Finite Element Simulation and Analysis
of Local Stress Concentration in Polymers

with a Nonlinear Viscoelastic Constitutive Model

Thesis by
Limdara O. Chea

In Partial Fulfilinent of the Requirements
for the Degree of

Aeronautical Engineer

California Institute of Technology

Pasadena, Califormia

1997
(Submitted October 4th, 1996)



-1 -

© 1997

Limndara O. Clea

All Rights Reserved



- i -
To a very special person, Mandy,

for all her help, patience and support.



T

Acknowledgements

I would like to express my gratitude to Professor Wolfgang G. Knauss for his guidance
and advice throughout this project. His willingness to teach me viscoelasticity, and
allowing me to pursue this work in this motivating matter, is greatly appreciated.

Some friends taught me more than what I could ever expect from classes. I would
like to thank in particular Dr. Alfons Noe, for offering his precious advice that helped
me greatly in writing my thesis and preparing my defense, and Demirkan Coker, my
very good friend ‘Iy1 Arkadash Ew’, for being so available and complementing me
with lis strong experience in the field of Solid Mechanics.

I think both this dissertation, and I personally, have been enriched as a result
of their wisdom. I would also like to thank the fantastic proofreading GCD team:

Giorgio Isella, Claude Seywert and, especially, Demirkan Coker.



Abstract

Given a nonlinear viscoelastic (NLVE) constitutive model for a polymer, this numer-
ical study aims at simulating local stress concentrations in a boundary value problem
with a corner stress singularity. A rectangular sample of Polyvinyl Acetate (PVAc)-
like cross-linked polymer clamped by two metallic rigid grips and subjected to a
compression and tension load is numerically simulated.

A modified version of the finite element code FEAP, that incorporated a NLVE
model based oun the free volume theory, was used. First, the program was validated
by comparing numerical and analytical results. Two simple mechanical tests (a uni-
axial and a simple shear test) were performed on a Standard Linear Solid material
model, using a linear viscoelastic (LVE) coustitutive model. The LVE model was
obtained by setting the proportionality coefficient 4 to zero in the free volume theory
equations. Second, the LVE model was used on the corner singularity boundary value
problem for three material models with different bulk relaxation functions K (¢). The
time-dependent stress field distribution was investigated using two sets of plots: the
stress distribution contour plots and the stress time curves. Third, using the NLVE
constitutive model, compression and tension cases were compared using the stress
results (normal stress o, and shear stress o,, ). These two cases assessed the effect
of the creep retardation-creep acceleration phenomena.

The shift between the beginuning of the relaxation moduli was shown to play an
important role. This parameter affects strougly the fluctuation pattern of the stress
curves. For two different shift values, in one case, the stress respouse presents a ’dou-
ble peak’ and ’stress inversion’ characteristic whereas, in the other case, it presents
a 'single peak’ and no ’inversion’. Another important factor was the material’s com-
pressibility. In the case of a nearly-incompressible material, the LVE and NLVE

models yielded 1dentical results; thus, the simpler LVE model is preferable.
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However, in the case of sufficient volume dilatation (or contraction), the NLVE
model predicted correct characteristic responses, whereas LVE results were erroneous.

This proves the necessity of using the NLVE model over the LVE model.
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Introduction

Given a nonlinear viscoelastic constitutive model for a polymer, this study aims at
simulating a boundary value problem in which some inhomogeneous deformations,
local stress concentrations occur. A corner singularity is likely to generate such stress
concentration. For this purpose, the choice was made to cousider the boundary value
problem of a rectangular sample of polymer (Polyvinyl Acetate or PVAc) clamped by
two metallic (Alumininin) rigid grips subjected to a compression and tension load.
The idea was that this geometry might lead to the formation of shear bands within
the polymer and consequently to their analyses.

For the numerical analyses, a finite element code, that incorporated the nonlinear
viscoelastic (NLVE) model based on the free volume theory, was used. A finite element
code based on the core program called FEAP had been developed and revised by
successive Caltech graduate students. Unfortunately, no documentation existed for
the program yet. The FE code FEAP 1s now treated in more detail in the Appendix.

First, we checked the code with two simple mechanical tests: a uniaxial compres-
sion test and a simple shear test. The boundary couditions were taken to be a step
load, then a step boundary displacement in order to check respectively the strain
creep behavior and the stress relaxation behavior. For comparison between analyti-
cal and numerical results, a simple standard solid material model associated with a
linear viscoelastic (LVE) model was investigated.

Linear viscoelasticity was implemented in the finite element code by setting the
coefficient ¢ to zero in the free volume equation. This way, the time shift factor is
no more dependent on the local variations of volume. It becomes a homogeneous
field distribution set to a trivial unit value 1. Cousequently, the time shift factor was
disabled in the program, which enabled a more straightforward comparison with the
theoretical values.

Second, this LVE code was then used on the boundary value problem that in-
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cluded a corner stress singularity. For further validation, the long-term stress field,
that 1s an elastic solution, was double-checked with a comnercial finite element soft-
ware, ABAQUS. The time-dependent belavior that is between the instantaneous and
the long-term responses is strictly characteristic to viscoelastic materials. This was
investigated with a ’snapshot’ (a contour plot) of the stress distribution at a middle
time and with curves of the stresses and strains with respect to time.

Third, the time shift factor was then reintroduced in the code to investigate the full
shift factor effect of nonlinear viscoelastic theory. With the NLVE code, a compres-
sion and tension case were simulated and their result were compared. Compression
and tension affect in an opposite way the local variation of volume. And that local
variation of volume commands the change in free volume. This way, we can study the
effects of creep retardation and creep acceleration in, respectively, the compression
and tension cases.

In the next chapter, the theory and the viscoelastic coustitutive equations will
be reviewed. Also the implementation of the boundary value problem in FEAP
is summarized. In the third chapter, the material model characterization of three
different materials is explained. In the fourth chapter, the results in terms of the

normal stress oy, , shear stress o,, and normal strain ¢, behavior are summarized.



Chapter 1 Theory and Methods

1.1 Constitutive Theory

The nonlinear viscoelastic constitutive theory based on the free volume model is
briefly summarized. For more details, refer to the papers: Knauss and Emri (1987),
Losi and Knauss (1992a). G. Losi extended the free volume model to temperatures
below the glass transition, taking into account the fact that the instantaneous free
volume only achieves a metastable equilibrium state below the glass transition tem-

perature. That extended free volume theory is implemented in this thesis.

1.1.1 Stress-strain relations

A viscoelastic material stress-strain relation is of the form of a convolution product
between the material’s relaxation functions K (t), G(t) and the strain incremental

history de;;(t). The Cauchy stress is:

t Oedev t err

oult) = [ 26(E0) =€) Fnr + 8, [ K () - &) S (r)ar
—6i;K 0y, AT (2) (1.1)
£(t) = Ot% (1.2)

The shear and bulk relaxation functions G(t) and K(#) are scaled in time by an
‘internal’ time function £(¢). In the most simple case of a thermo-rheologically simple
viscoelastic material submitted to isothermal loading, £(#) is just scaled by a constant
coefficient ar (or ¢) that is a function of temperature 7 £(t) = ﬁ

In an extension of this model, a7 becomes a function not only of the temperature
history but also of the hLydrostatic stresses history and the solvent concentration

history (Ferry and Stratton, 1960; Knauss and Emri, 1987).
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Coefficient ar 1s called a time shift factor, because if a plot of o;; versus time is

generated in logarithmic time, it appears as if the curve had been shifted in time by

log(ar).

1.1.2 Free volume theory extended to metastable equilib-
rium states

In the case of nonlinear viscoelasticity (NLVE), the time shift factor ¢ is a function of
the local (fractional) free volume f. The local free volume varies with all the applied
conditions. The basic assumption is that the variation of the (local) free volume,
df, is proportional to the variation of the (local) macroscopic volume, degi. The

proportionality coefficient 4 is a function of the free volume. Basically, &(f) is close

ﬂfo
1'*‘[’1'0

to zero for small f and close to for large f, where 3y, is the ratio between free
and occupied volume changes above the glass transition.

Thus, below a certain value of f, any decrease in the macroscopic dilatation due to
pressure or temperature change will not give a corresponding decrease in free volune.

The polymer is, in this case, in the frozen state with a constant residual free volume.

The free volumne theory equatious are:

(0 = [ 15 (13
log ¥(t) = B(R%* fij) (1.4)
F#) = o+ [ S(F(r))des(r) (1.5)
5(f) = % (16)
1
f) = 1.7
T e B ) )
K(t) = Koo+§:erxp(—t/T:) (1.8)
N
G(t) = Go+y_ Gpexp(—t/7)) (1.9)

p=1
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. N
Ky = Ko —m2— 1.10
1+ B 9(f) (110)
ZS‘Vfree a M I{P
_ T o ) 1.11
ﬂfO A‘/;ccupied Qg, pgl I{oo ( )

In the above equations, B is a material parameter, f(¢) and f,.; are the fractional
free volume at current condition (time) due to temperature and hydrostatic stress
changes and at reference condition (temperature) corresponding to the state in which
the relaxation moduli were measured. f;,;; is the initial free volume; 7 is the time
shift factor, and By, is the ratio between free and occupied volume changes above
the glass transition. K(t) and G(¢) are the time-dependent bulk and shear moduli
measured at the reference free volmne f..s. o, and ag , are the rubbery and glassy
value of the volumetric thermal expansion coefficient, respectively. ¢(f) takes into
account the metastable equilibrinin state of the free volume that exists below the
glass transition temperature.

From the above equations, understand that the time functions 1 (¢) and f(t) are
also field functions. Their values are dependent on the spatial position Z. A better
notation would be ¥(t,Z) and f(¢,7). Consequently, the internal time £(¢,Z) also
has a spatial distribution and takes different values at a given time at two different

points.

Remark: Linear viscoelasticity

1. If the proportionality coefficient 4 is set to zero, then

(&) = finir (1.12)

1 1
log $(t) = B(E;-fwf) (1.13)

2. Furthermore, if f;,.;; 1s set equal to f,.; (which means that T},,;; equals T #) and

the temperature 7T is kept constant, then

logp(t) = 0 (1.14)



{t) = ¢ (1.15)
AT = 0 (1.16)

There is no shift factor anymore and the internal time £(#) is just the normal

time ¢.

We get the linear viscoelastic stress-strain relations:

t Jedev t -
ois(t) = /m 2G (t — 7) ;’; (r)dr+6; [ K (t-r)%(r)dr (1.17)

The precedent remarks will be the assumptions of the linear viscoelastic (LVE) con-

stitutive model.

1.1.3 Volumetric and deviatoric decomposition

The choice of the shear modulus G(¢) and bulk modulus G(t) to describe the mate-
rial lead naturally to the decomposition into deviatoric and volumetric parts. The

relations for the deviatoric stress (r;"f” and the volunetric stress & are:

sty = [ 26(ew) - &) S (ryar (1.18)
() = /joofx (f(t)—{(r))agik(r)(lr—f(oovaT(t) (1.19)

1.2 Validation of the Code

The nonlinear constitutive model (NLVE) was implemented in the current version
of FEAP by former Caltech Graduate students. Before rununing it on a complex
boundary value problem such as the one of this study, it needed to be validated. It
was decided to use the code on sone simple problems and to compare the numerical

results with the ‘hand-calculated’ theoretical values.
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1.2.1 Using the linear viscoelastic model

To simplify the problem for validation, the time shift factor effect has been deac-
tivated. The linear viscoelastic model was taken so that local variations of volume
would not induce a shift factor. This was made possible by setting the proportional-

ity coefficient § to zero in the constitutive relations of the program (see Constitutive

theory).

Also, no time shift factor due to temperature variation was desired. Therefore,
the temperature history was taken as constant and equal to the reference temperature
Tres (the temperature at which K(t) and G(t) were measured). This was done by

setting the initial free volume f;,;; equal to the reference free volume Tres-

1.2.2 A simple material model

To simplify the analytical calculation, a standard linear solid model was chosen for

the material’s shear relaxation. The bulk relaxation modulus is taken to be coustant.

G(t) = Go + Grexp(—t/7) (1.20)
K(t) = K. (1.21)

A real solid (the polymer considered afterwards) can be seen as a linear superposition

of several standard Linear solids.

1.2.3 Two simple mechanical tests

Simple boundary conditions were chosen for the material to undergo homogeneous
deformations. Therefore, in the specimen, the strain and stress field distribution are
homogeneous. Two simple mechanical tests were simulated on the standard linear
solid: a step uniaxial load and a step shear load (see fig. 1.1 and fig. 1.2). The
numerical creep results (see fig. 1.3 and fig. 1.4) were compared to the theoretical
results.

Then, taking the real solid (the polymer described in the material data section), a
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uniaxial step load and a uniaxial step displacement test were simulated (see fig. 1.5 and
fig. 1.6). The respective uniaxial creep and relaxation response had their initial and
long-term values compared (see fig. 1.7 and fig. 1.10) to the elastic theory, because
linear viscoelastic materials in their instantaneous and long-term behavior act like
elastic materials. It has also been checked that the norinal stress o, in the step load
case and the normal strain €, in the step displacement case remained constant and

had the correct applied value (see fig. 1.8 and fig. 1.9).

1.3 The Boundary Value Problem of the Studied

Case

1.3.1 Geometry

For the FE mesh modelisation, two homogeneous materials are counsidered: one vis-
coelastic (polymer) and one elastic (aluminium metal). The top layer of metal is
bonded to the polymer. A vertical load (compression or teusion) is then applied on
the metallic layer.

The metal can be considered as a rigid body with respect to the polymer. The
metallic layer keeps the top polymer mesh points horizontally aligned and 'locks’ their
x-displacements (see fig. 1.11). The metallic layer is so stiff compared to the polymer
that its deformation can be neglected. Thus, it provides the wanted tangential cou-
straint on the boundary of the polymer. This way, the polymer sample has a shear
stress singularity in its corner. The top rigid layer applies reactional shear stresses on
the polymer’s top boundary while the polymer’s right boundary is traction free. The
study will focus on analyzing the stress distribution behavior with respect to time
and space.

For symmetry reason, one quarter of the rectangular specimen is sufficient to
study the problem. The precedent boundary conditions were chosen because they

were thought to represent best a realistic laboratory manipulation.



1.3.2 Mesh refinement

The mesh was refined several times to make sure that it handles correctly the singular-
ity at the corner. After each refinement, the stress field was compared to the previous
one and the changes were noted. After the 7" refinement, the results appeared to be

stable. That mesh is the one used in fig. 1.11.

1.3.3 Simulated experiment

The purpose of this research is to study some inhomogeneous stress distribution in a
nonlinear viscoelastic material (polymer).

A rectangular sample of polymer (close to PVAc) clamped by two rigid metal-
lic grips on the top and bottom sides is submitted to a compression and tension
load. The rigid grips develop some boundary tangential constraints, which in turn
create a singularity point at the corner. This singularity point is a source of stress

concentration.

1.3.4 Validation

The first test to be simulated was for the polymeric material under compression given
a linear viscoelastic elastic (LVE) coustitutive model. The long term contour plot of
oy, for the LVE material (see fig. 1.12) is compared to the one of an elastic material
(see fig. 1.13), provided with the long term material constants of the viscoelastic
material (Ko, = 10 Pa, G5 = 3.16 Pa). The two contour plots superpose
perfectly. Also, the same elastic material has been simulated under compression with
a commercial software called ABAQUS. The stress field contour plot 1s in Fig. 1.14
and coincides with both previous results. The case is a further validation of the code.
This is in accordance with the linear viscoelasticity theory. In its instantaneous and

long term respounse, a viscoelastic material acts like an elastic material.
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Figure 1.2: Long term deformation, uniaxial, Standard Linear Solid
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Figure 1.5: Imitial and long term deformations, step load, Real Solid
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Figure 1.6: Initial and long term deformations, step displacement, Real Solid
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Figure 1.8: Normal stress o,,(¢) , step load, Real Solid
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Figure 1.9: Normal strain €,,(t) , step displacement, Real Solid
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Figure 1.10: Normal strain o,,(¢) , step displacement, Real Solid
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Figure 1.11: The boundary value problem
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Chapter 2 Material Characterization
and Constitutive Model

2.1 A Cross-linked Polymer

The cross-linked polymer used was extrapolated from the PVAc (Polyvinyl Acetate)
material characteristics. PVAc is an uncross-linked polymer. It means that, when
loaded in shear, the PVAc shear strain response reaches an asymptotic climbing line in
the long term and creeps forever (see Fig. 2.1). That is called free dashpot’ behavior.
The extrapolation was achieved by subtracting the free dashpot asymptotic line from
the PVAc creep cuxve in order to obtain the shear creep function J(t) of a cross-linked
polymer, the final material (see Fig. 2.2).

In order to input this material data for the FEAP code, it was necessary to get the
shear relaxation function G(t) and extract a proper Prony series representation for
it. Inverting the ’sinooth’ creep curve into the relaxation curve was accomplished by
using the program invert.f. The relaxation curve G(t) (see Fig. 2.3) was smoothed
by quadratic interpolation into a curve of at least 500 uniformly spaced points (see
Fig. 2.4) by using the program quadinterp.f. A Prouy series representation of 26
components (see prony . dat) was then extracted from the curve by using the program
prony.f. The listing of these program can be in the Appendix.

The bulk relaxation function K (¢) initially remains the same as that of the PVAc
material, then its value will be lowered to allow better compressibility, and finally
the bulk relaxation function will be shifted so that its beginning matches with the

beginning of the shear relaxation function.
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2.2 Aluminium Metal

The grips are made of the metallic element aluminium. The metal can be considered
to be a rigid body compared to the polymer. The elastic material constants are

K = 0676 x 10° Paand G = 0.259 x 10° Pa.

2.3 Material Models in the Numerical Simulation

2.3.1 The three material models

Varying the parameters (such as the magnitude of the long term bulk modulus K,
the shift between the beginning of the relaxation moduli K(¢) and G(t)) resulted in
three different material models. Each inaterial model is described by its two relaxation
moduli K(¢) and G(¢t).

The shear relaxation function G(f) remained unchanged for the three inaterials
(see Fig. 2.4). Tlis function was extrapolated from the shear relaxation of PVAc in
order to model a cross-linked polymer, as explained in section 2.1.

The bulk relaxation function K (t) was initially the original bulk modulus of PVAc
with a long term value K, of 252245 Pa (material #1, see Fig. 2.5), then the value
K, was decreased to 10 Pa (material #2, see Fig. 2.6) and finally the whole curve
K(t) is shifted 5 decades to the 'right’ so that the beginning of K(#) and G(t) match
(material #3, see Fig. 2.7).

The results for each one of these material models will be presented, below.

2.3.2 The two constitutive models: LVE and NLVE

Both constitutive models: linear viscoelasticity and nonlinear viscoelasticity are used
for this boundary value problem. The difference between the two models lies in the
presence or absence of the time shift factor ¢, that scales the ’internal time’ function
£(t). Variations of the shift factor ¢ are related to the local variation of dilatation,

derr. The shift factor effect, that is connected to the local variation of volume, exists
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only in the case of the NLVE model.

Using the LVE constitutive model, the compression results for the three materials
were compared with the relaxation moduli. Because the shift factor is disabled, that
enables us to study the impact of the material model, i.e., the specific contributions
of the relaxation moduli K (¢) and G(¢) on the normal stress o,,(t) and shear stress
o4y(t) behavior.

Using the NLVE constitutive model, compression and tension results were com-
pared in the case of each material model to study the impact of the shift factor ¥ on

the stress response oy,,(t).
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Chapter 3 Results and Discussion

The results from two basic mechanical tests (uniform vertical compressive loading
and uniform vertical tensile loading) are presented here. The tests were simulated on
a time range from 10~1!s to 10%® seconds.

Three different material models were tested: first, with the original PVAc-based
‘high’ bulk modulus K(t); second, with a ‘lower’ bulk modulus K (¢); third, with
matching relaxation moduli K(¢) and G(t). Initially, the normal stress o,,(t) and
shear stress oy,(t) respouse of the three materials for a LVE constitutive model were
investigated. Then, with a NLVE constitutive model, the results of a compression

and tension tests for each of the three materials were compared.

3.1 Output Variables

The first decision to be made about the data output was to choose the relevant
physical values. The study aims at analyzing the possible generation of deformation
localizations in the polymer for a given compression with lateral coustraints on the
specimen. Deformation gradient localization can be related to inhomogeneity in the
stress field. Therefore, the study will concentrate on the stress field. Given the
boundary conditions and the importance of the y-direction, mostly the yy- and xy-
components of the stresses are represented.

The study of the normal stress in the y-direction, o,,, was relevant. Furthermore,
as the problem depends on two characteristic features, a vertical compression and a

lateral constraint, the shear stress in the y-direction, o, should also be discussed.



- 926 -
3.2 Output Plots

Assessing stresses in a viscoelastic material requires dealing with two different pa-
rameters, space and time. Therefore, the results are gathered in two series of plots,
that are given with respect to space and time: the spatial distribution plots (contour
plots) and the stress time curves, respectively. The time-dependence of the stress
solutions is a characteristic of viscoelastic materials.

A spatial distribution plot (or contour plot) is like a ‘snapshot’ of the stress field,
at a given time. Each stress field is depicted by a figure at initial (107!sec.), inter-
mediate (103sec.) and final time (10'sec.). However, a series of ‘snapshots’ cannot
recover the continuous time behavior of a stress field.

The normal stress o, (f) and shear stress 0,,(¢) are calculated at different points
located oun the bottom row of the mesh (which actually is the middle row of the
whole specimen). Each one of those fixed points is associated with a stress curve (see
Fig. 3.1). Variables V2 to V8 correspond to the points near the y-axis going towards
the right boundary. Hence, the highest compression oy, (in the compression case)
occurs at the point closest to the y-axis (see Fig. 3.1). That holds true for all the
cases under consideration. Also, the highest tension o, (in the tension case) is at
the center of the specimen.

The two sets of data contribute aud provide feedback to one another. The time
stress curves indicate the best intermediate timme (a ‘peak’, see Fig. 3.2) for the stress
distribution plots. The stress distribution plots indicate the overall ‘picture’ of the
stress field at those given times, an information that cannot be gathered from the

time curves.

3.3 Influence of the Parameters

Several parameters influence the results strongly, as the following results show. Basi-
cally, three parameters were varied and their influence was studied; these parameters

are as follows:
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e the magunitude of the applied vertical load
e the magnitude of the long term bulk modulus K

e the log scale time shift between the beginning of the relaxation moduli K ()

and G(t).

Load
The viscoelastic theory formulated in this program is restricted to small strain theory
(see Constitutive theory). Hence, large deformations that yield more than about
10% of strain cannot be correctly calculated by this version of FEAP. Therefore, the
applied load must be chosen such that the strains do not exceed 10%. A realistic load
magnitude must be determined with respect to the material constants. The polymer
described in chapter Theory and Methods has the following initial and long term
shear and bulk modul:
Kinir = 41343 Pa, G;r = 11790 Pa and K, = 25245 Pa, Goo = 3.16 Pa,
respectively.

That leads to a long term Young’s modulus E,, of roughly 10 Pa. Given that an
average strain of about 1% is desirable, the load should be no larger than +0.1 Pa

(tension) or —0.1 Pa (compression).

Long term bulk modulus
First, the original value of I{, was that of PVAc: 25245 Pa. Later, the value of the
long term bulk modulus K, was lowered to 10 Pa in order to allow better compress-

ibility.

The time shift between the two relaxation moduli

For the first set of simulations (Material #1 and #2), the bulk relaxation modulus
K (t) preceded the shear relaxation modulus G(t) by roughly five time decades. Later,
it was decided to match the hegiuning of the two relaxation functions in order to help

determine the relative contribution of K'(¢) and G(¢) to the stress response.
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3.4 Contribution of the Relaxation Moduli to the

Stress Curves in Linear Viscoelasticity

The linear viscoelastic model ehminates the effect of the shift factor. Thus, the time
behavior of a,,(t) has the same scaling as the original relaxation functions K (¢) and
G(t). The contributions of each of the relaxation functions to the stress response

can be directly determined by relating K (t) and G(t) to the stress curves o,,(¢) and

Ozy(t) -

3.4.1 Normal stresses o,,(t)

The stress time behavior curves o,,(t) for the material models #1, #2 and #3 are
shown in Figures 3.2, 3.3 and 3.4, respectively. Their respective relaxation functions

K(t) and G(t) are depicted in Fig. 2.5, 2.6 and 2.7.

For Material #1, the stresses, initially, slowly converge to —0.1 Pa when the
K (t) value begins dropping (see Fig. 2.5). But the stresses abruptly diverge away
from the —0.1 Pa line as soon as the shear modulus G(t) begius dropping. Also,
G(t) variation is much more significant than K (¢) variation. That may explain the
faster divergence from the -0.1 Pa line than the initial convergence. The stress o,
has a non-monotonic behavior. The stress curves present a ‘peak’ (a local extremum)

between their instantaneous and long term values.

For Material #2, the existence of a ‘double peak’ in the o, stress curve has to
be pointed out in Fig. 3.2. Furthermore, a sort of ‘inversion’ in the order of the stress
values is visible. At the initial time, the highest o, stress (in the compression case)
is close to the y-axis and the stress gradually drops, as the right edge is approached,
and reaches the lowest compression value at the right edge. However, that order of
the stress values is inverted during the transitional period (from 1073 to 10° seconds)
between initial and long term response. The bulk modulus K (#)’s variation is now of

same magnitude than the variation of G(t).
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For short times, the stress curves seem influenced by the decrease of K(t). When
K (t) begins decreasing, the stresses converge to -0.1 Pa and even cross one another
to invert their numerical values order (‘stress inversion’). Then, for the intermediate
time, G(t) begins dropping. The fact that K(¢) and G(¢) have the same order of
magnitude may explain the transitional behavior of o,(t), strongly non-monotonic
in Fig. 3.2. The ‘double peak’ of o,,(t) may be traced back to the changing relative
contributions of K(t) and G(t) in this transitional period. For the final time, o, (¢)
is influenced by G(t). While K(¢) reaches a plateau, G(t) keeps decreasing. The
stress curves o,,(t) re-converge to -0.1 Pa, intersect one another and diverge away

from -0.1 Pa.

For Material #3, the ‘double peak’ and the ‘stress inversion’ have disappeared
(as seen in Fig. 3.4). In this case, the N(#) and G(#) influence begins at the same
time. The o,,(t) respouse is dominated by G(t)’s influence, in a similar way as in
Material #1. Note that when K (#) reaches a plateau, around 107 seconds, the stresses
re-diverge away from -0.1 Pa. That proves the influence of G(t). Also, the slopes of
the stress curves in their re-convergence, before the final time, are steeper than in
case #1. That traces back to the influence of K(¢), that has a stronger magnitude
variation in this case (3 decades) than in case of Material #1 (1/5th of a decade) as

seen in Fig. 2.5 and Fig. 2.6.

3.4.2 Shear stresses 0,,(%)

The maximum shear stress o,, value is located at the point V4 (around the middle of
the mesh bottom‘row), but not at the point closest to the y-axis. The points close to
the y-axis (point V2) and to the right boundary (point V8) have shear stress values
that are nearly zero (see Fig. 3.5, 3.6, 3.7). By looking at the o,, contour plots in
Figs. 3.14, 3.15 and 3.16 for the case of Material #2, the fact is explained by the
‘half-egg’ shape of the a,, contours. Maximum shear stresses o,, occur near the
middle of the central row. The shear stresses decrease to zero as the y-axis and the

right boundary are approached. The shear stresses o, are zero on the left and right
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boundaries, in accordance with the given boundary conditions.
Most of the precedent remarks formulated for the normal stress o,,(f) (non-
monotonic behavior, peak, inversion) apply to the shear stresses o,,(t) , too. The
one difference is that there is no ‘double peak’ for shear stress in the case of Material

#2 compared with the normal stresses.

3.5 Comparison of Tension and Compression Re-
sults for Nonlinear Viscoelasticity

The results for compression and teusion of a nonlinear viscoelastic (NLVE) material
are compared for the material models #1, #2 and #3 in Fig. 3.17 and 3.18, 3.19 and
3.20, 3.21 and 3.22 for the normal stresses oy,(t) and Fig. 3.23 and 3.24, 3.25 and
3.26 for the shear stresses o,,(f) . Essentially, nonlinear viscoelasticity reintroduces

the time shift factor.

3.5.1 Normal stresses o,,(t)

For Material #1, the time curves o,,(t) for compression in Fig. 3.17 and tension in
Fig. 3.18 are very sumilar, alimost identical. Essentially they superpose nearly exactly
if you ‘flip’ the curves over the time axis to the other side. Also, the stress curves
o4y (t) corresponding to the NLVE compression and teusion tests are almost identical
to the o,,(t) curves of the LVE compression test (see Fig. 3.2). The time behavior
is the same for the three tests, namely NLVE compression test, NLVE tension test
and LVE compression test. The time scaling has not been modified by the time shift
factor. Therefore, the shift factor ¥ must be trivially equal to 1, which means that
the fractional free volume f(t) remains at its initial value fi,;.

The negligible variation of the fractional free volume (variation proportional to
the variation of €) can be ‘linked to the high values of the bulk modulus K(t)
(Kinir= 41343 Pa, K= 25245 Pa) with respect to the values of the shear modulus

G(t) (Ginir = 11790 Pa, G, = 3.16 Pa). The material has a ‘low’ compressibility.
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For instance, a hiydrostatic pressure P of 0.1 Pa and a bulk modulus K of 20000 Pa

. 4
leads a volume contraction |ex| = %—

£ of 0.0005%. The changes in free volume
are therefore negligible.
For Material #1, the LVE or NLVE model do not give any substantial difference

in the material response.

For Material #2, the value of the bulk modulus K (t) was lowered to allow better
compressibility (/{;..;= 16108 Pa, K,,= 10 Pa ). In this case, we see a different time
scaling in the stress response between the compression and teusion case. The long
term behavior (where the asymptotic flat lines appear, cf. Fig. 3.19 and 3.20) is
reached much earlier in the tension case than in the compression case. The compres-
sion stress curves are stretched in time while the tension stress curves are contracted.
In the long term, a hydrostatic pressure P of 0.1 Pa and a bulk modulus K of 10 Pa
provoke a volumne coutraction |ex| = £ of 1%, whicl is of the same order than the
initial fractional free volume (f;,...= 0.95%).

In the compression test, the free volume decreases. That brings a retardation
effect into the relaxation (or creep) behavior. The range of the transitional stress
state (where the stresses are fluctuating and strongly nou-monotonic) is longer than
in the case of the LVE compression test (see Fig. 3.19 and Fig. 3.3).

The ‘double peak’ in the compression test is more clearly marked. The relaxation
functions K ({(t)) and G(€(t)) time scale has been modified by the internal time func-
tion £(t). Their relative contributions are different from those of the LVE compression
test: these new contributions make the ‘double peak’ more pronounced. As time goes
on, K (t) drops, the compressibility increases, the volume contraction |ex| increases,
the free volume f decreases and the retardation effect grows more important. Conse-
quently, the retardation effect is more important around the 2"¢ ‘peak’ period than
for an earlier time. That may explain why the 2" ‘peak’ is more pronounced.

On the contrary, in the tension test, the transition range has shrinked and the 2
‘peak’ is less pronounced (see Fig. 3.20). Thus, the time scaling (represented by the

internal time function {(t)) is affected by an acceleration effect.
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For Material #3, the beginning of the bulk relaxation K (t) was matched to the
beginning of the shear relaxation G(¢) (see Fig. 2.7 ). The conclusions drawn for Ma-
terial #2 apply once more. Notice that the stress curves convergence then divergence
before the final time (where it looks like a ‘neck’ in Fig. 3.22) is more pronounced in

the tension case, while this ‘neck’ disappears in the compression case (see Fig. 3.21).
Pl 1 g

3.5.2 Shear stress o,,(t)

Most of the characteristics of the normal stresses o,,(t) hold also to the shear stresses
o4y(t) : the retardation or the acceleration effect (see Figs. 3.23, 3.24), the neck

appearance for Material #3 (see Figs. 3.25, 3.26).

3.6 Using Contour Plots for o,, and o,

The ‘stress inversion’ can also be recognized in the contour plots (NLVE compression
-0.1 Pa ) in Figs. 3.34, 3.35 and 3.36 for the normal stresses o, and Figs. 3.37, 3.38
and 3.39 for the shear stresses o,,, that are given for Material #2 case. Each stress
compouent of the case (NLVE, compression, Material #2) has three contour plots
corresponding to the stress distribution field at the initial (107!! s), intermediate
(103 s) and final time (10'* secounds).

The long term o, contour plot for the NLVE model (Fig. 3.36) in compression test
is compared to o, contour plot in compression test for an elastic model (Fig. 1.13),
provided with the long term material constants, in Fig. 3.33. The interesting point
is that the stress o,, contours do not superpose exactly. In its long term behavior,
NLVE materials do not act like elastic materials. The time shift factor effect modifies
the respouse, somewhat. This property is very different from linear viscoelasticity.
In linear viscoelasticity, theory predicted and results confirmed that elastic and LVE
models in the long term give the same result. This proves the necessity of using the
NLVE model over the LVE model, for this corner stress singularity boundary value

problem.
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Figure 3.18: o,,(t), NLVE, tension, Material#1



stress (o)

stress (o,)

- 42 -

NLVE comp: -0.1 Pa
Kinf= 10 Pa

0.00

L

-0.02

-0.04

TTTT

-0.06

L AL L LA LB

-0.12

-0.14

UL I R A e B I

1010109090%1090909090%0710%10'10%10%10%10%10%0™10%0%0% 0101010 0™
time (s)
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Figure 3.20: o,,(t), NLVE, tension, Material#2
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Figure 3.22: 0,,(t), NLVE, tension, Material#3



- 44 -

NLVE comp: -0.1 Pa

0.0010 - .
I Kinf= 10 Pa

0.0005
&
o V2
(7]
o mrm—— v3
£ 00000 b o~ va
@ ———= Vs
2 — ve
D A v7

V8
-0.0005
-0.0010 MWWMMWMMM u . . "
1010710909010 90900%0%0'10°10'10%10*10410%0%10710*0%0'10'10'10"1 00"
time (s)
Figure 3.23: o,,(t), NLVE, compression, Material#2
NLVE tens: +0.1 Pa
0.0010 .
[ Kinf= 10 Pa

0.0005 |- ',/;/"’. ...................... -
bi
[ ve
0
] e V3
£ 00000 fF—————===A( oy va
] ———— 5
2 e V6
D e 7 v7

ve
-0.0005

20,0010 Lossal s sund oond vuond siond v svsod o svoal uelonl il e s s sl s o oo i o aumd
1070"10103070%0904010%0"10%10'10%10%1010%10510"10%10%0"10"10' 0" 0" 0"

time (s)

Figure 3.24: 0,,(t), NLVE, tension, Material#2
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Figure 3.26: 0,,(t), NLVE, tension, Material#3
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Figure 3.28: ¢,,(¢) , NLVE, tension, Material#1
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Figure 3.30: €,,(t) , NLVE, tension, Material#2
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Figure 3.32: €,,(t) , NLVE, tension, Material#3
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Figure 3.36: Countour plot a,,, NLVE, compression, final time

Level SXY
0.03

00 NLVE comp: -0.1 Pa

-3.725E:9
-0.01
002 -
-('.).03s
-0.04
0.05
-0,06

00
0.08 I } S
-0.09 N -~

-0.1

i

~NWPAEOONDO>O00

s

Figure 3.37: Contour plot ¢,,, NLVE, compression, initial time
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Chapter 4 Conclusion

A boundary value problem of a rectangular sample of polymer (PVAc) clamped by
two metallic (Aluminium) rigid grips subjected to a compression and tension load
was simulated with a finite element code. Three different material models (with
the original bulk modulus K(t) of PVAc, with a lower bulk modulus K(¢) and with
matching relaxation moduli K (t) and G(t)) were compared.

The time behavior of the normal stress o,,(t) and shear stress o,,(t) show that
decreasing K (t) values command the stress values along the central row to ‘converge’
close to -0.1 Pa (the applied load) and even intersect and invert their order. On
the other hand, decreasing G(t) values command the same stress values to ‘scatter’
away from -0.1 Pa and, i this way, the differences between the stress values along
the central line get larger. Given these opposite effects of the relaxation moduli, the
stress response presents a highly non-monotonic behavior. The stress curves even
exhibit local ‘peak(s)’ between their initial and long term values.

The positions of the relaxation moduli with respect to one another also plays an
important role in the time-dependent stress response. Aund two different values for
the shift between the beginning of K(¢) and G(t) lead to radically different stress
respouses. For instance, Material #2 (which has the beginning of its relaxation
moduli separated by five time decades) presents a ‘double peak’ and ‘stress inversion’
whereas Material #3 (which has the beginning of its relaxation moduli at the same
time) has a ‘single peak’ and no ‘inversion’ (see Fig. 3.3 and 3.4). The only difference
between Material #2 and #3 is the shift. All other parameters (Ko, Go, Prony
components K, and G, applied load) are identical.

Another important factor is the material’s compressibility, namely the inverse of
the bulk modulus K(¢). A material presenting a high bulk modulus, that would lead
to a negligible volume dilatation (or contraction) Aei, is not affected by the creep

acceleration or retardation phenomena. In this situation, tension or compression tests
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give identical results (after changing the signs) as seen in Figs. 3.2, 3.17 and 3.18.
The LVE model is perfectly valid in the case of a nearly-incompressible material.

However, in the case of sufficient volume dilatation (or contraction), the NLVE
constitutive model affects the response time scaling differently according to the load-
ing that is applied. For instance, the stress responses of the compressive and teunsile
tests present noticeably strong differences in the time range and the fluctuation pat-
tern (see Figs. 3.19 and 3.20). The compressive and tensile tests are no more just
‘simple mirrors’ of one another. Notice also that the long term stress values of the
NLVE model differ from the stress values of an elastic model, provided with the long
term material constants Ko, G (see Fig. 3.36 and 1.13). In countrast, the long term
stress values for the LVE model and elastic model are identical (see Fig. 3.13 and
1.13), because the long termn LVE respouse is an elastic response. This proves the
necessity of using the NLVE model over the LVE model.

One restriction in this current NLVE counstitutive model based on the free volume
theory is that the inherent variables (free volume, shift factor, internal time) de-
pend only on the volumetric deformations. For instance, simple shear deformations
conserve the volume and they cannot create any shift factor effect. Additionally su-
perposed to another boundary value problem, shear deformations should not modify
the response. But some recent multi-axial experimeunts (tension-torsion, compression-
torsion) [Lu, 1996] suggest that the presence of shear strain does actually affect the
material response.

Onmne direction for future research could be to model the influence of the shear
deformations in an extension of the free volume theory. This could give a more

general nonlinear viscoelastic constitutive behavior.
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Appendix A The Finite Element
Program FEAP

A.1 The FE Code Input and Output

The FE code used during this research project is originally called FEAP. The core
of the program originated from the University of California, Berkeley (Zienkiewicz
and Taylor, 1967). After, the code was enhanced at Brown University, Providence,
RI, and finally arrived at the California Institute of Techmnology, Pasadena, to be
further extended. The nonhnear viscoelastic constitutive model was then added to
the program by Caltech Graduate students, G. Losi (1990) and C. Duong (1994).
Tlhis program, modified three-four times by different persous, is the version used in
this thesis project. In its current version, the source code cousists of roughly 10,100

Lines.

A.1.1 Input file

The basic information to be fed to the executable code is in the input file called
input4.d. FEAP is commanded by a macro-command language. This macro-
language entered in input4.d is used to specify all the needed information and all
the necessary instructions to be accomplished, in order to solve a specific problem.
The input file is separated in two parts: first, a set of geometrical data and second,

a set of instructions. A simple input example file is presented below.

Set of geometrical and material data

The input file begins with FEAP. The macro FEAP must always be placed at the

very beginning of the input file. After, it can be followed by any title. For instance,
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FEAP -nonlinear viscoelastic model

FEAP does not have a capability of automatic mesh refinement. The mesh is fixed
after its definition in the input file and cannot be changed. These constants charac-
terizing the mesh are detailed and explained below. They are to be entered in the

specific order:

(format 9i5, 2i5)
numnp numel nummat ndm ndf nen nsdm nqdm nquad

nalum nfirst

where
numnp = unumber of nodal points
numel = # of elements
nummat = # of different materials
ndm = dimension of space (2 usually)
ndf = # of degrees of freedom (2 usually)
nen = # of nodes per element (4 for rectangular elements)
nsdm = dimension of stress array (4 for plane problems)
nqgdm = # of internal variables
nquad = # of Gauss quadrature pts (5 for rectangular elements)
nalum = # of elastic elements in the mesh
nfirst = global # of the first elastic element

The number of internal variables nqdm varies with the number of Prony components

of the polymer’s shear and bulk moduli (numshr, numblk). Use the formula:

nqdm = 14 + 4 X numshr + numblk + 1 (A.1)

If elastic elements (e.g., almniniuin) are used, they must be grouped together in a
consecutive numbering. nalum is the total number of elastic elements, while nfirst
is the number of the first one. If no elastic element is used, set nalum to zero and

nfirst greater than numnp.
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The information concerning the mesh nodes coordinates, the element connec-
tivities, the material constants, the boundary conditions and the applied bound-
ary forces/displacements need to be preceded by the corresponding macros COOR,

ELEM, MATE, BOUN and FORC. This information is to be put in given formats:

COOR (format 3i5, 2f15.0)
node# generation flag generation_increment x-coord. y-coord.

If the generation flag is set to 1, FEAP generates uniformly spaced points on
the segment between this node and the next listed node. The generated nodes are
numbered according to the generation increment step.

For instance,

1 1 2 0.00000 0.00000

11 0 0 10.00000 0.00000

creates 6 nodes 1,3,5.7,9,11 uniformly on the x-axis from position 0. to 10.

ELEM (format 7i5)
elem# material# nodel node2 node3 node4 generation flag
A material# is assigned to each element (see MATE). The generation flag works

the same way as for COOR.
MATE las two different formats for viscoelastic and elastic materials:

Viscoelastic material
material_set# element_type# (5 for viscoelastic)

x-gravity y-gravity mode mass_density spar

B factor fres Finit

where the B _factor is a material constant used in the free volume theory equations, f,.y
is the reference free volume, f,,;; is the initial free volume and spar is the Belytchko
integration parameter (for nearly-incompressible solids: Belytschko, 1981).

The Prony series components (K, 7,andG,, 7,) of the relaxation functions K (%)

Py 'p
and G(t) follow:
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MODU

ay, Ko #.blk_comp.

K, T,

SHEA

a, Go F#-shr_comp.

G, T

PHI

ay, foo #_comp. (put zero here)
Cp, Chp, Jerit Tiet k

where o, is the rubbery volumetric coefficient of thermal expansion. K., is the
long-term bulk modulus; K, and 7, are respectively the modulus and time relax-
ation for the bulk p-component. G is the long-term shear modulus; G, and 7, are
respectively the modulus and time relaxation for the shear p-component: and Cps
Cpgs ferits Tinie and k are the rubbery heat capacity per unit volume, the glassy heat
capacity per unit volume, the critical free volume (free volume at the glass transient

temperature), the initial temperature and the heat conductivity, respectively.

Elastic material

The beginning is similar to the viscoelastic format.

material set# element_type# (5 for viscoelastic)
X-gravity y-gravity mode mass_density

a k shear_mod bulk_.mod  pC,
where a is the coefficient of thermal expansion, k is the conductivity and pC, is

the heat capacity per unit mass.

BOUN (format 2i5, 210.0)

node# generationincrement x-dir flag y-dir_flag
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1 displacement constrained
The flags can be set to 0 displacement free

—1 same as 1 but can be automatically generated

FORC (format 2i5, 210.0)

node# generation_increment x-dir. y-dir.

The values in x- and y-direction represent either an applied nodal force or a dis-
placement. It 1s a displacement if the corresponding flag in BOUN is set to 1 or
-1. Otherwise, it represents an applied nodal force. When a node is not specified in

BOUN, the flags are set to 0 by default.

END marks the set of geometrical data.

Set of instructions

The macro language enables FEAP to solve different kinds of problems without hav-
ing to modify the code each tune. Different combinations of macro-instructions can
be tailored to solve any specific problem. Here the typical set of instructions for a

viscoelastic problem is presented.

MACR  indicates the begiuning of the instructions

AUTO starts a restart file called ‘rest4.d’

TOL sets the tolerance
TTAB reads the time temperature table
DT sets the time increment

TIME increments the time by the DT value

TDIS sets uniform temperature in the solid

CEQS integrates the constitutive equations to get the stresses

LOOP n repeats n times the set of instructions enclosed between LOOP, NEXT
NEXT

To solve one time increment for a viscoelastic problem:



LOOP 25
TANG builds the tangent stiffness matrix
FORM builds the out-of-balance (or residual) forces vector

SOLV solves the system for the displacements

CEQS recalculates the internal time and updates the stresses
NEXT

UPDT updates all variables for all elements including the stresses

The Newton-Raphson method tries to iteratively solve the noulinear system of
equations with a maximum of 25 iterations. After 25 unsuccessful iterations, the
program considers the case as non-convergent and stops. The convergence criterion,
based oun the residual vector, 1s tested each time in the FORM macro. If the criterion
is satisfied before 25 iterations,-the code exits the LOOP (to go to UPDT).

The macros CEQS and UPDT are programmed very similarly (see the code ex-
cerpts) and may seew to be doing the same function. However, they are to be inserted
at very different parts of the instruction set. CEQS calculates the stress and updates
some variables for a Newton-Raphson iteration; it needs to be put in the iteration
loop. UPDT updates the stress and all other element variables after a time step. It
has to be understood that several Newton-Raphson iterations are necessary to solve
one incremental time step.

The time-temperature table, entered after the end of the macros (END), describes
the temperature history of the simulation. The first cohunn is the time and the
second represents the difference AT between the current temperature and the initial
temperature. The initial temperature was entered in the programn through another
variable, the initial free volume f,;;. Ouly f;..; matters! The temperature T},
entered after macro MATE is of no importance (a dummy). In the isothermal case,
the differences AT’s are all zeros.

The other macro-instructions MAO1, HIST STRA, STRE are used for graphics

data purpose (see Graphic data output).
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A.1.2 Output file

After running the program, a good idea is to examine the output file called ‘outpud.d’.
Most of the instructions and data are rewritten in it. If the case did not run properly,
the output file should be checked to verify that the data was entered correctly.

The output file also enables to monitor the code’s execution after each time incre-
ment step-by-step. The number of iterations for the previous time step is written. The
current time is indicated. And for each iteration, RNMAX represent the maximum
residual norm, RV, the current residual norm and TOL, the tolerance. Convergence
is reached when RN/RNMAX < TOL is fulfilled.

When there is no convergence, the time increment DT should be checked. It may
be too big and should be decreased. Or DT may be too small. For that case, it
appears that the mechanical variations during one timme increment are very small.
Consequently, the maximal residual norm RNMAX i1s also very swmall (around 1072).
And RN cannot go really smaller. The tolerance TOL should be decreased or the

time increment DT increased.

A.1.3 Graphic data output

Some macros create the output files that are used for the graphics display. The basic
information is stress and strains. The graplic software used is TECPLOT.

The files syy.d, sxx.d, eyy.d contain respectively the curves of the stresses Ty
02y and €, versus time. They can be visualized in the XY-Plot of TECPLOT.

The files distsyy.dand distsxy.d contain the field spatial distribution of Tyy and
0zy- The stress fields can e visnalized by Contour-Plot in TECPLOT. Sowme headers,
specific to the Contour-Plot format, also need to be added before each TECPLOT

zone; they are of the form:

ZONE
VARIABLE

The file fort .10 contains the deformed meshes at different times and is visualized

through Mesh in TECPLOT.
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The graphic data macros are:

MAO1 prints the deformed mesh information at the given
time (one zone) in the file fort.10.
HIST STRE elmt# component#
prints the current time and the current stress value
(one line) in the respective file.
HIST STRA elmt# component#
works for strain the same way as for stress.
STRE prints the field distribution of o, o, and €, at

the given time in the respective file.

The stresses can only be calculated at the Gauss points of the elements. You need
to specify which element you want and which component at which Gauss point you
want. There are five Gauss points in a rectangular element; the 5 Gauss point is
the center point. The 4 stress components are in the order Ozxy Oyy, Ozz, Ogy. POT
example, the stress components o, Tyys Ozz, Oy at the center point of the element
are respectively numbered 17, 18, 19, 20.

These macros can be modified in the file pmacr.f or ma01.f. The subroutine
pmacr.f is like a library for macros. The subroutines used by the macros are called
from within pmacr.f. By analyzing the code in pmacr.f, one can get to understand

all these macros. Then, the macros can be adapted to any specific need.

A.2 Structure

As received, FEAP used to be stored in one unique gigantic source file called feap.f,

which contained the main and all the subroutines, sub-subroutines, etc. ... Unfor-

tunately, no structure was clear. Now, the finite element source has been separated

and structured into several files:

pmain.f, pmesh.f, pmacr.f, pform.f, pelmt05.f, pnonlinve.f and maO1.f.
These files gather all the program’s subroutines into groups dedicated to omne

general task in the code. Each task is more or less described by the name of the file.
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explain their functions:

pmain.f contains -as you expect- the main, but also some other subroutines high
in the hierarchy. For instance, the subroutine pcontr.f controls the memory

allocation and generates the code arrays.

pmesh. f regroups the macros that are used in the set of geometrical and material

data.

pmacr . f regroups the macros that constitute the set of instructions. This is the
biggest part. If you want to add a functionality, 1.e., a macro to the program,
you need to edit pmacr.f. It countains our beloved macros TANG, FORM,

SOLV, CEQS, STRE.

pform.f builds the global arrays from the element arrays. Most of the opera-
tions just mentioned before involve building a global array. Global arrays are
formed from the element arrays in the process called the assembly method. It
i1s a basic finite element method. In oune sense, pform.f makes the interface

between pmacr.f and pelmt05.f.

pelmtO05.f takes care of creating the element arrays. It contains the element
subroutines. In this subroutine, we have the nonlinear viscoelastic constitutive

relations implemented.

pnonlinve.f regroups most of the subroutines that are called by subroutine

elmt05 and that are particularly specific to the nonlinear viscoelastic theory.

To give some examples, CEQS usually calls the subroutine elmt05, that itself calls

some of the following subroutines contained in pnonlinve.f:

The function timshf (a,epskk,ma) calculates the time shift factor ¢ (actually

1/v) according to the formulas

H

11
log v B <F5 - %) (A.2)
ft) = foie + Of(2) (A.3)
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e The function delvf (frevol,ma) calculates the proportionality coefficient 6(f(¢))

that is used in the way:

FO) = Foir + / 7))ders(7) (A.4)
_ Bpelf)
D= T e (49
1
= A6
S e 9

o The subroutine strupd(...) updates the stresses and entropy. It calculates
the stress increment corresponding to the strain increment of this iteration by
using the FE algorithm for viscoelasticity (see section Stresses in General Nu-
merical Scheme). Understand that for each operation it calculates the stress
increment on the basis of the stress values at the previous step. More precisely,
it needs the values of each Prony compouent contribution to the isotropic and
deviatoric stress (E(”),.sgp),.sg"),s:(;")). These values are stored as internal vari-
ables q1(14+kk,iq). Now, it can be understood the reason why the number of

internal variables has to be set to nqdm = 14 4+ numblk + 3 X numshr + 1.

Another remark: The FE algorithm decomposes the stress and the stress incre-
ments into their isotropic and deviatoric parts; the parts are calculated separately

and then reassembled.

A.3 Summary of the FE Algorithm

The basic leitmotiv of the FE method is to solve the equation
I{AU = .feg;t - fint (A‘7)

where K is the tangent stiffuess matrix, AU is the displacement we are solving for,
fext 18 the external load, and f;,,, 1s the internal forces.

The question is how to build the tangent stiffuess matrix K and the internal forces
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vector f;,;. This FE algorithm always calculates two parts: the isotropic and devia-
toric parts. Building K and f;,: goes along that way. The separation into an isotropic
and deviatoric part proves particularly useful when formulating the numerical scheme
for nearly-incompressible materials (a ‘sort’ of B-method).

The stress o 1s also decomposed and calculated into its volumetric ** and devi-

atoric s part. The equation becomes:

(K" + K*) AU = fuue — F120(0") = o0 (s) (A.8)

whete o = 0" 45 (A.9)

In this duality, the isotropic part is linked to the bulk modulus while the deviatoric
part relates to the shear modulus. Remember that the bulk relaxation modulus K (¢)

and shear relaxation modulus G(t) are expressed in terms of the Prony series:

M

K(t) = Ko+ )Y K, exp(—t/7,) (A.10)
p=1
]\T

G(t) = G+ G, exp(—t/T,) (A.11)
p=1

The equations used to calculate the tangent stiffuess matrix, the internal forces

and the stresses are presented, below.

A.4 General Numerical Scheme

A.4.1 Tangent stiffness

K = z “(94) (2G(94) [R2]) B*(9,) (A.12)
K = g /B (95) (3K (9,) [R1]) B*(9,) (A.13)

where @ 1s the number of Gauss poiuts, g, is the natural position and W, the weight of
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each Gauss point, B€ is the matrix in the strain-displacement relation €(z) = B*(z2)U

and the pseudo shear and bulk modulus G and K can be calculated [Taylor, 1970]

by

N N1 —exp (—2&(gq)/7))

Glgy) = G+ ) G,7) (A.14)
! ,;1 h AE(g,)

. M 1—exp(~L&g)/7))
A@Q::Am+§¥gg 2E) (A.15)

where A¢(g,) = &(t, 9,) — E(t — At, g,) is the increment of internal time at the Gauss

point.

A.4.2 Internal forces

Q

100 kil eT DO

fin.tl(” l) = W, B (f/q)o' l(tvgq) (A.16)
g=1 )
Q
der €T

. ifzt (s) = Z W, B (g,) s(t, 9q) (A.17)

g=1

where the current stress o = 0" + s has been computed in a previous call to the

macro CEQS.

A.4.3 Stresses

The current stress is evaluated on the basis of the contributions of each Prony com-

ponent and their values at the previous time step.

M
F(t,g,) = >3Ot g,) + de Koo + exi(t — At) Ko (A.18)
p=1
— a, KW AT(#) (A.19)
N
siltig)) = Y sP(t,g,) + 264G (A.20)
p=1

Each Prony compounent contribution to the stress can be calculated from the values
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at the previous time step. These stress components ®, s, sg"), s of the previous

tume step £ — At are stored as internal variables q1(14+kk,iq) for each Gauss point
iq. The internal variables are updated to the current time values by the macro

UPDT.

Ay,
7.

1 —exp (—2&(g)/7)
A(gq)
sP(t,9,) = sP(t— Dt g,) exp (——————Aé(%))

/
TI’

1—exp (—2&(g,)/7,)
Af(ﬂq)

+ders I{p T: (AQ].)

(A.22)

dev 14
+2dei" G, 7,

A.5 Numerical Scheme for Nearly-Incompressible

Materials

A.5.1 Tangent stiffness

In TANG, we see this formation of the tangent stiffuess matrix from the values G and
K. These pseudo shear and bulk modulus are calculated by the subroutine moduli.

In the case of a nearly incompressible material [Hughes, 1980], the numerical
scheme is a little modified: the deviatoric part K%' is evaluated by a 2x2 reduced

integration, while the volumetric part K" is evaluated by 1x1 full integration.

4
K% = Y W,B (4,) D% (centroid) B(g,) (4.23)

=1

K7 = WCCMBGT(cent)D”“l(centroi(l)Be(cent) (A.24)
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i i S i
1110 P -3z -1 0
1 2 1
with D=k |- 51| p s B 0 (A.25)
1110 -1 1z
(000 0] 0 0 01

The parameter spar called the Belytchko stabilization parameter is also used to refine
the integration [Belytschko, 1981]. It acts like a ‘weight’ between the volumetric and

deviatoric contributions. In two loops, the algorithm is

1st loop
D, = D™ 4 spar x D" (A.26)
4
Ki = Y W;,B¢ (iq)Dy(centroid) B (iq) (A.27)
ig=1

2nd loop

D; = (1- spar)x D" (A.28)
K, = IVCC,,,gBeT(Cent)Dz(cent)Be(cent) (A.29)
and K = K +K, (A.30)

A.5.2 Internal forces

In FORM, for the case of a nearly-incompressible material, the reduced integration

method i1s sunilar to that of TANG

4
aen ET (ox 3
. iizt = Z w,B (f/q)”d (9a) (A.31)
g=1
o = chn,gBeT(cent)a'""’(cent) (A.32)
g g, — o
o g9 — T
with ¢ = , o% = ? (A.33)
g g3 — O
0 T4
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With the Belytchko stabilization parameter spar,

»

2)

and Fint

1st loop

vol

ol 4 spar X o

o1 — (1 — spar)d
oy — (1 — spar)d
o3 — (1 — spar)d
04
4 T
> W, B* (iq)oV(centroid)

1g=1

2ud loop

ﬂ()l

(1 - spar) X o
(1 - spar)y
(1 — spar)s
(1 — spar)d

0
Wcﬁ,,,tBsT(cent)(f(z)(cent)

f i(rit) + f i(r?t)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

The parameter spar allows to vary our result between those of the full normal

integration (spar = 1) and the reduced integration (spar = 0). This nunerical scheme

prevents phenomena such as ‘mesh locking’ for a nearly-incompressible material. It

1s mncorporated in the code used.
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Appendix B Input File Example
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Appendix C Program Listing
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