
I NTERACTIVE SEISMIC IMAGING ON A

l ULTICOMPUTER AND ApPLICATION TO

THE HOSGRI FAULT

Thesis by

Charles Bruce Worden

In Partial Fulfillment of the Requirem ents

for the Degree of

Doctor of Philosophy

Cali fornia Instit ute of Technology

Pasadena, Californ ia

1992

(Submitted October 23, 1991)

11

© 1992

Charles Bruce Worden

ALL RIGHTS RESERVED

A-eknow ledgements

I would like to start by thanking my advisor, Rob Clayton. for making this project

possible. It was he who originally conceived the idea of an interactive imaging system .

and saw the possibility of implementing such a system on a multicomputer. He also

arranged for the funds to make the idea a possibility. Rob has an uncanny ability to

cut through to the crux of a problem and find a solution; his guidance often helped

keep th is project on track. I would also like to thank my other committe<' members:

Dave Harkrider, whose humor helped keep things in perspective throughout my grad­

uate career; Lee Silver, whose vast knowledge of California geology is amazing; a.nd

Chuck Seitz, one of the originators of the multicomputer.

I thank the individuals at Meiko Scientific, upon whose hardware our imaging

system is implemented, for helping to make its acqu isition possible. I especially

want to thank Doug VanLeuven, whose persistence kept the deal aliH' despite a.

number of obstacles, and Robert Hardesty, who kept the machine running despite a

different set of obstacles.

John Louie provided considerable help. While he was a student here, during my

first year of graduate school, he helped get me started in seismic renection. Later.

while [was trying to finish my degree he provided useful discussions (bye-mail)

III

IV

of the Hosgri images. John also provided his program "viewmat" for producing

the PostScript plots that make up most of the figures in Chapter 3. Finally, John

reviewed this thesis and made helpful comments and criticisms. I also appreciate

John Vidale, another ex-fellow student, for supplying a version of his travel time

code, saving me from having to write one from scratch when I was most pressed

for time. Also , thanks to Nei l Humphrey, who worked on an early version of the

filesystem .

Doug Neuhauser , who was the systems manager here at the Seismo Lab, receives

my deepest gratitude, for his friendship and his extensive help with this project.

Doug participated in the process of selecting the hardware-even to the extent of

flying to England with me for discussions with Meiko. Doug provided much help

and many sugges t ions during the implementation of the system. He also took the

Seismo Lab computer system from a state of near chaos and turned it into a reliable

network , making the lab a more productive place.

I appreciate my "Chester House" roommates David Pickett. Mark Fahnestock,

and Phil Ihinger, first for friendship and giving me somewhere to stay, and second for

introducing me to the Lakers. The Lakers provided me with a much-needed diversion

and got me out of the lab a few times a week. I could not men tion the Lakers without

acknowledging the greatness and heroism of Magic Johnson . J ust two days prior to

this writing Magic showed us that he is more than just a great basketball player; he

put aside hi s pain and fears and doubts, and brought forward a message that needs

to be heard , and he did it with his usual good humor and smi le. True chara.cter

shows in times of grea.t stress.

v

I thank my classmates Ed Camero and Brad Woods for helping to keep me sane

as we struggled through our first two years of classes together. Some individuals

might question the use of the word "sane" in the previous sentence, but fun we had

and the laughs we shared made a difficult time survivable.

There have been too many other friends to mention here , and mentioning anyone

runs the risk of forgetting others. However a number of people made my stay at

Caltech more enjoyable: Doug Dreger, Tom Duffy, Rob and Jessica Craves, Scott

King , Ann Mori , Richard Stead , Hong-Kie Thio, Dave and Lisa Wald, and Joanne

Yoshimura, just to name a few .

Lastly, and most importantly, I thank Andrea Donnellan for her friendship, sup­

port, and love. [honestly don 't know where I would be right now ifit were not for her ,

but I do know that [wouldn't be as happy. Andrea also helped a great deal with the

final preparation of this thesis, digging up references, making figures, proofreading,

and encouraging me when I was ready to give up and move to Montana.

VI

To Andrea

VII

Abstract

Charles Bruce Worden, Ph.D.

California Institute of Technology 1992

Robert W. Clayton, advisor

Professor of Geophysics

Cal ifornia Institute of Technology

We present a system designed to change the manner in which seismic reflection

data is imaged, by enabl ing interactive response to user input. This approach greatly

eases the effort required to produce a seismic image and gives the analyst the flex i­

bility to explore a wide range of models. We also argue that the abi lity to interact

with the image can greatly aid in the interpretation process, and that the struc­

tural geologist charged with interpreting the image should be directly involved in the

imaging process. Our approach differs from current seismic processing techniques

that limit the abi lity of the seismic analyst to fully explore the imaging parameters.

Current methods also provide the seismic interpreter with little information as to

the robustness or reliability of the imaged structure.

The interactive imaging system is implemented on a heterogeneous, medium­

grained multicomputer. This machine is configured to provide the substantial per-

VIII

formance required by the interactive imaging task. We discuss the implementation

of the system as four separate, but interrelated tasks: data I/ O, computat ion, image

display, and user interface. Each of these functions is supported by hardware speci f­

ically suited to the task. The system software is designed to conceal as much of the

pari;tllel implementation as possible from a programmer wishing to add processing

functions.

The interact ive system is applied to a portion of EDGE seism ic reRection profi le

RU-3 that crosses the Hosgri fau lt, offshore central Cal ifornia. From the imaged

structure we infer that the Hosgri is a near-vertical fault , with relatively recent

st rike-sl ip displacement. We see no evidence, however, of recent thrust fault ing.

Table of Contents

Preface

1 Concept
1.1 Introduction

. 1.2 Concepts of Interactive Imaging ..
1.3 Ad vant ages of Interactive Imaging.

1.3.1 Quality Control
1.3.2 Fine Tuning through Interactive Focusing
1.3.3 Exploration of the Parameter Space.

1.4 Other Features of Interactive Imaging.
1.5 Why Interactive Imaging?

2 Implementation
2.1 In troduct ion.
2.2 General Design Considerat ions.
2.3 Performance Considerations
2.4 Physical Implementation
2.5 Software Design

2.5.1 Trace Manager .
2.5.2 Display Manager
2.5.3 User Interface/ Database
2.5.4 Computation/Notifier

2.6 Current Status
2.7 Future Work.
2.8 Conclusions

3 Application
3.1 Introduction
3.2 Background
:3.:3 Processing History

3.3.1 Preprocessing

IX

XIV

1

1
3
6
7
9

10
II
12

14
14
14
17
19
24
28
35
41
44
49
53
54

56
56
56
72
73

x

3.3.2 Mutes and Trace Editi ng
3.3.3 Velocity Analysis, Stacking, and Migration

3.4 Concl usions: Geological
3.5 Conclusions: P rocessing

Bibliography

A Glossary of Terms

B Example Program

79
82
88
96

107

111

115

List of Figures

2.1 Imaging tasks. .. 15
2.2 Layout of processes on the Meiko multicomputer 20
2.3 A schematic representation of an instance of the t race manager process 32
2.4 A schematic representation of an instance of the display manager

? ' _.;)

2.6

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
39
3.10
3.11
:3.12

process
The user interface/ database
An instance of a computational processes

Map showing offshore cent ral California .
Map showing the major fault systems of offshore central California
Map of west-central California
Map showing earthquake focal mechanisms for selected earthquakes
in west-central California
A CM P stack of the raw Hosgri data
Detail of the Hosgri CMP stack
A CMP stack of the filtered, multiple-suppressed Hosgri data
A shot gather from the western end of the survey line
A shot gather from the eastern end of the survey line .
A CMP gather from the eastern end of the survey line
A CMP gather from the western end of the survey line
An example of a grossly over-migrated image from a post-stack mi-

39
42
45

57
60
69

70
74
75
77
80
81
8:3
84

gration 87
3.13 The velocity model used by the migration shown in Figure 3.12 . . . 88
3.14 An example of a mi ldly over-migrated image from a prestack migration 89
3.15 The velocity model used by the migration shown in Figure 3. 14 . .. 90
3.16 An example of a very slightly over-migrated image from a prestack

migration . 91
3.17 The velocity model used by the migration shown in Figure 3.16 92
3.18 An example of a well migrated image from a prestack migration 93
3.19 The velocity model used by the migration shown in Figure 3.18 94
3.20 An example of a slight ly under-migrated image from a prestack mi-

gration 9.5

XI

XII

3.21 The velocity model used by the migration shown in Figure 3.20 96
3.22 An interpreted CMP stack of the raw Hosgri data. 97
3.23 Detail of t he Hosgri CMP stack (Figure 3.5) with interpretation 98
3.24 Detai l of the Hosgri CMP stack. 99
3.25 Detai l of the Hosgri CMP stack with interpretation. 100
3.26 An example of a well migrated image from a prestack migration, with

interpretation added 101
3.27 Detail from Figure 3.18 102
3.28 Detail from Figure 3.18, with interpretation added 103

Alas, how swift the moments fly!

How Flash the years along!

Scarce here, yet gone already by,

The burden of a song.

Xlll

See childhood , youth, and manhood pass ,

And age with furrowed brow;

Time was-Time shall be-drain the glass­

But where in t ime is now?

- JOHN QUINCY ADAMS , The Hour Glass

Time goes you say? Ah no!

Alas, Time stays, we go.

- AUSTIN DOBSON, The Paradox oj Time

Preface

Scientific jargon, while unquestionably useful for communication with other members

of a particular field, is often completely without meaning to the uninitiated. In a

document such as th is, one can take one of three approaches to dealing with jargon':

1) one can use it freely with the assumption that no one but an expert in the field will

ever read the document-an approach that almost guarantees that resu lt, or 2) one

can attempt to explain each term as it comes up-an approach that at best wi ll bore,

and at worst annoy the expert reader, or 3) one can use the terms freely, but provide

a glossary that mayor may not be of any use to the non-expert. As tempting as the

first opt ion is, we fi nd that this document contains termi nology from two distinct

fi elds (multicomputers and seismic reflection) , making it difficult to justify ignoring

t he audience. We therefore choose option t hree , and attempt to explain some of the

more opaque terms contained herein in Appendix A.

For those readers interested in an introduction to multicomputers , we recom­

mend an art icle by Seitz, Multicomputers [35]. Cha.pters 4 a.nd 5 of Introd1lction to

Geophysical Prospecting by Dobrin and Savit [7] provide a discussion of seismic data

acquisition and reflection surveys. For readers wishing an introduction to seismic

reflection processing we recommend Seismic Data Processing by Yilmaz [41]. Chap-

XIV

xv

ter l , section 4 provides a brief overview of the processing sequence.

C. Bruce Worden

November 1991

Chapter 1

Concept

[The] discussion on migration leads us to a weak link between seIsmIC
data and geology. That weak link is velocity. We can be proud of the
migrated stacked sect ion as long as the vertical axis is time. However,
when the geologist asks for a section in depth, we often hedge. Again ,
because of the uncertainty in velocity estimation, the depth section never
is entirely reliable. The weak link of veloc ity is a fundamental problem
in seism ic exploration.

~bZDOGAN YILMA Z, Seismic Data Processing

1.1 Introduction

Seismic reflection data acquisition and process ing is a billion-dollar industry (Good-

fellow [12]) , and that industry is directly dependent on computer tech nology. As

acquis ition systems grow larger and more sophisticated, they require ever more

advanced digital computers to process the data. The development of methods of

imaging the seismic data has also advanced in direct relation to advances in digi-

tal computing. Simply scanning t he industry literature (The Society of Exploration

Geophysicists ' journal Geophysics, for instan ce) will show tha.t it is a rare paper that

1

2

does not directly deal with the issues of computational efficiency or implementation

of the technique under discussion . However, despite tremendous advances in com­

puters , traditional techniques that have been in existence for over twenty years are

still the principle means of processing the data. While the fundamental processes

are sound, we asser t that current computer technology allows an update in the way

those processes are approached.

This thesis presents the conception, implementation , and application of an in­

teractive system for the imaging of seismic reflection data. In the sense used here

·' interactive" means that the system output is generated quickly enough that it ap­

pears di rectly responsive to the user's input. The system, ISIS (Interactive Seismic

Imaging System), provides the operator with t he abi lity to selectively alter imagi ng

parameters through a graph ical user interface and to immediately see the resu lts of

those alterations in the form of an updated image on a video monitor. This pro­

cedure is in contrast to most current methods of imaging seism ic data, which tend

to involve static parameter selection and batch processing. Recently some systems

have appeared boasting of "interactive" processing, but what is usually meant is

t hat some level of parameter or process selection is interactive, followed by standard

batch processing. ISIS is an attempt to jump away from that trend and provide tru ly

in teractive processing.

This chapter will discuss the motivation and the basic concepts of the ISIS project.

Chapter 2 discusses the implementation issues , in general, and the implementation

we pursued, in particular. Chapter 3 presents an application of the system to a

reflection survey cond uded off the California coast.

3

This project was partially motivated by the observation that the individ­

ual responsible fo r the interpretation of a seismic sect ion-generally a st ructural

geologist-rarely has any notion of what constraints can be placed on t he image

based on the processing that produced it . Simi larly, the individual processing the

data, the seismic analyst, often bas little understanding of the geologic constraints of

the region being imaged, nor an understanding of the features of t he image t hat are of

importance to the interpreter (e.g., the thickness of beds, the rela.t ionships between

beds. the dip on structures). If t he interpreter has direct control over t he image,

rather than working with a paper section, however , a much better understanding of

the geologic structure can be developed . The interpreter , by adjusting the imaging

parameters , can test the robustness of features , as well as the position, orientation ,

and relationships between reflectors . In addition, t he geologist is able to app ly geo­

logic knowledge and in tuition to the selection of imaging parameters-leading to a

better-formed image. The ISIS project attempts to blend the roles of the geologist

and the analyst .

1.2 Concepts of Interactive Imaging

ISIS provides a set of "tools" that facilitate interactive imaging while making use of

well-known, robust imaging techniques. The three principle tools of the ISIS system

are movies, interactive focusing, and image deconstruction. A fourth tool, interactive,

graphical parameter selection requires litt le elaboration . It simply provides t he user

wi th an intuitive, user-friendly method of interacting wi t h graphically displayed data

by means of keyboard, mouse , or other input device.

4

Movies, as the name implies, are the rapid sequential display of multiple panels

of seismic data sorted to some acquisition parameter (e.g., shot gathers). The theory

behind movies is simple: the eye is capable of discerning small changes between two

images as the images are flashed alternately in front of it. Astronomers used this

technique for years in detecting nearby celestial objects against the background star

field. The eye is also capable of picking out patterns that persist between two largely

dissimilar or noisy images. Both of these abilities have proved to be valuable in

seismic movies. the first for detecting lateral changes in structure and bad records,

the second for discerning true reflectors from a noisy background. Movies allow the

analyst the ability to inspect the entire data volume in minutes , and evaluate the

effect of parameter choices on t he data in the groupings that most naturally reflect the

effects of those parameters. The ability to stop the movie, adjust parameters, reverse

direction, or select another coordinate axis (e.g., receiver gathers) and continuing the

movie are central to the concept. Note that animation-type speeds are not necessary

for movies to be effective-rates of four to eight frames per second have proven

to be adequate. Also note that unlike an earlier manifestation of movies in which

the images were assembled, plotted , and photographed for later display through a

projector, the movies discussed here are assembled "on the fly" and displayed on a

video monitor.

The term "interactive focusing" is an analogy to a photographer looking through

the viewfinder of a camera to focus an image. Some imaging parameters, the migra­

tion velocity, for example, have effects that manifest themselves only in a composite

section , rat her than the individual data gathers. Interactive focusing is a process by

5

which the analyst adjusts an imaging parameter, the image is recomputed , and the

resulting image is displayed on the monitor. If the delay between the input and the

update of the display is short enough to create a feedback loop between the machine

and the analyst, true interactive focusing is achieved. To extend the analogy, current

seismic processing techniques, are like pointing a camera in the general direction of

the subject, taking a photograph, sending the film to be developed, and then making

adjustments to the aim , focus , and exposure based on the photograph that comes

back. ISIS allows our metaphorical photographer to look through the viewfinder of

the imaging system.

The third concept , image deconstruction, allows the analyst to tie image points

back to the data that produced them. For example, an analyst studying a feature on

a stacked section can point to the feature and display the midpoint gather(s) that

produced that portion of the image, and then access the shot or receiver gathers that

produced the midpoint gathers. The analyst can further analyze the gathers using

movies and interactive parameter selection. This techn ique provides the interpreter

a method of distinguishing real structural features from processing artifacts. and for

study ing the geometric relationships that produce those features.

Each of the three concepts described in this section requires rap id and random

access to the entire data volume, and a method of sorting the data into the ap­

propriate gathers. The traditional approach using magnetic tapes to store the data

is insufficient to provide the speed and flexibility required by ISIS . We devoted a

great deal of attention to developing the appropriate functionality, as is discussed in

Chapter 2.

6

1.3 Advantages of Interactive Imaging

The three basic imaging tools described in the previous section, coupled with the

concept of geologist-as-analyst, constitute t he basic principles of an interactive seis­

mic imaging system. The advan tages of such a system are numerous. As was already

mentioned, having t he geologist perform t he imaging allows for the direct applica­

tion of known geologic const raints to the processing sequence. The ability to interact

with the image, parameters, and data allows for a better understanding of the image

and, perhaps, a better interp retation of it.

A furthe r benefit of interactive imaging is that t he time required to process a

typical seismic survey is reduced from t he weeks or months required by traditional

process ing to just hours. This benefit derives from the same fun ctionality that allows

fo r interactive processing. In trad itional processing, an analysis is made of the data

and processing parameters are selected based on that analysis . The parameters are

then applied to the data via a computer job running in batch mode, and typ ically

a plot is generated showing the outcome. The parameters are then adjusted based

on the previous iteration, and the job is resubmitted. The turnaround time for each

iteration varies from a few minutes for simple processes, to several hours or days for

comp lex ones. (The process is often slowed by other processes in the queue and by the

need to mount tapes, often by the hundreds.) By definition, however, the turnaround

time on an interactive system is often only a fraction of a second. Thus, each of the

various processing steps can be accomplished very rapidly. The rapid tu rnaround has

another advantage in that it affords a much greater use of the analyst's training a.nd

experience. In current practice the analyst must either idly wait for the next plot.

7

or switch to another project while waiting. Interactive imaging allows the analyst to

concentrate on the task at hand and to pursue ideas as they occur.

The process of interactive imaging presents numerous opportunities to improve

upon the images produced by traditional processing technology. The next several

sections detail some of those improvements, which, when taken as a group, can lead

to significantly better images.

1.3.1 Quality Control

Movies provide an excellent method of quali ty control throughout much of the imag­

ing sequence because they allow the analyst to inspect t he entire data volume, with

various parameters app lied, in a matter of a few seconds or minutes . Bad records

stand out and may be edited from the data using a simple point-and-c1ick interface.

While it is difficult or impossible to inspect an ent ire data set using traditional tech­

niques, it is a simple matter to do so with ISIS. Bad shots stand out in a movie of

shot gathers: bad receivers show best in movies of receiver gathers (on land surveys)

or constant offset gathers (on marine surveys) . Random bad t races appear in a ny

groupIng.

Inspection of parameters is also easi ly ach ieved t hrough the use of movies. Tradi­

tional processing often involves performing a particular analysis on gathers at a few

evenly spaced locations along the line, and interpolation to the gathers in between.

Interactive imaging carries this process ing a step further by a llowing the user to in­

spect the results on every gather in t he survey. In locations where unaccounted-for

lateral variations in the subsurface st ructure make the interpola.ted parameter in·

correct. the user may stop the movie and correct the parameter. In this way, after

8

several passes through the data, the analyst has accounted for high frequency varia­

tions in the structure. For instance, surgical mutes may be applied to shot gathers,

but if those mutes become ineffective due to lateral variations in the near-surface

lithology, unwanted energy will creep into the image or excessive amounts of de­

sirable energy are eliminated. Movies of shot gathers with and without the mutes

significantly improve the quality of the parameters selected . Another example, this

time with midpoint gathers, is the NMO velocity and the stretch mutes . The veloc­

ity analysis is perhaps the most important task of the seismic analyst. A movie of

midpoint gathers with NMO applied allows the analyst to detect and analyze subt le

variations in subsurface velocity. Through the use of movies, quality control becomes

an integral part of many processing steps.

Another, planned, enhancement allows yet another level of quality control. When

the geologist makes an interpretation of the seismic section, a velocity model is

implicitly created as well. This model , can be fed back as the input model to the

imaging process. If the model accu rately reflects the subsurface structure, an image

very similar to the original should be produced. This process can provide a direct

check on the quality of an interpretation.

We anticipate t hat another level of quality control will be achieved if an interactive

system is taken into the field where the data is being collected . Because the data can

be processed quickly, field workers can partially process t he data shortly after they

are collected. The processed da.ta may suggest altering the acquisition parameters,

or the image may indicate structure which warrants closer study. Though difficult,

it is much cheaper and easier to alter a survey while the equipment is in the field

9

than to send out another crew to resurvey the same site.

l.3.2 Fine Tuning through Interactive Focusing

Following completion of the initial processing steps, t he technique of interactive

focusing is applied to a composite image, i.e. , a stacked or migrated section. The

analyst can fine tune the velocity model to produce the sharpest image in areas of

complex structure by working with the velocity model and observing the results in the

finished image. Fine tuning allows for a level of analysis that cannot be adequately

treated by conventional velocity analysis techniques. The focusing and defocusing

of diffraction patterns in a migrated image is a prime example. An experienced

analyst can easily identify a grossly over- or under-migrated image, but the ability

to smoothly pass from one to the other allows for honing in on the proper velocity

in much the same way a camera or telescope is focused by moving back and forth

through the point of optimum focus in diminishing steps.

It may be argued that this technique gives the analyst the power to adjust the

image to reflect some preconceived notion. While mistreatment is certainly possible,

it must be remembered that the machine will honor the physics of the situation. If

the analyst uses an unrealistic velocity to orient a reflector at some desired position

or to create structure where there is none, other areas of the image will be adversely

affected. Again , a level of quality control is available where none existed before. If

slight variations in the velocity cause the image to be radically changed or structures

to vanish , the interpreter must regard those features with suspicion. On the other

hand , robust features may be distorted by such tests, but will retain much of their

character even through relatively major changes in the model.

10

In the prototype system , interactive focusing, while fully implemented, is only

truly interactive on relatively small data sets. Effectiveness on larger data volumes

will require more computing power and, perhaps, hand-coding of t he most CPU­

intensive routines. Ultimately, even fully interactive pre-stack migration may be

avai lable.

1.3.3 Exploration of the Parameter Space

The ability to interactively select parameters and observe the effects of those pa­

rameters on the data allows the analyst to fully explore the parameter space. These

parameters (mutes, filter settings, velocity models, statics, etc.) have a direct bearing

on the image produced. Simple fine tuning of parameters may find locally optimal

solutions, but globally optimal solutions may require more drastic alterations. In­

teractive imaging gives the analyst the tools to explore various possibilities as they

present themselves and to return to earlier models if the results are unsat isfactory.

Another advantage of ISIS is the ability to explore the relationships between pa­

rameters, and the trade-offs they represent. The ability to thoroughly explore the

parameter space is another instance of making better use of the analyst's extensive

knowledge and experience. And, again, the result may be an improved image or

interpretation .

We applied [5[5 to the study of the Hosgri fault zone (Chapter 3) and were able

to explore various velocity models ranging from models with smooth velocity profiles

to ones with steep velocity gradients near the fau lt zone. Exploring a broad subset

of the parameter space proved to be important to understanding the structure of the

fault.

11

1.4 Other Features of Interactive Imaging

Because the processmg is driven by input from the user interface, it is possible

to record the user 's input and replay it at some later time. In this way a self­

documenting processing sequence is created. Another user can replay the sequence

to verify the analysis or determine the current status of a project . The parameters are

stored in files at various stages of processing, so the new user may attempt a different

avenue of approach to the processing without corrupting the previous work . Thus,

even a finis hed project may be easily re-analyzed and new ideas may be tested . This

functionality also provides another means for quality control in an industry setting

where a manager may wish to check an analyst's work.

Interact ive imaging may also serve as an educational tool. Processing techniques

and the effects of parameters may be explored easily and in a way that demonstrates

the important issues.

As discussed in Chapter 2, we designed ISIS to allow for the easy addit ion of

new processing functions. Thus, the system is ideally suited for those wishing to test

new algorithms or imaging techniques. The new funct ion can be easily integrated

into t he existing system through the standard interfaces provided (also discussed in

Chapter 2) and tested on a variety of data and with various choices of parameters.

Through development of ISIS some unanticipated advantages of the system be­

came apparent . For example, when we studied midpoint gathers with NMO applied.

we knew that such movies would easily locate areas of unaccounted-for lateral varia.­

tions in velocity, but we did not expect them to aid in distinguish ing diffractions from

primary refl ections in areas of complex structure. The diffractions , however, can be

12

seen movmg up and down in the gathers and through other layers, making them

easy to distinguish from the primaries. This distinction enabled us to concent rate

the velocity analysis on the t rue reflectors.

l.5 Why Interactive Imaging?

Despite the forgoing, some individuals may question why we bother with interac­

t ive imaging at all. Why not just automatically process the data and be done with

it? The answer is twofold. First , it would be difficult to conceive of a fully auto­

mated system to process seismic data. There is no generally recognized method of

computationally determining the accuracy of a seismic image, or for preferring one

image over another. Lacking such a method, it is impossible to automate the task

of adjusting the parameters to optimize the image. The enormous complexity of

geologic structures and the recorded data make such a method an unlikely near-term

development. In a simi lar manner it is difficult to imagine a generalized inversion

formula for seismic reflect ion data, since the tradeoff between the reflectivi ty and

the velocity structures of the subsurface is generally not completely constrained by

the data. Now and for the foreseeable future , the expert ise and judgement of a hu­

man analyst will be required for the accurate imaging of seismic data. By exploiting

greater computer power, however, we can facili tate a wider explora tion of the pa­

rameter space, which provides us with greater control over the non-uniqueness of our

models and enables us to constrain the possibilities presented by the data. The sec­

ond reason to not automatically process the data is that even if an automatic system

were available , it would not provide the geologist with the advantages described in

13

the previous sections . The interpreter would remam m the position of making the

structural in terpretation with only a static, paper section , without an understanding

of t he processes, parameters , and data that produced it .

Chapter 2

1m plementation

2.1 Introduction

In this chapter we discuss the implementation of the Interactive Seismic Imaging Sys­

tem (ISIS) described in the previous chapter. We first discuss our general approach

to the problem, the performance characteristics necessary to provide t he functional­

ity described in the previous chapter, and the specific hardware platform on which

we implemented ISIS. We then discuss t he software design issues and software imple­

mentation. Finally, we describe the current state of the seismic processing software,

and proposed future add itions.

2.2 General Design Considerations

Seismic processing functions consist of four principle tasks: parameter input, data

input, computation, a.nd data output. The seism ic analyst is responsible fo r the

selection of the processing parameters appropriate for the data. The data input

consists of some portion of the seismic traces recorded by a field survey. The com-

14

Trace
Manager

User
Interface

15

Parameters

1- ---,
1

Data
Computat I on

Image Display
Manager

Figure 2.1: Imaging tasks. The four principle divisions of the ISIS system are shown.

The dashed lines represent software layers that insulate the computational processes

from the other functions.

putation function(s) processes the data as specified by the parameters, and produces

the output, usually an image of some form. Each of the four parts has its own par-

ticular set of requirements and design issues. Keeping this fact in mind, we divided

the imaging task into four components (Figure 2.1): 1) a computational engine to

produce the seism ic images, 2) a seismic trace manager to provide the data to the

computational engine, 3) a display manager to receive images from the computa-

tional engine and display them on a video monitor, and 4) a user interface to provide

parameter selection and control functions. The function and implementation of each

of these components will be discussed in detai l in subsequent sections.

For reasons discussed later, [5[5 is implemented on a multicomputer (or parallel

16

computer). Implementation on a multicomputer has a number of consequences that

we had to consider during the design process, not the least of which is the added

complexity of programming this type of machine. To simplify the implementation

process, the ISIS software is div ided into two principle layers: the system layer, and

the· application layer. The system level software provides functional interfaces to the

four main components, and conceals implementation details from t he app lication.

The application software consists of the seismic imaging funct ions (i.e., those that

process seismic data), and the user interface. The ISIS system presented here con­

sists of both- it is a processing system bui lt upon the system software. There are

several reasons we made this division. First, the system had to be programmable, so

that imaging or user interface functions could be added quick ly a.nd easily, without

requiring changes to existing functions. Second, it was desirab le t hat t he system be

as portable as possible. This goal is difficult to achieve considering the nature of

t he hardware , but using system software to hide implementation details simplifies

por t ing t he user interface and the processing functions. T his approach also isolates

implementation-specific software in a few locations, thus easing the porting effort of

t he sys tem software-a significant advantage considering the rapidly changi ng and

non-standardized nature of parallel hardware and software. Third, t he applicat ion

programming effort is greatly eased by the concealment of the implementation de­

tails , and while the parallelism of the computational processes cannot be entirely

concealed from the applications programmer, the paralleli sm of the trace manager

and the di splay manager can. In this way the applications programmer is free to

choose the a.lgorithm that best suits the task without having to consider the imple-

17

mentation details of the system.

2.3 Performance Considerations

Each of the principle components of the system must be capable of providing a certain

level of performance in order to ach ieve the fun ctionali ty described in Chapter 1. For

example, in order to display movies at eight frames per second the graphics unit must

be able to absorb and display approximately eight megabytes of data per second,

assuming one megabyte per image.

Other performance requirements are not as easy to quantify. If we consider a

moderate sized survey of 250,000 traces each of 1000 time points, the trace manager

must be able to store one gigabyte of data and retrieve traces randomly distributed

throughout the data volume. The most demanding application for the trace manager

is interactive stacking-the entire data volume must be delivered, in midpoint order,

in approximately one second, to maintain minimal interactive capability. Assuming

that the data are stored on disk , we require a sustained 1 Gb/sec transfer rate.

~"[ore imposing, however, is the requirement of 250,000 individual disk seeks in the

same time period. At 2 Mb/sec a common disk drive takes 2 ms to t ransfer a 4 Kb

record, but the average seek and rotational latency times add up to about 20 ms.

Thus, about 5000 drive-seconds are required to transfer the data. This requiremen t

is overstated, however, in that the interactive stacking does not have to restack the

ent ire image, but only that portion a ffected by a parameter change, perhaps ten

percent. In addition, the data, if spread among several disks will not span the entire

media, and thus the seek time will be closer to the minimum than the average.

18

By adding an intelligent caching scheme as well, the performance requirement IS

on the order of 50 drive-seconds/second. Note that if the entire data volume, or a

large fraction of it , can be stored in computer memory, the performance of the trace

manager can be greatly increased.

The expense of interacti ve post-stack migration, again with moderate one-second

updates, is the most demanding of the computational tasks. Consider the survey

described above. The stacked section would have approximately 2000 midpoints

each of 1000 time points, i.e., about two million image points. If we assume 500

floating point operations per image point, we require a sustained performance of at

least one gigaflop to achieve the interactive migration. Greater performance would

be required by more sophisticated migration algorithms.

Interact ive prestack migration would be considerably more computationally in­

tensive. and would require the trace manager to supply the entire data volume at

least once per update cycle. The computational and data requirements of interactive

prestack migration are so high, however, t hat we must relegate it to the "future de­

velopments" category. Teraflops performance is required , and while machines with

this level of performance will become available over t he next few years , it will be

some years more before they are within a price range that will make them available

for this type of work .

The performance requirements described above, while substantial and difficult

to obtain in current sequential machines, are readily available in current multicom­

puters. The I/ O requirement of 50 drive-seconds/ second can be achieved by fifty

disks working in parallel. The Gflop computational performance can be achieved by

19

50 separate 20 Mllop processors working together. The graphics requirement can

be achieved by chaini ng together several graphics units . Thus, implementation on

a heterogeneous multicomputer was a logical choice for our system. Other options

do exist, but they generally fall short in one or more respects. A state-of-the-art

supercomputer wi t h an advanced I/O subsystem might be able to achieve similar

performance numbers , but the cost would be beyond most budgets , and the system

would not be scalable, i.e., there are situations in which it would be desirable to have

both a larger system (in a commercial process ing center, for example), or a smaller

system (for field use). Another option, a custom-built hardware system, would suf­

fer from both of these problems, as well as the difficulties in maintenance and in

reproducing the system at other sites.

2.4 Physica.l Implementa.tion

\,Ve carried out an extensive search to find a hardware system capable of providing

the performance and functionality necessary to implement t he ISIS prototype. The

principle requi rements were that the machine provide graphics output at approxi­

mately eight frames per second , that multiple, scalable disk I/ O was available, that

significant , and scalable computat ional speed could be achieved, and that some con­

trolling process could drive the system. The search quickly focused on a few parallel

machines , both of the message-passing and shared memory variety. We ultimately

selected a machine manufactured by Meiko Scientific Ltd ., of Bristol, England. Fig­

ure 2.2 is a schemat ic diagram of t he sys tem hardware. The trace manager is imple­

mented on eight nodes , each of which consists of an Inmos TSOO transputer as the

20

W/S

Figure 2.2 : Layout of processes on the Meiko multicomputer. Each box enclosing

a letter represents a node: trace manager processes are marked "T ", computat ional

processes "e", and display manager processes "D." "H" is the system host board ,

and "W IS" represents the Sun workstation , where the user in terface resides. Each

trace manager node has access to two disk dri ves (small circles), and two nodes also

have Smm tape drives. The lines between nodes represent communications channels.

21

principal processor. Though the T800 is a relatively slow processor by current stan­

dards, the performance requirements of the trace manager process are not as severe

as those of the computational processes, and the T800 has proven adequate. Each of

t he trace manager nodes has 8 Mb of main memory and is linked to a SCSI bus. Two

one-Gb disk drives are attached to each bus (16 total), and two of the processors have

8 mm tape drives that provide an efficient means of loading data into the system.

The TSOO is configured with four bi-directional communications links over which it

can send messages to other processors. The TSOO's communication bandwidth is

unimpressive (~1 MbJsec per link, each direction), but the message start-up latency

is very low (under 1 ms). The Meiko message-passing software, CSTools, effectively

insulates the app lications programmer from need ing to know how the communica­

tions links are interconnected, providing point-to-point communications regardless

of the actual path the message takes . The software also provides for a large number

of logical communications links , but since there is a significant performance penalty

for each "hop" a message must make between source and destination , there is some

advantage to configuring the links to minimize the distance between communicating

processes. Meiko provides software to accomplish this task at program boot time.

Another group of eight nodes provides t he computational abi lity. Each of these

nodes consists of a 40 MHz Intel iS60 processor and two TSOO transputers. The iS60

provides the computational power and the TSOO 's provide communications services.

This separation is invisible to the applications programmer-the same code will run

transparently on the TSOO- and iS60-based nodes; the system software deals with

the details of the configuration. The result is that the iS60 "looks" like any other

22

processor In the system, except that it has eight hardware communications links.

Each of these nodes is configured with 8 Mb of memory. In add ition , there are 2 Mb

of memory shared between the T800's and the i860 for communications support.

Two more nodes provide graphics support. Each of these nodes is configured with

a T800 processor , 4 Mb of standard memory, and 2 Mb of video RAM. In addition

to the transputer links , the nodes are connected by a "pixel highway" that links

the video output of the two boards. The master board is configured with an RGB

analog output that drives a color monitor. These boards can operate in two modes:

1) ea.ch board in the chain provides one segment in the image (e.g., in the case of two

boards , one board would be responsible for the upper half of the image, the other

would be responsible for the lower half), or 2) the boards may each produce an entire

image, and the application chooses the board to be displayed at any given time. The

boards may also flip between the first Mb of video memory and the second Mb,

providing a double· buffering mechanism. The limited computational performance of

the TSOO is not a severe handicap in this application, since there is little computation

to be done. In fact, the T800 has a machine instruct ion for copying one memory

region to another, making the process of moving an image from program memory

to video memory extremely efficient. In most other senses, however, the nodes are

fairly unsophisticated- there is no hardware vector drawing, for instance, nor any

other specialized graphics rendering functions. Nevertheless, the node has proven to

be adequate for the purposes of this application. More of a handicap is the limited

4 Mb of program memory; 8 Mb would be much less confining, but was unavailable.

Additional hardware connects the Meiko system to a Sun workstation. From the

23

point of view of the applicat ions program, the Sun appears as another node in the

system. The Sun also supplies system services, and a development environment . The

user interface is implemented on the Sun, giving the applications developer a number

of software options from which to choose. The communications between the Sun and

t he other nodes is less efficient than the node- to-node communication within the

Meiko system (about 200 Kb/sec), and there is only a single link, t hus large data

transfers are inefficient and should be avoided. The Sun also has the opposite sense

of byte ordering than do the nodes in the Meiko, so special attention is needed to

assure proper communications. We address th is top ic in Section 2.5.3.

As mentioned earlier, there is a performance penalty for each additional hop a

message must make from source to destination, thus to achieve maximum perfor­

mance, this distance must be minimized. In addition, since there is limited band­

width on the links, message traffic needs to be distributed as evenly as possible to

avoid bottlenecks. As discussed in Section 2.5.1, each computational process, in

general, receives data from each of t he t race manager processes, thus complete in­

terconnectedness between these two types of processes is required. Figure 2.2 shows

the ISIS configurat ion. Four of the eight links from each of the even-numbered com­

putational nodes are used to connect to the even-numbered t race manager nodes

and, similarly, the odd-numbered compute nodes connect to the odd-numbered t race

manager nodes. Two of the links from each computational node are connected to its

nearest neighbors, form ing a ring of computational nodes. In this way data from any

trace manager node can reach any computat ional node in a maximum of two hops,

and the traffic is distributed evenly. One more link on each computational node is

24

used to connect to a graphics node, again In an even-odd configuration. There is

sti ll one free link on each of the i860 nodes, which may be used for larger hardware

configurations. For example, the current number of nodes could be doubled, the

second half wired exactly as the first, and the two halves connected by the extra

links·. In this way the power of the machine would be doubled at the cost of only a

single extra hop in the maximum trace manager-to-computational node distance.

An advantage of the Meiko machine over some other machines is that it is ex­

pandable by any incremental number of nodes; it is not restricted to a power of two

like many of the binary n-cube machines. Thus, if some unacceptable imbalance is

found between the components, more nodes of a certain kind may be added to even

the loa.d distribution. Thus, our software design must take this possibility, as well as

the issue of general scalability, into account .

2.5 Software Design

The development of a seismic imaging system from t he ground up would seem to be an

a.lmost overwhelming task. Commercial systems often employ dozens of programmers

and require years to complete. The ISIS project, wit h its emphasis on interactive

processes a.nd parallel implementation, would seem even more forbidding. And yet

we were ab le to implement the prototype system in a little over a year with only one

person consistently working on the project. We accompl ished the task by eliminating

some of the major software engineeri ng obstacles that confront the implementors of

seismic imaging systems.

IS IS ha.s no facilities for handling tapes (except that which is necessary to load the

25

data from 8 mm tapes onto the system's disks). The user is expected to provide the

seismic data in the proper format, with the proper headers, on the tapes. Handling

of tapes of differing formats, running on differing devices and platforms requires a

substantial software effort, one which we avoided. There are also no facilities for

generating hard copy plots; an image displayed on the monitor may be dumped to a

file, and the user may then plot it by whatever means is available. Again, providing a

portable plotting package for a large variety of devices is a complex, expensive task.

Commercial seismic processing systems also supply a considerable number of

auxiliary functions for performing various operations on the data. Many of these

functions are rarely used, but are required to round out a commercial system (e.g.,

convolution. correlation , derivative operators, etc.). Others are useful, but not re­

quired for basic processing (deconvolution, F-K filtering, etc). We did not attempt

to implement such functions , choosing instead to concentrate on the core processing

functions.

We also simpl ified the programming effort through the modularity of the code. By

isolating the various functions , as described later, we avoided some of the well-known

non-linear growth in programming complexity as the system grew. In addition, we

took advantage of standard software packages wherever they presented themselves.

We used Unix utilities , X-Windows libraries , Meiko's CSToois message-passing li­

braries, Sun's XDR package, Sun's XView library, etc. Some of these choices hamper

portability, a serious issue, but great ly eased the development effort.

As another simplifying design decision we avoided any attempt to break new

ground in developing seismic processing software. In most cases, we used well-known ,

26

well-tested algorithms and implemented them in a straightforward manner. [n some

cases this approach did not produce the most efficient code, but for our purposes

the speed of implementation offset that loss. The simplicity of the interface to the

trace manager (Section 2.5.1) also greatly eased the implementation of the processing

software. For example, the requesting process can specify that the trace manager

deliver traces with statics and NMO applied, therefore a stacking function might

consist of only a few lines of code that request a series of midpoint gathers and sum

each trace into the stack.

Finally, while Fortran is the dominant language of the seismic processing industry,

we chose to implement [SIS in C. The reason for this choice is threefold . First, in a

message-passing system as complex as [SIS, data structures are regularly packed into

byte st reams, sent as messages, and unpacked into data structures by the receiving

process, often with a level of byte swapping in between. C is clearly superior to

Fortran in manipulating com plex data structures. Second, most windowing software

(e.g .. X. Sun View) are written for C. Using C for the user interface and Fortran for

the computation would have added more complexity to an already complex system.

Finally, we have observed that much of the software for parallel programming is

written in C first, and Fortran interfaces are added later. This fact reRects the basic

appropriateness of C, or rather, the inappropriateness of Fortran, for the purpose of

message pasSIng. Since we wanted to take full advantage of the available libraries. C

was preferable.

Once we decided to pursue parallel implementation of the application, two inter·

related sets of issues became relevant. First were the general issues of parallelizing

27

the application, and second were the issues of scalability. Most applications can

be divided in more than one way; it is important to select a way that suits the

underlying hardware, but that is flexible enough to change with hardware changes.

Even within the class of medium-grained message-passing multicomputers there is

considerable range in the message-bandwidth-to-compute ratios, and in the message

start-up latency. Closely tied to this issue is the issue of scalability. The ideal im­

plementation of an algorithm would scale smoothly from one to many thousands of

processors and require little communication between each instance of the process.

A Iso, the performance of such an application would ideally scale linearly wi th the

number of processors. Algorithms of this sort are rare, and often some concessions

must be made to enhance performance on the available hardware at the expense of

generality.

Seismic data have particular levels of granularity that the applications program­

mer would be unwise to ignore. A typical seismic survey consists of a collection of

several hundred source gathers (which can be reordered into a small number of other

gather types). Each source gather is made up of about 100- 1000 seismic traces.

Each trace consists of about 1000 time samples recorded by a geophone. Common

seism ic processes have developed with natural input-output relationships that take

into account this style of data storage. Most algorithms are developed to deal with

the data by gather or trace. Stacking, for instance, generally works on each C~1 P

gather sequentially, applying NMO to each trace and summing the traces together.

There is no fundamental reason that the process cannot work on other types of gath­

ers (as long as each trace is summed to the correct midpoint trace), or even on the

28

indi vidual data points, but for efficiency and simplicity of implementation the CMP

gather approach usually works best. Similarly, the output of most seismic processes

consists of a record section made up of traces of time or depth data values. This

output is usually displayed so that the horizontal axis represents surface position

and the traces run down the vertical axis with time or depth increasing downward.

Output functions may be efficiently designed by keeping this format in mind.

Because of the nature of the recorded data and the way it is processed , seismic

imaging lends itself well to medium-grained multicomputers. Machines of this type

generally have no more than a few hundred, relatively powerful, processors, each of

which has a few megabytes of memory. A machine with many times this number of

processors wou ld require a general rethinking of the processing model. For example,

to perform a CMP stack with fewer output traces than available processors, each

process would have to work with a fraction of an output trace while still requiring

access to the entire input gather. There are inherent inefficiencies in forcing the seis­

mic data to be more fine-grained than its natural state. We have therefore restricted

our efforts to algorithms that scale well from just a few processors-preferably a

single processor-to a few thousand processors at the most.

2.5.1 Trace Manager

The princip le purpose of the t race manager is to provide the application with a means

of requesting and receiving seismic traces in an organized manner. Our main goal

in designing t he interface to the trace manager was to conceal implementation and

implementation-specific details from the application by providing a simple, uniform

interface across all implementations. Each instance of t he tra.ce manager process

29

must be fair to all of the requesting processes (i.e. , no requesting process or group

of processes may lock out other processes from receiving requested data). Another

requirement is that any request for data must be guaranteed to finish in a finite

time (assuming that the receiving process is accepting traces) . We will discuss the

interface and implementation of the trace manager in the next two sections.

Applications Interface

I3efore any process requests data, the trace manager processes must be initialized.

It is the responsibility of the user interface process to do the initialization by calling

the function datainit(). The arguments to datainit() include the names of the file

containi ng the data and another file containing auxiliary information on the stored

data. If no combined master list of this auxiliary information exists in the user

interface's current directory, one is assembled and placed there (by collecting and

merging a copy of the auxiliary lists of all of the trace mana.ger processes). This

master file is rea.d by datainit() and the information is available to the user interface

for ma.pping, selecting data, etc. A related function , enddata(), releases the data

structures and leaves the system in a state in which another call to datainit() may

be made, perhaps to work on another data set.

The principle interfa.ce to the trace manager consists of two functions: datare­

quest () and getdata() (a third function, getrequest(), builds a default request struc­

t ure). The data are available in one of a small number of common groupings (i.e.,

sho t. receiver, midpoint , and constant offset gathers) , by designated individual tra.ce,

or by the entire data volume. The application fills in the request structure returned

by getrequest () with the appropriate geometric information and then calls datare-

30

quesl () with the request structure as the only argument. The application then loops

over calls to geldala (), each of which returns a seismic trace and an associated header

until no more data of the requested type exist, at which point calls to geldala() return

the value zero. It is an error for a process to call datarequest() while there are still

traces outstanding from a previous call. The traces returned by getdata() may arrive

in any order; the application must be designed with this fact in mind. To facilitate

this approach. the header that arrives with each trace contains trace-specific infor­

mation: the x, y, and z coordinates of the source and receiver, midpoint coordinates,

source and receiver flag numbers, the receiver sample rate, etc. A sample function

that makes use of this interface may be found in Appendix B.

These functions present a simple interface for the applications programmer that

requires no knowledge of the number of trace manager processes. The interface

would be the same whether it was implemented on a single uni-processor machine,

a network of workstations, a shared-memory multiprocessor, or a message-passing

multicomputer such as the Meiko. In this way a level of parallelism is completely

hidden from the application , greatly simplifying the programming effort.

Closely associated with the basic trace manager functions is the concept of lines.

Lines are defined by the user in terms of t he map coordinates of the survey. Each

line has associated with it an off-line tolerance, and binning interval. The off-line

tolerance specifies a distance perpendicular to the line, on either side of the line,

within which a source, receiver, or midpoint is considered to fall on the line. The

binning interval, combined with the off-line tolerance, specifies a set of bins used

for midpoint sorting. Lines may contain multiple segments (to deal with irregular

l

31

recording geometries). All requests for data must have associated with them a pre­

defined line. Any request for data will only apply to the data that falls within the

boundaries of the line designated in the request. A small number of functions are

provided for defining and accessing the li nes.

The lines mechanism provides the user a way of defining reconstruction lines

through surveys with complicated recording geometries, as well as providing a means

of focusing the scope of an analysis. Multiple lines may be associated with a survey,

and the user is free to choose from among them at will. Many parameter types are

associated with a particular line. For example, the velocity models each apply only

to a specific line, though any given line may have multiple velocity models associated

with it (only one may be active at any given time, of course).

System Leve l Implementation

Each instance of the trace manager process (Figure 2.3) consists of a data archive

upon which a subset of all the traces in the survey are stored. The traces are divided

as evenly as possible among the trace manager processes, but need not be stored

in any particular order. Each instance of the trace manager has a unique subset

of the traces which does not intersect with any other instance's subset. [n this

implementation, the data are stored on magnetic disk, but other storage means are

possible. Each process maintains a list of the traces stored in its local archive. This

li st includes the location of the trace in the archive, as well as indices into source

and receiver coordinate lists . These lists are generated by a utility program that

is run only once, after the data is loaded onto disk. The lists and a small amount

of auxiliary information are written onto disk, and are read to initialize the trace

32

Trace Li st

Req. List Req. List N

•••

Do:
Stat Ics
NMO
Mutes
Decon.

Request

Data
I Computational

Process

Figure 2.3: A schematic representation of an instance of the trace manager process.

manager when datainil() is called.

\,Yhen a request arrives from a computational process, each instance of the trace

manager searches its list of traces, indexing into the source and receiver lists for the

appropriate geometric information. A secondary list of traces that satisfy the re-

quest is generated. As mentioned above, there may be more than one computational

process request ing data at any time, so there is a need to assure that each compu-

tat ional process is treated fairly, and that all requests are guaranteed to finish. To

accomplish these requirements, the trace manager process selects the first item from

each of the lists and designates a buffer for an asynchronous read of the required

trace. Multiple buffers may be queued from each list as memory permits. When a

read is complete. the header is prepared and attached to the beginning of the buffer

33

containing the trace, and the buffer is queued for asynchronous transmission to the

requesting process . When the transmission is complete, the trace manager selects

the next item from the list corresponding to the trace just transmitted and queues

it to be read into the free buffer. When no traces from a given request remain to

be sent, the trace manager sends a token to the requesting process indicating the

end-of-data condition.

When the application calls datarequest(), the ISIS system software in the request­

ing process immediately sends a copy of the request to each of t he trace manager

pwcesses , and queues buffers to receive incoming data. As each call to getdata() is

made, the function waits for the first available incoming trace. When a trace arrives,

the header and data are copied to user-supplied addresses, and getdata() returns a

positive integer. As end-of-data indicators arrive from the trace manager processes,

the appropriate buffers are dequeued. When all of the buffers have been dequeued ,

the request is exhausted, and getdata() returns zero.

The application may request that certain operations be performed on the data

prior to its delivery by getdata(). Simple, well-known operations such as statics,

mutes. normal moveout, and deconvolution may be applied as long as system func­

tions exist to perform them and the necessary parameters have been defined . The

application sets flags to request that one or more of these operations be performed

through the function setdataops(). ote that the operations, while handled by the

trace manager system-level software, may be performed on any processor. Though

the most common location to perform the tasks would be the sending or receiving

process . in some implementations an intermediate processor might be used . In this

34

implementation, these functions are performed by the receiving process on the com­

putational node. This choice was made because of the i860 's superior computational

performance.

The performance of the trace manager could be enhanced by ordering and combin­

ing read requests, caching data, etc. No attempt was made to do so in the prototype

system , primarily because of time constraints. Future work in this area could lead

to significant improvements in system performance.

The [/ 0 software that Meiko provided for the SCSI nodes allows for synchronous

or asynchronous read ing and writing of the disks as raw devices, but did not include

a filesystem. We implemented an extremely simple filesystem that provided coarse­

grained disk striping across all the disks on a bus. The disks combine to form one

large logical device and the striping is implemented by defining a logical block size

for each fil e. When writing, the first avai lable block is written until fu ll , and then

writing switches to the next disk on the bus, eventually cycl ing back to the fi rst.

The purpose of this implementation was to allow for the selection of a logical block

size equal to the size of the data traces (rounded up to the nearest mu ltiple of the

physical block size of the device), so that no trace is split across disks. In th is way,

the data appear to be in a single file (simplifying the development task), but the

various reads take advantage of overlapping seeks. Since the size of the logical device

may exceed the limit of a 32-bit unsigned integer , the offset for reading and writ ing

is specified in logical blocks. Files span continuous blocks and are written end to

end. To remove a file , all of the succeeding files are moved down to fill the space.

We implemented a number of utility functions to deal with the fi lesystem, as well as

35

functions for loading the data from tape to the disks.

2.5.2 Display Manager

The purpose of the display manager is to provide a means for the application to

produce graphical output . As with the trace manager, one of the principle design

goals was to conceal implementation details from the application. As the system

has developed, the display manager has undergone several major changes. As of this

writing the interface has stabilized, and the program will probably undergo a rewrite

in the near future to clean up the interface so that it conforms more strictly to the

description below.

The display manager hand les a task that is somewhat more complex than that

of the trace manager. First , the user interface requires direct knowledge of what

image is currently being displayed. In order to maintain synchronization with the

images, the user interface must authorize the display of any image. Second, the

di splay manager, upon receiving a trace for plotting cannot know a priori in what

position to plot the trace. With no outside help it would have to wait until all traces

had arrived before deciding on a horizontal scaling factor. This requirement for a

posteriori knowledge is inefficient, since the t race manager must wait idly for all of

the traces when it cou ld otherwise be preparing the image, and cumbersome, since

it requires the display manager to buffer and sort traces. Finally, in the case of the

trace manager the N x M interconnectedness (where Nand M are the number of

t race manager and computational processes) reduced to N identical, independent

trace manager processes and M identical , independent computational processes. In

the case of the display manager, however, P display processes are required to perform

36

a particular task for M computational processes, but the general solution reqUI res

coordination among the display processes, and each must coordinate with -¥ com­

putational processes.

A pplications Interface

In an attempt to mirror the interface to the trace manager , we designed the display

manager to present the application with two principle functions: draw_trace() and

ploLdata () . The application repeatedly calls dra w_trace(), once for each trace to be

plotted. The arguments to draw_trace() include the trace to be plotted, the header,

and a flag indicating which of a small number of plot types is to be generated. When

the plot is complete, the user calls ploLdata () with an argument indicating whether

the image is a complete image unto itself, or whether it is one segment of a composite

being produced by t he combined efforts of all the processors. Another argument

allows the applicat ion to erase the entire existing image before plotting the new one,

or to simply overwrite the exist ing image in the places where t he two overlap . When

ploLdata() returns, the application is free to start producing another image. An

example function making use of these functions can be found in Appendix B.

All scaling is hand led within the display manager. The applicat ion has control

over t he various scaling options from the user interface, where a funct ion is provided

for modifying the controll ing structure. Various parameters include the horizontal

scaling for the various types of gathers, the vertical scaling, the positioning of the

image. the met hod of scaling the data points , automatic gain control, and so on.

The user interface also controls the actual display of images. The ploLdata()

function signals the display manager that the image is complete, but the user interface

37

is still required to send a token to the display manager to signal that it should display

a particular image. The token consists of information indicating the source of the

image and the type of image. The user interface app lication is also provided with

a funct ion to determine whether the display manager is ready for the next token.

This function helps to prevent system lock-up in the event of an error or slowdown

somewhere in the system. While this system is a bit awkward and requires careful

bookkeeping of tokens and images, it does allow the user interface a deterministic

knowledge of the current state of the display.

While a movie is being displayed, the application is looping over mul t iple calls to

dralUjrace () and ploLdata (). In th is situat ion, the ploLdata (} funct ion will not return

control to the application until subsequent calls to draw_trace(} can be accepted

(there is limited buffer space-see next sect ion). In th is way the system will be

gracefully slowed when the production of images exceeds the rate of display. The

user can kill a movie-in-progress by sending a special token . This token kills messages

in transit, clears image buffers, and flags the application with a special return va.lue

from ploLdata (} . Upon sensing this return value, the movie application is expected

to termi nate and return to the calling function .

System Level Implementation

When a particular data set is initialized for the first t ime, the user interface process

inspects the trace information returned by datainit (} (see Section 2.5.1) and makes

an initial estimate of the appropriate scaling factors for the different plot types. This

task is done with t he expectation that the user will adjust the scal ing as needed. The

sys tem software saves the scale settings from one session to the next. By having the

38

initial scaling factors provided , the display manager can process the traces as they

arnve.

Each trace that arrives in the display manager via the draw_tmce() function is

scaled as specified by the user interface, and written to one of two image buffers main­

tained by the manager. (Other implementations may have more than two buffers ,

or only one.) When a call to ploLdata() is made, the image is marked for display

and subsequent calls to dmw_tmce() will write to the other buffer. Another call to

ploLdata () will not return until the first image has been displayed, transmitted, or

otherwise discarded.

As wi th the trace manager, we allowed the location of the processing functions

to be flexible to take into account the needs of different implementations. In this

implementation , the image buffers res ide on the computational nodes, and t he trace

scaling and plotting is done there. There are several reasons we made this choice.

First , as with the trace manager processing functions, the i860 nodes are substantially

faster than the TSOO-based graphics nodes. Second, there are more computational

nodes than graphics nodes , thus the computational load is distributed not only to

faster processors, but to more of t hem. Thirdly, si nce the image is an array of

single bytes, but the data is stored as four-byte floats, the transmission between

t he computational nodes and the graphics nodes is reduced by a factor of four .

Finally, space is limited on all nodes, but especially so on the graphics nodes, where

only 4 Mb of program memory is available. As it is, one of the incoming image

buffers must be stored in the inactive megabyte of video memory. If implemented

on the graphics nodes , the double buffering scheme described above would require

computat 1 onal
Processe s

I Images

I

UI
Ready?

39

Figure 2.4: A schematic representation of an instance of the display manager process.

a minimum of 8 Mb of memory (assuming a system with two graphics nodes and

eight computational nodes), plus space for the program and system software. On

the i860 nodes, however, the buffers only require 2 Mb of the 8 Mb available. In the

event that a computational process requires more memory than is availahle when it

is called , functions are provided for freeing the image buffers and reinitializing them.

Thus, an application can free the buffers, perform its computations, reinitialize the

buffers, and then plot the image.

I nstances of the display manager residing on the graphics nodes (Figure 2.4)

queue buffers to receive incomi ng images from the computational processes. When

the user interface sends a token specifying an image to be displayed, each instance

of the display manager decodes the token and takes appropriate action. The process

40

to which the specified image is transmitted waits (if necessary) for the message(s)

carrying the image to complete, then copies the image to video memory. The display

manager processes then synchronize and select the board(s) and buffer(s) to display.

In the case of an image that is the composite of images produced on multiple

computational nodes , the current implementation sends all of the image segments

to a single node, the display manager assembles them in video memory and the

image is displayed in the same manner as a single-source image. Meiko has not yet

produced software to switch between the "fullscreen" mode (in which a single node

is responsible for an enti re displayed image) and the "splitscreen" mode (in which

each of the graphics nodes contributes a horizontal strip of the image). When such

software does become available, the multiple-source images will be divided between

(among) t he display manager processes in the splitscreen mode.

Because of the issues of dividing images, synchronizing displays, coordinating the

efforts of the application, display manager, and user interface, etc., it would be much

simpler to implement a system with only a single display manager. A more powerful

graphics node (more communication bandwidth , more memory) would enable this

change. The ab ility to combine the functions of the display manager and the user

interface into a single process would ease the effort even more. Since the display

of images is the least technically demanding of the imaging tasks, we expect that

sufficient performance to allow this change should be available in some machines

soon.

Video memory in the graphics nodes is laid out such that sequential addresses

form horizontal scan lines on the moni tor. Seismic data t races are most naturally laid

41

out in memory on sequential addresses, but are displayed vertically, thus requiring

transposition before display. To avoid this extra effort, we have physically turned

the monitor on its side (90 degrees clockwise). In this way, left-to-right scanning of

memory results in top-ta-bottom scan lines-the desired effect . The only drawback

of this approach (besides an unknown effect on the monitor) is that the sense of left­

to-right is reversed (low memory add resses to the right, high ones to the left , when

the opposite would be .more natural). This problem is easily solved by reversing the

order of the traces as they are copied into video memory. Thus, for a lK by lK

image, one-thousand transfers of 1 Kb are needed to move the image, rather than

a single copy of 1 Mb. This process is still more efficient than transposing a 1 K by

I K matrix. Another advantage of this approach is that in splitscreen mode, which

divides the screen into horizontal strips, entire traces are sent to a given node, rather

than dividing the t races and sending a segment to each node. Dividing the traces

would be a much more complex and time-consuming way of producing an image,

though it would have the advantage of dividing the load more evenly in the case of

an image narrower than the full screen-width.

2.5.3 User Interface/Database

The user interface provides a means of interactively adjusting the seismic imaging

parameters, as well as the display and auxiliary parameters. In addition, the user

interface provides for control of the system and control over the display of images.

As usual, the principle means of accomplishing these tasks will be to provide opaque

applications interfaces. One interface takes the form of a simple database, which ,

besides providing the functionality described in the next section, also allows the state

42

I

~ Parameters I Database

~ t-----'t""t~ M..,an ... a ... g ... e.,r -'

User Interface

I
r

Database
Events

Computational Processes

Figure 2.5: The user interface/database.

of the processing to be saved at any time by writing out the database files.

Applications Interface

The user interface itself is left unspecified by the ISIS system software. The appli-

cation implementor is free to choose whatever means of control is desired. Thus,

the interface may be developed as a window-based graphical user interface utilizing

keyboard and mouse (as we have done), a simple ascii terminal, or an elaborate vi-

sualization system of some type. Regardless of the way the parameters are chosen,

modified, and represented internally, they are propagated to the system in only one

way: by entry into a parameter database.

The database manager (Figure 2.5) maintains a set of simple, keyed databases.

The application opens databases, through a supplied function, as needed , giving each

database a unique id , and is returned an opaque handle (much like a file descriptor)

for each. The handle is used as an argument to subsequent function calls involv-

43

mg that database. To store data, the application packs the parameters into byte

st reams and enters them into the appropriate database. The database manager then

propagates the data, by means of database events, to the computational processes.

The application-level computational processes are made sensitive to these database

events (Section 2.5.4). A change in a parameter, when entered in the database, will

t rigger the active imaging function if that function has registered an interest in the

database. A separate interface is provided for specifying the active function.

We chose to implement the user interface as an X- Windows application using the

XView toolkit. X was chosen for its portability and relative standardization. XView

was a more difficult choice since it is not the most widely accepted toolkit. XView

is, however, supported by Sun, giving us more recourse in the event of problems, and

the source is freely available, theoretically making it as portable as any of the other

toolkits. In addition, we had available a program called "Open Windows Developer 's

Guide" (where "Guide" stands for Graphical User Interface Design Editor). This

program simplified the process of creating and modifying the user interface by al­

lowing graphical editing of the windows and controls, and producing source code for

the resulting interface. Other programs of this type exist for other toolkits, but were

not available at this site. Finally, we preferred XView because it is well documented,

and is similar to Sun View programming, with which we were familiar.

System Level Implementation

The database manager is a simple database that stores data in buffers and indexes

them to unique, user-supplied integer keys. The unique feature of the database is

that, when compiled for the host process, it sends a copy of data stored in it to every

44

other process in the system. The system software in the receiving processes absorb

the database messages and enter them into a local copy of the database. Functions

are provided for opening and closing databases and inserting, appending, retrieving

and deleting entries.

Additional user interface functions are discussed in other sections. Most are

implemented as either direct message-passing functions (such as the image display

tokens discussed in Section 2.5.2) or they generate special database events (such as

the mechanism to set the active function , as discussed in the next section).

2.5.4 Computation/Notifier

The computational processes are the heart of the ISIS system. They respond to user

input , provide the seismic processing functions, and produce the images for t he user

to analyze.

Each instance of a computational process (Figure 2.6b) consists of a set of user­

defined, application-level functions, and a controlling function or "notifier." Fig­

ure 2.6a is a schematic representation of a typical user-defined function. The user

functions are called by the notifier when triggered by a specified database event, as

discussed in Section 2.5.3. When a function is called, it is provided with a list of

the id 's of the databases that have changed since the last call to that function. The

application function first retrieves from the databases any new parameters or other

needed parameters that did not persist between calls, decodes them, and takes any

appropriate action (such as entering the data structures into local storage) . Next ,

the process calls datarequest() to request the data necessary to carry out its task.

The process then loops over calls to getdata () and performs its computations. The

Trace
Manager

Database

- - -- ,..-
I
I
I _

•
I
I
I

•
Fetch Par ams

Request Data
Get Data

ComputaUon

Plo t Trace
End Image

User Funct Ion

a.

-
I
I
I
I
I

~

45

Di splay
Manager

User Interface

- - --
Funct I on
Events

- --
Database
Events

Not lfl er ...J Func 2

, :
,,~

ComputaUonal Process ~
b.

Figure 2.6: An instance of a computational processes: (a) a user-defined functi on;

(b) the controlling process with several user functions in place. The bold arrow

running from the notifier to the user function "Func 1" indicates the current ly active

function.

46

function may make multiple datarequest() calls if a composite image is being formed

and multiple gathers are needed. Calls to draw_trace() may be interleaved between

calls to datarequest{} or getdata{} or may all be made when the computations are

complete. Finally, ploLdata{} is called and the function returns to the calling process

or, alternately, begins the construction of another image. Appendix B contains an

example function illustrating the use of these functions.

The notifier (Figure 2.6b) is the main controlling function of the computational

process. Each user function is registered with the notifier through a call to regis­

ter-func{} . The arguments to register_func() are a pointer to the user function, a

unique function id number, and a list of the id numbers of the databases that, when

changed, cause the function to be called. The user interface specifies the active func­

tion t hrough a call to seLaclive_func(), the only argument is the function id number

of the desired function. (In the ISIS implementation , the database id 's and the

function id's are stored as enumerated types in a header file local.h common to the

user interface and the computational processes.) Only one function may be active

at any time, though t he user interface may specify that no function be active. After

registering all the user functions , the application calls node_main_loop() , which does

not return until the user interface terminates the system or an unrecoverable error

is encountered. Appendix B also contains a fragment of a main program illustrating

the use of these functions.

The notifier does little but wait for database events and other incoming messages.

When an event arrives, the notifier notes the id and turns the message over to the

database software for storage. The notifier then marks the database id on an internal

47

list of all the functions that have registered an interest in that id. ext, the notifier

checks the active function to see if it has registered an interest in the id. If it has

not , the notifier waits for the next event. If the function has registered an interest

in the database id, the notifier generates a list of id 's that have changed since the

last call to the active function, clears its internal list for that function, and then calls

the function . Each user function takes only two arguments: an array of integers (the

list of database id's) , and an integer (the number of entries in the list). When the

function returns, the notifier checks the return status, if non-zero, the notifier prints

an error message and exits, otherwise it again begins waiting for an event.

When the user interface calls seLactive_func() a function event is generated. The

notifier catches this event and resets its own internal notion of the active function

and then inspects that function's database list. If any of the function's selected

databases have changed since its last call, the function is called immediately, just

as if a database event had been received. Otherwise the notifier waits for the next

event.

Not all database events are directed toward user functions. Some database id's

are reserved for the system. When these events arrive, the notifier takes direct action

on them . For instance, the function events generated by seLactive-/unc() are simply

database events with a particular id reserved for that purpose. Another database id

is used only to signal the notifier that the user interface wants it to exit.

Some readers will note that this notification based style of programming is not

original. It is , in fact, very similar to the Sun View j XView model of programming- so

much so that some of the terminology is the same. This coincidence is not accidental,

48

the instant model was, indeed, inspired by that approach.

Through the use of the database manager we have solved a number of prob­

lems . First, it provides the obvious service of propagating the processing parameters

throughout the system. Second, the system software operates without any knowl­

edge of the contents of the database entries. The size and content of those entries is

enti rely under the control of t he application. The contents need be known only in

the user interface and the processing functions. These functions perform the pack­

ing and unpacking of the data, and are in a position to do so since they are both

user-defined. Thus, parameter data structures can be added, removed, and changed

without recompiling the system software. Third, the database manager/notifier sys­

tem provides the user with a means of controlling the behavior of the processes

without the user interface programmer ever having to resort to parallel program­

ming or explicit message passing. Another advantage is that data representation

issues may be handled at the same time the data is packed and unpacked. Meiko

supports Sun's XDR package and we chose to use XDR for this purpose. The XDR

package may not be as efficient as custom software and is a bit awkward to use, but

it is general purpose, supported by both vendors, and was available (thus cutting

our development time) .

Note that through the use of the trace manager, display manager, and database

manager , the parallelism of those parts of the machine are completely hidden from the

application. The only level of parallelism that the application programmer needs to

consider is that of the computation itself. To faci litate parallelization, each process

is supplied with the total number of computational processes, as well as its own

49

position within that total. Most seismic processing algorithms are relatively easy

to decompose by either data, or domain, or both. The trace manager provides

the mechanism to perform data decomposition, and the display manager provides a

means of assembling images from domain decomposed processing functions. To make

possible more complicated algorithms, generic functions are provided for sending and

receiving messages to and from computational processes and to and from the user

interface.

The database manager sends database events to all of the processes in the system,

not just the computational processes. This action is to allow for a uniform treatment

of parameters throughout the system. In this implementation, the trace manager

and the display manager simply discard any database events they receive. But in

other implementations those processes may need access to system parameters. For

instance, the graphics nodes may need access to the structures contruning the plot

scaling information , and the I/ O nodes may require access to the velocity model in

order to apply MO correction. In this implementation, however, those functions are

performed on the computational nodes , where the parameters are already available.

2.6 Current Status

We have implemented the system software, as described in the previous sections, as

well as a number of seismic processing functions to establish the prototype system.

As mentioned above, the user interface is implemented as a window-based graphical

interface that accepts keyboard and mouse input. We attempted to make the user

interface intuitive so that it would be easy to learn and use. Much of the basic

50

functionality described in Chapter 1 has been implemented. We can display movies

of shot , midpoint, and receiver gathers, edit traces and set mutes. We have also

established a means of performing interactive velocity analysis.

CM P stacking is performed in parallel by dividing the reconstruction line into

N segments (where N is the number of computational processors). Each processor,

i , selects the ith line segment, and stacks the CMP gathers within that segment.

While the software to perform interactive focusing is fully enabled, the machine's

performance is not yet high enough to make the process interactive on anything but

very small segments or small data sets. The addition of more nodes would facilitate

this functionality.

We have also implemented three migrations, all of the Kirchhoff summation type,

as described by Schneider [341 . We have implemented two varieties of post-stack

migration. The first, a simple Kirchhoff time migration, assumes straight rays, but

allows for lateral velocity variations. The second is again a Kirchhoff method, but is a

depth migration that allows for curved rays and lateral velocity variation by explicit

travel time computations. The travel times are calculated by a finite difference

solution to the Eikonal equation (see Vidale [38]). Amplitudes are scaled assuming

straight rays , however. The scaling is proportional to the cosine of the angle between

the vertical axis and a line connecting the image point and midpoint, and inversely

proportional to the distance between those points.

Segments of the stack, as we have mentioned, are divided among the nodes.

The post-stack migrations are designed to make use of pre-existing stacks. The

time migration divides the image plane among the nodes--each node works with

51

a segment of the image plane that corresponds to its segment of the stack. The

migration function calculates the contribution to the image of the local portion of the

stack, and then passes the image on to t he next-higher numbered node (the highest­

numbered node passes the image to the lowest-numbered) . The image segments

are passed around the loop until each process receives its original image back , at

which point the contribution of the entire stack has been added. At that point the

migration is done and the image is plotted.

The travel t ime migration uses a slightly different method of forming a composite

image from the distributed input. Each process maintains an entire image plane to

which it adds the contribution of its portion of the stack. When finished, the image

is divided into N segments (where N is the number of computational processes).

Each segment is transmitted to its corresponding node (i.e., the i lh segment is sent

to the ith node), the segment corresponding to the local node is kept. Each processor

receives N - 1 image segments from the other processes. These segments are summed

into the local segment and are then plotted.

We have also implemented a prestack Kirchhoff migration. This migration also

uses explicit travel time calculations and , again, assumes straight rays for scaling the

ampl itudes. The prestack migration is particularly efficient for parallel implementa­

tion; none of the significant computations are performed redundant ly.

To perform the pres tack migration, the output image plane is divided into N

vert ical strips, where N is the number of computat ional processes . The velocity

model is mapped onto the data plane (i.e., a plane formed by a line on the surface

long enough to encompass the source and receiver locations of all the data traces

52

used in the migration, and a depth equal to the depth of the image plane). For each

point in the image plane, the corresponding point in the velocity plane is treated as

a point source, and travel times are computed to the surface (i.e., to the positions of

the sources and receivers). The travel times corresponding to the source and receiver

positions of a given trace are summed, yielding the t ravel time from the seismic

source to the image point and then to the receiver. The value of the datum recorded

at t hat time in the trace is scaled and summed into the image plane at the current

ima.ge point . To avoid redundant travel time calcula.tions, we compute the travel

times once for each image point and store the travel time solutions corresponding

to the surface positions. Thus, we loop over each trace in the survey, and for each

trace we loop over each point in the image plane. Each processor must have access

to the entire data volume, but the process is compute bound, so there is no need to

attempt any optimizations in the trace manager.

Memory constraints , however, prevented us from being able to store surface travel

times for every point in the image plane. One solution would be to make multiple

passes through the data. Instead, we chose to compute travel times on a coarser

grid and interpolate to the values in-between. Note that this cuts down the num·

ber of passes through the data, but does not necessarily eliminate multiple passes

altogether. Tests showed that this implementation was accurate enough to correctly

migrate the data. The substantial savings in computer time from reducing the passes

through the data, reducing the size of the travel time computation, and reducing the

total number of travel time computations that needed to be performed was offset by

the expense of interpolating the travel times. The approximate time for a pres tack

53

migration of the Hosgri data (see Chapter 3) ranged from about six hours for a large

image, down to about 1.5 hours for the smaller ones.

J either of the post-stack migrations was fast enough to be interactive, requiring

5- 10 minutes to migrate a stack of the Hosgri data. As with the stacking, the

migrations are designed to be interactive if the performance of the hardware and

software can be upgraded sufficiently.

The funct ions mentioned above provide enough of a core processing system to

perform basic seismic imaging. In Chapter 3 we discuss the application of the system

to · a marine data set. This work allowed us to apply the system to a significant

geological problem, and to evaluate the imaging system.

2.7 Future Work

Considerable work remains to done on ISIS. From an applications point of view there

are an almost endless number of seismic processing functions that may be added to

a system such as th is, but there are a few basic ones that should be given special

consideration. (Some of these functions are discussed in more detail in Chapter 3.)

Making the system more usable as an end-to-end processing system would require

the addition of modules for interactive filtering (both frequency and F-K) and de­

convolution. Marine data often requires multiple suppression , and land data usually

requires statics corrections. Both of these functions would be present in a complete

system. In addition, more sophisticated velocity analysis would be helpful in some

situations. Finally, the current system works exclusively with NMO velocities, but it

would be useful to manipulate the velocity model in either NMO or interval velocity

54

fo rmat.

It is always desirable to have faster processing, especially on an interactive sys­

tem such as ISIS . Improving the algorithms and implementation could help in some

instances, but in general, faster performance must come from bet ter compilers or by

hand coding the most demanding functions. The i860 is sti ll young, as is its com­

piler technology; we are hopeful that significant performance advances can be made

without resorting to programming in assembly language.

Some portions of the ISIS system software also need improvement. A general

rewrite of some portions of the code to isolate system dependencies and improve

modulari ty and efficiency would be useful. We would also like to implement a bet­

ter system for error handling and recovery, as well as more user-friendly diagnostic

messages.

As mentioned in Sect ion 2.5.1, the performance of the trace manager could be

improved by a more intelligent data management scheme. Enhancements to the trace

manager have the potential to greatly improve the ability of t he system to support

tru ly interactive processes.

2.8 Conclusions

We have discussed each of the four main divisions of ISIS: the trace and display man­

agers, the computational processes, and t he user interface. One of the design goals of

each of the parts was to provide a simple interface that hides the parallel implementa­

tion from the applications programmer while still providing the performance offered

by the parallel hardware. The t race manager works in a concurrent , multi-process

55

multi-disk environment, but the application sees only sequential-looking functions.

The display manager provides another equally simple interface to an otherwise com­

plicated hardware system. The database manager allows for an interchangeable

front-end interface, as well as a simplified means of controlling the processing. The

notifier allows for easy addition of processing functions, and changes in parameters.

Chapter 3

Application

3.1 Introduction

The previous chapters have presented the concept and implementation of an inter­

active seismic imaging system. In this chapter we discuss the application of the

system to a particular data set; part of a reflection profile known as EDGE line

RU-3. The line was shot in 1986 by the EDGE continental margin consortium (see

Mooney [29]). The survey was conducted offshore central California (Figure 3.1) to

assess the tectonic history of the area. We selected a subset of line RU-3 that crosses

the controversial Hosgri fault zone. First we provide background information and

discuss the main issues surrounding the Hosgri fault. We then discuss the data and

processing history, followed by a discussion of our results and findings of both the

geological problem and of the imaging system.

3.2 Background

The Hosgri fault zone, located offshore cent ral California (Figure 3.1), though barely

56

3a·

35- 30'

35·

34- 30'

122·

+ + FOLD AXES
J>... THRUST F"'ULT

NOR L F ... ULT

F ... ULT

o 1 0 20 3fJ ." SfJ
SCALE IN K"

57

Figure :J.I: Map showing offshore central California. Shown are the Hosgri fa.ult zone

(HFZ). the Santa Lucia Bank fault (SLBF), and the EDGE seism ic lines (RU·2. 3.

5. 13). The bold line at the end of R -3 is the portion of the data analyzed here.

(.·\fl er \Ieltzer and Levander [27].)

58

recognized two decades ago, is the source of considerable controversy. The exact

nature of the fault, its deformational history, its Holocene activity, and its potential

for producing a large earthquake are the subjects of extended debate. The Hosgri

itself is approximately 150 km long, is offshore for its entire length, and is made up

of multiple anastamosing strands. Two principle schools of thought have developed

over the deformation associated with the Hosgri fault-those favoring primarily right­

lateral strike-slip, and those favoring an east-up thrust displacement.

Atwater [1] presented a model of the Cenozoic tectonic history of western North

America in which a mid-Tertiary trench existed off the California coast where the

Farallon plate was subducting under the North American plate. As the continent

overrode the spreading center between the Pacfic and Farallon plates, the Pacific and

.lorth American plates came into contact, about 21-29 m .y. b.p., and the San An­

dreas fault was formed to absorb the differential motion between the plates. Minster

and Jordan [28] derive a plate interaction model that suggests right-lateral defor­

mation west of the San Andreas is occurring at 6-25 mm/yr parallel to the fault

and 4-13 mm /yr crustal shortening orthogonal to the faul t. More recently, DeMets

et al. [6] revised the estimate of unaccounted-for relative motion between the Pacific

and North American plates to be approximately 5 mm/yr parallel and 7 mm/yr

perpendicular to the San Andreas fault . Thus, structures west of the San Andreas

fault, such as the Hosgri , may be absorbing strike-slip or compressional deformation,

or both.

Hoskins and Griffiths [21] were the first researchers known to have produced a

map showing the then unnamed "Hosgri" fault. While not discussed in the paper,

59

the fault appears on their cross section as a high-angle fault forming the eastern

boundary of the offshore Santa Maria basin, separating Tertiary sediments from

Franciscan rocks to the east . H. C. Wagner [39] named the fault the "Hosgri" after

Hoskins and Griffiths.

Wagner's work , and several other studies in the 1970's, were commissioned or

motivated by Pacific Gas and Electric Company (PG&E) in relation to the licensing

of the Diablo Canyon Nuclear Power Plant. The early findings of this work suggested

that the Hosgri was part of an extensional regime and had also facili tated some

unspecified amount of strike-slip displacement (PG&E [10]).

Early studies concluded that considerable strike-slip displacement has occurred

along the Hosgri. C. A. Hall [15,16] suggested that the Lompoc-Santa Maria basin

formed as a Tertiary pull-apart basin, beginning about 14 m.y. b.p., in the late

Miocene. Hall states that during approximately the last 5 m.y., the western (i.e. ,

offshore) part of t he basin has been displaced 80 to 95 km northwest along the Hosgri

fault . These figures give a displacement rate, on average, of about 16 mm/yr.

Hall [15] also argues that the San Simeon Fault to the north of the Hosgri (Fig­

ure 3.1) is part of the same system as the Hosgri . Similarly, Silver [36] argues that

t he displacement on the San Gregorio-Sur fault system to the north (Figure 3.2) is

likely continuous wi th the San Simeon-Hosgri fault zone, instead of heading inland

on the Palo Colorado fault south of Monterey, as had been previously suggested. The

San Gregorio fault is generally accepted to be a near-vertical right lateral strike-slip

fault (e.g. , Saleeby [33]).

Graham and Dickinson [13,141 also argue against the notion that the Palo Col-

o
I
o

.... ..
C',. -,. C'

Sur Fault

SOmi
I

I
100 km

60

o
C' ..

0>
?

Point Arguello --..-..

Santa Barbara Channel

Figure 3.2: r-lap showing the major fault systems of offshore central California. The

position of tire seismic profile is indicated. (After PG&E [1 01.)

61

orado fault is strike-slip , and also suggest that the San Gregorio and Hosgri form a

continuous system. They go on to argue for 115 km of Neogene right lateral displace­

ment on the San Gregorio- Hosgri system. Their studies indicate that displacement

on the combined system initiated in mid- to late-Miocene and continued for at least

2 million years. They also suggest that Holocene displacement, while detectable, is

mInor.

Other workers have also found significant displacement on the San Gregorio fault.

Weber and Lajoie [40] found from the study of offset geologic formations on two on­

shore segments, that the San Gregorio Fault has experienced approximately 6.3 to

13.0 mm/yr of right-lateral displacement over the last 200,000 years (with the total

motion accumulating on several fault strands) and some minimal amount of vertical

displacement as well. J. Clark et al. [3] working with similar methods on the Reyes

Peninsula, north of San Francisco, discerned about 150 km of right lateral slip on

the San Gregorio since late Miocene, continuing to the present day (approximately

12.5 mm/yr). Coppersmith and Griggs [4] find field evidence for late Pleistocene

and Holocene offset on the San Gregorio, as well a:s recent seismicity due to regional

right shear and compression. Their field investigations show no signs of recent fault

creep, however.

Using earthquake records, Gawthrop [11] found the entire area to be seismically

active and associated the seismicity with northwest trending faults (i.e., the San Gre­

gorio, San Simeon, and Hosgri) . He suggests that the system could be accumulating

strain at a rate of 16 mm/yr along its ent ire length . If this strai n is released by a

rupture spanning the entire length of the system , the combined system could yield an

62

earthquake wit h a magnitude of up to 8.0, and a repeat t ime of 250 years. Farther to

the south, on the San Simeon fault, Hanson et al. [19] find significant (3.9:J:t~ mm/yr)

right lateral slip during the late Pleistocene from San Simeon Point to Ragged Point

based on the study of marine terraces.

Much of the work on t he San Gregorio-San Simeon fault system is extrapolated to

include the Hosgri , since little geologic work can be direct ly performed on t hat fault.

Most of the studies cited above involves field relations to the north of the Hosgri ,

coupled with gravity and magnetic work, and some high-resolution seismic profiles.

A geological study on t he Hosgri itself, by Hamilton and Willingham [18] based on

st ratigraphic relationships and well data, implies a maximum of 10 to 20 km of right

lateral slip along t he Hosgri fault since the Miocene. It is impossible to thoroughly

assess this work since it appeared only as an abstract, however, it is difficult for

those who argue fo r greater amounts of slip to explain t he reason the Hosgri seems

to simply die out near Point Arguello (Figure 3.1). If Hamilton and Willingham 's

conclusions prove true, a great deal of earlier work will need to be reinterpreted.

Hamilton [17] also asserts that the San Gregorio-Hosgri system branches just

south of the Monterey Bay into inland-trending strike-slip and southward-trending

dip-slip components . While Hamil ton accepts that the San Gregorio fault itsel f

exhibits substantial Quaternary slip , he finds that south of Point San Luis the Hosgri

has essentially no seafloor expression and, t hough it continues, appears to exh ibi t

little sli p (a few mm/yr). North of Point San Luis the fault is marked by minor

scarps and sags on seismic profiles.

Up till now we have discussed the arguments for large-scale right-lateral displace-

63

ments on the San-Gregorio fault system and, implicitly, the Hosgri . As mentioned

earlier, however, this interpretation is by no means the only one. In the early to

mid-1980's many researchers argued that the Hosgri was a thrust or reverse fault

responding to the regional compressive stress. Much of this shift in opinion was due

to increased coverage of the fau lt zone by seismic reflection profiles.

Crouch et a!. [5} argue that the offshore faulting is dominated by thrust and

high· angle reverse faulting that flattens to become thrusts at depth. They point to

several lines of geologic evidence that , they argue, indicate that much of the faulting

associated with the San Gregorio-Hosgri system is thrust related and that the strike­

slip component is largely overstated. The central conclusion of their work is that

compression plays an important role in the development of the region-as much

as 30 to 70 km of shorten ing in the past 5.5 m.y. They suggest that there exists

it crustal detachment at approximately 12 km depth , on which the compression is

being transmitted across the region .

Based on the geology and tectonic setting, McCulloch [25} characterizes the struc­

tures in the offshore Santa Maria basin as extensional or t ranstensional with a com­

pressional overprint. He suggests that the Santa Maria basin formed through rapid

subsidence that was controlled by extensional wrenching in the Oligocene through

mid-Miocene. McCulloch argues that t his period was followed by compressional de­

format ion in the central and seaward portions of the basin in the Pliocene epoch or

later.

Namson and Davis [31} constructed geological cross sections across central Cali­

fornia. Their section shows the Hosgri as a major t hrust fault largely responsible for

64

the anticlinal deformation to the east, and the uplift of the Coast Ranges. The re­

gional stress field has components of both compression normal to, and shear parallel

to, the regional fault systems. Namson and Davis suggest that the thrust faulting

resulting from regional compression is largely detached from the right lateral strike­

slip faulting resulting from regional shear. This idea found considerable support in

the work of Zoback [42] and Mount and Suppe [30]. These studies of borehole break­

outs, in situ stress measurements, heat flow, focal mechanisms, etc. indicate that the

San Andreas fault is a low friction zone that effectively decouples the shear and com­

pressional forces of the Pacific/North American relative plate motion. These studies

find that the shear stress is on the order of 10 to 20 MPa, the deviatoric stress is on

the order of 100 MPa. This evidence tends to refute the idea of wrench tectonics, at

least along the San Andreas and perhaps along the Hosgri fault as well.

As does Crouch [5], Namson and Davis [31] suggest a regional detachment surface

at 10 to 12 km depth. This suggestion finds support in deep seismic reflection work .

Ewing and Talwani [9] infer subducted oceanic crust at about 6 seconds depth under

much of the region from the continental slope to the Santa Maria basin. Meltzer

and Levander [27] discuss similar findings, and suggest that the top of the subducted

crust may form the mid-crustal detachment.

Later reflection studies of the Hosgri fault zone have also found a significant

thrust component on the Hosgri . McIntosh and others [26], using data from EDGE

line RU-3, suggest initial normal or strike-slip faulting, followed by thrusting. In

various locations in the Santa Maria basin they see compressional features formed in

the last 3-5 m.y. on earlier extensional faults . Unlike McCulloch [25], McIntosh et al.

65

find that the Hosgri was originally an extensional or transform fault. They suggest

that the fault has been subsequently reactivated as a thrust or reverse fault-a

displacement pattern that they argue continues to the current day. McIntosh et a1.

see both high- and low-angle fault strands, but are unable to determine which strand

cuts the other.

Uti li zing a subset of the same reflection data used by McIntosh et al. [26],

Louie [23] studied diffraction hyperbolas and performed prestack migration to image

fault plane reflectors in the Hosgri fault zone. He estimated that these reflectors must

have a dip of 300 - 500 E. He also finds that sedimentary reflectors truncate at the

location of the imaged fault plane, and argues that thrust controlled the deposition

of the basin sediments.

Other studies, however, have cast senous doubt on the notion of substantial

thrust having occurred on the Hosgri fault. D. Clark and others [2] using methods

similar to those of Namson and Davis [31,32], argue that the Queenie structure in the

cent ral offshore Santa Maria Basin formed during a brief period of NE-SW directed

shortening between 3 and 5 Ma (at the time of the onset of Pacific-North American

plate compression). Since that time, however, they argue that t he shortening has

stopped or slowed to no more than 0.005 mm/year. Based on the seismicity, the small

amount of folding east or west of the Queenie structure, and their interpretation of

the Queenie as a fault-bend fold, they see little evidence for significant shortening

along a th rust or detachment fault beneath the Queenie structure.

Meltzer and Levander [27] using reflection data from EDGE line RU-13 to the

north of line RU-3 (Figure 3.1), infer that the Santa Maria Basin exhibits two periods

66

of Neogene deformation, an early extensional/strike-slip phase in mid-Miocene, and

an upper Miocene-lower Pliocene compressional phase. They do not detect deforma­

tion of the upper two (Pliocene) units, and they observe only 1-3 km of shortening

of Neogene sediments, thus any significant shortening due to Pacific-North American

plate motion extends east of the basin and is distributed across the entire continental

margin. This assertion is supported by the work of Namson and Davis [31] who find

active compressional folds both west and east of the San Andreas fault.

Later work by amson and Davis [32] reverses their earlier paper's contention

that the Hosgri plays a major role in the tectonics of the area [31]. The later work

still places the Hosgri at the western edge of the Point San Luis Anticline but they

see little recent slip on the fault itself, and argue that the ant icline has far more

structural relief than can be attributed to the measurable displacement on the Hosgri.

They agree with other workers that the Hosgri was a high-angle fault responsible for

~1iocene and Pliocene sedimentary thickening on the down thrown block. Later, they

suggest , the growth of the Point San Luis Anticline deformed the fault from steep­

west to steep-east dip. The fault has since experienced minor reactivation as a reverse

fault , probably due to stress from the formation of the Point San Luis Anticline.

A re-examination of the paper by Crouch et al. [5] also leads one away from

the conclusion of significant thrust on the Hosgri. While the majority of the data

used are not presented, Crouch et al. 's "interpretive line drawings" do not show a

significant amount of thrust on the Hosgri-certainly not enough to make a significant

contr ibution to the 30 to 70 km of shortening across the margin, for which they argue.

There is also no evidence of active thrusting in any of their figures. (Crouch et al.

67

suggest that the faulting ceased by mjd- to late-Pliocene.)

Snyder [37] suggests that the low-angle throughgoing faults of Crouch et al. may

instead be local ramp structures in the Monterey formation in which a rigid layer

breaks and thrusts over itself while the overlying ductile layers fold. Folds of this

type have been observed in the field. This explanation would seem to agree with

the small amount of thrust seen on the Crouch profiles, and refute the notion of

throughgoing thrust faults.

Pacific Gas and Electric Company [10] reviewed virtually all of the available

literature, as well as commissioned several studies and purchased proprietary data

on the area, in conjunction with the licensing of the Diablo Canyon Power Plant.

The result of this extensive investigation was the conclusion that the northern three­

fifths of the Hosgri fault is characterized by late Quaternary right-lateral strike-slip of

approximately 1- 3 mm/yr. The slip decreases to the south, possibly becoming zero

sou th of Point Sal. They do not observe any evidence for late Quaternary activity

on any low-angle thrust faults.

We are t hus left with a difficult set of seemingly conflicting results : 1) Studies have

shown substant ial amounts of late Cenozoic slip on the San Gregorio and San Simeon

faults, 2) these faults have been argued to be continuous with the Hosgri, 3) the

Hosgri itself shows little evidence of major recent strike-slip deformation, 4) the

Hosgri seems to die out to the south, suggesting that the slip is non-uniform, 5) the

Hosgri does not show any significant recent thrust component.

Hornafius [20], and Luyendyk and Hornafius [24] provide a means of reconciling

many of the apparent discrepancies in the data, however. Based on paleomagnetic

68

and stratigraphic studies, they propose a clockwise rotation of the Santa Ynez Moun­

tain Range (Figure 3.3) of 950 ± 90 in two stages during the Late Miocene/early

Pliocene and again in the Plio-Pleistocene. This rotation resulted in shear along a

series of parallel NW-SE trending faults. The initial rotation resulted in the open­

ing of the onshore and offshore Santa Maria basins as well as strike-slip motion on

the Hosgri. The second rotation resulted in strike-slip displacement of the offshore

basin to the north as well as NE-SW directed compression within the onshore basin.

Because the second rotation was about a different pole than the first, the resultant

compression in t he onshore Santa Maria Basin resulted in lesser slip on the southern

portion of the Hosgri than on the northern. The total slip on the Hosgri from both

episodes was a maximum of 140 km, which fits well with other estimates of slip.

The seismicity of the area lends support to this model. Eaton [8J determined

focal mechanisms for several moderate (-M5.0) earthquakes along the coast of cen­

tral California (Figure 3.4. The focal mechanisms progress from left lateral reverse

oblique slip to the south (near Santa Barbara and in the onshore Santa Maria basin) ,

to simple reverse near Point Sal, to right lateral reverse oblique near San Simeon, to

right lateral in the north (near Pinion Head and Point Sur). The Point Sal earth­

quake occurred offshore, but to the east of the Hosgri. Both of the fault planes of the

Point Sal solution intersect the Hosgri fault at an angle. They are a much closer fit ,

however, to either the Lion 's Head Fault or the Orcutt Frontal Fault, both of which

splay off the Hosgri and head inland in the area of the quake (see Figure 3.3).

Namson and Davis [321 argue for significant shortening across the continental

margin . Through the use of balanced cross sections they find 6.7-13.4 mm/yr con-

Poml

35"N

34"N

69

Pom! A/Qu eU e

t
o 10 20 30 40 ~ km
L: =+

121"W 120"W

... SB

Figure 3.3: Map of west-central California. The onshore Santa Maria basin is the

cross-hatched, nearly-triangular region in the center of the figure. Cities shown

include Santa Barbara (SB), Santa Maria (SM) , San Luis Obispo (SLO) , and Cuyam~

(C) . (After Hornafius [20J.)

POINT SUR ~
1140123 M 5.2 'lQ

~

PINON PEAK 'e,
830721 M 3.9 ~

SAN SIMEON
830829 M5.4

1

70

I n
?lONE I4°SE

~'*

N SANTA MARIA
820923 M 4 .0

SANTA BARBARA
780813 M 5.9

341°NE)"-- -l... 57°SW

56°NE
~ X 42°SW

C!.O~
LOS ANGE LES

~

Figure 3.4: Map showing earthquake focal mechanisms for selected earthquakes in

west ·central California. (From Eaton [8].)

71

vergence in the entire region since 2-4 Ma, with 1.8-3.6 mm/yr divided among the

offshore structures. Their section suggests a total of 7.2 km of slip transferred to

the offshore Santa Maria basin and continental margin to form convergent structures

there. Their section stops in the central Santa Maria Basin, however, so it is difficult

to assess whether or not the structures there show sufficient convergence to account

for the slip. As mentioned above, Clarke et al. [2] and Meltzer and Levander [27]

suggest not.

If the Hornafius/Luyendyk [20,24] model is correct, it conflicts with on the total

shortening calculated by amson and Davis [31,32]. Their balanced cross sections

assume that the deformation is primarily compressional and extensional, and that

there is little out-of-plane st rike-slip deformation . Though they are not convinced of

the validity of significant post-Miocene strike-slip on faults in the area, it is unknown

if they could adjust their model to account for such displacements.

It may not be necessary to postulate significant offshore shortening, however. The

total San Andreas fault-normal shortening due to the relative motion of the Pacific

and North American plates predicted by De lets and others [6] is approximately

7 mm/ yr. Namson and Davis (1990) find 6.7-13 .4 mm/yr of convergence west of the

San Andreas , while in the earlier paper (amson and Davis 1988) they discuss an

actively developing fold and thrust belt east of the San Andreas that is accumulating

late-Cenezoic shortening at a rate of about 2.75 mm/yr. Thus, even their lower bound

on velocity west of the San Andreas may be overstated, and could be reduced by

t he entire 1.8 to 3.6 mm/yr that they transfer offshore. It is thus possible, and even

likely that the offshore region is characterized by compressional stress, but that stress

72

does not result in significant deformation. Because the rotation of the Santa Ynez

Range may be continuing, we can expect some minor deformation in the region of

the Hosgri fau lt. That deformation may take the form of right lateral strike-slip,

thrust or reverse faul ting, or a combination of the two.

There is some evidence for minor recent deformation on the fault. Both Wag­

ner's [391 and PG&E's [101 seismic profiles show some apparent fault scarps on the

ocean Aoor in the areas to the north of Point San Luis. South of that area, there is

little apparent seaAoor relief at the mapped t race of the faul t.

There remains , t hen , considerable debate as to the exact nature of the Hosgri

faul t, its extent, and its potential for significant seismicity. We elected to reprocess a

portion of the seismic data in order to image the near-fault st ructure, wi th the hope

of characterizing the fault and understanding its history.

3.3 Processing History

As mentioned above, the data were acquired as part of the EDGE consortium 's con­

tinental margin program . This study uses the easternmost 182 shots of EDGE line

RU-3 (Figure 3.1). The acquisition equipment consisted of a 180 channel hydrophone

array, with group spaci ng of 25 m, and a maximum offset of approx imately 4700 m.

T he source was an air gun array fi red at 50 m intervals (y ielding 12.5 m midpoint

spacing and 45-fold gathers). Sixteen seconds of data were recorded at a 4 ms sample

rate. Little energy was apparent beyond approximately 40-45 Hz , we therefore band­

pass filtered the data with a 6-50 Hz filter and then resampled at 8 ms. Since the

purpose of this investigation was to study upper crustal structure, we only preserved

73

the first six seconds of data.

The survey extends only about 2.5 km east of the mapped trace of the Hosgri

fault , due to the encroachment of state waters. Because of this geometry, the eMP

gathers begin to roll out at approximately the fault location, and the far-offset traces

become unavailable. As will be discussed repeatedly below, the lack of far-offset

traces diminishes the effectiveness of a number of seismic processing techniques.

Additional coverage might greatly improve the results.

3.3.1 Preprocessing

Because the ISIS system does not yet have F-K filtering, multiple suppression, or

deconvolution modules, some preprocessing was performed on the data in a non­

interactive manner. Our usual approach was to load the data onto ISIS, perform

several processing steps to determine the necessary preprocessing, and then perform

those tasks in a standard manner. We were able to keep multiple data sets on disk in

the ISIS system, which enabled us to compare the results of the various processing

steps with each other and with the raw data. This "manual" (i.e., non-interactive)

processing gave us an added appreciation for the advantages of interactive processing.

Early stacks of the data showed two significant problems. A considerable amount

of low-velocity, linear coherent noise contaminated the section, especially on the

east end of the line (Figure 3.5). The other problem was a number of significant

water-bottom multiples (Figure 3.6).

74

sw
o

11.1 km NE

6

Figure 3.5: A CMP stack of the raw Hosgri data. Note the linear coherent noise

(A), and the steeply dipping energy late in the section (8) . Automatic gain control

(AGC) has been applied to bring out the faint details.

()
Q)
(/)

Q)

E
i=

75

5.6 km NE

Figure 3.6: Detail of the Hosgri CMP stack (Figure 3.5) . This figure is enlarged by a

factor of two over Figure 3.5. Note the primary reflections (P), and their associated

water-bottom multiples (M). Automatic gain control (AGC) has been applied to

bring out the faint details .

P
M
M

M

76

Coherent Noise

The coherent noise seen in Figure 3.5 is a common feature of marine seismic profiles

(see, e.g., Lamer et al. [22]) . This noise is generally the result of side-scattered energy

from the water bottom or sub-bottom. The most effective means of dealing with it

is to apply an F-K filter to the shot and/or receiver gathers in order to remove the

noise prior to other proces!ling. This approach not only improves the appearance of

the stack, but also aids the velocity analysis by removing spurious hyperbolic arrivals

in the CMP gathers.

While the noise does not seem to seriously impair our ability to interpret the stack ,

it appears strong enough at the east end of the survey to affect the velocity analysis,

and the noise could contaminate post-stack migrations. We therefore applied F-K

filtering to the shot gathers in an attempt to suppress the noise. We tested a variety

of filter settings before choosing a set to apply to the entire data volume.

The F-K filtering was reasonably successful in removing the coherent noise from

much of t he stack (Figure 3.7) , however, the midpoint gathers east of the faulf were

st ill seriously contaminated by low-velocity, hyperbolic arrivals. These arrivals may

be low incident-angle diffractions from the vicinity of the fault and diffractions from a

rough, sub-seafloor reflector (discussed later). Because of their low apparent velocity,

the multiple suppression techniques discussed in the next section had some influence

in eli minating these arrivals but , as with the multiples , this effort is undercut by

the lack of far-offset traces. The F-K filtering, while effective, did not expose any

previously-hidden reflectors or structure.

u
Q)
en
Q)

E
t=

o

6

77

sw 11.16 km NE

Figure 3.7: A CMP stack of the filtered , multiple-suppressed Hosgri data. AGC has

been a.pplied to bring out faint details.

78

Multiples

Several methods of suppressing multiples exist (e.g., Yilmaz [411, Chapter 8), al­

though none is entirely satisfactory. Most methods rely on the distinction between

the apparent velocity of the multiples versus the primaries. These methods tend

to use the differential moveout between primaries and multiples for suppressing the

multip les , a process that is dependent on the availability of far-offset traces, since

the differential moveout on the near-offset traces is minimal. In fact , offset itself can

be an effective means of multiple suppression. As was mentioned above, the lack of

far-offset traces undercut the effectiveness of the multiple suppression on the eastern

end of the survey, and the multiples remain strong in that region. Another problem

with the moveout approach is that the velocity distinction between water and the

first layers of the sedimentary column is only about 200 to 300 mis, not enough for

reliable differentiation. This problem was exacerbated by the shallow water which

resulted in closely spaced, and early-arriving multiples. The result was that the

primaries were also largely attenuated by the multiple-suppression process.

A time-domain multiple suppression method in which NMO correction is applied

to CMP gathers at the multiple velocity, followed by stacking, subtraction of the

stacked trace from the traces in the gather, and inverse NMO, failed to yield accept­

able results. An F-K method, in which the CMP gathers are NMO corrected at a

velocity between the primary and multiple velocity and then F-K filtered to remove

the negative-dipping energy (the multiples) was somewhat more effective, but still

removed much of the primary energy in the near-surface reflections (Figure 3.7).

We also applied predictive deconvolution with a variety of parameter selections in

79

an attempt to suppress multiples and remove the Source characteristics. This process

had little positive effect and was omitted from later processing.

Another attempt to suppress multiples through the use of near-offset mutes was

fairly effective, but degraded other portions of the image to an extent that the tech­

nique was also abandoned. A weighted near-offset mute might be more successful ,

but was not attempted.

Despite our relative lack of success in eliminating the multiples while preserving

primaries, the situation is not particularly grave. One often feels more secure working

with data in as near an unaltered state as is possible. In this way, one can avoid

introducing numerical artifacts and, once the problem areas have been identified ,

can keep them in mind when interpreting the section. We therefore tended to use

the unfiltered data for most of our interpretations, resorting to the filtered multiple­

suppressed data only as necessary.

3.3.2 Mutes and Trace Editing

!Jutes provide a means of editing undesirable energy from seismic traces in the

t ime-offset domain of the individual gathers. The interactive system allowed us to

experiment with the mute settings extensively. We ultimately settled on a simple two­

mute strategy for first removing the direct arrival and all prior arrivals, and second ,

removing the surface wave-train. The surface waves are only a minor problem in the

western portion of the survey (Figure 3.8), but in the east, a substantial wave-train

developed (Figure 3.9) that required suppression. The surface waves developed due

to a slight increase in the near-surface velocity on the east side of the Hosgri fault.

We also interactively edited the data, removing a bad shot, several t races with

· --,

80

Shot Gather 12
Offset

s
E-t

Figure 3.8: A shot gather from the western end of the survey line.

81

Shot Gather 180
Offset

e
E-<

Figure 3.9: A shot gather from the eastern end of the survey line.

82

large spikes, and one channel on every shot that was either polarity reversed, mis­

timed, or otherwise malfunctioning.

3.3.3 Velocity Analysis, Stacking, and Migration

The velocity analysis is perhaps the most important task of the seismic analyst. The

velocity model directly affects the resolution of stacks and the focus of migrations,

as well as the placement of structures by the migration. Correct sub-surface velocity

est imation can bring out subtle structures and fine detail , just as incorrect velocity

estimates can obscure true structure and even produce deceptive, unreal structure.

If our interpretation of a section is to be accurate, we must first image the structure

and properly locate the structure within the section.

We performed interactive velocity analysis, using both interactive parameter

select ion and NMO-corrected midpoint gather movies, as described in Chapter I.

While the performance of the current system does not reach a level sufficient to al­

low interactive focusing , we were able to analyze a wide variety of velocity models by

stacking and migration. A stack of the entire line took approximately 1.5 minutes- a

time short enough to allow us to repeat the process literally hundreds of times. We

also performed dozens of migrations, both post- and prestack.

The lack of far offsets hampered the velocity analysis in the area to the east

of the fault. Further hampering the analysis were a large number of diffractions

in the CMP gathers from that area (Figure 3.10, compare to Figure 3.11). These

di ffractions could not be completely removed by filtering. In addition, the bedding

in the eastern segment was weak, irregular , and steeply dipping. Therefore there was

little coherent energy to work with once the filtering was performed. These factors

83

Midpoint Gather 899
Offset

30

~ ~ ~ ~i;';

~
~

~

• II ~ II ~ r
~,
)-

~'~:l'l ~~

~
~

s
E-t

tml~. Ii
~

:~~ ~

-
f.ru}

~

~m m ~

~
r~

:m
~

~ ~m ~

Figure 3.10: A CMP gather from the eastern end of the survey line. AGC has been

applied to enhance the later arrivals.

84

Midpoint Gather 552
Offset ..

); tt!:' t):

;<

~n
k-

:Hi, ~

~ ~:

fm i--

~
~
~

I
~

it ~

(
~ ~

-

:c

,~ J
IR ')0' ""

~ .
) . :~~ '~ ...

'L. :~~
;r

Figure 3,11: A CM P gather from the western end of the survey line. AGC has been

applied to enhance the later arrivals,

85

combined to make the velocity analysis difficult using conventional (NMO) methods.

A wide range of velocity models all appeared satisfactory for stacking. We tried

models varying from nearly laterally homogeneous to ones with high velocities east

of the fault , some had steep gradients, others varied smoothly. The resulting stacks

differed only in small details.

While the stacks were stable even when subjected to-relatively large variations

In the velocity, the migrations, as expected, were quite sensitive to the velocity

model. As discussed in Chapter 2, we implemented th ree methods of migration. The

simplest, a post-stack Kirchhoff time migration allowed for minor lateral velocity

variations, but not to the extent required by some of the models we tested. In those

cases, the time migration created severe artifacts that prevented proper interpreta­

tion. The other post-stack migration allowed for major lateral velocity variations,

and was fairly effective but, because it was post-stack, could not properly handle

the steep dips encountered in the section (this problem has more to do with the as­

sumptions of stacking than with a failure of the migration). The prestack Kirchhoff

migration was needed to handle the lateral velocity variations and dipping structures

that we encountered.

Because of the substantial computing power of our imaging system, the migra­

tions could be done relatively quickly (~5-10 minutes for post-stack migration),

allowing us to do a large number of iterations with various velocity models. By

repeatedly migrating with different velocities , we were able to hone in on the most

promising models, and then perform the slower, more accurate prestack migration.

Here, interactive migration, if available, would have greatly simplified and speeded

86

the process.

Surprisingly, the models with high velocities to the east of the fault were seriously

over- migrated. Those with lower velocities at depth and in the eastern area provided

the best images. Other studies (e.g. , [26,23,10]) have used considerably higher veloc­

ities in the area to t he east of the Hosgri. These studies may have been led astray,

as we were, by t he NMO analysis. The basement rock to the east of the survey may

display low seismic velocities due to fracturing, anisotropic effects, or both.

The ini tial high-velocity models we used in the migrations showed classic over­

migration artifacts: heavy, upturned, semicircular arcs cutt ing through bedding (Fig­

ure 3.12) . As those artifacts disappeared with the development of slower models, we

detected more subtle artifacts such as minor arcs and mis-t ied diffractions (Fig­

ure 3.14) . Cont inued lowering of the velocities improved the continuity of near-faul t

structures and bedding (Figure 3.16). Further adjustments to the velocity model

yielded better detail in parts of the image (Figure 3.18) and undermigrated areas in

others (Figure 3.20). We made no attempt to develop a single ideal velocity model,

however, because of the enormous time needed to develop an internally consistent

model. We ch.ose instead to develop a model of sufficient accuracy to give a good

overall image, while noting the details of other images. Again , a fully interactive

system would have been a great advantage throughout this process.

In Chapter 1 we discussed the advantages of an interactive system for the inter­

preter. During the migration velocity analysis , discussed above, we were able to get a

strong feel for the robustness of the imaged structures. The geological interpretations

we make here are the result of studying many images, not just the ones displayed.

87

sw
o

5.6 km NE

E
.Y:
-

£ -Cl.
Q)

o

5.63

Figure 3.12: An example of a grossly over-migrated image from a post-stack migra-

tion . AGe has been applied to bring out the faint details. The velocity model for

this migration is shown in Figure 3.13.

88

0 0

u '~i <!)
(f) :ji::.

E -- :t< E :x:. :x:.
.c

>- -- a.
·0 <!)
0 0
<!)

>

" ')7 5

Figure 3.13: The velocity model used by the migration shown in Figure 3.12.

Some of the features are subtle, and even arguable, but we are more confident of our

interpretation because we have imaged them over a wide range of velocity models.

3.4 Conclusions: Geological

The most important feature in the seismic profile is the several-stranded, nearly-

vertical fault running from the near-surface to about 3 sec on the stacked section

(Figures 3.22 and 3.5) . The fault can be detected by the numerous truncated beds,

changes in slope of beds, diffractions, and by a general change in the character of the

reRection energy from one side to the other. Figures 3.6, 3.23, 3.24, and 3.25 show

more detail of the stack. The prestack migrations show detai l and depth-corrected

structure that is not available in the stacks (Figures 3.18, 3.26, 3.27, 3.28) . It is not

clear whether the imaged fault breaks the surface, since there is no apparent faul t

scarp on the seaRoor. The bathymetry indicates that the seafloor depth is relatively

constant along strike, we would therefore not expect to find a significant scarp if

89

sw
o

5.6 km NE

E
~

.c
a.
Q)

o

5

Figure 3.14: An example of a mildly over· migrated image from a prestack migration.

AGe has been applied to bring out the faint detai ls. The velocity model for this

migration is shown in Figure 3.15.

90

Figure 3.15: The velocity model used by the migration shown in Figure 3.14.

the fault were strike-slip. The reflector just below the seafloor is truncated, however

(Figure 3.24). We can therefore infer that there has been relatively recent activity on

the fault. Based on the dip and the lack of a scarp, the fault is very likely strike-slip.

The amount of slip on the faul t cannot be estimated, but is probably not large since

some of the upper beds appear to be nearly continuous, only changing dip at the

fault.

There is little evidence, on the other hand, for any recent thrust or reverse fau[t-

ing. Working with the same sect ion of the same line, Mclntosh et al. [26J indicate the

antiform just west of the fault trace and state "Here, all stratigraphic units, including

the most recent, thin onto the st ructure and are uplifted and tilted as well." A close

inspect ion of Figures 3.6 and 3.18 shows that the beds lapping onto the deformed

beds appear undisturbed. The overlying beds are also undisturbed, as is the sea

floor. While compressional deformation was obviously part of the formation of the

basin, it does not appear that the major folds seen in our images are active.

91

sw
o

5.6 km NE

E
~

.c
li
Q)

o

Figure 3.1 6: An example of a very slight ly over-migrated image from a prestack

migration (note the slight upturned arcs on the dipping beds in the upper center of

the image). AGe has been applied to bring out the faint details. The velocity model

fo r this migration is shown in Figure 3.17.

92

0 0

U '::;; (lJ

&: ~ E E ,
~

~
.r:::

>- -- a. 'u (lJ
0 Cl
(lJ

>
3.56 5

Figure 3.17: T he velocity model used by the migration shown in Figure 3.16.

There does appear, however, to be evidence for a thrust fault in the section

(Figures 3.26 and 3.18) as well as the vertical fault . The thrust fault we observe

is oriented in much the same way that Louie [23J describes it . It-appears that the

vertical fault truncates the thrust fault, however. It may therefore be a fossil thrust,

or one with only episodic or intermjttent deformation. The undeformed overlying

beds seem to confirm this belief.

A series of short, dipping, truncated beds just to the east of the fault (Figure 3.26)

have much the same dip and character as those just below the thrust described above.

It is possible that they are beds from the same structure, with the higher beds being

brought into the image (i n a three-dimensional sense) by the strike-slip fault. If the

truncation was caused by thrust faulting, the orientation of the fault plane would

tend to indicate generally east-west compression, rather than the northeast-southwest

compression that is believed to dominate the area.

The strong, steeply-dipping energy labeled "8 " in Figure 3.5 is not the result of

E
""" .r: -

sw
o

93

5.6 km NE

Cl.
Q)

o

5

Figure 3.18: An example of a well migrated image from a prestack migration. Note

that t he artifacts on the right edge and at depth are the result of edge effects of the

migration. AGe has been applied to bring out the faint details. The velocity model

for this migration is shown in Figure 3.19.

94

0 0

u
Q)

;;: en
E -E .><:

.><:
.c

>- .-.- a.
' (3 Q)
0 0
Q)

>
3.31 5

Figure 3.19: The velocity model used' by the migration shown in Figure 3.18.

geologic beds in that position. It is, rather , a reflection traveling at approximately the

water veloci ty in a nearly-horizontal direction from a fault or other three-dimensional

structure.

In Figures 3.6 and 3.18 we can clearly see that the first sub-seafloor reflector east

of the fault is extremely rough and uneven, while the seafloor to the west is flat and

even. It is very likely that the three-dimensional scattering from this rough reflector

is the cause of the large number of low-velocity arrivals in the eastern midpoints

(Figure 3.10), and the linear coherent noise discussed above. It is also very likely

that t his reflector caused the general degradation of the data quality east of the fault .

The cause of the roughness is not known . It may be the result of fracturing of the

rock related to the formation of the adjacent San Luis anticl ine, which would also

explain the lower-than-expected seismic velocities. Another possibility is t hat the

reRector was at one t ime above sea level, and the roughness is the result of erosion.

It appears , t hen, that the Hosgri fault in the area of EDGE line RU-3 is a near-

E
~

.c

sw
o

95

2.75 km NE

a.
Q)

o

2.75 · .

Figure 3.20: An example of a slightly under·mjgrated image from a prestack migra·

tion. This image is shown at twice the magnification of the earlier migratjons. No

AGe was applied in order to emphasize the uncollapsed diffractions (A) and the

break·up of the dipping beds (8) . The velocity model for this migration is shown in

Figure 3.21.

96

o 0

()
Q) :~t
~ :.:-:

E t ~
~

.r::
>- -- a. "[5 Q)
o 0
Q)

>
3.43 5

Figure 3.21: The velocity model used by the migration shown in Figure 3.20.

vertical fault that shows recent , if not current , deformation. The style of deformation

is probably strike-slip. There are also structures t hat indicate significant compres-

sional stress and thrust or reverse faulting, but these do not appear to have been

active for some time.

3.5 Conclusions: Processing

One of the goals of working with the Hosgri data was to test and evaluate the inter-

act ive imaging system. More important than the actual performance of the hardware

and software, which was adequate , was the evaluation of the concepts presented in

Chapter 1. Explicitly stated: Does interactive imaging provide significant advan-

tages over conventional methods? Our work on the Hosgri and other data sets has

convinced us that the answer is unquestionably "yes ." Throughout the processing

sequence we were impressed by the advantages of the interactive system, and were

made acu tely aware of the drawbacks of conventional methods of processing when

u
Q)
en
Q)

E
, f=

sw
o

97

11.1 km NE

6

Figure 3,22: An interpreted CMP stack of the raw Hosgri data, Figure 3,5 is an

uninterpreted version of this figure, AGC has been applied to bring out faint details.

u
Q)
en
Q)

E
i=

98
5.6 km NE

Figure 3.23: Detail of the Hosgri CMP stack (Figure 3.5) with interpretation. This

image is enlarged hy a factor of two over Figure 3.5. Figure 3.6 is an uninterpreted

version of this figure. AGC has been applied to bring out faint details.

P
M
M
M

sw
o

u
Q)
en
Q)

E
i=

1.76

99

2.75 km NE

Figure 3.24: Detail of the Hosgri CMP stack (Figure 3.5). This image is enlarged by

a factor of four over Figure 3.5. AGC has been applied to bring out faint details.

u
OJ
<Jl

OJ
E
f=

sw
o

100

2.75 km NE

1.76

Figure 3.25: Detail of the Hosgri CMP stack with interpretation. This image is

enlarged by a factor of four over Figure 3.5. Figure 3.24 is an uninterp reted version

of this figure. AGC has been applied to bring out faint details.

101

sw
o

5.6 km NE

E
~

-.r:: -Q.
Q)

o

5

Figure 3.26: An example of a well migrated image from a prestack migration, with

interpretation added. Figure 3.18 is an uninterpreted version of this figure. AGe

has been applied to bring out the faint detai ls. The velocity model for this migration

is shown in Figure 3.19.

E
.Y

~

sw
o

a.
(])

o

102

2.75 km NE

2.75 .

Figure 3.27: Detail from Figure 3.18. This image is enlarged by a factor of two over

Figure 3.18. AGe has been applied to bring out the faint details . The velocity model

for this migration is shown in Figure 3.19.

103

sw
o

2.75 km NE

E
.;.::
-.r:: -a.

Q)

o

2.75

Figure 3.28: Detail from Figure 3.18, with interpretation added. Figure 3.27 is an

uninterpreted version of this figure. AGe has been applied to bring out the fain t

detai ls. The velocity model for this migration is shown in Figure 3.19.

104

we had to resort to them (see Section 3.3.1: "Preprocessing").

One of the most noticeable difficulties in conventional processing schemes is the

difficulty of moving backwards in the processing sequence. As each processing step

is completed, intermediate files are produced and those files become the input to the

next process. If later processing reveals difficulties with earlier processing, and it al­

most always does , the sequence must be repeated from the point that the processing

changes. While this is true of interactive imaging as well , the philosophy of perform­

ing processing tasks "on the fly" rather than through a series of intermediate steps,

allows for much easier processing. For instance, if after stacking the data we notice

t hat the section is contaminated by ground roll, we can simply alter the mutes and

res tack the data, regardless of the intermediate processes, which would be redone on

every stack in any case.

This problem was most obvious as we attempted several F-K filters and multiple

suppression methods. Upon stacking the data we were inspired to alter the filter

settings, which required us to redo not only the F-K filtering, but also the multiple

suppression stage. In any case where we altered the F-K filter , multiple suppression,

or deconvolution parameters, we were required to reload the data into the interactive

system. The advantages of having those processes built into modules within ISIS

are plain: we would be able to alter the parameters of any of the processes and

directly see the results not only in the data gathers , but in the stacked or migrated

sections. Even if the current technology prevented these processes from being fully

interactive, the time savings and improvements to the images would be substantial.

In addition , under the conventional processing scheme it is almost impossible to judge

105

the interplay and tradeoffs among the parameter selections for different processes.

The interactive system, however, allows several sets of parameters to be active at

once, giving the analyst the ability to examine these relationships.

While we did not have the performance necessary to interactively focus the image,

we did get a glimpse of the process and its promise. As we discussed above, the

NMO velocity analysis seriously misguided us as to the velocity of the region to the

east of the Hosgri fault . By repeatedly migrating the image we were better able to

focus some parts of it. Each additional increment of performance would allow us to

better fine-tune the model and focus the image. Ultimately, interactive migration

would produce a nearly-optimum focus , as well as confidence in the analyst that the

parameter space had been fully explored.

Again, while the performance of the system did not give us the "feel" of the image

(i.e., an intuitive sense of the way it responded to changes in the velocity) we were

able to study images produced by a wide range of velocity models, and to observe

how features we were trying to interpret responded. In this way we were able to make

our interpretations with more confidence than we otherwise could have. Ultimately,

when we can feed the interpretation back into the system as an input model, we will

also have a direct means of testing our models.

The success of this prototype interactive system has convinced us to proceed with

further developments . Having proved the concept, we intend to add more process­

ing modules , as discussed in Chapter 2, and to investigate means of improving the

performance. There remain no significant technical barriers to prevent the fully in­

teractive system we have discussed. The software foundation is in place, and several

106

hardware platforms exist to meet the computational and I/O demands of the sys­

tem . The only barrier to full implementation is cost , and as the price/performance

ratio of computers continues to fall , interactive seismic imaging will be increasingly

affordable.

Bibliography

[1] T. Atwater. Implications of plate tectonics for the Cenozoic tectonic evolu tion of
western North America. Geol. Soc. oj Am. Bull, 81:3513-3536, 1970.

[2] D. H. Clark. . T. Hall , and D. H. Hamilton. Structural analysis of late Neogene
deformation in the central offshore Santa Maria basin, California. J. Geophys.
Res ., 96:6435- 6457, 1991.

[3] J. C. Clark, E. E. Brabb, H. G. Greene, and D. C. Ross. Geology of Point Reyes
penninsula and implications for San Gregorio Fault history. In J. K. Crouch
and S. B. Bachman, editors, Tectonics and Sedimentation Along the CaliJor­
nia Margin , pages 67-85 . Pacific Section, Soc. Economic Paleontologists and
Mineralogists, 1984.

H] K. J. Coppersmith and G. B. Griggs. Morphology, recent activity, and seismicity of
the San Gregorio fault zone. Spec. Rep. 137, Cal if. Div. lines Geol. , 1978. in
San Gregorio-Hosgri Fault Zone, California, edited by E. A. Silver and W. R.
Normark.

[5] J . K. Crouch, S. B. Bachman, and John T. Shay. Post-miocene compressional tec­
ton ics along the central California margin. In J. K. Crouch and S. B. Bachman ,
editors, Tectonics and Sedimentation Along the CaliJornia Margin, pages 37- 54 .
Pacific Section, Soc. Economic Paleontologists and Mineralogists, 1984.

[6] C. DeMets, R. G. Gordon, S. Stein, and D. F. Argus. A revised estimate of
Pacific-North America motion and implications for Western North America plate
boundary zone tectonics. Geophys. Res. Lett ., 14:911-914, 1987.

[7] M. B. Dobrin and C. H. Savit. Introduct ion to Geophysical Prospecting. McG raw­
Hill , New York , Y, 4th edition, 1988. 867 pp.

[8] J . P. Eaton. Focal mechanisms of near-shore earthquakes between Santa Barbaril.
and Monterey, California. Open-File Report 84-477, U. S. Dept. Interior Geol.
Survey, 1984.

107

108

[9] J. Ewing and M. Talwani. Marine deep seismic reflection profiles off central Califor­
nia. J. Ceophys. Res., 96:6423- 6433 , 1991.

[10] Pacific Gas and Electric Company. Diablo Canyon power plant long term seismic
program report. Centennial continent/ocean transect #10, Pacific Gas and
Electric Company, San Francisco, California, 1988.

[ll] W. H. Gawthrop. Seismicity and tectonics of the cent ral California coastal region.
Spec. Rep. 137, Calif. Div. Mines Geo!., 1978. in San Gregorio-Hosgri Fault
Zone, California, edited by E. A. Silver and W. R. Normark.

[12] K. Goodfellow. Special report , geophysical activity in 1989. The Leading Edge,
9(11):49-72, 1990.

[13] S. A. Graham and YV . R. Dickinson. Apparent offsets of on land geologic features
across the San Gregorio-Hosgri fault trend. Spec. Rep. 137, Calif. Div. Mines
Geo!. , 1978. in San Gregorio-Hosgri Fault Zone, California, edited by E. A.
Silver and W. R. Normark.

[14] S. A. Graham and W. R. Dickinson. Evidence for 115 ki lometers of right slip on the
San Gregorio-Hosgri fault trend. Science, 199:179-181, 1978.

[15] C. A. Hal!. San Simeon-Hosgri fault system, coastal California: Economic and envi­
ronmental implications . Science, 190:1291-1294, 1975.

[16] C. A. Hall , Jr . Origin and development of the Lompoc-Santa Maria pull-apart basin
and its relation to the San Simeon-Hosgri strike-slip fault , western California.
Spec. Rep . 137, Calif. Div. Mines Geo!., 1978. in San Gregorio-Hosgri Fault
Zone, California, edited by E. A. Silver and W. R. ormark.

[1 7] D. H. Hamilton. Characterization of the San Gregorio-Hosgri system, coastal central
California. Ceol. Soc. Am. Abslr. Programs, 19:385- 386, 1987. abstract .

[18] D. H. Hamilton and C. R. Willingham. Hosgri fault zone; structure, amount of
displacement, and relationship to structures of the western Transverse Ranges.
Ceol. Soc. Am. Abstr. Programs, 19:429, 1977. abstract.

[19] K. L. Hanson, W. R. Lettis, and E. L. Mezger. Late Pleistocene deformation along
the San Simeon fault zone near San Simeon, California. Ceol. Soc. Am. Abslr.
Programs, 19:386, 1987. abstract .

[20] J. S. Hornafius. 'eogene tectonic rotation of the Santa Ynez Range, western Trans­
verse Ranges, California, suggested by paleomagnetic investigation of the Mon­
terey Formation. J. Ceophys. Res., 90:12,503-12,522, 1985.

109

[21) E. G. Hoskins and J. R. Griffiths. Hydrocarbon potential of northern and central
California offshore. A. A. P. G. Memoir 15, 1:212- 228, 1971.

[22) K. Larner , R. Chambers, M. Yang, W. Lynn, and W. Wai. Coherent noise in marine
seismic data. Geophys. , 48:854- 886, 1983.

[23) J. N. Louie. Imaging of the Hosgri fault , offshore California. Bull. Seism. Soc. Am.,
1991. submitted.

[24) B. P. Luyendyk and J. S. Hornafius. Neogene crustal rotations, fault slip, and basin
development in southern California. In R. V. Ingersoll and W. G. Ernst, editors,
Cenozoic Basin Development of Coastal California, pages 259- 283. Prentice­
Hall, Inc. , 1987.

[25) D. S. McCulloch . Regional geology and hydrocarbon potential of offshore central
California. In D. W. Scholl, A. Grantz, and J. G Vedder, editors, Geology
and Resource Potential of the Continental Margin of Western North America
and Adjacent Ocean Basins- Beaufort Sea to Baja California, pages 353- 401 ,
Houston, Tex ., 1987. Circum-Pacific Council for Energy and Mineral Resources.

[26) K. D. Mcintosh , D. L. Reed, E. A. Silver, and A. S. Meltzer. Deep structure and
structural inversion along the central California continental margin from EDGE
seismic profile RU-3 . J. Geophys. Res., 96:6459- 6473, 1991.

[27) A. S. Meltzer and A. R. Levander. Deep crustal reflect ion profiling offshore southern
central California. J. Geophys. Res. , 96:6475-6491 , 1991.

[28) J . B. Minster and T . H. Jordan. Vector constraints on Quaternary deformation of
the western United States east and west of the San Andreas fault. In J. K.
Crouch and S. B. Bachman, editors, Tectonics and Sedimentation Along the
California Margin, pages 1- 16. Pacific Section , Soc. Economic Paleontologists
and Mineralogists, 1984.

[29) W. D. Mooney. Introduction to special section on EDGE and related seismic projects,
onshore-offshore California. J. Geophys . Res. , 96:6421 , 1991.

[30) V. S. Mount and J . Suppe. State of stress near the San Andreas fault: Implications
for wrench tectonics. Geology, 15:1143-1146, 1987.

[31) J. amson and T. 1. Davis. Seismically active fold and thrust belt in the San Joaquin
Valley, central California. Geol. Soc. of Am. Bull, 100:257- 273, 1988.

[32) J. Namson and T. 1. Davis. Late cenozoic fold and thrust belt of the southern Cali­
fornia Coast Ranges and Santa Maria basin, California. Am. Assoc. Petroleum
Geol. Bull. , 74:467- 492 , 1990.

110

[33] J. B. Saleeby. C-2 Central California Offshore to Colorado Plateau. Centennial
continent /ocean transect #10, Geol. Soc. Am., 1986.

[34] W. A. Schneider. Integral formulation for migration in two and three dimensions.
Geophys ., 43(1):49-76, 1978.

[35] C. L. Seitz. Multicomputers. In C. A. R. Hoare, editor, Developments in Concur­
rency and Communication, pages 131-200. Addison-Wesley, 1990.

[36] E. A. Silver. The San Gregorio-Hosgri fault zone: An overview. Spec. Rep. 137,
Cali f. Div. Mines Geol., 1978. in San Gregorio-Hosgri Fault Zone, California,
edited by E. A. Silver and W. R. Normark.

[3T] W. S. Snyder. Structure of the Monterey Formation: Stratigraphic, diagenetic.
and tectonic influences on style and t iming. In R. V. Ingersoll and W. G.
Ernst, editors, Cenozoic Basin Development of Coastal California, pages 321-
347. Prentice- Hall , Inc., 1987.

[38] J. E. Vidale. Finite-difference calculation of travel times. Bull. Seism. Soc. Am.,
78:2062- 2076, 1988 .

. [39] H. C. Wagner. Marine geology between Cape San Martin and Point Sal, south-central
Cal ifornia offshore. OFR 74-252, U. S. G. S., 1974.

[4 0] G. E. Weber and 1<. R. Lajoie. Late Pleistocene and Holocene tectonics of the
San Gregorio faul t zone between Moss Beach and Point Ano Nuevo, San Mateo
County, California. Geol. Soc. Am. Abstr. Programs, 9:524, 1977. abstract.

[4 1] O. Yilmaz. Seismic Data Processing, volume 2 of Investigations in Geophysics. So­
ciety of Exploration Geophysicists, Tulsa, 01<, 1987.

[.12] \1 . D. Zoback , M. L. Zoback, V. S. Mount, J. Suppe, J . P. Eaton, J. H. Healy,
D. Oppenheimer, P. Reasenberg, L. Jones, C. B. Raleigh, I. G. Wong, O. Scotti ,
and C. Wentworth. New evidence on the state of stress of the San Andreas fault
system. Science, 238:1105- 1111,1987.

Appendix A

Glossary of Terms

automatic gain control (AGC) A means of equalizing amplitudes over the length

of a seismic trace. Generally the amplitudes are scaled by the average within

a sliding window.

CMP Abbreviation for common midpoint (see gather).

deconvolution A process by which the effect of a linear filter is removed from a

time series. Spiking deconvolution is designed to remove the source wavelet

from the recorded trace, thereby increasing temporal resolution. Predictive

deconvolution involves the application of an operator designed to remove the

effects of near surface multiples.

F-K filter A filter, generally operating in the frequency-horizontal wavenumber do·

main, designed to attenuate arrivals with a certain range of apparent velocities .

Also called a dip filter.

fold The number of traces in a common midpoint gather.

111

112

gather A collection of seismic traces with a particular acquisition parameter In

common. There are four general types of gathers: 1) shot (or source), .n

which all of the traces are recordings of energy from a particular seismic source

pos ition; 2) receiver, in which all of t he traces were recorded at a particular

survey position; 3) midpoint, in which all of the traces have in common the

surface position half-way between their source and receiver; 4) offset, in which

all of the traces have the same source- receiver distance.

geophone An instrument designed to convert seismic energy into electrical signals.

message-passing A means of communication between nodes on a multicomputer.

migration (or imaging) A means of inverting seismic data recorded as a function

of surface position and time, to fo rm an image of reflectivity as a function of

surface position and depth. Post-stack migration treats a stacked section as

a zero-offset wavefield to perform the inversion: S(x , t) =* J(x, z). Prestack

migration inverts the unstacked data: S(s,g, t) =* J(x, z), where sand 9 are

source and geophone positions, respectively.

multicomputer A computational system made up of multiple small computers.

called nodes , that work as a group to perform computations, and that com­

municate by passing messages to one another over a communications network

(see Seitz [35]) . The grain size of a multicomputer refers to the relative size

and power of the nodes-medium-grained nodes fit on a single board , and are

approximately the equivalent of a workstation in terms of memory capacity and

computational speed. Multicomputers may be homogeneous, in which case all

113

of the nodes are identical, or heterogeneous, with a variety of specialized nodes.

multiple An arrival of seismic energy that has been reflected more than once, as

distinguished from a primary reflection which is the desired product of a re­

flection survey. A water-bottom multiple is energy that reflects from the

seafloor to t he surface of the ocean, is reflected back to the seafloor, and then

reflected back to the recei ver.

mute A means of excluding or diminishing seismic energy as a function of offset

and time. Often used to remove direct arri vals and surface waves on shot

gathers. Also: stretch mute by which energy, whose frequency content has

been lowered beyond some limit by the normal moveout correction, is removed.

NMO Abbreviation for "normal moveout."

node A computational element in a multicomputer.

normal moveout (NMO) The change in arrival time of energy, returning from a

flat-lying reflector, as a function of offset.

offset T he distance between the source and receiver in a seismic survey.

roll in, roll out The tapering off of midpoint fold at the beginning and end of a

survey.

stack A seismic sect ion intended to simulate a zero-offset section by correcting mid­

point gathers for normal moveout and summing the traces together.

statics A constant time shift applied to a seismic trace to correct for elevation and

near- surface velocity variations due to weathering.

114

trace The basic unit of a seismic reflection survey; a time series recorded by a

geophone (or hydrophone) after a source of seismic energy has been activated.

Appendix B

Example Program

Below is a fragment of a main program for a computational node, and a stylized

function slack(). The main program registers slack() and turns control over to the

notifier. The function slack() performs a simplified CMP stack. Since the purpose

of this function is to illustrate the use of the t race manager and display manager

functions from a computational process, much of the complexity has been relegated

to other functions and details have been omitted. The functions themselves may

or may not reflect the actual current working versions of the fun ct ions, but are

illustrative in any case.

#include <stdlib .h>
#include <local.h>
#include <sis .h>

/* etc . */

int stack(int, int *); /* prototype for stack () */

115

116

i nt main (int ac, char **av) {

}

/* initialization , allocation, etc. */

/*
* Register "stack O " with the function id "STACK" .
* Make stack () responsive to the databases with id's
* "VELOCITY_DB", and "STACK_DB" . The trailing "0"
* terminates the list of id's
*/

register_func (stack, STACK, VELOCITY_DB, STACK_DB, 0) ;

/* turn control over to the notifier */

return 0 ; /* exit ISIS */

i nt stack (int n, int *list) {

int i J ntmax;
float q;
float *data, *stack_trace ;
struct usrinfo hdr;
struct stack_param stk ;
REqUEST w;

117

1* first see what's changed by checking the list *1

for(i = 0; i < n; i++) {
switch(list[i]) {

}

}

case VELOCITY_DB:
update_velocity_model();
break;

case STACK_DB:
get_new_stack_parameters(lstk);
break;

default :
err ("Thi s shouldn ' t happen ... ") ;
return -1;

1*
* get_ntmax () returns the maX1mum number of time points 1n
* any trace in the survey.
*1

ntmax = get_ntmax();

1* allocate a buffer for incoming data *1

if((data = (float*)malloc(ntmax * sizeof(float))) -- NULL) {
err("out of memory");
return -1;

}

1* allocate a buffer for the stack trace *1

if ((stack_trace = (float*)malloc(ntmax * sizeof(float))) == NULL) {
err("out of memory");
return -1;

}

1*
* getrequest() fills in the default request structure based
* on the type of request, in this case "MIDLINE" specifies
* that the request will be for a midpoint gather

118

getrequest (MIDLINE, lV);

1*
* Fill in the request structure. The "stk" structure
* contains information from the user interface on the
* geometry of the stack to be performed .
*1

v . iline = stk . line; 1* the line along vhich the stacking 1S done *1

1*
* setdataops instructs the trace manager to preform certain
* operations on the data. In this case it viII perform NMO
* and mutes based on the current velocity and mute models .
*1

setdataops(DO_NMO I DO_MUTES);

1*
* Loop over midpoints.
* q is the distance along the line "stk.line", "stk.qO" is
* beginning of the section, "stk.ql" is the end of the
* section , and "stk.dq" is the binning interval.

*1

for(q = stk.qO; q < stk.ql; q += stk.dq) {

1*
* Request the midpoint gather "q" units
* along the line.
*1

v.MIDPAR.q = q;

datarequest (lv);

1* Zero stack_trace for each midpoint. *1

memset«void*)stack_trace, 0, ntmax * sizeof(float));

}

119

1* Loop over traces in the gather. *1

while(getdata(thdr, data)) {

}

1*
* traces come with NMD applied, so we just
* have to sum them into the stack'
*1

for(i = 0; i < hdr .nt; i++)
stack_trace[i] += data[i];

1*
* Plot the stack trace. "PLT _SEC" instructs the
* display manager that the plot is a section.

*1

hdr .offset = q;
draw_traceCstack_trace, thdr, PLT_SEC);

1*
* Plot the section . "SPLIT_SCREEN" informs the display
* manager that this is one segment of a multi-segment image.
* "REPLACE_IMG" instructs it to completely overwrite the
* existing image with the new one .

*1

return 0; 1* return control to the notifier *1

