscillations, as

found in [64].

Existence of periodic orbits

It is convenient to investigate the existence of periodic orbits by taking into consideration the

non-dimensional model. We will start by making the following observations:

1. The equilibrium of each variable x, v, y, and u depends monotonically on its input. For

example, given a fixed input ū1, the equilibrium of x̄ is x̄1 = αū1. For any ū2, ū2 > ū1, then

x̄2 > x̄1.

2. The trajectories of this system are always bounded. In fact, the switches concentration is

bounded: u, v ∈ [0, 1]. The dynamics of x and y are exponentially stable, given a constant

bounded input.

3. The system admits a unique equilibrium. In fact, by setting to zero the non-dimensional

dynamics, we can derive the following expressions for the system nullclines:

x̄ = α
1

1 + ȳn
, ȳ = β

x̄m

1 + x̄m
.

The above curves are monotonic and intersect in a single point, as shown in Figure 3.8 D.

Therefore, the system admits a single equilibrium.

Based on the observations above, we can invoke the Mallet-Paret theorem [76]. This theorem is

the extension of the Poincaré-Bendixson theorem to dimension higher than 2, and is valid when the
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system dynamics are monotonic and cyclic, as in our case.

Based on the theorem, if observations 1, 2, and 3 are true, and if the unique admissible equilibrium

of the system is unstable, then the system must admit a periodic orbit. We can verify the stability

properties of the equilibrium by inspecting the eigenvalues of the Jacobian matrix at the equilibrium:

J =



∂f1
∂x

∂f1
∂v

∂f1
∂y

∂f1
∂u

∂f2
∂x . . . . . . ∂f2

∂u

... . . . . . .
...

∂f4
∂x . . . . . . ∂f4

∂u

 =


−1 0 0 α

mx̄(m−1)

(1+x̄m)2 −1 0 0

0 β −1 0

0 0 − nȳ(n−1)

(1+ȳn)2 −1

 .

The entries of the above matrix are evaluated at the unique equilibrium, which is the intersection

of the nullclines shown in Figure 3.8 D. Note that the nullclines and the corresponding equilibrium

depend on the choice of the paramters. Decreasing β, for example, causes the equilibrium to move

towards higher values of x and lower values of y. If β is too small, the periodic orbit is lost (Figure 3.8

D). If we assume for simplicity that α = β and m = n, we can numerically assess the eigenvalues of

the Jacobian as shown in Figure 3.8 E: eigenvalues with positive real part, and therefore a periodic

orbit, are found in the blue region.

3.7.1.2 Oscillator coupled to a molecular load and stationary approximation

We want to transmit the oscillations to a downstream molecule L. Without loss of generality, we

will assume we can couple rI2 to L (the same analysis can be easily carried out for SW21, SW12

and rA1.) Following the main text, we will consider two different cases:

• rI2 is consumed by the load. Chemical reactions: rI2 + L
kf
−→La kr

−→L.

• rI2 is not consumed by the load. Chemical reactions: rI2 + L
kf
−→La kr

−→ rI2 + L.

The overall model is as follows:

d[rA1]

dt
= kp[SW12]− kd[rA1], (3.9)

τ
d[SW21]

dt
= [SW21tot]

[rA1]m

KAm

1 + [rA1]m

KAm

− [SW21], (3.10)

d[rI2]

dt
= kp · [SW21]− kd · [rI2] +kr · [La]

consumptive︷ ︸︸ ︷
−kf · [L][rI2]︸ ︷︷ ︸

non−consumptive

, (3.11)

τ
d[SW12]

dt
= [SW12tot]

1

1 + [rI2]n

KIn

− [SW12], (3.12)

d[La]

dt
= −kr · [La] + kf · [L][rI2], (3.13)
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Figure 3.8: A. Scheme representing the simple oscillator model. B. Simulated rI2 and rA1
trajectories. C. Simulated SW12 and SW21 trajectories. D. Nullclines and corresponding
trajectories (starting from zero initial conditions) for the non-dimensional model of the oscillator,
plotted for varying β and α = 5. E. Oscillatory domain calculated for the non-dimensional
model when for simplicity we assume α = β and m=n. The nominal parameters used for
these numerical simulations are chosen for illustrative purposes as: kp = 0.05 /s, kd = 0.002 /s,
KA=KI=.5µM, [SW21tot] = [SW12tot] = 100 nM, m=n=5, τ = 500 s (except for panel D,
where β is varied).
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and a schematic representation is given in Figure 3.9 A. For illustrative purposes, we choose kr =

0.006 /s and kf = 7.9 · 103 /M/s.

The dynamics of [rI2tot] are independent from the load in the consumptive coupling

under pseudo-steady-state conditions

If we assume that kr ≈ kd, we can show that the behavior of the total amount of rI2 is independent

from the load, when we look at timescale shorter than the oscillation period:

d[rI2tot]

dt
=

d[rI2]

dt
+

d[La]

dt
= kp · [SW21]− kd · [rI2]− kf · [L][rI2]− kr · [La] + kf · [L][rI2],

= kp · [SW21]− kd · ([rI2] + [La]),

= kp · [SW21]− kd · [rI2tot].

Since [rI2tot] is independent from [L], it is legitimate to solve separately the dynamics of [La] in the

short time scale:

d[La]

dt
= −kr · [La] + kf · ([Ltot]− [La])([rI2tot](t)− [La]),

= kf · [Ltot][rI2tot](t)− [La]{kr + kf · ([Ltot] + [rI2tot](t))}+ kf · [La]2.

The above differential equation is Lipschitz continuous and has no finite escape time, therefore

its solution is unique at all times. If [rI2tot] is a positive forcing input to the system, the equation

is an inhomogeneous ordinary differential equation which is driven by a periodic input.

It is possible to demonstrate that the solution to the above ordinary differential equation con-

verges to a periodic orbit, whose period is determined by that of the input. An elegant way to

prove this is to use the so called “contractivity” theory, and follow the theorems proposed in [105].

In short, it is sufficient to verify that the linearization of the differential equation is bounded by a

negative constant and is therefore contractive. Since our system evolves on a compact and convex

set, such property is global inside such set, and for any initial condition the system will converge to

the periodic solution. If d[La]/dt = f([La], [rI2tot]), we have:

∂f([La], [rI2tot])

∂[La]
= −(kr + kf · [rI2tot](t) + kf · [Ltot]) + 2kf · [La],

= −

kr + kf · ([rI2tot](t)− [La])︸ ︷︷ ︸
≥0

+kf · ([Ltot]− [La])︸ ︷︷ ︸
≥0

 ≤ −c2,
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with c =
√

kr > 0. This verifies the condition of contractivity, and therefore we know that the load

dynamics always converge to a periodic solution, having the same period as the input [rI2tot].

If we indicate [La] as the stationary solution, we can estimate the convergence speed by looking

at the dynamics of the error e = [La]− [La]:

de

dt
= −kr · e− kf · ([rI2tot] + [Ltot]) · e + kf · e([La] + [La]).

Take V = e2 as a Lyapunov function for the system:

dV

dt
=

dV

de

de

dt
= 2e ·

(
−kr − kf · ([rI2tot](t) + [Ltot]− [La]− [La])

)
· e,

= 2 ·

−kr − kf · ([rI2tot](t)− [La])︸ ︷︷ ︸
≥0

−kf · ([Ltot]− [La])︸ ︷︷ ︸
≥0

 · e2,

= −2 ·Q · e2,

where Q is a positive coefficient. Therefore, the dynamics of [La] converge exponentially to their

stationary solution, and the speed is driven by the coefficient Q > kr ≈ kd.

To sum up, we can state that the equation:

d[La]

dt
= −kr · [La] + kf · ([Ltot]− [La])([rI2tot](t)− [La])

converges exponentially to the stationary solution with a timescale that is faster than 1/kr.

Quasi-steady-state approximation for the load dynamics

We have just shown that the dynamics of the load converge to the stationary solution with a

speed 1/kr: based on our choice of kr = 0.006 /s, we know that the speed of convergence is on

the order of 160 s. The nominal oscillator period for our simple model is around 1 hour, or 3600 s.

Therefore, it is legitimate to approximate the load dynamics with the quasi-steady-state expression:

[L̂a](t) ≈ [Ltot]

(
1− kr

kr + kf [rI2](t)

)
. (3.14)

The validity of this approximation is illustrated in Figure 3.11 A and B, assuming that kr = 0.006 /s

and kf = 7.9 · 103 /M/s.
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Coupling efficiency

Assuming that [rI2](t) is a sinusoidal signal, we can use the static load approximation to evaluate

the efficiency of the signal transmission. In particular, we can compute the amplitude of the load

as a function of the oscillator amplitude. We will assume that [rI2](t) = A0 + A1 sinωt, where

A0,A1 > 0 and A0 > A1. Define κ = kr/kf . The amplitude of the load oscillations is then given by:

AL =
Ltot

2

(
κ

κ+ (A0 −A1)
− κ

κ+ (A0 + A1)

)
.

By taking the derivative of AL with respect to κ, and setting the derivative to zero, we can

calculate the value of κ that maximizes AL:

κmax =
√

A2
0 −A2

1.

For instance, take A0 ≈ 1.1µM and A1 ≈ 0.8µM as in the nominal oscillations for [rI2]. Then, if

we assume kr = 0.006 /s, the value of kf that maximizes the load amplitude is kf ' 7.9 ·103 /M/s. In

the numerical simulations shown in the main paper, and reported here for the readers’ convenience,

we chose ω = 1 · 10−3 rad/s, which is a good approximation of the nominal oscillation frequency of

the system in the absence of load.

Perturbation of the oscillator caused by the load:

We can use the quasi-steady-state approximation of the [La](t) dynamics in the differential equa-

tion modeling [rI2]. This will give us a simpler expression to gain insight into the perturbation (or

retroactivity) effect of the load on the oscillator dynamics. We will again consider the two separate

cases of consumptive and non-consumptive coupling.

• Consumptive coupling: If we plug the load stationary solution into the consumptive dy-

namics of [rI2], we find:

d[r̂I2]

dt
= kp · [SW21]− kd · [r̂I2] −kf · [r̂I2][Ltot]

(
kr

kr+kf [r̂I2]

)
, (3.15)

[L̂a](t) = [Ltot]

(
1− kr

kr + kf [r̂I2](t)

)
, (3.16)

where the box highlights the quasi-steady-state approximated perturbation term. Loosely

speaking, the total amount of load linearly modulates an additional, bounded degradation

term. (In fact, the perturbation term converges to kr · [Ltot] for high values of [rI2].) The

differential equations above were solved for varying amounts of [Ltot] numerically using MAT-

LAB ode23 routine; the results are shown in Figure 3.9 B and C and Figure 3.11 A and

B. Initial conditions were chosen as: [rA1](0) = 0µM, [SW21](0) = 0 nM, [rI2](0) = 0µM,

[SW12](0) = 100 nM, [La](0) = 0µM.
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Figure 3.9: A. Schematic representation for the model problem oscillator coupled to a load.
B. Trajectories of the rI2 species as a function of the total amount of load present in solution.
C. Corresponding load trajectories. D. Nullclines and trajectories for the x and y variables
of the non-dimensional model of the oscillator coupled to a load, plotted for variable amounts
of total load. E. Oscillatory domain of the non-dimensional model, as a function of the total
amount of load. The parameters are chosen as: kp = 0.05 /s, kd = 0.002 /s, KA=KI=.5µM,
[SW21tot] = [SW12tot] = 100 nM, m=n=5, τ = 500 s, kr = 0.006 /s, kf = 7.9 · 103 /M/s.
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76

• Non-consumptive coupling: When we plug the stationary approximation of [La] into the

non-consumptive version of equation (3.11), the resulting perturbation term is zero. This sug-

gests that when [La] converges faster than the oscillator to stationary dynamics, the stationary

perturbation on the oscillator nominal trajectories is negligible in the non-consumptive case.

However, this does not provide information on the perturbation magnitude produced on the

transient dynamics of the oscillator. Figure 3.10 B and C shows the oscillator and load tra-

jectories simulated in the non-consumptive coupling case. Comparing these plots with those

of Figure 3.9 B and C, we can notice that the perturbation on rI2 is negligible, and therefore

the oscillating signal is better propagated to the load.

The non-consumptive case has been considered in [27], where the authors derive an analytical

expression for the retroactivity induced by the load. Such derivation is based on time-scale

separation arguments requiring arbitrarily fast rates kr and kf . We highlight that we are not

making this type of assumption in our analysis. Here, we will concisely summarize the results

of [27] in the context of our system, referring the reader to the original paper for more technical

details.

Following the reasoning in [27], suppose that kr is much faster than kd, and that the second-

order binding rate kf has a resulting speed comparable to the kinetics of kr. It is then legitimate

to assume that equation (3.13) reaches steady-state very fast and can be equated to zero. We

can then reason that the total RNA amount [rI2tot] = [rI2] + [La] is the slow variable in the

system, and we can rewrite equation (3.13) as a function of [rI2tot]. By setting such equation

to zero, we can find [La]s = g([rI2tot]), i.e., we can express the dynamics of [La] on the slow

manifold of the system. We can write:

d[rI2]s
dt

=
d[rI2tot]s

dt
− d[La]s

dt
,

=
d[rI2tot]s

dt
− d g([rI2tot]s)

d [rI2tot]s

d[rI2tot]s
dt

,

=
d[rI2tot]s

dt

(
1− d g([rI2tot]s)

d [rI2tot]s

)
.

The term d g([rI2tot]s)/d [rI2tot]s is called retroactivity, and it expresses the effect that the

load has on the dynamics of the molecule it binds to, after a fast transient. Follwing [27],

this term can be evaluated using the implicit function theorem. The final expression for the

variable [rI2]s is:

d[rI2]s
dt

=
d[rI2tot]s

dt

1− 1

1 + κ
[Ltot]

(
1 + [rI2]s

κ

)2

 ,

where κ = kr/kf . Based on our choice of parameter values we cannot carry out a rigorous
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timescale separation. However, verifying the resulting retroactivity magnitude is still a useful

exercise. Plugging into the above expression the numerical values: kr = 6 · 10−3 /s, kf =

7.9 · 103 /M/s, we get κ ≈ 0.75µM. Let us assume that [Ltot] ≈ 1µM. Also, hypothesize

that [rI2]s is on the order of 1µM: then, (1 + [rI2]s
κ )2 ≈ 5. Finally, since κ

[Ltot] ≈ 0.75, we

can conclude that in the presence of the load, the dynamics of [rI2], approximated on the

slow manifold, are scaled by a factor 0.8 with respect to the load free trajectory (i.e., when

[rI2tot] = [rI2]). However, if we were to operate at κ either much larger or much smaller

than 1µM , the retroactivity would rapidly approach zero. This would be consistent with our

approximate result saying that a non-consumptive coupling causes negligible perturbations on

the source of chemical signal.

We remark that we do not invoke a formal timescale separation argument in our stationary

approximation, and it is therefore not possible to rigorously compare our results to those

in [27]. (However, we do justify the validity of our quasi-steady-state approximation of the

load dynamics by comparing their convergence speed to the oscillator speed.)

Consumptive coupling: non-dimensional analysis of the oscillatory domain

The differential equations modeling the oscillator consumptively coupled to the load can be

non-dimensionalized following the same procedure shown earlier.

Non-dimensional variables

x =
[rA1]

KA
v =

[SW21]

[SW21tot]

y =
[rI2]

KI
u =

[SW12]

[SW12tot]

w =
[L]

[Ltot]

Time rescaling

t̃ = t/τ

Non-dimensional parameters

α =
kp [SW12tot]

kd KA
β =

kp [SW21tot]

kd KI

δ =
kr

kd
θ =

kf [L
tot]

kd
φ =

kfKI

kd

Non-dimensional equations in t̃

γ ẋ = αu− x (3.17)

v̇ =
xm

1 + xm
− v (3.18)

γ ẏ = βv − y(1 + θw) (3.19)

u̇ =
1

1 + yn
− u (3.20)

γ ẇ = δ(1− w)− φwy (3.21)
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Note that γ = 1. Equilibria will be indicated as x̄, ū, ȳ, ū and w̄:

(3.17) = 0 =⇒ x̄ = αū

(3.18) = 0 =⇒ v̄ =
x̄m

1 + x̄m

(3.19) & (3.21) = 0 =⇒ ȳ is the positive solution of φy2 + y(δ(θ + 1)− φβv̄)− δβv̄ = 0

(3.20) = 0 =⇒ ū =
1

1 + ȳn

(3.21) = 0 =⇒ w̄ =
δ

δ + φȳ
.

The system Jacobian is:

Jy =



−1 0 0 α 0

mx̄(m−1)

(1+x̄m)2 −1 0 0 0

0 β −1− θw̄ 0 −θȳ
0 0 − nȳ(n−1)

(1+ȳn)2 −1 0

0 0 −φw̄ 0 −δ − φȳ


.

The nullclines of the system are represented in Figure 3.9 D. Increasing the load induces similar

changes in the nullclines as decreasing β in the absence of load (Figure 3.8 D), which is equivalent

to increasing the degradation rate for [rI2].

Figure 3.9 E shows how the oscillatory domain of the system shrinks when the total amount of

load is increased. The figure is obtained by checking the eigenvalues of the Jacobian matrix Jy.

3.7.1.3 Insulation

Consider the case where the load is coupled consumptively to the oscillator. How can the pertur-

bation on the oscillator be reduced? When it is not practical to modify the binding rates that

introduce the coupling, the only way to reduce perturbation is to use a minimal amount of load. We

can overcome this restriction by coupling the oscillatory signal to a small amount of another molec-

ular device, whose output is capable of amplifying the oscillator signal and driving large amounts

of load. We will call this device an insulator, following the analysis proposed in [27]. A schematic

representation of this idea is shown in Figure 3.12 A.

An insulating device can be implemented easily as a small amount of a third switch, Ins, which

is directly coupled to the oscillator. The RNA output from the insulating switch, InsOut, is used to

drive the load.

The set of chemical reactions representing the insulator and load are:
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rI2 + Ins
kf
−→ Insa, Insa kr

−→ Ins,

Insa kip
−→ Insa + InsOut,

InsOut
kid−→ ∅,

InsOut + L
kif
−→La, La kir−→L,

Instot = Insa + Ins, Ltot = L + La.

The differential equations corresponding to the oscillator and the insulated load are:

d[rA1]

dt
= kp · [SW12]− kd · [rA1],

τ
[SW21]

dt
= [SW21tot]


(

[rA1]
KA

)m

1 +
(

[rA1]
KA

)m

− [SW21],

d[rI2]

dt
= kp · [SW21]− kd · [rI2]−kf · [Ins][rI2],

τ
[SW12]

dt
= [SW12tot]

 1

1 +
(

[rI2]
KI

)n

− [SW12],

d[Ins]

dt
= kr · [Insa]− kf · [Ins][rI2],

d[InsOut]

dt
= ki

p · [Insa]− ki
d · [InsOut]− ki

f · [InsOut][L],

d[L]

dt
= ki

r · ([Ltot]− [L])− ki
f · [InsOut][L].

The parameters chosen for the numerical analysis of the system are: kp = 0.05 /s, kd = 0.002 /s,

KA=KI=.5µM, [SW21tot] = [SW12tot] = 100 nM, m=n=5, τ = 500 s, kr = 0.006 /s, kf = 7.9 ·
103 /M/s, ki

p = 0.15 /s, ki
d = 0.006 /s, ki

r = 0.006 /s, and ki
f = 6 · 103 /M/s. (Note that the oscillator

parameters have not been changed from those used in Section 3.7.1.1.) All the parameters have been

chosen for illustrative purposes. The above differential equations have been solved numerically using

the MATLAB ode23 solver, and are shown in Figure 3.12 B and C. Initial conditions were chosen

as: [rA1](0) = 0µM, [SW21](0) = 0 nM, [rI2](0) = 0µM, [SW12](0) = 100 nM, [Insa](0) = 0 nM,

[InsOut](0) = 0µM, [La](0) = 0µM.

Non-dimensional model

This model can be rendered non-dimensional with the same procedure adopted before:
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Non-dimensional variables

x =
[rA1]

KA
v =

[SW21]

[SW21tot]

y =
[rI2]

KI
, u =

[SW12]

[SW12tot]

h =
[Ins]

[Instot]
z =

[InsOut]

[Ltot]

w =
[L]

[Ltot]

Time rescaling

t̃ = t/τ

Non-dimensional parameters

α =
kp [SW12tot]

kd KA
β =

kp [SW21tot]

kd KI

δ =
kr

kd
θ =

kf [Instot]

kd
φ =

kfKI

kd

λ =
ki
p

kd

[Instot]

[Ltot]
ρ =

ki
f

kd
[Ltot] ξ =

ki
r

kd
ψ =

ki
d

kd
γ =

1

kd τ

Non-dimensional equations in t̃

γ ẋ = αu− x (3.22)

v̇ =
xm

1 + xm
− v (3.23)

γ ẏ = βv − y(1+θh) (3.24)

u̇ =
1

1 + yn
− u (3.25)

γ ḣ = δ(1− h)− φhy (3.26)

γ ż = λ(1− h)− z(ψ + ρw) (3.27)

γ ẇ = ξ(1− w)− ρ zw, (3.28)

where γ = 1.

Equilibria will be indicated as x̄, ū, ȳ, ū, h̄, z̄, and w̄:

(3.22) = 0 =⇒ x̄ = αū

(3.23) = 0 =⇒ v̄ =
x̄m

1 + x̄m

(3.24) = 0 & (3.26) = 0 =⇒ ȳ is the positive solution of φy2 + y(δ(θ + 1)− φβv̄)− δβv̄ = 0

(3.25) = 0 =⇒ ū =
1

1 + ȳn

(3.26) = 0 =⇒ h̄ =
δ

δ + φȳ

(3.27) = 0& (3.28) = 0 =⇒ z̄ is the positive solution of ρψz2 + z(ξ(ρ+ ψ)− ρλ(1− h̄)) = ξλ(1− h̄)

(3.28) = 0 =⇒ w̄ =
ξ

ξ + ρz̄
.
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The Jacobian of this set of equations is:

JyIns =



−1 0 0 α 0 0 0

mx̄(m−1)

(1+x̄m)2 −1 0 0 0 0 0

0 β −1− θh̄ 0 −θȳ 0 0

0 0 − nȳ(n−1)

(1+ȳn)2 −1 0 0 0

0 0 −φh̄ 0 −δ − φȳ 0 0

0 0 0 0 −λ −ψ − ρw̄ −ρz̄

0 0 0 0 0 −ρw̄ −ξ − ρz̄


.

The nullclines of the system are represented in Figure 3.12 D. Because the amount of insulator

is small, the perturbation introduced in the oscillator dynamics is negligible: the oscillatory domain

of the system is almost coincident with that of the oscillator in the absence of load. Figure 3.12 E

shows the oscillatory domain corresponding to different amounts of total load. The figure is obtained

by numerically checking the eigenvalues of the Jacobian matrix JyIns.
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Figure 3.12: A. Scheme for the oscillator coupled to a load through an insulating switch.
B. Trajectories of the oscillator rI2 species as a function of the total amount of insulating
genelet and load. C. Corresponding load trajectories. D. Nullclines and trajectories for the
non-dimensional oscillator, x and y variables (corresponding to rA1 and rI2). E. Oscillatory
domain of the oscillator as a function of the total amount of insulator and load. The parameters
are chosen as: kp = 0.05 /s, kd = 0.002 /s, KA=KI=.5µM, [SW21tot] = [SW12tot] = 100 nM,
m=n=5, τ = 500 s, kr = 0.006 /s, kf = 7.9 · 103 /M/s, ki

p = 0.15 /s, ki
d = 0.006 /s, ki

r = 0.006 /s

and ki
f = 6 · 103 /M/s.
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3.7.2 Relevant sequence interactions

This section contains a series of schematic figures, which represent the most relevant predicted

interactions among the nucleic acids composing the oscillator and tweezers system. The color coding

for the different domains follows the one chosen for Figures 3.2, 3.4, and 3.5. These schemes have an

illustrative purpose and are not an exhaustive list of all secondary structures that can occur in the

system. Toehold-mediated branch migration reactions will be listed and analyzed when the exposed

toeholds are longer than 4 bases. We will neglect reactions involving toeholds 4 bases or shorter,

under the assumption that the corresponding time scales exceed the oscillator dynamics.

As evidenced in [64] through gel electrophoresis, a number of short RNA species accumulates over

time during an oscillator experiment. Such short species have lengths between 5–30 bases and are

the product of abortive RNAP transcription and incomplete degradation by RNase H. It is known

that RNase H may fail to degrade up to 7 RNA bases on the 3’ end of DNA in an RNA-DNA duplex.

In this section we will only highlight potential interactions of the oscillator and tweezer strands with

incomplete degradation products of maximum length. The detailed reactions involving incomplete

degradation products can be found in [41], Supplementary Appendix.
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SW12

AAGCAAGGGTAAGATGGAATGATAATACGACTCACTATAGGGAGAAACAAAGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGTCAGAAATTTCTGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCTTTGTTTCTCCCTATAGTGAGTCGTATTATCATTCCATCTTACCCTTGCTTCAATCCGT

GGGAGAAACAAAGAACGAACGACA CUAAUGAACUACUACUA CACACUAAUA

C
U
G
A
C
A

AA
G
U
C
A
G

A AA

TATTATCATTCCATCTTACCCTTGCTTCAATCCGT

AAGCAAGGGTAAGATGGAATGATAATACGACTCACTATAGGGAGAAACAAAGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGTCAGAAATTTCTGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCTTTGTTTCTCCCTATAGTGAGTCG

GGGAGAGUAAAACGGAUUGAAGCAAGGGUAAGAUGGAAUGAUAAUA

C
U
G
A
C
A

AA
G
U
C
A
G

A AATATTATCATTCCATCTTACCCTTGCTTCAATCCGT

T12-nt

T12-t

A2

A2

rA1

rI2

A2

T12-nt

T12-t

sI2

A2
GGGAGAGUAAAACGGAUU TATTATCATTCCATCTTACCCTTGCTTCAATCCGT

Figure 3.13: Scheme of relevant interactions for SW12. From top to bottom: activator A2; on
state SW12; output rA1 of SW12; activator A2 sequestered by the RNA input rI2; incomplete
RNase H degradation product sI2, binding to A2; off-state SW12.

Reaction Pathways

Activation: A2 + T12 ⇀ T12 · A2
Inhibition: rI2 + T12 · A2 ⇀ rI2 · A2 + T12
Annihilation: A2 + rI2 ⇀ rI2 · A2
Transcription: T12 · A2 + RNAP 
 T12 · A2 · RNAP ⇀ rA1 + T12 · A2 + RNAP

T12 + RNAP 
 T12 · RNAP ⇀ rA1 + T12 + RNAP
Degradation: rI2 · A2 + RNaseH 
 rI2 · A2 · RNaseH ⇀ sI2 · A2 + RNaseH
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SW21

CATTAGTGTCGTTCGTTCACAGTAATACGACTCACTATAGGGAGAGTAAAACGGATTGAAGCAAGGGTAAGATGGAATGATAATACTGACAAAGTCAGAAATTTCTGACTTTGTCAGTATTATCATTCCATCTTACCCTTGCTTCAATCCGTTTTACTCTCCCTATAGTGAGTCG

GTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCACAG TATTACTGTGAACGAACGACACTAATGAACTACTAC

CATTAGTGTCGTTCGTTCACAGTAATACGACTCACTATAGGGAGAGTAAAACGGATTGAAGCAAGGGTAAGATGGAATGATAATACTGACAAAGTCAGAAATTTCTGACTTTGTCAGTATTATCATTCCATCTTACCCTTGCTTCAATCCGTTTTACTCTCCCTATAGTGAGTCG

GGGAG
AA
AC

AAAGAACGAACGACACUAAUGAACUACUACUACACACUAAUA

C
U
G
A
C
A

AA
G
U
C
A
G

AAA

T21-nt

T21-t

TATTACTGTGAACGAACGACACTAATGAACTACTAC

A1

CATTAGTGTCGTTCGTTCACAGTAATACGACTCACTATAGGGAGAGTAAAACGGATTGAAGCAAGGGTAAGATGGAATGATAATACTGACAAAGTCAGAAATTTCTGACTTTGTCAGTATTATCATTCCATCTTACCCTTGCTTCAATCCGTTTTACTCTCCCTATAGTGAGTCGTATTACTGTGAACGAACGACACTAATGAACTACTAC

T21-nt

T21-tA1

GGGAGAGUAAAACGGAUUGAAGCAAGGG UAAGAUGGAAUGAUAAU A

C
U
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A
C
A

AA
G
U
C
A
G

A AA

rI2

GTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCACAG

dI1

dI1

A1

GTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCACAG

GGGAGAAACAAAGAACGAACGACACUAAUGAACUACUACUACACACUAAUA

C
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A
C
A

AA
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U
C
A
G

A AA

rA1

dI1

T21-nt

T21-t

rA1

sA1

dI1
GTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTC ACAG GGGAGAAACAAAGAACGAA

Figure 3.14: Relevant interactions for SW21. From top to bottom: activator A1 and inhibitor dI1;
dI1 sequestered by RNA input rA1 and output rI2 of SW21; on-state SW21; incomplete RNase H
degradation product sA1 binding to dI1 and dI1 sequestering the activator A1; off-state SW21; finally,
unwanted interaction between RNA input rA1 and off-state SW21. The latter complex is a substrate
for RNase H; moreover rA1 has a 16-base toehold for initiation of strand displacement by inhibitor dI1,
and a 9-base domain exposed for A1 invasion. The T21·rA1 substrate does not represent a suitable
binding site for RNA polymerase (Section 3.7.14).

Reaction Pathways

Activation: A1 + T21 ⇀ T21 · A1
Inhibition: dI1 + T21 · A1 ⇀ dI1 · A1 + T21
Release: rA1 + dI1 · A1 ⇀ rA1 · dI1 + A1
Annihilation: dI1 + A1 ⇀ dI1 · A1

dI1 + rA1 ⇀ dI1 · rA1
Transcription: T21 · A1 + RNAP 
 T21 · A1 · RNAP ⇀ rI2 + T21 · A1 + RNAP

T21 + RNAP 
 T21 · RNAP ⇀ rI2 + T21 + RNAP
Degradation: rA1 · dI1 + RNaseH 
 rA1 · dI1 · RNaseH ⇀ dI1 + RNaseH

Unmodeled Reactions

Interfering: rA1 + T21 ⇀ T21 · rA1
Recapturing: dI1 + T21 · rA1 ⇀ rA1 · dI1 + T21
Recovering: A1 + T21 · rA1 ⇀ A1 · T21 + rA1
Degradation: T21 · rA1 + RNaseH 
 T21 · rA1 · RNaseH ⇀ T21 + RNaseH
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Tweezers mode I

GGTCGC
TCTTAC

AAGGCA
ACTAAT

GAACTA
CTA

CTGTGA
ACGAAC

GACATC
CGAAGC

ATTCCA
GGT

TGCCTTGTAAGAGCGACC

ACCTGGAATGCTTCGGAT

AT
C

A

TGCCTTGTAAGAGCGACC

ACCTGGAATGCTTCGGAT

AT
C

A

GTGTGTAGTAGTAGTTCATTAGT

GTCGTTCGTTCACAG

GGTCGCTCTTACAAGGCAACTAATGAACTACTA

CTGTGAACGAACGACATCCGAAGCATTCCAGGT

dI1

TW C I

TW A

TW B I

TTTCTGACTTTGTCAGTATTATCATTCCATCTTACCCTTGCTTCAATCCGTTTTACTCTCCCTATAGTGAGTCG

GGTCGCTCTTACAAGGCAACTAATGAACTACTA

CTGTGAACGAACGACATCCGAAGCATTCCAGGT

TGCCTTGTAAGAGCGACC

ACCTGGAATGCTTCGGAT

AT
C

A

CATTAGT

GTCGTTCGTTCACAGTAATACGACTCACTATAGGGAGAGTAAAACGGATTGAAGCAAGGGTAAGATGGAATGATAATACTGACAAAGTCAGAAA

T21-nt

T21-t

TGCCTTGTAAGAGCGACC

ACCTGGAATGCTTCGGAT

AT
C

A

GGT
CGC

TCT
TAC

AAG
GCA

ACT
AAT

GAA
CTA

CTA

CTG
TGA

ACG
AAC

GAC
ATC

CGA
AGC

ATT
CCA

GGT

GTGTGTAGTAGTAGTTCATTAGT

G TCGT T CGTTCACAG

CATTAGT
GTA

GTAGTT GTGTGTAGTCGTTCGTTCACAG

dI1

dI1

Figure 3.15: Relevant interactions for tweezers mode I. From top to bottom: tweezers
mode I in open state; tweezers in closed state bound to their target dI1. Finally, unwanted
interaction between open tweezers mode I and off-state SW21. Activator A1 can invade this
undesired complex, binding to the exposed 5-base TAATA promoter domain, thereby displacing
the tweezers.

Reaction Pathways

Closing: TwI + dI1 ⇀ TwI · dI1
Opening: TwI · dI1 + rA1 ⇀ dI1 · rA1 + TwI

Unmodeled reactions

Interfering: TwI + T21 ⇀ TwI · T21
Recovering: TwI · T21 + dI1 ⇀ T21 + TwI · dI1
Recapturing: TwI · T21 + A1 ⇀ TwI + T21 · A1
Double binding: TwI + dI1 + dI1 ⇀ TwI · dI1 · dI1
Clearing: TwI · dI1 · dI1 + rA1 + rA1 ⇀ dI1 · rA1 + dI1 · rA1 + TwI
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Tweezers mode II Tweezers mode II∗

GGTCGC
TCTTAC

AAGGCA
TCGTTC

ACAGTA
ATA

GTTCAT
TAGTGT

CGTATC
CGAAGC

ATTCCA
GGT

TGCCTTGTAAGAGCGACC
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A
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AAATCC
GAAGCA

TTCCAG
GT

TGCCTTGTAAGAGCGACC

ACCTGGAATGCTTCGGAT
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Figure 3.16: Relevant interactions for tweezers mode II. Left: mode II, with A1 input. Right:
mode II∗, with A2 input. Left, top to bottom: open tweezers; target A1 closing the tweezers;
unwanted interaction with rA1. The latter complex is a substrate for RNase H, and there is a
9-base toehold for displacement of the tweezers by A1. Right, top to bottom: open tweezers;
target A2 closing the tweezers.

Reaction Pathway Examples

Tweezers mode II Tweezers mode II∗

Closing: TwII + A1 ⇀ TwII · A1 TwII∗ + A2 ⇀ TwII∗ · A2
Opening: TwII · A1 + dI1 ⇀ TwII + A1 · dI1 TwII∗ · A2 + rI2 ⇀ TwII∗ + A2 · rI2

Unmodeled reactions

Tweezers mode II

Interfering: TwII + rA1 ⇀ TwII · rA1
TwII + rA1 + rA1 ⇀ TwII · rA1 · rA1

Recapturing: TwII · rA1 + dI1 ⇀ TwII + dI1 · rA1
Recovering: TwII · rA1 + A1 ⇀ TwII · A1 + rA1
Degradation: TwII · rA1 + RNaseH 
 TwII · rA1 · RNaseH ⇀ TwII + RNaseH

TwII · rA1 · rA1 + RNaseH 
 TwII · rA1 · rA1 · RNaseH ⇀ TwII + RNaseH
Double binding: TwII + A1 + A1 ⇀ TwII · A1 · A1
Clearing: TwII · A1 · A1 + dI1 + dI1 ⇀ dI1 · A1 + dI1 · A1 + TwII
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Tweezers mode III
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Figure 3.17: Relevant interactions for tweezers mode III. From top to bottom: open tweezers
and incomplete RNase H degradation product sI2 binding to the tweezers; RNA target rI2
closing the tweezers; undesired complex TwIII·T12. The unwanted complex has a 14-base
exposed toehold that can be targeted by rI2.

Reaction Pathway Examples

Closing: TwIII + rI2 ⇀ TwIII · rI2
Double binding: TwIII + rI2 + rI2 ⇀ TwIII · rI2 · rI2
Opening/Degradation: TwIII · rI2 + RNaseH 
 TwIII · rI2 · RNaseH ⇀ TwIII + RNaseH

TwIII · rI2 · rI2 + RNaseH 
 TwIII · rI2 · rI2 · RNaseH ⇀ TwIII + RNaseH
Opening/Branch migration: TwIII · rI2 · rI2 + A2 ⇀ TwIII · rI2 + A2 · rI2
Interfering: TwIII + T12 ⇀ TwIII · T12
Recapturing: TwIII · T12 + rI2 ⇀ TwIII · T12 · rI2
Recovering: TwIII · T12 + A2 ⇀ TwIII + T12 · A2
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Tweezers mode IV
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Figure 3.18: Relevant interactions for tweezers mode IV. From top to bottom: open tweezers
and incomplete RNase H degradation product sA1 binding to the tweezers; RNA target
rA1 closing the tweezers (this complex can be opened either by RNase H degradation or
toehold-mediated strand migration by dI1 on the 7-base exposed light pink domain of rA1);
undesired interaction with DNA species A1. The desired target complex TwIV·rA1 shares 7
more bases than the undesired complex TwIV· A1.

Reaction Pathway Examples

Closing: TwIV + rA1 ⇀ TwIV · rA1
Double binding: TwIV + rA1 + rA1 ⇀ TwIV · rA1 · rA1
Opening: TwIV · rA1 + dI1 ⇀ rA1 · dI1 + TwIV
Clearing: TwIV · rA1 · rA1 + dI1 + dI1 ⇀ rA1 · dI1 + rA1 · dI1 + TwIV

TwIV · A1 + dI1 ⇀ TwIV + dI1 · A1
Degradation: TwIV · rA1 + RNaseH 
 TwIV · rA1 · RNaseH ⇀ TwIV + RNaseH

TwIV · rA1 · rA1 + RNaseH 
 TwIV · rA1 · rA1 · RNaseH ⇀ TwIV + RNaseH
Interfering: TwIV + A1 ⇀ TwIV · A1
Recovering: TwIV · A1 + rA1 ⇀ TwIV · rA1 + A1
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Mode V∗ – Insulator A1
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Figure 3.19: Relevant interactions for the mode V∗ insulator, with input A1. This insulator
switch has the same input domain of SW21, and therefore the same complexes and side
reactions as in Figure 3.14 are represented. The output of the insulator is denoted as InsOut.

Reaction Pathway Examples

Activation: A1 + Ins∗ ⇀ Ins∗ · A1
Inhibition: dI1 + Ins∗ · A1 ⇀ dI1 · A1 + Ins∗

Release: rA1 + dI1 · A1 ⇀ rA1 · dI1 + A1
Annihilation: dI1 + A1 ⇀ dI1 · A1

rA1 + dI1 ⇀ rA1 · dI1
Transcription: Ins∗ · A1 + RNAP 
 Ins∗ · A1 · RNAP ⇀ InsOut + Ins∗ · A1 + RNAP

Ins∗ + RNAP 
 Ins∗ · RNAP ⇀ InsOut + Ins∗ + RNAP
Degradation: rA1 · dI1 + RNaseH 
 rA1 · dI1 · RNaseH ⇀ dI1 + RNaseH

Ins∗ · rA1 + RNaseH 
 Ins∗ · rA1 · RNaseH ⇀ Ins∗ + RNaseH
Interfering: rA1 + Ins∗ ⇀ Ins∗ · rA1
Recapturing: dI1 + Ins∗ · rA1 ⇀ rA1 · dI1 + Ins∗

Recovering: A1 + Ins∗ · rA1 ⇀ Ins∗ · A1 + rA1
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Mode V – Insulator A2
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Figure 3.20: Relevant interactions for the mode V insulator, with input A2. This insulator
switch has the same input domain of SW12, and therefore the same complexes as in Figure 3.13
are represented. The output of the insulator is denoted as InsOut, and is the same as in the
insulator having input A1, shown in Figure 3.19.

Reaction Pathways

Activation: A2 + Ins ⇀ Ins · A2
Inhibition: rI2 + Ins · A2 ⇀ rI2 · A2 + Ins
Annihilation: rI2 + A2 ⇀ rI2 · A2
Transcription: Ins · A2 + RNAP 
 Ins · A2 · RNAP ⇀ InsOut + Ins · A2 + RNAP

Ins + RNAP 
 Ins · RNAP ⇀ InsOut + Ins + RNAP
Degradation: rI2 · A2 + RNaseH 
 rI2 · A2 · RNaseH ⇀ sI2 · A2 + RNaseH
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Tweezers mode V
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Figure 3.21: Relevant interactions for the load stage of tweezers mode V. From top to
bottom, left to right: tweezers mode V, open; tweezers mode V closed by their target
TwCls; tweezers mode V bound to two target molecules TwCls; RNA strand InsOut (out-
put of the insulators at Figures 3.19 and 3.20); DNA strand TwCls; TwCls displaced by InsOut.

Reaction Pathways

Closing: TwV + TwCls ⇀ TwV · TwCls
Opening: TwV · TwCls + InsOut ⇀ TwCls · InsOut + TwV
Annihilation: TwCls + InsOut ⇀ TwCls · InsOut
Degradation: TwCls · InsOut + RNaseH 
 TwCls · InsOut · RNaseH ⇀ TwCls + RNaseH

Unmodeled reactions

Double binding: TwV + TwCls + TwCls ⇀ TwV · TwCls · TwCls
Clearing: TwV · TwCls · TwCls + InsOut + InsOut ⇀ TwV + TwCls · InsOut + TwCls · InsOut
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3.7.3 Sample notation

Several fluorescence data sets were collected for this project, at two different institutions: Caltech

and Technical University in Munich (TUM). Within each set, identical DNA stock solutions and

enzyme batches are used. Here, I will follow the notation originally chosen in the Supplementary

Appendix of [41] to denote each data set. Sets denoted as A, B, 1, 2, and 3 were recorded at TUM;

sets denoted as 4, 5, and 6 were recorded at Caltech. In this document, I will only report detailed

information on the sets collected by me at Caltech. Each data set consists of several rounds of

data acquisition with four samples each. One sample from each round usually is a reference sample

containing the oscillator system only, unless otherwise noted. Data acquisition of one round takes

one day. We will use the notation TWI-4 (for example) to indicate the mode I tweezers experiments

of set 4. For more details about sample preparation please refer to Section 3.7.4.

Table 3.2: Data Sets Acquisition Overview: Caltech

SET Modes:

4 tweezers I tweezers II tweezers III tweezers IV tweezers V
(TWI-4) (TWII-4) (TWIII-4) (TWIV-4) (TWV-4)

5 threshold variation I threshold variation II threshold variation III

6 tweezers II tweezers II∗ tweezers V∗ tweezers V
(TWII-6) (TWII∗-6) (TWV∗-6) (TWV-6)

3.7.4 Sample preparation

The protocols followed at Caltech are thoroughly described in this section. The transcription pro-

tocols differ mainly in the brand of the reagents used, the RNA polymerase (RNAP) and RNase H

handling method, the concentration of ribonucleoside triphosphates (rNTPs), and the DNA activator

and inhibitor thresholds.

Operating point

We defined our operating point for the oscillator as a trajectory providing 4–6 oscillations in 16

hours, with amplitude of 80–120 nM.

The dynamics of the core oscillator are a function of several variables: DNA concentrations,

buffer composition, and concentration and activity of RNAP and RNase H. Most of our experiments

were done using the Ambion T7 Megashortscript kit, for which transcription buffer and enzyme mix

composition are not disclosed; each production batch is slightly tuned by the vendor to maximize

transcription speed. In general, the characteristics of all off-the-shelf enzymes may vary among

stocks purchased from the same supplier at different times. Therefore, all else being equal, using

enzymes (and transcription buffer) from different production batches may result in significantly
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different oscillation amplitude and frequency.

To achieve a consistent operating point for all our experiments, we tuned the enzyme volumes

(and, in some cases, the buffer composition) when switching to a new enzyme stock. We also empir-

ically found that the concentration of DNA thresholds (A1, A2, and dI1) influences the operating

point of the system, as shown in Figure 3.40. Therefore, we adjusted the thresholds as part of our

tuning procedure to reach the desired operating point.

Sets 4, 5

The final concentrations of the oscillator DNA strands were: T12 (120 nM), T21 (250 nM), dI1

(650 nM), A1 (300 nM), and A2 (550 nM). T21, T12, insulator genes, and the TW A, TW B, and

TW C strands for each tweezer mode were annealed separately in 1x Ambion Megashortscript kit

buffer in a digital thermal cycler (MJ Mini 48Well Personal Thermal Cycler, Bio-Rad Laboratories,

Inc.) by heating for 1 minute at 95◦C and cooling to room temperature in 2 h.

A transcription buffer mix was prepared before each experiment run (for four samples) to a final

concentration of 1x Transcription Buffer, 7.5 mM each rNTP (Ambion Megashortscript Kit, Cat.

n. AM1354), and nanopure water as appropriate. The MgCl2 concentration was not adjusted. To

maintain constant enzyme ratios, T7 RNAP enzyme mix (Ambion Megashortscript Kit, Cat. n.

AM1354) and RNase H (Ambion, E. coli cloned, Cat. n. AM2292, 10 U/µl) were premixed once

for each round of data acquisition (for four samples). The total enzyme pre-mix volume always

exceeded by ≈ 10% the volume required in the experiment.

Each experiment was carried out as follows: First, all DNA strands and all the transcription

reagents were pre-mixed in two separate test tubes. The amount of each reagent is calculated to

achieve the desired concentration in a final total 240 µl sample volume. The mixes were then split

into the four quartz cuvettes of the data acquisition round, each to have a final volume of 60 µl.

The cuvettes were pre-warmed at 37◦C in the Fluorolog 3 sample chamber. The transcription buffer

mix was added first, followed by the DNA mix aliquot. We found that this procedure minimized the

variability of fluorescence traces across samples in the same data acquisition round.

Each sample was sealed using 35 µl of hexadecane (MP Biomedicals, LLC, Cat. n.195218)

to prevent evaporation. After measuring the initial off-state fluorescence for the switch T21 in the

spectrofluorimeter, the enzyme mix was added to each sample in the appropriate volume (Table 3.3),

through the sealing oil layer.

Set 6

Final concentrations of the oscillator DNA strands were: T12 (120 nM), T21 (250 nM), dI1

(600 nM), A1 (250 nM), and A2 (500 nM). The oscillator switches, insulators, and the TW A, TW

B, and TW C strands for each tweezers mode were annealed separately in 1x Transcription Buffer

(Epicentre Biotechnologies, Cat. n. BP1001), undergoing the same thermal treatment as sets 4 and
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5.

The transcription buffer mix was prepared prior to each experiment run (for four samples), mixing

reagents to the following final concentrations: 1x Transcription Buffer and 10 mM dithiothreitol

(DTT) (Epicentre Biotechnologies, Cat. n. BP1001), 7.5 mM each rNTP (Epicentre Biotechnologies,

Cat. n. RN02825), 35 mM MgCl2, and 0.015 U/µl pyrophosphatase (Sigma Aldrich, Cat. n. I1891-

100UN, resuspended in Tris HCl 20 mM, pH 7.2, 50% glycerol (v/v)).

T7 RNAP was purchased from Epicentre Biotechnologies, Cat. n. TM910K (200 U/µl). E. coli

cloned RNase H was purchased from Ambion, Cat. n. AM2292 (10 U/µl).

Each step of the experiments done for set 6 followed closely the procedure described for sets 4

and 5.

Table 3.3: Overview of the Enzyme Volumes Used in the Data Sets Collected at Caltech.
Measuring the concentration of RNAP and RNase H presents several challenges. For sets 4 and
5, I used the Ambion T7 enzyme mix provided with the T7 Megashortscript Kit; the vendor
does not provide accurate information regarding the RNAP concentration or weight in each
batch. According to [84], the mix contains inorganic pyrophosphatase; therefore, absorbance
measurements can only provide approximated estimates of the RNAP concentration. For the
numerical simulations, the nominal concentration of RNAP was assumed to be 1.25µM, ac-
cording to the absorbance measurements; a nominal concentration of 1.25µM was assumed for
RNase H, as quoted by the manufacturer. For set 6, I used Epicentre Biotechnology T7 RNAP:
the concentration of the lot used in the experiments was 4 µM.

SET Vsample(µl) VT7(µl) VH(µl) Vtot
EnzMix(µl) Vsample

EnzMix(µl) VT7/VH

4 60 22 2.2 24.2 5.6 10.0

5 60 22 2.2 24.2 5.6 10.0

6 60 18 2 20 4 9.0

Table 3.4: Overview of the Oscillator Total DNA Species Concentrations Used in Each Data
Set.

SETS [T21] (nM) [A1] (nM) [dI1] (nM) [T12] (nM) [A2] (nM)

4 250 300 650 120 550

5 (default) 250 300 600 120 500

6 250 250 600 120 500

3.7.5 Fluorescence data processing

The raw fluorescence measurements recorded with the Horiba Fluorolog 3 were converted into molar

concentrations according to the procedure described in this section. The ideal formula to convert
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each fluorescence trace to a concentration trace is:

C(tn) = C0
I(tn)− Imin

Imax − Imin
,

where C0 is the nominal total concentration of the labeled DNA strand, I(tn) is the raw fluorescence

intensity measured by the instrument, and Imax, Imin are the maximum and minimum fluorescence

signals for the strand at that specific concentration and lamp intensity. In practice, Imax is the

signal that would be measured if all the tweezers (or switch) in the sample were in a fully open (or

off) state; accordingly, Imin corresponds to the signal measured in a fully closed tweezers/on state

switch.

Unfortunately, the values of Imax and Imin may not be both available for each trace. However,

we can re–write the above formula as:

C(tn) = C0
I(tn)/Imax − r

1− r
,

where r = Imin/Imax. We were able to successfully use this formula because first, the mini-

mum/maximum fluorescence signal ratio r should be independent of the specific strand concentra-

tions and lamp intensity; therefore, we measured the r values off line. Second, we could determine

Imax for most of our experiments; in some cases, we could instead determine Imin, from which we

could estimate Imax=Imin/r.

To determine the r value, we first collected the average maximum fluorescence intensity Imax from

a calibration sample at known concentration, containing open tweezers (TWI–TWV) or genelet in

the off state (T12 or T21). Then, we measured the average minimum quenched fluorescence Imin,

by adding to the sample the tweezer closing strand (A1, dI1, rI2, rA1 or TwCls) or activator

(quencher-labeled) strand (A1 or A2) in excess. The on/off fluorescence ratio r = Imin/ Imax was

therefore calculated. As noted before, this ratio is independent of the instrument lamp intensity

and of the concentration of labeled strands, provided that the closing strand is present in excess.

However, we found that r is sensitive to the overall MgCl2 and rNTPs concentration in the sample,

in a sequence–dependent manner. In particular, we found that the closed state fluorescence of the

tweezers is the most affected by the overall ionic concentration in the sample. Specifically, the

closed state fluorescence is lower in samples with higher MgCl2 concentration. The buffer MgCl2

concentration of the T7 Ambion Megashortscript Kit is unknown: therefore, the normalization

measurements should be carried out with the same kit used for the experiments. Table 3.5 shows

the r and C0 values used to normalize data sets I collected at Caltech.

The Imax value has to be determined as “maximum off/open-state” fluorescence level of the

monitored strands for each experiment. The initial T21 off-state fluorescence value prior to addition

of enzymes was recorded for each trace. Therefore, Imax was calculated as the initial off-state
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fluorescence value, averaged across the four samples in the same data acquisition round, decreased

by 10% to account for the dilution due to the subsequent addition of the enzyme mix to each

sample. Regarding the determination of Imax for the T12 genelet, the data shown in this document

at Figure 3.25 were normalized by observing that the genelet is in a fully on state before adding

enzymes; so we used such initial data to determine Imin as the on-state fluorescence, and estimated

Imax = Imin/r.

For the molecular tweezers, the value of Imax was determined depending on the mode. For Modes

I and II, across all data sets, Imax was chosen to be the first peak of each trace. For mode II*, Imax

was chosen as the maximum fluorescence value over the entire time trace (choosing Imin as the

minimum over the trace prior to addition of enzymes, and then estimating Imax = Imin/r was not

feasible, because 400 nM of tweezers may not be fully closed by the A2 amount in solution in case

of pipetting inaccuracies). For Modes III and IV, Imax was chosen as the high-fluorescence signal

measured prior to addition of enzymes, when no RNA (closing strand) is present in the system. For

mode V, the value of Imax was taken as the fluorescence value measured prior to adding the closing

strand for set 4; for Modes V and V∗ in set 6, Imax was instead chosen as the fluorescence value

of the first large peak of the traces at high amount of insulator (specifically, the traces shown at

Figures 3.47, last row, second column, and Figure 3.46, last row, second column): such value of Imax

was consistent across the data taken for mode V and V*. (Since all the data acquisition rounds for

set 6 were recorded in subsequent days, without turning off the spectrofluorimeter, we assumed that

lamp fluctuations could be neglected.)

The RNA–operated tweezers, Modes III and V, presented a drift, which was not caused by evap-

oration but presumably by the accumulation of short incomplete degradation products binding to

the tweezers’ hands. The experiments on mode V and V* tweezers instead presented a drift in the

off-state minimum fluorescence, presumably caused by the depletion of rNTPs and by the conse-

quently higher availability of free positive ions of Mg++ in solution. These two effects produced

normalized concentrations exceeding the total strand amount in solution, or normalized concentra-

tions becoming negative over time. The data affected by such fluorescence drifts were processed

with a modified normalization protocol. First, we estimated the minimum fluorescence level for

the trace as Imin = r · Imax. Then, at each data point we computed a(tn) = (I(tn)− Imax)/tn and

b(tn) = (Imin − I(tn))/tn. We finally set ā=max{a(tn)} and b̄={max b(tn)} and normalized the data

as follows:

Imax(tn) := Imax + ā · tn, Imin := Imin − b̄ · tn

C(tn) =
I(tn)− Imin(tn)

Imax(tn)− Imin(tn)
.

This is equivalent to linearly correcting Imax and Imin with the minimal slope necessary to main-
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tain all the data below or above the chosen thresholds. This correction was applied to the data

shown in the following figures: Figure 3.44; Figure 3.45; Figure 3.46, all data sets; Figure 3.47, all

data sets.

Figure 3.22B shows the TWII-4 TYE665 channel fluorescence raw data, converted into T21

concentrations as described above. The raw data and the corresponding concentrations for the

Rhodamine Green channel, TWII-4, are shown in Figure 3.23, where we also highlight the effects of

a 50% error in the estimation of r. Finally in Figure 3.24 we show the raw data for TWV-6, and the

effects of the Imin linear correction.

Table 3.5: Parameters for Conversion of Fluorescence Intensities into Concentrations

species r= IMIN/IMAX C0(nM)

T12 (TYE563) 0.056 (sets 4, 5), 0.045 (set 6) 120

T21 (TYE665) 0.051 (sets 4, 5), 0.05 (set 6) 250

TWI 0.31 (set 4) 100, 200, 400

TWII 0.31 (set 4); 0.3 (set 6) 100, 200, 400

TWII∗ 0.45 (set 6) 100, 200, 400

TWIII 0.35 (set 4) 100, 200, 400

TWIV 0.47 (set 4) 100, 200, 400

TWV 0.49 (set 4), 0.5 (set 6) 100, 200, 400, 600, 800
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Figure 3.22: TWII-4 samples, T21 (TYE 665) channel. A. Raw fluorescence data. B. Fluo-
rescence data converted to concentrations.

3.7.6 T12-channel data

Throughout this thesis chapter, only the T21-channel data (TYE665, or Texas Red for the data

taken at TUM) are used to characterize the behavior of the oscillator. The T12 fluorescence data

(TYE563, or TAMRA for the data taken at TUM) were also monitored in each experiment, but

their small amplitude does not allow us to derive significant information about the system behavior.
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Figure 3.23: TWII-4 samples, TW II (Rhodamine Green) channel. A. Raw fluorescence data.
B. Raw data converted to concentrations for TW II, with r=0.155, 50% lower than the correct
value, r=0.31. C. Raw data converted to concentrations for TW II, with r=0.31.
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Figure 3.24: TWV-6 samples, TWV (Rhodamine Green) channel. These data corresponds
to the data plotted in Figure 3.46, third row, second column. A. Raw fluorescence data for
TWV-6. B. Raw data converted to concentrations for TWV-6, with constant Imin=r· Imax.
C. Raw data converted to concentrations for TWV-6, with linearly adjusted Imin.
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(This is consistent with the findings in [64].) In Figure 3.25 A, as an example, we show both the

T21 and T12 normalized traces from the TWII-4 sample. (The concentrations of T12 and T21

belonging to the same sample are shown in the same color.) However, only the T21-concentration

shows strong oscillations; the T12-concentration oscillates only weakly around 100 nM. For this

specific trajectory, the average concentrations are <T12> = 98 nM and <T21>= 163 nM. This

gives <T12A2>≈(120 - 98) nM = 22 nM and <T21A1> ≈(250 - 163) = 87 nM. Across data sets

4 and 6, we found that <T12A2> is on average 20 nM, and <T21A1> is on average 75 nM. From gel

electrophoresis data (see Figure 3.35) we also know that given equal amounts of on–templates, rI2

is produced in much higher amount than rA1. While the same promoter is used for both templates,

the kcat values for each switch might vary and be influenced by the transcribed domain. T12 is only

activated for a short time in each cycle, resulting in presumably small waves of rA1 production.

Looking at the phase portrait of the sample (Figure 3.25 B), the concentration variation of T21/T21A1,

∆[T21]= ∆[T21A1] ≈ 100 nM is much larger than that of T12/T12A2 (∆[T12]=∆[T12A2] ≈ 10

nM). This demonstrates an asymmetry between the Switches 12 and 21: the state of SW21 is very

sensitive to small changes in the state of SW12, while the state of SW12 does not respond anal-

ogously to variations in the state of SW21. Qualitatively, T12 exhibits the same behavior (small

waves of modulation) in all samples and is therefore omitted in the data presented.
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Figure 3.25: Trajectories of SW12 and SW21. A. Time traces. B. Phase portrait. The
oscillation amplitude of SW12 is about one order of magnitude smaller than the amplitude of
SW21. The traces of SW12 are therefore ignored in the analysis proposed in this project.

3.7.7 Analysis of the oscillations

The period and amplitude of the oscillations are time-varying in most of the experiments. To be

able to compare different oscillatory traces, we processed the data in order to consider only the first

three full oscillations after the first large and irregular peak.
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Period: We calculate the average oscillation period from the first three full oscillations, measured

between the first and the fourth minimum.

T(n) = tmin(n + 1)− tmin(n)

The mean period of each sample is defined by < T >= (T(1) + T(2) + T(3))/3, if there are at least

three full oscillations, otherwise the number is reduced accordingly.

Amplitude: We measure the oscillation amplitude of oscillation cycle n as half the difference

between the peaks as defined in Figure 3.26:

A(n) = (cmax(n)− cmin(n))/2.

The mean amplitude for each time trace is defined as < A >= (A(1) + A(2) + A(3))/3.

As an example, in Figure 3.26 we show how the peaks and wells were selected for the control

sample of Tweezers mode II in data set 3.
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Figure 3.26: TWI-4. Red circles: selected oscillation maxima. Pink circles: selected os-
cillation minima. The cyan circle indicates the first large oscillation peak, not selected for
period/amplitude analysis. Green trace: period per oscillation. Black trace: amplitude per
oscillation. (The last peak highlighted in black is not used for the period and amplitude calcu-
lations.)

3.7.8 Day-to-day variability

In this section, I will highlight the oscillation variability introduced by pre-mixing of enzymes for

use in different days.
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The enzymes were instead pre-mixed right before each experiment run. Pipetting errors are

particularly likely when transferring small enzyme volumes, due to their typical ≈ 50% glycerol

storage buffer. To minimize such errors, the volumes transferred were always larger or equal to 2

µl. The total pre-mix volume always exceeded by 20% the volume required in the experiment. Such

pipetting precautions allowed us to achieve a fairly stable period across different experiments, as

shown in Figure 3.27, orange trace. Data set 6 (Epicentre Biotechnology reagents), brown trace,

showed a more pronounced day-to-day variability in period and amplitude. This is most likely due

to the fact that several transcription buffer components (and not only RNAP and RNase H as in

the Ambion protocol) were mixed prior to each data acquisition round (see Section 3.7.4 for details

on the protocol). For set 6, the amplitude is in particular reduced by the second small peak present

in most traces.
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Figure 3.27: Period (left) and amplitude (right) versus acquisition round number (day of
acquisition). Set 4 rounds (orange) include TWI-4, TWII-4, TWIII-4, TWIV-4. The corre-
sponding time traces are presented in Section 3.7.18. Set 6 rounds (brown) include TWV∗

control from Figure 3.47, top; TWV∗ control from Figure 3.47, bottom; TWV control from
Figure 3.46, third row; TWV control from Figure 3.46, fourth row.

3.7.9 Set-to-set variability

This section considers the overall variability of the oscillator operating point across different data

sets, and includes processed data from the experiments collected at TUM. Figure 3.28 shows the

mean and standard deviation of period and amplitude for all fluorescence data collected at Caltech

and TUM.

Data set 6 presents high variability, particularly in the amplitude, because more reagents (Epi-

centre Biotechnology) are sequentially added in the transcription protocol, compared to the data

sets collected using the T7 Ambion Megashortscript kit. Figure 3.29 shows a plot of period versus

amplitude across different data sets.
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Figure 3.28: Set-to-set variability of period (A) and amplitude (B) of the oscillations. This
figure shows all the processed fluorescence data collected on the oscillator in isolation, both at
Caltech and TUM. For each data set, data are marked with solid dots, their mean is a solid
dark line, and the shaded areas cover the one, two and three standard deviation areas. The
overall mean across data sets is indicated as a dashed-dotted line with inward pointing arrows.
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3.7.10 Oscillation period

The period per each oscillation is measured between the first and the fourth minimum of each time

trace. The nth minimum is defined as in Figure 3.26. Figure 3.30 gives an overview across different

data sets for TWII, displaying the period from minimum n to minimum n+ 1.
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Figure 3.30: TWII, Period T(n) of each oscillation in the first three full oscillations.
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3.7.11 Oscillation amplitude

Figure 3.31 gives an overview of the oscillator amplitudes as a function of the oscillation cycle number

for Tweezers mode II, across different data sets. Recall that the oscillation amplitude of oscillation

cycle n is calculated as half the difference between the concentration at maximum and the preceding

minimum, defined as in Figure 3.26:

Tweezers mode II
1 2 3 4

0

20

40

60

80
Set 1

Oscillation cycle number
A

m
p

lit
u

d
e 

(n
M

)

 

 

No Load
Load 50 nM
Load 100 nM
Load 200 nM

1 2 3 4
0

20

40

60

80
Set 2

Oscillation cycle number

A
m

p
lit

u
d

e 
(n

M
)

 

 

No Load
Load 50 nM
Load 100 nM
Load 200 nM

1 2 3 4
0

20

40

60

80
Set 3

Oscillation cycle number

A
m

p
lit

u
d

e 
(n

M
)

 

 
No Load
Load 100 nM
Load 200 nM
Load 400 nM

1 2 3 4
0

20

40

60

80
Set 4

Oscillation cycle number

A
m

p
lit

u
d

e 
(n

M
)

 

 
No Load
Load 100 nM
Load 200 nM
Load 400 nM

1 2 3 4
0

20

40

60

80
Set 6

Oscillation cycle number
A

m
p

lit
u

d
e 

(n
M

)
 

 
No Load
Load 100 nM
Load 200 nM
Load 400 nM

Figure 3.31: Amplitude A(n) of the oscillations in the first three full oscillations. The higher
variability of sets 4 and 6 is due to the fact that in these sets the first oscillation after the
plateau peak is consistently smaller than the following ones. Moreover, the protocol used for
data set 6 requires more reagents to be sequentially added to the transcription mix, increasing
the probability of pipetting inaccuracies.

3.7.12 Effects of the load on the oscillator performance

This section analyzes in more detail the back-action effect on the oscillator caused by each coupling

mode of the tweezers. The data shown in the figures include the sets collected at TUM, stressing

the consistency of our findings across different laboratories.

The core oscillator performance is affected by the presence of a load. The higher the load

concentration, the stronger the depletion of one (or more) of the core oscillator components. This

causes an undesired retroactivity effect, namely a distortion of the oscillatory signal. In the following,

we will provide some definitions and outline the load retroactivity effects we quantified.

The concentration of load that is to be driven by the oscillator is referred to as the nominal

load concentration. For Modes I–V this is equivalent to the concentration of the tweezers added.

For the rMG aptamer production mode, the nominal load is given by the MG switch concentration.

The oscillation amplitude of the concentration of downstream tweezers (Modes I–V), is here called

effective load concentration, and is calculated as twice the maximum amplitude per oscillation of the

tweezers load.

The relative period change ∆T/T0 is calculated by defining ∆T as the difference between the
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loaded sample period T and the reference period T0. We analogously calculate the relative ampli-

tude change ∆A/A0. The relative period and amplitude changes (in all data sets) are plotted in

Figure 3.32 A and C as a function of the nominal load concentration. As a guide to the eye, we

calculated least-square linear fits to each of the different modes of tweezers coupling and the rMG

production.

The nominal load concentration affects the oscillator period most drastically for Modes I and

III, while the amplitude is affected by all modes except mode II∗ and mode V. Indeed, Modes

II∗ and V show the smallest effect on the oscillator period and amplitude, when the nominal load

concentrations are considered.

To evaluate the performance of the different modes, the efficiency of the coupling has to be con-

sidered. From this point of view, Modes II∗, III, and IV do not qualify as successful coupling modes,

because the load oscillation amplitude (defined as in Section 3.7.7) is too small (Section 3.7.18).

Modes I, II, V, and V∗ are actuated more strongly (Figures 3.33 and 3.34) with relative effective

tweezers concentrations between roughly 10% and 60%.

The relative change in oscillation period and amplitude is plotted as a function of the effective

tweezers load concentration in Figure 3.32 C and D.

The period is in general increased by the presence of a load, while we find different amplitude

perturbation effects. For some of the modes (I, II, III, IV, and V) a comparison with the effects of

threshold variations is drawn in Section 3.7.17.

Modes I and II have similar amplitude retroactivity effects. Mode II presents a smaller period

retroactivity; however, the percent effective load driven drops as a function of the nominal load, as

shown in detail in Figure 3.33. It is easy to observe that the maximum concentration of tweezers

mode II that can be actuated should be well below [A1] = 250 nM, whereas for mode I this boundary

is given by [dI1] = 700 nM.

For a system near our default operating point, a mean concentration of genelets in the “on” state

of roughly 75 nM (30%) can be deduced for SW21, while this concentration is only around 20 nM

(17%) for SW12 (see Section 3.7.6). SW12 is turned on only for a short time in each cycle, resulting

in a much lower concentration [rA1] as compared to [rI2]. Driving the tweezers with rA1 in mode

IV therefore affects the oscillator more strongly than driving with rI2 in mode III, as the resulting

reduction in rA1 concentrations yields a larger fraction effect on switch activity. Similar reasoning

explains why driving with A2 in mode II* has a negligible effect on the core oscillator even with

a 400 nM load (Figure 3.32 and 3.43). However, the effective concentration of tweezers driven is

practically zero. The high rI2 concentration and a toehold-mediated reaction path (Figure 3.16)

allows the quick removal of A2 from tweezers; presuming closing of tweezers is slower than removal,

the A2 concentration still provides the same effective threshold for SW12 inhibition. Presumably,

the closing of tweezers by A2 is also slower than the hybridization of A2 to T12. We can conclude
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that rI2 prevents direct coupling of TWII∗, obviously decreasing the retroactivity.

The insulator of mode V minimally affects the core trajectories, analogously to mode II∗. On the

other hand, the RNA output InsOut amplifies minimal oscillations in the state of this load switch

(analogous to what happens for SW12) and this mode achieves a good signal propagation on TWV.

The insulator designed for mode V∗ shows very low period retroactivity and has the best per-

formance in terms of effective load driven (Figure 3.34 A). However, the amplitude retroactivity is

significant. We can try to explain the properties of mode V∗ as follows: First, mode V∗ has the same

input stage of SW21. This likely means that this load genelet is in an on state for a large fraction

of time as SW21, maintaining a high concentration of InsOut (similarly to what observed for rI2).

This explains why, given a certain effective load, a much smaller amount of insulator V∗ is required,

compared to insulator V (mostly off as SW12). However, the output of mode V∗ in turn binds to

the TwCls strand forming a substrate for RNase H, which is likely to be abundant most of the time

following the reasoning done for rI2 (more abundant than in mode V). This hypothesis is consis-

tent with the large plateaus visible in Figure 3.47. Through gel electrophoresis experiments (see

Figure 3.35), we also found that the insulator of mode V∗ has a much larger off-state transcription

rate than its A1 counterpart. Leakier transcription would also result in larger amounts of InsOut

in solution, and more substrate for RNase H. In fact, significantly decreasing the amount of RNase

H in solution results in slower reference oscillations with larger swing amplitude (Section 3.7.16). It

is thus plausible that the significant amplitude retroactivity of mode V∗ is caused by the presence

of larger amounts of substrate for RNase H. Note that the rMG switch has the same input stage of

insulator mode V∗ (SW21), though its retroactivity effects are different: in fact, the aptamer output

does not bind to any DNA target and does not create additional substrates for RNase H.
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Figure 3.32: Relative period and amplitude change as a function of the load concentration for
all data sets collected at Caltech and TUM. The data points are shown only when the oscillator
traces exhibit a detectable amplitude and period. A. Nominal tweezer load versus core oscillator
period variation. B. Effective tweezer load versus core oscillator period variation. C. Nominal
tweezer load versus core oscillator amplitude variation. D. Effective tweezer load versus core
oscillator amplitude variation.
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3.7.13 Leak transcription from off-state switches

The synthetic genelets are switched on and off by displacing part of their nicked promoter region.

The switches in the on state (T12·A2, T21·A1) have a fully double-stranded, yet nicked promoter

region, whereas in the off state (T12, T21) the promoter region of the switches is partly single-

stranded. We tested the off state transcription on all of our switches: T12·A2, T21·A1, Ins·A2, and

Ins∗·A1.

Figure 3.35 shows the gel electrophoresis results of samples from transcription reactions, for the

core oscillator switches and the insulator switches. All of the switches were separately annealed and

mixed with 1x Ambion Megashortscript kit reagents and 5% (v/v) Ambion T7 enzyme mix, in the

presence or absence of their respective activator strand. Final concentrations of all the annealed

switches were 200 nM, and the activators were added in excess, to a final concentration of 350 nM.

The reaction was incubated at 37◦C for 4 hours. RNA yield was quantified with 10% denaturing

PAGE, run at 21◦C. Template T21 has a higher off-state transcription rate than T12. The mode

V∗ insulator, with input domain identical to T21, also exhibits higher off-state transcription than

the mode V insulator.
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3.7.14 Lack of transcription from T21·rA1 complex

We investigated the extent of transcription from the T21·rA1 complex (see Figure 3.14). Annealed

T21-t and T21-nt templates at 250 nM were added with variable amounts of strands rA1. Transcrip-

tion was performed in Ambion T7 Megashortscript kit 1x reagents, incubated at 37◦C for 4 hours.

Yield was quantified with 10% denaturing PAGE, run at 21◦C. Additionally, following the same

protocol, transcription of A1-activated template T21 was tested, showing strong transcriptional ac-

tivity. The results show that the unwanted interaction between rA1 and SW21 produces negligible

amounts of rI2 transcript, compared to the correct activation pathway (compare lanes 5 and 6 in

Figure 3.36 A to lane 5 in Figure 3.36 B).
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Figure 3.36:
A. Transcription from T21·rA1 complex. Lane 1: Control sample, annealed T21-t and T21-nt
at 250 nM, in 1x Ambion T7 Megashortscript transcription buffer. Lane 2: Control sample
rA1 at 500 nM. Lane 3: Control sample rI2 at 500 nM. Lane 4: 10 bp DNA ladder. Lane 5:
Transcription of annealed T21 at 250 nM in solution with rA1 at 350 nM. Lane 6: Transcription
of annealed T21 at 250 nM in solution with rA1 at 750 nM. B. Transcription from T21·A1
complex. Lane 1: Control sample, annealed T21-t and T21-nt at 250 nM, in 1x Ambion T7
Megashortscript transcription buffer. Lane 2: Control sample rA1 at 500 nM. Lane 3: Control
sample rI2 at 500 nM. Lane 4: 10 bp DNA ladder. Lane 5: Transcription of annealed T21
at 250 nM in solution with A1 at 400 nM. The red line indicates that the gel image has been
processed by cropping some non relevant bands between lane 4 and lane 5.
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3.7.15 Interactions between enzymes and tweezers

Molecular tweezers can be a substrate for RNAP. This was observed through gel electrophoresis and

fluorescence measurements on tweezer Modes I–IV. Figure 3.37 shows the results on tweezers mode

II. These were tested as a transcription substrate by adding them at a concentration of 200 nM to

Ambion T7 Megashortscript kit 1x reagents. A denaturing 10% PAGE run at 21◦C shows unknown

transcription products of different lengths. Some of these products are degraded by RNase H, as can

be seen from Figure 3.37. This suggests that such products bind to the DNA tweezer strands. In

fact, the fluorescence time traces in Figure 3.38 show that transcription products interact through

an unknown mechanism with the tweezers, causing an increase in fluorescence. The presence of

RNase H again reduces this phenomenon by degrading tweezer-bound RNA.

The extent of transcription from a tweezer substrate is sequence specific. Some of the tweezer

designs we tested exhibited a drift in fluorescence over time of up to 30% even in the presence of

RNase H, and had to be discarded. The presence of T7 promoter sub-sequences in such tweezer

designs might have favored the interaction with RNAP.
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Figure 3.37: Denaturating 10% PAGE. Lane 1: Transcription run on TW II A, B, and C
all at 200 nM. Lane 2: Transcription run on TW II A, B, C and A1 all at 200 nM. Note that
TW II A is not visible due to the quencher present on the strand. Lane 3: Reaction products
of Lane 2 after 30 min incubation with 2% (v/v) Ambion RNase H. Unknown transcription
products of different lengths appear in all lanes; some of the products that most likely bind to
the DNA tweezers are degraded by RNase H and disappear in Lane 3. Lane 4: 10 bp DNA
ladder.
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Figure 3.38: Raw fluorescence time traces showing opening and closing cycles for TW I, II, III, and

IV. Initially, 100 nM annealed tweezers are present in solution with 1x Ambion T7 Megashortscript

kit buffer and 7.5 mM each rNTP. Nucleic acid strands are added at different times according to the

indicated labels. Enzymes are added as follows: Ambion T7 Enzyme Mix is added in 3 µL aliquots;

RNase H is added in 0.2 µL aliquots (2 units from a stock of Ambion RNase H 10 U/µL). The final

volume of each sample is 60 µL.
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3.7.16 Effects of changing enzyme volume ratio

In this section, we briefly discuss the dependence of frequency and amplitude of the oscillator on the

volume ratio of RNAP and RNase H.

As mentioned before, we tuned the enzyme amounts in the CIT and TUM protocols in order

to achieve a similar operating point, defined as 4–6 full oscillations having amplitude around 100

nM. The tuning operation involved mainly an exploration of the system behavior as a function of

the relative enzyme concentrations. As shown in Figure 3.39, increasing the volume of RNase H

produces faster oscillations and lower amplitude.
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Figure 3.39: SET 6, with [dI1]tot=700 nM. Data taken on different days
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3.7.17 Effects of changing the DNA thresholds

The influence of different coupling schemes on the dynamics of the transcriptional oscillator can be

better understood by considering the effect of the tweezers in the context of the full set of chemical

reactions occurring in the system. Due to their interaction with different molecular species in the

core oscillator system, the tweezers effectively change the concentrations of the threshold strands A2

and dI1. In mode I, tweezers are closed by dI1 and opened in a strand displacement reaction by rA1.

In the core oscillator, strand A1 is similarly bound by dI1 and freed by a strand displacement reaction

with rA1. We reasoned that an increase in the concentration of mode I tweezers therefore roughly

mimics an increase in A1, which in turn corresponds to an effective reduction of the threshold set

by [dI1]. In contrast, increasing the concentrations of tweezers in mode II or mode IV resembles an

increase in [dI1]. In mode II, a fraction of activator strands A1 is bound to the tweezers rather than

to template T21. Dynamically, the effective reduction in [A1] should be analogous to an increase

in threshold by [dI1]. In mode IV, a fraction of the rA1 transcripts is sequestered by the tweezers,

effectively shifting the threshold for activation of SW21 to higher values. Finally, an increase in

tweezers concentration in mode III should be similar in effect to an increase in A2 concentration, as a

fraction of the rI2 transcripts is bound by the tweezers, while an increase in mode II* tweezers, which

are closed by A2, should correspond to a decreased A2 threshold. We experimentally challenged

this interpretation of loads as effective changes in threshold values. Figure 3.40 shows fluorescence

traces recorded from the unloaded oscillator, for which the concentrations of the threshold strands

dI1 and A2 were systematically varied. The general trends in amplitude and period closely resemble

the trends observed in Figures 3.41, 3.42, 3.43, 3.44, and 3.45 for Modes I, II, II*, III, and IV,

agreeing well with the heuristic expectations detailed above. An exception is the slowing down

of the oscillations with increasing tweezers concentration operated in mode II, perhaps due to the

tweezers’ direct effect being on A1 rather than dI1.
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3.7.18 Overview of all fluorescence data sets collected at Caltech
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Figure 3.41: Mode I. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
load traces.
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Figure 3.42: MODE II. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
load traces.
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Figure 3.43: Mode II∗. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
load traces.
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Figure 3.44: Mode III. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
load traces.
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Figure 3.46: Mode V. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
corresponding load traces. The TwCls DNA strand was always added in 50 nM excess of TWV
load.
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Figure 3.47: Mode V∗. Left: Oscillator traces. Center: Load traces. Right: Oscillator and
corresponding load traces. The DNA strand TwCls (closing the mode V tweezers) was always
added in 50 nM excess of TWV load.
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Chapter 4

Structural robustness in molecular
networks

4.1 Introduction

In this chapter, a simple question will be asked: are there dynamical models for biological systems

that have structurally stable equilibria and preserve this property robustly with respect to their

specific parameters? This question has been considered before in the literature. For instance, in [94],

through numerical exploration of the Jacobian eigenvalues for two-, three- and four-node networks,

the authors isolated a series of interconnections which are stable, robustly with respect to the specific

parameters. Such structures also turned out to be the most frequent topologies in existing biological

networks databases. In another recent work [75], through extensive numerical analysis on three-node

networks, the authors have shown that adaptability (defined as a significant step response followed

by relaxation to the pre-stimulus equilibrium) of these systems can be investigated solely based on

their structure, regardless of the chosen reaction parameters. Numerical simulation has arguably

been the most popular tool to investigate robustness of biological networks [68, 45, 46, 58, 5, 127].

Analytical approaches to the study of robustness have been used in specific contexts. A series

of recent papers [116, 115] focused on input/output robustness of ODE models for phosphorylation

cascades. In particular, the theory of chemical reaction networks is used in [115] as a powerful tool to

demonstrate the property of absolute concentration robustness. Indeed, the so-called deficiency the-

orems [34] are to date some of the most general results to establish robust stability of a (bio)chemical

reaction network. Monotonicity is also a structural property that is useful in demonstrating robust

dynamic behaviors of a class of biological models [121, 10]. Robustness has also been investigated

in the context of compartmental models, which are often encountered in biology and chemistry [54].

Here, I will follow the paper I co-authored with Prof. Franco Blanchini [19] and present a simple

and general theoretical tool kit for the analysis of bio-molecular systems. Such tool kit is constituted

by Lyapunov and set-invariance methods. Provided that certain standard properties are verified, a
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number of well-known biological networks are demonstrated to be asymptotically stable, robustly

with respect to the model parameters. In some cases, robust bounds on the system performance are

found. This approach does not require numerical simulation efforts.

The framework suggested here aims at formulating qualitative models without the need of exact

mathematical expressions and parameters. The utilized analytical methods rely only on qualitative

interactions between network components. The properties that can be derived from the models we

formulate are, consequently, structurally robust because they are not inferred from specific math-

ematical formulas chosen to fit data. The techniques suggested are based on set-invariance and

Lyapunov theory, in particular piecewise-linear functions, and show that such models are amenable

for robust investigation by engineers and mathematicians. These techniques are effective and promis-

ing in dealing with biological robustness [3, 32]. Several models from the literature are considered,

reporting the original equations, and rephrasing them in our setup as case studies. Robust certifica-

tions can be given to important properties (some of which have been established based on specific

models).

4.2 Methods

Robustness

We will consider biological dynamical systems which are successfully modeled with ODEs and can

be written as:

ẋ = f(x,u), x(0) = x0, (4.1)

where x is the system state, u models external inputs, and both are vectors of appropriate dimensions.

Such class of models is appropriate for biological systems where stochasticity and anisotropy can be

neglected. We define robustness as follows:

Definition 1 Let C be a class of systems and P be a property pertaining to such a class. Given

a family F ⊂ C we say that P is robustly verified by F , in short, robust, if it is satisfied by each

element of F .

Countless examples can be brought regarding families F and candidate properties. In this work, we

will focus on the property of stability, which is an important feature for the equilibria of biological

networks [66, 10, 94].

If we take into account a linear or linearized dynamical system, we can immediately provide

an example that clarifies our definition of robustness [98]. Let C be the class of linear differential
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systems and F the family of second order systems described by ẋ1(t)

ẋ2(t)

 =

 −a b

−c −d

 x1(t)

x2(t)

 ,
with positive and constant coefficients a, b, c, d. Assume P = asymptotic stability of the origin as

an equilibrium point. Then we can say that P is robust. The situation is different if we admit that

a(t), b(t), c(t), d(t) can vary with time, yielding a system which is possibly unstable.

If one is interested in the global system behavior, Lyapunov functions are a powerful tool provid-

ing sufficient conditions for stability. Given an equilibrium point x̄, any convex function V(x− x̄) > 0

for x 6= x̄ and zero at the origin is a candidate Lyapunov function. If f(x,u) is continuous, and V (·)
is smooth, then V(·) is a Lyapunov function if

V̇(x− x̄) = ∇V(x− x̄)f(x, ū) ≤ κ(x− x̄),

where ū is fixed and κ(·) is a negative definite function (i.e. κ(·) < 0 on all its domain, except for

κ(0) = 0).

Non-smooth Lyapunov functions

The concept of Lyapunov derivative can be generalized when the function V(·) is non-smooth. For

instance, consider the convex function:

V(x− x̄) = max
i

Vi(x− x̄), i = 1, ...,N,

where each Vi(·) is smooth and convex, and assume that V(·) is positive definite. The set of active

functions is never empty and is defined as: A = {i : Vi(x − x̄) = V}. If we define the generalized

Lyapunov derivative as:

D+V(x− x̄) , max
i∈A
∇Vi(x− x̄)f(x),

then the condition for stability becomes:

D+V(x− x̄) < κ(x− x̄), κ(·) negative definite.

Positively invariant sets

We are interested in cases where the trajectories of system (4.1) remain trapped in bounded sets at

all times, therefore behaving consistently with respect to some desired criterion.

We say that a subset S of the state space is positively invariant if x(0) ∈ S implies that also
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x(t) ∈ S for all t > 0. The following theorem (which relies on the concept of Lyapunov function)

provides a general necessary and sufficient condition for a set to be invariant.

Theorem 1 (Nagumo, 1943) Assume that system (4.1) (for a fixed constant input ū) admits a

unique solution. Consider the set:

S , {x ∈ Rn : si(x) ≤ σi, i = 1, ..., r},

where si are smooth functions, and σi are given constants. Assume that ∇si 6= 0, ∀x ∈ ∂S. The set

of active constraints is I(x) , {i : si(x) = σi}, and is non-empty only on the boundary of S. Then

the set S is positively invariant if and only if

∇si(x)f(x, ū) ≤ 0, ∀x ∈ ∂S, and i ∈ I(x).

For instance, if our constraining functions are linear, s>x ≤ σ, the Nagumo conditions are s>f(x, ū) ≤
0. We refer the reader to [103] for further details on positively invariant sets; more recent works on

this topic are [18] and [20].

Structural robustness investigation for biological networks

Let us begin with a simple biological example. Consider a protein x1, that represses the production

of an RNA species x2. In turn, x2 can be the target of another RNA species u2 (and form an inactive

complex to be degraded) or it can be translated into protein x3. A standard dynamical model [26]

of this process is:

ẋ1 = u1 − b11x1,

ẋ2 = d21(x1)− b22x2 − b2u2
x2 u2, d21(x1) =

1

1 + xn1
,

ẋ3 = a32x2 − b33x3.

(4.2)

RNA species x2 determines the production rate of protein x3 by indexing the corresponding re-

action rate as a32. Following the standard notation in control theory, we assume that the production

rate of protein x1 is driven by some external signal or input u1, and that RNA u2 also acts as an

external input on RNA x2. We assume that all the system parameters are positive and bounded

scalars. Terms aij are first-order production rates: species i is produced at a rate which is linear in

species j; bih denotes, in this case, first-order degradation rates. The term d21(x1) is a well-known

Hill function term [7].

The stability properties of this small network can be immediately assessed: x1 will converge to
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its equilibrium x̄1 = u1/b11. Similarly, x̄2 = d21(x̄1)/(b22 + b2u2
u2), x̄3 = a32x̄2/b33. Regardless of

the specific parameter values, and therefore robustly, the system is stable. The equilibrium x̄1 could

grow unbounded with u1, however x̄2 is always bounded.

It should be remarked that the knowledge of functions aijx, bihx, and d(·) is not necessary at

all: the previous conclusions can be easily derived by the qualitative information that d21 is strictly

decreasing and asymptotically converging to 0, while b11x1, b22x2, b2u2
x2 u2, a32x2, and b33x3 are

increasing.

It is appropriate at this point to outline a series of general assumptions that will be useful in the

following analysis.

We will consider a class of biological network models consisting of n first-order differential equa-

tions

ẋi(t) =
∑
j∈Ai

fij(xi, xj)−
∑
h∈Bi

gih(xi, xh) +
∑
s∈Ci

cis(xs) +
∑
l∈Di

dil(xl), (4.3)

where xi, i = 1, ..., n are the dynamic variables. For the sake of notation simplicity, external

inputs are not denoted with a different symbol. Inputs can be easily included as dynamic variables

ẋu = wu(xu, t) which are not affected by other states and have the desired dynamics. The sets Ai,
Bi, Ci, Di denote the subsets of variables affecting xi. The different terms in equation (4.3) are

associated with a specific biological and physical meaning. The terms fij(·, ·) represent production

rates of reagents; typically, these functions are assumed polynomial in their arguments; similarly,

terms gih(·, ·) model degradation or conversion rates and are also likely to be polynomial in practical

cases. Finally, terms c(·) and d(·) are associated with monotonic nonlinear terms, often given by

Michaelis-Menten or Hill functions [7].

We assume that system (4.3) satisfies the following assumptions:

A1 (Smoothness) Functions fij(·, ·), gih(·, ·), cis(·), and dil(·) are unknown, nonnegative, continu-

ously differentiable functions.

A2 fij(xi, 0) = 0 and gih(xi, 0) = 0, ∀x.

A3 Functions fij(xi, xj) and gih(xi, xh) are strictly increasing in xj and xh, respectively.

∂fij(xi, xj)

∂xj
> 0,

∂gih(xi, xh)

∂xh
> 0, ∀x

A4 (Saturation) Functions cis(xs) and dil(xl) are nonnegative and, respectively, non-decreasing and

non-increasing. Moreover cis(∞) > 0 and dil(0) > 0.

A5 Functions gih(·, ·) are null at the lower saturation levels : gih(0, xh) = 0, ∀xh.



126

In view of the nonnegativity assumptions and Assumption A5, the general model (4.4) is a

nonlinear positive system, according to the next proposition, and its investigation will be restricted

to the positive orthant.

Proposition 1 The nonnegative orthant xi ≥ 0 is positively invariant for system (4.4).

Given the above assumptions, we can write equation (4.3) in an equivalent form. First of all, in

view of A1–A3, we can write: fij(xi, xj) = a(xi, xj)xj , gih(xi, xh) = b(xi, xh)xh, with

aij(xi, xj) =
fij(xi, xj)

xj
and bij(xi, xh) =

gih(xi, xh)

xh
.

The above expression is always valid due to the smoothness assumption A1 (see [54], Section 2.1).

Additionally, Assumption A5 requires that bih(0, xh) = 0, ∀xh, for i 6= h. Once we adopt this

notation, we can rewrite model (4.3) as follows:

ẋi(t) =
∑
j∈Ai

aij(xi, xj)xj −
∑
h∈Bi

bih(xi, xh)xh +
∑
s∈Ci

cis(xs) +
∑
l∈Di

dil(xl), i = 1, 2, . . . , n. (4.4)

To simplify the notation, we have considered functions depending on two variables at most. How-

ever, we can straightforwardly extend assumptions A1–A5 to multivariate functional terms in equa-

tion (4.3). In turn, the model structure (4.4) can be easily generalized to include terms as a(xi, xj , xk, . . . ),

b(xi, xj , xk, . . . ), c(xi, xj , xk, . . . ), d(xi, xj , xk, . . . ).

If we restrict our attention to the general class of models (4.4), under assumptions A1–A5, we

can proceed to successfully analyzing the robust stability properties of several biological network

examples.

The structural analysis of system (4.4) can be greatly facilitated whenever it is legitimate to

assume that functions a, b, c, and d have certain properties. For the reader’s convenience, a list of

possible properties is given below. Given a general function f(x):

P1 f(x) = const ≥ 0 is nonnegative-constant.

P2 f(x) = const > 0 is positive-constant.

P3 f(x) is sigmoidal: it is non-decreasing; f(0) = f ′(0) = 0, if 0 < f(∞) < ∞ and its derivative

has a unique maximum point, f ′(x) ≤ f ′(x̄) for some x̄ > 0.

P4 f(x) is complementary sigmoidal: it is non-increasing, 0 < f(0), f ′(0) = 0, f(∞) = 0, and its

derivative has a unique minimum point. In simple words, f is a CSM function iff f(0)− f(x) is a

sigmoidal function.
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P5 f(x) is constant-sigmoidal, the sum of a sigmoid and a positive constant.

P6 f(x) is constant-complementary-sigmoidal, the sum of a complementary sigmoid and a constant.

P7 f(x) is increasing-asymptotically-constant: f ′(x) > 0, 0 < f(∞) < ∞, and its derivative is

decreasing.

P8 f(x) is decreasing-asymptotically-null: f ′(x) < 0, f(∞) = 0, and its derivative is increasing.

P9 f(x) is decreasing-exactly-null: f ′(x) < 0, for x < x̄, and f(x) = 0 for x ≥ x̄ for some x̄ > 0.

P10 f(x) is increasing-asymptotically-unbounded: f ′(x) > 0, f(∞) = +∞.

As an example, the terms d(·) and c(·) are associated with Hill functions, which are sigmoidal and

complementary sigmoidal functions. A graphical sketch of their profile is in Figure 3.2 C and D.

Network graphs
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Figure 4.1: A. The arcs associated with the functions a, b, c, and d. We will use dashed
arcs, connecting to arcs of the type a and b to highlight that the corresponding function is
nonlinearly dependent on a species of the network: in the example above, a31 = a31(x2). B.
The graph associated with equations (4.2); external inputs are represented as orange nodes. C.
Examples of sigmoidal functions. D. Examples of complementary sigmoidal functions. In our
general model (4.4), functions d(·) and c(·) are naturally associated with Hill function terms.

Building a dynamical model for a biological system is often a long and challenging process. For

instance, to reveal dynamic interactions among a pool of genes of interest, biologists may need

to selectively knockout genes, set up micro-RNA assays, or integrate fluorescent reporters in the

genome. The data derived from such experiments are often noisy and uncertain, which implies that
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the estimated model parameters will also be uncertain. However, in general qualitative trends can

be reliably assessed in the dynamic or steady-state correlation of biological quantities.

Graphical representations of such qualitative trends are often used by biologists to provide intu-

ition regarding the network main features. We believe that, indeed, such graphs may be useful even

to immediately construct models analogous to (4.3). A specific method to construct such graphs can

be outlined: the biochemical species of the network are associated to the nodes in the graph; the

qualitative relationships between the species are instead associated with different types of arcs: in

particular, the terms of a, b, c, and d are represented as arcs having different end-arrows, as shown

in Figure 4.1 A.

These graphs can be immediately constructed by knowing the correlation trends among the

species of the network, and aid in the construction of a dynamical model. For simple networks,

this type of graph may provide intuition regarding their behavior and may facilitate their structural

robustness analysis. For instance, the graph associated to equations (4.2) is shown in Figure 4.1 B.

Throughout this chapter, similar case studies will be considered and their graph representation will

be used as a visual support for the analysis.

Remark 1 Here, properties such as positivity, monotonicity, boundedness, and other functional

characteristics are labeled as “qualitative and structural properties”[89]. Through such properties,

we can draw conclusions on the dynamic behaviors of the considered systems without requiring

specific knowledge of parameters and without numerical simulations. However, it is clear that this

approach requires more information than other methods, such as Boolean networks and other graph-

based frameworks.

Investigation method

The main objective of this work is to show that, at least for reasonably simple networks, structural

robust stability can be investigated with simple analytical methods, without the need for extensive

numerical analysis. A two-stage approach will be followed:

• Preliminary screening: establish essential information on the network structure, recognizing

which properties (such as P1–P10) pertain to each link.

• Analytical investigation: infer robustness properties based on dynamical systems tools such as

Lyapunov theory, set-invariance, and linearization.

4.3 Results and discussion

Five biological networks are considered as case studies in [19]. Three of such examples, the L-

arabinose, the sRNA, and the lac operon networks, model the interaction and control of expression
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of a set of genes. The cAMP and the MAPK pathways are instead signaling networks, namely

they represent sets of chemical species interacting for transmission and processing of upstream input

signals. These networks are all well-known in the literature, and have been characterized mainly

through experimental and numerical methods, although the MAPK pathway, for instance, has been

thoroughly analyzed using the theory of monotone systems [10].

Here, I will present two complete examples from [19], including all the technical proofs: the

L-arabinose and the sRNA networks. For the remaining case studies, I will only report the a brief

introduction and the main theorems without the full demonstrations. Please refer to [19] and the

corresponding Supplementary Information file for the complete proofs of all the technical results on

the lac operon, and the cAMP and MAPK pathways.

4.3.1 The L-arabinose network

The arabinose network is analyzed in [78] as an example of feedforward loop. Two genes araBAD

and araFGH are regulated by two transcription factors, AraC and CRP. AraC is a repressor, but

turns into an activator when bound to the sugar L-arabinose. CRP is an activator when bound to the

inducer cyclic AMP (cAMP), which is produced when cells do not have access to a sufficient amount

of glucose (not produced during growth on glucose). CRP also binds to the araC promoter and

enhances transcription of AraC, which has a significant basal rate of expression (i.e., it is produced

by the cell also in absence of inducer CRP). A very simple model for this network can be derived

by defining the state variables x1 and x2, the concentrations of the transcription factor AraC and

of the output protein araBAD, respectively. The concentration of the transcription factor CRP is

considered an external input u:

ẋ1 = p1 + β1f(u,Kux1)− α1x1, (4.5)

ẋ2 = β2f(u,Kux2
) · f(x1,Kx1x2

)− α2x2,

where α1, α2 are the degradation and dilution rates of x1, x2, respectively. The basal production rate

of x1 (AraC) is p1. The activation pathways are modeled by Hill functions f(u,K) = uH/(KH + uH),

where H is the Hill coefficient and Kij are the activation thresholds. The model can be recast into

the general structure (4.4), which includes model (4.5) as special case:

ẋ1 = c1 + c1u(u)− b11x1, (4.6)

ẋ2 = c2u1(u, x1)− b22x2,

where u is nonnegative-constant; c1, b11, and b22 are positive-constant; while c1u(u) and c2u1(u) are

sigmoidal with respect to u, the latter increasing with respect to x1. The graph representation of
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this network is in Figure 4.3 A.

For this elementary network the analysis is straightforward. Variable x1 is not affected by x2.

Since c1u(u) is bounded, x1 is also bounded and converges to an equilibrium point x̄1(u) which

is monotonically increasing in u. In turn, x2 is also positive and bounded for any value of u and

stably converges to a unique equilibrium point x̄2, which is a monotonically increasing function of u

(partially activated by x̄1(u)). The positive term c1 prevents x1(t) and x2(t) from staying at zero.

It is worth remarking that the hierarchical structure of this network greatly facilitates the analysis;

equilibria can in fact be iteratively found and their stability properties characterized.

4.3.2 The sRNA pathway

Small regulatory RNAs (sRNA) play a fundamental role in the stress response of many bacteria and

eukaryotes. In short, when the organism is subject to a stimulus that threatens the cell survival,

certain sRNA species are transcribed and can down-regulate the expression of several other genes.

For example, when E. coli cells are lacking a source of iron, the sRNA RyhB (normally repressed

by the ferric uptake regulator Fur) is expressed and rapidly induces the degradation of at least

18 other RNA species encoding for non-essential proteins which use up Fe molecules. This allows

essential iron-dependent pathways to use the low amount of available iron. Quantitative studies of

the sRNA pathways have been carried out in [70, 83, 85]. Let us define x1 as the RNA concentration

of the species which is targeted by the sRNA and x2 as the concentration of sRNA. The model often

proposed in the literature is:

ẋ1 = α1 − β1x1 − kx1x2, (4.7)

ẋ2 = α2 − β2x2 − kx1x2,

where α1, α2 are the transcription rates of x1 and x2, respectively; β1, β2 are their degradation rates

(turnover); and k is the binding rate of the species x1 and x2. The formation of the inactive complex

x1 · x2 corresponds to a depletion of both free molecules of x1 and x2. If α1 < α2 the pathway

successfully suppresses the expression of the non-essential gene encoded by x1.

This model can be embedded in the general family:

ẋ1 = c1 − b11x1 − b12(x1, x2)x2,

ẋ2 = c2 − b22x2 − b21(x1, x2)x1,
(4.8)

by setting b12 = kx1 and b21 = kx2 (note that b12(0) = b21(0) as required). From our list of

properties: c1, c2, b11, and b22 are positive-constant; b12(x1, x2) and b21(x1, x2) are increasing-

asymptotically-unbounded in both variables; and b12(x1, x2)x2=b21(x1, x2)x1 at all times. This
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network can be represented with the graph in Figure 4.2 A.
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Figure 4.2: A. The graph associated with the sRNA network. B. Sectors, Lyapunov function
level curves (orange), and qualitative behavior of the trajectories (green) for the sRNA system

The sRNA system is positive, because the nonnegativity Assumptions 1 and 4 are satisfied. The

preliminary screening of this network tells us that each variable produces an inhibition control on

the other, which increases with the variable itself. In other words x1 is “less tolerant” to an increase

of x2 if the latter is present in a large amount. This means that the sum x1 + x2 is strongly kept

under control. Also the mismatch between the two variables is controlled.1 To prove stability of

the (unique) equilibrium x̄, we will use the 1–norm as Lyapunov function V(x− x̄) = ‖x− x̄‖1 (see

Figure 4.2 B ). This choice has a remarkable interpretation: letting Σ = (x1 − x̄1) + (x2 − x̄2) and

∆ = (x1 − x̄1) − (x2 − x̄2) denote the sum and the mismatch of the two variables (referred to the

equilibrium), we have

V(x− x̄) = ‖x− x̄‖1

= |x1 − x̄1|+ |x2 − x̄2|

= max{∆,Σ};

thus the function represents the worst case between the sum and the mismatch.

The following proposition shows that the sRNA pathway is a typical system in which robustness

is structurally assured. We report the full demonstration of this proposition, because its steps and

the techniques used are a model for the subsequent proofs in this paper.

Proposition 2 The variables of system (4.8) are bounded for any initial condition x1(0), x2(0) ≥ 0.

The system admits a unique asymptotically stable equilibrium point x̄ = (x̄1, x̄2)T and the convergence

is exponential:

‖x(t)− x̄‖1 ≤ e−βt‖x(0)− x̄‖1, (4.9)

for some β > 0 and any x1(0) ≥ 0, x2(0) ≥ 0. Moreover, no oscillations are possible around the

1The concentration mismatch is more “softly” controlled, since the derivative of the difference ẋ2 − ẋ1 = c1 − c2 +
b22x2 − b11x1 is not influenced by the nonlinear term b12(x1, x2)x2 = b21(x1, x2)x1.
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equilibrium, in the sense that the condition x1(t) = x̄1 or x2(t) = x̄2 occurs at most once.

Proof To prove boundedness of the variables we need to show the existence of an invariant set

S = {x1 ≥ 0, x2 ≥ 0 : x1 + x2 ≤ κ}.

Proposition 1 guarantees that the positivity constraints are respected. Then we just need to show

that the constraint x1 + x2 ≤ κ cannot be violated for sufficiently large κ > 0. The derivative of

function s(x1, x2) = x1 + x2 is

ṡ(x1, x2) = ẋ1 + ẋ2

= c1 − b11x1 − b12(x1, x2)x2 + c2 − b22x2 − b21(x1, x2)x1

≤ c1 − b11x1 + c2 − b22x2

≤ c1 + c2 −min{b11, b22}(x1 + x2)

= c1 + c2 −min{b11, b22}s(x1, x2).

Define κ = (c1 + c2)/min{b11, b22}, then for s(x1, x2) > κ the derivative becomes negative, so

s(x1, x2) cannot exceed κ (See Theorem 1).

Boundedness of the solution inside a compact set assures the existence of an equilibrium point.

Let (x̄1, x̄2) be any point in which the following equilibrium conditions holds:

c1 − b11x̄1 − b12(x̄1, x̄2)x̄2 = 0, c2 − b22x̄2 − b21(x̄1, x̄2)x̄1 = 0. (4.10)

The behavior of the candidate Lyapunov function

V(x1, x2) = |x1 − x̄1|+ |x2 − x̄2| = max{±(x1 − x̄1)± (x2 − x̄2)},

will be examined in the different sectors represented in Figure 4.2 B. Let us start by considering the

sector defined by x1 ≥ x̄1 and x2 ≥ x̄2 (APB in Figure 4.2 B ) for which V(x1, x2) = (x1 − x̄1) +
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(x2 − x̄2). In such a sector the Lyapunov derivative is:

D+V(x1, x2) =[ 1 1 ]

 ẋ1

ẋ2


= c1 + c2 − b11x1 − b22x2 − b12(x1, x2)x1 − b21(x1, x2)x2

=− b11(x1 − x̄1)− b22(x2 − x̄2)− [b12(x1, x2)x1 − b12(x̄1, x̄2)x̄1]−

− [b21(x1, x2)x2 − b21(x̄1, x̄2)x̄2]

<− b11(x1 − x̄1)− b22(x2 − x̄2),

where we have subtracted the null terms (4.10) and where we have exploited the fact that b12(x1, x2)x1 =

b21(x1, x2)x2 is increasing in both variables. The inequality (CPD in Figure 4.2 B ) D+V(x1, x2) <

b11(x1 − x̄1) + b22(x2 − x̄2) < 0 can be similarly proved to hold in the sector x1 ≤ x̄1 and x2 ≤ x̄2.

Consider the sector defined by x1 ≥ x̄1 and x2 ≤ x̄2 (DPA in Figure 4.2 B ) for which V(x1, x2) =

x1 − x̄1; in such a sector the Lyapunov derivative is:

D+V(x1, x2) =[ 1 − 1 ]

 ẋ1

ẋ2


=c1 − c2 − b11x1 + b22x2−b12(x1, x2)x1 + b21(x1, x2)x2︸ ︷︷ ︸

= 0 by assumption

=− b11(x1 − x̄1) + b22(x2 − x̄2) < 0.

Note that in the last step the null terms (4.10) have been added and subtracted. In the opposite

sector (BPC in Figure 4.2 B ) x1 ≤ x̄1 and x2 ≥ x̄2; we can prove that D+V(x1, x2) = +b11(x1 −
x̄1)− b22(x2 − x̄2) < 0.

We just proved that

D+V(x1, x2) ≤ −[b11|x1 − x̄1|+ b22|x2 − x̄2|] ≤ −β[|x1 − x̄1|+ |x2 − x̄2|]

≤ −βV(x1, x2),

with β = min{b11, b22}. This implies (4.9) and the uniqueness of the equilibrium point.

We finally need to show that there are no oscillations. To this aim, notice that the sectors DPA,

x1 ≥ x̄1 and x2 ≤ x̄2, and its opposite CPB, x1 ≤ x̄1 and x2 ≥ x̄2, are both positive invariant sets.

We can apply Nagumo’s theorem: consider the half-line PA originating in P, where x2 = x̄2 and
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x1 ≥ x̄1. Therefore we have that (again by adding the null term in (4.10)):

ẋ2 = c2 − b22x̄2 − b21(x1, x̄2)x1 − c2 − b22x̄2 − b21(x̄1, x̄2)x̄1

=− [b21(x1, x̄2)x1 − b21(x̄1, x̄2)x̄1] ≤ 0.

Similarly, on half-line PD where x1 = x̄1 and x2 ≤ x̄2, by considering (4.10) we derive

ẋ1 = −b12(x̄1, x2)x2 + b12(x̄1, x̄2)x̄2 ≥ 0;

hence the claimed invariance of sector DPA. The proof of the invariance of sector CPB is identical.

Remark 2 Note that the constructed Lyapunov function ‖x − x̄‖1 does not depend on the system

parameters. This fact can be used to prove that if the transcription rates c1(t) and c2(t) are time–

varying, but bounded, we have convergence to a neighborhood whose amplitude, obviously, depends

on the bounds of c1(t) and c2(t). It is realistic to assume that the transcription rates vary over time:

for instance, if the environmental conditions change, the cell may need to down- or up-regulate entire

groups of transcripts and therefore increase or decrease c2(t).

The following corollary demonstrates the positive influence of c2, which is positive over x2 and

negative over x1.

Corollary 1 Assume that x1(0), x2(0) is at the steady-state corresponding to ĉ1 and ĉ2. Consider

the new input c2 > ĉ2 (keeping c1 = ĉ1). Then the system converges to a new equilibrium with

x̄1 < x1(0) and x̄2 > x2(0). There is no undershoot, nor overshoot.

Proof The steady-state values x̄1 and x̄2 are, respectively, monotonically decreasing and increasing

functions of c2. Indeed, consider the steady–state condition

c1 = b1x1 + b12(x1, x2)x2,

c2 = b2x2 + b21(x1, x2)x1,

and regard it as a differentiable map (x1, x2)→ (c1, c2). By the uniqueness proved in Proposition 2
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the map is invertible. The Jacobian of the inverse map is the inverse of the Jacobian

J−1 =

 b1 + ∂(b12x2)
∂x1

∂(b12x2)
∂x2

∂(b21x1)
∂x1

b2 + ∂(b21x1)
∂x2

−1

=
1

det(J)

 b2 + ∂(b21x1)
∂x2

−∂(b12x2)
∂x2

−∂(b21x1)
∂x1

b1 + ∂(b12x2)
∂x1

 ,
where det(J) = b1b2 + b2

∂(b12x2)
∂x1

+ b1
∂(b21x1)
∂x2

> 0 (keep in mind that b21(x1, x2)x1 = b12(x1, x2)x2).

The sign of the entries in the second column are negative and positive, respectively, therefore, the

steady–state values x̄1 and x̄2 are decreasing and increasing functions of c2.

The absence of overshoot and undershoot is an immediate consequence of the invariance of the

sector x1 ≥ x̄1 and x2 ≤ x̄2 previously proved.

Obviously, decreasing c2 increases x1 and decreases x2. The same holds if we commute the

indexes 1 and 2. It is worth noting that the same conclusions regarding the lack of multistability

and oscillations for the sRNA pathway may be reached by qualitative analysis of the system’s

nullclines.
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Figure 4.3: A. The graph associated with the L-arabinose network; external inputs are rep-
resented as orange nodes. B. The graph associated with the cAMP pathway. C. The graph
associated with the lac operon network. D.The graph associated with the MAPK signaling
pathway.
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4.3.3 The cAMP dependent pathway

The cyclic adenosine monophosphate (cAMP) pathway can activate enzymes and regulate gene

expression based on sensing of extracellular signals. Such signals are sensed by the G protein-

coupled receptors on the cell membrane. When a receptor is activated by its extracellular ligand,

a series of conformational changes are induced in the receptor and in the attached intracellular G

protein complex; the latter activates adenylyl cyclase, which catalyzes the conversion of ATP in

cAMP. In yeast, cAMP causes the activation of the protein kinase A (PKA), which in turn regulates

the cell growth, metabolism, and stress response.

Stochastic models are usually proposed for numerical analysis of the cAMP pathway. However,

the cAMP pathway components in yeast are present in high numbers and a deterministic modeling

approach is adopted in [132]. In such paper, the pathway is decomposed in several modules; here we

consider the simplified cAMP Model A, which focuses on the parts of the pathway best characterized

in the literature:

ẋ1 = kF (xtot1 − x1)u− kRx1,

ẋ2 = kF (xtot2 − x2)x3 − kRx2, (4.11)

ẋ3 =
α3 + kAx1

1 + kIx2
− VmaxP1

x2x3

KMP1
+ x3

− VmaxP2
x3

KMP2
+ x3

,

where x1 is the concentration of active G protein, x2 is the concentration of active PKA protein,

x3 is the concentration of cAMP, and u is the concentration of glucose input to the network. The

parameters VmaxP1
and VmaxP2

model the “feedback” effect introduced by two phosphodiesterases

(Pde1p and Pde2p) on the cAMP concentration. The numerical analysis in [132] typically shows

that the cAMP concentration (x3) responds with a large overshoot to steps in the glucose (u, input)

concentration. We will analytically explore the dynamic behavior of x3, showing that under certain

assumptions, a bounded overshoot is a robust characteristic in the system. The parameters kF and

kR are forward and reverse reaction rates for the formation of active x1 and x2. Mass conservation

allows expression of the active protein amounts as a function of the total number of molecules,

xtoti = xinactivei + xi. The nonlinear expressions in equation x3 are derived by Michaelis-Menten

enzymatic steps. We can re-write the above equations according to the general model (4.4):

ẋ1 = a1u(x1)u− b11x1,

ẋ2 = a23(x2)x3 − b22x2, (4.12)

ẋ3 = d32(x2) + a31(x2)x1 − b32(x3)x2 − b33(x3)x3,

where u is the external signal and where b23 = 0 for x2 = 0 and b32 = 0 for x3 = 0. A qualitative

graphical representation of this network is in Figure 4.3 B.
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Our preliminary analysis allows us to assume: a1u, a23: decreasing-exactly-null with threshold

values xtot
1 and xtot

2 ; d32, a31: decreasing-asymptotically-null; b32 and g33 = b33(x3)x3: increasing-

asymptotically-constant; b11, b22: positive-constant.

It can immediately be noticed that for constant u, x1 robustly converges asymptotically to its

equilibrium value such that

u =
b11x1

a1u(x1)

.
= ξ−1(x1).

The solution x̄1 = ξ(u) of the previous equation is uniquely defined for each u since the function

ξ−1(x1) on the right is strictly increasing and grows to infinity, precisely limx1→xtot
1
ξ−1(x1) = +∞.

Biologically, this means that external glucose signals are mapped to internal active G-protein con-

centration with a bijection, before saturating.

Also note that the model is consistent with mass conservation: since a1u(x1) and a23(x2) are

zero above the thresholds xtot
1 and xtot

2 , we have that ẋ1 < 0 and ẋ2 < 0 for x1 > xtot1 and x2 > xtot2 ,

respectively. Therefore we assume x1(t) ≤ xtot1 , x2(t) ≤ xtot2 , for all t ≥ 0.

Proposition 3 There exists an equilibrium for system (4.12) if and only if

d32(xtot2 ) + a31(xtot2 )x̄1 < lim
x3→∞

[
b32(x3)xtot2 + b33(x3)x3

]
, (4.13)

where x̄1 = ξ(u) as previously defined. All the equilibrium values x̄1 = ξ(u), x̄2, and x̄3 are increasing

functions of u. If condition (4.13) is satisfied, the equilibrium is unique and locally stable.

The previous proposition assures only local stability, but this result can be extended to global

stability. To this aim, we will assume that x1 is at its equilibrium value x̄1. Furthermore, under a

suitable condition a performance bound on the transient values of x3(t) can be given.

Proposition 4 Assume that x1 has reached its steady-state x̄1. Then, the unique equilibrium point

is globally attractive for any initial condition x2(0), x3(0) ≥ 0. Moreover, assume that

l3
.
= lim

x3→∞
b33(x3)x3 > d32(0) + a31(0)ξ, (4.14)

then we can give the following bound for the transient of x3(t)

x3(t) ≤ max{x3(0), d32(0) + a31(0)ξ}. (4.15)

The proof can be found in Section S II of the Supplementary Information of [19].

Remark 3 The condition (4.14) has the following interpretation. It basically states that the inhibit-

ing term b33(x3)x3 at “full force” (x3 suitably large) dominates the activating term d32(x2)+a31(x2)ξ
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when x2 is small. Note that, indeed, the feedback terms modulated by the two phosphodiesterases act

in a complementary manner, in order to maintain a bounded concentration of cAMP in the cell.

Remark 4 The system, even if initialized with small values x2(0) and x3(0), may exhibit a spike of

cAMP x3 which is bounded by (4.15), if condition (4.14) is satisfied. If x3(0) is small, then the bound

is d32(0)+a31(0)ξ(u): the amplitude of the spike is, in general, an increasing function of the glucose

concentration u. If condition (4.14) fails, then (see Figure S2, [19] Supplementary Information file)

the spike of x3(t) can be arbitrarily large; thus condition (4.14) can be seen as a threshold.

4.3.4 The lac operon

This genetic network was originally studied by Monod and Jacob [53]. The natural nutrient for E.

coli bacterial cells is glucose, which is metabolized by enzymes normally produced by the bacteria.

When glucose is absent, but the allolactose inducer is present in their environment, E. coli activates

a set of genes that will regulate the lactose intake and breakdown. In particular, the cells start

producing a permease protein, which binds to the cell membrane and increases the inflow of lactose;

and cells also start producing the β-galactosidase protein, which converts lactose in allolactose.

In this section we will consider the deterministic model proposed in [130]. This simple model

does not capture the stochasticity of this genetic circuit, but it does explain the bimodal behav-

ior of the system. Such behavior is observable experimentally: within the same population, the

operon can be either induced or uninduced. Our analysis shows that for low or high intracellular

inducer concentrations, the system is monostable and reaches, respectively, an uninduced or induced

equilibrium; however, at intermediate inducer concentrations the system becomes multi-stable.

The state variables of the ODE model we will study are the concentration of nonfunctional

permease protein x1; the concentration of functional permease protein x2; the concentration of

inducer (allolactose) inside the cell x3; and the concentration of β-galactosidase x4, a quantity that

can be experimentally measured. The concentration of inducer external to the cell is here denoted

as an input function u.

ẋ1 = f1(x3)− δ1x1,

ẋ2 = β1x1 − δ2x2,

ẋ3 = [f2(u)− f3(x3)]x2 + β2u− δ3x3, (4.16)

ẋ4 = γf1(x3)− δ4x4,

where β1, β2, δ1, δ2, δ3, and γ are constants, and fi’s are functions that are experimentally measurable.

In particular, at low inducer concentrations, f1 ≈ k1 + k2x3 + k3x2
3 where ki’s are constant; at high

x3 concentrations f1 saturates. The functions f2 and f3 are assumed to depend hyperbolically on



139

their arguments. According to the proposed setup, the previous equations can rewritten as follows:

ẋ1 = c13(x3)− b11x1,

ẋ2 = a21x1 − b22x2, (4.17)

ẋ3 = a32(u)x2 − b32(x3)x2 + c3uu− b33x3,

ẋ4 = c43(x3)− b44x4,

where c13(x3) = f1(x3), b11 = δ1, a21 = β1, b22 = δ2, a32(u) = f2(u) =, b32(x3) = f3(x3), c3u = β2,

b33 = δ3, c43(x3) = γf1(x3), and b44 = δ4. This corresponds to the network in Figure 4.3 C.

From our preliminary analysis step: c13 is constant-sigmoidal, a32(u) and b32(x3) are increasing-

asymptotically-constant, and the remaining functions a21, b11, b22, and b33 are positive-constant.

We can start to study this network without any specific knowledge of the parameters in equa-

tions (4.17). First of all, as evident in Figure 4.3 C, note that the β-galactosidase concentration x4

does not affect any other chemical species: therefore, the fourth equation can be considered sep-

arately. As long as the inducer concentration of x3 within the cell reaches an equilibrium x̄3, x4

converges to x̄4 = c43(x̄3)/b44. Therefore, we can restrict our attention to the first three equations;

this is consistent with the model proposed in [135, 136]. From now on we will consider this reduced

model (see [19], Supplementary Information, Section S II), neglecting the linear term c3uu as in

[135, 136]. We will not introduce delays in our model, as done in [136].

Our preliminary screening also shows that the evolution of this system is necessarily bounded.

Indeed x1 receives a bounded signal from x3 and the degradation term −b11x1 keeps x1 bounded.

In turn, x2 remains bounded. The inducer concentration x3 receives a bounded signal u and x2;

therefore x3 stays bounded as well, being both a32(u) and b32(x3) bounded.

The following proposition evidences that fundamental results can be established starting from

our general framework. These results are consistent with the findings in [136], whose analysis relies

on assuming Hill-type functions in the model.

Proposition 5 For any functional terms in Equations (4.17), satisfying the general assumptions

formulated above, the system admits a unique equilibrium for large u > 0 or small u > 0.

For some chioces of such functional terms, the system may have multiple positive equilibria

xA, xB, xC, · · · ∈ IR3 (typically three) for intermediate values of u. If multiple equilibria exist, then

they are ordered in the sense that xA ≤ xB ≤ xC . . . where the inequality has to be considered

component-wise. If the equilibria are all distinct, then they are alternatively stable and unstable. In

the case of three equilibria, xA, xB, xC they are stable, unstable, and stable, respectively. Finally, given

any equilibrium point, the positive and negative cones x ≤ x∗ and x ≥ x∗ are positively invariant.

The proof is given in [19], Supplementary Information, Section S III. The cone–invariance property
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implies that the state variables cannot exhibit oscillations around their equilibria. For instance, if xA

is the first (hence stable) equilibrium, given any initial condition upper bounded by xA (x(0) ≤ xA)

in the domain of attraction, the convergence to xA has no overshoot (and if x(0) ≥ xA there is no

undershoot).

Remark 5 It is interesting to notice that, due to the competition between terms a32 and b32, the

considered model for the lac network is not a monotone system according to the definition in [121],

where a different model was considered.

4.3.5 The MAPK signaling pathway

Mitogen-activated protein (MAP) kinases are proteins that respond to the binding of growth factors

to cell surface receptors. The pathway consists of three enzymes, MAP kinase, MAP kinase kinase

(MAP2K), and MAP kinase kinase kinase (MAP3K) that are activated in series. Activation or

phosphorylation means the addition of a phosphate group to the target protein. Extracellular

signals can activate MAP3K, which in turn phosphorylates MAP2K at two different sites; in the last

round, MAP2K phosphorylates MAPK at two different sites. The MAP kinase signaling cascade

can transduce a variety of growth factor signals, and has been evolutionary conserved from yeast to

mammals.

Several experimental studies have highlighted the presence of feedback loops in this pathway,

which result in different dynamic properties. This work will focus on a specific positive-feedback

topology, where doubly-phosphorylated MAPK has an activation effect on MAP3K. Such positive

feedback has been extensively studied in the literature since the biochemical analysis of Huang and

Ferrell [48, 37] on the MAPK cascade found in Xenopus oocytes. In this type of cell, Mos (MAP3K)

can activate MEK (MAP2K) through phosphorylation of two residues (converting unphosphory-

lated MEK to monophosphorylated MEK-P and then bisphosphorylated MEK-PP). Active MEK

then phosphorylates p42 (MAPK) at two residues. Active p42 can then promote Mos synthesis,

completing the closed positive-feedback loop.

The presence of such positive feedback in the MAPK cascade has been linked to a bi-stable

behavior: the switch between two stable equilibria in Xenopus oocytes denotes the transition between

the immature and mature state. A standard ODE model for the cascade is proposed in [10], where

the authors demonstrate bi-stability of the system by applying the general theory of monotone
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systems. We adopt such a model, which is reported below:

ẋ = f(x)u + V1 −
V2x

k2 + x
,

ẏ1 =
V6y2

K6 + y2
− V3xy1

K3 + y1
,

ẏ2 =
V3xy1

K3 + y1
+

V5y3

K5 + y3
− V4xy2

K4 + y2
− V6y2

K6 + y2
,

ẏ3 =
V4xy2

K4 + y2
− V5y3

K5 + y3
, (4.18)

ż1 =
V10z2

K10 + z2
− V7y3z1

K7 + z1
,

ż2 =
V7y3z1

K7 + z1
+

V9z3

K9 + z3
− V8y3z2

K8 + z2
− V10z2

K10 + z2
,

ż3 =
V8y3z2

K8 + z2
− V9z3

K9 + z3
,

where x is the concentration of Mos (MAP3K); y1 is the concentration of unphosphorylated MEK

(MAP2K); y2 is the concentration of phosphorilated MEK-P; y3 is the concentration of MEK-PP; z1,

z2, and z3 are, respectively, the concentrations of unphosphorylated, phosphorylated, and doubly-

phosphorylated p42 (MAPK). Finally, u is the input to the system.

While bi-stability may occur due to other phenomena, such as multisite phosphorylation [79],

rather than due to feedback loops, a large body of literature focuses on bi-stability induced by

the positive-feedback in the Huang-Ferrel model in Xenopus [95, 36] reported above. In [48] the

feedback f(u) was characterized, through in vitro studies, as an activating Hill-function with high

cooperativity. In [10] instead, f(u) was assumed to be a first-order linear term in the concentration

of active MAP3K, x7. In Proposition 6, the effects of different qualitative functional assumptions on

the feedback loop dynamics f(u) will be explored. The system loses its well-known bi-stability not

only in the absence of feedback, but also when the feedback becomes unbounded. An unbounded

positive feedback would be caused, for instance, by an autocatalytic process of MAP3K activation,

mediated by active MAPK. We choose to rewrite the above model as follows:
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ẋ1 = a17(x1) µx7 + c10 − b11(x1)x1,

ẋ2 = c23(x3)− b21(x2)x1,

ẋ3 = a31(x2)x1 + c34(x4)− b31(x3)x1 − b33(x3)x3,

ẋ4 = a41(x3)x1 − b44(x4)x4, (4.19)

ẋ5 = c56(x6)− b54(x5)x4,

ẋ6 = a64(x5)x4 + c67(x7)− b64(x6)x4 − b66(x6)x6,

ẋ7 = a74(x6)x4 − b77(x7)x7.

The term µx7 introduces the positive feedback loop and represents a key parameter for the

analysis to follow. A preliminary screening of the system immediately highlights the following

properties: function b11(x1)x1; functions c23(x3), b21(x2), a41(x3), and b44(x4)x4; functions c56(x6),

b54(x5), a74(x6), and b77(x7)x7 are increasing-asymptotically-constant. Moreover, a31(x2) = b21(x2),

c34(x4) = b44(x4)x4, b31(x3) = a41(x3), b33(x3)x3 = c23(x3) and a64(x5) = b54(x5), c67(x7) =

b77(x7)x7, b64(x6) = a74(x6), b66(x6)x6 = c56(x6). We assume c10 to be a positive-constant.

The graph in Figure 4.3 D can be partitioned considering three aggregates of variables, precisely

{x1}, Σ234 = {x2, x3, x4} and Σ567 = {x5, x6, x7}. Signal x1 is the only input for Σ234; signal x4 is

the only input for Σ567. x7 is then fed back to the first subsystems by arc a17. Without the positive

feedback loop, we will demonstrate that the system is a pure stable cascade. Note also that Σ234,

and Σ567 can be reduced, since ẋ2 + ẋ3 + ẋ4 = 0, and ẋ5 + ẋ6 + ẋ7 = 0 and therefore the following

sums are constant

x2(t) + x3(t) + x4(t) = k, (4.20)

x5(t) + x6(t) + x7(t) = h,

with k
.
= x2(0) + x3(0) + x4(0) and h

.
= x5(0) + x6(0) + x7(0). Since xi ≥ 0, all the variables but x1

are bounded. The system can be studied by removing variables x3 = k−x2−x4 and x6 = h−x5−x7.

We must assume that c10 < limx1→∞ b11(x1)x1, otherwise no equilibrium is possible. The following

result is proved in Section S IV of the Supplementary Information of [19].

Proposition 6 For µ = 0 the system admits a unique globally asymptotically stable equilibrium.

For µ > 0, the system may have multiple equilibria, for specific choices of the functions a, b, c.

For µ > 0 suitably large and a17(x1) lower bounded by a positive number, then the system has no

equilibria.
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For µ > 0 bounded and a17(x1) increasing, or non-decreasing, and bounded, if multiple simple2

equilibria exist, then such equilibria are alternatively stable and unstable. In the special case of three

equilibria, then the system is bi-stable.

For µ > 0 bounded and a17(x1) increasing asymptotically unbounded, then the number of equilibria

is necessarily even (typically 0 or 2). Moreover, if we assume that there exists µ∗ > 0 such that

the system admits two distinct equilibria for any 0 < µ ≤ µ∗, then one is stable, while the other is

unstable.

The proof of this last proposition also shows that multiple equilibria xA, xB , ... have a partial

order: x̄A1 ≤ x̄B1 ≤ x̄C1 . . . , x̄A4 ≤ x̄B4 ≤ x̄C4 . . . , x̄A7 ≤ x̄B7 ≤ x̄C7 . . . , while x̄2 and x̄5 have the reverse

order x̄A2 ≥ x̄B2 ≥ x̄C2 . . . and x̄A5 ≥ x̄B5 ≥ x̄C5 . . . .

Remark 6 The simplest case of constant a17 has been fully developed in [10] 3 and [121], and it

turns out that the system may exhibit bi-stability for suitable values of the feedback strength µ. Here

it was shown that, for constant a17, bi-stability is actually a robust property. These results are

consistent with the fact that the MAPK cascade is a monotone system and some of them could be

demonstrated with the same tools used in [10, 121]. With respect to such literature, the contribution

of this work is that of inferring properties such as number of equilibria and mono- or bi-stability

starting from qualitative assumptions on the dynamics of the model, without invoking monotonicity.

Remark 7 Finally, it is necessary to remark that our results on the MAPK pathway robust behaviors

hold true given the model (4.19) and its structure. Other work in the literature shows that feedback

loops are not required to achieve a bi-stable behavior in the MAPK cascade [79] when the dual phos-

phorylation and de-phosphorylation cycles are non-processive (i.e., sites can be phosphorylated/de-

phosphorylated independently) and distributed (i.e., the enzyme responsible for phosphorylation/de-

phosphorylation is competitively used in the two steps).

4.4 Conclusions

A property is structurally robust if it is satisfied by a class of systems of a given structure, regardless

of the choice of specific expressions adopted and of the parameter values in the model. We have

considered five relevant biological examples and proposed capturing their dynamics with parameter-

free, qualitative models. It was shown that specific robust properties of such models can be assessed

by means of solid theoretical tools based on Lyapunov methods, set–invariance theory, and matrix

theory.

2I.e., the nullclines have no common tangent lines.
3See the erratum: http://www.math.rutgers.edu/~sontag/FTPDIR/angeli-ferrell-sontag-pnas04-errata.txt

and [104].
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Robustness is often tested through simulations, at the price of exhaustive campaigns of numerical

trials and, more importantly, with no theoretical guarantee of robustness. We are far from claiming

that numerical simulation is useless. It it important, for instance, to falsify “robustness conjectures”

by finding suitable numerical counter-examples. Furthermore, for very complex systems in which

analytic tools can fail, simulation appears be the last resort. Indeed a limit of the considered

theoretical investigation is that its systematic application to more complex cases is challenging.

However, the set of techniques we employed can be successfully used to study a large class of

simple systems, and are in general suitable for the analytical investigation of structural robustness

of biological networks, complementary to simulations and experiments.
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Chapter 5

Summary and future work

In this last chapter, I will briefly summarize the contributions of each chapter and outline future

research plans.

5.1 Flux regulation

In this chapter I proposed two network architectures based on negative and positive feedback, to

regulate and match the output flow rate of two interconnected systems. Feedback is implemented

through mass action chemical reactions, which down- or up-regulate the activity of the molecules

generating the network output. To my knowledge, this design has not been considered elsewhere

in the literature. Numerical simulations and data suggest that feedback confers robustness to the

system with respect to certain parametric variations and to initial conditions.

The analytical and experimental results presented in Chapter 2 need substantial refinement.

First, the simple model problems 2.3 and 2.7 will be non-dimensionalized in search of key parameter

aggregates and nullcline characteristic behaviors. Systematic numerical analysis of the systems

will be a useful aid, starting from the results in [42]. Additionally, parameter-free models will be

considered, along the lines of those presented in Chapter 4, to explore the structural properties of

these feedback schemes. Additional experiments and analysis need to be carried out.

• Negative auto-regulation scheme: The experiments shown for this case will be repeated,

focusing on gel-based quantitation of the RNA concentration in solution. The gel electrophoresis

data currently available were processed using the DNA ladder as a control for concentration, and

they may lack accuracy. It will also be interesting to explore the robustness of the system to larger

variations of the template concentrations over time and to external disturbances/load processes.

The data fits will be improved, extending the fitted parameter set and including gel electrophoresis

data.

• Cross-activation scheme Further experiments will be run to characterize the unsatisfactory

aspects of the current design, with the purpose of understanding which design details should be
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improved. In particular, I will focus on the transcription leak and undesired inhibitory pathways.

In the future, I plan to fully re-design this system. I will consider the use of translator gates, or of

decoupling genelets, to avoid the self inhibitory reactions structurally present in the current design.

It will be interesting to consider a circuit design incorporating both self-inhibition and cross-

activation and compare it to the two described schemes. An additional interesting series of experi-

ments will consist of systematically varying the toehold lengths in order to speed up or slow down

the feedback loops, and assessing the robustness of the schemes with respect to such rates.

I also plan on exploring the theoretical interconnections between flux matching and consensus

problems [109]. This might be useful in finding general feedback schemes to match flows of n

interconnected systems.

5.2 Oscillatory systems

Oscillators are a fundamental component in all silicon devices: modern digital clocks synchronize

the operations of millions of transistors. This chapter was dedicated to the experimental study

of a molecular oscillator to be used as a clock for a downstream molecular device. Mathematical

modeling and experiments show that interconnecting the oscillator to its load in a direct manner, i.e.

by stoichiometric binding and release, results in undesired back-action effects and loss of the original

signal. Loosely speaking, the back-action is primarily caused by mass conservation constraints. This

issue is mitigated by the introduction of a molecular insulator, a node draining a small amount of

molecules from the oscillator and using them to amplify its signal [27]. Experiments are carried

out using the tool kit of transcriptional circuits. Given the results presented in this thesis, it is

conceivable to use molecular clocks to orchestrate large-scale molecular processes in parallel. For

instance, DNA-based molecular logic gates [110, 97] that operate reaching a single steady state could

be dynamically driven with our molecular oscillator.

Another important research milestone is the design of a molecular oscillator whose amplitude

and frequency are separately tunable. The in vitro oscillator described in this thesis either exhibits

fast oscillations with low amplitude, or very slow oscillations with a large swing. Unlike silicon-based

oscilloscopes, most synthetic oscillators suffer from some form of correlation between their amplitude

and frequency.

Further analysis on the dynamics exhibited by our oscillator is also currently under way using

the mathematical framework of monotone systems [11]. Preliminary results have been obtained

using the simplified oscillator model in [123]: the system can be interpreted as the interconnection

of two monotone systems, where loop gain can be changed through the enzyme production and

degradation rates. Additionally, the DNA activator and inhibitor thresholds can be interpreted as

elements introducing a delay in the system. The effects of the threshold variations on the oscillator
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dynamics shown in Section 3.7.17 may be explained in terms of internal delay variations.

5.3 Robustness in molecular networks

The general analysis framework presented in Chapter 4 relies on two main features: 1) The formu-

lation of simple, parameter-free biological models capturing only essential functional features of the

considered system. 2) The use of Lyapunov functions and invariant sets theory to isolate specific

properties of the model; because models are parameter–free, such properties are naturally robust

with respect to parametric variabilities the real system might present.

Currently, this framework is being applied to the context-dependent pathways exhibited by the

MAPK network in neural rat cells [107]. First, two dynamic models (parameter independent) have

been formulated starting from the MAPK graph topologies in [107]. (Such graphs were experimen-

tally derived in [107] using the Modular Response Analysis technique [60].) Then, it is possible to

demonstrate that depending on the input present, the two topologies lead to either a bi-stable or a

mono-stable response. These results, soon to be submitted, were obtained in collaboration with F.

Blanchini.

Another application of these techniques is in the area of oscillatory molecular systems. This

research is motivated by [129], where the features of several simple models for biological oscillators

are explored numerically. It is likely that some of the properties considered in [129] can be proved

analytically.
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