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ABSTRACT 

The nonlinear response of steel planar moment-resisting frames during strong 

earthquakes poses a strong need for accurately modelling inelastic behaviour and 

large displacements. This thesis attempts to provide realistic and efficient analytical 

tools to aid this study. 

Two large -displacement small-strain beam-column models are employed to in

clude material and geometric nonlinearities. The first model assumes lumped plas

ticity, and discretises an element into segments. Axial force-Bending Moment 

strength interaction and flexural bowing are considered. Ten characteristic segment 

states are identified. An efficient numerical scheme is suggested to solve the non

linear governing equations. This model only approximately represents the strength 

and stiffness of beam-columns. 

A comprehensive finite element beam-column model is developed to more accu

rately model the strength and stiffness. A beam-column is discretised into segments, 

and further, each segment into one-dimensional fibres. A uniaxial cyclic constitutive 

law valid under arbitrary transient loading is proposed for structural steel. This 

physically motivated law incorporates the initial yield plateau, and provides explicit 

expressions for stress in terms of strain throughout the hysteretic path. This law is 

used to control the hysteretic loading of fibres. 

A simple semi-empirical model is employed to analytically describe the highly 

nonlinear hysteretic behaviour of flexible joint panel zones in steel planar frames. 

Some modelling assumptions that may be made in frame analyses are evaluated. 

Numerical study of a building frame with flexible joints indicates that its collapse 

is sensitive to the joint panel zone design in addition to the ground motion. 
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Chapter 1 

INTRODUCTION 

Most engineering structures, e.g., buildings and bridges, are composed of a 

number of straight members joined together. A structure formed with straight 

members is commonly called a frame. A frame member may be categorised into a 

beam, if bending moment predominates; a column, if axial force predominates; and 

a beam-column, if both bending moment and axial force are significant. Further, a 

frame which resists lateral loads onl~ through the bending of the members without 

any braces, is called a moment-resisting frame (MRF). 

All structures deform under loading. In general, the effect of this deformation 

upon the overall geometry can be ignored in beams. However, in columns as well 

as beam-columns, these deformations may cause significant additional axial force 

and bending moment. Therefore, their equilibrium equations must include the 

effect of change in geometry. This geometric nonlinearity makes their response 

nonlinear even for a purely linear elastic material. And, for a material with nonlinear 

stress-strain relation, the material nonlinearity further complicates the solution. 

Under the combined effects of geometric and material nonlinearities, the solution of 

the governing equations is often intractable, and recourse to numerical methods is 

essential. 

The second most important component of a frame is the finite-si zed junction 

of the beams and the columns, known as the joint. The response of a joint is highly 

nonlinear due to the various adjoining structural elements that contribute to its 
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strength and stiffness, and hence its analytical modelling is involved. In order to 

better understand the inelastic response of MRFs under strong seismic forces, the 

nonlinear behaviour of both the beam-columns and the joints must be assessed as 

close to reality as possible. 

1.2 Review of Literature 

The significant contributions to the analytical modelling of beam-columns and 

joints are summarised in this section. Also, the relevant terminology frequently 

used in this thesis is introduced. Hereinafter , the term beam-column refers to a 

general member of a MRF, and not necessarily the one in which both axial force 

and bending moment are significant. 

1.2.1 Beam-Columns 

For three decades now, nonlinear behaviour of steel planar beam-columns has 

been a subject of considerable research. Most of the research is devoted to prismatic 

members. Early research on this subject focussed only on the elastic stability of 

beam-columns, a topic which was studied using the results from long-hand compu

tations of the closed-form solutions . The beam-column models were based on the 

linear theory of structures assuming geometric and material linearity, i. e., linear 

strain-displacement and stress-strain relations , respectively. The governing equa

tions were derived in the initial undeformed geometry assuming small-displacements 

and small-strains. However , the use of these models is limited to the service load 

conditions. 

In as early as 1956, the ability of frames to dissipate energy through inelas

tic cyclic deformations was demonstrated [1]. The second generation of models 

extended the range of applicability up to the ultimate state by including mate

rial nonlinearity. Initially, the inelast.ic responses of beam-columns with elastic

perfectly plastic force-deformation relationship were studied [2,3]. Gradually, bilin

ear wi th st rain-hardening and nonlinear force-deformation relationships were intro-



-3-

duced [4,5]. Several researchers included effects due to geometric nonlinearities also 

through large deformation, P-/::,. effect, effect of axial load on the flexural stiffness 

and effect of bending moments on axial strain. Equilibrium of the beam-column 

was sought in the deformed configuration allowing large -displacements and small

strains . However , these models are valid only for monotonic loading and not for 

inelastic cyclic loading. 

Nonlinear response analysis of beam-columns is a mathematically difficult prob

lem. There are only a few extremely simple cases with exact closed-form solu

tions . And, even these cases do not consider material nonlinearities. But, in the 

late 1950 's, when the digital computers became available to a larger domain of 

researchers, numerical techniques were explored to solve the exa.ct nonlinear gov

erning equations . Two approaches, namely the Finite Element Approach and the 

Beam-Column Approach, evolved from them. Consequently, quite a few analytical 

models were proposed. The simple models are used in engineering practice, while 

the comprehensive ones are primarily research oriented. 

In the Finite Element Approach, each member is discretised into an assemblage 

of smaller elements. The continuum problem is replaced by a set of unknowns iden

tified at each of the nodes of discretisation. The response of the beam-column is 

examined by continuously monitoring these control sections each of which is anal

ysed by a linear or a simple nonlinear technique. Incremental equilibrium equations 

are derived based on an a.ssumed displacement model and solved iteratively until 

convergence. The displacement-based formulation provides an upper bound to the 

true stiffness and the total potential energy, and converges to the exact solution 

from below [6]. This convergence is rigorously assured through the inter-element 

compatibility or conforming condition. The displacement functions are chosen to 

satisfy the completeness criterion, which requires that all t he uniform strain states 

and the rigid body displacements of the element be included. 

However , in the Beam-Column Approach, each member represented by its cen-
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troidal axis is analysed as a single unit by a simplified method eliminating its further 

sub-division. This approach takes the standpoint of the methods of strength of ma

terials. Instead of taking an elementary material point for investigating internal 

stresses and strains , the entire cross-section is considered. The cross-section is sub

jected to ge n eralised stresses, namely axial force and bending moments, under the 

corresponding generalised strains, namely axial strain and curvatures. As in the 

classical theories of elasticity and plasticity, the solution satisfies the equations of 

equilibrium in t he generalised space, the conditions of geometry or compatibility, 

and the generalised stress-strain relation. The equilibrium equation and the com

patibility conditions are straightforward. The important issue is the derivation of 

relations between generalised stresses and generalised strains for which a number of 

simplifying but powerful kinematic and geometric assumptions are made. 

Plasticity is a common phenomenon under inelastic conditions. The extent of 

plastification is varied along the length and across the cross-section of the beam

column. Owing to the discrete nature of plastification, the finite element models 

capture this effect and are called as Distributed Plasticity models. These models are 

quite realistic and are particularly used while taking a microscopic look at the beam

columns. On the other hand, the models based on this Beam-Column Approach, 

are Lumped Plasticity and do not consider this effect. They are less realistic, but 

simple and very popular in modelling the inelastic behaviour of beam-columns. 

The parallel between the six stress components at a material point and the six 

generalised stress components at a member cross-section motivated some researchers 

using the Beam-Column Approach to extend the Classical Stress Space Plasticity 

Theory to the generalised stress space. However, the validity of such an extension 

has not been justified yet [7J. Hence, the Generalised Continuum Plasticity Theory 

applied to models based on Beam-Column Approach has not gained much attention. 

On the computational front, when the Linearised Incremental Method showed 

a lack of convergence, the Method of Successive Substitution and the Newton-
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Raphson Method were developed. A modified versIOn of the Newton-Raphson 

Method has been the most popular choice for the nonlinear analysis of beam

columns. This method encouraged researchers to formulate and solve incremen

tal equilibrium equations. Thus, tangent stiffness matrices were derived in the 

Updated LagrangiaJl coordinates using conventional beam-column theory assuming 

large-displacements and small-strains . 

The cyclic loading of beam-columns was addressed in 1970 [8). Experiments [9) 

showed that dynamic axial loads in building frame columns could be as large as 3.5 

times the corresponding gravity axial loads. These inelastic strain reversal effects 

were not incorporated in the earlier models for the dynamic response of beam

columns [10). Effects of partial plastification of the beam-column and inelastic 

unloading of the cross-section were included [ll) to more accurately capture the 

vaJ'iation in the axial and flexural strength and stiffness during cyclic response. 

Insofar as present structural design is concerned, the development of the Limit 

Stn.le Approach to Design has focussed particular attention on the use of ultima.te 

loads and on the behaviour of the structures at these loads [12). Thus, accurate 

information on the ultimate strength and nonlinear load-deformation behaviour 

through the entire range of loading is very essential. Two significant beam-column 

models [13 ,10) based on the Beam-Column Approach include most of the features 

discussed above. The first model uses a generalised plasticity theory alld includes 

approximate geometric stiffness. The second model includes the exact geometric 

stiffness but is valid only for monotonic loading. 

1.2.2 Joint Panel Zones 

In the earlier methods of frame allalysis , the joints were idealised as mere points 

with zero dimensions. Later , the finite-sized joints were modelled as rigid elements 

in frame analysis. In the early 1970's, detailed experimental [14) alld numerical 

[15) studies revealed that the joints possess highly nonlinear characteristics in the 
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form of large ductilities and good hysteretic properties. Since t hen, the joints were 

represented as explicit flexible elements in the nonlinear modelling of frames. 

The joints are observed to be stiff axially and flexurally, but flexible in m

plane shear. In spite of this, the analytical modelling of the joints is burdened 

by their complex construction. The joint panel plate, the flanges of the beams 

and the columns, the doubler plates and the stiffeners enter the load-deformation 

characteristics together. A clear distinction of the contribution due to each of these 

is not possible due to their inter-dependence. In spite of these difficulties, some 

researchers have proposed simplified models accounting for one or more of these 

contributions to analytically describe t he hysteretic strength and stiffness of the 

joint . Very few of them [16,17,18J are valid under cyclic loads. 

1.3 Object and Scope of Present Study 

The study described in this thesis attempts to extend the current knowledge 

on the hysteretic behaviour of steel planar MRFs. A brief outline of the specifics 

within this objective is as follows : 

(i) Review existing cyclic constitutive law models for structural steel. Propose a 

simple cyclic constitut ive law for the axial stress-strain behaviour of structural 

steel for inclusion in displacement-based finite element formulations based on 

experimental hysteretic data. 

(ii ) Review existing formulations of the beam-column models. Propose two analyt

ical beam-column models, one simple and another comprehensive, to capture 

the hysteretic response. 

(i ii ) Review existing formulations of flexible joint panel zones. Propose a joint 

element to analytically describe its cyclic behaviour. 

(iv) Develop a computer program for the nonlinear dynamic analysis of planar 

MRFs using the proposed beam-column and joint elements. Analyse the realis

tic MRF of a tall building and study its collapse states under big earthquakes. 
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This thesis deals with the in-plane behaviour and analysis of MRFs. The 

material covered herein is structural steel. Though frequent reference is made to 

seismic loads, the proposed models are valid under any static and dynamic loading 

history. 

The present study of beam-columns is confined to prismatic and partially pris

matic members subjected to configuration-independent concentrated loads applied 

at the nodes or within the beam-column members. Two beam-column models, are 

developed assuming large- displacements and small-strains using the conventional 

beam-column theory. The first model is a Lumped Plasticity model while the sec

ond is a Distributed Plasticity model. Both models include material and geometric 

nonlinearities , and cyclic loading of the cross-sections. 

The inelast ic deformations considered, i. e., the permanent deformations on 

the release of the load, are independent of time. The stability of beam-columns 

which sustain dynamic loads in excess of those under static conditions, is within 

the purview of this study. Inelastic effects on axial and bending stiffness, partial 

plastification of the cross-section, spread of plastification along the member length, 

and inelastic strain reversals and their effect on the stress-strain relationship, are 

included. Hence, the transition between fully elastic and fully plastic states of the 

cross-section are treated. Further, residual stresses can also be included. 

Two cases of plane frame idealisation, namely frames without and with joint 

elements, are considered. In the frames with joint elements, the joints have the 

capability of being assigned desired magnitudes of strength and stiffness. Thus, the 

entire range of joints from weak to strong and from flexible to rigid can be included 

in the plane frame analysis. The analytical model for the flexible joint panel zone 

behaviour considers only its in-plane shear deformations , and neglects the effects of 

axial load and bending moments in it. 
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1.4 Organization of the Thesis 

The thesis is organised into eight relatively independent chapters. Chapter 1 

introduces the subject matter of thi s research and reviews the associated literature. 

The purpose and scope of this research are clearly outlined. The role of the beam

column and joint models in a general formulation of inelastic plane frame analysis 

is described in Chapter 2. 

A detailed account of the Lumped Plasticity beam-column element, namely 

the P lastic Hinge Model, is presented in Chapter 3. The governing equations are 

derived , and the elastic and inelastic behaviour of beam-columns are discussed. 

Numerical implementation of the model is detailed. Numerical studies on single 

members are carri ed out to emphasise the highlights of the model. Similarly, a 

graphic picture of the Distribu ted Plasticity beam-column element, namely the 

Fibre Model, is presented in Chapter 4. A one-dimensional cyclic constitutive law 

for axial stress-strain behaviour of structural steel is proposed. The tangent stiffness 

matrices are derived. Results from single member numerical studies u sing this model 

are discussed. 

The efFect of flexible joint elements on the behaviour of planar MRFs is enunci

ated in Chapter 5. The proposed Joint Hysteresis Model is described. Comparisons 

of the model responses and the experimental data are shown. 

Some modelling assumptions that may be m ade during the analysis of planar 

MRFs to reduce the computational effort are evaluated in Chapter 6. The realistic 

analyses of a planar building frame under strong seismic excitation is presented 

in Chapter 7 by including the joint elements in the frame discretisation. Issues 

regarding the design of steel planar MRFs are raised in light of this numerical 

study. 

Finally, the summary and conclusions of this research are listed in Chapter 8. 

Specific recommendations are made for future work in this area. 
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1.5 Sign Convention, Notation and Units 

This thesis adopts a consistent sign convention in all the derivations and numer

ical examples. Tensile displacements and tensile axial loads are considered positive. 

Rotational deformations follow the structural analysis convention. Anti-clockwise 

rotations and anti-clockwise bending mom ents are positive. 

Scalars are indicated by their variable names, e.g., a. The variable names of 

one-dimensional arrays, or vectors, are underlined in script , e.g. ,1£. The variable 

names of two-dimensional arrays , or matrices, are cast in capital bold type face 

script , e.g., M. The increment in a scalar , a vector or a matrix between two dis-

tinctly different states is written with a dot over their variable names, e.g., h, it. and 

B. Superscript T denotes the transpose of the vector or the matrix, e.g., ET and 

TT 

Dimensional quantities are referred in Sf units. A millimeter (mm) is the unit 

of linear dimension . A Newton (N) is the unit of force. A second (sec) is the unit 

of t ime. 
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Chapter 2 

NONLINEAR DYNAMIC 
PLANE FRAME ANALYSIS 

2 .1 Introduction 

A well-designed and constructed steel j',fRF is expected to behave inelastically 

under strong seismic forces , and dissipate the seismic energy without collapse. The 

inelastic behaviour of the MRF can arise either individually from beams, columns or 

joints; or together from the inelastic and geometric effects of the frame as a whole. 

The true behaviour of the MRF under severe seismic forces can be studied only 

through a nonlinear dynamic analysis. And while doing so, all the nonlinearities in 

the frame that appear in reality, must be included. 

2.2 Sources of Nonlinear Frame Behaviour 

The major sources of nonlinearity in a MRF are : 

(1) Material Nonlinearity - It arises from nonlinear material constitutive laws. It 

is reflected in the load-deformation relationships of the structural elements. 

(2) Geometric Nonlinearity - It stems from nonlinear member strain-deformation 

relationships, and from the formulation of frame equilibrium equations in its 

deformed configuration. Sometimes, a MRF may laterally support other non

MRFs. Then , t he lateral forces applied on the MRF by the non-MRFs are a 

function of the deformation of the MRF itself. These forces also classify under 

the effects of geometric nonlinearity. 

(3 ) Nonlineari ty of Other Energy Dissipation Sources - It originates from the in-
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ternal damping forces of the frame which get activated during the course of the 

response. Cracks in the partition walls, infill brickwork and reinforced concrete 

structural elements, and loose bolt friction are some examples. 

In general, material nonlinearity is important in the inelastic frame behaviour. 

Geometric nonlinearity becomes significant in slender members. The p-t::. effect 

plays a critical role when the nodal loads on the frame are large or when its lateral 

drift is large. The other energy dissipation sources may be very important under 

strong shaking, but these nonlinearities are very difficult to quantify. The non

linear frame analysis discussed in this chapter includes only the first two types of 

nonlinearities. 

2.3 Basic Modelling Considerations 

The nonlinear dynamic frame analysis described in this chapter makes use of 

certain basic modelling considerations. A frame is discretised into a finite number 

beam-columns inter-connected t hrough the joints . Two cases of plane frame ide

alisation are studied, namely frames with and without joint elements . In frames 

without joint elements, the joints are idealised as points and centerline dimensions 

are used for the beam-columns connecting them. However, in frames with joint 

elements, the finite dimensions of the joints are considered and clear spans are used 

for the beam-columns instead. The external concentrated loads may be applied at 

the joints or at locat ions interior to the beam-column members. 

The other basic modelling considerations are: 

(1) The out-of-plane motions and forces of the plane frame are not considered. 

(2) The mass of the frame is lumped at the nodes at the floor level. The beam

column members are massless. The rotary inertia of the nodal masses is ne

glected. The mass of the frame is constant throughout its response. 

(3) Damping other than that due to plastic behaviour of the steel members in the 

frame is assumed to be viscous and constant throughout its response. 
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(4) The vertical and rotational components in the ground motion are neglected. 

The lateral ground motion is assumed to be uniform. 

(5) The soil-structure interaction is neglected. 

(6) The analyses of MRFs correspond to those of the bare steel frames neglecting 

the stiffening effects of the concrete floors and the in-fill walls . 

2.4 D egrees of Freedom 

At each node of the natural global discretisation, i.e ., at the junctions of the 

bearns and the columns, a plane frame with joint elements has four degrees of 

freedom, namely two in-plane translations, beam rotation and column rotation. 

But, in a plane frame without joint elements, the beam rotation and the column 

rotation ar·e equal. Thus, the nodal degrees of freedom reduce to three, namely two 

in-plane translations and joint rotation. Fig.2.1 shows the same. 

Irrespective of whether the plane frame is discretised with or without joint 

elements, a beam-column has six exterior degrees of freedom, as shown in Fig.2.2a. 

If'i is the end-displacement vector and L is the end-force vector of a beam-column, 

then its linearised incremental equilibrium equation is written as 

KEG. _ j 
t !! - _, (2 .1 ) 

where 
y,T = (111 VI 111 U2 V2 (h ) 

and 
·T . L =(11 h h J4 Js j6) . 

In Eq.(2.1 ), KfG is the tangent stiffness matrix of the beam-column. When a beam

column member is composed of multiple segments, the interior nodes have three 

degrees of freedom , namely two in-plane translations and joint rotation. These 

degrees of freedom are no t included in the global matrix of unknowns, since the 

interior nodes are assumed to have no mass and damping. 

When a plane frame is discretised with explicit joint elements, each joint has 

two degrees of freedom, narnely beam rotation, 11-, and column rotation, v, as shown 
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in Fig.2.2b. If ~ is the joint rotation vector and m is the joint moment vector, then 

the linearised incremental equation of the joint panel is written as 

K J · . 
t ~ = m, (2.2) 

where 

. . . 
M~ =M1+Mr 

and Mv =Mt+Mb. 
. . . . 

In Eq.(2.2), Kf is the tangent stiffness matrix of the joint. lYh A1r , Mt , Mb are the 

increments in the two beam moments and the two column moments, respectively, 

that appear on the joint as shown in Fig.2.2. 

2.5 Numerical Implementation 

The numerical procedure of the nonlinear dynamic analysis of MRFs is straight

forward. This section presents only the salient computational features with specific 

reference to flexible joint frames. 

2.5.1 Mass Matrix 

For straight structural elements like beam-columns, the refinement obtained 

in the solution by employing the consistent mass matrix is marginal. Hence, the 

mass of the frame is assumed to be lumped at the global nodes at the floor level, 

and rendering its mass matrix, M , diagonal. Since, the rotary inertia of the lumped 

nodal masses is neglected, the only non-zero terms of the mass matrix, M , are those 

diagonal terms corresponding to the two in-plane translational degrees of freedom. 

In the dynamic analysis of frames under specified ground motions , considering 

the entire design live load to be effective may be very conservative. On the other 

hand, it may be unconservative to completely ignore it. In fact, due to the lack of 

a rigid connection between the live load and the frame, the UBC 1991 [19] and the 
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SEAOC provisions [20] recommend that only a part of it be included in estimating 

the seismic weight or mass of the frame. In the current study, 20% of the design 

live load is considered to be effective. 

The mass of the laterally supported non MRFs, if any, IS also effective for 

computing the lateral inertia of the MRF. Consequently, at node i, the masses 

associated with the translational degrees of freedom, lvIx i and My. respectively, are 

not equal. Mx. accounts for the dead load plus 20% design live load of both the 

MRF and the non-MRFs. lvIyi accounts for the dead load plus 20% live load of the 

MRF only. Thus, the mass matrix, M , of the plane frame with joint elements is of 

the form 

M= o (2.3) 

o 

where the masses corresponding to the four degrees of freedom of a typical node, 

i , are indicated explicitly. The mass matrix, M, of a plane frame without joint 

elements has only three entries associated with each node. 

2.5.2 Damping Matrix 

Even though it is an important dynamic characteristic of a frame, damping 

is yet to be thoroughly understood. A significant amount of literature is available 

on the damping of a building under elastic vibrations. But, little is known about 

damping of frames during strong vibrations. The damping coefficient in a building, 

which is constant under elastic vibrations, is found to vary with time [21] under 

inelastic vibrations. 

Hysteretic Damping and Viscous Damping are two popular models proposed to 

mathematically quantify the damping in a frame. Though the former is found more 

appropriate, often the lat ter is used owing to its mathematical convenience. The 
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Caughey Series [22] is one representation of viscous damping. Rayleigh Damping, 

which constitutes the first two terms of the Caughey Series, is used in the present 

nonlinear frame analysis to estimate damping other than that due to the plastic 

behaviour of the steel members. If M and K are the mass and stiffness matrices of 

the frame, respectively, then the viscous damping matrix , C, is given by 

(2.4) 

where the coefficients ao and al are determined based on the desired level of damp

ing. Since M is diagonal and K is symmetric and banded, C is symmetric and 

banded. The modal representation of Eq.(2.4) is 

(2.5) 

where ( is the damping ratio and w is the frequency in radians/sec. The Rayleigh 

Damping so estimated is frequency dependent as shown in Fig.2.3. If the same 

damping ratio, (0, is desired at two frequencies WI and W2, then 

and 

2WIW 2 
ao = (0 --

WI +W2 

2 
al = (0 --

WI+W2 

2.5.3 Incremental Equation of Motion 

The matrix equation of dynamic equilibrium of the frame at time, t, is 

E(~' t ) + Ci(t) + Mi(t) = iJt), 

(2.6) 

(2.7) 

where ~(t) , i(t) and i(t) are respectively its displacement, velocity and acceleration 

responses relative to the ground at time, t. E(~' t) represents the stiffness forces 

produced in the frame under the application of external forces, Let), comprising the 

constant gravity loads, f , and the inertial forces , f (t). Hence, 
"-0 _g 

(2.8) 
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where 

The non-zero terms of ig(t) at time, t, are the input ground acceleration, ag, as

sociated with the lateral degrees of freedom. The nonlinear response quantities ",-, 

i and i at time, t, are obtained by the direct integration of Eq.(2.7) in the time 

domain. 

Consider the load step from time, t, to time, (t+~t). The equation of equilib

rium at time, (t+~t), is 

EJ:r, (t+~t)) + Ci(t+~t) + Mi(t+~t) = [(t+~t). (2.9) 

For the k'h iteration, the incremental equilibrium matrix equation is obtained from 

Eq.(2.9) as shown below: 

(1) Substitute for i(t+~t) and i(t+~t) in Eq.(2.9) in terms of "'-(t), i(t), i(t) and 

;c.(t+~t) using the Newmark's difference scheme recipes given below: 

i(t+~t) = i(t) + {(l-,)i(t) + ,i(t+~t)} (~t) 

and ;c.(t+~t) = ;c.(t) + i(t)~t + {(~-t1)i(t) + t1i(t+~t)} (~t)2, 

where t1 and, are called Newmark's parameters. 

(2) Replace ;c.(t+~t) by ;c.",tl(t+~t). 

(3) Express ",-"+I(t+~t) = ",-k(t+~t) + ~",-k 

(4) Replace E(t+~t) by E"+I(t+~t). 

(5) Express EHI(t+~t) = Ek (t+ ~t) + K: ~",-k 

(2.10) 

(2.11) 

(2.12) 

The matrix K: in Eq.(2.12) is the tangent stiffness matrix of the frame eval

uated at the start of the k'" iterat ion. After making the above substitutions and 
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re-arranging the terms, Eq.(2.9) reduces to 

[i1K: + ~t C + (6
1
t)2 M] 6;t/ 

= i1[(t+6t) - i1pk(t+6t) 

- [~t C + (6
1
t )2 M] ;rk(t+6t) + [~t C + (6

1
t)2 M] ;r(t) 

+ [(~( - ,B)C + ~tM] i(t) + [b-2i1)~tC + ( ~-i1)M] i(t). 

Eq. (2.13) is t he incremental equilibrium equation to be solved iteratively. 

2.5.4 Solution of the Incremental Equation of Motion 

(2.13) 

The right hand side of the system of algebraic equations, Eq.(2.13) , is called 

the residual load on t he frame. The left hand side of Eq.(2.13) requires the frame 

tangent stiffness matrix, K~. Since nonlinearities develop within the time step, the 

matrix on the left hand side needs to be recast at each global iteration within the 

load step . This iteration scheme using the tangent stiffness, known as the Newton

Raphson Method, is often computationally very intensive. Instead, the Modified 

Newton-Raphson Method, may be used, wherein in Eq.(2.13), K: is replaced by 

the initial elastic stiffness matrix , Ke. Hence, Eq. (2.13) is modified as 

[i1 K e+ ~tC+ (6~)2 M] 6;rk 

= i1[(t+6t) - i1l(t+6t) 

- [~t C + (6~)2 M] ;rk(t+6t ) + [~t C + (6
1
t)2 M] ;r(t) 

+ [C-y-i1)C + ~tM] i(t ) + [b-2i1) ~tC + (~-i1)M] i(t). 

(2.14) 

The iterating stiffness matrix within the square brackets on the left hand side of 

Eq.(2.14) is constant , and independent of the loading history and the response 

of the frame. While solving Eq.(2.14) by the Gauss Elimination Procedure, it 

is advantageous to prefactor this iterating stiffness matrix by forward reduction. 

Though this modified scheme consumes a larger number of global iterations, the 
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cost per iteration is less, and is less likely to get lost during unloading when the 

structure st iffens . 

At the start of the first iteration in the load step from time, t, to time, (t+ 

6.t ) , the initial estimates for ;!ek(t+6.t) and l(t+6.t) are taken as ;!e(t) and J!Jt) , 

respectively. In the kth iteration, Eq.(2.14) is solved by back substitution in the 

Gauss Elimination Procedure to obtain 6.;!ek. Then, using Eq.(2.11), ;!eHl(t+6.t) is 

updated. Using this updated incremental displacement vector, the state of all the 

members and joints is updated. The updated member-end forces and joint forces 

are assembled to form t he revised '[!k-+l(t+6.t) vector. The iterations are continued 

until the residual force vector is within the tolerance. 

For unconditional stability of the numerical scheme III linear problems, the 

Newmark's Method requires,:::: 0.5 and fJ:::: 0.25(0.5+,)2 The proposed frame 

analysis uses the values fJ = 0.25 and, = 0.5. This choice of the Newmark's param

eters, fJ and" called the Constant Average Acceleration Method or the Trapezoidal 

Method, has an advantage in that it introduces no artificial damping through the 

numerical scheme. 

2.5.5 Obtaining the '[!Hl (t+6.t) Vector 

While deriving the global incremental equation of motion, Eq. (2.12) is used to 

express '[!k-+l (t+6.t ) in terms of '[!k (t+6.t ) and K~. However, the updated '[!k-+l (t+6.t) 

vector is not obtained using this linearised equation. Instead, it is obtained directly 

by assembling the load vectors of the beam-column and joint elements updated at 

the end of each global iteration. 

For a frame without flexible joint elements, the updated global nodal incremen

tal displacement vector , 6.;!e, is decomposed to form individual global incremental 

end-displacement vector, i!e.m , of member , m , whether a beam-column or a joint. 

Mathematically, if rrn is the decomposition operator which depends on the degrees 
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of freedom at the ends of member, m , then 

m 

f!..m = II {L'.;r.} (2.15) 

However , in a frame with flexible joint elements, the following simple calculation 

gives the global incremental end-displacement vectors, f!..m, of the beam-columns. 

Vli th reference to Fig.2.2b, if 0 is the centre of the joint panel zone, then the 

coordinates of the member-end locations, A and B of the beam and the column 

respectively, are given by 

and 

de 
XA = xo + Z-COSIl , 

de . 
YA = YO + 2 Sill II, 

db . 
XB = Xo - Z- SIlljJ. 

db 
YB = Yo + - cosjJ.. 

2 

Using Eq. (2.16) , the member-end displacement increments are expressed as 

· . de ( ) 
UA = Uo + Z- cos II - cos lit , 

· . de ( . .) 
VA = VO + - Sin v - Sln Vt , 

2 
· . db ( . .) 

UB = uo - Z- SIlljJ. - SIlljJ.t 

and · . db ( ) VB = Va + - cosjJ. - cosjJ.t , 
2 

(2.16) 

(2.17) 

where jJ., and lit are the b eam and column rotations at the start of the load step, 

respec tively. jJ. and II are the updated beam and column rotations within the load 

step, respect ively. 

The global incremental end-displacement, f!..m, is applied to the state of mem

ber, m, at the start of the time step, and the coordinates of its end-nodes are 

updated. The updated global end-force vector, tm, of member , m , is obtained us

ing its constitutive relations. Chapters 3, 4 and 5 describe in detail how to obtain 
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r . ·m 
uSIng 1! . These global member end-force vectors are assembled to form the 

updated eH1 (t+6t) vector. If L: is the assembly operator, then 

N 

eH1 (t+6t) = ~ {r} (2.18) 
m=! 

where N is the total number of beam-columns and joints in the frame. 

2.5.6 Artificial Unloading during Global Iterations 

,"ihile iteratively solving for the global nodal unknowns , 6;!'., of the frame using 

Eq.(2.14), if the unloading stiffness is different from the loading stiffness, artificial 

unloading may occur due to the numerical scheme, as shown in Fig.2.4. 

'With reference to Fig.2.4, let 0, and 02 be the displacement sub-increments from 

global iterations 1 and 2, such that 0, > 0 and 02 < O. Let 0 > 0 be the cumulative 

total of 0, and 02 . Let 'T' be the state ofthe frame at time, t. Let ' A' be the updated 

state of the frame at the end of global iteration 1. Now, if the displacement sub

increment, 02 , is applied to state' A' of the frame, owing to unloading the resulting 

updated state at the end of global iteration 2 becomes 'B.' . Instead, if 0, the 

cumulative total of the displacement sub-increments, is applied to the state 'T' of 

the frame, the updated state at the end of global iteration 2 is only 'B' . Clearly, 

state 'Bo' is erroneous, as the response of the frame can only be monotonic within 

the load step from t ime, t, to time, (t+6t). Thus, artificial unloading occurs when 

the new state of the frame is obtained by sequentially applying each displacement 

sub-increment from the most recent global iteration to t he updated frame state at 

the end of the previous global iteration. 

To avoid this , the cumulative total of the displacement sub-increments from all 

t he global iterations within the load step is applied to the state of the frame at the 

start of the load step . Hence, the term 6;!'. in Eq. (2.15) is defined as 

6;!'. = ;f1.-t1(t+6t) - ;!'.(t). (2.19) 
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2.6 NDA2 Computer Program 

Based on the formulation discussed in this chapter, a computer program NDA2 

1S developed for the nonlinear dynamic analysis of steel planar moment-resisting 

frames. The beam-columns are modelled using the Plastic Hinge Model and the 

Fibre Model elements described in Chapters 3 and 4, respectively. The joint panel 

zones are modelled using the Joint Hysteresis Model described in Chapter 5. 

2.7 Choice of Ground Motion 

To study the response of planar MRFs of tall buildings at their collapse states 

under very strong shaking, the nonlinear dynamic analysis must include appropriate 

and realistic ground motion time histories, in addition to all the nonlinearities in 

the load-deformation characteristics of the structures. 

2.7.1 Long-Period Acceleration Content 

Big earthquakes occur when significant slip takes place along the faults. The 

high frequency acceleration content of the ground motion decays rapidly with dis

tance away from the fault. Even otherwise, the high frequency acceleration content 

is not important for tall buildings . To be critical regarding collapse of tall build

ings , the ground acceleration must contain a significant amount of low frequency 

or long-period motion close to the period of the building. Such a ground motion 

causes resonance in the building , which may even lead to its collapse. 

Amongst the available records in digitised form [23], the Holiday Inn S90W 

record collected at 8244 Orion Blvd. (Ground Floor), Los Angeles , California, 

on 9th February 1971 , has a significant long-period acceleration content , as seen 

in Fig.2.5. The elastic pseudo-acceleration response spectrum of the Holiday Inn 

record scaled to O.5g(peak) for 2% damping is shown in Fig.2.7. In the numerical 

studies discussed in Chapters 6 and 7, this record is considered appropriate for the 

moment-resist ing frame chosen. 
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2 .7 .2 Large Pulses 

There is yet another type of ground motion caused by big earthquakes that 

may be detrimental to tall buildings. The ground motion close to the fault is 

characterised by a large pulse. Such a pronounced pulse can cause high strains in 

the buildings which lie over or in the proximity of the faults. Consequently, they may 

undergo severe inelastic excursions resulting in their collapse. Recent studies [24,25] 

show that the nature of the large pulses in the ground motions depends on direction 

with respect to the fault, viz., parallel or normal. The fault-parallel motions have 

displacement offsets, while the fault-normal motions have displacements pulses . The 

schematics of these pulses are shown in Figs.2.8 and 2.9, respectively. 

Again, amongst the available records in the digitised form [23], the Pacoima 

Dam S16E record measured at the abutment of the Pacoima Dam, California, on 

9th February 1971, is found to have a large velocity pulse, as shown in Fig.2.6. 

The elastic pseudo-acceleration response spectrum of this ground motion for 2% 

damping is also shown in Fig.2.7. 

Two types of synthetic acceleration ground motions (see Figs.2.8 and 2.9) with 

a single large pulse of duration, T, are designed in light of the MRFs studied in 

Chapters 6 and 7. The duration of the pulse, T, the peak ground acceleration, 

ao, the peak ground velocity, Vo, and the peak ground displacement , do, of these 

synthetic ground motions , are listed in Table 2.1. The response of the MRF is 

recorded for 20 seconds in total. 

In comparison, the two types of synthetic ground motion pulses have the same 

duration and peak velocity. However, the peak accelerations of the fault-normal 

pulses are twice those of the corresponding fault -parallel pulses, and their peak 

displacements are about half as much as the corresponding values for the fault

parallel pulses . The pseudo-acceleration response spectra of these ground motions 

for 2% damping are shown in Fig.2.10. 
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2.7.2 Comment on Response Spectra 

The pseudo-acceleration spectra shown in Figs.2.7 and 2.10 are based on the 

elastic damped single degree of freedom system. The frames discussed in Chapters 

6 and 7 undergo considerable inelasticities. The natural periods of the nonlinear 

frames will therefore be larger than the corresponding estimates for elastic frames. 

This aspect must be remembered while interpreting the nonlinear responses of the 

frames using the elastic reponse spectra. 

2.8 Numerical Results 

In Chapters 6 and 7, the frame analysis program NDA2 is used to study a real

istic building frame [26] under specified ground motions. One important numerical 

aspect associated with frame analysis is discussed here. 

2.8.1 Control on Tolerances 

In displacement-based formulations, when iterations are required to solve im

plicit nonlinear equations, the convergence of these iterations is assessed based on 

the magnitude of the residual load vector. For practical reasons of finite precision, 

the iterations may be declared to have converged, if every residual load quantity 

is less than some specified tolemnce. Since the residual force vector contains both 

force and moment quantities, rational and separate limits are set for the tolerance 

associated with each of them. 

The direct stiffness approach of nonlinear frame analysis discussed above has 

three levels of iterations - global iterations, local iterations and segment iterations. 

Global iterations refer to the Modified Newton-Raphson iterations at the frame level, 

wherein displacement unknowns at each global degree of freedom are sought in each 

load step . Local itemtions refer to the Newton-Raphson iterations at each beam

column level, wherein displacement unknowns at each interior degree of freedom in 

the member are sought within each global iteration in each load step. Segment 
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iterations are relevant only to the Plastic Hinge Model beam-column elements. 

Newton type iterations are conducted to compute the segment axial load for each 

assumed characteristic final state at each local iteration within each global iteration 

in each t ime step. Here, convergence is achieved, when the incremental axial force 

during any segment iteration becomes smaller than the tolerance. 

Clearly, the convergence of the local iterations is essential before the conver

gence of the global iterations. And in case of the Plastic Hinge Model element 

beam-columns, the convergence of the segment iterations is essential before that of 

the local iterat ions. The tolerance limits given below are adopted in all numerical 

s tudies discussed in this thesis: 

Global Tolerances : 

Local Tolerances 

Segment Tolerance: 

residual force 

residual moment 

residual force 

residual moment 

= 10 N 

= 10000 N - mm, 

= 10N 

= 10000 N -mm, 

incremental axial force = 0.5 N 

which provided sufficient accuracy and good convergence results. 
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Chapter 3 

THE PLASTIC HINGE MODEL 

3.1 Introduction 

A beam-column member under increasing magnitudes of end-rotations reaches 

its yield moment capacity when the outermost fibres at the end cross-section just 

reach the yield stress. On further increase of the end-rotation, the yielding spreads 

to the inner fibres across the cross-section and to the neighbouring cross-sections 

along the length. And, when the entire cross-section is yielded, the member is said 

to have formed a flexural moment hinge, or a plastic hinge, at that cross-section and 

the corresponding bending moment is called as the plastic moment. In the Lumped 

Plasticity Approach of modelling beam-columns, the inelastic action is defined for 

the whole cross-section area and not for individual fibres in it. Yield is assumed to 

take place only at discrete locations, called plastic hinges, instead of being spread 

along the length of the member. Further, the member is assumed to remain elastic 

between the plastic hinges. 

The Beam-Column Approach, whichidealises the member by its geometric cen

troidal ao-xis, adopts the concept of Lumped Plasticity, to model the nonlinear and 

inelastic behaviour of beam-columns. These beam-column elements are capable of 

forming plastic hinges at their ends. The concept of zero-length plastic hinge or for 

that matter the theory of lumped plasticity itself, is a mathematical abstraction, 

because it implies infinite curvatures. Nevertheless, the concept is computationally 

convenient, and is sufficiently accurate for many practical beam-column applica

tions, where the plastic action is confined to small regions at the ends. 
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A number of two-dimensional beam-column elements based on plastic hinge 

concepts have been described in the literature. These models are generally of either 

the parallel type [27,28] or the series type [13,29,30]' as described in Fig.3.1. The 

series model spatially separates the zones of inelasticities or nonlinearities in a 

sequential order. Thus, the element is composed of a set of sub-elements with 

distinct load-deformation characteristics. On the other hand, the parallel model 

considers the inelastic actions to be distributed over the entire length of the member. 

In the case of beam-columns subjected to strong seismic excitation, the inelastic 

regions are concentrated at the ends. Hence, to model such members, the series 

model is distinctly superior to the parallel model owing to its realistic representation 

of the actual behaviour. The available theory behind the hinge sub-element in a 

series model [31] ignores strain rate dependence and stiffness degradation. 

Two recent independent research efforts in the modelling of nonlinear and in

elastic response of beam-columns, are significant. One of them [10], is based on 

the Beam-Column Approach with the capability of forming plastic hinges at the 

ends. It employs exact closed form expressions for the geometric stiffness of the 

beam-columns. But, it does not incorporate cyclic loading of the plastic hinges. 

The second model [31] uses a specially developed Generalised Plasticity Theory for 

Beam-Columns and includes the cyclic loading of the moment hinges. Onlyapprox

imate expressions for geometric stiffness are used therein. Further, the applicability 

of the Generalised Plasticity Theory for Beam-Columns is yet to be justified. 

This chapter describes a beam-column element, which for the first time includes 

both the exact geometric stiffness and the cyclic loading of the plastic hinges. This 

proposed beam-column element is henceforth called as the Plastic Hinge Model, 

with the capital letters. The Plast ic Hinge Model element is developed using the 

simplistic Beam-Column Approach of the series type and the Finite Element Ap

proach combined. The effect of a.xial load on bending stiffness and the effect of 

bending moments on axial stiffness [32] are included. However, the effects of shear 

deformations are not included. Also , this model does not include strain-hardening, 
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and partial plastic yielding and unloading of the cross-section. 

3.2 Model Description 

A Plastic Hinge Model beam-column element, as shown in Fig.3.2, comprises 

one or more sub-elements, called segments unlike the conventional model elements 

based on the Beam-Column Approach, which consist of just one segment. All 

nodes, interior and exterior, have three degrees of freedom corresponding to the 

two translations and the in-plane rotation. Since the interior nodes have no mass 

and damping, these degrees of freedom do not enter the global matrix of unknowns. 

'While modelling beam-columns, the feature of mutiple segments helps in bring

ing out the true large deformational characteristics, accurately estimating the elastic 

post-buckling strength important for slender members , and capturing the forma

tion of plastic hinges at locations other than at the ends. In addition, the external 

transverse loads applied at locations other than the end nodes are included in the 

analysis using the interior nodes, without introducing additional global degrees of 

freedom. Thus, the natural global discretisation of single members between junc

tions of beams and columns is retained. In contrast to the finite element models 

which discretise a member into a large number of segments along its length, usu

ally at least 10 , this model requires only a couple of segments, at best. Usually, a 

maximum of four sub-elements is found adequate to provide sufficient accuracy. 

The basis of this model is the assumption that a beam-column segment behaves 

elastically within the plastic hinges formed at its ends. Hence, even under inelastic 

conditions, the deformation of the segment within the hinges is completely defined 

by t he elastic equilibrium equations. Two additional degrees of freedom different 

from the applied end-rotations , corresponding to the two elastic end-rotations within 

the plastic hinges are introduced to include the inelastic cyclic load reversals. A 

typical segment of the Plastic Hinge Model is shown in Fig.3.3. At each end, it 

has three external degrees of freedom - two translations and a rotation; and one 
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internal degree of freedom - t he elastic rotation within the plastic hinge. The plastic 

hinge is activated only when the bending moment reaches its capacity. However , 

the equilibrium shear is completely transferred by the hinge to the joint irrespective 

of the formation of plastic hinges . 

This model combines t he merits of the beam-column approach, namely, sim

plicity, computational convenience and sufficient accuracy, with those of the finite 

element approach, namely, refined modelling, realistic behaviour patterns, general 

possibilities of loading and guaranteed convergence. 

3.3 Equilibrium Equation 

In structural mechanics too as is customary in solid mechanics, the fundamental 

field equations, the governing constitutive law, and the initial and boundary con

ditions must be solved for the dynamic st ate of a structure. For the beam-column 

segment, the field equations or the equilibrium equations, are written in terms of 

the generali sed stresses, namely axial force and end-moments , and the generalised 

strains, namely axial displacement and end-rotations. Since equilibrium must be 

satisfied under dynamic and inelastic conditions , the incremental equilibrium equa

tion is more relevant for general application than the total equilibrium equation. 

The Updated Lagrangian formulation, where the geometry of the element is 

revised during the loading, is found most suitable to derive the incremental equi

librium equations. The Euler-Bernoulli kinematic assumption is made, and hence 

plane sections normal to the centroidal axis before bending, remain plane and nor

mal to it even after bending. Further, the strains and the displacements relat ive to 

the chord are assumed to be small, which imply that the bowing in the member is 

small. The segment chord is shown in Fig.3.4a. 

3.3 .1 Total Equilibrium Equation of a Segment 

Deriving total equilibrium matrix equation is the first step toward obtaining the 
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incremental equilibrium matrix equation. Consider a typical beam-column segment 

of length, L , cross-sectional area, A, and moment of inertia, I, in its deflected 

configuration. Let E be the Modulus of Elasticity of the material. Let the net axial 

displacement, u, and the two end-rotations , </>1, </>2, produce in the segment an axial 

load, P, and end-moments, M 1 , M 2 , as shown in Fig.3.4b in the member coordinate 

frame, i. e., coordinate frame relative to the chord. 

Stability Functions -

\Vith reference to the free-body diagram shown in Fig.3.4c, the transverse 

displacement, w(z), of the prismatic segment normal to its undeformed chord is 

related to the applied loads, namely the axial load, P, the end-moments, M 1 , M2 , 

and the equilibrium shear force, Q, through the governing differential equation 

d2w 
EI dz 2 = -M2 + Qz + Pw , (3.1 ) 

where 

(3.2) 

Hence, Eq.(3.1) becomes 

d
2
w _ P w = _1_ {-M2 + Ml +NI2 z} 

dz2 EI EI L 
(3.3) 

Since the frame of reference is relative to the chord, the boundary conditions are 

w(o) = w(L) = o. (3.4) 

Solving Eq.(3 .3) subject to the boundary conditions in Eq.(3.4), 

w(z) = _MI { z _ Sinf3z} + _M2 { -(L -Z) + _sin-'f3-O(--"L."...---'.z)} 
]P ] L sin f3L ]P] L sinf3L 

=MIL z { z2 _1 }_NhL (L_ z) { (L -z)2 -I} 
6EI £2 6EI £2 

P = 0 (3.5) 

= NIt {~ _ sinhf3z } + M2 {- (L-Z) + sinh f3(L-Z)} 
P L sinhf3L P L sinhf3L 

P > 0 

where 

f3 = JiP] 
EJ" 
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The end-rotations, (P" (P" are given by 

<PI = dw I 
dz z=L 

and <Pz = dw I 
dz z=o' 

Substituting for w(z) from Eq.(3.5) in Eq.(3.6) , 

where 

and 

{ 

w(sinw-wcosw)/(2-2cosw-wsinw) 
CI = 4 

w(w coshw-sinhw)/(2-2 coshw+w sinhw) 

{ 

w(sinw-w )/(2-2 cosw-w sinw) 
Cz = 2 

w(sinhw-w )/(2-2 coshw+w sinhw) 

w = JIPI L. EI 

p < 0 
p=o 
P > 0 

p<o 
p=o 
P> 0 

(3.6) 

(3.7) 

Eq. (3.7) is the flexural load-deformation equation in the member coordinate frame. 

Parameters CI, C2 are called Stability Functions. These functions reflect the effect of 

a..'{ialload on the flexural stiffness of the segment as shown in Fig.3.5a. In particular, 

if P = 0, then Eq.(3.7) reduces to the linear relation 

{ MI}=EI[42]{ <PI} 
M2 L 2 4 <P2 (3.8) 

In Eq.(3.7), w can be expressed in terms of p, the segment axia.l loa.d normalised 

with the first Euler load of the segment, Pe, as 

(3.9) 

where 

(3.10) 

Bowing Functions -

vVith reference to Fig.3.4b, an end-moment causes a transverse deformation in 

the segment, called flexural bowing, resulting in an increase in its length. Thus, if 
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q is the coefficient of bowing, then the increase in length due to bowing is qL. If 

u is the axial displacement along the chord, then the axial force is 

(3.11) 

Commensurate with the assumption of small-strain and small-displacements relative 

to the chord, no distinction is made between the undeformed and deformed chord 

lengths , L and (L+u+qL), respectively. Thus, in the following derivation, the 

segment length always remains L. Consider a differential element of arc length, ds , 

whose projection along the chord is dz, where the coordinate, s, is measured along 

the deformed arc as shown in Fig.3 .4b. The increase in length due to bowing, is 

L L ( 
qL = Larc - Lchord = j(ds - dz) = j 

o 0 

Neglecting terms of order four and higher in the Taylor expansion, 

Substituting Eq. (3 .5) in Eq.(3.12), 

where 

{ 

(CI +C2)(C2-2)/8W2 
bl = 1/40 

-(CI +C2)(C2 - 2) /8w2 

{ 

Cz/8(CI +C2) 
h = 1/ 24 

Cz/8(CI +C2) 

and w2 = 7r
2 1pl . 

Substituting Eq. (3.13) in Eq.(3.11), 

p < 0 
P = 0 , 
p>o 

p>o 
p=o 
P < 0 

(3.12) 

(3.13) 

(3 .14) 
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which is the axial load-deformation equation in member coordinates. Parameters 

b" h are called Bowing Functions. These functions reflect the effect of axial load 

on the axial stiffness of the segment as shown in Fig.3.6a. In the absence of bowing, 

i.e. , in the absence of bending moments, Eq.(3.14) reduces to the linear relation 

p_ EA 
~ - L u. (3.15) 

Derivatives -

The need for the derivatives of Stability Functions and Bowing Functions with 

respect to the normalised axial load, p, arises while deriving the incremental equi

librium equations in Sec.3.3.2. The direct differentiation of these functions defined 

in Eqs.(3.7) and (3.13), with respect to p yields 

and 

where 

c~ = 27[2(b, +b2 ), 

c; = 27[2(b, -b2 ), 

7[2 

b~ = - 4w~ ((b1-b2)(Cl +C2) + 2b1C2) 

b' ___ 2 (16b 1 b2 - b, + b2 ) 
2 - /I 

4(C,+C2) , 

Figs.3.5b and 3.6b show the dependance of these derivatives on p. 

Taylor Series Expansions about p = 0 -

(3 .16) 

The Taylor Series expansions about p = 0 of the Stability Functions, Bowing 

Functions and their derivatives, are necessary because some of these closed-form 

expressions become indeterminate at p = 0, the transition point of the expressions 

for tensile and compressive axial load. In the neighbourhood of p = 0, the closed 

form expressions yield inaccurate results owing to the nearness to indeterminacy. To 

overcome these computational difficulties, the truncated Taylor Series expansions 
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noted below are successfully employed in the range - 0.1 <p< +0.1 : 

221142 1 63 
cl = 4 + -" p - --" p + --" p 

15 6300 27000 

C = 2 _ ~,,2 ~,,4 2 _ 11 ,,6 3 
2 30 P + 12600 P 378000 P , 

b - ~ __ 1_,,2 1 ,,4 2 _ 37 ,,6 3 

1 - 40 2800 P + 168000 P 388080000 P , 

b - ~ __ 1_,,2 _1_,,4 2 _ 1 ,,6 3 

2 - 24 720 P + 20160 P 604800 P , 

, 2{2 11 2 1 42} 
c1 = " 15 - 3150" P + 9000" P , 

, 2 {I 13 2 11 4 2 } 
c2 = " - 30 + 6300" P - 126000 " P , 

b' - ,,2 { _ _ 1_ __1_,,2 _ 37 ,,4 2 } 
1 - 2800 + 84000 P 129360000 P 

, 2{ 1 1 2 1 4?} 
and b2 = " - 720 + 10080" P - 201600" p-

These series expansions are also shown in Figs.3.5 and 3.6. 

3.3.2 Incremental Equilibrium Equation of a Segment 

(3.17) 

The elastic total equilibrium equations derived in Sec.3.3.1 are not valid in 

the inelastic range. Only incremental equations are meaningful. And, even within 

the elastic range, explicit closed form solutions of these implicit equations cannot 

be obtained. Thus, recourse to numerical solution methods is essential. The most 

popular one is the Newton-Raphson Method, which employs tangent expressions 

of these nonlinear equations. Thus, a need arises to develop equations relating the 

incremental load vector to the incremental displacement vector through the Segment 

Tangent Stiffness Matrix. 

Member Coordinates -

The total equilibrium equations of the segment from Eqs.(3.7) and (3 .14) are 

P = EA G + b1(<Pl +<p2f + b2(<P1-<P2)2) , 

EI 
l\Ih = T(Cl<Pl + C2<P2) (3.18) 

EI 
and M2 = T(C2<Pl +Cl<P2). 
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Differentiating each of these equations with respect to each of the displacement 

quantities u, ¢1, ¢z, yields the components of the tangent stiffness matrix. Since 

Cl, C2, b1, bz are functions of the axial load, P, which in turn is a function of u, ¢1, ¢z, 

the chain rule of differentiation is applied. Denote Q. as the incremental displacement 

vector, i as the incremental load vector and K;n as the segment tangent stiffness 

matrix in the member coordinates. If Pe is given by Eq.(3.10), then the incremental 

equilibrium equation in member coordinates is 

where 

I,m' . 
'""t Q=,? 

G2 = C~¢1 + C~ ¢z , 

~ 
HL 

G' 
Cl + H';' ~l HL 

GG 
C2+W ' 

G' 
Cl +-;;;, 

H = ;~ - b~(¢1 H2)2 - b~(¢I-¢Z? , 

·T (. Q = U 

Local Coordinates -

(3.19) 

Consider the geometry of the segment chord shown in Fig.3.8. The local dis

placement quantities are related to the member displacement quantitites as 

(dz-d5)Z 
u = (d 1 -d4 )+ 2£ + "' , 

¢1 = Bl _ (d2-d5) + (d1-d4 )(dz-d5) + ... (3.20) 
£ £2 

(d2-d5) (d1-d4 )(d2-d5) 
and ¢2 = Bz - £ + £2 + . .. . 

The incremental form of Eq.(3.18) is 
. . . . 

. - (d' d' ) (dz - d5)(d~-d5) 
u- 1-4+ +"', 

£ 
. _ B _ (d2-ds) (d1-d4 )(d2-d5) (d1-d4 )(d2-d5) ... (3 .21) 

'PI - 1 £ + £2 + £2 + 
and ; - B _ (d2-ds) (d1-d4 )(dz -d5) (d1-d4 )Cdz- d5) ... 

'P2 - z £ + £2 + £2 +. 
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To obtain the instantaneous incremental end-displacement vector in member coor-

dinates, g, in terms of t he instantaneous incremental end-displacement vector in 

local coordinates, g, t he end-displacement vector in local coordinates, g, is set to 

zero, i.e ., g == O. Hence, the incremental relation in Eq.(3 .21) reduces to 

a= B d - - , (3 .22) 

where 

B = [ ~ 
0 0 - 1 0 

~ ] 1 1 0 1 -r r , 
- y; 0 0 y; 

· T . 
g = (d1 dz d3 d4 d5 d6 ) 

and . T ( . 
Q. = u (PI ¢z) 

Again, from F ig.3.8, the segment end-forces in local coordinates can be written 

in terms of the corresponding quantit ies in the member coordinates as 

where 

PI = P cos f} + Q sin f} , 

ql = P sin f} - Q cos f} 

and Inl = M 1 , 

and 

cosf} = L+id1 - d4 ) , 

+u 
sinf} = (dz - d5 ) 

L+u 
Q = (Ml +Mz) . 

L+u 
Substituting Eq.(3 .20) in Eq.(3.23) yields 

and Inl = 1\11 . 

(3 .23) 

(3.24) 
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Again, the incremental form of Eq.(3.24) is 

. =p{ _(d2-dS)2} p{_(d2-ds)(d2-ds)} 
PI 1 2£2 + £2 

(Ml +M2) { (d2-dS) 2(dl-d4)(d2-dS)} 
+ L L £2 

(Ml +.Nh ) {(d2 -ds) 2(dl - d4 )(d2 -ds ) 
+ L L - £2 

+ ... , 
. . {(d2 - ds) (dl-d4)(d2-dS)} 

ql = P L £2 

p { (d2-ds) (dl -d4)(d2- ds) (dl - d4)(d2-ds)} 
+ L £2 £2 

. . 2 
(Ml+.Nh) { (dl -d4 ) (dl -d4 ) (d2- dS)} 

- L 1- L + £2 £2 

_ (.NIl 1M2) { (dl -d4 ) 2(dl -d4)(dl -d4 ) 2(d2-ds )(d2- ds )} 
L + £2 £2 

+ ... 

and (3.25) 

Similar expressions can be derived for 'P2 , q2 and m2. Again, to obtain a relation 

between the instantaneous incremental end-force vector in local coordinates, i!., and 

the instantaneous incremental end-force vector in member coordinates, ,i, s1 is set 

to zero. Hence, if B is as defined in Eq. (3.22), then Eq.(3.25) reduces to 

B T ' G d . ~+ c _ =p, (3.26) 

where 
9. _ 9. 0 L 0 0 L 0 
P 0 _ 9. p 0 L L - L 

Gc = 0 0 0 0 
0 9. 0 L 

Sym. p 
0 L 
0 

·T ( . E = PI ql ml P2 q2 m2) 
·T . 

s1 = ( dl d2 d3 d4 ds d6 ) 

and ,iT = ( p Ml M 2 ) . 
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In Eq.(3.26), Q is the equilibrium shear force given by Eq.(3.2), and the G e is 

the segment Geometric Stiffness corresponding to the chord rotation, which is a 

function of the equilibrium forces currently appearing on the segment. 

Substituting Eqs.(3.19) and (3.22) in Eq.(3.26), yields 

I ' . 
K, d. = E (3 .27) 

where 
K! = GTe + G e , 

GTe = BTK;" B, 
·T . 

d. = (d, d2 d3 d4 ds d6 ) 

and ·T (. E = p, q, m, P2 q2 m2 ) 
In Eq.(3.27), K: is the complete Updated Lagrangian local segment tangent stiffness 

matrix. The GTe includes the segment elastic tangent stiffness and the geometric 

stiffness corresponding to the displacements relative to the chord. 

Global Coordinates -

Let the inclination of the segment updated at each local iteration within the 

load step to the global coordinate frame be a, as shown in the Fig.3 .7. Then, the 

transformation, T, relating the local and global coordinate frames is 

a b 0 0 0 0 
-b a 0 0 0 0 

T= 
0 0 1 0 0 0 

(3.28) 
0 0 0 a b 0 
0 0 0 - b a 0 
0 0 0 0 0 1 

where 
a = cosa 

and b=sina. 

Thus, the incremental end-displacement vector, :i!, and the incremental end-force 

vector, L in global coordinates are related to their respective local quantities as 

d= Til - -
(3.29) 

and 
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Thus, if K: is the global segment tangent stiffness matrix, then Eq.(3 .27) can be 

transformed into global coordinates using Eq.(3.29), as 

(3.30) 

where 
K: = TTGTc T + TTG c T, 

fiT = (UI VI 91 U2 V2 92 ) 

and 
·T . L =(h h h J4 J5 i6) . 

The first component of K: represents the elastic tangent stiffness and the geometric 

stiffness corresponding to the displacement relative to t he chord, while its second 

component represents the geometric stiffness corresponding to the chord rotation. 

3.3.3 Geometric Stiffness, Large Deformations and the P opu larly 
Used Approximations 

Geometric Stiffness is an important characteristic in the nonlinear frame anal

ysis. It originates from the geometric nonlinearity in the frame . The geometric 

nonlinearity of a frame contains two aspects, namely stiffness effects of the equilib

rium loads on the displaced geometry and nodal coordinate updating. For stocky 

members, the latter alone is sufficient to closely approximate their geometric stiff

ness . If the nodal coordinates are not updated, the formulation is equivalent to 

considering only small displacements . 

The first part of geometric stiffness representing the tendency toward instability 

or stability of the member, depends not only on the condition of the loading but 

also on its deformed geometry. A tensile axial load causes the member to stabilise, 

while a compressive a.."(ial load causes instability in it. As the equilibrium shear 

force caused by the end-moments increases, the coupling between the axial and 

shear degrees of freedom of the member increases . The deformed geometry of the 

member consists of two parts, namely displacements relative to the chord and the 

chord rotation. Often, the term Geometric Stiffness is loosely used to represent only 
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one of these two constituents, instead of both. The relative chord displacements are 

assumed to be small while deriving the governing equations, Eq.(3.18). 

The P-6 effect is important in tall building frames. It represents the increased 

effects of overturning due to the gravity loads caused by the lateral deflections of 

the frame. The stiffness effects due to the applied loads can approximately account 

for the P-6 effects as long as the lateral displacements of the frame are not large. 

For tall frames undergoing large sways, it is necessary to accurately account for the 

P-6 effect by continuously updating the nodal coordinates during the analysis. 

To specialise the Eq.(3 .27) to the popularly used approximations, consider the 

Plastic Hinge Model beam-column segment described in the previous sections of 

this chapter. If the effect of bowing is neglected in Eq.(3.27), then 

I' . 
K t fi=E 

where 

EA 9. 0 EA _9. 
T L -T L 

2El(c1-1<o,) + E El( C1-1<o,) _9. 2El( C1-1<o,) P 
L3 L L' L £3 - y 

EICt 0 El(c1-1<o,) 

K: = L L' 
EA 9. 
T L 

Sym. 2El(c1-1<o,) + E 
£3 L 

fiT = (d l d2 d3 d4 ds d6 ) 

and ET = (P l ql ml P2 q2 m2 ) 

If P is small, then Cl ,C2, can be approximated by 

and 

. 2 2 
Cl = 4 + 157r P 

. 1 2 
C2 = 2 - -7r p. 

30 

(3.31 ) 

0 
El(c1-1<o,) 

L' 
Elc2 

L 

0 
El(c1-1<o,) 

L' 
Elc) 

L 

(3.32) 

Substituting Eq.(3.32) in Eq.(3 .31) and neglecting the Q/ L terms, Kl can be ap-



proximated by K~, given by 

K~= 

EA 
L o 

12El+L+.E 
La 5L L 

Sym. 

= K* +K* e 9 

where 
EA 
L 

K* = e 

0 

and K*= 
9 

0 
12EI ---v-

Sym. 

0 
6P 
5L 

Sym. 
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EA 
-L 

o 
o 

EA 
L 

o 
12El P P - ---y;r - 5L - y; 

6EI +..E 
L2 10 

o 
lUf! + ir, +f 

EA 0 -L 0 
6EI 12EI 

o 
6El P 

- [;2 -10 
2EI PL 
--y;- - 30 

o 
6EI+ P 
[;2 10 

4EI + 2PL 
L 15 

(3.33) 

0 
6EI --v 0 - [;3 - [;2 

4EI 0 6EI 2EI 
--y;- ---v- --y;-

EA 0 0 L 
12EI 6EI 
---v- ---v-

4EI 
--y;-

0 0 0 0 
P 0 6P P 

- 10 - 5L -10 
2PL 0 P _PL 
15 10 30 

0 0 0 
6P ..E 
5L 10 

2PL 
15 

K: is readily recognised as the local -segment linear elastic stiffness matrix, and K; 

is the local segment geometric stiffness matrix, popularly used by researchers [33], 

considering the effects of goemetric stiffness corresponding to effect of axial load 

alone on the chord rotation of the segment, the small axial load approximation of 

the stability functions and the absence of bowing. 

In Eq. (3.33), K~ can also be obtained from Kl in Eq.(3.27), in the limi t as the 

length of the segment becomes shorter. However , in practice, this approximation 

is often used for the entire beam-column element. But , it is only appropriate for 

the stockier beam-column members. If the members are not stocky, then sub-

division of the member into smaller segments or inclusion of the neglected terms, or 

a combination of these two must be employed. While using K; given by Eq.(3.33) , 

some researchers [34,35J do not update the nodal coordinates, which could have an 

effect on the response . This effect is studied in Chapter 6. 
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3.3 .4 Incremental Equilibrium Equation of a Beam-Column 

While ascertaining the new state of a beam-column composed of multiple seg

ments, given the incremental end-displacements on it and its current state, the 

tangent stiffness matrix of the complete beam-column is required. The degrees of 

freedom of a beam-column, both interior and exterior, are shown in Fig.3.9. The 

incremental equilibrium matrix equation of the whole beam-column is formed by 

assembling those of all its segments. Symbolically, if K, is the complete global 

tangent stiffness matrix of the beam-column representing all its degrees of freedom, 

and Kt is the segment global tangent stiffness matrix from Eq.(3.30), then using 

the assembly operator 2::, 
N, 

K t = L {Kf} (3.34) 
8=1 

where Ns is the number of segments in the beam-column. 

3.4 Inelastic Effects 

Inelastic effects stem from the characteristic load-deformation relation, which 

simply reflects the material nonlinearity. Under inelastic conditions, the load

deformation relat ion is nonlinear or at least bi-linear. Also, the loading path cannot 

be retraced, once plastic deformations are accumulated during the loading process. 

3.4.1 Origin of Inelastic Effects: P-M Interaction 

Two origins for inelastic effects are considered, namely axial load and bend

ing moment. Inelastic effects due to shear are not included. Given a member of 

specified dimensions and material, the yield axial load capacity, Py , and the plastic 

moment capacity, j\lfp, are automatically defined. It is assumed that the tensile 

and compressive yield axial load capacities are equal in magnitude, and that the 

plastic moment capacities are same irrespective of the sense of rotation, positive or 

negative. When the yield axial load or the plastic moment capacities are reached, 

then any additional axial displacement or rotation, respectively, accrue as plastic 
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deformations. The strain-hardening in the material is neglected. The individual 

idealised load-deformation curves for these two forces are shown in Fig.3.10. 

In reality, the axial load and the bending moments appear simultaneously with 

interaction between them. The actual strength interaction diagram obtained from 

test results for a typical hot-rolled W section normally adopted in building frames 

are shown in Fig.3.11 along with the idealised curve. For an axial load, P, at a 

cross-section in a member, the reduced plastic moment capacity, M pr , is given by 

{

Mp 
Mpr = M,_ {l- lfl} 

0.8" P fJ 

if IFI :::; O.15Py 

if IPI > O.15Py 
(3.35) 

';Yhen the state of a member reaches the strength interaction surface, then one 

of three paths is possible - further increase in axial load with decrease in bending 

moment, further increase in bending moment with decrease in axial load, or neither 

axial load nor bending moment change. 

In the first case, there is an increase in the plastic rotations at the ends of 

the member as it tends to straighten-up. The elastic rotations within the plastic 

hinges reduce to zero when the yield axial load, Py , is reached, and the segment 

becomes perfectly straight. The axial displacement in the segment is equal to the 

yield axial displacement , U y = PyL / EA .. If the axial displacement , u, exceeds u y in 

magni tude , either in tension or in compression, then the axial displacement beyond 

the yield displacement, u y, accumulates as axial plastic displacement , uP' given by 

{
u-u u - y 

p - u + u y 

if P = +Py 

if P = -Py . 
(3.36) 

In the second case, the elastic end-rotations within the plastic hinges increase. 

When the axial load reduces to zero, these elastic end-rotations reach a maximum 

value. On further application of end-rotations, the elastic end-rotations remain 

constant , but the additional end-rotations applied accrue as plastic end-rotations. 

NIathematically, if B is the total applied end-rotation and <P is the elastic end-rotation 

within the plastic hinges, then the plastic end-rotation, 1<, is 

(3.37) 
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In the third case, any addi tional incremental axial displacements and incre

mental bending rotations accrue as plastic displacements and rotations, repectively. 

3.4.2 Characteristic States of a Beam-Column Segment 

Consider the beam-column segment shown in Fig.3.9b. Plastic hinges may be 

formed at its two ends. Further, these hinges could be positive or negative. For 

each segment, this leads to nine possible states, henceforth called the characteristic 

states, shown in Fig.3.l2. Obviously, at the end of any load step, if the segment is 

not in axial yield, it must be in one of these nine states. 

A closer look at these nine states reveals that, in effect, there are only three 

typical cases, namely no hinge case, one hinge case and two hinge case. The axial 

load equation of the segment, Eq.(3.l4), in the non-dimensional form is 

u 2 

(L~r)2 p - b,(4), +4>2)2 - b2(4),-4>2)2, (3.38) 
L 

where r = V I / A is the radius of gyration in the plane of bending. The singularities 

in Eq.(3.38) corresponding to the critical buckling loads are evident from Fig.3.l3. 

To obtain Fig.3.l3, both 4>, and 4>2 must be specified in the no hinge case, either 

4>, or 4>2 must be specified in t he one hinge case, while neither 4>, nor 4>2 need be 

specified in the two hinge case. In the one hinge and two hinge cases, for each a.xial 

load ordinate, the reduced plastic moment,.calculated using Eq.(3.35), is applied at 

the appropriate end of the segment. 

3.4.3 Cyclic Loading of Plastic Hinges 

The beam-column model [10] discussed in Sec.3.l , does not incorporate the 

cyclic loading of inelastic effects, and is limited to static and monotonic loading only. 

The Plastic Hinge Model incorporates the case of transient loading by effectively 

utilising the two internal rotational degrees of freedom of the segment, corresponding 

to the two elastic end-rotations between the plastic hinges. This distinction between 

the total end-rotation, e, and the elastic end-rotation, 4>, is clarified in Fig.3.14. 



~ 44 ~ 

Consider the segment with plastic hinges , if any, formed at its ends. The 

segment between these plastic hinges is . deformed elastically. At an end, rP may 

be smaller than or equal to B. If rP = B, no plastic rotation accrues, but rP < B, 

plastic rotation, "', accumulates. Mathematically, within a load step , if iJ is the 

applied incremental end-rotation on the segment, and ~ is the increment III the 

elastic rotation within the plastic hinges, then the increment in "', is 

(3.39) 

This simple equation is used to check whether the plastic hinges in the segment are 

loading in a positive sense or in a negative sense. 

As stated earlier, at any given instance, a segment lies in only one of the nine 

characteristic states discussed in Sec.3.4.3. To decide the state of the segment at the 

end of the load step, the nine characteristic states are ordered as noted in Fig.3.12. 

The elastic case appears first , followed by the one hinge states and then by the two 

hinge states. The axial load equation, Eq.(3.38), is solved assuming the final state 

of the segment to be one of t hese states starting from the first. A detailed account 

of t he solution procedure is discussed in Sec.3.5.1. The end-moments, M, ,M2 , are 

computed using Eq.(3.7), and the incremental plastic rotations , K. , within the load 

step at each end are computed using Eq.(3.39). 

If computed plastic end-rotation increments and the end-moments are such that 

the basic criteria of the assumed final state listed in Table 3.1 are violated, then the 

next characteristic state in the order is tried. However, if for a state, the computed 

plas tic end-rotation increments, if any, and the end-moments are in agreement with 

the corresponding criteria of the assumed final state, then that state is chosen as 

t he final state of the segment at the end of the load step. 

3.4.4 Segment Characteristic States in Multi-Segment Beam

Columns 

A bearn-column composed of multiple segments must be modelled carefully. 

Two segments neighbouring an interior node of the bearn-column, may carry differ-
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ent axial loads. Consequently, the reduced moment capacities of these two segments 

could be different. In effect , two plastic moment hinges, one for each segment may 

be formed at the interior node. Under such circumstances, during the Newton it

erations for solving the interior nodal unknowns , one may encotmter convergence 

difficulties with the residual moment quantity associated with that interior node. 

To overcome such difficulties, it is ensured that only one plastic hinge is formed 

at each interior node. This is made possible by forcing one of the two segments at 

each interior node to remain elastic. Fig.3.15 shows one possible way of achieving 

this for beam-columns with two, three and four segments. Similar designs can be 

arrived at for beam-columns with five or more segments. 

It may be noted here that a beam-column segment which must have one of 

its ends necessarily elastic, h as only three characteristic states corresponding to 

the characteristic states 1, 2 and 3 of the regular beam-column segment discussed 

in Sec.3.4.2. And, obviously, a beam-column segment which must have both of 

its ends necessarily elastic, has only one characteristic state corresponding to the 

characteristic state 1 of the regular beam-column segment . 

3.5 Numerical Implementation 

Some of the salient features associated with the numerical implementation of 

the Plastic Hinge Model are discussed in this section. 

3.5.1 Adjacent Point Method - Segment Level Iteration Scheme 

A beam-column may be composed of a single segment or more. In either case, 

a basic computational tool is required to ascertain the updated segment equilibrium 

forces (P, NIl, Nfz) due to specified incremental end-displacements (u, <P1, <P2) on its 

inital state. Owing to the implici t nature of the governing equations, the equilibrium 

forces can only be ascertained through an iterative procedure. This sub-section 

describes the iteration scheme used at the segment level. 
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Of the three governing equations listed in Eq.(3.l8), the axial load equation 

must be solved first, because of the implicit dependence of bI , b2 on P itself via CI, C2. 

And, once P is known, M I , ],112 are obtained by mere substitution. Thus, consider 

the axial load equation in the normalised form, Eq.(3.38), shown in Fig.3.l3. Given 

the initial state of the segment and the incremental end-displacements, the imme

diat e task reduces to obtaining the updated p. 

Fig.3.l3 concludes that for increasing tensile axialloads the slope ofthe (ul L )-p 

curve becomes asymptotic to a value of (Pel EA). No difficulty may be experienced 

in solving the equation under tensile axial loads as the (u I L )-p curve is relatively 

flat. Under compressive axial loads the picture is completely different. The smallest 

critical load of a beam-column segment, magnitudewise, is -Pe , where Pe is the first 

Euler load of the segment , given by Eq.(3.1O). The maximum possible compressive 

axial load in the segment is - Py. Thus, the relative magnitudes of Py and Pe are 

very important. If Py -:;, Pe, then, in the range from -Pe up to Py, the (ul L)-p curve 

has no singularities. Further, in the range -l-:;'p-:;' +4, if the iterations to compute 

the axial load begin close to p = -1 and seek an axial load p> -1, the slope of the 

(ul L )-p curve is posi t ive and monotonically reducing to Pel EA. The characteristic 

(uIL )-p curve is of the softening type. Thus, it is proposed that the iterations to 

solve t he axial load equat ion always be started at an axial load of -O.99Pe or -Py, 

whichever is smaller in magnitude. 

In general , the characteristic curves corresponding to the initial and new states 

of the segment mayor may not be different, as indicated in Fig.3.l6. Softening 

systems are readily handled by the Newton-Raphson Iterative Scheme. It requires 

the tangent slope at each point along the solution path of Eq.(3.38), as indicated 

in Fig.3.17a, which is computationally intensive. Another possible scheme is the 

Secant Method, as shown in Fig.3.l7b. This method requires an initial estimate of 

the tangent slope, which is not always convenient to produce. Thus, the Adjacent 

Point Method is proposed. Fig.3.17c shows the simple nature of this scheme. 
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As proposed, the iterations are begun at point A, corresponding to either 

-0.99Pe or -Py, whichever is smaller in magnitude. Another point B is picked f;.p 

away, arbitrary but small, in the tensile direction from point A. Using Eq.(3.38), 

u/ L is computed at point B. Now, the secant slope between points A and B is 

k = (U/L)B - (U/ L)A 
f;.p . (3.40) 

In the limit f;.p --t 0, k represents the tangent slope at point A. Using this slope, 

as in the Newton-Raphson Method, a new approximation, point C, for the solution 

p is obtained. Again, point D is the adjacent point picked f;.p away in the tensile 

direction from point C, and the secant slope between points C and D is estimated 

using Eq.(3 .40). This slope is used to obtain the updated p. This procedure is 

continued until convergence is achieved at point N, the new state. 

For stocky beam-columns or for beams with small or no axial load, the char-

acteristic (u/L)-p curve is relatively linear with an asymptotic slope of (Pe/EA). 

Under these circumstances, the Modified Newton-Raphson Method may be used to 

further reduce the computational effort , by iterating with a constant initial slope. 

Sometimes, the asymptotic slope (Pe / EA) itself may prove to be adequate. 

If for a beam-column member Py > Y;, where Pern is the first Euler load of the 

member, then it may be modelled using at least two segments or more in order to 

make Py ::; Pe for each segment. The beam-column members of framed structures 

designed for seismic loads in accordance with Uniform Building Code 1988 [36] have 

been observed to have Fy <:;;:: Fern. Thus, a single segment is adequate to model the 

complete beam-column, provided no hinges are formed between its ends. 

3.5.2 Buckling 

Slender beam-columns and braces, for which Pern < Fy, where Fern is the first 

Euler load of the member and Py is its yield axial load, are prone to buckling under 

inelastic cycling. Buckling of frame members results in considerable degradation 

in its strength and stiffness. A significant redistribution of internal forces occurs , 
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which is not usually accounted for in conventional design. 

The phenomenon of elastic buckling is only a mathematical abstraction. In 

practice, it is not possible to have a perfectly straight member with purely axial 

load acting on it. Two types of buckling occur in reality. The first is the case of 

elastic buckling followed by inelastic effects due to large displacements transverse 

to the chord. The initial geometric imperfections cause bending in the member 

under compressive axial load. On reaching the P-M strength interaction surface, 

a reduction in the axial load and an increase in the end-moments take place. The 

second type of buckling is initiated by the inelastic effects, like partial unsymmetric 

yielding of the cross-section caused by the residual stresses. 

This model includes both the types of buckling. Under large compressive axial 

loads that appear on the member combined with any geometric imperfections or 

with applied flexural deformations, plastic moment hinges are formed due to the 

reduced plastic moment capacity. The reduced stiffness in the member due to these 

plastic hinges results in further flexural deformations. Thus, progressively large 

transverse deformations are accumulated in it owing to inelastic effects, as shown in 

Fig.3.18a. Under cyclic load history, t hese large deformations accumulated can be 

compensated for by possible yielding in tension. Fig.3.18b shows the P-u curve with 

the various stages of the buckling cycle. The corresponding inelastic path along the 

P-iVf strength interaction is t raced in Fig.3.18c. 

Some researchers [37] closely examined experimental hysteresis loops and devel

oped phenomenological models. These models possess one local degree of freedom, 

the axial deformation. But, several input parameters are required to obtain an ac

curate result. The hysteresis loops are defined using a number of linear segments. 

Important phenomena, like deterioration of the buckling load, plastic increase in 

member length due to tensile deformations, formation of hinges within the member 

and local buckling, observed during the inelastic cycles, have been incorporated in 

some of the models. In trying to capture these nonlinear effects, these models be-
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come computationally very tedious . They are based on simplified rules that only 

mimic observed behaviour and not on any theoretical considerations. 

The Plastic Hinge Model overcomes these drawbacks associated with the phe

nomenological models. Potential members that may undergo buckling are modelled 

using two-segment elements. Buckling load deterioration, tensile plastic growth and 

the effect of hinges formed within the span of the member are routinely handled. 

However, the issue of local buckling remains unattended. 

As seen in Fig.3.18b, the stiffness of the member changes during the course 

of the loading. Hence, in case of multi-segment beam-columns, the local iterations 

at the member level to compute the interior nodal unknowns, must be performed 

carefully. The softening and stiffening portions of the P-u curve result in slow 

convergence, if the Modified Newton-Raphson iterations are conducted using the 

initial elastic stiffness . The inclusion of the Geometric Stiffness in the iterating 

stiffness is very important. T he Newton-Raphson Method using the member tangent 

stiffness, accounts for t hese stiffness changes, and eliminates convergence difficulties. 

When a member prone to buckling enters the tensile yield region during the 

load cycling, it may completely compensate for the previous residual compressive 

deformation, if any, and become perfectly straight . At this stage, if pure axial 

compression is applied, it does not see any imperfection from a numerical stand 

point. Consequently, it reaches compressive yield instead of buckling, which may 

not be realistic. Thus, a numerical imperfection needs to be created in it. This is 

done by applying a small load transverse on it as shown in Fig.3. 19. Any tendency 

in the member to undergo buckling, readily attracts this transverse load and results 

in flexural deformations which ultimately lead to inelastic buckling. A member in 

tension does not undergo buckling. Further, if the member is in tensile yield when 

such a load is applied, convergence problems will be encountered. Hence, this small 

transverse load is applied only when the member is under compression. 
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3.5.3 Member Level Iteration Scheme 

In frame analysis, the most recurring computation is at the element level. At 

each global iteration within a load step, the incremental end-displacements, iim
, 

appearing on the member are known and the new member equilibrium end-force 

vector, f m
, needs to be obtained, as discussed in Sec.2.5.5. For multi-segment 

beam-columns, the unknown displacements corresponding to the interior degrees of 

freedom are obtained first. Owing to the nonlinearities in the member constitutive 

relations, an iterative procedure is essential. 

Newton-Raphson Method is used to conduct these iterations. During cyclic 

loading, the unloading stiffnesses could be significantly different from the loading 

stiffness, as depicted in Fig.3.20. At the start of a load step, it is not known whether 

loading will continue or unloading will take place. Hence, to avoid any convergence 

problems, first iteration is conducted using the member elastic stiffness, and the 

subsequent iterations using the member tangent stiffness. 

The effect of the known incremental end-displacements, ii m, appears as speci

fied forces on the interior nodes neighbouring the end nodes. Then, if [cm represents 

the complete member residual force vector corresponding to all its degrees of free

dom, both interior and exterior, and if K t is the tangent stiffness matrix, given by 

Eq.(3.34), then the incremental equilibrium of the member can be written as 

K t ucm = _fcm 
- -' (3.41 ) 

where iicm is the complete member incremental displacement vector. Eq.(3.41) IS 

solved by the Gauss Elimination Procedure. 

Using the complete member incremental displacement vector , iicm
, the global 

incremental end-displacements, ii, appearing on each segment are obtained using 

the assembly array of the segments. Then, using Eq.(3.29), the local incremen

tal end-displacement vector, d, is computed. Again, using Eq.(3.22) , the member 

incremental end-displacement vector, Q., is computed. 
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Now, the segment axial load is computed according to the procedure described 

in Sec.3.5.1. Knowing the axial load, P, the end-moments, M1 ,M2 , are computed 

from Eq.(3.7). Thus, the end-force vector of the segment in member coordinates,~, 

is known. Using the strain-deformation matrix, B, given by Eq.(3.22), the segment 

local end-force vector, p, is computed by 

(3.42) 

Again , using the coordinate tranformation matrix, T, given by Eq.(3.28), the seg

ment global end-force vector, L is computed by 

(3.43) 

The assembly of these global end-force vector, L of each segment using the 

assembly array, results in the updated complete member residual force vector, tern. 
The above procedure is iterated until this residual force vector quantities associ

ated with the interior nodes reduce to within the tolerances. Once convergence is 

achieved, the new member equilibrium end-force vector, f m
, is formed using the 

global end-force vectors of the two end segments. 

3.5.4 External 'lransverse Loads on Beam-Columns 

If external concentrated loads are applied transversely within the span of the 

beam-columns instead of at its ends and plastic hinges occur at these locations, 

then such members must be composed of multiple segments. At least, as many 

interior nodes as the external loads on the member , should be chosen. Further, the 

locations of these nodes is so chosen as to coincide with those of the external loads 

themselves. This allows the concentrated load to be directly included in the nodal 

force vector while conducting the iterations at the element level. 

If no plast ic hinges form at the locations within the span of the beam-column, 

where the external transverse concentrated loads are applied, then the correspond

ing fixed-end forces of such transverse loads may be applied at the end of the 
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members. The rest of the analysis does not differ from before. Similar approach 

can be employed to approximately include distributed loads applied transversely on 

the beam-column. But, for an accurate solution, a new set of Stability Functions 

and Bowing Functions corresponding to the distributed loads , need to be derived. 

3.5.5 Artificial Unloading during Member Iterations 

The possibility of artificial unloading during inelastic global iterations was dis

cussed in Sec.2.5.6. Artificial unloading can also occur during local iterations at the 

member level. In the process of updating the global Ekt1 (t+.t.t) vector at the end 

of each global iteration, the interior nodal unknowns of each beam-column need to 

be iterat ively solved. Under inelastic conditions, the unloading stiffness is different 

from the loading stiffness, and artificial unloading may be caused by the numerical 

scheme, as shown in Fig.2.4. As a remedial measure, the cumulative of the displace

ment sub-increments from all the local iterations is applied to the member state at 

the start of the load step, as discussed in Sec.2.5.6. 

3 .6 Numerical Results 

Validating the analytical model using a variety of numerical examples forms a 

very important part of its development. Three special problems are discussed in 

this section to evaluate the above model. Each of these problems is designed to 

elicit an important feature of the proposed model. 

3.6.1 Control on Tolerances 

The tolerance on local and segment iterations discussed in Sec.2.8 are adopted 

in the numerical examples discussed below. 

3.6.2 Single Member Examples 

The three different problems, wherein single beam-columns composed of multi-
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pIe segments are subjected to displacement-controlled loadings, are described below. 

Buckling Problem 

In the past, a considerable amount of experimental research was dedicated 

solely to study the inelastic cyclic behaviour of axially loaded members. One such 

study is chosen [38] to demonstrate the effectiveness of this model. A solid rect

angular steel bar of cross-section 25.4 mm x 12.7 mm and of length 860 mm, 

i.e., kllr = 120, is rigidly fixed at its ends against rotational and lateral trans

lational deformations. The Plastic Hinge Model uses two segments. A concentrated 

lateral load of 2 N is applied at mid-span to create an imperfection in the member. 

Under the displacement-controlled axial loading history prescribed, the P-u 

curve for the member as obtained from experiments and as predicted by the Plastic 

Hinge Model are shown in Fig.3.21. The general features are very well captured 

in the overall sense. The smaller buckling load as seen in the experiments may be 

attributed to the possible initial imperfections in the geometry of the bar resulting 

in an eccentric loading. On the tensile side, the smooth transition from the elastic 

reversal regime to the inelastic reversal regime, and from the inelastic reversal regime 

to the tensile yield regime is not captured by the Plastic Hinge Model, since partial 

plastification of the cross-section is beyond its scope. 

Snap-Through Problem 

In the elastic behaviour of slender beam-columns, there is an important phe

nomenon called the Snap-through. This phenomenon occurs when an infinitesimal 

perturbation in the member end-displacements produces a finite change in the mem

ber end equilibrium forces. Consider the hot-rolled steel section W14 x 132 [39] 

of length 50000 mm, with Pel Py = 0.08 and fixed at its ends. The Plastic Hinge 

Model uses two segments. Since the deformations applied are within elastic range 

and since the governing equations are exact for an elastic segment, more than two 

segments are not required. 

The three stage loading history prescribed is equal rotational deformations 
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at its ends causing single curvature in the member, followed by a pure axial com

pressive displacement , and finally equal rotations of opposite nature to the ones 

prescribed in the first stage. Fig.3.22 shows the variation in the axial load, P, and 

in the member end-moment, M 1 , with the member end-rotation, B, for different 

amounts of axial compressive displacement applied in the second stage. The M-B 

and P-B curves show a marked change as the magnitude of the axial compressive 

displacement increases. The snap-through situation is evident particularly when 

the axial compressive displacement is close to or exceeds 4ue, where U e is the axial 

displacement , which when applied in the member results in an axial load of Pe, the 

first Euler Load of the member. 

The case where u = -5ue throws light on an additional aspect, the elastic post

buckling large deformational strength. The theoretical prediction for the maximum 

elastic compressive load in a fixed-ended slender beam-column, as obtained from the 

elastic governing equations, is -4Pe. Hence, while using the Plastic Hinge Model, 

one would expect a maximum compressive axial load of 4Pe. However , Fig.3.22 

indicates a higher load than this, magnitudewise. Since the snap-through problem 

is an elastic one, the governing (u/ L )-p curve does not have a singularity at p= -1 , 

as shown in Fig.3.13a. Further, the curve is rather flat up to p= -3. Hence, even 

for the case of a member with two segments, one can notice an increase in the 

magnitude of the axial load up to about - 4.52Pe, i.e. , up to about -1.13P: , where 

P: is the first Euler Load of the segment. 

Lateral Translation Problem 

The problem of the cyclic lateral translation of a column member in a building 

frame under dynamic lateral load conditions is of utmost importance owing to its 

frequent occurrence in reali ty. Consider a beam-column made of the hot-rolled steel 

section W14 X 132 [39] of length 5000 mm fixed at its ends against rotation. The 

displacement time history considered is a pure axial displacement followed by cyclic 

lateral translations. Figs.3.23 , 3.24 and 3.25 show the effect of axial displacements 
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on the response of the beam-column. 

The model successfully captures the softening of the member at tensile axial 

yield load. Further, the uniform cyclic lateral translations result in a uniform vari

ation in the member axial load, irrespective of the sense and magnitude of the axial 

deformation in the beam-column. With reference to the bilinear P-1I1 interaction 

diagram, as the member approaches the yield corners, both in tension and in com

pression, the relative chord rotational deformations reduce. In the limit, when the 

corner is reached, the member is perfectly straight. This agrees with the physical 

intuition for lumped plasticity models without strain-hardening that a member can

not have any relative chord rotations at its ends while carrying the yield axial load. 

It is important to recognize here that the Plastic Hinge Model does not consider 

partial elastic unloading and strain-hardening. 
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Chapter 4 

THE FIBRE MODEL 

4.1 Introduction 

The Plastic Hinge Model described in Chapter 3 has limitations in accurately 

describing the true nonlinear behaviour of a beam-column. Firstly, the strain hard

ening property of the material is not incorporated. Strain-hardening causes more 

spatial spread of plasticity along the length and cross-section of the member causing 

an increase in its strength. Secondly, the axial and flexural stiffnesses are elastic. 

The model does not account for possible inelastic effects that may be developed 

during the course of the loading. The partial yielding and the elastic unloading 

of the yielded portions of the member cross-sections change its axial and flexural 

stiffnesses. Thirdly, the moment-curvature relationship is not accurately repre

sented. The complex stress distribution within the member cross-section, that may 

be generated through partial elastic unloading during arbitrary cyclic loading, is 

not reflected. Finally, the Plastic Hinge Model does not include the effect of the 

realistic residual stresses present in the hot-rolled structural steel sections. 

Thus, a need arises [8,11,31] for a Distributed Plasticity Model, which is de

tailed enough to encompass the above inelastic effects. Since plastic behaviour is 

dependent on the loading path, the desired model must be capable of handling 

cyclic behaviour. The model must be general enough to be applicable for arbitrary 

material constitutive law and also to capture the geometric effects. The Fibre Model 

is developed based on the Finite Element Approach to estimate the above effects 

more realistically than the Plastic Hinge Model. 
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4 .2 Model Description 

In the Fibre Model , a beam-column IS discretised into segments along the 

length, and further, each segment is sub-divided into fibres within the cross-section, 

as shown in Fig.4.1. Thus, the beam-column is physically replaced by an assembly 

of smaller discrete elements, the jibreJ. 

The idea of discretising a beam-column into a number of fibres was introduced 

as early as in 1970 [8]. Soon, a general procedure for obtaining the tangent stiffness 

matrix of a segment composed of fibres was presented [11]. However , till today, 

the models based on this approach use approximate load-deformation relations for 

each fibre, e.g., elastic-perfectly plastic relations and later bilinear relations with 

strain-hardening. Further, these models are restricted to monotonic loading only. 

Being computationally intensive, these models are popular only with researchers. 

In the proposed model , each fibre is capable of withstanding axial load ap

plied normal to its cross-section. The axial strain and axial stress in each fibre are 

computed as the average values at its centroid. A uniaxial cyclic contitutive law 

is used to control the hysteretic loading of the fibres. It is assumed that the fi

bres do not buckle under compression . Thus, the Fibre Model does not incorporate 

local buckling in the member, though it includes the overall buckling of the mem

ber. The behaviour of each fibre is modelled independently by a one-dimensional 

load-deformation relation. The flexural load-deformation relation of the segment 

is obtained by combining the axial load-deformation relationships of the fibres in 

it. All the fibres at the cross-section of a segment carry the shear force elastically, 

without any strength interaction with the bending moment and axial force. 

The Fibre Model follows the steps noted below to arrive at the solution for the 

new state of the member : 

(1) Discretize the beam-column into segments , and further , the segments into fi

bres. Identify t he nodal unknowns corresponding to the two translations and 

a rotation at each node, either interior or exterior. 
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(2) Evaluate segment tangent stiffness matrices. Assemble the m ember tangent 

stiffness matrix and the member residual force vector. 

(3) Introduce boundary conditions, i.e., the specified member-end displacements 

as concentrated nodal forces on the interior nodes adjacent to end nodes. Solve 

incremental equilibrium equations for incremental interior nodal unknowns . 

Calculate strain and stress in each fibre. Update member residual force vector. 

(4) Check for convergence. If not achieved, repeat from step 2. 

The Fibre Model is general enough to incorporate irregularities in material, 

geometry and loading. Material nonlinearity and cyclic loading are included through 

the uniaxial cyclic material constitutive law for the axial stress-strain behaviour of 

fibres. The irregularities in member geometry, e.g., the partially prismatic nature 

of stepped columns, is incorporated through the propert ies of the segment . 

4.3 Special Features 

There are two notable features of the Fibre Model, namely the uniaxial cyclic 

constitutive law of steel and the residual stresses in the hot-rolled sections. 

4.3.1 Uniaxial Cyclic Constitutive Law for Axial Stress-Strain 
Behaviour of Structural Steel 

Each fibre is essentially a one-dimensional member , with its entire area con-

centrated at its centroid. Its load-deformation relationship can be derived using t he 

material constitutive law. For the cyclic response of steel beam-columns, a uniaxial 

cyclic constitutive law for the axial stress-strain behaviour of st eel is required. In 

the li terature, m any analytical hysteretic load-deformation models are proposed to 

describe general hysteretic behaviour of structures. Though some of them are in 

conformity with the Extended Masing 's Hypothesis [40] relevant for metals, they 

are inadequate to model structural steel, as they do not include the predominant 

yield plateau present in its monotonic stress-st rain curve. 
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Experimental data collected from load tests on steel bars may be studied to 

propose the uniaxial cyclic constitutive law. In the past, a number of attempts were 

made to propose the cyclic constitutive law for structural steel [41 ,42,43,44J . These 

models are based either on curve fitting techniques or on phenomenological plasticity 

theory. The applicability of either kinematic hardening or isotropic hardening is 

yet to be established [45J in the models based on plasticity theory. However, a 

bias toward isotropic hardening is evident in the experimental data [46J. Also, 

most of these models result in hysteresis loops that approach the ultimate load 

asymptotically, which is contrary to reality. Steel has an ultimate strain and a 

rupture strain, which is not reflected in most of the available models. In addition to 

being computationally very intensive, they are burdened by the numerous loading-

regime-dependent cumbersome hysteretic rules. 

Proposed Model -

After carefully reviewing the merits and the drawbacks of the existing models, 

a simple model, namely Cubic Ellipsoidal Model, is proposed for the uniaxial cyclic 

constitutive law of structural steel. This physically motivated model significantly 

simplifies the numerical implementation under arbitrary transient loading. 

The monotonic stress-strain curves, or the virgin curves, obtained from uniaxial 

tests on structural steel bars, are characterised by eight distinct properties shown 

in Fig.4.2. They are, namely, Yield Stress a y, Ultimate Stress au, Yield Strain 

Cy, Strain Hardening Strain c.h , Ultimate Strain Cu , Rupture Strain Cr, Elastic 

Modulus E and Modulus at Strain Hardening Strain E.h. The proposed analytical 

model explicitly defines the virgin curve beyond strain-hardening strain by a cubic 

ellipse, shown in Fig.4.3 and given by 

(c-cO)3 (a-ao)3 '------;,'-'-- + - 1 in tension - - a3 b3 , -

(c - cO)3 (a-ao)3 . . 
and a3 - b3 = 1 III compreSSIOn, 

(4.1) 

where co and 0"0 are the strain and stress, respectively, at the centre of the cubic 

ellipse, whose semi-major and semi-minor axes are a and b, respectively. co, ao, a 
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and b are obtained using the eight material properties noted above. Further, the 

hysteresis loops, or the branch curves, are also defined by cubic ellipses given by 

Eq.(4.1), as shown in Fig.4.4. The quantities co, (To, a and b for the branch curves 

are determined by the hysteretic rules. 

Structural steel is assumed to strain-harden isotropically resulting in symm

metric hysteresis loops about the strain axis, i. e., (T = 0 axis, under equal cyclic 

plastic excursions, which is in agreement with the experimental data [47]. The 

hysteresis loops are bounded by envelopes, henceforth referred to as the backbone 

curves . These backbone curves, in tension and in compression, are simply the ten

sile and compressive virgin curves, respectively, translated along the strain axis, as 

shown in Fig.4.5. The amount of strain translation is determined by the plastic 

strain history. This process , known as Envelope Strain Shift [42], ensures that the 

hysteresis loops do not intersect [47] under gradual increase in the cyclic plastic 

excursions, at least , until the ultimate load is reached. 

The analytical representation of the strain-hardening part of the virgin curve 

given by Eq.(4.1 ) closely agrees with the experimental data [41] obtained from a 

uniaxial test on a steel bar, as shown in Fig.4.6. Using the backbone curve proper

ties, the experimental hysteresis loops [41] of another bar with the same properties 

are shown in Fig.4.7 along with the model prediction. In an independant experi

ment [45], the cyclic hysteresis loops of a bar, whose properties were determined 

by a monotonic test, are shown in Fig.4.8 along with the model prediction. The 

general features are well captured. 

Extended Masing's Hypothesis -

Masing's Hypothesis, originally proposed for steady-state response [48] between 

two fixed limits, was recently extended to arbitrary transient response [40]. This 

Extended Masing's Hypothesis stipulates two rules for hysteretic loops: 

Rule 1 : Incomplete Loops 

The equation of any hysteretic response curve, irrespective of the steady-state 
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or transient response, can be obtained simply by applying the original Masing's 

rule to the virgin loading curve using the latest point of reversal. 

Rule 2 : Completed Loops 

The ultimate fate of an interior curve under continued loading or unloading 

can be determined as follows : Once an interior curve meets a curve from 

the previous load cycle, the load-deformation curve then follows that of the 

previous cycle. 

These rules are intended for smooth virgin curves with C 1 continuity. But, the 

virgin curve of structural steel possesses only Co continuity, due to a linear regime, 

a yield plateau and a nonlinear strain-hardening regime. Thus, the application of 

these rules to the material at hand is not direct . 

Rule 1 is based on the original Masing's rule, which simply suggests a functional 

similari ty between the virgin curve and the branch curves. The proposed model does 

incorpor ate this functional similarity in a slightly modified form, which is evident 

from the hysteretic rules described below. Rule 2 requires that the information 

regarding the points of reversal, called as turning points, be systematically handled 

and updated while deciding the fate of nested loops. The characteristics of the 

Extended Masing's Hypothesis are demonstrated through the arbitrary but general 

stress-strain history shown in Fig.4.9. 

Hysteretic Rules -

The proposed model employs the following rules as guidelines to define the 

t ransient response of structural steel: 

(1) The virgin curves in tension and in compression are identical. 

(2) A sharp yield t ransition exists between t he elastic regime and the yield regime 

only at the time of initial yielding, when the response is linearly elastic until 

the yield stress is reached, either in tension or in compression. 

(3) New plastic strains are accumulated only by progressing along the virgin curve, 
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and not by traversing the branch curves. 

(4) Under strain reversals, the branch curve originating from the virgin curve is 

linearly elastic until zero stress is reached, and is nonlinear thereafter. This 

branch curve is referred as the first branch curve. 

(5) The destination of the first branch curve leaving a positive virgin curve is a 

symmetric stress point on the t ranslated negative backbone curve. Similarly, 

the destination of the first branch curve leaving a negative virgin curve 1S a 

symmetric stress point on the translated posi tive backbone curve. 

(6) All the subsequent branch curves originating from the first branch curve have 

the same amount of linear elastic unloading as the first branch curve. Further, 

the cubic ellipses describing the nonlinear portions of all these nested branch 

curves have the same radii, until either the destination point is reached or all 

the nested branch loops are closed, thus returning to the first turning point . 

(7) The slope at which a branch curve approaches its destination is the slope of 

the Equivalent Convex Virgin Curve at the same strain at the turning point 

from which it departed. The equivalent convex virgin curve of structural steel 

is shown in Fig.4.10. 

(8) The branch curve originating from the receding part of the virgin curve beyond 

the ultimate strain approaches its destination backbone curve at zero slope, 

instead of the negative slope at the turning point along the receding part of 

the virgin curve, as stated in Rule 7. 

(9) 'When unloading takes place very early in the yield regime, the formation of 

a cubic ellipse for the nonlinear part of the hysteresis loop within t he above 

constraints, may not be possible. In such a case, the linear elastic unloading is 

continued beyond zero stress till the formation of a cubic ellipse is possible. 

Merits of the Proposed Model -

The proposed Cubic Ellipsoidal Uniaxial Cyclic Constitutive Law for Struc-
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tural Steel is significantly superior to the currently used models. This physically 

motivated model is based on real uniaxial test data on structural steel bars. It 

provides smooth and explicit expressions for stress in terms of strain, unlike most of 

the currently used models which require iterations to arrive at the same result. The 

availability of explicit expressions for stress, and hence for the instantaneous stiff

ness, is very convenient for inclusion in displacement based Finite element models. 

The absence of numerous cumbersome loading-regime-dependent rules makes 

the model simple and computationally efficient, yet descriptive enough to adequately 

represent the features of real hysteretic behaviour. The proposed model does not 

incorporate stiffness degradation. However, this feature can be incorporated very 

easily, if required. With the wide range of hysteretic behaviour included, this model 

is an excellent choice for the analytical modelling of structural steel. 

4.3.2 Residual Stresses and Discretisation of Cross-section 

All the standard hot-rolled steel sections exhibit a non-zero initial state of 

stress locked in them during the manufacturing process. These stresses, known as 

the residual stresses, have an effect on the tangent stiffness and the yield load of 

members. They can decrease the ultimate load of biaxially loaded members by 

as much as 20% in the range of intermediate slenderness ratio [33]. Hence, these 

stresses must be included in the analysis of structures formed with such sections. 

The actual stress distribution of the residual stresses used in this study is 

given in Fig.4.11 along with the idealised summary. The idealisation of the residual 

stresses assumes that the tensile and compressive parts in the flanges and the web 

are equal in area. This idealised residual stress pattern suggests a very convenient 

discretisation of the cross-section into fibres. In the flanges, the tensile and com

pressive parts are modelled by one fibre each. The entire web is discretised into 

eight equal parts. Hence, by discretising the cross-section into 12 fibres, as shown 

in Fig.4.11, the residual s tresses can be included in the analysis without any pro-
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gramming difficulty. In fact , different number of fibres were tried, and the above 

discretisation with 12 fibres provided adequate accuracy. 

The Fibre Model has the capability to include the residual stresses in the hot

rolled steel sections. This is achieved by assigning the fibre stresses at the start of 

the analysis to be equal to the residual stresses. The fibre strains are set to be zero 

at the same time. While doing so, it is ensured that the virgin stress-strain curve 

is given a strain shift by an amount corresponding to the elastic strain that would 

produce the assigned residual stress. Though available, this feature is not utilised 

in the numerical studies discussed in Chapter 7. 

4.4 Equilibrium Equation 

The Princ iple of Virtual Work is used to derive the incremental equilibrium 

equations valid for both elastic and plastic responses. Incremental relations be

tween generalised stress and generalised strain are derived for each fibre, as shown 

in Fig.4.12. Such relations of all the fibres at a cross-section are combined to form 

the incremental equilibrium equation for a segment. Finally, the incremental equi

librium equation of the entire beam-column element is obtained by assembling those 

of all the segments in it. The assumption of large-displacements and small-strains 

and the Euler-Bernoulli kinematic assumption, that plane sections normal to the 

centroidal axis before bending, remain plane and normal to it even after bending, 

are made. The Updated Lagrangian approach is used. Let the cross-section of each 

segment be discretised into N f fibres. 

4.4.1 Incremental Equilibrium Equation of a Fibre 

Each fibre is essentially a beam-column member without any flexural capability. 

T hus, eliminating the rotational degree of freedom, only the in-plane translational 

degrees of freedom remain at each end of the fibre , as shown in Fig.4.12. Hence, 

the fibre incremental matrix equilibrium equation is of order four. 



- 65 -

The incremental equilibrium equation of the Plastic Hinge Model beam-column 

segment decribed in Chapter 3 are specialised for a fibre by dropping the moment 

equations. While doing so, it is meaningful to replace the Elastic Modulus, E, of the 

material by its Tangent Modulus, E,. Hence, the incremental equilibrium equation, 

Eq. (3 .30) , of the beam-column segment in global coordinates, is reduced to form 

the incremental equilibrium equation of a fibre in global coordinates, as 

where 

and 

fK TS + fK GS 
t t , 

f K TS _ , -

a2 ab 
b2 

EtA [ 

L Sym. 

~ [ (1-a
2

) 

Sym. 
·T ( . !l = g, 
·T . 
h. = (h , 

g2 g3 94) 

h2 h3 h4 ). 

-ab] _b2 

ab ' 
b2 

-(1-a2 ) 

ab 
(l-a2

) 

(4.2) 

In Eq. ( 4.2), f K t is the tangent stiffness matrix, i!.. is the incremental end- displace

ment vector and il is the incremental end-force vector of the fibre. fKfs and fKps 

are its truss stiffness matrix and geometric stiffness matrix, respectively. 

4.4.2 Incremental Equilibrium Equation of a Segment 

The segment incremental equilibrium equation is obtained by assembling those 

of the constituent fibres, derived in Sec.4.4.1. The segment equilibrium so obtained 

does not possess any stiffness under a pure lateral translation. Hence, shear stiffness 

is added to the segment. 

Incremental Equation without Shear Stiffness -

The end-displacement and end-force quantities of a fibre are shown in Fig.4.12a, 

and those of a segment are shown in Fig.4.12b. The translations indicated at the 
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end of the fibre correspond to the t ranslations at its centroidal axis . If h is the 

distance of the fibre centroid from the centroidal axis of the cross-section, then 

the incremental fibre end-displacement vector,!b and the incremental segment end

displacement vector, -Q., are related through fibre transformation matrices, R , as 

W+1 :!!. , (4.3) 

where 

R ~ [! 0 h cose> 0 0 

hI.] 1 h sine> 0 0 
0 0 1 0 
0 0 0 1 h sine> 

. T (. fl.. = gl g2 g3 94 ) 

and . T ( . 
~ = Ul VI 111 U2 V2 iJ2 ) 

Further, the fibre incremental end-force vector, fl., and the segment incremental 

end-force vector, L are related through the same transformation matrices, R , as 

1 = [· ·· RT ... J Hl (4.4) 

where 
· T . 
fl. = (hJ h2 h3 h4 ) 

and 
· T . L =(h h h f4 fs f6 ) 

Append the incremental equations of all fibres together to form 

[: ( 4.5) 

a 
Combine Eqs.( 4.3), (4.4) and (4.5) to form the segment incremental equilibrium 

equations in the global coordinate frame. If -Q. is the segment incremental global 

end-displacement vector, 1 is the segment incremental global end-force vector and 

abK t is the tangent stiffness matrix corresponding to 3.-'Cial and bending effects, then 

abK . - f· 
t ~ - ( 4.6) 
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where 

a=coso:, 

b = sinO') 

. T ( . 
!f. = Ul V 1 e1 U2 V2 ih) 

and 
·T . L =(h 12 h f4 i5 f6 ) . 

Incremental Equation for Shear Stiffness -

A pure lateral translation of the segment has no shear stiffness to oppose it. 

Hence, the shear deformation properties of the segment are included seperately. The 

Fibre Model does not consider the interaction of shear force with either axial force 

or bending moment, i.e., the shear deformation behaviour is considered elastic. The 

incremental equilibrium equations associated with shear deformations are derived 

and appended with Eq.( 4.6) to form the complete incremental equilibrium equations 

of the segment. The Euler-Bernoulli kinematic assumption is partially relaxed in 

the Fibre Model. Thus, plane sections normal to the centroidal axis before bending 

remain plane after bending though not normal to it. 

Let the lateral translation and rotational degrees of freedom of the segment in 

the local coordinates be w and e, respectively, and let z represent the axial coordi

nate in the local frame of reference, as shown in Fig.4.13. Let G be the Bulk or Shear 

Modulus of Elasticity of steel, and A. be the segment cross-sectional area effective 

in resisting shear. Then, the shear strain due to shear deformation is ( ow / oz - e) , 
where ow / oz is the rotation of the current normal to the centroidal axis and e is 

the rotation of the original normal. Therefore, the incremental equilibrium shear, 

Q, at any cross-section of the segment is 

(
OW,) . 

GA. oz - e = Q. (4.7) 
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Consider the domain V and it's boundary av of the segment. Let E be the in

cremental end-force vector. Then, the virtual work done by the incremental virtual 

end-displacements, Q, on the segment is 

( 4.8) 

Impose the finite element approximation of the segment using a single straight two

noded element as shown in Fig.4.13. Then, substituting Eq.( 4.7) in Eq.( 4.8), 

+JL/2(a;1; -:-) (aw.) az - eGA. az - e 
-L/2 

"T 
dz =Q E 

where 

and ·T ( . E = PI 

Customarily, w and e are expressed in terms of shape functions as 

d! 
d2 

{~} = [~ wN! 0 0 wN
2 8~2 ] d3 

0 8J>; 0 0 d4 ' I 

ds 
d6 

where the shape functions are given by 

WN! = 8N! = 1 z 
- + -
2 L 

and wNz = 8Nz = 1 z 
- - -
2 L 

Hence, the incremental shear strains in Eq.( 4.9) reduce to 

( 
a;1; -:-) az - e = (0 ! 

y; 
1 -y; -(~-t)) 

( 4.9) 

(4.10) 
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and (OW,) oz - e = ( 0 
1 
y; -(~ + t) 

Substituting Eq.(4.11) in Eq.(4.9), 

+L/2 

o 1 -y; -(~ - t)) 

J 
~T ~T 

d Q GA.!l d dz = dE' 
-L/2 

..,T 
Since Q is arbitrary, the above equation yields 

( 
j /2QGA. QT dZ) d = E. 

-L/2 

( 4.11) 

(4.12) 

Hence , if sh K; is the segment tangent shear stiffness matrix in local coordinates, 

then the segment incremental equilibrium equation is 

where 

shK1 _ 
t -

+L/ 2 J QGA.QT dz = GA. 

-L/2 

0 0 0 
1 1 
y; -'2 

.b. 
4 

Sym. 

0 
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0 
1 
y; 

0 
1 

-'2 
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'2 

.b. 
4 

( 4.13) 

While evaluating the above integral to obtain the local segment tangent shear stiff-

ness matrix, sh K: , one-point Gauss Quadrature is used to avoid the contribution of 

the shear stiffness to the flexural mode. 

Let the inclination of the segment in the global coordinates be a. Then, the 

transformation, T , relating the local and global coordinate frames is 

a b 0 0 0 0 
-b a 0 0 0 0 

T= 
0 0 1 0 0 0 

( 4.14) 
0 0 0 a b 0 
0 0 0 -b a 0 
0 0 0 0 0 1 
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where 
a = cos a 

and b = sin a . 

Using this transformation, T, the incremental end-displacement vector, .!!, and the 

incremental end-force vector, L of the segment in the global coordinates, are related 

to the respective local quantities through Eq.( 4.14), as 

4 = T li 

and · 1 = TTE· 
(4.15) 

Thus, if shK t is the global tangent shear stiffness matrix of the segment, then 

Eq.(4.13) transformed into the global coordinate frame using Eq.(4.15) , is 

ShK t li = 1 (4.16) 

where 
sh K t = T T shK! T 

b' .b b b' .b 2. T - T 2 -T Y 2 
.' • .b .' • y -2 T -y -"2 

L b • L 

= GA. 4" -2 2 4" 
b' .b b 
T -T -2 

Sym. .' • y 2 
£ 
4 

·T ( . !i = UI VI (h U2 V2 82 ) 

and 
·T . L =(h h h f4 fs i6 ) 

In the numerical study discussed in this thesis, the effective shear area, A., of the 

segment is taken as (5/6) times the web area of the hot-rolled W sections. 

Complete Incremental Equation -

Hence, using the tangent stiffness matrices corresponding to axial and bending 

effects, .bK, from Eq.( 4.6), and to shear effects , shK, from Eq.( 4.16), the complete 

segment incremental equilibrium equation in global coordinates is 

( 4.17) 
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where 
K:= abK, + .hK , , 
·T (. l!. = U1 V1 61 U2 V2 62 ) 

and 
·T . L =(h i2 h i4 is i6 ) . 

In Eq.( 4.17), K: is the segment tangent stiffness matrix in global coordinate frame. 

Since, the shear response is assumed to be elastic and uncoupled from the axial and 

bending effects, the above linear superposition is conducted even under nonlinear 

and inelastic conditions. 

4.4.3 Incremental Equilibrium Equation of a Beam-Column 

The incremental equilibrium matrix equation of the whole beam-column is 

formed by assembling those of all its segments. All the member degrees of freedom 

are ordered as shown in Fig.3.9. Symbolically, if K, is the complete global tangent 

stiffness matrix of the beam-column, K: is the segment global tangent stiffness 

matrix from Eq.( 4.17), and L:: is the assembly operator, then 

N. 

K, = L{K:} (4.18) 
8=1 

where N. is the number of segments in the beam-column. 

4 .5 Numerical Implementation 

The Fibre Model and the multi-segment Plastic Hinge Model beam-column ele

ments differ in substance but not in form. Though the incremental load-deformation 

rela tions are derived by completely different methods, their final matrix forms are 

identical. Hence, techniques and strategies similar to the ones adopted in the multi

segment Plastic Hinge Model beam-column element, are employed in the numerical 

implementation of the Fibre Model. The important aspects are re-iterated here. 

4 .5.1 Member Level Iteration Scheme 

As discussed in Sec.3.5.3, at the end of each global iteration within a load 
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step, the immediate task is to obtain for all members, the updated end-force vector, 

i m
, given the incremental end-displacement vector, i! m, appearing on them. To 

accomplish this, the unknown displacement increments corresponding to the interior 

degrees of freedom need to be evaluated. Owing to the nonlinearities in the member 

constitutive relations, an iterative procedure is essential. Newton-Raphson Method 

is used to conduct these iterations. To avoid convergence difficulties during cyclic 

loading, the first iteration is conducted with the member elastic stiffness and the 

subsequent iterations using the member tangent stiffness. 

The effect of the known incremental end-displacements, i! m, appears as speci

fied forces on the interior nodes neighbouring the end nodes. Then, if i cm represents 

the complete member residual force vector corresponding to all its degrees of free

dom, both interior and exterior, and if K t is the tangent stiffness matrix given by 

Eq.(4.18) , then the incremental equilibrium of the member can be written as 

K 'cm - fcrn 
t u --- , ( 4.19) 

where i!cm is the complete member incremental displacement vector. Eq.( 4.19) is 

solved by the Gauss Elimination Procedure to obtain the unknown displacement 

increments corresponding to the inte~ior degrees of freedom, i!cm. 

Using iccm
, the global incremental end-displacements , ic, appearing on each 

segment are obtained through the assembly array of the segments. Then, from 

Eq.( 4.15), the local incremental end-displacement vector , d, is computed. The in

cremental axial strain, iJ , in each fibre , f, is given by 

( 4.20) 

where h is the normal distance of the fibre from the centroidal axis of the segment 

before deforming and U is the length of the segment. Given the initial state of 

the fibre and the incremental axial strain, if, using the proposed Cubic Ellipsoidal 

Model of the uniaxial cyclic constitutive law for the axial stress-strain behaviour of 

structural steel described in Sec.4.3.1, the new state of the fibre, a f , is obtained. 
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From the stresses of all the fibres at the cross-section of a segment, the com

ponents of the local end-force vector, p, are obtained by 

1 

q2 = -q, 

Nt 

m2 = - L:afAfh 
1 

(4.21 ) 

where Nf is the number of fibres at the segment cross-section and go is the segment 

shear force at the start of the load step. Using the coordinate transformation, T , 

given by Eq.(4.14), the segment global end-force vector, L is computed by 

( 4.22) 

The assembly of these L vectors, of each segment results in the updated com

plete member residual force vector, Lem
. The above procedure is iterated until these 

residual force quantities associated with the interior nodes are within the tolerance. 

Once convergence is achieved, the updated member end-force vector, Lm , is formed 

using the global end-force vectors of the two end segments. 

4.5.2 External Transverse Loads on Beam-Columns 

The Fibre Model also accommodates the external transverse loads applied 

within its span, as the Plastic Hinge Model as discussed in Sec.3.5.4. If external 

concentrated loads are applied transversely within the span of the beam-columns 

instead of the global nodes, then plastic hinges can occur at these locations. Such 

members are composed of multiple segments. At least , as many interior nodes as 
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the external loads on the member, are chosen. Further, the locations of these nodes 

is so chosen as to coincide with those of the external loads themselves. This al

lows the concentrated load to be directly included in the nodal force vector while 

conducting the iterations at the element level. 

If no plastic hinges form at the locations within the span of the beam-column, 

where the external transverse concentrated loads are applied, then the correspond

ing fixed-end forces of such t ransverse loads may be applied at the end of the 

members. The rest of the analysis does not differ from before. Similar approach 

can be employed to approximately include distributed loads applied transversely on 

the beam-column. 

4.5.3 Artificial Unloading during Member Iterations 

The possibility of artificial unloading during local iterations at the member level 

is noted in Sec.3.5.5 while discussing the Plastic Hinge Model. The same remedial 

measure is employed in the case of the Fibre Model too. The cumulative of the 

displacement sub-increments from all the local iterations is applied to the member 

state at the start of the load step as discussed in Sec.2.5.6. 

4.6 Numerical Results 

The Fibre Model beam-column element is validated using comparisons with 

the results of Plastic Hinge Model beam-column element, discussed in Sec.3.6. The 

same three numerical problems used in Sec.3.6 are repeated here to compare the 

relative performances of the two models. 

4.6.1 Control on Tolerances 

Tthe tolerances on residual force quantities discussed in Sec.2.7 are adopted in 

the numerical examples below. 
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4.6.2 Material Properties 

In this thesis , unless stated otherwise, all numerical studies using the Fibre 

Model beam-column element use the following values for the eight characteristic 

properties of structural steel required in the proposed uniaxial cyclic constitutive 

law for the axial stress-strain behaviour of structural steel: 

a y = 250N/mm2
, 

au = 400N/mm 2
, 

E = 200000N/mm2
, 

E.h = 4000 lV / mm2 , 

Cy = 0.00125, 

c.h = 0.01400 , 

Cu = 0.16000 , 

and Cr = 0.30000 , 

Fur ther , to obtain the Shear Modulus G, a Poisson's Ratio of 0.3 is used. 

4.6.3 Effect of Discretisation 

Before presenting the results from the single member problems, the effect of the 

number of segments, N., in the Fibre Model beam-column element on the member 

response is studied. The problem of the cyclic lateral translation of a column 

member is chosen for this study. Consider a beam-column made of the hot-rolled 

steel section VV14 x 132 [39] of length 3660 mm, fixed at its ends against rotation. 

Three different discretisations shown in Fig.4.14a are considered. The displacement 

time history includes a pure axial compressive displacement , u = -0.5u y, followed 

by cyclic lateral translat ions keeping t he axial displacement constant. Fig.4.14b 

shows the axial load vs . bending moment diagram for the three cases. The case of 

N. = 30 and N. = 100 yield identical responses. However , the case with N. = 6 gives 

a marginally different member response. 

It is considered appropriate to use N. = 30 while using the Fibre Model beam

column element . The Fibre Model results discussed in Chapters 4 and 6 are obtained 

using N. = 30 segments . However , in the analysis of planar MRFs discussed in 

Chapter 7, while using the Fibre Model beam-column element, N. = 6 is used. This 

compromise is made in order to accommodate the analysis of the twenty-storey 
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planar MRF within the hard disk memory of the available computing environment 

of a Micro VAX II. 

4.6.4 Single Member Examples 

The single member problems with the different displacement time histories 

detailed in Sec.3.6.2 while discussing the Plastic Hinge Model element are studied 

again using the Fibre Model elements. 

Buckling Problem -

The response of the member composed of Fibre Model beam-column elements, 

to the axial displacement time history discussed in Sec.3.6.2, is also shown in 

Fig.3.21. The Fibre Model provides a very good match to the experimental data in 

the entire displacement cycle. The marginal departure in the neighbourhood of the 

tensile yield regime may be attributed to the difference between the actual cyclic 

stress-strain behaviour of steel and the Cubic Ellipsoidal Hysteretic Model used. 

Further, the predicted response using the Fibre Model is better than that obtained 

using the Plastic Hinge Model owing to the distributed nature of the inelastic ef

fects in the Fibre Model. The partial yielding of the cross-section, partial elastic 

unloading and strain-hardening are beyond the scope of the Plastic Hinge Model. 

Snap-Through Problem -

The three-stage displacement and rotation time history discussed in Sec.3.6.2, 

IS applied on the fixed-fixed member composed of the Fibre Model beam-column 

elements. Fig.3.22 shows the responses of the member using the Fibre Model ele

ments, along with the corresponding responses using the Plastic Hinge Model ele

ments. The responses are identical for smaller magnitudes of the compressive axial 

displacement, u. In the vicinity of snap-through, i.e., when u is close to or greater 

than -4ue, where U e = PeLI EA, Pe being the first Euler Load of the member, 

there is a very small difference in the two model responses. Since, the snap-through 

problem is an elastic one, this difference may be attributed to the discretisation 



-77 -

error and the inclusion of shear deformation in the Fibre Model. 

Lateral Translation Problem -

The lateral displacement time history described in Sec.3.6.2, is applied on the 

member composed of the Fibre Model beam-column elements. The displacement 

time history is such that yielding takes place in the member ends. As described 

in Sec.4.1, the Fibre Model is capable of capturing partial yielding, partial elastic 

unloading and strain-hardening of the member. Consequently, the responses ob

tained from the Fibre Model to the lateral displacement problem are different from 

those obtained from the Plastic Hinge Model. Figs.4.15, 4.16 and 4.17 show the 

effect of different tensile and compressive axial displacements on the response of the 

member. In comparison with Figs.3.23, 3.24 and 3.25, these responses are better 

representations of the true member characteristics. 
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Chapter 5 

THE JOINT HYSTERESIS MODEL 

5.1 Introduction 

The terms panel zone and connection appear often in the literature describing 

studies associated with junctions of the beam and the columns. The panel zone, 

or the joint , refers to the finite·sized area of the junction into which t he beams 

and the columns frame-in. On the other hand, the connection refers to t he means 

by which the beams and the columns are connected to these panel zones. The 

common methods for connection are welding, bolting and combinations of the two. 

Understandably, nonlinearities may arise in a frame from either the joint panel zones 

or t he connections. This study assumes that the connections between the beam

columns and the joint panel zones are rigid, and that nonlinearities arise only from 

the joints. This chapter discusses the inelastic behaviour and analytical modelling 

of the flexible joint panel zones. 

5.2 Behaviour of a Joint in a Frame 

The lateral resistance of a steel MRF depends on how well the bending moments 

are transferred between the beams and the columns. This is decided by the joints. 

The summary of loads transferred through a joint is presented through the free 

body diagram shown in Fig.5.!. Under the action of these forces, experiments 

have shown that the in-plane and flexural deformations of the joint are small. The 

primary deformation is shear distortion. Hence, the predominant stress in the joint 

is due to shear caused by the unbalance of beam moments. Usually, this unbalance 
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exists at exterior and corner joints even under gravity loads, while at the interior 

joints, it is experienced under wind or seismic load conditions. These high shear 

forces result in large joint shear strains, which affect the storey-drift and the overall 

structural response. 

The primary responsibilities of a joint in a moment-resisting frame are : 

(1) to resist the interaction of multi-directional forces (axial load, shear force, bend

ing moment and torsion) , which the connected members transfer through it, 

(2) to possess adequate ductility to carry large deformations to facilitate the re

distribution of forces in the frame, without any brittle failure in it or without 

the collapse of the frame, and 

(3) to possess good energy-dissipating qualities. 

5.3 Code Specifications for Design of Joints 

There are three specifications concerning the design of steel joint panel zones 

in the Uniform Building Code 1991 [19]. These provisions are essentially the rec

ommendations made by the SEAOC [20] for lateral force requirements. The first 

one requires that t he shear strength of the joint, given by 

(5.1 ) 

where 
U y == yield stress 

de == depth of the column 

db == depth of the beam 

t == thickness of the joint including doubler plates 

be! == breadth of the column flange 

and tel == thickness of the column flange, 

shall be sufficient to resist the beam moments due to gravity loads plus 1.85 times 

the prescribed seismic forces, but the shear strength need not exceed that required to 
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develop 0.8 L: Mp of the girders framing into the column flanges at the joint, where 

_Iv'fp is the plastic moment capacity. Lesser panel zone strengths are permitted, but 

when used, it is required that the additional loading and panel zone stress and their 

extra contribution to the drift, and thus to the P-/::;. effects , be accounted for. In 

addition, the large kink rotations that may be developed at the girder to column 

flange connections due to increased shear strains in the joint must be accounted for. 

The shear strength of the panel zone given by Eq.(5.1) was proposed [49] as 

an empirical estimate for the ultimate shear strength of the joint at a shear strain 

of 4-yy . Experimental investigations [50] have indicated much larger values for the 

ultimate shear strength of the joints and smaller values for the yield shear strength. 

Hence, the use of this expression for either the yield strength or the ultimate strength 

of the joint seems inconsistent. 

The second provision ensures that the thickness of the panel zone plate is 

adequate to avoid buckling of the panel under shear. The panel zone thickness, t, 

shall conform to t he following formula 

(5.2) 

where 

and tbJ = thickness of beam flange. 

The third prOVISIon IS concernmg the relative proportioning of the beams, 

columns and joints. At any moment frame joint, the following relationships shall 

be satisfied: 

L: Zc(Fyc - fa) > 1.0 (5.3a) 
L: ZbFyb 

or 
L: Zc(Fyc - fa) 

1.25 L: Mpz 
> 1.0, (5 .3b) 
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Zc = plastic modulus of the column, 

Zb = plastic modulus of the beam , 

Fyc = yield stress of the column, 

Fyb = yield stress of the beam , 

fa = maximum axial compressive stress 

and Mpz = sum of beam moments when joint panel zone reaches 

the value specified in Eq.(5.1). 

In the above codal provision, Eq.(5.3a) attempts to restrict the plastic hinges 

to within the beams. The columns are not expected to form any hinges. However, 

Eq.(5.3b) suggests that even the beams need not develop their full plastic moment 

capacities, and that the joints may yield even before them. Hence, the ductility 

of the joint enters into the frame response. Since columns under axial loads do 

not possess good hysteretic properties, the ductility demands of the frame must 

be restricted to the joint panel zones with excellent hysteretic properties and to 

the beams. Hence, the relative proportioning of the beams, columns and the panel 

zones is critical in the design of Special Moment Resisting Frames. 

5.4 Hysteretic Beam-Column Joint Behaviour 

The joints in a frame were assumed to be rigid in the earlier nonlinear dynamic 

analysis of frames until their hysteretic properties were revealed [50J experimentally. 

For typical code-designed buildings, the joints are flexible enough to be included 

as flexible elements in the analysis of a frame. Further, their yield strength as 

given by Eq.(5.1) may be low enough so that they undergo considerable yielding 

under strong earthquake loads, possibly even before the plastic hinges occur in the 

beams. The true strength and stiffness of the joints playa very important role in 

the nonlinear behaviour of steel planar MRFs. Thus, an adequate mathematical 

model to analytically describe this nonlinear response of the joints is essential for 
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inclusion in realistic frame analyses. 

The detailed experimental [17,50,51] and analytical [15,16,17,18] studies con

ducted on beam-column joints in the past two decades resulted in a much better 

understanding of its hysteretic behaviour. At low force levels, the shear stresses in 

the joint, as shown in Fig.5.2a, are in the elastic range. These stresses are highest at 

the centre of the joint, but with a more nearly uniform variation than the parabolic 

variation predicted by the elastic theory. The elastic analysis is simplified to the 

extent that it does not exactly account for the boundary effects of the joint panel. 

Under increased unbalance of beam moments, the centre of the joint reaches yield. 

The yielding then propagates towards the edges of the joint panel, resulting in an 

almost uniform state of stress in the panel, as shown in Fig.5.2b. 

The column axial force and bending moments are primarily carried by the two 

column flanges only. The influence of column axial force on the general yielding of 

the joint is usually small [52]. But, there are other factors that contribute to the 

shear stiffness of the joint. The moment on the joint is resisted by the joint panel 

zone by, at least, four different components, given below: 

(1 ) Shear resistance of the panel zone plate to unbalanced beam moments, as shown 

in Fig.5.3a, upto yield. 

(2) Resistance of the panel boundary elements [16], i.e., the flanges of the beams 

and of the columns, to the unbalanced beam moments , as shown in Fig.5.3b. 

(3) Restraint of the panel zone flexural deformation [17] by the adjacent beam and 

column webs, as shown in Fig.5.3c. 

(4) Strain hardening of the panel zone plate under continued shear. 

Some researchers argue that the contributions to the resistance offered by the 

joint are necessarily in the above sequential order. 

The monotonic load-deformation curves for the shear response of joints, ob

tained from numerous experimental research projects , are summarised [17] in Fig. 
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5.5. The well-defined knee in the early inelastic regime, is a significant feature of all 

these tests. The yielding of the joint is found to occur before the theoretical shear 

yield is reached [53]. This effect is attributed to the combined action of the above 

mentioned components resisting the joint moment. The joint shows a remarkable 

increase in strength beyond yield. Its post-yield stiffness is noteworthy over a long 

range of inelastic deformation, and it exhibits remarkable ductility. Further, under 

cyclic loading, repetitive hysteresis loops are observed for its shear behaviour with 

no drop in strength even under very large inelastic joint distortions. Thus, the joint 

demonstrates excellent energy dissipating characteristics. 

5.5 Degrees of Freedom 

The physical idealisation of a joint in a planar MRF are shown in Fig.5.4. If j1 

and 1I are the end-rotations of the adjoining beams and columns, respectively, then 

the shear strain in the joint is given by 

'Y =j1-1I. (5.4) 

Since j1 and 1I are considered positive if counter-clockwise, the shear strain, 'Y , is 

automatically defined as positive or negative. The moment in the joint , M , is 

considered positive if it causes a positive 'Y. 

The joint has two degrees of freedom - the beam rotation, j1, and the column 

rotation, 1I, as shown in Fig.2.4. Therefore, the incremental displacement vector, i!,., 

of the joint is 

(5.5) 

and its total force vector, f, is 

(5.6) 

where !vI~ and !VIv are the sum of the beam and column moments, respectively. 

Further , from the moment equilibrium of the joint , 

Mv = - !vI". (5.7) 
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5.6 Joint Hysteresis Model 

In the literature, there are a number of analytical models [15,16,17,18] describ

ing the hysteret ic behaviour of beam-column joints. They are reasonable approxi

mations, but can be improved in several ways. The ultimate load is underestimated 

in the Krawinkler-Popov Model [53]. The post-yield joint stiffness is applicable only 

over a small range of inelastic behaviour, i.e., only up to 4 times the yield strain. 

The Kato Model [17], overcomes this difficulty by defining the virgin curve over 

the entire possible range of inelastic behaviour, but it uses a multi-linear virgin 

curve. The Fielding-Chen Model [18] uses a simplified bilinear virgin curve, which 

over-estimates the post-yield stiffness. 

After studying the available models , a simple model is proposed for the hys

teretic behaviour of beam-column joints. This model is semi-empirical and is con

venient for numerical implementation, even under cyclic loading. The following is 

a detailed account of the proposed Ellipsoidal Joint Hysteresis Model for use in the 

analysis of steel planar moment-resisting frames with joint elements . 

5.6.1 Proposed Model 

The starting point is the summary [17] of the monotonic test data on panel 

zones shown in Fig.5.5 . Based on this data, the proposed model empirically defines 

a virgin curve for the joint hysteresis behaviour, as shown in Fig.5.6. This curve is 

essentially a function of the joint shear yield moment, 1vly, and the joint shear yield 

strain, IY' If de is the depth of the column, db is the depth of the beam and t is the 

thickness of the panel zone plate, then My and IY are given by 

My = Ty dedb t 

and 
Ty (5.8) 

Iy = G' 

where 
f7 y 

Ty= -

v'3 
and G= E 

2(1+11) 
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In Eq.(5.8) , (J y, E and II are the elastic properties of structural steel. 

The linear range of the joint behaviour is restricted to within O.8My corre

sponding to a strain of 0.8/'y. The ultimate joint moment is specified as 2.35M"y 

corresponding to an ultimate strain of 100/'y. Owing to a lack of adequate experi

mental information, the post-ultimate behaviour is assumed to be perfectly-plastic. 

The curve between the joint shear strain limits of 0.8/,y and 100/,y, is defined by a 

quadratic ellipse, as shown in Fig.5.7, and given by 

(5.9) 

where N10 and /'0 are the joint moment and shear strain, respectively, at the centre 

of the quadratic ellipse, whose semi-major and semi-minor axes are a and b, re

spectively. Further, the hysteresis loops or the branch curves, are defined by cubic 

ellipses, as shown in Fig.5.7, and given by Eq.(5.l0) below: 

for positive curve 
(5.10) 

and for negative curve. 

The hysteresis modelling in the Ellipsoidal Joint Hysteresis Model is identical 

in form to the hysteresis modelling proposed for the Cubic Ellipsoidal Model of the 

uniaxial cyclic constitutive law for the axial stress-strain behaviour of structural 

steel described in Sec.3.3.1. 

There are a few assumptions behind the hysteretic model of the joint. The 

structural steel beam-column joint is assumed to strain-harden isotropically, which 

results in symmetric hysteresis loops about the shear strain axis, i.e., M = 0 axis, 

under equal cyclic plastic excursions, as seen in the experimental data [53]. The 

hysteresis loops are bounded by envelopes, the backbone curves. These positive 

and negative backbone curves are simply the corresponding virgin curves trans

lated along the shear strain axis, as shown in Fig.5.8. The amount of shear strain 

t ranslation is determined by the plastic shear strain history. This process is already 
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recognised as Envelope Strain Shift in Sec.3.3.1. This shift ensures that the hystere

sis loops do not intersect [53] under gradual increase in the cyclic plastic excursions, 

at least, until the ultimate joint moment is reached. 

In Fig.5.9, a typical experimental joint hysteresis loop [16] is shown along with 

the corresponding analytical prediction. These comparisons show a close fit to the 

experimental data and hence provide some validation of the model. 

5.6.2 Hysteretic Rules 

The Extended Masing's Hypothesis discussed in Sec.4.3.1 is very general and 

can be used to describe most structural load-deformational characteristics. But, the 

applicability of Rule 1 to the cyclic behaviour of steel joints is not clear. However, 

Rule 2 concerning the ultimate fate of the branch loops is used as a guideline while 

forming , handling and updating the joint hysteresis loops. The proposed model 

employs the following rules to define the cyclic response of structural steel joints: 

(1) The virgin curves in the positive and the negative sense are identical. 

(2) The response is linearly elastic until the modified joint yield moment is reached, 

either in the positive or in the negative sense. 

(3) New plastic strains are accumulated only by progressing along the virgin curve, 

and not by traversing the branch curves. 

(4) Under strain reversals, the branch curve originating from the virgin curve is 

linearly elastic unt il zero joint moment is reached, and is nonlinear thereafter. 

This branch curve is referred as the first branch curve. 

(5) The destination of a branch curve leaving a positive virgin curve is a symmetric 

point on the translated negative backbone curve. Similarly, the destination of 

a branch curve leaving a negative virgin curve is a symmetric point on the 

translated positive backbone curve. 

(6) All the subsequent branch curves originating from the first branch curve have 
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the same amount of linear elastic unloading as the first branch curve. Further, 

the cubic ellipses describing the nonlinear portions of all these nested branch 

curves have the same radii until either the destination point is reached or all 

the nested branch loops are closed, thus returning to the first turning point. 

(7) The slope at which a branch curve approaches its destination is the slope of 

the virgin curve at the turning point from which it departed. 

(8) When loading takes place very early in the inelastic regime, the formation of 

a cubic ellipse, for the nonlinear part of the hysteresis loop, within the above 

constraints, may not be possible. In such a case, the linear elastic unloading 

is continued beyond zero joint moment till the formation of a cubic ellipse is 

possible. 

5.6.3 Merits of the Proposed Model 

The proposed Ellipsoidal Joint Hysteresis Model for steel beam-column joints 

in moment-resisting plane frames is significantly superior to the currently used mod

els. This model is based on the macroscopic view of the overall joint behaviour and 

is supported by test data from steel beam-column sub-assemblages. It provides 

smooth and explicit expressions for joint moment in terms of the shear strain. The 

few non-cumbersome hysteretic rules make the model simple and computationally 

efficient, yet descriptive enough to adequately represent the features of real hys

teretic behaviour. The smooth virgin curve, and a realistic estimate of the ultimate 

capacity and the possible inelastic range of the joint are the strengths of this model. 

With hysteretic behaviour defined up to lOO,y, this model is an excellent choice for 

the analytical modelling of structural steel beam-column joints. 

5.7 Numerical Implementation 

The numerical implementation of the joint element is very simple, and needs 

no detailed description. However, the following comments are considered necessary. 
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5.7.1 Elastic Joint Stiffness 

As noted in Sec.2.3.6, the global iterations are conducted using elastic frame 

stiffness. Thus, only the elastic stiffness of the joint needs to be evaluated. Using 

Eq. (5.8), the joint elastic stiffness, j Ke, is 

(5.11 ) 

However , this stiffness is associated with the shear strain, " of the joint. In terms 

of the two joint global degrees of freedom, the beam rotation, I', and the column 

rot ation , v, the elastic stiffness matrix of the joint becomes 

(5 .12) 

5.7.2 Joint Force Vector 

To update the global stiffness force vector, l-+1(t+6f) , at the end of each global 

iterat ion within a load step, the incremental displacement vector, iLm, is given and 

the joint total force vector, Lm, is required. This vector is simply the vector L given 

by Eq. (5.6). The incremental beam and column rotations , jJ. and V, respectively, are 

obtained from iLm . Using Eq. (5.4), the joint incremental shear strain, 7 is obtained. 

Using the current state of the joint and 7, the updated joint moment is ascertained 

through the proposed Joint Hysteresis Model. Finally, Eqs.(5.6) and (5.7) result in 

the required joint total force vector , 1m
. 

5.8 Numerical Results 

The effects of joint flexibility on the response of MRFs are studied in Chapter 

7 through the dynamic analysis of a building frame under specified ground motions. 
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Chapter 6 

EVALUATION OF 
SOME MODELLING ASSUMPTIONS 

FOR BEAM-COLUMNS IN FRAME ANALYSIS 

6.1 Introduction 

In the analysis of planar moment-resisting frames (MRFs), considerable com

putational economy is achieved by making some very basic assumptions. For a 

designer, it is important to know how far these assumptions can be stretched with

out significantly corrupting the response of the frame. This chapter aims at studying 

the effect of some of these assumptions with specific reference to a building frame 

chosen from the literature [26] under the Holiday Inn ground motion discussed in 

Sec.2.7, scaled to O.4g(peak). Further, the frame used for this numerical study is 

discretised into beam-column members only without any joint elements. 

6.2 Significant Geometric Effects in a Frame 

The sources of nonlinearities in the behaviour of planar frames are discussed 

in general in Sec.2.2. The significant geometric effects in a frame may be recast as 

given below. Approximations of these effects are detailed in Sec.6.4. 

6.2.1 Large Deformations 

The application of external loads on an undeformed frame produces equilibrium 

forces in its members , called primary forces , and also causes the frame to deform. 

Further, the external loads now acting on this deformed configuration of the frame 

produce additional forces in it, called secondary forces. These secondary forces 
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become significant in frames which have large column loads or which undergo large 

lateral deformation. In frame analysis, this effect is automatically included by 

continuously updating the nodal coordinates of the frame. If the nodal coordinates 

are not updated, only small deformations are said to be considered in the frame. 

6.2.2 Geometric Stiffness 

The effect of member deformed geometry on its own stiffness is understood 

as Geometric Stiffness. The deflections relative to the member chord are reflected 

through the stiffness quantities - Stability Functions Cl,CZ , given by Eq.(3.7), and 

Bowing Functions b1 ,b2 , given by Eq.(3.10). The overall member chord rotation 

results in the P-6. Effect. Often, in stocky members , Geometric Stiffness may have 

only a marginal effect on its response, and hence on the response of the frame. 

6.2 .3 P-6. Effect due to Other Supported Structures 

In the design of buildings, often all frames are not designed to resist t he lateral 

load. This necessitates that some frames support only the gravity loads and seek 

lateral resistance from the neighbouring MRFs. Under these conditions, the MRFs 

must carry additional lateral forces originating from the P -6. effect of these other 

laterally supported non-MRFs. The realistic analyses of buildings must not neglect 

these P -6. forces originating from the non-MRFs. 

If Pi is the total gravity load in the i,h storey non-MRF columns, hi is the 

deformed i' h storey height, then the horizont al floor load magnitude, Hi , to be 

applied at the ith and (i -1 )th floor nodes of the MRF is 

H . _ Pi6. . 
I - hi ' (6 .1) 

where 6. i is the rela tive drift of the i'h floor with respect to the (i -1 )th floor. 

6 .3 Frame Description 

The structure selected for t his analytical study IS taken from the literature 
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[26]. It is a twenty-storey, three-bay by four-bay rectangular office building shown 

in Figs.6.1 and 6.2. When the report [26] was released, this structure was to be 

built in downtown San Francisco, California. The building was designed for seismic 

loads in accordance with UBC 1988 [36]. The lateral load on the building is resisted 

by the exterior moment-resisting frames along its perimeter. The gravity load is 

supported by the interior core columns in conjunction with the perimeter frames. 

6.3.1 Geometry and Idealisation 

The critical direction of the frame from the lateral resistance point of view 

is the shorter direction with three bays. This study will focus on the response of 

the building in this critical direction. Hence, the frame of interest is a three-bay 

twenty-storey exterior frame, whose dimensions are shown in Fig.6.3. The frame is 

symmetric with respect to its centerline.- The two exterior three-bay frames alone 

carry the lateral load, while all the five planar frames in the shorter direction carry 

the gravi ty loads. Thus, each of these exterior MRFs laterally supports one half of 

the building. Consequently, the gravity loads on the one and a half interior frames 

appear in the computation of the P-6. forces due to the adjacent non-MRFs on the 

lateral load resisting MRF. 

For analytical modelling purposes, the retaining wall in the basement is as

sumed to provide restraint to the frame against horizontal translation at the ground 

level. Hence, the two exterior nodes at the ground level are free to translate verti

cally and rotate, but are constrained from translating horizontally. Further, the soil 

and foundation conditions are assumed to be such that the columns are pin-jointed 

to the foundation at the basement level. Soil-structure interaction is neglected. 

The structural idealisation is given in Fig.6.3. It is discretised into beam

columns spanning between the global nodes, without any joint elements. All mem

bers are made of A36 grade structural steel. The member cross-sections adapted 

from the Design 1 MRF in reference [26] are shown in Fig.6.4. 
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The relative proportioning of t he beams and columns in a MRF are controlled 

in the UBC 1991 [19] by the following provision. At any moment frame joint, the 

following relationship shall be satisfied: 

where 

I: Zc(Fyc - fa) 

I: ZbFyb 
> 1.0, 

Zc = plastic modulus of the column, 

Zb = plastic modulus of the beam , 

Fyc = yield stress of the column, 

Fyb = yield stress of the beam 

and fa = maximum axial compressive stress. 

(6.2) 

Eq.(6.2) attempts to restrict the plastic hinges to the beams and keep the 

columns elastic. The frame under study was designed in accordance with the above 

specification. Table 6.1 gives the list of the axial load capacity, Py , and the bending 

moment capacity, M p , for each of the frame members. 

6.3.2 Loading 

The weight of the building floor, including partitions, ceiling and mechanical 

piping, is assumed to be 4.79 kN/m2 for the typical floor and roof. The weight of 

the MRF is computed using the properties of the hot-rolled sections of the members. 

The exterior window wall system is assumed to weigh 1.67 kNlm2 average over the 

exterior surface of the building. The design live loads are 3.84 kN 1m2 and 0.96 

kN 1m2 for the typical floor and roof, respectively. 

As discussed in Sec.2.5.1 , only 20% of the specified live load in the frames is 

used to compute the nodal masses of the frame. The effect of the wind load on the 

building under consideration, is assumed to be less significant than the earthquake 

forces, and hence is not considered in this study. The ground motion selected for 

this study, the Holiday Inn record of the San Fernando Earthquake 1971 scaled to 

O.4g(peak), is di scussed in Sec.2.7. 
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6.3.3 DaITlping Matrix 

For the frame used in the present study, 2% of critical damping is assumed to 

be present at frequencies of 0.25 Hz and 2.0 Hz. Hence, using Eq.(2.6), the Rayleigh 

damping coefficients ao and al are evaluated to be 

ao = 0.05585 
(6.3) 

and al = 0.00283 . 

The frequency dependence of damping so estimated is shown in Fig.6.5. 

6.4 Cases for Performance Evaluation of the Assumptions 

Five different cases, denoted Fl, F2, F3, F4 and F5 , are identified to study 

the strength of the assumptions. A summary of these five cases is given in Table 

6.2. In the first four cases, single segment Plastic Hinge Model elements are used 

to model all the beam-columns. A preliminary run with two segments per member 

resulted in no internal hinges , in addition to providing results identical to the case 

with a single segment. Hence, the use of two segments per member in the Plastic 

Hinge Model elements is considered unnecessary while modelling this frame. The 

fifth case uses Fibre Model elements to model the columns in the bottom three 

storeys of the building. In all the five cases, the same ground motion, the Holiday 

Inn record scaled to O.4g(peak) detailed in Sec.2.7, is used for the dynamic analysis. 

Case Fl 

All the three effects, noted in Sec.6 .2 , namely large deformations , geometric 

stiffness and P-6. forces from the non-MRFs, are included. While estimating the 

lateral forces from the P-6. effect of the non-MRFs, the deformed or the current 

storey height is used. All members are composed of single segment Plastic Hinge 

Model beam-column elements. 

Case F2 

Large deformations and P-6. forces from the non-MRFs are included as before. 

However , geometric stiffness is approximated. The Stability functions are approxi-
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mated by the first two terms of their truncated Taylor Series Expansions given in 

Eq.(3.13). And, bowing is completely neglected. Thus the governing equations, 

Eqs.(3.7) and (3.11), reduce to 

and 

where 

and 

2 2 
C, = 4 + 1571: P 

1 2 
C2 = 2 - -71: p. 

30 
All members are composed of single segment Plastic Hinge Model elements. 

Case F3 

(6.4) 

Only small deflections are considered. Nodal coordinates of the frame are not 

updated. But, the secondary forces are included approximately in the form of the 

shears given by ±P v / L, where v is the relative lateral translation of the member 

in local coordinates. P and L are the member axial load and initial undeformed 

length. Approximate geometric stiffness, as discussed in case F2, is included. 

To be consistent with the small-deflection consideration, the P-6. forces from 

the non-MRFs are also approximated. In Eq.(6.1 ), the current or deformed height 

of the i ,k storey, hi, is replaced by hiO , the initial undeformed height of the i,h 

storey. Hence, the magnitude of the horizontal floor load Hi to be applied to the 

MRF at the i,k and (i- l )'h floors is given by 

H _ Pi 6. i 
• - h ' 

iO 
(6 .5) 

where Pi and 6. i are as defined in Eq.(6.1). All members are composed of single 

segment Plastic Hinge Model elements. 

Case F4 

Frame nodal coordinates are not updated, thus considering only small deflec

tions. Secondary shear terms noted in case F3 are neglected. The P-6. forces from 
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the non-MRFs are completely neglected. Hence, the magnitude of the horizontal 

force Hi to be applied at the ith and (i -1 )th floors of the MRF is zero. No ge

ometric stiffness is considered. The constant terms in the truncated Taylor Series 

Expansions, given in Eq. (3.13) are used for the Stability Functions Cl,C2' Thus, the 

governing equations excluding geometric nonlinearities are 

EA 
P=-u 

L 

and { :~ } = [~ !]{:~} 
All members are composed of single segment Plastic Hinge Model elements. 

Case F5 

(6.6) 

While using single segment Plastic Hinge Model elements, a collapse mecha

nism is observed in responses Fl - F4 between the first floor (at the ground level) 

and the fourth floor. In order to examine this closely, the twelve column members 

in these three storeys are modelled using the Fibre Model beam-column elements in 

case F5. This case is identical to case Fl in all respects except that the columns in 

the first , second and third storeys are composed of the Fibre Model beam-column 

elements, which include strain-hardening effects. See Fig.6.6. Thus, large deforma

tions , geometric stiffness and P-6 forces from the non-MRFs are included exactly. 

All the other members are composed of single segment Plastic Hinge Model ele

ments. The twelve columns in the bottom floors are made up of thirty segments 

each, as discussed in Sec.4.6.2, the lengths of which are given in Fig.4.13a. 

6.S Numerical Results 

The responses of the frame under the different cases mentioned in Sec.6.4 are 

presented in this section. The performance of the different assumptions that may 

be made during frame analysis are evaluated in light of these responses. 

6.5.1 Natural Periods of the Frame 

The elastic natural periods of the first three undamped modes of vibration 
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of the frame without joint elements, are estimated using the Subspace Iteration 

Method and are listed in Table 6.3. The elastic pseudo-acceleration response spec

trum of the Holiday Inn record scaled to O.4g(peak) for 2% damping indicates good 

acceleration content in the neighbourhood of the elastic first natural period of the 

frame, as seen in Fig.2.7a. 

6.5.2 Overall Frame Responses 

A summary of the frame responses Fl - F5 is shown in Fig.6.7, in the form 

of lateral and vertical roof displacements. Clearly, except in case F4, the frame 

develops a collapse mechanism and subsequently fails. Fig.6.S shows a schematic of 

the collapse mechanism. The progressive deformed profiles on the verge of collapse 

are shown in Fig.6.9. The lateral and vertical displacement time histories of all the 

floors of MRFO from response Fl are shown in Fig.6.10, which correspond to the 

right exterior global nodes of the frame. 

The typical response time histories along with their strength envelopes of the 

members in the lower storeys of the frame, shown in Fig.6.ll, are presented. At any 

instant , the moment envelope follows the bending moment on the P-M strength 

interaction surface, shown in Fig.3.ll, corresponding to the axial load in the member 

at that instant. Similarly, the axial load envelope follows the axial load on the P-M 

surface corresponding to the absolute maximum of the two end-moments in the 

member. The member response time histories from case F5 of the first storey 

interior and exterior columns, and the second floor interior and exterior beams, are 

presented in Figs.6.l2 , 6.13, 6.14 and 6.15, respectively. The variation in the axial 

load of the first storey exterior column is about Py . In Figs.6.l2 and 6.13 , these 

response envelopes are exceeded owing to the fact that the Fibre Model undergoes 

strain-hardening beyond the P-M strength interaction surface. 

In spite of the codal provision given in Eq.(6.2) , the columns develop plastic 

hinges in all the five cases. One major reason why plastic moment hinges form in 
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the columns is that the points of inflection are not always located at mid-storey. 

Eq.(6.2) is based on this assumption. Also, in Eq.(6.2), the maximum axial stress , 

fa , in the columns cannot be precisely computed at the design stage. The responses 

of the frames are sensitive to the ground motion used in the dynamic analyses. The 

large fluctuations in the column axial loads obtained under dynamic conditions are 

not reflected in the maximum axial stress, fa, in the columns estimated by the 

equivalent static lateral load procedure for design. Hence, Eq.(6.2) does not strictly 

ensure that plastic moment hinges do not form in the columns. 

6.5.3 Geometric Stiffness 

A comparison of responses Fl and F2 concludes that approximating the ge

ometric stiffness of the frame members does not effect the overall frame response. 

In fact , beam-column members of framed structures designed for seismic loads in 

accordance with UBC 1991 [19] have been observed to have a yield axial load much 

smaller in magnitude than their first Euler buckling load. This suggests that the 

members are usually stocky. And, for stocky members, bowing is very small and can 

be neglected. Consequently, the geometric effects may be insignificant for code de

signed members. Hence, approximate geometric stiffness is adequate in the analysis 

of such frames. 

6.5.4 Large Deformations 

The primary difference between cases F2 and F3 is that the former includes 

large deflections , unlike the latt er. '~Tith reference to Fig.6.7, the responses are 

almost identical. This means that the strength of the collapse-causing earthquakes 

for models F2 and F3 would be almost the same. Thus, the approximation of the 

large deflections by the secondary shear terms is adequate in capturing collapse. 

6.5.5 P-6. Forces from MRF and non-MRFs 

The case F4 is the simplest formulation of frame analysis with the absence of 
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all geometric nonlinearities. The comparison of F3 and F4 is pertinent to asses the 

effect of the P -6. forces from the MRF and the non-MRFs. 

\'Vhile F3 indicates a collapse of the frame, F4 does not show any such tendency. 

This may be attributed to the only un-accounted effect of P-6. forces from the 

members of the MRFs and from the non-MRFs. Hence, in the realistic analysis of 

MRFs which laterally support other non-MRFs, the P-6. forces originating from 

the lateral sway of the non-MRFs are important along with the member P-6. forces, 

which must be included to bet ter represent the frame behaviour. 

6.5.6 Frame with Fibre Model Elements 

The collapse mechanism between the first floor (at the ground level) and the 

fourth floor, observed in responses Fl - F3, encourages the use of Fibre Model 

elements to model the columns in these floors. Case F 5 is intended to see if the 

additional features of the Fibre Model, especially strain-hardening of the member 

cross-section, help the frame to overcome the collapse mechanism. Also, the effect 

of yielding from bending on axial stiffness is included. 

The comparison of responses Fl and F5 shows only marginal differences. Thus, 

the above features of the Fibre Model did not help the frame in overcoming the 

collapse. It may be pointed out that the beams in these three floors should have been 

modelled with the Fibre Model elements. The strain-hardening in the beams may 

have helped by increasing the strength and stiffness of those three storeys. Further, 

it is observed that no internal hinges are formed in the columns modelled with 

Fibre Model elements. This strengthens the common notion that the inelasticities 

are concentrated only at the end of the code-designed seismic frame members. 

6.6 Conclusions 

The salient conclusions recorded from the above numerical study in light of the 

twenty-storey MRF are : 
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(1) Code designed frames classify as short columns, and hence approximate geo

metric stiffness is adequate. 

(2) Large deformations are important. 

(3) P-6.. forces originating from the MRF members and from the other laterally 

supported non-MRFs, if any, are critical and they must be included. 

(4) Effect of yielding from bending stresses on the axial stiffness is not significant , 

though present, in code designed seismic frames. Surprisingly, strain-hardening 

does not seem to significantly strengthen the frame against collapse. The overall 

response of the frame with 12 Fibre Model beam-column elements is not too 

different from the frame modelled without Fibre Model elements. 

(5) No interior member plastic hinges are formed in code designed seismic frame 

columns. Thus, multiple segments are not required in the Plastic Hinge Model 

beam-column elements. 

(6) If plastic moment hinge must be avoided in the columns, then in Eq.(6.2), the 

maximum axial stress, fa, obtained from static analysis under code recom

mended minimum lateral forces, must be appropriately increased by a factor 

to account for the fluctuations in the column axial loads under dynamic condi

tions. The interior columns demonstrate much smaller axial load fluctuations 

than the exterior columns. 
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Chapter 7 

NUMERICAL RESULTS FROM 
ANALYSES OF FLEXIBLE JOINT MRFs 

7.1 Introduction 

Buildings deform into their inelastic range under severe earthquakes. To arrive 

at builcling codes which ensure that tall builclings are safe under big earthquakes, 

the inelastic behaviour of such buildings must be well understood. In this regard , 

nonlinear analyses of building frames incorporating the material and geometric non

linearities discussed in Chapters 2 and 6 need to be performed. This chapter presents 

one such study through the specific case of a planar moment-resisting frame (MRF). 

The approximations noted in Chapter 6 are not considered here. Thus, large defor

mations, geometric stiffness and P -f>. forces are exactly modelled. 

T he highly nonlinear load-deformational behaviour and the energy absorbing 

characteristics of steel beam-column joints cliscussed in Chapter 5 are included in 

the planar MRF analysis . This chapter presents a more realistic analysis of the 

planar MRF chosen from the literature [26] with flexible joint elements included in 

the discretisation. Different panel zones designs are discussed to study their effect 

on the inelastic response of the building frame under severe ground motions. 

7.2 Frame D escription 

The same twenty-storey building frame [26] described in Chapter 6 is used here 

in the proposed study. Hence, the description of the frame given in Sec.6.3 is not 

reproduced here. The frame under study was originally designed in accordance with 

UBC 1988 [36]. However , the relevant provisions for the design of beam-columns 
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and joint panel zones have not been revised in UBC 1991 [19]. Hence, the discussions 

pertaining to the performance of the MRF are viewed in light of UBC 1991. 

7.3 Panel Zone Designs 

Three different panel zone designs described below are considered to assess the 

effects of panel zone flexibility on the inelastic response of the MRF. The basic 

dimensions of the joint elements are given in Table 7.1. The parameter for design 

is the thickness of the joint panel zone plate. Table 7.2 shows the thickness of the 

doubler plates required at each typical exterior and interior joint at each floor of 

the MRF for each of three joint panel zone designs discussed below. 

7.3.1 Design I 

The thickness of the joint panel zone plate, t j, is chosen to be the same as the 

thickness of the column web, tew, i.e., no doubler plates are added. Hence, 

(7.1) 

It is intended to study the performance of the panel zones, based on the beam and 

column sizes as obtained from the static lateral force procedure using the minimum 

design lateral forces recommended in the UBC 1991. This is a lower bound for the 

design of panel zones. 

7.3.2 Design II 

The thickness of the joint panel zone plate is determined by : 

bj 

0.82: Mp t j = _-'==''---c.!:.. 

Ty db de ' 

where 

bj 

(7.2) 

In Eq.(7.2) , 2: Mp refers to the sum of the plastic moment capacities of all beams 

framing into that joint. (J y is the yield stress of steel, db is the depth of the beam 
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and de is the depth of the column. If the thickness , tj, as computed from Eq.(7.2) 

is less than the thickness of the column web, t ew , then the latter is used. 

The panel zone need not support the beam hinging to make a moment frame 

ductile. Hence, to reduce the ductility requirements on the beam-column members , 
bj 

the panel zone is designed for 0.82: NIp of the beams. This is the upper-bound 

design suggested in UBC 1991. 

7.3.3 Design III 

The thickness of the joint panel zone plate is determined by : 

(7.3) 

The factor 1.5 in Eq.(7.3), is obtained from 1.2 X (1/0.8). The factor 1.2 accounts 

for the strain-hardening of the adjoining beam moments up to 20% over their plastic 

moment capacities. The factor (1/ 0.8) ensures that the linear elastic range of the 

joint, which is up to 0.8My, where My is as defined in Eq.(5.5) , is not exceeded. 

Again, if the thickness, t j, as computed from Eq.(7.3), is less than the thickness of 

the column web, t ew , then the latter is used. 

The panel zones are relieved of ductility demands by designing their thicknesses 
bj 

based on a yield moment of 1.52: Mp of the beams. This consideration is only used 

to evaluate the st iffness of the flexible joint elements. The yield strength of the 

panel zones is set at an arbitrarily large value. This design allows for yielding in 

the girders and the columns, but no yielding in the joint panel zones. In effect, the 

joint remains in the linear elastic regime. 

7.4 Cases for Numerical Study 

Planar MRFs with each of the three joint designs discussed in Sec.7.3 are 

analysed using the computer program NDA2 described in Sec.2.6 under the ground 

motions detailed in Sec.2.7. Several frame analyses are identified for numerical 
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study. In all these analyses, the beam-columns in t he MRFs are composed of the 

Fibre Model elements only. To accommodate the analyses within the available 

computing environment of Micro VAX II, the beam-columns are composed of six 

segments only. The employed discretisation of the beam-columns with six segments, 

see Sec.4.6.3, is shown in Fig.4.13a. 

While referring to the different analysis cases, the following nomenclature is 

used. MRFl , MRF2 and MRF3 refer to the twenty-storey MRF with joint panel 

zone design I , II and III , respectively. Further, MRFO refers to the frame without 

joint elements discussed in Chapter 6. 

A, Band C Series 

The MRFs with different joint panel zone designs are subjected to acceleration 

ground motions collected from real earthquakes, discussed in Sec.2.7. The responses 

of MRFl , MRF2 and MRF3 under these ground motions are identified as series A, 

B and C, respectively. The list of different analyses showing the joint design type 

and peak amplitudes of the real ground motions is given in Table 7.3. 

P, Q and R Series 

The three MRFs are also studied under synthetic acceleration ground motions 

detailed in Sec. 2. 7. The analyses with the different synt hetic ground motions of 

MRFl, MRF2 and MRF3 are identified as series P , Q and R , respectively, as listed 

in Table 7.3. 

7.5 Numerical Results 

While interpreting the results, the following definitions are used. The joint 

shear strain or shear rotation as defined by Eq. (5.4) is used here. The joint rotation 

ductility is defined as the shear rotation I P of the joint in excess of the yield rotation 

Iy . For the beam-columns, the member-end curvature ductility is defined as the 

curvature rpp of the end segment in excess of the yield curvature rpy . 
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The ductility quantities are presented at each floor for joints and beams, and at 

each half-storey for columns. The ductilities are normalised with the corresponding 

yield values. In the case of joints, the maximum of the joint rotation ductility 

amongst the two exterior joints and the two interior joints are shown separately. 

In case of beams, the maximum of the curvature ductilities at the exterior-ends 

of the exterior-bay beams is represented as the exterior beam maximum curvature 

ductility. And, the maximum of the curvature ductilities at the interior-ends of the 

exterior-bay beams and at the two ends of the interior-bay beam, is represented 

as the interior beam maximum curvature ductility. Similarly, for columns, the 

maximum of the curvature ductilities at the bottom ends of the two exterior columns 

is represented by a bar in the bottom-half of the storey. And, the maximum of the 

curvature ductilities at the top ends of the two exterior columns is represented by 

a bar in the top-half of the storey. Similarly, the maximum curvature ductilities of 

the two interior columns are also represented. 

The responses of the different MRFs mentioned in Sec.7.4 are presented in this 

section. The performance of the different frame elements and that of the frame as a 

whole are evaluated in light of these responses. The joint panel zone designs I and 

III represent the weakest and the strongest joint designs from a strength point of 

view. The primary thrust of this study is on the basic understanding of the effect 

of the joint behaviour on the MRFs. Hence, emphasis is laid on MRF1 and MRF3 

in the following numerical study. Responses of the code designed frame MRF2 are 

compared to those of MRF1 and MRF3. Once the responses from MRF1 and MRF3 

are carefully examined and understood, optimal joint panel designs between these 

two extrema may be arrived at. 

7.5.1 Natural Periods of the Frames 

The natural periods of the first three undamped elastic modes of vibration 

of MRF1, MRF2 and MRF3 are estimated using the Subspace Iteration Method. 

Table 6.3 gives these natural periods along with the corresponding values for MRFO. 



- 105 -

The differences in the natural periods of MRF1, MRF2 and MRF3 are obvious. As 

the joints get stronger, the frame gets stiffer and the period becomes smaller. The 

difference in the natural periods of MRFs with joint elements and MRFO is also 

explainable. In the analytical modelling of the joint elements, only the distortional 

stiffness of the joint is considered, while the in-plane deformations are not consid

ered, as noted in Secs.2.4 and 5.5. Consequently, the dimensions of the joints do not 

enter the translational stiffness computations of the frame. Thus, the period of the 

building is underestimated to that extent. For the frame at hand, the dimensions 

of the joints account for 20% of the building's total height and total width. The 

change in the first natural period is also around 20%. 

It is reiterated that these natural periods correspond to the elastic responses 

of the frames . The actual inelastic actions during strong shaking will significantly 

affect these quantities. The pseudo-acceleration elastic response spectrum of the 

Holiday Inn record scaled to 0.5g(peak) for 2% damping indicates good acceleration 

content in the neighbourhood of the elastic first natural period of MRF1 , as seen 

in Fig.2.7. 

7.5.2 Responses to Holiday Inn Ground Motion 

The original Holiday Inn S90W record is scaled to different levels of peak ground 

motion and the responses of MRF1, MRF2 and MRF3 are studied. The following 

is a summary of observations from the same. 

O.4g(peak) -

Under the same ground motion, Fig. 7.1 shows that the lateral and vertical roof 

displacement responses in A4, B4 and C4 are completely different from that in F5 

without joint elements discussed earlier in Chapter 6. The difference is attributed to 

the inclusion of the flexible joint elements in the frame discretisation. The collapse 

mechanism observed involving the bottom three storeys of F5 is totally absent 

here. Since the inclusion of joint elements is considered necessary in the frame 
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discretisation, the responses from A4, B4 and C4 are considered more realistic 

than that from F5. MRFO has a lower period than MRFl, MRF2 and MRF3, 

where there is more motion in the earthquake, resulting in a collapse mechanism. 

Further, amongst the frames with joint elements, B4 and C4 show a lateral 

offset unlike A4. Detailed comments on this aspect are presented while discussing 

the results from the O.5g(peak) ground motion. 

O.5g(peak) -

The lateral floor displacement time histories in A5, B5 and C5 are indicated in 

Fig. 7 .2. A5 demonstrates good ductile behaviour and shows no lateral offset, unlike 

B5 and C5. Further, most of the lateral offsets in B5 and C5 occur in the bottom 

few floors. In spite of the lateral offsets, none of the frames collapse. Even though 

MRF2 and MRF3 do not collapse at O.5g(peak) ground motion, the displacement 

time history scenario suggests a probable collapse mechanism should the frames fail 

under higher levels of ground motion. This probable collapse mechanism is similar 

to the one already identified in case of MRFO in Chapter 6 as shown in Fig.6.S. 

The joints play a critical role in redistributing the inelastic effects between 

the various elements in the frames. The second floor interior and exterior joints 

identified in Fig.6.11 , are chosen to observe the typical joint responses. Figs.7.3 

and 7.4 show the hysteresis loops of these joints from A5 and B5, respectively. 

The joints in A5 and B5 undergo considerable yielding. The joints in C5 remain 

completely elastic and hence their responses are omitted here. In general , the 

interior joints are subjected to larger shear strains than the exterior ones. The 

joints in B5 indicate a drift in the shear strains , unlike the joints in A5 which show 

a symmetric pattern in the shear strain plastic excursions. 

The same four members identified in Chapter 6 (see Fig.6.11) are chosen again 

to present typical member reponse time histories. The member response time his

tories of the first storey interior and exterior columns, and the second floor interior 

and exterior beams from A5 are shown in Figs.7.5 , 7.6, 7.7 and 7.S, respectively, 
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along with the strength envelopes. These strength envelopes are obtained as de

tailed in Sec.6.5.2. The exterior beam and interior column undergo strain-hardening 

and pick up axial loads and bending moments beyond the envelopes. Comparisons 

of responses of the same four members in A5 , B5 and C5 , are given in Figs.7.9, 

7.10, 7.11 and 7.12. The large lateral offsets in B5 and C5 are reflected in the 

member responses. The significant yielding in all these members suggests a drop in 

the storey stiffness leading to large storey displacements. 

The maximum joint rotation ductilities b p/'Yy) and the maximum member-end 

curvature ductilities (<p pJ<Py) during the entire time history in A5 , B5 and C5, are 

summarised in Figs. 7 .13, 7.14 and 7.15, respectively. Most of the inelastic behaviour 

in C5 occurs in the latter half of the time history when the frame undergoes a 

significant lateral offset. Hence, the associated ductility quantities are larger than 

the ones observed in A5. As expected, the joint ductilities in A5 are absent in C5, 

since the joints remain elastic. Consequently, the curvature ductilities in the beam

column members are larger in C5 than in A5. As expected, the joint rotations 

reduce from MRFI to MRF2, and fur thermore from MRF2 to MRF3. In general, 

the exterior beam-end curvature ductilities are larger than those of the interior ones. 

The ratio of the relative storey lateral displacement t.. to the corresponding 

storey height h is hereinafter referred to as the storey-drift . The maximum storey

drifts (t.. /h) in the three MRFs are shown in Fig.7.16. Clearly, the storey-drifts are 

more uniform in A5 than in B5 and C5. The bottom few storeys undergo very 

large storey-drifts in B5 and C5. The maximum allowable storey-drift by UBC 

1991 for steel special MRFs is 0.0025 radianJ under the prescribed design lateral 

forces. The maximum storey-drifts in MRF1 , MRF2 and MRF3 are about 12, 17 

and 36 times the prescribed maximum storey-drift , respectively. From serviceability 

considerations, it is essential that no single storey undergoes unreasonably large 

drifts. Keeping this in mind, only MRF1 may be considered to have performed 

well. MRF2 and MRF3 indicate large drifts in the bottom two storeys relative 

to the others. The pattern in these storey-drifts suggests the possible collapse 
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mechanism in MRF2 and MRF3. 

The performance of B5 is in between those of A5 and C5. However, its lateral 

offset suggests that its performance is more similar to that of C5 than of A5. 

O.6g(peak) -

As suspected earlier in MRF3 under 0.5g(peak) ground motion, the concen

tration of the lateral offset in the bottom few storeys leads to the collapse of the 

frame at 0.6g(peak) ground motion. The lateral displacement time histories of all 

the floors in A6 and C6 are shown in Fig.7.17. A6 shows the first signs of a lateral 

offset. However, this offset in A6 is distributed over at least half the frame height, 

unlike in C6 , where it is concentrated in the bottom few floors. In spite of this 

lateral offset, A6 does not collapse. 

The summary of the joint and member-end ductilities during collapse in C6 

and on the verge of collapse in A6, are not presented as the quantities do not have 

any physical significance. 

O.7g(peak) -

The lateral offset in MRF1 under 0.6g(peak) ground motion suggests a probable 

collapse under higher magnitudes of ground motion. MRF1 collapses under the 

increased ground motion of O.7g(peak). The lateral displacement time histories of 

all the floors in A 7 , are also given in Fig. 7 .17. 

7.5.3 Responses to Pacoima Dam Ground Motion 

The lateral displacement time histories of all floors of the three MRFs under 

the Pacoima Dam ground motion, are shown in Fig.7.18. MRF1 has a larger offset 

than MRF2 and MRF3. In MRF2 and MRF3, the lateral offset is concentrated 

in the bottom six storeys, while it is uniformly distributed over the entire height 

in MRFl. Fig.7.18 indicates a very gradual collapse in MRF2 and MRF3. The 

collapse mechanism developed in these two frames is similar to the one observed 
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in the case of the Holiday Inn ground motion. Here, the bottom six storeys are 

involved in the sway mechanism as against the bottom three storeys only under the 

Holiday Inn ground motion. Even though the lateral offset is initially larger in AD 

than in BD and CO, MRF1 survives the ground motion. 

The maximum ductilities in the joints and beam-columns of the three MRFs 

are indicated in Figs.7.19, 7.20 and 7.21. As expected, the joint ductilities are larger 

in AD, while the member-end curvature ductilities are larger in BD and CO. The 

increased participation of the higher floor beams is obvious in Fig. 7 .21. As the joints 

get stronger, the interior beams also form plastic moment hinges at their ends. 

The maximum storey-drifts in MRF1, MRF2 and MRF3 are indicated III 

Fig.7.22. All the frames perform reasonably well. The maximum storey-drift in 

all the frames is about 12 times the maximum prescribed under the design lateral 

forces. However, the uniformity in the maximum storey-drifts across the height of 

the frames observed in A5 is not very obvious in AD. As before, the joint rotations 

are larger in MRFl , and progressively lesser in MRF2 and MRF3. 

The joints in MRF3 are stronger than those in MRF1. Consequently, the large 

velocity pulse in the Pacoima Dam ground motion affects MRF1 more than MRF3 

by way of a larger lateral offset. But, the transfer of ductilities to the columns in 

MRF3 is not favourable to the overall stability of the frame. Further, the Pacoima 

Dam ground motion has a larger content at 1.0 second period than at 1.2 seconds, as 

per its acceleration spectrum given in Fig.2.7. Hence, MRF3 with a second natural 

period of 1.06 seconds responds in second mode more than MRF1, whose second 

natural period is 1.20 seconds. Also, the inelastic effects are more pronounced in 

MRF1 than in MRF3, causing a lesser response to the second mode. 

7.5.4 Comments on Responses to Real Ground Motions 

The following general observations are made regarding the responses of the 

frames under the two real ground motions. The lateral displacement of the roof in 
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AD is smaller than in A5. This is owing to the fact that the Holiday Inn ground 

motion scaled to O.5g(peak) has a larger content around the first natural period of 

MRFl, as seen in Fig.2.7. 

Further, AD and A5 differ in one other major aspect. The lateral offset ob

served in AD is completely absent in A5. This is attributed to the large velocity 

pulse in the Pacoima Dam ground motion which causes large strains in the lower 

storey columns, particularly in the first storey columns. These large strains cause 

yielding in the columns, which reduces their lateral stiffness. Hence, larger lateral 

offset results in AD unlike in A5. 

Under both ground motions, MRF2 and MRF3 readily develop plastic hinges 

in columns and form collapse sway mechanisms nore easily than MRFl. 

7.5.5 Responses to Fanlt-Parallel Synthetic Ground Motions 

Pulses 1 to 5 in Table 7.3 correspond to the synthetic ground motions simulating 

the fault -parallel motion with a large pulse. The following is a summary of the 

numerical results obtained from the dynamic analyses of the three MRFs under 

these synthetic ground motions: 

Pulse I -

The floor lateral displacement t ime histories from PI, Ql and RI are shown 

in Fig.7.23. Though none of the frames collapse, PI accumulates a much larger 

lateral offset. Further, the figure suggests that RI also vibrates in its second mode, 

unlike PI which vibrates predominantly in its first mode. The joint rotational 

ductilities and the member-end curvature ductilities in PI , Ql and RI, are given 

in Figs.7.24, 7.25 and 7.26 , respectively. The member-end curvature ductilities in 

RI are marginally larger than those of PI. 

Pulse 2 -

The synthetic pulse 2 has a duration of 2 seconds and a ground acceleration of 
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0.2g(peak) , which is twice the duration of synthetic pulse 1 and half its peak ground 

acceleration. Fig. 7 .27 illustrates the floor lateral displacement time histories from 

P2 , Q2 and R2 . P2 behaves very similar to PI. But, the second mode contribution 

observed in Rl , is absent in R2 . Also, R2 demonstrates a lateral offset like P2. 

The ductilities in the joints and beam-column members in P2, Q2 and R2, are 

distributed across the frames in a similar way as observed under pulse 1. Since they 

are only marginally more than those observed under pulse 1, they are not presented. 

Pulse 3 -

In comparison with pulse 1, pulse 3 basically has the same duration of the 

pulse but has twice the amplitude. Consequently, the responses also seem scaled 

up, though not linearly. Fig. 7 .28 shows the floor lateral displacement time histories 

in P3, Q3 and R3 . Unlike in Rl , R3 accumulates lateral offset. The second mode 

of vibration seen earlier in Rl is not very obvious in R3. The element ductilities in 

P3, Q3 and R3 are shown in Figs.7.29, 7.30 and 7.31, respectively. Understandably, 

these quantities are larger than those observed under pulse 1. None of the frames 

show any tendency to collapse. A maximum joint rotation ductility of about SO is 

recorded in the second floor exterior joint of MRF1. 

Pulse 4 -

Again, with twice the duration of pulse 3 and half its peak ground acceleration , 

pulse 4 results in larger responses. The lateral offsets in the two frames are further 

increased, but R4 has smaller lateral offset than P4 , as seen in Fig.7.32. The 

ductility distributions in the frames are similar to the corresponding ones obtained 

under pulse 3. They are omitted for brevity. In spite of the large lateral offsets, the 

frames still remain stable. 

Pulse 5 -

Of the five pulses representing typical fault -parallel motion, pulse 5 is the most 

severe one. The peak ground acceleration of about 1.6g and peak velocity of 4000 

mm/sec are slightly on the higher side of the ground motions recorded so far during 
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major earthquakes. However, these quantities are explored to simulate the extreme 

conditions during big earthquakes. 

With twice the ground motion of pulse 3, MRFI collapses under pulse 5, unlike 

MRF2 and MRF3, as shown in the floor displacement time histories from P5, Q5 

and R5 in Fig.7.33. The first storey interior columns are translated laterally to the 

extent that the extreme fibres in the bottom end segment reach ultimate strain, and 

start losing strength and stiffness. Consequently, the frame starts collapsing. This 

suggested collapse mechanism in Fig.7.33, is similar to the one indicated in Fig.6.8. 

On the other hand, Q5 and R5 with stiffer joints withstand the jolt and remain 

stable, as seen in Fig.7.33. The collapse of MRF2 and MRF3 is imminent on further 

increase in the amplitude of ground motion, as suggested by the concentration of the 

lateral offset in the bottom few floors. The ductilities recorded are not meaningful 

under collapse conditions, and hence omitted. 

7.5.6 Responses to Fault-Normal Synthetic Ground Motions 

Pulses 6 to 9 in Table 7.3 correspond to the synthetic ground motions simulating 

the fault-normal motion with a large pulse. The following is a summary of the 

numerical results obtained from the dynamic analyses of the three MRFs under 

these synthetic ground motions: 

Pulse 6 -

The floor displacement time histories from P6, Q6 and R6 are shown in 

Fig. 7 .34. Clearly, all of them demonstrate similar responses. Since the joints in 

R6 are stiffer and hence the frame, the amplitude of the response is greater in R6. 

None of the frames collapse. The lateral offsets in Q6 and R6 are marginally more 

than those in P6. The joint rotation ductilities and the member-end curvature 

ductilities from P6, Q6 and R6 are given in Figs.7.35, 7.36 and 7.37, respectively. 

The ductility distributions indicate that as the joints get stronger, the higher mode 

participation is increased. The location of the large ductilities exactly coincides 
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with the floors 15 to 17, where the doubler plate thicknesses are suddenly reduced. 

The beams and columns in the higher floors participate much more in Q6 and R6 

than in P6 owing to stronger joints. 

Pulse 7-

The effect of a longer duration pulse is evident here. The displacement excur

sions are larger in P7, Q7 and R7 than those under pulse 6, as shown in Fig.7.38. 

One major difference in the responses under the pulses 6 and 7 is regarding the 

distribution of the lateral offset along the height of the frames. Under pulse 6, the 

lower floors are subjected to higher inter-storey drifts. However, under pulse 7, the 

floors displace uniformly relative to each other. Further, the lateral offset in P7 are 

smaller than those in Q7 and R7. 

Pulse 8 -

The responses of the three MRFs under pulse 8 are identical in form to those ob

tained under pulse 6, as seen in Fig.7.39. Obviously, the amplitudes of the responses 

are larger. However , the concentration of the lateral offset in the bottom few floors 

is further accentuated under pulse 8 in comparison with the reponses under pulse 6. 

The tendency towards the collapse mechanism identified in Chapter 6 (see Fig.6.8) 

may be observed. The ductilities from P8, Q8 and R8 are given in Figs.7.40, 7.41 

and 7.42, respectively. 

Pulse 9 -

Response P9 is predictable from the trend in the above responses. The ampli

tudes are larger than in P7, as seen in Fig.7.43. Even with twice the duration of 

pulse 8 and t he same peak velocity, the MRFs do not collapse under pulse 9, as 

seen in Fig.7.43. 

7.5.7 Comments on Responses to Synthetic Ground Motions 

Based on the responses under pulses 1 to 5, it is observed that the duration 
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of the pulse affects the participation of the higher modes, while the amplitude of 

ground motion affects the response amplitudes. The response is greater under the 

larger amplitudes of ground motion. MRF3 performs better than MRFI on the 

whole with lesser lateral offsets. The non-unifomity in the inter-storey drift is seen 

in all the frames as the strength of the ground motion is increased. 

Based on the responses under pulses 6 to 9, the shorter duration pulses, i.e., the 

pulses 6 and 8, seem to cause lesser lateral offsets in the frames. For a given peak 

velocity of the pulse, the shorter duration pulses cause non-uniform inter-storey 

drift in the building with larger drift concentrated in the lower floors. Secondly, the 

larger the peak ground velocity, the greater is the response. The response of MRF3 

is larger than that of MRFI under these ground motion pulses. 

In summary, while both MRFI and MRF3 take the fault-normal ground motion 

very well, MRF3 performs better under the fault-parallel ground motion in com

parison to MRFl. 

7.6 Conclusions 

The above numerical studies of the twenty-storey MRF suggests that the non

linear dynamic response of a high-rise MRF is very sensitive to the panel zone design 

as well as to the input acceleration ground motion. The MRF analyses provide an 

insight into and help better understand the behaviour of the twenty-storey MRF. 

The following conclusions are noted with respect to the design and analyses of the 

twenty-storey MRF : 

(1) The proposed Cubic Ellipsoidal Hysteretic Model of the uniaxial cyclic consti

tutive law for the axial stress-strain behaviour of structural steel is very efficient 

and convenient. 

(2) The performance of a MRF with flexible joint elements in its discretisation is 

different from that of a MRF without joint elements. The inclusion of flexible 

joint elements in realistic frame analysis is essential. 
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(3) In general, MRF2 and MRF3 perform very similarly under the various ground 

motions. However, the perfomance of MRFI is different depending on the type 

of ground motion. 

(4) Strain-hardening is successfully incorporated in the analysis of planar MRFs 

through the Fibre Model beam-column element. The first storey interior col

umn and the second floor exterior beam undergo strain-hardening and pick 

up additional moments up to about 10% of Mp in MRFI under the Holiday 

Inn ground motion scaled to 0.5g(peak). In MRF2 and MRF3, these members 

strain-harden to pick up additional moments up to about 50% of Mp. 

(5) The axial load fluctuates from peak to peak by about 0.8Py in the first storey 

exterior column, and by about O.lPy in the first storey interior column in MRFI 

under the Holiday Inn ground motion scaled to 0.5g(peak). In both MRF2 and 

MRF3, the axial loads in the first storey exterior and interior columns fluctuate 

by about 1.2Py and 0.2Py , respectively. 

(6) The MRF with strong joints performs satisfactorily under the synthetic ground 

motions with large pulses. However , owing to the stronger joints, the columns, 

which do not possess the desirable · stable hysteretic properties of the joints, are 

forced into larger inelastic excursions. Consequently, large undesirable inter

storey drifts occur in t he bottom storeys of the frame. 

(7) On the other hand, the MRF with yielding joints performs well under ground 

motions with large acceleration content in the proximi ty of the first natural 

period of the frame, and under fault-normal synthetic ground motions. How

ever, under fault-parallel synthetic ground motions, the displacement jump in 

the ground motion caused by the half-cycle velocity pulse results in excessive 

lateral offsets of the frame owing to the yielding joint panel zones. 

(8) In the case of the fault-parallel synthetic ground motion, the duration of the 

pulse affects the modal part icipat ion, while the amplitude of the pulse affects 

the response amplitude. But, in the case of the fault-normal synthetic ground 
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motions, the shorter duration pulses cause lesser lateral offsets, but larger non

uniform distribution of the inter-storey drift with larger concentrations in the 

lower floors. However, in general, the closer the duration of the pulse to the 

first natural period of the frame, the larger the response. 

(9) The Pacoima Dam ground motion has a velocity pulse typical of the fault

parallel ground motion. Thus, as stated in conclusions (6) and (7) above, 

MRFI undergoes larger lateral offset than MRF3. But, in MRF3, the stronger 

joints force the plastic moment hinges to occur in the columns, leading to 

reduced storey stiffness. Consequently, MRF3 develops a collapse mechanim. 

(10) Under the Holiday Inn ground motion scaled to different levels, the overall 

performance of MRFI is superior to those of MRF2 and MRF3. The absence 

of sharp and large velocity pulses in the ground motion is favourable to MRFI 

with yielding joint panel zones. 

(11) MRF3 has a higher participation of the second mode, unlike MRFI which 

predominantly elicits the first mode response. The participation of the beams 

and columns in the higher floors is obvious in MRF3 from the ductility plots 

obtained from the analyses using the different types of ground motions. This 

may be attributed to the sudden reduction in the doubler plate thicknesses in 

MRF3 around floors 15 to 17. 

(12) The performances of the MRFs with joint designs I and III are quite varied 

under the different ground motions studied. MRFI does not respond well 

to the displacement jumps in the ground motions. On the other hand, MRF3 

forces undesirable plastic moment hinges to occur in the columns. A MRF with 

joints stronger than those in MRFI and with the columns protected against 

formation of plastic moment hinges seems to be a good design philosophy that 

needs to be explored for tall buildings to withstand ground motions with large 

displacement jumps. 

(13) The above study indicates that code suggested design of the joint pa.nel zone, 
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i. e., design II in MRF2, does not perform as well as joint design I in MRFl, 

under the Holiday Inn ground motion. The possibility of a weaker joint panel 

zone design than that adopted in MRF2 must be considered to reduce the 

ductility demands on the columns. 

(14) Frame ductility distribution between the joints, beams and columns can be 

controlled through the design of the joints or through the design of beams. 

For the twenty-storey MRF, the numerical study shows the effect of the joint 

panel zone design on the MRF ductility distibution. Stronger joints throw 

more ductility demands on the columns, while yielding joints attract the duc

tility towards themselves and do not perform well under ground motions with 

displacement jumps. 
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Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1 Summary of Research 

This thesis attempts to provide realistic and efficient analytical tools to aid the 

study of the hysteretic inelastic response of steel planar moment-resisting frames. 

The following is the summary of the contribu tions of this thesis : 

(1) A uniaxial cyclic constitutive law valid under arbitrary transient loading, is 

proposed for structural steel. This physically motivated model incorporates 

the initial yield plateau and strain-hardening. It is based on simple hysteretic 

rules and is computationally efficient. 

(2) Two beam-column models which include material and geometric nonlinearities 

are proposed, based on large-displacement small-strain formulation. These 

models incorporate features to include dynamic and hysteretic effects. The 

first model is based on the Beam-Column Approach with the capabili ty of 

multiple segments. Features like buckling, internal hinging and plastic growth 

of the span are easily introduced. It accurately represents the strength of 

beam-columns. The second model is a comprehensive one based on the Finite 

Element Approach. It accurately models the stiffness as affected by yielding in 

hinge regions in addition to the strength. 

(3) A simple semi-empirical phenomenological model is proposed to analytically de

scribe the inelastic hysteretic behaviour of flexible joints in steel planar MRF s. 

This two parameter model is general and defines the joint behaviour over a 

wide inelastic range. 
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(4) A steel planar MRF without joint elements is studied to evaluate the perfor

mance of the various assumptions that may be made for beam-columns in order 

to reduce the computational effort in the frame analysis. Decisive conclusions 

are obtained. 

(5) A steel planar MRF with flexible joints is studied for the effect of the panel zone 

design on the frame collapse. The effect of the panel zone plate thickness and 

the strength of the beams on the re-distribution of ductility demands between 

the beam-columns and joints is carefully examined. 

8.2 Conclusions 

The following are the salient conclusions of this thesis: 

(1) The proposed Cubic Ellipsoidal Hysteretic Model for the uniaxial cyclic con

stitutive law for the axial stress-strain behaviour of structural steel is compu

tationally very efficient and convenient. 

(2) The proposed Plastic Hinge Model and Fibre Model beam-column elements 

simulate planar beam-column members very well. 

(3) The proposed Joint Hysteresis Model successfully captures the highly nonlinear 

and hysteretic load-deformation characteristics of steel planar joint panel zones. 

(4) For code designed beam-column members of seismic MRFs, approximate geo

metric stiffness is adequate. Large deformations must be included in the col

lapse analyses of frames. Inclusion of the P-6. forces is critical in the realistic 

analyses of MRFs. 

(5) Under moderate shaking, the Plastic Hinge Model and the Fibre Model beam

column elements result in almost identical frame responses. However , under 

severe shaking, the Fibre Model beam-column element is superior owing to its 

capability to handle strain-hardening. 

(6) The design of flexible joint panel zones and the input ground motion signifi-
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cantly affect the frame response. Ground motions with long-period acceleration 

content and large pulses, which are characteristic of big earthquakes, have a 

marked effect on the frame response. The yielding joints perform well except 

under ground motions with displacement jumps. The strong joints force plas

tic moment hinges to occur in the columns, which results in the collapse sway 

mechanisms in the frames. 

(7) Plastic moment hinges in columns are detrimental to the stability of the frame. 

8.3 Recommendations for Future Work 

Based on the conclusions of this thesis, the following specific recommendations 

are made for future work in this area: 

(1) The capability of the Plastic Hinge Model beam-column element to capture 

buckling and plastic growth in members under planar conditions may be ex

tended to the inelastic hysteretic behaviour of planar rigid-jointed trusses. 

(2) The idea of multi-segment Plastic Hinge Model and Fibre Model beam-column 

elements may be extended to the case of three-dimensional analysis. The in

elastic hysteretic response of space frames and space trusses is a potential area 

of research. 

(3) ''lfhile contemplating realistic three-dimensional analysis, a need arises to thor

oughly understand two-dimensional and three-dimensional material constitu

tive behaviour. Analytical models may be proposed to simulate them. 

(4) The effect of soil-structure interaction is very crucial to the stability of tall 

building frames even under uniform ground motions. The rotation of the base 

of the building under soft soil conditions increases the contribution of the P-6. 

forces on the frames. It is essential to include this effect in the collapse analyses 

of frames. Further, under non-uniform ground motion, the analyses become 

even more involved. However, the nonlinear response of tall buildings can be 

simulated more realistically by including this aspect also in the formulation of 
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frame analysis. 

(5) From a design point of view, concentrated ductility demands in the columns 

are detrimental to frames under strong seismic excitation. To attract the duc

tility demands away from the columns, the excellent hysteretic properties of 

flexible-joints can be used to distribute the inelastic actions in the frame to 

as many different elements as possible that possess stable energy dissipating 

characteristics. Also, the design of the beams may also be changed to achieve 

the same end result. Based on this philosophy, design criteria, which make 

optimum use of panel zones and beams for earthquake resistance and seismic 

energy dissipation, need to be proposed for steel MRFs. 

(6) For designing tall buildings to withstand big earthquakes, the design response 

spectra in the building codes must reflect the characteristics of all critical and 

relevant ground motions that are applicable for each geological region. Further, 

a need arises for an inelastic design response spectrum characteristic of each 

geological region. The elastic design response spectra in the UBC 1991 cur

rently in use, does not cater to the specific case of tall buildings under severe 

ground motions. 
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Table 2.1 : Duration, T, peak ground acceleration, ao, peak ground velocity, 

vo, and peak ground displacement, do, of the synthetic ground motions with a large 

velocity pulse simulating fault-parallel (SP) motion, see Fig.2.8, and fault-normal 

(SN) motion, see Fig.2.9. 

Type of Pulse No. T ao Vo do 
(sec) (mm/sec2 ) (mm/sec) (mm) 

SP 1 1.0 4000.0 1000.0 500.0 
2 2.0 2000.0 1000.0 1000.0 
3 1.0 8000.0 2000.0 1000.0 
4 2.0 4000.0 2000.0 2000.0 
5 1.0 16000.0 4000.0 2000.0 

SN 6 1.0 8000.0 1000.0 292.0 
7 2.0 4000.0 1000.0 583.0 
8 1.0 16000.0 2000.0 583.0 
9 2.0 8000.0 2000.0 1167.0 

Table 3 .1 : Criteria for validating a characteristic state as the final state of 

the segment. iJ is the applied incremental end-rotation, and ¢, is the increment in 

the elastic end-rotation within the plastic hinge. 

Criterion 
State @ Node 2 @ Node 1 

1 IM21 < MpT 1:'111 -::= MpT 
2 IM2 1 < AlpT 61 - rPI ::::: 0 
3 1:'121-::= MpT 61 - rPI ::; 0 
4 62 -rP2::::: 0 IMI I < MPT 
5 62 - rP2 ::; 0 IMI I < MpT 
6 62 - rP2 ::::: 0 ~I - ~I ::::: 0 
7 62-,/>2:::::0 ~I - ~I ::; 0 
8 62 - rP2 ::; 0 61 - rPI ::::: 0 
9 82 - ¢'2 < 0 81 - ¢'I < 0 
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Table 6.1 : List of axial load capacity, Py , and bending moment capacity, Mp , 

for each of the MRF members. The units for axial load is 106 N, and for bending 

moment is 109 N -mm. 

Columns 
Storey Interior Exterior 

Py M. Py Mp 
20 5.79 1.26 5.16 0.79 
19 5.79 1.26 5.16 0.79 
18 6.93 1.71 6.26 0.96 
17 6.93 1.71 6.26 0.96 
16 6.93 1.71 7.53 1.18 
15 6.93 1.71 7.53 1.18 
14 7.69 1.92 8.35 1.31 
13 7.69 1.92 8.35 1.31 
12 7.69 1.92 10.00 1.60 
11 7.69 1.92 10.00 1.60 
10 7.69 1.92 12.19 2.00 
9 7.69 1.92 12.19 2.00 
8 8.44 2.32 13.44 2.22 
7 8.44 2.32 13.44 2.22 
6 8.44 2.32 14.74 2.47 
5 8.44 2.32 14.74 2.47 
4 8.44 2.32 16.29 2.75 
3 8.44 2.32 16.29 2.75 
2 9.05 2.76 17.58 3.02 
1 9.05 2.76 17.58 3.02 
B 9.05 2.76 17.58 3.02 

Beams 
Floor Interior Exterior 

Py Mp Py Mp 
Roof 4.00 1.00 4.00 1.00 

20 4.00 1.00 4.00 1.00 
19 4.69 1.28 4.69 1.28 
18 4.69 1.28 4.69 1.28 
17 4.69 1.28 4.69 1.28 
16 4.69 1.28 4.69 1.28 

rest 5.52 1.55 5.52 1.55 
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Table 6.2 : List of MRF analyses indicating the assumptions made regarding 

the significant frame effects. 

Analysis Geometric Stiffness Deformations P -f'>. Effect 
F1 Exact Large Exact 
F2 Approx. Large Exact 
F3 Approx. Small Approx. 
F4 - Small -
F5 Exact Large Exact 

Table 6.3 : Natural Periods of the first three modes of the MRF without and 

with joint elements , in seconds. 

No Joint Elements Joint Elements 
Mode Design I Design II Design III 

1 3.80 3.54 3.34 3.17 
2 1.27 1.20 1.12 1.06 
3 0.72 0.68 0.64 0.60 
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Table 7.1 : Joint dimensions of the MRF with joint elements, in millimeters. 

Exterior Joints Interior Joints I 
Floor de db t de db t 

21 363.73 678.43 13.34 550.67 678.43 15.24 
20 363.73 678.43 13.34 550.67 678.43 15.24 
19 372.36 753.11 16.38 628.40 753.11 16.51 
18 372.36 753.11 16.38 628.40 753.11 16.51 
17 380.49 753.11 18.92 628.40 753.11 16.51 
16 380.49 753.11 18.92 628.40 753.11 16.51 
15 386.59 762.25 21.08 635.00 762.25 17.91 
14 386.59 762.25 21.08 635.00 762.25 17.91 
13 399.29 762.25 24.89 635.00 762.25 17.91 
12 399.29 762.25 24.89 635.00 762.25 17.91 
11 416.05 762.25 29.85 635.00 762.25 17.91 
10 416.05 762.25 29.85 635.00 762.25 17.91 
9 425 .20 762.25 32.77 706.37 762.25 18.42 
8 425.20 762.25 32.77 706.37 762.25 18.42 
7 434.85 762.25 35.81 706.37 762.25 18.42 
6 434.85 762.25 35.81 706.37 762.25 18.42 
5 445.52 762.25 39.12 706.37 762.25 18.42 
4 445.52 762.25 39.12 706.37 762.25 18.42 
3 455.17 762.25 42.04 779.27 762.25 18.03 
2 455.17 762.25 42.04 779.27 762.25 18.03 
1 455.17 762.25 42.04 779.27 762.25 18.03 
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Table 7.2 : Doubler plate thicknesses provided in the three joint panel zone 

designs of the MRF with joint elements, in millimeters. 

Exterior Joints Interior Joints 
Floor !Design I [Design II [Design III [Design I Design II [Design III 

21 - 9.12 28.76 - 14.42 40.37 
20 - 9.12 28.76 - 14.42 40.37 
19 - 8.88 30.99 - 13.43 39.63 
18 - 8.88 30.99 - 13.43 39.63 
17 - 5.80 27.43 - 13.43 39.63 
16 - 5.80 27.43 - 13.43 39.63 
15 - 8.05 33.53 - 17.56 48.59 
14 - 8.05 33.53 - 17.56 48.59 
13 - 3.31 27.98 - 17.56 48.59 
12 - 3.31 27.98 - 17.56 48.59 
11 - - 20 .90 - 17.56 48.59 
10 - - 20.90 - 17.56 48.59 
9 - - 16.89 - 13.47 41.36 
8 - - 16.89 - 13.47 41.36 
7 - - 12.74 - 13.47 41.36 
6 - - 12.74 - 13.47 41.36 
5 - - 8.27 - 13.47 41.36 
4 - - 8.27 - 13.47 41.36 
3 - - 4.35 - 10.87 36.15 
2 - - 4.35 - 10.87 36.15 
1 - - 4.35 - 10.87 36.15 I 
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Table 7.3 : List of analyses of the three MRFs indicating the type of accelera

tion ground motion (See Sec.2.7). HI, PD, SP and SN stand for Holiday Inn record, 

Pacoima Dam record, synthetic fault-parallel pulse and synthetic fault-normal pulse, 

respectively. 

Ground Motion Scaled to Analyses I 
MRFI MRF2 MRF3 I 

HI O.4g(peak) A4 B4 C4 
O.5g(peak) A5 B5 C5 
O.6g(peak) A6 - C6 
O.7g(peak) A7 - -

PD original AO BO CO I 
SP 1 - PI Ql Rl 
SP 2 - P2 Q2 R2 
SP 3 - P3 Q3 R3 
SP 4 - P4 Q4 R4 
SP 5 - P5 Q5 R5 
SN 6 - P6 Q6 R6 
SN 7 - P7 Q7 R7 
SN 8 - P8 Q8 R8 
SN 9 - P9 Q9 R9 
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O-f----u 

(a) Frame without joint elements (b) Frame with joint elements 

Figure 2.1 : Degrees of freedom of global nodes in the discretisation of 

planar moment resisting frames. 

y 

x 

(a) Beam-column (b) Joint 

Figure 2.2 Degrees of freedom of the planar beam-column and joint 

elements. 
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Figure 2.3 : Frequency dependance of viscous damping as estimated using 

Rayleigh damping terms of the Caughey Damping Series. 
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Figure 2.4 Undesirable artificial unloading during iterations in direct 

stiffness approach. 
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Figure 2.5 : Corrected and digitized data [23] of the 9th February 1971 

San Fernando Earthquake recorded at the Holiday Inn, Ground Floor, 8244 Orion 

Blvd., Los Angeles, California, S90W component. 
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Figure 2 .6 : Corrected and digitized data [23J of the 9th February 1971 

San Fernando Earthquake recorded at the Pacoima Dam, California, S16E com-

ponent. 
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-- Holiday Inn Record (OAg peak:) 

2 3 4 

Period. T (seconds) 

(a) 

Holiday Inn Record (O.5g peak:) 

Pacoima Darn Record 

~----------------------
2 3 

Period. T (seconds) 

(b) 

4 

Figure 2.7 : Pseudo-acceleration spectra normalised with acceleration due 

to gravity for 2% damping of the 9th February 1971 San Fernando Earthquake: 

(a) Holiday Inn record, Ground Floor, 8244 Orion Blvd. , Los Angeles , Califor

nia, S90W component, scaled to O.4g (peak), and 

(b) Holiday Inn record, Ground Floor, 8244 Orion Blvd. , Los Angeles , Califor

nia, S90W component, scaled to O.5g (peak), and Pacoima Dam record, 

California, S16E component , unsealed. 

5 

5 



- 140 -

ACCELERATION 

20 TIME (sec) 

VELOCITY 

T/2 T 20 TIME (sec) 

DISPLACEMENT 

dO ------ -

I 2 
dO=gaoT 

T 20 TIME (sec) 

Figure 2.8 : Synthetic ground motion simulating fault-parallel motion with 

a large velocity pulse. 
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Figure 2 .9 : Synthetic ground motion simulating fault-normal motion with 

a large velocity pulse. 
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Figure 2.10 : Pseudo-acceleration response spectra normalised with accel

eration due to gravity, of t he synthetic ground motions simulating fault-parallel 

and fault-normal motions. 
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Figure 3.1 : Physical idealisation and load-deformation curves of the two 

types of simplified lumped plasticity models for beam-columns. 
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Figure 3.2 : Exterior and interior nodes of a Plastic Hinge Model beam

column element composed of multiple segments. 
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Figure 3.3 : Idealisation of a Plastic Hinge Model beam-column segment 

indicating its sub-elements and degrees of freedom. 
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Figure 3.4 : Deformed and undeformed configurations of a Plastic Hinge 

Model beam-column segment in member coordinates. 
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Figure 3.5 : Stability functions and their derivatives with the correspond-

ing series expansions about p = 0 as a function of the normalised axial load. 
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F igu re 3.6 : Bowing functions and their derivatives with the corresponding 

series expansions about p = 0 as a function of the normalised axial load. 



- 148 -

L 

(a) Member Coordinates, i!, ~ 
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Figure 3.7 : Degrees of freedom and end-forces in different coordinate 

frames of a Plastic Hinge Model beam-column segment. 
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Figure 3.8 : Geometry and end-forces in member and local coordinate 

frames of a Plastic Hinge Model beam-column segment. 
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Figure 3.9 : External and internal degrees of freedom and corresponding 

forces in global coorinates of a multi-segment beam-column. 
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Figure 3.10 : Actual and idealised axial load and bending moment load

deformation relationships of hot rolled W sections. 
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Figure 3.11 : Actual P-M strength interaction surface of hot-rolled VV 

sections and idealisation used in the Plastic Hinge Model. 
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Fig ure 3 .12 : Characteristic states of a Plastic Hinge Model segment. 
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Figure 3.13 : Singularities in the axial load equation of a Plastic Hinge 
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Figure 3.14 : Defini tions for positive and negative plastic rotation at the 

ends of a P lastic Hinge Model beam-column segment. 
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Figure 3.15 : Formation of multi-segment beam-columns with Plastic 

Hinge Model segments having different characteristic states to enSure that only 

one plastic hinge can be formed at any interior node. 
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Figure 3.16 : Characteristic states corresponding to the current and pos

sible new states of a Plastic Hinge Model beam-column segment. 
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Figure 3.17 : Popular and proposed iterative schemes used to solve soft-

ening type nonlinear governing equations. 
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Figure 3 .18 : Geometry, load-deformation relation and the P-I'V! interac

tion surface of a pin -ended brace member during buckling. 
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Figure 3.19 Application of the infinitesimal load to create a numerical 

imperfection in the brace member to initiate buckling. 
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Figure 3.20 Changing stiffnesses during unloading in direct stiffness ap

proach. 
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load performance of a fixed-ended brace, kL/r = 120, with the theoretical pre

dictions using the Fibre Model and the Plastic Hinge Model. 
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snap-through problem of a slender member using the Fibre Model and the Plastic 

Hinge Model beam-column elements . 
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Figure 3.23 : Effect of tensile axial displacement on the response to the 

lateral translation problem of a beam-column modelled using the Plastic Hinge 

Model element. 
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Hinge ModeL 
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P-NI strength interaction to the lateral translation problem of a beam-column 

modelled using the Plastic Hinge Model element. 
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forms a planar moment resisting frame. 
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Figure 4.2 : Typical monotonic stress-strain curve for structural steel and 
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Figure 4.3 : Geometry of the cubic ellipses modelling the strain-hardening 

part of the virgin curves in the Cubic Ellipsoidal Model. 



TENSILE 
HYSTERESIS LOOP 

(CUBIC ELLIPSE) 

- 166-

/ 
/ 

ELASTIC 
UNLOADING 

£ 

COMPRESSIVE 
HYSTERESIS LOOP 
(CUBIC ELLIPSE) 

Figure 4.4 : Geometry of the cubic ellipses modelling the hysteresis loops 

in the Cubic Ellipsoidal Model. 

__ ENVELOPE - +----t 
STRAIN _L-~-"""'->----

TRANSLATED~ 
TENSILE r-

BACKBONE 
CURVE / 

I. 

SHIFT __ 

----./ 

..... --.-- _.../ "-
TENSILE 
VlRGIN 
CURVE 

£ 

/ ~ TRANSLATED COMPRESSIVE 
--' BACKBONE CURVE 

I.- ENVELOPE 
STRAIN SHIFT 

Figure 4.5 : Envelope strain shift under arbitrary cyclic strain history. 
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(a) Fibre 

(b) Segment 

Figure 4.12 : Global degrees of freedom and end-forces on a fibre and a 

segment of the Fibre Model beam-column element. 

y 

~X 
Figure 4.13 : Local degrees of freedom and end-forces on a segment of the 

Fibre Model beam-column element. 
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Model. 
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Figure 5.1 : Geometry and the loads transferred through a planar joint. 
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Figure 5.2 : Shear stress distribution in a planar joint. 
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Figure 5.3 : Joint moment contributed by various surrounding element,s. 
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Figure 5.4 : Physical idealisation a joint and the degrees of freedom of a 

typical global node of a planar MRF with joint elements . 
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Model. 
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prediction using the Joint Hysteresis Model. 
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Figure 6.1 : Isometric view of the twenty-storey office building with specific 

reference to the moment resisting frame under consideration. 
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Figure 6.14 : Member response time histories of the second floor exterior 

beam from response F5. The full lines represent th e time histories and the dashed 

lines represent the envelopes. 
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Figure 7.2 : Lateral displacement time histories of all floors of the three 

MRFs from responses A5 , B5 and C5. The outermost curves correspond to the 

roof, while the innermost curves correspond to the first floor. 
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