A Structured Approach
to Physically-Based Modeling
for Computer Graphics

Thesis by

Ronen Barzel

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1992

(Defended April 29, 1992)

Copyright €©) 1992
Ronen Barzel
All Rights Reserved

Acknowledgements

Many thanks are due to my advisor, Al Barr, for research collaboration, for creating a research environment
without which this work would not have taken place, and for his role as editor and critic of this text. My fel-

low students in the graphics group have been a source of ideas, discussion, and friendship during my career at
Caltech: Bena Curin, Kurt Fleischer, Jeff Goldsmith, Devendra Kalra, Dave Kirk, David Laidlaw, John Platt,
John Snyder, Brian Von Herzen, Adam Woodbury. Thanks in particular to Adam Woodbury for enthusiasti-
cally using and extending the prototype model library, for prodigious coding. Thanks to Mark Montague for

valuable discussions and comments on the text. Thanks to Jeannette Tyerman for reading and commenting on
(and responding favorably to) drafts of the text. Thanks to John Hughes for several mathematical discussions.
Thanks to my doctoral examining committee, Jim Kajiya, Carver Mead, Mani Chandy, and Joel Burdick, for
their suggestions and guidance. Thanks to Carolyn Collins for her warm care during my first few years at Cal-
tech, Thanks to Sandra Reyna for keeping things running smoothly, and to Dian De Sha for last-minute help
with the manuscript. Special thanks to my parents for long-distance encouragement and support during the
writing of this book. I am also grateful to the AT&T Foundation for providing me with scholarship support.

Apple Computers, Hewlett Packard, and the National Science Foundation (Science/Technology Center for
Computer Graphics and Scientific Visualization) have been sponsors of the Caltech graphics lab, thus making
this work possible.

Abstract

This thesis presents a framework for the design of physically-based computer graphics models. The frame-
work includes a paradigm for the structure of physically-based models, techniques for “structured” mathe-
matical modeling, and a specification of a computer program structure in which to implement the models.
The framework is based on known principles and methodologies of structured programming and mathemati-
cal modeling. Because the framework emphasizes the structure and organization of models, we refer to it as
“Structured Modeling.”

The Structured Modeling framework focuses on clarity and “correctness” of models, emphasizing explicit
statement of assumptions, goals, and techniques. In particular, we partition physically-based models, separat-
ing them into conceptual and mathematical models, and posed problems. We control complexity of models
by designing in a modular manner, piecing models together from smaller components.

The framework places a particular emphasis on defining a complete formal statement of a model’s math-
ematical equations, before attempting to simulate the model. To manage the complexity of these equations,
we define a collection of mathematical constructs, notation, and terminology, that allow mathematical models
to be created in a structured and modular manner.

We construct a computer programming environment that directly supports the implementation of mod-
els designed using the above techniques. The environment is geared to a tool-oriented approach, in which
models are built from an extensible collection of software objects, that correspond to elements and tasks of a
“blackboard” design of models.)

A substantial portion of this thesis is devoted to developinga library of physically-based model “modules,”
including rigid-body kinematics, rigid-body dynamics, and dynamic constraints, all built with the Structured
Modeling framework. These modules are intended to serve both as examples of the framework, and as po-
tentially useful tools for the computer graphics community. Each module includes statements of goals and
assumptions, explicit mathematical models and problem statements, and descriptions of software objects that
support them. We illustrate the use of the library to build some sample models, and include discussion of
various possible additions and extensions to the library.

Structured Modeling is an experiment in modeling: an exploration of designing via strict adherence to
a dogma of structure, modularity, and mathematical formality. It does not stress issues such as particular
numerical simulation techniques or efficiency of computer execution time or memory usage, all of which are
important practical considerations in modeling. However, at least so far as the work carried on in this thesis,
Structured Modeling has proven to be a useful aid in the design and understanding of complex physically-
based models.

Contents

Index of Figures xi
Notation xvii
1 Overview 1
11 TheNeedforaDesipnPramework « - ¢ : s s v ¢ 3555 9% 6 ¢ 965 5 8% 55 54 5 1

12 GodlsfortheFramework: c s v s s e s s w3 s 5 5 e EE S T8 & s W 8855 5 8 44 2

1.3 Overview of Physically-Based Modeling 3

B4 OnAineol ThesIS G o w3 e 42 4B R 229532 LFEEF LR PAB B A AE PP 6 & & 2 4

15 HelaftdWorkis v i n s o s s ra e 888 128 22 GAGRAERREH 2 2 E 6 5 Sk & o 4

2 A Framework for Physically-Based Models 6
21l ONEVIEW s - b p s st BT Bl NG A S IR PR A BB RAED S A S B S e v m 6
2.2 Background: Applied Mathematical Modeling 7

2.3 Canonical “CMP” Structure of a Physically-Based Model 8
231 ‘The Concepfial MOABLLIC™) - . - v o oo = niin oo im0 owam o im0 o i 9

2.3.2 The Mathematical Model (“M™) it i e 9

233 THePOSEARIODIEME CTP) & . - o v m o w5 o e o o 0w o 2w o e s o 9

234 Implementation & Physical Interpretation 10

24 Discussionof the CMP Structure o v v ittt e 10
2.4.1 Why Separate The Numerical Techniques? 11

242 Why Separate Problems From Equations? 12

243 Why Separate Concepts From Mathematics? 12

2.5 Modularityand Hierarchy e e e e 14

260 DESIPANERMOT .. . L 0 v s im0 o o e o 8 s e o e e (o e e e e B e e e e 15
2.6.1 SeparatingCfromMfromP L Lo 15

262 Top-Downvs. BOHOMUIPVE. . v v o w oo m wm o oo s wm w5 & v w s 15

2.6.3 StandardOutlineforaModel 16

264 ‘DEDGTONEAMOIEL . . s oo o v o 5w w8 o e e B e 17

2.7 Communicating Modelsto OtherPeople 18

2B BHDIIET & o 3 e o o n e v i, oo o e 35 e oy 58 o oy 8 o o s 19
253 REIAEAWOTKL. oo o v o0 i o 0 00 b s s B s s s o o iy B s o e 0 0 oy 0 ol Ty e o i 19

3 Structured Mathematical Modeling 20
B, OVEIVIEW 2 s v c o v s 2 SA G T AR PHREF S RS RS S RD R AT OB RE FE S ES BT 20

3.2 Motivation for Structured Mathematical Modeling 21
2] ComplerModels. 1 s e s pu s s b AR ERE R BSCRRR AL 584 58 %2 21

322 CompleleModels 5 :ocvi s s Gl Ts B R R RS S HARS EA S S LSS 22

323 ExpHCMOdEIS o v v s 785 R 2 6 E 8T SRR DG A5 Y ERE S A A S S ot 85 22

324 PrcticalUHIlY cosnasrrpere 9ot a2 e i3 foE s st asl 8 23

Contents vi

33 Aesthetics &DesignDECISIONS « .« s 5 5w s 5 e o 5 55 @5 B § 8w P B A FS B 23
34 BomowingfromProgramming . . « s : w5 s « ww s 5 5o e 5 5% 5 8§ 59 55 5w § 5w 23
341 Top-DownDeSign i : = s s 5 56 o 8 9505 556 § 50 § 5 88 55 205 8§ 80 - 24

342 MoOularily = ; s v 2 v s 23 818 55 B 25 55 €3 50F 5 A N EE BE E A B 24

343 NammgSEategies . s s s s sm s s Bw s 8 Smm s 55 ¢ 589 5 568 5 3 65 3 25

344 DataAbSraction : = ¢ s 5o 6 3 5 53 5o 5 8 888 5 28 § 3 5k 8 d R oa s mme 25

3.5 Distinctions from Programming e 26
331 ~NoOIeroal SE s v ¢ 5 55 2 s 6B L3 26 T8 68w § 2B T8 wb s s b 94 Bl 26

3.52 NoProcedural Definitions 27

3.5.3 No Machine-Readable Syntax Necessary 27

3:5:4 NoOPOIVINOIPHISIE . ; ; 20 2 5 ;s v 2 somes 2 o mm 8 b s § B B oo mom s 4 oo 27

36 INAMIMDSHBEOIES .. o . v 0 5 moon 5 5 biim o 5 Simos o minom 5 o om & 8 im o & #orm o 3 m oo 28
3.6.1 FulllwordNames i e e e e 29

362 Scopiig, NAMESPATES ..~ o & - com o v s m s i s oo m s mie w o i e 29

3.6.3 Function Name “Overloading” 30

3.7 ADSHACESDATES . . . ¢ i v b im0 miim w s e 8w s e h e e e i e s A 31
3.7.1 Defining Abstract Spaces 32

372 Specializations e e e e e 33

373 Disparate UniOnS o . 0 i i o e e e e e e e e e 34

3.8 Identifiers(ID’s)andIndexes 36
3.8.1 Definitionof ID’S L e e 36

382 Indexes. e e e e e e e 37

3.83 OperationsonIndexes e 38

BY BEIESPACES ; stoipr § Soaw g mwe s mmm § Sme 5 SRS S PR EEE S P ¥ 9 ES 40
391 BasicDefinifion &NOHON « : v s wme s wmw s wm e s 5w €5 @ e s w s 40

392 IntemglProperficsofaStAeSPace « « soww v 3w s oom v 5 B ow v 3w w8 43

3.9.3 Subscript Notation for Aspect Operatorso v v vt v 44

394 NesledSIeSPACeS : » oo v v 5@ s 5 5o W 5 386 5 A & F 35 48 855 885 8 5 45

39.5 StateSpace SpecializalionS . « s o 5 ¢ s 55 5 6 5w 5 5 5 5 5 8.5 85 5 8 3w 46

200 Segmented FUNCHONSc : » 5 5 5 v w o ¥ 31 8 3 386 3 LFE I3 B 8 I VT 588G 47
3.10.1 Definitionof a Segmented FUnNCHON =« : ¢ &6 3 2 0 v 5 6 0 6« 8 o 0 8 6 w5 5 5 &0 48
3.10.2 Sequential Representation of a Segmented Function 49
3.10.3 Functional Characterization of a Segmented Function 50

S0l PDesioninpaModel e ; s e m s s HE R ERE I AE B Gt bR g b 51
ST WonngAMOdell - o0 s s s 5B L e BRI RGBS EGE S Y s B 52
3.11.2 Whatisina TypicalModel? 52
S STNMOSIO 0 e s e s 5 88 5 Bb @ s RE: hnE s R LR P e s B 53
3114 ThngS O THORADOUE . - o 5 5 5 s 5 musile o 6 5w 5 2 @m s 6 G & 5 min 5 4 o0 53

DAL SIINIELY - c § 'm0 5 60 3 1558 § 5B S aDE s BwE s B b 9 Ee LS e 54
30 REEAWOTK . s ocomci § Goiivh s 0 Bl | RS a 50 B9 8 o 8 b mell 3 Fiod 5 8 Gro & 8 e 54
4 Computer Programming Framework 55
A0 OVEEVIEW < o o s 508 5 5 508 5 4 W ¥ Som W E 6 50 5 B S B BE F R BE LK S Y @ 55
42 Framework for Program Structure 56
42,1 Conceptual Section. » ¢ ¢ v v s s w3 5w s 8 9w § 3 58 55 BEF B E §F EE 57

422 NomericsSection .« : s w5 : s s s R sy BRI s B A FIBE I FA 8 23 58

423 MalhiSecon s : s s s s r s w23 BE6 55 A IS HE T ABRILTGE < 5 BE 58
424 C-MandMNTEHEACES : 22 5 5 55 35 8/ 25 HE 6 pR i a0 a5 mm s & mis 59

43 HowToImplementaCMPMOdE]l . o o 2 cov ¢ mi 56 mm a5 bid 56 8 5 8 9 & 4 30 61
44 ProcedugllVOutooks - s r w6 1 5 58 8558 S5 5B 5L BE 4 hE i AE 5 A 58 A 62
4.5 WhyHaveaMathiSECtion? . : : vis cs s s s 0@ st 58 88 bR 455 16858 24 55 62

Contents vii

46 RepresenGliondl Outloole - - : v s 5 65 s s s s B a ¥ 50 83 88 £ 5 56 6% 5 o 63
4.7 Decoupling Model State from Program State 64
A8 BHCBIEE ¢ o som o5 wise v 5 68 85 9% 5 2 5t 5 il o @i 2 8 BiG 89 BB 8§ 8 B8 3 65
29 MO s : vz r I U I BN LI EE L pE e AR I LB LB IO S s b 66
B0 SIMIIIY oo 2 o a1 4 W £ 8 B » s G 65 SRS E FH% s S%5E PR FE § 5 55 67
11 REICAWOTK s : sie v s v b s e L S S0 2 8 MBS A HEE F P E VUK 68 5@ 55 & 50 67
5 Overview of Model Library 68
51 GoalsftheProtiypellibraly : s 1 : o ¢ 685 3 pAE 5 08 VLG 548 & 1y B 68
52 FeatmreSOftheLIBIATY . . . ¢ « w0 0 2 v o v w0 5 wm 0 0 sl v @ o o mw 6 v e 69
53 Ouidineofthe LIy : o5 s s 30 s s 5 v I R @ a3 EE s BE 8 BE 0 LGE LS 5EE 70
54 CommonMathematical IHOMS . .. - . 2 v v v v vm o = om0 5 oo o s ie o 5 mm o s 70
5.5 PiesentationOfBAChModUle: . . s v 5 ws v s spe s wew s m s 3 8® 8§ & §6 8 5 55 T1
86 BOIEBAWOIK: s 2 v 4 30 130 0@ 13 08B 2SR bR R L3RI BB RRNL & 72
6 Coordinate Frames Model 73
G4 BIEHONE o o ap 9 s dpEs b ORI L b s DEB ¢ bes 2 bad L B 5 &S 73
G2 BOAS . vwepswiswws M es LS EESES PRGBS SR S H 6 E R 74
6.3 ‘ConcephlMedel & : s op st s B LT E Yo ER I B A LR LR A S B0 75
G4 MAhemalitalMOACL . o o b v o wow v 5 mw e & Be s b o E o E R e e B E e B 7
GHI NanieG &N ¢ v 3 s muw 1 852 08 E 8 PE ALENTIET I HEE 5859 77

637 DERRONS o . 2 4 Q2 G E AL BEd f v d Tt § 9 e® 86 b s 5 a2 w e g 77

643 Represenon ENOWBION ~ « < s s s s vs s s s s s s R a8 s @ F 8559 5 & &0 78

6.4.4 Transforming Representations BetweenFrames 80

645 AMMEGCOPERAUONS . o v o 5 60 5 5 55 8 5 o5 8 8 & 0@ s 5K s 24 6@ 858 a 81

646 CorespondenceBetweenNObJECIS « 5 <« o v < s 00 ¢ 200 s b oo i 6 mad dme 83

6.4.7 Using Scalarsas RealNumbers 84

648 MoVINEOUIEEE < v v sswt v oo e s RS @ o wE 4 F @ P A S P LR 8 & 53 84

640 PARSEDCAVAITES o+ s @ g 3 5@ 3 4 EB A2 E S4B W S At bEd e dnt 88

65 POSCARIOBIEMS o cormvonsseosmesdars e s nan s @ Ge 8666 s 5508 5 89
656 IMPeNenfaionNGES ; coa s r e s e R I 2R ELAB I EEELR B EREB L EBE 90
6.7 DEAVANTNS: 208 v bl st b d ot i S uw S o Hm s ke @ @@ e w5 91
7 Kinematic Rigid Bodies Model 93
Tl BOUS . s cmp s s HREm GEP R AR EE P R RE RS SN S BE RN T E S W 93
T ConceptiabMOodell . « s 06 3¢ PR S EL IE OB S PP B LI LB LR LS BD & % 14 93
73 MNalematCal MoOael .« « . o 4 o5 oo v e e s s am s HLe e s G @ g ¥ s HE 5 e e 95
T30 NamesBENOEIUON &, 0 24 w P 3 FER F L ED SLER AL SN 22 R0 5 68 2 25 60 95

T2 BOAVSHEIG 5 4 64 66 45 b prem ¢ S wms v ho o5 me ¥ & wm ey o s w e 95

733 BodyPoillls 5 s s v s s 60 a5 o0 s s 6 pas @8 358 4885866 8883 96

T34 CollechionSOFBOHIES 5 : v v b B s BE ST B E P B R S B @ 98 win o w e 97

735 Hierarchical Configumations’ - <« « s s s c e 33w o s mvm Fo o o5 8 & & 8 &5 97

T4 POsediPIObIENS) + cn c s @ 2 EB 34 PR s 3B LR 2L A LB B A &5 Bk 98
7.5 IMpleMenmionNeEs « c ccvnve v v s s cae ve ke o s 8 m v e e dmeE s e 99
TH1 'Concepal SectionConstuCS« - v s 2 68 s s o ® A S EB 3 5 B 5.5 B8 54 b & 99

T2 MalhiSectonCONSHUCES i o s 54 35 6% 6 G5 56 B ® 5 s o sm Sx mm e E mo 99

Ty MNHIEHEE « oo vr eres 0o @ s imas bm e S8 r1s @8 Es OB 2S5 8 100

Tond: WENBICIHES s s a2t e@ L2 00 S L BB AL AEERALEAEORELEE 100

Contents viii

8 Dynamic Rigid-Bodies Model 101
B GOAIE - o o remis cronst 500 0 0 00050 5 0 S0 R 0) 0 T 1 O U 1 O i 101
B2 ConcopialiModel w v puomem anE s PREEARET E BHE 2 BE § RG-S b ke s S 101

B2l BoliES' s c won sy n et P R PR AR i ERE R e A S & aE B E S e %k 102
322 “Monves"—Farce/TorqueOBJECIR . .« ¢ 2 = o o s+ =i 5 » mi a5 5w 0 o wmm = s 103
328 POIIEMASSES v o s o B E o8 2 L oS B D wha s S E N EE G o & s B s s 104
Q24 Body PO ¢ spessqan ittt sbre b o dd iEees BaE 55 s e b 104
B2S BBy se s neco bt e fle s S bedt Bedimse s Bad ahesosds e 104
B MathematiCal MOdel « 2 & 55 2= 5m ik o 5 s e s @ ow @ % 5o s n oo s b gom e e w 105
B3 Names ENOMON. . o o 5 o o o5 mm o 5 5 % 5 0 omoe v o s o 105
832 MassDistributions 105
83.3 StateofaSingleBody 106
834 MotionofaSingleBody 108
RIZY BOAFPOIMIS o« oo 9 & o 5 s G s @ 5w & o e % o % & o 109
836 ACOUCCHONOEBOMHES . v o wow v v 5o & & m omiw 5 % & 6 4B S & ol % % 803 4 5 & 110
BT MOUVES = . o o v simi v s im @ & 0% & & @ % 6 ¢ o % 6 5 416 @ § 8% % & 95§ & 112
RAB EOCTE w8 o 05 & % 50 e e s e s o 65 o a5 5 1 0 150 o 0 2 0 S B 6 e 114
84 POSGOPIODICIS . « sowow 5 owoe i om0 0 @06 6 5 5 5 @ 50w % b B 6 e BB G F N s s 116
BS IMPIENERIAONNGIES & v s sww s v s o HEE 2 AW EH BE N OB T BT P BES S8 118
851 Concepal SeCHONCOMSNCE o « + ve s s cm s 9w e s » N e s GB Y & & E @ 5 5 118
852 MathSecHOWCOMSHUCH o « s v w2 R es s s SR B P R E EP 9 EH S 886 5 8 118
853 NENIMEHACE o quw 265 @56 56 s 5m e 6 26 e 5 s sEe s e s s 120
B4 C-MIMPHAR: i s s men i G REs mEse HETe HEES S EE P U8G5 s 120

9 “Fancy Forces” Model 121
9 BASz e s mgesmesaea e e e c A R A B R R R AR e anE B ar s s 121
92 EOEepilMoit], o cen e e et e s AL R BRI e e R AN E e E s 121

9258 FOce Pl s s e B e B S S R Y SN A S R A B AR YT & E 2 122
025 ExPHEHEGRES c ¢ s 456 s 3B 0 SR BE $ 9 bB 4 S wa R ERBEC S 5E 5B E 123
028 GeomemOCoETMIE s s s e e e BR s Ez s el us B as NE S e a B0 124
g9 MatheatcalVModel o '3 td s ch B G 6 ST 8% & Bl 5bd 5% ¢ @ o E o o s ww s 124
9.3.1 Overview: Connection withRigid Body Model 125
9.3.2 Overview: Contrast with Previous Formulation 125
933 Overview: Decomposition oOf FOrce Objects - - - . voc v v woo v v v o s ww o = o 125
934 Names & Notation e 127
935 AppHcation INFOFMAON . 5 oo 6 0 s w e o w o & 0w w e w0 s wm @ e e S o 127
936 ProOWw-MODYEMECHAIISM. « oo v o o oo wmm s @ 50 5 8n 66 06 5% 06 © S 128
937 LincarProto-Motive Mechani8m . . v s v v s 5 0 5 55 0w w6 v e ww w s v s 5 131
938 Motive-GeneratorPUNCHONS, « . o « w5 o % 6w & % 3 & @ & o b w0 % & % 6w s % 5 134
9.3.9 Constraint Functions for Explicit Force Objects 136
9.3.10 Constraint Functions for Geometric Constraints 137
9311 Proto-Speciitl, - » v o nane sg m e 9% @8 REEs S P LA E SH S 8 140
94 PoscdPTODIEMS « s oo s asd 3396 m 16 R FAF P R AR LR AD R R E S R B L 58S 140
05 InmplemenialiondMoles: + 6 2 s s e n A0 W I B E BB RELEREE R RAL B IECRHEE B E 142
9.51 Concepal Secion ConSHUCS s, v+ s s v 2 s P A FE N B EE P B EE B 28 & 53 142
9157 MaSeCHONCOMRUER = = s pr s v T35 R8s A YSRGS ARG AL A6 & 8 142
953 NENIBEIEEE s oe b e r e s BR R AEstBE SR ASGRAEE BESE 58 144
DNd CEMIINCHARS: s i 2 et e e B A e R A AR E R AT B o6 gk 145
96 DS r et e e s e s P b T e B s A S AR SR e E B S s & e e 145
96:1 AcceleratioiobaBoIVRONT, ; s vt e e s s AaoE S B9 BT o m B oER = 145

9.6.2 Derivation of the Linear ConstraintEquation 146

Contents ix

10 Swinging Chain Model 147
L GOAlS: s s mem s e BT s 2 RIS R AB S ENE I CE N ASBE S0 AN TTRT S8 0T 147
102 Concepal MOdEL : - s s s c s s snsnss s v s b9 SRS EHE U SH 99 oe o 147
103 MathiematicaAlMode]l o s s e w s 5 6 9w ¥ S5 S GE CE NI A EH DR 2% P 148

11 “Tennis Ball Cannon” 150
UL GOAlS s 5o v ai S S R G B o8 R o e 56 & @ 6% @ e ¥ 55 e G w8 E a5 150
112 ConceptBal MOGEL = s & 55 s 2 & sd w5 G e & B & @ 5 @ BIE & B B0 & 9% B @ oE w5 150
113 MathiemaBcaAl Motel ¢ & v c c o nw o m o oo o m o @ e w0 E 6 5@ e 9 S 6 &8s w0 152

1131 WNames &ENOBHON = 5 o 55 6 0 o5 6 & 55 b o6 @5 863 588D E 5 950 @ 152
1139, DERNTHONS & :'s6 0 w0 o 5 6 o 5w e s w5 0w 6 6 505 6 @ R 5 S0 8§ 6088 W 153
11.33 BehaviorOf the MOUEL - . - o 5 55 5 0 wom o @ 5 5 @ o 58 508 5 @ 3 58 155
11:4 PoSEdPIODIEIHE .« ¢ oo 5 o oris 5 o w0 @ @6 5 65 8w 6 9@ @ e85 % 00N &8 %SE o 156
1L TplemBiCOIINOES < « v 0w m e s o @ mm e F w5 @8 & @S 66 s F e RS @ 157
1154 Math SechoCOMMIER = - - < s v s v s s m e I EEd 6 & @268 EES D0 157
1152 MENIREIERE! o0 o mio e 5 om0 mF 5 0w 5 @6 5 @85 5 0655 5968056 9 158
11.5:3 ConcepialSEooN - «» v v rmsms s B ma 5@ e @ FE & & 5 e § 5858 53 158
1154 E-MIGERE. oo o c oo e mndes oaes o w.c 0500 & @55 668 8 & 8y 6 158

12 Extensions to the Prototype Library 160
1271, Ripid-BoiyCOINION. « v o s oot 0 n e GREIERENFIE DS 5 A NS 3 BNE E 5 E 160
1209, RIMO-BOAYICOREECE « s n s 2 9B a7 SR GEEES BB AN AF B s oBR e W BT 6% 161
128 BifitlS:SARCAMD] « v w2 repass s et BT aRIRERA R T2 RS ¥ AR 6 5E 162
124 Mixed Dynamic/Kinematic MOtON oo v v v v v oo v o b oo m e s e 163
125 THIEXHRBOAES - 5oz s s s omeE s BEE s I B E O DL FBET R RS PHAR S 55 164
I206: SIMINEN - &« s s ape 1 RN E s S BT RO s B LEE P ASHERE SORE S D3 165

13 Concluding Remarks 166
131 DidWe'MeetOUrGoalS? « o+ + 56 & v mEm § pal 5w @ baw b ek s § 88 3 Gwoe s 166
132 Notesonthe Destn Framework . o : sme ¢ oo s o 9w § b f 2 5% 5 oo e o 167

13.2.1 Structure of Physically-based Models 167
1322 Mahematical MOTEIS: : « 5 a4 da g s v s & 08 § BB 6 b sd & $E 8 5 Sw s s 5 167
1323 ProgramFramework « : s s c s wwim s o5 8 58 § @w e s @ss 695 o 96 ¢ 3 167
13.3 Have'We Made Modeng Basy? « . ¢ o wowiw s s 6 Bl 5 e & o & o 9@ & 0k & 5 0 168
13.4 Computer-Assisted Mathematical Modeling 168
135 FureDICCHONS ; & 5 ¢ w5 5 o0 b mde & sodmm & %0 & B 5 B 5 985 LEEE 9 6 169

Appendices:

A Miscellaneous Mathematical Constructs 170
Ad TEEY . sacwripess s 0o n e A RS AP EAE IO PP B R 9IRS F G 8 & 3 170
AP AHAVE «csomnssn ey EREE ST XTI EE S LT Y ERG RS ATERE &S EHE 3 & 171
AG IMPEGENHUANGES « vnw e s r e IR 99 38R I DARE AP S MB FHEE o 3 172

A3 THpPIEMEMAHONOFTI®ES « < s v ew s 556 8 3 @ o w8 D@ E 5 505 & &w e 3 172
AB2 TIMplementatioN GEATIAVE « v r s s v 2 3% 52 8 208 a8 v o @b Swe e 172

B Prototype Implementation 173
B:l Overview of thePresenttionSIVIe « .« - « wom v s 55 s s 0 wn o mim s o ow s a s s s s 173
B2 TheConcepilSEClion, : c v e s s s s fimd s s e s &8 985 H e s 580 55 6w e 3 174
B3 TheMAMISOCHON s s scarmics b fmpem aedd Mo o o8 Bwd s @ @d vrness 175

B.3.1 Overview: Classes and AbstractSpaces 175

B32 IMmutibleODEel : s v ses s 5w p s awe o 06 @ns Snsssds 256553 175

Contents

B33 ID'S - : .
B34 IDsets
B.3.5 Indexes. . . .
B.3.6 State Spaces .

B37 Pabs and OtherFuNCHONS - : = - w6 2 3 mw & % aw 6 8 35 85 @@ & w5 & @ 55 6

B.3.8 Discussion . .
B.4 The Numerics Section

B.4.1 Overview of the “Structured Numerics” Library
B4.2 GatScat: AMAYGAther/SCatter . o v « v cw b v 55 6 5 w i o 5 5 5 8 8 8 85 s
B.4.3 LinSys: Linear Systemsof Equations
B.44 O0de: Ordinary Differential Equation v v v ..
BA4.S 0deExt:BxtrudedODE . « o v vv v s v som s d 6w oo wid 5 5 o 08 ws 8 5w 5
B.4.6 0deScatExt: Scattered, ExtrudedODE
B4.] Pode: Piccewise-ContimiDUS ODE & & - 55 6 0 5 5% o 5 5 5 oo s 3 0 o5 5 & 8 005
B4¥ PodeBXt: ExXtudedPODE . o o s 5w 5 5 @i i 5o 6 8 6 &6 0 5 o5 6 5 @ w8
B.49 PodeScatExt: Scattered, ExtrudedPODE
B.4.10 Ppoly: Piecewise Polynomial Functions
B.4.11 Segments: Partition of the Real NumberLine

B.4.12 Discussion . .

....................................

C Solving Piecewise-Continuous ODE’s
C.1 Formalism for Piecewise-Continuous ODE’s (PODE’s)

C.1.1 Definition . .

€12 CommaisODE SERMCHS < o v v s wn s o b ame W o @ ok e s 98 65 @8

C.1.3 Ermors
C.2 SolvingaPODE . . .

€21 SolvingConOnuous SEEMENts : < ¢ = « < s w v v s ww & 2 %5 s 6 88 5§ 85 3

C.2.2 Sampling G;(t)

C23 Fmdingt;, heRoOEOEGHE) « + o v s v s e o wm e o ms 50w 598y ba s
Ci24 SwitchingIoSeEmEMti F 1 & s o o o w0 6 6w % 5 6@ & 0w &% ® § 65 B @
C25 ZeroLengthBegmientsi . v o ¢ v owiv o 6 @@ & % 5 s ¥ 680 % % @@ B 8 a8 e 6 W
G20 NIUCHCALISSUBS o 5 & o 5 6 o w58 » & 606 5 @ & w6 o w @ B M @ @ w0 30§l e

C.3 Computational Costs .

....................................

C3l StalupOveriead - . o o6 s o cm v a wm v 5 5w 5 b mom e o W E 8w . A
C32 ContMIOUSSEEMBIMS : o v s o 56 s % 5@ @ 5 @@ 58 &% 6 0 & & ¥ 6 & 8 & am s

C.3.3 Determining t;

Bibliography

176
176
176
176
177
178
178
178
180
180
181
181
181
182
182
182
182
182
183

184
184
184
186
188
188
189
190
190
190
190
191
192
192
192
192

193

Index of Figures

Ch1.

1.1

13

Ch 2. A Framework for Physically-Based

2.1

22

23

24

Overview

[OOSR e —
(-—-‘ i
b
T -
-t
; S

“Siructured Modaling”

Derivation of structured modeling

=

P>

Modeling vs. simulation

Models
o
o il
i
Skpe. Pepemal kgt
Methodology for applied

mathematical modeling

>

Canonical structure of a
physically-based model

T
i
S
e
==
e) = B

Many posed problems per equation

10

2:5

2.6

2.7

2.8

Ch 3. Structured Mathematical Modeling

3.1

32

I C0E

P S Mg
x -
= rimize

g
b .

Many numerical techniques per
problem

ama O Dacamomtee 1r TurEm2a0) Srvsmas

il

AN+

T, P
= AL
4
T
Z &
Choices in the CMP structure
| ——r— |
———T—am
‘i
Modularity in physically-based

models

Outline of model design

Qutlineof Ch.3

LN
et e
=i T
Rr—— X it
o oy X P e e ben
W s s X mcrrr-macaon s

o See scmman X Penmsgs

Adopting 1deas from programming

Xi

11

13

14

17

Index of Figures

3.3

3.4

35

3.6

3:7

3.8

t;}% ::.u“)
er

<>
< R > i Thous I B e Trmes
S =)

No “state” in mathematical objects

ot & 2 exmcntmten o Cave:

[
S Comm

A specialization of a space
O npmrate Urioes.
L L]

Disparate unions
EP——
T
a
Wt FA
ol
A voms (a®. jeq. 14 . [19. [oouq. [aq) ¢ l‘llm
Anindex
-
various “aspect”
et

Points in the mpace.

A state space and its aspect operators

Nested state spaces

25

34

35

37

41

45

39

3.10

Ch4. Computer Programming Framework

4.1

42

43

44

& Bodel of & Body The Spl i Two
Cargpruon Space

:

Satuvicn of £ mocel g
[n 2ath tvcggh e space)

Example of a segmented function
model

A sy rcrer) ot 28 mpamva

—— . . L3 P)
Sequential representation of a
segmented function

e 101 P G

Framework for program structure

The conceptual section of a
modeling program

program

The math section of a modeling
program

xii

48

49

56

37

51

59

Index of Figures Xiii

4.5 60 6.2 k ﬂ.-—. . e . 76
Distinction between locations and
Outline of control flow across C-M vectors
interface
- 6.3 k L Lf\k von BB
(SR
4.6 = 60 Orentations and 2tensors
Role of the M-N interface
6.4 79
4.7 = 62
Representation of a coordinate frame
Procedural outlook
6.5 Arithmetic Operations 82
48 63 6.6 B = 83
A sequence of changes of Correspondence between objects
representation
Ducoupling Model Sate from Program Sate -;_'/
e o i 6.7 - i s B
49 EM, fs_ﬁrﬁ_, EM, ... 64
e - e
A e o e Functions from reals to geometric
Model state vs. program state objects
6.8 Math section class definitions . . . 91

Ch 5. Overview of Model Library
Ch 7. Kinematic Rigid Bodies Model

5.1 69
i | 94
Modules in the prototype library é//
Kinematic rigid-body motion
Ch 6. Coordinate Frames Model
7.2 95
6.1 74

Hierarchical Configuration

Multiple coordinate frames 7.3 Math section class definitions . . . 100

Index of Figures

Ch 8. Dynamic Rigid-Bodies Model

8.1

82

8.3

8.4

8.5

8.6

8.7

The four types of motives

A point mass

&

A body point

o

Consistent vs. inconsistent paths

— ¢ O

(o]
2w
d o~

Q.

A consistent path in a force field

Math section class definitions

Ch9. “Fancy Forces” Model

9:1

9.2

Various types of forces

_«%

Single forces and force pairs

. 102

. 103

. 104

. 104

. 109

« 111

. 118

- 122

+ 123

9.3

94

9.5

9.6

9.7 Math section class definitions

A 7 s

Various geometric constraints

Proto-Uodver Applind Motives
e B
Comsr10 20
EM Comsv2) 20
—_— Comya) 20
g=

Qutline of proto-motive mechanism

Deviation measure for point-to-nail

constraint
i S S
£

L o a
-

Behavior of constraint deviation

Ch 10. Swinging Chain Model

10.1

102

103

Joint between links

Ch 11. “Tennis Ball Cannon”

111

Tanres Batl Cannce
[sapix vagrmemec mooe}

fi.
Ii
<1t

Yy

Sample segmented model

. 124

. 126

=137

i 7

. 143

. 148

. 149

. 149

<451

Index of Figures

XV

112 %

11.3

11.4 Math section definitions
Ch 12. Extensions to the Prototype Library

12.1

122

123

Ch 13. Concluding Remarks
. 152

Ch A. Miscellaneous Mathematical Constructs

1 .. 170

Detail of a ball bouncing

...... 157

@‘o{’ﬁ
Y

Rigid-body collision

li
1

124

Interchanging dynamic and
kinematic motion

12.5

(=Y

Mixed static and dynamic parts

12.6

fregd

Flexible body

A forest of trees

A.2 Math section class definitions

172
Ch B. Prototype Implementation
B.1 Some differences between numeri-
cal routines and higher levels. . . . 179
. 160
B.2 . 180
Schematic of numerical modules
. 161
Ch C. Solving Piecewise-Continuous ODE’s
L—\\/\/\,—:
C.l1 = .. . 185
. 161 1 B
==
Example of a PODE
c2 . 185
. 163
Detail of a PODE
C3 ... 187
. 163 | i
A PODE as a sequence of segments
lr\’)':;;-i-u
. 164 C4 “ 5w« 188

Unsolvable PODE

Index of Figures xvi

. 189

. 191

Zero-length segments

Notation

New Notation

SCOPE ::Name I AMNE AR PR SOOPE o500 i e i s id s i
A |£ B A is a specialization of B with injection f.......................
{Things}|ps The space of indexes of ThINGSoovvviiiiiiiiiiniinnn...
Si The element inindex S labeledby ID z...........covviivinnn...
Things
[
a—A Detines:state space TGS« s res 00 < rm a5 smaves o s amme
b—B
]
%y z(s), where s is in a state space w/aspect Z...............ovnnn
z4(t) z(s(t)), where s(t) is in a state space w/aspect
[g: ;] A tuple describing an element of a state space.
fx Coordinate representationof zinframe f.......................

Standard Notation

f:A—B “function named f, which maps from space A to space B”
¥ The function as a whole
f(z) The value of the functionacting on z € A

iff If and only if

R The real numbers

Hr 1-d real arrays having dimension n
Rm*n 2-dreal arrays (matrices) w/ dimensions m and n
The empty set.

i
{:c \ condition } The set of all 2 such that condition holds.

0 -z y T
i Antisymmetric dual lz 0 —m] of a 3-D vector v = H
-y O z

Notn. 3.22

Notn. 3.27
Notn. 3.28

Chapter 1

Overview

s the computer graphics field matures, there is an increasing demand for complex, physically-based models.

However, little attention has yet been focused on design methodologies for such models. Hence, models
have often been ad-hoc, special purpose, abstruse, and/or hard to extend. This thesis develops a framework for
physically-based modeling, in order to alleviate these problems.

This chapter gives some background motivation for the creation of a design framework, and elaborates on the
goals for the framework. It additionally contains a brief overview of physically-based modeling, and an outline
of the remainder of the thesis.

1.1 The Need for a Design Framework

Creating new types of computer graphics models is to a large extent a programming task (at the current state
of the art). Creating physically-based models requires the translation of mathematical expressions of behavior
into computer programs. Thus, a practitioner of physically-based modeling typically creates a model by jotting
down some equations, then writing a program that embodies the model.

In our experience as practitioners of physically-based modeling, to make our programs (and hence the
models) be robust, we would try of course to write the programs “well”, i.e., pay attention to program structure
and modularity, take advantage of object-oriented techniques and languages, and so forth. However, we found
that careful program design didn’teliminate many types of stumbling blocks encountered when modeling. For
example:

o Even with a well-structured program, it was difficult to extend a model, to add new mathematical func-
tionality and behavior—changing the equations often required substantial re-writing the program.

¢ It was difficult to merge different models/programs written by different people. For example, in our
lab, we wanted to merge the constraint mechanism of [Barzel,Barr88] (for of rigid bodies) with that of
[Platt,Barr88] (for flexible bodies)—but the independently designed programs didn’t “mesh” directly.

e A program is only as robust as the model it embodies; careful program design doesn’t ensure that the
underlying mathematical approach is robust. For example, a rigid-body program that implements the
penalty method to meet constraints in dynamic models will generally not perform as well as one using
analytic or inverse-dynamics techniques (see, e.g., [Baraff89] and [Barzel88]).

e Programming a model doesn’t help us to communicate the model; rather than describe a model directly,
research papers often describe the computer program that embodies the model (e.g., [Barzel,Barr88],
[Girard,Maciejewski85], [Isaacs,Cohen87], [Bruderlin,Calvert89], [Chadwick,Haumann,Parent89]).

1.2 Goals for the Framework 2

Mathematical Modeling Structured Programming
-» Properties
‘L ® Top-down design
Equations
! ® Modularity
Solutions
l ® Data abstraction
.Physical Interpretation

N4

“Structured Modeling™

Figure 1.1: Structured Modeling draws from principles of mathematical modeling and structured programming, to derive a framework
for physically-based computer graphics modeling. O

e More generally, programming doesn’t help us to understand a model. It can be hard to separate the
fundamental principles of the behavior of a model from the details of program construction, and to
distinguish minor tweaking/debugging of a program from changes to the underlying model.

As a result of the above experience, we are led to the conclusion that it is important to have a common,
general-purpose strategy and framework to design models “on blackboards,” before implementing them as
programs. This work describes such a strategy/framework, that was created by applying structured program-
ming and mathematical modeling principles to the domain of physically-based computer graphics modeling
(Fig. 1.1). Given the framework for “blackboard” design of models, we then specify a corresponding computer
program framework, that can directly and naturally support the models we design.

1.2 Goals for the Framework

Sec. 1.1 discussed our desire to have a strategy/framework for the design of physically-based models. Here,
we enumerate some goals for the framework:

o Tofacilitate the understanding and communication of models, both in discussions with colleagues and in
written articles and reports. We want to be able to create complete, well-defined “blackboard” models,
independent of the programs that implement them.

o Tofacilitate the creation of models with high degrees of complexity. A variety of factors contribute to the
complexity of models: size, in terms of numbers of objects and possible interactions between them; the
desire to model real-world phenomena with increasing accuracy; mathematical complexity; intricacy of
numerical computational techniques; and so on. We are particularly interested in “non-homogeneous”
models, which embody several behaviors that differ qualitatively from each other or over time.

o To facilitate the reuse of models, techniques, and ideas, so as to allow new models to “stand upon the
shoulders” of previous ones, and to help us merge models that are designed separately.

o To facilitate the extension of models, so that newly developed techniques and methods can be used to
enhance existing capabilities, without having to “start over.”

1.3 Overview of Physically-Based Modeling 3

]

Modeling Simuiation

L.c3er wessis

1.1526 0.0027
0.0965 1.6171

p— 08935 -1.58522
0.7604 1.53233

—_— 0.6800 049338
0.5672 1.42879
0.4891 0.60216
0.355¢ 1.30232

0.2806 1.03451
0.2251 -0.92554
0.1011 ©6.68527

o]o]g]

Figure 1.2: There are two phases to the overall process of physically-based modeling: “Modeling” defines the formal behavior and
equations of the physical system. Given a definition of behavior, “Simulation” is performed to numerically solve the equations. Since
the output shown to the useris the immediate result of the simulation, the user may not see the “behind-the-scenes” modeling. O

¢ To facilitate the creation of models thar are “correct.” We want each model to achieve its particular
goals. We want to avoid ad hoc techniques, so that models will be useable (and re-usable) in a wide
variety of circumstances.

o To facilitate the translation of models into programs. We want the program layout and structure to
correspond as closely as possible with the blackboard description of a model.

We will emphasize a basic low-level framework, intended for “hands-dirty” model makers, rather than
attempt to define a final high-level specification or environment for end-users. The low-level framework,
however, is intended to be a base upon which higher-level constructions can be built.

1.3 Overview of Physically-Based Modeling

Physically-based modeling is modeling that incorporates physical characteristics into models, allowing nu-
merical simulation of their behavior. It has become somewhat of a catchall term for a variety of techniques,
that all share the approach of defining physical principles of behavior for their models, then having the com-
puter compute the details of the behavior. Physically-based modeling is a relatively new branch of computer
graphics.! A brief survey of the field can be found in [Foley et al.90-Ch.20].

Common elements in physically-based modeling are: classical dynamics (motion based on forces, mass,
inertia, etc) with rigid or flexible bodies; inter-body interaction; constraint-based control. Physically-based
models are founded on mathematical equations, and often involve numerically intensive computation to sim-
ulate their behavior.

Physically-based models most often focus on how bodies move and change shape over time. But also,
sophisticated rendering techniques can be tied in with descriptions of the models, since rendering can be
viewed as simulating a model of the interaction of light with matter. Thus in general, physically-based mod-
eling blurs the traditional distinction between modeling, rendering, and animation in computer graphics (see
[Foley et al.90-p.606]).

Notice that we make a distinction between simulation, which emphasizes computation of behavior given
amodel, and modeling which focuses on the creation of the models—this thesis will address modeling rather
than simulation. Note, however, that since we ultimately simulate our models to determine their behavior and
create images or animations, the simulation is what is most directly visible to an observer; the modeling work
itself is often behind-the-scenes, a matter of defining whar to simulate (Fig. 1.2).

Finally, we observe that classically, a formalism of a physical system or behaviors is typically just a
collection of equations. Each equation can be thought of as a “model fragment”—but for our goal of creating

1The field was first named in a course in the 1987 ACM SIGGRAPH (The Association for Computing Machinery’s Special Interest
Group on Computer Graphics) conference, “Topics in Physically-Based Modeling” [Barr87].

1.4 Outline of Thesis 4

a complete, well-defined model, we must additionally define the “glue” that connects these fragments. The
mathematical modeling techniques presented in Ch. 3 will address formal models that include the “glue”
between fragments.

1.4 OQutline of Thesis

Beyond this chapter, the thesis is organized as follows:

e The design framework
— Ch. 2: Framework for “blackboard” design of physically-based models
— Ch. 3: “Structured” mathematical modeling techniques
— Ch. 4: Computer program framework

A library, designed using the framework.
— Ch. 5: Overview of the library
— Ch. 6-9: Library modules
— Ch. 12: Extensions to the library

e Conclusion, Ch. 13

Miscellaneous mathematical objects, Appendix A

Details of prototype implementation, Appendix B

A technique for solving piecewise-continuous ODE’s, Appendix C

[]

1.5 Related Work

[Brooks91] addresses the same question as we do: how to manage complexity of computer-graphics models.
Like us, he adapts ideas that are familiar to programmers; he addresses issues such as debugging, versioning,
documentation, etc. Thus his focus is more macroscopic than ours: his effort might be called “model engineer-
ing” (from software engineering), as compared to our “structured modeling” (from structured programming).
There is of course overlap between the two.

[Booch81] is similar in spirit to our work—design techniques to manage complexity—but in the domain
of object-oriented programming rather than physically-based modeling. Our work does have some object-
oriented elements however, in mathematical modeling approach and in program design.

Much of our work is based on structured programming and software engineering; when not directly in
techniques, then in the ethic of abstraction and modularity as a basic principles of design. [Dahl,Dijkstra,
Hoare72] and [Dijkstra76] provide the foundations of structured programming. ([Booch91] contains an ex-
tensive bibliography on software engineering.)

We are not aware of other work that addresses physically-based modeling qua modeling. Most of the
works in the field are descriptions of techniques to implement various types of effects and behavior. We
list a smattering of works: [Badler et al.91] gives techniques for modeling and simulating articulated figures
(figures with limbs, such as people and animals); [Raibert,Hodgins81] discusses walking and running (this
work has a scientific modeling perspective; in addition to making computer animation of locomotion, the
authors build robots that implement their techniques); [Terzopoulos,Fleischer88] models inelastic flexible
bodies; [Reynolds87] models flocking behavior of animals; [Fournier,Reeves86] models ocean waves.

A common and fertile approach in physically-based modeling is to use constraint-based techniques to con-
trol models. To name just a few works: [Witkin,Kass88] describes a formation of animation as a constrained
multi-point boundary-value problem, thus allowing the user to specify intermediate and final configurations
as well as the initial; [Barzel,Barr88] describes how to constrain physical models to follow user-specified
paths; [Isaacs,Cohen87] and [Schroder,Zeltzer90] combine constrained dynamics with kinematic control;
[Platt,Barr88] uses constraint techniques for flexible bodies; and [Kalra90] discusses a framework to combine
various constraint methods.

1.5 Related Work 5

[Zeleznik et al.91] presents an interactive modeling system which, although not specifically focused on
physically-based modeling, similarly blurs the traditional modeling/rendering/animation distinction: “We
wish to expand the definition of ‘modeling’ to include the realms of simulation, animation, rendering, and
user interaction.”

There is a large body of literature on simulation and numerical techniques; see, e.g., [Ralston,
Rabinowitz78] for an introduction to numerical analysis, and [Press et al.86] for a collection of numerical
subroutines.

Chapter 2

A Framework for Physically-Based
Models

his chapter presents a design framework for physically-based models; the emphasis is on the high-level design

or specification of physically-based models, as opposed to their implementation. Our approach is to develop
and discuss a model on a blackboard, i.e., create a blackboard model, before implementing it in a computer
program. The framework developed here, however, we will carry over directly to the design of programs, in
Ch. 4.

This chapter might seem somewhat theoretical; to see the methods “in use,” the reader is encouraged to skim the
models described in Ch. 6-9. (Note however that the techniques and notation used for the mathematical subparts
of the models in Ch. 6-9 will not be defined until Ch. 3.)

2.1 Overview

A physically-based model includes physical characteristics of the “thing being modeled” and specifies its
behavior via mathematical equations. Thus a large component of physically-based modeling is mathematical
modeling. We want to organize models into well-defined canonical parts, including a mathematical modeling
slant and an emphasis on modularity.

The underlying structure of a physically-based model is independent of its computer implementation. We
will therefore talk mostly about the design of blackboard models, i.e., models that are worked out on paper or
on blackboards,! without being tied to programming details. Thus for this chapter, “the model” includes the
high-level plans, but we de-emphasize the implementation details.

We are ultimately interested in computer simulation of our models, so the ideas developed here are in-
tended to be practical and implementable—indeed, the design of computer modeling programs discussed in
Ch. 4 follows directly from the structure in this chapter. Moreover, Ch. 4 assumes that a blackboard design of
a model has been worked out before the model is transferred to a computer; the models described in Ch. 6-9
are designed in such a manner?

Note that the discussion in this chapter will not make a heavy distinction between a model (such as a
teapot or space shuttle) and a modeling technique (such as a particular constraint method). In particular, for
the approach we will be discussing, models will be assembled from building blocks, or “modules,” which can
in turn be built from smaller modules. All the modules in this hierarchy will be designed in the same basic
style, be they low-level tools or the top-level model.

1'We use the term “blackboard models™ rather than “papermodels” so that the models are not thought of as paper tigers or as origami.
20f course, we don’texpect ablackboard model to work perfectly the first time it is implemented; the blackboard model will typically
be modified and updated as the implementation is developed.

2.2 Background: Applied Mathematical Modeling

N,

Y

F
Step 1. Properties <.,

. ball
1.‘ x*
Step 2. Equations 1 gravity
height | \/
Step 3. Solutions z(t) 9
Step 4. Physical Interpretation
e ground

Figure 2.1: (Left) Methodology of applied mathematical modeling. These steps are discussed in the text. O
Figure 2.2: (Right) A falling ball, used in the text to illustrate the applied mathematical modeling procedure of Fig. 2.1. O

2.2 Background: Applied Mathematical Modeling

‘We present here a brief discussion of mathematical modeling as it is done by applied mathematicians, in order
to provide background for the physically-based modeling strategy of Sec. 2.3. This discussion is distilled
from the ideas in [Boyce81].

Fig. 2.1 shows the sequence of steps that make up mathematical modeling. To illustrate the steps, we will
consider the following simple (trivial) problem: “How long does it take for a falling ball to hit the ground?”.

We will make a model of the physical system, and use that model to predict an answer to this question. See
Fig.2.2.

Step 1. Choose properties to include in the model. Doing so typically involves making simplifying assump-
tions. For our example, we assume: horizontal motion is irrelevant; gravity provides a constant down-

ward acceleration g; friction is irrelevant; and the ball starts at rest. We will examine the height of the
ball as a function of time z(¢).

Step 2. Create equations for the behavior. These are the mathematical model. For our example, we have the

differential equation:
2
j‘-'-gz(t)+g = 0
E'-t'z(t)ltzﬁ =0

The equations must be well-defined; we don’t want there to be any ambiguity or contradictions. The
equations can be manipulated, transformed, subject to proofs, and so forth.

Step 3. Solve the equations. The above differential equation yields the following closed form expression:
2(t) = z(0) — gt?/2. Given an initial value of z(0) = h, we find that z(t) = 0 when t = \/2h/g.

Step 4. Determine the physical interpretation of the solution. How do the results relate to the thing being
modeled? What is the mathematics telling us? We can make qualitative or numerical predictions. In
the example, we see that balls that start higher will take longer to hit, and if gravity were stronger, balls
would hit sooner; quantitatively, if the initial height is 3 meters and gravitational acceleration is 9.8
meters/sec?, then the ball will hit in approximately .78 seconds.

(Repeat.) If the results aren’t sufficient for our needs, we might start again based on what we have learned.
For example, if measurements show that bigger balls take longer to hit, we might choose to include

some properties such as mass of the ball and air-resistance that depends size of the ball, then update the
equations, and so on,

2.3 Canonical "CMP” Structure of a Physically-Based Model 8

Canonical “CMP” Structure

rPhysically-Bas‘,ed Modeﬁ

§

-

Conceptual model

Mathematical model

Posed problems

1id

r
spout

S(u,v)=2 2% P B(u) B(v)
i f S(alt.b(t) ot

How dark is the tea?
i.e. given M

find af

such that...

.
.
.

Figure 2.3: Canonical Structure of a Physically-Based Model. The conceptual model describes the physical properties of the thing being
modeled. The mathematical model is a collection of equations for the behavior of the model. The posed problems include conceptual
statements of tasks to be performed, as well as the corresponding mathematical problems. We call this partition the CMP structure. O

The power of this methodology lies in the well-defined mathematical model. Once the equations have
been defined, we can draw on the vast body of mathematical knowledge to manipulate them and to solve
problems. The equations stand by themselves, irrespective of what the particular problem is. For example,
the equation z;’;,,z(lt) + g = 0 instep 2 above could perhaps have been derived for a traffic flow model instead
of a mechanics problem—it makes no mathematical difference.

2.3 Canonical “CMP” Structure of a Physically-Based Model

To a large extent, physically-based modeling is an application of mathematical modeling. Because of the
power of the applied mathematical modeling methodology, we strive to build that methodology into our idea
of a physically-based model. We thus partition a physically-based model into three distinct parts:

o the Conceptual model,
o the Marhematical model, and
o the Posed problems,

where the parts correspond with the steps in Sec. 2.2. We call this partition the conceptual/mathematical/
posed-problem structure, or CMP for short (Fig. 2.3).

2.3 Canonical “CMP” Structure of a Physically-Based Model 9

2.3.1 The Conceptual Model (“C”)

The conceptual model is a description of the properties, features, characteristics, etc. of the thing being
modeled, as per step 1 of Sec. 2.2.

In addition to properties that underly the mathematics, the conceptual model may also contain other in-
formation about the thing being modeled. For example, a conceptual model of a dynamic rigid body for
computer graphics, in addition to terms such as mass and momentum that enter into a mathematical descrip-
tion of classical rigid-body motion, would have terms such as surface color and specularity that do not enter
into the equations of motion.

2.3.2 The Mathematical Model (“M”)

The mathematical model that is part of a CMP structure is directly adopted from mathematical modeling,
the result of step 2 in Sec. 2.2. Itis a collection of mathematical equations that describe the behavior of
the model. The equations are ‘““context free”—purely mathematical expressions that are complete without
needing properties or definitions from the conceptual model. There is of course a correspondence with the
conceptual model, but that correspondence is in the mind of the designer of the model, rather than inherent in
the mathematics.

Note that we distinguish between a mathematical model and a “math problem”: the equations in the model
are not “problems” but rather predicates, i.e., statements of relationships between entities in the model. For
example, the expression

29 = £(a0),)

simply states that the quantity on the left, the rate of change of y(¢), is equal to the quantity on the right, the
value of f(...). Various problems could be posed around the statement—such as an initial-value problem,
a boundary-value problem, or testing measured data for agreement—but we don’t consider those to be part
of the mathematical model (see Fig. 2.4).3 Phrased from a computer-science point of view, the mathematical
model is declarative rather than procedural (this will be discussed in Sec. 3.5.2).

In addition to equations, a mathematical model includes definitions of the terms that go into the equations.
For the above example, we would define y to be a real-valued function of one real argument, f to be a real-
valued function of two real arguments, and ¢ to be a real number. It is often convenient to define named
properties, e.g., “a function T'(x) is said to be frumious when |T'(z)| < z2...”

Creating a mathematical model is not necessarily easy. Note that we don’t try to define models that are
“minimal”; a model may include any or all definitions and equations that are convenient. For physically-based
modeling, we have a set of goals, strategies, and techniques that are relevant, as we will discuss in Ch. 3.

2.3.3 The Posed Problems (“P”)

We typically want a physically-based model to do something, such as make a prediction or simulate some
behavior. Mathematically, this translates into solving some problem, as per step 3 of Sec. 2.2. Thus the
third part of a physically-based model, once we’ve defined the conceptual and mathematical models, is the
collection of posed problems.

Each posed problem includes both a conceptual notion of a task to perform, and the corresponding math-
ematical problem. The mathematical problems list which terms from the mathematical model have known
values, which are unknown, which equations from the mathematical model come into play, and so forth.
Sometimes, the mathematical problems may be solved analytically, but in general for physically-based mod-
eling, we will pose problems to be solved numerically, via computer.

3 Since we distinguish equations from problems, from our point of view the common phrase 2o solve an equation (such as we used in
step 3 of Sec. 2.2) is unrigorous. We take it to be slang for fo solve the problem that is implied by an equation, presupposing that only a
single problem is implied in the current context.

2.4 Discussion of the CMP Structure 10

A single equation... ...many posed problems
—> Evaluation
3 Given:yo, !n,f,k E‘ind:_);'
. = Initial-value
’ Given:). /. k Find: ¥(1)
y't) = fly(t),tk) = Boundary-value
Given: J;, };, f Find: kK

= Validity-check
Given: y(f),f,k Test equality

Figure 2.4: A single mathematical equation or model can lend itself to many posed problems. In this case, a differential equation
describes a relationship between various quantities; there are many combinations of knowns and unknowns, which lead to various
canonical problems. O

The problems can often be stated in a standard canonical form, e.g., as an initial-value ODE problem:
“Find Y (t) where Y’ = f(Y,t), given f and the initial value Y} at £o.” Notice that, unlike the mathematical
model, posed problems are often procedural, e.g., “given z, express y as a function of it, then find z such
that. . ..” In general, the problems should be mathematically well-posed.*

2.3.4 Implementation & Physical Interpretation

To implement a physically-based model, i.e., to make predictions or simulations, we need to solve the posed
problems. But how to solve them? We don’t offer any specific insights here—that’s what the fields of
applied mathematics and numerical analysis are about (see, e.g., [Lin,Segel74], [Zwillinger89], [Ralston,
Rabinowitz78]). There is also a large body of knowledge and software for solving numerical problems on
computers (e.g., [Press et al.86], [NAG]). Computer tools exist as well, to help with mathematical manipula-
tion and numerical problem solution (e.g., [Wolfram81]).

Most often, the designer of a model has some ideas about how to solve the posed problems; notes along
these lines can accompany a description of CMP structure, as part of a blackboard model. Given a blackboard
model and solutionideas, one can write a special-purpose program that numerically solves the posed problems.
Ch. 4 will discuss a more general program framework in which to embed the entire CMP structure.

Once a model has been implemented, and has produced results, we need to interpret those results, as per
step 4 of Sec. 2.2. The posed problems describe the conceptual tasks that corresponds with the mathematical
problems, helping one to relate the numerical solutions back to the conceptual model. But ultimately, physical
interpretation—how the results relate to the thing being modeled—is a process that is undertaken by the
designer or user of the model.

2.4 Discussion of the CMP Structure

‘We have found that separating the conceptual, mathematical, and posed-problem sections of modeling tech-
niques makes it easier to understand them. When we read a new article that discusses a model or modeling
technique, or when we come up with an idea of our own, it is instructive to ask four questions:

e “What is the model or technique trying to do?” (conceptual model)

e “What are the underlying equations?” (mathematical model)

*That is, each problem has a solution that exists, is unique, and depends smoothly on the known values ([Nihon Sugakkai77]).

2.4 Discussion of the CMP Structure 11

A single problem... ...many numerical techniques
L = Euler's method

- = Runge-Kutta
=> Adams-Bashforth

Initial-value ODE

oGiven: yO ‘ {0 g f(y,v _— il
s = Bulirsch-Stoer

esuchiat yt) =y, = Backwards Euler
Y =1y = Gear's Method

s,
N)

Figure 2.5: A single problem can often be solved by many different of numerical techniques. In this case, there are a variety of solvers
for initial-value ODE problems; the choice depends on issues such as accuracy, stiffness, speed, ease of implementation, and so forth.
The availability of such techniques, and the ability to suit a numerical technique to the particulars of a given problem, are primary reasons
not to “hardwire” a specific technique into one’s physically-based model. O

e “What are the knowns and unknowns?” (posed problems)

o “What are the solution techniques?” (implementation)

2.4.1 Why Separate The Numerical Techniques?

The CMP structure doesn’t include numerical techniques; they are left as implementation details. But some-
time numerical manipulation is presented as an inherent part of a model or method. For example, sometimes
modeling techniques are described in ways such as:

“For each frame Supdate the body positions by adding the velocities. . . ,”

This description has some appeal: the physical interpretation is immediate; one can intuit why the results are
plausible; and it is straightforward to implement. Notice that it mingles the numerical manipulation with the
conceptual and mathematical models, as well as with the posed problems: The properties of the body and the
animation, a differential equation of motion, and Euler’s method for solving an initial-value problem are all
stated at once.

Despite the appeals of such mingling, we feel it is best to make a clear separation between the statement
of a model and the numerical techniques used to solve the posed mathematical problems.

The most pragmatic reason for the separation is that stating a numerical problem in canonical form allows
one to take advantage of existing tools and knowledge: there are many numerical routines, libraries, books,
and lore upon which one can draw, e.g., [Press et al.86], [Ralston,Rabinowitz78], [NAG]. There are often tools
available that are more robust than the intuitive techniques; for example Euler’s method is known to be less
accurate than others, and unstable for stiff equations ([Press et al.86-Ch.15]).

Furthermore, if the particular numerical solution technique is not hard-wired into the model, one can
choose the technique that is appropriate to the particular circumstances of the problem. For example: (see
also Fig. 2.5)

“For up to moderately-sized problems, [we use] a Choleski-type matrix factorization procedure. . . For large
problems [we use] iterative methods such as successive over-relaxation... Multi-grid methods.. . have
served well in the largest of our simulations” [Terzopoulos,Fleischer88-p.275]

Finally, keeping the numerical technique separate helps insure that implementation details such as step
sizes, error tolerances, and so forth, don’t have significant effects on the conceptual behavior, For example,

5 An animation frame is a single image from the sequence that forms the animation.

2.4 Discussion of the CMP Structure 12

while we can accept that higher error tolerances may produce less accurate simulations, if we decide to animate
at twice the frame rate, we wouldn’t want to get qualitatively different behavior (see also Fig. 2.6).

Separation of numerical solution techniques from the body of the model is not unique to our CMP structure.
In practice it is done quite frequently (hence the existence of the field of numerical analysis). The CMP
structure itself, however, is not typically emphasized; the next sections will expand on the reasons for the
partition,

2.4.2 Why Separate Problems From Equations?

The distinction between equations and problems, which we emphasize in Sec. 2.3.2, may seem like hairsplit-
ting or sophistry. Perhaps interesting to academics, but where is the practical benefit?

The primary benefit is in extensibility and reusability of models. As mentioned earlier, a single mathemat-
ical model can imply many numerical problems; if the numerical problems aren’t hardwired into the model,
we can have the opportunity later to pose modified or new problems.)

For example, in our own earlier work [Barzel,Barr88], we hardwired a specific numerical problem into our
model: we described the motion of rigid bodies as an initial-value ODE expressed in terms of linear and angu-
lar momenta (among other things), with the linear and angular velocities were defined as “auxiliary” variables
to be computed once the momenta have been determined. After a small amount of experience, we realized
that it would be easier for the user if we could specify initial conditions in terms of the velocities rather than
the momenta. Unfortunately, because the model (and hence the computer program) had the momenta hard-
wired as the “more primitive” representation, it required some inelegant patching of the computer program to
insert appropriate velocity-to-momentum conversion routines. The mathematical rigid-body model in Ch. 8
of this work, on the other hand, merely describes the relationship between the velocities and momenta, with-
out preferring one to the other; the resulting computer implementation naturally supports user specification
of either.

Another reason for the separation of the mathematical model from posed problems is the declara-
tive/procedural distinction between them. Being purely declarative helps make the mathematical model more
robust, as will be discussed in Ch. 3. And the declarative/procedural distinction will be significant to the
design of programs to implement physically-based models, in Ch. 4.

Note that there is often mathematical manipulation as part of solving a given problem. It is thus possible
for there to be ambiguity between an equation that “should” be part of the mathematical model, and one that
is “merely” an intermediate result in an analytic solution. For example, many analysis problems are solved
via eigenvalues; should the eigenvalue-eigenvector equation be included in the mathematical model? Such
questions require judgement calls on the part of the designer of the model. Our general tendency, however,
is to include all such equations in the mathematical model; if the equations arise for one posed problem, they
may also arise for some later problem, thus we may as well state them up front. Additionally, these equations
often have interesting physical interpretations, and thus it can help our understanding of the overall model to
include them explicitly. If the intermediate equations are only approximations, however, we are more hesitant
to include them in the model (Fig. 2.6).

2.4.3 Why Separate Concepts From Mathematics?

Having equations that stand alone—without conceptual context—is a source of the power of applied mathe-
matical modeling, as discussed in Sec. 2.2. This is thus our primary reason for making an explicit distinction
between the conceptual and mathematical models.

There are additional benefits incurred by the separation, however. As mentioned in Sec. 2.3.1, there
are properties of the thing being modeled that are important to our overall model, but that don’t fit into the
mathematical model; such properties have a home in the conceptual model.® The conceptual model, since

6In some cases, too, the mathematical model has terms or degrees of freedom that don’tmap directly backto anything in the conceptual
model, e.g., as gauge transformations in classical electromagnetic field theory ([Landau,Lifshitz75]).

2.4 Discussion of the CMP Structure

13

Various CMP Decompositions for Flexible-Body Simulation

A

Conceptual Model

Flexible

Body

.
H
.
.
-

-

Partial
Differential
Equations

Mathematical Model

G

-
Discrete Equations

Numerical Solution

Vs.

B

Conceptual Model
Flexible

Body

Ssssssmsssssnansnnnn passess sessssssssnses

N

Partial
Differential
Equations

(refinement)

Vs.

€

Conceptual Model

Flexible

Body

(refinement)

Point-mass/Spring System

T

SCEEsEeEEESRNRINEINRERTRARERERaRESEIRREES

Yosneme

Discrete Equations

Mathematical Model

Figure 2.6: Choicesin the CMP structure. Example Problem: Simulating the motion of a flexible body. A flexible body can be described
mathematically as a continuous surface governed by partial differential equations (PDE’s). PDE solutions are typically approximated by
discretizing, yielding numerically soluble equations. We illustrate three ways of organizing the CMP structure:

A.

B.
C.

cretization.

The mathematical model includes a refinement to discrete equations.
The conceptual model includes a refinement to a mass-point/spring system.

The conceptual model is a flexible body, the mathematical model is a continuous surface, the solution technique requires dis-

Version A s the “cleanest”: the numerical solver can automatically/adaptively adjust parameters such as discretization, transparently to
the high levels of the model, or other solvers can be used. At the other extreme, version C has discretization artifacts “hardwired” into
the model (often mixed with other details such as polygonalization for rendering), thus to change solution parameters requires altering
the high-level model. Version C’s main appeals are expedience (it can be simple to implement on top of existing rigid-body simulation
systems) and mathematical simplicity (there are no PDE’s). Flexible bodies are discussed furtherin Sec. 12.5. O

2.5 Modularity and Hierarchy 14

Modular Hierarchy of Models

I (higher-level models) I

L Constraint Forces

|
| :
[Dynamic Rigid Bodies | /ll
| | |T.":

| Kinematic Rigid Bodies |
]

I Coordinate Systems |

s

-

Figure 2.7: Modularity in Physically-based Models. Individual “modules” are defined for parts of the overall model domain. Each module
may make use of or build on lower-level models, for concepts, mathematics, and/or posed problems. The diagram illustrates a hierarchy
of modules that describe various aspects of rigid-body motion (the hierarchy corresponds with the prototype library in Ch. 6-9). O

it is just a statement in words, can include vague or fuzzy concepts, while the mathematical model must be
precise.

The precise nature of the mathematical model lets us examine it for inconsistency, insufficiency, singular-
ities, and so forth. Finding such irregularities in the mathematics can often give us insightinto the conceptual
model, and help identify parts of the overall model that we had neglected conceptually. For example, singular-
ities in a constraint equation can imply physically unrealizable configurations, and having too few quantities
to create a well-posed problem implies that our conceptual model isn’t rich enough to do what we want. The
precision of the mathematical model similarly helps in explaining and debugging a model, as we shall discuss
in Sec. 2.6.4.

Note that the separation between the concepts and the mathematics can sometimes be hard to specify. For
some applications, especially scientific or technical ones, the concepts can be inherently mathematical, e.g.,
arigid body’s conceptual shape may have a mathematical definition, such as a cone or a sphere. Also, we
may introduce a refinement into a model that can be at the conceptual, mathematical, or problem-solution/
numerical levels. For example, motion of a flexible body is typically simulated by discretization methods; the
discretization might be conceptual, mathematical or numerical, as illustrated in Fig. 2.6.

2.5 Modularity and Hierarchy

The CMP structure helps us to organize our thoughts about what’s what in a model, helps us to understand the
mathematical and numerical behavior, and so forth. But CMP doesn’t directly address the question of how to
handle big models. We need a way to manage their complexity, even within the CMP structure: That’s where
modularity and hierarchy come in.

Modulariry means that we build separate, loosely connected components, with well-defined boundaries
and interfaces. Hierarchy means that each module can be built by putting together or invoking simpler mod-
ules. These techniques let us work on complex problems by a “divide-and-conquer” approach, breaking down
large problem into simpler ones that are easy to comprehend. At the higher levels, one can focus on the inter-
action between the modular parts, without worrying about the details within them. Furthermore, the modular
Pparts can be reusable—commonly used parts can be designed “once and for all” and kept in public libraries,
so that their usage can be consistent, and so that designers won’t have to repeatedly reinvent them.

The above is well known from programming, but it applies equally to blackboard physically-based
models.” Fig. 2.7 illustrates a decomposition of rigid-body modeling into separate modules; dynamic rigid

"1f we design our blackboard models modularly, it then will be straightforward to make modular program implementations. This will

2.6 Designing a Model 15

bodies, e.g., are built from kinematic bodies, but with additional properties such as mass, and their motion is
prescribed by Newton’s laws.

So how do we make and include modules using the CMP framework? For blackboard models, it’s easy:
mostly, just say it’s modular, and it’s modular—we have no formal mechanisms to deal with. That is, the
conceptual model, being just words, can just refer in words to concepts from another module, e.g., a high-
level model in Fig. 2.7 can say “the swingarm moves as a dynamic rigid body. . . ’; the mathematical model
of one module can define its quantities and equations in terms of those from another module;® and a posed
problem of one module can require solving a subproblem from another module.

Notice that there’s typically “parallel” modularity and hierarchy in the conceptual/mathematical/posed-
problem parts. For example, if one refers to concepts of dynamic rigid bodies, one will typically need to refer
also to the corresponding mathematical equations, and one will often pose standard problems. Thus we group
all three parts of a CMP partition into a single package or module. Ultimately, we’d like to define libraries
of standard, general-purpose CMP modules that can be used repeatedly in many complex modeling tasks;
Ch. 6-9 defines a simple prototype library for the domain of rigid-body modeling.

Modularity is a simple concept—there’s not really very much that we have to say about it here. It isn’t
hard to design and build models in a modular manner. What’s mostly needed is to decide to design models
modularly; then, while doing the designs, one pays attention to issues such as generality, ease of use by others,
and so forth, that are familiar to most structured programmers.

2.6 Designing a Model

This section discusses some issues for designing a model, or CMP module. Note that we don’t make much
of a distinction between “top-level models” and “low-level modules™; we like to design top-level models in
the same way as modules intended for inclusion in a library. It’s not any harder to design a top-level model
as a module, and doing so can help make the model easier to extend or combine with other models later on;
furthermore, given a rich library of support modules, the top-level module often doesn’t need to do very much.

2.6.1 Separating C from M from P

The most important part of designing a model, we feel, is keeping the concepts separate from the mathematics
separate from the posed problems. Various reasons for this separation were expounded in Sec. 2.4, but they
can all be distilled as:

A well-defined CMP partition helps a model be robust, reusable and extensible, and helps us fo
understand, build, and debug the model.

There may be choices about what goes into which section (e.g., as per Fig. 2.6), but we insist upon explicitly
choosing.

We also want to make sure that implementation details—or things that ought to be implementation
details—aren’t mixed in with the model. The CMP separation helps with this somewhat, but one might still
mix numerical details with the conceptual task statement in a posed problem. Watch out for statements like
“choose an acceleration to bring the body to rest in one time step,” that mix conceptual properties (“acceler-
ation”) with solution parameters (“time step”). Sometimes, however, implementation details can affect our
choice of model, as will be discussed in the next section.

2.6.2 Top-Down vs. Bottom-Up vs. ...

How do we go about designing a model? Do we design the conceptual model first, then the mathematical, and
finally pose some problems, or do we start with problem tasks, then build the conceptual and mathematical

be discussed in Ch. 4.
8Ch. 3 will discuss techniques to support modularity of mathematical models.

2.6 Designing a Model 16

models around them? Do we start with the existing library modules and build upwards, or start with the goals
and build downwards?

For the CMP structure, a top-down approach—conceptual, then mathematical, then posed problems—
corresponds with the mathematical modeling steps of Sec. 2.2. Notice, however, that mathematical modeling
includes a repeat step, in which we go back and adjust the top level based upon our experience, and which is
consistent with the “annealing” design strategy.

Often, practical ability to solve the posed problems limits the effectiveness of top-down design. Some
difficulties that can arise for numerical problems are:

¢ The solution techniques are unacceptably slow.
e Available subroutine libraries don’t have the appropriate solvers.
¢ It’s unknown how to solve a problem, e.g., Fermat’s last theorem.

e A problem is probably unsolvable, e.g., the halting problem, or is NP-complete,® e.g., the traveling
salesman problem.

If we encounter a circumstance such as these, we may need to change the mathematical or conceptual models,
to produce a more tractable problem. And sometimes, our top-level goals are inherently intractable, and
cannot be met as stated.

Note, that there can be circumstances in which computational details affect the choice of conceptual model
without impinging upon our goals. For example, if the falling ball of Fig. 2.2 were to bounce, the traditional
linear restitution model for rigid-body collision ([Fox67]) leads to a sort of computational Zeno’s paradox,
in which the ball takes infinitely many ever-smaller bounces, but never reaches continuous contact with the
ground. Switching to a quasilinear restitution model, 1® however, puts a finite bound on the number of bounces.
Because the traditional model is merely an axiomatic approximation to empirical evidence, switching to a
slightly different model produces equally acceptable simulation of behavior. For another example, [Baraff91]
shows that the principle of constraints for mechanical systems leads to a problem that is NP-complete; and,
while abandoning that principle yields different behavior in indeterminate configurations, the resulting be-
havior is still consistent with a rigid-body model, and moreover, is computationally tractable.

2.6.3 Standard Outline for a Model
To help maintain the structure of a model, we can fill in the blanks of a standard outline: (Fig. 2.8)

Goals. What we are trying to achieve; the high-level problem.

Conceptual Model. Includes a list of the physical properties of the thing being modeled, and their corre-
sponding mathematical model terms. Can refer to other modules.

Mathematical Model. A collection of definitions and equations; May refer to definitions and equations of
other modules. (The mathematical model will be discussed at length in Ch. 3.)

Posed Problems. Statements of the conceptual tasks to perform, and the corresponding mathematical prob-
lems, listing the knowns and unknowns foreach. A problem may be decomposed into a series of smaller
problems, that may be posed in other modules.

Implementation Notes. Details such as what numerical solvers are used for each problem, numerical param-
eter settings that produce acceptable results, and so forth.

For top-down design, we try to fill in the sections in the listed order. For annealing design, we fill in and
update the sections as we learn about them. Each module has its own such outline.

® For practical purposes, NP-complete problems are computationally intractable; see [Lewis,Papadimitrious1].
10The traditional equation relating velocity before and after abounceis v + = —ev—, where e is the coefficient of restitution. Instead,
we use vt = max(—e v~ —&, 0), where x is a constant velocity-loss term and the final velocity is clamped to 0.

2.6 Designing a Model 17

Design of Model: “‘dynamic bodies™ s A
A%
Design of Model: “‘teapot’’ ﬁ
H-body

® Goals

To produce an animation of a teapot...

Ing mass..
e Conceptual Model pematic...
In general, teapots are described by...
For simplicity, we assume spherical...
® Mathematical Model
Suv)= ¥ PB{u)Bv) ..
lue ODE...

@ Posed Problems

To pour, minimize [S(u,v)| subject to...

® Implementation Notes

We will use Newton’s Methed...

Figure 2.8: Outline of model design. Each module includes a statement of its goals, conceptual model, mathematical model, and posed
problems, as well as implementation and other notes. O

2.6.4 Debugging a Model

Suppose we’ve implemented a model, i.e., solved some numerical problems, and we have understood the
physical interpretation of the results. And, unfortunately, the results are wrong: they aren’t what we want or
expect. What’s going wrong? For complex models, it can be hard to figure out the source of the misbehavior;
it is often easy to get caught up in wild goose chases, ¢.g., trying to fix a numerical solver that isn’t in fact
broken, and so forth.

Having a CMP structure helps us locate and isolate bugs. There are typically three cases to consider when
the simulated behavior is apparently broken:

1. The problems are not being solved correctly. Check to see if the numerical routines are really solving the
equations (e.g., verify correctness by substituting solutions back into the original equation, or compare
nominal derivative values against actual behavior, etc.). If they aren’t solving the equations, there’s a
bug in the numerical techniques or in how we are using them.

2. They're the wrong problems. If the numerical solvers are correctly doing what they’re told, then we must
be telling them the wrong things. The problem has not been properly posed: we don’t have the desired
correspondence between the conceptual task and the mathematical model. There may be a bug in the
mathematical model.

3. It's what the model predicts. If the mathematical model does correspond with the conceptual model, and
if we are correctly solving the equations, then we are correctly simulating our conceptual model.

If we have identified case 3, the bug isn’t “inside” the model. We have a conflict between the behavior that
we want or intuitively expect, and what the model produces. This can be resolved in two ways:

Change the model. The conceptual model doesn’t include the properties that are necessary to elicit the be-
havior we want. We must re-think our basic abstraction of the thing being modeled.

Change our expectation. Maybe we are wrong, and the model is right! A robust model might make surpris-
ing predictions that turn out to actually correspond with how the real thing actually behaves. !

117 once made simulations of a jumprope. I had trouble finding even a single frame that had a nice smooth loop of rope sliding along

2.7 Communicating Models to Other People 18

Debugging will be discussed more concretely in Ch. 4, when we discuss computer implementations of CMP
models.

2.7 Communicating Models to Other People

Unsurprisingly, we use the CMP structure to describe a physically-based model. This is of course easiest if
the model was designed using the CMP paradigm—then the framework in Sec. 2.6.3 (Fig. 2.8) serves as an
outline for a presentation of the model. The CMP structure directly answers the four questions that were listed
in Sec. 2.4, which we have found aids in comprehending a model.

To clearly present a physically-based model, we can flesh out Sec. 2.6.3’s framework with some explana-
tory material:

¢ Background/Overview. Before beginning to explain a model, especially to an audience unfamiliar with
the problem domain, it is generally useful to describe the domain in general, and provide a few words
about what the model will do.

¢ Goals. What are the motivations for defining the model? If it is a module intended to be included in a
library, what are some anticipated applications?

o Conceptual model. What does the model do? Not merely a list of properties, but an overall introduction
to the model: an overview of the basic abstraction, descriptions of the expected or common behaviors,
and so forth. Diagrams can be helpful.

¢ Mathematical model. Mathematically, the equations should be “context free”—but to help comprehend
them, it helps to explain their physical interpretations alongside them. Ch. 3 will have more to say about
presenting mathematical models.

e Posed Problems. In addition to what the problems are, conceptually and mathematically, describe why
they are interesting—what are they used for? Also, under what circumstances can and can’t the prob-
lems be solved, i.e., where are the singularities and so forth, and what are their physical interpretations?

o [mplementation Notes. What solvers are appropriate, what are the numerical issues and parameter
settings, etc. Sometimes it may be more convenient to list the numerical techniques for each posed
problem directly alongside it, rather than here in a separate section—but be careful not to confuse a
particular choice of technique with the statement of the problem.

The modules in Ch. 6-9 are all presented using the above framework. (The reader can judge how effective
this approach is!)

For spoken presentations, when fielding questions, it can be helpful to identify which part of the framework
the question addresses, in the same way as debugging (Sec. 2.6.4). A common type of question is a “what
if. . .” question, i.e., asking what the model will do in an unusual circumstance. Here too, the CMP structure
is helpful. Sometimes, the answer is “it’s not part of our conceptual model” (e.g., for a question “what if we
move the light source close to the jello—does it get hot and melt?). Othertimes, the question can be mapped
into the mathematical model, in which case there’s typically one of three answers:

1. “There is no solution to the equations”
2. “There’s exactly one solution, which is. . .”
3. “There are many solutions”

When there’s not exactly one solution, the resulting behavior then depends on the particulars of the numerical
solution technique.

the floor; it was wiggling and jangling every which way. This was very frustrating until I came across a stroboscopic multi-exposure of
a girl jumping rope. . .

2.8 Summary 19

2.8 Summary

‘We have presented a canonical CMP (conceptual/mathematical/posed-problem) structure for physically-based
models, which, based on applied mathematical modeling technique, emphasizes a well-defined mathematical
model that is separate from its solution and physical interpretation. We differ from “straight™ applied mathe-
matics in that: we take a modular, re-usable approach to design of models; we have a heavier emphasis on the
separation of the parts, in particular the distinction between an equation and a problem; and our conceptual
model can include properties that don’t enter into the mathematical model. Because of the importance of the
mathematical part of a model, Ch. 3 will address a structured approach to mathematical modeling, which will
fit in to our CMP framework.

We have found that the CMP structure enhances our ability to discuss, analyze, and understand modeling
techniques, helps us to build and debug models, and produces models that are robust, reusable, and extensible.
Furthermore, as we shall see in Ch. 4, it maps well onto programming; the CMP structure can be designed
into computer programs.

Despite the presentations in this chapter, there is no cookbook for designing, debugging, and commu-
nicating models—those remain creative human processes. However, we do stress the CMP structure for
physically-based models. We have used it successfully, for example, for the models in Ch. 6-9. And even
when we don’t formally write down a CMP structure in the precise form described in this chapter, we at least
think about the models in that way.

2.9 Related Work

The mathematical modeling methodology we describe in Sec. 2.2, illustrated in [Boyce81], is reasonably
widespread in applied mathematics. Its application to modeling physical systems is discussed, e.g., by
[Zeidler88-p.viii], which draws a diagram similar to our Fig. 2.1.

Modularity and hierarchy are basic elements of structured programming (see, e.g., [Dahl,Dijkstra,
Hoare72]) and object-oriented programming ([Booch91]).

The framework and design methodology that we have discussed is analogous to those found in other fields.
For example, engineering design is often separated into task clarification/conceptual design/embodiment de-
sign/detail design; see, e.g., [Pahl,Beitz88], [French85], or [Cross89].

20

Chapter 3

Structured Mathematical Modeling

his entire chapter is directed towards solving a single problem: To be able to write down complete explicit

mathematical models of complex systems. The task may seem innocuous at first glance, but it is in fact
challenging enough to have spawned a chapter that is fairly dense. The chapter has a fair amount of “talk”—
philosophy and other discussion—and also defines a few specific mathematical mechanisms that help structure
complex models (see Fig. 3.1).

This chapter will draw some analogies between mathematical modeling and computer programming, to help us
take advantage of principles of software design. However, the mathematical techniques we present do not depend
on a knowledge of software.

The mathematical exposition does not strictly demand more than a basic familiarity with set theory and functional
analysis! The definitions we present are basic, thus somewhat abstract; however the underlying concepts are
quite simple, and we have found that the techniques and notation seem natural after modest exposure. The list of
notation, p. Xvii, may be helpful.

The principles and techniques discussed in this chapter are used for the models in Ch. 6-9 . The reader is encour-
aged to skim Ch. 6-9 in order to see the principles and techniques “in action.”

3.1 Overview

What is a mathematical model? For our purposes, a mathematical model is a collection of mathematical
definitions of terms and equations. For physically-based modeling, we expect a mathematical model to be
defined in the context of a CMP (conceptual/mathematical/posed-problem) partition as per Ch. 2. Thus, al-
though problem statements (“given z, find y such that. . .) and physical interpretation (“z is the width. .. ")
are closely related to the mathematical model, we consider them to be separate from it. Ch. 2 details reasons
for the separation; in this chapter we will take it as a given.

The principles and techniques we will discuss in this chapter are “administrative” in nature, directed
towards structuring and managing complexity of mathematical models. For most of our applications, we
will be content to re-cast classical equations—"‘model fragments™ as per Sec. 1.3—into our structured form.
In order to define such fragments ab initio, we refer the reader to [Lin,Segel74].

Since this chapter focuses on mathematical modeling, an unqualified use of “model” can be taken to mean
“mathematical model.” Similarly, since this chapter focuses on issues significant to structured modeling, an
unqualified use of “mathematical modeling” can be taken to mean “. . . from our point of view.”

1“A good treatise on the theory of functions of a real variable does not strictly require of its readers any previous acquaintance of
the subject. .. yet a student armed with no more than a naked, virgin mind is unlikely to survive the first few pages. In the same way,
although this book does not call upon any previous knowledge. .. " [Truesdell91-p.xvii]

3.2 Motivation for Structured Mathematical Modeling 21

Outline of Chapter 3
Principles
Sec.3.1 Overview.
Sec.3.2 Motivation for Structured Modeling. Elaboration of our goals.
Sec.3.3 Aesthetics & Design Decisions. Choices must be made.
Sec.34 Borrowing from Programming. Complexity management techniques.
Sec.3.5 Distinctions from Programming. Issues for mathematical models.

Techniques
Sec.3.6 Naming Strategies. Enhancing clarity, avoiding conflicts.
Sec.3.7 Abstract Spaces. Definition of mathematical entities.
Sec.3.8 1ID’s and Indexes. Managing collections of objects.
Sec.3.9 State spaces. Encapsulation of mathematical data.
Sec. 3.10 Segmented Functions. Combining discrete and continuous behavior.

Discussion
Sec. 3.11 Designing a Model. Notes on developing a modular mathematical model.
Sec. 3.12 Summary.

Figure 3.1: Outline of this chapter. Secs. 3.1-3.5 describe our philosophy and attitudes towards mathematical modeling. Secs. 3.6-3.10
present various mathematical mechanisms—definitions, notations, and techniques—that are useful for structured mathematical modeling;
Secs. 3.11-3.12 contain further discussion and summary. O

3.2 Motivation for Structured Mathematical Modeling

We adhere to the premise that if we wish to do a simulation, we must first create a well-defined mathematical
model; and if a mathematical model is well-defined, we ought to be able to write it down. Our primary goal
for mathematical modeling is therefore:

Goal: To be able to write down complete, explicit equations for complex physically-based mod-
els.

The difficulty here lies in the words “complete,” “explicit,” and “complex.” Imagine writing complete, explicit
equations for a bicycle drive train: the behavior of each and every link, their interactions with each other and
with the gears and derailleurs, etc. Clearly, writing them out longhand in full detail, without the aid of special
tricks or techniques, is too cumbersome and ugly to consider seriously.

We notice that computer programming has inherent in it the same difficult components as our goal for
mathematical modeling: A computer program must be explicit, must be complete, and can be very com-
plex. Over the past twenty years, techniques for structuring and engineering computer programs have been
developed to mitigate these difficulties. We will apply many of these techniques to mathematical modeling.

The “Structured Mathematical Modeling” techniques in this chapter are intended to help meet our primary
goal—complete, explicit written equations for complex physically-based models. But before developing any
specific techniques, we will elaborate on various aspects of the goal.

3.2.1 Complex Models

The primary sources of complexity in our models are size and heterogeneity. The mathematical models in
[Boyce81] have perhaps a few dozen variables; our computer graphics models can easily have hundreds or
thousands, with intricate relationships or interconnections between them.? Moreover, we wish to mingle
various behavior modes into a single model, where the differing behaviors can be due to different components
of a model as well as from individual components that change over time.

2Having merely “thousands” of variables is itself humble, compared to applications such as weather/climate modeling. We emphasize
applications, however, in which the many variables cannot be treated statistically or regularly, in that they may have irregular behaviors
or interrelationships.

3.2 Motivation for Structured Mathematical Modeling 22

Thus, although we adopt the basic mathematical modeling philosophy of [Boyce81] (as discused in
Sec. 2.2), we also need to develop techniques to handle our unusual complexity requirements.

3.2.2 Complete Models

As discussed in Sec. 1.3, most physical models are expressed as “fragments”, i.e., a collection of equations that
describe individual components of the model. For example, in presenting techniques for animating dynamic
legged locomotion, [Raibert,Hodgins91] contains various equations (taken here out of context):

“Both actuator models have the form f = k(z — z,) + b%, where fis. ..
The control system computes the desired foot position as: £ fp,q = ...
The posture control torques are generated by a linear servo: 7 =...”

The article describes how and when the various fragments come into play—but this description is in words:
there is no mathematical expression for the model as a whole.?

Lacking mathematical tools that express models completely, it is hard to communicate, analyze, and so
forth. Furthermore, when we ultimately want to simulate a model on a computer, it becomes the programmer’s
job to ascertain or intuit how the various fragments piece together, and build that structure into a computer
program. Thus we need to develop techniques to “glue” together separate model fragments.

3.2.3 Explicit Models

Going hand-in-hand with wanting our models to be complete, we also want them to be explicit. That is,
we want to minimize ambiguity, that might lead to errors occurring through (accidental) inappropriate use
of equations. We emphasize two ways of doing this: minimizing tacit dependencies, and minimizing tacit
assumptions.

In writing equations, minimizing dependencies really means being careful always to write terms as func-
tions that include all their parameters. In addition to minimizing errors in doing mathematical derivations,
making all the dependencies explicit greatly eases the ultimate transition to a computer program. Being able
to write explicit dependencies requires (and motivates the development of) complexity- and fragment- man-
agement techniques as discussed above. For example, in a rigid-body model, the force on a body can depend
in principle on the state of all the other bodies at each instant; rather than merely writing “the force f”, we
want to write “the force function f(state-of-all-bodies)”—but using mathematically precise constructs.

Minimizing tacit assumptions is important in the early stages of overall model design as discussed in
Sec. 2.6. But also, as we write our mathematical equations, we want to be careful always to list what our
assumptions are, what conditions are required, and so forth. In this way, each equation can be “globally
valid”. For example, rather than writing an equation “z = ...,” one would write write “in such-and-such
circumstances, z = ...” This helps in understanding the equations, and again can ease the transition to
computer programs.* The idea of globally valid equations ties in with modularity (Sec. 3.4.2) and declarative
models (Sec. 3.5.2).

Unlike our goals of complexity and completeness, for which we identified a need for new techniques, the
goal of explicit models to a large extent requires a discipline on the part of the model designer. That is, given
techniques that make writing explicit equations feasible, it remains up to the model designer to invest the
appropriate effort.

3No disparagement is intended. We have chosen to cite [Raibert,Hodgins91] precisely because it is an excellent article, describing
superb work; thus it illustrates to us not a lack of discipline on the part of the authors, but rather a need for enhanced expressiveness in
mathematical models and notation.

4 All equations in this chapter in Ch. 6-9 are careful to include their “givens” and notes, in order to help make each be correct and
understandable by itself.

3.3 Aesthetics & Design Decisions 23

3.2.4 Practical Utility

There is one additional goal that we have not yet mentioned: practical utility. We are not interested in purely
academic or theoretical techniques: Not only do we want to develop techniques, we want to be able to use
them—and moreover, we want to be better off for having used them.

That is, we want our mathematical modeling techniques to make it easier to create models. We want
the techniques, as well as the models that we create thereby, to be writable and readable. We want to show
models to colleagues, who should be able to understand them. We want to scribble models on whiteboards
and napkins.

As such, we try to keep to familiar, existing notation, definitions, and terminology as much as possible to
avoid abstruseness. We will not be attempting to fabricate entirely new mathematical languages, but rather
will try to augment the existing language with a few simple constructs that have proven to be useful.

Note that it is particularly important that models be understandable to others: Because of structured mod-
eling’s modular approach, we will be designing “library” models (or components of models) that are intended
to be used by others, often for unforeseen applications. Thus there is a concern for clear and orderly “packag-
ing” and “interfaces” that is familiar to those who design software libraries, but is of lesser significance when
one designs a mathematical model purely for one’s own one-time use.

Finally, in addition to the above “ergonomic™ issues, the techniques we use should be rigorous and robust
enough to support derivations, proofs, and so forth.

3.3 Aesthetics & Design Decisions

A balance often must be struck between the goals discussed in Sec. 3.2—in particular, between the goal of
practical usefulness and all the goals. For instance, if there are too many parameters and parentheses, putting
in all the explicit dependencies will make the equations too cumbersome to read and error-prone (o write.
Similarly, defining new terms or constructs can clean up an equation, but a plethora of gratuitous definitions
can be hard to keep straight and will be particularly inaccessible to newcomers. Or, there can be a tradeoff
between full generality (a single model that can do everything) and ease of understanding.

There’s no pat answer for what the proper balance is, nor how to strike it. Often, case-by-case decisions
will have to be made based on personal aesthetics, individual goals, the levels of experience of the audience
and of the designer, and so forth. Thus doing mathematical modeling involves “design decisions” that are
similar in spirit to those made in programming, engineering and other constructive tasks—they are an inherent
part of being a designer of mathematical models.

There is one area about which we remain resolute: Even if there’s shorthand or whatnot being defined
for clarity, we will always be careful to make sure that there is an underlying mathematical framework that is
solid. Remember the premise that we are trying to make a good/correct mathematical model.

One final trade-off that needs mentioning is between design effort up front vs. ease of use later on. The
goal of writing down a complete model before simulating it of course leans heavily towards investing effort
in the design, in order to create a better product. But we recognize that there can be diminishing returns from
excessive time spent designing “blindly,” and that often the best way to design is to experiment in order to
gain experience and understanding.

3.4 Borrowing from Programming

We observed earlier (Sec. 3.2) that our approach to mathematical modeling bears similarity to programming:
both require complete, explicit descriptions of complex systems. Structured programming, and more recently,
object-oriented programming, have been developed to help manage the complexity of computer programs;
we can apply much of the their philosophy and many of their techniques to mathematical modeling as well.
(Fig.3.2)

3.4 Borrowing from Programming 24

Programming concepts

Ideas we embrace for Ideas we eschew for
mathematical modeling: mathematical modeling:
v/ Top-down design X Internal state

v/ Modularity ¥ Procedural definitions

v/ Naming strategies X Machine-readable syntax
v/ Data abstraction ¥ Polymorphism

Figure 3.2: Adopting ideas from programming. Many goals and difficulties that we have for mathematical modeling are similar to
those of computer programming. As such, we find that several known principles from computer programming are well worth using for
mathematical modeling (Sec. 3.4). Conversely, however, the differences between programming and mathematics compel us to steer clear
of some techniques (Sec. 3.5). O

It would be a shame to clutter up mathematics, which has a traditional ethic/aesthetic of austerity, with
excessive or unattractive baggage from the world of programming. As such, although borrowing philosophy
of programming is probably harmless, when it comes to specific techniques we will try to use a minimal
approach, only bringing in methods that are particularly useful. We’dlike to keep our mathematics as familiar,
readable, and usable as possible, as per Sec. 3.24.

3.4.1 Top-Down Design

The top-down design strategy calls for first creating a specification, then creating the high levels of a mech-
anism that meets the specification, and so on, with the final details of implementation saved for last. For
mathematical modeling, the top-down approach mostly enters before the design of the mathematical model,
i.e., in the specification of goals and physical context for the model, as per the CMP decomposition discussed
in Ch. 2.

Itis possible, to some extent, to design the mathematical model itself in a top-down manner. The methods
of modularity and data abstraction (that will be discussed below) can support specification of the overall
structure and relationships within a model, where the details are filled in later.

3.4.2 Modularity

Modularity in programming means that programs are built as a (hierarchical) collection of independent com-
ponents having well-defined interfaces. It helps us to decompose complex problems into simpler ones that are
easier to understand and implement; often, the modular subparts are standardized and kept in libraries. The
benefits of modularity apply as well to mathematical modeling.

Mathematics has some modular aspects inherent in it, in that it is based on independent, well-defined
axioms and theorems; constructs are defined in terms of more primitive constructs, e.g., a field is defined in
terms of sets and a derivative in terms of limits; and often, entire branches of mathematics can be based on
earlier branches, e.g., differential geometry is built from linear algebra and calculus ([Millman,Parker77]).

For our purposes, however, modularity in mathematical models will generally coincide with the modular
design of physically-based models, as per Sec. 2.5. For example, in Ch. 6-9, we will have a mathematical
modaule for kinematic rigid-body motion, one for dynamic rigid-body motion, one for force mechanisms, and
so forth. Each module defines a consistent set of terms and equations for its model, designed to be useful for
a variety of applications, rather than for a specific “end-model.” The modules can make use of equations and
terms from other modules, e.g., dynamic rigid-body motion is built on top of kinematic.

In order for amodule to be widely useful, especially in conjunction with other modules, each module must
be designed with a care towards not “stepping on the toes” of others. For example, tacit assumptions should be

3.4 Borrowing from Programming 25

Programmatic operation Mathematical operation
(Changes the contents of an object) (Maps between elements of sets)
T=
o Nodes={ A B,C,... } e

Trees:
o o ________ ‘.“ Ca) (o) .'_.

-
L e S . N T T L g
'
.
'

add node i‘C':’ totree T

H
e e
i 3

~
LT

(A) Cn) add: Trees)X Nodes — Trees
(G) L= add(tO,C)

Figure 3.3: No “intemnal state” in mathematical objects. In most computer programming, it is common for objects to have internal states.
For example, adding a node to a binary tree object changes the internal state, but it is still considered the “same” object (where objects
are typically identified by their memory addresses). In mathematics, however, we will avoid the notion of internal state: a binary tree is
an element of the set Trees containing all binary trees, whose nodes are elements of the set Nodes. We can define a function add that,
given any tree in Trees and any node in Nodes, maps onto some other tree in Trees, that has the appropriate nodes in it. Lack of internal
state is a characteristic also of functional programming (see Sec. 3.5.1). O

avoided—they may conflict with assumptions in other modules—but instead assumptions should be listed as
explicit preconditions for equations, as per (see Sec. 3.2.3). Naming strategies and data abstraction, discussed
below, also come into play.

3.4.3 Naming Strategies

In mathematics, as in programming, we assign names to things—the names should be mnemonic and unam-
biguous. We must be careful to avoid naming conflicts, especially when models are defined modularly and
independently.

We will adopt several naming strategies from programming for use in mathematical modeling: full-word
names, function-name overloading, and namespace scoping. These will be discussed in Sec. 3.6.

3.4.4 Data Abstraction

Data abstraction in programming is analogous to modularity, but for data elements: acollection of related data
elements is bundled together as a single logical entity, often called a dara structure or abstract data type (see
[Liskov,Guttag86]). Data abstraction provides encapsulation, or information hiding, in which an abstract data
object can be manipulated as a single entity withoutreference to details of its contents or implementation, and
hierarchy, in that an abstract data type may be defined in terms of other abstract data types. These capabilities
can greatly help to manage complexity.

3.5 Distinctions from Programming 26

Object-oriented programming (OOP) takes data abstraction a step further: An abstract data type (or class)
is specified along with a well-defined set of the operations that may be performed upon that type of object.
Thus the particulars of the elements that make up the data type are implementation details irrelevant to its use,
and can be changed without affecting the data type’s functionality. This separation of implementation from
function is another powerful structural tool, that aids in maintenance and extensibility of programs.

The field of mathematics has some data abstraction inherent in it. As discussed in Sec. 3.4.2, types of
mathematical objects are often defined hierarchically. Additionally, mathematical “data types”—such as sets,
fields, or vectors—are often defined abstractly, via properties and operations, without having any “innards.”

For mathematical modeling, we will emphasize the use of data abstraction, in the form of abstract spaces;
this will be discussed at length in Sec. 3.7. We will also present, in Sec. 3.9, a mathematical mechanism for
defining srare spaces, that encapsulate collections of elements/operations into mathematical entities. >

3.5 Distinctions from Programming

Lest we get carried away with the parallels between mathematical modeling and software design, we examine
differences between them. In particular, there are some ideas from programming that we make a point of not
borrowing; this section lists several features of mathematical modeling that conflict with common program-
ming methodology (Fig. 3.2).

3.5.1 No Internal State

One aspect of programming that we find unsuited to mathematical modeling is the idea of “internal state” of
an object. As illustrated in Fig. 3.3, a computer-programming object can have variable internal state—in fact,
the concept of objects having internal state, with operations to access and modify that state, is the sine qua
non of object-oriented programming.

In the realm of mathematics, on the other hand, we prefer objects to have no internal state. An operation
is merely a map between elements of the domain and elements of the range; “performing” an operation on a
given element of the domain just means finding the corresponding element of the range. For example, if we
apply the operation “add one” to the number “3,” we get “4”—but “3” isn’t modified.

Lacking internal state, activities that would be programmatically defined as state changes, mathematically
are defined instead as mappings between elements of (abstract) state spaces, as illustrated in Fig. 3.3. We will
discuss abstract spaces in general in Sec. 3.7, and a mechanism for state spaces in particular in Sec. 3.9.

Why not define some mathematical mechanism that supports internal state? Because the lack of internal
state is not a drawback but rather a feature: Without internal state, the result of an operation on a given object
is single-valued, and we can thus define equations that always apply, without fear of the objects involved
being in the wrong state. That is, the lack of internal state is central to the use of globally valid equations as
per Sec. 3.2.3.

Finally, note that the idea of “globally valid” objects, whose internal state is never modified does in fact
arise in some programming paradigms. For example, for parallel programming, [Chandy, Taylor92] uses def-
inition variables, whose values don’t change, to insure correctness of otherwise mutable variables across
parallel composition of program blocks. Another example is functional programming, based on a mathemat-
ical function approach in which values are computed but no changes are stored (see, e.g., [Henson87]). Note
however that we have not explicitly adopted any techniques or terminology from those realms.

5Qur use of abstract spaces is similar to the formal/algebraic treatment of abstract data types in computer science (see [Horebeek,
Lewigg],[Cleaveland86]); but note that we have opposite goals: the study of abstract data types brings mathematical rigor to computer
programming constructs, while our use of abstract spaces brings computer programming principles to mathematical modeling.

8One is reminded of the applied-mathematicians’ joke: “2 + 2 = 5, for large values of 2 and small values of 5.” Note also the
well-known bug in FORTRAN programs: passing the constant 3 to a routine addone (x) might in fact change the value of “3” for the
remainder of the program.

3.5 Distinctions from Programming 27

3.5.2 No Procedural Definitions

Traditional programming paradigms are procedural (or imperative): The programmer specifies a sequence
of instructions for the computer to carry out. Our mathematical models, on the other hand, contain no posed
problems or instructions for solving problems, but merely state equations (Sec. 2.3.2). Thus the mathematical
models are declarative.

Notice that the lack of internal state (Sec. 3.5.1) goes hand-in-hand with lack of procedural specification:
Not having any state, there can be no notion of the “current instruction.” Once again, we have a similarity
with the functional programming paradigm:

“One of the great benefits of [functional programming] is that the programs may be considered declaratively.
It is not necessary to attempt a mental execution of the program in order to understand what it ‘does’... We
wish to adopt a more static approach in which it is more appropriate to ask what a program ‘means’ rather
than ‘does.”” [Henson87-p.66]

If we replace “programs” with “equations,” and “execution” with “solution,” the above argument applies as
well to mathematical modeling.”

In the real world, and hence in our physically-based models, there are often sequential changes of state.
Thus we need to be able to express “when this happens, do that” in a mathematical model—without a proce-
dural specification. In Sec. 3.10, we will discuss “segmented functions,” that address this need.

3.5.3 No Machine-Readable Syntax Necessary

If we’re not careful as we wear our “programmer’s hats” when approaching the design of mathematical mod-
els, we might end up defining mathematical mechanisms more suited for computers than for people. The
ergonomic goals of Sec. 3.2.4 must be brought into play.

For one thing, the mathematical syntax shouldn’t be so subtle or so intricate that it takes a compiler to
figure out the intent. That is, important distinctions shouldn’t depend on easily-confused notation (e.g., tiny
subscripted marks), a single symbol shouldn’t imply an overly complex or non-intuitive series of operations,
and so forth.

Additionally, we don’t want to define syntax so rigid or cumbersome that it’s inconvenient to use. Some-
times, flexibility can be enhanced by allowing several alternative notations; as in

y = sin(z)
y =sinz

Furthermore, when scribbling equations and derivations, one commonly uses shorthand, elisions, and so forth;
it should be possible to do so yet still be able to make use of the corresponding mathematical mechanism. On
the other side of this same coin, we don’t want to invent syntax that is ungainly enough to encourage its elision.

With flexible syntax comes the potential of ambiguity and lack of rigor. If one uses shorthand, leaves off
parenthetical arguments, and so forth, one relies on the reader knowing what is meant rather than what is said.
This is another “design decision” as per Sec. 3.3. We generally try to mitigate such ambiguity by appropriate
annotation in the accompanying text; Eqn. 9.21, for example, has a note “For clarity, the parameters have
been left off M, (Y,1)...”

3.5.4 No Polymorphism

One of the most powerful ideas of object-oriented programming is polymorphism: a given name may refer to
an object of any one of a number of related classes, that may respond to a given operation in different ways.
This allows a single program to be applied to any of the related classes, even ones that weren’t defined when
the program was originally written.

"The similarity between mathematical modeling and functional programming is unsurprising: functional programming is designed
to allow formal, mathematical manipulation and analysis of programs.

3.6 Naming Strategies 28

We said in Sec. 3.4.4 that we would incorporate the idea of data abstraction—i.e., the definition of
classes—into mathematical modeling. Thus we might expect or desire to take advantage of polymorphism
as well. Mathematics contains some simple uses of polymorphism: for example the expression a + b has
slightly different meanings for real numbers, complex numbers, functions, and so forth.

However, as a rule, polymorphism is not suited to mathematical modeling, because it tends to increases
ambiguity. That is, when working with polymorphic objects, their behavior isn’t completely well-defined
upon simple inspection of an expression, but will depend on what type of objects are eventually used. For
mathematical modeling, we have no compiler or run-time support to identify or disambiguate objects—we just
look at the equations, so their meanings should be evident without added context, as discussed in Sec. 3.2.3.

This is the end of the Principles part of chapter 3. The next part, Techniques, presents
some mathematical mechanisms that support the structured mathematical modeling ap-
proach we have been discussing.

3.6 Naming Strategies

In mathematical equations, letters are used for names of parameters, functions, and so forth: for example, the
letters f, k, ¢, and z in the equation “z = fi(y,t).” But as more and more equations and terms are written,
it’s easy to run out of letters.® To squeeze more life out of the letters, one can take advantage of various cases
and fonts, e.g., r vs. Rvs. Rvs. R vs. etc. One can also turn to other alphabets, e.g., £, ¥, R, etc. But
still, for mathematical models of the complexity we’re interested in, running out of letters for names has the
potential to be a serious problem. In particular, since we design models as separate modules, we run the risk
of having naming conflicts when we combine the modules together. Furthermore, we want names to make
sense; with too many letters chosen arbitrarily, it can be hard to remember what’s what.

Our concern with mathematical names is analogous to computer programming’s concern with variable
and function names. We present here three naming strategies from computer programming that can be used
as well for mathematical modeling.

8 This is “another example of a growing problem with mathematical notation: There aren’t enough squiggles to go around” [Blinn92-
p-88]

3.6 Naming Strategies 29

3.6.1 Full-word Names

Instead of using only a single letter for mathematical names one can use a whole word, or at least a multi-letter
name. This is familiar for many fundamental mathematical functions and operations, such as

sin(z)
arccos(z)
lim z=10
n—oo

and so forth, but it is rarer to see multi-letter terms in other contexts. ([Misner,Thorne,Wheeler73] is an
example of a work that does use a full-word approach, defining, e.g., tensors named Einstein and Riemann.)
In addition to allowing us more names than single letters, multi-letter names of course have the advantage of
being mnemonic,

As with good programming style, one should generally use longer names for global, important, or
infrequently-used terms, and use shorter or single-letter names for local and frequently-used terms. We will
use full-word names for most abstract spaces we define (see discussion of abstract spaces in Sec. 3.7), such
as Locations in Ch. 6 and States in Ch. 7, and even occasional compound-word names, such as StatePaths
in Ch. 7. However, we will maintain standard or historical names where they are familiar, such as m for mass
and p for linear momentum in rigid body dynamics, Ch. 8.

With multiple-letter names, one has to be careful that when two names are written next to each other, they
don’t textually merge into another name. For example, to multiply a term y by a term cat, we might write

T =ycat

but the right-hand side might be mistaken for a single term ycat, which might or might not exist. * Confusion
can be mitigated through use of spacing, different fonts, parentheses or other symbols, and so forth. For
example:

T = ycat

z = ycat

z = (y)(car)
r = y=*cat

3.6.2 Scoping, Namespaces

How do we avoid “name collisions” when mathematical models are designed as a collection of separate
modules? For example, the kinematic rigid-body model in Ch. 7 and the dynamic rigid-body model in Ch. 8
each need to define an abstract space, and in both cases we would like to use the name “States”. Can they
both do so? If yes, and we want to mix kinematic and dynamic models, how can we tell which States is being
referred to in a given equation? Furthermore, can one model refer to the other’s name? We describe here a
mechanism inspired by that of Common LISP ([Steele90]).

The basic idea is simple: each model has its own scope, or namespace; a name z is used in one scope is
not the same name as z used in another scope. Thus in each model we are free to use whatever names we
want, and by fiat they do not collide with names from other models.

In order to be able to unambiguously use names from different scopes, we give each scope its own scope
name. For example, the kinematic rigid-body model has scope name KINEMATIC.!® We can think of the
scoping mechanism as follows: When we define terms within a particular model, they are all implicitly “ac-
tually” defined with to have full, or scoped, names that include the model’s scope name. We use the following
notation:

8This is why we like to emphasize full-word names, rather than arbitrary mnemonic abbreviations: “year” is less likely to be ac-
cidentally thought of as a defined term if there are no, or few, other non-word names. Of course, one is never entirely safe: consider
z = never vs. = never. As well, in practice full words can be unwieldy, so shorter, mnemonic names are necessary. See also
[Kernighan,Plauger78) for guidelines for mnemonic names.
10We will consistently use small caps font for scope names.

3.6 Naming Strategies 30

Notation. Double-colon *“::” for scoped names.

If a name, e.g., “States” is defined within a namespace having a scope
3.1) name, e.g., “KINEMATIC,” its full name is written using a double-colon, as:

KINEMATIC :: States

Notn. 3.1: We write a scoped name by prefixing the short name with the name of the scope, with two colons between them.
The colons serve to set the names apart, and to emphasize that the name-scoping mechanism is being used. O

When working on a particular model, we generally assume that all names are defined within the scope of
that model, and there’s no need to write out the full names. If we want to use a name from a different model,
however, we can use its full name. The dynamic rigid-body model, for example, uses just “States” to refer
to its own space and “KINEMATIC :: States” to refer to the kinematic space.

Sometimes, we can avoid conflicts, and save writing, by just choosing which namespace is the default for a
given name. For example, Ch. 9 starts by stating that “Systems” will be assumed to mean “RIGID :: Systems”
(rather than “KINEMATIC :: Systems”).

Of course, when there is no conflict, there’s no need to use full names. For example, the model named
cooRrDSs (Ch. 6) defines several terms (Vectors, Locations, Lab, etc.) that are used frequently and widely
in other models, and are not defined elsewhere—so we do not use the full names. Still, to aid the reader, it
is good to start each model by listing where all such “imported” names are defined (this also avoids future
ambiguity if a later model provides a different definition of one of these names).

Given that our goal as per Sec. 3.5.3 is clarity and non-ambiguity for the readers, rather than formal syntax,
we are not overly strict in our use of namespaces and scoped names. In particular, we find no need to go the
programmatic extremes of Common LISP’s mechanism, with its internal vs. external names, exporting and
shadowing of names, and so forth.

Finally, note that each model must of course be given a unique scope name, or we are back to our original
name conflicts.!

3.6.3 Function Name “Overloading”

We generally want any given name to have only one meaning (withina given scope), so as to avoid ambiguity,
in keeping with the explicitness goal of Sec. 3.2.3. For example, if we define a function f(¢), we don’t want
to also have a parameter named f as well—especially if we will be in the habit of dropping the parentheses
and parameters from functions.!?

However, sometimes there may be a family of related operators or functions that perform analogous op-
erations, but on different types of parameters. For example, in Ch. 6 we define a family of operators, Rep,
that yield the coordinate representation of a geometric object; one Rep acts on elements of an abstract space
Locations to yield an element of %2, and a different Rep acts on elements of an abstract space Orientations
to yield an element of 33,

To eliminate ambiguity, we would give a different name to each operator. Continuing with the the earlier
example, we might name one operator RepLoc and another RepOrient. However, doing so can be cumber-
some, and it can even be confusing, if we tend to think of all operators in the Rep family as essentially the
same.

Thus, as an exception to our general policy of non-ambiguity, we are willing to allow families of functions
to share a single name. We will adopt the term “overloading” from programming, where this idea is familiar
(in particular operator overloading in programming languages—e.g., defining “+” appropriately for vari-
ous different argument types such as integers, floating-point numbers, or complex numbers—is well-known

10ne can imagine introducing hierarchy into namespaces, so that one might have a fully scoped name such as
“CALTECH:: KINEMATIC:: Systems;” we have not (yet?) found this to be necessary, however.

121n fact, it is not uncommon to see expositions in which a single name is used as a parameter and/or as function and/or as a value of
the function. In fiuid mechanics (see, e.g., [Lin,Segel74-Ch.13]), = is commonly used as an independent world-space variable as well as a
material-to-world coordinate mapping z(a). Although there is some benefit—anything named x is always a world-space location—for
our purposes we feel that eliminating ambiguity is a strong enough concern that this practice should be discouraged.

3.7 Abstract Spaces 31

([Booch91])). We can give a formal definition of an overloaded mathematical function:
Definition. Overloaded functions

An overloaded function is a function whose domain is the union of the do-
mains of a family of functions (those domains must be disparate), whose range
3.2) is the union of the ranges of those functions, and whose value for any argu-
ment equals that of the member of the family whose domain contains that
argument.

Defn. 3.2: An overloaded function s a single function that “chooses” the appropriate function from a family, based on its
argument type. See example, Eqn. 3.3 O

And an example:
Given three functions: fa: A— X, fb: B—Y, and fc: C— Z, we can define an
overloaded function f: AUBUC—=XUYUZ by:
(33) fa(z), ifz €A
f(x) = { Mz), ifz €B
f(z), ifz eC

Eqn. 3.3: Example of an overloaded function. Note that the individual functions don’t have to act on only a single pa-
rameter or even the same number of parameters. For example, if fb were to take two real-number arguments, its domain
wouldbe B = R x R; we can consider f(z,y) for real z and y to be acting on the pair (=, y) € B thus f(z,y) = fb(z,y);
but for z € A, we would have f(z) = fa(z). O
In practice, we define only the overloaded function name, and leave implicit the names of the individual
functions in the family (for example, see the definition of Rep, Defn. 6.5). We have not found it necessary to
invent a formal mechanism for naming and referring to the individual functions; as long as we are aware of
the underlying unambiguous mechanism, it is sufficient define the overloaded name and leave it at that.

It is important to remember that overloading is a source of ambiguity, and should be used sparingly. One
should be careful to define overloaded functions only when it will be obvious which underlying function is
implied—that is, we must know to which domain the arguments belong. For example, the function f of
Eqgn. 3.3 is used unambiguously in the expression:

a+ 1= f(a),wherea € A

Note that if we expect to occasionally leave off function arguments in our expressions, the overloaded func-
tions will be ambiguous. Note also that we do not overload based on the range spaces of the individual
functions; that could too easily lead to unresolvable ambiguity.

Function overloading is commonly used in the mathematical world, without the fanfare that we have put
forth. We prefer, however, that some care be putinto the decision of whether to overload a particular function;
this is a “design decision,” as per Sec. 3.3, where the model designer tries to balance clarity and economy
of expression against ambiguous meaning. To help eliminate ambiguity, whenever an overloaded function is
defined, the reader should be warned in accompanying text “caution: overloading being done here.”

The mathematical function-overloading mechanism we have defined is inspired by the programmatic
function-overloading mechanism of the C++ language ([Ellis,Stroustrup90]); in particular we adopt C++’s
choice to overload functions based on argument type, but not on return type, and the implicit creation of
individual functions with uniques names for each domain.

3.7 Abstract Spaces

This section describes a basic element of our approach to mathematical modeling: Prolific definition of ab-
stract spaces. This leads to the mathematical equivalent of data abstraction, encapsulation, hierarchy, etc.,

3.7 Abstract Spaces 32

familiar from programming, and is thus a powerful tool for the management of complexity.

3.7.1 Defining Abstract Spaces

A primary motivation for the definition of abstract spaces is to have unambiguous meaning. That is, when
we define a new abstract space, we are free to assign to it exactly those operators and properties that we need,
and no others.!® By creating abstract spaces tailored for particular uses, and by stating explicitly what their
characteristics are, we attempt to eliminate (or at least mitigate) hidden assumptions or effects.

How does one go about defining an abstract space? At its most basic level, it’s easy: One merely says, for
example,

Let Things be an abstract space.*

One would then go on from there, and describe various properties of and operations on (elements of) the
space. This approach is used for the various geometric objects in Ch. 6.

Often, we can take advantage of existing standard types of abstract spaces. For example, we define a
new abstract space to be a vector space, or a Banach algebra. Later in this chapter we will define some types
of spaces that are particularly useful for our structured modeling purposes: “indexes” in Sec. 3.8, and “state
spaces” in Sec. 3.9. By using these types of spaces we will ultimately be able to, e.g., declare mathemati-
cally merely that “z is a rigid-body system” to describe well-defined behavior, properties, etc. for a named
collection of rigid bodies that move dynamically.

It may occasionally happen that we will define some new space, and it turns out to be (provably) equivalent
to some other, well-known space. For example, in Sec. 3.9.2 we will discuss a space describing rectangles;
the space defined there is in fact equivalent to 2. If such an equivalence does occur. . . great! We can apply
whatever properties are known about that existing space to our own space; we’ve gained an extra body of
knowledge about our space “for free.”

One might argue that if it is the case that a new space is equivalent to an existing, well-known space,
making our own definition merely confuses things. There is a twofold response:

e With a good name for the space, one can convey a desired connotation: Saying “X is in the space of
rectangles” has more intuitive meaning than “x is in ®2.”

¢ If the model gets refined later on, one can change the properties of the new space, and not need to change
definitions of other terms. For example, we may later decide to consider orientation in the plane as a
property of a rectangle. The expression “x is in the space of rectangles” could still stand, but otherwise
we would have to change itto “x is in ®2 x SO(1).”

However, there is of course merit to the original argument; too many gratuitous definitions can be obfuscatory.
Whether to define a new space is often an important “design decision,” as discussed in Sec. 3.3.

Pedantic interlude

“Abstract space” can mean the universal set of a particular set theory ([Nihon Sugakkai77]); in such usage
there can only be a single abstract space under discussion. Our use of “abstract space” is closer to the defi-
nition in [James,James76]: “A formal mathematical system consisting of undefined objects and axioms of a
geometric nature.” However, although most of our applications willin fact be geometric, we don’temphasize
the geometric nature. Our working definition is thus “a set of undefined objects”; where we invoke naive set
theory and the axiom of comprehension ([Nihon Sugakkai77]) to be able to define such sets by fiat, and the
axioms of pairing, power set, union, and so forth to manipulate the sets.

13« “When / use a word,” Humpty Dumpty said, . . . ‘it means just what I choose it to mean—neither more nor less.”” In [Carroll§0],
Martin Gardner discusses Carroll’s mathematical philosophy that lies behind “Humpty Dumpty’s whimsical discourse on semantics.”

14 We will consistently use sans-serif font for abstract spaces. Additionally, we will give each space we define a plural name; this
makes it easy to read, e.g., “t € Things™ as “# is an element of the set of Things,” i.e. “t is a Thing.”

3.7 Abstract Spaces 33

In our use of abstract spaces, we are taking a decidedly non-constructivist approach; constructivist dogma
says: “A set is not an entity which has an ideal existence: a set exists only when. . . we prescribe. . . what we
must do in order to construct an element of the set. . . ” [Bishop,Bridges85-p.5]. Our motivation for defining
abstract spaces is, as discussed above, to have precise statements of the properties of mathematical objects
we will manipulate; in order to encourage such statements, we leave ourselves free to state them without the
attendant formal constructivist mechanism. Since the problems we will be dealing with focus on real-world
applications, we are less likely to follow chains of inquiry that lead to the sorts of mathematical monsters
feared by constructivists. Ultimately, when we implement our models on computer, we will necessarily be
constructivist: a computer program always prescribes how its objects are constructed. But we have admit-
tedly left a possible gap in our methodology: We might in principle define models for which constructive
formulations can’t be created, i.e., that we can not directly implement on computers. It is intriguing to con-
sider following strict constructivist doctrine in creating mathematical models, leading perhaps to guarantees
of computability and so forth. We have not pursued this line of inquiry very far.

Finally, note that we are perhaps a bit optimistic in our notion that precise statements of properties will
lead to “unambiguous meaning.” As discussed by [Lakatos76], one always assumes a familiarity with the
terms and concepts used in the definitions; to whatever extent those concepts are fluid, ambiguities can arise.
Still, in practice, reasonable attempts at precision of meaning can help one go a long way—in particular, a lot
farther than one would go without any attempts to be precise. 'S

3.7.2 Specializations

Occasionally, we will define (or will be given) an abstract space, but will wish to focus on a subset of it that
is particularly interesting, defining operators, properties and so forth that apply only to the subset but not the
the space as a whole. To formalize this notion, we introduce the idea of a “specialization” (Fig. 3.4):

Definition. Specialization

A specialization of a given abstract space (called the general space) is an-
(34) other abstract space, that is in one-to-one correspondence with some subset
of the general space.

Defn. 3.4: Since the elements of a specialization correspond one-to-oneto those of a subset of the general space, properties
and operators of the specialization’s elements can be thought of as implicitly applying to those of the subset. O

and some attendant notation:

Notation. Subset-like Symbol “CC” for Specializations

Ifwe are given, e.g., spaces named Specs and Gens, and an injection
(one-to-one function) f: Specs — Gens, then we denote the specialization

relationship using the symbol “C”, as:
3.5)

Specs é Gens = “Specs is a specialization of Gens”
f(Specs) = The subset of Gens corresponding with Specs

Notn. 3.5: Notation for specializations. If we do not need to name the injection, we will write simply Specs C Gens. O

For an element of a specialization, s € Specs (é Gens, the corresponding element of the general space is
given by f(s). Conversely, for an element g € f(Specs) C Gens, the corresponding element of the special-
ization is given by f —!(g). Note that f~1(g) is not defined for all general elements g € Gens, only for those
elements that actually correspond with elements of Specs.

15We can claim some kinship with Lakatos, however, in the domain of formalism vs. methodology ([Lakatos76-pp.1-5]). Our approach
towards mathematical complexity is not geared towards a formal analysis of complexity, but rather methods or heuristics to manage it.
For discussion of the complexity of numerical computation, we refer the reader to [Traub,Wasilkowski,Wozniakowskigg].

3.7 Abstract Spaces 34

A “Specialization” of a Space

Gens

Specs is a specialization of Gens:

f
Specs [Gens

Figure 3.4: A specialization of an abstract space. Space Specs corresponds one-to-one with a subset of space Gens ; the function
f:Specs— Gens is an injection (one-to-one function) that determines the subset and the correspondence. O

Since every element of a specialization has exactly one corresponding general element, we commonly (or
implicitly) overload all operators on General spaces to act on the specializations:

Given a specialization Specs l£ Gens, and an operator op: Gens — A, we
(3.6) overload op: Specs— A:

oP(s) = opr(f(s)), for all s € Specs

Eqn. 3.6: All general-space operators are overloaded onto the specialization. Thus an element of a specialization can
act as the corresponding element of the general space. O

In Sec. 3.9.5 we will give a mechanism for specifying new operations and properties, just for the specialization.
Our notion of a specialization mechanism is of course patterned after class derivation in object-oriented
programming. In principle, we might consider overloading operators so that op (s) would be different from
op(f(s)), thus achieving a mathematical analog of polymorphism. However, as discussed in Sec. 3.5.4, we
think that would introduce excessive ambiguity—our idea behind specializations is to assign extra properties
to interesting subsets of a spaces, not to change any existing properties. As an aside, C++ programmers might
note that evaluating f(s) is analogous to performing “upcast” from a derived class to a base class, while
f~1(g) is analogous to a “downcast” and is only “type-safe” when g € f(Specs) [Ellis,Stroustrup90].

3.7.3 Disparate Unions

Generally, when one thinks of a particular space, even an abstract one, the fact that all its elements belong to
that space leads one to think of all those elements as being essentially similar in some conceptual way. While

3.7 Abstract Spaces

Disparate Unions

(@)

(b)

eawESETS NN RR Rt r g,
we® ey
o

s

...
o %
. .
- %
I. .
. = g 2 i
H . & s
s) s
- - -
- - -
. H H
< . = ZZ
. . - - d
- - .
. - %
% . ’
L K %
S * .
.. -
e
.,

.
o,
.
oo %oy
-
o
e,

\

AN

WY

NN
W
\

.'
0°‘
o

s
*

Figure 3.5: Disparate unions. We will occasionally define abstract spaces whose elements may be of various dissimilar types—they
needn’t even have the same dimensionality or degrees of freedom. Two elements that are of the same type said to be “agnates.” (a)
A disparate union including points on the surface of a torus, points within the body of a cube, and others. The points marked X are

agnates (both on the torus), but neither are agnates of the point marked © (in the cube). (b) A disparate union whose elements have

some similarity—all are points from the unit cubes in various dimensions—but that nonetheless have distinct dimensionality. For this
space, arithmetic operations are defined between agnates, and we can always construct smooth paths between agnates; but we do not
have arithmetic or continuous paths between points that are not agnates. O

this is tautologically true, it will also occasionally be the case that there is a marked dissimilarity between
objects that we have chosen to group together into a single set—in particular, we may group together objects

that have different dimensionalities or degrees of freedom (see Fig. 3.5). Thus we define:

Definition. Disparate Union

A disparate union is an abstract space that can be partitioned into a collec-
3.7

tion of disparate sets; each of those sets is called a disparate component of

the union. Two elements of a disparate union are agnates if they belong to
the same disparate component.

Defn. 3.7: A disparate union is a collection of different types of elements. Thus if A is an abstract set, two elements

2,y € Amight have no or few common operators or properties—they may be “like apples and oranges.” Disparate unions,

and paths through disparate unions, will be useful for models of things whose state and makeup can vary qualitatively; see
the discussion of segmented functions, Sec. 3.10 O

A disparate union may be explicitly defined as the union of various different spaces, for example, Defn. 6.3
defines a space GeomObjs whose elements include locations, scalars, vectors, and others. Or, a space defined
in some other manner may nonetheless be a disparate union, for example the set of all “indexes” of a given

space, as will be discussed in Sec. 3.8.2. Trivially, any homogeneous space is a disparate union, comprised
of a single disparate component; thus all elements of a homogeneous space are agnates.

We will assume that given an element of a disparate union, we can always know to which disparate com-
ponent it belongs, either by inspection or by construction—i.e., given any two elements, we can determine if

they are agnates. C programmers may notice a similarity with the union construct: a variable of such a type

may in fact be of any of the component types, and it is up to the programmer to know which component type
corresponds to any particular value of the union ([Kernighan,Ritchie88]).

35

3.8 Identifiers (ID's) and Indexes 36

More pedantry

We are not familiar with existing mathematical mechanisms thatemphasize the manipulation of sets containing
elements with varying dimensionality. A related concept s that of a directed systems of sets (see [Spanier66]);
that idea, however focuses on ordering and maps between the component sets, particularly in the definition
of the direct limit, which defines an equivalence between elements of each set. We are interested, however,
in the fact that the elements of the component sets differ, not in how they can be equated.

For those who are made uneasy by our assumption that we can always determine from which component
set an element originates, we can fall back on [Spanier66]’s definition of disjoint union (or ser sum), in which
each element of the union is a pair containing both an element of a component set, and essentially a tag that
indicates which component set.

3.8 Identifiers (ID’s) and Indexes

Often a model will need to handle a collection of objects, such as a collection of rigid bodies. This section
presents a mechanism that allows us to define a collection elements, and manipulate it as a single entity, yet
also be able to mathematically “access” individual elements within it. We start, in Sec. 3.8.1, by defining the
identifiers (ID’s) that will be used to name objects. Sec. 3.8.2 defines and gives notation for indexes, which
are collections of named objects. Sec. 3.8.3 discusses various operations on indexes.

The mechanism described here is used extensively in the models in Ch. 6-9; see, e.g., the index Systems
in Defn. 8.14, and its use in Eqn. 8.32.

3.8.1 Definition of ID’s
The set of identifiers is trivial:
Definition. 1Ds

a discrete space, with an ival relation
3.8) IDs = (space equivalence)

to distinguish between the elements

Defn. 3.8: A space of identifiers (ID’s). We will use the elements of IDs to label various things. We can think of each ID
as a name, like “hansel” or “grendel” or “obj193b.” O

Having an equivalence relation simply means that we can tell ID’s apart: Given a,b € IDs, we can tell if
a = b orif a # b. Note that we have no other relations defined for IDs. In particular, we do not define an
ordering.1¢

We will use ID’s from the one space IDs to name many different types of things. One might be worried
about confusion—given a particular ID, what type of thing is itnaming? One could partition IDs into disjoint
subsets, where each subset corresponds to a different type of thing being named. In practice, we have not
found this to be necessary. Note also that IDs is infinite; we assume that we can always grab a new ID if we
need one.

We will occasionally use sets of ID’s. The following definition is convenient:

Definition. |Dsets

(39) IDsets = the space {se!s of IDS}

Defn. 3.9: Sets of identifiers. If s € IDsets, then s is a set of ID’s; we can speak of the size of the set (||s||) and whethera
givenidentifier: € IDsisintheset (i € s)ornot (i € s). O

16Why go to all this effort? Why not just label objects with integers? The reason is that we don’t want to always have an implied
ordering between labeled objects, if there is no natural ordering. A particular collection of objects may need an ordering (or several
orderings); in such a case the orderings would be defined explicitly.

3.8 Identifiers (ID’s) and Indexes 37

An abstract space “A”

An index:
Some elements
of A, labelled with
identifiers

Various Elements: e's € A
Identifiers: a,cdx zgoat € |Ds

An “Index”: {[a®], [c®, [x®,6 [z8], [goat,® , [de } € {A}ID
s

Figure 3.6: An index is a collection of elements of some space, each labeled by an identifier; given an index, we can look up elements
based on theiridentifiers. In this illustration, the ’s are various elements of a space A . It is allowable for two of the #’s to be equal—two
different identifiers may label the same element—but no single identifier can be used to label two different elements. O

3.8.2 Indexes

We define an index!” to be a collection of elements from some space, with each element labeled by a unique
ID: (Fig. 3.6)

Definition. Indexes

An index of elements of a space A is a set of pairs [i € |Ds, a € A)] such that

no two pairs share an ID. That is, if T is an index
(3.10)

For any two pairs [i,a), [j,b] € T,
i=j = a=1b

Defn. 3.10: An index is a collection of paired ID’s and values. A given ID can only occur once within the collection; thus
each ID uniquely labels its corresponding value. However, any given value may occur several times, labeled by different
ID’s,ie,a=b # i=30

We use the following notation for indexes:

17The word “index” is sometimes used to mean a pointer or indicator that selects a single element from a collection; for instance, in
the C programming language expression a [i], the variable i is called an “array index.” Our use of “index™ is, instead, in the sense of a
table; e.g., the index in the back of a book.

3.8 Identifiers (ID’s) and Indexes 38

Notation. Assorted Notation for Indexes

{A}IDS = The set of all indexes of elements of space A
T € {A}ps “T' is an index of elements of space A”
Ids(T) = The set of ID's used as labels in T, i.e.
{z’ € IDs I Ja € A such that [i,a] € T}

I

(3.11)

Elts(T) = The set of elements of A thatare in T, i.e.
{a €A | 3i € IDs such that [i, a) € T}
T: = The element of T labeled by i € Ids(T), i.e.

a € Asuchthat [i,al € T

Notn. 3.11: Notationforindexes. A canbe any space. T without subscripts refers to the index as a whole; T with a subscript
ID, e.g., T;, refers to a single element. Note that if an ID is not used as a label in T, that is if ¢ & Ids(T'), then the subscript
notation T is invalid. O

Sometimes it is convenient to be able to define an index for which we can be careless, and look up an element
by ID, without worrying about whether the ID is actually used in the index—if it isn’t, we will accept O as its
element. We call these “indexes with 0,” and extend the notation:

Noration. Indexes with 0

If space A has a zero element, 0:

(3.12) Te {A}'i Ds = “T is an index with zero”
- - a € Asuchthat[i,a) € T, ifie€ Ids(T)
y - 10 ifi ¢ Ids(T)

Notn. 3.12: Indexes with 0. If T is defined to be an index with zero, then the subscript notation is not restricted to ID’s
that are used as labels in T’; for ID’s that do not label any element, 0 is used instead. /ds (T") and Elts(T') are the same as in
Notn. 3.11. O

The remaining discussion of indexes will apply also to indexes with 0’s.

Note that two indexes S, T' € {A}|pg do not necessarily have the same number of entries, or, they may
have the same number of entries but may use different ID’s. Thus the set {A}|pg is a disparate union as per
See. 3.7.3:

Two indexes S, T € {A}|pg are agnates if
Ids(S) = Ids(T)

Eqn. 3.13: The set of all indexes of A can be partitioned into disparate components so that the indexes in each compo-
nent have the same ID’s. See Defn. 3.7. O

(3.13)

Eqn. 3.35 will illustrate the meaning of continuity for index-valued functions.

There is a standard mathematical mechanism similar to our indexes: A mapping from a set A to a set A
can be called a family of elements of A indexed by A ([Nihon Sugakkai77]). The mapping is commonly written
as {ax}xea orjust {ay}, and A is called the indexing ser. For our purposes, we express the mapping as a set
of pairs in order to emphasize its nature as a manipulable mathematical object. Further, we limit our indexes
to use IDs as the “indexing set”—but any given index need only be defined over a subset of IDs. LISP
programmers will find our indexes to be reminiscent of key-value association lists ([Steele90]).

3.8.3 Operations on Indexes

The usual set operations can be applied to indexes, except that we can only perform a union on indexes that
don’t have any conflicting entries. Several equalities hold:

3.8 Identifiers (ID's) and Indexes 39

Given any two indexes S, T € {A}|pg of some space A

ws(snT) = {iens(S)nmT) | s =T}
(SNT); = &;, forie Ids(SNT)
(SNT); = T forields(SNT)
(3.14) WS -T) = Id{S)— I(SNT)

(S=T) = S forielId(S—T)

If S; = T; for all i € (Ids(S) N Ids(T')),
Hds(SUT) = Ids(S) U Ids(T)
_ _ S, ifie Ids(S)
S B {T ifi € Ids(T)
Eqgn. 3.14: The intersection of two indexes includes only elements having both the same label and the same value in

each index. To subtract from an index, we remove all elements that are in the intersection with the subtrahend. We can
only perform a union on two indexes if any ID’s that they share are used to label the same value in both. O

We define notation to add and delete elements of an index;!®

Notation. Index + and —

For index S € {A}|pg of some space A, i € IDs, z € A, and I € IDsets

§-i = S—{[i5], i € Ids(S)
S—1 = S—{[i,S,-]‘ieI}, I C 1dsS)

Notn. 3.15: Adding and deleting entries from an index. Note that to delete an element, we need only specify the ID. We
define “subtraction” for an individual ID or for a set of ID’s. O

Often we will be given an index of elements of A, and an operator that acts on individual elements of A; we
will want to apply the operator to the entire index at once, constructing the index of results. * Thus, formally:

Definition. Operators on indexes

Given an operator oP: A— B for some spaces A and B, we overload the
operator oP: {A}ng— {B}|pg as follows: Let a € {A}|pg; b € {B}|pg
(3.16) be indexes, then

oP(a) =b <= { Ids(Z;z?;sEza)’ B € Ko

Defn. 3.16: If we apply an operator to an index of elements, we get the index of results of applying the operator to each
element. Note that we are implicitly overloading every operator on a space to act on indexes of that space. O

If we have an index of functions,?® we can always define a corresponding function that returns an index:

18'We are using sloppy language here; as per Sec. 3.5.1, we can’t “change” an index by adding or deleting elements. More precisely,
these are operations that describe a new index given the operands.

191 LISP parlance, we are performing a “map” of the operator over the index ([Steeleg0]).

20“Index of functions” — is that kosher? Sure, if one considers each functionto be an element of a space of functions. We will actually
use this frequently in Ch. 6-9.

3.9 State Spaces 40

Definition. Implied function of an index of functions

Given an index F whose elements are functions into some space A, i.e.,
F € {functions: R — A}|pg. the implied function is the unique
3.17) index-valued function D: R — {A}|pg such that:

Ids(D(z)) = Ids(F') independent of ©
D(z); = Fi(z) foralli€ Ids(F), z € R
Defn. 3.17: A implied by an index of functions. Given an index F', each of whose elements is a function, there is a unique

implied function whose value is the index of results of evaluating each element of F. The domain of the functions doesn’t
have to be R, but can be any space. O

Thus we can “evaluate” an index of functions as if it were a function:

Notation. Evaluating an implied function using parentheses “()”

Given an index of functions into some space A, e.g.,
F € {functions: R — A}|pg. parentheses implicitly refer to F’s implied
(3.18) function:

F(z) = D(z),where D:R— {A}|pg is implied by F

Notn. 3.18: We can treat an index of functions as if it were the corresponding implied function of indexes. This notation
can of course be used for functions other than of reals or of more than one variable; we would write, e.g., F(z, v, z). O

3.9 State Spaces

Modeling often involves the manipulation of the state of an object: its location, configuration, momentum,
and the like, as appropriate—all that describes its condition of existence. To accomplish this, it is often useful
to define an abstract space such that a single abstract element corresponds to a unique and complete depiction
of the state. This gives us “encapsulation” of information, as discussed in Sec. 3.4.4—we can manipulate a
single entity, rather than having to handle the collection of separate parameter values that make up the state.
Since we will frequently want to define and use abstract “state spaces,” this section provides a
mechanism—definitions and notation—to aid in the process. Readers with a background in computer pro-
gramming will observe that the state space mechanism we describe here is reminiscent of data structures, or,
more strongly, of object oriented programming. As discussed in Sec. 3.4, we have intentionally borrowed the
object-and-operator paradigm of object oriented programming for use in mathematical modeling.

3.9.1 Basic Definition & Notation

We want to use abstract spaces whose elements correspond with, or encapsulate, the states of objects. Such
spaces will need operators to perform the mapping between the abstract elements and the various parameters
and other aspects of the corresponding state. Thus we define:

Definition. State space, aspect operators

A state space is an abstract space that has an associated collection of named
(3.19) operators into other spaces. These operators are called aspect operators of
the state space.

Defn. 3.19: An element of a state space can be thought of as representing a collection of mathematical values of varions
types. The “aspect” operators tell us what those values are for any given element. O

An example of a state space might be:

3.9 State Spaces 41

"aspect”
A
‘ spaces
various "aspect”
" operators
w2, S
Pbs 20
B

Points in the space

Figure 3.7: A state space is an abstract space, with a collection of named “aspect™ operators that project into various aspect spaces; here,
we illustrate Eqn. 3.20. A point in the state space is determined uniquely by its entire collection of aspect values. Note that any given
aspect operator may be many-to-one, and the projection of the state space may be a subset of the aspect space. Additionally, aspect values
may be non-independent, e.g., for all pointsin s € S, the values of the aspects might always satisfy a(s) = 14 2b(s). O

an abstract space S
operator a:S— A
3.20
s operator b:S—B
operator ¢:S—C

Eqgn. 3.20: A sample state space S, having three aspect operators, a, b, and c¢. (Fig. 3.7) O

We impose the restriction that an element of a state space can be identified by its complete collection of
aspect values; all “measurable” or “distinguishing” properties of an element of a state space must have aspect
operators defined for them. Formally:

3.9 State Spaces 42

Given a state space S withaspects a, b, . . .,

andz,y€ S
3.21) a(z) = a(y)
T=y L ——3 b(I):b(y)
Egn. 3.21:

An element in a state space is uniquely identified by its complete collection of aspect values. There will
never be two different elements that “look alike”, i.e., have exactly the same aspect values. O

Itis convenient to standardize some terminology:

state space An abstract space, as per Defn. 3.19.

aspect operator An operator on elements of a state space. (In Eqn. 3.20, a, b, and ¢ are aspect
operators of S.)

aspect space The target space of an aspect operator. (In Eqn. 3.20, A, B, and C are aspect
spaces.)

aspect value The result of applying an aspect operator to a particular element of a state space.

(InEqn. 3.20, if s € S is an element of the state space S, a(s), b(s) and c(s) are its aspect
values.)

point in a space We use “pointin a space” interchangeably with “element of a space”. However,
“point” tends to have a connotation that the space is continuous, while “element” has a
connotation that the space is discrete.

For a more tangible example of a state space, suppose we wish to have a space of geometric arcs, Arcs.
Every element in the space Arcs corresponds to a particular geometric arc. We use operators on the space Arcs
to examine the properties of the arcs; each operator specifies a geometric property of the arc that corresponds
with a given element of Arcs. Thus, we might have operators to tell us the radius and subtended angle of each
arc. Rather than list the space and name the operators in long form as in Eqn. 3.20, we use a shorthand:

Noration. Brackets “[]” and Arrows “—" for a State Space

Arcs
[an abstract space Arcs
(3.22) r — R = operator r: Arcs— R
angle — R operator angle: Arcs— R
]

Notn. 3.22: The notation on the left is shorthand for the collection of statements on the right, to define a state space.
Note that if we define several state spaces that share aspect names, we are implicitly overloading the aspect operators (see

Sec.3.6.3). O
Generally, we think of and visualize elements of state spaces as points or dots in some nebulous region, as
illustrated in Fig. 3.7. However, it is also possible to think of concrete values: by Eqn. 3.21, each element of

a state space S has a unique tuple of aspect values. Thus a state space S can be embedded in the Cartesian
product of its aspect spaces:

Given a state space S with aspect operators a, b, . ..
and corresponding aspect spaces A, B, . . .,
(3.23) where : S is isomorphictoaset C CAx B x ...

C:{h@LMﬂyleES}

Eqgn. 3.23: An embedding of a state space. The state space S is isomorphic to the set C comprised of the tuples of as-

pect values. The isomorphism of the spaces S and C comes directly from the definition of identity of elements of S,
Eqn.3.21. 0

3.9 State Spaces 43

That is, when it is more convenient, we can think of an element as its equivalent tuple of aspect values (hence
Notn. 3.22 looks like a tuple written vertically). If we wish to define an element of a state space by specifying
its tuple of aspect values, we use the following notation:

Notation. Brackets “[]” and Backarrows “«—" for a Tuple

b o c € Arcs such that
(3.24) [] = f(e) = m
angle— a angle(c) = a

Notn. 3.24: Shorthand notation to specify an element of a state space by a tuple of aspect values. Note that this nota-
tion leaves implicit to which space the element belongs—it needs to be clear from context. The notation is not well-defined
if there is not a unique element corresponding with the tuple. It is not always necessary to include values for all the aspect
operators, however; this will be discussed in Sec. 3.9.2. O

3.9.2 Internal Properties of a State Space

For a particular state space it may be true that only certain combinations of aspect values are possible. Aspects
may be redundant (e.g., two aspects, one describes a length in yards, the other describes the same length in
meters); more generally, there may be arbitrary relationships between possible aspect values, reflecting the
inherent structure and “topology” of the aspect space. Using the terms of Eqn. 3.23, C would be a proper subset
of the embedding space A x B x ...; often, C is a low-dimensionality manifold in the higher-dimensionality
embedding space.

We define the internal properties of a space to be the aspect value relationships that are guaranteed to hold
for all elements of the space. It is convenient to note the internal properties explicitly, at once when the space
is defined. Thus we extend Notn. 3.22:

Notation. Internal Properties Below a Line “—”

Rectangles Rectangles
[
length — R length — R
width — R width — R
(3.25) _area —R -]area — R
length > 0 Vr € Rectangles,
width > 0 length(r) > 0
area = length x width width(r) > 0
] area(r) = length(r) x width (r)

Notn. 3.25: The notation on the left is shorthand for the statements on the right, that define a state space (Notn. 3.22)
and list its collection of internal properties. Note the shorthand leaves implicit the “for all”” qualifier—internal properties
are by definition true for every element of the space. O

The internal properties defined for a state space are not restrictions that describe acceptable or interesting
elements, or those that solve some problem. Rather, as we said above, the properties are descriptive of the
internal “topology” of the space.?!

Eqgn. 3.21 says that in general, one needs the complete collection of aspect values to identify an element of
a state space. For spaces with internal properties, however, itis often true that the value of only a few aspect
operators—or even a single aspect operator—is in fact sufficient to uniquely identify a point in the space. For
example, in Notn. 3.25, the values of any two of length(r), width(r), and area(r) are sufficient to identify
an element » € Rectangles. We call a collection of only some aspect values a sub-tuple for an element (and
for clarity we will occasionally refer to the complete tuple of values as a full-tuple), and define:

21 However, one might imagine a computer program that numerically computes elements of a state space, representing elements by
tuples of values; such a program may in fact use the internal properties to restrict the solution to lie on the proper manifold in the
embedding space.

3.9 State Spaces 44

Definition. Identifying Sub-tuple

A sub-tuple of aspect values that is sufficient to identify an element of a state
(3.26) space is called an identifying sub-tuple. If eliminating any value guarantees
that the remaining values will be insufficient to identify an element, it is called
a minimal identifying sub-tuple

Defn. 3.26: An identifying sub-tuple means that there is only a single element in the space that has those particular aspect
values; The remaining values of the element’s full-tuple can be determined by the internal properties of the space. O

When defining a state space, it is often useful to describe the minimal identifying sub-tuples. Minimal iden-
tifying sub-tuples are typically the easiest way to specify particular elements of a space. Note that Notn. 3.24
allows us to describe an element using an identifying sub-tuple, leaving out the unnecessary aspect values;

since the notation includes aspect names, there’s no ambiguity about which aspect operator values are part of
the sub-tuple.

3.9.3 Subscript Notation for Aspect Operators

An aspect operator is just an operator, and we can use ordinary parenthesis notation to evaluate it, as for
example in Eqn. 3.21. However, sometimes parentheses can get cumbersome, when equations get complex or
in particular when an aspect value is itself a function. We find it convenient to define an alternative notation:

Notation. Subscripts for Aspect Values

Given a state space S with an aspect operator a , and an element s € S, the
following notations are equivalent:

(3.27) a(s) [standard parenthesis notation]
as; [new subscript notation]

a, = a(s)

Notn. 3.27: Subscript notation for aspect operators. In any given expression, we will use whichever notation seems
clearer. O

Often, we consider functions into state spaces. Again, to alleviate difficulties with parentheses, we define an
alternate subscript notation:

Notation. Subscripts for Aspect-Valued Functions

Given a state space S with an aspect operator a , and a function s: R— S,
the following notations are equivalent:

a(s(t)) [standard parenthesis notation]

(3.28) as(n) [subscript notation of Nom. 3.27]
a,(t) [new subscript noration]

(aos)(t) [function composition notation]

a,(t) = 2,y = a(s(t) = (a 0 5)(2)

Notn. 3.28: Subscript notation for functions into state space. The new subscript notation a <(t) emphasizes the compos-
ite result: an aspect value as a function of ¢. In any given expression, we will use whichever notation seems clearer.
This notation can of course be used for functions other than of reals or of more than one variable; we would write, e.g.,
as(z,v,2) = a(s(z,y,2)). O

The different notations in Notn. 3.28 have the common feature that from left to right, they all list a then s
then ¢, so even if we get lost among the various parentheses and subscripts, we can get the idea of what’s
happening.

3.9 State Spaces 45

Aspect
Spacss
3 Parent
xa\e %2 =
)
y %D
Nested
a

A "Nested"
State Space

/|

"Nested"

Aspect
Spaces

Figure 3.8: Nested state spaces: An aspect space of a state space may be another state space. The aspects of the nested space may be
“adopted” as aspects of the parent space through composition of aspect operators; here, we illustrate aspect operator 1 being adopted
into the parent space as aspect operator d . O

3.9.4 Nested State Spaces

An aspect space of a state space may be another state space. That is, one state space may be “nested” inside
of another; this is illustrated in Fig. 3.8. The parent space can “adopt” aspects from the nested space to be its
own aspects as well:

Definition. adopt an aspect

Given a space A, a state space Nested with an aspect operator
a:Nested— A, and a state space Parent with aspect operators
n:Parent— Nested and d: Parent— A,

(3.29)
Parent adopts a as d iff:

d(p) = a(n(p)), for all p € Parent

Defn. 3.29: Adopting an aspect from a nested space. The parent space’s aspect operator is equivalent to the composition
of the nested space’s aspect operator with the aspect operator that yields the nested space element. See Fig. 3.8 O

Using the notation of Notn. 3.25, we can re-write Defn. 3.29, perhaps more clearly:

3.9 State Spaces 46

State space Parent adopts an aspect a of state space Nested as its own
aspect d if, for some space A:

Parent Nested
[
(3.30) n — Nested a—A
d—A]
d = a(n)
]

Eqn. 3.30: Adopting an aspect from a nested space. The adoption equivalence in Defn. 3.29 is expressed as a property
of the parent space Parent. O

Frequently, we choose to keep the same name for the adopted aspect in the parent space as it has in the nested
space. We extend Notn. 3.25 to allow easy definition of adopted aspects:

Noration. Ellipsis . . .” for an Adopted Aspect

Bricks Bricks
[[
height — R height — R
base — Rectangles base — Rectangles
depth ...length — R depth —R
width ...width — R width — R
(3.31) volume — R = volume — R
height > 0 height > 0
volume = height - area(base) volume = height - area(base)
] depth = Iength(base)
width = width (base)
]

Notn. 3.31: The notation on the left is shorthand for the definition on the right, in which the nested space’s length and
width aspects are adopted into the parent space. In the shorthand notation, each adoption s listed directly underneath the
nested space, with ellipses leading from the parent aspect name to the adopted aspect name. The names may be the same
or different. Rectangles is used here as defined in Notn. 3.25. O

The examples in Notn. 3.25 and Notn. 3.31 let us derive a corollary from the properties of the spaces Bricks
and Rectangles:

Vb € Bricks, volume, = depth;, x widthy x height;

A final note on nested spaces: we want to avoid circularity—we disallow a parent state space that nests itself,
or that nests a space that directly or indirectly nests the parent.

3.9.5 State Space Specializations

In Sec. 3.7.2, we discussed the idea of a specialization, i.e., a subset of a general space, that has additional
properties and operators. The state space mechanism can be used to define these additional properties.

To define a state space Specs as a specialization of some general space Gens with an injection
f: Specs— Gens, we need only list f as an aspect operator of Specs, and include internal properties that
insure f is one-to-one. However, we define notation to make the specialization explicitly visible:

3.10 Segmented Functions 47

Norarion. Specialization Symbol “C" for State Spaces

Specs
Specs é Gens ?

[
(f — Gens
(332) : -

(f identifies an element)
Notn. 3.32: The definitions on the right hand side define Specs as a specialization of Gens, as per Defn. 3.4/Fig. 3.4; the

notation on the left is a shorthand form. Note that since f is one-to-one, each element s € Specs has a unique value of
fs; thus a value of f comprises an identifying tuple for an element of Specs . O

(f identifies an element)

If the general space is itself a state space, then the specialization implicitly adopts all of its aspects, by Eqn. 3.6
and Defn. 3.29. That is, we have:

Notation. Specialization of a State Space

Specs Gstates
Specsrf:Gstates Gstates [f — Gstates i =y
[(a ...a— R b—R
z =R a—R b ..b—R)
(3.33) y—R b—% = z—R
_ I yo—r%
z=a+b -
b=a+y z=a+b
] b=a+y
]

Notn. 3.33: A specialization of a state space implicitly adopts all aspects. Note that in this example the intemal prop-
erties of Specs are sufficient to determine = and y from the adopted aspect values a and b, thus f is sufficient to identify
an element of Specs. If no name is needed for the injection aspect operator, we can write just Specs [Gstates. O

Several examples of state space specializations can be found in Ch. 9.

3.10 Segmented Functions

Suppose we want to create a model of a thing whose behavior over time includes discontinuous changes in
its configuration or properties. For example, as illustrated in Fig. 3.9, the number of bodies in a model may
change as bodies are created or destroyed; [Brockett90] describes a formal language for robotic motion that
includes discrete changes in force function; and [Kalra90] allows the behavior of a model to change discretely
between nodes of a directed graph.

We would like to define a single function of time that completely describes a model’s behavior. But
at each discontinuous change, the model may switch between incompatible configurations, having different
dimensionality or degrees of freedom—how can we have one function that spans these changes?

The answer is simple: Consider the overall configuration space of the model to be the disparate union
(Sec. 3.7.3) of the various individual configuration spaces—then define the behavior as a path through that
overall configuration space. This section introduces the idea of a segmented function to describe such paths.
The mechanism we define here is used, for example, in the example “tennis-ball cannon” model of Ch. 11.

3.10 Segmented Functions 48

A Model of a Body That Splits Into Two

Configuration Space :-'//% @

Lesmna
. See

.
.

Behavior of the model
(a path through the space)

Figure 3.9: Example of a segmented function. Consider a model of a body that splits into two bodies. When there is only one body,
we describe the model with 6 degrees of freedom (3-D position and orientation), but when there are two bodies, 12 degrees of freedom
are needed. The model’s behavior over time is described by a segmented function: a piecewise continuous function into a disparate
union. O

3.10.1 Definition of a Segmented Function
We’d like a path through a disparate union to be “continuous,” but continuity can’t be defined in general

for disparate unions. A path that stays within a single disparate component of the union can be continuous,
however—but to make a transition between components, there must be a discontinuity. Thus we define:

Definition. Segmented Function

A segmented function is a piecewise-continuous function from the real num-

(3.34) bers to a disparate union. Each continuous piece is called a segment, and we

refer to each discontinuity as an event.

Defn. 3.34: Each segment of a segmented function stays within a disparate component of the union, i.e., all points along
the segment are agnates. The transition from one segment to the next may cross into a different component. Note that

we define segmented functions only as paths, i.e., functions from the real numbers, rather than as functions from arbitrary
spaces, O

The definition assumes that continuous is well-defined within each component of the disparate union. For a
space that is discrete, we take continuous to mean constant. And thus, for a space that is (equivalent to) a
Cartesian product of discrete and smooth spaces, a continuous means that the discrete parts stay constant and
the smooth parts can vary continuously.

A common use of segmented functions is for paths into a space of indexes (Sec. 3.8.2). First, we’ll look
at what continuity means for index-valued functions:

3.10 Segmented Functions 49

A segmented function Y{(#) represented by a sequence

A) eransd -
Y (tk+1) i

}:(H (f)

¥)

~V

t L

sequence: { .. ., {4, %) : s s 5s) 55 & I

Figure 3.10: Sequential representation of a segmented function. Each element in the sequence is a pair containing the corresponding
segment’s left bound and continuous function. The diagram illustrates two adjacent segments. O

For an index-valued function f: R— {A} pg to be continuous, we must

have:
(3.35)
e the composite function (Ids o f): R — |Dsets is constant, and

e each composite function f;: R — A is continuous, for i € Ids(f(t)).

Eqn. 3.35: Continuous index-valued functions. For f to be continuous, we must have a given collection of elements,
that each vary continuously (we assume that continuity is defined for the space A). O

A segmented function is made from continuous pieces, and thus:

For a segmented index-valued function f: ®— {A}|pg, we have:

(A8 e (Idso f): R— |Dsets is constant in each segment, and

e each f;: R— Ais continuous in each segment, for i € Ids(f(t)).

Eqn. 3.36: Segmented index-valued functions. Each segment may have a different set of ID’s. If two adjacent segments
share an ID 4, the value f(); might or might not vary continuously across the event. O

3.10.2 Sequential Representation of a Segmented Function

We’d like to to represent segmented functions concretely, in order to be able to manipulate and evaluate them.
Mathematical methods, as well as numerical, are most often designed for continuous functions, and don’t
robustly handle discontinuities. Thus we isolate the continuous parts of a segmented function, expressing it
as a sequence of continuous functions with bounded domains: (see Fig. 3.10)

3.10 Segmented Functions 50

Definition. Sequential Representation

The sequential representation of a segmentéd function’Y : R — A for some
space A is a sequence of reallfunction pairs:
{0 (te=1,Ya=1), {te,Y2), (tkg1, Yes1), ...} such that for each pair

(tk) Yk)’
(3.37)
tr €R increasing with k
Ye: [te, ts+1]— A continuous function on the interval
Y1) =Ye(t), wherety <t < tp4q

Defn. 3.37: Sequential form of a segmented function. The ¢ &’s in the sequence are the values of ¢ for which there are
events. Each function Y need only be defined on the interval corresponding to its segment, but must be continuous, thus
its values must stay within a single disparate componentof A. O

In order for a segmented function to be defined and single-valued everywhere, including the points of
discontinuity, Defn. 3.37 defines (arbitrarily) that Y (¢) take the value of the segment on the right-hand side
of each discontinuity. Thus we have not used the rightmost value of each segment’s function. Sometimes,
however, we will want to examine “both” values at the discontinuity:

Notation. Superscript “—” and “+-” for Left and Right Values

Given a segmented function Y : R — A represented sequentially by a
sequence {{tr,Y%)}, define:

(338) Y-(t) = Y (1), t# 1t foranyk
= Yi—1(tr) t =ty for somek

Y(t), t#ty foranyk

Yi(tx) t=tx forsomek

Notn. 3.38: Y (¢) is the value of the segmented function on the right-hand side of the discontinuity at ¢ 5, and Y = (#;)
is the value on the left-hand side. For convenience, away from discontinuities, both are defined to be the same as Y. O

Y*(t)

Note that Defn. 3.37 and Notn. 3.38 imply/assume an infinite number of segments; often, however, the se-
quence will be finite on either end: the end segments may extend to oo if there are no farther events, or we
may only be interested in Y (¢) for a bounded domain.

3.10.3 Functional Characterization of a Segmented Function

The sequential representation describes a segmented function by enumerating all the segments, i.e., listing the
event times ¢ and the continuous functions Y. We would also like to describe a segmented function “all at
once.” But, as mentioned in Sec. 3.10.2, we want a mechanism that isolates the discontinuities.

We define here a predicate-based method to characterize segmented functions. In addition to locating the
events between segments, this method emphasizes the relationship that links one segment to the next.

3.11 Designing a Model 51

Definition. Functional Characterization

The functional characterization of a segmented functionY : R — Aisatriple
of predicates:
a body function F: R x A—Boolean
that describes the continuous parts of Y,
an event function G:® x A—Boolean
that isolates the events (discontinuities)in Y’
(339 a transition relation H:A x ® x A— Boolean
that describes the events in Y,

such that, for each segment (tr, Yi),

F(t,Ye(t)) is true forty <t <tpq
G(t,Y~(t)) is true iffit =ty
H(Y~(t&),tx, Y (t)) istrue (for each ti)

Defn. 3.39: A segmented function characterized by three predicates. The body function is true 22along each continuous
segment; the event function is true only at the events; and the transition relation is true where the function crosses an
event. O

Notice that we refer to Defn. 3.39 as a characterization, rather than a representation. The predicates are
not necessarily “tight”: we have not specified their values for arguments that are off the path of Y (¢), and
furthermore, for the body function and transition relation, constant-true predicates would always suffice. Thus
a single segmented function can be characterized by many predicate triples, and a single predicate triple can
characterize many functions.

Still, the functional characterization provides a canonical form that is often useful—and in many circum-
stances, we can define predicates that are tight. For example, Appendix C uses a functional characterization
to define segmented functions as solutions to piecewise-continuous ODE’s. Notice that the functional char-
acterization gives a declarative way of encapsulating the procedural instruction “when X happens, doz”: If
we increase ¢, the value of the event function, G(¢, ¥~ (¢)) remains false until an event occurs, i.e., until “x
happens” ; and in describing the transition from Y ~(¢) to Y+ (¢) at the event, the transition relation H{(...)
embodies “do z.”

This is the end of the Techniques part of chapter 3. The next part, Discussion, contains
some notes on designing models as well as an overall summary of the chapter.

3.11 Designing a Model

Thus far, this chapter has discussed philosophy and goals for modeling, and has presented assorted techniques
for mathematical modeling. In this section, we try to give a feel of how these all fit together.

We would like to emphasize again that there is no unique “right” way of defining any particular mathe-
matical model. As discussed in Sec. 3.3, there are design decisions involved that are often not cut-and-dried,
but can be based on aesthetics, experience, goals, and so forth. Thus we don’t attempt to provide a specific
recipe for model design, but just a collection of notes on creating models.

The kinematic rigid-body module in Ch. 7 is small, and serves as a good example of many ideas here; we
encourage the reader to refer to it while reading this section. We will use the following notation to point to
specific examples:

[§7.3] = “see Sec. 7.3 for an example”
[Eq7.1] = “see Eqn. (or Defn. or Notn.) 7.1 for an example”

22For predicate calculus purists, writing “F(.. .) is true” is inelegant; one would just write “F'(...)”. But since we use predicates
rarely, we will be explicit.

3.11 Designing a Model 52

3.11.1 Writing a Model

A mathematical model is just a collection of equations and definitions written down with some explanatory
text. [§7.3]

Context. We write each mathematical model within the context of the overall physically-based model, as per
Sec. 2.6.3. That is, the mathematical model is preceded by a description of the concepiual model [§7.2], i.e.,
an explanation of the thing being modeled in terms of the behavior and properties of interest; and is followed
by statements of posed problems [§7.4], i.e., tasks described in words and as the corresponding mathematical
problems.

Exposition. The intention of the written mathematical modelis to be understandable by human readers. Thus,
although the mathematics of the model should be complete and well-defined without any extra material, we
should also include suitable explanatory text or diagrams to help make the mathematics understandable. In
particular, we should explain the the physical interpretations of the terms and equations that we write.

Framework. Each mathematical model is intended to be used as a module, and may invoke terms and equa-
tions from other modules. This leads to the following framework for writing a model:

Names & Notation. We start each model by stating its scope name,?* and also list terms from other
modules that we will reference, as per Sec. 3.6.2. We may also describe other naming conventions,
notation that will be used, and so forth. [§7.3.1]

Main Body. The definitions and equations that describe the thing being modeled. This may be divided
into several sections, and is often presented in a form paralleling the conceptual model. [§7.3.2-7.3.5]

Derivations & Proofs. We put derivations and proofs, if any are needed, in a separate section. Thus
the main body of the model contains the “bottom-line” equations that are of practical use for other
modules, while this section contains supplementary material that is of interest to “maintainers” of the
model. [§6.7]

3.11.2 Whatis in a Typical Model?

Things that are commonly found in models:

State Spaces. Typically, the thing being modeled, or objects therein, have some sort of configuration, or state.
We use the state space mechanism of Sec. 3.9 to define the abstract configuration space [Eq7.1]. Note that
we’re not minimalist about the choice of aspects in state spaces: we include any quantity that defines or is
defined by the configuration [Eq8.4]; in order to be able to specify individual elements, we describe what
combinations of aspect values comprise identifying tuples. In many cases, it may make be useful to define a
metric for a state space ([Hughes92]),i.e., a definition of a distance between two elements. State spaces are
also convenient to bundle a collection of quantities into a single entity [Eq7.8] .

Indexes. Whenever there are several of a thing—numbers, vectors, functions, sets, etc.—in a model, we will
use the index mechanism (Sec. 3.8.2) to be able to manipulate a collection of the things as a single entity.
Particularly common is to have an index of states. [Eq7.6]

Predicates. It is often convenient to define a predicate that is true when a particular relationship or property
holds for certain values. [Eq7.9]

Functions. We often define abstract spaces, each element of which is a function. Probably the most common
functions are those used for the behavior of a thing over time [Eq7.2], but they can be arbitrary [Eq8.16].
Sometimes we define a space that includes all possible functions from one space to another [Eq6.19], and
sometimes we define a space containing only functions that we find interesting or useful [Eq7.2].

23 Generally, the scope name does not need to appear anywhere else within the model. This is like the children’s riddle: “Q. What
belongs to you but is used more by everybody else?” “A. Your name.”

3.11 Designing a Model 53

3.11.3 Things to Do

“Tactical” ideas for designing models.

Modular design. We don’t want to define “global” quantities, but rather always encapsulate them in a state
space—even for a top-level model. Thus, we wouldn’t write “let y be the number of yaks, and z the number
of zebras.” Instead, we define a state space;

ZooStates

[
y v~ Integers number of yaks
z v Integers number of zebras

]
then we can write “for a zoo having state s € ZooStates .. ., the number of yaks, ys, is equal to. . .” [§11.3]

Temporal Behavior. For behavior of objects over time, we don’t want to have a “current” configuration.
Instead, we define the entire path of a function over time as a single object [Eq7.2]. We often define predicates
that describe interesting paths, or paths that are consistent with other items in the model [Eq8.10] .

Layered design. We like to take a layered approach, first defining general properties, then building on them
to include more details. For example, Defn. 8.10 describes a path of a rigid body thatis consistent with respect
to arbitrary net force/torque functions; Defn. 8.18 refines this to net force/torque fields; and Defn. 8.25 refines
this further to collections of individual force/torque “motives.”

Validity tests. When defining a model, it can be helpful to include theorems or redundancies, i.e., “if those
are true, then rhis must be true as well. For example, the rigid body model includes an energy formulation so
that if the bodies’ motions are consistent with the applied forces, an energy conservation equation, Eqn. 8.32
must hold. In addition to providing a consistency check on the model, it can be a powerful debugging aid
when implementing models, by specifying what to double-check to determine if the solution techniques are
working (see Sec. 2.6.4).

3.11.4 Things to Think About

Some things to bear in mind while creating a model.

Remember the context. In designing a model, we want to find a balance between definitions that are intuitive
and close to the conceptual model, and those that are well-suited to the particular problems we expect to pose.
Sometimes it all might fit together well, but occasionally there is some tension. We have no specific advice
other than to try to keep an eye on “both ends” at once.

Declarative model. We have emphasized the importance of a mathematical model being declarative, a state-
ment of relationships rather than a problem to solve. However, it is easy to slip into a problem-posing mode,
especially when we expect to program/simulate a particular problem. One might define a model that’s techni-
cally declarative, butdoes so by by declarations such as “z = solution-to-the-problem.” As we write equations
that define objects, we try to ask ourselves:

¢ Does the equation describe what the object is?
¢ Or does it just describe how to create one?

There is of course no hard dividing line, but it is something to think about. We have found that as we gain
experience, it becomes easier and more natural to create declarative models.

Relationships in the model. There is an aspect of designing a structured mathematical model that is not
unlike programming. In order for the expressions to be complete, we want every function to have arguments
for everything it depends on—there should be no hidden parameters. This often involves thinking about how

3.12 Summary 54

torepresent and encapsulate relevant information, what the underlying relationships are between entities, how
to define functions so that the right information gets to the right place, and so forth. The design process for
the “fancy forces” model in Ch. 9 was an exercise in this type of thinking.

3.12 Summary

This chapter was motived by the idea that having written, well-defined mathematical formulations leads to
more robust models. Traditional mathematical techniques and methods facilitate the creation of what we call
“model fragments” (Sec. 1.3), but do not focus on creating well-defined complex models that include the
“glue” between these fragments.

This chapter thus presented techniques and methods that help organize and structure complex mathemat-
ical models, in a well-defined, writable way. Many of the ideas were inspired by computer programming
methodology, which has been developed to meet similar needs. The techniques fell into five groups:

Naming Strategies (Sec. 3.7). Techniques for naming mathematical entities. Most notably, we introduced
scoped names, e.g.,
KINEMATIC :: States

Abstract spaces (Sec. 3.7). Discussion and methods for defining abstract spaces of mathematical entities.
Includes the ability to define specializations, e.g.,

Specs C Gens

Indexes (Sec. 3.8). A mechanism to manipulate collections of named entities, e.g.,
{Things}ms
State Spaces (Sec. 3.9). A mechanism to encapsulate a collection of properties into a single entity, e.g.,

Arcs

(

r — R
angle — R
]

Segmented Functions (Sec. 3.10). A mechanism to describe functions whose values may have discontinuous
changes in dimensionality, e.g.,
{o o ooltes Ya)yoos}

We have actually used these mechanisms, informally on whiteboards and on napkins as we developed
mathematical models, as well as more formally for the expositions in Ch. 6-9. They were designed (and
refined and re-designed) in order to be practical and effective. We have found that with some experience, they
are natural and easy to use. Of course, we don’t claim that these specific techniques are the best or only ones
to meet our goals. Different or additional structuring techniques might well be useful.

3.13 Related Work

We are not familiar with other work that follows our approach of creating “complete, explicit models,” with a
focus on the relationships and administration of model fragments. For basic applied mathematical modeling
exposition, we refer the reader to [Lin,Segel74] and [Boyce81].

55

Chapter 4

Computer Programming Framework

his chapter puts together the elements of the preceding chapters, to form the basis of a physically-based
modeling system:

o Conceptnal/mathematical/posed-problem structure and modularity as per Ch. 2.
o Mathematical models as per Ch. 3.

In this chapter, we go from the blackboard to the keyboard: that is, we will assume that the designer has made (a
first pass at) a “blackboard” version of the model, as per Ch. 2, and now is ready to sit down at a computer and
write some code to implement it. Note that in Ch. 2, numerical solution techniques were largely dismissed as an
implementation detail, and were left out of the CMP structure. Here, however, we’re focusing on implementation,
so the numerical techniques will be on an equal footing.

We will describe a framework for the structure of modeling programs, and how to implement a CMP model within
that framework. Several design issues will be discussed, including questions of debugging and efficiency.

The prototype models in Ch. 6—9 include descriptions of their implementations, in accordance with the framework
described in this chapter. Appendix B provides a background description of our prototype modeling environ-
ment.

4.1 Overview

For computer graphics modeling, we want extensible, reusable modeling tools. This chapter discusses a
modeling “system” or “environment” containing a collection of such tools, from which a particular model
or modeling program can be built. Note that the tools we build are for implementors—programmers—rather
than for end-users.!

The modeling system follows a “toolbox” approach. The modules and techniques that comprise the col-
lection of tools are at various levels of representation; they can be and mixed as appropriate for a given
application. We emphasize that we are not defining a “standard interface” for physically-based modeling (as,
e.g., RenderMan [Upstill90] does for scene description), but rather just an extensible toolbox.

A particular design goal for the system is to decouple the state of a model from the state of the program.
A mathematical model as per Ch. 3 can be a single formulation that spans discontinuities and state changes in
the thing being modeled; the computer program should do the same. That is, it should be possible to “random

1 A programmer could use the tools as the “guts” of an end-user modeling workstation/environment, but we are not directly describing
such an environment.

4.2 Framework for Program Structure 56

Framework for Program Structure

ey
g /
E
R
I
N € 3 5
T Conceptual Math |«— Numerical
E Section Section |« Section
R —>
A —>
4
T
I R
o] d \
N
) & .
C-M M-N
interface interface

Figure 4.1: Framework for program structure. The structure for a program follows the canonical conceptual/mathematical /posed-problem
structure discussed in Ch. 2. The program is divided into three separate sections: The “conceptual section”is the front end, maintaining
the data structures that represent the user’s conceptual model. The “math section” contains data structures that represent the mathematical
model. The “numerics section” contains various numerical problem solvers; the posed problems themselves are embodiedin the interfaces
between the three sections. O

access” the model over time, with the model’s state reflecting the correct configuration for each access. This
is discussed further in Sec. 4.7.

A note on terminology: We will use environment or system to refer to the collection of modules, techniques,
and so forth. We will use program to refer to a (hypothetical) computer program built using tools from the
environment; a program might implement a single model, some small class of models, or a general end-user
modeling workstation.

4.2 Framework for Program Structure

The conceptual/mathematical/posed-problem decomposition of a physically-based model that was discussed
in Ch. 2 translates into a framework for programs. We divide a program into three distinct sections: (Fig. 4.1)

o the Conceptual Section,
¢ the Mathematical Section, and
e the Numerics Section.

The conceptual section supports the user’s conceptual model. It maintains data structures describing the
objects being modeled, interacts with the user, and so forth. The math section embodies mathematical models
as per Ch. 3. It contains various data elements and structures that represent the mathematical objects and
equations. The numerics section is responsible for numerical solution of specific equations and problems.
Notice that the posed problems of the model do not have a section of their own in the program; they are
embodied in the interfaces between the three sections.

Putting it all together, a program has the following sequence of functionality:

1. The conceptual section defines a formalized conceptual model, based on user input.

2. The conceptual section creates a mathematical model based on the conceptual model.

4.2 Framewaork for Program Structure 57

3. For posed problems, the appropriate mathematical problems are created based on the mathematical
model.

4, For posed problems, the numerics section computes solutions to the problems, which get relayed back
to the mathematical model, from there to the conceptual model, and finally back to the user.

Notice that the program maintains two separate data structures that represent the overall model: one for the
conceptual model, and one for the mathematical model.2

The program is composed of modules that “live” within each section, as well as interface modules that
bridge between the sections. The math and numerics sections are mostly just libraries of routines and objects;
they have no autonomous operation. The conceptual section, however, administrates the operation of the
entire program.

4.2.1 Conceptual Section

& Conceptual
X o o Section

The conceptual section maintains the formal ver- 2 »
sion of the user’s conceptual model. This is typ- g : Conceptual Model
ically a data structure containing objects that the o
user understands and manipulates, corresponding = O y
to entities in the thing being modeled. For exam- T
ple, a rigid-body modeling system might have ob- / \. deffine :
jects for the primitive body, objects for forces that O O e &
act on the bodies, and objects for “control points” I{ : }"
at which the forces are attached, all grouped hierar- & ./ J' \, =
chically (see Fig. 4.2). Note that in Ch. 2 the con- e WO o L
ceptual model was expressed as words; here we ﬁ\ <_F_£> M
formalize the representation as a data structure. 2 oo 4

The conceptual model data structure includes E ’ .
sufficient information to construct the correspond- D
ing mathematical model data structure (via the C- 5
M interface). In addition, it includes information 3 ‘
such as rendering details, user-interaction con- G _C-M

interface

Bteoces, hiesathical grupangs, aod g0 Tont, de Figure 4.2. The conceptual section maintains the data structure rep-

a.re concep tually unportant, LC., partofthc abstrac- resenting the conceptual model, i.e., the objects, properties, relation-
tion, but may be invisible/irrelevant to the mathe- ships, etc. in the model. The section handles input/output interac-
matical simulation. tions and, via the C-M interface, defines and exchanges data with the

Many tasks performed by the conceptual sec- AR

tion are the same as those of a traditional (kinematic) modeling program, such as reading and writing model
description files, sending frames to a renderer, interacting with the user, etc.? The only traditional modeling
program task that is not performed is the computation of the objects’ behavior—that part is offloaded to the
mathematical section, which is used as an “equation engine.”

The conceptual model may actually include some snippets of mathematical equation or knowledge, espe-
cially when the high-level abstraction is inherently mathematical (see Sec. 2.4.3). For example, the shape of
a body may be defined via a parametric function, as in [Snyder92].

2 Actually, there’s no reason to limit it to two models. One can imagine having separate graphicalfinteraction/etc. models, as well as
the mathematical and conceptual models. For this discussion, however, we will just toss all but the mathematical into the conceptual
model; thus the conceptual model we describe is perhaps not as well-structured as it ought to be.

3 For this discussion, we assume that rendering is purely a conceptual task. In principle, however, a mathematical formulation for
rendering could be part of the mathematical model, and the task of producing an image would then be a posed problem.

4.2 Framework for Program Structure 58

4.2.2 Numerics Section Numerics
Section

The numerics section is the “back end” of a
physically-based modeling program. Itis a collec-
tion of program objects, whose role is straightfor-
ward: to solve numerical problems (on request),
such as integrating ordinary differential equations
(ODE’s), finding roots of functions, solving linear
systems of equations, and so forth, without regard
to any larger context these problems may be em-
bedded in.

The underlying functionality of the numerics
section can be provided by numerical software
packages, such as [Press et al.86] or [NAG]. How-
ever, the subroutines in such packages typically act
at a simple level of representation, such as arrays
of numbers; and the interface is often procedural,
e.g., for an ODE integrator, one steps the solution
forward by repeatedly calling a subroutine.

A collection of modules are built on top of the
bottom-level subroutines. These perform trans-
formations to higher-level representations, such as
from procedural interfaces to functional, from ar- | M-N
rays to arbitrary data objects, and so forth. These interface
modules are designed in an object-oriented man- Figure 4.3. The numerics section includes a variety of numerical so-

. a i - lution modules. The bottom-level subroutines can be mostly taken
ner, allowing different solution techniques to be from books or libraries. Above those lie various modules that per-
“swapped in” based on circumstances, as dis- form changes of representation between low-level subroutines and
cussed in Sec. 2.4.1. the higher, interface level. O

Numerical solution subroutines often require that the caller provide problem-specific subroutines to eval-
uate various functions (such as the derivative function of a differential equation). The higher level modules in
the numerics section provide the appropriate items to the underlying numerical subroutines, but the modules
must in turn be “fed” routines by the M-N interface.

Regula Falsi
Newton's Method

Runge-Kutta

:
¥

2

»;] Adams' Method
Gather/Scatter

<:> PODE solver
daga

Conjugate-Gradient

FHOOR CPOHAPEZMTAPRPE

Sparse Matrix

P
H
: - S S
'
'
'
i
'
i
H
'

4.2.3 Math Section

The math section fits between the conceptual and numerics sections. It contains definitions of computer
objects that represent elements of mathematical models, such as sets, various kinds of functions, state spaces,
ID’s and indexes, and so forth (Fig. 4.4). The objects support simple operations that access their values. Note
that each object’s value is constant* over the lifetime of the object—as discussed in Sec. 3.5.1, mathematical
objects have no changeable internal state. However, the value of an object may be a function which can be
evaluated on different arguments as needed; in order to determine the value of a function, the math section
may do simple symbolic/arithmetic computation, or may call on the numerics section (via the M-N interface)
to solve the appropriate problems.

Remember that a mathematical model as per Ch. 3 is declarative rather than procedural (Sec. 3.5.2).
Translating this to the program, it means that the objects in the math section don’t “do” anything—they just
“are.” That is, they don’t manage control flow in the program: at most, they merely evaluate functions on
demand.

In addition to definitions of various types of math objects, the math section contains utility routines to
help create and manipulate objects. For example, a utility routine might define a function object whose value
is the sum of the values of a given set of other function objects.

#]deally. In Sec. 4.8 we will discuss relaxing this requirement, for efficiency reasons

4.2 Framework for Program Structure 59

Math Section

i Mathematical Model N
f(x) =>_ o i
c e
g defline }é
b3
O N I B FTTTN B i
P c
T A
u L
A da$
L ¢ T
E
M c
0 H
D N
E 1
L | e | Q
f(x) = 3.0 L, v
o fnlse. E
; I
|l(x) = X+sin(x) |
I A .
) Cc-M M-N
interface interface

Figure 4.4: The math section contains definitions of objects that support mathematical entities, allowing data structures to be built that
represent mathematical models as per Ch. 3. The figure illustrates a function whose value is equal to the sum of the values of a set of
other functions. O

The modeling environment can pre-define some math section objects, such as ID’s and numbers, as basic
primitive elements. However, for the most part, each implementation of a blackboard mathematical model
requires definitions of its own abstract spaces, functions, indexes, and so forth.> To help in writing new
models, the environment can provide math section utilities such as templates and run-time support for these
elements; Appendix B discusses the utilities provided in our prototype system.

4.2.4 (C-M and M-N Interfaces

Between the Conceptual and Math sections lies the C-M interface, and between the Math and Numerics sec-
tions lies the M-N interface. The interfaces are the part of the program that arrange for posed problems to be
solved.

C-M Interface

The C-M interface contains the “know-how” to construct a mathematical model from a conceptual model,
and how to transfer data between them. Thus, the C-M interface is the high-level instrument by which posed
problems are solved: it converts a conceptual task into the appropriate mathematical problem statement,
constructing (via the M-N interface) mathematical objects whose values are solutions to the problem. In
transferring the resulting data from the mathematical to the conceptual model, the C-M interface implements
part of the physical interpretation phase of physically-based modeling (Sec. 2.3.4). For example, Fig. 4.5
illustrates the control flow to draw the conceptual model at a particular instant of time. For models in which
objects are created and destroyed over time, the C-M interface will know how to create/destroy or activate/
deactivate conceptual-model objects based on mathematical results.

5 Thus programmers must be “toolmakers™ as well as users of tools. We follow the design philosophy that to write a program, one
should write 2 module library then call it (see, e.g., [StraussB5]).

4.2 Framework for Program Structure 60

C-M
Interface

Concept_ual ‘find configuration at time t"’]
Section Math section
@ map conceptual

model to math [oy
V

model

“‘draw model at time t”’

® get configuration J,
at time t

® evaluate math

model at time t ‘“‘evaluate at time t”’
L N (may invoke
® render current ® v . numerics section)

configuration

\ ® distribute results
to conceptual
model

Figure 4.5: Outline of control flow across the C-M interface, for a sample task. The conceptual section uses the math section as a
“computation engine,” via the C-M interface. Here, the posed problem is to draw the model at a particular instant of time. If the task
will be performed repeatedly with minor variation, such as drawing the model for each frame of an animation, the initial mapping may
be performed just once in a “setup” phase. O

M-N Numerics
Math section Interface Section

(a
in:
% givens
—
Initial-value | ["
ODE problem)
ODE
solver
\ out: E
solution :
- function (1) o

“ay o
.........

Figure 4.6: Role of the M-N interface, for a sample task. The M-N interface maps between mathematical model objects and nu-
merical solution techniques. Here, an M-N interface routine constructs a function object, y(t), that solves an initial-value ODE,
%y(t) = f(v,1), ¥(0) = yo; the function object is “tethered” to a numerical ODE solver, so that if evaluated, the function will im-
plicitly invoke the numerical routine to compute the result. O

The C-Minterface’s “know-how” does not have tobe completely hard-wired. An obect-oriented design for
the conceptual section can allow each type of conceptual object to define methods relating to its corresponding
math section elements. The C-M interface may provide “callback” functions to the mathematical section,
which evaluate whatever mathematical equations reside in the conceptual model.

4.3 How To Implement a CMP Model 61

M-N Interface

The M-N interace contains the “know-how” to map between mathematical model objects/equations and nu-
merical modules. Thus, the M-N interface is the low-level instrument by which posed problems are solved:
given mathematical model objects containing the “knowns” for a particular problem, the M-N interface con-
structs objects for the solution. i

For problems whose solutions are simple values (e.g., “find z € R that minimizes. . .), the M-N interface
can immediately call a numerical solver to compute the result. For problems whose solutions are functions,
however, the M-N interface might construct a function object that is “tethered” to a numerical routine; for
example, Fig. 4.6 illustrates a function whose evaluation gets handed off to a numerical ODE solver.

The “tethering” can be implemented via object-oriented programming; each of various types of function
objects implements evaluation by calling the appropriate numerical solver. The M-N interface may provide
“callback” functions to the numerical techniques; for example, the ODE solver in Fig. 4.6 needs to evaluate
f(y,t) during the course of its computation.

4.3 How To Implement a CMP Model

Suppose we have a CMP blackboard model worked out—now what? This section goes over the steps involved
in creating an implementation of the model.

A CMP module translates into a collection of definitions of data structures, objects, routines, and so forth.
Remember that we’re not trying to make an end-user program, but to add a collection of tools to our toolbox,
as discussed in Sec. 4.1. Here’s what to do:

Conceptual Model Define a data structure that represents the conceptual model, including all properties,
relationships, and so forth, that are relevant, as per Sec. 4.2.1. Build appropriate user interface tools, to
read/write files, send scenes to a renderer, etc.

Mathematical Model Define a class of object for each abstract space, with associated operators to perform
evaluations, access elements of sets, and so forth, and also perhaps utility routines that perform simple
symbolic tasks, such as defining a function object that computes the sum of the values of other function
objects, as per Sec. 4.2.3.

Posed Problems Each posed problem consists of a conceptual task, and a corresponding mathematical prob-
lem.

« Define conceptual section routines to provide a high-level interface to the conceptual task; for exam-
ple, a routine draw(t) that draws the model at time t, as per Fig. 4.5.

¢ Define C-M interface routines that construct the appropriate “known” mathematical objects based
on the conceptual data structure, and that can map the data from the “solution™ object back into the
conceptual data structure, as per Sec. 4.2.4.

» Define M-N interface routines that construct “solution” objects from “known” objects, linking the
solution to modules in the numerical section, as per Sec. 4.2.4.

* Choose the numerics section modules to use. If necessary, write modules to transform between the
high-level representations used in the mathematical objects to lower-level representations needed by
the numerical solvers, as per Sec. 4.2.2. If necessary, write new low-level numerical solvers, or in-
corporate techniques from books or public-domain or commercial packages; these might be specific to
the particular CMP module, or (ideally) might be suitable for incorporation into the common numerics
section library.

We don’t necessarily do all the above in the listed order. Most commonly, we start with the mathematical
model definitions, then work bottom-up through the posed problem, and finally put the high-level conceptual
interface on top.

4.4 Procedural Outlook 62

Note that if the blackboard CMP model was designed modularly (Sec. 2.5), based on existing CMP mod-
ules, we can correspondingly use existing tools in building the new tools. This can be done at any or all
levels: math objects that include other math objects; C-M routines that call other C-M routines; and so forth.
Additionally, the environment can include basic support for common mathematical constructs (e.g., indexes
and state spaces as per Ch, 3) and conceptual tasks (e.g., animation loops that call adraw(t) routine for each
frame), as well as a rich numerics library; Appendix B describes the tools in our prototype system.

Note also, occasionally not all the above items need to be created. For example, the geometric objects
(locations, vectors, scalars, etc.) defined in Ch. 6 need no M-N interface; all their operations can be performed
symbolically or arithmetically. For another example, in Fig. 2.6’s version C of a flexible-body model, the
conceptual model includes a refinement to a collection of rigid bodies; thus given pre-existing rigid-body
tools, the flexible-body conceptual tasks could translate directly into rigid-body conceptual tasks, and no new
math, numerics, or interface routines would need to be written.

4.4 Procedural Outlook \ /

The math section objects, as we said in Sec. 4.2.3, (__,

don’t“do” anything. Thus the procedural elements o

in the program are the two ends: the conceptual Conceptual |«+>| Numerical

section and the numerics section. Section - Section
Let’s look at what happens when the concep- :

tual section performs a task: The C-M interface

bundles up the relevant information into a data

structure (the mathematical model), and passes it /

to the M-N interface; then the M-N interface un- (inte;face

bundles the information to invoke the numerical format)

solvers, bundles the result back into mathematical Figure 4.7. From a procedural point of view, the mathematical model
data structure objects, and passes it back to the C- is just an intermediate interface format between the conceptual and
M interface; finally, the C-M interface unbundles ~ Mumerical sections of the program. O
the results for the conceptual section to use.

Thus, from a procedural point of view, the mathematical model is essentially just an interface format
between the conceptual and numerics sections. (Or even just an interface format between the C-M and M-N
interfaces.)

4.5 Why Have a Math Section?

Since, as we discovered in Sec. 4.4, the math section objects is in some sense just define an intricate interface
format between the conceptual and numerics sections, one might wonder why we bother to define them. Why
not just let the conceptual section call the numerical routines directly? There are several reasons for having
a separate mathematical model.

First, having a separate, explicit mathematical model allows the program to directly correspond with the
CMP structure discussed in Ch. 2. This helps eliminate “transcription” errors in developing the program from
the blackboard model. Conversely, when the program points out flaws in our model, and sends us back to the
drawing board, we will have an easier time updating the CMP model.

Furthermore, although the mathematical model is derived from the conceptual model, it is not necessarily
a simplification of the conceptual model; it is likely to be organized differently. For example, in the math-
ematical model, the states of all the bodies that have the same equations of behavior may be grouped into a
single index, regardless of the hierarchical relationship of the bodies in the conceptual model. Thus the task
of the C-M interface can be complex, and if we were to try to merge the mathematical model organization into
the conceptual model, it could end up a tangled mess. Along the same lines, having a separate mathematical

4.6 Representational Outlook 63

Representations in the program

Conceptual Model | |Mathematical Model | |Scattered data | (Array data Array data
Random time Random time| |Serial time

N G .2 5.2

O @ ®‘ L -3.5 4 -3.5

I\ & > GG~ [Ha] = [

GD 5.7 9.7

\b 4.1 4.1

oo
||‘(x)=3.0|
|l[x) = X+sin(x) I
Conceptual Section Math Section

Numerics Section

Figure 4.8: A sequence of changes of representation, from the high level that the user interacts with, down to the number-cnunching
format used by the numerical solverings. The illustration shows several steps within modules in the numerics section: The module
OdeScatExt evaluates the solution y(t) to an ODE at arbitrary values of ¢, distributing the results into mathematical model objects;
OdeExt evaluates y(t) at arbitrary values of ¢, transferring the result as an array of values; and ODE is a traditional step-wise ODE solver
that computes array-valued results for increasing values of . O

model also makes it easier for us to decouple the state of the model from the state of the program, as will be
discussed in Sec. 4.7.

Finally, the math section can be sufficiently large and intricate to justify being designed, implemented,
tested and debugged independently, or with just the M-N interface. Once it is working, it can be incorporated
into the higher levels of the program. (See also the discussion of debugging, Sec. 4.9.)

‘We can think of the math section as providing a programmatic mathematical manipulation/computation
package for the given model. Consider a programmatic package that supports rational numbers, or infinite-
precision arithmetic: it would include definitions of the primitive data objects, and operators and subroutines
to manipulate the objects and perform numerical computations. The math section for a given model does the
same, but the “primitive objects” represent not just numbers, but indexes (Sec. 3.8.2), elements of state spaces
(Sec. 3.9), and so forth; and the M-N interface provides the computational support.

4.6 Representational Outlook

A program that provides a high-level model to the user, and also uses “number-crunching” routines to compute
simulations, must by necessity transform data between the form of the high-level representation and that of
the numerical routines. This transformation can typically be decomposed into a series of separate steps.

We prefer to design programs such that those changes of representation are explicit; hence the separation
between the conceptual, math, and numerics sections in the program framework. The C-M and M-N routines
are the agents that perform the changes. The changes of representation continue within the numerics section
as well. Fig. 4.8 illustrates the changes of representation that we commonly carry out to simulate a model as a
function of time. Notice that the whole program can be viewed as a “pipeline,” analogous to the well-known
rendering pipeline for computer graphics imaging ([Foley et al.90]).¢

Changing representations is not often considered to be a major functional component of a program: The
“meat” of the program might be identified as the number crunching or rendering or user interface; while the

8 Just as computer hardware is often built to directly support the rendering pipeline, we can imagine hardware support of a modeling
pipeline for some classes of posed problems.

4.7 Decoupling Model State from Program State 64

Decoupling Model State from Program State

Model State Model State Model State
.....‘ s ‘.,-.‘ " Pk ™ .
.\ "}{-.“n b ..}f...‘l :. --‘r{.t.‘l
LT S NPT e Sae e 227% e N, oo, "
s L e=a ! o b ome? Lo e e Y% PLTSL)
. % e P g 5 % 3 X L% SN
T I b T S P .y .-.:0" e’
PO R A OEt R il L
e ™ 9@ Do ™ 4 Sase v @
& CY ' o . W i-
N T oA :
oommenst Meeeeal shdewEnas mssesspnsmssses NP —
- AN ¢
Program State Program State Program State

a. Program “acts out” model b. Program “acts out” events ¢. Program solves model

Figure 4.9: State of the simulated model vs. state of the program. We illustrated three programming paradigms: (a) Each step of program
execution moves the model forward in simulation time. (b) The program computes continuous behavior as a mathematical function of
simulation time, but if there are changes in the structure of the model, the state of the program must be altered. (c¢) The program computes
the behavior as a mathematical function that spans discontinuities; the state of the program need not be altered to evaluate the model in
any of its states. O

code that links various modules together often seems like it’s not “doing” anything, merely housekeeping.
However, we have found that often, changing representations can be the trickiest part of a program. House-
keeping tasks, such as gathering/scattering together data from a collection of separate objects into a single
linear array, are often fraught with bugs.

By identifying representation-change tasks explicitly, we can often separate them out from the “meat,”
and build separate modules that perform the changes. The changes of representation can thus be designed
and debugged independently, and the remaining routines are freed from the need to do the housekeeping.
Appendix B describes change-of-representation modules for array gather/scatter, full-to-sparse matrix, and
sequential-to-random access of data.

4.7 Decoupling Model State from Program State

For computer graphics modeling, the most commonly posed problem for a model is: simulate the model’s
behavior over time. Mathematically, this means we define a function Y (¢) that we evaluate to yield the
behavior at any given time . The most common form for the results of a simulation is a sequence of frames
for an animation; thatis, we sample the function Y(t) at times £ o, to+ A, tp+2A, . . ., rendering and recording
an image for each sample. Thus, programs are often designed to evaluate Y () only ata sequence of increasing
times.

Given that we’ve expressed our model’s behavior mathematically as a function Y'(t), however, we don’t
want to limit ourselves to sampling it sequentially. We would like to “random access™ the function, i.e.,
evaluate it at any arbitrary time values, in arbitrary order. This would allow, for example:

¢ “Shuttling” back and forth in interactive output;

¢ Rendering using motion-blur techniques that need arbitrary time samples, e.g., distributed ray tracing
([Cook,Porter,Carpenter84]);

¢ Solving numerical problems that may span events, such as multi-point boundary-value problems
([Press et al.86]).

4.8 Efficiency 65

Random access of the model is particularly appealing, and difficult, when the model includes events that
change its structure, such as adding new bodies or relationships. Mathematically, the function Y (¢) would be
a segmented function as per Sec. 3.10. In the conceptual section of the program, we need to “decouple” the
program’s state from the state of the model; the next few paragraphs illustrate what we mean by this.

Consider a program that simulates the model’s behavior by Euler’s method: The program data structures
describe the state of the body at some time ;. The program computes the derivatives, and uses them to take
a small step forward, updating the data structures for time ¢ ;. 4+1; when discontinuous events are encountered,
the program’s data structures are modified, and simulation continues. Thus the program directly “acts out”
the behavior of the model over time (See Fig. 4.9a).

Sophisticated ODE solution techniques, which are more robust than Euler’s method ([Press et al.86-
Ch.15]), need to be able to explore the state space: they require a user-provided subroutine that computes
derivates based on hypothetical states and times, and will call that subroutine repeatedly for many arbitrary
values in arbitrary order,” before settling on and returning what the model’s state really is for some time ¢. In
order to use these techniques, one must make a leap in how one thinks about one’s program: The program
no longer has a “current state” that is always correct, but needs to be able to evaluate arbitrary states and
times, that might be off the solution manifold; the program is not acting out the model, but rather calculating
a function that describes how the model varies over time.

Using sophisticated numerical solvers thus forces a certain amount of decoupling of program state from
model state. However, that decoupling is typically for continuous changes in state only; programs still typ-
ically solve forward in time; when an event happens, the program’s data structures are changed, and a new
continuous problem is solved forward from there. Thus the program is still “acting out” the discrete events
(see Fig. 4.9b.)

We go one step further: Solve a mathematical segmented function, which spans discontinuous, state-
changing events, and evaluate that solution anywhere. This requires that the conceptual model data structures
can be adjusted based on the value of the function: the number of bodies, etc., isn’t known a priori. It
also requires numerical solvers that can compute them. The example “tennis ball cannon” model in Ch. 11
illustrates a model described by a segmented function, that is solved using the piecewise-continuous ODE
solver described in Appendix C.%

4.8 Efficiency

The conversion to and from a math section data structure, and the overall emphasis on changes of represen-
tation, can give us pause: This approach has some advantages in terms of modularity and so forth, but if it
makes our programs too slow or memory-intensive, we won’t be able to use it. This section takes a brief look
at efficiency.

Start by considering the far extreme: assume that efficiency is not a concern. Since the mathematical
model is defined based on the conceptual model, and has no changeable internal state of its own, in principle
it doesn’t need to be maintained all the time. Whenever the conceptual model needs some numbers, such as
the state of the model at a particular instant of time, it can whip up a mathematical model, evaluate it, get the
results, and toss it out.

But, since we often solve the same problem over and over again, we can be more frugal than that. Com-
monly, the solution is a function object, we don’t throw it away but rather keep it, and evaluate it repeatedly.
This allows the back end to maintain previous values, cache results, take advantage of coherence, and so forth.

In general, the changes of representation involve a structural setup phase, that build data structures, set
up memory address pointers, and so forth. The actual transfer of data can just follow those pointers, often

7 John Platt has coined the apt name “numerics dance” to describe this process [Platig7].

8 Anotherapproach to random-access of models is to compute sequentially, but save the “history” so that we can play back prior states
as needed—this would work even for Euler’s method. However, as mentioned earlier, defining the mathematical model as a segmented
function can let us solve problems that span events, such as multipoint boundary-value problems: during the “numerics dance,” solvers
might need to explore possible states of the model across discontinuous events—and whether any individual event really occurs won’t
be known until the solution is complete.

4.9 Debugging 66

“leapfrogging” past several changes of representation to place the data in its final destination.

Note also that for numerically intensive computations, most of the inner loops are inside of the low-level
numerical routines—thus efficiency of the higher levels of the program is not critical. Often, however, there
are “callback” routines that must be used in an inner loop, €.g., the routine that computes derivatives for an
ODE solver; but these don’tnecessarily have to go all the way back up the representational pipeline, and also,
as before, can be set up once then quickly accessed later.

Our overall approach to dealing with efficiency in our system is as espoused by [Kernighan,Plauger78]:
“Make it right before you make it faster.” That is, we first design and prototype in an idealized, modular form,
written to optimize cleanliness of concept. Once it’s written and working, if it turns out to be insufficiently
efficient, we can use “profilers” and other diagnostic techniques to determine what needs to be optimized. It’s
always relatively easy to go back and cut comers to provide speedups (for special cases) when necessary—
but if it’s originally designed and built with those corners cut, it would be harder to go back and modularize
later. Remember that one of our goals is to define general, reusable tools, not optimized special-purpose
simulations.®

4.9 Debugging

As we implement physically-based models as computer programs, we can encounter two types of bugs:

o bugs in the program, and
e bugs in the model.

Bugs in the program mean that it doesn’t faithfully implement the blackboard model; bugs in the blackboard
model means that we goofed in our CMP design. It is important to recognize the difference between these
two types of bugs, or we might spend lots of time and effort on wild goose chases: for example, we might
pore over trace output, single-step through program execution, and so forth, trying to find out where we’ve
made a “typo” in an expression, but the real problem is a “thinko” in the conceptual model; conversely, we
might keep trying to re-derive or re-express a mathematical equation, but the problem turns out to be an a[i]
that should be an a[j].

Of course, it’s not always easy to determine what type of bug we’re dealing with—that can be a major part
of the debugging task. However, the CMP structure of the model can help us to isolate and identify bugs in
the model, as was discussed in Sec. 2.6.4. Similarly, the modular design of the program framework can help
us isolate bugs in the program: Are the numerical modules working correctly? Are the results being properly
represented as math section objects? and so forth.

In blackboard mathematical models, there are often redundancies, or multiple ways of expressing a quan-
tity; we can take advantage of this to help find bugs in programs. For example, the state of a dynamic rigid
body (Ch. 8) includes mass m, momentum p, velocity v, and position z; when we create or use a state object,
we can doublecheck to make sure that the relation p = mv holds (i.e., check that the internal properties of the
state space are maintained, as per Sec. B.3.6), and for a body whose behavior is computed numerically, we
can doublecheck that v = %:c (by finite differencing) as expected.!®

Double-checking can happen at a very broad scope—we can “swap in” additional problems to solve in
order double-check our simulation, i.e., the C-M interface can create additional elements in the mathematical
model, and request additional solution objects from the M-N interface. The ability to do this “swapping” is a
benefit of the modular framework in general, and the separation of the mathematical model in particular.

2From Dijkstra’s Notes on Structured Programming: “My refusal to regard efficiency considerations as the programmer’s prime
concernis not meant to imply that [disregard them. .. My point, however, is that we can only afford to optimise (whatever that may be)
provided that the program remains sufficiently manageable.” [Dijkstra72-p.6]
10Because of finite precision, and approximate solutions to problems, we can’t expect values that are analytically equivalent to be
exactly equal in the program, thus we can only check to see if the values are “close enough” within some tolerance. But how to choose
that tolerance? The tolerance doesn’thave to be tight—it doesn’t affect the accuracy of simulation, it’s only a guard against errors. When
there’s a bug, the resuits are often very wrong, so they will exceed any small tolerance. Also common is buggy behavior that causes the
different quantities to diverge as the simulation progresses, so that even if the tolerance is too loose to initially catch the error, after a
short time the tolerance will be exceeded.

4.10 Summary 67

It can also be useful to put “assertions” in the program, to check for things that the model says can’t
happen: two disjoint events that happen simultaneously, or singularities in equations, and so forth. When
such things do occur, it can often be easy to determine by inspection if they are merely bugs in the program,
or if they have uncovered gaps in our conceptual understanding of the problem (see Sec. 2.4.3).

410 Summary

This chapter has described an approach to implementing physically-based models that are defined via the CMP
structure of Ch. 2. The focus is on an overall framework for the creation of tools in a modular and extensible
manner. The tools are intended as basic reusable support for programmers to create end-user applications.

The program framework parallels the CMP structure; in particular it emphasizes that the role of the pro-
gram is to define and solve mathematical problems, then convey the results back to the user. Thus there is
an emphasis on a separate and explicit definition of a programmatic mathematical model and of numerical
solution techniques.

The framework also emphasizes the simulation of a model as a change between various representations
of the model and data. The changes of representation are performed in a series of well-defined, modularized
steps.

A feature of the framework is that it allows a decoupling of the state of a program from the state of the
model that is simulated; thus the program can explore the state space of the model to produce solutions and
can “random access” the solution in various states—even spanning discontinuities.

4.11 Related Work

[Zeleznik et al.21] presents an interactive modeling system which, although not specifically focused on
physically-based modeling, is similarly based on the specification of an extensible, object-oriented frame-
work.
[Kalrag0] provides a unified scheme for solving arbitrary constraint problems; in the lingo of our own
work, it discusses how to transform a mathematical representation to a numerical representation.
[Blaauw,Brooks91] takes view similar to ours, of computation as a series of changes of representation.

68

Chapter 5

Overview of Model Library

he preceding chapters presented a structured strategy for designing and implementing physically-based mod-
els. The main ideas of the strategy are:

¢ Decomposition of a model into conceptual/mathematical/posed-problem parts (Ch. 2).
¢ Modular hierarchy of models (Ch. 2).

¢ Mathematical modeling techniques and notation (Ch. 3).

e A program framework having separate Conceptual/math/numerics sections (Ch. 4).

We move now from theory and philosophy to practice and applications. This chapter gives an overview of a
prototype library for rigid-body modeling, that was designed using the structured strategy, and that is discussedin
detail in the upcoming chapters. The prototype library (Ch. 6-9) supports classical dynamic rigid body motion,
with geometric constraints. Sample models built using the library are described in Chs. 10,11. The library and
models have been implemented as described; implementation notes are included in the upcoming chapters, and

Appendix B has an overview of the prototype implementation environment. Some possible extensions to the
library are outlined in Ch. 12.

5.1 Goals for the Prototype Library

The prototype library has three major goals:

¢ To demonstrate the structured design strategy.
The development of the strategy, in Ch. 14 included an assortment of philosophy and techniques.
Here, we illustrate how we bring them all together, by developing (and using) an extensible library,
from initial concept through implementation details.

¢ To test the feasibility of the design strategy.
The strategy is experimental: an idea that we are putting forth for consideration, but which has not yet
passed “the test of time.” The prototype library will test the practicality of the strategy, e.g.: Do our
models fit into a CMP decomposition? does modularity work for us? are the mathematical techniques
practicable? etc. (Ch. 13 includes an evaluation of our experience.)

¢ To provide a rigid-body modeling library.
This prototype library attempts to serve as a first step towards a general, reusable, and extensible library
for rigid-body dynamics, as espoused by the design strategy.

We have attempted to design and present the smallest possible example of a library that would reasonably
meet the above goals—our intent is to be illustrative, rather than encyclopedic. However, we try not to cut

69

5.2 Features of the Library

Overview of prototype library
Extensions (Ch. 14)

Sample models . [T

i ““Tennis Ball Cannon’’ (Ch. 13) i (l" e
r X " s T 3' | DoJ l:— Lo -
i "Swinging Chain” (Ch.12) i~ | Rigid-Body Collision
"‘.‘ [“Fancy Forces” (Ch. 11) 1

e,
"
il

Dynamic Rigid Bodies (Ch. 10)
]
Kinematic Rigid Bodies (Ch. 9) |

[
]

Coordinate Frames (Ch. 8)

eeraan.,

Figure 5.1: Modules in the prototype library. The Coordinate Frames module provides us with a common framework for working with 3-

D coordinate geometry. The Kinematic Rigid Bodies module defines our idea of rigid-body motion. The Dynamic Rigid Bodies module
adds classical Newtonian mechanics. The “Fancy Forces” module provides a mechanism to specify forces for the Newtonian model,
that supports geometric constraints on bodies. Sample models illustrate the use of the library. We also discuss ideas for extending this

library. O
any corners: in order to validly demonstrate and test the strategy, the prototype was developed, structured,

implemented, and presented in accordance with the stated design strategy. Thus we’ve ended up with “just

a simple example” that fills more pages than the description of the strategy itself.!
Note also that we will present only the result of the design process, rather than chronicle the design process

itself. The reader may rest assured that the prototype library was not initially conceived in exactly its final
form, but rather we designed, modified, implemented, re-designed, and so forth

5.2 Features of the Library
The library includes the following features for rigid-body modeling:

» Basic Newtonian motion of rigid bodies, in response to forces and torques.
o The ability to measure work done by each force and torque, and balance it against the kinetic energy of

the bodies.
o Support for various kinds of forces to apply to bodies, including “dynamic constraint™ forces ([Barzel,

Barr88]) to allow constraint-based control.?

o The ability to handle discontinuities in a model.
o The ability to be extended, both by enhancing the modules we describe, and by adding additional mod-

ules.
1From Dijkstra’s Notes on Structured Programming: “I am faced with a basic problem of presentation. What I am really concerned
. Forpractical

aboutit the composition of large programs, the text of which may be, say, of the same size as the whole text of this chapter.. .
reasons, the demonstration programs must be small, many times smaller than the ‘lifesize” programs I have in mind.” [Dijkstra72-p.1]

2We don’tintend to be self-serving by describing our own “dynamic constraints™ work, nor to imply that it is the primary method
of control that should be supported by a rigid-body modeling library. Rather, it comprises a reasonably intricate test case for the design
strategy, and has the advantage (to us) that we are experienced with it and thus were able to focus on the structure of the model rather

than on getting the technique to work.

5.3 QOutline of the Library 70

To give a feel for how the library could be extended, Ch. 12 will discuss several possible additions: rigid body
collision and contact, finite-state control mechanisms, transitions between kinematic and dynamic behavior,
and flexible bodies.

5.3 Outline of the Library

The prototype library includes four modules, each implementing a different “sub-model” within the overall
domain of rigid-body modeling. Each module builds on the previous modules. (Fig. 5.1)

1. Coordinate Frames Model (Ch. 6): Defines the basic 3-D Euclidean world space in which our models
exist, and provides support for manipulating coordinate system frames and geometric objects such as
orientations, locations, and vectors.

2. Kinematic Rigid Bodies Model. (Ch. 7): Defines our abstraction for kinematic motion (i.e., motion with-
out regard to force or inertia) and provides a simple descriptive mechanism.

3. Dynamic Rigid Bodies Model (Ch. 8): Provides support for bodies moving under the influence of arbi-
trary forces and torques. Includes an energy-balance mechanism.

4. “Fancy Forces” Model (Ch. 9): Provides a mechanism to define forces and torques, and apply them to
arbitrary bodies. Integrated with the “dynamic constraints” force mechanism.

We provide examples of models built using the library:

“Swinging Chains” (Ch. 10): Bodies linked and suspended to form chains swinging in gravity. Illustrates
continuous dynamic motion, using the constraints mechanism.

“Tennis Ball Cannon* (Ch. 11): An oscillating cannon fires a stream of balls, that bounce, change size, and
disappear. Illustrates discontinuous changes in state and configuration of a model.

The “model fragments” (Sec. 1.3), i.e., the low-level equations of behavior, that are embodied in the library
are quite simple, as compared with, say, flexible body mechanics, or fluid dynamics. Our emphasis for this
prototype is on modularity in the models, the ability to pose multiple problems from a single model, the
interrelationships between the bodies, and other design issues, rather than on particularly complex behaviors.

5.4 Common Mathematical Idioms

Because of our emphasis on explicit statement of assumptions and properties, the expositions in our modules
follow a rather axiomatic approach that is more common in pure mathematics than in physics or mechanics:
Each module has a series of definitions of abstract spaces and properties, then provides further equations that
are derivable from those definitions.?

Note that the principles and equations that underlie the various modules in our library are well-known;
there will be no fundamentally new or surprising equations or derivations. Thus the mathematical models in
the libraries serve mostly to re-cast the known equations into a form convenient for our structured, modular
outlook. Because we will be covering well-trodden ground, we will not in general include detailed proofs or
derivations, but rather refer interested readers to appropriate references.

The modules include definitions of various state spaces (Sec. 3.9), todescribe the configurations of objects.
Often, a state space willinclude a description of the motion as well—in which case the space is a generalization
of a physicists’ phase space ([Marion70]). Note that each point in a state space typically describes the state

31In this, we are similar to the field of Rational Mechanics: “The traditional approach to mechanics is in no way incorrect, but it fails
to satisfy modem standards of criticism and explicitness. Therefore, some parts of the foundations of mechanics heretofore left in the
penumbrae of intuition and metaphysics I shall here present in an explicit, compact mathematical style. .. " [Truesdell91-p.6].

5.5 Presentation of Each Module 71

of an object at an instani—the behavior of an object over time is described by a path through state space. If
the state space includes motion information, we will often explicitly define a consistent path to be such that
the motion description at each state along the path actually agrees with the trajectory described by the path.

Expositions of physics commonly use a single name as a value or as a function. For example, “z” may be
defined as the location of a particle, and later “z(¢)” would be used to describe the location as a function of
time. However, as discussed in Sec. 3.6.3, we prefer a name to have only one meaning. Thus, if we define a
value

z € States

for some space States, we will never use it as a function; if we are interested in a function, we will always
define one explicitly, e.g.,
p: ® — States,

in which case “p” refers to the function as a whole, and “p(t)” refers to the value of the function for some
t € &. We will often define a space of functions, such as

StatePaths = the set of functions {R — States},

and we will then use
p € StatePaths

to denote a function p.
Finally, all of the bodies in the prototype models exist in a 3-D Euclidean world; all “vectors” and so forth
are thus 3-space objects, as defined in the coordinate frames model, Ch. 6.

5.5 Presentation of Each Module

Each of the upcoming chapters describes a single CMP module, as per Sec. 2.5. We consistently use the
following organization for each chapter, combining the CMP framework of Sec. 2.7 with the mathematical
modeling framework of Sec. 3.11.1:

Introduction. A small blurb at the front of each chapter, giving an overview of the domain and use of the
module in the chapter. More extensive background may be given as an initial section of the chapter, if
needed.

Goals. A description of our purpose or desired features for the module.

Conceptual Model. A description of the conceptual model, as per Sec. 2.3.1. Our focus in these prototype
modules is on behavior as defined mathematically; thus the conceptual models will include little beyond
those elements that will be described by the mathematical model.

Mathematical Model

Names & Notation The scope name (Sec. 3.6.2) for the module, a list of names used from other mod-
ules, and a description of any unusual notations that will be used.
Definitions & Equations These will be broken up into sections as appropriate.

Posed Problems As discussed in Sec. 2.4.2, there are potentially many interesting problems that can be posed
for a given model. We will typically include only one or two interesting or common problems.

Implementation Notes These describe the prototype implementation; the implementation follows Ch. 4’s
program framework: separate conceptual, math, and numerics sections, along with C-M and M-N in-
terfaces. Appendix B gives some details of our particular implementation, and discusses the terminol-
ogy and notation we will use in the notes for each model. Since our focus in this prototype is on the
mathematical models, the notes will emphasize the math section and, to a lesser extent, the C-M and
M-N interfaces; the conceptual section will simply be sketched at a high level.

Derivations & Proofs We put these at the end (rather than within the mathematical model) so as not to get
in the way.

5.6 Related Work 72

5.6 Related Work

[Fox67] and [Goldstein80] are two classic classical mechanics references. [Marion70] gives a good introduc-
tion to the dynamics of particles and rigid bodies. We will refer also to [Craig89] for kinematics and 3-D
geometry.

73

Chapter 6

Coordinate Frames Model

Computer graphics models commonly deal with 3-dimensional geometric objects such as locations, vectors,
etc., often working with several different coordinate systems. This module contains some basic definitions
and notation for manipulating these objects and representing them in arbitrary orthonormal coordinate frames.

The mathematics for 3-D objects and coordinate systems is well-known; see e.g., [Craig89] and [Foley et al.90].
We assume that the reader has at least a passing familiarity with the ideas of vectors, matrixes, tensors, and so
forth; although we will define all our terms axiomatically, this exposition would not suffice as an introductory
text in linear algebra.

This module is intended to give us a standard, convenient, and consistent form for using Euclidean3-D coordinate
objects within our modeling environment. It does not address curvilinear coordinate systems, such as cylindrical
or spherical coordinates. It also does not address geometry in homogeneous coordinates (which is common in
computer graphics [Foley et al.20]), nor in curved spaces.

6.1 Background

Conceptually, the ideas of geometric objects such as coordinate systems, vectors, locations, and so forth are
often conveyed via diagrams (e.g., Figs. 6.1,6.2, etc.). Mathematically, however, one needs a formal definition
and algebra. There are two common approaches to the definition and use of geometric objects:

e Numerical Coordinates. Objects are be defined as collections of coordinate values (also called com-
ponents), along with rules that describe how the values change if one switches coordinate systems.
Arithmetic and other operations are defined by matrix operations on the coordinate values.

o Abstract entities. Objects are defined as elements of abstract spaces. Arithmetic and other operations are
defined in a manner independent of coordinate systems. When coordinate values are needed, mappings
are defined from the abstract spaces to any desired coordinate system.

The abstract approach has a simple, compact notation, and can extend to arbitrary manifolds in non-
Euclidean spaces. It is thus the approach of choice for studying differential geometry (e.g., [Millman,
Parker77]). However, the details of numerical computation are typically hidden or implicit.

The coordinate-based approach, on the other hand, keeps track of numerical values in particular frames
of reference. The equations tend to be cumbersome—full of “bookkeeping” of coordinate frames and
components—but they apply immediately to numerical computation. It is thus the common approach used
for practical applications, e.g., robotics ([Craig89]) or computer graphics ([Foley et al.90]).

For our purposes, we want elegant mathematical models—thus we want the convenience and expressive
power of the abstract approach. But we also need to perform numerical computations—thus we want the

6.2 Goals 74

Figure 6.1: Multiple coordinate frames. We illustrate several different right-handed, orthonormal coordinate frames, labeled f, g, h, and
Lab, all defined in an absolute, uniform, 3-D world space. Lab is an arbitrary frame that is chosen to be a fixed standard. O

applicability of coordinate-based formulations. ! Our approach will therefore be to define the geometric objects
as abstract concepts, and define the corresponding abstract mathematical notation, but also provide a notation
that lets us express the objects in arbitrary coordinate systems and perform numerical manipulations.

6.2 Goals

We have several goals for this module:

o To have a standard model and notation for geometric objects, that encapsulates coordinate systems and
coordinate transformations.

¢ To support useful geometric objects, be they tensors or non-tensors. 2

o To be able to use coordinate-free notation and expressions.

e To be able to use coordinate notation and expressions, for arbitrary coordinate systems.

e To support objects and coordinate systems that change as functions of time. A particular special case is

an object that has a constant representation in changing coordinate systems, such as a piece of material
that is fixed to a rigid body, and is carried with it as the body moves.

The emphasis for the above goals is on basic support for mathematical models and corresponding program
implementations, rather than on any a priori conceptual model.

1“Pictorial treatment of geometry. . . is tied conceptually as closely as possible to the world. .. Abstract differential geometry.. . is
the quickest, simplest mathematical scheme... Components [are] indispensible in programming... Today, no one has full power to
communicate with others about [geometry] who cannot express himself in all three languages.” [Misner, Thorne,Wheeler73-p.199]

2 A tensor is an object that obeys certain transformation rules when we switch between coordinate system (see Eqn. 6.11).

6.3 Conceptual Model 73

6.3 Conceptual Model

We assume the existence of an absolute 3-dimensional Euclidean space, sometimes called world space. The
space is homogeneous and isotropic, i.e., has no preferred directions or locations. We also assume that rime
is homogeneous.

We can place z, y, and z axes anywhere we like in space, to define a coordinate system which can be
used to represent geometric objects. We will refer to each triple of axes as a coordinate frame, or just frame
(Fig. 6.1). Each frame gives us a coordinate system for measuring objects in the world—i.e., the frame gives
us a particular vantage to “look at” the world. We restrict ourselves to frames that are orthonormal, i.e., the
z, y, and z axes are perpendicular and all frames have the same scale for distance, and that are right-handed,
i.e., if z points to the right and y points forward, z will point upward.

We define several types of abstract geometric objects. Each object can be described in a given frame by a
collection of coordinate numbers, which we call the object’s numerical representation, or just representation.
We emphasize the distinction between an abstract object and its representations: A single abstract object may
have different representations in different frames. A collection of numbers, along with a frame, can uniquely
describe a particular type of object; but a collection of numbers without a coordinate frame to go with them
doesn’t “mean” anything, geometrically.

This module includes several types of geometric objects (of course, these are not all possible geometric
objects; we merely define some objects that we have found to be useful for our applications):

Location.? An absolute location in space, represented numerically as a 3 x 1 matrix containing its z, y, and
z coordinates (distances from the origin of the frame). Pictorially, we draw a dot (Fig. 6.2).

Orientation. An absolute orientation in space. Can be represented in a variety of ways: pictorially, we draw
an orthonormal triple of vectors (Fig. 6.3); numerically we most commonly use a 3 x 3 rotation matrix,
whose columns are the representations of the corresponding vectors.

Scalar. A frame-independent value (0-order tensor). Represented numerically as a single real number.

Vector. A direction with magnitude (1st-order tensor). Represented numerically as a3 x 1 matrix containing
its z, y, and z coordinates (displacements along each axis). Pictorially, we draw an arrow (Fig. 6.2);
the position of the arrow is irrelevant, only its direction and length are significant.

2Tensor. An abstract object (2nd-order tensor), that corresponds with a linear operation on vectors; the op-
eration can be performed by “multiplying” (arithmetic will be discussed in Defn. 6.14) a vector by a
2tensor to yield the new vector. Represented numerically as a 3 x 3 matrix, where each column rep-
resents the result of the operation on an axis. Pictorially, the operation can be illustrated by showing
“before” and “after” drawings of a triple of vectors (Fig. 6.3).

Rotations. 2Tensors, whose corresponding operations preserve length and angles.

Basis.* A generalization of an orientation; corresponds with a triple of three arbitrary vectors. Represented
as the 3 x 3 matrix whose columns represent the corresponding vectors.

Frame. A coordinate frame is defined by the location of its origin, P, and the orientation of its axes, R.
We choose one arbitrary frame, that we call the lab frame, to be a fixed standard for reference. The
coordinate system defined by the lab frame is called lab coords or world coords. Pictorially, we draw
the frame’s orientation situated at the frame’s origin.

3[Craig89] uses the term position vector for these; we prefer to reserve the word vector for the 1st-order tensor object only.
*Basis objects are not often used conceptually; we include them for mathematical completeness.

6.3 Conceptual Model 76

A Location vs. a Vector

You are here.

(a location)
zt ®
o
4 M (a vector)
.// Y

frame £

Figure 6.2: We distinguish between a location, which describes a position in absolute space, and a vector, which describes a direction
(and distance). Both are represented by «, y, and z coordinate values in any given frame; but if we translate the frame, the coordinates of
a location will vary, but the coordinates of a direction will stay the same. We similarly distinguish between orientations, which describe
fixed alignments in space, and rotations, which describe operations on vectors. O

Orientations: A 2tensor operation:
z
Z
X
Yy
Y '.' /_\
Y
Z F Y
.:."_v X z
& -__-______.-l 5
X
X

Figure 6.3: We draw an orientation as a triple of vectors, all drawn from the same spot—Dbut the position of that spot is irrelevant. To

illustrate a 2tensor, we draw an arc linking an orthonormal triple of vectors to the triple that results when each vectoris multiplied by the
2tensor. O

We stress the conceptual distinction between locations and vectors: a location corresponds with a fixed
position in absolute space, while a vector corresponds with a magnitude/direction but has no specific position 5
(see Fig. 6.2). Similarly, we distinguish between an absolute orientation in space and a rotation operation that
one might use to align to it any particular frame. (In any given frame, however, there is a correspondence
between locations and vectors, and between orientations and rotations; see Sec. 6.4.6 and Fig. 6.6.)

Notice that we consider a frame to be a type of geometric object. Thus there is circularity in our definitions:
locations and orientations are described by their representations in frames, buta frame is defined by alocation/
orientation pair. The lab frame serves to break this circularity.

We use the term moving object (location, vector, etc.) to refer to one that varies over time. Moving
objects can have associated velocity objects; in particular, we define an instantaneous frame to be a frame
with associated linear and angular velocity vectors. A moving object may be fixed in a moving frame, i.e., it
follows the frame’s motion so that its coordinates never change as seen from that frame.

5 Differential-geometers may comment that a “direction” (tangent vector) for an arbitrary surface or manifold is an element of the
space tangent to the manifold at a particular point ([Millman,Parker77-pp.93,213]). For our Euclidean formalism, however, all tangent
spaces are isomorphic to each other, thus we are safe in our use of tangent vectors without associated positions in space.

6.4 Mathematical Model B

A note on units and dimension:

The conceptual objects described here often have physical dimension associated with them, such as length,
mass, and time, and are measured in terms of units, such as centimeters, grams, and seconds. The terms in the
mathematical model, however, are dimensionless, however—just numbers. [Lin,Segel74-Ch.6] discusses the
nondimensionalization process, which is beyond our scope; we just pointout the need for (at least) consistency
of units within a given model.

6.4 Mathematical Model
6.4.1 Names & Notation

The scope name for this module is
COORDS

We don’t use definitions from any other module. In this module, we will define and extensively use a prefix-
superscript notation:

T2 (Nom.6.6)

6.4.2 Definitions

We start by defining abstract spaces for various types of objects; we refer to these as the primitive objects:

Definition. (Primitive Geometric Spaces)

Scalars = the ser 4 scalar objects
Vectors = the set { vector objects
2Tensors = the ser { 2tensor objects}
(6.1) Rotations = rhe ser | rotation objects ; C 2Tensors
Locations = the ser < location objects
Bases = the ser < basis objecrs}

Orientations = the set 4 orientation objects} C Bases

Defn. 6.1: We define an abstract space for each type of geometric objects. Note that orientations are types of bases whose
corresponding vectors are orthonormal. O

The space of coordinate frames is defined as a state space, using the mechanism of Sec. 3.9:

Definition. Frames

Frames

[

(6.2) P +— Locations Location of a frame’s origin
R — Orientations Orientation of a frame's axes

]

Defn. 6.2: Space of coordinate frames. Each frame f € Frames has an origin Py at some location, and an orientation R .
(The use of subscripted aspect values is as per Notn. 3.27.) O

It will be convenient to define a single set for the primitive geometric objects:

6.4 Mathematical Model 78

Definition. GeomObjs

GeomObjs = Locations UBases U Scalars

(8 UVectors U 2Tensors

Defn. 6.3: All primitive geometric objects. A geometric object z € GeomObjs can be a location, basis, scalar, vector, or
2tensor. Thus the space GeomObijs is a disparate union as per Sec. 3.7.3, where two objects are agnates if they are both
of the same primitive geometric type. O

We define a lab frame, to give us a standard set of coordinates, as per Sec. 6.3.
Definition. Lab

(6.4) Lab € Frames

Defn. 6.4: The fixed lab frame Lab is a unique element of Frames. It has no special properties other than being agreed
upon by everybody. O

6.4.3 Representation & Notation

An element from one of the above spaces is an abstract object; to make it seem concrete, we can produce a
representation of the object. The representation depends, of course, on a choice of coordinate frame. Thus
we define the representation operator Rep:

Definition. Rep

We define an overloaded operator
Rep: Frames x GeomObjs— Rt U ®2 U R3*2 thar yields the coordinates
of an object in a given frame.

(6.5) Rep: Frames x Scalars—® a single number
Rep: Frames x Vectors— ®2 a3 x 1 matrix
Rep: Frames x 2Tensors— R332 g 3 x 3 marrix
Rep:Frames x Locations— %2 a3 x 1 marrix
Rep: Frames x Bases — R#3%3 a3 x 3 marrix

Defn. 6.5: Representation operators convert from an abstract geometric object to a collection of real numbers, given a
choice of frame. Note that Rep is overloaded (Sec. 3.6.3) to act on elements of the various different spaces. O

Because we commonly work with representations of objects, we define a shorthand notation for representa-
tions:

Notation. Prefix-superscripts for Representation in a Frame

For any f € Frames and any z € GeomObjs,

(6.6)
= = Rep(f,2)

Notn. 6.6: Representation of a geometric objectin a given frame. The above terms can be read as “z represented numerically
in frame f” or as just “z in f.” We most commonly use the prefix-superscript notation. O

Note that, while z is an abstract geometric object, fa; is always a justcollection of numbers. The representation
functions are one-to-one, and thus can be used to determine identity:

For any objects z,y € GeomObjs that are agnates (i.e., of the same
primitive type), and any f € Frames

fz;:'fy =y

(6.7)

Eqn. 6.7: Given a fixed frame, the representation of a geometric element of a given type is sufficient to identify the el-
ement. O

6.4 Mathematical Model 79

Representation of a frame

Figure 6.4: Any frame f is defined by its location Py and orientation Ry, which can in tum be represented in any frame. Here, frame

1.6 0—.87 .5
f is at Igcation mt}’f = [:];Lm the[lab,]ndils orientation in the lab is [abe = [[] . Represented in itself, f is at location
! 5 .87

(=]

1
7 p . . 100 0
Py = |o| with orientati 010| asperEqn.6.100

001

Q
L

Thus, for any given frame f, there is an equivalence between geometric objects and their numerical represen-
tations. Also, since locations and vectors share a representational space, for a given frame there is a natural
correspondence between them; and similarly for orientations and rotations (see Sec. 6.4.6).

The Rep operators for orientations and rotations yield orthonormal rotation matrices. (An orientation’s
matrix corresponds with the rotation that aligns the frame axes to it.) Rotations and orientations may be
represented in other ways as well, such as by Euler angles, in angle-axis form, or as unit quaternions (see
[Craig89-Ch.2]). We give a definition for the latter:

Definition. Repq

The quaternion representation of orientations and rotations is given by:

B8 Repq: Frames x Orientations — R4

Repq: Frames x Rotations — %4

Defn. 6.8: Quaternion representation, overloaded for orientations and rotations. For any » € Orientations U Rotations
and any f € Frames, we have |Repg (f,)| = 1, i.e., the representation is as a unit quaternion. The quaternion represen-
tation can be computed from the matrix representation Rep (f,r) as described, e.g., in [Shoemakes5].” O

We don’t have a direct representation for frames; however, the location and orientation of a frame can of
course be represented numerically in any frame (see Fig. 6.4). Combining P; and Ry, defined in Defn. 6.2,
with Notn. 6.6, gives us

6Quatemions can themselves be defined as abstract objects. For the purposes of this module, however, we treat them simply as
4-component arrays having the appropriate arithmetic rules.

7 [ShoemakeB5] uses left-handed quaternion rotations; the matrix conversion therein describes the transpose of the right-handed matrix
we would use.

6.4 Mathematical Model 80

For f,g € Frames

i _ Frame f’s location, represented
(6.9) § = numerically in frame g
B Frame f’s orientation, represented
= numerically in frame g

Eqn. 6.9: The position and orientation of frame f, as “seen from” frame g. O

Since the location of a frame is defined to be the location of its origin, and since the orientation of a frame is

defined to be the orientation of its axes (Sec. 6.3), a frame’s representation of its own location and orientation
is always trivial:

For any f € Frames :

(6.10) 0 100
IP} = |:o} ; fRQ«.—_- [010]
0 001

Eqn. 6.10: A frame represented in terms of itself. The frame’s origin is always at its own coordinates (0,0,0), and its
orientation representation is the identity. O

6.4.4 Transforming Representations Between Frames

Often, we know the representation of an object in one frame, and we’d like to determine the representation in
some other frame. We define the transformation rules;
For f,g € Frames

fs seScalars

]

(6.11) v=CRy) %y veVectors
a=(Ry)% (‘R;)T ac2Tensors
?="P +(Ry)) peLocations

b=CRy)% reBases

Eqn. 6.11: Transformation rules. We emphasize that these rules do not transform geometric objects—rather, they change
between two different representations of the same object. All operations in the aboveare performed via matrix arithmetic. O

In Eqn. 6.11, the tensor objects—scalars, vectors, and 2tensors— employ the standard tensor transformation

rules. Locations, however, take into account the origin of the frame in which they are represented; and bases
transform like vectors.

Notice thatif we transform from a frame to itself, we can use Eqn. 6.10 toreduce each equality in Eqn. 6.11
to the trivial identity:

Given any f,g € Frames, andany = € GeomObjs
(6.12)

e fr:ga:

Egn. 6.12: The transformation rules are consistent. If we “transform” a representation between a frame and the same

frame, the representation doesn’t change. Note that the converseisn’t true, i.e., "z = % # f = g; forexample, a vector
will have the same representation in two frames that have the same orientation but different origin locations. O

We occasionally want to consider the representation of a frame’s Iocation and orientation in a second frame,
as compared with the second frame’s representation in the first. We we have the following equalities:

6.4 Mathematical Model 81

For any f,g € Frames

(6.13) fo - ng ng
g f T
Ry = (Ry)
Egn. 6.13: The relationship between two frame’s representations. If we “look at” frame f from within frame g, we get

“opposite” representations from those we get if we look at g from within f. These equalities derive from Eqgn. 6.10 and
Eqn. 6.11 (see Sec. 6.7). O

6.4.5 Arithmetic Operations

We can perform arithmetic operations on the representations of objects, using standard matrix arithmetic, as in
Eqn. 6.11 and Eqn. 6.13. However, doing so requires picking a choice of frame, and can lead to cumbersome
equations.

‘We want to define arithmetic operations directly on the abstract geometric objects; the abstract operations
should correspond with the matrix operations on the objects’ representations. A purist’s approach might
be to define the arithmetic operations abstractly, then prove that (with proper choice of representation) the
representations follow the corresponding matrix arithmetic—in any frame. For our purposes, however, we
will define the abstract operations “through the back door,” i.e., define them such that they agree with the
representations:

Definition. Arithmetic Operations

For any binary matrix arithmetic operation * or unary matrix operation ¢,
we define the corresponding abstract geometric operations, for any
z,y € GeomObjs, by:

(6.14)
f(f *xy) = (fﬂ?) * (fy) } When independent of the choice of
Toy) = ofy) f € Frames
Defn. 6.14: Arithmetic operations between geometric objects, z * y, are defined by the corresponding matrix arithmetic

operations between their representations 7% and fy——bm only where those operations yield frame-invariant results. Note

that z and y are not necessarily agnates, e.g., a matrix may be multiplied by a vector. O

Fig. 6.5 lists the arithmetic operations. Note in particular that there is no meaning te the sum of two locations,
or to the negation of a location—but a vector can be added to a location, and the difference between two
locations can be found. We list some of the usual arithmetic properties:

For all a € 2Tensors, r € Rotations, n € Orientations, and
v, w € Vectors, we have the following properties:

ala = aal =1
(6.15) - _ T
rn € CQOrientations
vTw = v Xw

Eqn. 6.15: The inverse of a 2tensor is both a right- and left-inverse. The inverse of a rotation is its transpose. Orientations
are closed under left-multiplication by rotations. The antisymmetric dual, ® v*, of a vector v performs a cross product on
another vector. O

The following “special” objects are defined, with the usual properties:

0 —
8 The antisymmetric dual v* of a vector v may be unfamiliar: The dual of [;] is [z 0 —yx] 3
z -y =z 0

6.4 Mathematical Model

82

Arithmetic Operations on Abstract Objects

Binary operations:

addition
subtraction
multiplication
scale

scale

scale

scale
addition
subtraction
inner product
cross product
outer product
displacement
cross product
cross product
scale

product
addition
subtraction
product
product
displacement
difference
scale

cross product
addition
substraction

Scalars + Scalars — Scalars
Scalars — Scalars — Scalars
Scalars * Scalars — Scalars
Scalars # Vectors — Vectors
Scalars * 2Tensors — 2Tensors
Scalars + Bases — Bases
Vectors * Scalars — Vectors
Vectors + Vectors — Vectors
Vectors — Vectors — Vectors
Vectors - Vectors — Scalars
Vectors x Vectors — Vectors
Vectors * Vectors — 2Tensors

Vectors +Locations — Locations
Vectors x 2Tensors — 2Tensors
Vectors x Bases — Bases
2Tensors + Scalars — 2Tensors
2Tensors - Vectors — Vectors
2Tensors+2Tensors — 2Tensors
2Tensors— 2Tensors — 2Tensors
2Tensors - 2Tensors — 2Tensors
2Tensors - Bases — Bases
Locations+ Vectors — Locations
Locations—Locations — Vectors
Bases % Scalars — Bases
Bases % Vectors — Bases
Bases 4+ Bases — Bases
Bases — Bases — Bases

Unary operations:

inverse Scalars™ — Scalars
negation —Scalars — Scalars
antisymmetric dual Vectors* — 2Tensors
negation —Vectors — Vectors
transpose 2Tensors” — 2Tensors
inverse 2Tensors™* — 2Tensors
negation —2Tensors — 2Tensors
negation —Bases — Bases

Figure 6.5: The arithmetic operations on abstract geometric objects, in accordance with Defn. 6.14. All the usual operations on tensors
are defined. Note, however, that locations may only be subtracted from each other or added to vectors, and bases may be left-multiplied
by 2tensors, but not right-multiplied. O

6.4 Mathematical Model 83

Correspondences between objects
in a given frame f

Between a vector and a location: Between an orientation and a rotation:
Location p
e Multiply by 7
Rotation I
-—
Vector V= p - Pf Y
% Orientation M = I‘Rf))
Origin P ., Orientation R ’
of frame f of frame f X

Figure 6.6: For a given frame f, there is a natural correspondence between a location p € Locations and the vector v € Vectors from
the frame’s origin to p; both are represented by the same three coordinate values in frame f. Similarly, there is a natural correspondence
between a rotation 7 € Rotations and the orientation » € Orientations that results when multiplying the frame’s orientation by . O

Object Name Rep. Properties
1 € Scalars | one 1 lxz =1z
0 € Scalars | zero 0 O+z=z,0xz=0
0
0 € Vectors | zero vector 0 O+z==z
0
[000]
0 € 2Tensors | zero 2tensor | [ooo| |0xz =0
(6.16) [000]
[100]
1 € 2Tensors | identity 010 |l*xz =2
[001]
I 9
000
0 € Bases zero basis ooo| |zx0=0

000

For any f, g € Frames: fO =%, and ‘i =1

Eqn. 6.16: Objects with special properties. The representations of these objects are the same in all frames, as can be
shown by substituting into Eqn. 6.11. O

6.4.6 Correspondence Between Objects

Given a choice of frame, there is a natural correspondence between locations and vectors, and between ori-
entations and rotations, based on equality of representation: (Fig. 6.6)

6.4 Mathematical Model 84

For any f € Frames, p € Locations, » € Vectors, r € Rotations,
n € Orientations, a € 2Tensors, b € Bases, we have the following

correspondences:
(6.17) I b b
n=r Ry = e
S

b=aR; <= %="

Eqn. 6.17: In any given frame, the representation of a location is the same as the representation of the vector from the
origin to that location. Similarly, the representation of an orientation corresponds with the rotation that aligns the frame
with that orientation. More generally, given a frame, there is a correspondence between bases and 2tensors. O

Due to this correspondence (and perhaps also because the common emphasis is on tensor objects only), many
expositions don’t define locations and orientations as separate entities. However, we prefer to define them
separately, because the correspondence is only valid for a single frame; e.g., if a vector and location correspond
in some frame f, they won’t necessarily correspond to each other in some other frame g, because of their
different transformation rules in Eqn. 6.11.

The correspondence is useful when switching between numerical and abstract forms of an equation; this
is illustrated in Sec. 6.7 (for the derivation of Eqn. 6.30).

6.4.7 Using Scalars as Real Numbers

Since the representation of a scalar is independent of the choice of frame (Eqn. 6.11), there is a natural isomor-
phism between scalars and real numbers. Thus, to make things simple we eliminate the distinction between
the two spaces:’

Scalars = #
(6.18) ' for all s € Scalars,
- independent of f € Frames

Egn. 6.18: We can use Scalars and R interchangeably. The representation operator is trivial: a scalar is represented
as itself. We can freely add or drop frame-superscripts on scalars. O

We will continue to use Scalars and the superscript notation in this module, for consistency with the other
primitive geometric objects. In general, however, there is little reason to define equations in terms of Scalars
rather than reals.

6.4.8 Moving Objects

What we think of conceptually as a moving object is mathematically just a function from the reals, i.e., time
or path parameters, onto the geometric objects (see Fig. 6.7). Thus we define the following spaces:

9The specific space coonns :: Scalars that we define in this module is interchangeable with R, but a more general notion of scalars
would encompass quantities such as complex numbers.

6.4 Mathematical Model 85

Moving objects

location path

frame path

Figure 6.7: A “moving object” is described by a path, i.e., a function from reals to the object’s space. We illustrate a location path and a
frame path, but one can define paths for any geometric object. O

Definition. ScalarPaths, VectorPaths, etc.

ScalarPaths = rhe set of functions {%R — Scalars}
VectorPaths = rhe ser of functions {?R — Veclors}
2TensorPaths = the set of functions {SB — 2Tensors}
RotationPaths = rthe set of functions {S‘B — Rotations}
(6.19) LocationPaths = the set of functions {éR — Locations}
BasisPaths = rhe ser of funcrions {.SR — Bases}
OrientationPaths = rthe ser of funcrions {%R — Oriemations}
GeomPaths = LocationPaths U BasisPaths
UScalarPaths U VectorPaths
U2TensorPaths
Defn. 6.19: Spaces of functions, for moving objects. Note that RotationPaths C 2TensorPaths, and

OrientationPaths C BasisPaths. We define GeomPaths analogously to GeomObjs, Defn. 6.3. O

We can define derivatives for these paths by extension from the arithmetic operations (Defn. 6.14). Note that
because the difference of two locations is a vector, the derivative of a location path is a vector path. Note also
that the derivative of a location is a vector, and that in general, the derivative of a rotation is a 2tensor (not a
rotation) and the derivative of an orientation is a basis (not an orientation). We have the following identity:

6.4 Mathematical Model 86

Definition. £ (derivatives of paths)

For a path = € GeomPaths, and constant frame f € Frames,
(6.20)

Ge) =4 (=), tew

Defn. 6.20: For a fixed frame, the derivative and representation operators commute. Note that if f varies as a function of
t, the operators no longer commute. O

For rotations and orientations, the following identities hold, and can be used to define an angular velocity

Definition. Angular velocity

For any differentiable function r € RotationPaths or
r € OrientationPaths, there exists a unique angular velocity function
(6.21) w € VectorPaths such that

Lr(t) =w*(t)r(t), teR

Defn. 6.21: The derivative of rotations and orientations always obey these identities. The angular velocity, w, is a vector

function; at each instant its value is a vector that lies along the instantaneous axis of rotation, and whose magnitude is the
instantaneous rate of rotation (radians per unit time). O

An analogous equation holds for quaternion representations (Defn. 6.8):

For any differentiable function r € RotationPaths or
r € OrientationPaths, ifw € VectorPaths is the angular velocity function,
(6.22) then for any constant f € Frames,
f
4 Repq(f,r(t)) = 3 w(t)Repq(f,7(t)), teR

Eqn. 6.22: The angular velocity equation in Defn. 6.21 has an analog in quatemion representations, using quatemion
arithmetic. O

If a frame “moves,” it will have associated with it linear and angular velocities. We define a space that
associates two velocity vectors with a frame:

Definition. InstFrames

InstFrames
[
F — Frames

aframe
(6.23) P ... P~ Locations

R ... R — Orientations

V s Vectors a linear velocity

w — Vectors an angular velocity
]

Defn. 6.23: Each “instantaneous frame” is a frame along with a linear velocity vector and an angular velocity vector. Note
that InstFrames is not a specialization of Frames; it is possible, to have two instantaneous frames that have the same
frame but different velocities. O

If we consider paths in the space InstFrames, we are most interested in ones whose velocity aspects actually
agree with their motion, as per Defn. 6.21. Thus we define:

6.4 Mathematical Model 87

Definition. consistent frame function

Given a differentiable function f: R — InstFrames, we say f is consistent
W.
£P)=V (), teR
£R () =wi ()Rs(t), teR

Defn. 6.24: A path through instantaneous frame space is consistent if at each point on the path, the velocity vectors at
that point correspond with the actual derivatives of the function. (The use of subscripted aspects of functions is as per
Nom.3.28.) O

(6.24)

Notice that we can trivially construct an ordinary frame from an instantaneous frame, by projecting the F
aspect operator of the instantaneous frame:

Given j € InstFrames define f € Frames by

f=F;

Egn. 6.25: Given an instantaneous frame, the corresponding ordinary frame is trivially available. O

(6.25)

Thus we will implicitly overload all functions and notations that expect frames to accept instantaneous frames
as well. In particular, the representation operator Rep (f,) and notation Iz are defined for f € InstFrames.

Similarly, extending Eqn. 6.25, we can be careless and blur the distinction between differentiable functions
to frames and consistent functions to instantaneous frames, since one can trivially be constructed from the
other:

For differentiable f: % — Frames and consistent j: R — InstFrames

Given f, define j by:

Fi(t) = f(t), teR
(6.26) Vi(t) = £PB(), teR
wit) = (HFRONB())T teR

Or, given j, define f by:
) = Fi), teR

Eqn. 6.26: Switching between differentiable frame functions and consistent instantaneous frame functions. Because one
can be constructed from the other, we will blur the distinction between them. O

We define a space of consistent functions:

Definition. FramePaths

(6.27) FramePaths = the set of functions { ey

f: R — InstFrames such that f is }

Defn. 6.27: Space of moving frames. We restrict the space to consistent (Defn. 6.24) functions. As per Eqn. 6.26 we can
interchange consistent instantaneous and ordinary frame functions, so for brevity we namethis space “FramePaths " rather
than “InstFramePaths.” O

A moving frame “carries” its coordinates system along with it:

6.4 Mathematical Model 88

Given a moving frame f € FramePaths

de %(t)=0 £ b P;(t) =0 (constant)

(6.25) 1y Re(t)=1 % f(f(t) =0 (constant)
(f)% (t) = not constant in general

f(t))t (t) = not constant in general

Eqn. 6.28: Represented in itself, a moving frame’s origin is always at (0,0,0) and its orientation is the identity, as per
Eqn. 6.10. The velocities can have any values, however. O

But notice that if we equate velocities with derivatives in Eqn. 6.28, we get the following “paradox,” i.e., a
seeming violation of Defn. 6.24:

Given a moving frame f € FramePaths, in general:
£(t)

(6.29)) LN 0))
“"fm # L) R ()T

Eqn. 6.29: Moving frame “paradox.” A moving frame can have non-0 velocity coordinates, but the origin is always at
0 as per Eqn. 6.28—thus the velocity is apparently not the derivative of the location. However, the offending inequalities
arenot equivalentto Defn. 6.24: differentiationand representation do not commute for a non-constant frame (Defn. 6.20). O

6.4.9 Paths & Derivatives

Suppose that we have a constant object, but we represent it in a moving frame. Thus though the object itself
does not change, the representation of it might. The derivatives for the various types of objects, represented
in a moving frame:

For moving frame f € FramePaths and constant objects
s € Scalars v € Vectors a € 2Tensors
p € Locations n € QOrientations

(6:30) d(m)) m[) 4]
™

!(t) a)=—""[wf(t)a+ aw'T(t)

2% = 1)+) x (o — B0
1“0 =~z yn)

Eqn. 6.30: These equations describe behavior of the representation of an object, if the object is constant, but the frame
we represent it in changes. (See derivation in Sec. 6.7.) O

Suppose now that we have an object that is moving, and we represent it in a moving frame. This is a more
general case of Eqn. 6.30:

6.5 Posed Problems 89

For moving frame f € FramePaths and moving objects
s € ScalarPaths v € VectorPaths a € 2TensorPaths
p € LocationPaths n € OrientationPaths

4 ("% @) = "ds(e))

TOu(t)) = TV Lu(t) — wy(2) x v(2))
4 ("“u(t)) = "L a(t) — vy () at) — a(t) T (2)]
4(7p(1)) = "VLLp(t) - V() — wy(t) x (p(2) — Br(1)))
;2 00() = "V n(t) - wj @) n(8)]

Eqn. 6.31: These equations describe the behavior of the representation of an object, if both the object and the frame to
represent it in are changing. O

(6.31)

Now consider an object that is moving, and that we represent in a moving frame—but its representation in

that frame is constant. Thus the object “moves with” or “is carried by” or just “is fixed in™ that moving frame;
we define:

Definition. Fixed in a moving frame

A moving object z: R — GeomObjs
632) is fixed in a moving frame f € FramePaths iff:

d f(t)

z(t) =0, forallt

Defn. 6.32: A moving object is fixed in a moving frame if its representation in that frame is constant, or, equivalently, the
derivative of its representationis 0. O

The representations of fixed objects in other frames are given directly by Eqn. 6.11. The derivatives can be
defined as abstract objects:

For moving objects fixed in moving frame f € FramePaths
s € ScalarPaths v € VectorPaths a € 2TensorPaths
p € LocationPaths n € OrientationPaths

%s(t) =0

(539 Lo(t) = wf(t) x v(t)
f#a) =wi(t)a(t) + a(t) w7 (2)
#0(t) = V3 (t) +wp (t) x (p - F(?))
£n(t) =wj () n(t)

Eqn. 6.33: These equations describe the behavior of an object that is fixed in amoving frame. The derivatives are computed
using abstract geometric operations on the various quantities. O

Note that the latter above implies that an orientation that is fixed in a moving frame f has an angular velocity
w thatis the same as f’s angular velocity wy (see Defn. 6.21).

6.5 Posed Problems

The conceptual and mathematical models that we have defined do not immediately imply any complicated

numerical problems. However, there are many simple “evaluation” tasks that may often need to be performed.
To list a few:

o Define an object given its representation in a particular frame.

6.6 Implementation Notes 90

Given an object, evaluate its representation in a particular frame.
Find the motion of an object fixed in a moving frame.

Given a location path, find its velocity (also a path)

Given an orientation path, find its angular velocity (also a path).

6.6 Implementation Notes’

The implementation of this module lies entirely in the math section of the program—in the conceptual sec-
tion, we typically manipulate arrays of numbers, corresponding to the representations in conceptually natural
frames, thus no intricate C-M interface is needed; and since we have defined no complicated numerical prob-
lems, there is no M-N interface. The math section has scope name MCO (“Math COordinates™). Fig. 6.8 lists
the definitions for the module.

Primitive objects. The implementation maintains the distinctionbetween abstract geometric objects and their
representations: an object is not tied to a particular frame. For each class of object a method, rep(Frame),
yields the representation in any specified frame (which is specified via an instance of class Frame, described
below). Thus:

class Vector :

constructors: (Frame, double[3]) constructfrom coordsin given frame
methods: rep(Frame) : double[3] representas coordsin given frame

class Orientation :
constructors: (Frame, double[3][3]) construct from matrix in given frame

(Frame, double[4]) construct from quaternion in given frame
methods: rep(Frame) :double[3]1[3] representas matrix in given frame
repq(Frame) : double[4] representas quaternion in given frame

To construct an instance of a primitive object, one provides a frame along with the representation in that frame,
as per Eqn. 6.7. Notice that an Orientation can be constructed/represented via matrixes or quaternions
(Defn. 6.8); the same is true for the Rotation class. Classes 2tensor and Location are defined similarly
to Vector. Scalar is implemented simply as an alias for double, as per Eqn. 6.18. The various arithmetic
operators, +, ¥, cross, efc., are defined for these classes as appropriate (Fig. 6.5).

Internally, our implementation stores these objects as their lab-frame representations: when an instance
is constructed or represented, the appropriate transformation (Eqgn. 6.11) is performed; and arithmetic is per-
formed directly in lab coordinates. The implementation could perhaps be optimized in various ways, however;
for example, the representation in the most recently requested frame might be stored, to avoid repeatedly per-
forming the transformation calculations to the same frame.

Frames. The classes for state spaces Frames (Defn. 6.2) and InstFrames (Defn. 6.23) are defined in the
standard manner (Sec. B.3.6):

class Frame :
constructors: (Location P, Orientation R)
(InstFrame) trivial, as per Eqn. 625
members: P:Location

R :Orientation

class InstFrame :
constructors; (Location P, Orientation R, Vector v)
(Frame f, Vector v)
: Frame
:Location
:0Orientation
: Vector
:Vector

members:

q < ™Y H

TSee Appendix B for discussion of the terminology, notation, and overall approach used here.

6.7 Derivations 91

Program definitions in scope MCO:

class name abstract space

2tensor 2Tensors (Defn.6.1)

2tensorPath 2TensorPaths (Defn. 6.19)

Frame Frames (Defn.62)

FramePath FramePaths (Defn. 627)

InstFrame InstFrames (Defn. 623)

Location Locations (Defn.6.1)

LocationPath LocationPaths (Defn. 6.19)

Orientation Locations (Defn.6.1)

OrientationPath OrientationPaths (Defn. 6.19)

Rotation Rotations (Defn.6.1)

RotationPath RotationPaths (Defn. 6.19)

Scalar Scalars (Defn.6.1)

Scalarldx {Scalars}|pg index of scalars (Notn. 3.11)

ScalarPath ScalarPaths (Defn. 6.19)

ScalarPathIdx {ScalarPaths}|ng index of scalar paths (Notn. 3.11)

Vector Vectors (Defn.6.1)

VectorIdx {Vectors}|pe index of vectors (Notn. 3.11)

VectorPath VectorPaths (Defn. 6.19)

global constant mathematical object

Lab_Frame Lab € Frames (Defn.6.4)

Zero_Vector 0 € Vectors (Eqn. 6.16)

Zero_2tensor 0 € 2Tensors (Eqn. 6.16)

Identity2tensor 1 € 2Tensors (Eqn. 6.16)

Figure 6.8: Math section definitions in the prototype implementation. In addition to classes for the abstract spaces that we use, we define

a few constant global variables. O

Notice the circularity discussed in Sec. 6.3: We need a location and an orientation to construct a frame, but
we need a frame to construct a location or orientation. The predefined constant frame Lab_Frame provides a

starting point.

Paths. Classes for object paths (Defn. 6.19) in the standard manner (Sec. B.3.7):

class LocationPath :

constructors: (Location) constant path
(FramePath, double[3]) fixedin given moving frame
methods: eval(double t) : Location
velocity() : VectorPath

The classes 2tensorPath,OrientationPath, RotationPath,ScalarPath, and VectorPath are defined
similarly. In addition to constant paths and fixed paths as shown, there is support for paths that are algebraic

combinations of given paths, and for paths that are evaluated by calling arbitrary user-supplied subroutines.

Some paths support the velocity method, which returns a path whose value is the derivative of the given

path, e.g., as per Eqn. 6.33. We additionally define the class FramePath, the standard manner for paths into
state spaces (Sec. B.3.7).

6.7 Derivations

Since the mathematics of geometric objects is well-known, there are no surprises in this chapter. Hence, we
refer the reader to [Craig89] and [Foley et al.80] for further discussion of 3-D geometry and linear algebra,
or the reader may simply “take our word for it.” To illustrate the use of our notation, however, we provide
derivations of Eqn. 6.13 and one equality in Eqn. 6.30.

6.7 Derivations 92

¢ Eqn. 6.13
Given: two frames f, g € Frames.
For any location p € Locations, we have
2 = B+CR)D (Eqn. 6.11)
substitute F, (the origin of frame g) for p to get
" = B+CR)R
0 = P+(rR)'A (via Eqn. 6.10)
" = -R'p
For any orienation n € Orientations, we have
% = (R’ (Eqn.6.11)
substitute R, (the orientation of frame g) for n to get
" = (&)R)
I = (ng)(jRg) (via Egn. 6.10)
% = (R)T (via Eqn. 6.15)
« Eqn. 6.30

Given: constant location p € Locations and moving frame f € FramePaths.
For any constant frame g € Frames, we have

= "B)+(Rf(r))”] (Eqn. 6.11)

2(p) = 4P+ (Bw)'"p)
()= (via Defn. 6.20)
Q= (p is constant)

_ d(9 d (9 f(®) f(1)
=LCPm) + [F(Rie)] P+ R(f(t)dt(P) (product rule)
f(1) £(2)

- R D= 4B+ ER) P

= (&Pw) + g(%Rf(:))f(! (via Defn. 6.20)

1
= Vy + %;;(,) gR,(,) e, (via Defn. 6.24)

1 . s
dt “ p)= —(ng(t))T gv}(t) - (ng(t))T %" 1) ng(t) : ,)p (mult. by —R")
1
= f(t)Rg Vi — f(f) f(t)(f(t)Rg)T f() (via Eqn. 6.13)

; — m)w i~ 1) Y, f(f)p (via Eqn. 6.11)
= IOy — 1) m)(f(f) ew) (via Eqn. 6.10)

t - f(t)[Vf(t) + wf(:)(P — Byl (via Defn. 6.14)
_ Ht)['v}(,) +wpy X (P — Brwy)] (via Eqn. 6.15)

Notice in line { that fwj fp is a valid matrix product, but there is no corresponding abstract operation—we

can’t multiply a 2tensor, wy , by a location, p. But, by subtracting zero in the form fRf, we essentially replace
p with its corresponding vector in frame f (Eqn. 6.17). Since a product between a 2tensor, w , and a vector,
(p — P;), is a valid abstract operation, we can make the transition to line {.

93

Chapter 7

Kinematic Rigid Bodies Model

(43 inematic” motion is motion without considerations of mass and force. This includes, e.g., motion de-
scribed by keyframe animations systems, geometric constraints, and direct user manipulation.

This module provides a basic expression of the kinematic motion of rigid bodies. It provides a simple structure
for describing collections of bodies, and a mechanism for describing bodies constrained in fixed hierarchies. The
module is administrative rather than technical; we do not give any specific methods or techniques for manipulating
bodies, we merely provide a framework within which to express such techniques.

The “traditional” computer graphics animation techniques, as discussed in Ch. 1.2, are kinematic; see, e.g.,
[Magnenat-Thalmann,Thalmann85]. [Craig83] has an extensive discussion of kinematics in the context of
robotics.

7.1 Goals

‘We have a few simple goals for this module:
o To provide a basic model & notation for rigidly moving bodies.
o To describe kinematic relationships between bodies, e.g., as a hierarchy.
¢ To describe behavior of points fixed on a body.

The intent is not to define any particular techniques for kinematic rigid-body motion, but to give a common
framework and terminology that can be built upon by other, higher-level models and techniques, such as
dynamics or articulated key-frame animation.

7.2 Conceptual Model

Our conceptual model for kinematic rigid bodies is quite simple. We describe our basic abstraction of a body,
as well as two other useful notions, that of a body point, and a hierarchical configuration of bodies. All bodies
exist in the fixed, Euclidean 3-D world space of Ch. 6.

Bodies:

)

A rigid body doesn’t change its shape—that is what we mean by “rigid”—thus a body’s motion can be de-
scribed by its position and orientation. In other words, we think of a rigid body as “carrying” with it a

7.2 Conceptual Model 94

a. A moving rigid body... b. ...is abstracted as a moving coordinate frame

Figure 7.1: The motion of a rigid body is described by the motion of an orthonormal coordinate frame that is fixed relative to the body.
Each body’s frame is called its “body coordinates.” O

coordinate frame, as per Sec. 6.3. We call that frame the body frame (Fig. 7.1). Note that a moving body has
a velocity and angular velocity at each instant of time.

The body frame is fixed relative to the body, and serves to define body coordinates that can be used in
particular to describe the shape or configuration of the body. In this module, we make no restrictions on the
body shape, other than that it be constant in body coords; nor do we provide any mechanism for describing
the shape.! Presumably, in most cases, the origin of body coordinates is at some “natural” spot relative to the
body shape (e.g., the center or the corner or the apex, depending on the shape), and the body coordinate axes
are aligned with the axes of symmetry of the shape—but this is not required.

Each body in a model is given a unique “name” of some sort, so that we can identify and distinguish the
bodies.

Body points:

Frequently, in addition to defining a primitive body, we are interested in specifying “interesting” points on the
body. For example, we might specify a point at which to attach a constraint. We define a body point to be a
location that is is fixed in the body frame, as per Sec. 6.3, i.e., its body coordinates are constant, Thus, as the
body moves, it “carries” the body point with it.

For the most part, we think of a body point as being the location of a specific piece of “material” within
the body or on its surface. But we don’trequire this; one could define a body point in the middle of a donut’s
hole, for example. The origin of the body frame is a body point, at coordinates (0, 0, 0).

Hierarchical Configurations:

We’re often interested in describing kinematic relationships between groups of bodies; for example, it is
common to model humans, animals, and robot manipulators as articulated figures, i.e., collections of segments
connected at joints (see [Badler et al.91], [Craig89]).

1The description of shape is a fundamental part of computer graphics; we refer readers to [Foley et al.90] and [Snyders2].

7.3 Mathematical Model

Hierarchical Configuration

root
body

\ /7
dependent
bodies

95

Figure 7.2: A hierarchical configuration is a collection of bodies organized into a hierarchical structure. Each body’s configuration is
specified in the body coordinates of its parent; thus if, e.g., body b is moved or rotated, bodies d, e, and f will be carried with it, and if
the oot body a is moved, the entire collection moves with it. A common type of hierarchical configuration is an articulated figure, in

which primitive body segments are connected at joints. O

This module defines a hierarchical configuration, i.e., acollection of bodies organized into a tre¢ hierarchy,
with the position and orientation of each body’s frame described in the coordinates of its parent (Fig. 7.2). An
articulated figure can be described by a hierarchical configuration, in which each body’s origin is fixed in its

parent’s frame, but the body’s orientation can be adjusted.

7.3 Mathematical Model
7.3.1 Names & Notation

The scope name for this module is
KINEMATIC

‘We make use of the following definitions from other modules:

IDforests (Defn. A.1) Locations (Defn. 6.1)

IDs (Defn. 3.8) LocationPaths (Defn. 6.19)
FramePaths (Defn. 6.27) Orientations (Defn. 6.1)
InstFrames (Defn. 6.23) Vectors (Defn. 6.1)

We will also use superscript frame-representation notation:

T (Nom. 6.6)

7.3.2 Body State

We define the space of possible configurations of a rigidly-moving kinematic body, States. Note that the

space includes only coordinate-frame information; we are not including any shape description.

7.3 Mathematical Model 96

Definition. States

States
f +—InstFrames body coordinate frame
an X ...P — Locations body origin location
R ... R+ Orientations body orientation
v ...V — Vectors velocity of origin
w ..w — Vectors angular velocity
]

Defn. 7.1: Kinematic rigid-body state space. The state of a rigid body at an instant is just its instantaneous coordinate frame
(which includes linear and angular velocities). Note that we have renamed the origin to be z and velocity v, in keeping
with common usage for rigid body modeling. O

A moving body can be described by its trajectory, i.e., a path through state space. Based on Sec. 6.4.8, we
define a space StatePaths, each of whose elements is a path of a moving body:

Definition. StatePaths

s: ®— States such that
(f o s) € FramePaths

(7.2) StatePaths = the set of functions {

Defn. 7.2: The space of paths through state space. For a path s € StatePaths, the composite function (f o s), that
describes the body frame’s motion, must be an element of FramePaths ; this means that it is consistent as per Defn. 6.24,
i.e., that the velocity vectors at each instant agree with the trajectory of the body. O

The moving-frame “paradox,” Eqn. 6.29, applies directly to moving bodies:

For s € StatePaths

(713) Lx(t) = wl(t)
. gt fs(1)
0= 4% @1 # 20
Egn. 7.3: The moving-body paradox. The velocity vector can be non-0 in body coordinates, even the the origin is al-
ways at (0,0,0). The velocity vector describes the motion of the body relative to the fixed world space; thus the body
“knows” that it is moving, unlike special-relativistic formulations of motion, in which there is no local way to distinguish
a frame at rest from one moving with constant velocity. O

7.3.3 Body Points

We define the space of states of body points, Bodypts, analogous to the states of bodies, to define the config-
uration of a body point.

Definition. Bodypts

Bodypts

(7.4) x —Locations location of body point
v Vectors velocity of body point

]

Defn. 7.4: Body point state space. A body point has a location x and a velocity v. The velocity v is the point’s velocity in
space. O

We can specify a body point state, given its body-frame coordinates and the state of the body it belongs to:

7.3 Mathematical Model 97

Definition. Bodypt

Define a function Bodypt: States x R3%3 — Bodypts such that, for all

s € States and coords € R3%3:
(7.5)

f(a)x(Bodypt(s, coords)) = coords

V(Bodypt(s, coords)) =V, +w, X (X(Bodmt(s, coords)) — X,,)

Defn. 7.5: A function that yields the state of a body point, given its body-frame coordinates. The expression for the point’s
velocity comes from Eqn. 6.33, that gives derivates of objects fixed in moving frames. O

7.3.4 Collections of Bodies

The definitions of Sec. 7.3.2 are generic, without the concept of which body. Now, we will provide definitions
allowing us to name and identify bodies. We define a system to be a collection of names (ID’s) of bodies, and
their corresponding states:

Definition. Systems

(7.6) Systems = {States}|pg

Defn. 7.6: Each system is an index of states (as per Sec. 3.8.2). That is, it is a collection of body states elements, each
labeled with a different “name,” or ID. Given a system Y € Systems, the state of a body labeled with b € IDs is given by
Y,. 0O

The above describes the state of a collection of bodies at a single instant of time. For a collection of bodies
that are moving over time, we define a system path:

Definition. SysPaths

a.n SysPaths = {StatePaths}|pg

Defn. 7.7: Each system is an index of state paths. Note that each element in the index is a function. That is, for a system
path Y € SysPaths, the state of body b at an instant of time £ is given by YV, (t). O

To construct a system Y € Systems given a system) € SysPaths, we evaluate all the paths in) at a
common time ¢, This is writtenas Y =)/(¢), as per Notn. 3.18.

7.3.5 Hierarchical Configurations

A hierarchical model consists of the tree hierarchy that organizes the bodies, along with the specification of

each child’s state relative to that of its parent. Sec. A.1 defines the IDforests mechanism for hierarchies of

names. All that remains for us is to define a mechanism to specify each body’s frame relative to its parent.
We start by defining a space that encapsulates representations of frames.?

Definition. FrameReps

FrameReps

[

(7.8) x —R3 represents a location
R — R3%3 represents an orientation

]

Defn. 7.8: Each “frame rep” will be used to specify the representation of a frame in some other frame. Note that that x and
R are numbers—they will be representations of abstract geometric objects, rather than the abstract objects themselves. O

2This is the most general way of describing a frame relative to some coordinate system. But for specific applications, other repre-
sentations might be more convenient. For example, articulated figures are typically described in terms of joint angles. Such descriptions
could be defined as specializations (Sec. 3.7.2) of FrameReps.

7.4 Posed Problems 98

We have a notion of two bodies that are “aligned” by a given frame representation:

Definition. Aligned bodies, given a frame representation

A body state b € States is aligned 0 a body state a € States given a frame
representation c € FrameReps iff:

") = xo)
ERB) = R(e)

Defn. 7.9: The numbers in frame rep ¢ € FrameReps give the coordinate values for body b, when “looked at” from body
a. Note that given any two of a, b, or ¢, the third is uniquely determined. O

7.9)

A hierarchical configuration bundles together a collection of frame-representation constraints along with a
forest (collection of trees) of body names:

Definition. HierConfigs

HierConfigs

[
forest s |Dfarests the ID hierarchy
roots ... roots — |Dsets independent bodies
nonroots ... nonroots — 1Dsets dependent bodies

(7.10) leaves ...Ieaves — |Dsets bodies having no children

parent ... parent — {IDs} Ds parent of each dependent
config +— {FrameReps}|pg the frame representations
Ids(config) = nonroots

Defn. 7.10: A hierarchicalmodel. forest is a forest of body ID’s. For eachbody ¢ € nonroots, we will use frame rep config,
to align body c in its parent’s coordinates. The internal property Jds (config) = nonroots guarantees that every non-root
body has a corresponding frame rep. O

Putting together Defns. 7.9,7.10, we tell if a particular collection of body states satisfies a given hierarchical
configuration:

Definition. Satisfies

A collection of body states Y € Systems satisfies a hierarchical
a.11) configuration m € HierConfigs iff, For all ¢ € nonroots(m),

Yc(t) is aligned 10 Yparentm), given config(m).

Defn. 7.11: A given system satisfies a model if each child body is properly aligned to its parent. Note that no top-level
restrictions are placed on the roots. O

7.4 Posed Problems

A well-known problem in modeling is the forward kinemarics problem: Given a static hierarchical configu-
ration, and given the states at the roots, determine the states of all the bodies (see [Craig89-Ch.3]). This can
be expressed using our constructs as:

7.5 Implementation Notes 99

given: B € Systems and
H € HierConfigs,
such that Ids(B) = roots(H)
find: Y € Systems

. Y = By forall b € Ids(B)
such that: { Y satisfies H

Eqn. 7.12: The forward-kinematics problem. We are given B, the states of the roots of the hierarchy H. We want to
determine the states of all the children as well. The solution system Y includes the states of all the bodies, roots (directly
as given) and nonroots (determined from H). O

(7.12)

Solving this problem is straightforward. One proceeds top-down from the roots, at each node constructing
the frame that is aligned with its parent.

The complementary problem to the above is an inverse kinemarics problem: Given the states of the roots
and leaves of the hierarchy, determine the relationships between the bodies:

given: B € Systems and
F ¢ |Dforests,
such thar Ids(B) = roots(F') U leaves(F")
find: 'Y € Systems and
H € HierConfigs,
Yy = By for all b € Ids(B)
such that: fores{ H) = F
Y satisfies H

Eqn. 7.13: An inverse-kinematics problem. We are given the hierarchical structure of body names F, but no configuration
specifications, and we are given B, the states of the roots and leaves. We want to determine the states of all the intermediate
bodies as well. The solution includes the system Y and the complete hierarchical configuration H. For specific types of
models we may be given additional input or restrictions, such as given segment lengths for articulated figures. O

(7.13)

Unlike the forward kinematics problem, solving inverse problems can be difficult. There is not necessarily a
unique solution; there may be none or many. [Craig89-Ch.4] discusses this problem in detail.

7.5 Implementation Notes'

7.5.1 Conceptual Section Constructs

The conceptual bodies can be defined using an object-oriented method: A base class Body includes the body’s
name, position and orientation data members; various derived classes, €.g. Sphere, Cylinder, Banana, eic.,
implement their own draw methods to draw the body at its current position and orientation. The base class
can also maintain a list of body points associated with the body.

7.5.2 Math Section Constructs

The scope name for this module’s math section is MKIN; Fig. 7.3 lists the class definitions. The classes for the
state spaces States, FrameReps, and HierConfigs are defined in the standard manner (Sec. B.3.6):

class State :
constructors: (MCO: :InstFrame ff)
members: £ : MCO::InstFrame

: MCO: :Location
:MCO::0rientation
: MCO: :Vector

: MCO: :Vector

1 < oK

tSee Appendix B for discussion of the terminology, notation, and overall approach used here.

7.5 Implementation Notes 100

Program definitions in scope MKIN:

class name abstract space

FrameRep FrameReps (Defn. 7.8)

FrameRepldx {FrameReps}|ng index of frame reps(Noin.3.11)
HierConfig HierConfigs (Defn. 7.10)

State States (Defn. 7.1)

StatePath StatePaths (Defn.72)

SysPath SysPaths (Defn. 7.7)

System Systems (Defn. 7.6)

Figure 7.3: Math section definitions in the prototype implementation. O

class FrameRep :

constructors: (double[3], double[4])
members: x : double[3]
r : double[4]

constructors: (MMISC::Forest, FrameRepIdx)

class HierConfig :
members: forest
config
roots

: MMISC: :Forest
: FrameRepIdx
: MM: :IdSet

nonroots : MM: :IdSet

The class for StatePaths is defined in the standard manner for paths (Sec. B.3.7):

class StatePath :

constructors: (MCO: :FramePath ff)

members: £:

X
R:
v
v

MCO:
: MCO:
MCO:
: MCO:
: MCO:

:FramePath
:LocationPath
:OrientationPath
:VectorPath
:VectorPath

7.5.3 M-N Interface

The scope name forthe M-N interface NKIN. We define a routine to compute the system thatsolves the forward-
kinematics problem. It is implemented using the routine NMISC: : IdForestPreorder(...) of Sec. A.3.1,

to traverse the hierarchy.

SolveForward(System, HierConfig) : System

7.5.4 C-M Interface

The C-M interface routines must be able to do the following:

e Map between conceptual body names and math ID’s.

e Map between MKIN: : State objects and conceptual body objects.

e Map between MKIN: : System objects and the conceptual data structures.

¢ Constructa MKIN: :HierConfig from the conceptual data structures.

101

Chapter 8

Dynamic Rigid-Bodies Model

his model describes classical dynamics of rigid bodies, i.e., motion of rigid bodies based on inertia and the

influence of applied forces and torques, in accordance with Newton's laws. For collections of bodies, each
body’s motion is due directly only to the forces and torques acting on it; interaction between bodies is mediated
by forces.

The force-based paradigm of motion is simple, reasonably intuitive, and uniform across applications. We don’t
address other paradigms, such as Lagrangian or Hamiltonian, that are based upon energy and generalized or
canonical coordinates. Generalized coordinates are useful for deriving equations of motion for specific problems
with constrained motion and limited degrees of freedom; using the force-based paradigm, we constrain the motion
through explicit introduction of forces, as will be discussed in Ch. 9.

The presentation in this module, while axiomatic, assumes that the concepts of mass, force, and so forth are
familiar to the reader. Detailed discussion and analysis can be found in [Fox67] and [Goldstein80].

8.1 Goals

Our goals for this model are:
e To describe bodies that move under the influence of forces and torques.
¢ To keep track of energy expenditures, for analysis and debugging.

¢ To provide support for higher-level modules that implement collisions, constraints, force mechanisms,
etc.

At this level, we will not specify provide any mechanism for describing how individual forces and torques
arise; we take forces and torques as “givens” from a higher level module.

8.2 Conceptual Model
The dynamic rigid bodies model is built on the kinematic rigid body model of Ch. 7, set in the fixed 3-D world

space of Ch. 6. To the kinematic model, we add the notion of dynamics, i.e., motion in accordance with forces
and inertia, as per Newton’s laws and the classical paradigm.!

1 Actually, the classical rigid-body paradigm, and Newton’s laws, can be derived from more basic postluates known as Euler’s laws;
see [Fox67].

8.2 Conceptual Model 102

Figure 8.1: Rigid-body motion. A body moves under the influence of forces and torques, in accordance with Newton’s laws of motion.
The motion of a body can be separated into the linear velocity of the center of mass of the body, and the angular velocity of the body’s
rotation about the center of mass. The body features are encapsulated as a constant net mass and an inertia tensor that is fixed in the body
frame. O

8.2.1 Bodies

We assume that each body is completely rigid, i.e., does not flex or deform in any circumstances, and that
each body has a constant mass that is distributed throughout the body. This abstraction is not unreasonable
for many real-world objects, so long as they are subject to relatively mild pressures and accelerations.

A dynamic body is a kinematic body as per Ch. 7—i.e., is uniquely identifiable and has a body frame
associated with it—along with a mass distribution. We don’t need to know the details of the mass distribution;
itis encapsulated into an inertia tensor, and a location of the center of mass. Note that the center of mass does
not have to be at the origin of the body frame. Since the body is rigid, the mass distribution is fixed in the
body frame.

A body moves in response to forces and torques acting on it, in accordance with Newton’s laws (Fig. 8.1).
Motion is separable into translational motion of the center of mass (linear velocity), and rotation of the body
about the center of mass (angular velocity). In the absence of any applied forces or torques, the center of mass
moves in a straight line—but the body frame origin may rotate about it if the body is spinning. Forces and
torques will be discussed in greater detail below (Sec. 8.2.2).

As in the kinematic model, this model includes no explicit description of the shape of a body (the body
doesn’teven need to be contiguous). The inertia tensor depends on the shape, but not uniquely: bodies with
different shapes may share the same inertia tensor. In practice a body’s behavior often does depend on details
of its shape or mass distribution, e.g., wind resistance or gravitational field variation; We don’tdisallow such
effects in this model, but merely observe that for our purposes, they are indirect, and can be encapsulated

8.2 Conceptual Model 103

Types of “Motives”:

Pure Force Pure Torque Coupled Force/Torque Arbitrary Force/Torque

Figure 8.2: There are four types of motives: Pure forces, which cause translation but not rotation; Pure torques, that cause rotation about
the center of mass, but not translation; Coupled force/torque, in which a force applied to a body at some distance from the center of mass
yields a corresponding torque about the center of mass; And arbitrary force/torque pairs, that can be thought of as a pure force and pure
torque acting simultaneously. O

(by higher-level modules) into net forces and torques acting on our abstracted rigid bodies. This model does
disallow, however, bodies that don’thave constant mass, such as a rocket that loses mass as it burns propellant.

For collections of bodies, each moves independently in world space, reacting only to the forces and torques
applied to it. All interactions between bodies are thus mediated by forces. Notice that unless suitable forces
are applied, there is nothing preventing bodies from overlapping, occupying the same locations in space.

‘We assume finite forces and torques for this module, so the motion is always continuous. For disconti-
nuities in velocity, such as caused by collisions between rigid bodies, the idea of impulses—infinite forces
applied instantaneously—would be introduced; we leave this for higher-level modules (see discussion in
Sec. 12.1). Note, however, that the this module could still be used to describe the continuous motion between
discontinuities, as in the “tennis ball cannon™ example of Ch. 11.

8.2.2 “Motives"—Force/Torque Objects

We assume the existence of forces and torques, which are primitive objects that can be described by vectors,
and which, when applied to bodies, cause them to move.2

We find it convenient to bundle a single force and/or a single torque into an object that we call a motive.
The most common type of motive is a coupled force/torque, in which a force applied away from the center of
mass of a body induces a torque on the body (the vector from the center of mass to the point of application is
called the moment arm). We can also have a pure force or pure torque, which can be thoughtof as applied to
the center of mass, and for generality, an arbitrary force/torque pair (Fig. 8.2).

Motives exist in themselves as abstract objects, but to be used, a motive must be applied to some specific
body: an applied motive is a motive along with (the name of) the body it acts on. If the motive is a coupled
force/torque, its moment arm describes the point of application on the body. We typically give each applied
motive a unique name in order to identify it.

Any number of motives can be applied to a body simultaneously. The forces and torques from each can be
added, to produce a single net force and net torque on the body. The behavior of the body under the influence
of the collection of motives is the same as if only the net force and torque were applied toit.

Motives are typically described at any instant by a force/torque field, i.e., a function of the configuration of
the model.? For example, a Hooke’s-law spring applies a force that is proportional to how much the spring is
stretched. The fields are defined over hypothetical configurations—i.e., they describe what the motive would

21t is not strictly necessary to define torques as primitive objects—the effect of any torque can be mimicked by a suitably chosen pair
of forces—but are convenient abstractions.

3 This use of the term “field” is in the geometric sense “function over some manifold,” rather than the abstract algebraic sense “set
having addition and multiplication operations.”

8.2 Conceptual Model 104

Point Mass
Forco

Figure 8.3: (Left) A point mass is a body that has all its mass at a single point. Point masses move under the influence of forces, but not
torques. O

Figure 8.4: (Right) A body point is fixed in body coordinates. Each body point has an associated moment arm, which is the vector from
the center of mass. O

be, if the model were in any given state—not just for the path taken by a particular simulation. 4 Note that a
single field can depend on the configuration of the entire model—thus the force on a given body can depend
on the configurations of the other bodies in the model, giving us an avenue to create interactions between
bodies.

8.2.3 Point Masses

A point mass is a hypothetical object: a body that has all of its mass concentrated at a single mathematical
point (Fig. 8.3). A point mass has a location and velocity, and will move under the influence of forces in the
same manner as an ordinary body. Point masses have a zero inertia tensor, and have no associated orientation
or angular velocity. We do not define the application of a torque to a point mass.

Point masses provide a simple abstraction of rigid body motion when orientation is not an issue. They are
often used as experimental “test particles.” Many flexible-body models are comprised of networks of point
masses and interconnecting forces. In addition, the center of mass of any arbitrary deforming (non-rigid) body
moves in as a point mass experiencing the sum of all forces acting on the body.

8.2.4 Body Points

A dynamic body pointis essentially the same as a kinematic body point (Sec. 7.2), i.e., a location that moves
with a body, fixed in the body’s coordinate system (Fig. 8.4). As with kinematic body points, since we have
no explicit description of the shape of a body, we do not care whether a body point is “in” or “on” the body.

Body points provide convenient “handles” at which to apply forces. Since a force applied at a body point
yields a coupled torque, we associate a moment arm with each body point, as per Sec. 8.2.2. Note that the
moment arm is the vector from the center of mass, not from the body origin.

8.2.5 Energy

Itis a fundamental property of classical mechanics that energy is always conserved, or at least accounted for.
Thus, although we are using a force-based paradigm rather than energy-based (i.e., Newtonian rather than
Lagrangian), we can still keep track of energy in our models.

4]t is particularly important that fields be defined off the solution path for a particular simulation, because most numerical solution
must explore the configuration space in order to determine that path.

8.3 Mathematical Model 105

Each body has an associated kineric energy, based on its linear and angular motion. When a body is acted
upon by motives, its kinetic energy can change. The work done by each motive is the kinetic energy it adds
to the body (negative work means that the force removes kinetic energy, i.e., slows the body).’

We can analyze the behavior of a model by examining the work done by each motive. In addition, we can
test for consistency of the model by checking that the kinetic energy of each body agrees with the work done
by all motives acting on it.

Often, a motive field is conservative, i.e., has a potential energy field associated with it such that the
potential energy and work done by the motive add up to a constant—energy taken from a body is “stored” in
the potential energy field, and vice versa. Examples include a gravitational field and a Hooke’s-law spring.

Non-conservative motives are dissipative if they remove energy from the bodies, or are acrive if they add
energy. The work done by these motives corresponds with a conversion between mechanical (kinetic) energy
and other forms of energy, such as heat, electromagnetic, or chemical, that are out of the ken of this model.

8.3 Mathematical Model
8.3.1 Names & Notation

The scope name (see Sec. 3.6.2) for this module is

RIGID
We use the following terms from other modules:
IDs (Defn. 3.8) Lab (Defn. 6.4)
InstFrames (Defn. 6.23) Locations (Defn. 6.1)

KINEMATIC:: Bodypt (Defn. 7.5) 2Tensors (Defn. 6.1)
KINEMATIC::Bodypts (Defn. 7.4) Orientations (Defn. 6.1)
KINEMATIC:: StatePaths (Defn. 7.2) Scalars (Defn. 6.1)
KINEMATIC:: States (Defn. 7.1) Vectors (Defn. 6.1)

‘We also extensively use subscript notation for state spaces, and prefix-superscript frame representation nota-
tion:

£, (Notn. 3.27)
z,(t) (Not.3.28)
Ly (Notn. 6.6)

8.3.2 Mass Distributions

If we know the shape of a body and the mass density everywhere within it, we can compute the mass distri-
bution values.

If a body occupying volume V' has mass density p: R3 — R, we compute the
massm € R, center of mass xc € R3, and inertia tensor matrix I € R3%3 by:

(8.1) n = [,p(r)d®r
xc; = & [, rip(r)ddr
Lj = [,(rlPLj —riv;) p(r) d&®r — m(|xc|?1i; — xc; xc;)

Egn. 8.1: Mass distribution equations. The variable of integration, r € R 3, is a point in body coordinates, within the
volume V. Note that we transfer the the inertia tensor to be about the center of mass, rather than about the origin of body
coordinates. Full discussion of these equations is beyond our scope; see, e.g., [Fox67-App.B]. O

5 Although the motive may arise from a field over possible configurations (Sec. 8.2.2), the actual work done by a motive depends on
the particular path taken by the body.

8.3 Mathematical Model 106

Because our model does not include a description of the shape of a body, we generally take the mass dis-
tribution values to be primitive values that are given to us “pre-computed,” by a higher-level model. ¢ We
encapsulate the rigid mass distribution properties of a body into a single space MassDists, so that each ele-
ment of MassDists corresponds with a particular mass distribution:

Definition. MassDists

MassDists
[
®2) m —R mass
) I —R33 jnertia tensor matrix

xc — R3 center of mass coordinates

Defn. 8.2: A space describing mass distributions of rigid bodies. xc gives the offset of the center of mass from the origin
of the body’s coordinate system. I is the inertia tensor about the center of mass. Note that each element is a collection of
numbers, not geometric objects (we use typewriter font to remind us of this). These numbers describe the mass distribution
of a body in its own coordinate system. O

A point mass (Sec. 8.2.3) has all its mass concentrated at its origin. We can think of it as the end result of
a limiting process in which we keep the mass of a body constant while shrinking the shape to a zero volume
located at the origin. We see in Eqn. 8.1 that both xc and I go to zero. Thus we define the set of point mass
distributions to be a subset of all mass distributions:

Definition. PtMassDists

I(M):O}

(8.3) PtMassDists = {M € MassDists xc(M) =0

Defn. 8.3: The set of point masses. A point mass has all of its mass concentrated at its origin. Its inertia tensor I is thus 0,
and its center of mass xc is at its origin. O

8.3.3 State of a Single Body

The instantaneous dynamic state of a body is completely determined by its mass distribution and its kinematic
state. However, there are assorted useful geometric, momentum, and energy terms that also describe various
properties of the body’s dynamic state. We group all the terms into a single state space, States, that has
internal properties which ensure the appropriate relationships hold amongst the various terms. Thus each
element of States encapsulates a complete dynamic state:

5 [Fox67] includes atable giving the mass properties fora variety of homogeneous bodies in canonical shapes; [Lien,Kajiya4] computes
integral properties of arbitrary nonconvex polyhedra; [Snyder92] computes the mass properties for homogeneous bodies described by
parametric surfaces. The net mass properties of a rigid body formed as a compound of simpler bodies is described in [Fox67-App.B].

8.3 Mathematical Model

Definition. States

107

States
[
M — MassDists mass distribution
m oome— R mass
| — 2Tensors inertia tensor
k +—KINEMATIC::States kinematic state
i ... f — InstFrames body coord frame
X ...x+— Locations location of body coords origin
R ...R — QOrientations body coords orientation
v ...v— Vectors body velocity
w ...w — Vectors body angular velociry
arm +— Vectors moment arm of body origin
xc +—Locations location of center of mass
(8.4) ve s Vectors velocity of center of mass
p —Vectors linear momentum
L —\Vectors angular momentum
KEv — R linear kinetic energy
KEw — R angular kinetic energy
KE —R net kinetic energy
fI = I(M) am = x — xc
—(Yarm) = Txe=xc(m) v=vetw x am
KEv=1lmvc-v¢c p=mvc
KEBw = sw - Iw L=Iw
KEv+ KEw = KE R=R
M € PtMassDists —> {w — ~«ab
] =

Defn. 8.4: Instantaneous dynamic state of a rigid body. Note that a body has separate position and velocity information for
its body frame origin (xand v) vs. for its center of mass (xc and vc); The vector arm is the displacement of the origin relative
to the center of mass; it is fixed in body coordinates, given by the mass distribution. Identifying tuples for the space include:

[M, k]—mass distribution and kinematic state; [M, x¢, R, p, []—mass distribution and dynamic state; [M, £, xc, vd—mass
distribution and mixed state. O

Notice that we use the single space States to encompass both bodies and point masses; since a point mass has
no intrinsic notion of orientation, we (arbitrarily) choose to define that a point mass has the lab’s orientation
R = R, and zero angular velocity, w = 0. From the above and from Defn. 8.3 we have the following
corollary properties of a point mass:

Given p € States with M, € PtMassDists

I, =0, R, = Lab,
(8.5) wp, =0, XG = Xp,
arm, =0, VCp = Vp,
L,=0, KB =KEv,
KEuw,=0

Eqn. 8.5: Various properties of point masses. O

It may seem like overkill to use States for point masses: mightn’tit be “cleaner” to have a separate, simpler
space justfor pointmasses? However, by having a single space, the remaining discussion will apply uniformly
both to bodies and to point masses.

8.3 Mathematical Model 108

8.3.4 Motion of a Single Body

A moving body varies its state over time; that is, a moving body is described by a path through States space.
Thus we define the space:

Definition. StatePaths

StatePaths = the set of functions
s: R — States such that
(k o 5) € KINEMATIC :: StatePaths, and m,(t) is
constant

(8.6)

Defn. 8.6: The set of paths through state space. We only consider functions s for which the resulting kinematic state function
ks (t) is a kinematic state path (Defn. 7.2). Additionally, we require that the mass distribution M (t) doesn’t change. O

Since we require that the mass distribution of a state path be constant, we can drop the path parameter when
using the mass distribution aspects:

Notation. Dropping the parameter (¢) for a state path

For a state path s € StatePaths

(8.7) M,

;5

M, (t)
my(t)

Notn. 8.7: Since, by definition, the mass distribution of a state path doesn’t depend on the path parameter, for clarity we
usually leave it off. O

1l

From Defn. 8.4 and Defn. 8.6, we have:

Given a state path s € StatePaths

8.8) PO @) = 1(m,), constant
f‘(t)xc,(t) = m,, constant

Eqn. 8.8: For a state path s, the inertia tensor I s (¢) and location of center of mass xc s(t) are not constant—they move with
the body, changing over time. But their representations in the body’s moving coordinate frame are constant, given by the
constant mass distribution. Using the parlance of Sec. 6.4.9, they are “fixed” in the moving body frame. O

Defn. 8.6 requires that the motion be continuous, and that the mass distribution in the body be constant. That,
along with Defn. 7.2 and Defn. 6.24 ensure that, as expected:

Given a stare path s € StatePaths

8.9) £x(t) = w()
dxc,(t) = wve(t)
#R() = wi(OR,(?)

Eqn. 8.9: Velocities of a state path agree with the derivatives as expected. Note that the “moving-body paradox,” Eqn. 7.3,
applies to dynamic rigid bodies’ origins, orientations, and centers of mass. O

In addition to moving continuously and rigidly, we want a body to move dynamically under the influence of
forces and torques. Thus we define: (Fig. 8.5)

8.3 Mathematical Model 109

A conslstent path:

(agrees with forces) \X é@

2 = % An Inconslstent path:

=0 @:@@

Figure 8.5: Consistent vs. inconsistent paths. A state path is an arbitrary function that describes physically realizable motion of a rigid
body. If we have a net force function and a net torque function (torque not illustrated), we say that the path and functions are consistent
if the motion of the body agrees with the force and torque, as per“F = m a.” O

Definition. Consistent (path, net force, net torque)

A state path s € StatePaths is consistent with net force and torque
functions F, T: R — Vectors iff:
(8.10) 4p,(t)=F(t) (force equals change in momentum)
LL,(t)=T(t) (torque equals change in angular momentum)
M, € PtMassDists — T'(t) =0

Defn. 8.10: Dynamic behavior of a rigid body. At each instant of time, the change in momentais due to the net force F'(t)
and net torque T (t). As discussed in Sec. 8.2.3, we don’t apply torques to point masses. O

By Defn. 8.4 and Eqn. 8.9 we have, for a path s € StatePaths: 2 p,(t) = 4 m, vc,(t) = m 35 z,(t). Thus
Defn. 8.10 is equivalent to the common “F = ma” 2nd-order Newtonian equation of motion.

8.3.5 Body Points

A dynamic body point is similar to a kinematic body point, but we find it convenient to include the point’s
moment arm as part of its instantaneous state.

Definition. Bodypts

Bodypts
[
k —KINEMATIC::Bodypts kinematic state of body point
(8.11) x ...x— Locations location
v ...v— Vectors velociry
arm — Vectors ' displacement from body c.m.
]

Defn. 8.11: Body point state space. The state of a body point includes its kinematic description as well as a moment arm,
i.e., a vector from the center of mass of the body the point location. Note, however, that there is no explicit indication of
whichbody. O

We can specify a body point state by giving its body-frame coordinates, and the state of the body it belongs
to:

8.3 Mathematical Model 110

Definition. Bodypt

Define a function Bodypt: States x R3*3 — Bodypts such that, for all

- s € States and coords € R3*3:
‘ k(Bodyp((s, coords)) = KINEMATIC :: Bodypf(k , coords)

arm(Bodypl(s, coords)) = x(Bodyp(s, coords)) — xc,
Defn. 8.12: A function that yields the state of a body point, given its body-frame coordinates. The kinematic state of the

body peint is specified via KINEMATIC :: Bodypt (Defn. 7.5). The moment arm is the vector from the body center of mass
to the body point. O

Some properties of a body point:

Given a body state s € States and body point p € Bodypts, where
p = Bodyp((s, coords) for some coords € R3*%3, we have:

f(s)

1% X, = coords
il
f(s)amlp = coords + Jf(a)arm,

= coords + xc(M;,)
Vp=Vs +ws X (2p — xp)
= V0 +ws X army

Eqn. 8.13: The location and moment arm of a body point defined via Bodypt (Defn. 8.12) can easily be expressed in
body coordinates. The velocity can be expressed geometrically in terms of either body origin or body center of mass.
These equalities are derived from from Defn. 7.5, Defn. 8.12, and the properties in Defn. 8.4. O

8.3.6 A Collection of Bodies

For a collection of continuously moving dynamic bodies, the interaction between the bodies is mediated by
forces, as discussed in Sec. 8.2.1. That is, each body doesn’t directly “see” any other bodies, it just responds to
the forces it “feels”, in accordance with Defn. 8.10. However, we are free to define whatever force functions
we like—in particular, the force function for any given body may at any instant be determined by the states
of all the bodies. In this way, the motion of a body may be determined (indirectly) by interaction with other
bodies.

In order to manage collections of bodies, we proceed analogously to the scheme used for kinematic bodies
(Sec. 7.3.4). We define an instantaneous system:

Definition. Systems

(8.14) Systems = {States}|pg

Defn. 8.14: Each instantaneous system is an index of states (as per Sec. 3.8.2). That is, it is a collection of body state
elements, each labeled with a different “name,” or ID. Given a system ¥ € Systems, the state of a body labeled with
b € IDsis givenby Y}, O

Each pointin the space Systems describes the state of a collection of bodies, at an instant of time. For moving
bodies, we analogously define a system path to be a labeled collection of paths:

Definition. SysPaths

(8.15) SysPaths = {StatePaths} pg

Defn. 8.15: Each system path is an index of state paths. Note that each element in the index is a function. That is, fora
system path Y € SysPaths, the state of body b at an instant of time ¢ is givenby () O

Given) € SysPaths, the instantaneous state of the system at a time ¢ is given by evaluating all paths in)
at t; this is written as)(¢) as per Notn, 3.18.

8.3 Mathematical Model 111

A consistent path o i
In a force fleld = x

Figure 8.6: A consistent path in a force field. A force field defines what the force would be on a body for any possible state it may be in.
A path is consistent with a force field and a torque field (not shown) if it is consistent with the forces traced out as the body path moves
through the field. Note that if there are several bodies in a system, the force/torque on any one of them can depend on the state of all of
them; thus the consistency of each individual path can depend on all the other paths. O

We define a few types of fields, i.e., functions over instantaneous systems:
Definition. (fields)

; _ the set of functions

SysScalarFields = { Systems x % — Scalars }
; i the set of functions

(8.16) SysVectorFields = { Systems x R — Vectors }
. . _ the set of functions

SysLocationFields = { Systems x % — Locations }

Defn. 8.16: Scalar, vector, and location fields are functions on instantaneous systems and time. Since an instantaneous
system Y € Systems labels each state with the ID naming its body, an individual field function F'(Y, t) can depend on
particular named bodies. O

As an example of a field, we can define a vector field velA that yields the velocity of the body named bodyA:

Given an identifier bodyA € |Ds, we can define a
vector field velA € SysVectorFields by:

velA(Y,t) = (Y pogya)

Eqn. 8.17: Sample vector field, that gives the velocity of a body named bodyA . Note that the field is only well-defined for
systems that include this body, i.e., for bodyA € Ids(Y'). Note also that the field is independent of any bodies other than
bodyA that may be in the system, as well as the time ¢. O

(8.17)

Having made the above definitions, we can extend Defn. 8.10 to apply to a collection of bodies acting under
the influence of corresponding labeled collections of force and torque fields: (Fig. 8.6)

Definition. Consistent (system path, net force index, net torque index)

A system path Y € SysPaths is consistent with
F, T € {SysVectorFields}|pg iff:

Ids(Y) = Ids(F) = Idf(T)
Y is consistent with (Fy 0o Y) and (T 0o Y), for all b € Ids(Y)
Defn. 8.18: A system path is consistent if each individual path is consistent (Defn. 8.10) with its corresponding composite

net force and torque functions. For each ID b, the net force and torque acting on body b are given by F 3(V(t),t) and
Ts(Y(t),1). Notice the force/torque on each body can depend on the state of all the other bodies. O

(8.18)

8.3 Mathematical Model 112

8.3.7 Motives

The description of rigid body motion in Defn. 8.18 assumes the existence of fields giving the net force
and torque on each body in a system. Here, we will use the idea of motives—force/torque objects—as per
Sec. 8.2.2, and allow a collection of separate motives to apply to each body: we will derive the net force and
torque fields on each body by adding the contributions from a collection of motive fields.

We start by defining a space of motives. Each element in the space is a value of a force and/or torque,
along with the corresponding moment arm:

Definition. Motives

Motives

F —Vectors
T — Vectors
arm — Vectors

(8.19)

T=amx F

]

force
torque
moment arm

or am= 0

Defn. 8.19: The space of motives. For a coupled forceltorque, we have a non-zero force and moment arm, yielding the
corresponding torque 7= amm x F. A pure force has force but no torque (F#0, amm = T=0). A pure forque has torque
but no force (F= arm =0, T#0). An arbitrary force/forque pair has (F#0, T#0, atmm=0). (See Fig. 8.2.) O

A pure force is of course equivalent to a force applied at the center of mass (arm=0). Since we have here no

notion of body shape, there is no requirement that the moment arm actually be

Gl

in” or “on” the body.

An applied motive describes a motive that is applied to a particular body name. Thus we define;

Definition. AppliedMotives

AppliedMatives
|
motive — Motives motive
(8.20) F ...Fw~ Vectors force
T ... T~ Vectors torque
arm ...arm s Vectors moment arm.
body +—IDs body that the motive is applied to
]

Defn. 8.20: Motives applied to bodies. Each element defines a particular motive and the ID of a body at which it is

applied. O

We define fields of motives and applied motives, analogous to the fields in Defn. 8.16:

Definition. (motive fields)

SysMotiveFields = the set of functions

{Systems x ® — Motives}
AppliedMotiveFields = the set of functions

a: Systems x i — AppliedMotives such that
body(a(Y,1)) is constant

Defn. 8.21: Motive and applied motive fields. For applied motive fields, we restrict the definition to those functions whose
body ID doesn’t vary, no matter what parameters its given. O

(8.21)

We require that each applied motive field corresponds with the application of a motive field to a single body.
Thus the body aspect of an applied motive field is independent of the parameters, and we typically drop them:

8.3 Mathematical Model 113

Notation. Dropping parameters (Y, ¢) for applied motive field body

For a € AppliedMotiveFields

body(a) = body(a(Y,t))

Notn. 8.22: Since, by definition, the body of an applied motive field doesn’t depend on the parameters, for clarity we usually
leave them off. O

A common occurrence in models is a force that is applied to a body at a particular body point. For example,
we might attach a spring force to a body point at one end of a cylinder; as the cylinder moves, the spring
follows it, always acting on the given point of the body. In terms of motives, this means:

(8.22)

If an applied motive field a € AppliedMotiveFields describes a force
applied to a body named body(a) € |1Ds in system Y € SysPaths ar
(8.23) body coordinates coords € R3%3, we have:

arm,(Y(t),t) = arm(Bodypl Yeedya)(t), coords)), forallt € R

Eqn. 8.23: For us to say that a force is “applied to a body point,” the applied motive field’s anm aspect must always
agree with the body point’s arm aspect as the body moves over time. O

Typically, a model will contain many applied motive fields acting on the various in the model. Since each
applied motive field specifies the body it’s applied to, we don’t need to explicitly organize the various motive
fields by body. We group all the applied motive fields into an index; this will let us refer to them by ID later,

e.g., for the energy expressions in Sec. 8.3.8.
The following functions extract the net force and torque on each body given an index of applied motives.

Definition. Fnet, Tnet

We define the net force and torque functions,
Fnet. { AppliedMotives}|pg — {Vectors}|pq

Tnet: {AppliedMotives}|pg — {Vectors}| o such that, for all
A € {AppliedMotives}|pg.

Fnef(A = F,

(8.24) Rl = A
body(a)=b

Tnef A)y = ¥

ag A)

body(a)=b

1ds{Fnet(4)) = Ids{ Tnet(A)) = { body{a) | a € Elis4) }

Defn. 8.24: Net force and torque, given an index of applied motives. For each body b, Fiet (A)y yields the sum of all the
individual motive forces that are applied to body b. Note that Fnet (A) is defined to be an index with zero, so that if A
doesn’t apply any forces to a particular body, the body will be assigned a net force of 0. Note that we don’t need to refer to
the elements of A by their ID labels. (Similarly for Tnet.) O

Using the above definition, we can extend Defn. 8.18’s specification of consistent systemn paths to handle a
collection of applied motives; this is the “bottom line” specification of rigid body motion in our model:

8.3 Mathematical Model 114

Definition. Consistent (system path, applied motive index)

A system path Y € SysPaths is consistent
(8.25) with A € {AppliedMotiveFields} pg iff:

Y is consistent with (Fneto A), (Tneto A)

Defn. 8.25: A system is consistent with an index of applied motives if it is consistent (Defn. 8.18) with the net force and
torque implied by the motives. Here, as in Defn. 8.24, the ID’s that 1abel elements of the index of applied motive fields, A,
are notneeed. O

8.3.8 Energy

The following expression describes the rate of change of energy of a body, in relation to the force and torque
applied to it:

For any state path s € StatePaths consistent with net force and torque
(8.26) functions F, T: ® — Vecflors,
4 KE,(t) = F(t) - ves () + T(t) - w,(t)

Eqn. 8.26: Energy balance. The rate of change of the body’s kinetic energy is equal to the power applied by the net
force and torque acting on it, for a consistent system. This equation can be derived from Defn. 8.4 and Defn. 8.10 O

Thus we describe the instantaneous power being applied by a force and torque:

Given a body with state b € States that is acted on by a force and torque
8.27) F, T e Vectors, the power P € R being applied is given by:

P=Fn v+ Ty -wy

Eqn. 8.27: The instantaneous power applied to a body by an applied force and torque. O

To measure the energy imparted to a body by a motive, we need to keep track of the power and work associated
with the motive as the body moves along its path. We start by defining a power motive (or just pmotive), that
extends a motive to include power-related terms:

Definition. Pmotives, PmotivePaths

Pmotives
M — Motives a motive
F ...F— Vectors
T ... T+ Vectors
arm ...arm s Vectors

8.28) v+~ Vectors a body velocity
’ w s Vectors a body angular velocity
P =R power applied by motive
W —R work done
P=Fv+T w
]
PmotivePaths = rhe ser of functions {J — Pmotives}

Defn. 8.28: Each pmotive element of Pmotives describes with the instantaneous application of a motive Mto a body with
velocities v and w. P1is the power exerted. Wis an additional parameter, that will be used to accumulate the work done by
the motive over time. We also define the set of pmotive-valued paths, PmotivePaths , without any a priori restrictions. O

For a given system path, we can associate a pmotive path with an applied motive field; this pmotive path
keeps track of the work done by that applied motive field on its body in the system:

8.3 Mathematical Model 115

Definition. Consistent (pmotive path, applied motive field, system path)

A power motive path p € PmotivePaths is consistent
with a € AppliedMotiveFields and Y € SysPaths iff

(8.29) My(t) = motive,(Y(t),t)
v(t) = ve(Vioaya)(t))

L) = @(Vboara)(t))

at W) = F P (t)
Defn. 8.29: We describe a power motive path p that corresponds with an applied motive field, for a given system. The
first three equations signify that the power motive path p continually describes the actual application of the motive, i.e., the
motive and velocity aspects agree. The final equation further restricts the path p to the one in which the rate of change of
work is equal at each instant to the applied power (this is analogous to Defn. 6.24’s restricting frame paths to those with a
velocity matching the change in location). Thus Wy (t) is the total work done by a in system), up to time ¢. O

The above definition relates a single applied motive field to a single corresponding pmotive path. For an

index of applied motive fields, we can create a corresponding index of pmotive paths, where the label of each

applied motive field is used to label its corresponding pmotive path. Thus we extend the above definition:

Definition. Consistent (pmotive paths, appl. motive fields, system path)

An index of pmotive paths P € {PmotivePaths}|pg is consistent with
A € {AppliedMotiveFields} pg and Y € SysPaths iff:

(830) Ids(P) = Ids(A),

Y is consistent with A,
P; is consistent with Ay and Y, for all f € Ids(A)

Defn. 8.30: For an index of motive paths P to be consistent with an index of applied motive fields A, for a given system
of bodies): First, each path in P must be have the same ID as a field in .A; Second, the J and .A must themselves be

consistent, as per Defn. 8.25. Finally, each pmotive path in P must be consistent with its corresponding field in A, as per
Defn. 8.29. O

Putting together Eqn. 8.26 through Defn. 8.30, we have balance of energy for an entire system of bodies:

Given P € {PmotivePaths} g consistent with
A € {AppliedMotiveFields}|pg and Y € SysPaths, then for all
be Ids(Y):

KE(Vu(t)) — Z W(P;(t)) is constant

f € Id{A)

(831)

Eqn. 8.31: Energy balance. For each body in a consistent system, the total kinetic energy of the body is balanced by

the sum of the work done by all the motives acting on it. Note that we don’t have a precise value (e.g., 0, as one might

expect) for this equation, because Wis only specified up to a constant offset, by the differential equation in Defn. 8.29. O
Note that Eqn. 8.31 is merely Eqn. 8.26 applied independently and simultaneously to each body in the system.
That is, no energy is transferred directly between bodies. Rather, the energy added to or removed from each

body is due only to the forces acting on it. However, we can sum them together to make a single equation for
entire system:

Given P € {PmotivePaths} pg consistent with
A € {AppliedMotiveFields} pg and Y € SysPaths, we have:

EKE(J),, (1) — Z W(P;(t)) is constant

a € Ids(y) f € Ids(A)

Eqn. 8.32: Net energy balance for a system. The total kinetic energy of the bodies is balanced by the total work done
by the motives. O

(8.32)

8.4 Posed Problems i16

As discussed in Sec. 8.2.2, some motive fields are conservarive, and we know a potential energy associated
with the motive. In such a case, the potential energy must balance the work done by the motive:

Given P € {PmotivePaths} pg consistent with
A € {AppliedMotiveFields}|pg, and Y € SysPaths, If we have a
(8.33) potential energy field Uy € SysScalarFields for applied motive field Ay

Up(Y(t),t) + W Ps(t)) is constant

Eqn. 8.33: If a motive field Ay has a potential energy Uy associated with it, then as a system evolves over time, any
lost potential energy is gained as work done by the motive, and vice versa. O

Furthermore, for a conservative motive field, the force/torque is given by the gradient of the potential energy
field.

8.4 Posed Problems

Forward Dynamics

The most common preblem we solve is to determine the behavior of a collection of bodies that start out in
some configuration, and are acted on by some collection of force fields. This is the forward dynamics problem.

given: 1p € R,
Y, € Systems,
A € {AppliedMotiveFields}pg,
find: Y € SysPaths

) Y(to) = Yo
Such that: { Y is consistent with A

(8.34)

Egn. 8.34: The forward dynamics problem. Given an initial condition of a collection of bodies (at time # o the state is
Y5), and a collection of motive fields applied to the bodies, determine the behavior of the bodies for other values of £. The
resulting system) must match the initial conditions, and must be consistent with the applied motives as per Defn. 8.25. O

The definition of consistent (Defn. 8.25) can be expanded to yield a first-order ordinary differential equation
in canonical, numerical form:

For a system path Y € SysPaths consistent with
A € {AppliedMotiveFields}|pg. if Ids(Y) = {a,b, ...}, then:

4B Da) = Do)

1) = o Du)ROW)

(835) d;-fz"'“"”};(yﬂ(z)) = MIJFnet(A(y(t),t))a
298y 1) = ‘“ZTnet(A(y(t),t))a
%) = “Pre)
i.e., ¥ : FA(Ylt)

Eqn. 8.35: Canonical numerical ODE fomn for rigid-body motion. The dynamic state of all the bodies can be expressedin
lab coordinates, and collected into a single linear array “Y”. The derivative of Y is a function of Y and time t—the function
can be constructed from A, along with the bodies’ mass distributions and the rigid-body equations of motion. Note that, as
per Defn. 8.4, the values of xc, R, pand L are sufficient to identify the state of a body, given that we know its (constant)
mass distribution. O

8.4 Posed Problems 117

To solve the forward-dynamics problem, we start with an initial value for Y, then numerically integrate the
above ODE, using any convenient numerical integrator. For any body in the system that is a point mass, we can
make Y smaller by eliminating the R and L entries. Note that if Eqn. 8.35 is integrated as written, numerical

inaccuracies will cause lh(ya (t)) to quickly diverge from a rotation matrix; instead, we commonly use the
quaternion representation of the rotation, Eqn. 6.22; inaccuracies can still creep into the solution, but they are
less significant.

Forward Dynamics and Work

A corollary problem to forward dynamics is to compute the amount of work done by each motive in the model;
this means finding the consistent power motive paths: That is, we extend Eqn. 8.34:

given: tp R,
Yo € Systems,
A € {AppliedMotiveFields} g,

(8.36) find: Y € SysPaths
P € {PmotivePaths}|pg
. Y(to)=Yo
such tha: { ‘P is consistent with A and Y

Eqn. 8.36: An augmented forward dynamics problem. Solve the forward dynamics problem (Egn. 8.34), but also find
the corresponding consistent (Defn. 8.30) index of pmotive paths. Then the total work done by an applied motive labeled
1 € Ids(.A) up to time ¢ is given by W(P;(¢)). O

Expanding the definition of consistent for pmotive paths (Defn. 8.30) gives:

For a pmotive path index Y € {PmotivePaths }|ng consistent with
A € {AppliedMotiveFields} pg and Y € SysPaths , if
Ids(A) = {j,k, ...}, then we augment Eqn. 8 35

LWP; (1) = AP;(t) = FA;(V(2),2) - vAVboaya;)(2))
+TA; (V(0), 1) - @ (Vooariaz) (1))

P L WP(t) = AP(t) =FAuV(0),1) - ve{Vboayear) (t)
+TARV(E),8) - @(Vboastan) (t))

ie., Y'=Fa¥, t)
P'=G4(P,Y, t)

Eqn. 8.37: Canonical numerical ODE form for work done by motives. We append equations for the work to the rigid-
body motion ODE of Eqn. 8.35. O

As a “sanity check” for our simulations, we can plug the solution results into the energy-balance equations,
Eqn. 8.31 and Eqn. 8.32. For conservative motives, we can check against the potential energy as per Eqn. 8.33,
Note that initial values for the work terms can be chosen arbitrarily, since the energy balance equations are
specified only up to a constant. We will commonly use an initial work value of 0, or, for conservative forces,
—U; (Yo, to), so that Eqn. 8.33 will always sum to 0.

Piecewise-continuous Forward Dynamics

The forward dynamics problem as expressed above is continuous (for finite motives). However, a model
that includes discontinuities can use the above ODE’s to describe the continuous parts of the behavior; for
example, the “tennis ball cannon” example in Ch. 11 sets up a forward dynamics problem as an initial-value
piecewise-continuous ODE problem.

8.5 Implementation Notes

118

Program definitions in scope MRIG:
class name abstract space
ApplMotive AppliedMotives (Defn.820)
ApplMotiveField AppliedMotiveFields (Defn.821)
ApplMotiveFieldIdx {AppliedMotiveFields} pg index of fields
ApplHMotiveIdx {AppliedMotives} pq index of applied motives
ApplMotiveldxField Systemsx® — {AppliedMotives}ns field that yields an index
MassDist MassDists (Defn.82)
Motive Motives (Defn. 8.19)
Pmotive Pmotives (Defn. 828)
PmotivePath PmotivePaths (Defn.828)
PmotivePathIdx {PmotivePaths} pg index of pmotive paths
State States (Defn.84)
StatePath StatePaths (Defn. 8.6)
SysLocationField SysLocationFields (Defn. 8.16)
SysLocationFieldIdx {SyslocationFields} pg index of location fields
SysMotiveField SysMotiveFields (Defn. 8.16)
SysPath SysPaths (Defn.8.15)
SysScalarField SysScalarFields (Defn. 8.16)
SysScalarFieldIdx {SysScalarFields}|pg index of location fields
SysVectorField SysVectorFields (Defn. 8.16)
SysVectorFieldIdx {SysVectorFields}|pg index of location fields
System Systems (Defn. 8.14)

Figure 8.7: Math section definitions in the prototype implementation. O

Other Posed Problems

Other problems can be posed as well. Inverse dynamics problems compute forces and torques that yield given
desired behaviors or constraints on behavior. Often, the resulting forces and torques are then used in a forward
dynamics formulation, to yield the complete behavior, as in [Isaacs,Cohen87] or [Barzel,Barr88] (the latter
of which we incorporate into the “fancy forces” module, Ch. 9).

[Witkin,Kass88] finds behavior that optimizes objectives such as energy, for motion that can be constrained
at multiple points. They pose a constrained optimization problem, in which the dynamics of body motion
(Defn. 8.10 in our formulation) is treated as an additional constraint, on discretized force and motion functions;
force function parameters are found that optimize the given objective functions.

8.5 Implementation Notes'

8.5.1 Conceptual Section Constructs

In the conceptual section of a program, a conceptual body object can be builtfrom kinematic conceptual bodies
(Sec. 7.5.1), which maintain the position and orientation and “know” how to draw the body, augmented with
mass distribution values.

This module supports a few simple motives; classes are defined for Hookean springs, constant fields,
viscous damping, and so forth. Each class defines a routine to compute the associated field function (or a pair
of routines that compute equal-and-opposite fields, e.g., for a spring linking two bodies). Motive classes also
support a “draw” method, that can draw arrows or otherwise illustrate the force.

8.5.2 Math Section Constructs

The math section for this module has scope name MRIG (“Math RIGid-body dynamics™); Fig. 8.7 lists the
classes that are defined. All are defined straightforwardly, as described in Sec. B.3. We will give a few notes.

TSee Appendix B for discussion of the terminology, notation, and overall approach used here.

8.5 Implementation Notes 119

¢ Class definition for MassDists (Defn. 8.2):

class MassDist : ;

constructors: (double m,I[3][3], double em[3]) construct arbitrary body
(double m) construct point mass

members: m : double net mass
minv : double inverse of the mass, i.e. 1/m
I :double[3]1[3] inertia tensor matrix
Iinv : double[31[3] inverse of the inertia matrix, i.e. 1~1
cm : double[3] body coords of center of mass
is_ptmass:int true if is a point mass, Defn. 8.3

The state space class MassDist, defined the standard manner (Sec. B.3.6), has two constructors: the construc-
tor for point masses sets I and cm to 0; conversely, the constructor for arbitrary bodies signals an error if 0 is
given for I. Both constructors precompute the inverses of m and I, so that they won’t need to be repeatedly
computed during execution. Notice that we add an extra member that lets us easily distinguish point masses.
« Class definition for States (Defn. 8.4):

class State :
constructors: (MassDist, MKIN::State)
(MassDist, MCD::Location xc, MCO::0Orientation R, MCO::Vector p,L)
(MassDist, MCO::Location xc, MCO::Vector p)
(MassDist, MCO::Frame, MCO::Vector vc,w)
(MassDist, MKIN::State, MCO::Vector p,L)

members: mdist: MassDist
m : double
minv :double
I :MCO: :2tensor
Iinv : MCO::2tensor
k : MKIN::State
4 : MCO: :InstFrame
x : MCO: :Location
R :MCO: :0rientation
v : MCO: :Vector
w : MCO: :Vector
arm : MCO::Vector
xc : MCO: :Location
vec : MCO: :Vector
P : MCO: :Vector
L :MCO: :Vector

KEv :double
KEw :double
KE :double

The state space class State has several constructors that define elements based on the various identifying
tuples discussed in Defn. 8.4. In addition, there is a constructor that takes a non-minimal tuple—a mass
distribution, a kinematic state, and momentum vectors p and L—and checks that the given values are consistent
with the internal properties of the space (p= m ve, etc.).

¢ Class definitions for fields (Defn. 8.16):

class SysVectorField :
constructors: (MCO::Vector v) constant
methods: eval(System, double t): MCO::Vector

(The classes SysScalarField and SysVectorField are similar.) The first constructor above creates a
constant field. The second, a field that extracts a vector property of an individual body, where the Fieldcode
parameter chooses which property; for example, the velA example field in Eqn. 8.17 would be constructed
via the parameter pair (BODY_VEL, bodyA).In addition to these, there is support for fields that are algebraic
combinations of other fields, for fields that are evaluated by calling arbitrary user-supplied subroutines, and
so forth.

8.5 Implementation Notes 120

8.5.3 M-N Interface

The scope name for the M-N interface is NRIG. We define a routine to solve the forward dynamics problem,
Eqn. 8.34, given initial conditions and a field that computes an applied motive index.

SolveForvard(double t0, System YO, ApplMotiveldxField A) : SysPath

This function returns a SysPath object—when can then be evaluated at arbitrary values of time ¢. The object
is setup internally so that the ODE solver NUM: : 0deScatExt (Sec. B.4.6) is invoked to integrate Eqn. 8.35 as
necessary to perform the evaluation. Notice that this routine does nor take an index of applied motive fields,
ie., A € {AppliedMotiveFields} pg of Eqn. 8.35, but rather the implied function (Defn. 3.17) that returns
an index; an instance of the implied function’s class, ApplMotiveIdxField,can be created trivially from the
index of applied motive fields, as per Sec. B.3.7. (Using the implied function allows the numerical solver to
perform a single evaluation to compute all the motives; this is convenient when the motives must be computed
simultaneously, as in the fancy force mechanism of Ch. 9.)
A similar routine

SolveForwardEnergy(...) : PmotivePathIdx

returns the a PmotivePathIdx object that solves the augmented forward dynamics problem, Eqn. 8.36.
Both the above routines can also be used to define the continuous behavior of an initial-value piecewise-
continuous ODE problem; the returned paths invoke the NUM: : podeScatExt solver (Sec. B.4.9).

8.5.4 C-M Interface

To solve a forward dynamics problem, the C-M interface performs the following initial setup:

¢ Construct a System instance, YO, from the initial conceptual model state. (This defines a map from
conceptual body objects to math ID’s.)

o Construct a ApplMotiveFieldIdx instance, A, from the conceptual motive objects. (This defines a
map from conceptual force objects to math ID’s.)

o Construct the solution object: Y = NRIG::SolveForward(t0, YO, A).
o For energy computation, construct the solution object: P = NRIG::SolveForwardEnergy(...).

To set the conceptual model state for any time t, the C-M interface does:

e Compute the System instance Yt = Y(t).
e Foreach ID i in Yt, set the state of the corresponding conceptual body object based on Yt [i].
¢ For energy computation, similarly set the state of each force object based on P(t).

The conceptual section can then draw the bodies, print the energy values, check energy balance, etc.

It can be convenient to allow the conceptual model to associate dimensional units with the various quan-
tities. For example, mass may be specified in grams or kilograms, and distance in meters or inches. The
mathematical model, as discussed in Sec. 6.3, must be expressed using uniform units. Thus the C-M interface
should perform the proper scaling. Note in particular that the inertia tensor is in units of mass-length ? thus
varies quadratically with changes in length scale.

121

Chapter 9

“Fancy Forces” Model

he rigid body model in Ch. 8 is force-based: by assumption, all interactions between bodies and all envi-

ronmental effects on a body are mediated by the forces (and torques) applied to the bodies. In particular,
if we—as creators and users of a model—wish to influence the behavior of the bodies, we must do so through
application of forces. Ch. 8 assumed the existence of forces and force fields, but did not discuss how to create
them.

This chapter presents a mechanism to create forces and apply them to bodies. It supports forces due explicitly to
things in the model, such as springs and gravity, as well as constraint forces that can be introduced in order to
connect bodies together, specify their motion, and so forth. All the forces fit into a common mathematical model.

The constraint forces in this model use the “dynamic constraints” method described in [Barzel,Barr88]. Indeed,
this entire chapter essentially rephrases that work, to use the structured design framework. In particular, the origi-
nal work defined mathematical “model fragments” for the individual constraints and relied on a word/pseudocode
description to combine them—here, we create a complete mathematical model that includes the “‘glue” between
the fragments.

For an example of the “fancy forces” mechanism in use, see the “swinging chain” model in Ch. 10. Although
the material in this chapter is self-contained, we refer readers to [Barzel,Barr88] for fuller discussion; and more
extensive treatment of the topic can be found in [Barzel88].

9.1 Goals

Our goals for this model are:
o To pre-define various types of force objects, which can later be applied to arbitrary bodies.

« To allow a single force object to generate related forces on several bodies; e.g., an elastic spring would
exert equal-and-opposite forces on two bodies.

« To support geometric constraints (via the “dynamic constraints” mechanism of [Barzel,Barr88]).

¢ To have a uniform mathematical formulation, that can accomodate the various types of forces.

9.2 Conceptual Model

This module describes a mechanism for creating force and torque objects, for use in conjunction with the
rigid-body dynamics model of Ch. 8. Note that Ch. 8 defined a motive to be a force and/or torque vector, and

9.2 Conceptual Model 122

a. Gravitational Acceleration b. Elastic Spring

------ 9"- sesssans

»
i
:

<l gl T

'
V) messeees
Y g

L

c. Resistance (Damping) d. Geometric constraint

Figure 9.1: Various types of force objects. (a) Gravitational acceleration yields a constant force on a body, proportional to its mass. (b)
An elastic spring yields equal-and-opposite forces on a pair of bodies based on their separation distance. (c) Damping yields a force
negatively proportional to the body velocity, thus resisting motion. (d) Geometric constraints (a “point-to-point” constraint is illustrated)
induce forces whose values are not known explicitly, but instead adapt so as to maintain the constraints no matter what other motions
and forces affect the bodies. O

motive field to be a function that yields a single motive given the configuration of a collection of bodies. Here,
we return to the word force, but with a more general connotation:

o A force object is a conceptual entity that is a source of motives.

A force object may be defined to act on one, two, or more bodies. When a force object is applied to a specific
set of bodies (at a specified pointon each body), it determines a motive field on each body. Fig. 9.1 illustrates
several example.

9.2.1 Force Pairs

If a force object acts on one body, it will typically apply a force along with the corresponding coupled torque
(due to the moment arm of the point of application; see Sec. 8.2.2). A force object that acts on several bodies
will apply a separate coupled force/torque to each.

Commonly, a force object that acts on two bodies will apply forces to the bodies that are equal-and-
opposite. Such a force pair adds no net linear momentum to the system as a whole—the position of the
aggregate center of mass isn’t affected—though it may add angular momentum, unless the points of applica-
tion on the two bodies are at the same location in space, i.e., the bodies are touching.

9.2 Conceptual Model 123

Single Force Force Pair Callinear Force Pair

Figure 9.2: A force object acting on several bodies applies a different force to each. Commonly, a force object acting on two bodies will
apply an equal-and-opposite pair of forces. (The corresponding torques are not illustrated.) O

A force pair that points along the line connecting the application points is called a collinear force pair—
these force objects embody Newton’s third law (“every action has an equal and opposite reaction”) and are
thus consistent with many natural sources of force, such as elastic springs, gravitational and electrostatic
attraction, surface contact, and so forth.!

In the general case, we allow a force object to apply an arbitrary force/torque to each body that it acts on.

9.2.2 Explicit Forces

For our model of rigid-body dynamics, forces are the medium by which bodies interact with each other and the
environment. In many cases, we can abstract away the underlying physical mechanism, and simply express a
force as an explicit function of the configuration of the model. We give a few examples:

Gravitational Acceleration (Fig. 9.1a) For laboratory-scale environments on the surface of the earth, we
can express the earth’s gravitational attraction on a body as a constant downward acceleration, i.e., a
force proportional to the body mass, acting at the center of mass. At larger scales, we would need to
use Newton’s radial, inverse-square law of gravitation.

Damping (Fig. 9.1c) Newton’s first law tells us that objects in motion tend to stay in motion. However, in
practice, bodies are almost always affected by friction and air resistance. When we create models, it is
often convenient to gloss over the details, and essentially use the pre-Newtonian law “a body in motion
tends to come to rest”. To do so, we introduce a damping force that is opposite to body’s velocity
(and similarly, a damping torque that is opposite to the body’s angular velocity). Damping forces are
dissipative (Sec. 8.2.5)—they always remove energy from the bodies they act on.

Damping that is linearly proportional to body speed is called viscous; it can quickly bring a body to
Test, resisting motion as if the body were slogging through goo. Quadratic damping—proportional to
the square of the speed—is a rough approximation for air resistance: it opposes motion at high speeds,
but is negligible at low speeds. Reasonable results can often be achieved by combining small amounts
of viscous and quadratic damping.?

Elastic Spring (Fig. 9.1b) Itis often convenient to model the effect of attaching two bodies by a spring (ora
rubber band). We assume that the mass and motion of the spring itself is unimportant—thus we don’t
introduce the spring into the model as a body, but merely as a force object that acts on the bodies it

11f a collinear force pair acts on the bodies’ centers of mass, itis called a central force ([Goldstein80]).

2We must stress that applying a motion-resisting damping force to a body is a very simple ad hoc approximation to real-world effects.
A more studied approximation to air resistance would take into account the shape of the body and the profile that it offers to the air; and,
of course, the resulting disturbance of the air is significant as well.

9.3 Mathematical Model 124

Point-to-nail Point-to-path Point-to-point

Figure 9.3: Some geometric constraints. The point-fo-nail constraint requires that a body point be at a constant location in space; the
body is free swing and rotate about that point. More generally, the point-to-path constraint specifies a kinematic path for a body point to
follow. Two bodies may be assembled via a point-to-point constraint; the specified body points must stay attached, but the bodies may
otherwise move freely. O

attaches. A spring always pulls or pushes along its own length, thus yielding a collinear force pair
(Sec. 9.2.1). The strength is usually based on Hooke's law, i.e., is proportional to the displacement of
the spring from its rest length.

Often, there is friction or other dissipation in the spring; we can add a damping term that opposes change
in the length of the spring, to yield a spring-and-dashpot (analogous to an automotive shock absorber).
Damping helps to limit oscillations that springs induce in a model.

9.2.3 Geometric Constraints

A powerful way to control models to specify constraints on the geometric configuration of the bodies. Fig. 9.3
illustrates three basic constraints on the locations body points: point-to-nail, point-to-path, and point-to-point.
Other constraints might involve the orientations or surfaces of bodies.

In order to effect the constraints, forces must be applied to the bodies. Thus a geometric constraint is a
type of force object; the resulting forces are called constraint forces. Unlike explicit force objects (Sec. 9.2.2),
we can’tknow in advance precisely what the forces should be—the constraint forces need to take into account
the influences of other forces that act on the bodies.

But what is the “meaning,” or physical interpretation, of the constraint objects? There are two outlooks:

o An abstraction of mechanical mechanisms. For example, a point-to-point constraint can be thought of
as an idealized ball-and-socket joint: the resulting constraint forces are equipollent to the forces that a
frictionless physical joint would exert, but we don’t need to model the details of the joint.

e “The hand of god.” Sometimes, we don’t have or need an underlying physical mechanism. For exam-
ple, we may perform an experiment in which we presuppose that one point on a body follows a given
path, in order to determine the dynamic response of the rest of the system.

Note that it is possible to overconstrain a model, and describe a physically unrealizable assemblage of
a collection of bodies. As a trivial example, one might constrain the opposite ends of a rigid body to be at
the same location in space. We would like our implementation to inform us when a model encounters an
unrealizable set of constraints—but we place no restrictions on the resulting behavior.

9.3 Mathematical Model

The mathematical model for this module has a few features that bear mentioning:

9.3 Mathematical Model 125

o Generaliry. We have opted for generality in the design of the mathematical model, to support not just the
specific examples of force objects listed in Sec. 9.2, but a wide class of explicit or implicit (constraint)
forces. The resulting model is thus somewhat abstract.

o Housekeeping. The mathematical model follows the philosophy of Ch. 3: All dependencies between
quantities in the model are made explicit. This requires a fair amount of “housekeeping,” because each
force object can apply to arbitrary bodies, and furthermore because the values of the constraint forces
can depend on all the other forces in the system. The resulting model is thus somewhat arcane.

e Infrastructure. Unlike those of Ch. 6-8, the mathematical model here does not immediately follow the
conceptual model: instead, we first define a mathematical infrastructure. That infrastructure is then
used to define the mathematical elements that correspond with the conceptual objects of Sec. 9.2.

We include an overview of the mathematical model in Secs. 9.3.1-9.3.3, before going on to the exposition in
the remaining sections.

9.3.1 Overview: Connection with Rigid Body Model

The link between this model and the dynamic rigid body model (Ch. 8) is via Defn. 8.25, which defines the
behavior of a collection of bodies via an applied motive index

A € {AppliedMotiveFields}|pg,

i.e., a function which, given the state of a system, Y € Systems at time ¢ € R yields an index of applied
motives® A € {AppliedMotives}|pg:
A= A(Y,t).

Recall that each element of A is an applied motive, i.e., a motive and the name of the body it applies to.

The role of the “fancy forces” model is thus to define a function A—i.e., torelate a state Y and time ¢ with
a collection A of motives that are applied to bodies—consistent with any given collection of force objects
acting on bodies in a model. We will provide an abstract definition of A in Defn. 9.15; and the equation that
ultimately relates A, Y, and ¢ is given in Eqn. 9.21.

9.3.2 OQverview: Contrast with Previous Formulation

The exposition of the “dynamic constraints” method in [Barzel88] (and, more compactly, in [Barzel,Barr88])
starts with a statement of an inverse dynamics problem—determine the unknown constraint forces given
requirements for behavior—and proceeds to derive a linear equation for the constraint forces.

Here, we take the opposite approach. We axiomatically define a series of abstract constructs and mech-
anisms for defining and constraining motives, and refine and build on them—until we have constructed the
essentially same linear constraint equation as the original work.

The most significant feature of the current mathematical model is that it is complete and explicit, in keeping
with the goals and philosophy discussed in Sec. 3.2. The original work, in contrast, described the various
“model fragments” in isolation, and described the resulting linear constraint equation, but the details of which
constraints applied to which bodies were left implicit.

9.3.3 Overview: Decomposition of Force Objects

We decompose a force object into three parts: A proro-motive, which is an array of “knobs” that can be
tweaked; a morive-generator function that creates motives based on the settings of those knobs; and a con-
straint function that examines the results to see if they are appropriate: (Fig. 9.4)

3 Formally, A is an index of functions, and we are discussing its implied function as per Defn. 3.17.

9.3 Mathematical Model 126

Proto-Motives Applied Motives

2l ke]

Constri() Z0
Constr2() =0
Constr3()

I,

Figure 9.4: Outline of proto-motive mechanism. Each proto-motiveis a real-number array of some size. Each motive-generator function
(labeled “Genl,” etc.) converts a proto-motive into one or more applied motives. Constraint functions (“Constrl,” etc.) examine the
entire state of the system of bodies and collection of applied motives. A system is consistent if the values of the proto-motives are such
that all the constraint functions evaluate to 0. O

Proto-motive. The forces and torques that are applied by a force object are often interrelated, and have limited
degrees of freedom (d.o.f.). For example: the torque on each body is often due to the force acting at
a moment arm (3 d.o.f. per body); or, the forces on two bodies may be a collinear equal-and-opposite
pair (1 d.o.f. for the two forces). The proto-motive is an array of real numbers (a “vec” as per Sec. A.2)
having as many dimensions as there are degrees of freedom.

Motive-generator function. Giventhe names of the bodies, and the points of application on each, the motive-
generator function maps from proto-motive values to a collection of applied motives. For example, a
single force on a single body has 3 d.o.f., and the 3 proto-motive values can be used directly as the
coordinates of the force vector. A force pair on two bodies also has 3 d.o.f.: the 3 proto-motive values
can be used as the coordinates of the force on one body, and their negation as the coordinates of the
force on the other body. (In both cases the torque follows from the moment arm, so adds no d.o.f.)

Defn. 9.6 will define ProtoGens|n, k] to be the space of motive-generator functions that act on n
bodies, and have k degrees of freedom. Ultimately, in Sec. 9.3.8, we will define several common
motive-generator functions: a single pure force, a single pure torque, a single coupled force/torque, a
force pair, and a collinear force pair.

Constraint function. The proto-motives provide us with “knobs” to tweak, in order to adjust the forces and
torques—but we need to choose the settings for those knobs. Thus we define a constraint function,
that examines a collection of applied motives, and the state of the system, and tells us whether they
are acceptable—the function yields an array of reals, that are all equal to 0 if the motives are OK. A
constraint function may examine all the motives and bodies in the system in order to decide whether

9.3 Mathematical Model 127

they are acceptable. Thus the value of a constraint function may be influenced by the settings of other
force objects.

Defn. 9.7 will define ProtoConstrs[n, £] to be the space of constraint functions that check n bodies
and yield k values. Secs. 9.3.9,9.3.10 will define several constraint functions for the force objects in
Sec. 9.2: for gravitational acceleration, for damping, for an elastic spring, and for point-to-nail, point-
to-path, and point-to-point constraints.

9.3.4 Names & Notation

The scope name for this module is:
FORCES

‘We make use of the following terms from other modules:

AppliedMotiveFields (Defn. 8.21) Funet (Defn. 8.24)
AppliedMotives (Defn. 8.20) Tnet (Defn. 8.24)
Bodypt (Defn. 8.12) StatePaths (Defn. 8.6)
Bodypts (Defn. 8.12) SysPaths (Defn. 8.15)
IDs (Defn. 3.8) Systems (Defn. 8.14)
Lab (Defn. 6.4) Vectors (Defn. 6.1)
Locations (Defn. 6.1) Vecs (Defn. A.2)
Mats (Defn. A.2)

We use Systems to mean RIGID :: Systems rather than KINEMATIC :: Systems, and similarly for Bodypts,
etc. Wealso extensively use subscript notation for indexes and state spaces, and specializations of state spaces:

X; (Notn. 3.11, for an index X and ID 1)
s (Notn. 3.27, for aspect z of state space element s)
ACB (Notn. 3.32 and Notn. 3.33)

9.3.5 Application Information

In order to specify which bodies a particular force object will be applied to, and what the IDs of the resulting
motives should be, we define a state space containing application information elements:

Definition. Applicinfos

Applicinfos

a —IDs ID of an applied motive
b —IDs ID ofa body
pt —R2 body coordinates of application point

(9.1)

Defn. 9.1: Each application info p € Applicinfos contains the ID of an applied motive, the ID of a body that the motive
acts on, and the body coordinates of the point at which the force should be applied (for coupled forceftorque motives). O

Because a force object may act on several bodies, we define application sets of information elements:

Definition. ApplicSets

ApplicSets = the space {orderea' sets of Appliclnfos}

9.2)
ApplicSets[n] = {s € ApplicSets | lIs|l = n}

Defn. 9.2: An application set s € ApplicSetgn] has sizes = n, i.e. contains 7 elements; since the set is ordered, we can
examine its elements by number: sg, $1, ... sSp—1. 0

9.3 Mathematical Model 128

We would like to identify when the motives listed in an application set are to be found in a given index of
applied motives. Thus we define:

Definition. Compatible (motive index, application set)

An applied motive index A € {AppliedMotives} pg and an
application set s € ApplicSets are compatible iff:
9.3)
a(r) € Ids(A), allr €s
b(T‘) = bOdy(Aa(,.)), allr € s

Defn. 9.3: An application set s is compatible with an index of applied motives A if each applicationinfo r € s comresponds
with an applied motive in A. That is, the ID a(r) must be the label of an element of A; that element must be applied to
body ID b(r), where a and b are as per Defn. 9.1. Note that A may also have additional elements that are not specified by

any pairin 5. O

Furthermore, we would like to identify when a collection of application sets account for all the motives in an
index:

Definition. Compatible (motive index, application set index)

An applied motive index A € {AppliedMotives } pg and
an application set index S € {ApplicSets }pg are compatible iff:

©4) o A is compatible with s, for all s € Elfs(S)
elial=" > sl
seElts(s)

Defn. 9.4: Compatibleindex of applied motives and index of application sets. The applied motive index must be compatible
(Defn. 9.3) with each application set. The total number of applied motives must agree with the total number of application
infos—this implies that each application info and each application set is unique. O

It will be convenient to have some notation for various quantities relating to the point of application of a body
force, as specified by application info:

Notation. Point of application

Given application info r € Applicinfos and sysiem state Y € Systems, we
write:
with s = Yy) and d = BodypKs, pi(r)),
x(Y,r) = bed location
Y,r) = Mbvd velocity
(6.5) cab
am(Y,r) = arm; moment arm
b
acc(Y,r) = = (arm I~ Yw, x Ly) +ws % (ws X armg))
free acceleration
accp(Y,r) = 2L acceleration force-dependence
b
acor(Y,r) = o army 171 acceleration torque-dependence

Notn. 9.5: Quantities for a point of application. The acceleration accy is dueto the rotation of the body; acc g and acer are
coefficients that yield acceleration due to force and torque. Bodypt maps from body point coordinates to a dynamic body
point state element (Defn. 8.12). Derivations for the acceleration terms are givenin Sec. 9.6.1. O

9.3.6 Proto-Motive Mechanism

This section defines the proto-motive mechanism that is outlined in Sec. 9.3.3. First, we define the class of
motive-generator functions (Sec. 9.3.3), which map from “vec”-valued proto-morives to applied motives:

9.3 Mathematical Model 129

Definition. ProtoGens

ProtoGens|n, k] = the set of functions
Systems x R x

f: | ApplicSets[n]x | — {AppliedMotives} pg
Vecs(k]

such that f(Y,t,s,z) and s are compatible

9.6)

Defn. 9.6: Motive-generator functions for n motives, using k degrees of freedom. Givena systemY € attime t € R, and
an application set s € ApplicSets[rn] naming the n motives to generate and the bodies to apply them to, a motive-generator
function maps from a proto-motive value z € Vecs[k] to an index of applied motives. O

And next, the class of constraint functions, which yield constraint residues, given an index of applied motives:

Definition. ProtoConstrs

ProtoConstrs[n, k] = set of functions

Systems x Rx
& ApplicSets[n] x — Vecslk]
{AppliedMotives}|pg

Defn. 9.7: Constraint functions for n motives, yielding k residues. Given a system Y € at time ¢ € R, and an application
set s € ApplicSets[r] naming the n motives and bodies of interest, a constraint function maps from an index of applied
motives A € {AppliedMotives}|p to a size-k vec of residues that are 0 if the constraint is met. O

We bundle together a constraint function and motive-generator function into a proto-specifier, that describes
aforce object as per Sec. 9.2:

Definition. ProtoSpecs

ProtoSpecs
n s Integers number of motives
©.8) cz — Integers size of the constraint

Dz — Integers size of the proto-motive
Constr — ProtoConstrs(n, ¢zl constraint function

Gen +— ProtoGens([n,pZ motive-generator function

Defn. 9.8: Each proto-specifier p € ProtoSpecs has a constraint function and a motive-generator function. * Commonly,

we will have cz, = pz,, i.e. the number of degrees of freedom agrees with the number of constraint equations, but we do
not require this. O

A proto-specifier takes a proto-motive as input, and yields a constraint residue as output, with an index of

applied motives as the intermediate result (Fig. 9.4). Note that all proto-specifiers in a model share a single
applied motive index.

Do a given proto-specifier index and application set index jibe? We define:
Definition. Compatible (proto-specifier index, application set index)

A proto-specifier index P € {ProtoSpecs}|pg and an
application set index S € { ApplicSets }|pg are compatible iff:
Ids(P) Ids(S)
[1S:l] n(P;), all i € Ids(P)

Defn. 9.9: Compatible proto-specifier and application set indexes. Each application set has the number of elements that is
appropriate for its corresponding proto-specifier. O

9.9)

4Notice that we have slightly extended the state-space notation of Sec. 3.9, by specifying the sizes of the functions, n, ¢z, and pz,
“inline” rather than via separate explicit properties.

9.3 Mathematical Model 130

Similarly, does a proto-specifier index agree with a proto-motive index?

Definition. Compatible (proto-specifier index, proto-motive index)

A proto-specifier index P € {ProtoSpecs} pg anda
proto-motive index X € {VeCs}|pg are compatible iff:

dsP) = Ids(X)

Defn. 9.10: Compatible proto-specifier and proto-motive indexes. Each proto-motive is the appropriate size for its corre-
sponding proto-specifier. O

Putting together the various types of compatibility, we define:
Definition. Compatible ensemble

(9.10)

A group of indexes P € {ProtoSpecs}|pg, & € {Vecs}pg,

S € {ApplicSets}|pg, and A € {AppliedMotives} ng form a
compatible ensemble iff:
(9.11)

o P is compatible (Defn. 9.10) with X,
o P is compatible (Defn. 9.9) with S, and
o S is compatible (Defn. 9.4) with A

Defn. 9.11: Structurally compatible ensemble. Each proto-specifier P ; maps its corresponding proto-motive X'; to the
applied motives listed in its corresponding application set S ;. All the resulting applied motives are gatheredin A. O

From Defn. 9.4, we know that the elements of S in a compatible ensemble are unique. Thus we can use them
as subscripts, instead of ID’s.

Noration. Application Sets as Subscripts

Given a compatible ensemble P € {ProtoSpecs}pg, & € {Vecs}pg,
§ € {ApplicSets}|pg,, and A € {AppliedMotives}pg: if
s € ApplicSets and i € Ids(S) are such that s = S;, we write:

X = X;

213 P, =P;
¢z, = cz(P;)
pz, = pAP;)

Constr; = Const(P;)
Gen, = Gen(P;)

Notn. 9.12: Subscript notation for compatible sets. In a compatible ensemble, the elements S are unique (Defn. 9.4), so

we can them as subscripts to refer to the the corresponding elements of X’ and P. For further shorthand, we also use those
subscripts directly for the aspects of elements of P. O

The components of a compatible ensemble (Defn. 9.11) have the proper structure—all the right sizes, the right
ID’s in the right places, etc.—but we also want to have the proper values:
Definition. Consistent

A compatible ensemble P € {ProtoSpecs}|pg. & € {Vecs} pg.
S € {ApplicSets}|pg. and A € {AppliedMotives}|pg is consistent with
Y € Systems andt € R iff:
(9.13)

For all s € Elts(S) :
e Constr;(Y,t,s,A) =0
* GBH,(Y,t,S, Xa) cA

Defn. 9.13: A compatible ensemble is consistent with an instantaneous state if all the constraints are met, and if all the
applied motives agree with the motive-generator functions. O

9.3 Mathematical Model 131

Note, from Defn. 9.4 and Defn. 9.6, the latter equation above is equivalent to:

[given same as Defn. 9.13], for all s € Elts(S) and all
(9.14) i € Ids(Gen, (Y, t, s, X;))

Gen,(Y,t,s,Xs)i = A;

Eqn. 9.14: Each motive-generator function Gens yields an index of applied motives; and each applied motive in that
index is labeled by the same ID in the overall applied motive index A. O

We are now in a position to define an index of applied motive fields (as per the discussion in Sec. 9.3.1), based
on an index of proto-specifiers and an index of application sets:

Definition. Consistent (applied motive field, proto-specifier index)

An index of applied motive fields A € {AppliedMotiveFields },pg is
consistent with P € {ProtoSpecs}pg and S € {ApplicSets}|pg iff:

(9.15) foranyY € Systems andt € R,

there exists X € {Vecs}pg:
such that the ensemble P, X, S, A(Y,) is consistent withY and t

Defn. 9.15: The field A is consistent with P and S if at each point in space/time it maps to a collection of motives that are
consistent with P and §. O

The definitions in this section provide us with a useful framework, but they are too general to perform com-
putations. Next section will look at a restricted class of proto-specifiers, whose functions are linear.

9.3.7 Linear Proto-Motive Mechanism

Sec. 9.3.6 defined the structural relationships between the components for arbitrary proto-specifiers. Here, we
examine proto-specifiers whose constraint and motive-generator functions are linear; these will be sufficient
to handle both explicit force objects (Sec. 9.2.2) and “dynamic constraint” force objects (Sec. 9.2.3).

The presentation in this section defines canonical forms for linear proto-motive and constraint functions.
These forms are inserted into the definition of a consistent ensemble, Defn. 9.13, resulting in a constraint
equation, Eqn. 9.21, that is linear in the proto-motives.

We start by defining fields analogous to the location, vector, and scalar fields of Defn. 8.16, except that
these fields also take application sets as parameters:

9.3 Mathematical Model 132

Definition. (fields)

SysVecFields[n, k] = the set of functions

Systems x R
{ (xAppIicSets{n]) - Vecs[k]}

SysMatidxFields([n, j, k] = the set of functions

Systems x ® -
{ (xAppIicSetS[n]) — {Mats[j, ’“]}los}

(9.16) SysMatidxAFields[n, j, k] = the set of functions
f € SysMatidxFields[n, j, k] such that
Ids(f(Y,t,s)) = {a(r) | re s}
SysMatidxBFields(n, j, k] = the set of functions
f € SysMatidxFields([n, j, k] such that
1as(£(v,1,5) = {b() | r e s}

Defn. 9.16: Fields over instantaneous state, that are additionally parametrized by applications sets. Note that ele-
ments of SysMatidxFields[n, j, k] are functions that yield indexes with 0. The spaces SysMatidxAFields [, j, k] and
SysMatidxBFields[n, j, k] are subsets of SysMatidxFields[r, 7, k], that yield indexes whose ID’s are specified by the
application set parameter s € ApplicSets; the former uses the applied motive ID’s listed in s, while the latter uses the

bodyID’s. O

We define the set of motive-generator functions that are linear in the proto-motives—this is a subset of the
general class of motive-generator functions (Defn. 9.6). Notice the use of a state space specialization, as per

Nom. 3.32, to define aspect operators on the subset.

Definition. Lgens

Lgens|n, k] =] ProtoGensin, k]

(
G — SysMatidxAFields[n, 3, k] force coefficients

H +— SysMatidxAFields(n, 3, k] rorque coefficients
J +— SysMatidxAFields[n, 3,1] motive arms

s —Far Y € Systems, t € R, s € ApplicSets[n] and X € Vecs[k],
MbF(gen(Y, t,s,X)ar)) = G(Y,1,8)a(r) X, forallr€s
mb]’(gen(Y, t,8, X)air)) = H(Y,1,8)q(r) X, forallres

Mbamz(gen(Y] t, s, X)air)) = J(Y, 1, 8)ar) forallr € s

Defn. 9.17: Linear motive-generator functions. Each generated force vectoris the product of a matrix in G and the proto-
motive X (when represented in lab coords); similarly for the torque vectors. The motive arms are independent of X . Note
that we must have either J(Y, t,5) o(;) = Qor H(Y, 1, 5)o(r) = J(V, ¢, s);(r)G(Y, t,5)a(r), by Defn. 8.19. O

Similarly, we define the subset of constraint functions (Defn. 9.7) that depend linearly on the forces and torques
in the applied motive index:

9.3 Mathematical Model 133

Definition. Lconstrs

Lconstrsn, k] T ProtoConstrs[n, k]

[
K + SysVecFields[n, k] independent term
T ~— SysMatidxBFields[n, k,3] force-dependency coefficients
A +— SysMatidxBFields[n, k, 3] torque-dependency coefficients
all —{0,1} all-or-some selector

;or Y € Systems,t € R,s € ApplicSets[n].A € { AppliedMotives} |pg

(9.18) cOTLStT(Y, t; s, A! a]]) =

cab
L(Y,t, 5)body(a) Fa+) all=1

£a
a € Elts(A) (A(Y,t, S)eody(a) Ia

cab

Z F(K t, s)b(r) bF(Aa(r))+ all= 0
m ’

res A(Y,t,8)5r)y T(Aar)))

K(Y,t,s) +

]

Defn. 9.18: Linear constraint functions. The constraint is the sum of a force/torque-independent term K~ and products of
coefficients with forces and torques. The all selector chooses whether to perform the summation over all applied motives
in a givenindex (A), or only over those motives specified in the given application set (s). O

Notice that by Defn. 9.16, I'(Y, ¢, s); and A(Y, ¢, s), will be 0 for body ID’s b that are not listed in s. Thus
the all = 1 and all = 0 cases are similar in structure: both examine only the bodies listed in s, accumulating
I'(Y,t,s) times a force and A(Y, ¢, s); times a torque for each body b—but in the all = 0 case the force and
torque are from the motive listed in s, while in the all = 1 case, they are the net force and net torque on the
body.

We define the set of linear proto-specifiers (Defn. 9.8):

Definition. LprotoSpecs

LprotoSpecs E ProtoSpecs

Lconstr — Lconstrs[n, cz] linear constraint function
K ... K — SysVecFields[n, cZ]

T ...T' — SysMatidxBFields[n, cz, 3]

A ...A — SysMatidxBFields|[n, cz, 3]

©.19) all ...all— {0,1}

Lgen +Lgens[n,pZ linear generator function
G ...G — SysMatidxAFields[n, 3, p7

H ... H — SysMatidxAFields[n, 3, p7

Constr = constr(Lconstr)
Gen = gen(Lgen)

Defn. 9.19: A Linear proto-specifier is a special case of a proto-specifier, having functions that are linear as per
Defns. 9.17,9.18. O

Continuing with the shorthand notation defined in Notn. 9.12, we will use application sets as subscripts when
we have a compatible ensemble:

9.3 Mathematical Model 134

Notation. Application sets as subscripts

[given same as Notn. 9.12], if s € ApplicSets and p € LprotoSpecs are
such that s = S; and P(p) = P;, we write:
K, = K(p)
(9.20) L, = TI(p)
A, = Alp)
Gs = G(p)
H, = H(p)
all, = allp)

Notn. 9.20: For a compatible ensemble, we use subscripts to refer to the aspect values of any linear proto-specs. O
Defn. 9.13 and Defns. 9.17.,9.18 lead to a linear equation for compatible proto-specifiers and motives (written
using Notn. 9.20). Sec. 9.6.2 contains the derivation of the following:

If a compatible ensemble P € {LprotoSpecs}|pg. X € {Vecs}pg.
S € {ApplicSets}|ng. A € {AppliedMotives} g is consistent with
Y € Systems andt € R, then

VpE Elts(S), Kp(Y,t,p)+ Y Mp(Y,1) X =0

q € Elts(S)
&30 where
Myq € Mats[ez, pz)]
0, all,=0&p#q
- Z([I‘P]br[Gq]ar + [Apls.[Hola,), otherwise
regqg

Eqn. 9.21: A consistent collection of linear proto-motives is based on an array equation, linear in the proto-motives. For
clarity the parameters have been left off of M pq (Y, t), Tp(Y, ¢, p), Ap(Y, t,). Go(Y, 2, 9),and Hy(Y, ¢, q). See deriva-
tion in Sec. 9.6.2. O

Eqn. 9.21 is the linear constraint-force equation of [Barzel,Barr88]. We will discuss it further in Sec. 9.4.

The definitions in this section provide canonical forms for motive-generator functions, constraint func-
tions, and proto-specifiers. In the coming sections, we fill in those forms, for the various types of force objects
discussed in Sec. 9.2.

9.3.8 Motive-Generator Functions

This section defines several commonly useful motive-generator functions. These are all linear functions as
per Defn. 9.17, thus each is defined by a pair of functions G, H € SysMatidxAFields(n, 3, k], where k is the
number of degrees of freedom in the resulting motives. Each function yields an index containing one entry
per motive. We will define motive-generator functions for one and for two motives.

For one arbitrary pure force:

Definition. GpureF

Define GpureF € Lgens|[1, 3] by:

(9.22) 1

0

Ggpurer(Y,t,8)a(so)
Hgpurer (Y, t, 8)a(s0)

Defn. 9.22: Motive generator for a pure force. The three values of a proto-motive are used directly as the components of
the force; the torque and motive arm are 0. Note that G(Y, t,s) and H(Y,1,s) are independent of Y and t. J(Y, ¢, s)
must be zero, by Defn. 9.17. O

9.3 Mathematical Model 135

For one arbitrary pure torque:

Definition. GpureT

Define GpureT € Lgens([1, 3] by:
(9.23) 0
1

Gopurer (Y, 1, 8)a(s0)
Hepurer (Y, 1, 8)a(s0)

Defn. 9.23: Motive generator for a pure torque. Analogous to Defn. 9.22 but with opposite values for G and H. O

Most often, we will generate a motive consisting of a coupled force/torque, where the force that is applied at
a specified pointin body coordinates:

Definition. Gcoupled

Define Geoupled € Lgens[1, 3] by:

(9.24) Gocoupled(Y:t,8)as) = 1

Jgpure}'(Y, ta s)ﬂ(su) = m(Y’ sﬂ)

Defn. 9.24: Motive generator for a coupled force/torque. The three values of the proto-motive are used directly as the
components of the force; the moment arm is as described specified by s ¢, and the torque is coupled. O

In the most general case for one motive, we may wish to generate an arbitrary force and torque; this requires
six degrees of freedom:

Definition. Garbit

Define Garbit € Lgens|[1, 6] by:
100000
Ggarbir(y:t:s)a(,n) = |o10000
) 001000
ooo0100
Hgarbit(Y:t:S)a(an) = |ooo010
000001
Jopurer(Y,,8)a(se) = 0

Defn. 9.25: Motive generator for an arbitrary force/torque. This acts on a proto-motive vec with six values: The first three
values of the proto-motive are used for the components of the force, and the last three are used for the components of the
torque. O

For a force object that acts on two bodies, we most commonly generate an equal-and-opposite force pair
(Sec. 9.2.1); this requires three degrees of freedom:

Definition. Gpair

Define Gpair € Lgens|[2, 3] by:

G = (Y t S) = 1
gpairl¥>t: 8)a(so)
9.26 =
() Ggpair(Y: t, s)a(sl) = -1
Jopurer(Y,t, 8)asey = am(Y, so)
Jgpure.’f-'(Y, t, s)a(al) = m(Y’ 51)

Defn. 9.26: Motive generator for a force pair. The proto-motive values are used directly as the components of the force for
application sg, and the negation is used for s ;. The moment amms are as specified by s, and the torques are coupled. O

For a collinear force pair, in which the paired forces lie on the line connecting the application points
(Sec. 9.2.1), only one degree of freedom is needed:

9.3 Mathematical Model 136

Definition. Geollinear

Define Geollinear € Lgens[2, 1] by:

Gocollinear(Yst: 8)a(so) = X(Y, 50) — x(Y, 51)
Gocollinear(Ys ts 8)a(s1) = —Ggcollinear(Y: 1 8)a(s0)
Jopurer (Y, 1, 8)a(so) = arm(Y’, so)
Jopurer (Y, t,8)a(s,) = arm(Y, 51)

Defn. 9.27: Motive generator for a collinear force pair. There is only one degree of freedom: the force is determined by

scaling the line segment that separates the application points. The moment arms are as specified by s, and the torques are
coupled to the forces. O

(8.27)

9.3.9 Constraint Functions for Explicit Force Objects

This section discuss explicit force objects (Sec. 9.2.2); we will discuss geometric constraint objects (Sec. 9.2.3)
in Sec. 9.3.10.

Constraint functions for explicit force objects (Sec. 9.2.2) are expressed directly in terms of Defn. 9.18,
by specifying values for K € SysVecFields[n, k] and T', A € SysMatidxBFields(n, k, 3]. We will define
constraint functions for the objects described in Sec. 9.2.2; functions for other objects can be defined analo-
gously.

For a gravitational acceleration force:

Definition. Cgrav

Define the family of functions Cgrav[g] € Lconstrs[1, 3] for g € R by:

allegrav = 0
(9.28) ngl’aV(K L, s)b(sn) = ==
Acgrav(Y,t,8)psq) = 0

Kegrav(Y,t, s)

0
—g m(Yy(s0))

Defn. 9.28: Constraint for gravitational acceleration. The values of I" and A are such that Defn. 9.13 and Defn. 9.18 imply
that the lab coordinates of the force are given directly by K, when this constraint is met. K itself yields a downward value
proportional to the body mass and the gravitational acceleration parameter. Here, we assume that the lab frame z-axis points
ullp,” D

For a damping force and torque:

Definition. Cdamp

Define the family of functions Cdamp [t , ptw , V4,] € Leonstrs[1, 6] for
Pu, Hw, Vo, Vw € R by:

[_1 0 0000
rcdamp(yvtas)b(ao) =|0-10000
(9.29) :0 0 -1000

000-10 0
Acdamp(Y,t,s)b(,n)-z 0000 —10

r cab
—(.Uu + Vv”V‘(Yb(su))”) Vc(Yb(JD))
cab
| — (B + vollw(Taso)ll) — @(Yigso))
Defn. 9.29: Constraint for viscous and quadratic damping. u v and vy are the coefficients of viscous and quadratic damping

for the linear velocity, and 1, and v, are for the rotation. The first three values of K give the force, and the last three give
the torque, in a manner similar to Defn. 9.28. O

champ(Y, t, S) =

9.3 Mathematical Model 137

For a Hooke’s law spring, with viscous damping:

(9.30)

9.3.10

We model geometric constraints via the “dynamic
constraints” method described in [Barzel,Barr88].
We will recap that method here, before defining
some specific constraint functions.

For any geometric constraint, we define a “de-
viation measure” that equals 0 when the constraint
is met (Fig. 9.5). The deviation measure is func-
tion of the state of the system, and the bodies

Definition. Cspring

Define the family of functions Cspring|lo, k, 1] € Lconstrs|2, 3] for

lo,k,u € R by:
allespring = 0
I‘csp,ing(Y, L, S)b(s.,) = -1
Cespring(Yot, s)ogs) = 0
Acspring(Yot, 8)u(sa) = 0
AcspringVst: i(sr) = 0

Kcspring(yxtx s) = (k(I—-1Ip)+pv-#)7,
where r=x(Y,s1) — x(Y, s0)
v=wY,51) - Y, %)
L=l
F=r/l

Defn. 9.30: Constraint for a damped spring force. The value of K constrains the force of application s ¢ to point towards
the application point of 51, based on rest length [, spring constant k, and damping coefficient g. 7 is the unit vector from
application point sq to s1, and v-7 is the rate of change of separation between the bodies. This functionis not well-defined

if the two application points coincide in space, unless /g = p = 0. (No constraint is placed on application s 1 ; presumably
an opposite force will be generated forit.) O

Constraint Functions for Geometric Constraints

the constraint acts on; i.e., itis a vec field D &€ Figure 9.5. The “deviation measure” for a geometric constraint is
SySVGCFiFﬂdS[n k] as per Defn. 9.16. We allow a function D whose value is 0 when the constraint is met. Here,
b ’ . . .

a deviation measure to be applied to any number
of bodies, n, and have any fixed size k. In general

we show a point-to-nail constraint, whose deviation is given by

M%Xp — Xo) for body point p constrained to a nail at X . O

D may have explicit dependence on time (such as for a point-to-path constraint), but in many cases D is
purely geometric,
To express the requirement that a deviation measure equal zero, we use:

931)

Given a deviation measure D € SysVecFields[n, k], an
application set s € ApplicSets[n], a system path Y € SysPaths, and a
constant T € R we require:

L DY(t),t,5) + 2L D(V(1),t,5) + L D(Y(t),t,5) = 0

Eqn. 9.31: Required behavior for the value of deviation measure D as a model moves over time. We have picked a
second-order differential equation that describes critical damping: from any initial condition, the value decays smoothly
down to zero, “assembling” the model. 5The time constant, T, controls the rate of assembly; T must be positive. (See, e.g.,
[Boyce,DePrima77] for discussion of critically damped differential equations.) O

5 Analytically, the value of D asymptotically approaches 0, but doesn’t ever reach 0. When implemented numerically, however, it
soon reaches zero within error tolerances.

9.3 Mathematical Model 138

Equations other than Eqn. 9.31 could perhaps initially,

be used to describe the constraint; we choose { °°nt3t'aj"‘ isn't
Eqn. 9.31 because it describes “assembly” of a met(0, + o)
model from an initial condition in which the con- Ds..
straint isn’t met, and also because, it results in an “
expression for the constraint as an equation that
is linear in the forces and torques on the bodies, * Ddecreases later

which is numerically tractable when we imple- LW constraintis

S t = Hee
ment the model. mew \
i, T {

To convert Egn. 9.31 into a form having ex-
plicit dependence on motives, we create auxiliary S
functions that describe the behavior of the devia- time
tion measure over time, for a dynamic system of bodi&gure 9.6. Behavior described by Eqn. 9.31. O

=)
o

Deviation

Given a deviation measure D € SysVecFields[n, k], an
application set s € ApplicSets[n], and a system path) € SysPaths
consistent with applied motive fields A € {AppliedMotiveFields }pg. we

9.32) create auxiliary functions D(Y) € SysVecFields[n, k] and
D) e ProtoConstrs[n, k] such that:

DOY(t),t,5) = L£D(E),1,5)
DOW(t),t,5, A1) = LDX(1).t,5)

Eqn. 9.32: Auxiliary deviation measure functions. D (1) yields the instantaneous rate of change of the deviation; D (2)
yields the instantaneous acceleration. O

Notive in Eqn. 9.32 that since D is geometric, it depends only on positions and orientation information in
Y(t). But D) will depend also on the velocities in Y(t) (Eqn. 8.9), and D(?) will depend further on the net
force and torque applied to each body (Defn. 8.10), since) is consistent with A (Defn. 8.25). By the chain
ru%e)for differentiation, the dependency of D(2) on the net forces and torques is linear. Thus we can expand
DA%

Given D?) of Eqn. 9.32, we create auxiliary functions
T, A € SysMatidxBFields[n, k, 3] and 8 € SysVecFields[n, k] such that,
thenforany Y € Systems, t € R, s € ApplicSets[n], and

D@)(Y,t,s, A) = B(Y,t,5)

C Z B (1 % s)b(,)Fnet(A)b(r) + Z A(Y,t, .‘:‘)b(,.) Thet(A)b(,,)
rEs rEs

Eqn. 9.33: Auxiliary deviation measure functions. D (2), which describes the acceleration of the deviation measure, de-
pends linearly on the net force and net torque on each body; I" gives the coefficients for the forces, A gives the coefficients
for the torques, and 3 gives the part of D(2) that is independent of the forces and torques. Fnet and Thet are as per
Defn. 8.24. O

The auxiliary definitions of Eqn. 9.32 and Eqn. 9.33 are in a form allowing us to define a specialization of
linear constraint functions to express Eqn. 9.31:

9.3 Mathematical Model 139

Definirion. GeomConstrs[n, k]

GeomConstrs[n, k] C Lconstrs[n, k]

time constant
deviation measure
rate of change

T —R

D s SysVecFields[n, k]

D) s SysVecFields[n, k]
k

934) B +— SysVecFields[n, k] acceleration wio forces
all=1
7>0

D, D), 3, T, and A relate by Eqns. 9.32,9.33
K(Y,t,5) = B(Y,t,5) + 2DM)(Y,t,s) + L D(Y,t,5)

Defn. 9.34: Constraint functions for geometric constraints, using the “dynamic constraints” method. For a constraint
function f € GeomConstrs[n, k] the constraint requirement f(Y, ¢, s, A) = 0 (Defn. 9.13) is met when Eqn. 9.31 holds.
a

Now, we can define various constraint functions that are elements of GeomConstrs[n, k]; in each case, we

will define a family of functions that is parameterized by the time constant 7. We will define functions for the

three body point constraints described in Sec. 9.2.3; functions for other objects can be defined analogously.
For a point-to-nail constraint:

Definition. Cptnail

Define the family of functions Cptnail [T, X,] € GeomConstrs[1, 3] for
7 € R and X, € Locations by:
cab
qumdﬂ(Y, t, S) = X(Y, SQ) = Xo
9:35) Domai¥it:s) = WY, %)

Beptnait(Y> 1, s) accy(Y, s0)

Fcptnail(ya t, S)b(xg) = HCCF(Y, 80)

Acptnaﬂ(Ys t’ s)b(.m) s aCOT(Ya 30)

Defn. 9.35: Point-to-nail constraint function. The deviationmeasure is thus simply the difference between the point location
and the nail location X g. The rate of change and acceleration of the deviation are just those of the point (as per Not. 9.5). O

For a point-to-point constraint:

Definition. Cptpr

Depipr(Y, t, 5)

Define the family of functions Cpipt[t] € GeomConstrs(2, 3] for 7 € R by:

x(Y, s0) — a(Y, 51)

DpiYrt, 8) WY, s0) — WY, 51)
(9.36) Beppr(Y,t,8) = acco(Y, so) — ace(Y, 51)
I‘cp[pt(Y, t, s)b(sn) = accr (Y, So)
Tepipt(Yot,8)o(sn) = —acer(Y,s1)
ACplp!(Y) & S)b(_,u) = acor(Y,so)
Agpipi(Y,t,8)p(s) = —acor(Y,s1)

Defn. 9.36: Point-to-point constraint function. The deviation measure is the difference between the locations of the two
points of application. The remainder of the terms are analogous to Defn. 9.35. Each body point’s force- and torque-
dependence for acceleration, acc p and acer, result in a separate entry in I" and A. O

9.4 Posed Problems 140

For a point-to-path constraint:
Definition. Cptpath

Define the family of functions Cpipath[r, P] € GeomConstrs([1, 3] for
7 € R and path P: R — Locations by:

cab
Dcptpath(yxt,s) = X(Y:SU)_ P(t)

cab
9.37) D(C;)mail(y,t,s) = WY,s0)— 4P(t)
cab,
Bepmail(Yot,s) = acco(Y,s0)— &= P(t)
I‘(Ipm::zil(}’: t, S)b(so) = accp(Y, sq)
Acpmait(Yot, $)oisa) = acor(Y, so)

Defn. 9.37: Point-to-path constraint function. A generalization of the point-to-nail constraint, Defn. 9.33, but fora “moving
nail.” O

9.3.11 Proto-Specifiers

Given the definitions in the previous sections, all that remains in order to specify a force object is to match
up a motive generator function of Sec. 9.3.8 with a constraint function of Sec. 9.3.9 or Sec. 9.3.10, to form
a proto-specifier as per Defn. 9.8 and Defn. 9.19. We define proto-specifiers for the conceptual force objects
described in Sec. 9.2:

Definition. (various proto-specifiers)

We define several families of proto-specifiers, all elements of LprotoSpecs :

P ny,pz,, ¢z, Lgen, ,Lconstr,]

Gravity|g] =[1, 3, 3 ,GpureF ,Cgravlg]]

(9.38) Damp(py, pw, Vo, vu]=[1, 6 , 6 ,Garbit ,Cdamp[py, pw, Vv, V)]
Spring[lo, k, p) =[2, 1, 3 ,Gcollinear,Cspring[lo, k, u]]

PoinfTaNail[t, Xo) =[1, 3, 3 ,Geoupled ,Cpmail[r, Xo]]

PointT 6Point(t] =[2, 3, 3 ,Gpair ,Cpipt[t]]

]

PoinfToPath[t,P] =[1, 3, 3 ,Gcoupled ,Cptpath|r, P]

Defn. 9.38: Various proto-specifiers. Each is defined by specifying its motive-generator function Lgen and constraint
function, Leonstr. In most cases, the number of degrees of freedom (pz) is equal to the number of constraint terms (cz); see
discussionin Sec. 9.4. O

Usually, a constraint function has a natural or intended motive generator function that goes with it. For

example, the point-to-point constraint function Cpipt is paired with the equal-and-opposite force pair motive
generator Gpair to form PoinfldPoint. But we can also mix and match. For example, if we pair constraint
Cpmpt with generator Gecoupled—which applies a force to only one body—then we have a constraint in which

a body “follows™ or “shadows” another without affecting its motion. ® Or, we could apply a pure force to meet
a point-to-path constraint, thus the body will translate but not rotate in order to follow the path.

9.4 Posed Problems

We have one prominent posed problem for this model: to create the forces and torques that are described by a
given set of linear proto-specifiers, i.e., that are due to the motive generators and that satisfy the constraints.

8Strictly speaking, since Geoupled(Y, t,s, X) requires an application set s € ApplicSets[1] while Cptp«(Y, t, s, A) requires an
application set in s € ApplicSets[2], they can’t be used together, as per Defn. 9.19. However, we can trivially extend Geoupled to act
on elements s € ApplicSets[2] by ignoring s1.

9.4 Posed Problems 141

That is, as discussed in Sec. 9.3.1,

given: P € {LprotoSpecs} pg, compatible with
S € {ApplicSets}|pg,
define: A € {AppliedMotiveFields} pg
where A is consistent with P and §
evaluate: A(Y,t)
foranyY € Systemsandt € R

(9.39)

Egn. 9.39: Motive evaluation. The indexes P and S describe the force objects in the model and how they are applied
to the bodies. They determine a motive field index A (Defn. 9.13). During the course of a simulation, we will want to
evaluate A for many different values of ¥ and ¢. O

Because we are using linear proto-specifiers, to evaluate A(Y,t) as per Defn. 9.13 we use Eqn. 9.21, which
we paraphrase:
Vp, K,(Y,t,p)+ Eq My, (Y, 1) X, =0
where My, € Mats[cz,, pz)]
K, € Vecs[cz,]
X, € Vecs[pz,]

We can express the above in matrix form, if we arbitrarily assign an order to the elements of the proto-motive
ensemble:

Mn(Y,t) Mlg(Y, t) Mln(Y,t) Xl I{l(Y,t,pl)
MEl(Y: t) MZz(Y: t) w5 MZn(Yl t) X2 + I{2(K t, P2) _
Mar(¥,8) Ma2(Y,8) ... Man(%,0) | [2] | Kn(¥ot,0)

Each element in the above is an array; we can consider the above to be a block matrix form’ of a
(=p €2) % (1, pz,) matrix equation:

M(Y, 1) X+ K(Y,2) = 0

Forany Y and t, we can compute M(Y, ¢) and K(Y/,), and solve for X using one of many standard numerical
techniques (see [Press et al.86]). We note some characteristics of M to be taken into account:

e M is generally sparse.

e M is not necessarily square; a proto-specifier p may have pz, # cz,. If there are fewer degrees of
freedom than constraints (pz, < ¢z,), there won’t in general be a solution unless the constraints are
redundant (as is true for the proto-specifier Spring).

» The explicit force objects (all, = 0) have only diagonal entries; the corresponding values X', can be
found first, and the remaining matrix can be reduced.?

¢ M can often be partitioned into independent blocks, which can be solved separately; each block cor-
responds with a group of bodies that may be constrained with respect to each other, but there are no
constraints between the blocks.

e The structure of M is due to the indexes P and S, and is independent of Y and ¢. Thus the partitioning
and so forth can be performed once per collection of force objects, and then used for each evaluation of
A(Y, t). Furthermore, many of the functions ', A, G, and H defined in Secs. 9.3.8-9.3.10 are constants,
which can be folded once per collection of force objects, to minimize repeated computation.

7We refer readers to [Hom,Johnson85] and [Golub,Van Loan85] for discussion of matrices.
81n [Barzel Barr8g], the explicit forces are treated as a special case a priori, and are not entered into the matrix. Here, we prefer a
more uniform mathematical treatment, and leave it to the implementation to special-case the computation of the explicit forces.

9.5 Implementation Notes 142

e M may be singular or ill-conditioned, implying the lack of a unique solution. If there are multiple so-
lutions, any solution is acceptable; this may occur through extraneous degrees of freedom in the proto-
specifiers, through redundancies in the constraints specified in the model, or through the existence of
equipollent sets of forces that meet the constraints. If there are no solutions, it can indicate improp-
erly constructed proto-specifiers (e.g., an orientation-based constraint function paired with a pure force
motive generator), or an overconstrained system as discussed in Sec. 9.2.3. Additionally, if using the
constraints to “assemble” models as discussed in Sec. 9.3.10, the path implied by Eqn. 9.31 may be
physically unrealizable, see discussion in [Barzel,Barr88]. A least-squares solution is often practicable.

Once we've computed X, and hence the proto-motives, X', we can determine the actual motives, i.e., the
forces and torques, by evaluating all the motive-generator functions, as per Eqn. 9.14:

A(Y,t) = |] Geny(Y,t,5,X,)
SES

The generator functions are evaluated by multiplying each X', by the values of G;(Y,, s) and H,(Y,t, s), as
per Defn. 9.17; these values were already computed to construct M, and can be reused.

9.5 Implementation Notes!

9.5.1 Conceptual Section Constructs

The conceptual section of a program supports various types of force objects. Each instance of a force object
includes the name(s) of the body (bodies) that it acts on and the body points of application, along with the
time constant 7 for geometric constraints and other type-specific parameters.

Each type of force object knows how to draw itself, for illustration or debugging, e.g., a helix between
points attached by a spring, or the curve of a point-to-path constraint.

Paths for point-to-path constraints can be defined symbolically or via a curve editor, as described in [Sny-
der92].

9.5.2 Math Section Constructs

The math section for this module has scope name MFRC (“Math fancy FoRCes™). Fig. 9.7 lists the objects that
are defined. Classes for the various state spaces, sets, and indexes are defined as per Sec. B.3. We will give a
few additional notes.

e Class definitions for ProtoGens|n, k] and Lgens|n, k]:

class ProtoGen :
constructors: (int n,k)
members: n:int
k:int
methods: eval (MRIG::System Y, double t, ApplicSet S, MMISC::Vec x)

: MRIG: :ApplMotiveldx

class Lgen (derived from ProtoGen) :
constructors: (int n,k, SysMatIdxField G,H,J)
members: G : SysMatIdxAField
H:SysMatIdxAField
J : SysMatIdxAField
methods: eval (MRIG::System Y, double t, ApplicSet S, MMISC::Vec x)
:MRIG: :ApplMotiveIdx

TSee Appendix B for discussion of the terminology, notation, and overall approach used here.

9.5 Implementation Notes 143
Program definitions in scope MFRC:

class name abstract space
ApplicInfo Applicinfos (Defn.9.1)
ApplicSet ApplicSets (Defn.92)
ApplicSetIdx {ApplicSets}|pg index of application sets
GeomConstr GeomConstrs (Defn. 9.34)
Lconstr Lconstrs (Defn. 9.18)
Lgen Lgens (Defn. 9.17)
LprotoSpec LprotoSpecs (Defn. 9.19)
LprotoSpecldx {LprotoSpecs}|ng index of linear proto-specs
ProtoConstr ProtoConstrs (Defn.9.7)
ProtoGen ProtoGens (Defn. 9.6)
ProtoSpec ProtoSpecs (Defn.9.8)
SysMatField MatFields (Defn. 9.16)
SysMatIdxAField SysMatidxAFields (Defn.9.16)
SysMatIdxBField SysMatidxBFields (Defn.9.16)
SysMatIdxField SysMatidxFields (Defn. 9.16)
SysVecField SysVecFields (Defn. 9.16)
global constant function
Garbit Garbit (Defn. 925)
Gcollinear Geollinear (Defn.927)
Gcoupled Geoupled (Defn. 924)
Gpair Gpair (Defn. 926)
GpureF GpureF (Defn.922)
GpureT GpureT (Defn.923)
class name function family
Cdamp Cdamp (Defn.929)
Cgrav Cgrav (Defn. 928)
Cptnail Cptnail (Defn. 9.35)
Cptpath Cpipath (Defn.9.37)
Cptpt Cptpt (Defn. 9.36)
Cspring Cspring (Defn. 9.30)
Damp Damp (Defn. 9.38)
Gravity Gravity (Defn. 9.38)
PointToNail PointTaNail (Defn. 9.38)
PointToPath PointloPath (Defn. 9.38)
PointToPoint PointT oPoint (Defn. 9.38)
Spring Spring (Defn. 9.38)

Figure 9.7: Math section definitions in the prototype implementation. O

The class ProtoGen is an abstract class, that declares a generic eval method. The class Lgen is derived from
ProtoGen; it has members for the G, H and J fields, and defines eval to compute an applied motive index,
as per Defn. 9.17. The classes ProtoConstr and Lconstr are defined similarly. These classes all include
checks to make sure that n and k are used consistently.

¢ Constant instances for motive-generator functions: In Sec. 9.3.8, we defined several specific motive-
generator functions, Garbit, Gpair, and so forth. For each of these functions, we define an instance of class
Lgen, with the appropriate values for members G, H, and J. Each instance is defined once, as a global constant,
to be used or referenced by any proto-specifier. For example:

GpureF = Lgen(n=1, k=3, G=1, H=0, J=0)

e Class definitions for explicit constraint functions: In Sec. 9.3.9, we defined several parametrized families
of constraint functions. For each family, we derive a class from Lconstr. For example:

9.5 Implementation Notes 144

class Cspring (derived from Lconstr) :
constructors: (double 10,k ,mu)
members: 10: double restlength
k :double spring constant
mu: double damping coefficient

The members for I', A, and K compute their values based on the member variables I, k and g, as per
Defn. 9.30; for any given triple of parameters, [y, k£, and y, a specific instance can be created.

» Class definitions for geometric constraint functions (Sec. 9.3.10: We define a class derived from Lconstr:

class GeomConstr (derived from Lconstr) :
constructors: (int n,k, double tau, SysVecField D,Di,B, SysMatIdxField Ga,La)
members: tau :double time constant T
D :SysVecField
D1 : SysVecField
Beta: SysVecField

It defines the member for K to compute its value as per Defn. 9.34. We derive more specific classes for the
various types of constraints. For example:

class PointToPoint (derived from GeomConstr) :
constructors: (double tau)

class PointToNail (derived from GeomConstr) :
constructors: (double tau, MCO::Location X0)
members: X0 : MCO: :Location

For any given time constant , along with constraint-specific parameters (such as X, above), an instance of a
geometric constraint function can be created.

9.5.3 M-N Interface

The scope name for the M-N interface is NFRC. We define a routine that solves the posed problem (Eqn. 9.39):
define an applied motive index field that is consistent with given proto-specifier and application set indexes.

LsolveProto(LprotoSpecIdx P, ApplicSetIdx S) : MRIG::ApplMotiveldxField

This routine returns an object that can be evaluated for arbitrary values of Y and ¢. The object is set up
internally to follow the solution procedure outlined in Sec. 9.4:

. Given values of Y and .

. Compute the various terms K, T, G, etc.

. Compute the M, matrixes.

. Gather the Mp, and K, values into M and K, using NUM: : GatScat2 (Sec. B.4.2).

. Solve the equation M X + K = 0 to get X, using NUM: :LinSys (Sec. B.4.3).

. Scatter X into X, values, using NUM: : GatScat2.

. Compute an index of motives A, based on the X', values and the precomputed G, H, and J.

return A

po-.lc\un.hwtor-

As an optimization, at the time the object is created we partition the matrix into independent blocks, based
on the connectivity information in S; then the single large linear system solution becomes a series of smaller
ones.

9.6 Derivations 145

9.5.4 C-M Interface

The C-M Interface constructs indexes P € {LprotoSpecs} pgand S € {ApplicSets} g based on the con-
ceptual force objects. For each force object, the interface must:
e Choose a label ¢ € |IDs for the force object
« Choose or create the appropriate motive-generator and constraint function instances for P;.
o Create an application set s = S;. For each r € s, we must:
— Map from each conceptual body name to its mathematical model ID, for b(r)
— Create an (arbitrary) unique ID for a(r)
— Set pt(r) to the body coordinates of the application point.

Having done the above, the
C-M interface can call NFRC: :LsolveProto to get an MRIG: : ApplMotiveIdxField, which can be used
as a parameter to NRIG: : SolveForward of Sec. 8.5.3, in order to simulate the resulting behavior.

9.6 Derivations

9.6.1 Acceleration of a Body Point

We derive an expression for the acceleration of a body point, for use in Notn. 9.5. Given:

dynamic body path s € StatePaths consistent (Defn. 8.10) with
net force, torque functions F,T:R—Vectors, and
body point path p: R — Bodypts such that
p(t) = Bodyp(s(t), coords)
for constant coords € R3%3

First, we express the derivative of the body’s inverse inertia tensor. Since the inertia tensor is fixed in the
body frame (Eqn. 8.8), Eqn. 6.33 gives (after replacing w*” with the equivalent —w*):

T -1 *
1) =« (O () - 17 (0w (1)

Using the above, we express the derivatives of the body’s angular velocity vector (for clarity, we drop the (t)
parameters after the first occurrence):

ws ()
Fiws

I (t) Ls(t)

ALY L+ (L)
(@I =) L + 71T (2)
WL, - 0t + 1T
wiws — I N (ws x L) + 71T
—I;Yws x L) + 11T

(l

(l

We start with the velocity of a body point, from Eqn. 8.13, and differentiate to get the acceleration (again, we
drop the (t) parameters):

Vg(t)
a'r

Ve, (1) + wy(t) x army(t)

Lve, + (Lw,) x ammy, + w, x (Larm,)

3 V6 — am, X (fws) +ws x (Larmy)

- F(t) — amy (<17 (ws x L) + 171T) + ws x (ws x ammp)

o F — amp I T + amip X ws X Ly) + wsy % (ws % armp)

The first term above gives accr in Notn. 9.5, the second term gives acer , and the remaining terms give accg.

9.6 Derivations 146

9.6.2 Derivation of the Linear Constraint Equation

We derive Eqn. 9.21. Given:

compatible
P € {LprotoSpecs}pg;
A € {AppliedMotives}|pg
S € {ApplicSets}|pg
X e {VECS}le

consistent with
Y € Systems

teR

We plug into the constraint equation, Defn. 9.13. For notational clarity, after the first occurrence we will leave
the (Y, ¢, p) parameters off K, ', A, and the (Y, ¢, ¢) off G, and H.

0 = Constr,(Y,t,p, A) (Defn. 9.13)

If all, = 1, we have:

0=K,(Y,t,p)+ Z (Fp(Y,t,P)body(A) HA,;)+) (Defn. 9.18)
jeldsa) AP(Yatyp)boa'}(A,) T(A)

cab,
=K, + Z Z (2 (Y, 1, P)b(r) lf(Aa(r))"‘) (Defi 9.11)
seEltss)r€a \Dp (Yo 1, Ple(r) T(Aa(r))

=1 4 Z z ([Fp]b(r) If(Genq(Yt,q,)a(r))+) (Eqn.9.14)
geElts(s) T€4 [A]b(r) T(Geﬂq(Yt q, q)a(r))

Jo(r)Go (Y 2, Q)ar) X+
o (pls(r)Ga (Defn. 9.17)
qEE;[S(S) 2 p]b(r)Hq()t) q)a(F)X

= Kp + Z (Z([rp]b(r)[Gq]a(r) + [Ap]b(r)[Hq]a(r))) X,

qe Elts(s) \T€q
And if all, = 0, we have:

cab
0=K,(Y,t,p) + Z 2 (Yt Phar) 57(‘4“(’))+ (Defn. 9.18)
rep A (Y, t,p)sry T(Aagr))

=k, + ¥ [Te 52Dy bHGeﬂa(Ys‘=P="’v)a(r))+) (Eqn.9.14)
rep ,,(Y tphry NGeny(Y,t,p, Xp)a(r))

[Lplo(ryGp(Y, 2, 7)a(r) Xp +) Defn.9.17
_K +z(b(r) p(Y’t!r)a(r)X BRI

=Ky + 3 (0D Gl + (b [Hylam) &

rep

=K+ Y. (MZIF b()[Gelatry + [Ap]b(r)[Hq]ﬂ(ﬂ) ¥

qe Elfs(s) r€g
This leads directly to Egn. 9.21.

147

Chapter 10

Swinging Chain Model

his chapter describes a “swinging chain” model: A collection of cylinders linked end-to-end to form a chain.
The two ends of the chain are fixed in space, and the chain dangles between them.

This model demonstrates how we define a top-level physically-based model, illustrating the use of the library of
modules defined in Ch. 6-9. In particular, the model makes use of the geometric constraints supported by the
“fancy forces” mechanism of Ch. 9.

The functionality for this model is directly supported by the library routines, thus there's little that needs to be
defined in this chapter—just a description of the conceptual model, in terms of the conceptual models of Ch. 6-9 .
However, we illustrate some aspects of the mathematical model that is implied.

10.1 Goals

The purpose of this model is to demonstrate how we define a top-level model, and to test the prototype
modeling library. In particular, we:

e Testand illustrate rigid-body dynamics (Ch. 8)
e Test and illustrate constraints and other “fancy forces” (Ch. 9).

10.2 Conceptual Model

This model has only one high-level conceptual objectin it: A linked chain. We fix the two endpoints in space,
and let the chain dangle and swing under the influence of gravity, with some damping so that the chain will
come (o rest in a catenary shape (Fig. 10.1). The chain is made from a collection of 6 separate links, each of
which is a rigid body as per Ch. 8.

Links. Each link is a cylinder of length 20cm and radius 2cm. with spherical endcaps. The body frame
has its origin at the base of the cylinder, and the cylinder extends along the positive z-axis (Fig. 10.2). The
mass of the cylinder is 0.5kg, distributed homogeneously (except in the endcaps), giving an inertia tensor of

17.2 0 0
[o 17.20|kg-cm? in body coordinates,! with the center of mass at z =10cm.
0 01

1From Eqgn. 8.1 we can derive the formula for the inertia tensor of a homogeneous cylinder aligned with the z axis, having mass m,
radius 7 and length { (or we can just look it up in [Fox67-Table IT]):
Lm(3r2412) 0 0
12 L, 242
0 i m(i-lor +12) %7:7-?

10.3 Mathematical Model 148

Swinging Chain Model

Gravity

-
- -~

-
B LT T T T T T Ty pappapappp

. _ Point-to-Nail
Point-to-Point .~ Constraint

Constraint < ceeeeeel :
g . '... :.l‘ .
:. . IIIII‘ F .‘\0 p"

-
- -

-
- Ll)
*.
sasassl
=
L TTRPNPY S

Figure 10.1: Elements in the “swinging chain” sample model. The chain is formed from a collection of cylindrical links. Each link is
acted on by a constant downward gravity force, and by a viscous damping force/torque (not illustrated). Each adjacent pair of links is
connected with a “point-to-point” constraint, and each end link has its endpoints fixed in space with a “point-to-nail” constraint. After
an initial excitation, the chain will swing freely, gradually losing energy due to the damping, until it comes to rest in a catenary shape

hanging between the fixed points. O

Joints. The joints between each link are formed using point-to-point constraints (Sec. 9.2.3). We connect
the tip of one link to the origin of the adjacent link. Notice that the bodies interpenetrate in order to meet the
constraint—butbecause of the spherical endcaps, no seams are formed at the joints. (Fig. 10.3)

Ends. The tip of the “topmost” and origin of the “bottommost” link are held fixed at locations
(50,0, 110)cm and (—50, 0, 110)cm in lab coordinates, via point-to-nail constraints.

Other forces. Each body feels a downward gravitational acceleration of 9.8m/sec?. We apply a viscous
damping force (Sec. 9.2.2) of 0.1dyne/(cm/sec) and torque of 0.1cm-dyne/(radians/sec) to each body.

Initial assembly. We initially place the bodies in an arbitrary configuration, and let the constraint forces
assemble the chain and pull it into place. A value of .2sec for the time constant 7 for the constraints (see
Sec. 9.3.10) causes the model to assemble in roughly one second. In their “rush” to assemble, the bodies pick
up a fair amount of kinetic energy from the action of the constraint forces. In some circumstances that energy
might be an unwanted by-product, but for this model, it serves to start the chain off jangling.

10.3 Mathematical Model

No new mathematical definitions are required for this model, but we willillustrate the “proto-specifier ensem-
ble” (Defn. 9.11) that describes the various forces. (We are essentially hand-simulating some of the function

of the C-M interface of the fancy forces implementation.)
First, we assign ID’s to the bodies in the model: Let

cyl0, cyll, cyi2, cyl3, cyld, cyls € 1Ds

correspond with the cylinders, in left-to-right order as in Fig. 10.1.

10.3 Mathematical Model

“fip”
0.0,20)

body
frame
origin

Zi

i
~ -

radius = 2

center of mass

: (0,0,10)
-

point-to-point
constraint

Figure 10.2: (Left) Detail of a link, in body coordinates (y-axis goes into the page). O

Figure 10.3: (Right) Detail of a joint between links. O

149

The application of the force objects to the model is described by an index of proto-specifiers, and an index

of application sets:

P € {ProtoSpecs}|pg (Defn.9.8)

§ € {ApplicSets} IDs

(Defn.9.2)

‘We construct the entries in these indexes according to the following table (recall that the two indexes share
the same ID’s, Defn. 9.9):

i € IDs

Pi
[Constr, Gen |

S;

[@ , b ,arm]

Joint01

Joint12

Joint45

end(
ends
grav0

gravl

gravs
damp0
dampl1

damp5

[Cppr . Gpair]

[Cppt , Gpair]

[Cpipt , Gpair]

[Cpmail, Geoupled)
[Cpmail, Geoupled)
[Cgrav ,Gcoupled)
[Cgrav ,Geoupled)

[Cgrav, GCoupIecﬂ-
[Cdamp, Garbir]
(Cdamp, Garbit |

(Cdamp, Garbir]

A few things to notice in the above table:

o Each joint acts on two bodies, thus has two application info’s in its application set.

[fat01a, cyl0, (0, 0, 20)]
[ynt01b, cyl1, (0,0,0)]
[jnt12a, cyll, (0,0, 20)]
[jnt12b, cyl2,(0,0,0) |

[jnt45a, cyi4, (0,0, 20)]
[jnt45b, cy15,(0,0,0)]
[end0 , cy10,(0,0,0)]
[end5 , cyl5, (0,0, 20)]
[grav0, cyi0,(0, 0, 10)]
[gravl, cyil,(0,0,10)]

[gravs5, cyis, (0,0, 10)]

[damp0, cyl0,]
[damp1, cyll,]
[damps5, cyl5,]

¢ Each damping object generates an arbitrary force/torque; its generator function doesn’t examine the
arm aspect value of the application set, so we have left that entry blank.
¢ The a column lists the ID’s of all the motives in the model. Some of these ID’s happen to be the same
as used in column ¢, but that’s irrelevant.

150

Chapter 11

“Tennis Ball Cannon”

his chapter describes a “tennis ball cannon” model: A series of balls is shot from a gun; each ball flies in an
arc, and bounces when it hits the ground. The model contains discontinuous behaviors—the firing of the gun,

the bouncing of the balls, and others.

This model illustrates the segmented function formulation: we define the behavior of the model as a function C
that encapsulates the discontinuous events; the value of the solution, C(t), includes information such as which
balls are part of the model at any time .

Unlike the “swinging chain” (Ch. 10), this model isn’t already directly supported by the library modules in
Ch. 6-9. Thus, we build on the library models, but we define extra special-purpose mathematical constructs for
this application. (Some of the special-purpose mechanisms that are defined here can be generalized, as discussed
in the library extensions, Ch. 12.)

11.1

Goals

The purpose of this model is to illustrate the segmented function mechanism described in Sec. 3.10, and to
test the piecewise-continuous ODE solution utilities described in Sec. B.4.7. In order to fully exercise these

tools,

we include a few somewhat contrived features in the model: (Fig. 11.1)

discontinuities regularly in time (cannon fires)
discontinuities based on state (balls bounce)

increase of dimensionality (balls created when cannon fires)
decrease in dimensionality (balls removed when too small)
change in properties (ball radius changes)

change in continuous behavior (wind resistance changes)
discontinuities in motion (balls bounce)

11.2 Conceptual Model

We describe the abstractions of the various elements in the model. Note that we are not trying to accurately
model a real thing, but rather have contrived an assortment of features to meet our goals.

Environment. In lab coordinates (Sec. 6.3), the positive z axis points “up.” The ground is an infinite flat
surface in the z-y plane at z = 0.

11.2 Conceptual Model 151

Tennis Ball Cannon
(sample segmented model)

Balls fired
periodically

) Balls shrink
.. Wwind when they
. resistance bounce

Balls
disappear
when too
small

A

Figure 11.1: Model of a cannon firing a series of balls; illustrates discontinuities in a model. The cannon oscillates up and down, firing
a stream of balls. Each ball experiences gravity, and wind resistance based on radius. When a ball hits the ground it bounces, but
also instantaneously shrinks by a fixed factor (thus will experience less wind resistance after the bounce). When a ball shrinks below
a minimum size, it is removed from the model. The contact points where the balls bounce shift back and forth due to the oscillation
of the cannon. The bounces are completely elastic, but because of the wind resistance energy is lost, so each rebound is lower than the
previous. O

Cannon
(oscillating)

Cannon. The cannon is just a barrel: a cylinder, with length 0.8 meters and radius 0.22 meters. The back
end is fixed at coordinates (—5, 0, 5) in the world; the muzzle points towards the positive z direction, but
oscillating 0.4 radians from horizontal, with a period of 2 seconds per cycle. (In the body frame, the back
end is at the origin, and the muzzle lies on the z-axis.)

Firing. To “fire,” the cannon spontaneously creates a ball at the muzzle; the ball has an initial velocity
of 15 meters/second, outward in the barrel direction. (We create the ball at the muzzle, so it doesn’t need to
travel down the barrel.) The cannon has an unlimited supply of balls, and fires with a period of 0.2 seconds
between shots.

Balls. Each ball is a rigid sphere, with radius 0.2 meters (initially) and mass 1 kilogram.! We include no
rotation effects—the motion of the ball is that of a point mass (Sec. 8.2.3) at the center of the sphere.

Bouncing. When a ball hits the ground (z = 0), it instantaneously shrinks—the new radius is 3 /4 the pre-
vious. The location of the center of the ball is instantaneously dropped so that the bottom stays on the ground
(Fig. 11.3). The velocity is instantaneously negated in the z direction, but left alone in z and y directions, 2
i.e., the ball bounces elastically. The mass is not altered.

Disappearing. If, when hitting the ground, the ball shrinks so that its radius is less than 0.09 meters, the
ball is “too small” and is instantaneously removed from the model.> With the stated parameters, this happens
on the third contact, after two bounces.

Forces. Each ball is acted on by two forces: a constant downward gravitational acceleration of 9.8
meters/second?; and a air resistance (drag) force that is opposite to and quadratic in the velocity, scaled by .5
kilogram/meter® times the cross sectional area (r r2). For simplicity, we directly hardwire the net force on
each ball to be the sum of the two contributions, rather than using the “fancy forces™” mechanism, Ch. 9.

1 Perhaps more a bocce ball than a tennis ball!
2 Actually, because of the configuration of the gun and lack of crosswise forces, the velocity in the y direction is always 0.
3 Think of it as falling through cracks in the floor?

11.3 Mathematical Model

Cannon (not to scale)

Fgure 11.2: (Left) Detail of cannon. O
Figure 11.3: (Right) Detail of a ball bouncing. O

11.3 Mathematical Model
11.3.1 Names & Notation

The scope name for this model is:

Bounce of a Ball

TSEG (“Test of a SEGmented model”)

‘We use of the following terms from other modules:

AppliedMotiveFields (Defn. 8.21) Rep (Defn. 6.5)
IDs (Defn. 3.8) Repg (Defn. 6.8)
IDsets (Defn. 3.9) RIGID:: States (Defn. 8.4)

FramePaths (Defn. 6.27) Systems (Defn. 8.14)
Lab (Defn. 6.4) Vectors (Defn. 6.1)
Locations (Defn. 6.1)

152

We use Systems to mean RIGID :: Systems rather than KINEMATIC :: Systems. For convenience, we define

the constant parameters for the model:

Definition. (constant parameters)

len. e R
ER
f.eR
ER
v, ER
(11.1) geR
weR
mg €R
rp €ER
rmin€ R
yER
Z € Vectors

; cab -
loc; € Locations " Joc. = (-5,0,5) cannon position

6.=0.28 cannon length
yo=19 cannon oscillation period
6.=0.5 cannon oscillation amplitude
=02 cannon firing period
v =15 ball initial speed
g=928 gravitational acceleration
w=.5 air resistance coefficient
mg=1 ball mass
ro=0.2 initial ball radius
mmin= 0.09 minimum ball radius
v=0.75 radius shrink factor
cab., -
Z =(0,0,1) up” vector

Defn. 11.1: Constant parameters for the model, as describedin Sec. 11.2. O

11.3 Mathematical Model 153

11.3.2 Definitions

It is convenient to pre-define a sequence of ID’s that we will use in the model:

Definition. idq

We define a non-repeating sequence of ID’s:
(11.2)
idg = { idgy, idg, .. | idg; € \Ds and idg, = idg, = i = j}

Defn. 11.2: A sequences of ID’s, that we will use to label bodies and motives in the model. O

The motion of the cannon’s body frame is describe by an explicit function:

Definition. fcannon

We define a function feannon € FramePaths by:
FPreannon(t) = 1oc. -
(113) cos(30. sin(22))
_ 0
Repq ([ﬂb, I?fcaﬂHOH(t)) 7% = Slﬂ(%ac SID(ZT’:—:))
0

Defn. 11.3: Cannon body frame function, feannon. We use a quatemnion to describe a rotation of —f . sin(zr—’?) radians

about the lab frame’s y-axis, so the cannon muzzle’s angle from the horizontal oscillates with a period 7 . and amplitude
8..0

The instantaneous frame of a ball at the instant it is fired can described in turn:

Definition. bshot

We define a function bshot: R — RIGID :: States by:
Rep(feannon(t), Xpspoft)) = (Jem..0.0)
(11.4) Rep (feannon(t), vpspoft)) = (v5,0,0)
Rpsnolt) = Regp
Wpsholt) = 0
Mpsholt) = ™o
Ipshodt) = 0

Defn. 11.4: Initial state of a ball. bshot(t) describes the instantaneous state of a ball fired at time t. The position and
velocity are fixed in the frame of the gun. The orientation, angular velocity, and inertia tensor are 0, since the balls are point
masses. Note that bshot is not a state path as per Defn. 8.6—its velocity vectors don’t describe its own motion—rather, it
is a mapping between a time that a shot might occur, and the initial state of the shot ball. O

The model as a whole is described at an instant by the following space:

11.3 Mathematical Model 154

Definition. States

States

[
ids —|Dsets balls’ IDs
R ~{R}ps radius of each ball
Y + Systems state of each ball

115) M~ {AppliedMotiveFields}|pg motives on each ball
’ tfire — R time of most recent shot

seq +— Integers ball ID sequence number
ids = Ids(Y') = Ids(R) = Ids(M)
Vi € ids, body{M;) = i

]

Defn. 11.5: State of the model. Foreach ballnamedi € ids, its radius is given by R, its dynamic state is given by Y;, and
M; is the applied motive that acts on it. #fire is the time of the shot most recently fired by the cannon. seg is the sequence
number of the ID for the ball to be fired next. Since we apply only one motive per ball, we simply label each motive with
the ball’sID. O

The motive field that is applied to a ball with a given radius and id is given by:

Definition. netf

Define a function netf: ® x |Ds— AppliedMotiveFields such that, for any
r € Randi € IDs:

(11.6) M = netf(r,i) =
{F(M(Y, t)) = —m(Yoay(ar) 9) Z — 772w || U Vooay(ar)) | U Vooas(ar))
TM(Y. 1)) =0

Defn. 11.6: Motive applied to a ball. The net force we apply to a ball has two parts: a constant gravitational acceleration
times the mass of the ball, pointing downward (— Z), and a drag force that is quadratic in and opposite to the ball’s velocity
(=v(Yeody(my)))- O

We define a function that retums the post-bounce state of a bouncing ball:

Definition. bbounce

We define a function bbounce: States x |Ds— riGiD :: States by:

(11.7) M M(Y(s):) ,
bbounce(s,i) = |x— x(Y(s)i) — (1 —v)R(s):Z
v Y (s)) - 2(Z - (Y (s)i))Z
Defn. 11.7: Bounce of a ball. Negates the z component of the ball’s velocity, and lowers the center by the change in radius.

Since the ball is a point mass, the mass distribution, position and velocity form an identifying tuple. (The use of tuple
notation is as per Notn. 3.24.) O

Finally, several auxiliary functions that will be convenient later on:

11.3 Mathematical Model 155

Definition. height, hit, big

We define several functions
height. States x IDs — R height of a ball
hit. States balls hitting the ground

big: States balls big enough to survive
(11.8)

height(s,i) = x(Y(s)i)-Z — R(s)i
hif(s) i € ids(s) | height(s, i) = 0}
big(s) i € hif(s) |y R(s); > m}
Defn. 11.8: Auxiliary functions. For a model state s € States, the height above the ground of ball ¢ € IDs is given by

height(s, i), and the set of balls that are hitting the ground is given by Ait (s).* Of the balls that hit the ground, big(s) yields
those that are large enough to “survive” the bounce—i.e., shrinking them won’t reduce them below the minimum radius. O

I

I

11.3.3 Behavior of the Model

The behavior of the model over time is that of a segmented function, as per Sec. 3.10. We will describe the
behavior using the functional characterization described in Sec. 3.10.3; but as per Sec. B.4.9 we have several
numerical event functions, each with a corresponding transition function.

For continuous motion, we define a consistent path through state space:

Definition. consistent

A state function s: ® — States is consistent iff:

ids,(t) is constant

R,(t) isconstant

(1.9 M,(t) isconstant

tfire,(t) is constant

seq,(t) isconstant
Y, s consistent with M ,

Defn. 11.9: A continuous, consistent, path through state space. The set of ball ID’s doesn’t change, the radius of each ball
doesn’tchange, the motive field that is applied to each ball doesn’t change, and the gun never fires. But the balls can move,
as long as their motion is consistent (Defn. 8.25) with the motive fields. O

To describe the cannon firing, we have an event function, that “goes off” when the cannon fires, and a transition
function that adds a new ball:

4Becanse of numerical inaccuracies, in practice we use
hit(s) = {i € ids(s) | height(s, i) < eand (Y (s):) - Z < 0 }
for some small tolerance €. Thus hit(s) is the set of balls that are numerically close to hitting the ground, where we take care not to
include balls that have already bounced and are moving away.

11.4 Posed Problems 156

(11.10)

Definition. Gfire, Hfire

Define event function Gfire: & x States— R and
transition function Hfire: ¢ x States — States by:

Gfire(t,s) = ftfre,+n —1
R — R, + [idgseq,), 0]
Y Y.+ [idgseq), bshoft)]
Hfire(t,s) = |M — M, + [idgseq,), net(ro, idggeq,))]
thire— t
seq— seq(s)+1

Defn. 11.10: Event and transition functions to fire cannon. For amodel in state s € States, the last time the cannon fired
was tfire., since the period is 73, (Defn. 11.1), the cannon will fire next when ¢ = tfire; + 75. Tomake a transition to the
initial state of the next segment, the function Hfire adds an entry for a new ball to the various indexes, sets the time of firing,
and increments the sequence number. (The use of + to add elements to an index is as per Notn. 3.15, and the use of the
tuple notation is as per Notn. 3.24.) O

To describe a ball (or balls) bouncing, we have an event function that “goes off” when any ball contacts the
ground, and a transition function that adjusts the radius, state, and motives of the bouncing balls:

(11.11)

Definition. Gbounce, Hbounce

Define event function Gbounce: R x States — R and
transition function Hbounce: it x States — States by:
Ghounce(t,s) = min height(s, 1)
iefds(s)
[R — Ro—bifls) | {l,7R(s)]}
ie big(s)
Y i Y,—hi(s) | {[i, bbounce(s,i)]}
Hbounce(t, s) = i€ big(s)
M — M,—his) |J {i, ety R(s):,)]}
ie big(s)
thire— fire,
Lseq — seq, 1

Defn. 11.11: Event and transition functions for balls bouncing. For a model in state s € States , the value Gbounce(t, s)
is the minimum height of any ball, thus is 0 when any ball hits the ground. To make the transition to the post-bounce
segment, Hbounce(t, s) removes all index entries for balls that are colliding with the ground (4t (s)), and adds new entries
for all colliding balls large enough to survive the transition (big (s)); the cannon-firing aspect values are not altered. Both
Gbounce(t, s) and Hbounce(t, s) are independent of ¢. O

Note that transition functions Hfire and Hbounce are commutative, so if both types of events happen simulta-
neously, the two transition functions can be applied sequentially in either order.

11.4 Posed Problems

For this sample model, we have just a single posed problem: determine the behavior of the model over time.
If we start with no balls, we just specify the time that the cannon first fires:

11.5 Implementation Notes

157

Program definitions in scope MTSEG:

class name mathematical object

State States (Defn. 11.5)

StatePath R — States (segmented) state function

idq idg (Defn. 112)
routine function
fcannon(double) : MCO::instFrame fcannon (Defn. 11.3)
bshot(double) : MRIG::State bshot (Defn. 11.4)
netf(double,MM::Id) : MRIG::ApplMotiveField netf (Defn. 11.6)
bbounce(State,MM::Id) : MRIG::State bbounce (Defn.11.7)
height(State,MM::Id) : double height (Defn. 11.8)
hit(State) : MM::IdSet hit (Defn. 11.8)
big(State) : MM::IdSet big (Defn. 11.8)
gfire(double,State) : double Gfire (Defn. 11.10)
hfire(double,State) : State Hfire (Defn. 11.10)
gbounce(double,State) : double Gbounce (Defn. 11.11)
hbounce(double,State) : State Hbounce (Defn. 11.11)

Figure 11.4: Math section definitions for the sample segmented model. O

given: parameters of Defn. 11.1
initial firing time t ¢
(11.12) find: segmented function C: ® — States

Continuously, C is consistent, and discontinuities in C are
such that: < described by event/transition function pairs Gfire, Hfire

and Gbounce, Hbounce.

Egn. 11.12: Behavior of the tennis ball cannon model. We start with an “empty” model, i.e., no balls. The first ball is

shot at time £, and the cannon fires regularly from then on. O

The above is an initial-value piecewise-continuous ODE problem, that can be solved as described in Appendix
C. The continuous behavior is an ODE as per the rigid body forward dynamics problem, Sec. 8.4. The initial

state Cp € States for the problem can be constructed as:
[ids —
R —~
Y « 4
M < f &
tlire<— to — T
| seg— 0

Go=

which will trigger a “fire” eventat{ = tg, and add the first ball to the model. (Or, if this gives results in
boundary-condition difficulties, we can evaluate Hfire(ts, Co), to yield the initial state of the first non-empty

segment.)

11.5 Implementation Notes'

The implementation of the “tennis ball cannon” follows straightforwardly from this chapter’s description of

the model.

11.5.1 Math Section Constructs

The math section for this module has scope name MTSEG (“Math Test of a SEGmented model™); the definitions

are listed in Fig. 11.4.

1See Appendix B for discussion of the terminology, notation, and overall approach used here.

11.5 Implementation Notes 158

class State :

constructors: (MCO::ScalarIdx R, MRIG::System Y, MRIG::ApplHotiveFieldIdx M, double tfire, int seq)
members: ids :HMM::IdSet

R :HCO: :Scalarldx

Y :MRIG: :System

| :HRIG: :ApplHotiveFieldIdx
tfire: double

seq :int

The class for state space States is defined as per Sec. B.3.6. The constructor is given the various indexes as
parameters; it checks to see that the sets of ID’s are mutually consistent, and that each motive is labeled with
the ID of the body that it is applied to, as per Defn. 11.5. The class for state paths, StatePath is defined in
the standard manner as per Sec. B.3.7.

class Idq :
methods: seq(int i) : MM::Id

The class idq implements an infinite sequence of ID’s, idg (Defn. 11.2), by a “generator” mechanism: the
sequence is maintained as a data structure whose elements are created on demand; when a sequence element
is requested that isn’t in the data structure, a new, unique ID is defined and added.

The routines listed in Fig. 11.4 are implemented by directly transcribing the corresponding mathematical
functions. netf constructs an ApplMotiveField instance whose force is given by an algebraic combination
of SysVectorField instances, and whose torque is a constant 0 SysVectorField, as per Sec. 8.5.2.

11.5.2 M-N Interface

The M-N interface for this module has scope name NTSEG

SolveForwvard(double t0) : StatePath

The state path instance returned by this function embodies the solution function C for the behavior of the model
(Sec. 11.4). In order to evaluate C(t), the piecewise-continuous ODE solver NUM: : PodeScatExt (Sec. B.4.9)
is called.

The continuous part of the solution is constructed via MRIG: : SolveForward (Sec. 8.5.3). To handle
the discontinuities, we set up the numerical solver to invoke the routines gfire and gbounce—events are
signaled when the values they compute cross zero.> When an event is found, the solver returns a code telling
us which of the two events it is, so that we can invoke hfire or hbounce as appropriate. The solver may
determine that, to within numerical tolerances, both events happen simultaneously, in which case it returns
both codes; for this model we can safely call both hfire and hbounce in either order.

11.5.3 Conceptual Section

The conceptual section can use the definitions of the dynamic rigid-body module, Sec. 8.5.1.

11.5.4 C-M Interface

The state of the solution for any time value includes the set of ID’s of balls that are in the model at that time.
The C-M interface can dynamically adjust the conceptual section state, adding or removing “sphere” objects
to conform with the solution for any time value. The various balls can be distinguished by the position of their
ID’s in the sequence idq, if, e.g., we want to cycle through a series of colors for the balls that are created.
For more general models, in which many different types of events may result in the mathematical model’s
generating new ID’s, we may want the C-M interface to be able to distinguish between ID’s based on the

3 Notice that both functions are set up to be positive before an event, zero at the event, and negative past the event, as discussed in
Sec. C.1.1.

11.5 Implementation Notes 159

events that caused them. Forexample a single model may create a new ball when a cannon is fired, and create
new glowing embers when fireworks explode—the C-M interface needs to know whether a given ID in the
system belongs to a ball or to an ember. We suggest two methods to achieve this:

¢ Define separate sequences similar to idg. Each event would choose ID’s from a separate sequence, and
the C-M interface could determine to which sequence any given ID belongs..

o More generally, partition the space |Ds into subsets, and require different parts of the model to use ID’s
from different subsets. This could be implemented as subclasses of the class MM: : Id, with runtime
tagging to be able to determine which subclass a given instance is a member of.

Chapter 12

160

Extensions to the Prototype Library

he library and sample models that were presented in Ch. 611 serve as a small, prototype example and test
case. However, one of our goals for the structured modeling approachis to support extensibility, i.e., addition
of new capabilities that are built on and integrated with an existing library.

This chapter, therefore, discusses how the prototype library could be extended and enhanced to support a handful

of new capabilities: collision and contact, finite-state control mechanisms, interchanging kinematic and dynamic
motion, and flexible bodies. Note that unlike Ch. 6-11, which were all implemented as described, the discussion
in this chapteris speculative, put forth to suggest ways in which the given library might be extended. Thus we will
describe some conceptual ideas, and informally sketch some mathematical equations, but will not give a formal

description of modules or implementation details.

12.1 Rigid-Body Collision

We’d like our rigid bodies to bounce when they
collide with each other. The rigid-body dynam-
ics module in Ch. 8 doesn’t notice when bodies
collide—it doesn’t “know™ the extents of the bod-
ies, and freely lets them pass through each other.
Here, we’ll talk briefly about collisions.

First, we observe that conceptually, the rigid-
body abstraction is at its weakest when addressing
collisions between bodies: for continuous free mo-
tion, with accelerations that are small compared to
the rigidity of the material, the rigid-body abstrac-
tion works well; but when bodies collide, there is
a sudden extreme change in their velocities—thus
there are deformations, shock waves, and so forth
in even the most rigid of materials. Still, it is of-
ten useful to abstract a collision as a discontinuous
change in the velocity/momentum of a perfectly
rigid bodies. (Fig. 12.1)

Figure 12.1. Rigid-body collision. When rigid bodies collide, they
experience a discontinuous change in velocity (both linear and an-
gular). O

Discontinuous changes in momentum are described via impulsive forces (or just impulses). The common
empirical model for collisions is that the points of contact emerge from an impulsive collision with some
fraction e of the relative perpendicular velocity that they had going in:

AV} = —eAV]

12.2 Rigid-Body Contact 161

where e is called the coefficient of restitution, and is determined experimentally for different pairs of materials.
If e = 1, the bodies leave with the same relative velocity that they had going in, whereas if e = 0, they will
remain in contact.! For more complete discussion of rigid-body collision, see [Fox67-Ch10.8], [Baraff89],
[Moore,Wilhelms88].

Rigid-body collisions can be incorporated into the prototype library, by generalizing the method used in
the “tennis ball cannon” model in Ch. 11. That is, we mathematically characterize the behavior as a segmented
function by defining two functions that describe the collisions:

e An event function g such that g(¢, Y'(¢)) is the minimum separation between any bodies, where negative
values indicate penetration.

o A transition function h such that h(t, Y (¢)) computes the effects of impulses on the colliding bodies.

Of course, we need to include the shapes of the bodies into our conceptual and mathematical models, in order
to define the event function. In particular, we need algorithms to determine the separation between bodies;
see [Baraff90], [Von Herzen,Barr,Zatz90], [Moore,Wilhelms88], or [Snydera2].

When several bodies mutually collide, or when collisions involve bodies that are constrained (as per Ch. 9)
or in contact (as per Sec. 12.2), the impulsive collision calculation expands to involve a simultaneous system
of equations; see [Baraff89], [Moore, Wilhelms88].

12.2 Rigid-Body Contact

Rigid bodies are often in continuous contact, €.g.,
a collection of bodies in a pile. In general, we can
let rigid bodies touch, or let them move apart, but
we don’t want them to interpenetrate. Mathemat-
ically, this translates into a non-holonomic con-
straint, i.e., an inequality relation: The separation
between bodies must be greater than or equal to 0.
(Fig. 12.2)

As long as two bodies maintain contact, they
mutually apply contact forces to keep from inter-
penetrating; these forces are essentially the same
as those of the geometric constraints described in
Ch. 9. The contact forces are “one way,” however, Figure 12.2. Rigid-body contact. Contact forces ensure that bodies
inthat they pushbodies apart, butdon’tpulltohold donot interpenetrate. O
bodies together.

Determining when to introduce and remove contact forces is a complex task, especially in the presence
of multiple-body contact, surface friction, impulsive collisions, and so forth. A treatment of the subject is
beyond our scope; we refer readers to the series of articles [Baraff89], [Baraff90], and [Baraff91].

For our current discussion, we observe that a description of rigid-body contact can fit into the segmented-
model formulation. Extending the functions described in Sec. 12.1, we have:

e Eventfuncrion: Determines when bodies collide, and, for bodies in contact, determines when the contact
forces “let go.”

o Transition funcrion: Computes impulsive behavior, activates contact constraints to keep bodies from
interpenetrating, deactivates contact constraints to let bodies separate.

1 As discussedin Sec. 2.6.2, we actually prefer a quasilinear restitution model.

12.3 Finite-State Control 162

12.3 Finite-State Control

Often, a model may have several different modes
of behavior, that it switches between based on spe- / AAIBOCRT S
r foot

cial events; control mechanisms to describe these S leaves

changes of behavior are often defined as finite- mEe srowne

state machines (FSM’s). These are graphs or ta- @

bles that have a collection of state nodes, and, for

each node, a list of interesting events and the cor- e \ Lok

responding transitions (arcs) to new nodes. e gri“y 1 foot |
For example, gait control for human or ani- banana

eel
mal locomotion is commonly described as a finite ¥
state machine—when a foot leaves the ground, the

model enters a state in which the leg is brought for- >
ward, when the leg contacts the ground, weight is - @ 1 foot
shifted onto it, and so forth (Fig. 12.3); see [Girard, i

Maciejewski85], [Raibert,Hodgins91]. The “tennis
ball cannon” model in Ch. 11 can be described via Figure 12.3. Finite-state machine. A finite-state machine canbe used
a simple machine that has one state node, Withtwo 45 a control mechanism for models. O
event arcs that loop back to it, one followed peri-
odically for the “fire” event, and the other followed when a ball bounces. [Brockett90] discusses a finite-state
model for a formal robotics language. [Kalra90] gives a general formulation for finite-state control over mod-
els (from which we take the notation we use below).

Mathematically, we can describe a finite-state graph via a collection of triples, each describing an arc:

(Bl'v L: B})r

where B; names a node, L an event, and B; the node at the terminus of the arc, and where we use ID’s to
name events and nodes. The space of all possible finite-state graphs would then be:

FSMs = sets of triples {(B;, L, Bj), .. .}

The state of a model controlled by an FSM would include an aspect for the current state node, as well as an
aspect containing the FSM itself.

ModelStates

fsm — FSMs The controller for the model
B —IDs The current state node

]
Consider a segmented function through the above space. Since the aspect spaces for B and fsm are discrete,

they must stay constant within each segment of the function. However, when an event occurs, a transition
function can modify B:

B« B; suchthat (Bs, L, B;) € fsm;
h(t,s,L)y=| .

Notice that in addition to time ¢ and model state s € ModelStates, the transition function takes a parameter
L € IDs, which is the name of the event that occurred, as discussed in Sec. B.4.9.2 In addition to updating B,

2If multiple events can occur simultaneously, and if the transition function can’t be evaluated sequentially for each event, the FSM
would need to include arcs to follow for each combination of events.

12.4 Mixed Dynamic/Kinematic Motion 163

the transition function can adjust the model state appropriately (based on s and L), in the same style as Hfire
(Defn. 11.10) and Hbounce (Defn. 11.11) of the “tennis ball cannon.” We can even modify fsm—the model
can change its control program!

12.4 Mixed Dynamic/Kinematic Motion

Often, a model has some parts that can most eas-
ily be described kinematically, while other parts
have dynamic motion. The “tennis ball cannon”
in Ch. 11, for example, has kinematic motion for
the cannon barrel, and dynamic motion for the
balls. More interestingly, individual bodies may
switch between kinematic and dynamic motion, as
inFig. 12.4.

Any desired kinematic motion of a dynamic
body can in principle be achieved by introducing
appropriate time-varying geometric constraints,
such as described in Defn. 9.37—but doing so
may be inconvenient, and moreover, requires extra
work in the numerical simulation of the dynamics.

Instead, we can directly change the rules of be-
havior for any given body. For example, we define Figure 12.4. Interchanging dynamic and kinematic behavior. Here,
a model whose state includes both kinematic and the penguinsslide down the incline dynamically, but make the ream
dynamic elements; trip via a kinematic conveyorbelt. O

ModelStates
[

K —XKINEMATIC:: Systems kinematic body states
D —riGID:: Systems dynamic body states
M w— {riGID::MassDists}ng mass properties of each body

Ids(K) U Ids(D) = Ids(M) M records mass of all the bodies
Vi € Ids(D), m(D;)=M; dynamic bodies agree with M
]

The motion of the bodies in K is governed by some kinematic rule, while the motion of the bodies in D is
determined by a set of applied motive fields. For a body named i € |Ds to go from dynamic to kinematic, the
transition function would perform:

D «— D—i remove from dynamic index
K «— K +[i,k(D;)] addkinematic state to index

and for kinematic to dynamic:
. IM— M;
2 &4 DED [k<—| K;
K &« K-—i remove from kinematic index

]] add dynamic state to index

We maintain the body frame (and velocity) across the events, so the transitions appear seamless. The transi-
tions can be controlled via the finite-state mechanism described in Sec. 12.3,

12.5 Flexible Bodies 164

On arelated note, consider a model of 100,000
dominoes arranged on end, ready to be knocked %
over. To perform a dynamic simulation of all the

dominoes would be infeasible. But we notice that
there are only a few dominoes moving at any one Figure 12.5. Mixed static and dynamic parts. The dominoes are
time—the rest are static. (Fig. 12.5) static before and after falling. O

Thus we would design a model with separate “active” and “static” body indexes. When something collides
with a static body, we switch it to active, with an initial condition based on the collision impulse (Sec. 12.1).
When an active body is at rest and in contact only with static bodies, we switch it to static. Computationally,
we need only compute the behavior of the active bodies, and need only test for collisions amongst active
bodies and between active bodies and neighboring static bodies.

12.5 Flexible Bodies

We would like to extend our library to support dy-
namic modeling of flexible bodies, integrated with
the rigid bodies (Fig. 12.6). It is common in com-
puter graphics to model flexible bodies as a grid ;
of point masses, with some some sorts of springs £ &
linking them together. This approach has the ad- . / Fi
vantage that it’s easy to implement, especially
given an existing rigid-body modeling system.?
However, we feel that this approach introduces ex-
cessive implementation detail into the conceptual
model, as discussed in Sec. 2.4. Instead, we per-
form much the same computation, but with a dif-
ferent outlook (choice A of Fig. 2.6, rather than the
mass-point/spring model, choice C).

Our basic conceptual model of a flexible body is that it is a smooth, continuous surface. For the mathe-
matical model, we follow the development in [Terzopoulos et al.87] and [PlattB9]: start with an expression
for the strain energy of the model; taking a variatonal derivative yields a partial differential equation (PDE)
describing the continuous surface that minimizes the energy. In order to numerically solve the PDE, it is dis-
cretized using a finite element or finite difference approximation. As discussed in [Plati89], a finite difference
approximation can be made that is mathematically equivalent to a point-mass-and-spring system.

Programmatically, once we numerically solve the (discretized) equations, we propogate the result back
to the mathematical section, and thence to the conceptual section—this means reconstructing a continuous
function from the discretized results, by interpolation appropriate to the discretization method.

There are several advantages to creating a smooth surface at the mathematical and conceptual levels, rather
than using the mass-point/spring model:

Figure 12.6. A flexible body, interacting with a rigid body. O

¢ The body can be rendered without regard to the numerical discretization. Many rendering methods
will resample the smooth surface (adaptively) to create high-quality graphics; this resampling is not
restricted to the numerical discretization grid points. '

o The interaction with the other objects in the model is notrestricted to grid points. Penetration tests, e.g.,
can be performed on the smooth surface, without having to worry if small objects will “slip between
the cracks.”

¢ The grid density can be chosen automatically by the numerical solver, based on problem-specific data,
or can vary adaptively over time or across the body. The user doesn’t need to guess a grid density in
advance that will suffice throughout the simulation.

3In fact, we've done so: we’ve succesfully simulated models of flexible 3-D bodies as roughly 1000 point masses on sparse grids,
with roughly 10,000 springs between them, using our implementation of the prototype library modules of Ch. 6-8 .

12.6 Summary 165

e The solution method is independent of the higher levels. The numerics section doesn’t have to al-
ways use the finite-difference method if in some configurations, e.g., a modal analysis (see [Pentland,
Williams89]) or deforming rigid body method is appropriate. The various methods can be swapped in
without affecting the higher level of the program. 4

It might seem expensive to make and use the interpolated solution, rather than directly using the numerical
data. However, we feel that it will buy us much in the way of cleanliness, robustness, and applicability.
Moreover, the eventual use of “smart” or adaptive solvers will allow us to simulate systems that require fine
sampling for only a few extreme configurations; if we were to have only a pre-assigned sampling density,
we would need to globally choose the finest sampling, thus making the overall computation too slow to be
feasible. Thus, ultimately, this approach may be faster.

In order to integrate rigid-body and flexible-body dynamics, we must have a compatible mathematical
formalism. For rigid bodies, in Ch. 8 we chose a force-based, Newtonian formalism; but flexible bodies are
typically expressed using an energy-based, Lagrangian formalism. We may need to extend Ch. 8 to include the
energy formulation, or, conversely, we may wish to express flexible bodies using a force-based formulation.
Or both.

12.6 Summary

This chapter has speculated on how several techniques and features could fit into the prototype library of
Ch. 5-9. In doing so, we have doubtlessly glossed over many difficulties, incompatabilities, and so forth.
Our intent is to try to convey a feeling of where the modeling methodology might lead, and also to illustrate
how we use the methodology in thinking about as-yet-unsolved issues.

Our choice of topics in this chapter has deliberately emphasized models involving discontinuous events
and changes of state. We feel that a primary benefit of the structured approach towards modeling will ul-
timately be in the ability to create models that are hetereogeneous—i.e., that incorporate various different
behaviors mixed together—both across time and across the elements of the model.

4This is analogous to the linear system solver NUM: : 1insys, discussed in Sec. B.4.3, that chooses between a sparse method or
singular-value decomposition.

166

Chapter 13

Concluding Remarks

his chapter offers retrospective evaluation and comments on aspects of the design framework. We will elabo-
rate on a small assortment of issues, based in particular on our experience with the prototype modeling library

of Ch. 5-12, and conclude with thoughts about where the ideas we have presented may lead.

13.1 Did We Meet Our Goals?

Sec. 1.2 enumerated various goals for a design framework. Here, we list the goals again here, accompanied by
discussion of how well the design strategy that we have presented meets those goals, based on our experience
developing and implementing the library described in Ch. 5-12.

L]

To facilirate the understanding and communication of models: We have found that the CMP structure
(Ch. 2) helps us to understand models, by providing a powerful and convenient partitioning of the major
parts of a model. Having a common framework and terminology has proven helpful for discussing with
colleagues models that are under development, and for presenting final versions of models such as in
Ch. 6-9.

To facilitate the creation of models with high degrees of complexiry: The use of modularity in the design
of models (Sec. 2.5) helps manage complexity. The use of structured mathematical modeling techniques
(Ch. 3) helps us to isolate and write well-defined mathematical equations for complex models; in partic-
ular, the ability to defined the behavior of a complex model as a segmented function (Sec. 3.10, Sec. 4.7)
lends itself to very “clean” organization for models and programs.

To facilitate the reuse of models, techniques, and ideas. Modularity design as per Sec. 2.5 is helpful in
the re-use of models at the blackboard level. The toolbox-oriented program framework lets us re-use
models and program code at the implementation level; in particular, the “structured numerics™ library
(Sec. B.4) has proven to be usable in a wide variety of applications.

To facilitate the extension of models. In our sample library, the “fancy forces” module (Ch. 9) was
successfully designed and implemented as an extension to the earlier rigid-body modeling modules;
it did of course engender some minor alterations to the earlier models, but the modular design and
implementation framework kept those changes localized. Similarly, as per our discussion in Ch. 12,
future extensions to the library seem relatively straightforward.

To facilitate the creation of models that are “correct.” The emphasis on explicit statement of the goals
and conceptual properties of the model (Ch. 2) helps make sure that we are “on track” as we design

13.2 Notes on the Design Framework 167

models. The emphasis on standalone mathematical models (Sec. 2.4, Ch. 3) helps us to verify math-
ematical consistency. The overall framework helps us to debug a model by identifying and localizing
various types of bugs, as discussed in Sec. 2.6.4 and Sec. 4.9.

o To facilitate the translation of models into programs. By using object-oriented, functional, and proce-
dural programming styles in the various separate sections of a program, rather than choosing a single
style overall, we have been able to best match the programming methods to the local programming
tasks. And, since the program framework (Ch. 4) follows the blackboard framework closely, it has
proven to be straightforward to implement models; in particular, the final version of the “fancy forces”
module was implemented without much difficulty, by following the description in Ch. 9. The program
framework lends itself to debugging, as discussed in Sec. 4.9.

13.2 Notes on the Design Framework

13.2.1 Structure of Physically-based Models

As per the discussion of applied mathematics in Ch. 2, we think that a primary part of physically-based
modeling is:

e Identification of a well-defined mathematical model, that has no “conceptual” or numerical solution
influences mixed into it.

The separation of equations from problems (as per Sec. 2.4.2) is perhaps less basic: for given goals, there are
often specific problems to be posed, and we may be best off posing them directly. But when we are interested
inreusable general-purpose models, in which different problems may be posed for different applications, the
separation becomes significant,

13.2.2 Mathematical Models

We have found the mathematical techniques in Ch. 3 to be convenient and helpful in designing complete
mathematical models. But can these techniques (or future ones) keep a rein on mathematical models that can
grow arbitrarily complex? It would be nice if mathematical models were always tractable by hand, via the use
of modularity, structuring techniques, and so forth. In our experience with the “fancy forces” mathematical
model, Ch. 9, however, we have found that we construct a long chain of definitions that can be tricky to use
correctly.

If our goal of having well-defined mathematical models wrirten on paper proves to be unattainable or
impractical, we may need to modify it: we’d rather not give up well-defined mathematical models, but we
may give up writing them on paper—that is, we may turn to computer-aided mathematical modeling, as
discussed in Sec. 13.4.

13.2.3 Program Framework

Our experience using the program framework that we defined in Ch. 4, with its conceptual/math/numerics
separation, has been favorable. Nevertheless, given the volatile nature of computer program technology,
we’re skeptical about any specific program structure passing the test of time.

We have found that the approach of identifying and supporting changes of representation, as discussed in
Sec. 4.6, has been particularly valuable in defining a high-level, structured numerics library. The numerics
library described in Sec. B.4 has proven useful not just for our own prototype physically-based modeling
library, but for other projects as well.

In defining “math section” objects and classes for the modules of Ch. 6-9, we essentially implemented a
limited, special-purpose symbolic mathematics mechanism, directly in the C++ programming language. This
was a straightforward task, given well-defined “blackboard” mathematical models. Nevertheless, it would
perhaps be more elegant to define these in a mathematical modeling language; see Sec. 13.4.

13.3 Have We Made Modeling Easy? 168

13.3 Have We Made Modeling Easy?

We can’t claim that we’ve “magically” made modeling easy. It can be a lot of work to completely specify a
model in the “structured modeling” manner we have described—for example, if nothing else, the prototype
modules in Ch. 6-9 have a lot of bulk. In fact, for a small, one-time-use model, it would probably be easier
to just express and implement the model from scratch.

So what have we done? Our goal has been to maximize correctness, modularity, and reusability, so that
we can build models more intricate than we could otherwise. Thus we:

o Invest more effort in the small—i.e., carefully describe the details of individual modules,
to yield
o Betterresults in the large—i.e., complex models that are robust and flexible.

Even our simple prototype library has provided us with models and modeling programs that are more flexible
than were previously available to us. For example, we now construct programs that support the optional
calculation of work done by each force object—this capability is achieved “for free” given the pre-existing
modular library.

But what about models that are very large? If we look at programming, we see that modularity and struc-
ture are crucial elements for the design of large programs, but as projects get increasingly large, structured
programming is in itself insufficient: high-level langnages are used, and for large enough projects, we en-
ter the realm of software engineering (which addresses issues such as revision control, metrics, management
techniques, and so forth). Similarly, we feel that our “structured modeling” approach includes some funda-
mental elements for the design of large models, but for large models, higher level mechanisms than we have
described will need to be created, and for sufficiently large projects, an approach to “model engineering” will
be needed; this need is discussed by [Brooks91].

13.4 Computer-Assisted Mathematical Modeling

Computer tools can potentially aid us to define and use mathematical models. We identify three areas in which
computer tools can be of use; there is of course some overlap between them.

CAD for Mathematical Models. Remember that for our purposes, a mathematical model is a collection of
definitions and equations, as opposed to a posed problem. Thus we want computer-aided design (CAD)
tools that help us to construct equations and definitions, rather than tools to solve equations. A mathe-
matical modeling CAD tool would include such features as: !

Declarative definitions (rather than procedural).

Modularity, including support for libraries, name scoping, etc.
Data abstraction, i.e., definition of new abstract spaces.

Extensible notation.

Type-checking of operators and domains.

Interface with programming languages and problem-solution tools.
Ability to arrange and annotate models for clarity of presentation.

Note that the emphasis is not on automated generation of equations and definitions, but rather on a
utility that helps us to manually generate the equations and definitions that we’re interested in.

1 Qur hypothetical CAD tool is similar in many respects to a “Smart Paper” proposal of [Barrg6].

13.5 Future Directions 169

Solving Posed Problems. Symbolic mathematics programs, such as Maple ([Char et al.91]) and Mathemat-
ica ([Wolfram91]), are powerful tools for problem-solving.? These programs incorporate the ability to
manipulate expressions symbolically with built-in numerical evaluation and solution capability. On
a different slant, [Abelson et al.89] describes techniques for automated construction, execution, and
analysis of numerical problems from high-level models.

Program Construction. Numerical problem-solving subroutines often require that the user provide “call-
back” subroutines; e.g., a subroutine that computes a derivative for an ODE solver, or an objective
function for an optimizer. These subroutine are derived from mathematical model constructs, and thus
can potentially be created antomatically by symbolic manipulation. The subroutines can be constructed
at runtime, based on end-user specified model configurations, resulting in special-purpose routines that
efficiently evaluate the necessary components for a given problem; this approach was used in [Witkin,
Kass88].

13.5 Future Directions

We hope that we have provided a stepping stone upon which others may build, to create new generations of
modeling methodologies. We can imagine the existence of rich modeling environments, full of building blocks
and modules (rigid bodies, constraints, flexible bodies, fluids, walking and running, quantum mechanics,
weather, aerodynamics, molecular modeling, etc.) that can all be interconnected and expanded, so that users
and researchers can easily, build highly complex models. Future work for such environments might entail:

» Specification languages for physically-based models.

e Standards for exchanging physically-based models.

Automated techniques to link together different model components.

Interactive modeling/simulation workstations.

Specialized hardware to support key aspects of the modeling/simulation process.

*

Clearly, the ideas that we have presented don’t directly provide the above capabilities—but we have tried to
identify and examine some of the concepts that may underlie them.

2 Note that these programs are not quite suited to ouridea of CAD for mathematical modeling. They have procedural approaches; they
emphasize automation in order to minimize the user’s work; and finally, they don’t emphasize emphasize modularity or data abstraction,
both of which are fundamental to our mathematical modeling strategy.

170

Appendix A

Miscellaneous Mathematical
Constructs

his appendix contains a few mathematical constructs that are used by some of the models in Ch. 6-9 . Notice
that these are purely mathematical utilities, rather than physically-based models. Thus they do not include
conceptual models, goal statements, and so forth, just some mathematical definitions.

The mathematical constructs defined here are not as fundamental as the various constructs of Ch. 3 (such as ID’s
and state spaces); thus we have chosen not to include them in that chapter. On the other hand, these constructs
seem too general-purpose to be defined as auxiliary constructs of some specific physically-based model.

Therefore, to give such constructs a home, we have defined here a small library of miscellaneous mathemati-
cal definitions. This library includes program implementations of the constructs, in the math section, numerics
section, and M-N interface parts of the program framework (Ch. 4).

A.1 Trees

The index mechanism of Sec. 3.8.2 provides a ba-
sic structuring capability for mathematical mod-
els: The ability to manipulate groups of elements
by name. Here, we define an additional structuring ¢ d g
capability, familiar from computer science: Hier- f
archical “tree” relationships between mathemati-
cal entities. h i J k l l m
We define a state space, such that each element
of the space is a forest: n
Figure A.l. A sample forest. c's parentis a, h's parentis c, and
so forth. a’s children are {c,d}, and so forth. {a,b} are the roots.

{d, f, h,1, 7, k,m,n} are the leaves. c's descendants are {h, 1,7},
a’s descendantsare {c, d, k,4, 7}, and so forth. O

A.2 Arrays 171

Definition. |Dforests

IDforests

[
ids — [Dsets AllID’s in the forest
roots — |Dsets The ID’s at the roots
nomroots s |Dsets The 1D’s not at the roots
leaves — |Dsets The ID’s at the leaves

parent — {IDs}|ps Parent of an ID

children ~ w— {IDsets}ng Set of children of each ID
descendants — {|Dsets}|ng Ser of descendants of each ID
(A.D -

. Ids(parent) C ids

. Ids(children) = Ids(descendants) = ids

. roots U nonroots = ids, roots N nonroots = f

. nonroots = Ids(parent)

. leaves = {i € ids | children; = ﬂ}
.Vi€Ds, j € children; <> parent; =i
. Vi€ |Ds, descendants; = children; Ujechildren,- descendants;

8.Vie€IDs, i ¢ descendants;
]

Defn. A.1: The space of forests of trees of ID’s. Each element of |IDforests is a forest, which may have several trees.
(1) Not all ID’s need have parents. (2) All ID’s have a set of children and a set of descendants (3) Every ID is a root or a
nonroot. (4) The nonroots are those ID’s that have parents. (5) The leaves are those ID’s that have no children. (6) Every

ID is the parent of its children. (7) The descendants of an ID are its children and its children’s descendants. (8) No D is its
own descendant. O

NSO U A~

This space is used for the kinematic hierarchical configurations, in Ch. 7.

A2 Arrays

It is convenient to define some constructs for arrays. We define a vec to be a 1-D array of real numbers, of
arbitrary size, and a mat to be a 2-D array of real numbers, of arbitrary size:!

Definition. Vecs, Mats

Vecs
Mats

z € R* | positive integer k
€ §R] xk

(A.2)

positive integers j, k }

Defn. A.2: Vecs is the set of all 1-D arrays of real numbers, no matter what their size; for example, if a € Vecs and
b € Vecs are two vecs, it maybe truethat a € R2 while b € ®3. Similarly, Mats is the set of all 2-D arrays of reals. Thus,
Vecs and Mats are disparate unions as per Sec. 3.7.3; two vecs or two mats are agnates if they have the same sizes. O

In order to tell us the size of a mat or vec, we define operators:

1We chose the names “vec” and “mat” to be reminiscent of “vector’” and “matrix”; we chose not use the latter names directly, so as
to avoid potential confusion with the geometric objects in Ch. 6.

A.3 Implementation Notes 172

Program definitions in scope MMISC:
class name abstract space
Forest IDforests (Defn. A1)
Mat Mats (Defn. A.2)
MatIdx {Mats}|pg index of mats
MatIdx0 { Mats}‘l‘DS index of mats, with 0
Vec Vecs (Defn. A2)
VecIdx {Vecs}ips index of vecs

Figure A.2: Math section definitions for the miscellaneous mathematical constructs. O

Definition. Isz, Rsz, Sz

For m € Mats, v € Vecs

(A.3) IsZ(m) = j, where m € RI**
rszZ(m) =k, where m € R %¥
sz(v) =k, where m € R*

Defn. A.3: Operators for the “left size™ (Isz) and “right size” (r52) of a mat, and for the size (sz) of a vec. O

It is convenient to give ourselves shorthand notation for arrays of known sizes:

Notarion. Vecs and Mats

Mats[j,k] = {meMats | Isz(m) = j, rsz(m) = k }

e Mats[j,+] = {m € Mats | Isz(m) = j}
. Mats[«,k] = {m € Mats | rsz(m) = k}
Vecsfk] = {veVecs |szm)= k}

Notn. A.4: Arrays of known sizes. We use the bracket notation on the left as shorthand for the subsets on the right. For
example, Mats[4, 3] is the space of 4 x 3 arrays of reals, Vecs[3] is the space of all arrays of 3 reals. Mats[2,] hasits
size partially-specified—the space includes,e.g., 2 X 2 as well as 2 x 3 arrays. O

We use will use standard matrix arithmetic for mats and vecs.

A.3 Implementation Notes'

A.3.1 Implementation of Trees

The class MMISC: : IdForest that implements the space of forests could in principle be implemented in our
standard manner for state spaces (Sec. B.3.6), i.e., explicitly store all the aspect values. However, that can
quickly grow unwieldy, especially for the descendants aspect. Instead, a more compact mechanism is used,
and routines are defined to compute the various aspect values on demand.

For numerical computations involving trees, one often needs to perform an operation on each ID in a
tree. The routines NMISC: :IdForestPreorder(...) and NMISC: : IdForestPostorder(...) call a user-
provided subroutine once for each ID in a forest, the former visiting a parent before visiting its children, and
the latter, after.

A.3.2 Implementation of Arrays
The classes MMISC: : Vec and MMISC: : Mat are straightforward interfaces to a standard array package.

See Appendix B for discussion of the terminology, notation, and overall approach used here.

173

Appendix B

Prototype Implementation

his appendix discusses a prototype implementation of a structured modeling environment as per Ch. 4 and
used by the modules in Ch. 6-9. We discuss here the fundamental support routines and structure for the

conceptual/math/numerics framework discussed in Ch. 4; this structure is not specific to the rigid-body modeling
library in Ch. 6-9.

The appendix is in four parts. First, we give an overview of the presentation style that we use to describe the
implementation, both here and in the models in Ch. 6-9. This is followed by a brief discussion of the conceptual
section. Next, we describe the math section—focusing in particular on how to implement a mathematical model
such as in Ch. 6-9, using the support that is provided by the environment. Finally, we discuss the numerics
section, which contains a modular interface between low-level numerical subroutines and the higher levels of the
programming environment.

The discussion is at the level of functional specification, intending to provide a starting point for the design of
future implementations, rather than a prescription of syntactic details of the prototype. Note, however, that the
specification is taken from existing, working code—it is not speculation.

B.1

Overview of the Presentation Style

In describing the prototype implementation, both here and in the modules in Ch. 6-9 , we have tried to convey
the essentials of the structure and methodology, so that readers interested in designing and implementing their
own modeling environments would be able to draw on our experience.

We have chosen not to include listings (or even snippets) of our working C++ source code or class
definitions—we feel that the syntactic intricacies of the C++ language, compounded by the programming
idiosyncrasies of the author, would obfuscate the mostly simple mechanisms that are at work. Instead, we
give functional specifications of modules and classes. But we try to sprinkle in enough “grit” to keep the
description anchored to the implementation, rather than drifting off into hyperbole.

Object-oriented programming today does not have a widely accepted uniform terminology. We list the
terms that we use, and refer the reader to [Booch91] for further discussion:

*
L]
L]
L]
L]

Class. An abstract data type, in an object-oriented language.

Instance. An object that belongs to some class.

Data Member (or, just member). A named data element that contains part of the state of an instance.
Method. A named operation on an instance.

Operator. A method invoked via special syntax.

Constructor. A method that is invoked to initialize a new object.

We will describe a class using the following form:

B.2 The Conceptual Section 174

class Classname :
constructors: (...parameters...) a constructor for the class
(...other parms...) we may have several constructors
members: gamma : double data member named “gamma” of type double
width: integer we may have several data members

methods: eval(...parms...): integer method “eval” returnsan integer
rep(...parms...) :double[3] returnsanarray of 3 doubles

We will leave various details out of our descriptions: implementation details such as private or hidden data
members (any interesting implementation issues will be discussed in the accompanying text); optimization
details such as pass-by-reference or inline definitions; class-mechanism administratrivia such as destructors
or assignment operators; debugging tools such as instance names and tracing methods; numerical details such
as tolerance parameters.

Our program descriptions will follow the LISP-like namespace style that is discussed in Sec. 3.6.2, in
which we specify a “current scope” for a module; all non-primitive terms presumed to be in that scope unless
explicitly prefixed with a scope name. Since C++ scoping doesn’t work in that way, the actual implementa-
tion explicitly prefixes all symbols with their scope names. To keep the program definitions from being too
unwieldy, we use abbreviated scope names:

scope name defined program section description

McOo Sec. 6.6 Math COordinate frames

MKIN Sec.7.5.2 Math KINematic rigid bodies
NKIN Sec.7.5.3 m-N interface KINematic rigid bodies
MRIG Sec. 8.5.2 Math dynamic RIGid bodies

NRIG Sec.8.5.3 m-N interface dynamic RIGid bodies

MFRC Sec.9.5.2 Math fancy FoRCes

NFRC Sec.9.5.3 m-N interface fancy FoRCes

MTSEG Sec. 11.5.1 Math Test SEGmented model
NTSEG Sec. 11.5.1 m-N interface Test SEGmented model
MMISC Sec. A3 Math MISCellaneous mathematics
NMISC Sec. A3 Numerics MISCellaneous mathematics
MM Sec.B.3 Math support Modules

NUM Sec.B4 Numerics structured nUMerics library

B.2 The Conceptual Section

The conceptual section maintains a data structure containing objects that correspond to things in the model.
The data structure objects are updated based on user interaction, simulation results, and so forth.

As discussed in Sec. 4.2.1, the conceptual section of the program performs many of the same tasks as a
traditional (kinematic) modeling program, except that the behavioral computation is offloaded to a mathe-
matical/numerical computation “engine,” via the C-M interface. We have focused on the construction of that
engine as the most novel part of the program framework, and have given short shrift to the conceptual section.
Our prototype implementation provides some basic support interfaces:

o to [Snyder92] for shape models and their mass-distribution properties,
¢ torendering software and hardware,

¢ to animation/control and recording software and hardware,

There is still much room for work at the conceptual level. In particular, there is a need for high-level
physically-based modeling description languages and data formats.

B.3 The Math Section 175

B.3 The Math Section

The math section of a program, as discussed in Sec. 4.2 and Sec. 4.4, is primarily a collection of definitions
of data types—i.e., classes—that support the various entities in the blackboard mathematical models. Here,
we discuss how these definitions and support are implemented.

B.3.1 Overview: Classes and Abstract Spaces

Our mathematical models are based on abstract spaces, as discused in Sec. 3.7 (and evidenced in the models
of Ch. 6-9). This maps well into object-oriented programming—our basic procedure to implement a given
model is:

e For each abstract space of interest in the mathematical model, we define a corresponding class
in the program.

For example, some classes that we define, and their corresponding spaces, are:

class name abstract space

MM::Id IDs (Defn. 3.8)
MM: : IdSet IDsets (Defn. 3.9)
MCO: :Vector Vectors (Defn. 6.1)
MCO: :VectorPath VectorPaths (Defn. 6.19)
MRIG: :ApplMotive AppliedMotives (Defn. 8.20)

MRIG::ApplMotiveIdx {AppliedMotives}|pg (an index, Notn.3.11)

Notice that we use singular names for the classes, in keeping with the programming style that the name is that
of the data type. Notice also that we often explicitly create classes, such as ApplMotiveIdx, for commonly
used abstract spaces that are mathematically defined implicitly or indirectly, such as the space of all indexes
of applied motives, {AppliedMotives} pg; we will discuss indexes in Sec. B.3.5. Finally, notice that we
create classes even for abstract spaces whose elements are functions, such as VectorPaths whose elements
are functions from reals to vectors; we will discuss functions in Sec. B.3.7.

Each class defines various methods that support mathematical operators and functions defined over the
abstract space. For example, as discussed in Sec. 6.6, the MCO: : Vector class has a method rep(Frame)
that supports the mathematical operator Rep (Defn. 6.5), returning the representation of a vector in a given
coordinate frame.

B.3.2 Immutable Objects

In Sec. 3.5.1 we pointed out that mathematical model entities have no changeable “internal state”—as opposed
to program objects, which typically do. However, we would like to closely follow the mathematical model in
our implementation. Thus we adopt a restricted style for the math section objects:

e The state of a math section object may not be changed after the object is constructed.

This can be supported in object-oriented programming by defining no “modifier” methods—only
“accessors”™—and by declaring all the member data to be constant/read-only. The constructor method for
the class must correctly initialize the contents of the object, since it will not be changed later on; thus the
arguments to the constructor must be sufficient to completely specify an instance.!

We think of an instance of a math section object as a being a primitive abstract value, rather than a storage
area whose contents can be modified.> We will use math section objects as if they were primitive data types

11f it is too cumbersome to require all necessary construction parameters to be available at once, we can take a more procedural
approach: Define a class to have a flag that indicates “under construction,” to have modifier methods that may only be used if the flag is
set, to have accessor methods that may not be used if the flag is set, and to have a special “wrap” method that resets the flag.

2Note the contrast with conceptual section objects: each instance of a conceptual object corresponds with a thing in the model—it
is a storage location that holds various parameters that describe the configuration of the thing, and that are updated and modified as we
manipulate or simulate the thing—and it may not be destroyed during the lifetime of the thing.

B.3 The Math Section 176

like integers or floating-point numbers. If we have two instances that represent the same value, they can be
used interchangeably.

In addition to being close to the mathematical model, this approach lends a certain ease of use to the
math section: An instance of a math object is always correct, by construction. We manipulate and copy
entire instances rather than pointers, so that pointer corruption and data aliasing are not major issues. We
write functions or operators that take math object instances as arguments and construct new instances for the
result. (To minimize the runtime cost of copying arguments and return values, the arguments can be passed
by reference, and the user can specify the destination into which the return value should be constructed; see
Sec. 4.8.)

The strict adherence to immutability works well for primitive, fixed-size objects—even rather large ones,
such as MRIG: :State (Sec. 8.5.2). But for compound, variable-size objects such as sets and indexes, itcan be
impractical as the objects grow large: we often perform operations such as x «— x U y in which we will replace
the value of variable x with anew value; but constructing a new value from scratch, only to immediately throw
away the old value can be prohibitively expensive. But since we know that the old value will no longer be
needed, we can provide an “increment” operator « U, so that x «— U y efficiently updates variable x to have
the new value. Thus we relax our immutability requirement, to support arithmetic increment operators for
variable-size objects.

B.3.3 ID's

We define a class Id to implement the abstract space IDs (Defn. 3.8). The only operations that the class
supports are constructing a new unique ID, and testing to see if two instances are equal. Intemnally, an ID is
simply represented as a 32-bit integer code; to create a new ID, a global counter is incremented.

B.3.4 |ID sets

We define a class IdSet toimplement IDsets, the space of sets of ID’s (Defn. 3.9). The class is implemented
using a standard “container” mechanism, including support for iterating through all elements of a set, and
testing to see if a given ID is an element of the set.

B.3.5 Indexes

We provide templates for defining indexes (Defn. 3.10) and indexes with zero (Notn. 3.12). The template for
indexes provides:

class Indexed<Thing> :
members: ids: 1dSet the sef of ID’s used as labels in the index
operators: [i] : Thing the element labeled by ID i

The subscripting operator x[i] for an index x generates a runtime error if i is not in ids. The template
additionally provides set and arithmetic operators (Notn. 3.15), both normally and in “increment” form as
discussed in Sec. B.3.2. Intemally, the class is implemented using a standard “container” mechanism that
keys on the ID’s internal integer code. The template for indexes with zero is the same except that it requires
an argument indicating the “0” element for the class that is indexed; that element is returned by x[i] if i is
notin ids.

B.3.6 State Spaces

State spaces are implemented by directly using the object-oriented mechanism. Consider the example space
Rectangles of Notn. 3.25:

B.3 The Math Section 177

Rectangles

[
length — R
width +— R
area +—R

Iength > 0
width > 0
area = Jength x width
]
We support each aspect directly as a data member—thus we are representing an element of the state space by
the full tuple of aspect values:

class Rectangle :

constructors: (double length,width) minimal identifying tuple
(double length,area) minimal identifying tuple
(double width,area) minimal identifying tuple
(double length,width,area) full tuple

members: length: double

width : double
area :double

All the data members are declared to be constant, as per Sec. B.3.2. As discussed in Sec. 3.9.2, for this space,
any pair of the aspect values is sufficient to identify an element; we define three constructors accordingly,
each of which computes the third aspect value from the given two. We also define a constructor that accepts
a full tuple. All the constructors verify that the arguments are non-negative and that the area property holds;
aTuntime error is generated if this is not the case.

In general, we don’timplement constructors for all possible identifying tuples—merely for those that we
find to be useful. But all constructors must be careful to construct an instance that satisfies all the internal
properties of the space (or else to generate a runtime error). As discussed in Sec. B.3.2, we want to guarantee
that all math object instances are valid, by construction.

We do generally implement state spaces by providing members for all aspect values, as described above,
because of its simplicity. However, if memory space is a concern, or if we don’t want to spend the time
computing all aspect values at construction time, we can use a more compact representation. For example,
Rectangle could store just the length and width as members, and could provide an accessor method to
compute the area.

Nested state spaces (Sec. 3.9.4) are implemented as ordinary data members. Inherited aspects can simply
duplicate the data of the nested space, or can be references to the nested space’s aspect values.

B.3.7 Paths and Other Functions

The mathematical models often define abstract spaces whose elements are paths (functions from
the reals) or more general functions. For example, we have KINEMATIC::StatePaths (Defn. 7.2),
SysVectorFields(Defn. 8.16), and ProtoGens(Defn. 9.6).

Like state spaces, we don’t provide any direct support for function spaces, but they are implemented
readily using the object oriented mechanism. Consider the space of Rectangles (Sec. B.3.6) as a function of
time:

RectanglePaths = the ser of functions { — Rectangles}

It is implemented simply as:

class RectanglePath :
methods: eval(double t) : Rectangle evaluate the function at time t

The class doesn’t provide an implementation of the eval method. Instead, it is a base class, and we use
the object-oriented mechanism to define subclasses that implement various specific functions, based on their

B.4 The Numerics Section 178

constructor arguments. For example, one subclass might define eval toreturn a given constant value. Another
might define eval to compute a rectangle that oscillates as some explicit function of time.

Most importantly, we can define a subclass that invokes a numerical routine to solve a posed mathematical
problem—this is the primary “hook” through which we access the numerics section of the program. For
example, Sec. 8.5.3 describes a subclass of MRIG: : SysPath that invokes a differential equation solver to
evaluate the function, and Sec. 9.5.3 describes a subclass of MRIG: : ApplMotiveIdxField that sets ups and
solves a linear system of equations.

For paths into state spaces, we can often compose paths for each aspect operator. For example:

class RectanglePath :
members: length: doublePath
width :doublePath
area :doublePath
methods: eval(double t) : Rectangle

Each aspect path is set to a subclass that implements its eval by calling RectanglePath’s eval, and returns
the proper aspect value of the result.

Every index of functions has an implied function that returns an index, by simply evaluating all the el-
ement functions and making an index of the results (Defn. 3.17). Correspondingly, we may have a class
ThingFuncIdx, being indexes of functions, and another class ThingIdxFunc, being functions that return
indexes. The latter could support a subclass that is constructed from a specific index of functions instance,
and whose eval method simply evaluates all the element functions and constructs an index to hold the results.

B.3.8 Discussion

We have used the methods that we have outlined, to implement the mathematical models of the modules in
Ch. 6-9. We have found that the mathematical modeling method fits well with an object-oriented implementa-
tion. Implementing a mathematical model from a given blackboard specification is not hard—simply a matter
of typing in the appropriate class definitions and so forth. There is a great deal of rote in the task, especially in
the minutiae of the object-oriented class specifications. We can imagine embedded or special-purpose mathe-
matical modeling languages that more directly support our mathematical modeling constructs. See discussion
in Secs. 13.2.3, 13.4.

B.4 The Numerics Section

The numerics section of a program, as discussed in Ch. 4, is responsible for computing numerical solutions
to the posed problems. There is a large body of knowledge and software for numerical computation, that
we can take advantage of for physically-based modeling; see, e.g., [Press et al.86], [Ralston,Rabinowitz78],
[Golub,Van Loan85], [NAG].

We can assume that we have a rich library of numerical subroutines readily available to us. So what more
needs to be done? The answer is that we need to join the “back end” numerical subroutines with the higher
levels of abstraction in a modeling program. This section discusses the structure/mechanism that we build on
top of an existing numerical library.

B.4.1 Overview of the “Structured Numerics” Library

The numerics section bridges between the numerical subroutines and the mechanisms that are used by the
math section and M-N interface of a program (Sec. 4.2.4), in order to overcome some basic design differences
(Fig. B.1). In bridging between them, we perform changes of representation as discussed in Sec. 4.6.

Thus we build a structured numerics library: A modular, object-oriented collection of interfaces to nu-
merical techniques. The library is designed to provide access to numerical techniques in a form convenient
for the high-level abstraction and goals, rather than driven by the low-level design and implementation goals.

B.4 The Numerics Section

179

Numerical subroutine design

Program requirements

Data formats:
o Arrays of numbers. Numerical subroutines most
commonly operate on arrays of numbers.

Access methods:
¢ Procedural, arcane. Special-purpose routines or se-
quences must often be followed to provide data or ac-
cess solutions. E.g., ODE solvers typically require re-
peated calls to a subroutine to advance the solution

o Conceptually separate objects. We may group to-
gether separate objects for the purpose of solving a par-
ticular problem. E.g., an index of dynamic body states
is grouped into an array for Eqn. 8.35

o Uniform interface. For any given problem, we would
like to specify the problem conveniently, and access
the solution freely. E.g., we want to evaluate a solu-
tion function Y'(t) for arbitrary values of time ¢, as dis-

by steps; a different routine can interpolate within the
most recent step.

Choice of algorithm:
e One algorithm per subroutine. Each subroutine and
algorithm is typically suitable to to a specificregime of
the problem. E.g., a routine may solve a sparse linear
least squares problem using a Lanczos algorithm.

Programming paradigm:
¢ Subroutine paradigm. Numerical routines often as-
sume or are geared towards use by a program that
solves a single problem; they are often not re-entrant. 4

cussed in Sec. 4.7.

o One interface for various algorithms. A problem
may need to be solved in differentregimes. E.g., alin-
ear system of equations may be sparse or dense, ill- or
well-conditioned.

o Object-oriented paradigm. Many separate objects
can coexist, each of which solves a particular problem;
solution evaluations may be intermingled.

Figure B.1: This table lists various differences in design between numerical “back end” subroutines and higher levels of the program.
The design of numerical routines is low-level, driven by algorithm and implementationissues, whereas for the higherlevel of the program
we have explicitly tried to be driven by abstraction and high-level goals. The structured numerics library is designed to bridge between
the low and high levels. O

Fig. B.2 illustrates the hierarchy of modules in our prototype structured numerics library. As per Sec. 4.1,
we provide a collection of tools at various levels of representation, so that for any particular application, the
programmer may choose the most convenient form. We are not attempting to provide a single interface or
paradigm to span all problems.>

Despite our highfalutin talk of “abstraction,” *“changes of representation,” and so forth, the structured
numerics library is very mundane: it deals with programming details such as data format and subroutine
interfaces, and the bulk of its implementation is involved with housekeeping issues such as storage allocation,
cacheing intermediate results, and so forth. Note in particular that little or no numerical computation takes
places within our modules—ultimately, they are merely interfaces to existing numerical subroutine libraries.

The next several sections discuss various modules in our prototype library (those that are used by the
models in Ch. 6-9). We will simply outline the structure and interface to the modules, to “give a feel” for
the library—complete implementation specifications are beyond the scope of this book. For the underlying
solution techniques, we refer readers to [Press et al.86].

3In general, numerical computation today is a job for “hobbyists™: to most effectively get meaningful results, one must have an
understanding of issues such as accuracy and tolerance, a feel for the character of the particular problem being solved, a familiarity with
the strengths and weaknesses of various known solution techniques, and so forth. This limits our ability to provide “universal”high-level
interfaces that allow the user to ignore implementation and solution details. Still, well-packaged interfaces can be designed that apply to
a reasonably broad range of problems. And, by designing our library as a collection of tools at various levels, we allow users to “reach
down” and access lower-level routines as necessary without breaking the spirit or function of the library.

4 A re-entrant technique is one that can be used simultaneously orin an interleaved manner by different applications. For example,
we might want to advance one ODE solution, then solve a different ODE, then continue advancing the original. FORTRAN numerical
libraries often store information about a problem in shared “common blocks,” so that starting a second problem solution precludes the
ability to continue the first. :

B.4 The Numerics Section 180

“Structured Numerics”Library

Module Hierarchies

PodeScatExt OdeScatExt

LinSvs | PodeScat |GatScat| OdeExt |Gat8cat|

[Sparse] l SVD] [GatScatl [Pode Ppol |Segmentsl | Ode | [Ppo

[oh
i

I _ode | [Root | _Polv | lSecrmentgl
Numerical Subroutine library /
P 3° 5F 3V &0 &V 4 4V oF 3V o &F & &F 4 /

Figure B.2: Schematic diagram of some module hierarchies in our prototype “structured numerics™ library, built on top of a standard
numerical subroutine library. The library is intended to be used as a toolbox, with modules at various levels of representation available
for different applications. For example, Ode, 0deExt, and OdeScatExt provide different interfaces to ordinary differential equation
initial-value problems; the “best” one to use depends on the application. Secs. B.4.2-B.4.11 describe the modules. O

B.4.2 GatScat: Array Gather/Scatter

This is a utility class, that does the housekeeping to map between a collection of separate elements, each
having local data, and a single linear array of data. The following methods are supported:

add(...) Add an element to the collection—an element is be specified via subroutines
toread and write its local data, or simply by the memory location of the local
data. Each element can be a different size.

gather(array) Gather each element’s local data into an array.

scatter(array) Scatter an array of data into each element’s local data.

After adding each element once, the gather and scatter methods can be used repeatedly with different data
sets. Other methods map between elements and their array indexes, return the total size of the array, and so
forth. GatScat is used by OdeScatExt (Sec. B.4.6) and PodeScatExt (Sec. B.4.9).

The class GatScat2 is similar, but maps between separate elements and a 2-d block matrix of data. Each
element specifies its row and column in the matrix; not all entries in the matrix need to be specified. The
gather and scatter methods support both sparse and full arrays. Additionally, GatScat2 can partition the
matrix into independent blocks, based on which entries have elements associated with them. GatScat2is used
by the “fancy forces™ model, NFRC: : LsolveProto (Sec. 9.5.3), and is compatible with LinSys (Sec. B.4.3).

B.4.3 LinSys: Linear Systems of Equations

This is a class that solves matrix equations of the form M X + B = 0, computing values of matrix X given
values of M and B. If the matrix M is singular or ill-conditioned, the least-squares solution is computed.

For our applications, M is commonly sparse, though not always, and M may sometimes be ill-conditioned
or singular. We can’t always tell in advance—for example, a system may generally be well-conditioned, but
may occasionally pass through an ill-conditioned “zone” during the course of a simulation.

B.4 The Numerics Section 181

LinSys is a “black box” that lets the user specify the system using ordinary 2-d array data format, and
that runs as fast as possible in the general case, yet is guaranteed to work (albeit more slowly) in the special
cases. Its features are:

e Itpartitions M into independent blocks, and solves each one separately.]

e Within each block, if the matrix is sparse it constructs the appropriate sparse representation, and uses
Sparse (an interface to a Lanczos method) to solve the system. Sparse may report failure if the matrix
is too ill-conditioned.

o If the matrix is not sparse, or if the sparse solution fails, singular-value decomposition is used instead,
which is slow but has essentially guaranteed success.

LinSys is compatible with GatScat2 (Sec. B.4.2), which can be used to pre-compulte the partition and sparsity
of the matrix.

B.4.4 0de: Ordinary Differential Equation

This is a class that solves ordinary differential equation (ODE) initial-value problems: it computes y(¢) where
4y = f(y,t), given a value yo = y(to).

Ode provides an object-oriented interface to various techniques in the numerical library; thatis, an abstract
base class is defined, and assorted derived classes implement Runge-Kutta, Adams, and other techniques. Ode
performs no changes of representation, supporting array data format and sequential access methods:

step() Advance the solution to some larger value of ¢.
interp(t) Interpolate the solution within the last step.
solve(t) Advance until and return the solution at time ¢,

Unlike LinSys (Sec. B.4.3), our current implementation of 0de docs not choose solution techniques automat-
ically.

B.4.5 0deExt: Extruded ODE

This is a class that solves ordinary differential equation (ODE) initial-value problems, as does Ode (Sec. B.4.4).
Unlike Ode, however, this class doesn’t require sequential access to the solution y(t). Instead, the solution is
“extruded,” allowing the user to evaluate y(t) for any values of ¢, in any order. Its primary interface method
is thus:

eval(t) Evaluate the solution for any time ¢ > ¢.

OdeExt uses array data format, the same as Ode.

Internally, 0deExt works by maintaining the solution as a piecewise-polynomial function, using Ppoly
(Sec. B.4.10). If evaluation is requested at a time beyond the bounds of the stored solution, Ode is used to
advance the solution as needed; the result of each step along the way is added the the stored solution, *

For many problems, we only need to evaluate y(¢) for monotonically or almost-monotonically increasing
values of £. Thus, to save memory, 0OdeExt can maintain a “sliding window” thatmoves forward automatically
as the solution is advanced—solution values prior to the start of the window are thrown away.

B.4.6 0deScatExt: Scattered, Extruded ODE

This class combines the extruded ODE-solving functionality of 0OdeExt (Sec. B.4.5) with the array gather/
scatter functionality of GatScat (Sec. B.4.2). This is used, for example, by the rigid-body dynamics model
routine NRIG: : SolveForward (Sec. 8.5.3) to construct an object that computes an index of rigid body states,
for any value of time £.

5Most ODE-solving techniques internally compute a polynomial to describe the value of the function in the most recent step. Often,
the polynomial itself is not made directly available—but its order k is known, thus we can accurately resample the solution to construct
an explicit polynomial function.

B.4 The Numerics Section 182

B.4.7 Pode: Piecewise-Continuous ODE

This class is analogous to Ode (Sec. B.4.4), but supports piecewise-continuous ODE’s, using the solution
technique discussed in Appendix C.

B.4.8 PodeExt: Extruded PODE

This class is analogous to 0deExt (Sec. B.4.5), butsupports piecewise-continuous ODE’s. The solution y(t) is
a segmented function as described in Sec. 3.10, whose size may change at the discontinuous events. PodeExt
allows the transition function that starts a segment (see Appendix C) to specify arbitrary data for the solver
to associate with that segment; The eval(t) method returns the associated data for the segment that spans
time ¢, and the size of the solution within that segment, as well as the array containing the solution at time ¢.
The Segments utility (Sec. B.4.11) is used to keep track of the separate segments of the solution; within
each segment the solution is accumulated as a piecewise-polynomial function, in the same manner as DdeExt.

B.4.9 PodeScatExt: Scattered, Extruded PODE

Analogous to 0deScatExt (Sec. B.4.6), this class combines the functionality of PodeExt (Sec. B.4.8) with
the array gather/scatter functionality of GatScat (Sec. B.4.2). It is used by the “tennis ball cannon” model
(Sec. 11.5.2).

In addition to gathering and scattering the solution values, PodeScatExt allows the user to specify sep-
arate event functions (see Appendix C), and will gather their values into an array for PodeExt. When an
event is detected, i.e., a root of an event functions is discovered, the user’s transition function is passed a code
indicating which of the events was found (see Sec. 11.5.2).

We also provide a class PodeScat, that supports scattered data, but only sequential access to the solution.
Functionally it is equivalent to using PodeScatExt with a “sliding window” of zero width, so that no prior
values are saved—but the interface is simpler.

B.4.10 Ppoly: Piecewise Polynomial Functions

This class supports piecewise polynomial functions. It uses the Poly class (which implements Chebychev
polynomials) for each piece, and keeps track of them via the Segments utility (segments). It supports the
following methods:

addl(...) Adda polynomial segment on the left end.

addr(...) Adda polynomial segment on the rightend.

eval(t) Evaluate the solution for any time ¢ within the endpoints of the stored func-
tion. This method uses Segments to determine which polynomial spans time
t, then evaluates that polynomial.

The class also provides miscellaneous support, such as methods to “trim” the function throwing away poly-
nomials outside a given range.
Ppoly is used by 0deExt (Sec. B.4.5) and PodeExt (Sec. B.4.8).

B.4.11 Segments: Partition of the Real Number Line

This is a utility class that does the housekeeping to maintain a collection of adjacent segments of the real
number line, maintaining arbitrary data for each segment. Starting with an initial endpoint for the structure,
it supports the following methods:

addl(t, data) Adda segmenton the left end, and store the provided data.
addr(t, data) Adda segment on the right end, and store the provided data.
data(t) Look up and return the data of the segment containing ¢.

B.4 The Numerics Section 183

The class also provides miscellaneous support, such as methods to iterate through all the segments.
Segments is used by PodeExt (Sec. B.4.8) and Ppoly (Sec. B.4.10).

B.4.12 Discussion

‘We have presented the “structured numerics” library as part of the overall program framework for physically
based modeling, that we described in Ch. 4. However, it is not specific to that framework.

Our prototype structured numerics library has been used (and extended) by colleagues for applications
other than physically-based modeling: a modular, object-oriented numerics library that supports high-level
representations is useful even for projects that don’tinclude the rest of the “structured modeling” mechanism,

Currently, numerical subroutine libraries are as we have described—low-level, array-oriented, and so
forth—typically written in FORTRAN. However, with the advent and popularity of object-oriented program-
ming, it is likely that in the near future, the bottom-level numerical routines available from vendors will be
object-oriented and modular, and will support high-level representations such as we described. If so, our
comment at the start of Sec. B.4:

“We can assume that we have arich library of numerical subroutines readily available. . . So what
more needs to be done?”

will need to be updated:

“We can assume that we have a rich library of object-oriented numerical modules readily
available. . . Nothing more needs to be done.”

184

Appendix C

Solving Piecewise-Continuous ODE’s

his appendix describes an algorithm to solve initial-value problems for Piecewise-Continuous Ordinary Dif-
ferential Equations (PODE'’s). The solution to a PODE is a “segmented function™ as discussed in Sec. 3.10;
we will use the mechanism developed there to specify a PODE to be solved.

The solution technique makes use of common ODE-solving and root-finding techniques as “black boxes,” al-
lowing easy tailoring of the solution mechanism to specific problems, by appropriate choice of “boxes™ and their
parameters.

C.1 Formalism for Piecewise-Continuous ODE’s (PODE'’s)
C.1.1 Definition

We define a piecewise continuous ordinary differential equation (PODE): an ordinary differential equation !

Fory:R—R" and F: " x R—=R",

dy=F(y,t)

Eqn. C.1: Canonical ordinary differential equation. For a piecewise-continuous ODE, the function F(y(t), t) is continuons
and has a bounded derivative, except at isolated values of ¢. The solution function y(t) toa PODE is C 1 -continuous except
at those values of ¢. O

€1

The solution to a PODE is a segmented function, as per Sec. 3.10, i.e., is piecewise continuous. Note that in
general we are interested in solving for functions

y:t— U R,
#=1.2...:

but for the present discussion we will assume that the solution stays in " for constant n; Sec. C.2 will
re-introduce arbitrary dimensionality in the solution.

1The PODE method described in this chapter will work in exactly the same manner with piecewise-continuous differential-algebraic
equations (DAE’s), e.g., of the form F(y, dy/dt,t) = 0 [Petzold82]. However, because of their greater familiarity, we present the
discussionin terms of ODE’s.

C.1 Formalism for Piecewise-Continuous ODE’s (PODE’s) 185

15"

=L

Figure C.1: Example of a PODE: A bouncing ball, with damping. (a) The height of the ball. (b) The velocity of the ball. (c) The force
on the ball; at each bounce, an infinite force is required to instantaneously change the velocity. O

v hy,)

y+

gy N

e t

Tyt)=0

Figure C.2: A PODE. y(t) is the continuous solution of %y = f(v,t) [not shown), until g(y(t),t) = 0. Then y(t) is changed
discontinuously by adding k(y, t), and the solution progresses continuously again. O

We will use a “functional characterization” to describe a PODE, as discussed in Sec. 3.10.3. That is, we
define three functions:

“body function” R xR-R"
(C.2) “event function” R X R—=RN
“transition function” h:R" x R—R"

Eqn. C.2: Functional characterization of a PODE. We describe a PODE by three functions, in the manner of Defn. 3.39.
Note howeverthat here, we define the functions numerically, rather than in predicate form. The functions are discussed in
the text below. O

f(y,1): f(y,t) = F(y,t) wherever F(y,t) is continuous and has a bounded derivative. f(y,t) need not be

C.1 Formalism for Piecewise-Continuous ODE’s (PODE’s) 186

defined where F(y, t) is discontinuous or singular.

g(y,t): A “event” function, that locates discontinuities by defining legal states: as long as the solution y(t) is
ina legal state, f(y,?) must be continuous and well-behaved; if the solution attempts to enter an illegal
state, a discontinuity occurs at the boundary. Thus we define:

> 0: yisalegal state att
< 0: yisanillegal state at i
(€3) o) = 0: Boundary state: Fy,t)
may be discontinuous or
singular; y(t) may be dis-
CONTiNUOUs

g(y,t) = 0 occurs only at the discontinuities or singularities in F(y,¢).% The solution y(t) always has
the property that g(y(¢),¢) > 0. g(y, t) itself must be continuous where it is non-0.3:4

h(y,t): A “transition” function, that bridges discontinuities by describing the change in the solution y(t):

at each discontinuity, y(t) is offset by adding h(y,t) (see Fig. C.2). That is, given a {5 such that
vy~ = y(tx) and g(y~, ;) = 0, we have

(€4 vt =y +h(y, 1)

Ineffect h(y, t) integrates f(y, t) across the discontinuity; thus if f(y, ¢) contains a delta-function, then
h(y,t) is non-0. i.e.,

if
terms wio
Fly,1)=H(y,1)b(t — tx) + { b-functions } ’
(C.5) then

Bt = f:f Fly, t)dt
:H(y(tk)v tk)'

C.1.2 Continuous ODE Segments

As an alternative to Eqn. C.2, a PODE can be conveniently specified by a sequence of continuous ODE
segments (see Fig. C.3):

2For some applications, there may be several conditions, any of which might signal a discontinuity. Thus g(y, ¢) may be a vector,
and the comparisons g(y, t) > 0, < 0,and = 0 refer to its minimum component. The implementation can support vectors; this allows
us to support multiple independent events, as discussedin Sec. B.4.9

®That is, we may have: g(y(t), t) continuousfort # ty, withlim,_ _ g(y(t),t) = Oand ﬁm:—-t:‘ g(y(t),t) #0,asin Fig. C2.

k
4We could alsojust have g # 0is the continuous state, and g = 0 signals a discontinuity. But having legal/illegal states is convenient
for debugging, and is typically not a hardship for the designer of the event function (just negate it if you want it to be legal but it’s
negative),

C.1 Formalism for Piecewise-Continuous ODE's (PODE's) 187

gy (0

Figure C.3: A PODE considered as a sequence of continuous ODE segments. y ;(t) is the continuous solution of the th segment
%y,’ = fily,t), until g;(yi(¢),t) = 0att = t;. hi(yi(ti), t;) yields the initial conditions for segment i + 1. O

%yl = fily1,t) while g1 (1(t),2) > 0
a¥2 = fa(y2, 1) while g5(y2(t),t) > 0

(C.6) .
%yi = fi(yi,t) while g;(yi(t),t) >0

where each of the f;’s and g;’s are continuous. ¢; is the time of the end of the ith segment; that is, we define
t; to be the earliest £ > £;_; such that:

cn gilwlts), &) =0

Notice that we may have t; = ¢;_;; in such a case, we refer to segment 7 as having zero-length.
At t;, we switch from the ith to the (i + 1)th ODE. The initial conditions for the new ODE are given by:

(C.5) ivr(ti) = v(ts) + hi(yi(t:), &)
The functions of Eqn. C.2 are produced by:

fly,)=Ffi(y,t), wheret;_, <t < t;
(C.9) 9(y,t)=gi(y,), wheret;_; <t < t;
h(y,t)=hi(y,t), where t = t;,

and the solution is®

{€10) y(t) = vi(y, 1), where ti_y <t <t

5 Notice that at each ¢, the solution y(%;) has two values: the value before and after the discontinuity. The solution technique described
in Sec. C.2 finds and retumns both these values.

C.2 Solving a PODE 188

" ho Y

a.ly (.Y
i

t.) ¢
9 Y i 8t

Figure C.4: Unsolvable PODE: The initial conditions of segment i + 1 are such that g ; 4.1 (v, t) is negative at the start of the segment, O

C.1.3 Errors
There are two errors that are endemic to PODE’s defined as per the previous section:

e If git1(vi41(ti), t:) < 0, the initial conditions for segment i 4 1 specify an illegal state; the PODE can
not be solved (see Fig. C4)

e Ift; = t;_, for all after some ig, i.e. if all segments after segment iy have zero length, the PODE
cannot progress beyond ¢;,. Such an occurrence is often an indication of an an attempt to simulate a
continuous process by repeated application of the jump function i(y,t)

The solution technique described in Sec. C.2 can detect both these errors.

C.2 Solving a PODE

Note: For notational convenience, we define the following three functions:

Fi(t) =fi(ui(2),1)
(€.11) G,—(t).=_gz (yi(t), t)
H;(t)=h;(yi (1), 1)

Overview

A PODE described as a series of continuous ODE’s (as per Eqn. C.6) can be solved easily: Each segment can
be solved in turn using a standard ODE solver; ¢ the end of a segment is marked by a root of the composite
function G;(t).

Thus the algorithm for solving a PODE, illustrated in Fig. C.5, is:

1. Solve segment i. Use a standard ODE solver to determine the function y;(¢).

2. Monitor G;(t). Watch to see if the value crosses below zero.

8 Each segment is an ODE initial-value problem, and can be solved using previously mentioned techniques.

C.2 Solving a PODE 189

(@) (b)

yi+ 1(0

gi(y i(il.t)

gi+1(y §+(l')' Y
t\/‘\ t ti '..-"’-. 1

Figure C.5: Solving a PODE: (a) v; (t) is determined using a standard ODE-solver. An ODE solution step might extend past the end of
the segment; g;(vi(t),t) is sampled to see if it goes below zero; if it does the root £ ; is found, by using a standard root-finder with the
interpolation of y; (¢) over the last ODE step. (b) Once the end of segment ¢ has been determined, at t = £ ;, ki (i (t:),%i) is added to
y;(t:) to yield the initial-conditions for segment 1 4+ 1. The solution of segment ¢ fort > ¢ ; is discarded. O

3. Find root t;. Ifazero-crossingis encountered, use a standard root-finder to find the time ¢ ;, as per Eqn. C.7.
This marks the end of segment 1.

4. Switch to segment i + 1. H;(t;) is added to y;(¢;), to yield the initial conditions of segment : + 1
(Eqn. C.8).

Note that the algorithm works by solving y;(t) some distance past ¢;, and by observing a negative value
of G;(t). Thus there are extra restrictions on the f;’s and g;’s:

e fi(y,t) and g;(y,t) must extend continuously some amount past ¢;

¢ The algorithm finds zero-crossings, rather than zeros, of G;(t); the composite function must be negative
forsomet > ;

To minimize the amount that y;(¢) is solved past the end of its segment, we alternate (1) and (2) above.
That is, we have the ODE solver solve y;(t) for one step; then we verify that G;(t) remains positive; then we
take another ODE step, and repeat.

We discuss the four parts of the algorithm in greater detail in the following sections.

C.2.1 Solving Continuous Segment :

The standard ODE-solving technique may be used as a “black-box™ to produce the continuous function y; ()
that is the solution to %y,— = fi(yi, t). The initial conditions are determined from the final state of the previous
segment (for the first segment, the initial conditions are provided by the user). We assume that the ODE-solver
takes steps, and reports back a local solution function after each step.’

Note that, at each step, we are interested in a continuous local solution function y;(t), rather than just
the value of y; at the end of the step. Thus our choice of ODE-solver is restricted to techniques that support
interpolation of the solution in the last step; Adams-based methods work well. Extrapolation-based tech-
niques (e.g., Bulirsch-Stoer) are not well-suited to our PODE method. (See, e.g., [Ralston,Rabinowitz78] or
[Press et al.86] for discussion of Adams and extrapolation methods.)

" The ODE-solver s free to use whatever step-size it determines to be appropriate; the step-size does not have to be constant.

C.2 Solving a PODE 190

C.2.2 Sampling G;(?)

Given the result of an ODE step, i.e., given a continuous function y;(¢) over some interval, we want to deter-
mine whether G;(t) is always positive. We attempt to do so by sampling G;(¢) at several values of ¢.

We can’t guarantee to find all zero-crossings of G(t) without extra information, such as a Lipschitz
bound on G;(t).# Rather than require the user to provide explicit Lipschitz information, or perhaps the partial
derivatives of g; (y, t) withrespect to y and ¢, the implementation described here takes the following approach:

e Sample at the end of every ODE step
e Sample at least every 7,, where 7, is a user-adjustable sampling interval.

To allow adaptive control over the sampling interval, the user may adjust 7, “on the fly”, e.g., as a side-effect
of evaluating g;(y, t).

Again, we emphasize that this approach is chosen for programming convenience, and does not guarantee
correctness unless the user adjusts 7, based on the Lipschitz bounds of G;(t).

For some PODE’s, it is sufficient to sample G;(t) only at each ODE step (e.g., because G;(¢) changes
slowly compared to y;(t), or because G;(t) < 0 forall ¢ > ¢;). The implementation supports “turning off™
the minimum sampling interval.

C.2.3 Finding t;, the Root of G;(¢)

If a sample of G;(t) is negative, we have detected a zero-crossing. The previous (positive) sample and the
new (negative) sample bracket a root of the composite function G;(t). A standard root-finder can be used
to determine the root value £; at which G;(¢;) = 0. (Since Gj;(t) is continuous, and since we start with a
bracketing interval, techniques such as Regula Falsi are guaranteed to find the root. See, e.g., [Press et al.86].)
Because G;(t) is sampled at the end of every ODE step, we know that the root bracket lies entirely within
the current step. Thus the ODE-solver’s local solution function y;(¢) can be used; no new ODE-solving steps
need to be taken during the root-finding process.
C.2.4 Switching to Segment i + 1
Given that we have found a discontinuity at ¢ = ¢;, the following occurs:
¢ We compute the initial conditions for the next segment: y;41(%:) = i (t:) + Hi(t;)
¢ i is (implicitly) incremented; i.e., the user switches to the next set of functions, f;+1, gi+1, and h;4+1.

o We reset the ODE solver, to have it discard history and start integrating the new segment from the new
initial conditions.

Gi+1(t;) should be evaluated, to ensure that the initial conditions of the new segment describe a legal
state. If Giy1(t;) < 0, the PODE is unsolvable (see Fig. C.4).
C.2.5 Zero-Length Segments
A zero-length segment occurs if two conditions hold (see Fig. C.6):

e Gi(ti—1) = 0; i.e., the initial conditions of the segment are on a boundary of the legal state, and

e G;(t) < 0fort > t;_y;i,.e. the solution immediately attempts to enter an illegal state.

No special care need be taken to detect zero-length segments; we can merely check if f; = ;.

8 A Lipschitz bound is a value L such that |G i(t2) — Gi(t1)| € L|t2 — t1| forall £;, > in a region of interest. See [Kalra,Barr8g].

C.2 Solving a PODE 191

vp o]

Qi(y i(‘)-!)

v, e

Figure C.6: Zero-length segments: g;41(y,t) = O at the start of segment + 1 att = t;, and gi+1(vi+1(t),t) < Ofort > t;. Thus
the end of the segment is the same as the start: ¢ ;41 = ¢;. O

C.2.6 Numerical Issues

There are several numerical issues that arise in the implementation of the PODE solution algorithm:

» As discussed earlier, without Lipschitz bounds on g(y: (%), t), it is possible to sample too sparsely, and
miss zero-crossings.

o The test of g > 0 should be tolerant to within some bounds; proper error-analysis should be done to
determine the tolerance. A simplifying approach is to put the burden on the user, in the calculation of
g(y. 1), to add the appropriate absolute tolerance terms, so that comparison against zero is valid.

 The root-finder typically doesn’t find the exact 0, but instead brackets the root with a ¢ POS and a ¢"°8,
such that G;(tP°%) > 0 and G;(t"®8) < 0, where tPS and t"¢€ differ by some small tolerance. A
handy trick is to choose ¢POS as the root, thus ensuring that G;(¢) is never negative.

o If(G;(t) = 0 overafinite region before becoming negative, the root-finderis likely to choose an arbitrary
point within the region as the root. If G';(¢) = 0 and then becomes positive, no zero-crossing will be
detected, hence no root will be looked for.

e Asdiscussed in Sec. C.2.3, the initial root bracket lies within a single ODE step. The positive g-value
at the left side of the bracket, however, may have been determined by the value of y; () at the end
of the previous step. Because of numerical imprecision, interpolating the current step back to the end
of the previous step yields a different value for y;(t); thus the composite function G;(t) may have a
discontinuity at the left endpoint of the bracket. Occasionally, the discontinuity is such that we have a
positive value at the left endpoint, and negative values in the rest of the region; in such a case, we take
the left endpoint to be the root.

e In adaptively adjusting 7, the user must avoid continually decreasing 7, in a converging series, or the
solver will not be able to make any forward progress. (This might happen, e.g., if at each sample of
g(t), the user estimates that the next discontinuity will occur at some £ o, and conservatively sets 7, =
1(to—1)

z*0 g

C.3 Computational Costs 192

C.3 Computational Costs

The PODE algorithm doesn’t directly do any numerical computation; rather it serves mainly to control the
execution of the underlying ODE-solver and root-finder. The computational cost thus depends heavily on the
choice of those routines.

We break down the costs into three major parts:

o “Startup overhead” for the ODE-solver, at each discontinuity.
o Costof solving and testing the continuous segments.

¢ Costof determining ¢; for each discontinuity.

C.3.1 Startup Overhead

The ODE “startup overhead,” if any, at a discontinuity depends on the solution method. For example, adaptive
step-size methods may start with very small steps; multi-step methods may use slower methods to generate
initial samples; and implicit methods may need to numerically determine the initial Jacobian matrix.

For equations with a large number of discontinuities, the startup overhead may be a significant factor to
be considered when choosing the ODE-solver.

C.3.2 Continuous Segments

To solve each continuous ODE-segment, the only cost added by the PODE method over the underlying ODE-
solver is the cost of sampling g;(y;(¢), t) to ensure that the end of the segment hasn’t been reached.

For globally continuous equations, the PODE method may be used by providing a constant positive func-
tion, e.g. g(y,t) = 1, with 7, large. The cost of using PODE over using the underlying ODE-solver is then
minimal. (But, of course, for this case PODE provides no advantage over using the underlying ODE-solver
directly.)

C.3.3 Determining t;

It is important to note that once a discontinuity is detected, no ODE-solving is performed to determine ¢ ;.
Rather, y; (1) is interpolated in the last ODE step.

Thus, the cost of determining ¢; is the cost of doing the root-finding. This depends on the root-finding
technique, which will require evaluation of g;(y;(t),) some number of times,

Each evaluation of the composite function incurs the cost of doing the interpolation to evaluate y ; (¢); this
depends on the ODE-solver, butis typically a relatively fast operation.

193

Bibliography

[Abelson et al.89] Harold Abelson, Michael Eisenberg, Matthew Halfant, Jacob Katzenelson, Elisha Sacks,
Gerald J. Sussman, Jack Wisdom, and Kenneth Yip, “Intelligence in Scientific Computing,” Com-
munications of the ACM, Vol. 32 No. 5, May 1989, pp. 546562

Abrashkin see [Williams,Abrashkin58]
Aliaga see [Zeleznik et al.91]

[Badler et al.91] Norman I. Badler, Brian A. Barsky, David Zeltzer, ed., Making them move: mechanics,
control, and animation of articulated figures, Morgan Kaufmann, San Mateo, CA, 1991.

[Baraff89] David Baraff, “Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies,”
Computer Graphics, Vol. 23 No. 3 (Proc. SIGGRAPH), July 1989, pp. 223-232

[Baraff90] David Baraff, “Curved Surfaces and Coherence for Non-penetrating Rigid Body Simulation,”
Computer Graphics, Vol. 24 No. 4 (Proc. SIGGRAPH), August 1990, pp. 19-28

[Baraff91] David Baraff, “Coping with Friction for Non-penetrating Rigid Body Simulation,” Computer
Graphics, Vol. 25 No. 4 (Proc. SIGGRAPH), July 1991, pp. 31-40

[Barr86] Alan H. Barr, personal communication, 1986.

[Barr87] Alan H. Barr, chair, “Topics in Physically-Based Modeling,” Course Notes, Vol. 16, ACM SIG-
GRAPH, 1987.

[Barrg1] Alan H. Barr, “Telological Modeling,” in [Badler et al.91]

Barr see also [Barzel,Barr88], [Kalra,Barr89], [Platt,Barr88], [Terzopoulos et al.87], [Von Herzen,Barr,
Zatz90]

Barsky see [Badler et al.91]

[Barzel88] Ronen Barzel, Controlling Rigid Bodies with Dynamic Constraints, Masters Thesis, California
Institute of Technology, Pasadena, CA, 1988.

[Barzel,Barr88] Ronen Barzel, and Alan H. Barr, “A Modeling System Based on Dynamic Constraints,”
Computer Graphics, Vol. 22 No. 4 (Proc. SIGGRAPH), August 1988, pp. 179-188

Beitz see [Pahl,Beitz88]
Binford see [Jain,Binford91]
[Bishop,Bridges85] E. Bishop and D. Bridges, Constructive analysis, Springer-Verlag, Berlin, 1985.

[Blaauw,Brooks91] G.A. Blaauw and F.P. Brooks, Jr., Computer architecture, Addison-Wesley, Reading,
MA, in press,

Bibliography 194

[Blinn92] James F. Blinn, “Uppers and Downers,” IEEE Computer Graphics & Applications, Vol. 12 No. 2,
March, 1992, pp. 85-91

[Boehm88] Barry W. Boehm, “A Spiral Model of Software Development and Enhancement,” Computer,
Vol. 21 No. 5, 1988, pp. 61-72

[Booch81] Grady Booch, Object-oriented design with applications, The Benjamin/Cummings Publishing
Company, Redwood City, CA, 1991,

[Boyce81] W.E. Boyce, Case studies in mathematical modeling, Pitman Advanced Publishing Program,
Boston, MA, 1981.

[Boyce,DePrima77] William E. Boyce and Richard C. DePrima, Elementary differential equations and
boundary value problems, John Wiley & Sons, New York, 1977.

Bridges see [Bishop,Bridges85]

[Brockett90] R.W. Brockett, “Formal Languages for Motion Description and Map Making,” in Robotics
(Proc. Symposia in Applied Mathematics, Vol. 41), J. Baillieul et al., American Mathematical
Society, Providence, RI, 1990.

[Brooks91] F.P. Brooks, Jr., speaker, Panel Proceedings, ACM SIGGRAPH, 1991,
Brooks see also [Blaauw,Brooks91]

[Bruderlin,Calvert89] Armin Bruderlin and Thomas W. Calvert, “Goal-Directed, Dynamic Animation of Hu-
man Walking,” Computer Graphics, Vol. 23 No. 3 (Proc. SIGGRAPH), July 1989, pp. 233-242

[Caltech87] Caltech Computer Graphics Group, “Caltech studies in modeling and motion,” ACM SIGGRAPH
Video Review, Issue 28, 1987.

Calvert see [Bruderlin,Calvert89]
Carpenter see [Cook,Porter,Carpenter84]

[Carroll60] Lewis Carroll, The annotated alice with an introduction and notes by Martin Gardner, New
American Library, New York, 1960.

[Chadwick,Haumann,Parent89] John E, Chadwick, David R. Haumann, and Richard E. Parent, “Layerd Con-
struction for Defomable Animated Characters,” Compurer Graphics, Vol. 23 No. 3 (Proc. SIG-
GRAPH), July 1989, pp. 243-252

[Chandy,Taylor82] K. Mani Chandy and Stephen Taylor, An introduction to parallel programming, Jones
and Bartlett, Boston, MA, 1992.

[Char et al.91] Bruce W. Char et al., Maple V language reference manual, Springer-Verlag, New York,
1991.

[Cleaveland86] J. Craig Ceaveland, An introduction to data types, Addison-Wesley, Reading, MA, 1986.
Cohen see [Isaacs,Cohen87]
Conner see [Zeleznik et al.91]

[Cook,Porter,Carpenter84] Robert L. Cook, Thomas Porter, and Loren Carpenter, “Distributed Ray Tracing,”
Computer Graphics, Vol. 18 No. 3 (Proc. SIGGRAPH), July 1983, pp. 137-143

[Craig89] JohnJ. Craig, Introduction to robotics: mechanics and control, 2nd edition, Addison Wesley,
Reading, MA, 1989.

Bibliography 195

[Cross89] Nigel Cross, Engineering design methods, John Wiley & Sons, Chichester, UK, 1989.

[Crow87] Frank Crow, “The Origins of the Teapot,” IEEE Computer Graphics and Applications, Vol. 7
No. 1, January 1987, pp. 8-19

[Dahl,Dijkstra,Hoare72] O.-J. Dahl, E.W. Dijkstra and C.A.R. Hoare, Structured programming, Academic
Press, London, 1972.

DePrima see [Boyce,DePrima77]

[Dijkstra72] Edsger W. Dijkstra, “Notes on Structured Programming,” in [Dahl,Dijkstra,Hoare72]
[Dijkstra76] Edsger W. Dijksira, A discipline of programming, Prentice Hall, Englewood Cliffs, NJ, 1976.
Eisenberg see [Abelson et al.89]

[Ellis,Stroustrup80] Margaret A. Ellis and Bjarne Stroustrup, The annotated C++ reference manual,
Addison-Wesley, Reading, MA, 1990.

Feiner see [Foley et al.90]

Flannery see [Press et al.86]

Fleischer see [Terzopoulos et al.87], [Terzopoulos, Fleischer88]

[French85] M. J. French, Conceptual design for engineers, Springer-Verlag, London, 1985.

[Foley et al.90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer graph-
ics: principles and practice, Addison-Wesley, Reading, MA, 1990.

[Fournier,Reeves86] Alain Fournier and William T. Reeves, “A Simple Model of Ocean Waves,” Computer
Graphics, Vol. 20 No. 4 (Proc. SIGGRAPH), August 1986, pp. 75-84

[Fox67] E.A. Fox, Mechanics, Harper and Row, New York, 1967.

[Frailey91] Dennis J. Frailey, Managing complexity and modeling reality: strategic issues and and action
agenda from the 1990 ACM Conference on Critical Issues, The Association for Computing
Machinery, New York, 1991,

[Girard,Maciejewski85] Michael Girard and A. A. Maciejewski, “Computational Modeling for the Computer
Animation of Legged Figures,” Computer Graphics, Vol. 19 No. 3 (Proc. SIGGRAPH), July 1985,
Pp- 263-270

Gleicher see [Witkin,Gleicher,Welch80]

[Goldberg,Robson89] Adele Goldberge and David Robson, Smalltalk-80, Addison-Wesley, Reading, MA,
1989.

[Goldstein80] Herbert Goldstein, Classical mechanics, 2nd edition, Addison-Wesley, Reading, MA, 1980.

[Golub,Van Loan85] Gene H. Golub and Charles F. Van Loan, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, MD, 1985.

Guttag see [Liskov,Guttag86]
Halfant see [Abelson et al.89]

Haumann see [Chadwick,Haumann,Parent89]

Bibliography 196

[Henson87] Martin C. Henson, Elements of functional languages, Blackwell Scientific Publications, Ox-
ford, 1987.

Hoare see [Dahl,Dijkstra,Hoare72]
Hodgins see [Raibert,Hodgins91]

[Horebeek,Lewi89] Ivo Van Horebeek and Johan Lewi, Algebraic specifications in software engineering:
an introduction, Springer-Verlag, Berlin, 1989,

[Horn,Johnson85] Roger A. Hom and Charles A. Johnson, Matrix analysis, Cambridge University Press,
Cambridge, 1985.

Huang see [Zeleznik et al.91]

Hubbard see [Zeleznik et al.91]

[Hughes92] John F. Hughes, personal communication, March, 1992.
Hughes see also [Foley et al.90], [Zeleznik et al.91]

[Isaacs,Cohen87] Paul Isaacs and Michael Cohen, “Controlling Dynamic Simulation with Kinematic Con-
straints, Behavior Functions and Inverse Dynamics,” Computer Graphics, Vol. 21 No. 4 (Proc.
SIGGRAPH), July 1987, pp. 215-224

[Jain,Binford91] Ramesh C. Jain and Thomas O. Binford, “Ignorance, Myopia, and Naiveté in Computer
Vision Systems,” CVGIP: Image Understanding, Vol. 53 No. 1, January 1991, pp. 112-117

[James,James76] G. James and R.S. James, Mathematics dictionary, Van Nostrand Reinhold Company,
New York, 1976.

Johnson see [Horn,Johnson85]
Kajiya see [Lien,Kajiya84]

[Kalra90] Devendra Kalra, A Unified Framework for Constraint-based Modeling, Ph.D. Dissertation, Cali-
fornia Institute of Technology, Pasadena, CA, 1990.

[Kalra,Barr89] Devendra Kalra and Alan H. Barr, “Guaranteed Ray Intersections with Implicit Surfaces,”
Computer Graphics, Vol. 23 No. 3 (Proc. SIGGRAPH), July 1989, pp. 297-306

Kass see [Witkin,Kass88]
Katzenelson see [Abelson et al.89]
Kaufman see [Zeleznik et al.91]

[Kernighan,Plauger78] Brian W. Kernighan, P.J. Plauger, The elements of programming style, 2nd edition,
McGraw-Hill, New York, 1978.

[Kernighan,Ritchie88] Brian W. Kernighan and Dennis M. Ritchie, The C programming language, 2nd
edition, Prentice Hall, Englewood Cliffs, NJ, 1988./bidxRitchie

Knep see [Zeleznik et al.91]
[Lakatos76] Imre Lakatos, Proofs and refutations, Cambridge University Press, Cambridge, MA, 1976.

[Landau,Lifshitz75] L.D. Landau and E.M. Lifshitz, The classical theory of fields (Course of theoretical
physics, Vol. 2), 4th edition, Pergamon Press, Oxford, 1975 (1983 printing).

Bibliography 197

[Lewis,Papadimitriou81] Harry R. Lewis and Christos H. Papadimitriou, Elements of the theory of compu-
tation., Prentice Hall, Englewood Cliffs, NJ, 1981.

[Lien,Kajiya84] Sheue-ling Lien, and James T. Kajiya, “A symbolic method for calculating the integral prop-
erties of arbitrary nonconvex polyhedra,” IEEE Computer Graphics and Applicarions, Vol. 4
No. 10, October 1984, pp. 35-41

Lifshitz see [Landau,Lifshitz75]

[Lin,Segel74] C.C. Lin and L.A. Segel, Mathematics applied to deterministic problems in the natural
sciences, Macmillan Publishing Co., New York, 1974.

[Liskov,Guttag86] Barbara Liskov and John Guttag, Abstraction and specification in program develop-
ment, MIT Press, Cambridge, MA, 1986.

[Lucasfiim84] Lucasfilm Ltd. Computer Graphics Division, The Adventures of Andre and Wally B. (film),
1984.

Maciejewski see [Girard,Maciejewski85]

[Magnenat-Thalmann,Thalmann85] Nadia Magnenat-Thalmann, Daniel Thalmann, Computer animation,
Springer-Verlag, Tokyo, 1985.

[Marion70] Jerry B. Marion, Classical dynamics of particles and systems, 2nd edition, Academic Press,
New York, 1970.

[Millman,Parker77] Richard S. Millman, George D. Parker, Elements of differential geometry, Prentice
Hall, Englewood Cliffs, NJ, 1977.

[Misner,Thorne,Wheeler73] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation,
W.H. Freeman and Co., San Francisco, 1973.

[Moore,Wilhelms88] M. Moore and J. Wilhelms, “Collision Detection and Response for Computer Anima-
tion,” Computer Graphics, Vol. 22 No. 4 (Proc. SIGGRAPH), August 1988, pp. 289-298

[NAG] NAG Fortran Library, Numerical Algorithms Group, 1400 Opus Place, Suite 200, Downers
Grove, IL 60515

[Nihon Sugakkai77] Nihon Sugakkai (Mathematical Society of Japan), Encyclopedic dictionary of mathe-
matics, MIT Press, Cambridge, MA, 1977.

[OOPSLAZ1] “Can Structured Methods be Objectified?” Panel, Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, ACM Sigplan Notices, Vol. 26 No. 11, November
1991.

[Pahl,Beitz88] Gerhard Pahl and Wolfgang Beitz, Engineering design: a systematic approach, Springer-
Verlag, 1988, Beitz

Papadimitrion see [Lewis,Papadimitriou81]
Parent see [Chadwick,Haumann,Parent89]
Parker see [Millman,Parker77]

[Pentland,Williams89] Alex Pentland and John Williams, “Good Vibrations; Modal Dynamics for Graphics
and Animation,” Computer Graphics, Vol. 23 No. 3 (Proc. SIGGRAPH), July 1989, pp. 215-222

[Petzold82] L.R. Petzold, A Description of DASSL: A DifferentiallAlgebraic System Solver, SANDB2-8637,
Sandia National Laboratories, 1982,

Bibliography 198

[Platt87] John Platt, personal communication, 1987.

[Platt89] John Platt, Constraint Methods for Neural Networks and Computer Graphics, Ph.D. Dissertation,
California Institute of Technology, Pasadena, CA, 1989.

Platt see also [Terzopoulos et al.87]

[Platt,Barr88] John C. Platt and Alan H. Barr, “Constraint Methods for Flexible Bodies,” Computer Graphics,
Vol. 22 No. 4 (Proc. SIGGRAPH), August 1988, pp. 279-288

Plauger see [Kernighan,Plauger78]
Porter see [Cook,Porter,Carpenter84]

[Press et al.86] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numeri-
cal recipes/the art of scientific computing, Cambridge University Press, Cambridge, 1986.

Rabinowitz see [Ralston,Rabinowitz78]

[Raibert,Hodgins91] Marc H. Raibert and Jessica K. Hodgins, “Animation of Dynamic Legged Locomotion,”
Computer Graphics, Vol. 25 No. 4 (Proc. SIGGRAPH), July 1991, pp. 349-358

[Ralston,Rabinowitz78] Anthony Ralston and Philip Rabinowitz, A first course in numerical analysis,
McGraw-Hill, New York, 1978.

Reeves see [Fournier,Reeves86]

[Reynolds87] Craig W.Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer
Graphics, Vol. 21 No. 4 (Proc. SIGGRAPH), July 1987, pp. 25-34

Ritchie see [Kernighan,Ritchie88]
Robson see [Goldberg,Robson89]
Sacks see [Abelson et al.89]

[Schréder,Zeltzer90] Peter Schroder and David Zeltzer, “The Virtual Erector Set: Dynamic Simulation with
Linear Recursive Constraint Propagation,” Computer Graphics, Vol. 24 No. 2 (Symposium on
Interactive 3-D Graphics), March 1990, pp. 23-31

Segel see [Lin,Segel74]

[Shoemake85] Ken Shoemake, “Animating Rotation with Quaternion Curves,” Computer Graphics, Vol. 19
No. 3 (Proc. SIGGRAPH), July 1985, pp. 245-254

[Snyder92] JohnM. Snyder, Generative modeling for computer graphics and cad: symbolicshape design
using interval anlysis, Academic Press, Boston, 1992.

[Spanier66] Edwin H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

[Steele80] Guy L. Steele, Jr.,, COMMON LISP: the language, 2nd edition, Digital Press, Bedford, MA,
1984.

[Strauss85] Paul. S. Strauss, “Software Standards for The Brown University Computer Science Department,”
Brown University Computer Graphics Group, Technical Memorandum, June 1985.

Stroustrup see [Ellis,Stroustrup90]

Sussman see [Abelson et al.89]

Bibliography 199

Taylor see [Chandy,Taylor92]

[Terzopoulos et al.87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer, “Elastically De-
formable Models,” Computer Graphics, Vol. 21 No. 4 (Proc. SIGGRAPH), July 1987, pp- 205-
214

[Terzopoulos, Fleischer88] Demetri Terzopoulos and Kurt Fleischer, “Modeling Inelastic Deformation: Vis-
coelasticity, Plasticity, Fracture,” Computer Graphics, Vol. 22 No. 4 (Proc. SIGGRAPH), August
1988, pp. 269-278

Teukolsky see [Press et al.86]
Thalmann see [Magnenat-Thalmann,Thalmann85]
Thorne see [Misner,Thorne,Wheeler73]

[Traub, Wasilkowski,Wozniakowski88] J.F. Traub, G.W. Wasilkowski, H.Wozniakowski, Information-based
complexity, Academic Press, Boston, 1988.

[Traub,WozZniakowskig1] J.F. Traub and H. WoZniakowski, “Theory and Applications of Information-Based
Complexity,” in 1990 Lectures in Complex Systems: the proceedings of the 1990 Complex
Systems Summer School, Santa Fe, New Mexico, June 1990, Lynn Nadel and Daniel L. Stein
ed., Addison Wesley, Redwood City, CA.

[Truesdell91] C.A. Truesdell, A first course in rational continuum mechanics, 2nd edition, Academic
Press, Boston, 1991.

[Upstilloo] Steve Upstill, The RenderMan companion: a programmer’s guide to realistic computer
graphics, Addison Wesley, Reading, MA, 1990.

van Dam see [Foley et al.90], [Zeleznik et al.91]
Van Loan see [Golub,Van Loan85]
Vetterling see [Press et al.86]

[Von Herzen,Barr,Zatz90] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz, “Geometric Collisions for
Time-Dependent Parametric Surfaces,” Computer Graphics, Vol. 24 No. 4 (Proc. SIGGRAPH),
August 1990, pp. 3948

Wasilkowski see [Traub, Wasilkowski, Wozniakowski88]
[Wedge87] Chris Wedge, “Balloon Guy,” ACM SIGGRAPH Video Review, Issue 36, 1987.
Welch see [Witkin,Gleicher,Welch90]

[Wexelblat81] Richard L. Wedelblat, ed., History of programming languages, Academic Press, New York,
1981.

Wheeler see [Misner,Thorne,Wheeler73]
Wilhelms see [Moore,Wilhelms88]

[Williams,Abrashkin58] Jay Williams and Raymond Abrashkin, Danny Dunn and the homework machine,
Scholastic Book Services, New York, 1958 (1969 printing).

Williams see [Pentland, Williams89]

Wisdom see [Abelson et al.89]

Bibliography 200

[Witkin,Gleicher,Welch90] Andrew Witkin, Michael Gleicher, and William Welch, “Interactive Dynamics,”

Computer Graphics, Vol. 24 No. 2 (Symposium on Interactive 3-D Graphics), March 1990,
pp. 11-21

[Witkin,Kass88] Andrew Witkin and Michael Kass, “Spacetime Constraints,” Computer Graphics, Vol. 22
No. 4 (Proc. SIGGRAPH), August 1988, pp. 159-168

Wloka see [Zeleznik et al.91]

[Wolfram91] Stephen Wolfram, Mathematica: a system for doing mathematics by computer, 2nd edition,
Addison-Wesley, Redwood City, CA, 1991.

Wozniakowski see [Traub, Wasilkowski, Wozniakowski88], [Traub,Wozniakowski91]
Yip see [Abelson et al.89]
Zatz see [Von Herzen,Barr,Zatz90]

[Zeidler88] Eberhard Zeidler, Nonlinear functional analysis and its applications I'V: aplications to math-
ematical physics, Springer-Verlag, New York, 1988.

[Zeleznik et al.91] Robert C. Zelexnik, D. Brookshire Conner, Matthias M. Wloka, Daniel G. Aliaga, Nathan
T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes and Andries van
Dam, “An Object-Oriented Framework for the Integration of Interactive Animation Techniques,”
Computer Graphics, Vol. 25 No. 4 (Proc. SIGGRAPH), July 1991, pp. 105-112

Zeltzer see [Badler et al.91], [Schréder,Zeltzer90]

[Zwillinger89] Daniel Zwillinger, Handbook of differential equations, Academic Press, Boston, 1989.

