
A Structured Approach
to Physically-Based Modeling

for Computer Graphics

Thesis by

Ronen Barzel

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1992

(Defended April 29, 1992)

Copyright © 1992
Ronen Barzel

All Rights Reserved

ii

iii

Acknowledgements

Many thanks are due to my advisor, AI Barr, for research collaboration, for creating a research environment
without which this work would not have taken place, and for his role as editor and critic of this text. My fel
low students in the graphics group have been a source of ideas, discussion, and friendship during my career at
Caltech: Bena CUTin, Kurt Fleischer, Jeff Goldsmith, Devendra Kalra, Dave Kirk, David Laidlaw, John Platt,
John Snyder, Brian Von Herzen, Adam Woodbury. Thanks in particular to Adam Woodbury for enthusiasti
cally using and extending the prototype model library, for prodigious coding. Thanks to Mark Montague for
valuable discussions and comments on the text. Thanks to Jeannette Tyennan for reading and commenting on
(and responding favorably to) drafts of the text. Thanks to John Hughes for several mathematical discussions.
Thanks to my doctoral examining committee, Jim Kajiya, Carver Mead, Mani Chandy, and Joel Burdick, for
their suggestions and guidance. Thanks to Carolyn Collins for her warm care during my first few years at Cal
tech. Thanks to Sandra Reyna for keeping things running smoothly, and to Dian De Sha for last-minute help
with the manuscript. Special thanks to my parents for long-distance encouragement and support during the
writing of this book. I am also grateful to the AT&T Foundation for providing me with scholarship support.
Apple Computers, Hewlett Packard, and the National Science Foundation (Sciencerrechnology Center for
Computer Graphics and Scientific Visualization) have been sponsors of the Caltech graphics lab, thus making
this work possible.

iv

Abstract

This thesis presents a framework for the design of physically-based computer graphics models. The frame
work includes a paradigm for the structure of physically-based models , techniques for "structured" mathe
matical modeling, and a specification of a computer program structure in which to implement the models.
The framework is based on known principles and methodologies of structured programming and mathemati
cal modeling. Because the framework emphasizes the structure and organization of models, we refer to it as
"Structured Modeling."

The Structured Modeling framework focuses on clarity and "correctness" of models, emphasizing explicit
statement of assumptions, goals , and techniques. In particular, we partition physically-based models, separat
ing them into conceptual and mathematical models, and posed problems. We control complexity of models
by designing in a modular manner, piecing models together from smaller components.

The framework places a particular emphasis on defining a complete formal statement of a model's math
ematical equations, before attempting to simulate the modeL To manage the complexity of these equations,
we define a collection of mathematical constructs, notation, and terminology, that allow mathematical models
to be created in a structured and modular manner.

We construct a computer programming environment that directly supports the implementation of mod
els designed using the above techniques. The environment is geared to a tool-oriented approach, in which
models are built from an extensible collection of software objects, that correspond to elements and tasks of a
"blackboard" design of models. .

A substantial portion of this thesis is devoted to developing a library of physically-based model "modules,"
including rigid-body kinematics, rigid-body dynamics , and dynamic constraints, all built with the Structured
Modeling framework. These modules are intended to serve both as examples of the framework, and as po
tentially useful tools for the computer graphics community. Each module includes statements of goals and
assumptions, explicit mathematical models and problem statements, and descriptions of software objects that
support them. We illustrate the use of the library to build some sample models , and include discussion of
various possible additions and extensions to the library.

Structured Modeling is an experiment in modeling: an exploration of designing via strict adherence to
a dogma of structure, modularity, and mathematical formality. It does not stress issues such as particular
numerical simulation techniques or efficiency of computer execution time or memory usage, all of which are
important practical considerations in modeling. However, at least so far as the work carried on in this thesis ,
Structured Modeling has proven to be a useful aid in the design and understanding of complex physicaIly
based models.

Contents

Index of Figures

Notation

1 Overview
1.1 The Need for a Design Framework .
12 Goals for the Framework
1.3 Overview of Physically-Based Modeling .
1.4 Outline of Thesis .
1.5 Related Work

2 A Framework for Physically-Based Models
2.1 Overview....
2.2 Background: Applied Mathematical Modeling.
2.3 Canonical "CMP" Structure of a Physically-Based Model

2.3.1 The Conceptual Model ("C") .
2.3.2 The Mathematical Model ("M")
2.3.3 The Posed Problems ("P")
2.3.4 Implementation & Physical Interpretation

2.4 Discussion of the CMP Structure.
2 .4.1 Why Separate The Numerical Techniques?
2 .4.2 Why Separate Problems From Equations? .
2.4.3 Why Separate Concepts From Mathematics? .

2.5 Modularity and Hierarchy
2.6 Designing a Model

2.6.1 Separating C from M from P .. .
2.6.2 Top-Down vs. Bottom-Up vs
2.6.3 Standard Outline for a Model . .
2.6.4 Debugging a Model

2.7 Communicating Models to Other People .
2.8 Summary...
2.9 Related Work

3 Structured Mathematical Modeling
3.1 Overview
3.2 Motivation for Structured Mathematical Modeling.

3.2.1 Complex Models .
3.2.2 Complete Models
3.2.3 Explicit Models
3.2.4 Practical Utility .

v

xi

xvii

1

2
3
4
4

6
6
7
8
9
9
9

10
10
11
12
12
14
15
15
15
16
17
18
19
19

20
20
21
21
22
22
23

Contents

3.3 Aesthetics & Design Decisions .
3.4 Borrowing from Programming .

3.4.1 Top-Down Design
3.4.2 Modularity
3.4.3 Naming Strategies
3.4.4 Data Abstraction .

3.5 Distinctions from Programming
3.5 .1 No Internal State
3.5.2 No Procedural Definitions
3.5.3 No Machine-Readable Syntax Necessary
3.5.4 No Polymorphism

3.6 Naming Strategies
3.6.1 Full-word Names ..
3.6.2 Scoping, Namespaces
3.6.3 Function Name "Overloading" .

3.7 Abstract Spaces
3.7.1 Defining Abstract Spaces
3.7.2 Specializations ..
3.7.3 Disparate Unions ...

3.8 Identifiers (ID's) and Indexes.
3.8.1 Definition of ID's ..
3.8.2 Indexes
3.8.3 Operations on Indexes

3.9 State Spaces
3.9.1 Basic Definition & Notation
3.9.2 Internal Properties ofa State Space
3.9.3 Subscript Notation for Aspect Operators .
3.9.4 Nested S tate Spaces
3.9.5 State Space Specializations

3.10 Segmented Functions
3.10.1 Definition of a Segmented Function
3.10.2 Sequential Representation of a Segmented Function.
3.10.3 Functional Characterization of a Segmented Function

3.11 Designing a Model
3.11.1 Writing a Model
3.11.2 What is in a Typical Model?
3.11.3 Things to Do
3.11.4 Things to Think About .

3.12 Summary .. .
3.13 Related Work

4 Computer Programming Framework
4.1 Overview
4.2 Framework for Program Structure

4.2.1 Conceptual Section
4.2.2 Numerics Section
4.2.3 Math Section
4.2.4 C-M and M-N Interfaces .

4.3 How To Implement a CMP Model
4.4 Procedural Outlook.
4.5 Why Have a Math Section? . . .

vi

23
23
24
24
25
25
26
26
27
27
27
28
29
29
30
31
32
33
34
36
36
37
38
40
40
43
44
45
46
47
48
49
50
51
52
52
53
53
54
54

55
55
56
57
58
58
59
61
62
62

Contents

4.6 Representational Outlook
4.7 Decoupling Model State from Program State .
4.8 Efficiency
4.9 Debugging.
4.10 Summary .. .
4.11 Related Work.

5 Overview of Model Library
5.1 Goals for the Prototype Library
5.2 Features of the Library
5.3 Outline of the Library
5.4 Common Mathematical Idioms.
5.5 Presentation of Each Module .
5.6 Related Work

6 Coordinate Frames Model
6.1 Background .. .
62 Goals
6.3 Conceptual Model
6.4 Mathematical Model

6.4.1 Names & Notation.
6.4.2 Definitions.....
6.4.3 Representation & Notation.
6.4.4 Transforming Representations Between Frames
6.4.5 Arithmetic Operations
6.4.6 Correspondence Between Objects
6.4.7 Using Scalars as Real Numbers
6.4.8 Moving Objects
6.4.9 Paths & Derivatives

6.5 Posed Problems . ..
6.6 Implementation Notes
6.7 Derivations.

7 Kinematic Rigid Bodies Model
7.1 Goals
7.2 Conceptual Model ...
7.3 Mathematical Model . . .

7.3.1 Names & Notation .
7.3.2 Body State
7.3.3 Body Points .. .
7.3.4 Collections of Bodies
7.3.5 Hierarchical Configurations

7.4 Posed Problems
7.5 Implementation Notes

7.5.1 Conceptual Section Constructs .
7.5.2 Math Section Constructs
7.5.3 M-N Interface
7.5.4 C-M Interface

vii

63
64
65
66
67
67

68
68
69
70
70
71
72

73
73
74
75
77
77
77
78
80
81
83
84
84
88
89
90
91

93
93
93
95
95
95
96
97
97
98
99
99
99

100
100

Contents

8 Dynamic Rigid-Bodies Model
8.1 Goals
8.2 ConcepUJalModel .. .

8.2.1 Bodies
8.2.2 "Motives"-Force!I'orque Objects .
8.2.3 Point Masses .
8.2.4 Body Points
8.2.5 Energy

8.3 Mathematical Model .
8.3.1 Names & Notation .
8.3 .2 Mass Distributions .
8.3.3 State of a Single Body
8.3.4 Motion of a Single Body .
8.3.5 Body Points
8.3 .6 A Collection of Bodies .
8.3.7 Motives
8.3.8 Energy

8.4 Posed Problems .. .
8.5 Implementation Notes

8.5.1 ConcepUJal Section Constructs .
8.5.2 Math Section Constructs .
8.5.3 M-N Interface
8.5.4 CoM Interface

9 ''Fancy Forces" Model
9.1 Goals
9.2 ConcepUJal Model

9.2.1 Force Pairs .
9.2.2 Explicit Forces .
9.2.3 Geometric Constraints

9.3 Mathematical Model
9.3.1 Overview: Connection with Rigid Body Model
9.3.2 Overview: Contrast with Previous Formulation
9.3.3 Overview: Decomposition of Force Objects
9.3.4 Names & Notation
9.3.5 Application Information
9.3.6 Proto-Motive Mechanism . . .
9.3 .7 Linear Proto-Motive Mechanism .
9.3.8 Motive-Generator Functions . . .
9.3.9 Constraint Functions for Explicit Force Objects
9.3.10 Constraint Functions for Geometric Constraints
9.3 .11 Proto-Specifiers

9.4 Posed Problems
9.5 Implementation Notes

9.5.1 ConcepUJal Section Constructs .
9.5 .2 Math Section Cons tructs .
9.5.3 M-N Interface
9.5.4 CoM Interface

9.6 Derivations
9.6.1 Acceleration of a Body Point .
9.6.2 Derivation of the Linear Constraint Equation

viii

101
101
101
102
103
104
104
104
105
105
105
106
108
109
110
112
114
116
118
118
118
120
120

121
121
121
122
123
124
124
125
125
125
127
127
128
131
134
136
137
140
140
142
142
142
144
145
145
145
146

Contents

10 Swinging Cbain Model
10.1 Goals
10.2 Conceptual Model
10.3 Mathematical Model

11 ''Tennis Ball Cannon"
11.1 Goals
11.2 Conceptual Model
11.3 Mathematical Model

11.3.1 Names & Notation.
11.3.2 Definitions
11.3.3 Behavior of the Model

11.4 Posed Problems
11.5 Implementation Notes

11.5.1 Math Section Constructs .
11.5.2 M -N Interface . . .
11.5.3 Conceptual Section
11.5.4 C-M Interface . ..

12 Extensions to the Prototype Library
12.1 Rigid-Body Collision .
12.2 Rigid-Body Contact
12.3 Finite-State Control
12.4 Mixed Dynamic/Kinematic Motion
12.5 Flexible Bodies .
12.6 Summary.

13 Concluding Remarks
13.1 Did We Meet Our Goals? .
13.2 Notes on the Design Framework

13.2.1 Structure of Physically-based Models
13.2.2 Mathematical Models .
13.203 Program Framework

13.3 Have We Made Modeling Easy?
13.4 Computer-Assisted Mathematical Modeling .
13.5 Future Directions.

Appendices:

A MisceUaneous Mathematical Constructs
A.l Trees
A.2 Arrays
Ao3 Implementation Notes

A 03.1 Implementation of Trees
A.3 .2 Implementation of Arrays

B Prototype Implementation
B.l Overview of the Presentation Style .
B.2 The Conceptual Section
Bo3 The Math Section

BJ.l Overview: Classes and Abstract Spaces
Bo3.2 Immutable Objects

ix

147
147
147
148

150
150
150
152
152
153
155
156
157
157
158
158
158

160
160
161
162
163
164
165

166
166
167
167
167
167
168
168
169

170
170
171
172
172
172

173
173
174
175
175
175

Contents

B.3.3 ID's ..
B.3.4 ID sets .
B.3 .S Indexes.
B.3 .6 State Spaces
B.3.7 Paths and Other Functions
B.3.8 Discussion...

B.4 The Numerics Section
B.4.1 Overview of the "Structured Numerics" Library
B.4.2 GatScat : Array Gather/Scatter ...
B.4.3 LinSys: Linear Systems of Equations
B.4.4 Ode: Ordinary Differential Equation .
B.4.5 OdeExt : Extruded ODE
B.4.6 OdeScatExt: Scattered, Extruded ODE
B.4.7 Pode: Piecewise-Continuous ODE .. .
B.4.8 PodeExt: ExtrudedPODE
B.4.9 PodeScatExt : Scattered, Extruded PODE
B.4.10 Ppoly: Piecewise Polynomial Functions ..
B.4.11 Segments : Partition of the Real Number Line .
B.4.12 Discussion

C Solving Piecewise-Continuous ODE's
C.1 Formalism for Piecewise-Continuous ODE's (PODE's)

C.l.1 Definition
C.l.2 Continuous ODE Segments
C.l.3 Errors

C.2 Solving a PODE
C.2.! Solving Continuous Segment i .
C.2.2 Sampling G;(t)
C.2.3 Findingt ;, the RootofG;(t) .
C.2.4 Switching to Segment i + 1
C.2.S Zero-Length Segments .
C.2.6 Numerical Issues .

C.3 Computational Costs
C.3.1 Startup Overhead . .
C.3 .2 Continuous Segments
C.3.3 Determining t ;

Bibliograpby

x

176
176
176
176
177
178
178
178
180
180
181
181
181
182
182
182
182
182
183

184
184
184
186
188
188
189
190
190
190
190
191
192
192
192
192

193

I ndex of Fig u res

Ch 1. Overview

1.1

DenvatlOo of structured modehng

1.2 116111 I~~ -~ I·
Modeling vs. simulation

Ch 2. A Framework for Physically. Based
Models

2.1 ~I ~1~_=~jJ ~I ·
Methodology for applied
mathematical mcxieling

221 h

2.3

2.4

A falling ball

Canoolcal structure of a
physical Iy-based model

...... -.. ---._.-
/ .~ -, .. ~: - ..
~-

'\ .';;:'::,-- _--. ,
Many posed problems per equanon

1

2

3

7

7

8

10

2.5

2.6

2.7

2.8

Many numencal tedul1ques per
problem

_. __ ... , _ ... -
. . .

~ bl
. .-
~
it'

-..::... --;:..

fffl " + lJ
tffi7 @.lZ I ~ - -

ChOIceS In the eMP structure

xi

· .. 11

· .. 13

• h---,-,---,. --=:=;::::::;.:::::;:::::;....~ I~ --,-------JI 14

Modularity in physically-based
models

rm
O' - " --'-iS _4_ """" "'0

._--_._-
.~- -:~

l:.=:t-.-=-=---=-".0.-

. -- -. ~-=---. --- ..
----~--

Outline of model deSIgn

· . . 17

Ch 3. Structured Mathematical Modeling

3.1 Outline of Ch. 3 21

1 1

3.2 --- 24 .,,_.-,- 11----,-- .---,-- .-
Adopting ideas from programming

Index of Figures

'--_ ... _ ... - _ ._"'-
'~
:~ . ,

3.3 ~_I.J._, ',"

0 ':

'd} .. _ I>_X _ _ "-

',. """l ' .. " !

No "state" in mathemancal objects

".'-~- .. -
3.4 ~J _ .. _-".,.," -0-

A specialization of a space

...... -. •
3.5 ~4)c--)

Disparate unions

3.6 ~B' " --- '-' .
"'_.~_, A ~

An index

3.7

A state space and its aspect operators

3.8

Nested state spaces

25

34

35

, . . 37

, , , 45

3.9

3.10

Example of a segmented function
model

Sequential representation of a
segmented function

xii

· .. 48

· .. 49

Ch 4. Computer Programming Framework

4.1

4.2

4.3

4.4

:~Cbr;l
lL:?U"CJ

Framework for program structure

The conceptual section of a
modeling program

~
". . ! -... ~ , I ! !~! ~~~

- -- -
The math section of a modehng
program

· .. 56

· .. 57

· . . 57

· .. 59

I ndex of Figures xiii

[;r- --
I

lJ
I

__ ._. E;·- I --
4.5 T~~ 60 6.2

-%
76

~--
~ I-d--I '- Distinction between locations and

Outhne of control flow across C-M vectors
interface

I
-

·~· I·L-=-l; I·
I

6.3 l; 76

4.6 60 Orientations and 2tensors

~ 6.4
-L, __

79

I
BE]

I

....

4.7 62
Representanon of a coordmate frame =

Procedural outlook
6.5 Arithmetic Operations 82

-..,-- .. 11 .. _ --=-,

~i~E1!DJ -.--.- 1-'--·'-4.8 63 6.6 /-~' .. V--~k 83
N · .N· ~ :':!t - . . . ~ ::j -- -- -- --'-

A sequence of changes of Correspondence between objects

representation

I I ~
~--.-"-,,,- 6.7 ~-- 85

4.9 ~~~ 64

- - ~. .
"-"--- ----- .. ___ Functions from reals to geometric

Model state vs. program state objects

6.8 Math section class definitions 91

Ch 5. Overview of Model Library
Ch 7. Kinematic Rigid Bodies Model

5.1

I I

69

~ ~ 7.1
\{ ~. :;, . . 94

//: . .
Modules in the prototype library

Kmematic ngtd-body monon

~
Ch6. Coordinate Frames Model . "

. ".;; .. , .. {;~: . "

• ~ I

7.2
::. .. :} '." ;.; . 95

6.1 74 '

HIerarchical ConfiguraMn

Multiple coordinate frames 7.3 Math section class definitions . 100

Index of Figures

Ch 8. Dynamic Rigid-Bodies Model

8.1 .. . 102

8.2 ,----I &----;---~: ~~~-. ~_.. ~ ~... I·· · 103
~~~ W~. 
The four types of motives 

8.3 

I 
~-

I· 
· . 104 

A point mass 

8.4 

I 
ei I 

· . 104 

A body point 

I =r- I· 
· . 109 • 

~ 

8.5 

Consistent vs. inconsistent paths 

1 

......... - ,...() 

1 

--~ 
· . 111 

0.. cf 0 -

8.6 

A consistent path in a force field 

8.7 Math section class definitions ... 118 

Ch 9. ' 'Fancy Forces" Model 

9.1 

9.2 

~ 
~'-- -- -

~ 

l~) 

Vanous types of forces 

... 122 

"",=,==1 £>=: : -,-------J' 1121 
Single forces and force pairs 

xiv 

9.3 
1 ~ f \~ ~~ I ... 124 

Various geometric constraints 

9.4 

Outline of proto-motive mechanism 

9.5 1 ~: I·· . 137 
'r;DC":eV1~' at:'Ci~on-:-m-:--:-easC:-u""re""fF:o-:-r PC~in:-;-t.-:-to'-.n-:-a"il---' 
constraint 

9.6 I ~ 6---,--,-,-;-··~~==~ ~~I137 
Behavior of constraint deviation 

9.7 Math section class definitions . . . 143 

Ch 10. Swinging Chain Model 

10.1 ... 148 

102

1 

:!~-
1 

. . 149 

A cylindrical link 

10.3 

I 
~ 
~ I· 

.. 149 

Joint between links 

Ch 11. "Tennis Ball Cannon" 

ILl . . . 151 

Sample segmented model 



Index of Figures xv 

11.2 

I L I 
· . 152 

Detail of cannon 

Ch 13. Concluding Remarks 

Ch A. MisceUaneous Mathematical Constructs 

11.3 

I tt I 
· . 152 Al I ,,t~ 

A forest of trees 
1

170 

Detail of a ball bouncing 
A.2 Math section class definitions . . . 172 

11.4 Math section definitions .... .. 157 

ChB. Prototype Implementation 

Ch 12. Extensions to the Prototype Library B.l Some differences between numeri-
cal routines and higher levels. . 179 

'" -~ 

12.1 ~ . .. 160 

~ 9 ~ B.2 · .. 180 

RigId-body colllSlon 

@ 
Schemati c of numerical modules 

12.2 .. . 161 

ChC. Solving Piecewise-Continuous ODE's 
Rigid-body contact 

~ 
I 

~~ 

I 

C.l .- · .. 185 c:v- -
12.3 

:~ 
· . 161 

Example of a PODE 
Finite-state machine 

i 
~ 

I 
I 

utd 
I 

C.2 . 185 
12.4 · . 163 ~ 

" ' · ···1·' 

Detail of a PODE 

Interchanging dynamic and 
kinematic motion 

~ 
C.3 " · . . 187 

12.5 /~/ I· · . 163 ~~~ 
Mixed static and dynamic parts A PODE as a sequence of segments 

I 
fljJ 

I 

~~'PI 
'. fl 

12.6 . 164 C.4 
~ 

· . . 188 

'OJ_YI'~ 
Rexible body Unsolvable PODE 



Index of Figures xvi 

Co5 o 0 0 189 

Solving a PODE 

Co6 o 0 0 191 

Zero-length segments 



Notation 

New Notation 

SCOPE:: name 

AtS 

{Things}IDs 

Sj 

Things 
[ 

1 

a>-+ A 
b>-+ S 

xs(t) 

xvii 

"name" in namespace SCOPE . ..... . . .. . ........•...•. • .. . • . .. .. ... . . Nom. 3.1 

A is a specialization of S with injection f . .............. . ..... ..... .. . . Nom. 3.5 

The space of indexes of Things ................. . ...... . ...... . ... . . Nom. 3.11 

The element in index S labeled by ID i ................... . . .......... Nom. 3.11 

Defines state space Things .......... .. .. .. ........... . ...... .. .. .... Nom. 3.22 

x(s), where s is in a state space wI aspect x ..... . ..... . ........... . ... Nom. 3.27 

x(s(t)), where s(t) is in a state space wI aspect x .. . . .... . . ........... . Nom. 3.28 

A tuple describing an element of a state space ..... . .... .. .... . .. . . . ... Nom. 3.24 

Coordinate representation of x in frame f . . .. ............ . ...... . ...... Nom. 6.6 

Standard Notation 

f:A-+S 

iff 
lR 

t1 
{x I condition} 

v' 

"function named f, which maps from space A to space S " 
f The function as a whole 
f( x) The value of the function acting on x E A 
If and only if 
The real numbers 
lR n I-d real arrays having dimension n 
lR m x n 2-d real arrays (matrices) wI dimensions m and n 
The empty set. 

The set of all x such that condition holds. 

Antisymmetric dual [:y ~z ~x] of a 3-D vector v = m 



Chapter 1 

Overview 

As the computer graphics field matures, there is an increasing demand for complex, physically-based models. 
. However, little attention has yet been focused on design methodologies for such models. Hence, models 

have often been ad-hoc, special purpose, abstruse, and/or hard to extend. This thesis develops a framework for 
physically-based modeling, in order to alleviate these problems. 

This chapter gives some background motivation for the creation of a design framework, and elaborates on the 
goals for the framework. It additionally contains a brief overview of physically-based modeling, and an outline 
of the remainder of the thesis. 

1.1 The Need for a Design Framework 

1 

Creating new types of computer graphics models is to a large extent a programming task (at the current state 
of the art). Creating physically-based models requires the translation of mathematical expressions of behavior 
into computer programs. Thus, a practitioner of physically-based modeling typically creates a model by jotting 
down some equations, then writing a program that embodies the model. 

In our experience as practitioners of physically-based modeling, to make our programs (and hence the 
models) be robust, we would try of course to write the programs "well", i.e., pay attention to program structure 
and modularity, take advantage of object-oriented techniques and languages, and so forth. However, we found 
that careful program design didn 't eliminate many types of stumbling blocks encountered when modeling. For 
example: 

• Even with a well-structured program, it was difficult to extend a model, to add new mathematical func
tionality and behavior-changing the equations often required substantial re-writing the program. 

• It was difficult to merge different models/programs written by different people. For example, in our 
lab, we wanted to merge the constraint mechanism of [Barzel,Barr88] (for of rigid bodies) with that of 
[Platt,Barr88] (for flexible bodies)-but the independently designed programs didn't "mesh" directly. 

• A program is only as robust as the model it embodies; careful program design doesn't ensure that the 
underlying mathematical approach is robust. For example, a rigid-body program that implements the 
penalty method to meet constraints in dynamic models will generally not perform as well as one using 
analytic or inverse-dynamics techniques (see, e.g. , [Baraff89] and [Barze I88]). 

• Programming a model doesn't help us to communicate the model; rather than describe a model directly, 
research papers often describe the computer program that embodies the model (e.g., [Barzel,Barr88], 
[Girard,Maciejewski85], [lsaacs,Cohen87], [Bruderlin,Calvert89], [Chadwick,Haumann,Parent89]). 



1.2 Goals for the Framework 

Mathematical Modeling 

.' . Properties 

.,:,,:,',','.!/ EQutons 
Solutions 

~ 
Physical Interpretation 

Structured Programming 

• Top·down design 

• Modularity 

• Data abstraction 

"Structured Modeling" 

2 

Figure 1.1: Structured Modeling draws from principles of mathematical modeling and structured programming, to derive a fram ework 
for physically.based computer graphics modeling. 0 

• More generally, programming doesn't help us to understand a model. It can be hard to separate the 
fundamental principles of the behavior of a model from the details of program construction, and to 
distinguish minor tweaking/debugging of a program from changes to the underlying model. 

As a result of the above experience, we are led to the conclusion that it is important to have a common, 
general-purpose strategy and framework to design models "on blackboards," before implementing them as 
programs. This work describes such a strategy!framewor!c, that was created by applying structured program
ming and mathematical modeling principles to the domain of physically-based computer graphics modeling 
(Fig. 1.1). Given the framework for "blackboard" design of models , we then specify a corresponding computer 
program framework, that can directly and naturally support the models we design. 

1.2 Goals for the Framework 

Sec. 1.1 discussed OUT desire to have a strategy/framework for the design of physically-based models. Here, 
we enumerate some goals for the framework: 

• To facilitate the understanding and communication of models. both in discussions with colleagues and in 
written articles and reports. We want to be able to create complete, well-defined "blackboard" models , 
independent of the programs that implement them, 

• To facilitate the creation of models with high degrees ofcomplexiry. A variety of factors contribute to the 
complexity of models: size, in terms of numbers of objects and possible interactions between them; the 
desire to model real-world phenomena with increasing accuracy; mathematical complexity; intricacy of 
numerical computational techniques; and so on . We are particularly interested in "non-homogeneous" 
models , which embody several behaviors that differ qualitatively from each other or over time. 

• To facilitate the reuse of models. techniques. and ideas. so as to allow new models to "stand upon the 
shoulders" of previous ones, and to help us merge models that are designed separately. 

• To facilitate the extension of models. so that newly developed techniques and methods can be used to 
enhance existing capabilities, without having to "start over." 



1.3 Overview of Physically-Based Modeling 

Modeling Simulation 
• . 4'" W .. H4 
1.152.' D.DDn 
D.nn l.un 
D . 1I3~ -1.51~22 

D.HO. 1.5)1)) 
o.noa D. ( UJI 
0.5'72 1. 12' " 
D. u n O.OO2.U 
a.'U. 1 . 'On2-
O. uu 1 .OUH 
0.2251 ·1. nSH 
0 .1011 0.U521 

3 

0 0 

C D 

0 

"CJ>~ ° 0 0 

0 0 

D"CJ>D 
o 0 

........................ ........... ]:> 
0 0 

0 0 

Dl:JD D D D 0 

C 0 

Figure 1.2: There are two pbases to the overall process of physically·based modeling: "Modeling" defines the fonnal behavior and 
equations of the physical system. Given a definition of behavior, "Simulation" is peIformed to numerically solve the equations. Since 
the output shown to the user is the immediate result of the simulation, the user may not see the "behind-the-scenes" modeling. 0 

• To facililate Ihe creation of models that are "correct. " We want each model to achieve its particular 
goals. We want to avoid ad hoc techniques, so that models will be useable (and re-usable) in a wide 

. variety of circumstances . 

• To facilitate the Iranslation of models into programs. We want the program layout and structure to 
correspond as closely as possible with the blackboard description of a modeL 

We will emphasize a basic low-level framework, intended for "hands-dirty" model makers, rather than 
attempt to define a final high-level specification or environment for end-users. The low-level framework, 
however, is intended to be a base upon which higher-level constructions can be built. 

1.3 Overview of PhYSically-Based Modeling 

Physically· based modeling is modeling that incorporates physical characteristics into models, allowing nu
merical simulation of their behavior. It has become somewhat of a catchall term for a variety of techniques , 
that all share the approach of defining physical principles of behavior for their models, then having the com
puter compute the details of the behavior. Physically-based modeling is a relatively new branch of computer 
graphiCS.! A brief survey of the field can be found in [Foley et aI.90-Ch.20J. 

Common elements in physically-based modeling are: classical dynamics (motion based on forces , mass, 
inertia, etc) with rigid or flexible bodies; inter-body interaction; constraint-based controL Physically-based 
models are founded on mathematical equations, and often involve numerically intensive computation to sim
ulate their behavior. 

Physically-based models most often focus on how bodies move and change shape over time. But also, 
sophisticated rendering techniques can be tied in with descriptions of the models, since rendering can be 
viewed as simulating a model of the interaction of light with matter. Thus in general, physically-based mod
eling blurs the traditional distinction between modeling, rendering, and animation in computer graphics (see 
[Foley et aI.90-p.606]). 

Notice that we make a distinction between simulation, which emphasizes computation of behavior given 
a model, and modeling which focuses on the creation of the models-this thesis will address modeling rather 
than simulation. Note, however, that since we ultimately simulate our models to determine their behavior and 
create images or animations, the simulation is what is most directly visible to an observer; the modeling work 
itself is often behind-the-scenes, a matter of defining what to simulate (Fig. 1.2). 

Finally, we observe that classically, a formalism of a physical system or behaviors is typically just a 
collection of equations. Each equation can be thought of as a "model fragment"- but for our goal of creating 

1 The field was first named in a course in the 1987 ACM SIGGRAPH (The Association for Computing Machinery 's Special Interest 
Group on Computer Graphics) conference, "Topics in Physically-Based Modeling" [BarrS?]. 



1 .4 Outline of Thesis 4 

a complete, well-defined model, we must additionally define the "glue" that connects these fragments. The 
mathematical modeling techniques presented in Ch. 3 will address formal models that include the "glue" 
between fragments . 

1.4 Outline of Thesis 

Beyond this chapter, the thesis is organized as follows : 

• The design framework 
- Ch. 2: Framework for "blackboard" design of physically-based models 
- Ch. 3: "Structured" mathematical modeling techniques 
- Ch. 4: Computer program framework 

• A library, designed using the framework. 
- Ch. 5: Overview of the library 
- Ch. 6-9: Library modules 
- Ch. 12: Extensions to the library 

• Conclusion, Ch . 13 

• Miscellaneous mathematical objects, Appendix A 

• Details of prototype implementation, Appendix B 

• A technique for solving piecewise-continuous ODE's, Appendix C 

1 .5 Related Work 

[Brooks91] addresses the same question as we do: how to manage complexity of computer-graphics models. 
Like us, he adapts ideas that are familiar to programmers; he addresses issues such as debugging, versioning, 
documentation, etc. Thus his focus is more macroscopic than ours: his effortmightbecalled "model engineer
ing" (from software engineering), as compared to our "structured modeling" (from structured programming). 
There is of course overlap between the two. 

[Booch91] is similar in spirit to our work--<lesign techniques to manage complexity-but in the domain 
of object-oriented programming rather than physically-based modeling. Our work does have some object
oriented elements however, in mathematical modeling approach and in program design. 

Much of our work is based on structured programming and software engineering; when not directly in 
techniques , then in the ethic of abstraction and modularity as a basic principles of design. [Dahl,Dijkstra, 
Hoare72] and [Dijkstra76] provide the foundations of structured programming. ([Booch91] contains an ex
tensive bibliography on software engineering.) 

We are not aware of other work that addresses physically-based modeling qua modeling. Most of the 
works in the field are descriptions of techniques to implement various types of effects and behavior. We 
list a smattering of works: [Badler et a1.91] gives techniques for modeling and simulating articulated figures 
(figures with limbs, such as people and animals); [Raibert,Hodgins91] discusses walking and running (this 
work has a scientific modeling perspective; in addition to making computer animation of locomotion, the 
authors build robots that implement their techniques); [Terzopoulos,Fleischer88] models inelastic flexible 
bodies; [Reynolds87] models flocking behavior of animals; [Fournier,Reeves86] models ocean waves. 

A common and fertile approach in physically-based modeling is to use constraint-based techniques to con
trol models. To name just a few works: [Witkin,Kass88] describes a formation of animation as a constrained 
multi-point boundary-value problem, thus allowing the user to specify intermediate and final configurations 
as well as the initial; [Barzel ,Barr88] describes how to constrain physical models to follow user-specified 
paths; [lsaacs,Cohen87] and [Schroder,Zeitzer90] combine constrained dynamics with kinematic control; 
[Platt,Barr88] uses constraint techniques for flexible bodies; and [Kalra90] discusses a framework to combine 
various constraint methods. 



1 .5 Related Work 5 

[Zeleznik et al.91) presents an interactive modeling system which, although not specifically focused on 
physically-based modeling, similarly blurs the traditional modeling/rendering/animation distinction: "We 
wish to expand the definition of 'modeling' to include the realms of simulation, animation, rendering, and 
user interaction." 

There is a large body of literature on simulation and numerical techniques; see, e.g., [Ralston, 
Rabinowitz78) for an inlroduction to numerical analysis , and [Press et al.86) for a collection of numerical 
subroutines. 



Chapter 2 

A Framework for Physically-Based 
Models 

This chapter presents a design framework for physically-based models; the emphasis is on the high-level design 
or specification of physically-based models, as opposed to their implementation. Our approach is to develop 

and discuss a model on a blackboard, i.e., create a blackboard model, before implementing it in a computer 
program. The framework developed here, however, we will carry over directly to the design of programs, in 
Ch.4. 

This chapter might seem somewhat theoretical; to see the methods "in use," the reader is encouraged to skim the 
models described in Ch. 6-9. (Note however that the techniques and notation used for the mathematical subparts 
of the models in Ch. 6-9 will not be defined until Ch. 3.) 

2.1 Overview 

6 

A physically-based model includes physical characteristics of the "thing being modeled" and specifies its 
behavior via mathematical equations. Thus a large component of physically-based modeling is mathematical 
modeling. We want to organize models into well-defined canonical parts , including a mathematical modeling 
slant and an emphasis on modularity. 

The underlying structure of a physically-based model is independent of its computer implementation. We 
will therefore talk mostly about the design of blackboard models, i.e., models that are worked out on paper or 
on blackboards,l without being tied to programming details. Thus for this chapter, " the model" includes the 
high-level plans, but we de-emphasize the implementation details. 

We are ultimately interested in computer simulation of our models, so the ideas developed here are in
tended to be practical and implementable-indeed, the design of computer modeling programs discussed in 
Ch. 4 follows directly from the structure in this chapter. Moreover, Ch. 4 assumes that a blackboard design of 
a model has been worked out before the model is transferred to a computer; the models described in Ch. 6-9 
are designed in such a manner.2 

Note that the discussion in this chapter will not make a heavy distinction between a model (such as a 
teapot or space shuttle) and a modeling technique (such as a particular constraint method). In particular, for 
the approach we will be discussing, models will be assembled from building blocks, or "modules ," which can 
in turn be built from smaller modules. All the modules in this hierarchy will be designed in the same basic 
style, be they low-level tools or the top-level model. 

1 We use the term "blackboard models" rather than "paper models" so that the models are not thought of as paper tigers or as origami. 
2 Of coo"e, we don't expect a blackboard model to woric perfectly the fi"t time it is implemented; the blackboard model will typical ly 

be modified and updated as the implementation is developed. 



2.2 Background: Applied Mathematical Modeling 

Step 1. Properties •• 
i '. 

Step 2. Equations 

i 
Step 3. Solutions 

i , , 
, 

Step 4. Physical Interpretation 

~ 
~ 
~ _ball 

Figure 2.1 : (Left) Methodology of applied mathematical modeling. These steps are discussed in the texL 0 

gravity 

Figure 2.2: (Rjght) A falling ball , used in the text to illustrate the applied mathematical modeling procedure of Fig. 2.1. 0 

2.2 Background: Applied Mathematical Modeling 

7 

We present here a brief discussion of mathematical modeling as it is done by applied mathematicians, in order 
to provide background for the physically-based modeling strategy of Sec. 2.3. This discussion is distilled 
from the ideas in [8oyce81J . 

Fig. 2 .1 shows the sequence of steps that make up mathematical modeling. To illustrate the steps, we will 
consider the following simple (trivial) problem: "How long does it take for a falling ball to hit the ground?". 
We will make a model of the physical system, and use that model to predict an answer to this question. See 
Fig. 2 .2. 

Step 1. Choose properties 10 include in the model. Doing so typically involves making simplifying assump
tions. For our example, we assume: horizontal motion is irrelevant; gravity provides a constant down
ward acceleration g; friction is irrelevant; and the ball starts at rest. We will examine the height of the 
ball as a function of time z(t) . 

Step 2. Create equationsfor the behavior. These are the mathematical model. For our example, we have the 
differential equation: 

f.,.z(t) + 9 = O· 

*z(t)lt=o 0 

The equations must be well-defined; we don't want there to be any ambiguity or contradictions. The 
equations can be manipulated, transformed, subject to proofs , and so forth. 

Step 3. Solve the equations. The above differential equation yields the following closed form expression: 
z(t) = z(O) - gt 2 /2. Given an initial value of z(O) = h, we find that z(t) = 0 when t = J2h/ g. 

Step 4. Determine the physical interpretation of the solurion. How do the results relate to the thing being 
modeled? What is the mathematics telling us? We can make qualitative or numerical predictions. In 
the example, we see that balls that start higher will take longer to hit, and if gravity were stronger, balls 
would hit sooner; quantitatively, if the initial height is 3 meters and gravitational acceleration is 9.8 
meters/sec2, then the ball will hit in approximately . 78 seconds. 

(Repeat.) If the results aren't sufficient for our needs , we might start again based on what we have learned. 
For example, if measurements show that bigger balls take longer to hit, we might choose to include 
some properties such as mass of the ball and air-resistance that depends size of the ball, then update the 
equations, and so on. 



2 .3 Canonical "CMP" Structure of a Physically-Based Model 

Canonical "CMP" Structure 

Conceptual model 

" y~::ndle \( 
spout 

Physically-Based Model 

'1 " ) 
------

Mathematical model 

S(U,V)=L L P 8 (u) 8 (v) 

m<js(a(t) ,b(t)) dt 

Posed problems 

How dark is the tea? 
i . e . given m, bet) 
find art) 
such that ... 

8 

Figure 2.3: Canonical Structure of a Physically-Based Model. The conceptual model describes the physical properties of the thing being 
modeled. The mathematical model is a collection of equations for the behavior of the model. The posed problems include conceprual 
statements of tasks to be performed, as wen as the corresponding mathematical problems. We call this panition the eMP structure. 0 

The power of this methodology lies in the well-defined mathematical model. Once the equations have 
been defined, we can draw on the vast body of mathematical knowledge to manipulate them and to solve 
problems . The equations stand by themselves, irrespective of what the particular problem is. For example, 

the equation f.,.z( t) + 9 = 0 in step 2 above could perhaps have been derived for a traffic flow model instead 
of a mechanics problem-it makes no mathematical difference. 

2.3 Canonical "CMP" Structure of a Physically-Based Model 

To a large extent, physically-based modeling is an application of mathematical modeling. Because of the 
power of the applied mathematical modeling methodology, we strive to build that methodology into our idea 
of a physically-based model. We thus partition a physically-based model into three distinct parts: 

• the Concepmal model, 
• the Mathematical model, and 
• the Posed problems, 

where the parts correspond with the steps in Sec. 2.2. We call this partition the conceptual/mathematical/ 
posed-problem structure, or CMP for short (Fig. 2.3). 



2.3 Canonical "CMP" Structure of a Physically-Based Model 9 

2.3.1 The Conceptual Model ("C") 

The conceptual model is a description of the properties, features, characteristics, etc. of the thing being 
modeled, as per step I of Sec. 2.2. 

In addition to properties that underly the mathematics, the conceptual model may also contain other in
formation about the thing being modeled. For example, a conceptual model of a dynamic rigid body for 
computer graphics, in addition to terms such as mass and momentum that enter into a mathematical descrip
tion of classical rigid-body motion, would have terms such as surface color and specularity that do not enter 
into the equations of motion. 

2.3.2 The Mathematical Model ("M") 

The mathematical model that is part of a CMP structure is directly adopted from mathematical modeling, 
the result of step 2 in Sec. 2.2. It is a collection of mathematical equations that describe the behavior of 
the model. The equations are "context free"----purely mathematical expressions that are complete without 
needing properties or definitions from the conceptual model. There is of course a correspondence with the 
conceptual model, but that correspondence is in the mind of the designer of the model , rather than inherent in 
the mathematics. 

Note that we distinguish between a mathematical model and a "math problem": the equations in the model 
are not "problems" but rather predicates, i.e., statements of relationships between entities in the model. For 
example, the expression 

d 
dty(t) = f(y(t) , t) 

simply states that the quantity on the left, the rate of change of y( t) , is equal to the quantity on the right, the 
value of f( .. . ). Various problems could be posed around the statement-such as an initial-value problem, 
a boundary-value problem, or testing measured data for agreement-but we don't consider those to be part 
of the mathematical model (see Fig. 2.4).3 Phrased from a computer-science point of view, the mathematical 
model is declarative rather than procedural (this will be discussed in Sec. 3.5.2). 

In addition to equations, a mathematical model includes definitions of the terms that go into the equations. 
For the above example, we would define y to be a real-valued function of one real argument, f to be a real
valued function of two real arguments, and t to be a real number. It is often convenient to define named 
properties, e.g., "a function T( x) is said to be frumious when IT( x) I < x 2 . .. " 

Creating a mathematical model is not necessarily easy. Note that we don't try to define models that are 
"minimal"; a model may include any or all definitions and equations that are convenient. For physically-based 
modeling, we have a set of goals, strategies, and techniques that are relevant, as we will discuss in Ch. 3. 

2.3.3 The Posed Problems ("P") 

We typically want a physically-based model to do something, such as make a prediction or simulate some 
behavior. Mathematically, this translates into solving some problem, as per step 3 of Sec. 2.2. Thus the 
third part of a physically-based model, once we've defined the conceptual and mathematical models, is the 
collection of posed problems. 

Each posed problem includes both a conceptual notion of a task to perform, and the corresponding math
ematical problem. The mathematical problems list which terms from the mathematical model have known 
values, which are unknown, which equations from the mathematical model come into play, and so forth. 
Sometimes, the mathematical problems may be solved analytically, but in general for physically-based mod
eling, we will pose problems to be solved numerically, via computer. 

3 Since we distinguish equations from problems. from our point of view the common phrase to solve an equation (such as we used in 
step 3 of Sec. 2.2) is unrigorous. We take it to be slang for to solve the problem that is implied by an equation, presupposing that only a 
single problem is implied in the current context. 



2.4 Discussion of the CMP Structure 10 

A single equation ... ... many posed problems 

~ Evaluation 

.' Gi ven : Yo to f , k F ind : y' 
0 

.' ~ Initial-value 
Given : Ya' f, k Find, y(I) 

y'(I) - f(y(I),I,k) ~ Boundary-value 
Given: Ya' Yl' f Find: k 

'. ~ Validity-check '. 
~.~. 

Given , y(I) • f . k Test equa li ty '. 
'. '. ~ 

• 

Figure 2.4: A single mathematical equation or model can lend itself to many posed problems. In this case, a differential equation 
describes a relationship between various quantities; there are many combinations of knOWD S and lDlknowns. which lead to various 
canonical problems. 0 

The problems can often be stated in a standard canonical form , e.g., as an initial-value ODE problem: 
"Find YCt) where Y' = f CY, t), given f and the initial value Yo at to ." Notice that, unlike the mathematical 
model, posed problems are often procedural, e.g., "given x, express y as a function of it, then find z such 
that. ... " In general, the problems should be mathematically well-posed. 4 

2.3.4 Implementation & Physical Interpretation 

To implement a physically-based model, i.e., to make predictions or simulations, we need to solve the posed 
problems. But how to solve them? We don't offer any specific insights here.-that's what the fields of 
applied mathematics and numerical analysis are about (see, e.g., [Lin,SegeI74], [Zwillinger89], [Ralston, 
Rabinowitz78]). There is also a large body of knowledge and software for solving numerical problems on 
computers (e.g., [Press et aI.86] , [NAG]). Computer tools exist as well, to help with mathematical manipula
tion and numerical problem solution (e.g., [Wolfram91]). 

Most often, the designer of a model has some ideas about how to solve the posed problems; notes along 
these lines can accompany a description of CMP structure, as part of a blackboard model. Given a blackboard 
model and solution ideas, one can write a special-purpose program that numerically solves the posed problems. 
Ch.4 will discuss a more general program framework in which to embed the entire CMP structure. 

Once a model has been implemented, and has produced results, we need to interpret those results, as per 
step 4 of Sec. 2.2. The posed problems describe the conceptual tasks that corresponds with the mathematical 
problems, helping one to relate the numerical solutions back to the conceptual model. But ultimately, physical 
interpretation--how the results relate to the thing being modeled-is a process that is undertaken by the 
designer or user of the model. 

2.4 Discussion of the eM P Structure 

We have found that separating the conceptual, mathematical, and posed-problem sections of modeling tech
niques makes it easier to understand them. When we read a new article that discusses a model or modeling 
technique, or when we come up with an idea of our own, it is instructive to ask four questions: 

• "What is the model or technique trying to do?" (conceptual model) 

• "What are the underlying equations?" (mathematical model) 

4 That is , each problem has a solution that exists. is unique, and depends smoothly on the knO'Ml values ([Nihon Sugakkai77]). 



2.4 Discussion of the CMP Structure 

A single problem ... 

Initial-value ODE 

{
. GiVO~ Yo ' to ' f(Y,I) 

. F'md, y(l) 

.S."'"", YUrJ - Yo 
y'(I} • f(Y,I} 

_ ........ -_ .... . 

...•............ 

...many numerical techniques 

=:> Euler's method 

=:> Runge-Kutta 

=:> Adams-Bashforth 

=:> Bulirsch-Stoer 

=:> Backwards Euler 

=:> Gear' s Method 

=:> • 
• 

11 

Figure 2.5: A single problem can often be solved by many different of numerical techniques. In this case, there are a variety of solvers 
for initial-value ODE p roblems; the choice depends on issues such as accuracy, stiffness, speed, ease of -implementation. and so forth. 
The availability of such techniques, and the ability to suit a numerical technique to the particulars of a given problem. are primary reasoos 
nol to "bard wire" a specific technique into one' s physically-based model. 0 

• "What are the knowns and unknowns?" (posed problems) 

• "What are the solution techniques?" (implementation) 

2.4.1 Why Separate The Numerical Techniques? 

The CMP structure doesn't include numerical techniques; they are left as implementation details. But some
time numerical manipulation is presented as an inherent part of a model or method. For example, sometimes 
modeling techniques are described in ways such as: 

"For each frame,supdate the body positions by adding the velocities .. . ," 

This desCription has some appeal: the physical interpretation is immediate; one can intuit why the results are 
plausible; and it is straightforward to implement. Notice that it mingles the numerical manipulation with the 
conceptual and mathematical models, as well as with the posed problems: The properties of the body and the 
animation, a differential equation of motion, and Euler 's method for solving an initial-value problem are all 
stated at once. 

Despite the appeals of such mingling, we feel it is best to make a clear separation between the statement 
of a model and the numerical techniques used to solve the posed mathematical problems. 

The most pragmatic reason for the separation is that stating a numerical problem in canonical form allows 
one to take advantage of existing tools and knowledge: there are many numerical routines, libraries, books, 
and lore upon which one can draw, e.g., [Press et aI.86], [Ralston,Rabinowitz78] , [NAG]. There are often tools 
available that are more robust than the intuitive techniques; for example Euler 's method is known to be less 
accurate than others, and unstable for stiff equations ([Press et aI.86-Ch.l5]). 

Furthermore, if the particular numerical solution technique is not hard-wired into the model, one can 
choose the technique that is appropriate to the particular circumstances of the problem. For example: (see 
also Fig. 2.5) 

"For up to moderately-sized problems, [we use] a Choleski-type matrix factorization procedure . . . For large 
problems [we use] iterative methods such as successive over-relaxation ... MUlti-grid methods ... have 
served well in the largest of our simulations" [Terzopoulos,Fleischer88-p.275] 

Finally, keeping the numerical technique separate helps insure that implementation details such as step 
sizes, error tolerances, and so forth , don't have significant effects on the conceptual behavior. For example, 

5 An animation frame is a single image from the sequence thal fonn s the animation. 



2.4 Discussion of the CMP Structure 12 

while we can accept that higher error tolerances may produce less accurate simulations, ifwe decide to animate 
at twice the frame rate, we wouldn ' t want to get qualitatively different behavior (see also Fig. 2.6). 

Separation of numerical solution techniques from the body of the model is not unique to our CMP structure. 
In practice it is done quite frequently (hence the existence of the field of numerical analysis) . The CMP 
structure itself, however, is not typically emphasized; the next sections will expand on the reasons for the 
partition. 

2.4.2 Why Separate Problems From Equations? 

The distinction between equations and problems, which we emphasize in Sec. 2.3.2, may seem like hairsplit
ting or sophistry. Perhaps interesting to academics, but where is the practical benefit? 

The primary benefit is in extensibility and reusability of models. As mentioned earlier, a single mathemat
ical model can imply many numerical problems; if the numerical problems aren't hardwired into the model, 
we can have the opportunity later to pose modified or new problems. 

For example, in our own earlier work [Barzel,Barr88) , we hardwired a specific numerical problem into our 
model: we described the motion of rigid bodies as an initial-value ODE expressed in terms of linear and angu
lar momenta (among other things), with the linear and angular velocities were defined as "auxiliary" variables 
to be computed once the momenta have been determined. After a small amount of experience, we realized 
that it would be easier for the user if we could specify initial conditions in terms of the velocities rather than 
the momenta. Unfortunately, because the model (and hence the computer program) had the momenta hard
wired as the "more primitive" representation, it required some inelegant patching of the computer program to 
insert appropriate velocity-to-momentum conversion routines. The mathematical rigid-body model in Ch. 8 
of this work, on the other hand, merely describes the relationship between the velocities and momenta, with
out preferring one to the other; the resulting computer implementation naturally supports user specification 
of either. 

Another reason for the separation of the mathematical model from posed problems is the declara
tive/procedural distinction between them. Being purely declarative helps make the mathematical model more 
robust, as will be discussed in Ch. 3. And the declarative/procedural distinction will be significant to the 
design of programs to implement physically-based models, in Ch. 4. 

Note that there is often mathematical manipulation as part of solving a given problem. It is thus possible 
for there to be ambiguity between an equation that "should" be part of the mathematical model, and one that 
is "merely" an intermediate result in an analytic solution. For example, many analysis problems are solved 
via eigenvalues; should the eigenvalue-eigenvector equation be included in the mathematical model? Such 
questions require judgement calls on the part of the designer of the model. Our general tendency, however, 
is to include all such equations in the mathematical model; if the equations arise for one posed problem, they 
may also arise for some later problem, thus we may as well state them up front. Additionally, these equations 
often have interesting physical interpretations, and thus it can help our understanding of the overall model to 
include them explicitly. If the intermediate equations are only approximations , however, we are more hesitant 
to include them in the model (Fig. 2.6). 

2.4.3 Why Separate Concepts From Mathematics? 

Having equations that stand alone-without conceptual context-is a source of the power of applied mathe
matical modeling, as discussed in Sec. 2.2. This is thus our primary reason for making an explicit distinction 
between the conceptual and mathematical models. 

There are additional benefits incurred by the separation, however. As mentioned in Sec. 2.3.1 , there 
are properties of the thing being modeled that are important to our overall model , but that don' t fit into the 
mathematical model; such properties have a home in the conceptual model. 6 The conceptual model, since 

6 In some cases. too. the mathematical model has terms ordegrees of freedom that don 'tmap directly back to anything in the onnceptual 
model. e.g .• as gauge transformations in classical electromagnetic field theory ([Landau.Lifshitz751J. 



2.4 Discussion of the CMP Structure 13 

Various CMP Decompositions for Flexible-Body Simulation 

A 
.............................................. 

Conceptual Model 

Flexible 

Body 

VS . B 
1······················ .. ····················: 

Conceptual Model I. 

Flexible 

Body 

···················U·················.J ,···················u·················.J 
1···· ···· .. ·········· .................... : .................... . ................... : 

• Partial I Partial ! 
Differential : Differential : 

Equations i Equations i 
Mathematical Model . : 

: : "" ........................................... .. II 
II 

(approximation) 

~ 

(refinement) 

~ 
...... ----.----. 

,;:~:.;=:::;.::::.~.:!' .. 
.-:_--.-: ...• -: .. . • 0-

.......... -.----. 
,,:::~:.;::::;:~:~::!' .. 

0° 0° 0° ," •....•....• -_ ... 
Discrete Equations Discrete Equations 

Numerical Solution Mathematical Model 

VS . c 
: .......................................... . 

Conceptual Model 

Flexible 

Body 

II 
(refinement) 

~ 

Point-mass/Spring System 

,···················i ~ ................. .. 
l···················U·················· 

. ....• --..• .. _-.. 
.,,(. -:f1I::. :1':".' :1'0-

JI---- fI---·fI----" 
0° 0° 0° , " . .. _-• ....•....• 

Discrete Equations 

Mathematical Model 
" ........................................... .. 

Figure 2.6: Choices in the CMP structure. Example Problem: Simulating the motion of a flexible body. A flexible body can be described 
mathematically as a continuous swface governed by partial differential equations (pDE·s). PDE solutions are typically approximated by 
disCTetizing, yielding nwnerically soluble equations. We illustrate three ways of organizing the CMP structure: 

A. The conceptual model is a fiexlble body, the mathematical model is a continuous surface. the solution technique requires dis· 
cretization. 

B. The mathematical model includes a refinement to discrete equations. 

C. The conceptual model includes a refinement to a mass-point/spring system. 

Version A 1S the "cleanest": the numerical solver can automatically/adaptively adjust parameters such as discretization, transparently to 
the high levels of the model, or other solvers can be used. At the other extreme, version C has discretization artifacts "hardwired" into 
the model (often mixed with other details such as polygonalization for rendering), thus to change sotution parameter.; requires altering 
the high-level model. Version C"s main appeals are expedience (it can be simple to implement on top of existing rigid-body simulation 
systems) and mathematicat simplicity (there are noPDE's). Flexible bodies are discussed further in Sec. 125. 0 



2.5 Modularity and Hierarchy 14 

Modular Hierarchy of Models 

I (higher-level models) I 
1 

I Constraint Forces I 
1 nrf I Dynamic Rigid Bodies J 

1 
I Kinematic Rigid Bodies I 

1\ 
p: 

V 

1 
I Coordinate Systems I 

Figure2.7: Modularity in Physically-basedModels. Individual "modules" are defined for palts of the overall model domain. Each module 
may make use of or build on lower-level models, for concepts, mathemancs, and/or posed problems. The diagram illustrates a hierarchy 
of modules that describe various aspects of rigid-body motion (the hierarchy corresponds with the prototype library in Ch. 6-9 ). 0 

it is just a statement in words, can include vague or fuzzy concepts, while the mathematical model must be 
precise. 

The precise nature of the mathematical model lets us examine it for inconsistency, insufficiency, singular
ities, and so forth. Finding such irregularities in the mathematics can often give us insight into the conceptual 
model, and help identify parts of the overall model that we had neglected conceptually. For example, singular
ities in a constraint equation can imply physically unrealizable configurations, and having too few quantities 
to create a well-posed problem implies that our conceptual model isn ' t rich enough to do what we want. The 
precision of the mathematical model similarly helps in explaining and debugging a model, as we shall discuss 
in Sec. 2.6.4. 

Note that the separation between the concepts and the mathematics can sometimes be hard to specify. For 
some applications, especially scientific or technical ones, the concepts can be inherently mathematical, e.g., 
a rigid body's conceptual shape may have a mathematical definition, such as a cone or a sphere. Also, we 
may introduce a refinement into a model that can be at the conceptual, mathematical, or problem-solution/ 
numerical levels. For example, motion of a flexible body is typically simulated by discretization methods; the 
discretization might be conceptual, mathematical or numerical, as illustrated in Fig. 2.6. 

2.5 Modularity and Hierarchy 

The eMP structure helps us to organize our thoughts about what's what in a model, helps us to understand the 
mathematical and numerical behavior, and so forth. But eMP doesn ' t directly address the question of how to 
handle big models . We need a way to manage their complexity, even within the eMP structure: That's where 
modularity and hierarchy come in. 

Modularity means that we build separate, loosely connected components, with well-defined boundaries 
and interfaces. Hierarchy means that each module can be built by putting together or invoking simpler mod
ules. These techniques let us work on complex problems by a "divide-and-conquer" approach, breaking down 
large problem into simpler ones that are easy to comprehend. At the higher levels, one can focus on the inter
action between the modular parts, without worrying about the details within them. Furthermore, the modular 
parts can be reusable--commonly used parts can be designed "once and for all" and kept in public libraries, 
so that their usage can be consistent, and so that designers won't have to repeatedly reinvent them. 

The above is well known from programming, but it applies equally to blackboard physically-based 
models.' Fig. 2.7 illustrates a decomposition of rigid-body modeling into separate modules; dynamic rigid 

71f we design our blackbuard models modularly, it then will be straightforward to make modular program implementations. This will 



2.6 Designing a Model 15 

bodies, e.g., are built from kinematic bodies, but with additional properties such as mass, and their motion is 
prescribed by Newton's laws. 

So how do we make and include modules using the CMP framework? For blackboard models, it's easy: 
mostly, just say it's modular, and it's modular-we have no formal mechanisms to deal with. That is, the 
conceptual model, being just words, can just refer in words to concepts from another module, e.g., a high
level model in Fig. 2.7 can say "the swingarm moves as a dynamic rigid body ... "; the mathematical model 
of one module can define its quantities and equations in terms of those from another module; 8 and a posed 
problem of one module can require solving a subproblem from another module. 

Notice that there's typically "parallel" modularity and hierarchy in the conceptual/mathematical/posed
problem parts. For example, if one refers to concepts of dynamic rigid bodies, one will typiCally need to refer 
also to the corresponding mathematical equations, and one will often pose standard problems. Thus we group 
all three parts of a CMP partition into a single package or module. Ultimately, we 'd like to define libraries 
of standard, general-purpose CMP modules that can be used repeatedly in many complex modeling tasks; 
Ch. 6-9 defines a simple prototype library for the domain of rigid-body modeling. 

Modularity is a simple concept-there's not really very much that we have to say about it here. It isn't 
hard to design and build models in a modular manner. What's mostly needed is to decide to design models 
modularly; then, while doing the designs, one pays attention to issues such as generality, ease of use by others, 
and so forth, that are familiar to most structured programmers. 

2.6 Designing a Model 

This section discusses some issues for designing a model, or CMP module. Note that we don't make much 
of a distinction between "top-level models" and "low-level modules"; we like to design top-level models in 
the same way as modules intended for inclusion in a library. It's not any harder to design a top-level model 
as a module, and doing so can help make the model easier to extend or combine with other models later on; 
furthermore, given a rich library of support modules, the top-level module often doesn't need to do very much. 

2.6.1 Separating C from M from P 

The most important part of designing a model, we feel , is keeping the concepts separate from the mathematics 
separate from the posed problems. Various reasons for this separation were expounded in Sec. 2.4, but they 
can all be distilled as: 

A well-defined eMP partition helps a model be robust, reusable and extensible, and helps us to 
understand, bUild, and debug the model. 

There may be choices about what goes into which section (e.g., as per Fig. 2.6), but we insist upon explicitly 
choosing. 

We also want to make sure that implementation details--{)r things that ought to be implementation 
detai1s-aren't mixed in with the model. The CMP separation helps with this somewhat, but one might still 
mix numerical details with the conceptual task statement in a posed problem. Watch out for statements like 
"choose an acceleration to bring the body to rest in one time step," that mix conceptual properties ("acceler
ation'') with solution parameters ("time step"). Sometimes, however, implementation details can affect our 
choice of model, as will be discussed in the next section. 

2.6.2 Top-Down vs. Bottom-Up vs . .. . 

How do we go about designing a model? Do we design the conceptual model first, then the mathematical, and 
finally pose some problems, or do we start with problem tasks, then build the conceptual and mathematical 

be discussed in Ch. 4. 
8 Cb. 3 will discuss techniques to support modularity of mathematical models. 



2.6 Design ing a Model 16 

models around them? Do we start with the existing library modules and build upwards, or start with the goals 
and build downwards? 

For the CMP structure, a top-down approach-conceptual, then mathematical, then posed problems
corresponds with the mathematical modeling steps of Sec. 2.2. Notice, however, that mathematical modeling 
includes a repeal step, in which we go back and adjust the top level based upon our experience, and which is 
consistent with the "annealing" design strategy. 

Often, practical ability to solve the posed problems limits the effectiveness of top-down design. Some 
difficulties that can arise for numerical problems are: 

• The solution techniques are unacceptably slow. 

• Available subroutine libraries don't have the appropriate solvers. 

• It's unknown how to solve a problem, e.g., Fermat's last theorem. 

• A problem is probably unsolvable, e.g. , the halting problem, or is NP-complete,9 e.g., the traveling 
salesman problem. 

If we encounter a circumstance such as these, we may need to change the mathematical or conceptual models, 
to produce a more tractable problem . And sometimes, our top-level goals are inherently intractable, and 
cannot be met as stated. 

Note, that there can be circumstances in which computational details affectthe choice of conceptual model 
withoutirnpinging upon our goals . For example, if the falling ball of Fig. 2.2 were to bounce, the traditional 
linear restitution model for rigid-body collision ([Fox67]) leads to a sort of computational Zeno's paradox, 
in which the ball takes infinitely many ever-smaller bounces, but never reaches continuous contact with the 
ground. Switching to a quasilinearrestitution model, 10 however, puts a finite bound on the number of bounces. 
Because the traditional model is merely an axiomatic approximation to empirical evidence, switching to a 
slightly different model produces equally acceptable simulation of behavior. For another example, [Baraff91] 
shows that the principle of constraints for mechanical systems leads to a problem that is NP-complete; and, 
while abandoning that principle yields different behavior in indeterminate configurations, the resulting be
havior is still consistent with a rigid-body model, and moreover, is computationally tractable. 

2.6.3 Standard Outline for a Model 

To help maintain the structure of a model, we can fill in the blanks of a standard outline: (Fig. 2.8) 

Goals_ What we are trying to achieve; the high-level problem. 

Conceptual Model. Includes a list of the physical properties of the thing being modeled, and their corre
sponding mathematical model terms. Can refer to other modules. 

Mathematical Model. A collection of definitions and equations; May refer to definitions and equations of 
other modules . (The mathematical model will be discussed at length in Ch. 3.) 

Posed Problems. Statements of the conceptual tasks to perform, and the corresponding mathematical prob
lems, listing the knowns and unknowns for each. A problem may be decomposed into a series of smaller 
problems, that may be posed in other modules. 

Implementation Notes. Details such as what numerical solvers are used for each problem, numerical param
eter settings that produce acceptable results, and so forth. 

For top-down design, we try to fill in the sections in the listed order. For annealing design, we fill in and 
update the sections as we learn about them. Each module has its own such outline. 

9 For practical purposes, NP-complete problems are computationally intractable; see [Lewis,Papadimitriou81j . 
10 The traditional equation relating velocity before and after a bounce 1S v + = - ev - . where e is the coefficient of restitution. Instead, 

we use v+ = max( - e v - - /'i , 0), where K. is a constant velocity-loss term and the final velocity is clamped to O. 



2.6 Designing a Model 17 

I Design of Model: "dynamic bodies" -* 
Design of Model: "teapot" l » bA.. -

~-body .. . . 

• Goals 
To produce an animation of a teapot ... 

• Conceptual Model 

In genera l, teapots are described by .. . 
For simpl icity, we assume spherical .. . 

• Mathematical Model 

S(u,v) = I: I: P 8(u) 8(v) ... 

• Posed Problems 

To pour, minimize IS(u,v) I subject ~o . . . 

• Implementation Notes 

We will use Newton's Method ... 

ng mass . . 
ematic ... 

ue ODE . . . 

Figure 2.8: Outline of model design. Each module includes a statement of its goals, cooceptual model, mathematical model. and posed 
problems, as well as implementatioo and other notes. 0 

2.6.4 Debugging a Model 

Suppose we've implemented a model, i.e., solved some numerical problems, and we have understood the 
physical inteIpretation of the results. And, unfortunately, the results are wrong: they aren't what we want or 
expect What's going wrong? For complex models , it can be hard to figure out the source of the misbehavior; 
it is often easy to get caught up in wild goose chases, e.g., trying to fix a numerical solver that isn 't in fact 
broken, and so forth. 

Having a CMP structure helps us locate and isolate bugs. There are typically three cases to consider when 
the simulated behavior is apparently broken: 

1. The problems are not being solved correctly. Check to see if the numerical routines are really solving the 
equations (e.g., verify correctness by substituting solutions back into the original equation, or compare 
nominal derivative values against actual behavior, etc.). If they aren't solving the equations, there's a 
bug in the numerical techniques or in how we are using them. 

2. They're the wrong problems. If the numerical solvers are correctly doing what they're told, then we must 
be telling them the wrong things. The problem has not been properly posed: we don't have the desired 
correspondence between the conceptual task and the mathematical model. There may be a bug in the 
mathematical model. 

3. It's what the model predicts. If the mathematical model does correspond with the conceptual model, and 
if we are correctly solving the equations, then we are correctly simulating our conceptual model. 

If we have identified case 3, the bug isn't "inside" the model. We have a conflict between the behavior that 
we want or intuitively expect, and what the model produces. This can be resolved in two ways: 

Change the model. The conceptual model doesn ' t include the properties that are necessary to elicit the be
havior we want. We must re-think our basic abstraction of the thing being modeled. 

Change our expectation. Maybe we are wrong, and the model is right! A robust model might make surpris
ing predictions that turn out to actually correspond with how the real thing actually behaves. 11 

111 once made simulations of a jumprope. I had trouble finding even a single frame that had a nice smooth loop of rope sliding along 



2.7 Communicating Models to Other People 18 

Debugging will be discussed more concretely in Ch. 4, when we discuss computer implementations of CMP 
models. 

2.7 Communicating Models to Other People 

UnsllIJlrisingly, we use the CMP structure to describe a physically-based model. This is of course easiest if 
the model was designed using the CMP paradigm-then the framework in Sec. 2.6.3 (Fig. 2.8) serves as an 
outline for a presentation of the model. The CMP structure directly answers the four questions that were listed 
in Sec. 2.4, which we have found aids in comprehending a model. 

To clearly present a physically-based model, we can flesh out Sec. 2.6.3's framework with some explana
tory material: 

• BackgroundlOverview. Before beginning to explain a model , especially to an audience unfamiliar with 
the problem domain, it is generally useful to describe the domain in general, and provide a few words 
about what the model will do. 

• Goals. What are the motivations for defining the model? If it is a module intended to be included in a 
library, what are some anticipated applications? 

• Conceptual model. What does the model do? Not merely a list of properties , but an overall introduction 
to the model: an overview of the basic abstraction, descriptions of the expected or common behaviors, 
and so forth. Diagrams can be helpful. 

• Mathematical model. Mathematically, the equations should be "context free"-but to help comprehend 
them, it helps to explain their physical interpretations alongside them. Ch. 3 will have more to say about 
presenting mathematical models . 

• Posed Problems. In addition to what the problems are, conceptually and mathematically, describe why 
they are interesting-what are they used for? Also, under what circumstances can and can't the prob
lems be solved, i.e., where are the singularities and so forth, and what are their physical interpretations? 

• implemelltatioll NOles. What solvers are appropriate, what are the numerical issues and parameter 
settings, etc. Sometimes it may be more convenient to list the numerical techniques for each posed 
problem directly alongside it, rather than here in a separate section-but be careful not to confuse a 
particular choice of technique with the statement of the problem. 

The modules in Ch. 6-9 are all presented using the above framework. (The reader can judge how effective 
this approach is!) 

For spoken presentations, when fielding questions, it can be helpful to identify which part of the framework 
the question addresses, iIi the same way as debugging (Sec. 2.6.4). A common type of question is a "what 
if. . . " question, i.e., asking what the model will do in an unusual circumstance. Here too, the CMP structure 
is helpful. Sometimes, the answer is "it's not part of our conceptual model" (e.g., for a question "what if we 
move the light source close to the jello--does it get hot and melt?). Othertimes, the question can be mapped 
into the mathematical model, in which case there's typically one of three answers: 

I. ''There is no solution to the equations" 
2. ''There's exactly one solution, which is . .. " 
3. ''There are many solutions" 

When there's not exactly one solution, the resulting behavior then depends on the particulars of the numerical 
solution technique. 

the floor, it was wiggling and jangling every which way. This was very frustrating until I came across a stroooscopic multi-exposure of 
a girl jumping rope ... 



2.8 Summary 19 

2.8 Summary 

We have presented a canonical CMP (conceptual/mathematical/posed-problem) structure for physically-based 
models, which, based on applied mathematical modeling technique, emphasizes a well-defined mathematical 
model that is separate from its solution and physical interpretation. We differ from "straight" applied mathe
matics in that: we take a modular, re-usable approach to design of models; we have a heavier emphasis on the 
separation of the parts , in particular the distinction between an equation and a problem; and our conceptual 
model can include properties that don't enter into the mathematical model. Because of the importance of the 
mathematical part of a model , Ch. 3 will address a structured approach to mathematical modeling, which will 
fit in to our CMP framework. 

We have found that the CMP structure enhances our ability to discuss, analyze, and understand modeling 
techniques, helps us to build and debug models, and produces models that are robust, reusable, and extensible. 
Furthennore, as we shall see in Ch. 4, it maps well onto programming; the CMP structure can be designed 
into computer programs. 

Despite the presentations in this chapter, there is no cookbook for designing, debugging, and commu
nicating models-those remain creative human processes . However, we do stress the CMP structure for 
physically-based models. We have used it successfully, for example, for the models in Ch. 6-9. And even 
when we don't formally write down a CMP structure in the precise fonn described in this chapter, we at least 
think about the models in that way. 

2.9 Related Work 

The mathematical modeling methodology we describe in Sec. 2.2, illustrated in [Boyce81), is reasonably 
widespread in applied mathematics. Its application to modeling physical systems is discussed, e.g. , by 
[Zeidler88-p.viii) , which draws a diagram similar to our Fig. 2.1. 

Modularity and hierarchy are basic elements of structured programming (see, e.g. , [Dahl,Dijkstra, 
Hoare72D and object-oriented programming ([Booch91 D. 

The framework and design methodology that we have discussed is analogous to those found in other fields . 
For example, engineering design is often separated into task clarification/conceptual design/embodiment de
sign/detail design; see, e.g. , [Pahl,Beitz88), [French85) , or [Cross89). 



Chapter 3 

Structured Mathematical Modeling 

This entire chapter is directed towards solving a single problem: To be able to write down complete explicit 
mathematical models of complex systems. The task may seem innocuous at first glance, but it is in fact 

challenging enough to have spawned a chapter that is fairly dense. The chapter has a fair amount of " talk"
philosophy and other discussion---and also defines a few specific mathematical mechanisms that help structure 
complex models (see Fig. 3.1). 

This chapter will draw some analogies between mathematical modeling and computer programming, to help us 
take advantage of principles of software design. However, the mathematical techniques we present do not depend 
on a knowledge of software. 

The mathematical exposition does not strictly demand more than a basic familiarity with set theory and functional 
analysis.' The definitions we present are basic, thus somewhat abstract; however the underlying concepts are 
quite simple, and we have found that the techniques and notation seem natural after modest exposure. The list of 
notation, p. xvii, may be helpful. 

The principles and techniques discussed in this chapter are used for the models in Ch. 6-9 . The reader is encour
aged to skim Ch. 6-9 in order to see the principles and techniques " in action." 

3.1 Overview 

20 

What is a mathematical model? For our purposes, a mathematical model is a collection of mathematical 
definitions of tenns and equations. For physically-based modeling, we expect a mathematical model to be 
defined in the context of a CMP (conceptual/mathematical/posed-problem) partition as per Ch. 2. Thus, al
though problem statements ("given x , find y such that ... ") and physical interpretation ("z is the width ... ") 
are closely related to the mathematical model, we consider them to be separate from it. Ch. 2 details reasons 
for the separation; in this chapter we will take it as a given. 

The principles and techniques we will discuss in this chapter are "administrative" in nature, directed 
towards structuring and managing complexity of mathematical models . For most of our applications, we 
will be content to re-cast classical equations-"model fragments" as per Sec. 1.3-into our structured fonn. 
In order to define such fragments ab initio, we refer the reader to [Lin,SegeI74). 

Since this chapter focuses on mathematical modeling, an unqualified use of "model" can be taken to mean 
"mathematical model." Similarly, since this chapter focuses on issues significant to structured modeling, an 
unqualified use of "mathematical modeling" can be taken to mean " ... from our point of view." 

I" A good treatise on the theory of function s of a real variable does Dot strictly require of its readers any previous acquaintance of 
the subject .. . yet a student anned with no more than a naked. virgin mind is unlikely to swvive the first few pages. In the same way, 
althoogh this book does not call upon any previoos knowledge ... "[TruesdeIl91·p.xvii] 



3.2 Motivation for Structured Mathematical Modeling 

Outline of Chapter 3 
Principles 

Sec. 3.1 Overview. 
Sec. 3.2 Motivation for Structured Modeling. Elaboration of our goals. 
Sec. 33 Aesthetics & Design Decisions. Choices must be made. 
Sec. 3.4 Borrowing from Programming. Complexity management techniques. 
Sec. 35 Distinctions from Programming. Iss ues for mathematical models. 

Techniques 
Sec. 3.6 Naming Strategies. Enhancing clarity, avoiding conflicts. 
Sec. 3.7 Abstract Spaces. Definition of mathematical entities. 
Sec. 3.8 ID's and Indexes. Managing collections of objects. 
Sec. 3.9 State spaces. Encapsulation of mathematical data. 
Sec. 3.10 Segmented Functions. Combining discrete and continuous behavior. 

Discussion 
Sec. 3.11 Designing a Model. Notes on developing a modular mathematical model. 
Sec. 3.12 Summary. 

21 

Figure 3.1: Outline of this chapter. Sees. 3.1-3.5 describe our philosophy and attitudes towards mathematical modeling. Sees. 3.6-3.10 
present various mathematical mechanism s--definitions, notations, and techniques---thaL are useful for structured mathematical modeling; 
Sees. 3.11-3.12 contain further discussion and summary. 0 

3.2 Motivation for Structured Mathematical Modeling 

We adhere to the premise that if we wish to do a simulation, we must first create a well-defined mathematical 
model ; and if a mathematical model is well-defined, we ought to be able to write it down. Our primary goal 
for mathematical modeling is therefore: 

Goal: To be able to write down complete, explicit equations for complex physically-based mod
els. 

The difficulty here lies in the words "complete," "explicit," and "complex." Imagine writing complete, explicit 
equations for a bicycle drive train: the behavior of each and every link, their interactions with each other and 
with the gears and derailleurs, etc. Clearly, writing them out longhand in full detail, without the aid of special 
tricks or techniques, is too cumbersome and ugly to consider seriously. 

We notice that computer programming has inherent in it the same difficult components as our goal for 
mathematical modeling: A computer program must be explicit, must be complete, and can be very com
plex. Over the past twenty years , techniques for structuring and engineering computer programs have been 
developed to mitigate these difficulties. We will apply many of these techniques to mathematical modeling. 

The "Structured Mathematical Modeling" techniques in this chapter are intended to help meet ourprimary 
goal-complete, explicit written equations for complex physically-based models. But before developing any 
specific techniques, we will elaborate on various aspects of the goal. 

3.2.1 Complex Models 

The primary sources of complexity in our models are size and heterogeneity. The mathematical models in 
[8oyce81J have perhaps a few dozen variables; our computer graphics models can easily have hundreds or 
thousands, with intricate relationships or interconnections between them. 2 Moreover, we wish to mingle 
various behavior modes into a single model, where the differing behaviors can be due to different components 
of a model as well as from individual components that change over time. 

2 Having merely "thousands" of variables is itself humble, compared to applications such as weather/climate modeling. We emphasize 
applications. however. in which the many variables cannot be treated statistically or regularly, in that they may have irregular behaviors 
or interrelationships. 



3.2 Motivation for Structured Mathematical Modeling 22 

Thus, although we adopt the basic mathematical modeling philosophy of [Boyce81] (as discused in 
Sec. 2.2), we also need to develop techniques to handle our unusual complexity requirements. 

3.2.2 Complete Models 

As discussed in Sec. 1.3, most physical models are expressed as "fragments", i.e., a collection of equations that 
describe individual components of the model. For example, in presenting techniques for animating dynamic 
legged locomotion, [Raibert,Hodgins91] contains various equations (taken here out of context): 

"Both actuator models have the form f = k( x - x r) + bi, where f is .. . 

The control system computes the desired foot position as: x fh,d = .. . 
The posture control torques are generated by a linear servo: T = ... " 

The article describes how and when the various fragments come into play-but this description is in words: 
there is no mathematical expression for the model as a whole.3 

Lacking mathematical tools that express models completely, it is hard to communicate, analyze, and so 
forth. Furthermore, when we ultimately want to simulate a model on a computer, it becomes the programmer's 
job to ascertain or intuit how the various fragments piece together, and build that structure into a computer 
program. Thus we need to develop techniques to "glue" together separate model fragments. 

3.2.3 Explicit Models 

Going hand-in-hand with wanting our models to be complete, we also want them to be explicit. That is, 
we want to minimize ambiguity, that might lead to errors occurring through (accidental) inappropriate use 
of equations. We emphasize two ways of doing this: minimizing tacit dependencies, and minimizing tacit 
assumptions. 

In writing equations, minimizing dependencies really means being careful always to write terms as func
tions that include all their parameters. In addition to minimizing errors in doing mathematical derivations, 
making all the dependencies explicit greatly eases the ultimate transition to a computer program. Being able 
to write explicit dependencies requires (and motivates the development of) complexity- and fragment- man
agement techniques as discussed above. For example, in a rigid-body model , the force on a body can depend 
in principle on the state of all the other bodies at each instant; rather than merely writing " the force /", we 
want to write "the force function f(state-ofaIl-bodies)"-but using mathematically precise constructs. 

Minimizing tacit assumptions is important in the early stages of overall model design as discussed in 
Sec. 2.6. But also, as we write our mathematical equations, we want to be careful always to list what our 
assumptions are, what conditions are required, and so forth. In this way, each equation can be "globally 
valid". For example, rather than writing an equation "x = ... ," one would write write "in such-and-such 
circumstances, x = .... " This helps in understanding the equations, and again can ease the transition to 
computer programs.4 The idea of globaIlyvaIid equations ties in with modularity (Sec. 3.4.2) and declarative 
models (Sec. 3.5.2). 

Unlike our goals of complexity and completeness, for which we identified a need for new techniques, the 
goal of explicit models to a large extent requires a discipline on the part of the model designer. That is, given 
techniques that make writing explicit equations feasible, it remains up to the model designer to invest the 
appropriate effort. 

3 No disparagement is intended. We have chosen to cite [Raibert,Hodgins91] precisely because it is an excellent article, describing 
superb work; thus it illustrates to us not a Jack of discipline on the part of the authors , but rather a need for enhanced expressiveness in 
mathematical models and notation. 

4. AU equations in this chapter in Ch. 6-9 are careful to include their "givens" and notes, in order to help make each be correct and 
understandable by itself. 



3.3 Aesthetics & Design Decisions 23 

3.2.4 Practical Utility 

There is one additional goal that we have not yet mentioned: practical utility. We are not interested in purely 
academic or theoretical techniques: Not only do we want to develop techniques, we want to be able to use 
them-and moreover, we want to be better offfor having used them. 

That is, we want our mathematical modeling techniques to make it easier to create models . We want 
the techniques, as well as the models that we create thereby, to be writable and readable. We want to show 
models to colleagues, who should be able to understand them. We want to scribble models on whiteboards 
and napkins. 

As such, we try to keep to familiar, existing notation, definitions, and terminology as much as possible to 
avoid abstruseness. We will not be attempting to fabricate entirely new mathematical languages, but rather 
will try to augment the existing language with a few simple constructs that have proven to be useful. 

Note that it is particularly important that models be understandable to others: Because of structured mod
eling 's modular approach, we will be designing "library" models (or components of models) that are intended 
to be used by others , often for unforeseen applications. Thus there is a concern for clear and orderly "packag
ing" and "interfaces" that is familiar to those who design software libraries , but is ofiesser significance when 
one designs a mathematical model purely for one's own one-time use. 

Finally, in addition to the above "ergonomic" issues, the techniques we use should be rigorous and robust 
enough to support derivations, proofs, and so forth. 

3.3 Aesthetics & Design Decisions 

A balance often must be struck between the goals discussed in Sec. 3.2-in particular, between the goal of 
practical usefulness and all the goals. For instance, if there are too many parameters and parentheses, putting 
in all the explicit dependencies will make the equations too cumbersome to read and error-prone to write. 
Similarly, defining new terms or constructs can clean up an equation, but a plethora of gratuitous definitions 
can be hard to keep straight and will be particularly inaccessible to newcomers. Or, there can be a tradeoff 
between full generality (a single model that can do everything) and ease of understanding. 

There's no pat answer for what the proper balance is, nor how to strike it. Often, case-by-case decisions 
will have to be made based on personal aesthetics, individual goals, the levels of experience of the audience 
and of the designer, and so forth. Thus doing mathematical modeling involves "design decisions" that are 
similar in spirit to those made in programming, engineering and other constructive tasks-they are an inherent 
part of being a designer of mathematical models. 

There is one area about which we remain resolute: Even if there's shorthand or whatnot being defined 
for clarity, we will always be careful to make sure that there is an underlying mathematical framework that is 
solid. Remember the premise that we are trying to make a good/correct mathematical model. 

One final trade-off that needs mentioning is between design effort up front vs. ease of use later on. The 
goal of writing down a complete model before simulating it of course leans heavily towards investing effort 
in the design, in order to create a better product. But we recognize that there can be diminishing returns from 
excessive time spent designing "blindly," and that often the best way to design is to experiment in order to 
gain experience and understanding. 

3.4 Borrowing from Programming 

We observed earlier (Sec. 3.2) that our approach to mathematical modeling bears similarity to programming: 
both require complete, explicit descriptions of complex systems. Structured programming, and more recently, 
object-oriented programming, have been developed to help manage the complexity of computer programs; 
we can apply much of the their philosophy and many of their techniques to mathematical modeling as well. 
(Fig. 3.2) 



3.4 Borrowing from Programming 24 

Programming concepts 

Ideas we embrace for Ideas we eschew for 
mathematical modeling: mathematical modeling: 

..; Top-down design X Internal state 

..; Modularity X Procedural definitions 

..; Naming strategies X Machine-readable syntax 

..; Data abstraction X Polymorphism 

Figure 3.2: Adopting ideas from programming. Many goals and difficulties that we have for mathematical modeling are similar to 
those of computer programming. As such, we find that several known principles from computer programming are well worth using for 
mathematical modeling (Sec. 3.4). Conversely, however, the differences between programming and mathematics compel us to steer clear 
of some techniques (Sec. 3.5). 0 

It would be a shame to clutter up mathematics, which has a traditional ethic/aesthetic of austerity, with 
excessive or unattractive baggage from the world of programming. As such, although borrowing philosophy 
of programming is probably harmless, when it comes to specific techniques we will try to use a minimal 
approach, only bringing in methods that are particularly useful. We'd like to keep our mathematics as familiar, 
readable, and usable as possible, as per Sec. 3.2.4. 

3.4.1 Top-Down Design 

The top-down design strategy calls for first creating a specification, then creating the high levels of a mech
anism that meets the specification, and so on, with the final details of implementation saved for last. For 
mathematical modeling, the top-down approach mostly enters before the design of the mathematical model, 
i.e., in the specification of goals and physical context for the model , as per the CMP decomposition discussed 
inCh. 2. 

It is possible, to some extent, to design the mathematical model itself in a top-down manner. The methods 
of modularity and data abstraction (that will be discussed below) can support specification of the overall 
structure and relationships within a model, where the details are filled in later. 

3.4.2 Modularity 

Modularity in programming means that programs are built as a (hierarchical) collection of independent com
ponents having well-defined interfaces. It helps us to decompose complex problems into simpler ones that are 
easier to understand and implement; often, the modular subparts are standardized and kept in libraries. The 
benefits of modularity apply as well to mathematical modeling. 

Mathematics has some modular aspects inherent in it, in that it is based on independent, well-defined 
axioms and theorems; constructs are defined in terms of more primitive constructs , e.g., a field is defined in 
terms of sets and a derivative in terms of limits; and often, entire branches of mathematics can be based on 
earlier branches , e.g., differential geometry is built from linear algebra and calculus ([Millman,Parker77]). 

For our purposes, however, modularity in mathematical models will generally coincide with the modular 
design of physically-based models, as per Sec. 2.5. For example, in Ch. 6-9, we will have a mathematical 
module for kinematic rigid-body motion, one for dynamic rigid-body motion, one for force mechanisms, and 
so forth . Each module defines a consistent set of terms and equations for its model, designed to be useful for 
a variety of applications, rather than for a specific "end-mode!." The modules can make use of equations and 
terms from other modules, e.g., dynamic rigid-body motion is built on top of kinematic. 

In order for a module to be widely useful, especially in conjunction with other modules, each module must 
be designed with a care towards not "stepping on the toes" of others. For example, tacit assumptions should be 



3.4 Borrowing from Programming 

Programmatic operation 

(Changes the contents of an object) 

, ' 

add node "e;' to tree T 

Mathematical operation 

(Maps between elements of sets) 

Nodes = { A, B, C, .. . } 

Trees: 

'~"""""""\ 
,: B ... , ' .. .......... ....... . .... . ..... ~ : 

t : AD: 

1 ' • , . , , 

\ ......... ~ ..... / 

add: Trees X Nodes - Trees 

t = add( t ,C) 
1 0 

2S 

Figure 3.3: No "internal state" in mathematical objects. In most computer programming. it is common for objects to have internal states. 
For example, adding a node to a binary tree object changes the internal state, but it is still coosidered the "same" object (where objects 
are typically identified by theirmemol')' addresses). In mathematics, however. we ~ill avoid the notion of internal state: a binary tree is 
an element of the set Trees containing all binary trees , whose nodes are elements of the set Nodes. We can define a function add that, 
given any tree in Trees and any nooe in Nodes, maps onto some other tree in Trees, that bas the appropriate nodes in it. Lack of internal 
state is a characteristic also of functional programming (see Sec. 3.5.1). 0 

avoided-they may conflict with assumptions in other modules-but instead assumptions should be listed as 
explicit preconditions for equations, as per (see Sec. 3.2.3). Naming strategies and data abstraction, discussed 
below, also come into play. 

3.4.3 Naming Strategies 

In mathematics, as in programming, we assign names to things-the names should be mnemonic and unam
biguous. We must be careful to avoid naming conflicts, especially when models are defined modularly and 
independently. 

We will adopt several naming strategies from programming for use in mathematical modeling: full·word 
names, function·name overloading, and namespace scoping. These will be discussed in Sec. 3.6. 

3.4.4 Data Abstraction 

Data abstraction in programming is analogous to modularity, but for data elements: a collection of related data 
elements is bundled together as a single logical entity. often called a data structure or abstract data type (see 
[Liskov,Guttag86]). Data abstraction provides encapsulation, or information hiding. in which an abstract data 
object can be manipulated as a single entity without reference to details of its contents or implementation, and 
hierarchy, in that an abstract data type may be defined in terms of other abstract data types. These capabilities 
can greatly help to manage complexity. 



3.5 Distinctions from Programming 26 

Object-oriented programming (OOP) takes data abstraction a step further: An abstract data type (or class) 
is specified along with a well-defined set of the operations that may be performed upon that type of object 
Thus the particulars of the elements that make up the data type are implementation details irrelevant to its use, 
and can be changed without affecting the data type's functionality. This separation of implementation from 
function is another powerful structural tool, that aids in maintenance and extensibility of programs. 

The field of mathematics has some data abstraction inherent in it. As discussed in Sec. 3.4.2, types of 
mathematical objects are often defined hierarchically. Additionally, mathematical "data types"-such as sets, 
fields, or vectors-are often defined abstractly, via properties and operations, without having any "innards." 

For mathematical modeling, we will emphasize the use of data abstraction, in the form of abstract spaces; 
this will be discussed at length in Sec. 3.7. We will also present, in Sec. 3.9, a mathematical mechanism for 
defining state spaces, that encapsulate collections of elements/operations into mathematical entities. 5 

3.5 Distinctions from Programming 

Lest we get carried away with the parallels between mathematical modeling and software design, we examine 
differences between them. In particular, there are some ideas from programming that we make a point of 1I0r 

borrowing; this section lists several features of mathematical modeling that conflict with common program
ming methodology (Fig. 3.2). 

3.5.1 No Internal State 

One aspect of programming that we find unsuited to mathematical modeling is the idea of "internal state" of 
an object. As illustrated in Fig. 3.3, a computer-programming object can have variable internal state-in fact, 
the concept of objects having internal state, with operations to access and modify that state, is the sille qua 
11011 of object-oriented programming. 

In the realm of mathematics, on the other hand, we prefer objects to have no internal state. An operation 
is merely a map between elements of the domain and elements of the range; "performing" an operation on a 
given element of the domain just means finding the corresponding element of the range. For example, if we 
apply the operation "add one" to the number "3," we get "4"-but "3" isn't modified. 6 

Lacking internal state, activities that would be programmatically defined as state changes, mathematically 
are defined instead as mappings between elements of (abstract) state spaces, as illustrated in Fig. 3.3. We will 
discuss abstract spaces in general in Sec. 3.7, and a mechanism for state spaces in particuiar in Sec. 3.9. 

Why not define some mathematical mechanism that supports internal state? Because the lack of internal 
state is not a drawback but rather a feature: Without internal state, the result of an operation on a given object 
is single-valued, and we can thus define equations that always apply, without fear of the objects involved 
being in the wrong state. That is, the lack of internal state is central to the use of globally valid equations as 
per Sec. 3.2.3. 

Finally, note that the idea of "globally valid" objects, whose internal state is never modified does in fact 
arise in some programming paradigms. For example, for parallel programming, [Chandy,Taylor92] uses def
illitioll variables, whose values don't change, to insure correctness of otherwise mutable variables across 
parallel composition of program blocks. Another example is functional programming, based on a mathemat
ical function approach in which values are computed but no changes are stored (see, e.g., [Henson87]). Note 
however that we have not explicitly adopted any techniques or terminology from those realms. 

5 Our use of abstract spaces is similar to the fonnaValgebraic treatment of abstract data types in computer science (see [Horebeek, 
LewiB9),[Cleaveland86)); but note that we have opposite goals: the srudy of abstract data types brings mathematical rigor to computer 
programming constructs, while our use of abstract spaces brings computer programming principles to mathematical mcxleling. 

60neis reminded of the applied-mathematicians' joice: "2 + 2 = 5, for large values of 2 and small values of 5." Note also the 
well-known bug in FORTRAN programs: passing the coostant 3 to a routine addone (x) might in fact change the value of "3" for the 
remainder of the program. 



3.5 Distinctions from Programming 27 

3.5.2 No Procedural Definitions 

Traditional programming paradigms are procedural (or imperative): The programmer specifies a sequence 
of instructions for the computer to carry out. Our mathematical models , on the other hand, contain no posed 
problems or instructions for solving problems, but merely state equations (Sec. 2.3.2). Thus the mathematical 
models are declarative. 

Notice that the lack of internal state (Sec. 3.5.1) goes hand-in-hand with lack of procedural specification: 
Not having any state, there can be no notion of the "current instruction." Once again, we have a similarity 
with the functional programming paradigm: 

"One of the great benefits of [functional programming] is that the programs may be considered declaratively. 
It is rwt necessary to attempt a mental execution of the program in order to understand what it 'does' .. . We 
wish to adopt a more static approach in which it is more appropriate to ask what a program ' means' rather 
than 'does.'" [Henson87-p.66] 

If we replace ''programs'' with "equations," and "execution" with "solution," the above argument applies as 
well to mathematical modeling.7 

In the real world, and hence in our physically-based models, there are often sequential changes of state. 
Thus we need to be able to express "when this happens, do that" in a mathematical model-without a proce
dural specification. In Sec. 3.10, we will discuss "segmented functions," that address this need. 

3.5.3 No Machine-Readable Syntax Necessary 

If we're not careful as we wear our "programmer 's hats" when approaching the design of mathematical mod
els, we might end up defining mathematical mechanisms more suited for computers than for people. The 
ergonomic goals of Sec. 3.2.4 must be brought into play. 

For one thing, the mathematical syntax shouldn't be so subtle or so intricate that it takes a compiler to 

figure out the intent. That is, important distinctions shouldn't depend on easily-confused notation (e.g., tiny 
subscripted marks), a single symbol shouldn' t imply an overly complex or non-intuitive series of operations, 
and so forth. 

Additionally, we don't want to define syntax so rigid or cumbersome that it's inconvenient to use. Some
times, flexibility can be enhanced by allowing several alternative notations; as in 

y = sin(x) 
y = sin x 

Furthermore, when scribbling equations and derivations, one commonly uses shorthand, elisions, and so fonh; 
it should be possible to do so yet still be able to make use of the corresponding mathematical mechanism. On 
the other side of this same coin, we don't want to invent syntax that is ungainly enough to encourage its elision. 

With flexible syntax comes the potential of ambiguity and lack of rigor. If one uses shorthand, leaves off 
parenthetical arguments, and so forth, one relies on the reader knowing what is meant rather than what is said. 
This is another "design decision" as per Sec. 3.3. We generally try to mitigate such ambiguity by appropriate 
annotation in the accompanying text; Eqn. 9.21, for example, has a note "For clarity, the parameters have 
been left off M pq (Y, t) . .. " 

3.5.4 No Polymorphism 

One of the most powerful ideas of object-oriented programming is polymorphism: a given name may refer to 
an object of anyone of a number of related classes, that may respond to a given operation in different ways. 
This allows a single program to be applied to any of the related classes, even ones that weren't defined when 
the program was originally written. 

7 The similarity between mathematical modeling and functional programming is unsurprising: functional programming is designed 
to allow fonnal , mathematical manipulation and analysis of programs. 



3.6 Naming Strategies 28 

We said in Sec. 3.4.4 that we would incorporate the idea of data abs traction-i.e., the definition of 
classes-into mathematical modeling. Thus we might expect or desire to take advantage of polymorphism 
as well. Mathematics contains some simple uses of polymorphism: for example the expression a + b has 
slightly different meanings for real numbers, complex numbers, functions , and so forth. 

However, as a rule, polymorphism is not suited to mathematical modeling, because it tends to increases 
ambiguity. That is, when working with polymorphic objects, their behavior isn' t completely well-defined 
upon simple inspection of an expression, but will depend on what type of objects are eventually used. For 
mathematical modeling, we have no compiler or run-time support to identify or disambiguate objects- we just 
look at the equations, so their meanings should be evident without added context, as discussed in Sec. 3.2.3. 

This is the end of the Principles part of chapter 3. The next pare, Techniques, presents 
some mathematical mechanisms that support the structured mathematical modeling ap
proach we have been discussing. 

3.6 Naming Strategies 

In mathematical equations, letters are used for names of parameters, functions, and so forth: for example, the 
letters f, k, t, and x in the equation "x = f k(Y , t)." But as more and more equations and terms are written, 
it's easy to run out of letters. 8 To squeeze more life out of the letters, one can take advantage of various cases 
and fonts, e.g., r vs . R vs. R vs. n vs. lR etc. One can also turn to other alphabets, e.g.,~, 'It, N, etc. But 
still, for mathematical models of the complexity we're interested in, running out of letters for names has the 
potential to be a serious problem. In particular, since we design models as separate modules , we run the risk 
of having naming conflicts when we combine the modules together. Furthermore, we want names to make 
sense; with too many letters chosen arbitrarily, it can be hard to remember what's what. 

Our concern with mathematical names is analogous to computer programming's concern with variable 
and function names. We present here three naming strategies from computer programming that can be used 
as well for mathematical modeling. 

8 This is "another example of a growing problem with mathematical notation: There aren ' t enough squiggles to go around" [Blinn92· 
p.881 



3.6 Naming Strategies 29 

3.6.1 Full-word Names 

Instead of using only a single letter for mathematical names one can use a whole word, or at least a multi-letter 
name. This is familiar for many fundamental mathematical functions and operations, such as 

sine x) 
arccos(x ) 
lim x=O 

n_oo 

and so forth , but it is rarer to see multi-letter terms in other contexts. ([Misner,Thorne,Wheeler73] is an 
example ofa work that does use a full-word approach, defining, e.g., tensors named Einstein and Riemann.) 
In addition to allowing us more names than single letters, multi-letter names of course have the advantage of 
being mnemonic. 

As with good programming style, one should generally use longer names for global, important, or 
infrequently-used terms, and use shorter or single-letter names for local and frequently-used terms. We will 
use full-word names for most abstract spaces we define (see discussion of abstract spaces in Sec. 3.7), such 
as Locations in Ch. 6 and States in Ch. 7, and even occasional compound-word names, such as StatePaths 
in Ch. 7. However, we will maintain standard or historical names where they are familiar, such as m for mass 
and p for linear momentum in rigid body dynamics, Ch. 8. 

With multiple-letter names, one has to be careful that when two names are written next to each other, they 
don't textually merge into another name. For example, to multiply a term y by a term cat, we might write 

x = ycat 

but the right-hand side might be mistaken for a single term ycat, which might or might not exist. 9 Confusion 
can be mitigated through use of spacing, different fonts , parentheses or other symbols, and so forth . For 
example: 

x y cat 
x y cat 
x (y)( cat) 
x y * cat 

3.6.2 Seoping, Namespaees 

How do we avoid "name collisions" when mathematical models are designed as a collection of separate 
modules? For example, the kinematic rigid-body model in Ch. 7 and the dynamic rigid-body model in Ch. 8 
each need to define an abstract space, and in both cases we would like to use the name " States". Can they 
both do so? If yes, and we want to mix kinematic and dynamic models, how can we tell which States is being 
referred to in a given equation? Furthermore, can one model refer to the other's name? We describe here a 
mechanism inspired by that of Common LISP ([Steele90]). 

The basic idea is simple: each model has its own scope, or namespace; a name x is used in one scope is 
not the same name as x used in another scope. Thus in each model we are free to use whatever names we 
want, and by fiat they do not collide with names from other models. 

In order to be able to unambiguously use names from different scopes, we give each scope its own scope 
name. For example, the kinematic rigid-body model has scope name KINEMATIC. tO We can think of the 
scoping mechanism as follows: When we define terms within a particular model, they are all implicitly "ac
tually" defined with to have full, or scoped, names that include the model's scope name. We use the following 
notation: 

9This is why we like to emphasize full-word names, rather than arbitrary mnemonic abbreviations: "ycar is less likely to be ac
cidentally thought of as a defined term if there are no, or few, other non-word names. Of course, one is never entirely safe: consider 
x = never vs. x = never. As welJ. in practice full words can be unwieldy, so shorter, mnemonic names are necessary. See also 
[Kemighan.Plauger7Bj for guidelines for mnemonic names. 

lOWe will consistently use small caps font for scope names. 



3.6 Naming Strategies 

(3.1) 

Notation. Double-colon "::" for scoped names. 

If a name, e.g., "States" is defined within a namespace havillg a scope 
name, e.g., "KINEMATIC," itsfull name is written usillg a double-cololl, as: 

KI EMATIC:: States 

30 

Notn. 3.1: We wnte a seoped name by prefixIng the short name with the name of the scope, Wlth two colons between them. 
The colons serve to set the names apan, and to emphasize that the name-sooping mechanism is being used. 0 

When working on a particular model, we generally assume that all names are defined within the scope of 
that model, and there's no need to write out the full names. If we want to use a name from a different model, 
however, we can use its full name. The dynamic rigid-body model, for example, uses just "States" to refer 
to its own space and "KINEMATIC:: States" to refer to the kinematic space. 

Sometimes, we can avoid conflicts, and save writing, by just choosing which namespace is the default for a 
given name. For example, Ch. 9 starts by stating that "Systems" will be assumed to mean "RIGID:: Systems" 
(rather than "KINEMATIC:: Systems"). 

Of course, when there is no conflict, there's no need to use full names. For example, the model named 
COORDS (Ch. 6) defines several terms (Vectors, Locations, lab, etc.) that are used frequently and widely 
in other models, and are not defined elsewhere-so we do not use the full names. Still , to aid the reader, it 
is good to start each model by listing where all such "imported" names are defined (this also avoids future 
am biguity if a later model provides a different definition of one of these names). 

Given that our goal as per Sec. 3.5.3 is clarity and non-ambiguity for the readers, rather than formal syntax, 
we are not overly strict in our use of namespaces and scoped names. In particular, we find no need to go the 
programmatic extremes of Common LISP's mechanism, with its internal vs. external names, exporting and 
shadowing of names, and so forth. 

Finally, note that each model must of course be given a unique scope name, or we are back to our original 
name conflicts.l1 

3.6.3 Function Name "Overloading" 

We generally want any given name to have only one meaning (within a given scope), so as to avoid ambiguity, 
in keeping with the explicitness goal of Sec. 3.2.3. For example, if we define a function f(t), we don't want 
to also have a parameter named f as well-especially if we will be in the habit of dropping the parentheses 
and parameters from functions. 12 

However, sometimes there may be a family of related operators or functions that perform analogous op
erations, but on different types of parameters. For example, in Ch. 6 we define a family of operators, Rep , 
that yield the coordinate representation of a geometric object; one Rep acts on elements of an abstract space 
Locations to yield an element of ~3, and a different Rep acts on elements of an abstract space Orientations 
to yield an element of~3x3. 

To eliminate ambiguity, we would give a different name to each operator. Continuing with the the earlier 
example, we might name one operator RepLoc and another RepOrient However, doing so can be cumber
some, and it can even be confusing, if we tend to think of all operators in the Rep family as essentially the 
same. 

Thus, as an exception to our general policy of non-ambiguity, we are willing to allow families offunctions 
to share a single name. We will adopt the term "overloading" from programming, where this idea is familiar 
(in particular operator overloadillg in programming languages-e.g. , defining "+" appropriately for vari
ous different argument types such as integers, floating-point numbers, or complex numbers-is well-known 

11 One can imagine introducing hierarchy into narnespaces, so that one might have a fully seoped name such as 
"CAL'IECH::KINTh1AllC:: Systems;" we have not (yet?) found this to be necessary, however. 

) 2 In fact. it is not uncommon to see expositions in which a single name is used as a parameter and/or as fimction and/or as a value of 
the function. In fluid mechanics (see, e.g., [Lin.SegeI74·Ch.13]), x is cornmonly used as an independent world-space variable as well as a 
material-to-world coordinate mapping x( a). Although there is some benefit-anything named x is always a world-space Iocation-Ior 
our purposes we feel that e liminating ambiguity is a strong enough concern that this praaice shoold be discouraged. 



3.7 Abstract Spaces 31 

([Booch91 J)). We can give a fonnal definition of an overloaded mathematical function: 

(3.2) 

Definition. Overloaded functions 

An overloaded function is a function whose domain is the union of the do
mains of afamily of functions (those domains must be disparate), whose range 
is the union of the ranges of those functions, and whose value for any argu
ment equals that of the member of the family whose domain contains that 
argument. 

Defn. 3.2: An overloaded funchon 1S a smgle funchon that "chooses" the appropriate funchon from a family, based on its 
argument type. See example, Eqn. 3.3 0 

And an example: 

(3.3) 

Given threefullctions: fa: A~ X, fb: B ~ Y, and fe: C ..... Z, we can defille all 
overloadedfunctioll f: A U B u C~X u Y U Z by: 

{

fa(X) , ifx EA 
f(x) = fli..x), ifx EB 

fc(x) , ifx EC 

Eqn. 3.3: Example of an overloaded function. Note that the individual functions don't have to act on only a single pa
rameter or even the same number of parameters. For example. if fb were to take two real-number arguments, its domain 
would be B = R x R; we can consider J(x, y) for real x and y to be acting on the pair (x , y) E B thus f(x, y) = ib(x, y); 
but for z E A, we would have J(z) = fa(z). 0 

In practice, we define only the overloaded function name, and leave implicit the names of the individual 
functions in the family (for example, see the definition of Rep, Defn. 6.5). We have not found it necessary to 
invent a formal mechanism for naming and referring to the individual functions; as long as we are aware of 
the underlying unambiguous mechanism, it is sufficient define the overloaded name and leave it at that 

It is important to remember that overloading is a source of ambiguity, and should be used sparingly. One 
should be careful to define overloaded functions only when it will be obvious which underlying function is 
implied-that is, we must know to which domain the arguments belong. For example, the function f of 
Eqn. 3.3 is used unambiguously in the expression: 

a + 1 = f(a), where a E A 

Note that if we expect to occasionally leave off function arguments in our expressions , the overloaded func
tions will be ambiguous. Note also that we do not overload based on the range spaces of the individual 
functions; that could too easily lead to unresolvable ambiguity. 

Function overloading is commonly used in the mathematical world, without the fanfare that we have put 
fonh. We prefer, however, that some care be put into the decision of whether to overload a particular function; 
this is a "design decision," as per Sec. 3.3, where the model designer tries to balance clarity and economy 
of expression against ambiguous meaning. To help eliminate ambiguity, whenever an overloaded function is 
defined, the reader should be warned in accompanying text "caution: overloading being done here." 

The mathematical function-overloading mechanism we have defined is inspired by the programmatic 
function-overloading mechanism of the C++ language ([Ellis,Stroustrup90]); in panicular we adopt C++'s 
choice to overload functions based on argument type, but not on return type, and the implicit creation of 
individual functions with uniques names for each domain. 

3.7 Abstract Spaces 

This section describes a basic element of our approach to mathematical modeling: Prolific definition of ab
stract spaces. This leads to the mathematical equivalent of data abstraction, encapsulation, hierarchy, etc., 



3.7 Abstract Spaces 32 

familiar from programming, and is thus a powerful tool for the management of complexity. 

3.7.1 Defining Abstract Spaces 

A primary motivation for the definition of abstract spaces is to have unambiguous meaning. That is, when 
we define a new abstract space, we are free to assign to it exactly those operators and properties that we need, 
and no others.13 By creating abstract spaces tailored for particular uses, and by stating explicitly what their 
characteristics are, we attempt to eliminate (or at least mitigate) hidden assumptions or effects. 

How does one go about defining an abstract space? At its most basic level, it's easy: One merely says, for 
example, 

Let Things be an abstract space14 

One would then go on from there, and describe various properties of and operations on (elements of) the 
space. This approach is used for the various geometric objects in Ch. 6. 

Often, we can take advantage of existing standard types of abstract spaces. For example, we define a 
new abstract space to be a vector space, or a Banach algebra. Later in this chapter we will define some types 
of spaces that are particularly useful for our structured modeling purposes: "indexes" in Sec. 3.8, and "state 
spaces" in Sec. 3.9. By using these types of spaces we will ultimately be able to, e.g., declare mathemati
cally merely that "x is a rigid-body system" to describe well-defined behavior, properties, etc. for a named 
collection of rigid bodies that move dynamically. 

It may occasionally happen that we will define some new space, and it turns outto be (provably) equivalent 
to some other, well-known space. For example, in Sec. 3.9.2 we will discuss a space describing rectangles; 
the space defined there is in fact equivalent to ~2. If such an equivalence does occur . .. great! We can apply 
whatever properties are known about that existing space to our own space; we've gained an extra body of 
knowledge about our space "for free." 

One might argue that if it is the case that a new space is equivalent to an existing, well-known space, 
making our own definition merely confuses things. There is a twofold response: 

• With a good name for the space, one can convey a desired connotation: Saying "x is in the space of 
rectangles" has more intuitive meaning than "x is in ~2." 

• If the model gets refined later on, one can change the properties of the new space, and not need to change 
definitions of other terms. For example, we may later decide to consider orientation in the plane as a 
property of a rectangle. The expression "x is in the space of rectangles" could still stand, but otherwise 
we would have to change it to "x is in ~2 x SO(I)." 

However, there is of course merit to the original argument; too many gratuitous definitions can be obfuscatory. 
Whether to define a new space is often an important "design decision," as discussed in Sec. 3.3. 

Pedantic interlude 

"Abstract space" can mean the universal set of a particular set theory ([Nihon Sugakkai77]); in such usage 
there can only be a single abstract space under discussion. Our use of "abstract space" is closer to the defi
nition in (James,James76]: "A formal mathematical system consisting of undefined objects and axioms of a 
geometric nature." However, although most of our applications will in fact be geometric, we don ' t emphasize 
the geometric nature. Our working definition is thus "a set of undefined objects"; where we invoke naive set 
theory and the axiom of comprehension ([Nihon Sugakkai77J) to be able to define such sets by fiat, and the 
axioms of pairing, power set, union, and so forth to manipulate the sets. 

13 " ' When I use a word,' Humpty Dumpty said, . .. 'it means just what I choose it to mean-neithermore nor less.' " 10 [Carroll60l. 
Marrin Gardner discusses Carroll's mathematical philosophy that lies behind "Humpty Dumpty'S whimsical discou"e on semantics." 

HWe will consistently use sans-serif font for abstract spaces. Additiona1ly, we will give each space we define a plural name; this 
makes it easy to read, e.g., ·'t E Things" as"t is an element of the set of Things," i.e. "t is a Thing." 



3.7 Abstract Spaces 33 

In our use of abstract spaces, we are taking a decidedly non-constructivistapproach; constructivist dogma 
says: "A set is not an entity which has an ideal existence: a set exists only when ... we prescribe .. . what we 
must do in order to construct an element of the set. .. " [Bishop,Bridges85-p.5] . Our motivation for defining 
abstract spaces is, as discussed above, to have precise statements of the properties of mathematical objects 
we will manipulate; in order to encourage such statements, we leave ourselves free to state them without the 
attendant formal constructivist mechanism. Since the problems we will be dealing with focus on real-world 
applications, we are less likely to follow chains of inquiry that lead to the sorts of mathematical monsters 
feared by constructivists. Ultimately, when we implement our models on computer, we will necessarily be 
constructivist: a computer program always prescribes how its objects are constructed. But we have admit
tedly left a possible gap in our methodology: We might in principle define models for which constructive 
formulations can't be created, i.e., that we can not directly implement on computers. It is intriguing to con
sider following strict constructivist doctrine in crearing mathematical models, leading perhaps to guarantees 
of computability and so forth . We have not pursued this line of inquiry very far. 

Finally, note that we are perhaps a bit optimistic in our notion that precise statements of properties will 
lead to "unambiguous meaning." As discussed by [Lakatos76] , one always assumes a familiarity with the 
terms and concepts used in the definitions; to whatever extent those concepts are fluid, ambiguities can arise. 
Still, in practice, reasonable attempts at precision of meaning can help one go a long way-in particular, a lot 
farther than one would go without any attempts to be precise. 15 

3.7.2 Specializations 

Occasionally, we will define (or will be given) an abstract space, but will wish to focus on a subset of it that 
is particularly interesting, defining operators, properties and so forth that apply only to the subset but not the 
the space as a whole. To formalize this notion, we introduce the idea of a "specialization" (Fig. 3.4): 

(3 .4) 

Definition. Specialization 

A specialization of a given abstract space (called the general space) is an
other abstract space, that is in one-to-one correspondence with some subset 
of the general space. 

Defn. 3.4: Since the elements of a specialIzatIon correspond one-to-one to those of a subset of the general space, propenies 
and operator.; of the specialization's elements can be thought of as implicitly applying to those of the subset 0 

and some attendant notation: 

(3.5) 

Notation. Subset-like Symbol "C" for Specializations 

Ifwe are given, e.g., spaces named Specs and Gens, and an injection 
(one-to-one junction) f: Specs ..... Gens, then we denote the specialization 

relationship using the symbol "e", as: 

Specs t. Gens 

f(Specs) 

= "Specs is a specialization of Gens" 

The subset of Gens corresponding with Specs 

Notn. 3.5: Notation for speClalizatlO!ls. If we do not need to name the mjectlO!l, we wdl wnte simply Specs c:: Gens. 0 

For an element of a specialization, s E Specs t Gens, the corresponding element of the general space is 
given by f(s). Conversely, for an element 9 E f(Specs) ~ Gens, the corresponding element of the special
ization is given by f- 1 (g) . Note that f-l(g) is not defined for all general elements 9 E Gens, only for those 
elements that actually correspond with elements of Specs . 

I!'Wecan claim some kinship with Lakatos, however, in the domain offormalism vs. methodology ([LakatoS76·pp.I-5]). Our approach 
towards mathematical complexity is not geared towards a fonnal analysis of complexity, but rather methods or heuristics to manage it. 
For discussion of the complexltyof numerical computation, we refer the readerto [Traub,Wasilkowski ,Woiniakowski8B]. 



3.7 Abstract Spaces 

A "Specialization" of a Space 

Gens 

......................... _
__ ~f-------______ ~ .. ~.. \ 

.' • 9 ) 

. f(s) •• ' 
.' .' .' ................ 

Specs is a specialization of Gens: 

f 
Specs c: Gens 

34 

Figure 3.4: A specialization of an abstract space. Space Specs corresponds one-to-one with a subset of space Gens ; the function 
f : Specs -+ Gens is an injection (one-to-one function) that determines the subset and the correspondence. 0 

Since every element ofa specialization has exactly one corresponding general element, we commonly (or 
implicitly) overload all operators on General spaces to act on the specializations: 

(3.6) 

Given a specialization Specs t Gens, and an operator OP: Gens-A, we 
overload OP: Specs_A: 

oP(S) = OP(!(8)) , for all 8 E Specs 

Eqn. 3.6: All general.space operators are overloaded onto the specialization. Thus an element of a specialization can 
act as the corresponding element of the general space. 0 

In Sec. 3.9.5 we will give a mechanism for specifying new operations and properties, just for the specialization. 
Our notion of a specialization mechanism is of course patterned after class derivation in object-oriented 

programming. In principle, we might consider overloading operators so that OP (8) would be different from 
OP(!(8)), thus achieving a mathematical analog ofpolymOIphism. However, as discussed in Sec. 3.5.4, we 
think that would introduce excessive ambiguity-<>ur idea behind specializations is to assign extra properties 
to interesting subsets of a spaces, not to change any existing properties. As an aside, C++ programmers might 
note that evaluating 1(8) is analogous to performing "upcast" from a derived class to a base class, while 
1-1 (g) is analogous to a "downcast" and is only "type-safe" when 9 E I(Specs) [Ellis,Stroustrup90j. 

3.7.3 Disparate Unions 

Generally, when one thinks of a particular space, even an abstract one, the fact that all its elements belong to 
that space leads one to think of all those elements as being essentially similar in some conceptual way. While 



3.7 Abstract Spaces 35 

Disparate Unions 

(a) (b) 
....................................... ..... . ..... . ................................................ . 

.... -0. 
~ ~ .' . rE ~@""\ 

· ~. · . · . ·0· · . \ : · . 
... • \ (~ ... ) 

· . . . 
~ . · . · . ~ : ~ ~ . , ~ . .•.. . ..... . -0. • •••• 

°0 ~ ........ . ..... ............ ...... ............ ........ ... . ....... . ......... . 
•••••• o ••••••• 

Figure 3.5: Disparate unions. We wil1 occasionally define abstract spaces whose elements may be of various dissimilar types--they 
needn't even have the same dimensionality or degrees of freedom. Two elements that are of the same type said to be "agnates." (a) 
A disparate union including points on the surface of a torus, points within the body of a cube, and others. The points marked x are 
agnates (both on the torus), but neither are agnates of the point marlced 0 (in the cube). (b) A disparate union whose elements have 
some similarity-all are points from the unit cubes in various dimensions-but that nonetheless have distinct dimensionality. For this 
space, arithmetic operations are defined between agnates, and we can always construct smooth paths between agnates; but we do not 
have arithmetic or ContinUOllS paths between points that are not agnates. 0 

this is tautologically true, it will also occasionally be the case that there is a marked dissimilarity between 
objects that we have chosen to group together into a single set-in particular, we may group together objects 
that have different dimensionalities or degrees of freedom (see Fig. 3.5). Thus we define: 

(3 .7) 

Definition. Disparate Union 

A disparate union is an abstract space that can be partitioned into a collec
tion of disparate sets; each of those sets is called a disparate component of 
the union. Two elements of a disparate union are agnates if they belong to 
the same disparate component. 

Defn. 3.7: A disparate union is a collection of different types of elements. Thus if A is an abstract set, two elements 
x, yE A might have no o r few common operators or properties-they may be "like apples and oranges." Disparate unions , 
and paths through disparate unions , will be useful for models of things whose state and makeup can vary qualitatively; see 
the discussion of segmented functions, Sec. 3.10 0 

A disparate union may be explicitly defined as the union of various different spaces, for example, Defn. 6.3 
defines a space GeomObjs whose elements include locations, scalars, vectors, and others. Or, a space defined 
in some other manner may nonetheless be a disparate union, for example the set of all "indexes" of a given 
space, as will be discussed in Sec. 3.8.2. Trivially, any homogeneous space is a disparate union, comprised 
of a single disparate component; thus all elements of a homogeneous space are agnates. 

We will assume that given an element of a disparate union, we can always know to which disparate com
ponent it belongs, either by inspection or by construction-i.e., given any two elements, we can detennine if 
they are agnates. C programmers may notice a similarity with the union construct a variable of such a type 
may in fact be of any of the component types, and it is up to the programmer to know which component type 
corresponds to any particular value of the union ([Kernighan,Ritchie88]). 



3.8 Identifiers (I D's) and Indexes 36 

More pedantry 

Weare not familiar with existing mathematical mechanisms that emphasize the manipulation of sets containing 
elements with varying dimensionality. A related concept is that of a directed systems of sets (see [Spanier66]) ; 
that idea, however focuses on ordering and maps between the component sets, particularly in the definition 
of the direct limit, which defines an equivalence between elements of each set. We are interested, however, 
in the fact that the elements of the component sets differ, not in how they can be equated. 

For those who are made uneasy by our assumption that we can always detennine from which component 
set an element originates, we can fall back on [Spanier66] 's definition of disjoint union (or set sum), in which 
each element of the union is a pair containing both an element of a component set, and essentially a tag that 
indicates which component set. 

3.8 Identifiers (ID's) and Indexes 

Often a model will need to handle a collection of objects, such as a collection of rigid bodies. This section 
presents a mechanism that allows us to define a collection elements, and manipulate it as a single entity, yet 
also be able to mathematically "access" individual elements within it. We start, in Sec. 3.8.1, by defining the 
identifiers (!D's) that will be used to name objects. Sec. 3.8.2 defines and gives notation for indexes, which 
are collections of named objects. Sec. 3.8.3 discusses various operations on indexes. 

The mechanism described here is used extensively in the models in Ch. 6-9; see, e.g., the index Systems 
in Defn. 8.14, and its use in Eqn. 8.32. 

3.8.1 Definition of I D's 

The set of identifiers is trivial: 

(3.8) 

Definition. IDs 

10 == ( a discrete space, with an equivalence relation) 
S - to distinguish between the elements 

Defn. 3.8: A space of ,denl1fiers (!D·s). We Mil use the elements of IDs to label various things. We can think of each ID 
as a name, like "hansel" or "grendel" or "objI93b." 0 

Having an equivalence relation simply means that we can tell ID's apart: Given a , bE IDs, we can tell if 
a = b or if a # b. Note that we have no other relations defined for IDs. In particular, we do not define an 
ordering.16 

We will use ID's from the one space IDs to name many different types of things. One might be worried 
about confusion-given a particular ID, what type of thing is it naming? One could partition IDs into disjoint 
subsets, where each subset corresponds to a different type of thing being named. In practice, we have not 
found this to be necessary. Note also that IDs is infinite; we assume that we can always grab a new ID if we 
need one. 

We will occasionally use sets of ID's. The following definition is convenient: 

Definition . 10sets 

(3.9) LI ________ ----,.,,---I o_s_e_ts_=_t_h_e _sp_a_c_e _{_s_et_s_of_I_O_S_} ________ ------' 

Defn. 3.9: Sets of identifiers. If s E IDsets. tben s is a set ofID's; we can speak of the size of the set <lisll) and whether a 
given identifier i E IDs is in the set (i E s) ornot (i ~ s). 0 

!6Why go to all this effort? Why not just label objects with integers? The reason is tbat we don't want to always have an implied 
ordering between labeled objects. if there is no natural ordering. A particular colJection of objects may need an ordering (or several 
orderings); in sucb a case the orderings would be defined explicitly. 



3.8 Identifiers (lO's) and Indexes 

An index: 
Some elements 
of A, labelled with 
identifiers 

Various Elements: e 's E A 

Identifiers: a, C, d, x, Z, goat E IDs 

An abstract space "A" 

e 
a 

e 
c 

e 
z 

37 

An "Index" : { [a, ej , [c, ej , [x, ej , [z, ej , [goat, ej , [d, ej E {A} IDs 

Figure 3.6: An index is a collection of elements of some space, each labeled by an identifier, given an index, we can look up elements 
based on theiridentifiers. In this il1u stratio~ the . 's are various elements of a space A . It is al lowable for two of the • 's to be equal-two 
different identifiers may label the same element-but no single identifier can be used to label two different elements. 0 

3.8.2 Indexes 

We define an indexl7 to be a collection of elements from some space, with each element labeled by a unique 
ID: (Fig. 3.6) 

(3.10) 

Definirion. Indexes 

An index of elements of a space A is a ser of pairs [i E IDs , a E A] such rhar 
no two pairs share an ID. Thar is, ifT is an index 

For any two pairs [i , a], [j, bJ E T, 
i = j ~ a = b 

Defn. 3. \0: An index IS acollecMn of paued !D's and values. A given!D can only occur once WIthin the collecbon; thus 
each !D uniquely labels its corresponding value. However, any given value may occur several times, labeled by different 
!D's, i.e., a = b '" i = j. 0 

We use the following notation for indexes: 

17The word "index" is sometimes used [0 mean a pointer or indicator that selects a single element from a collection; for instance. in 
the C programming language expression a [ i ] , the variable i is caUed an "array index." Our use of "index" is. instead. in the sense of a 
table; e.g., the index in the back of a book. 



3.8 Identifiers (I D's) and Indexes 38 

(3 .11 ) 

Notation . Assorted Notation for Indexes 

{A}IOs 

T E { A} IOs 

Jds(T) 

EliJ\T) 

The set of all indexes of elements of space A 

"T is an index of elements of space A" 

The set of ID's used as labels in T, i.e. 

{i E IDs 13a E A such that [i , aJ E T } 

_ The set of elements of A that are in T , i.e. 

{ a E A 13i E IDs such that [i , aJ E T} 

The element ofT labeled by i E Jds(T), i.e. 
a E A such that [i , aJ E T 

Notn. 3.11 : Notationforindexes. A can be any space. T without subscripts refers to the mdex as a whole; Twith a subscript 
ID, e.g., To, refers to a single element. Note that if an ID is not used as a label in T , that is if i !t Jds(Tl, then the subscript 
notation Ti is invalid. 0 

Sometimes it is convenient to be able to define an index for which we can be careless, and look up an element 
by ID, without worrying about whether the ID is actually used in the index-if it isn ' t, we will accept 0 as its 
element. We call these "indexes with 0," and extend the notation: 

(3.12) 

N otation. Indexes with 0 

T E {A}I Os 

T; 

If space A has a zero element, 0: 

"T is an index with zero" 

= {a E A such that [i,aJ E T , 
0, 

ifi E Jds{T) 
ifi (j. Jds{T) 

Notn. 3.12: Inde"es with O. If T i s defined to be an mdex wnh zero, then the subscnpt notatton is not restncted to ID's 
that are used as labels in T; for lD's that do not label any element. 0 is u sed instead. Jds (Tl and Elts(T) are the same as in 
Notn. 3.1 l. 0 

The remaining discussion of indexes will apply also to indexes with O's. 
Note that two indexes S, T E {A}IOs do not necessarily have the same number of entries, or, they may 

have the same number of entries but may use different ID's. Thus the set {A} IDs is a disparate union as per 
Sec. 3.7.3: 

(3 .13 ) 
Two indexes S , T E {A}IOs are agnates if 

Jds{S) = Jds{T) 

Eqn. 3.13 : The set of all indexes of A can be partitioned into disparate components so that the inde,;es in each compo
nent have the same lD·s. See Defn. 3.7. 0 

Eqn. 3.35 will illustrate the meaning of continuity for index-valued functions. 
There is a standard mathematical mechanism similar to our indexes: A mapping from a set A to a set A 

can be called afamily of elemellls of A indexed by A ([Nihon Sugakkai77)). The mapping is commonly written 
as {a",hEA or just {a",}, and A is called the indexing set. For our purposes, we express the mapping as a set 
of pairs in order to emphasize its nature as a manipulable mathematical object. Further, we limit our indexes 
to use IDs as the "indexing set"--but any given index need only be defined over a subset of IDs. LISP 
programmers will find our indexes to be reminiscent of key-value association lists ([Sleele90)). 

3.8.3 Operations on Indexes 

The usual sel operations can be applied to indexes, except that we can only perform a union on indexes that 
don' t have any conflicting entries. Several equalities hold: 



3.8 Identifiers (10'5) and Indexes 39 

(3.14) 

Given any two indexes S, T E {A} I Os of some space A 

Ids(S n T) 

(S n T)j 
(S n T)j 

Ids(S - T) 
(S - T)j 

{i E Ids(S) n Ids(T) I Sj = 7; } 

Sj ,Jar i E Ids(S n T) 
T.,Jor i E Ids(S n T) 

Ids(S) - Ids(S n T) 
Sj, for i E Ids(S - T) 

If Sj = 7; for all i E (Ids( S) n Ids(T» , 

Ids(S u T) Ids(S) U Ids(T) 

(SuT) {Sj , ifiEIds(S) 
• 7;, ifiEIds(T) 

Eqn. 3.14: The intersection of two indexes includes only elements having both the same label and the same value in 
each index. To subtract from an index, we remove all elements that are in the intersection with the subtrahend. We can 
only perform a union on two indexes if any ID's that they share are used to label the same value in both. 0 

We define notation to add and delete elements of an index: 18 

(3.15) 

Notation. Index + and -

For index S E {A}IOs of some space A, i E lOs, x E A, and IE 10sets 

S + [i, xl 
S - i 

S - I 

= 
S U {[i, x]}, 
S - {[i, Si]} , 

S - {[i, Sd li E I} , 

i ~ Ids(S ) 
i E Ids(S ) 

I <;; Ids(S) 

Notn. 3.15: Adding and delettng entnes from an mdex. Note that to delete an element, we need only specify the !D. We 
define "subtraction" for an individual ID or for a set of ID's. 0 

Often we will be given an index of elements of A. and an operator that acts on individual elements of A; we 
will want to apply the operator to the entire index at once, constructing the index of results. 19 Thus , formally: 

(3 .1 6) 

Definition. Operators on indexes 

Given an operator OP: A-- B for some spaces A and B, we overload the 
operator OP: {A}IOs-> { B} IOs asfollows: Let a E {A}IOs' bE {B}lDs 

be indexes, then 

( ) 
_ b { bj=oP(ai), alii E Ids(a) 

OP a - ~ Ids(b) = Ids(a) 

Defn. 3.16 : If we apply an operator to an mdex of elements, we get the mdex of resul ts of applying the operator to each 
element. Note that we are implicitly overloading every operator on a space to act on indexes of that space. 0 

If we have an index of functions , 20 we can always define a corresponding function that returns an index: 

18We are using sloppy language here; as per Sec. 3.5.1, we can't "change" an index by adding or deleting elements. More precisely, 
these are operations that describe a new index given the operands. 

191n LISP parlance, we are performing a "map" of the operator over the index ([Sleele90)). 
20 "Index offunctions" _ is that kosher? Sure, if one considers each function to be an element of a space offunctions. We will acrua11y 

use this frequently in Ch. 6-9. 



3.9 State Spaces 40 

(3 .17) 

Definition. Implied function of an index of functions 

Given an index F whose elemems are junctions imo some space A, i.e., 
F E {functions: ~ --t A} lOs' the implied function is the unique 

index-valuedfunction D: ~--t{A} IOs such that: 

Ids(D( x )) = Ids(F) 
D(X )i = Fi(x) 

independem of x 
for all i E Ids(F ), x E ~ 

Defn. 3.17: A lffiphed by an index of functi ons. Given an mdex F . each of whose elements is a funcuon. therels a umque 
implied function whose value is the index of results of evaluating each element of F . The domain of the functions doesn't 
have to be :fI, but can be any space. 0 

Thus we can "evaluate" an index of functions as if it were a function: 

(3 .18) 

Notation. Evaluating an implied function using parentheses "( )" 

Given all index offimctiolls into some space A, e.g. , 
F E {functions: ~ --t A} lOs' parelllheses implicitly refer to F 's implied 

junction: 

F(x) == D(x) , whereD:~--t{A}I OsisimpliedbyF 

Nom. 3.18: We can treat an mdex of functlOllS as 1f It were the correspondmg unplied funcnon of mdexes. ThIS notation 
can of course be used for functions other than of reals or of more than one variable; we would write, e.g., F( x , y , z). 0 

3.9 State Spaces 

Modeling often involves the manipulation of the state of an object: its location, configuration, momentum, 
and the like, as appropriate--all that describes its condition of existence. To accomplish this, it is often useful 
to define an abstract space such that a single abstract element corresponds to a unique and complete depiction 
of the state. This gives us "encapsulation" of information, as discussed in Sec. 3.4.4-we can manipulate a 
single entity, rather than having to handle the collection of separate parameter values that make up the state. 

Since we will frequently want to define and use abstract "state spaces," this section provides a 
mechanism-definitions and notation--to aid in the process. Readers with a background in computer pro
gramming will observe that the state space mechanism we describe here is reminiscent of data structures, or, 
more strongly, of object oriented programming. As discussed in Sec. 3.4, we have intentionally borrowed the 
object-and-operator paradigm of object oriented programming for use in mathematical modeling. 

3.9.1 Basic Definition & Notation 

We want to use abstract spaces whose elements correspond with, or encapsulate, the states of objects. Such 
spaces will need operators to perform the mapping between the abstract elements and the various parameters 
and other aspects of the corresponding state. Thus we define: 

(3.19) 

Definition. State space, aspect operators 

A state space is all abstract space that has an associated collection of named 
operators into other spaces. These operators are called aspect operators of 
the state space. 

Defn. 3.19 : An element of a state space can be thought of as representmg a collectton of mailiematlcaJ values of vanOllS 
types. The "aspect" operators tell us what those values are for any given element. 0 

An example of a state space might be: 



3.9 State Spaces 

various "aspect" 
operators 

_b_> 

Points in the space 

41 

"aspect" 
spaces 

Figure 3.7: A state space is an abstract space, with a collection of named "aspect" operators that project into various aspect spaces; here, 
we illustrate Eqn. 3.20. A point in the state space is determined uniquely by its entire collection of aspect values. Note that any given 
aspect operator may be many-to-one. and the projection of the state space may be a subset of the aspect space. Additionally. aspect values 
may be non-independent, e.g., for all points in s E S , the values oftbe aspects might always satisfy a(s) = 1 + 2b(s). 0 

(3.20) 

an abstract space S 
operator a: S-+ A 
operator b: S -+ B 
operator c : S -+ C 

Eqn. 3.20: A satople state space S , having three aspect operator.; , a , b, and c. (Fig. 3.7) 0 

We impose the restriction that an element of a state space can be identified by its complete collection of 
aspect values; all "measurable" or "distinguishing" properties of an element of a state space must have aspect 
operators defined for them. Formally: 



3.9 State Spaces 

(3.21) 

Given a state space S with aspects a, b , ... , 
andx , y E S 

x=y 
{ 

a(x) = a(y) 
<=> b (x) 7 b (y) 

42 

Eqn. 3.21: An element in a state space is uniquely identified by its complete collection of aspect values. There will 
never be two different elements that "look alike", i.e., have exactly lbe same aspect values. 0 

It is convenient to standardize some tenninology: 

state space An abstract space, as per Dein. 3.19. 

aspect operator An operator on elements of a state space. (In Eqn. 3.20, a, b , and c are aspect 
operators of S .) 

aspect space The target space of an aspect operator. (In Eqn. 3.20, A, B, and C are aspect 
spaces.) 

aspect value The result of applying an aspect operator to a particular element of a state space. 
(In Eqn. 3.20, if s E S is an element of the state space S, a(s), b (s) and c(s) are its aspect 
values.) 

point in a space We use "point in a space" interchangeably with "element of a space". However, 
"point" tends to have a connotation that the space is continuous, while "element" has a 
connotation that the space is discrete. 

For a more tangible example of a state space, suppose we wish to have a space of geometric arcs, Arcs. 
Every element in the space Arcs corresponds to a particular geometric arc. We use operators on the space Arcs 
to examine the properties of the arcs; each operator specifies a geometric property of the arc that corresponds 
with a given element of Arcs. Thus, we might have operators to tell us the radius and subtended angle of each 
arc . Rather than list the space and name the operators in long form as in Eqn. 3.20, we use a shorthand: 

(3 .22) 

Notation . Brackets " [] " and Arrows " ..... " for a State Space 

Arcs 
[ 
r ..... lR 
angle ..... lR 

] 

,----------------------------, 

an abstract space Arcs 
operator r: Arcs -+ lR 
operator angle : Arcs-+ lR 

Nom. 3.2l: The notation on lbe left is shorthand for the collection of statements on lbe right, to define a stale space. 
Note that if we define several state spaces that share aspect names. we are implicitly overloading the aspect operators (see 
Sec. 3.6.3). 0 

Generally, we think of and visualize elements of state spaces as points or dots in some nebulous region, as 
illustrated in Fig. 3.7. However, it is also possible to think of concrete values: by Eqn. 3.21, each element of 
a state space S has a unique tuple of aspect values. Thus a state space S can be embedded in the Cartesian 
product of its aspect spaces: 

(3 .23) 

Given a state space S with aspect operators a, b , ... 
and corresponding aspect spaces A, B, . . . , 

where: S is isomorphic to a set C ~ A x B x ... 

C = {[a(s),b(s), . . . ] Is E S } 

Eqn. 3.23: An embedding of a state space. The stale space S is isomorphic to the set G comprised of the tuples of as
peet values. The -isomorphism of the spaces S and C comes directly from the definition of identity of elements of S . 
Eqn. 3.21. 0 



3.9 State Spaces 43 

That is. when it is more convenient. we can think of an element as its equivalent tuple of aspect values (hence 
Notn. 3.22 looks like a tuple written vertically). If we wish to define an element of a state space by specifying 
its tuple of aspect values. we use the following notation: 

Notation. Brackets .. [ 1" and Backarrows .. ......(. for a Tuple 

I 

r---------c-E--A-rcs---su-c-h-l-ha-t---------. 

(3.24) [~gle:: : ] - r(c) r, 
. angle (c) a 

Notn. 3.24: Shorthand notation to specify an element of a state space by a tuple of aspect values. NOle that this nota
tion leaves implicit to which space the element belongs-it needs to be clear from context. The notation is not well-defined 
if there is not a unique element corresponding with the tuple. It is not always necessary to include values for aU the aspect 
operato". however; thi s will be discussed in Sec. 3.9.2. 0 

3.9.2 Internal Properties of a State Space 

For a particular state space it may be true that only certain combinations of aspect values are possible. Aspects 
may be redundant (e.g .• two aspects. one describes a length in yards. the other describes the same length in 
meters); more generally. there may be arbitrary relationships between possible aspect values. reflecting the 
inherent structure and "topology" of the aspect space. Using the terms ofEqn. 3.23. C would bea proper subset 
of the embedding space A x B x . .. ; often. C is a low-dimensionality manifold in the higher-dimensionality 
embedding space. 

We define the internal properties of a space to be the aspect value relationships that are guaranteed to hold 
for all elements of the space. It is convenient to note the internal properties explicitly. at once when the space 
is defined. Thus we extend Notn. 3.22: 

(3.25) 

Notation. Internal Properties Below a Line "- " 

Rectangles 
[ 

length ...... ~ 
width ...... ~ 
area ...... ~ 

length 2': 0 
width 2': 0 
area = length x width 

= 

Rectangles 
[ 
length ...... ~ 
width ...... ~ 
area ...... ~ 

1 
Vr E Rectangles, 

length (r) 2': 0 
width (r) 2': 0 
area Cr) = length (r) x width (r) 

Noto. 3.25: The notation on the left is shorthand for the statements on the right, that define a state space (Notn. 3.22) 
and list its collection of internal properties. Note the shonhand leaves implicit the "for all'' qualifier-intemal properties 
are by definition true for every element of the space. 0 

The internal properties defined for a state space are not restrictions that describe acceptable or interesting 
elements. or those that solve some problem. Rather. as we said above. the properties are descriptive of the 
internal " topology" of the space.2\ 

Eqn. 3.21 says that in general. one needs the complete collection of aspect values to identify an element of 
a state space. For spaces with internal properties. however. it is often true that the value of only a few aspect 
operators--or even a single aspect operator-is in fact sufficient to uniquely identify a point in the space. For 
example. in Notn. 3.25. the values of any two of length (r). width (r). and area (r) are sufficient to identify 
an element r E Rectangles. We call a collection of only some aspect values a sub-tuple for an element (and 
for clarity we will occasionally refer to the complete tuple of values as afull-tuple). and define: 

21 However. one might imagine a computer program that numerically computes e lements of a state space. representing elements by 
tuples of values; such a program may in fact use the internal properties to restrict the solution to lie on the proper manifold in the 
embedding space. 



3.9 State Spaces 44 

(3.26) 

Definition. Identifying Sub-tuple 

A sub-tuple of aspect values Ihal is sufficienilO idenlify an elemenl of a stare 
space is called an identifying sub-tuple. If eliminating any value guaranlees 
thai the remaining values will be insufjicienl to identify an elemenl, il is called 
a minimal identifying sub-tuple 

Defn. 3.26: An ldentifying sub-tuple means that there IS only a slOgle element In the space that has those particular aspect 
values; The remaining values of the element's full-tuple can be detennined by the internal properties of the space. 0 

When defining a state space, it is often useful to describe the minimal identifying sub-tuples. Minimal iden
tifying sub-tuples are typically the easiest way to specify particular elements of a space. Note that Notn. 3.24 
allows us to describe an element using an identifying sub-tuple, leaving out the unnecessary aspect values; 
since the notation includes aspect names, there's no ambiguity about which aspect operator values are part of 
the sub-tuple. 

3.9.3 Subscript Notation for Aspect Operators 

An aspect operator is just an operator, and we can use ordinary parenthesis notation to evaluate it, as for 
example in Eqn. 3.21. However, sometimes parentheses can get cumbersome, when equations get complex or 
in particular when an aspect value is itself a function. We find it convenient to define an alternative notation: 

(3.27) 

Notalion. Subscripts for Aspect Values 

Given a state space S with an aspec[ operalOr a , and an elemem s E S, the 
following notations are equivalefll : 

a (s) [standard parenthesis notation} 
a, [new subscript notation} 

a, == a(s) 

Notn. 3.27: SUbscnpt notatIon for aspect operators. In any gIven expression, we Will use whIchever notarion seems 
clearer. 0 

Often, we consider functions into state spaces. Again, to alleviate difficulties with parentheses, we define an 
alternate subscript notation: 

(3.28) 

Notation. Subscripts for Aspect-Valued Functions 

Given a stale space S with an aspeci operalOr a, and afunction s: ~-+ S, 
the following notations are equivalefll: 

a (s( t)) 
as(l) 
a, (t) 

(a 0 s)(t) 

[standard parefllhesis notation} 
[subscript nOiation of Nom. 3.27} 
[new sllbscripi notation} 
[junction composition notation} 

a,(t) == a,(I) == a(s(t)) == (a 0 s)(t) 

Nom. 3.28: Subscnpt notation for funcnons mto state space. The new subscnpt notallon a , ( t) emphasizes the compos
ite result: an aspect value as a function of t. In any given expression. we will use whichever notation seems clearer. 
This notation can of course be used for functions other than of reals or of more than one variable; we would write, e.g., 
a, (x , y , z) == a(s(x , y , z». 0 

The different notations in Notn. 3.28 have the common feature that from left to right, they all list a then s 
then t, so even if we get lost among the various parentheses and subscripts, we can get the idea of what's 
happening. 



3.9 State Spaces 

Aspect 
Spaces 

=n=====~ 
d 

::::::::::M:~~~~9P.iii\l:~:~~J!~~: :::: 

Nested 

........ 

A 

a • 

======> 

~I 
"Nested" 
Aspect 
Spaces 

45 

Figure 3.8: Nested state spaces: An aspect space of a state space may be anOl.her state space. The aspects of the nested space may be 
"adopted" as aspects of the parent space through composition of aspect operators; here, we illustrate aspect operator n being adopted 
into the parent space as aspect operator d . 0 

3.9.4 Nested State Spaces 

An aspect space of a state space may be another state space. That is, one state space may be "nested" inside 
of another; this is illustrated in Fig. 3.8. The parent space can "adopt" aspects from the nested space to be its 
own aspects as well: 

(3.29) 

Definition. adopt an aspect 

Given a space A, a state space Nested with an aspect operator 
a: Nested -+ A, and a state space Parent with aspect operators 

n: Parent -+ Nested alld d: Parent -+ A, 

Parent adopts a as d iff: 

d(p) = a(n(p)),forall p E Parent 

Defn. 3.29: Adopttng an aspect from a nested space. The parent space's aspect operator 1S eqwvalent to the composlllon 
of the nested space's aspect operator with the aspect operator that yields the nested space element. See Fig. 3.8 0 

Using the notation of Notn. 3.25, we can re-write Defn. 3.29, perhaps more clearly: 



3.9 State Spaces 46 

(3.30) 

State space Parent adopts an aspect a of state space Nested as its own 
aspect d if,for some space A: 

Parent Nested 
[ [ 

n >-+ Nested a>-+ A 
d >-+A 

d= a(n) 

Eqn. 3.30: Adopting an aspect from a nested space. The adoption equivalence in Defn. 3.29 is expressed as a propeny 
of the parent space Parent. 0 

Frequently, we choose to keep the same name for the adopted aspect in the parent space as it has in the nested 
space. We extend Nom. 3.25 to allow easy definition of adopted aspects: 

(3.31) 

Notation. Ellipsis " ... " for an Adopted Aspect 

Bricks 
[ 

height 
base 
depth 
width 

>-+~ 
>-+ Rectangles 

... length >-+ ~ 

... width >-+ ~ 
volume f-+~ 

height> 0 
volume = height · area (base) 

= 

Bricks 
[ 

height 
base 
depth 
width 

>-+~ 
f-+ Rectangles 
>--+~ 

f-+~ 

volume f-+ ~ 

height> 0 
volume = height· area (base) 
depth = length ( base) 
width = width ( base) 

Notn. 3.31: The notation on the left is shonhand for the definition on the right, in which the nested space's length and 
width aspects are adopted into the parent space. In the shonhand notation, each adoption is listed directly underneath the 
nested space, with ellipses leading from the parent aspect name to the adopted aspect name. The names may be the same 
or different. Rectangles is used here as defined in Notn. 3.25. 0 

The examples in Notn. 3.25 and Notn. 3.31 let us derive a corollary from the properties of the spaces Bricks 
and Rectang les: 

Vb E Bricks, volumeb = depth b x widthb x heightb 

A final note on nested spaces: we want to avoid circularity-we disallow a parent state space that nests itself, 
or that nests a space that directly or indirectly nests the parent. 

3.9.5 State Space Specializations 

In Sec. 3.7.2, we discussed the idea of a specialization, i.e., a subset of a general space, that has additional 
properties and operators. The state space mechanism can be used to define these additional properties. 

To define a state space Specs as a specialization of some general space Gens with an injection 
f: Specs-+ Gens, we need only list f as an aspect operator of Specs, and include internal properties that 
insure f is one-to-one. However, we define notation to make the specialization explicitly visible: 



3.10 Segmented Functions 47 

(3.32) 

Nocation. Specialization Symbol "C" for State Spaces 

f 
Specs c:: Gens 
[ 

(f identifies an element) 

Specs 
[ 

f >-+Gens 

(f identifies an element) 

Notn.3.32: The definitions on the right hand side define Specs as a specialization of Gens , as per Defn. 3.4/Fig. 3.4; the 
notation on the left is a shorthand form. Note that since f is one-to-one, each element s E Specs has a unique value of 
f , ; thus a value of f comprises an identifying tuple for an element of Specs. 0 

If the general space is itself a state space, then the specialization implicitly adopts all of its aspects, by Eqn. 3.6 
and Defn. 3.29. That is, we have: 

(3.33) 

Notation. Specialization of a State Space 

f 
Specs c:: Gstates Gstates 
[ [ 

x=a+b 
b=a+y 

Specs 
[ 

f ...... Gstates 
a ... a ...... at 
b ... b ...... at 
x ...... ~ 
y ...... ~ 

x=a+b 
b=a+y 

Gstates 
[ 

1 

al-+~ 

b ...... ~ 

Notn. 3.33: A specialization of a state space implicitly adopts all aspects. Note that tn thIS example the internal prop
erties of Specs are sufficient to determine x and y from the adopted aspect values a and b, thus f i s sufficient to identify 
an element of Specs. If no name is needed forthe injection aspect operator, we can write just Specs C Gstates. 0 

Several examples of state space specializations can be found in Ch. 9. 

3.10 Segmented Functions 

Suppose we want to create a model of a thing whose behavior over time includes discontinuous changes in 
its configuration or properties. For example, as illustrated in Fig. 3.9, the number of bodies in a model may 
change as bodies are created or destroyed; [Brockett90) describes a formal language for robotic motion that 
includes discrete changes in force function; and [Kalra90) allows the behavior of a model to change discretely 
between nodes of a directed graph. 

We would like to define a single function of time that completely describes a model's behavior. But 
at each discontinuous change, the model may switch between incompatible configurations, having different 
dimensionality or degrees of freedom-how can we have one function that spans these changes? 

The answer is simple: Consider the overall configuration space of the model to be the disparate union 
(Sec. 3.7.3) of the various individual configuration spaces-then define the behavior as a path through that 
overall configuration space. This section introduces the idea of a segmented function to describe such paths. 
The mechanism we define here is used, for example, in the example "tennis-ball cannon" model of Ch. 11 . 



3.10 Segmented Functions 48 

A Model of a Body That Splits Into Two 

Configuration Space 

\ 

. . .. .... 
... .. 

. . . 
........ -...... .. , 

.~. 

/~~\ 
... \., \~j 

• V".' ....... .... .. .. ~/ 

Behavior of the model ... 
..... (a path through the space) 

Figure 3.9: Example of a segmented function. Consider a model of a body that splits into two bodies. When there is only one body. 
we describe lhe model with 6 degrees of freedom (3-D poSilion and orienlation), bUI when there are lwo bodies, 12 degrees of freedom 
are needed. The model Y s behavior over time is described by a segmented function: a piecewise continuous function into a disparate 
union. a 

3.10.1 Definition of a Segmented Function 

We'd like a path through a disparate union to be "continuous," but continuity can't be defined in general 
for disparate unions. A path that stays within a single disparate component of the union can be continuous, 
however-but to make a transition between components, there must be a discontinuity. Thus we define: 

(3.34) 

Definition. Segmented Function 

A segmented function is a piecewise·continuousfunctionfrom the real num· 
bers to a disparate union. Each continuous piece is called a segment, a/ld we 
refer 10 each discontinuity as an event, 

Defn. 3.34: Each segment of a segmented funCtlon stays Wlthm a dlsparate component of the uruon, I.e., all POlDts along 
the segment are agnates. The transition from one segment to the next may cross into a different component. NOle that 
we define segmented functions only as paths. i.e., functions from the real numbers , rather than as functions from arbitrary 
spaces. 0 

The definition assumes that continuous is well· defined within each component of the disparate union. For a 
space that is discrete, we take continuous to mean constant. And thus, for a space that is (equivalent to) a 
Cartesian product of discrete and smooth spaces, a continuous means that the discrete parts stay constant and 
the smooth parts can vary continuously. 

A common use of segmented functions is for paths into a space of indexes (Sec. 3.8.2). First, we'll look 
at what continuity means for index·valued functions: 



3.10 Segmented Functions 49 

A 

A segmented function yet) represented by a sequence 

Y+(t ) .•.....• 
k+1 

sequence: 

Figure 3.10: Sequential representation of a segmented function. Each element in the sequence is a pair containing the 'corresponding 
segment's left bound and continuous function. The diagram illustrates two adjacent segments. 0 

(3.35) 

For an index-valued/ullction f: ~-+ {A } IDs to be contilluous, we must 
have: 

• the composite/unction (Ids 0 f): ~-+ IOsets is constant, and 
• each compositefunctioll k ~-+ A is cOlltilluous,for i E Ids(f(t)). 

Eqn. 3.35: Continuous index·vaLued functions. For J to be continuous, we must have a given collection of eLements, 
that each vary continuously (we assume that continuity is defined for the space A ). 0 

A segmented function is made from continuous pieces, and thus: 

(3.36) 

For a segmented index-valuedfunction f : ~-+ {A}IOs ' we have: 

• (Ids 0 f): ~-+ IOsets is constant in each segment, alld 
• each k ~-+ A is contilluous in each segment,for i E Ids(f(t)) . 

Eqn. 3.36: Segmented index·valued functions. Each segment may have a different set of ill 's. If two adjacent segments 
share an ill i, the value J (t) i might or might not vaty cootinuoosly across the event. 0 

3.10.2 Sequential Representation of a Segmented Function 

We'd like to to represent segmented functions concretely, in order to be able to manipulate and evaluate them. 
Mathematical methods, as well as numerical, are most often designed for continuous functions , and don't 
robustly handle discontinuities . Thus we isolate the continuous parts of a segmented function, expressing it 
as a sequence of continuous functions with bounded domains: (see Fig. 3.10) 



3.10 Segmented Functions 50 

(3.37) 

Definition. Sequential Representation 

The sequential representation of a segmented fun ction Y: ~ - Afor some 
space A is a sequence ofreallfunctionpairs: 

{ ... , (tk_l, Yk-I) , (tk, Yk), (tk+l , Yk+1) , ... } such thatfor each pair 
(tk ' Yk), 

tk E ~ 
Yk:[tk , t1+1]-A 
Y (t) = Yk (t) , 

increasing with k 
continuousfunction on the interval 
where tt :<::: t < tk+1 

Defn. 3.37: Sequennal fann of a segmented funcnon. The t k'S m the sequence are the values of t for which there are 
events. Each function Yk need only be defined on the interval corresponding to its segment, but must be continuous, thus 
its values must stay within a single disparate component of A. 0 

In order for a segmented function to be defined and single-valued everywhere, including the points of 
discontinuity, Defn. 3.37 defines (arbitrarily) that Y (t) take the value of the segment on the right-hand side 
of each discontinuity. Thus we have not used the rightmost value of each segment's function. Sometimes, 
however, we will want to examine "both" values at the discontinuity: 

(3.38) 

Notation . Superscript " -" and "+" for Left and Right Values 

Given a segmented function Y: ~ - A represented sequentially by a 
sequence {(tk, Yk)}, define : 

Y-(t) 

Y+(t) = 

Naill. 3.38: y+ (tk) 1S the value of the segmented function on the right-hand side of the discontinuity at t k, and Y- (tk) 
is the value on the left-hand side. For convenience, away from discontinuities, both are defined to be the same as Y. 0 

Note that Defn. 3.37 and Notn. 3.38 imply/assume an infinite number of segments; often, however, the se
quence will be finite on either end: the end segments may extend to ±oo if there are no farther events, or we 
may only be interested in Y(t) for a bounded domain. 

3.10.3 Functional Characterization of a Segmented Function 

The sequential representation describes a segmented function by enumerating all the segments, i.e., listing the 
event times tt and the continuous functions Yk • We would also like to describe a segmented function ''all at 
once." But, as mentioned in Sec. 3.10.2, we want a mechanism that isolates the discontinuities. 

We define here a predicate-based method to characterize segmented functions . In addition to locating the 
events between segments, this method emphasizes the relationship that links one segment to the next. 



3.1 1 Designing a Model 51 

(3.39) 

Definition. Functional Characterization 

The functional characterization of a segmentedfunction Y: ~ -> A is a triple 
of predicates: 

a hody function F: ~ x A -> Boolean 

an event function 
that describes the continuous parts ofY, 
G: ~ x A-> Boolean 
that isolates the events (discontinuities) in Y 

a transition relation H : A x ~ x A -> Boolean 
that describes the events in y, 

such that,for each segment (tk , Yk ), 

F(t, Yk(t» is true 
G(t, Y- (t» is true 
H(Y-(tk) , tk, Y+(tk» is true 

fortk < t < tk+1 
ifft = tk 
(for each tk) 

Defn. 3.39: A segmented function characterized by three predicates. The body function is true 22along each oontinuous 
segment; the event function is true only at the events; and the transition relation is true where the function crosses an 
event. 0 

Notice that we refer to Defn. 3.39 as a characterization, rather than a representation. The predicates are 
not necessarily "tight": we have not specified their values for arguments that are off the path of Y(t), and 
furthermore, for the body function and transition relation, constant-true predicates would always suffice. Thus 
a single segmented function can be characterized by many predicate triples, and a single predicate triple can 
characterize many functions. 

Still, the functional characterization provides a canonical form that is often useful-and in many circum
stances, we can define predicates that are tight. For example, Appendix C uses a functional characterization 
to define segmented functions as solutions to piecewise-continuous ODE's . Notice that the functional char
acterization gives a declarative way of encapsulating the procedural instruction "when x happens, do z" : If 
we increase t, the value of the event function , Gtt; }l'- (t» remains false until an event occurs, i.e., until "x 
happens" .. and in describing the transition from Y - (t) to Y+ (t) at the event, the transition relation H ( ... ) 
embodies "do z." 

3.11 

This is the end of the Techniques part of chapter 3. The next pan, Discussion, contains 
some notes on designing models as well as an overall summary of the chapter. 

Designing a Model 

Thus far, this chapter has discussed philosophy and goals for modeling, and has presented assorted techniques 
for mathematical modeling. In this section, we try to give a feel of how these all fit together. 

We would like to emphasize again that there is no unique "right" way of defining any particular mathe
matical model. As discussed in Sec. 3.3, there are design decisions involved that are often not cut-and-dried, 
but can be based on aesthetics, experience, goals, and so forth. Thus we don't attempt to provide a specific 
recipe for model design, but just a collection of notes on creating models. 

The kinematic rigid-body module in Ch. 7 is small, and serves as a good example of many ideas here; we 
encourage the reader to refer to it while reading this section. We will use the following notation to point to 
specific examples: 

(§7.3] = "see Sec. 7.3 for an example" 
[Eq7.I] = "see Eqn. (or Defn. orNotn.) 7.1 for an example" 

22 For predicate calculus purists, writing" F( . .. ) is true" is inelegan~ oqe would just write" F( .. . )". But since we use predicates 
rarely, we will be explicit 



3.11 Designing a Model 52 

3.11.1 Writing a Model 

A mathematical model is just a collection of equations and definitions written down with some explanatory 
text [§7.3] 

Context. We write each mathematical model within the context of the overall physically-based model, as per 
Sec. 2.6.3. That is, the mathematical model is preceded by a deSCription of the conceptual model [§7.2], i.e., 
an explanation of the thing being modeled in terms of the behavior and properties of interest; and is followed 
by statements of posed problems [§ 7.4] , i.e., tasks described in words and as the corresponding mathematical 
problems. 

Exposition. The intention of the written mathematical model is to be understandable by human readers. Thus, 
although the mathematics of the model should be complete and well-defined without any extra material, we 
should also include suitable explanatory text or diagrams to help make the mathematics understandable. In 
particular, we should explain the the physical interpretations of the terms and equations that we write. 

Framework. Each mathematical model is intended to be used as a module, and may invoke termS and equa
tions from other modules. This leads to the following framework for writing a model: 

Names & Notation. We start each model by stating its scope name,23 and also list terms from other 
modules that we will reference, as per Sec. 3.6.2. We may also describe other naming conventions, 
notation that will be used, and so forth. [§7.3 .I] 

Main Body. The definitions and equations that describe the thing being modeled. This may be divided 
into several sections, and is often presented in a form paralleling the conceptual model. [§ 7.3.2-7.3.5] 

Derivations & Proofs. We put derivations and proofs, if any are needed, in a separate section. Thus 
the main body of the model contains the "bottom-line" equations that are of practical use for other 
modules , while this section contains supplementary material that is of interest to "maintainers" of the 
model. [§6.7] 

3.11 .2 What is in a Typical Model? 

Things that are commonly found in models: 

State Spaces. Typically, the thing being modeled, or objects therein , have some sort of configuration, or state. 
We use the state space mechanism of Sec. 3.9 to define the abstract configuration space [Eq7.I]. Note that 
we're not minimalist about the choice of aspects in state spaces: we include any quantity that defines or is 
defined by the configuration [Eq8.4]; in order to be able to specify individual elements, we describe what 
combinations of aspect values comprise identifying tuples. In many cases, it may make be useful to define a 
metric for a state space ([Hughes92]), i.e., a definition of a distance between two elements. State spaces are 
also convenient to bundle a collection of quantities into a single entity [Eq7.8] . 

Indexes. Whenever there are several of a thing--numbers, vectors, functions, sets, etc.-in a model, we will 
use the index mechanism (Sec. 3.8.2) to be able to manipulate a collection of the things as a single entity. 
Particularly common is to have an index of states. [Eq7.6] 

Predicates. It is often convenient to define a predicate that is true when a particular relationship or property 
holds for certain values. [Eq7 .9] 

Functions. We often define abstract spaces, each element of which is a function. Probably the most common 
functions are those used for the behavior of a thing over time [Eq7.2J, but they can be arbitrary [Eq8.I6]. 
Sometimes we define a space that includes all possible functions from one space to another [Eq6.I9], and 
sometimes we define a space containing only functions that we find interesting or useful [Eq7.2]. 

23 Generally, the scope name does nO! need to appear anywhere else within the model. Ibis is like the children's riddle: "Q. What 
belongs to you but is used more by everybody else?" "A. Your name." 



3.11 Designing a Model 53 

3.11.3 Things to Do 

"Tactical" ideas for designing models. 

Modular design. We don' t want to define "global" quantities, but rather always encapsulate them in a state 
space--even for a top-level model. Thus, we wouldn't write "let y be the number of yaks, and z the number 
of zebras." Instead, we define a state space: 

ZooStates 
[ 
y ...... Integers number of yaks 
z ...... Integers number ofzebras 

then we can write "for a zoo having state s E ZooStates ... , the number of yaks, y. , is equal to . . . " [§11.3] 

Temporal Behavior. For behavior of objects over time, we don' t want to have a "current" configuration. 
Instead, we define the entire path of a function over time as a single object [Eq7.2] . We often define predicates 
that describe interesting paths, or paths that are consistent with other items in the model [Eq8.1D]. 

Layered design. We like to take a layered approach, first defining general properties, then building on them 
to include more details. For example, Defn. 8.10 describes a path of a rigid body that is consistent with respect 
to arbitrary net force/torque functions; Defn. 8.18 refines this to net force/torque fields; and Defn. 8.25 refines 
this further to collections of individual force/torque "motives." 

Validity tests. When defining a model, it can be helpful to include theorems or redundancies, i.e., "if those 
ate true, then this must be true as well . For example, the rigid body model includes an energy formulation so 
that if the bodies ' motions are consistent with the applied forces, an energy conservation equation, Eqn. 8.32 
must hold. In addition to providing a consistency check on the model, it can be a powerful debugging aid 
when implementing models, by specifying what to double-check to determine if the solution techniques are 
working (see Sec. 2.6.4). 

3.11.4 Things to Think About 

Some things to beat in mind while creating a model. 

Remember the context. In designing a model, we want to find a balance between definitions that are intuitive 
and close to the conceptual model, and those that are well-suited to the particular problems we expect to pose. 
Sometimes it all might fit together well, but occasionally there is some tension. We have no specific advice 
other than to try to keep an eye on "both ends" at once. 

Declarative model. We have emphasized the importance of a mathematical model being declarative, a state
ment of relationships rather than a problem to solve. However, it is easy to slip into a problem-posing mode, 
especially when we expect to program/simulate a particulat problem. One might define a model that's techni
cally declatative, but does so by by declarations such as "x = salutian-to-the-problem ." As we write equations 
that define objects, we try to ask ourselves: 

• Does the equation describe what the object is? 

• Or does it just describe how to create one? 

There is of course no hatd dividing line, but it is something to think about. We have found that as we gain 
experience, it becomes easier and more natural to create declarative models. 

Relationships in the model. There is an aspect of designing a structured mathematical model that is not 
unlike programming. In order for the expressions to be complete, we want every function to have arguments 
for everything it depends on-there should be no hidden parameters. This often involves thinking about how 



3.12 Summary S4 

to represent and encapsulate relevant information, what the underlying relationships are between entities, how 
to define functions so that the right information gets to the right place, and so fonh. The design process for 
the "fancy forces" model in Ch. 9 was an exercise in this type of thinking. 

3.12 Summary 

This chapter was motived by the idea that having written, well-defined mathematical formulations leads to 
more robust models. Traditional mathematical techniques and methods facilitate the creation of what we call 
"model fragments" (Sec. 1.3), but do not focus on creating well-defined complex models that include the 
"glue" between these fragments. 

This chapter thus presented techniques and methods that help organize and structure complex mathemat
ical models, in a well-defined, writable way. Many of the ideas were inspired by computer programming 
methodology, which has been developed to meet similar needs. The techniques fell into five groups: 

Naming Strategies (Sec. 3.7). Techniques for naming mathematical entities. Most notably, we introduced 
scoped names, e.g., 

KINEMAT IC:: States 

Abstract spaces (Sec. 3.7). Discussion and methods for defining abstract spaces of mathematical entities. 
Includes the ability to define specializations, e.g., 

Specs c Gens 

Indexes (Sec. 3.8). A mechanism to manipulate collections of named entities, e.g., 

{Things}IDs 

State Spaces (Sec. 3.9). A mechanism to encapsulate a collection of propenies into a single entity, e.g., 

Arcs 
[ 
r ...... ~ 
angle ...... ~ 

1 

Segmented Functions (Sec. 3.10). A mechanism to describe functions whose values may have discontinuous 
changes in dimensionality, e.g., 

We have actually used these mechanisms, informally on whiteboards and on napkins as we developed 
mathematical models , as well as more formally for the expositions in Ch. 6-9. They were designed (and 
refined and re-designed) in order to be practical and effective. We have found that with some experience, they 
are natural and easy to use. Of course, we don ' tclaim that these specific techniques are the best or only ones 
to meet our goals . Different or additional structuring techniques might well be useful. 

3.13 Related Work 

We are not familiar with other worle that follows our approach of creating "complete, explicit models," with a 
focus on the relationships and administration of model fragments . For basic applied mathematical modeling 
exposition, we refer the reader to [lin,SegeI74] and [Boyce81]. 



Chapter 4 

Computer Programming Framework 

This chapter puts together the elements of the preceding chapters, to form the basis of a physically-based 
modeling system: 

• Conceptuai/mathematical/posed-problem structure and modularity as per Ch. 2 . 

• Mathematical models as per Ch. 3. 

In this chapter, we go from the blackboard to the keyboard: that is, we will assume that the designer has made (a 
first pass at) a "blackboard" version of the model, as per Ch. 2, and now is ready to sit down at a computer and 
write some code to implement it. Note that in Ch. 2, numerical solution techniques were largely dismissed as an 
implementation detail, and were left out of the CMP structure. Here, however, we're focusing on implementation, 
so the numerical techniques will be on an equal footing . 

We will describe a framework for the structure of modeling programs, and how to implement a CMP model within 
that framework . Several design issues will be discussed, including questions of debugging and efficiency. 

The prototype models in Ch. 6-9 include descriptions of their implementations, in accordance with the framework 
described in this chapter. Appendix B provides a background description of our prototype modeling environ
ment. 

4.1 Overview 

55 

For computer graphics modeling, we want extensible, reusable modeling tools. This chapter discusses a 
modeling "system" or "environment" containing a collection of such tools , from which a particular model 
or modeling program can be built. Note that the tools we build are for implementors-programmers-rather 
than for end-users.l 

The modeling system follows a "toolbox" approach. The modules and techniques that comprise the col
lection of tools are at various levels of representation; they can be and mixed as appropriate for a given 
application. We emphasize that we are not defining a "standard interface" for physically-based modeling (as, 
e.g., RenderMan [Upstill90] does for scene description), but rather just an extensible toolbox. 

A particular design goal for the system is to decouple the state of a model from the state of the program. 
A mathematical model as per Ch. 3 can be a single formulation that spans discontinuities and state changes in 
the thing being modeled; the computer program should do the same. That is , it should be possible to "random 

1 A programrnercould use the tools as the "guts" of an end-user modeling workstation/environment, but we are not directly describing 
such an environment. 



4.2 Framework for Program Structure 

Framework for Program Structure 

u 
S 
E 
R 

I 
N 
T 
E 
R 
A 
C 
T 
I 
o 
N 

Conceptual 
Section 

4--+ 
4--+ 
4--+ 
4--+ 
4--+ 
4--+ 

.-:. 

( ..... . 

COM 
interface 

Math 
Section 

4--+ 
4--+ 
4--+ 
4--+ 
4--+ 
4--+ 

Numerical 
Section 

M-N 
interface 

S6 

Figure4.1: Framework for program structure. The structure for a program follows the canonical conceptual/mathematical/posoo·problem 
structure discussed in Ch. 2. The program is divided into three separate sections: The "conceptual section" is the front end, maintaining 
the data structures that represent the user's conceptual model. The "math section" contains data structures that represent the mathematical 
model. The "numerics section" contains various numerical problem solvers; the posed problems themselves are embodiedin the interfaces 
between the three sections. 0 

access" the model over time, with the model's state reflecting the correct configuration for each access. This 
is discussed further in Sec. 4.7. 

A note on terminology: We will use environment or system to refer to the collection of modules , techniques , 
and so forth . We will use program to refer to a (hypothetical) computer program built using tools from the 
environment; a program might implement a single model, some small class of models , or a general end-user 
modeling workstation. 

4.2 Framework for Program Structure 

The conceptual/mathematical/posed-problem decomposition of a physically-based model that was discussed 
in Ch. 2 translates into a framework for programs. We divide a program into three distinct sections: (Fig. 4.1) 

• the Conceptual Section, 
• the Mathematical Section, and 
• the Numerics Section. 

The conceptual section supports the user's conceptual model. It maintains data structures describing the 
objects being modeled, interacts with the user, and so forth. The math section embodies mathematical models 
as per Ch. 3. It contains various data elements and structures that represent the mathematical objects and 
equations. The numerics seclion is responsible for numerical solution of specific equations and problems. 
Notice that the posed problems of the model do not have a section of their own in the program; they are 
embodied in the interfaces between the three sections. 

Putting it all together, a program has the following sequence of functionality: 

1. The conceptual section defines a formalized conceptual model, based on user input. 

2. The conceptual section creates a mathematical model based on the conceptual model. 



4.2 Framework for Program Structure 57 

3. For posed problems, the appropriate mathematical problems are created based on the mathematical 
model. 

4. For posed problems, the numerics section computes solutions to the problems, which get relayed back 
to the mathematical model, from there to the conceptual model, and finally back to the user. 

Notice that the program maintains two separate data structures that represent the overall model: one for the 
conceptual model, and one for the mathematical model. 2 

The program is composed of modules that "live" within each section, as well as interface modules that 
bridge between the sections. The math and numerics sections are mostly just libraries of routines and objects; 
they have no autonomous operation. The conceptual section, however, administrates the operation of the 
entire program. 

4.2.1 Conceptual Section 

The conceptual section maintains the formal ver
sion of the user's conceptual model. This is typ
ically a data structure containing objects that the 
user understands and manipulates, corresponding 
to entities in the thing being modeled. For exam
ple, a rigid-body modeling system might have ob
jects for the primitive body, objects for forces that 
act on the bodies, and objects for "control points" 
at which the forces are attached, all grouped hierar
chically (see Fig. 4.2). Note that in Ch. 2 the con
ceptual model was expressed as words; here we 
formalize the representation as a data structure. 

The conceptual model data structure includes 
sufficient information to construct the correspond
ing mathematical model data structure (via the C
M interface). In addition, it includes information 
such as rendering details, user-interaction con
structs, hierarchical groupings, and so forth, that 
are conceptually important, i.e., part of the abstrac
tion, but may be invisiblefurelevant to the mathe
matical simulation. 

Many tasks performed by the conceptual sec

c 
u 0 

S M _~-" 
E M 
R ~ --:;'-"1/ 

F 

D 
s 

I I/ /I..: ........ , 
L 0 'r<O-,....
E 

R 
E 
N 
D /1.~
E "'""7"""
R 
I 
N 
G 

Conceptual 
Section 

def'ne 

obj cts 

M 
A 
T 
H 
E 
M 
A 
T 
I 
C 
A 
L 

M 
o 
D 
E 
L 

C-M 
interface 

Figure 4.2 The conceptual section maintains the data structure rep
resenting the conceptual model. i.e., the objects. properties, relatioo
ships. etc. in the model. The section handles input/output interac
tions and, via the C-M intetface, defines and exchanges data with the 
mathematical model. 0 

tion are the same as those of a traditional (kinematic) modeling program, such as reading and writing model 
description files , sending frames to a renderer, interacting with the user, etc.3 The only traditional modeling 
program task that is not performed is the computation of the objects' behavior-that pan is offloaded to the 
mathematical section, which is used as an "equation engine." 

The conceptual model may actually include some snippets of mathematical equation or knowledge, espe
cially when the high-level abstraction is inherently mathematical (see Sec. 2.4.3). For example, the shape of 
a body may be defined via a parametric function, as in [Snyder92]. 

2 Actually. there's no reason to limit it to two models. One can imagine having separate graphical/interactionletc. models, as well as 
the mathematical and conceptual models. For this discussion, however, we will just toss all but the mathematical into the conceptual 
model; thus the conceptual model we descrihe i s perbaps not as well-structured as it ought to be. 

3 For this discussion. we assume that rendering is purely a conceptual task. In principle, however, a mathematical fonnulation for 
rendering could be part of the mathematical model. and the task of producing an image would then be a posed problem. 



4.2 Framework for Program Structure 

4.2.2 Numerics Section 

The numerics section is the "back end" of a 
physically-based modeling program. It is a collec
tion of program objects, whose role is straightfor
ward: to solve numerical problems (on request), 
such as integrating ordinary differential equations 
(ODE's), finding roots of functions , solving linear 
systems of equations, and so forth, without regard 
to any larger context these problems may be em
bedded in. 

The underlying functionality of the numerics 
section can be provided by numerical software 
packages, such as [Press et a1.86] or [NAG]. How
ever, the subroutines in such packages typically act 
at a simple level of representation, such as arrays 
of numbers; and the interface is often procedural, 
e.g., for an ODE integrator, one steps the solution 
forward by repeatedly calling a subroutine. 

A collection of modules are built on top of the 
bottom-level subroutines. These perform trans
formations to higher-level representations , such as 
from procedural interfaces to functional, from ar
rays to arbitrary data objects , and so forth. These 

M 
A 
T 
H 
E 
M 
A 
T 
I 
C 
A 
L 

M 
o 
D 
E 
L 

M-N 
interface 

Numerics 
Section 

Newton's Method 

~ ~ R"09,-K"tt, 

~ Adams' Method 

Gather/Scatter 

PODE solver 

'h.:0niUgate-Gradient 

Constrained Optimization 

~ 
.... 
_,,0 ... 

- ::: :~ 
' .1 •. ' I.' ·" , 

:. ~ -~-~ ... -..! 

SVD EEE=3, 
~: ... _._ . . ... -

Sparse Matrix 

58 

modules are designed in an object-oriented man- Figure 4.3. The nwnericssection includes a variety of numerical so-
lution modules . The bottom-level subroutines can be mostly taken 

ner, allowing different solution techniques to be from books or libraries. Above those lie various modules thal per-
"swapped in" based on circumstances, as dis- fo rm changes of representation between low-level subroutines and 
cussed in Sec. 2.4.1. the higher, interface level. 0 

Numerical solution subroutines often require that the caller provide problem-specific subroutines to eval
uate various functions (such as the derivative function of a differential equation). The higher level modules in 
the numerics section provide the appropriate items to the underlying numerical subroutines, but the modules 
must in turn be "fed" routines by the M-N interface. 

4.2.3 Math Section 

The math section fits between the conceptual and numerics sections. It contains definitions of computer 
objects that represent elements of mathematical models, such as sets , various kinds of functions, state spaces, 
!D's and indexes, and so forth (Fig. 4.4). The objects support simple operations that access their values. Note 
that each object's value is constant4 over the lifetime of the object-as discussed in Sec. 3.5.1, mathematical 
objects have no changeable internal state. However, the value of an object may be a function which can be 
evaluated on different arguments as needed; in order to determine the value of a function, the math section 
may do simple symbolic/arithmetic computation, or may call on the numerics section (via the M-N interface) 
to solve the appropriate problems. 

Remember that a mathematical model as per Ch. 3 is declarative rather than procedural (Sec. 3.5.2). 
Translating this to the program, it means that the objects in the math section don't "do" anything-they just 
"are." That is, they don't manage control flow in the program: at most, they merely evaluate functions on 
demand. 

In addition to definitions of various types of math objects, the math section contains utility routines to 
help create and manipulate objects. For example, a utility routine might define a function object whose value 
is the sum of the values of a given set of other function objects. 

'Ideally. In Sec. 4.8 we will discuss relaxing this requirement, for efficiency reasons 



4.2 Framework for Program Structure 

c 
o 
N 
C 
E 
P 
T 
U 
A 
L 

M 
o 
o 
E 
L 

de 

Math Section 

Mathematical Model 

I(x) = x+sin (X) 

N 
U 
M 
E 
R 
I 
C 
A 
L 

T 
E 
C 
H 
N 
I 
Q 
u 
E 
S ,. ""j 

'-------------------/ 
C-M 

interface 
M-N 

interface 

59 

Figure 4.4: The math section contains definitions of objects that support mathematical entities, allowing data strucrures to be built that 
represent mathematical models as per Ch. 3. The figure illustrates a function whose value is equal to the sum of the values of a set of 
other functions. 0 

The modeling environment can pre-define some math section objects, such as ID's and numbers, as basic 
primitive elements. However, for the most part, each implementation of a blackboard mathematical model 
requires definitions of its own abstract spaces, functions, indexes, and so forth . S To help in writing new 
models, the environment can provide math section utilities such as templates and run-time support for these 
elements; Appendix B discusses the utilities provided in our prototype system. 

4.2.4 C-M and M-N Interfaces 

Between the Conceptual and Math sections lies the C-M interface, and between the Math and Numerics sec
tions lies the M-N interface. The interfaces are the part of the program that arrange for posed problems to be 
solved. 

C-M Interface 

The C-M interface contains the "know-how" to construct a mathematical model from a conceptual model, 
and how to transfer data between them. Thus, the C-M interface is the high-level instrument by which posed 
problems are solved: it converts a conceptual task into the appropriate mathematical problem statement, 
constructing (via the M-N interface) mathematical objects whose values are solutions to the problem. In 
rransferring the resulting data from the mathematical to the conceptual model, the C-M interface implements 
part of the physical interpretation phase of physically-based modeling (Sec. 2.3.4). For example, Fig. 4.5 
illustrates the control flow to draw the conceptual model at a particular instant of time. For models in which 
objects are created and destroyed over time, the C-M interface will know how to create/destroy or activate/ 
deactivate conceptual-model objects based on mathematical results . 

5Thus programmers must be "toolmakers" as well as usel'3 of tools. We follow the design philosophy that to write a program. one 
should write a module library then call it (see, e.g., [5Irau5585]). 



4.2 Framework for Program Structure 

"draw model at time t" 

• get configuration 
at time t 

• render current 
configuration 

CoM 
Interface 

' find configuration at time 1" 

• map conceptual 
model to math 
model 

• evaluate math 
model at time t 

• distribute resu~s 
to conceptual 
model 

Math section 

"evaluate at time t" 

(may invoke 
numerics section) 

60 

Figure 4.5: Outline of control flow across the C-M interface, for a sample task. The conceptual section uses the math section as a 
"computation engine," via the C-M interface. Here, the posed problem is to draw the model at a particular instant of time. If the task 
will be performed repeatedly with minor variation, such as drawing the model for each frame of an animation. the initial mapping may 
be perfonned just once in a "setup" phase. 0 

Math section 
M-N 

Interface 

in: 
-:d::::::::::::::::'-1 givens 

Initial-value 
ODE problem 

out: 
solution 

Figure 4.6: Role of the M-N interface, for a sample task. The M-N interface maps between mathematical model objects and nu
merical solution techniques. Here, an M-N interface routine COnstructs a function object, y(t), that solves an initial-value ODE. 
f,y(t) = f(y , t), y(o) = YO; the function object is "tethered" to a numerical ODE solver. so that if evaluated, the function will im

plicitly invoke the numerical routine to compute the result. 0 

The CoM interface's "know-how" does not have to be completely hard-wired. An obect-orienteddesign for 
the conceptual section can allow each type of conceptual object to define methods relating to its corresponding 
math section elements. The CoM interface may provide "callback" functions to the mathematical section, 
which evaluate whatever mathematical equations reside in the conceptual model. 



4.3 How To Implement a CMP Model 61 

M-N Interface 

The M-N interace contains the "know-how" to map between mathematical model objects/equations and nu
merical modules. Thus, the M-N interface is the low-level instrument by which posed problems are solved: 
given mathematical model objects containing the "knowns" for a particular problem, the M-N interface con
structs objects for the solution. 

For problems whose solutions are simple values (e.g. , "find x E lR that minimizes ... "), the M-N interface 
can immediately call a numerical solver to compute the result. For problems whose solutions are functions, 
however, the M-N interface might construct a function object that is "tethered" to a numerical routine; for 
example, Fig. 4.6 illustrates a function whose evaluation gets handed off to a numerical ODE solver. 

The "tethering" can be implemented via object-oriented programming; each of various types of function 
objects implements evaluation by calling the appropriate numerical solver. The M-N interface may provide 
"callback" functions to the numerical techniques; for example, the ODE solver in Fig. 4.6 needs to evaluate 
f(y , t) during the course of its computation . 

4.3 How To Implement a CMP Model 

Suppose we have a CMP blackboard model worked out-now what? This section goes over the steps involved 
in creating an implementation of the model. 

A CMP module translates into a collection of definitions of data structures, objects, routines, and so forth. 
Remember that we're not trying to make an end-user program, but to add a collection of tools to our toolbox, 
as discussed in Sec. 4.l. Here's what to do: 

Conceptual Model Define a data structure that represents the conceptual model, including all properties, 
relationships, and so forth, that are relevant, as per Sec. 4.2.l. Build appropriate user interface tools , to 
read/write files, send scenes to a renderer, etc. 

Mathematical Model Define a class of object for each abstract space, with associated operators to perform 
evaluations, access elements of sets, and so forth, and also perhaps utility routines that perform simple 
symbolic tasks, such as defining a function object that computes the sum of the values of other function 
objects, as per Sec. 4.2.3. 

Posed Problems Each posed problem consists of a conceptual task, and a corresponding mathematical prob
lem. 

• Define conceptual section routines to provide a high-level interface to the conceptual task; for exam
ple, a routine draw (t) that draws the model at time t, as per Fig. 4.5. 

• Define C-M interface routines that construct the appropriate "known" mathematical objects based 
on the conceptual data structure, and that can map the data from the "solution" object back into the 
conceptual data structure, as per Sec. 4.2.4. 

• Define M-N interface routines that construct "solution" objects from "known" objects, linking the 
solution to modules in the numerical section, as per Sec. 4.2.4. 

• Choose the numerics section modules to use. If necessary, write modules to transform between the 
high-level representations used in the mathematical objects to lower-level representations needed by 
the numerical solvers , as per Sec. 4.2.2. If necessary, write new low-level numerical solvers, or in
corporate techniques from books or public-<lomain or commercial packages; these might be specific to 
the particular CMP module, or (ideally) might be suitable for incorporation into the common numerics 
section library. 

We don ' t necessarily do all the above in the listed order. Most commonly, we start with the mathematical 
model definitions, then work bottom-up through the posed problem, and finally put the high-level conceptual 
interface on top. 



4.4 Procedural Outlook 62 

Note that if the blackboard CMP model was designed modularly (Sec. 2.5), based on existing CMP mod
ules, we can correspondingly use existing tools in building the new tools . This can be done at any or all 
levels: math objects that include other math objects; C-M routines that call other C-M routines; and so forth . 
Additionally, the environment can include basic support for common mathematical constructs (e.g., indexes 
and state spaces as per Ch. 3) and conceptual tasks (e.g., animation loops that call a draw ( t) routine for each 
frame), as well as a rich numerics library; Appendix B describes the tools in our prototype system. 

Note also, occasionally not all the above items need to be created. For example, the geometric objects 
(locations, vectors, scalars, etc.) defined in Ch. 6 need no M-N interface; all their operations can be performed 
symbolically or arithmetically. For another example, in Fig. 2.6 's version C of a flexible-body model, the 
conceptual model includes a refinement to a collection of rigid bodies; thus given pre-existing rigid-body 
tools, the flexible-body conceptual tasks could translate directly into rigid-body conceptual tasks, and no new 
math, numerics, or interface routines would need to be written. 

4.4 Procedural Outlook 

The math section objects , as we said in Sec. 4.2.3, 
don't "do" anything. Thus the procedural elements 
in the program are the two ends: the conceptual 
section and the numerics section. 

Let's look at what happens when the concep
tual section performs a task: The C-M interface 
bundles up the relevant information into a data 
structure (the mathematical model), and passes it 
to the M-N interface; then the M-N interface un
bundles the information to invoke the numerical 
solvers, bundles the result back into mathematical 
data structure objects, and passes it back to the C
M interface; finally, the C-M interface unbundles 
the results for the conceptual section to use. 

Conceptual 
Section 

"; '. " :: 
" n 
~ 
~ .' 
+-:H 
+-:H 
+-:H 
+-:H .' 

" " " " :: 
" " .' .' 

(interface 
format) 

Numerical 
Section 

Figure 4.7. From a procedural point ofview. the mathematical model 
is just an intermediate interface fonnal between the conceptual and 
numerical sections of the program. 0 

Thus, from a procedural point of view, the mathematical model is essentially just an interface format 
between the conceptual and numerics sections. (Or even just an interface format between the C-M and M-N 
interfaces.) 

4.5 Why Have a Math Section? 

Since, as we discovered in Sec. 4.4, the math section objects is in some sense just define an intricate interface 
format between the conceptual and numerics sections, one might wonder why we bother to define them. Why 
not just let the conceptual section call the numerical routines directly? There are several reasons for having 
a separate mathematical model. 

First, having a separate, explicit mathematical model allows the program to directly correspond with the 
CMP structure discussed in Ch . 2. This helps eliminate " transcription" errors in developing the program from 
the blackboard model. Conversely, when the program points out flaws in our model, and sends us back to the 
drawing board, we will have an easier time updating the CMP model. 

Furthermore, although the mathematical model is derived from the conceptual model , it is not necessarily 
a simplification of the conceptual model; it is likely to be organized differently. For example, in the math
ematical model, the states of all the bodies that have the same equations of behavior may be grouped into a 
single index, regardless of the hierarchical relationship of the bodies in the conceptual model. Thus the task 
of the C-M interface can be complex, and if we were to try to merge the mathematical model organization into 
the conceptual model, it could end up a tangled mess. Along the same lines, having a separate mathematical 



4.6 Representational Outlook 63 

Representations in the program 

Conceptual Model Mathematical Model 

Conceptual Section Math Section 

Scattered data 
Random time 

? ? 

B], ,~, ? 
? I: ? 

Array data 
Random time 

B]",? 
, ~, ? 

? ? 

Array data 
Serial time 

• OdeScatExt OdeExt ODE . "-_.- -- ---- -- --- --- ---- -- ---- ---v------------------------ --.~ 

Numerics Section 

Figure 4.8: A sequence of changes of representation, from the high level that the user interacts with, down to the number-<::nmching 
formal used by the nwnerical solverings. The illustration shows several steps within modules in the numerics section: The module 
OdeScatExt evaluates the solution y(t) to an ODE at arbitrary values of t, distributing Ihe results into mathematical model objects; 
OdeExt evaluates y( t) at arbitrary values of t, transferring the result as an array of values; and ODE is a traditional step-wise ODE solver 
that computes array-valued results for increasing values of t. 0 

model also makes it easier for us to decouple the state of the model from the state of the program, as will be 
discussed in Sec. 4.7. 

Finally, the math section can be sufficiently large and intricate to justify being designed, implemented, 
tested and debugged independently, or with just the M-N interface. Once it is working, it can be incOIporated 
into the higher levels of the program. (See also the discussion of debugging, Sec. 4 .9.) 

We can think of the math section as providing a programmatic mathematical manipulation/computation 
package for the given model. Consider a programmatic package that supports rational numbers, or infinite
precision arithmetic: it would include definitions of the primitive data objects , and operators and subroutines 
to manipulate the objects and perform numerical computations. The math section for a given model does the 
same, but the "primitive objects" represent not just numbers, but indexes (Sec. 3.8.2), elements of state spaces 
(Sec. 3.9), and so forth; and the M-N interface provides the computational support. 

4.6 Representational Outlook 

A program that provides a high-level model to the user, and also uses "number-crunching" routines to compute 
simulations, must by necessity transform data between the form of the high-level representation and that of 
the numerical routines. This transformation can typically be decomposed into a series of separate steps. 

We prefer to design programs such that those changes of representation are explicit; hence the separation 
between the conceptual, math, and numerics sections in the program framework. The C-M and M-N routines 
are the agents that perform the changes. The changes of representation continue within the numerics section 
as well. Fig. 4 .8 illustrates the changes of representation that we commonly carry out to simulate a model as a 
function of time. Notice that the whole program can be viewed as a "pipeline," analogous to the well-known 
rendering pipeline for computer graphics imaging ([Foley el aI.90]).6 

Changing representations is not often considered to be a major functional component of a program: The 
"meat" of the program might be identified as the number crunching or rendering or user interface; while the 

6 Just as computer hardware is often built to directly SUPPOR the rendering pipeline, we can imagine hardware support of a modeling 
pipeline for some classes of posed problems. 



4.7 Decoupling Model State from Program State 64 

Decoupling Model State from Program State 

Model State Model State Model State 

........ ~ ..... : ...... -;1 ....... .: : ................................ .: 

Program State Program St at e Program State 

a. Program "acts out" model b. Program "acts out" events c. Program solves model 

Figure 4.9: State of the simulated model vs. state of the program. We illustrated three programming paradigms: (a) Each step of program 
execution moves the model forward in simulation time. (b) The program computes continuous behavior as a mathematical function of 
simulation time. but if there are changes in the structure ofthe model, the state of the program must be altered. (c) The program computes 
the behavior as a mathematical function that spans discontinuities; the state of the program need not be altered to evaluate the model in 
any of its states. 0 

code that 1inks various modules together often seems like it's not "doing" anything, merely housekeeping. 
However, we have found that often, changing representations can be the trickiest part of a program. House· 
keeping tasks, such as gathering/scattering together data from a collection of separate objects into a single 
linear array, are often fraught with bugs. 

By identifying representation·change tasks explicitly, we can often separate them out from the "meat," 
and build separate modules that perform the changes. The changes of representation can thus be designed 
and debugged independently, and the remaining routines are freed from the need to do the housekeeping. 
Appendix B describes change·of·representation modules for array gather/scatter, full-to-sparse matrix, and 
sequential-to-random access of data. 

4.7 Decoupling Model State from Program State 

For computer graphics modeling, the most commonly posed problem for a model is: simulate the model's 
behavior over time. Mathematically, this means we define a function Y(t) that we evaluate to yield the 
behavior at any given time t. The most common form for the results of a simulation is a sequence of frames 
for an animation; that is, we sample the function Y(t) at times to, to +~ , to + 2~, ... , rendering and recording 
an image for each sample. Thus, programs are often designed to evaluate Y (t) only ata sequence of increasing 
times. 

Given that we've expressed our model's behavior mathematically as a function Y(t), however, we don't 
want to limit ourselves to sampling it sequentially. We would like to ''random access" the function , i.e., 
evaluate it at any arbitrary time values, in arbitrary order. This would allow, for example: 

• "Shuttling" back and forth in interactive output; 

• Rendering using motion-blur techniques that need arbitrary time samples, e.g., distributed ray tracing 
([Cook,Porter,CarpenterS4]); 

• Solving numerical problems that may span events, such as multi-point boundary·value problems 
([Press et aI.S6]). 



4.8 Efficiency 65 

Random access of the model is particularly appealing, and difficult, when the model includes events that 
change its structure, such as adding new bodies or relationships. Mathematically, the function Y (t) would be 
a segmented function as per Sec. 3.10. In the conceptual section of the program, we need to "decouple" the 
program's state from the state of the model; the next few paragraphs illustrate what we mean by this. 

Consider a program that simulates the model's behavior by Euler's method: The program data structures 
describe the state of the body at some time t k. The program computes the derivatives, and uses them to take 
a small step forward, updating the data structures for time tk+l; when discontinuous events are encountered, 
the program's data structures are modified, and simulation continues. Thus the program directly "acts out" 
the behavior of the model over time (See Fig. 4.9a). 

Sophisticated ODE solution techniques, which are more robust than Euler's method ([Press et al.a6-
Ch.15]), need to be able to explore the state space: they require a user-provided subroutine that computes 
derivates based on hypothetical states and times, and will call that subroutine repeatedly for many arbitrary 
values in arbitrary order,7 before settling on and returning what the model's state really is for some time t. In 
order to use these techniques, one must make a leap in how one thinks about one's program: The program 
no longer has a "current state" that is always correct, but needs to be able to evaluate atbitrary states and 
times, that might be off the solution manifold; the program is not acting out the model, but rather calculating 
a function that describes how the model varies over time. 

Using sophisticated numerical solvers thus forces a certain amount of decoupJing of program state from 
model state. However, that decoupling is typically for continuous changes in state only; programs still typ
ically solve forward in time; when an event happens , the program's data structures are changed, and a new 
continuous problem is solved forward from there. Thus the program is still "acting out" the discrete events 
(see Fig. 4.9b.) 

We go one step further: Solve a mathematical segmented function , which spans discontinuous, state
changing events, and evaluate that solution anywhere. This requires that the conceptual model data structures 
can be adjusted based on the value of the function: the number of bodies, etc., isn ' t known a priori. It 
also requires numerical solvers that can compute them. The example "tennis ball cannon" model in Ch. 11 
illustrates a model described by a segmented function, that is solved using the piecewise-continuous ODE 
solver described in Appendix C. 8 

4.8 Efficiency 

The conversion to and from a math section data structure, and the overall emphasis on changes of represen
tation, can give us pause: This approach has some advantages in terms of modularity and so forth, but if it 
makes our programs too slow or memory-intensive, we won't be able to use it. This section takes a brieflook 
at efficiency. 

Start by considering the far extreme: assume that efficiency is not a concern. Since the mathematical 
model is defined based on the conceptual model, and has no changeable internal state of its own, in principle 
it doesn 't need to be maintained all the time. Whenever the conceptual model needs some numbers, such as 
the state of the model at a particular instant of time, it can whip up a mathematical model , evaluate it, get the 
results, and toss it out 

But, since we often solve the same problem over and over again, we can be more frugal than that. Com
monly, the solution is a function object, we don't throw it away but rather keep it, and evaluate it repeatedly. 
This allows the back end to maintain previous values, cache results, take advantage of coherence, and so forth. 

In general, the changes of representation involve a structural setup phase, that build data structures, set 
up memory address pointers, and so forth. The actual transfer of data can just follow those pointers, often 

7 John Plan has coined the apt name "numerics dance" to describe this process [PlanS?). 
8 Anotherapproach to random-access of models is to compute sequeotially, but save the "history" so that we can play baclcprior states 

as needed--this would work even for Euler's method. However, as mentioned earlier. defining the mathematical model as a segmented 
function can let us solve problems that span events, such as multipoint boundary-value problems: during the "'nwnerics dance:' solvers 
might need to explore possible states of the model across discontinllolls events-and whether any individual event really occurs won't 
be known until the solution is complete. 



4.9 Debugging 66 

"leapfrogging" past several changes of representation to place the data in its final destination. 
Note also that for numerically intensive computations, most of the inner loops are inside of the low-level 

numerical routines-thus efficiency of the higher levels of the program is not critical. Often, however, there 
are "callback" routines that must be used in an inner loop, e.g., the routine that computes derivatives for an 
ODE solver; but these don 'tnecessarily have to go all the way back up the representational pipeline, and also, 
as before, can be set up once then quickly accessed later. 

Our overall approach to dealing with efficiency in our system is as espoused by [Kernighan,Plauger78]: 
"Make it right before you make it faster." That is, we first design and prototype in an idealized, modular form, 
written to optimize cleanliness of concept. Once it's written and working, if it turns out to be insufficiently 
efficient, we can use "profilers" and other diagnostic techniques to determine what needs to be optimized. It's 
always relatively easy to go back and cut comers to provide speedups (for special cases) when necessary
but if it's originally designed and built with those comers cut, it would be harder to go back and modularize 
later. Remember that one of our goals is to define general, reusable tools, not optimized special-purpose 
simulations.9 

4.9 Debugging 

As we implement physically-based models as computer programs, we can encounter two types of bugs: 

• bugs in the program, and 
• bugs in the model. 

Bugs in the program mean that it doesn 't faithfully implement the blackboard model; bugs in the blackboard 
model means that we goofed in our CMP design. It is important to recognize the difference between these 
two types of bugs, or we might spend lots of time and effort on wild goose chases: for example, we might 
pore over trace output, single-step through program execution, and so forth, trying to find out where we've 
made a "typo" in an expression, but the real problem is a "thinko" in the conceptual model; conversely, we 
might keep trying to re-derive or re-express a mathematical equation, but the problem turns out to be an a [i] 
that should be an a[j]. 

Of course, it's not always easy to determine what type of bug we're dealing witlt-thatcan be a major part 
of the debugging task. However, the CMP structure of the model can help us to isolate and identify bugs in 
the model , as was discussed in Sec. 2.6.4. Similarly, the modular design of the program framework can help 
us isolate bugs in the program: Are the numerical modules working correctly? Are the results being properly 
represented as math section objects? and so forth. 

In blackboard mathematical models , there are often redundancies, or multiple ways of expressing a quan
tity; we can take advantage of this to help find bugs in programs. For example, the state of a dynamic rigid 
body (Ch. 8) includes mass m, momentum p, velocity v, and position x; when we create or use a state object, 
we can doublecheck to make sure that the relation p = mv holds (i.e. , check that the internal properties of the 
state space are maintained, as per Sec. B.3.6), and for a body whose behavior is computed numerically, we 
can doublecheck that v = ftx (by finite differencing) as expectect.10 

Double-checking can happen at a very broad scope-we can "swap in" additional problems to solve in 
order double-check our simulation, i.e., the C-M interface can create additional elements in the mathematical 
model , and request additional solution objects from the M-N interface. The ability to do this "swapping" is a 
benefit of the modular framework in general, and the separation of the mathematical model in particular. 

9From Dijkstra's Notes on Structured Programming: «My refusa1 to regard efficiency considerations as the programmer's prime 
concern is not meant to imply that I disregard them . .. My point, however, is that we can only afford to optimise (wbateverthat may be) 
provided illat ille program remains sufficiently manageable." [Dijkslra72·p.6] 

10 Because of finite precision. and approximate solutions to problems, we can't eiltpect values that are analytically equivalent to be 
eiltactly equal in the program, thus we can only check to see if the values are "close enough" within some tolerance. But how to choose 
that tolerance? The tolerance doem 'thave to be tight~t doesn't affect the accuracy of simulation, it's only a guard against errors. When 
there's a bug, the results are often very wrong, so they will eiltceed any smaU tolerance. Also common is buggy behavior that causes the 
different quantities to diverge as the simulation progresses, so that even if the tolerance is too loose to initially catch the error, after a 
short rime the tolerance will be exceeded. 



4.10 Summary 67 

It can also be useful to put "assertions" in the program, to check for things that the model says can't 
happen: two disjoint events that happen simultaneously, or singularities in equations, and so forth. When 
such things do occur, it can often be easy to determine by inspection if they are merely bugs in the program, 
or if they have uncovered gaps in our conceptual understanding of the problem (see Sec. 2.4.3). 

4.10 Summary 

This chapter has described an approach to implementing physically-based models that are defined via the CMP 
structure of Ch. 2. The focus is on an overall framework for the creation of tools in a modular and extensible 
manner. The tools are intended as basic reusable support for programmers to create end-user applications. 

The program framework parallels the CMP structure; in particular it emphasizes that the role of the pro
gram is to define and solve mathematical problems, then convey the results back to the user. Thus there is 
an emphasis on a separate and explicit definition of a programmatic mathematical model and of numerical 
solution techniques. 

The framework also emphasizes the simulation of a model as a change between various representations 
of the model and data The changes of representation are performed in a series of well-defined, modularized 
steps. 

A feature of the framework is that it allows a decoupling of the state of a program from the state of the 
model that is simulated; thus the program can explore the state space of the model to produce solutions and 
can "random access" the solution in various states-even spanning discontinuities. 

4.11 Related Work 

[Zeleznik et a1.91] presents an interactive modeling system which, although not specifically focused on 
physically-based modeling, is similarly based on the specification of an extensible, object-oriented frame
work. 

[Kalra90] provides a unified scheme for solving arbitrary constraint problems; in the lingo of our own 
work, it discusses how to transform a mathematical representation to a numerical representation. 

[Blaauw,Brooks91] takes view similar to ours, of computation as a series of changes of representation. 



Chapter 5 

Overview of Model Library 

T he preceding chapters presented a structured strategy for designing and implementing physically-based mod
els. The main ideas of the strategy are: 

• Decomposition of a model into conceptual/mathematicallposed-problem parts (Ch. 2). 

• Modular hierarchy of models (Ch. 2). 

• Mathematical modeling techniques and notation (Ch. 3). 

• A program framework having separate Conceptual/math/numerics sections (Ch. 4). 

We move now from theory and philosophy to practice and applications. This chapter gives an overview of a 
prototype library for rigid-bOdy modeling, that was designed using the structured strategy, and that is discussedin 
detail in the upcoming chapters . The prototype library (Ch. 6-9) supports classical dynamic rigid body motion, 
with geometric constraints. Sample models built using the library are described in Chs. 10,11 . The library and 
models have been implemented as described; implementation notes are included in the upcoming chapters, and 
Appendix B has an overview of the prototype implementation environment. Some possible extensions to the 
library are outlined in Ch. 12. 

5.1 Goals for the Prototype Library 

The prototype library has three major goals: 

• To demonstrate the structured design strategy. 

68 

The development of the strategy, in Ch. 1-4 included an assortment of philosophy and techniques. 
Here, we illustrate how we bring them all together, by developing (and using) an extensible library, 
from initial concept through implementation details . 

• To test the feasibility of the design strategy. 
The strategy is experimental: an idea that we are putting forth for consideration, but which has not yet 
passed "the test of time." The prototype library will test the practicality of the strategy, e.g.: Do our 
models fit into a CMP decomposition? does modularity work for us? are the mathematical techniques 
practicable? etc. (Ch. 13 includes an evaluation of our experience.) 

• To provide a rigid-body modeling library. 
This prototype library attempts to serve as a first step towards a general, reusable, and extensible library 
for rigid-body dynamics, as espoused by the design strategy. 

We have attempted to design and present the smallest possible example of a library that wouldreasonabJy 
meet the above goals--{)ur intent is to be illustrative, rather than encyclopedic. However, we try not to cut 



5.2 Features of the Library 69 

Overview of prototype library 

Sample models 
Extensions 

f";;T~~;;i;'B~ii'c~~;;;~;;'(Ch:"i3T" j 
r-l.-------------- -- --- . _------_. --- ----_. ----_ . . _.. : 

i.' "Swinging Chain" (Ch. 12) ! .... ! Rigid-Body Collision 

'r\;;~-;:"'~ F"w,' (Ch. 11) I 
I Dynamic Rigid Bodies (Ch. 10) I 

1 
11L-_K_in_e_m_a_tic_R..::.i9,-id_B_O,.~_ie_s..:.(C_h_. _9.:..) ----ll 

I Coordinate Frames (Ch. 8) I 
Figure 5. 1: Modules in the prototype library. The Coordinate Frames module provides us with a common frameworlc for working with 3-
D coordinate geometry. The Kinematic Rigid Bodies module defines our idea of rigid-body motion. The Dynamic Rigid Bodies module 
adds classical Newtonian mechanics. The "Fancy Forces" module provides a mechani sm to specify forces for the Newtonian model, 
that supports geometric constraints on bodies. Sample models illustrate the use of the library. We also discuss ideas for extending this 
library. 0 

any comers: in order to validly demonstrate and test the strategy, the prototype was developed, structured, 
implemented, and presented in accordance with the stated design strategy. Thus we've ended up with "just 
a simple example" that fills more pages than the description of the strategy itself. 1 

Note also that we will present only the result of the design process, rather than chronicle the design process 
itself. The reader may rest assured that the prototype library was not initially conceived in exactly its final 
form, but rather we designed, modified, implemented, re-{iesigned, and so forth 

5.2 Features of the Library 

The library includes the following features for rigid-body modeling: 

• Basic Newtonian motion of rigid bodies , in response to forces and torques. 

• The ability to measure work done by each force and torque, and balance it against the kinetic energy of 
the bodies. 

• Support for various kinds of forces to apply to bodies , including "dynamic constraint" forces ([Barzel. 
Barr88]) to allow constraint-based control. 2 

• The ability to handle discontinuities in a model. 

• The ability to be extended, both by enhancing the modules we describe, and by adding additional mod
ules. 

1 From Dijkstra's Notes on Structured Programming: "I am faced with a basic problem of presentation. What I am really concerned 
aboutit the composition of large programs, the text of whicb may be, say, of the same size as the whole text of this chapter.. .. For practical 
reasons. the demonstration programs must be small. many times smaller than the ' lifesize' programs I have in mind." [Dijkstra72·p.l) 

2We don't intend to be self-serving by describing our own "dynamic constraints" work. nor to imply that it is the primary method 
of control that should be supported by a rigid-body modeling library. Rather. it comprises a reasonably intricate test case for the design 
strategy, and has the advantage (to us) that we are experienced with it and thus were able to focus on the structure of the model rather 
than on getting the techni que to work. 



5.3 Outline of the Library 70 

To give a feel for how the library could be extended, Ch. 12 will discuss several possible additions: rigid body 
collision and contact, finite-state control mechanisms, transitions between kinematic and dynamic behavior, 
and flexible bodies. 

5.3 Outline of the Library 

The prototype library includes four modules , each implementing a different "sub-model" within the overall 
domain of rigid-body modeling. Each module builds on the previous modules. (Fig. 5.1) 

1. Coordinate Frames Model (Ch. 6): Defines the basic 3-D Euclidean world space in which our models 
exist, and provides support for manipulating coordinate system frames and geometric objects such as 
orientations, locations, and vectors. 

2. Kinematic Rigid Bodies Model. (Ch.7): Defines our abstraction for kinematic motion (i.e., motion with
out regard to force or inertia) and provides a simple descriptive mechanism. 

3. Dynamic Rigid Bodies Model (Ch. 8): Provides support for bodies moving under the influence of arbi
trary forces and torques. Includes an energy-balance mechanism. 

4. "Fancy Forces" Model (Ch. 9): Provides a mechanism to define forces and torques , and apply them to 
arbitrary bodies. Integrated with the "dynamic constraints" force mechanism. 

We provide examples of models built using the library: 

"Swinging Chains" (Ch. 10): Bodies linked and suspended to form chains swinging in gravity. Illustrates 
continuous dynamic motion, using the constraints mechanism. 

''Tennis Ball Cannon" (Ch. 11): An oscillating cannon fires a stream of balls, that bounce, change size, and 
disappear. Illustrates discontinuous changes in state and configuration of a model. 

The "model fragments" (Sec. 1.3), i.e., the low-level equations of behavior, that are embodied in the library 
are quite simple, as compared with, say, flexible body mechanics, or fluid dynamics. Our emphasis for this 
prototype is on modularity in the models, the ability to pose multiple problems from a single model, the 
interrelationships between the bodies, and other design issues, rather than on particularly complex behaviors. 

5.4 Common Mathematical Idioms 

Because of our emphasis on explicit statement of assumptions and properties, the expositions in our modules 
follow a rather axiomatic approach that is more common in pure mathematics than in physics or mechanics: 
Each module has a series of definitions of abstract spaces and properties, then provides further equations that 
are derivable from those definitions.3 

Note that the principles and equations that underlie the various modules in our library are well-known; 
there will be no fundamentally new or surprising equations or derivations. Thus the mathematical models in 
the libraries serve mostly to re-cast the known equations into a form convenient for our structured, modular 
outlook. Because we will be covering well-trodden ground, we will not in general include detailed proofs or 
derivations, but rather refer interested readers to appropriate references. 

The modules include definitions of various state spaces (Sec. 3.9), to describe the configurations of objects. 
Often, a state space will include a description of the motion as well-in which case the space is a generalization 
of a physicists ' phase space ([Marion70]). Note that each point in a state space typically describes the state 

3In this , we are similar to the field of Rational Mechanics: "The traditional approach to mechanics is in no way incorrect, but it fail s 
to satisfy modem standards of criticism and explicitness. Therefore, some parts of the foundations of mechanics heretofore left in the 
penumbrae of intuition and metaphysics I shall here present in an explicit, compact mathematical style. . . .. [TruesdeI191-p.6j. 



5.5 Presentation of Each Module 71 

of an object at an installt-the behavior of an object over time is described by a path through state space. If 
the state space includes motion information, we will often explicitly define a consistellt path to be such that 
the motion description at each state along the path actually agrees with the trajectory described by the path. 

Expositions of physics commonly use a single name as a value or as a function. For example, " x " may be 
defined as the location of a particle, and later "x (t )" would be used to describe the location as a function of 
time. However, as discussed in Sec. 3.6.3, we prefer a name to have only one meaning. Thus, if we define a 
value 

x EStates 

for some space States, we will never use it as a function; if we are interested in a function , we will always 
define one explicitly, e.g., 

p: ~ -+ States, 

in which case " p" refers to the function as a whole, and "p( t)" refers to the value of the function for some 
t E ~. We will often define a space of functions , such as 

State Paths == the set offunctions {~-+ States} , 

and we will then use 
P E State Paths 

to denote a function p . 
Finally, all of the bodies in the prototype models exist in a 3-D Euclidean world; all "vectors" and so forth 

are thus 3-space objects, as defined in the coordinate frames model, Ch. 6. 

5.5 Presentation of Each Module 

Each of the upcoming chapters describes a single CMP module, as per Sec. 2.5. We consistently use the 
following organization for each chapter, combining the CMP framework of Sec. 2.7 with the mathematical 
modeling framework of Sec. 3.11.1: 

Introduction. A small blurb at the front of each chapter, giving an overview of the domain and use of the 
module in the chapter. More extensive background may be given as an initial section of the chapter, if 
needed. 

Goals. A description of our purpose or desired features for the module. 

Conceptual Model. A description of the conceptual model, as per Sec. 2.3.1. Our focus in these prototype 
modules is on behavior as defined mathematically; thus the conceptual models will include little beyond 
those elements that will be described by the mathematical model. 

Mathematical Model 

Names & Notation The scope name (Sec. 3.6.2) for the module, a list of names used from other mod
ules, and a description of any unusual notations that will be used. 

Definitions & Equations These will be broken up into sections as appropriate. 

Posed Problems As discussed in Sec. 2.4.2, there are potentially many interesting problems that can be posed 
for a given model. We will typically include only one or two interesting or common problems. 

Implementation Notes These describe the prototype implementation; the implementation follows Ch. 4 's 
program framework: separate conceptual, math , and numerics sections, along with C-M and M-N in
terfaces . Appendix B gives some details of our particular implementation, and discusses the terminol
ogy and notation we will use in the notes for each model. Since our focus in this prototype is on the 
mathematical models , the notes will emphasize the math section and, to a lesser extent, the C-M and 
M-N interfaces; the conceptual section will simply be sketched at a high level. 

Derivations & Proofs We put these at the end (rather than within the mathematical model) so as not to get 
in the way. 



5.6 Related Work 72 

5.6 Related Work 

[Fox67] and [Goldstein80] are two classic classical mechanics references. [Marion70] gives a good introduc
tion to the dynamics of particles and rigid bodies. We will refer also to [Craig89] for kinematics and 3-D 
geometry. 



Chapter 6 

Coordinate Frames Model 

Computer graphics models commonly deal with 3-dimensional geometric objects such as locations, vectors, 
etc., often working with several different coordinate systems. This module contains some basic definitions 

and notarion for manipulating these objects and representing them in arbitrary orthononnal coordinate frames. 

The mathematics for 3-D objects and coordinate systems is well-known; see e.g., [Craig89] and [Foley et al.90]. 
We assume thar the reader has at least a passing familiarity with the ideas of vectors, matrixes, tensors, and so 
forth; although we will define all our tenns axiomatically, this exposition would not suffice as an introductory 
text in linear algebra 

This module is intended to give us a standard, convenient, and consistent fonn for using Euclidean3-D coordinate 
objects within our modeling environment. It does not address curvilinear coordinate systems, such as cylindrical 
or spherical coordinates. It also does not address geometry in homogeneous coordinates (which is common in 
computer graphics [Foley el al.90 D, nor in curved spaces. 

6.1 Background 

73 

Conceptually, the ideas of geomeoic objects such as coordinate systems, vectors , locations, and so forth are 
often conveyed via diagrams (e.g., Figs. 6.1 ,6.2, etc.). Mathematically, however, one needs a formal definition 
and algebra There are two common approaches to the definition and use of geomeoic objects: 

• Numerical Coordinates. Objects are be defined as collections of coordinate values (also called com
ponents), along with rules that describe how the values change if one switches coordinate systems. 
Arithmetic and other operations are defined by matrix operations on the coordinate values . 

• Abstract entities. Objects are defined as elements of abstract spaces. Arithmetic and other operations are 
defined in a manner independent of coordinate systems. When coordinate values are needed, mappings 
are defined from the abstract spaces to any desired coordinate system. 

The abstract approach has a simple, compact notation, and can extend to arbitrary manifolds in non
Euclidean spaces. It is thus the approach of choice for studying differential geometry (e.g., [Millman, 
Parker77]). However, the details of numerical computation are typically hidden or implicit. 

The coordinate-based approach, on the other hand, keeps track of numerical values in particular frames 
of reference. The equations tend to be cumbersome-full of "bookkeeping" of coordinate frames and 
components-but they apply immediately to numerical computation. It is thus the common approach used 
for practical applications, e.g., robotics ([Craig89]) or computer graphics ([Foley et a I.90]). 

For our purposes, we want elegant mathematical models-thus we want the convenience and expressive 
power of the abstract approach. But we also need to perform numerical computations-thus we want the 



6.2 Goals 74 

Figure 6.1: Multiple coordinate frames. We illustrate several different right-handed, orthonormal coordinate frames, labeled f, g, h, and 
Cab, all defined in an absolute, uniform, 3-D world space. Cab is an arbitrary fram e that is chosen to be a fixed standard. 0 

applicability of coordinate-based fonnulations , lOur approach will therefore be to define the geometric objects 
as abstract concepts, and define the corresponding abstract mathematical notation, but also provide a notation 
that lets us express the objects in arbitrary coordinate systems and perlonn numerical manipulations. 

6,2 Goals 

We have several goals for this module: 

• To have a standard model and notation for geometric objects, that encapsulates coordinate systems and 
coordinate transfonnations. 

• To support useful geometric objects, be they tensors or non-tensors. 2 

• To be able to use coordinate-free notation and expressions. 

• To be able to use coordinate notation and expressions, for arbitrary coordinate systems. 

• To support objects and coordinate systems that change as functions of time. A particular special case is 
an object that has a constant representation in changing coordinate systems, such as a piece of material 
that is fixed to a rigid body, and is carried with it as the body moves. 

The emphasis for the above goals is on basic support for mathematical models and corresponding program 
implementations, rather than on any a priori conceptual model. 

l "Pictorial treaUTIent of geometry . . . is tied conceptually as closely as possible to the world ... Abstract differential geometry . . . is 
the quickest, simplest mathematical scheme . . . Components [are] indispensible in programming. .. Today. no one has fu11 power to 
communicate with others about [geometry] who cannot express himself in aU three languages." [Misner,Thorne,Wheeler73-p.199] 

2 A tensor is an object that obeys certain transfonnatlon rules when we switch between coordinate system (see Eqn. 6.11). 



6.3 Conceptual Model 75 

6.3 Conceptual Model 

We assume the existence of an absolute 3-dimensional Euclidean space, sometimes called world space. The 
space is homogeneous and isotropic, i.e., has no preferred directions or locations. We also assume that time 
is homogeneous. 

We can place x, y, and z axes anywhere we like in space, to define a coordinate system which can be 
used to represent geometric objects. We will referto each triple of axes as a coordinate frame . or just frame 
(Fig. 6.1). Each frame gives us a coordinate system for measuring objects in the world- i.e., the frame gives 
us a particular vantage to "look at" the world. We restrict ourselves to frames that are orthonormal, i.e., the 
x, y, and z axes are perpendicular and all frames have the same scale for distance, and that are right-handed, 
i.e., if x points to the right and y points forward, z will point upward. 

We define several types of abstract geometric objects. Each object can be described in a given frame by a 
collection of coordinate numbers, which we call the object's numerical representation, or just representation. 
We emphasize the distinction between an abstract object and its representations: A single abstract object may 
have different representations in different frames. A collection of numbers , along with a frame, can uniquely 
describe a particular type of object; but a collection of numbers without a coordinate frame to go with them 
doesn't "mean" anything, geometrically. 

This module includes several types of geometric objects (of course, these are not all possible geometric 
objects; we merely define some objects that we have found to be useful for our applications): 

Location.3 An absolute location in space, represented numerically as a 3 x 1 matrix containing its x, y, and 
z coordinates (distances from the origin of the frame). Pictorially, we draw a dot (Fig. 6.2). 

Orientation. An absolute orientation in space. Can be represented in a variety of ways: pictorially, we draw 
an orthonormal triple of vectors (Fig. 6.3); numerically we most commonly use a 3 x 3 rotation matrix, 
whose columns are the representations of the corresponding vectors. 

Scalar. A frame-independent value (O-order tensor). Represented numerically as a single real number. 

Vector. A direction with magnitude (1st-order tensor). Represented numerically as a 3 x 1 matrix containing 
its x, y, and z coordinates (displacements along each axis). Pictorially, we draw an arrow (Fig. 6.2); 
the position of the arrow is irrelevant, only its direction and length are significant. 

2Tensor. An abstract object (2nd-order tensor), that corresponds with a linear operation on vectors; the op
eration can be performed by "multiplying" (arithmetic will be discussed in Defn. 6.14) a vector by a 
2tensor to yield the new vector. Represented numerically as a 3 x 3 matrix, where each column rep
resents the result of the operation on an axis. Pictorially, the operation can be illustrated by showing 
"before" and "after" drawings of a triple of vectors (Fig. 6.3). 

Rotations. 2Tensors, whose corresponding operations preserve length and angles . 

8asis.4 A generalization of an orientation; corresponds with a triple of three arbitrary vectors. Represented 
as the 3 x 3 matrix whose columns represent the corresponding vectors. 

Frame. A coordinate frame is defined by the location of its origin, P, and the orientation of its axes, R. 
We choose one arbitrary frame, that we call the lab frame, to be a fixed standard for reference. The 
coordinate system defined by the lab frame is called lab coords or world coords. Pictorially, we draw 
the frame's orientation situated at the frame's origin. 

3 [Craig89] uses the tenn position vector for these; we prefer to reseIVe the word vector for the lst-order tensor object ooly. 
~ Basis objects are not often used conceptuaUy; we include them for mathematical oompleteness. 



6.3 Conceptual Model 76 

A Location VS. a Vector 

(a location) 

'l /~-: 
.11'!'" 

frame f········· .........• 

~ (avector) 

Figure 6.2: We distinguish between a iDea/ion, which describes a position in absolute space, and a vector, which describes a direction 
(and distance). Both are represented by x, y, and z coordinate values in any given frame; but if we translate theframe, the coordinates of 
a location will vary, but the coordinates of a direction will stay the same. We similarly distinguish between orientations, which describe 
fixed alignments in space, and rOMtions, which describe operations on vectors. 0 

Orientations: A 2tensor operation: 

z z 
x 

y 

z 7~ 
/p x 

::::~ .. -----... --~ 

Figure 6.3: We draw an orientation as a triple of vectors, all drawn from the same spot-but the position of tbat spot is irrelevant To 
illustrate a 2tensor. we draw an arc linking an orthononnal triple of vectors to the triple that results when each vector is multiplied by the 
2tensor. 0 

We stress the conceptual distinction between locations and vectors: a location corresponds with a fixed 
position in absolute space, while a vector corresponds with a magnitude/direction but has no specific position 5 

(see Fig. 6.2). Similarly, we distinguish between an absolute orientation in space and a rotation operation that 
one might use to align to it any particular frame. (In any given frame, however, there is a correspondence 
between locations and vectors, and between orientations and rotations; see Sec. 6.4.6 and Fig. 6.6.) 

Notice that we consider a frame to be a type of geometric object. Thus there is circularity in our definitions: 
locations and orientations are described by their representations in frames, but a frame is defined by a location/ 
orientation pair. The lab frame serves to break this circularity. 

We use the term movillg object (location, vector, etc.) to refer to one that varies over time. Moving 
objects can have associated velocity objects; in particular, we define an illstantalleous frame to be a frame 
with associated linear and angular velocity vectors. A moving object may befixed in a moving frame, i.e., it 
follows the frame's motion so that its coordinates never change as seen from that frame. 

5 Differential-geometers may comment that a "direction"" (tangent vector) for an arbitrary surface or manifold is an element of the 
space tangent to the manifold at a particular point ([Miliman .Parker77-pp_93,2J3]). For our Euclidean fOJmali sm, however, aU tangent 
spaces are isomorphic to each other. thus we are safe in ouruse of tangent vectors without associated (XJsitions in space. 



6.4 Mathematical Model 77 

A note on units and dimension: 

The conceptual objects described here often have physical dimension associated with them, such as length, 
mass, and time, and are measured in tenns of units, such as centimeters, grams, and seconds. The tenns in the 
mathematical model, however, are dimensionless , however-just numbers. [Lin,Segel? 4-Ch.6) discusses the 
nondimensionalization process, which is beyond our scope; wejustpointout the need for (at least) consistency 
of units within a given model. 

6.4 Mathematical Model 

6.4.1 Names & Notation 

The scope name for this module is 
COORDS 

We don't use definitions from any other module. In this module, we will define and extensively use a prefix
superscript notation: 

J 
x (Notn.6 .6) 

6.4.2 Definitions 

We start by defining abstract spaces for various types of objects; we refer to these as the primitive objects: 

(6.1) 

Definition. (Primitive Geometric Spaces) 

Scalars == the set 

Vectors == the set 

2Tensors == the set 

Rotations == the set 

Locations == the set 

Bases == the set 

Orientations == the set 

scalar Objects} 

vector Objects} 

2tensor Objects} 

rotation Objects} C 2Tensors 

location Objects} 

basis objects} 

orientation Objects} C Bases 

Defn. 6.1: We define an abstract space for each type of geometric objects. Note that orientations are types of bases whose 
corresponding vectors are onhononnaJ. 0 

The space of coordinate frames is defined as a state space, using the mechanism of Sec. 3.9: 

(6.2) 

Definition. Frames 

Frames 
[ 
P ...... Locations 
R >-+ Orientations 

1 

Location of aframe's origin 
Orientatioll of aframe's axes 

Defn. 6.2: Space of coordmateframes. Each frame f E Frames has an origin Pf at some localton. and an onentanon Rf · 
(The use of subscripted aspect values is as per Notn. 3.27.) 0 

It will be convenient to define a single set for the primitive geometric objects: 



6.4 Mathematical Model 78 

(6.3) 

Definition. GeomObjs 

GeomObjs Locations u Bases u Scalars 
UVectors U 2Tensors 

Defn. 6.3: All pnnllllVe geometric objects. A geornetnc object x E GeomObjs can be a locanon. basis, scalar. vector, or 
2tensor. Thus the space GeomObjs is a disparate union as per Sec. 3.7.3, where two objects are agnates if they are both 
of the same primitive geometric type. a 

We define a lab frame, to give us a standard set of coordinates, as per Sec. 6.3. 

Definition . .t:ob 

(6.4) ':-1--::---::---=----::----,-.,...,--,-------:----: ____ .t:o_b_E--=F:-r_a_m_e_s ____________ ----l 
Defn. 6.4: The fixed lab frame Lab is a unique element of Frames . It has no special properties other than being agreed 
upon by everybody. 0 

6.4.3 Representation & Notation 

An element from one of the above spaces is an abstract object; to make it seem concrete, we can produce a 
representatioll of the object. The representation depends, of course, on a choice of coordinate frame. Thus 
we define the representation operator Rep : 

(6.5) 

Defillitioll. Rep 

We defille an overloaded operator 
Rep: Frames x GeomObjs -+ lR U lR3 U ~x3 that yields the coordinates 

of an object in a given frame. 

Rep : Frames x Scalars--+ lR 
Rep : Frames x Vectors--+~ 
Rep : Frames x 2Tensors-+ lR3X3 

Rep : Frames x Locations--+ lR3 

Rep : Frames x Bases--+ lR3x3 

a sillgle lIumber 
a 3 x 1 matrix 
a 3 x 3 matrix 
a 3 x 1 matrix 
a 3 x 3 matrix 

Defn. 6.5: Representation operators convert from an abstract geometnc object to a collection of real numbers, given a 
choice of frame. Note tbat Rep is overloaded (Sec. 3.6.3) to act on e lements of the various different spaces. 0 

Because we common! y work with representations of objects, we define a shorthand notation for representa
tions: 

(6.6) 

Notation. Prefix-superscripts for Representation in a Frame 

For any f E Frames alld allY x E GeomObjs, 

Rep(f,x) 

Notn. 6.6: Representation of a geometric objeci in a given frame. Theahove terms can be read as"x represented numerically 
in frame j" or as just "x in f ." We most commonly use the prefix-superscript notation. 0 

Note that, while x is an abstract geometric object, Ix is always ajustcollection of numbers . The representation 
functions are one-to-one, and thus can be used to determine identity: 

(6.7) 

For allY objects x, y E GeomObjs that are agnates (i .e., of the same 
primitive rype), and any f E Frames 

Ix = Iy {==} x = Y 

Eqn. 6.7: Given a fixed frame. the representation of a geometric element of a given type is sufficient to identify the el
ement. 0 



6.4 Mathematical Model 79 

Representation of a frame 

5,0 , .87) 

( - (0,1,0 ) 

z 
z = 1. 5 

j( .............. , ........... ; •• ~ •• ~ •• ~ 

Figure 6.4: Any frame f is defined by its location P j and orientation R j , which can in tum he represented in any frame. Here, frame 

calL ~.6L cab [0 -.87 .5] f is at IIDion Pj = 1.3 in thll3b' rd its orientation in the 13b is Rj = 1 0 0 . Represented in itself, f is at location 
J 0 1.5 100 0 .S .87 
Pj = 0 with orientali f = 0 1 0 as per Eqn. 6.10 0 

o 001 

Thus, for any given frame f, there is an equivalence between geometric objects and their numerical represen
tations, Also, since locations and vectors share a representational space, for a given frame there is a natural 
correspondence between them; and similarly for orientations and rotations (see Sec. 6.4,6), 

The Rep operators for orientations and rotations yield orthonormal rotation matrices, (An orientation's 
matrix corresponds with the rotation that aligns the frame axes to it.) Rotations and orientations may be 
represented in other ways as well, such as by Euler angles, in angle-axis form , or as unit quatemions (see 
[Craig89-Ch.2]), We give a definition for the latter: 6 

(6 .8) 

Definition. Repq 

The quarernion representation of orientations and rotations is given by: 

Repq: Frames x Orientations--> !R4 

Repq: Frames x Rotations -t!R4 

Defn. 6.8: Quatemion representation, overloaded for oneotanons and rotations. For any rE Orientations u Rotations 
and any f E Frames, we have IRepq (J, r) I = I, i.e., the representation is as a unit quatemion, The quatemion represen
tation can he computed from the matrix representation Rep (J, r) as described, e,g" in [Shoemake8S], 0 

We don't have a direct representation for frames; however, the location and orientation of a frame can of 
course be represented numerically in any frame (see Fig, 6.4), Combining PJ and RJ' defined in Defn. 6,2, 
with Notn, 6.6, gives us 

6 Quatemions can themselves be defined as abstract objects. For the purposes of this module, however. we treat them simply as 

4-componenl arrays having the appropriate arithmetic rules. 

7 [ShoemakeBS] uses left-handedquatenrioo rotations: the matrix conversion therein describes the transpose of the right-handed matrix 
we woo Id use. 



6.4 Mathematical Model 80 

For t, 9 E Frames 

(6.9) 
9
Pf ( Frame !'S location, represented ) numerically inframe 9 

9
Rj = ( Frame !'S orientation , represented ) numerically in frame 9 

Eqn. 6.9: The position and orientation of frame f, as "seen from" frame g. 0 

Since the location of a frame is defined to be the location of its origin, and since the orientation of a frame is 
defined to be the orientation of its axes (Sec. 6.3), a frame's representation of its own location and orientation 
is always trivial: 

(6 .10) 

For any f E Frames: 

f [0] f [100] 
Pj= ~ , Rj= ~~~ 

Eqn.6.1O: A frame represented in terms of itself. The frame's origin is always at its own coordinates (0,0,0), and its 
orientation representation is the identity. 0 

6.4.4 Transforming Representations Between Frames 

Often, we know the representation of an object in one frame, and we'd like to determine the representation in 
some other frame. We define the transformation rules: 

(6.11) 

For t , 9 E Frames 

9 j 
s= s 
9 (9) j v= Rj v 

9a = (9Rj ) fa (9Rf )T 

9p= 9Pf + (9Rj)'p 

tt= (9R,) fb 

sEScalars 

vEVectors 

aE2Tensors 

pELocations 

rEBases 

Eqn. 6.ll: Transformation rules. We emphasize thai these rules do not transform geometric objects-rnther, they change 
between two different representations of/he same object. All operations in the above are perfonned via matrix arithmetic. 0 

In Eqn. 6.11, the tensor objects- scalars, vectors, and 2tensors- employ the standard tensor transformation 
rules. Locations, however, take into account the origin of the frame in which they are represented; and bases 
transform like vectors. 

Notice that if we transform from a frame to itself, we can useEqn. 6.10 to reduce each equality in Eqn. 6.11 
to the trivial identity: 

(6.12) 
Given any t , 9 E Frames, and allY x E GeomObjs 

t = 9 ==> 'x = 9x 

Eqn. 6.12: The transfonnation rules are consistent. If we "'transfonn" a representation between a frame and the same 

frame. the representation doesn '( change. Note that the converse isn't true, i.e ., Ix = 9x ;:/? J = g; for example, a vector 
will have the same representation in two frames that have the same orientation but different origin locations . 0 

We occasionally want to consider the representation of a frame's location and orientation in a second frame, 
as compared with the second frame's representation in the first. We we have the following equalities: 



6.4 Mathematical Model 81 

(6.13) 

For any t, 9 E Frames 

Eqn. 6.13: The relationship between two frame's representations. If we "look at" frame f from \\rithin frame g, we get 
"opposite" representations from those we get if we look at 9 from within J. These equalities derive from Eqn. 6.10 and 
Eqn. 6.11 (see Sec. 6.7).0 

6.4.5 Arithmetic Operations 

We can perfonn arithmetic operations on the representations of objects , using standard matrix arithmetic, as in 
Eqn. 6.11 and Eqn. 6.13. However, doing so requires picking a choice of frame, and can lead to cumbersome 
equations. 

We want to define arithmetic operations directly on the abstract geometric objects; the abstract operations 
should correspond with the matrix operations on the objects' representations. A purist's approach might 
be to define the arithmetic operations abstractly, then prove that (with proper choice of representation) the 
representations follow the corresponding matrix arithmetic-in any frame. For our purposes, however, we 
will define the abstract operations "through the back door," i.e., define them such that they agree with the 
representations: 

(6.14) 

Definition. Arithmetic Operations 

For any binary matrix arithmetic operation * or unary matrix operation 0, 

we define the corresponding abstract geometric operations,for any 

= 

x , y E GeomObjs, by: 

When independent of the choice of 
t E Frames 

Defn. 6.14: Anthmehc operatIons between geometnc objects, x * y, are defined by the correspondmg matnx anthmetLc 

operations between their representations fx and fy-but only where those operations yield frame-invariant resulls . Note 
that x and y are not necessarily agnates, e.g. , a matrix may be multiplied by a vector. 0 

Fig. 6.5 lists the arithmetic operations. Note in particular that there is no meaning to the sum of two locations, 
or to the negation of a location--but a vector can be added to a location, and the differeru;~ between two 
locations can be found. We list some of the usual arithmetic properties: 

(6.15) 

For all a E 2Tensors, r E Rotations, n E Orientations, and 
v, wE Vectors, we have the following properties: 

a-Ia a a-I = 1 
r- I rT 

rn E Orientations 

v' w v x w 

Eqn. 6.15: The inverse of a 2tensoris both a right- and left-inverse. The inverse of a rotation is its transpose. Orientations 
are closed under left-multiplication by rotarions. The anti symmetric dual . 8 v· . of a vector v performs a cross product on 
another vector. 0 

The following "special" objects are defined, with the usual properties: 

8Theanrisyrnmelricdualv· ofavector v rnaybeunfamiliar: The dual of [ ; ] is [ ~ (/ .!x]. 
z - y x 0 



6.4 Mathematical Model 82 

Aritbmetic Operations on Abstract Objects 

Binary operations: 
addition Scalars + Scalars -> Scalars 
subtraction Scalars Scalars -+ Scalars 
multiplication Scalars * Scalars -+ Scalars 
scale Scalars * Vectors -+ Vectors 
scale Scalars * 2Tensors -+ 2Tensors 
scale Scalars * Bases -+ Bases 
scale Vectors * Scalars -+ Vectors 
addition Vectors + Vectors -+ Vectors 
subtraction Vectors Vectors -+ Vectors 
inner product Vectors Vectors Scalars 
cross product Vectors x Vectors -+ Vectors 
ouIer product Vectors * Vectors -+ 2Tensors 
displacement Vectors +Locations -+ Locations 
cross product Vectors x 2Tensors -+ 2Tensors 
cross product Vectors x Bases Bases 
scale 2Tensors * Scalars -+ 2Tensors 
product 2Tensors· Vectors -+ Vectors 
addition 2Tensors+2Tensors -+ 2Tensors 
subtraction 2Tensors- 2Tensors -+ 2Tensors 
product 2Tensors . 2Tensors -+ 2Tensors 
product 2Tensors · Bases -+ Bases 
displacement Locations+ Vectors -+ Locations 
difference Locations-Locations -+ Vectors 
scale Bases * Scalars -+ Bases 
cross product Bases * Vectors -+ Bases 
addition Bases + Bases -+ Bases 
substraction Bases - Bases -+ Bases 

Unary operations: 
inverse Scalars -+ Scalars 
negation -Scalars -+ Scalars 
anJisymmetric dual Vectors· -+ 2Tensors 
negation -Vectors -+ Vectors 
transpose 2TensorsT -+ 2Tensors 
Inverse 2Tensors- 1 -+ 2Tensors 
negation -2Tensors -+ 2Tensors 
negation -Bases Bases 

Figure 6.5: The arithmetic operations on abstract geometric objects. in accordance with Defn. 6.14. All the usual operations on tensors 
are defined. Note, however, that locations may only be subtracted from each other or added to vectors, and bases may be left-multiplied 
by 2tensors, but not right-multiplied. 0 



6.4 Mathematical Model 

Correspondences between obJects 
in a given frame f 

Between a vector and a location: Between an orientation and a rotation: 

Origin Pf 
of frame I 

Location p 
Multiply by Z 

0~ 
Orientation n = r Rf 

83 

Figure 6.6: For a given frame f. there is a natural correspondence between a location p E Locations and the vector v E Vectors from 
the frame's origin top; both are represented by the same three coordinate values in frame f. Similarly. there is a natural correspondence 
between a rotation T E Rotations and the orientation n E Orientations that results when multiplying the frame's orientation by T. 0 

(6.16) 

Object Name Rep. Properties 
1 E Scalars one 1 1 *x = x 
o E Scalars zero 0 0+ x = x, 0 * x = 0 

o E Vectors zero vector m O+x=x 

[000] o E 2Tensors zero 2tensor 000 0* x = 0 000 

[100] 1 E 2Tensors identity 010 1 * x = X 001 

[000] o E Bases zero basis 000 x * 0 = 0 000 
For any t, 9 E Frames: fO = t, and 1 = -\ 

Eqn. 6.16: Objects with special properties. The representations of these objects are the same in all frames, as can be 
shown by substituting into Eqn. 6.11. 0 

6.4.6 Correspondence Between Objects 

Given a choice of frame, there is a natural correspondence between locations and vectors , and between ori
entations and rotations, based on equality ofrepresentation: (Fig. 6.6) 



6.4 Mathematical Model 84 

(6 .17) 

For any f E Frames, p E Locations, v E Vectors, r E Rotations , 
n E Orientations, a E 2Tensors, b E Bases, we have the following 

correspondences: 

v=P-PI ¢=> 
I I 
V = P 

n=rRI ¢=> 
I I 
n= r 

b=aRI ¢=> Ib = la 

Eqn. 6.17: In any given frame, the representation of a location is the same as the representation of the vector from the 
origin to that ]ocation. Similarly. the representation of an orientation corresponds with the rotation that aligns the frame 
with that orientation. More generally. given a frame, there is a correspondence between bases and 2tensors. 0 

Due to this correspondence (and perhaps also because the common emphasis is on tensor objects only), many 
expositions don't define locations and orientations as separate entities. However, we prefer to define them 
separately, because the correspondence is only valid fora single frame; e.g., if a vector and location correspond 
in some frame f, they won't necessarily correspond to each other in some other frame g, because of their 
different transformation rules in Eqn. 6.11 . 

The correspondence is useful when switching between numerical and abstract forms of an equation; this 
is illustrated in Sec. 6.7 (forthe derivation of Eqn. 6.30). 

6.4.7 Using Scalars as Real Numbers 

Since the representation of a scalar is independent of the choice of frame (Eqn. 6.11), there is a natural isomor
phism between scalars and real numbers. Thus, to make things simple we eliminate the distinction between 
the two spaces: 9 

(6.18) 
Scalars = !R 
Is = s {for all s E Scalars , 

independent of f E Frames 

Eqn. 6.1 8: We can use Scalars and ~ interchangeably. The representation operator is trivial: a scalar is represented 
as ilself. We can freely add or drop frame-superscripts on scalars. 0 

We will continue to use Scalars and the superscript notation in this module, for consistency with the other 
primitive geometric objects. In general, however, there is little reason to define equations in terms of Scalars 
rather than reals. 

6.4.8 Moving Objects 

What we think of conceptually as a moving object is mathematically just a function from the reals , i.e., time 
or path parameters, onto the geometric objects (see Fig. 6 .7). Thus we define the following spaces: 

9The specific space COOIU1S :: Scalars that we define in this module is interchangeable with ~. but a more general notion of scalars 
would encompass quantities such as complex numbers. 



6.4 Mathematical Model 85 

Moving objects 

"?/ .•.. 
location path •.•.•• 

II···································· 
...... 

Figure 6.7: A "moving object" is descri bed by a path, i.e., a function from reals to the object 's space. We illustrate a location path and a 
frame path, but one can define paths for any geometric object. 0 

Definition. ScalarPaths , VectorPaths, etc. 

Sca larPaths - the set offunctions {at ..... Scalars} 

VectorPaths - the set offunctions {at ..... vectors} 

2TensorPaths - the set offunctions {at ..... 2Tensors} 

RotationPaths the set affunctions {at- Rotations} 

(6.19) Location Paths the set offunctions {at- Locations} 

BasisPaths = the set offunctions {at-Bases} 

Orientation Paths = the set of functions {at -;. orientations} 

GeomPaths LocationPaths u BasisPaths 
u ScalarPaths u VectorPaths 
u 2TensorPaths 

Defn. 6.19 : Spaces of functIOns, for movmg objects. Note that RotationPaths C 2TensorPaths, and 
Orientation Path s C BasisPaths. We define GeomPaths analogously to GeomObjs , Defn. 6.3.0 

We can define derivatives for these paths by extension from the arithmetic operations (Defn . 6,14) , Note that 
because the difference of two locations is a vector, the derivative of a location path is a vector path. Note also 
that the derivative of a location is a vector , and that in general, the derivative of a rotation is a 2tensoT (not a 
rotation) and the derivative of an orientation is a basis (not an orientation). We have the following identi ty: 



6.4 Mathematical Model 86 

(6.20) 

Definition. f, (derivatives of paths) 

For a path x E GeomPaths, and constantJrame f E Frames, 

'(f,x(t)) = f, ('x(t)), t E ~ 
Defn. 6.20: For a fixed frame. the denvattve and representation operators commute. Note that If f vanes as a functlon of 
t, the operators no looger commute. 0 

For rotations and orientations, the following identities hold, and can be used to define an angular velocity: 

(6.21) 

Definition. Angular velocity 

For any differentiable function r E RotationPaths or 
r E Orientation Paths, there exists a unique angular velocity Junccion 

w E VectorPaths such that 

f,r(t) = w*(t)r(t), t E ~ 

Defn. 6.21: The derivattve of rotations and onentattons always obey these Identities. The angular veloCIty, w, is a vector 
function; at each instant its value is a vector that lies along the instantaneous axis of rotation, and whose magnitude is the 
instantaneous rate of rotation (radians per unit time). 0 

An analogous equation holds for quatemion representations (Defn. 6.8): 

(6.22) 

For any differentiable function r E Rotation Paths or 
r E Orientation Paths, ifw E VectorPaths is the angular velocity Junction, 

thenJor any constant f E Frames, 

f,Repq(J , ret)) = ~ 'w(t)Repq(J, ret)), t E ~ 
Eqn. 6.22: The angular velocity equation in Defn. 6.21 has an analog in qUa/emion representations, using quatemion 
arithmetic. 0 

If a frame "moves," it will have associated with it linear and angular velocities. We define a space that 
associates two velocity vectors with a frame: 

(6.23) 

Definition. InstFrames 

InstFrames 
[ 
F ..... Frames aJrame 
p ... P ..... Locations 
R ... R ..... Orientations 
V ..... Vectors a linear velocity 
w ..... Vectors an angular velocity 

Defn. 6.23: Each "instantaneous frame"ls a frame along WIth a hnear velocJty vector and an angular veloClty vector. Note 
that InstFrames is not a specialization of Frames; it is possible, to have two instantaneous frames that have the same 
frame but different velocities. 0 

If we consider paths in the space InstFrames, we are most interested in ones whose velocity aspects actually 
agree with their motion, as per Defn. 6.21. Thus we define: 



6.4 Mathematical Model 87 

(6.24) 

Definition. consiswntframe juncrion 

Given a differemiable junction f: !R -+ InstFrames, we say 1 is consistent 
iff: 

ftPj(t) = Vj (t), t E !R 

ftRj(t) = wj(t)Rt(t) , t E!R 

Defn. 6.24: A path through mstantaneous frame space 15 cons1stent 1f at each pcnnt on the path, the velocity vectors at 

that point correspond with the actual derivatives of the function. (The use of subscripted aspects of functions is as per 
Nom. 3.28.) 0 

Notice that we can trivially construct an ordinary frame from an instantaneous frame, by projecting the F 
aspect operator of the instantaneous frame: 

Given j E InstFrames define f E Frames by 
(6.25) 

Eqn. 6.25: Given an instantaneous frame, the corresponding ordinary frame is trivially available. 0 

Thus we will implicitly overload all functions and notations that expect frames to accept instantaneous frames 

as well. In particular, the representation operator Rep (t, x) and notation jx are defined for 1 E InstFrames. 

Similarly, extending Eqn. 6.25, we can be careless and blur the distinction between differentiable functions 
to frames and consistent functions to instantaneous frames, since one can trivially be constructed from the 
other: 

(6.26) 

For differemiable I:!R- Frames and consisrenr j:!R--+ InstFrames 

Given f, define j by: 
Fj(t) I(t), 
Vj(t) ftPJ(t) , 
wj(t) (f.Rf(t))(Rf(t)),T 

Or, given j, defille f by: 
I (t) Fj(t) , t E !R 

Eqn. 6.26 : Switching between differentiable frame functions and consistent instantaneous frame functions. Because one 
can be constructed from the other, we \\rill blur the distinction between them. 0 

We define a space of consistent functions: 

(6.27) 

Definirion. FramePaths 

FramePaths == the set offunctions { I:!R--+ InstFrames such that f is } 
calls/stem 

Defn. 6.27: Space of movlDg frames. We restnct the space to conSIStent (Defn. 6.24) functlO!lS. As per Eqn. 6.26 we can 
interchange consistent instantaneous and ordinary frame functions, so for brevity we name this space ""Frame Paths .. rather 
than " InstFramePaths." 0 

A moving frame "carries" its coordinates system along with it: 



6.4 Mathematical Model 88 

(6.28) 

Givell a movillgframe f E FramePaths 

f(tlpf(t) = 0 1t f(tlpf(t) = 0 (collstallt) 
f(t) d f(t) 

Rf(t) = 1 at Rf(t) = 0 (COllstallt) 

f(t\] (t) = Ilot COllstallt ill gelleral 
f (t) 

wf(t) = Ilot COllstallt ill gelleral 

Eqn. 6.28: Represented in itself, a moving frame's origin is always at (0,0,0) and its orientation is the identity, as per 
Eqn. 6.10. The velocities can have any values, however. 0 

But notice that if we equate velocities with derivatives in Eqn. 6.28, we get the following "paradox," i.e., a 
seeming violation of Defn. 6.24: 

(6.29) 

Givell a moving frame f E FramePaths, in general: 

f(t\](t) # 
f(tLj(t) # 

1t (f(tlpf (t)) 

1t (f(t~f(t))((t~f(t))T 

Eqn. 6.29: Moving frame "'paradox." A moving frame can have noo-O velocity coordinates, but the origin is always at 
o as per Eqn. 6.28---thus the velocity is apparently not the derivative of the localion. However, the offending inequalities 
are not equivalent to Defn. 6.24: differentiation and representation do not conunute for a non-constantframe (Dein. 6.20). 0 

6.4.9 Paths & Derivatives 

Suppose that we have a constant object, but we represent it in a moving frame. Thus though the object itself 
does not change, the representation of it might. The derivatives for the various types of objects, represented 
in a moving frame: 

(6.30) 

For movingframe f E FramePaths and constallt objects 
s E Scalars v E Vectors a E 2Tensors 
p E Locations n E Orientations 

1/(t~) = 0 

d (f(t) ) _ f (t)[ (t) ] 
(it v - - wf x v 

1t(fU k) = - f(t)[wj(t) a + awjT(t)] 

1t((t~) = - f (t)[Vj(t) + wf(t) x (p -P'(t)) ] 

1t((th) = - f (t) [wj(t) n] 

Eqn. 6.30: These equations describe behavior of the representation of an object, if the object is constant, but the frame 
we represent it in changes. (See derivation in Sec. 6.7.) 0 

Suppose now that we have an object that is moving, and we represent it in a moving frame. This is a more 
general case ofEqn. 6.30: 



6.5 Posed Problems 89 

(6.31) 

For moving/rame / E FramePaths and moving objects 
s E ScalarPaths v E VectorPaths a E 2TensorPaths 
p E LocationPaths n E Orientat ion Paths 

ft(, (t)s(t)) = f(t)[fts(t)] 

ft(f(tt(t)) = f(t )[ftv(t) - wf(t) x vet)] 

ft(, (t1(t)) = f(t)[fta(t) - wj(t) aCt) - a(t) WjT (t)] 

ft('(t~(t)) = f(t )[ftp(t) - \.j(t) - wf(t) x (p(t) - Pf (t))] 

ft(,(th(t)) = f(t) [ftn(t) - wj(t) net)] 

Eqn. 6.31: These equations describe the behavior of the representation of an object, if both the object and the frame to 
represent it in are changing. 0 

Now consider an object that is moving , and that we represent in a moving frame-but its representation in 
that frame is constant. Thus the object "moves with" or " is carried by" or just "is fixed in" that moving frame; 
we define: 

(6.32) 

Definition. Fixed in a moving frame 

A moving object x: ~~ GeomObjs 
is fixed in a moving frame / E FramePaths iff: 

ft f(tk(t) = O,/or all t 

DefD. 6.32: A movmg objeClls fixed m a movmgframe if Its representatlOD in that frame IS constant, or, eqUIvalently, the 
derivative of its representation is O. 0 

The representations of fixed objects in other frames are given directly by Eqn. 6.11. The derivatives can be 
defined as abstract objects: 

(6.33) 

For moving objects fixed in moving fram e f E FramePaths 
s E ScalarPaths v E VectorPaths a E 2TensorPaths 
p E LocationPaths n E Orientation Paths 

fts(t) = 0 

ftv(t) = wf(t) x vet) 

fta(t) = witt) aCt) + aCt) wiT(t) 
ftp(t) = \.j(t) + wf(t) x (p(t) - Pf(t)) 

ftn(t) = witt) net) 

Eqn. 6.33: Theseequatioos describe the behavioraf an object that is fi xed in amovingfrarne. The derivatives are computed 
using abstract geometric operations on the various quantities. 0 

Note that the latter above implies that an orientation that is fixed in a moving frame f has an angular velocity 
W that is the same as f's angular velocity wf (see Defn. 6.21). 

6.5 Posed Problems 

The conceptual and mathematical models that we have defined do not immediately imply any complicated 
numerical problems. However, there are many simple "evaluation" tasks that may often need to be performed. 
To list a few: 

• Define an object given its representation in a particular frame. 



6.6 Implementation Notes 90 

• Given an object, evaluate its representation in a particular frame. 
• Find the motion of an object fixed in a moving frame. 
• Given a location path, find its velocity (also a path) 
• Given an orientation path, find its angular velocity (also a path). 

6.6 Implementation Notest 

The implementation of this module lies entirely in the math section of the program-in the conceptual sec
tion, we typically manipulate arrays of numbers, corresponding to the representations in conceptually natural 
frames, thus no intricate C-M interface is needed; and since we have defined no complicated numerical prob
lems, there is no M-N interface. The math section has scope name Meo ("Math COordinates"). Fig. 6.8 lists 
the definitions for the module. 

Primitive objects. The implementation maintains the distinction between abstract geometric objects and their 
representations: an object is not tied to a particular frame. For each class of object a method, rep (Frame), 
yields the representation in any specified frame (which is specified via an instance of class Frame, described 
below). Thus: 

class Vector: 
constructors: (Frame . double [3]) conslructfrom coords in given/rame 
methods: rep (Frame) : double [3] represenJas coords in given/rame 

class Orientation: 
constructors: (Frame J double [3] [3] ) construe/from matrix in given frame 

(Frame. double [4] ) constructfrom quaternionin givenframe 
methods: rep (Frame) : double [3] [3] represent as matrix in given/rame 

repq (Frame) : double [4] represent as quaternionin given/rame 

To construct an instance of a primitive object, one provides a frame along with the representation in that frame, 
as per Eqn. 6.7. Notice that an Orientation can be constructed/represented via matrixes or quaternions 
(Defn. 6.8); the same is true for the Rotation class. Classes 2tensor and Location are defined similarly 
to Vector. Scalar is implemented simply as an alias for double, as per Eqn. 6.18. The various arithmetic 
operators, +, *, cross, etc. , are defined for these classes as appropriate (Fig. 6.5). 

Internally, our implementation stores these objects as their lab-frame representations: when an instance 
is constructed or represented, the appropriate transformation (Eqn. 6.11) is performed; and arithmetic is per
formed directly in lab coordinates. The implementation could perhaps be optimized in various ways, however; 
for example, the representation in the most recently requested frame might be stored, to avoid repeatedly per
forming the transformation calculations to the same frame. 

Frames. The classes for state spaces Frames (Defn. 6.2) and InstFrames (Defn. 6.23) are defined in the 
standard manner (Sec. B.3.6): 

class Frame : 
constructors: (Location P t Orientation R) 

(InstFrarne) triviili, as per Eqn. 625 
members: P : Location 

R : Orientation 

class InstFrame : 
constructors: (Locat i on P, Orientation R, Vector v) 

(Frame £, Vector v) 

members: £ : Frame 
P : Location 
R : Orientation 
v : Vector 
1il : Vector 

tSee Appendix B for discussion of the tenninology. nOlarion. and overall approach used here. 



6.7 Derivations 91 

Program definitions in scope KCO: 

class name abstract space 
2tensor 2Tensors (Defn.6.1) 
2tensorPath 2TensorPaths (Defn.6.19) 
Frame Frames (Defn.62) 
FramePath Frame Paths (Defn . 627) 
InstFrame InstFrames (Defn.623) 
Location Locations (Defn.6.1) 
LocationPath LocationPaths (Defn.6.19) 
Orientation Locations (Defn.6.1) 
OrientationPath OrientationPaths (Defn.6.19) 
Rotation Rotations (Defn.6.1) 
RotationPath Rotation Paths (Defn.6.19) 
Scalar Scalars (Defn.6.1) 
Scalarldx {Scalars} IDs index of scalars (No/n. 3.11) 
ScalarPath ScaiarPaths (Defn.6.19) 
ScalarPathIdx {ScaiarPaths }IDs index of scalar paths (No/n. 3.11) 
Vector Vectors (Defn.6.1) 
Vectorldx { Vectors}IDs index of vectors (Notn. 3.11) 
VectorPath VectorPaths (Defn.6.19) 

global constant mathematical object 
Lab..Frame L:o.b E Frames (Defn.6.4) 
Zero_Vector o E Vectors (Eqn.6.16) 
Zero-2tensor o E 2Tensors (Eqn . 6.16) 
Identity-2tensor 1 E 2Tensors (Eqn.6.16) 

Figure 6.8: Math section definitions in the prototype implementation. In addition to classes for the abstraa spaces that we use, we define 
a few constant global variables. 0 

Notice the circularity discussed in Sec. 6.3: We need a location and an orientation to construct a frame, but 
we need a frame to construct a location or orientation. The predefined constant frame LabJ'rame provides a 
starting point. 

Paths. Classes for object paths (Defn. 6.19) in the standard manner (Sec. B.3.7): 

class LocationPath : 
constructors: (Location) constant path 

(FramePath, double [3]) fiU!d in given moving frame 
methods: eval (double t) : Location 

velocityO : VectorPath 

The classes 2tensor Path, OrientationPath, RotationPath, Scal arPath, and VectorPathare defined 
similarly. In addition to constant paths and fixed paths as shown, there is support for paths that are algebraic 
combinations of given paths, and for paths that are evaluated by calling arbitrary user-supplied subroutines. 
Some paths support the velocity method, which returns a path whose value is the derivative of the given 
path, e.g., as per Eqn. 6.33. We additionally define the class FramePath, the standard manner for paths into 
state spaces (Sec. B.3.7). 

6 .7 Derivations 

Since the mathematics of geometric objects is well-known, there are no surprises in this chapter. Hence, we 
refer the reader to [Craig89] and [Foley et a1.90] for further discussion of3-D geometry and linear algebra, 
or the reader may simply "take our word for it" To illustrate the use of our notation, however, we provide 
derivations ofEqn. 6 .13 and one equality in Eqn. 6.30. 



6.7 Derivations 

• Eqn. 6.13 

• Eqn. 6.30 

Given: two frames t , 9 E Frames. 
For any locationp E Locations, we have 

tp = 9Pf + (9Rf ) fp (Eqn.6.11) 

substitute P9 (the origin of frame g) for p to get 

9Pg 9E) + (9Rf ) f Pg 

(via Eqn. 6.10) 

For any orienation n E Orientations, we have 

9n = (9Rf ) fn (Eqn.6.11) 

substitute R9 (the orientation of frame g) for n to get 

9Rg (9Rf )(fRg) 

1 (9Rf )(fRg) (via Eqn. 6.10) 

9Rf (fRg)T (via Eqn. 6.15) 

Given: constant location p E Locations and moving frame t E FramePaths. 
For any constant frame 9 E Frames, we have 

99 (9 )f(t) 
P = Pf(t) + 'Rj(t) P 

d (9 ) d (9p (9'R) f (t) ) dt P = dt f(t) + 1(t) p 

Yf.p) = 
0= 

(Eqn.6.11) 

(via Defn. 6.20) 

(p is constant) 

= -f. (9Pf (t)) + [1t(9Rf (t))) f(t~ + 9Rj(t)-f. (f(t~) (product rule) 

9'R d (f(t) ) d (9p ) [ d (9'R )) Jet) 
- l(t )dt P = dt f(t) + dt l(t) P 

9( d P ) 9( d R ) Jet) = dt Jet) + dt l(t) P (via Defn. 6.20) 

9 9. 9 J(t ) . = V(t) + Wf(t) Rf(t ) P (vIa Defn· 6.24) 

d (f(t ) ) (9'R.)T 9 (9)T 9. 9 f(t) T 
dt P = - "1(t) V(t) - 'Rf(t) Wf(t) 'Rf(t) p (mult. by -R ) 

t 

+ + 

_ f(t)'R 9u f(t)'R 9 • .If (t )'R)T f(t) E 613) 
- - "9 Yf(t) - "9 Wf (q"9 P (via qn. . 

f (t )u f(t). f(t) 
Yf(t) - wf(t) p (via Eqn. 6.11) 

f(t )u f (t). (f(t) f(t)p ) E 610 = - Yf(t) - wf(t) P - f (t) (via qn. . ) 

f (t) [ • = - V(t) + wJ(t)(p - Pf(t))) (via Defn. 6.14) 

f(t ) = - [V( t) + Wf(t) x (p - Pf(t))) (via Eqn. 6.15) 

92 

Notice in line t that fwj fp is a valid matrix product, but there is no corresponding abstract operation-we 

can't multiply a 2tensor, W j, by a location, p. But, by subtracting zero in the form f Pf , we essentially replace 
p with its corresponding vector in frame t CEqn. 6.17). Since a product between a 2tensor, W j, and a vector, 
(p - Pf ), is a valid abstract operation, we can make the transition to line t. 



Chapter 7 

Kinematic Rigid Bodies Model 

"Kinematic" motion is motion without considerations of mass and force. This includes, e.g., motion de
scribed by keyframe animations systems, geometric constraints, and direct user manipulation. 

This module provides a basic expression of the kinematic motion of rigid bodies. It provides a simple structure 
for describing collections of bodies, and a mechanism for describing bodies constrained in fixed hierarchies. The 
module is administrative rather than technical; we do not give any specific methods or techniques for manipulating 
bodies, we merely provide a framework within which to express such techniques. 

The "traditional" computer graphics animation techniques, as discussed in Ch. 1.2, are kinematic; see, e.g., 
[Magnenat-Thaimann,Thalmann85]. [Craig89] has an extensive discussion of kinematics in the context of 
robotics. 

7.1 Goals 

We have a few simple goals for this module: 

• To provide a basic model & notation for rigidly moving bodies. 

• To describe kinematic relationships between bodies, e.g. , as a hierarchy. 

• To describe behavior of points fixed on a body. 

93 

The intent is not to define any particular techniques for kinematic rigid-body motion, but to give a common 
framework and terminology that can be built upon by other, higher-level models and techniques, such as 
dynamics or articulated key-frame animation. 

7.2 Conceptual Model 

Our conceptual model for kinematic rigid bodies is quite simple. We describe our basic abstraction of a body, 
as well as two other useful notions, that of a body point, and a hierarchical cOlifigurationofbodies. All bodies 
exist in the fixed, Euclidean 3-D world space of Ch. 6. 

Bodies: 

A rigid body doesn't change its shape-that is what we mean by "rigid"-thus a body's motion can be de
scribed by its position and orientation. In other words, we think of a rigid body as "carrying" with it a 



7.2 Conceptual Model 94 

a. A moving rigid body ... b .... is abstracted as a moving coordinate frame 

z 

x 

Figure 7.1: The motion of a rigid body is described by the motion of an orthononnal coordinate frame that is fixed relative to the body. 
Each body's frame is called its "body coordinates." 0 

coordinate frame, as per Sec. 6.3. We call that frame the body frame (Fig. 7.1). Note that a moving body has 
a velocity and angular velocity at each instant of time. 

The body frame is fixed relative to the body, and serves to define body coordinates that can be used in 
particular to describe the shape or configuration of the body. In this module, we make no restrictions on the 
body shape, other than that it be constant in body coords; nor do we provide any mechanism for describing 
the shape.1 Presumably, in most cases, the origin of body coordinates is at some "natural" spotrelative to the 
body shape (e.g., the center or the comer or the apex, depending on the shape), and the body coordinate axes 
are aligned with the axes of symmetry of the shape-but this is not required, 

Each body in a model is given a unique "name" of some sort, so that we can identify and distinguish the 
bodies. 

Body points: 

Frequently, in addition to defining a primitive body, we are interested in specifying "interesting" points on the 
body. For example, we might specify a point at which to attach a constraint. We define a body point to be a 
location that is is fixed in the body frame, as per Sec. 6.3, i.e., its body coordinates are constant. Thus, as the 
body moves, it "carries" the body point with it. 

For the most part, we think of a body point as being the location of a specific piece of "material" within 
the body or on its surface. But we don't require this; one could define a body point in the middle of a donut's 
hole, for example. The origin of the body frame is a body point, at coordinates (0 , 0, 0). 

Hierarchical Configurations: 

We're often interested in describing kinematic relationships between groups of bodies; for example, it is 
common to model humans, animals, and robot manipulators as articulatedfigures , i.e. , collections of segments 
connected at joints (see [Badler et aI.91], [Craig89J). 

1 The description of shape is a fundamental part of computer graphics; we refer readers to [Foley el aI.90] and [Snyder92]. 



7.3 Mathematical Model 

Hierarchical Configuration 

root 
body 

95 

d 

Figure 7.2: A hierarchical configuration is a collection of bodies organized into a hierarchical structure. Each body's configuration is 
specified in the body coordinates of its parent; thus if, e.g. , body b is moved or rotated, bodies d, e, and f will be carried with it, and if 
the root body a 1S moved, the entire colJection moves with it. A common type of hierarchical configuration is an orticulatedfigure, in 
which primitive body segments are connected at joints. 0 

This module defines a hierarchical configuration, i.e., a collection of bodies organized into a tree hierarchy, 
with the position and orientation of each body 's frame described in the coordinates of its parent (Fig. 7.2). An 
articulated figure can be described by a hierarchical configuration , in which each body's origin is fixed in its 
parent's frame, but the body's orientation can be adjusted. 

7.3 Mathematical Model 

7.3.1 Names & Notation 

The scope name for this module is 
KI EMATIC 

We make use ofthe following definitions from other modules : 

IDlorests (Defn. A.l) 
IDs (Defn.3.8) 
FramePaths (Defn. 6.27) 
InstFrames (Defn.6.23) 

Locations (Defn.6.1) 
LocationPaths (Defn . 6.19) 
Orientations (Defn.6.1) 
Vectors (Defn . 6.1) 

We will also use superscript frame-representation notation: 

f 
x (Noln.6.6) 

7.3.2 Body State 

We define the space of possible configurations of a rigidly-moving kinematic body, States. Note that the 
space includes only coordinate-frame information; we are not including any shape description. 



7.3 Mathematical Model 96 

(7.1) 

Definition. States 

States 
[ 
f t-t InstFrames 
x ... P t-t Locations 
R ... R t-t Orientations 
v ... V t-t Vectors 
w ... w t-t Vectors 

body coordinate frame 
body origin locarion 
body orientation 
velocity of origin 
angular velocity 

Defn. 7.1: Kinematic rigid-body state space. The state of a ngid body at an Instant IS just Its mstantaneous coordinate frame 
(which includes linear and angular velocities). Note that we have renamed the origin to be x and velocity v, in keeping 
with common usage for rigid body modeling. 0 

A moving body can be described by its trajectory, i.e., a path through state space. Based on Sec. 6.4.8, we 
define a space State Paths, each of whose elements is a path of a moving body: 

(7.2) 

Definition. StatePaths 

State Paths == the set offullctions { 
s: ~-+ States such that 
(J 0 s) E FramePaths } 

Defn. 7.2: The space of paths through state space. For a path s E StatePaths, the compoSIte function (J 0 s), that 
describes the body frame's motioo, must be an element of FramePaths ; this means that it is consistent as per Defn. 6.24, 
i.e., that the velocity vectors at each instant agree with the trajectory of the body. 0 

The moving-frame "paradox," Eqn. 6.29, applies directly to moving bodies: 

(7.3) 

For s E State Paths 

1t x,(t) 

o == 1t J.(it(t) =1= 

v,(t) 
J.(i)V, (t) 

Eqn.7.3: The moving-body paradox. The velocity vector can be non-O in body coordinates, even the the origin is al
ways at (0,0,0). The velocity vector describes the motion of the body relative to the fixed world space; thus the body 
"knows" that it is moving, unlike special-relativistic formulations of motlon, in which there 1S no local way to distinguish 
a frame at rest from one moving with constant velocity. 0 

7.3.3 Body Points 

We define the space of states of body points, Bodypts, analogous to the states of bodies, to define the config
uration of a body point. 

(7.4) 

Definition. Bodypts 

Bodypts 
[ 

1 

x ...... Locations 
v t-t Vectors 

location of body point 
velocity of body point 

Defn. 7.4: Body pomt state space. A body pomt has a locatlOn ... and a velocity v. The velocity vis the point's veloClty in 
space. a 

We can specify a body point state, given its body-frame coordinates and the state of the body it belongs to: 



7.3 Mathematical Model 97 

(7.5) 

Definition. Bodypt 

Define afunction Bodypt: States x ~3x3 ---> Bodypts such that,for all 
s E States and coords E ~3xa. 

f(, ) 
'xC Bodypt( s , coords)) = coords 
v(Bodypt(s , coords)) = v, + w, x (x(Bodypt(s, coords)) - x,) 

Defn. 7.5: A function that YIelds the state of a body point. given its body-frame coordinates. The expression for the point's 
velocity comes from Eqn. 6.33, that gives derivates of objects fixed inmoving frames. 0 

7.3.4 Collections of Bodies 

The definitions of Sec. 7.3.2 are generic, without the concept of which body. Now, we will provide definitions 
allowing us to name and identify bodies. We define a system to be a collection of names (ID's) of bodies, and 
their corresponding states: 

Definition. Systems 

(7.6) I Systems == {States} I Os 

Defn. 7.6: Each system is an index of states (as per Sec. 3.8.2). That is, it is a collection of body states elements , each 
labeled with a different "name," or ill. Given a system Y E Systems . the state of a body labeled with b E IDs is given by 

Yb·o 

The above describes the state of a collection of bodies at a single instant of time. For a collection of bodies 
that are moving over time, we define a system path: 

Definition. SysPaths 

(7.7) LI __________ S_ys_p_a....,th.,-s_==_{ S_t_a_te.,...p_a_th....,s_} I.,...D-,-S-,-..,----:--,--=-----,-__ --" 
Defn.7.7: Each system is an index of state paths. Note that each element in the index is a function. That ls, for a system 
path Y E SysPaths, the state of body b at an instant oftime t is given by Yb(t) . 0 

To construct a system Y E Systems given a system Y E SysPaths, we evaluate all the paths in Y at a 
common time t. This is written as Y = Y(t), as per Notn. 3.18. 

7.3.5 Hierarchical Configurations 

A hierarchical model consists of the tree hierarchy that organizes the bodies, along with the specification of 
each child's state relative to that of its parent. Sec. A.l defines the IDlorests mechanism for hierarchies of 
names. All that remains for us is to define a mechanism to specify each body's frame relative to its parent 

We start by defining a space that encapsulates representations of frames.2 

(7.8) 

Definition. FrameReps 

FrameReps 
[ 
x ...... ~3 represents a location 
R ...... ~3X3 represents an orientation 

1 
Defn. 7.8: Each "frame rep" will be used to specify the representatton of a frame 10 some other frame. Note that that x and 
R are numbers-they will be representations of abstract geometric objects. rather than the abstract objects themselves. 0 

2This is the most general way of describing a frame relative to some coordinate system. But for specific applications, other repre
sentations might be more convenieru. For example, articulated figures are typically described in tenns of joint angles. Such descriptions 
could be defined as specializations (Sec. 3.7.2) of FrameReps . 



7.4 Posed Problems 98 

We have a notion of two bodies that are "aligned" by a given frame representation: 

(7.9) 

Definition. Aligned bodies, given a frame representation 

A body state b E States is aligned to a body state a E States given a frame 
representation c E FrameReps iff: 

x(c) 

R(c) 

Defn. 7.9: The numbers mframe rep c E FrameReps give the coordinate values for body b, when "looked at" from body 
a. Note that given any two of a, b, or c, the third is uniquely determined. 0 

A hierarchical configuration bundles together a collection of frame-representation constraints along with a 
forest (collection of trees) of body names: 

(7.10) 

Definition. HierConfigs 

HierConfigs 
[ 

forest 
roots 
nonroots 
leaves 
parent 
config 

...... IDforests 
... roots ...... IDsets 
... nonroots ...... IDsets 
... leaves ...... IDsets 
.. . parent ...... {IDs}IDs 

...... {FrameReps}IDs 

Ids( config) = nonroots 

the ID hierarchy 
independent bodies 
dependent bodies 
bodies having no children 
parent of each dependent 

the frame representations 

Defn. 7.10: A hierarchical model. forest is • forest of body m's. For e.ch body c E nonraots, we wIll use frame rep conlige 
to align body c in its parent's coordinates. The internal property Ids (conlig) = n onrools guarantees that every non-root 
body has. corresponding frame rep. 0 

Putting together Defns. 7.9,7.10, we tell if a particular collection of body states satisfies a given hierarchical 
configuration: 

(7 .11) 

Definition. Satisfies 

A collection of body stares Y E Systems satisfies a hierarchical 
configuration mE HierConfigs iff. For all c E nonroots(m), 

Yc(t) is aligned to Yparen/{m)c given config(m)c 

Defn. 7.11: A gIVen system satisfies a model if each chi ld body IS properly alIgned to its parent. Note that no lop-level 
restrictions are placed on the roots. 0 

7.4 Posed Problems 

A well-known problem in modeling is the f orward kinematics problem: Given a static hierarchical configu
ration, and given the states at the roots, determine the states of all the bodies (see [Craig89-Ch.3]). This can 
be expressed using our constructs as: 



7.5 Implementation Notes 

(7.12) 

given: 

find: 

such that: 

B E Systems and 
H E HierConfigs, 
such that Ids(B) = roots(H) 
Y E Systems 

{ 
Yb = Bb/or all b E Ids( B) 
Y satisfies H 

99 

Eqn. 7.12: The forward-kinematics problem. We are given B. the states of the roots of the hierarchy H. We want to 
determine the states of all the children as well. The solution system Y includes the states of all the bodies. roots (directly 
as given) and nonroots (determined from H). 0 

Solving this problem is straightforward. One proceeds top-down from the roots, at each node constructing 
the frame that is aligned with its parent. 

The complementary problem to the above is an inverse kinematics problem: Given the states of the roots 
and leaves of the hierarchy, determine the relationships between the bodies: 

(7.13) 

given: B E Systems and 
FE IDforests, 
such that Ids( B) = roots( F) U leaves( F) 

find: Y E Systems and 
H E HierConfigs, 

{ 

Yb = Bb/or all bE Ids(B) 
such that: forest(H) = F 

Y satisfies H 

Eqn. 7. 13: An inverse-kinematics problem. We are given the hierarchical structure of body names F. but no configuration 
specifications, and we are given B. the states of the roots and leaves. We want to determine the states of all the intermediate 
bodies as wel1. The solution includes the system Y and the complete hierarchical configuration H. For specific types of 
models we may be given additional input or restrictions, such as given segment lengths for artiaJiated figures. 0 

Unlike the forward kinematics problem, solving inverse problems can be difficult. There is not necessarily a 
unique solution; there may be none or many. [Ctaig89-Ch.4] discusses this problem in detail. 

7.5 Implementation Notest 

7.5.1 Conceptual Section Constructs 

The conceptual bodies can be defined using an object-oriented method: A base class Body includes the body's 
name, position and orientation data members; various derived classes, e.g. Sphere, Cylinder, Banana, etc., 
implement their own drall methods to draw the body at its current position and orientation. The base class 
can also maintain a list of body points associated with the body. 

7.5.2 Math Section Constructs 

The scope name for this module's math section is MKIN; Fig. 7.3 lists the class definitions. The classes for the 
state spaces States, FrameReps, and HierConfigs are defined in the standard manner (Sec. B.3.6): 

class State: 
constructors: (MGO:: InstFrame ff) 
members: f : MCO: : InstFrarne 

x : MCO: : Location 
R : MCO: ; Orientation 
v : MCO : : Vector 
v : MCO : : Vector 

t See Appendix B for discussion of the terminology. notation. and overall approach used here. 



7.5 Implementation Notes 

class name 

Program definitions in scope HKIN: 
abstract space 

FrameRep 
FrameRepIdx 
HierConfig 
State 
StatePath 
SysPath 
System 

FrameReps 
{FrameReps } IDs 
HierConfigs 
States 
State Path s 
SysPaths 
Systems 

Figure 7.3: Math section definitions in the prototype implementation. 0 

class FrameRep : 
constructors: (double [3), double [4) 
members: x : double [3) 

r : doubl.[4) 

class KierConf'ig : 
constructors: ("MISe:: Forest. FrameRepIdx) 
members: forest: "MISe : : Forest 

conTig : FrameRepldx 
roots : ItM: : IdSet 

nonroots: "": : IdSet 

(Defn . 7.8) 
index offrame reps (Notn . 3 .11) 
(Defn.7.10) 
(Defn.7.1) 
(Defn.72) 
(Defn.7.7) 
(Defn . 7.6) 

The class for State Paths is defined in the standard manner for paths (Sec. B.3.7): 

class StatePath : 
constructors: (KCO : :Fr .... Path ff) 
members: f: MCO: :FramePath 

x: MCO: :LocationPath 
R : MCO : : Orienta.tionPath 
v : MCO: : VectorPath 
1il: MCO: :VectorPath 

7.5.3 M-N Interface 

100 

The scope name fortheM-N interface NKIN. We define a routine to compute the system that solves the forward
kinematics problem. It is implemented using the routine NMISC: : IdForestPreorder(. . . ) of Sec. A.3.1, 
to traverse the hierarchy. 

SolveForvard(System, HierConfig) System 

7.5.4 C-M Interface 

The C-M interface routines must be able to do the following: 

• Map between conceptual body names and math ID's. 

• Map between MKIN: : Stat e objects and conceptual body objects. 

• Map between MKIN: : System objects and the conceptual data structures. 

• Construct a HKIN: : HierConf ig from the conceptual data structures. 



Chapter 8 

Dynamic Rigid-Bodies Model 

This model describes classical dynamics of rigid bodies, i.e., motion of rigid bodies based on inertia and the 
influence of applied forces and torques, in accordance with Newton's laws. For collections of bodies, each 

body 's motion is due directly only to the forces and torques acting on it; interaction between bodies is mediated 
by forces. 

The force-based paradigm of motion is simple, reasonably intuitive, and uniform across applications. We don ' t 
address other paradigms, such as Lagrangian or Hamiltonian, that are based upon energy and generalized or 
canonical coordinates. Generalized coordinates are useful for deriving equations of motion for specific problems 
with constrained motion and limited degrees of freedom; using the force-based paradigm, we constrain the motion 
through explicit introduction of forces, as will be discussed in Ch. 9. 

The presentation in this module, while axiomatic, assumes that the concepts of mass, force , and so forth are 
familiar to the reader. Detailed discussion and analysis can be found in [Fox671 and [Goldstein801. 

8.1 Goals 

Our goals for this model are: 

• To describe bodies that move under the influence of forces and torques. 

• To keep track of energy expenditures, for analysis and debugging. 

101 

• To provide support for higher-level modules that implement collisions, constraints, force mechanisms, 
etc. 

At this level, we will not specify provide any mechanism for describing how individual forces and torques 
arise; we take forces and torques as "givens" from a higher level module. 

8.2 Conceptual Model 

The dynamic rigid bodies model is built on the kinematic rigid body model ofCh. 7, set in the fixed 3-D world 
space of Ch. 6. To the kinematic model, we add the notion of dYllamics, i.e., motion in accordance with forces 
and inertia, as per Newton's laws and the classical paradigm.l 

1 ActuaJly. the classical rigid-body paradigm, and Newton's laws, can be derived from more basic postluates known as Euler's laws; 
see [Fax57]. 



8.2 Conceptual Model 102 

Figure 8.1: Rigid-body motion. A body moves under the influence of forces and torques, in accordance with Newton's laws of motion. 
The motion of a body can be separated into the linear velocity of the center of mass of the body. and the angular velocity of the body's 
rotation about the center of mass. The body features are encapsulated as a constant net mass and an inertia tensor that is fixed in the body 
frame. 0 

8.2.1 Bodies 

We assume that each body is completely rigid, i.e., does not flex or deform in any circumstances, and that 
each body has a constant mass that is distributed throughout the body. This abstraction is not unreasonable 
for many real-world objects , so long as they are subject to relatively mild pressures and accelerations. 

A dynamic body is a kinematic body as per Ch. 7-i.e., is uniquely identifiable and has a body frame 
associated with it-along with a mass distribution. We don ' t need to know the details of the mass distribution; 
it is encapsulated into an inertia tensor, and a location of the center of mass. Note that the center of mass does 
not have to be at the origin of the body frame. Since the body is rigid, the mass distribution is fixed in the 
body frame. 

A body moves in response to forces and torques acting on it, in accordance with Newton's laws (Fig. 8.1). 
Motion is separable into translational motion of the center of mass (linear velocity), and rotation of the body 
about the center of mass (angular velocity). In the absence of any applied forces or torques, the center of mass 
moves in a straight line-but the body frame origin may rotate about it if the body is spinning. Forces and 
torques will be discussed in greater detail below (Sec. 8.2.2). 

As in the kinematic model, this model includes no explicit description of the shape of a body (the body 
doesn't even need to be contiguous). The inertia tensor depends on the shape, but not uniquely: bodies with 
different shapes may share the same inertia tensor. In practice a body's behavior often does depend on details 
of its shape or mass distribution, e.g. , wind resistance or gravitational field variation; We don't disallow such 
effects in this model, but merely observe that for our purposes, they are indirect, and can be encapsulated 



8.2 Conceptual Model 103 

Types 01 "Motives": 

Pure Force Pure Torque Coupled Force/Torque Arbitrary ForcefT orque 

Figure 8.2: There are four types of motives: Pure forces, which cause translation but not rotation; Pure torques, that cause rotation about 
the center of mass, but not translation; Coupled forceltorque. in which a force applied to a body at some distance from the cenler of mass 
yields a corresponding torque aOOut the center of mass; And arbitrary force/torque pairs, that can be thought of as a pure force and pure 
torque acting simultaneously. 0 

(by higher-level modules) into net forces and torques acting on our abstracted rigid bodies. This model does 
disallow,however, bodies thatdon'thave constantmass, such as a rocket that loses mass as it burns propellant. 

For collections of bodies, each moves independently in world space, reacting only to the forces and torques 
applied to it. All interactions between bodies are thus mediated by forces. Notice that unless suitable forces 
are applied, there is nothing preventing bodies from overlapping, occupying the same locations in space. 

We assume finite forces and torques for this module, so the motion is always continuous. For disconti
nuities in velocity, such as caused by collisions between rigid bodies, the idea of impulses-infinite forces 
applied instantaneously-would be introduced; we leave this for higher-level modules (see discussion in 
Sec. 12.1). Note, however, that the this module could still be used to describe the continuous motion between 
discontinuities, as in the "tennis ball cannon" example of Ch . 11. 

8.2.2 "Motives"-ForcefTorque Objects 

We assume the existence of forces and torques, which are primitive objects that can be described by vectors, 
and which, when applied to bodies, cause them to move.2 

We find it convenient to bundle a single force and/or a single torque into an object that we call a motive. 
The most common type of motive is a coupledforcelrorque , in which a force applied away from the center of 
mass of a body induces a torque on the body (the vector from the center of mass to the point of application is 
called the moment arm). We can also have a pure force or pure torque, which can be thought of as applied to 
the center of mass, and for generality, an arbitrary force/rorque pair (Fig. 8.2). 

Motives exist in themselves as abstract objects, but to be used, a motive must be applied to some specific 
body: an applied morive is a motive along with (the name of) the body it acts on. If the motive is a coupled 
force/torque, its moment arm describes the point of application on the body. We typically give each applied 
motive a unique name in order to identify it. 

Any number of motives can be applied to a body simultaneously. The forces and torques from each can be 
added, to produce a single net force and net rorque on the body. The behavior of the body underthe infl uence 
of the collection of motives is the same as if only the net force and torque were applied to it. 

Motives are typically described at any instant by a force/torque field, i.e., a function of the configuration of 
the model.3 For example, a Hooke's-law spring applies a force that is proportional to how much the spring is 
stretched. The fields are defined over hypothetical configurations-i.e., they describe what the motive would 

2 It is not strictly necessary to define torques as primitive objects-the effect of any torque can be mimicked by a suitably chosen pair 
of forces--but are convenient abstractions. 

3 This use of the tenn "field" is in the geometric sense "function over some manifold," rather than the abstract algebraic sense "set 
having addition and multiplication operations." 



8.2 Conceptual Model 104 

Figure 8.3: (Left) A point mass is a body that has aU its mass at a single point. Point masses move lIDderthe influence of forces, but not 
torques. 0 

Figure 8.4: (Right) A body point is fixed in body coordinates. Each body point has an associated moment arm, which is the vectorfrom 
the center of mass. 0 

be, if the model were in any given state-not just for the path taken by a particular simulation. 4 Note that a 
single field can depend on the configmation of the entire model-thus the force on a given body can depend 
on the configurations of the other bodies in the model, giving us an avenue to create interactions between 
bodies. 

8.2.3 Point Masses 

A point mass is a hypothetical object a body that has all of its mass concentrated at a single mathematical 
point (Fig. 8.3). A point mass has a location and velocity, and will move under the influence of forces in the 
same manner as an ordinary body. Point masses have a zero inertia tensor, and have no associated orientation 
or angular velocity. We do not define the application of a torque to a point mass. 

Point masses provide a simple abstraction of rigid body motion when orientation is not an issue. They are 
often used as experimental "test particles." Many flexible-body models are comprised of networks of point 
masses and interconnecting forces . In addition, the center of mass of any arbitrary deforming (non-rigid) body 
moves in as a point mass experiencing the sum of all forces acting on the body. 

8.2.4 Body Points 

A dynamic body point is essentially the same as a kinematic body point (Sec. 7.2), i.e., a location that moves 
with a body, fixed in the body's coordinate system (Fig. 8.4). As with kinematic body points, since we have 
no explicit description of the shape of a body, we do not care whether a body point is "in" or "on" the body. 

Body points provide convenient "handles" at which to apply forces. Since a force applied at a body point 
yields a coupled torque, we associate a moment arm with each body point, as per Sec. 8.2.2. Note that the 
moment arm is the vector from the center of mass, not from the body origin. 

8.2.5 Energy 

It is a fundamental property of classical mechanics that energy is always conserved, or at least accounted for. 
Thus, although we are using a force-based paradigm rather than energy-based (i.e., Newtonian rather than 
Lagrangian), we can still keep track of energy in om models. 

t It is particularly important that fields be defined off the solution path for a particular simulation, because most numerical solution 
must explore the configuration space in order to determine that path. 



8.3 Mathematical Model 105 

Each body has an associated kinetic energy, based on its linear and angular motion. When a body is acted 
upon by motives, its kinetic energy can change. The work done by each motive is the kinetic energy it adds 
to the body (negative work means that the force removes kinetic energy, i.e. , slows the body). 5 

We can analyze the behavior of a model by examining the work done by each motive. In addition, we can 
test for consistency of the model by checking that the kinetic energy of each body agrees with the work done 
by all motives acting on it. 

Often, a motive field is conservative, i.e., has a potential energy field associated with it such that the 
potential energy and work done by the motive add up to a constant--energy taken from a body is "stored" in 
the potential energy field, and vice versa. Examples include a gravitational field and a Hooke's-law spring. 

Non-conservative motives are dissipative if they remove energy from the bodies, or are active if they add 
energy. The work done by these motives corresponds with a conversion between mechanical (kinetic) energy 
and other forms of energy, such as heat, electromagnetic, or chemical, that are out of the ken of this model. 

8.3 Mathematical Model 

8.3.1 Names & Notation 

The scope name (see Sec. 3.6.2) for this module is 

RIGID 

We use the following terms from other modules: 

IDs (Defn.3.8) 
InstFrames (Defn.6.23) 
KINEMATIC:: Bod;pt (Defn.7.5) 
KINEMATIC:: Bodypts (Defn.7.4) 
KINEMATIC:: StatePaths (Defn. 7.2) 
KINEMATIC:: States (Defn.7.1) 

£.ab (Defn.6.4) 
Locations (Defn.6.1) 
2Tensors (Defn.6.1) 
Orientations (Defn. 6.1) 
Scalars (Defn.6.1) 
Vectors (Defn.6.1) 

We also extensively use subscript notation for state spaces, and prefix-superscript frame representation nota
tion: 

x, (Nom. 3.27) 
x,(t) (Nom. 3.28) 
f x (Nom. 6.6) 

8.3.2 Mass Distributions 

If we know the shape of a body and the mass density everywhere within it, we can compute the mass distri
bution values. 

(8.1) 

If a body occupying volume V has mass density p: ~3 -+~, we compute the 
mass m E ~,center of mass xc E ~, and inertia tensor matrix I E ~3x3 by: 

m Iv per) d3r 
XCi k Iv ri per) d3r 

Iv (I r l21ij - ri rj) p(r) d3r - m ( lxcl21ij - XCi XCj) 

Eqn. 8. I: Mass distribution equations. The variable of integration, r E :R 3 , is a point in body coordinates, within the 
volume V. Note that we transfer the the inertia tensor to be about the center of mass, rather than abom the origin of body 
coordinates. Full dlsaJsslon of these equations is beyond our scope; see , e.g., [Fox67-App.B] . 0 

5 A1though the motive may arise from a field over possible configurations (Sec. 8.2.2), the actual work done by a motive depends on 
the particular path taken by the body. 



8.3 Mathematical Model 106 

Because our model does not include a description of the shape of a body, we generally take the mass dis
tribution values to be primitive values that are given to us "pre-computed," by a higher-level modeL 6 We 
encapsulate the rigid mass distribution properties of a body into a single space MassDists , so that each ele
ment of MassDists corresponds with a particular mass distribution: 

(8.2) 

Definition. MassDists 

MassDists 
[ 
m ...... 3t 
I ...... 3t3,,3 

xc ...... 3t3 

mass 
inertia tensor matrix 
center of mass coordinates 

Defn. 8.2: A space descnbmg mass dlstnbutions of rigid bodies. xc gIves the offset of the center of mass from the anglO 
of the body's coordinate system. I is the inertia tensor about the center of mass. Note that each element is a collection of 
numbers, not geometric objects (we use typewriter font to remind us of this). These numbers describe the mass distribution 
of a body in its own coordinate system. 0 

A point mass (Sec. 8.2.3) has all its mass concentrated at its origin. We can think of it as the end result of 
a limiting process in which we keep the mass of a body constant while shrinking the shape to a zero volume 
located at the origin. We see in Eqn. 8.1 that both xc and I go to zero. Thus we define the set of point mass 
distributions to be a subset of all mass distributions: 

(8.3) 

Definition. PtMassDists 

PtMassDists == {M E MassDists I I (M) = 0 } 
XC(M) =0 

Defn. 8.3: The set of pOint masses. A point mass has all of lts mass concentrated at its origtn. Its merna tensor I is thus 0, 
and its center of mass xc is at its origin. 0 

8.3.3 State of a Single Body 

The instantaneous dynamic state of a body is completely determined by its mass distribution and its kinematic 
state. However, there are assorted useful geometric, momentum, and energy terms that also describe various 
properties of the body's dynamic state. We group all the terms into a single state space, States , that has 
internal properties which ensure the appropriate relationships hold amongst the various terms. Thus each 
element of States encapsulates a complete dynamic state: 

6 [Fax67) includes a table giving themass properties far a varietyofhomageneaus bodies in cananical sbapes; [Uen,KajiyaB4) computes 
integral praperties of arbitrary nonconvex polyhedra; [Snyder92] camputes the mass properties for homageneous bodies described by 
parametric surfaces. The net mass properties of a rigid body fanned as a compound of simpler bodies is described in [Fax67-App.B]. 



8.3 Mathematical Model 107 

(8.4) 

Definition. States 

States 
[ 

M 

m 
I 
k 
f 
x 
R 
v 
w 
ann 
xc 
vc 
p 
L 

...... MassDists 
... m ...... ~ 

...... 2Tensors 

...... KINEMATIC:: States 
· .. f ...... InstFrames 
· .. x ...... Locations 
· .. R 1-+ Orientations 
... v ...... Vectors 
· .. W 1-+ Vectors 

...... Vectors 

...... Locations 

...... Vectors 

...... Vectors 

...... Vectors 

mass distribution 
mass 

inertia tensor 
kinematic state 

body coordframe 
location of body coords origin 
body coords orientation 
body velocity 
body angular velocity 

moment arm of body origin 
location of center of mass 
velocity of center of mass 
linear momentum 
angular momentum 
linear kinetic energy 
angular kinetic energy 
net kinetic energy 

ann = x- xc 
J -( ann) 

1: = r(M) 
J xc= XC(M) v= vc+w x ann 

p=mvc KEv= 1m vc· vc 
KEw- L ·Iw -2 

KEv+KEw=KE 
M E PtMassDists 

L=Iw 

==> {R=Rmb 
w=O 

Defn. 8.4: Instantaneous dynanuc state of a ngld body. Note that a body has separate poSlUon and velocity informauon for 
its body frame origin (x and v) vs. for its center of mass (xc and vc); The vector arm 1S the displacement of the origin relative 
to the center of mass; it is fixed in body coordinates , given by the mass distribution. Identifying tuples tor the space include: 
[M, k]~ass distribution and kinematic state; [M, xc, R , p , L]-mass distribution and dynamic state; [M, f I xc, vq---mass 
distribution and mixed state. 0 

Notice that we use the single space States to encompass both bodies and point masses; since a point mass has 
no inlrinsic notion of orientation , we (arbitrarily) choose to define that a point mass has the lab's orientation 
R = Rmb' and zero angular velocity, w = O. From the above and from Defn. 8.3 we have the following 
corollary properties of a point mass: 

(8.5) 

Given p E States with Mp E PtMassDists 

Ip=O, 
wp=O , 

annp = 0, 
4=°, 

KEwp=O 

Eqn. 8.5: Various properties of point masses. 0 

Rp =Lab, 
xep = Xp , 

vep = Vp , 

KBp=KEvp , 

It may seem like overkill to use States for point masses: mightn't it be "cleaner" to have a separate, simpler 
space just for point masses? However, by having a single space, the remaining discussion will apply uniformly 
both to bodies and to point masses. 



B.3 Mathematical Model 108 

8.3.4 Motion of a Single Body 

A moving body varies its state over time; that is, a moving body is described by a path through States space. 
Thus we define the space: 

(8.6) 

Defillitioll. StatePaths 

State Paths the set o/fullctiolls 

{ 

s: ~-+States such root 
(k 0 s) E KINEMATIC:: StatePaths, and M,(t) is 

cOIlSlalll 

Defn. 8.6: The sel of paths through srate space. WeonlycooslderfnoctlOns s for which the resulting kinematic state fnoction 
k, (t) is a kinematic state path (Defn. 7.2). Additionally, we require that the mass dislribution M, (t) doesn' l change. 0 

Since we require that the mass distribution of a state path be constant, we can drop the path parameter when 
using the mass distribution aspects: 

(8.7) 

Notatioll. Dropping the parameter (t) for a state path 

For a state path s E State Paths 

M,(t) 
m,(t) 

Nom. 8.7: Since, by definition , the mass dIStribution of a state path doesn' l depend on the path parameter, for c1arily we 
usually leave il off. 0 

From Defn. 8.4 and Defn. 8.6, we have: 

(8.8) 

Given a state path s E State Paths 

f .(t1:,(t) 

f.(t~e8(t) 
I(M,) , COllstalll 

m" constallt 

Eqn. 8.8: For a slaie path s, the inertia tensorI , (t) and IOCaiion of centerof mass xc , (t) are not constant-they move with 
the body. changing over time. But their representations in the lxxly's moving coordinate frame are constant, given by the 
constant mass distribution. Using the parlance of Sec. 6.4.9, they are " fixed" in the moving body frame. 0 

Defn . 8.6 requires that the motion be continuous, and that the mass distribution in the body be constant That, 
along with Defn. 7.2 and Defn. 6.24 ensure that, as expected: 

(8.9) 

Given a state path s E State Paths 

f,x, (t) 
f,xe, (t) 
f,R, (t) 

Y, (t) 
Ye, (t) 
w;(t)R,(t) 

Eqn. 8.9: Velocities of a state path agree with the derivatives as expected. Note that the "moving-body paradox," Eqn. 7.3, 
applies to dynamic rigid bodies' origins, orientations, and centers of mass. 0 

In addition to moving continuously and rigidly, we want a body to move dynamically under the influence of 
forces and torques. Thus we define: (Fig. 8.5) 



B.3 Mathematical Model 109 

A consistent path: 
(agrees with forces) ~-.--... ~~ 

-~./' 
=i~"'-"-'--~tr 

An Inconsistent path: ~ 
=i~----------.-------.----~~ 

11 
Figure 8.5: Consistent vs. inconsistent paths. A state path is an arbitrary function that describes physically realizable motion of a rigid 
body. If we have a net force function and a net torque function (torque not illustrated), we say that the path and functions are consistent 
if the motion of the body agrees with the force and torque, as per " F = m a." 0 

(8.10) 

Definition. Consistent (path, net force, net torque) 

A state path s E State Paths is consistent with net force alld torque 
functions F, T:~ ..... Vectors iff: 

f.P.(t) = F(t) (force equals change in momentum) 

1. L. (t) = T(t) (torque equals change in angular momelltum) 

M. E PtMassDists => T(t) = 0 

Defn. 8.10: DynamIc behavior of a ngld body. At each lfistant ottime, the change in momenta is due to the net/orce F(t) 
and net torque T( t). As discussed in Sec. 8.2.3, we don ' t apply torques to point masses. 0 

By Defn. 8.4 and Eqn. 8.9 we have, for a path s E State Paths: f.P.(t) = f.m. vc.(t) = mft,x.(t) . Thus 
Defn. 8.10 is equivalent to the common "F = rna" 2nd-order Newtonian equation of motion. 

8.3.5 Body Points 

A dynamic body point is similar to a kinematic body point, but we find it convenient to include the point's 
moment arm as part of its instantaneous state. 

(8.11) 

Definition. Bodypts 

Bodypts 
[ 
k .... KINEMATIC:: Bodypts 
x ... x .... Locations 
v ... v .... Vectors 
ann .... Vectors 

1 

kinematic state of body poillt 
location 
velocity 

displacemelltfrom body c.m. 

Defn. 8.1 1: Body pomt state space. The state of a body pomt mcludes lts kinematIc descnpnon as well as a moment arm, 
i.e., a vector from the center of mass of the body the point location. Note, however, that there is no explicit indication of 
which body. 0 

We can specify a body point state by giving its body-frame coordinates, and the state of the body it belongs 
to: 



8.3 Mathematical Model 110 

(8.12) 

Definition. Bodypt 

Define a junction Bodypt: States x ~3X3 -+ Bodypts such thatJor all 
s E States and coords E ~3 x a.. 

k(Bodypt(s, coords)) = KINEMATIC:: Bodypl(k" coords) 
arm(Bodypt(s, coords)) = x(Bodypt(s, coords)) - xc, 

Defn. 8.1 2: A functIon that yields the state of a body pomt, glVen Its body-frame coordinates. The kinematIc state of the 
body point is specified via KINEMATIC:: Bodyp/ (Defn. 7.5). The moment ann is the vector from the body center of mass 
to the body poinL 0 

Some properties of a body point: 

(8.13) 

Given a body state s E States and body poim p E Bodypts, where 
p = Bodypt(s , coords) for some coords E ~X3, we have: 

J(' ) 
xp = coords 

1(') 1( , ) 
armp = coords + arm, 

= coords + XC (M,) 

vp = v, + w, x (xp - xp) 
= ve, +w, x armp 

Eqn. 8.13: The location and moment ann of a body point defined via Bodypl (Defn. 8.12) can easily be expressed in 
body coordinates. The velocity can be expressed geometrically in tenns of either body origin or body center of mass. 
These equalities are derived from from Defn. 7.5, Defn. 8.12, and the properties in Defn. 8.4. 0 

8.3.6 A Collection of Bodies 

For a collection of continuously moving dynamic bodies, the interaction between the bodies is mediated by 
forces, as discussed in Sec. 8.2.1. That is, each body doesn't directly "see" any other bodies , it just responds to 
the forces it "feels", in accordance with Defn. 8.10. However, we are free to define whatever force functions 
we like-in particular, the force function for any given body may at any instant be determined by the states 
of all the bodies. In this way, the motion of a body may be determined (indirectly) by interaction with other 
bodies. 

In order to manage collections of bodies, we proceed analogously to the scheme used for kinematic bodies 
(Sec. 7.3.4). We define an instantaneous system: 

Definition. Systems 

(8.14) ':-1--:--:---::-_______ S_y_s_te_m.,--s_==_{_S_ta_te_S_}_ID-,S_-=-________ ...J 

Defn. 8.14: Each instantaneous system is an index of states (as per Sec. 3.8.2). That is, it is a collection of body state 
elements, each labeled with a different "natoe," or !D. Given a system Y E Systems, the state of a body labeled with 
b E IDs is given by Yb 0 

Each point in the space Systems describes the state of a collection of bodies , at an instant of time. For moving 
bodies, we analogously define a system path to be a labeled collection of paths: 

Definition. SysPaths 

SysPaths == {StatePaths}IDs (8.15) I 
~--~----------------------------------------------~--~~--~~ 
Defn. 8.15: Each system path is an index of state paths. Note that each element in the index is a function. That is, for a 
system path Y E Sys Paths , the state of body b at an instant of time tis given by Y b (t) 0 

Given Y E SysPaths, the instantaneous state of the system at a time t is given by evaluating all paths in Y 
at t; this is written as Y(t) as per Notn. 3.18. 



8.3 Mathematical Model 111 

A consistent path 
In a force field 

f- ·· .. · ... 
\ ..... --:~::-: 

.... ~-... : 
:::?".. ....... j 

Figure 8.6: A consistent path in a force field. A force field defines what tbe force would be on a body for any possible state it may be in. 
A path is consistent with a force field and a torque field (not shown) if it is consistent with the forces traced out as the body path moves 
through the field . Note that if there are several bodies in a system, the force/torque on anyone of them can depend on the stale of aU of 
them; thus the consistency of each individual path can depend on aU tbe other paths. 0 

We define a few types offields, i.e .• functions over instantaneous systems: 

(8.16) 

Definition. (fields) 

SysScalarFields { the set offunctions } - Systems x ~ -> Scalars 

SysVectorFields { the set offunctions } - Systems x ~ -> Vectors 

SysLocationFields { the set offunctions } = Systems x ~ -> Locations 

Defn. 8. 16: Scalar. vector, and location fie lds are functions on instantaneous systems and time. Smce an InStantaneous 
system Y E Systems labels each state with the ill naming its body. an individual field function F(Y. t) can depend on 
particular named bodies. 0 

As an example of a field. we can define a vector field velA that yields the velocity of the body named body A: 

(8.17) 

Given an identifier bodyA E lOs, we can define a 
vector field velA E SysVectorFields by: 

veIA(Y, t) = v(YbodyA ) 

£qn. 8.17 : Sample vector field. that gives the velocity of a body named bodyA . Note that the field i s only well-<lefined for 
systems that include this body, i.e., for bodyA E Ids(Y) . Note also that the field is independent of any bodies other than 
bodyA that may be in the system, as well as the time t. 0 

Having made the above definitions. we can extend Defn. 8.10 to apply to a collection of bodies acting under 
the influence of corresponding labeled collections of force and torque fields : (Fig. 8.6) 

(8.18) 

Definition. Consistent (system path. net force index. net torque index) 

A system path Y E SysPaths is consistent with 
F , T E {SysVectorFields} IOs iff: 

Jds(Y) = Jds(F) = Jds(T) 
Yb is consistent with (Fb 0 Y) and (Tb 0 Y), for all b E Jds(Y) 

Defn. 8.18: A system path is consistent if each individual path is consistent (Defn. 8.10) with its corresponding composite 
net force and torque functions. For each ID b, the net force and torque acting on body b are given by F b(Y(t). t) and 
Tb(Y(t). t) . Notice the force/torque on each body can depend on tbe state of all the other bodies. 0 



8.3 Mathematical Model 112 

8.3.7 Motives 

The description of rigid body motion in Defn. 8.18 assumes the existence of fields giving the net force 
and torque on each body in a system. Here, we will use the idea of motives-force/torque objects-as per 
Sec. 8.2.2, and allow a collection of separate motives to apply to each body: we will derive the net force and 
torque fields on each body by adding the contributions from a collection of motive fields. 

We start by defining a space of motives. Each element in the space is a value of a force and/or torque, 
along with the corresponding moment arm: 

(S.19) 

Definition. Motives 

Motives 
[ 

F ...... Vectors force 
T ...... Vectors torque 
arm ...... Vectors moment arm 

T= arm x F or arm = 0 

Defn. 8. 19: The space of mottves. For a coupledforceftorque , we have a non-zero force and moment ann, )'leldmg the 
corresponding torque T= arm X F. A pure/aree has force but no torque (PIO, ann = T= 0). A pure torque has torque 
but no force (F= ann=O, Tfo0). An arbitraryforceltorquepairhas (Flo 0, TfoO, ann=O). (See Fig. 8.2.) 0 

A pure force is of course equivalent to a force applied at the center of mass (arm = 0). Since we have here no 
notion of body shape, there is no requirement that the moment arm actually be "in" or "on" the body. 

An applied motive describes a motive that is applied to a particular body narne. Thus we define: 

(S.20) 

Definition. AppliedMotives 

AppliedMotives 
[ 

1 

motive ...... Motives 
F . . . F ...... Vectors 
T 
arm 
body 

... T ...... Vectors 

... arm ...... Vectors 
...... IDs 

motive 
force 
torque 
moment arm 

body that the motive is applied to 

Defn. 8.20: Motives applied to bodies. Each element defines a particular motive and the ill of a body at which it 15 

applied. 0 

We define fields of motives and applied motives, analogous to the fields in Defn. 8.16: 

Definition. (motive fields) 

SysMotiveFields == the set offunctions 
{Systems x ~-+Motives} 

(S .21 ) AppliedMotiveFields == the set offunctions 

{
a: Systems x ~ -+ AppliedMotives such that } 

body(a(Y, tll is constant 

Defn. 8.21: Motive and apphed motwe fie lds . For apphed moUve fields, we restrict the definition to those functions whose 
body ID doesn't vary, no matter what parameters its given. 0 

We require that each applied motive field corresponds with the application of a motive field to a single body. 
Thus the body aspect of an applied motive field is independent of the parameters, and we typically drop them: 



8.3 Mathematical Model 113 

(8.22) 

Notation. Dropping parameters (Y, t) for applied motive field body 

For a E AppliedMotiveFields 

body(a) == body(a(Y, t)) 

Notn. 8.22: Since, by defimnon, the body of an applIed monve field doesn 'tdepend on the parameters, for clarity we usually 
leave them off. 0 

A common occurrence in models is a force that is applied to a body at a particular body point. For example, 
we might attach a spring force to a body point at one end of a cylinder; as the cylinder moves, the spring 
follows it, always acting on the given point of the body. In terms of motives, this means: 

(8.23) 

If an applied motive field a E AppliedMotiveFields describes a force 
applied 10 a body named body(a) E IDs in system Y E SysPaths at 

body coordinates coords E lR3X3 , we have: 

anna(Y(t) , t) = ann(Bodypt(Ybod>{a) (t) , coords)) , for all t E lR 

Eqn. 8.23: For us to say that a force is "applied to a body point," the applied motive field's ann aspect must always 
agree with the body point's ann aspect as the body moves over time. 0 

Typically, a model will contain many applied motive fields acting on the various in the model. Since each 
applied motive field specifies the body it's applied to, we don't need to explicitly organize the various motive 
fields by body. We group all the applied motive fields into an index; this will let us refer to them by ID later, 
e.g., for the energy expressions in Sec. 8.3.8. 

The following functions extract the net force and torque on each body given an index of applied motives. 

(8.24) 

Definition. Fnet, Tnet 

We define the net force and torque junctions, 
Fnet {AppliedMotives} I Ds -> {Vectors }'Ds 

Tnet {AppliedMotives} I Ds -> {Vectors}, Ds such thatJor all 
A E {AppliedMotives}IDs' 

Fnet(A)b = )' F, 
-aEmtA ) 

bod}{a)=b 

Thet(Ah = )' T, 
- a EmtA)a 

bod>{a)=b 

Ids(Fnet(A)) == Ids( Thet(A)) == {body(a) I a E EIts(A) } 

Defn. 8.24: Net force and torque, given an inde. of applied moDves. For eacb body b, Fnet (Alb YIelds tbe sum of all the 
individual motive forces that are applied to body b. Note that Fnet (Al is defined to be an inde. with zero, so that if A 
doesn't apply any forces to a particular body, the body will be assigned anet force ofO. Note that we don't need to referto 
the elements of A by their ill labels. (Siroilarly for Tnet.) 0 

Using the above definition, we can extend Defn. 8.18's specification of consistent system paths to handle a 
collection of applied motives; this is the "bottom line" specification of rigid body motion in our model: 



8.3 Mathematical Model 114 

(8.25) 

Definition. Consistent (system path, applied motive index) 

A system path Y E SysPaths is consistent 
with A E {AppliedMotiveFields}IDs iff: 

Y is consistenr with (Fneto A), (Tneto A) 

Defn. 8.25: A system is consistent with an mdex of apphed mollVes if It IS conSIStent (Defn. 8.18) WIth the net force and 
torque implied by the motives. Here, as in Defn. 8.24, the ill's that label elements of the index of applied motive fields, A , 
are not neeed. 0 

8.3.8 Energy 

The following expression describes the rate of change of energy of a body, in relation to the force and torque 
applied to it: 

(8.26) 

For any state path s E StatePaths consistent with net force and torque 
functions F, T: ~-+ Vectors, 

f,KE.(t) = F(t). vc.(t) + T(t) .w.(t) 

Eqn. 8.26: Energy balance. The rate of cbange of the body's kinetic energy is equal to the power applied by the net 
force and torque acting on it, for a consistent system. This equation can be derived from Defn. 8.4 and Defn. 8. \0 0 

Thus we describe the instantaneous power being applied by a force and torque: 

(8.27) 

Given a body with state b E States that is acted 011 by a force alld torque 
F , T E Vectors, the power P E ~ being applied is given by: 

P = Fm . VC!, + Tm . Wb 

Eqn. 8.27: The instantaneous power applied to a body by an applied force and torque. 0 

To measure the energy imparted to a body by a motive, we need to keep track of the power and work associated 
with the motive as the body moves along its path, We start by defining a power motive (or just pmotive), that 
extends a motive to include power-related terms: 

(8.28) 

Defillition. Pmotives , PmotivePaths 

Pmotives 
[ 

M ...... Motives 
F .. . F ...... Vectors 
T .. . T ...... Vectors 
ann ... ann ...... Vectors 
v ...... Vectors 
w ...... Vectors 
p ...... ~ 
W ...... ~ 

P == F· v+ T·w 
1 

a motive 

a body velocity 
a body angular velocity 
power applied by motive 
work done 

PmotivePaths == the set offunctions {~-+ Pmotives} 

Defn. 8.28: Each pmOtlveelement of Pmotrv8s descnbes with the instantaneous apphcallon of a motlVe Mto a body WIth 
velocities v and w . Pis the power exerted. Wis an additional parameter, that will be used to accumulate the work done by 
the motive overtime. We also define the set of pmotive-valued paths, PmotivePaths. without any a priori restrictioDS. 0 

For a given system path, we can associate a pmotive path with an applied motive field; this pmotive path 
keeps track of the work done by that applied motive field on its body in the system: 



8.3 Mathematical Model 115 

(8.29) 

Definition. Consistent (pmotive path, applied motive field, system path) 

A power motive path p E PmotivePaths is consistent 
with a E Appl iedMotiveFields and Y E SysPaths iff 

Mp(t) 
vp(t) 

wp(t) 
1tWp(t) 

molivea(Y(t), t) 
Vc(Ybod>{a) (t)) 

= W(Ybod>{a) (t)) 
Pp(t) 

Defn. 8.29: We descnbe a power moUve path p that corresponds with an apphed moUve field, for a gIven system. The 
first three equations signify that the power motive path p continually describes the actual application of the motive, i e., the 
motive and velocity aspects agree. The final equation further restricts the path p to the one in which the rate of change of 
work is equal at each instant to the applied power (this is analogous to Defn. 6.24'5 restricting fram e paths to those with a 
velocity matching the change in location). Thus W p (t) is the total work done by a in system y, up to time t. 0 

The above definition relates a single applied motive field to a single corresponding pmotive path . For an 
index of applied motive fields, we can create a corresponding index of pmotive paths, where the label of each 
applied motive field is used to label its corresponding pmotive path. Thus we extend the above definition: 

(8.30) 

Definition. Consistent (pmotive paths, app!. motive fields, system path) 

An index o/pmotive paths P E { PmotivePaths }IDs is consistent with 
A E { Appl iedMotiveFields} IDs and Y E SysPaths iff: 

Jdi,.P ) = Jds(A) , 
Y is consistent with A , 

Pj is consistelll with A j and Y,for all f E Jds(A) 

Defn. 8.30: For an mdex of motlVe paths P to be consIStent with an mdex of apphed motIve fields .A, for a gwen system 
of bodies Y: Fmt, each path in P must be have the same ID as a field in A; Second, the Y and A must themselves be 
consistent, as per Defn. 8.25. Final ly, each pmotive path in P must be consistent with its corresponding field in A , as per 
Defn. 8.29. 0 

Putting together Eqn. 8.26 through Defn. 8.30, we have balance of energy for an entire system of bodies: 

(8.3 1) 

Given P E { PmotivePaths} I Os consistent with 
A E { Applied Motive Fields} IDs and Y E SysPaths, then/or all 

bE Jds(Y): 

KE(Yb(t)) - L W{Pj(t)) is constant 
j E Jds(A ) 

bod;{A, ) = b 

Eqn. 8.31: Energy balance. For each body in a consistent system, the total kinetic energy of the body is balanced by 
the sum of the work done by all the motives acting on it. Note thaI we don't have a precise value (e.g., 0, as one might 
expect) for this equation, because Wis only specified up to a constantofiset, by tbe differential equation in Defn. 8.29. 0 

Note that Eqn. 8.31 is merely Eqn. 8.26 applied independently and simultaneously to each body in the system. 
That is, no energy is transferred directly between bodies. Rather, the energy added to or removed from each 
body is due only to the forces acting on it. However, we can sum them together to make a single equation for 
entire system: 

(8.32) 

Given P E { PmotivePaths} IDs cOllsistentwith 
A E { AppliedMotiveFields} IDs and Y E SysPaths, we have: 

LKE(Ya(t)) - L W{Pj(t)) is constant 
a E Jds(Y) f E Jds(A) 

Eqn. 8.32: Net energy balance for a system. The total kinetic energy of the bodies is balanced by the total work done 
by the motives. 0 



8.4 Posed Problems 116 

As discussed in Sec. 8.2.2, some motive fields are conservative, and we know a potential energy associated 
with the motive. In such a case, the potential energy must balance the work done by the motive: 

(8.33) 

Given P E {PmotivePaths} I Ds consistent with 
A E {AppliedMotiveFields}IDs' and Y E SysPaths, If we have a 

potential energy field Uj E SysScalarFields for applied motive field Aj 

Uj(Y(t), t) + W(Pj(t)) is constant 

Eqo. 8.33: H a motive field A f has a potential energy U f associated with it, then as a system evolves over time, any 
lost potential energy is gained as work done by the motive, and vice versa 0 

Furthennore, for a conservative motive field, the force/torque is given by the gradient of the potential energy 
field. 

8.4 Posed Problems 

Forward Dynamics 

The most common problem we solve is to detennine the behavior of a collection of bodies that start out in 
some configuration, and are acted on by some collection offorce fields. This is theforward dynamics problem. 

(8.34) 

given: 

find: 

such that: 

to E~, 
Yo E Systems, 
A E {AppliedMotiveFields}IDs ' 
Y E SysPaths 

{ 
Y(to) = Yo 
Y is consistent withA 

Eqo. 8.34: The forward dynamics problem. Given an initial condition of a collection of bodies (at time t 0 the state is 
Yo), and a collection of motive fields applied to the bodies, determine the behavior of the bcxites for other values of t. The 
resulting system Y must match the initial conditions, and must be consistent with the appJied motives as per Defn. 8.25. 0 

The definition of consistent (Defn. 8.25) can be expanded to yield a first-order ordinary differential equation 
in canonical, numerical fonn: 

(8.35) 

For a system path Y E SysPaths consistent with 
A E {AppliedMotiveFields}IDs ' if Jds(Y) = {a , b, .. . } , then: 

d cab 
dt xc(Ya(t)) 

d cab 
dt lR(JVa(t)) 

1. ca~Ya(t)) 
d cab ) 

dt L(Ya(t) 
d cab 
dt Xc(Yb(t)) 

i.e., y' 

cabVc(Ya(t)) 

cat· (Ya(t))R(Ya(t)) 
cab 

Fnet(A(Y(t), t))a 
cab 

l]uet(A(JV(t) , t))a 

cabvc(Yb(t)) 

Eqn. 8.35: Canooical numerical ODE form for rigid-body motion. The dynamic state of all the bodies can be expressed in 
lab coordinates, and collected into a single linear array "y", The derivative of Y is a function of Y and time t~efunction 

can be constructed from.A, along with the bodies' mass dlstributions and the rigid-body equations of motion. Note that, as 
per Defn. 8.4, the values of xc, R. p and L are sufficient to identify the state of a body. given that we know its (constant) 
mass distribution. 0 



8.4 Posed Problems 117 

To solve the forward-dynamics problem, we start with an initial value for Y, then numerically integrate the 
above ODE, using any convenient numerical integrator. For any body in the system that is a pointmass, we can 
make Y smaller by eliminating the Rand L entries. Note that if Eqn. 8.35 is integrated as written, numerical 

inaccuracies will cause ca~(Yo (t)) to quickly diverge from a rotation matrix; instead, we commonly use the 
quaternion representation of the rotation , Eqn. 6.22; inaccuracies can still creep into the solution, but they are 
less significant. 

Forward Dynamics and Work 

A corollary problem to forward dynamics is to compute the amount of work done by each motive in the model; 
this means finding the consistent power motive paths: That is, we extend Eqn. 8.34: 

(8.36) 

given: 

find: 

such thar: 

to E~, 
Yo E Systems, 
A E {AppliedMotiveFields}IDs ' 
Y E SysPaths 
P E { PmotivePaths} IDs 

{ 
Y(to) = Yo 
P is consistent with A and Y 

Eqn. 8.36: An augmented forward dynamics problem. Solve the forward dynamics problem (Eqn. 8.34), but also find 
the onrresponding onnsistent (Defn. 8.30) index of pmotive paths. Then the total work done by an applied motive labeled 
i E Jds(A) uptotimetis given by W(P;(t». 0 

Expanding the definition of consistent for pmotive paths (Defn. 8.30) gives: 

(8.37) 

For a pmotive parh index Y E {PmotivePaths}IDs consistent with 
A E {AppliedMotiveFields}IDs andY E SysPaths ,if 

Jds(A) = {j , k, . .. }, then we augmenr Eqn. 8.35 

1t W{Pj(t)) =F{Pj (t)) = F(Aj (Y(t) , t) . Vc(Ybod)(A;)(t)) 
+ T(Aj (Y(t) , t) . W(Ybod)(A;)(t)) 

1t W{Pk(t)) =F{Pk(t) ) =F(Ak(Y(t), t). Vc(Ybod)(Ak)(t)) 
+T(AdY(t) , t) . W(Ybod)(Ak)(t)) 

i.e., Y'=FA(Y, t) 
P'=GA (P, Y, t ) 

Eqn. 8.37: Canonical numerical ODE form for worlc done by motives. We append equations for the worlc to tbe rigid
body motion ODE of Eqn. 8.35. 0 

As a "sanity check" for our simulations, we can plug the solution results into the energy-balance equations, 
Eqn. 8.31 and Eqn. 8.32. For conservative motives, we can check against the potential energy as per Eqn. 8.33. 
Note that initial values for the work terms can be chosen arbitrarily, since the energy balance equations are 
specified only up to a constant. We will commonly use an initial work value of 0, or, for conservative forces, 
- Uj(Yo, to), so that Eqn. 8.33 will always sum to O. 

Piecewise-continuous Forward Dynamics 

The forward dynamics problem as expressed above is continuous (for finite motives). However, a model 
that includes discontinuities can use the above ODE's to describe the continuous parts of the behavior; for 
example, the "tennis ball cannon" example in Ch. 11 sets up a forward dynamics problem as an initial-value 
piecewise-continuous ODE problem. 



8.5 Implementation Notes 118 

Program definitions in scope HRIG: 

class name abstract space 
ApplMotive ApphedMotrves (De/n.820) 
ApplMotiveField AppliedMotiveFields (De/n.821) 
ApplKotiveFieldldx {AppliedMotiveFields}IDs index a/fields 
ApplKotiveldx {AppliedMotives} IDs index of applied motives 
ApplKotiveldxField Systems x ~ ..... { AppliedMotives}IDs field that yields an index 
MassDist MassDists (De/n . 82) 
Motive Motives (De/n.8.19) 
Pmotive Pmotives (De/n. 828) 
PmotivePath PmotivePaths (De/n.828) 
PmotivePathIdx { PmotivePaths} IDs index 0/ pmotive paths 
State States (De/n.8.4) 
StatePath State Paths (De/n.8.6) 
SysLocationField SysLocation Fields (De/n.8.16) 
SysLocationFieldldx {SysLocationFields} IDs index a/location fields 
SysMotiveField SysMotiveFields (De/n . 8.16) 
SysPath SysPaths (De/n . 8.15) 
SysScalarField SysScalarFields (De/n.8.16) 
SysScalarFieldldx {SysScalarFields}IDs index 0/ location fields 
SysVectorField SysVectorFields (De/n.8.16) 
SysVectorFieldIdx {Sys VectorFields } I Os index 0/ location fields 
System Systems (De/n . 8.14) 

Figure 8.7: Math section definitions in the prototype implementation. 0 

Other Posed Problems 

Other problems can be posed as well. Inverse dynamics problems compute forces and torques that yield given 
desired behaviors or constraints on behavior. Often, the resulting forces and torques are then used in a forward 
dynamics formulation, to yield the complete behavior, as in [lsaacs,Cohen87] or [Barzel,Barr88] (the latter 
of which we incorporate into the "fancy forces" module, Ch. 9). 

[Witkin,Kass88] finds behavior that optimizes objectives such as energy, for motion that can be constrained 
at multiple points. They pose a constrained optimization problem, in which the dynamics of body motion 
(Defn. 8.10 in our formulation) is treated as an additional constraint, on discretized force and motion functions ; 
force function parameters are found that optimize the given objective functions. 

8.5 Implementation Notest 

8.5.1 Conceptual Section Constructs 

In the conceptual section of a program, a conceptual body object can be built from kinematic conceptual bodies 
(Sec. 7.5.1) , which maintain the position and orientation and "know" how to draw the body, augmented with 
mass distribution values. 

This module supports a few simple motives; classes are defined for Hookean springs, constant fields , 
viscous damping, and so forth. Each class defines a routine to compute the associated field function (or a pair 
of routines that compute equal-and-opposite fields , e.g., for a spring linking two bodies). Motive classes also 
support a "draw" method, that can draw arrows or otherwise illustrate the force. 

8.5.2 Math Section Constructs 

The math section for this module has scope name HRIG ("Math RIGid-body dynamics"): Fig. 8.7 lists the 
classes that are defined. All are defined straightforwardly, as described in Sec. B.3. We will give a few notes. 

tSee Appendix B for discussion of the tenninology. notation, and overall approach used here. 



8.5 Implementation Notes 

• Class definition for MassDists (Defn. 8.2): 

class MassDist : 
constructors: (double m, I[3][3], double em[3]) construct arbitrary body 

members: 
(double m) construct point mass 
m : double 
minv : double 
I : double [3] [3] 
Iinv : double [3] [3] 
em : double [3] 
is_ptmass: int 

nelmass 
inverse of the mass, i.e. 11m 
inertia tensor matrix 
inverse of the inertia rna/rit, i.e. 1-1 

body coonis of center of mass 
true if is a point mass, De/n. 83 

119 

The state space class MassDist, defined the standard manner (Sec. B.3.6), has two constructors: theconstruc
tor for point masses sets I and ern to 0; conversely, the constructor for arbitrary bodies signals an error if 0 is 
given for I. Both constructors precompute the inverses of rn and I, so that they won't need to be repeatedly 
computed during execution. Notice that we add an extra member that lets us easily distinguish point masses . 
• Class definition for States (Defn. 8.4): 

class State : 
constructors: (MassDist) MKII : :State) 

(MassDist, MCO : :Location xc, MCO : : Orientation R, MCO: :Vector p,L) 
<MassDist, MCO : :Location xc, MCO :: Vector p) 
<MassDist, MCO : :Frame, MCO::Vector vc,v) 
(MassDist, MKII: :State, MCO: :Vector p,L) 

members: mdist: MassDist 
m : double 
minv : double 
I : MCO : : 2tensor 
Iinv : MCO : : 2tensor 
k : "KII: :State 
f : KCO: : InstFrame 
x : KCO : :Location 
R : MCO : : Orientation 
v : MCO : : Vector 
v : MCO : : Vector 
arm : KCO : : Vector 
xc : MCO: :Location 
vc : MCO: : Vector 

p : MCO : : Vector 
L : KCO: : Vector 
KEv : doubl e 
KEv : double 
KE : double 

The state space class Stat e has several constructors that define elements based on the various identifying 
tuples discussed in Defn. 8.4. In addition, there is a constructor that takes a non-minimal tuple-a mass 
distribution, a kinematic state, and momentum vectors p and L--and checks that the given values are consistent 
with the internal properties of the space (p = m VC, etc.) . 

• Class definitions for fields (Defn. 8.16): 

class SysVectorField : 
constructors: ( KCO:: Vector v) constant 
methods: eval(System. double t) : MCO: :Vector 

(The classes SysScalarField and SysVeetorField are similar.) The first constructor above creates a 
constant field. The second, a field that extracts a vector property of an individual body, where the Fieldeode 
parameter chooses which property; for example, the velA example field in Eqn. 8.17 would be constructed 
via the parameter pair (BODY_VEL, bodyA) . In addition to these, there is support for fields that are algebraic 
combinations of other fields , for fields that are evaluated by calling arbitrary user-supplied subroutines, and 
so forth. 



8.5 Implementation Notes 120 

8.5.3 M-N Interface 

The scope name for the M-N interface is NRIG. We define a routine to solve the forward dynamics problem, 
Eqn. 8.34, given initial conditions and a field that computes an applied motive index. 

SolveForvard(double to, System YO, ApplMotiveldxField A) : SysPath 

This function returns a SysPath object-when can then be evaluated at arbitrary values of time t. The object 
is set up internally so that the ODE solver NUM: : OdeScatExt (Sec. B.4.6) is invoked to integrate Eqn. 8.35 as 
necessary to perfonn the evaluation. Notice that this routine does not take an index of applied motive fields , 
i.e., A E {Applied Motive Fields} IDs of Eqn. 8.35, but rather the implied function (Defn. 3.17) that returns 
an index; an instance of the implied function's class, ApplMotiveldxField,can be created trivially from the 
index of applied motive fields, as per Sec. B.3.7. (Using the implied function allows the numerical solver to 
perfonn a single evaluation to compute all the motives; this is convenient when the motives must be computed 
simultaneously, as in the fancy force mechanism of Ch. 9.) 

A similar routine 

SolveForvardEnergy( ... ) : PmotivePathIdx 

returns the a Pmot i vePathldx object that solves the augmented forward dynamics problem, Eqn. 8.36. 
Both the above routines can also be used to define the continuous behavior of an initial-value piecewise

continuous ODE problem; the returned paths invoke the HUM: : podeScatExt solver (Sec. B.4.9). 

8.5.4 C-M Interface 

To solve a forward dynamics problem, the C-M interface perfonns the following initial setup: 

• Construct a System instance, YO, from the initial conceptual model state. (This defines a map from 
conceptual body objects to math JD's.) 

• Construct a ApplMotiveFieldldx instance, A, from the conceptual motive objects. (This defines a 
map from conceptual force objects to math JD's.) 

• Constructthe solution object: Y = NRIG:: Sol v eFon:ard ( to, YO, A) . 

• For energy computation, construct the solution object: P = NRIG :: Sol veForllardEnergy(. .. ) . 

To set the conceptual model state for any time t, the C-M interface does: 

• ComputetheSysteminstanceYt = yet) . 

• For each JD i in Yt , set the state of the corresponding conceptual body object based on Yt [i] . 

• For energy computation, similarly set the state of each force object based on P (t). 

The conceptual section can then draw the bodies, print the energy values, check energy balance, etc. 
It can be convenient to allow the conceptual model to associate dimensional units with the various quan

tities. For example, mass may be specified in grams or kilograms, and distance in meters or inches. The 
mathematical model, as discussed in Sec. 6.3 , must be expressed using unifonn units. Thus the C-M interface 
should perfonn the proper scaling. Note in particular that the inertia tensor is in units of mass-length 2 thus 
varies quadratically with changes in length scale. 



Chapter 9 

"Fancy Forces" Model 

The rigid body model in Ch. 8 is force-based: by assumption, all interactions between bodies and all envi
ronmental effects on a body are mediated by the forces (and torques) applied to the bodies. In particular, 

if we-as creators and users of a model-wish to influence the behavior of the bodies, we must do so through 
application of forces . Ch. 8 assumed the existence of forces and force fields, but did not discuss how to create 
them. 

This chapter presents a mechanism to create forces and apply them to bodies. It supports forces due explicitly to 
things in the model, such as springs and gravity, as well as constrain! forces that can be introduced in order to 

connect bodies together, specify their motion, and so forth. All the forces fit into a common mathematical model. 

The constraint forces in this model use the "dynamic constraints" method described in [Barzel,Barr88]. Indeed, 
this entire chapter essentially rephrases that work, to use the structured design framework. In particular, the origi
nal work defined mathematical "model fragments" for the individual constraints and relied on a word/pseudocode 
description to combine them-here, we create a complete mathematical model that includes the "glue" between 
the fragments. 

121 

For an example of the "fancy forces" mechanism in use, see the "swinging chain" model in Ch. 10. Although 
the material in this chapter is self-contained, we refer readers to [Barzel ,Barr88] for fuller discussion; and more 
extensive treatment of the topic can be found in [BarzeI88]. 

9.1 Goals 

Our goals for this model are: 

• To pre-define various types of force objects, which can later be applied to arbitrary bodies. 

• To allow a single force object to generate related forces on several bodies; e.g., an elastic spring would 
exert equal-and-opposite forces on two bodies. 

• To support geometric constraints (via the "dynamic constraints" mechanism of [8arzel,8arr88]). 

• To have a uniform mathematical formulation, that can accomodate the various types of forces. 

9.2 Conceptual Model 

This module describes a mechanism for creating force and torque objects, for use in conjunction with the 
rigid-body dynamics model ofCh. 8. Note that Ch. 8 defined a motive to be a force and/or torque vector, and 



9.2 Conceptual Model 122 

a. Gravitational Acceleration b. Elastic Spring 

..•••..... (~,~ 
..... : : .))))))1.: : ........ . 

....... --.\ .. -.. ~ ... / \ ....... ,/ ....... . 

c. Resistance (Damping) d. Geometric constraint 

Figure 9.1: Various types of force objects. (a) Gravitational acceleration yields a constant force on a body. proportional to its mass. (b) 
An elastic spring yields equal-and-<JPposite forces on a pair of bodies based on their separation distance. (c) Damping yields a force 
negatively proportional to the body velocity. thus resisting motion. (d) Geometric constraints (a "point-to-point" constraint is illustrated) 
induce forces whose values are not known explicitly. but instead adapt so as to maintain the constraints no matter what other motions 
and forces affect the bodies. 0 

motive field to be a function that yields a single motive given the configuration of a collection of bodies. Here, 
we return to the word force, but with a more general connotation: 

• Aforce object is a conceptual entity that is a source of motives. 

A force object may be defined to act on one, two, or more bodies. When a force object is applied to a specific 
set of bodies (at a specified point on each body), it determines a motive field on each body. Fig. 9.1 illustrates 
several example. 

9.2.1 Force Pairs 

If a force object acts on one body, it will typically apply a force along with the corresponding coupled torque 
(due to the moment arm of the point of application; see Sec. 8.2.2). A force object that acts on several bodies 
will apply a separate coupled force/torque to each. 

Commonly, a force object that acts on two bodies will apply forces to the bodies that are equal-and
opposite. Such a force pair adds no net linear momentum to the system as a whole--the position of the 
aggregate center of mass isn't affected-though it may add angular momentum, unless the points of applica
tion on the two bodies are at the same location in space, i.e., the bodies are touching. 



9.2 Conceptual Model 123 

Single Force Force Pair Collinear Force Pair 

Figure 9.2: A force object acting on several bodies applies a different force to each. Commonly. a force object acting on two bodies will 
apply an equal-and-<>pposite pair of forces. (Ibe corresponding torques are not illustrated.) 0 

A force pair that points along the line connecting the application points is called a collinear force pair
these force objects embody Newton's third law ("every action has an equal and opposite reaction") and are 
thus consistent with many natural sources of force, such as elastic springs, gravitational and electrostatic 
attraction, surface contact, and so forth .l 

In the general case, we allow a force object to apply an arbitrary force/torque to each body that it acts on. 

9.2.2 Explicit Forces 

For our model of rigid-body dynamics, forces are the medium by which bodies interact with each other and the 
environment. In many cases, we can abstract away the undedyingphysical mechanism , and simply express a 
force as an explicit function of the configuration of the model. We give a few examples: 

Gravitational Acceleration (Fig. 9.1a) For laboratory-scale environments on the surface of the earth, we 
can express the earth's gravitational attraction on a body as a constant downward acceleration, i.e., a 
force proportional to the body mass , acting at the center of mass. At larger scales, we would need to 
use Newton 's radial, inverse-square law of gravitation. 

Damping (Fig. 9.1c) Newton 's first law tells us that objects in motion tend to stay in motion. However, in 
practice, bodies are almost always affected by friction and air resistance. When we create models , it is 
often convenient to gloss over the details , and essentially use the pre-Newtonian law "a body in motion 
tends to come to rest" . To do so, we introduce a damping force that is opposite to body's velocity 
(and similarly, a damping torque that is opposite to the body's angular velocity). Damping forces are 
dissipative (Sec. 8.2.5)-they always remove energy from the bodies they act on. 

Damping that is linearly proportional to body speed is called viscous; it can quickly bring a body to 
rest, resisting motion as if the body were slogging through goo. Quadratic damping-proportional to 
the square of the speed-is a rough approximation for air resistance: it opposes motion at high speeds, 
but is negligible at low speeds. Reasonable results can often be achieved by combining small amounts 
of viscous and quadratic damping.2 

Elastic Spring (Fig. 9.1b) It is often convenient to model the effect of attaching two bodies by a spring (or a 
rubber band). We assume that the mass and motion of the spring itself is unimportant-thus we don ' t 
introduce the spring into the model as a body, but merely as a force object that acts on the bodies it 

IIf a collinear force pair acts on the bodies' center> of mass, il is called a cenlral force ([GoldsteinBO]). 
2We must stress that applying a motion-resisting damping force to a bodyis a very simple ad hoc approximation to real-world effects. 

A more studied approximation to air resistance would take into account the shape of the body and the profile that it offers to the air, and, 
of course, the resulting disturbance of the air is significant as weU. 



9.3 Mathematical Model 124 

Point-to-nail Point-to-path Point-to-point 

'" 
'" """'::\" 

,-:=<Y ...... -/ 

'" 

i iii 
. ..-\ \1:::: ........ . 

..... \:! 
~ ••••••••• • • • • y 

Figure 9.3: Some geometric constraints. The point-toenail constraint requires that a body point be at a constant location in space; the 
body is free swing and rotate about that point. More generaUy. the point-to-path constraint specifies a kinematic path for a body point to 
follow. Two bodies may be assembled via a point-lo-point constraint; the specified body tXJints must stay attached, but the bodies may 
otherwise move freely. 0 

attaches. A spring always pulls or pushes along its own length, thus yielding a collinear force pair 
(Sec. 9.2.1). The strength is usually based on Hooke's law, i.e., is proportional to the displacement of 
the spring from its rest length. 

Often, there is friction or other dissipation in the spring; we can add a damping term that opposes change 
in the length of the spring, to yield a spring-and-dashpot(analogous to an automotive shock absorber). 
Damping helps to limit oscillations that springs induce in a model. 

9.2.3 Geometric Constraints 

A powerful way to control models to specify constraints on the geometric configuration of the bodies. Fig. 9.3 
illustrates three basic constraints on the locations body points: point-to-nail, point-to-path, andpoillt-to-poillt. 
Other constraints might involve the orientations or surfaces of bodies. 

In order to effect the constraints , forces must be applied to the bodies. Thus a geometric constraint is a 
type offorce object; the resulting forces are called constraintforces. Unlike explicit force objects (Sec. 9.2.2) , 
we can'tknow in advance precisely what the forces should be-the constraint forces need to take into account 
the influences of other forces that act on the bodies. 

But what is the "meaning," or physical interpretation, of the constraint objects? There are two outlooks: 

• An abstraction of mechanical mechanisms. For example, a pOint-to-point constraint can be thought of 
as an idealized ball-and-socket joint: the resulting constraint forces are equipollent to the forces that a 
frictionless physical joint would exert, but we don't need to model the details of the joint. 

• "The hand of god." Sometimes, we don ' t have or need an underlying physical mechanism. For exam
ple, we may perform an experiment in which we presuppose that one point on a body follows a given 
path, in order to determine the dynamic response of the rest of the system. 

Note that it is possible to overcollsrrain a model, and describe a physically unrealizable assemblage of 
a collection of bodies. As a trivial example, one might constrain the opposite ends of a rigid body to be at 
the same location in space. We would like our implementation to inform us when a model encounters an 
unrealizable set of constraints-but we place no restrictions on the resulting behavior. 

9.3 Mathematical Model 

The mathematical model for this module has a few features that bear mentioning: 



9.3 Mathematical Model 125 

• Generality. We have opted for generality in the design of the mathematical model , to support not just the 
specific examples of force objects listed in Sec. 9.2, but a wide class of explicit or implicit (constraint) 
forces. The resulting model is thus somewhat abstract. 

• Housekeeping. The mathematical model follows the philosophy of Ch. 3: All dependencies between 
quantities in the model are made explicit. This requires a fair amount of "housekeeping," because each 
force object can apply to arbitrary bodies, and furthermore because the values of the constraint forces 
can depend on all the other forces in the system. The resulting model is thus somewhat arcane. 

• Infrastructure. Unlike those of Ch. 6-8, the mathematical model here does not immediately follow the 
conceptual model: instead, we first define a mathematical infrastructure. That infrastructure is then 
used to define the mathematical elements that correspond with the conceptual objects of Sec. 9.2. 

We include an overview of the mathematical model in Secs. 9.3.1-9.3.3, before going on to the exposition in 
the remaining sections. 

9.3.1 Overview: Connection with Rigid Body Model 

The link between this model and the dynamic rigid body model (Ch. 8) is via Defn. 8.25, which defines the 
behavior of a collection of bodies via an applied motive index 

A E {AppliedMotiveFields}IDs ' 

i.e., a function which, given the state of a system, Y E Systems at time t E !R yields an index of applied 
motives3 A E {AppliedMotives}IDs: 

A = A(Y,t). 

Recall that each element of A is an applied motive, i.e., a motive and the name of the body it applies to. 
The role of the "fancy forces" model is thus to define a function A-i.e., to relate a state Y and time t with 

a collection A of motives that are applied to bodies-consistent with any given collection of force objects 
acting on bodies in a model. We will provide an abstract definition of A in Defn. 9.15; and the equation that 
ultimately relates A, Y, and t is given in Eqn. 9.21. 

9.3.2 Overview: Contrast with Previous Formulation 

The exposition of the "dynamic constraints" method in [BatZeI88] (and, more compactly, in [BatZel,Barr88]) 
starts with a statement of an inverse dynamics problem--<letennine the unknown constraint forces given 
requirements for behavior-and proceeds to derive a linear equation for the constraint forces . 

Here, we take the opposite approach. We axiomatically define a series of abstract constructs and mech
anisms for defining and constraining motives, and refine and build on them-until we have constructed the 
essentially same linear constraint equation as the original work. 

The most significant feature of the current mathematical model is that it is complete and explicit, in keeping 
with the goals and philosophy discussed in Sec. 3.2. The original work, in contrast, described the various 
"model fragments" in isolarion , and described the resulting linear constraint equation, but the details of which 
constraints applied to which bodies were left implicit. 

9.3.3 Overview: Decomposition of Force Objects 

We decompose a force object into three parts: A proto-motive, which is an array of "knobs" that can be 
tweaked; a motive-generator junction that creates motives based on the settings of those knobs; and a con
straintjunction that examines the results to see if they are appropriate: (Fig. 9.4) 

3Pormally. A is an index offunctioos. and we are discussing its impliedftmction as per Defn. 3.17. 



9.3 Mathematical Model 

Proto-Motives Applied Motives 

Gen10 
--------------------------). 

? 

Gen20 ... ? 

---------------------------------~ . 
.. _--- .. _-- .. -...... . 

------------- -- ----. 

Gen30 
---- - ---------------------------------------------~ ? 

126 

Constr10 dO 

Constr20 dO 

Constr30 dO 

Figure 9.4: Outline of proto-motive mechanism. Each prolO-molive is a real-number array of some size. Each motive-generator function 
Oabeled uGen l :' etc.) converts a proto-motive into one or more applied motives. Constraintfunctions ("Constrl ," etc.) examine the 
entire state of the system of bodies and collection of applied motives. A system is consistent if the values of the proto-motives are such 
that aU the constraint functions evaluate to O. 0 

Proto-motive. The forces and torques that are applied by a force object are often interrelated, and have limited 
degrees of freedom (d.o.f.). For example: the torque on each body is often due to the force acting at 
a moment arm (3 d.o.f. per body); or, the forces on two bodies may be a collinear equal-and-opposite 
pair (1 d.oJ. for the two forces) . The proto-motive is an array of real numbers (a " vec" as per Sec. A.2) 
having as many dimensions as there are degrees of freedom. 

Motive-generator function. Given the names of the bodies, and the points of application on each, the motive
generator function maps from proto-motive values to a collection of applied motives. For example, a 
single force on a single body has 3 do.f., and the 3 proto-motive values can be used directly as the 
coordinates of the force vector. A force pair on two bodies also has 3 d.oJ.: the 3 proto-motive values 
can be used as the coordinates of the force on one body, and their negation as the coordinates of the 
force on the other body. (In both cases the torque follows from the moment arm, so adds no d.o.f.) 

Defn. 9.6 will define ProtoGens[n, k) to be the space of motive-generator functions that act on n 
bodies, and have k degrees of freedom. Ultimately, in Sec. 9.3.8, we will define several common 
motive-generator functions: a single pure force, a single pure torque, a single coupled force/torque, a 
force pair, and a collinear force pair. 

Constraint function. The proto-motives provide us with "knobs" to tweak, in order to adjust the forces and 
torques-but we need to choose the settings for those knobs. Thus we define a constraint function , 
that examines a collection of applied motives, and the state of the system, and tells us whether they 
are acceptable-the function yields an array of reals, that are all equal to 0 if the motives are OK. A 
constraint function may examine all the motives and bodies in the system in order to decide whether 



9.3 Mathematical Model 127 

they are acceptable. Thus the value of a constraint function may be influenced by the settings of other 
force objects. 

Defn. 9.7 will define ProtoConstrs[n , k] to be the space of constraint functions that check n bodies 
and yield k values. Secs. 9.3.9,9.3.10 will define several constraint functions for the force objects in 
Sec. 9.2: for gravitational acceleration, for damping, for an elastic spring, and for point-to-nail, point
to-path , and point-to-point constraints. 

9.3.4 Names & Notation 

The scope name for this module is: 
FORCES 

We make use of the following terms from other modules : 

AppliedMotiveFields (Defn. 8.21) 
AppliedMotives (Defn.8.20) 
Bodypt (Defn.8.12) 
Bodypts (Defn.8.12) 
IDs (Defn.3.8) 
£nb (Defn.6.4) 
Locations (Defn.6.1) 
Mats (Defn. A.2) 

Fnet (Defn.8.24) 
Tnet (Defn.8.24) 
State Paths (Defn. 8.6) 
SysPaths (Defn. 8.15) 
Systems (Defn. 8.14) 
Vectors (Defn.6.1) 
Vecs (Defn. A.2) 

We use Systems to mean RIGID:: Systems rather than KINEMATIC:: Systems, and similarly for Bodypts, 
etc. We also extensively use subscript notation for indexes and state spaces, and specializations of state spaces: 

x, 
AcB 

(Notn. 3.11, for an index X and ID i) 
(Notn. 3.27, for aspec t x of state space element s) 
(Notn. 3.32 and Notn. 3.33) 

9.3.5 Application Information 

In order to specify which bodies a particular force object will be applied to, and what the IDs of the resulting 
motives should be, we define a state space containing application information elements: 

(9.1) 

DefiniTion. Appliclnfos 

Appliclnfos 
[ 
a ...... IOs 
b ...... IOs 
pt ...... ~3 

] 

ID of an applied motive 
ID ofa body 
body coordinates of application paine 

Defn. 9.1: Each applicatton tnfo p E Appliclnfos contains the ID of an applied motlYe, the ID of a body that the moltve 
acts on, and the body coordinates of the point at which theforee should be applied (for coupled foree/torque motives). 0 

Because a force object may act on several bodies, we define applicaTion sets of information elements: 

(9.2) 

Definition. ApplicSets 

ApplicSets 

ApplicSets[n] 

= the space {ordered sets of Appliclnfos } 

= { s E ApplicSets Illsll = n } 

Defn. 9.2: An application set s E ApplicSets{ n] has sizes = n, i.e. contains n elements; since the set is ordered, we can 
examine its elements by number. so, 81 , ... Sn - l. 0 



9.3 Mathematical Model 128 

We would like to identify when the motives listed in an application set are to be found in a given index of 
applied motives. Thus we define: 

(9.3) 

Definition. Compatible (motive index, application set) 

An applied motive index A E {AppliedMotives }IDs and an 
application set s E ApplicSets are compatible iff: 

a(r) 
b(r) 

E Ids(A) , 
body(Aa(r ), 

all rEs 
all rEs 

Defn. 9.3: An applicatIon set s is compatIb1e with an index of applied mOllves A if each apphcation info T E s corresponds 
with an applied motive in A. That is, the ID a (r) must be the label of an element of A; that element must be applied to 
body ID b(r), where a and b are as per Defn. 9.1. Note that A may also have additional elements that are not specified by 
any pair in s . 0 

Furthennore, we would like to identify when a collection of application sets account for all the motives in an 
index: 

(9.4) 

Definition. Compatible (motive index, application set index) 

An applied motive index A E {AppliedMotives} I Ds and 
an application set index S E {ApplicSets} I Ds are compatible iff: 

- A is compatible with s ,for all s E Elts( S) 

-IIAII = E Ilsll 
sEElts(s ) 

Defn.9.4: Compatlblemdex of apphedmoltves and mdex of applicalton sets. The apphedmonve mdexmust becompanble 
(Defn. 9.3) with each application set. The total number of applied motives must agree with the total number of application 
infos-this implies that each application info and each application set is unique. 0 

It will be convenient to have some notation for various quantities relating to the point of application of a body 
force, as specified by application info: 

(9.5) 

N alation. Point of application 

Given application info r E Appliclnfos and system Slate Y E Systems, we 
write: 

x(Y, r) 

v(Y, r) 

ann(Y,r) 

aceo(Y, r) 

aCCF(Y, r) 

acOr(Y, r) 

with s = Yb (r) and d = Bodypt(s, pt(r», 
cab 

Xd location 
cab 

Vd velocity 
cab 

annd moment arm 

ca~anndI-l(ws x Ls) +ws x (ws X annd» 
free acceleration 

acceleration force-dependence 

acceleration torque-dependence 

NOlD. 9.5: Quantlttes for a POint of applica1100. The acceleranon aceo 15 due to the rotatton of the body; ace F and accT are 
coefficients that yield acceleration due to force and torque. Bodypt maps from body point coordinates to a dynamic body 
point state element (Defn. 8.12). Derivations for the acceleration tenns are given in Sec. 9.6.1. 0 

9.3.6 Proto-Motive Mechanism 

This section defines the proto-motive mechanism that is outlined in Sec. 9.3.3. First, we define the class of 
motive-generator functions (Sec. 9.3.3), which map from "vec" -valuedproto-monves to applied motives: 



9.3 Mathematical Model 129 

(9.6) 

Definition. ProtoGens 

protoG{ens[n(';~~e~~ s~t :t)nctions } 

! : ApplicSets [n] x --+ { Appl iedMotives} I Ds 
Vecs[k] 

such that !(Y, t, s, x) and s are compatible 

Defu. 9.6: Monve-generalor functions for n monves. usmg k degrees of freedom. Given a system Y E at time t E ~. and 
anapplicatioo set s E ApplicSets[nJ naming the nmotives to generate and the bodies to apply them to. a motive-generator 
function maps from a proto-motive value x E Vecs [k] to an index of applied motives. 0 

And next. the class of constraint functions. which yield constraint residues. given an index of applied motives: 

(9.7) 

Definition. ProtoConstrs 

ProtoConstrs[n , k] = set offunctions 

{ ( 
~~~1~~!t;[~: ) --+ VeCS[k] } 

{AppliedMotives} IDs

Defn. 9.7: Constramtfunctions for n motives, }'1eldmg k resIdues. GIven a system Y E at tune t E ~. and an applicatlOD
sel s E ApplicSets[nJ naming the n motives and bodies of interest. a constr:rint function maps f rom an index of applied
motives A E {AppliedMotiv9s } IDs to a size-k vee of residues that are 0 if the constraint is met. 0

We bundle together a constraint function and motive-generator function into a proto-specifier. that describes
aforce object as per Sec. 9.2:

(9.8)

Definition. ProtoSpecs

ProtoSpecs
[
n /Iltegers
cz / ntegers
pz /Iltegers
Constr ProtoConstrs[n, cz]
Gen ProtoGens[n, pzj

]

number of motives
size of the constraint
size of the proto-motive
constraint function
motive-generator function

Defu. 9.8: Each proto-specifier p E ProtoSpecs has a coostraint function and a motive-generator function. ' Commonly.
we will have cz" = P"P. i.e. the number of degrees of freedom agrees with the number of constraint equations, but we do
not require this. 0

A proto-specifier takes a proto-motive as input. and yields a constraint residue as output. with an index of
applied motives as the intermediate result (Fig. 9.4). Note that all proto-specifiers in a model share a single
applied motive index.

Do a given proto-specifier index and application set index jibe? We define:

(9.9)

Definition. Compatible (proto-specifier index. application set index)

A proto-specifier index P E {ProtoSpecs} I Ds and an
application set index S E {ApplicSets }IDs are compatible ijf:

Ids(P)

IISi li
= Ids(S)

n(Pi), all i E Ids(P)

Defn. 9.9: Compa11ble proto-specifier and apphcation set indexes. Each application set has the number of elements that 15

appropriate for its corresponding proto-specifier. 0

• Notice that we have slightly extended the state-space notation of Sec. 3.9, by specifying the sizes of the functions, n, cz , and pz,
"inline" rather than via separate explicit properties.

9.3 Mathematical Model 130

Similarly, does a proto-specifier index agree with a proto-motive index?

(9.10)

Definition . Compatible (proto-specifier index, proto-motive index)

A prow-specifier index P E {ProtoSpecs} I Ds and a
prow-motive index X E {Vecs} I Ds are compatible iff:

IdJ{P) = Ids(X)

Sz(Xi) = pz(Pi) , all i E IdJ{P)

Defn. 9.10: CompatIble proto-speCIfier and proto-mottve indexes. Each proto-motive is the appropriate SIze for its corre
sponding proto-specifier. 0

Putting together the various types of compatibility, we define:

(9 .11)

Definition. Compatible ensemble

A group of indexes P E {ProtoSpecs }IDs ' X E {Vecs} IDs'
S E {ApplicSets}IDs' and A E {AppliedMotives}IDsforma

compatible ensemble iff:

• P is compatible (Defn. 9.10) with X,
• P is compatible (Defn. 9.9) with S, and
• S is compatible (Defn. 9.4) with A

Defn. 9.11 : Structurally comparible ensemble. Each proto-specifier P ; maps ItS correspondmg proto-morive X i to the
applied motives listed in its corresponding application set S i . All the resulting applied motives are gathered in A. 0

From Defn. 9.4, we know that the elements of S in a compatible ensemble are unique. Thus we can use them
as subscripts, instead of !D's.

(9.12)

Notation. Application Sets as Subscripts

Given a compatible ensemble P E {ProtoSpecs}IDs' X E {Vecs}IDs'
S E {ApplicSets}IDs" and A E {AppliedMotives}IDs: if

s E ApplicSets and i E Ids(S) are such that s = Si , we write:

X. ,=Xi
P . ,=Pi
cz. '= Cz(Pi)
pz. '=Pz(Pi)

ConsU. '= COnsfI(Pi)
Gen. '= Gen(P;)

Notn. 9.12: Subscript Dotallon for companble sets. In a comparible ensemble. the elements S are umque (Defn. 9.4). so
we can them as subscripts to refer to the the corresponding elements of X and 'P. For further shorthand, we al so use tbose
subscripts directly for the aspects of elements of P . 0

The components of a compatible ensemble (Defn. 9.11) have the proper structure-all the right sizes, the right
!D's in the right places, etc.-but we also want to have the proper values:

(9.13)

Definition. Consistent

A compatible ensemble P E {ProtoSpecs}IDs' X E {Vecs}IDs'
S E {ApplicSets}IDs' and A E {AppliedMotives}IDs is consistent with

Y E Systems and t E ~ iff:

For all s E Elts(S) :
• Consu. (Y, t , s , A) = 0
• Gen. (Y, t , s, X.) ~ A

Defn. 9.13: A compatible ensemble 15 consistent with an lnstantaneous state if all the constraUlts are met, and if aU the
applied motives agree with the motive-generatorfuncrions. 0

9.3 Mathematical Model 131

Note, from Defn. 9.4 and Defn. 9.6, the latter equation above is equivalent to:

(9.14)

[given same as Defn. 9.13J,for all S E Elts(S) and all
i E Ids{ Gen,(Y, t , s , X,))

Gen,(Y, t , s,X')i = Ai

Eqn. 9.14: Each motive-generator function GeD $ yields an index of applied motives; and each applied motive in that
index is labeled by the same ill in the overall applied motive index A. 0

We are now in a position to define an index of applied motive fields (as per the discussion in Sec. 9.3.1) , based
on an index of proto-specifiers and an index of application sets:

(9.15)

Definition. Consistent (applied motive field, proto-specifier index)

An index of applied motive fields A E {Applied Motive Fields} I Ds is
consistent with P E {ProtoSpecs}IDs and S E {ApplicSets}IDs iff:

for any Y E Systems and t E ~.
there exists X E {Vecs}lDs '

such that the ensemble P , X, S , A(Y, t) is consistent with Yond t

Defn. 9.15: The field A IS cooSlstent Wlth l' and S if at each pomt in space/time 1t maps to a colleaioo of motives thal are
consistent with l' and S . 0

The definitions in this section provide us with a useful framework, but they are too general to perform com
putations. Next section will look at a restricted class of proto-specifiers, whose functions are linear.

9.3.7 Linear Proto-Motive Mechanism

Sec. 9.3.6 defined the structural relationships between the components for arbitrary proto-specifiers. Here, we
examine proto-specifiers whose constraint and motive-generator functions are linear; these will be sufficient
to handle both explicit force objects (Sec. 9.2.2) and "dynamic constraint" force objects (Sec. 9.2.3).

The presentation in this section defines canonical forms for linear proto-motive and constraint functions.
These forms are inserted into the definition of a consistent ensemble, Defn. 9.13, resulting in a constraint
equation, Eqn. 9.21, that is linear in the proto-motives.

We start by defining fields analogous to the location, vector, and scalar fields of Defn. 8.16, except that
these fields also take application sets as parameters:

9.3 Mathematical Model 132

(9.16)

Definition. (fields)

SysVecFields[n, k] =' the set offunctions

{ (
Systems x ~) V [k]}

x ApplicSets[n] --> ecs -

SysMatidxFields[n, j, k] =' the set ottunctions

{ (xSl;~~~~e7s~]) -> {Mats[j, k]}IDS}
SysMatidxAFields[n, j , k] =' the set ottunctions

{
f E SysMatidxFields[n , j, k] such that}

Ids(f(Y, t, 5)) = {a(r) IrE 5 }

SysMatidxBFields[n, j , k] =' the set ottunctions

{
f E SysMatidxFields[n, j, k] such that}

Ids(f(Y, t , 5)) = {b(r) IrE 5 }

Defn. 9.16: Fields over mstantaneous state, that are additionally parametnzed by apphcahons sets. Note that ele
ments of SysMatidxFields[n, j , k] are functions that yield indexes with O. The spaces SysMatidxAFields [n, j, k] and
SysMatidxBFields[n, j , k] are subsets of SysMatidxFields [n , j, kJ, that yield indexes whose ID's are specified by the
application set parameter s E ApplicSets; the former uses the applied motive !D's listed in s , while the latter uses the
bodyID's.D

We define the set of motive-generator functions that are linear in the proto-motives-this is a subset of the
general class of motive-generator functions (Defn. 9.6). Notice the use of a state space specialization, as per
Notn. 3.32, to define aspect operators on the subset

(9.17)

Definition. Lgens

gen
Lgens[n , k] c:: ProtoGens[n, k]
[

G SysMatidxAFields[n, 3, k] force coefficients
H SysMatidxAFields[n, 3, k] torque coefficients
J SysMatidxAFields[n,3, 1] motive arms

For Y E Systems, t E ~, 5 E ApplicSets(n] and X E Vecs[k],
cab

1\gen(Y,t , s , X).(r)) = G(Y, t,S).(r) X, forallr E 5

cab
1{gen(Y, t , 5 , X). (r)) = H(Y, t , s).(r) X , for all rEs

cab
ann(gen(Y,t , s , X).(r)) = J(Y,t,s). (r) forallr E 5

Defn. 9.17: Linear mauve-generator functions. Each generated force vector is the product of a matnx lfl G and the proto
motive X (when represented in lab coords); similarly for the torque vectors. The motive arms are independent of X. Note
that we must have either J(Y, t, s 1 aCr) = 0 or H(Y, t , slaC r) = J(Y, t , s l:C r) G(Y, t , s l aC r). by Defn. 8.19. 0

Similarly, we define the subset of constraint functions (Defn. 9.7) that depend linearly on the forces and torques
in the applied motive index:

9.3 Mathematical Model 133

(9.18)

Definition. Lconstrs

con,,'tr
Lconstrs[n , k] C ProtoConstrs [n, k]
[

I<. SysVecFields[n , k]
r SysMatidxBFields[n, k, 3]
A SysMatidxBFields[n, k, 3]
all {O,l}

independent term
force-dependency coefficiellls
torque-dependency coefficiellts
aU-or-some selector

For Y E Systems,t E~,s E ApplicSets[n],AE {AppliedMotives}IDs

constr(Y, t , s, A , all) =

I: (r(Y, t , Shody(a) :;a+) , all = 1
a E Elts(A) A(Y, t , Shody(a) Ta

I<.(Y, t, s) +
I: (r(Y,t,sh(r) :~Aa(r) +) , all = 0

r E 8 A(Y, t , Sh(r) T(Aa (r))

Defn. 9.18: Linear constraint functions. The constraint is the sum of a force/torque-independent term K and products of
coefficients with forces and torques. The all selector chooses whether to perfonn the summation over all applied motives
in a given index (A), or only overthose motives specified in the given application set (s). 0

Notice that by Defn. 9.16, r(Y, t , sh and A(Y, t, S)b will be 0 for body ill 's b that are not listed in s. Thus
the all = 1 and all = 0 cases are similar in structure: both examine only the bodies listed in s, accumulating
r (Y, t , S)b times a force and A(Y, t , sh times a torque for each body b-butin the all = 0 case the force and
torque are from the motive listed in s, while in the all = 1 case, they are the net force and net torque on the
body.

We define the set of linear proto-specifiers (Defn. 9.8):

(9.19)

Definition. LprotoSpecs

p
LprotoSpecs C ProtoSpecs
[

Lconstr Lconstrs[n, czj linear constraint function
I<. ... I<. SysVecFields[n, czj
r ... r SysMatidxBFields[n , cz, 3]
A ... A SysMatidxBFields[n , cz,3]
all ... all>-+{O , I}
Lgen Lgens[n , pzj linear generator fUllction
G ... G SysMatidxAFields[n,3,pzj
H .. . H SysMatidxAFields[n,3,pzj

Constr= constr(Lconstr)
Gen = gen(Lgen)

Defn. 9.19 : A Linear proto-speedier IS a special case of a proto-spec1fier, havmg functions that are Imear as per
Defus. 9.17,9. 18.0

Continuing with the shorthand notation defined in Notn. 9.12, we will use application sets as subscripts when
we have a compatible ensemble:

9.3 Mathematical Model 134

(9.20)

Notation. Application sets as subscripts

[given same as Nom. 9.12], if s E ApplicSets and p E LprotoSpecs are
such that s = S i and pep) = Pi, we write:

K. K(p)
r. rep)
As A(p)
Gs = G(p)
H. - H(p)
all. = alJ(p)

Notn. 9.20: For a compatible ensemble, we use subscripts to refer to tbe aspect values of any hnear proto-specs. 0

Defn. 9.13 and Defns. 9.17 ,9.18 lead to a linear equation for compatible proto-specifiers and motives (written
using Nom. 9.20). Sec. 9.6.2 contains the derivation of the following:

(9.21)

Ifa compatible ensemble P E {LprotoSpecs}IDs ' X E {Vecs}IDs'
S E {ApplicSets} IDs' A E {AppliedMotives}IDs is consistent with

Y E Systems andt E ~,then

Vp E Elts(S) ,

where

J(p(Y, t, p) + L l'-'tpq(Y, t) Xq = D
q E EIt.sf.S)

Mpq E Mats[cZp ,pzq]

{

D' allp=D&p::pq

= L ([rp]br[Gq]'r + [Ap]dHq].J , otherwise
rEq

Eqn. 9.21: A consistent collection of linear proto-motives is based on an array equation, linear in the proto.motives. For
clarity theparamete" have been left off of M pq(Y, t), r p(Y, t ,p), Ap(Y, t , p), Gq(Y, t , q), and H q(Y, t, q). See deriva
tion in Sec. 9.6.2. 0

Eqn . 9.21 is the linear constraint-force equation of [Barzel,BarrSS]. We will discuss it further in Sec. 9.4.
The definitions in this section provide canonical forms for motive-generator functions, constraint func

tions, and proto-specifiers. In the coming sections, we fill in those forms, for the various types of force objects
discussed in Sec. 9.2.

9.3.8 Motive-Generator Functions

This section defines several commonly useful motive-generator functions . These are all linear functions as
per Defn. 9.17, thus each is defined by a pair of functions G, H E SysMatidxAFields[n, 3, k], where k is the
number of degrees of freedom in the resulting motives. Each function yields an index containing one entry
per motive. We will define motive-generator functions for one and for two motives.

For one arbitrary pure force:

(9 .22)

Definition. gpureF

Define gpureF E Lgens[l , 3] by:

Ggpure:F(Y, t, 5)'('0) = 1
Hgpure:F(Y, t , 5)'('0) _ D

Defn. 9.22: Monve generator for a pure force. The three values of a proto-motive are used directly as the components of
the force; the torque and motive ann are O. Note that G(Y, t, s) and H(Y, t , s) are independent of Y and t. J(Y, t , s)
must be zero, by Defn. 9.17. 0

9.3 Mathematical Model 135

For one arbitrary pure torque:

(9.23)

Definition. ypureT

Define ypureT E Lgens[l, 3] by:

Ggpurer(Y, t, s)a(,o) = 0
Hgpurer(Y, t , s)a(,o) 1

Defn. 9.23: Monve generator for a pure torque. Analogous to Defn. 9.22 but WIth opposite values for G and H . 0

Most often, we will generate a motive consisting of a coupled force/torque, where the force that is applied at
a specified point in body coordinates:

(9.24)

Definition. ycoupled

Define ycoupled E Lgens[l , 3] by:

Ggcoupled(Y' t, s)a(,o)

Jgpure:F(Y, t , s)a(,o)

= 1
ann(Y, so)

Defn. 9.24: Motive generator for a coupled forceltorqu e. The three values of the proto-motwe are used dIrectly as the
components of the force; the moment ann is as described specified by so. and the torque is coupled. 0

In the most general case for one motive, we may wish to generate an arbitrary force and torque; this requires
six degrees of freedom:

(9.25)

Definition. yarbit

Define yarbit E Lgens[l , 6] by:

Hgarbit(Y' t, s)a(,o)

Jgpure:F(Y, t , s)a(,o)

=

=

[

1 00000]
010000
001000

[

000100]
000010
000001

o
Defn. 9.25: Monve generator for an arbitrary forceltorque. This acts on a proto-monve vee with SlX values : The first three
values of the proto-motive are used for the components of the force, and the last three are used for the components of the
torque. 0

For a force object that acts on two bodies, we most commonly generate an equal-and-opposite force pair
(Sec. 9.2.1); this requires three degrees of freedom:

(9 .26)

Definition. ypair

Define ypair E Lgens[2, 3] by:

Ggpair(Y, t , s)a(,o) = 1

Ggpair(Y, t, slat',) -1

Jgpure:F(Y, t, s)a(,o) = ann(Y, so)
Jgpure:F(Y, t, s)a('I) = ann(Y,sd

Defn. 9.26: Moove generalorfor a force paIr. The proto-motive values are used duectly as the components of the force for
application So, and the negation is used for s 1 - The moment arms are as specified by s, and the torques are coupled. 0

For a collinear force pair, in which the paired forces lie on the line connecting the application points
(Sec. 9.2.1), only one degree of freedom is needed:

9 .3 Mathematical Model 136

(9.27)

Definition. ycollinear

Define ycollinear E Lgens[2, 1] by:

Ggcollinear(Y' t , 5)'(>0) :; x(Y, 50) - x(Y, 5I)

Ggcollinear(Y' t, 5).(>.j :; -Ggcollinear(Y' t , 5)'(>0)
Jgpure:F(Y, t , 5)'(>0) :; ann(Y, 50)
Jgpure:F(Y, t , 5)'(>1) :; ann(Y, 51)

Defn. 9.27: MOIIve generator for a collinear force pair. There is ooIy one degree of freedom: the force is determined by
scaling the line segment that separates the application points. The moment arms are as specified by s. and the torques are
coupled to the forces. 0

9.3.9 Constraint Functions for Explicit Force Objects

This section discuss explicit force objects (Sec. 9.2.2); we will discuss geometric constraint objects (Sec. 9.2.3)
in Sec. 9.3.10.

Constraint functions for explicit force objects (Sec. 9.2.2) are expressed directly in terms of Defn. 9.18,
by specifying values for K E SysVecFields[n, k] and f , A E SysMatidxBFie lds[n , k , 3]. We will define
constraint functions for the objects described in Sec. 9.2.2; functions for other objects can be defined analo
gously.

For a gravitational acceleration force:

(9.28)

Definition. Cgrav

Define thefamity offunctions Cgrav[g] E Lconstrs [1, 3l!or 9 E ~ by:

allcgrav =
fcgrav(Y, t, S)b(>o)
Acgrav(Y, t , S)b(>o) =

Kcgrav(Y, t, s)

o
- 1
o

[-g~L>o)J
Defn. 9.28: Constraint for gravitatiooal acceleration. The values of r and A are such that Defn. 9.13 and Defn. 9.18 imply
that the lab coordinates of the force are given directly by K, when this constraint is met. K itself yields a downward value
proportional to the oody mass and the gravitational accelerationpararneter. Here. we assume that the lab frame z-axis points
"up." 0

For a damping force and torque:

(9 .29)

Definition. Ci1amp

Define thefamity offunctions Ci1amp[pv, Pw, vv, vw] E Lconstrs[1 , 6] for
Pv , Pw, Vv , Vw E ~ by:

Defn. 9.29: Constraint fOfVlSCOUS and quadraricdamping. Jl. u and II" are the coeffiCIents of VlSCOUS and quadranc dampmg
for the linear velocity. and IJw and 11", are for the rotation. The first three values of K give the force, and the last three give
the torque, in a manner similar to Defn. 9.28. 0

9.3 Mathematical Model

For a Hooke's law spring, with viscous damping:

(9 .30)

Definition. Cspring

Define thefamity off unctions Cspring(lo , k , J.lj E LconstrS[2, 3jfor
10 , k , J.I E ~ by:

~csJ7ring == 0
fcspring(Y, t , S)b(so) - -1
f cspring(Y, t , S) b(3.) = 0

Acspring(Y, t , S)b(30) 0
Acspring(Y, t , S)b (3.) = 0

Kcspring(Y, t , s) = (k(I-/o)+J.lv.f) f ,
where r = x(Y, Sl) - x(Y, so)

v = v(Y, Sl) - v(Y, so)
1= Ilrll
f = rl l

137

Defn. 9.30: ConstraInt for a damped spring force. The value of K coostrams the force of apphcanon s 0 to p:>mt towards
the application point of s 1. based on rest length 10. spring constant k. and damping coefficient J,l. r is the unit vector from
application point So to 5 1 , and v ·f is the rate of change of separation between the bodies. This function is not wel1-defined
if the two application poiDts coincide in space, unless 10 = J1. = O. (No constraint is placed on application s 1; presumably
an opposite force will be generated for it.) 0

9.3.10 Constraint Functions for Geometric Constraints

We model geometric constraints via the "dynamic
constraints" method described in [Barzel,BarrBB1.
We will recap that method here, before defining
some specific constraint functions.

For any geometric constraint, we define a "de
viation measure" that equals 0 when the constraint
is met (Fig. 9.5). The deviation measure is func
tion of the state of the system, and the bodies
the constraint acts on; i.e., it is a vec field D E
SysVecFields[n , kj , as per Defn. 9.16. We allow
a deviation measure to be applied to any number
of bodies, n, and have any fixed size k. In general

p

"nail"

Figure 9.5. The "deviation measure" for a geometric constraint is
a function D whose value is 0 when the constraint is met. Here,
we show a point-to-nail constraint, whose deviation is given by

ra~X p _ X 0) for body point p constrained to a nail at X o. 0

D may have explicit dependence on time (such as for a point-to-path constraint), but in many cases D is
purely geometric.

To express the requirement that a deviation measure equal zero, we use:

(9.31)

Given a deviation measure DE SysVecFields[n , kj, an
application set s E ApplicSetS[n], a system path Y E SysPaths, and a

constanr 7" E ~ we require:

;,', D(Y(t), t, s) + ~1tD(Y(t), t , s) + T1, D(Y(t) , t , s) = 0

Eqn. 9.31: Required behavior for the value of deviation measure D as a model moves over time. We have picked a
second-order differential equation that describes critical damping: from any initial conditioo, the value decays smoothly
down to uro, " assembling" the model. 'The time constant, T . controls the rate of assembly; T must be positive. (See, e.g. ,
[Boyce,DePrima77] for discussion of critically damped differential equations.) 0

5 Analytically. the value of D asymptotically approaches 0, but doesn't ever reach O. When implemented numerically, however, it
soon reaches zero within error tolerances.

9.3 Mathematical Model

Equations other than Eqn. 9.31 could perhaps
be used to describe the constraint; we choose
Eqn. 9.31 because it describes "assembly" of a
model from an initial condition in which the con
straint isn't met, and also because, it results in an
expression for the constraint as an equation that
is linear in the forces and torques on the bodies,
which is numerically tractable when we imple
ment the model.

To convert Eqn. 9.31 into a fonn having ex-

initially.
constraint isn't
met{D 4 0)

11~ ' /• ~

c:
o
~
.~

o

".
\.

...
.... D decreases

••••••• / overtime

...................................

plicitdependence on motives, we create auxiliary ~ ~-2T ~.4T

functions that describe the behavior of the devia- time
tion measure over time, for a dynamic system ofbo~§ure 9.6. Behavior described by Eqn. 9.31. 0

(9.32)

Given a deviation measure DE SysVecFields[n, kJ, an
applicatioll set s E ApplicSets[n]. alld a system path Y E SysPaths

consistellf with applied motive fields A E {AppliedMotiveFields} lOs' we

create auxiliaryfimctions D{l) E SysVecFields[n, k] and
D(2) E ProtoConstrs[n, k] such that:

D{l)(Y(t) , t , s)
D(2)(Y(t),t , s,A(t))

l.D(Y(t) , t , s) = f.,D(Y(t) , t , s)

138

Eqn. 9.32: Auxiliary deviation measure functions. D (1) yields the instantaneous rate of change of the deviation; D (2)

yields the instantaneous acceleration. 0

Notive in Eqn. 9.32 that since D is geomeoic, it depends only on positions and orientation infonnation in
Y(t) . But D(l) will depend also on the velocities in Y(t) (Eqn. 8.9), and D (2) will depend further on the net
force and torque applied to each body (Defn . 8.10), since Y is consistent with A (Defn. 8.25). By the chain
rule for differentiation, the dependency of D(2) on the net forces and torques is linear. Thus we can expand
D(2):

(9.33)

Givell D(2) 0/ Eqll. 9.32. we create auxiliary functions
r , A E SysMatidxBFields[n, k, 3] alld {3 E SysVecFields[n, k] such that,

theil/or any Y E Systems. t E lR, s E ApplicSets[n], and
A E {AppliedMotives}IOs'

D(2)(y , t , s , A) = {3(Y, t , s)

+ L [(Y, t , sh(r)Fnet(A)b(r) + L A(Y, t , S)b(r) Tnet(Ah(r)

Eqn. 9.33: Auxiliary deviation measure functions. D (2) , which describes the acceleration of the deviation measure, de
pends linearly on the net force and net torque on each bCKIy; r gives the coefficients for the forces, A gives the coefficients
for the torques. and f3 gives the pan of D (2) that is independent of the forces and torques. Fner and Tner are as per
Defn. 8.24. 0

The auxiliary definitions ofEqn . 9.32 and Eqn. 9.33 are in a fonn allowing us to define a specialization of
linear constraint functions to express Eqn. 9.3 1:

9.3 Mathematical Model 139

(9.34)

Definition. GeomConstrs[n , k]

GeomConstrs[n , k] C Lconstrs[n, k]
[

r ~
D SysVecFieldS[n , k]
D(1) SysVecFields[n, k]
f3 SysVecFields[n , k]

all= I
r >O

time constant
deviation measure
rate of chnnge
acceleration wlo forces

D . D(l) . f3. r. and A relate by Eqns. 9.32.9.33
K(Y, t, 5) = f3(Y, t , 5) + ~D(1) (y, t , 5) + /2 D(Y, t, 5)

Defn. 9.34: Constramt funCtlons for geometnc constramts, usmg the "dynannc constralOts" method. For a constraint
function f E GeomConstrs[n, k] the constraint requirement feY, t , s, A) = 0 (Defn. 9.13) is met when Eqn. 9.31 holds.
o

Now, we can define various constraint functions that are elements of GeomConstrs [n, k] ; in each case, we
will define a family of functions that is parameterized by the time constant r. We will define functions for the
three body point constraints described in Sec. 9.2.3; functions for other objects can be defined analogously.

For a point-ta-nail constraint:

(9.35)

Definition. Cptnail

Define the family offunctions Cptnail[r, Xo] E GeomConstrs[l , 3]for
r E ~ and Xo E Locations by:

Dcpmail(Y, t , 5)
(1) () D cptnail Y, t , 5

f3cpllzai/(Y, t, 5)

r cpmail(Y, t , 5)b(.o)

Acptnail(Y' t , 5)b(.o)

.cab
x(Y,50) - Xo

v(Y,50)

aceo(Y,50)

accF(Y,50)

aCDr(Y, 50)

Defn. 9.35: Point-to-nall constramtfunction. The deVlaltonmeasurelS thus stmply the difference between the POIDt locatIOn
and the nail location X o. The rate of change and acceleration oftbe deviation are just those of the point (as per NOID. 9.5). 0

For a point-to-point constraint:

(9.36)

Definition. Cptpt

Define thefamily off unctions Cptpt[r] E GeomConstrs[2 , 3]for r E ~ by:

Dcptpt(Y, t, 5)
(1) () Dcptpt Y, t, 5

f3cp tpt(Y, t, 5)

r cptpt(Y, t, 5 h(.o)

r cptpt(Y, t, 5h(,,)

Acptpt(Y, t , 5 h(.o)

Acptpt(Y, t , 5)b(,,)

x(Y, 50) - x(Y, 51)

v(Y, 50) - v(Y,51)

aceo(Y, 50) - aceo(Y, 51)

aCCF(Y,50)

-aCCF(Y,5d

aCDr(Y, 50)

-acDr(Y,5d

Defn. 9.36: Pornt-to-point constraInt functIon. The deviatIon measure is the difference between the locatIons of the two
points of application. The remainder of the terms are analogous to Defn. 9.35. Each body point's force- and torque
dependence for acceleration, ace F and BecT. result in a separate entry in r and A. 0

9.4 Posed Problems 140

For a point-to-path constraint:

(9.37)

Definition. Cptpath

Define the family offunctions Cptpath [T, P] E GeomConstrs[l , 3]for
T E ~ and path P: ~ -+ Locations by:

Dcptpath(Y, t , 5)

D(1) (Y) cptnail ' t, 5

(3cptnail(Y, t, 5)

r cptnail(Y, t , 5)6(30)

Acptnai/(Y, t , 5)6(3 0)

cab
x(Y, 50) - P(t)

v(Y, 50) -ft cabp(t)

(
d' cab () acC{] Y, 50) - d,' P t

aCCF(Y, 50)

acOr(Y, 50)

Defn. 9.37: POInt·to-path constramt function. A genernlizanonof the pomt-to-natl constrnint, Defn. 9.35, but for a "movmg
naiL" 0

9.3.11 Proto-Specifiers

Given the definitions in the previous sections, all that remains in order to specify a force object is to match
up a motive generator function of Sec. 9.3.8 with a constraint function of Sec. 9.3.9 or Sec. 9.3.10, to form
a proto-specifier as per Defu. 9.8 and Defn. 9.19. We define proto-specifiers for the conceptual force objects
described in Sec. 9.2:

(9.38)

Definition. (various proto-specifiers)

We define several families of proto-specifiers. all elements ofLprotoSpecs:

graviry[g] = [1, 3 , 3 , gpureF ,Cgrav[g]]
Thmp[pv, J.l w, /lv, /lw]= [1, 6 , 6 , garbit ,Cdamp[pv, J.l w, /lv, /lwJ]
Spring[lo, k , J.l] = [2, 1, 3 ,gcollinear,Cspring[lo, k , J.l]]
PointT aVai/[T, Xo] = [1 , 3 , 3 , gcoupled ,Cptnail[T, Xo]]
PointTOPoim[T] = [2 , 3 , 3 , gpair ,Cptpt[T]]
PoifltT6Path[T, P] = [1 , 3 , 3 , gcoupled ,Cptpath[T, P]]

Defn. 9.38 : Various proto-specifiers . Each is defined by specifying its motive-generator function Lgen and constraint
function. Leonstr. In most cases. the number of degrees of freedom (pz) is equal to the number of constraint tenns (cz); see
disaJssionin Sec. 9.4. 0

Usually, a constraint function has a natural or intended motive generator function that goes with it For
example, the point-to-point constraint function Cptpt is paired with the equal-and-opposite force pair motive
generator gpair to form PoinffOPoim. But we can also mix and match. For example, if we pair constraint
CpfJJt with generator gcoupled-which applies a force to only one body-then we have a constraint in which
a body "follows" or "shadows" another without affecting its motion. 6 Or, we could apply a pure force to meet
a point-to-path constraint, thus the body will translate but not rotate in order to follow the path.

9.4 Posed Problems

We have one prominent posed problem for this model: to create the forces and torques that are described by a
given set of linear proto-specifiers, i.e., that are due to the motive generators and that satisfy the constraints.

6 Strictly speaking, since !koupled(Y, t, $, X) requires an application set $ E ApplicSets[lJ while Cptpt(Y, t, $, A) requires an
application set in $ E ApplicSets[2J, they can't be used together, as per Defn. 9.19. However, we can trivially extend !koupled to act
on elements $ E ApplicSets[2J by ignoring $, .

9.4 Posed Problems

That is, as discussed in Sec. 9.3.1,

(9.39)

given: P E { LprotoSpecs}IDs ' compatible with
S E {ApplicSets}IDs '

define: A E {AppliedMotiveFields}IDs
where A is consistent with P and S

evaluate: A(Y, t)
for any Y E Systems and t E 1R

141

Eqn. 9.39: Motive evaluation. The indexes "P and S describe the force objects in the model and how they are applied
to the bodies. They detennine a motive field index .A CDefn. 9.13). During the cOI",e of a simulation. we will want to
evaluate.A for many different values ofY and t. 0

Because we are using linear proto-specifiers, to evaluate A(Y, t) as per Defn. 9.13 we use Eqn. 9.21, which
we paraphrase:

Vp, J(p(Y, t,p) + L q Mpq(Y, t) Xq = 0

where Mpq E Mats [cZp, pzq] J(p E Vecs [cZp]
Xq E Vecs[pzq]

We can express the above in matrix form, if we arbitrarily assign an order to the elements of the proto-motive
ensemble:

[

M l1(y, t) MdY,t)
M 21 (Y,t) Mn(Y,t)

Mnl (Y, t) MdY, t)

Mln(Y, t)] [Xl] [J(I(Y, t,PI)]
M2n(Y,t) X2 J(2(Y,t,P2)

· + . =0 · . · .
M nn(Y, t) Xn J(n(Y, t ,p,,)

Each element in the above is an array; we can consider the above to be a block matrix form 7 of a
(Lp CZp) x (L q PZq) matrix equation:

M (Y, t) X + K(Y, t) = 0

For any Y and t, we can compute M(Y, t) and K(Y, t), and solve for X using one of many standard numerical
techniques (see [Press et aI.86]). We note some characteristics ofM to be taken into account:

• M is generally sparse.
• M is not necessarily square; a proto-specifier p may have pZp i= cZp . If there are fewer degrees of

freedom than constraints (pzp < cZp), there won't in general be a solution unless the constraints are
redundant (as is true for the proto-specifier Spring) .

• The explicit force objects (a/lp = 0) have only diagonal entries; the corresponding values X p can be
found first, and the remaining matrix can be reduced.8

• M can often be partitioned into independent blocks, which can be solved separately; each block cor
responds with a group of bodies that may be constrained with respect to each other, but there are no
constraints between the blocks.

• The structure ofM is due to the indexes P and S, and is independent of Y and t. Thus the partitioning
and so forth can be performed once per collection of force objects, and then used for each evaluation of
A(Y, t). Furthermore, many of the functions r , A, G,andH defined in Secs. 9.3.8-9.3.lO are constants,
which can be folded once per collection of force objects, to minimize repeated computation.

7We refer readers to [Hom.JohnsonBS] and [Golub,Van LoanBS] for discussion of matrices.
8In [Barzel,8arr8S1, the explicit forces are treated as a special case a priori, and are not entered into the matrix. Here, we prefer a

more unifonn mathematical treatment, and leave it to the implementation to special-ca.se the computation of the explicit forces.

9.5 Implementation Notes 142

• M may be singular or ill-conditioned, implying the lack of a unique solution. If there are multiple so
lutions, any solution is acceptable; this may occur through extraneous degrees of freedom in the proto
specifiers, through redundancies in the constraints specified in the model , or through the existence of
equipollent sets of forces that meet the constraints. If there are no solutions, it can indicate improp
erly constructed proto-specifiers (e.g., an orientation-based constraint function paired with a pure force
motive generator), or an overconstrained system as discussed in Sec. 9.2.3. Additionally, if using the
constraints to "assemble" models as discussed in Sec. 9.3.10, the path implied by Eqn . 9.31 may be
physically unrealizable; see discussion in [Barzel,Barr88J. A least-squares solution is often practicable.

Once we've computed X, and hence the proto-motives, X, we can determine the actual motives , i.e. , the
forces and torques, by evaluating all the motive-generator functions, as per Eqn. 9.14:

A(Y, t) = U Gen,(Y, t , 5, X,)
, es

The generator functions are evaluated by multiplying each X, by the values of G, (Y, t , 5) and H, (Y, t, 5), as
per Defn. 9.17; these values were already computed to constructM, and can be reused.

9.5 Implementation Notest

9.5.1 Conceptual Section Constructs

The conceptual section of a program supports various types of force objects. Each instance of a force object
includes the name(s) of the body (bodies) that it acts on and the body points of application, along with the
time constant T for geometric constraints and other type-specific parameters ..

Each type of force object knows how to draw itself, for illustration or debugging, e.g. , a helix between
points attached by a spring, or the curve of a point-to-path constraint.

Paths for point-to-path constraints can be defined symbolically or via a curve editor, as described in [Sny
der92J.

9.5.2 Math Section Constructs

The math section for this module has scope name MFRC ("Math fancy FoRCes"). Fig. 9.7 lists the objects that
are defined. Classes for the various state spaces, sets, and indexes are defined as per Sec. B.3. We will give a
few additional notes .

• Class definitions for ProtoGens[n, k) and Lgens[n, k):

class ProtoGen :
constmctors: (int n ,kJ
members:

methods:

n : int
It : int
eval(KRIG::System Y, double t, ApplieSet S, KKISe : :Vee x)

: "RIG: :ApplKotiveIdx

class Lgen (derived/rom ProtoGen) :
constmctors: (int n,k, SysMatldxField G,H,J)
members: G : SysMatldxAField

H:SysKatIdxAField
J : SysKatIdxAField

methods: eval ("RIG: : System Y, double t. ApplicSet S, MMISe :: Vee x)
: KRIG : :ApplKotiveIdx

t See Appendix B for discussion of the terminology, notation, and overall approach used here.

9.5 Implementation Notes

Program definitions in scope MFRC:
class name abstract space
ApplicInfo Apphclnfos
ApplicSet ApplicSets
ApplicSetIdx { ApplicSets} IDs
GeomConstr GeomConstrs
Lconstr Lconstrs
Lgen Lgens
LprotoSpec LprotoSpecs
LprotoSpecldx { LprotoSpecs }IDs
ProtoConstr ProtoConstrs
ProtoGen ProtoGens
ProtoSpec ProtoSpecs
SysKatField MatFields
SysKatIdxAField SysMatidxAFields
SysKatIdxBField SysMatidxBFields
SysJ1at IdxField SysMatidxFields
SysVecField SysVecFields

global constant function
Garbit (}arbit
Gcollinear 9collinear
Gcoupled 9coupled
Gpair gpair
GpureF gpureF
GpureT gpureT

class name function/amily
Cd amp Cdamp
Cgrav Cgrav
Cpt nail Cptnail
Cpt path Cptpath
Cptpt Cptpt
Cspring Cspring
Damp Thmp
Gravity gravity
PointTolail PoinfT aN ail
PointToPath PoinfT OPath
PointToPoint PoinfT OPoint
Spring Spring

Figure 9.7 : Math section definitions in the prototype implementation. 0

(De/n.9.1)
(De/n.92)
index of application sets
(De/n . 934)
(De/n . 9.18)
(De/n. 9.17)
(De/n.9 .19)
index of linear proto-specs
(De/n.9.7)
(De/n.9.6)
(De/n.9.8)
(De/n.9.16)
(De/n.9.16)
(De/n.9.16)
(De/n.9.16)
(De/n.9.16)

(De/n . 925)
(De/n .927)
(De/n.924)
(De/n . 926)
(De/n.922)
(De/n.923)

(De/n.929)
(De/n . 928)
(De/n . 935)
(De/n.937)
(Dein.936)
(Dein.930)
(Dein.938)
(De/n.938)
(Dein . 938)
(Dein . 938)
(Dein.938)
(Dein.938)

143

The class ProtoGen is an abstract class, that declares a generic eval method. The class Lgen is derived from
ProtoGen; it has members for the G, H and J fields, and defines eval to compute an applied motive index,
as per Defn. 9.17. The classes ProtoConstr and Lconstr are defined similarly. These classes all include
checks to make sure that n and k are used consistently .

• Constant instances for motive-generator functions: In Sec. 9.3.8, we defined several specific motive
generator functions, garbit, gpair, and so forth . For each of these functions, we define an instance of class
Lgen, with the appropriate values for members G, H, and J. Each instance is defined once, as a global constant,
to be used or referenced by any proto-specifier. For example:

GpureF = Lgen(n=l, k=3, G=l, H=O, J=O)

• Class definitions for explicit constraint functions: In Sec. 9.3.9, we defined several parametrized families
of constraint functions. For each family, we derive a class from Lconstr. For example:

9.5 Implementation Notes

clo.ss Cspring (derivedfrom Lconstr) :
constructors: (double 10 ,It ,mu)
members: 10: double rest length

k : double spring constant
mu : double damping coefficient

144

The members for r, A, and J{ compute their values based on the member variables la, k and /1, as per
Defn. 9.30; for any given triple of parameters, la, k, and /1, a specific instance can be created .

• Class definitions for geometric constraint functions (Sec. 9.3.10: We define a class derived from Lconstr.

class GeomConstr (derivedfrom Lconstr) :
constructors: (int n,t, double tau, SysVecField D,D1,B. SysHatldxField Ga,La)
members: tau : double time constant 1'"

D : SysVecField
D1 : SysVecField
Beta: SysVecField

It defines the member for J{ to compute its value as per Defn. 9.34. We derive more specific classes for the
various types of constraints. For example:

class PointToPoint (derivedfrom GeomConstr) :
constructors: (double tau)

class PointTolail (derivedfrom GeomConstr) :
constructors: (double tau J MCO : : Location XO)
members: XO: MCO : :Location

For any given time constant T, along with constraint-specific parameters (such as Xo above), an instance of a
geometric constraint function can be created.

9.5.3 M-N Interface

The scope name for the M-N interface is HFRC. We define a routine that solves the posed problem (Eqn. 9.39):
define an applied motive index field that is consistent with given proto-specifier and application set indexes.

LsolveProto(LprotoSpecldx P, ApplicSetldx S) : "RIG::Appl"otiveldxField

This routine returns an object that can be evaluated for arbitrary values of Y and t. The object is set up
internally to follow the solution procedure outlined in Sec. 9.4:

1. Given values of Y and t.

2. Compute the various terms K, r, G, etc.

3. Compute the M pq matrixes.

4. Gather the Mpq and Kp values into M and K, using HUM: : GatScat2 (Sec. B.4.2).

5. Solve the equation M X + K = 0 to get X, using HUM: : LinSys (Sec. B.4.3).

6. Scatter X into Xq values, using HUM: : GatScat2.

7. Compute an index of motives A, based on the X q values and the precomputed G , H , and J.

8. return A

As an optimization, at the time the object is created we partition the matrix into independent blocks, based
on the connectivity information in S; then the single large linear system solution becomes a series of smaller
ones.

9.6 Derivations 145

9.5.4 C-M Interface

The C-MInterface constructs indexes P E {LprotoSpecs}IDs andS E {ApplicSets}IDs based on the con
ceptual force objects. For each force object, the interface must:

• Choose a label i E IDs for the force object

• Choose or create the appropriate motive-generator and constraint function instances for Pi.
• Create an application set s = S •. For each rEs, we must:

- Map from each conceptual body name to its mathematical model ID, for b(r)
- Create an (arbitrary) UItique ID for a(r)
- Set pt(r) to the body coordinates of the application point.

Having done the above, the
C-M interface can call NFRC: : LsolveProto to get an MRIG: : ApplMotiveldxField, which can be used
as a parameter to NRIG: : Sol veForward of Sec. 8.5.3, in order to simulate the resulting behavior.

9.6 Derivations

9.6.1 Acceleration of a Body Point

We derive an expression for the acceleration of a body point, for use in Notn. 9.5. Given:

dynamic body path s E State Paths consistent (Defn. 8.10) with
Iletjorce , rorqllefimctions F, T: lR--- Vectors, and
body poi11l path p: ~ --- 80dypts slIch that

pet) == Bodypt(s(t) , coords)
jor consta11l coords E ~3 x 3

First, we express the derivative of the body's inverse inertia tensor. Since the inertia tensor is fixed in the
body frame (Eqn. 8.8), Eqn. 6.33 gives (after replacing w*T with the equivalent -w *):

Using the above, we express the derivatives of the body's angular velocity vector (for clarity, we drop the (t)
parameters after the first occurrence):

I:;-I(t) L,(t)
(1,1:;- 1) L, +1:;-1 (1,Ls)
(w;I:;-1 _ 1:;-1 w;) L, + 1:;-IT(t)
w;I:;-IL, _1:;-lw;L, +1:;-IT
w;w, _1:;-I(w, xL,) +1:;-IT
_1:;-I(w, xL,) + 1:;-IT

We start with the velocity of a body point, from Eqn. 8.13, and differentiare to get the acceleration (again, we
drop the (t) parameters):

Yp(t) YC,(t) +w, (t) x annp(t)
1, Yp ~ YC, + (1,w ,) x :rmp + w, x (~annp)

d! YC, - annp x (iitw,) + w, x (iitannp)
m . F(t) - ann; (_1:;-I(w, x L,) + 1:;- IT) + w, x (w, x annp)
,,;. F - atm;1:;-IT + ann;I;-I(w, x L,) + w, x (w, x annp)

The first term above gives aCCF in Notn. 9.5, the second term gives acor, and the remaining terms give acC(].

9.6 Derivations

9.6.2 Derivation of the Linear Constraint Equation

We derive Eqn. 9.21. Given:
compatible

P E {LprotoSpecs}IDs '
A E {AppliedMotives}IDs
S E {ApplicSets}IDs
X E {Vecs} IDs

consistent with
Y E Systems
t E ~

146

We plug into the constraint equation, Defn. 9.13. For notational clarity, after the first occurrence we will leave
the (Y, t , p) parameters off K, f, A, and the (Y, t , q) offG, and H.

0= Constrp(Y, t, p, A) (Defn·9.13)

If a1lp = I, we have:

O=Kp(Y, t , p) + L (fp(Y, t,Phod>(Aj) :~Aj)+) (Defn.9.18)
jE!d$..A) Ap(Y, t,phod>(Aj) 1(Aj)

= Kp + L L (fp(Y, t , phCr) :~AaCr))+) (Defn.9.11)
qEElts(s) rEq Ap(Y, t,P)bCr) 1(AaCr))

= Kp + L L ([fp]bcr) :~ Genq(Y, t , q, Xq)acr))+) (Eqn .9.14)
qEElts(s) rEq [AphCr) 1(GeI1q(Y, t , q, Xq)a Cr))

- K + L L ([fphcrPq(Y, t, q)acr)Xq+) (Defn·9.17)
- p [AphCr)Hq(Y, t , q)aCr)Xq

qEElfS(S) rEq

= Kp + L (L([f phCr)[Gq]aCr) + [Aphcr)[Hqja(r))) Xq
qEElfS(S) rEq

And if a1lp = 0, we have:

0- K (Y t) + ~ (fp(Y, t,P)bCr) .cab.F(AaCr))+)
- p "P L.J .cab

rEp Ap(Y, t, PhCr) 1(AaCr))
(Defn·9 .18)

=Kp + L (fp(Y, t,p)bcr) :~Gen,(y,t,p'Xp)acr))+)
rEp Ap(Y, t, P)bCr) 1(Genq(Y, t ,p, Xp)aCr))

(Eqn.9.14)

- K + L ([fph crPp(Y, t , r)acr)Xp+)
- p [AphCr)Hp(Y, t , r)aCr)Xp rEp

(Defn·9 .l7)

= Kp + L ([fphCr)[Gp]aCr) + [AphCr)[Hp]a(r)) Xp
rEp

= Kp + L (6p=q L[fphCr)[Gq]a(r) + [AphCr) [Hqj acr)) Xq
qEEltsCS) rEq

This leads directly to Eqn. 9.21.

Chapter 10

Swinging Chain Model

T hiS chapter describes a "swinging chain" model: A collection of cylinders linked end-to-end to form a chain.
The two ends of the chain are fixed in space, and the chain dangles between them.

This model demonstrates how we define a top-level physically-based model, illustrating the use of the library of
modules defined in Ch. 6-9. In particular, the model makes use of the geometric constraints supported by the
"fancy forces" mechanism of Ch. 9.

147

The functionality for this model is directly supported by the library routines, thus there 's little that needs to be
defined in this chapter- just a description of the conceptual model, in terms of the conceptual models of Ch. 6-9 .
However, we illustrate some aspects of the mathematical model that is implied.

10.1 Goals

The pllIJlose of this model is to demonstrate how we define a top-level model, and to test the prototype
modeling library. In particular, we:

• Test and illustrate rigid-body dynamics (Ch. 8)

• Test and illustrate constraints and other "fancy forces" (Ch. 9).

10.2 Conceptual Model

This model has only one high-level conceptual object in it: A linked chain. We fix the two endpoints in space,
and let the chain dangle and swing under the influence of gravity, with some damping so that the chain will
come to rest in a catenary shape (Fig. 10.1). The chain is made from a collection of 6 separate links, each of
which is a rigid body as per Ch. 8.

Links. Each link is a cylinder of length 20cm and radius 2cm. with spherical endcaps. The body frame
has its origin at the base of the cylinder, and the cylinder extends along the positive z-axis (Fig. 10.2). The
mass of the cylinder is O.5kg, distributed homogeneously (except in the endcaps), giving an inertia tensor of

[

17.2 0 0]
o 17.20 kg-cm2 in body coordinates, l with the center of mass at z =lOcm.
o 0 1

1 From Eqn. 8.1 we can derive the fonnula for the inertia tensor of a homogeneous cyJinderaligned with the z axis, baving mass m ,
radius r and length 1 (or we canjus(look it up in [Fox67-TableII)):

12 0 J.. f7I(3 f'"J+14) 0
[

.L m (3r2 +1 2) 0 0]

o 12 0 tf1l r2

10.3 Mathematical Model

Swinging Chain Model

Gravity

Point-to-Point
Constraint

..... (. "/
...........

Point-to-Nail
Constraint

. · · .
: ~ ,. : f . '0:

: 1 . . .
\ tJ' J . . · .

"" .1-

148

Figure 10.1: Elements in the "swinging chain" sample model. The chain is formed from a collection of cylindrical links. Each link is
acted on by a constant downward gravity force, and by a viscous damping force/torque (not il Lustrated). Each adjacent pair of links is
connected with a "point-to-point" constraint, and each end link has its endpoints fixed in space with a "point-te-nail" constraint. After
an initial excitation, the chain will swing freely. gradually losing energy due to the damping. until it comes to rest in a catenary shape
hanging between the fixed points. 0

Joints. The joints between each link are fonned using point-to-pointconstraints (Sec. 9.2.3). We connect
the tip of one link to the origin of the adjacent link. Notice that the bodies interpenetrate in order to meet the
constraint-but because of the spherical endcaps, no seams are fonned at the joints. (Fig. 10.3)

Ends. The tip of the "topmost" and origin of the "bottommost" link are held fixed at locations
(50 , 0, 1l0)cm and (-50 , 0, 1l0)cm in lab coordinates, via point-to-nail constraints.

Other forces. Each body feels a downward gravitational acceleration of 9.8m/sec2• We apply a viscous
damping force (Sec. 9.2.2) of O.ldyne/(cm/sec) and torque of O.lcm-dyne/(radians/sec) to each body.

Initial assembly. We initially place the bodies in an arbitrary configuration, and let the constraint forces
assemble the chain and pull it into place. A value of .2sec for the time constant T for the constraints (see
Sec. 9.3.10) causes the model to assemble in roughly one second. In their "rush" to assemble, the bodies pick
up a fair amount of kinetic energy from the action of the constraint forces. In some circumstances that energy
might be an unwanted by-product, but for this model, it serves to start the chain off jangling.

10.3 Mathematical Model

No new mathematical definitions are required for this model, but we will illustrate the "proto-specifier ensem
ble" (Defn. 9.11) that describes the various forces. (We are essentially hand-simulating some of the function
of the CoM interface of the fancy forces implementation.)

First, we assign ID's to the bodies in the model: Let

cyJ~ cyJl, cyl~ cyJ3, cyJ4, cyJ5 E IDs

correspond with the cylinders, in left-to-right order as in Fig. 10.1.

10.3 Mathematical Model

"tip" --+-;"1
(0 f) ;20) !

l center of mass . +-- (0.0.10)

5~~rl > .. ~ ._... x

---ll+-
radius = 2

point-ta-point
' __ '" constraint

~:::t::~::~:::;;;=::::)

Figure 10.2: (Left) Detail of a link. in body coordinates (y-axis goes into the page). 0

Figure 10.3: (Right) Detail of a joint between links. 0

149

The application of the force objects to the model is described by an index of proto-specifiers, and an index
of application sets:

P E {ProtoSpecs}IDs (De/n.9.8)
S E {ApplicSets}I Ds (De/n.9.2)

We construct the entries in these indexes according to the following table (recall that the two indexes share
the same ID's, Defn . 9.9):

i E IDs Pi S i
[Constr, Gen [a , b ,arm]

jointOJ [Cplpt , gpair UntOJa , cyJO, (0 , 0, 20)]
UntOlb, cyll, (0 , 0, 0)]

joint12 [Cplpt , gpair Unt12a, cyll, (0 , 0, 20)]
Unt12b, cyJ2, (0 , 0, 0)]

joint45 [Cplpt , gpair Unt45a , cyJ4, (0, 0, 20)]
Unt45b, cyJ5, (0 , 0, 0)]

endO [Cpmail , gcoupleclj [endO , cyJO, (0, 0, 0)]
end5 [Cpmail , gcoupledj [end5 , cyJ5, (0 , 0, 20)]
gravO [Cgrav , gcoupleclj [gravO , cyJO, (0, 0, 10)]
gravl [Cgrav , gcoupleclj [gravJ, cyll, (0, 0, 10)]

grav5 [Cgrav ,gcoupleclj [grav5 , cyJ5, (0 , 0, 10)]
dampO [Cdamp , garbir] [dampO, cyJO,]
dampJ [Cdamp , garbir] [dampJ, cyll ,]

damp5 [Cdamp , garbir] [damp5, cyJ5,

A few things to notice in the above table:

• Each joint acts on two bodies, thus has two application info's in its application set
• Each damping object generates an arbitrary force/torque; its generator function doesn't examine the

arm aspect value of the application set, so we have left that entry blank.
• The a column lists the ID's of all the motives in the model. Some of these ID's happen to be the same

as used in column i , but that's irrelevant.

Chapter 11

"Tennis Ball Cannon"

ThiS chapter describes a "tennis ball cannon" model: A series of balls is shot from a gun; each ball flies in an
arc, and bounces when it hits the ground. The model contains discontinuous behaviors-the firing of the gun,

the bouncing of the balls, and others.

This model illustrates the segmentedfunction formulation: we define the behavior of the model as a function C
that encapsulates the discontinuous events; the value of the solution, C(t), includes information such as which
balls are part of the model at any time t.

Unlike the "swinging chain" (Ch. 10), this model isn't already directly supported by the library modules in
Ch. 6-9. Thus, we build on the library models, but we define extra special-puIposemathematical constructs for
this application. (Some of the special-purpose mechanisms that are defined here can be generalized, as discussed
in the library extensions, Ch. 12.)

11 .1 Goals

150

The purpose of this model is to illustrate the segmented function mechanism described in Sec. 3.10, and to
test the piecewise-continuous ODE solution utilities described in Sec. B.4.7. In order to fully exercise these
tools, we include a few somewhat contrived features in the model: (Fig. 11.1)

• discontinuities regularly in time (cannon fires)

• discontinuities based on state (balls bounce)

• increase of dimensionality (balls created when cannon fires)

• decrease in dimensionality (balls removed when too small)

• change in properties (ball radius changes)

• change in continuous behavior (wind resistance changes)

• discontinuities in motion (balls bounce)

11 .2 Conceptual Model

We describe the abstractions of the various elements in the model. Note that we are not trying to accurately
model a real thing, but rather have contrived an assortment of features to meet our goals.

Environment. In lab coordinates (Sec. 6.3), the positive z axis points " up." The ground is an infinite flat
surface in the x-v plane at z = O.

11 .2 Conceptual Model

Balls fired
periodically

Tennis Ball Cannon
(sample segmented model)

)
_•...•• wind Bahlls shhrink

• w en t ey

151

,/ •••••• !~esistance bouince Balls

Cannon ••••.•.•••.•.. disappear
(oscillating) ""./'lQ when too

gravity"'''' v..•...... small
\@D \ .. :/• /
\' .a v ./ !!!: ..

,~ ~;

Figure 11.1: Model of a cannon firing a series of balls; illustrates discontinuities in a model. The cannon oscillates up and down, firing
a stream of balls. Each baH experiences gravity, and wind resistance based on radius. When a ball hits the ground it bounces. but
also instantaneously shrinks by a fixed factor (thus will experience less wind resistance after the bounce). When a ball shrinks below
a minimum size, it is removed from the model. The contact points where the balls bounce shift back and forth due to the oscillation
of the cannon. The bounces are completely elastic, but because of the wind resistance energy is lost, so each rebound is lower than the
previous. 0

Cannon. The cannon isjusta barrel: a cylinder, with length 0.8 meters and radius 0.22 meters. The back
end is fixed at coordinates (- 5,0, 5) in the world; the muzzle points towards the positive x direction, but
oscillating ±0.4 radians from horizontal , with a period of 2 seconds per cycle. (In the body frame, the back
end is at the origin, and the muzzle lies on the x ·axis.)

Firing. To "fire," the cannon spontaneously creates a ball at the muzzle; the ball has an initial velocity
of 15 meters/second, outward in the barrel direction. (We create the ball at the muzzle, so it doesn' t need to
travel down the barrel.) The cannon has an unlimited supply of balls, and fires with a period of 0.2 seconds
between shots.

Balls. Each ball is a rigid sphere, with radius 0.2 meters (initially) and mass I kilogram. l We include no
rotation effects-the motion of the ball is that of a point mass (Sec. 8.2.3) at the center of the sphere.

Bouncing. When a ball hits the ground (z = 0), it instantaneously shrinks-the new radius is 3/4 the pre
vious. The location of the center of the ball is instantaneously dropped so that the bottom stays on the ground
(Fig. 11.3). The velocity is instantaneously negated in the z direction, but left alone in x and y directions, 2

i.e., the ball bounces elastically. The mass is not altered.
Disappearing. If, when hitting the ground, the ball shrinks so that its radius is less than 0.09 meters , the

ball is "too small" and is instantaneously removed from the model. 3 With the stated parameters, this happens
on the third contact, after two bounces.

Forces. Each ball is acted on by two forces : a constant downward gravitational acceleration of 9.8
meters/second2; and a air resistance (drag) force that is opposite to and quadratic in the velocity. scaled by.5
kilogram/meterl times the cross sectional area (-;r r 2). For simplicity, we directly hardwire the net force on
each ball to be the sum of the two contributions, rather than using the "fancy forces" mechanism, Ch. 9.

I Perhaps more a bocce ball than a tennis ball!
2 Actually, because of the coofiguration of the gun and lack of crosswise forces. the velocity in the y direction is always O.
3 Think of it as falling through cracks in the floor?

11.3 Mathematical Model 152

Cannon (not to scale) Bounce of a Ball

Figure 11.2: (Left) Detail of cannon. 0

Figure 11.3: (Right) Detail of a ball bouncing. 0

11 .3 Mathematical Model

11.3.1 Names & Notation

The scope name for this model is:
TSEG ("Test of a SEGmented model")

We use of the following terms from other modules:

AppliedMotiveFields (Defn. 8.21) Rep (Defn. 6.5)
IDs (Defn.3.8) Repq (Defn. 6.8)
IDsets (Defn.3.9) RIGID:: States (Defn. 8.4)
FramePaths (Defn. 6.27) Systems (Defn.8.14)
Cab (Defn.6.4) Vectors (Defn.6.1)
Locations (Defn.6.1)

We use Systems to mean RIGID:: Systems rather than KINEMATIC:: Systems. For convenience, we define
the constant parameters for the model:

(ILl)

Definition. (constant parameters)

L
. rob

loee E ocatlons loee = (-5,0,5)

lene E!R Be = 0.8
Te E!R Te = 2
Be E!R Be = 0.5
10 E!R Tb = 0.2
Vb E!R Vb = 15
9 E!R 9 = 9.8
wE!R w =.5

rno E!R
ro E!R

nninE!R
,E!R

Z E Vectors

rno = 1
ro = 0.2

nnin= 0.09 ,= 0.75
rob .

Z = (0,0,1)

cannon position
cannon length
cannon oscillation period
cannon oscillation amplitude
cannon firing period
ball initial speed
gravitational acceleration
air resistance coefficient
ball mass
initial ball radius
minimum ball radius
radius shrink factor

"up" vector

Defn. 11.1: Constant parameters for the model, as descnbedm Sec. 11.2. 0

11 .3 Mathematical Model 153

11.3.2 Definitions

It is convenient to pre-<iefine a sequence ofID's that we will use in the model:

. Definition. idq

We define a non-repeating sequence of [D's:
(11.2)

idq,= {idqo, idql' ... I idqj E IDs and idqj = idqj => i = j}
Defn. 11.2: A sequences of ill's, that we WlII use to label bodIes and motives m the model. 0

The motion of the cannon's body frame is describe by an explicit function:

(11.3)

Definition. fcannon

We define ajunction fcannon E FramePaths by:

Jocc

[

cos(~Bc ~ine,:t)) 1
- sin(lBc sine"')) 2 To

o
Repq(£ob, Rrcannon(t))

Defn. 11.3: Cannon body frame functioo. fcannon. We use a quatemion to describe a rolation of - 9 < sine 27,') radians
about the lab frame's y-axis, so the cannon muzzle's angle from the horizontal oscillates with a period T c andc

amplitude
9<.0

The instantaneous frame of a ball at the instant it is fired can described in turn:

(11.4)

Definition. bshot

We define ajunction bshot: ~-t RIGID:: States by:

Rep (fcannon(t) , xbsholt))
Rep(fcannon(t), vbsholt))

Rbsholt)
wbsholt)
mbsholt)
Ibsholt)

(ie11",o ,o)
(Vb ,O,O)

Rcab
o
rno
o

Defn. 11.4: Initial state of a ball. bsho/(t) descnbes the instanlaneoos state of a ball fired at tune t. The p')S]tlon and
velocity are fixed in the frame of the gun. The orientation, angular velocity, and inertia tensor are 0, since the balls are point
masses. Note that bshot is not a state path as per Defn. 8.6---4ts velocity vectors don't describe its own morion-rather, 1t
is a mapping between a time that a shot might occur, and the initial state of the shot ball. 0

The model as a whole is described at an instant by the following space:

11.3 Mathematical Model 154

(11.5)

Definition. States

States
[

ids IDsets
R {llf}IDs
Y Systems
M {AppliedMotiveFields} I Ds
tfire llf
seq Integers

ids = Jds(Y) = Jds(R) = Jds(M)
Vi E ids, body(Mi) = i

balls'IDs
radius of each ball
state of each ball
motives on each bail
time of most recent shot
ball ID sequence number

Defn. 11.5: State of the model. For each ball named 1 E ids, its radIUS is gwen by R;, Its dynamIC state is gIVen by Y;, and
Mi is the applied motive that acts on iL tfire is the time of the shot most recently fired by the cannon. seq is the sequence
number of the lD for the ball to be fired next Since we apply only one motive per ball, we simply label each motive with
the ball's lD. 0

The motive field that is applied to a ball with a given radius and id is given by:

(11.6)

Definition. neff

Define a function neff: llf x IDs -+ AppliedMotiveFields such thotJor any
r E llf and i E IDs:

M = neti{r, i) ~

{
F(M(Y, t» = -m(YbodJ{M) g) Z - 7J'r

2
W II v(YbodJ{M) 11 v(YbodJ{M)

1{M(Y, t» = 0

Defn. 11.6: Motive applied to a ball. The net force we apply to a ball has two parts: a constant gravitatIOnal acceleration
times the mass of the ball, pointing downward (- Z), and a drag force that is quadratic in and opposite to the ball's velocity
(-v(Ybod){~J))). 0

We define a function that returns the post-bounce state of a bouncing ball:

(11.7)

Definition. bbounce

We define afunction bbounce: States x IDs--+RIGID ::States by:

[

M...... M(Y(S) i)]
bbounce(s, i) == x...... X(Y(S)i) - (1::- r)R(S)iZ ~

v...... v(Y(s);) - 2(Z . v(Y(S)i»Z

Defn. 11.7: Bounce of a ball. Negates the z component of the ball's velocity, and lowers the center by the changem radius.
Since the hall is a point mass , the mass distribution. position and velocity fann an identifying tuple. (The use of tuple
notation is as per Notn. 3.24.) 0

Finally, several auxiliary functions that will be convenient later on:

11 .3 Mathematical Model 155

(11.8)

Definition. height, hit, big

height
hit
big:

We define several functions
States x lOs --+ ~ height of a ball
States balls hitting the ground
States balls big enough to survive

height(s , i)

hit(s)

big(s)

X(Y(S)i) . Z - R(S)i

{i E ids(s) I height(s,i) = o}
{i E hit(s) I,R(s)i ~ nnin}

Defn. 11.8: Auxd,.ry functions. For a model state s E States . the heIght above the ground of ball i E IDs is gwen by
height(s, i), and the set of balls that arehitling the ground is given by hil(s).' Of the balls that hit the ground, big(s) yields
those that are large enough to "survive" the bounce-i.e., shrinking them won't reduce them below the minimum radius. 0

11.3.3 Behavior of the Model

The behavior of the model over time is that of a segmented function, as per Sec. 3.10. We will describe the
behavior using the functional characterization described in Sec. 3.10.3; but as per Sec. BA.9 we have several
numerical event functions, each with a corresponding transition function.

For continuous motion, we define a consistem path through state space:

(11.9)

Definition. consistent

A state function s: ~ -t States is consistent iff:

ids,(t)
R,(t)
M, (t)

tfire,(t)
seq,(t)

Y,

is constant
is constant
is constant
is cons lam
is constam
is consistem with M,

Defn. 11.9: A cootmuous, conSIStent, path through state space. The set of ball m's doesn't change, the radms of each ball
doesn't change, the motive field that is applied to each ball doesn't change, and the gun never fires. But the balls can move,
as long as their motion is consistent (Defn. 8.25) with the motive fields. 0

To describe the cannon firing, we have an event function, that"goes off" when the cannon fires, and a transition
function that adds a new ball:

4. Because of numerical inaccuracies, in practice we use
hit(s) == {i E ids(s) I height(s , i) < f and v(Y(s);) . Z < o}

for some smal l tolerance (. Thus hit(s) is the set of balls that are numerically close to hitting the ground, where we take care not to
include balls that have already bounced and are moving away.

11 .4 Posed Problems 156

(11.10)

Definition. Gfire, Hfire

Define event [unction Gfire: lR x States --+ lR and
transitionjllllction Hfire: lR x States --> States by:

Gfire(t , s) tfire, + 1), - t

[

R R, + [idqseq(,), ro)
Y Y, + [idqseq(,), bsho/(t))
M M, + [idqseq(,), net1{ro,idqseq(,»))
tfire...... t
seq...... seq(s) + I

Hfire(t , s)

Defn. 11.10: Event and transition functions to fire caMon. For a model in state s EStates. the last time the cannon fired
was tfire~. since the period is 'Tb (Defn. 11 .1), the cannon will fire next when t = tfire" + 'Tb. To make a transition to the
initial stale of the next segment, the function Hfire add s an entry for a new ball (0 the various indexes, sets the time of firing,
and increments the sequence number. (The use of + to add elements to an index is as per Nom. 3.15, and the use of the
tuplenOlatl0n is as per Notn. 3.24.) 0

To describe a ball (or balls) bouncing, we have an event function that "goes off" when any ball contacts the
ground, and a uansition function that adjus ts the radius, state, and motives of the bouncing balls:

(11.11)

Definition. Ghounce, Hhounce

Define event [unction Ghounce: lR x States --+ lR and
rronsiriolljuncrioll Hbounce: lR x States--> States by:

Gbounce(t , s) == '!'in height(s , i)
iElds(,)

Hhounce(t, s) ==

R R, - hit(s) U ([i" R(s) ,)}
'Ebig(,)

Y Y, -hit(s) U ([i , bbounce(s, i))}
iEbig(,)

M M, -bit(s) U {[i , net1(, R(s)" i))}
iEbig(,)

tfire...... tfire,

seq...... seq,

Defn. 11 .11 : Event and transition functions for ball s bouncing. For a model in state s EStates, the value Gbounce(t, s)
is the minimum height of any baJJ, thus is 0 when any ball hits the ground. To make the transition to the post.lxxmce
segment, Hbounce(t , s) removes all index entries for ball s that are colliding with the ground (hit (s », and adds new entries
for all colliding balls large enough to survive the transition (big(s»; the cannon·firing aspect values are not altered. Both
Gbounce(t, s) and Hbounce(t ,s) areindependenloft. 0

Note that uansition functions Hfire and Hhounce are commutative, so if both types of events happen simulta
neously, the two uansition functions can be applied sequentially in either order.

11 .4 Posed Problems

For this sample modeJ, we have just a single posed problem: detennine the behavior of the model over time.
If we stan with no balls, we just specify the time that the cannon first fires:

11 .5 Implementation Notes

Program definitions in scope KTSEG:

class IUlme mathematical object
State States
StatePath R _ States

idq idq

routine
f'c annon(double) KCO : : instFrame
bshot(double) KRIG: : State

(D,/n.11.5)
(segmented) state function
(D,/n.112)

function
fcannoa (D,/n .113)
bshot (D./n .11.4)

netf(double I KK: : Id) KRIG: : ApplKotiveField net! (D,/n.11 .6)
bbounce(State ,KK :: Id) : MRIG: :State bbounce (D,/n.11 .7)
height (State,"K: : Id) double height (D,/n .11.8)
hit (S tate) "" :: IdSet hit (D,/n.11.8)
big(State) MK :: IdSe t big (De/n.11.8)
gfire (double,State) double Gfire (D,/n. 11.10)
hfire (double .State) State Hfire (De/n.1l.l0)
gbonnee (double. State) : double Gbeance (De/n.11.11)
hbounce(double,State) : State Hbeance (De/n. 11.11)

Figure 11.4: Math section definitions for the sample segmented model. 0

(11.12)

given: parameters of Defn. 11.1
initio/firing time to

find: segmentedfunction C: R --> S tates

{

Continuously, C is consistent, alld discontinuities ill Care
such that: described by event/transition function pairs Gfire , Hfire

and Gbounce, Hbounce.

157

Eqn. 11.12: Behavior of the tenni s ball cannon model. We start with an "empty" modeJ, i.e., no ball s. The first halils
shot at time to, and the cannon fires regu larly from then on. 0

The above is an initial-value piecewise-continuous ODE problem, that can be solved as described in Appendix
C. The continuous behavior is an ODE as per the rigid body fmward dynamics problem, Sec. 8.4. The initial
state Co E States for the problem can be constructed as:

ids ~
R ~

Co =
y ~
M ~
t1ire to - "
seq 0

which will trigger a "fire" event at t = to, and add the first ball to the model. (Or, if this gives results in
boundary-condition difficulties, we can evaluate HJire(to , Co) , to yield the initial state of the first non-empty
segment)

11 .5 Implementation Notest

The implementation of the " tennis ball cannon" follows straightforwardly from this chapter's description of
the model.

11 .5.1 Math Section Constructs

The math section for this module has scope name MTSEG ("Math Test ofa SEGmented model"); the definitions
are listed in Fig. 11.4.

t See Appendix B for di scussion of the terminology, notation, and overall approach used here.

11.5 Implementation Notes 158

cla.s.s State:
constmctors: OllCO :: Scaiarldx R. MRIG::Syst em Y. KRIG :: ApplMotiveFieldIdx K. double tfire, int seq)
members: ids: "" : :IdSet

R : MCO : : Scalarldx
Y : MRIG : : System
.. : "RIG: : ApplMotiveFieldldx
tfire : double
seq : int

The class for state space States is defined as per Sec. B.3.6. The constructor is given the various indexes as
parameters; it checks to see that the sets of !D's are mutually consistent, and that each motive is labeled with
the!D of the body that it is applied to, as per Defn. 11.5. The class for state paths, StatePath is defined in
the standard manner as per Sec. B.3.?

class Idq :
methods: seq(int i): "": :Id

The class idq implements an infinite sequence of !D's, idq (Defn. 11.2), by a "generator" mechanism: the
sequence is maintained as a data structure whose elements are created on demand; when a sequence element
is requested that isn' t in the data structure, a new, unique!D is defined and added.

The routines listed in Fig. 11.4 are implemented by directly transcribing the corresponding mathematical
functions. netf constructs an ApplMotiveFieldinstance whose force is given by an algebraic combination
of SysVectorField instances, and whose torque is a constant 0 SysVectorField, as per Sec. 8.5.2.

11.5.2 M-N Interface

The M-N interface for this module has scope name NTSEG

SolveForvard(double to) : StatePath

The state path instance returned by this function embodies the solution function C for the behavior ofthe model
(Sec. 11.4). In order toevaluateC(t) , the piecewise<ontinuous ODE solver NUM: : PodeScatExt (Sec. B.4.9)
is called.

The continuous part of the solution is constructed via MRIG: : SolveForward (Sec. 8.5.3). To handle
the discontinuities, we set up the numerical solver to invoke the routines gfire and gbounce---events are
signaled when the values they compute cross zero.5 When an event is found, the solver returns a code telling
us which of the two events it is, so that we can invoke hfire or hbounce as appropriate. The solver may
determine that, to within numerical tolerances, both events happen simultaneously, in which case it returns
both codes; for this model we can safely call both hfire and hbounce in either order.

11.5.3 Conceptual Section

The conceptual section can use the definitions of the dynamic rigid-body module, Sec. 8.5.1.

11 .5.4 C-M Interface

The state of the solution for any time value includes the set of !D's of balls that are in the model at that time.
The C-M interface can dynamically adjust the conceptual section state, adding or removing "sphere" objects
to conform with the solution for any time value. The various balls can be distinguished by the position of their
!D's in the sequence idq, if, e.g., we want to cycle through a series of colors for the balls that are created.

For more general models, in which many differenttypes of events may result in the mathematical model's
generating new !D's, we may want the C-M interface to be able to distinguish between !D's based on the

!I Notice that both functions are set up to be p:tsitive before an event, zero at the event, and negative past the event, as discussed in
Sec. c.l.l.

11 .5 Implementation Notes 159

events that caused them. For example a single model may create a new ball when a cannon is fired, and create
new glowing embers when fireworks explode-the C-M interface needs to know whether a given ID in the
system belongs to a ball or to an ember. We suggest two methods to achieve this:

• Define separate sequences similar to idq. Each event would choose ID's from a separate sequence, and
the C-M interface could determine to which sequence any given ID belongs ..

• More generally, partition the space IDs into subsets, and require different parts of the model to use ID's
from different subsets. This could be implemented as subclasses of the class MM : : rd, with runtime
tagging to be able to determine which subclass a given instance is a member of.

160

Chapter 12

Extensions to the Prototype Library

T he library and sample models that were presented in Ch. 6--11 serve as a small, prototype example and test
case. However, one of our goals for the structUred modeling approach is to support extensibility, i.e. , addition

of new capabilities that are built on and integrated with an existing library.

This chapter, therefore, discusses how the prototype library could be extended and enhanced to support a handful
of new capabilities: collision and contact, finite-state control mechanisms, interchanging kinematic and dynamic
motion. and flexible bodies. Note that unlike Ch. 6--11, which were all implemented as described. the discussion
in this chapter is speculative, put forth to suggest ways in which the given library might be extended. Thus we will
describe some conceptual ideas, and informally sketch some mathematical equations, but will not give a fonn al
description of modules or implementation details.

12.1 Rigid-Body Collision

We'd like our rigid bodies to bounce when they
collide with each other. The rigid-body dynam
ics module in Ch. 8 doesn ' t notice when bodies
collide-it doesn't "know" the extents of the bod
ies, and freely lets them pass through each other.
Here, we'll talk briefly about collisions.

First, we observe that conceptually, the rigid
body abstraction is at its weakest when addressing
collisions between bodies: for continuous free mo-

JI
CJ;(

\ ... j
tion, with accelerations that are small compared to r· .. .
the rigidity of the material, the rigid-body abstrac- ;' \ : ...

Lion works well; but when bodies collide, there is ..•..... '> :.:.: ...) \. \.
a sudden extreme change in their velocities-thus \<.i ::.:
Lhere are defonnations, shock waves, and so fonh
in even the most rigid of materials. Still, it is of- ...
ten useful to abstract a collision as a discontinuous Figure 12.1. Rigid.body collision. When rigid bodies collide, they

change in the velocity/momentum of a perfectly experience a discontinuous change in velocity (both linear SSld SSl-

rigid bodies. (Fig. 12.1) gular}. 0

Discontinuous changes in momentum are described viaimpulsive/orces (or justimpulses). The common
empirical model for collisions is that the points of contact emerge from an impulsive collision with some
fraction e of the relative perpendicular velocity that they had going in:

Avi = - eAV;

12.2 Rigid-Body Contact 161

where e is called the coefficielll oj restimtion, and is detennined experimentally for different pairs of materials.
If e = I , the bodies leave with the same relative velocity that they had going in, whereas if e = 0, they will
remain in contact 1 For more complete discussion of rigid-body collision, see [Fox67-ChlO.8j, [BaraffB9j,
[Moore,WilhelmsBBj .

Rigid-body collisions can be incorporated into the prototype library, by generalizing the method used in
the "tennis ball cannon" model in Ch. II. That is, we mathematically characterize the behavior as a segmented
function by defining two functions that describe the collisions:

• All evellljunctioll 9 such thatg(t , Yet)) is the minimum separation between any bodies, where negative
values indicate penetration.

• A trallsitionjunction h such that h(t , Yet)) computes the effects of impulses on the COlliding bodies.

Of course, we need to include the shapes of the bodies into our conceptual and mathematical models, in order
to define the event fun ction. In particular, we need algorithms to detennine the separation between bodies;
see [Baraff90j , [Von Herzen,Barr,Zatz90j, [Moore,WilhelmsBBj, or [Snyder92j.

When several bodies mutually collide, or when coUisions involve bodies that are constrained (as perCh. 9)
or in contact (as per Sec. 12.2), the impulsive collision calculation expands to involve a simultaneous system
of equations; see [BaraffB9] , [Moore,WilhelmsBBj.

12.2 Rigid-Body Contact

Rigid bodies are often in continuous contact, e.g.,
a coUection of bodies in a pile. In general, we can
let rigid bodies tOUCh, or let them move apart, but
we don't want them to interpenetrate. Mathemat
ically, this translates into a non-holonomic con
straint, i.e .. an inequality relation: The separation
between bodies must be greater than or equal to O.
(Fig. 12.2)

As long as two bodies maintain contact, they
mutually apply COlllactjorces to keep from inter
penetrating; these forces are essentially the same
as those of the geometric constraints described in
Ch. 9. The contact forces are "one way," however,
in that they push bodies apart, but don ' tpuU to hold
bodies together.

Figure 12.2. Rigid-body contact. Contact forces ensure thal bodies
do nOC interpenetrate. 0

Detennining when to introduce and remove contact forces is a complex task, especially in the presence
of multiple-body contact, surface friction , impulsive collisions, and so forth. A treatment of the subject is
beyond our scope; we refer readers to the series of articles [BaraffB9], [Baraff90], and [Baraff91j.

For our current discussion, we observe that a description of rigid-body contact can fit into the segmented
model fonnulation. Extending the functions described in Sec. 12.1, we have:

• EVellljunction: Detennines when bodies collide, and, for bodies in contact, detennines when the contact
forces "let go."

• Transitiolljullction: Computes impulsive behavior, activates contact constraints to keep bodies from
interpenetrating, deactivates contact constraints to let bodies separate.

1 As discussed in Sec. 2.6.2, we actually prefer a quasllinear restitution model.

12.3 Finite-State Control

12.3 Finite-State Control

Often, a model may have several different modes
of behavior, that it switches between based on spe
cial events; control mechanisms to describe these
changes of behavior are often defined as finite
state machines (FSM's). These are graphs or ta
bles that have a collection of state nodes, and, for
each node, a list of interesting events and the cor
responding transitions (arcs) to new nodes.

For example, gait control for human or ani
mal locomotion is commonly described as a finite
state machine-when a foot leaves the ground, the
model enters a state in which the leg is broughtfor
ward, when the leg contacts the ground, weight is
shifted onto it, and so forth (Fig. 12.3); see [Girard,
Maciejewski85], [Raibert,Hodgins91]. The "tennis
ball cannon" model in Ch. 11 can be described via
a simple machine that has one state node, with two
event arcs that loop back to it, one fallowed peri

~suPPoy
~t ~e;~~~ f ~o~~act s ground

~
grOU"d

FliGHT

\

1 f oot
r foot contacts
lea ve s ~ground
ground

L.SUPPORT

R.IGHT

- ~----;-;::ot ~ leaves
banana peel

162

Figure 12.3. Finite-state machine. A finite-statemachinecanbe used
as a control mechanism for models. 0

odically for the "fire" event, and the other followed when a ball bounces. [Brockett90] discusses a finite-state
model for a fonnal robotics language. [Kalra90] gives a general formulation for finite-state control over mod
els (from which we take the notation we use below).

Mathematically, we can describe a finite-state graph via a collection of triples, each describing an arc:

(Bi , L,Bj),

where Bi names a node, L an event, and Bj the node at the terminus of the arc, and where we use !D's to
name events and nodes. The space of all possible finite-state graphs would then be:

FSMs == sets oJ triples {(Bi ' L, Bj), ... }

The state of a model controlled by an FSM would include an aspect for the current state node, as well as an
aspect containing the FSM itself.

ModelStates
[
fsm~FSMs

B ~IOs

The controller Jar the model
The currenr stale node

Consider a segmented function through the above space. Since the aspect spaces for B and fsm are discrete,
they must stay constant within each segment of the function. However, when an event occurs, a transition
function can modify B:

_ [B~ Bj such that (B" L , Bj) E fSm,]
h(t , s, L) = .

Notice that in addition to time t and model state s E ModelStates , the transition function takes a parameter
LEI Os, which is the name of the event that occurred, as discussed in Sec. B.4.9.' In addition to updating B,

2If multiple events can occur simultaneously. and if the transition function can't be evaluated sequentially for each event, the FSM
would need to include arcs to follow for each combination of events.

12.4 Mixed DynamiC/Kinematic Motion 163

the transition function can adjust the model state appropriately (based on s and L), in the same style as Hfire
(Defn. 11.10) and Hbounce (Defn. 11.11) of the "tennis ball cannon." We can even modify fsm-the model
can change its control program!

12.4 Mixed Dynamic/Kinematic Motion

Often, a model has some parts that can most eas
ily be described kinematically, while other parts
have dynamic motion. The "tennis ball cannon"
in Ch. 11, for example, has kinematic motion for
the cannon barrel, and dynamic motion for the
balls. More interestingly, individual bodies may
switch between kinematic and dynamic motion, as
in Fig. 12.4.

Any desired kinematic motion of a dynamic
body can in principle be achieved by introducing
appropriate time-varying geometric constraints,
such as described in Defn. 9.37- but doing so
may be inconvenient, and moreover, requires extra
work in the numerical simulation of the dynamics.

....

Instead, we can directly change the rules of be
havior for any given body. For example, we define
a model whose state includes both kinematic and
dynamic elements:

Figure 12.4. Interchanging dynamic and kinematic behavior. Here,
the penguins slide down the incline dynamically. but make the return
trip via a kinematic conveyor belt. 0

ModelStates
[

K KIN EMATIC:: Systems
D RIGID::Systems
M {RIGID:: MassDists} IDs

Ids(K) U Ids(D) = Ids(M)
Vi E Ids(D), M(D;) = M;

kinematic body states
dynamic body states
mass properties of each body

M records fIUlSS of all the bodies
dynamic bodies agree wilh M

The motion of the bodies in K is governed by some kinematic rule, while the motion of the bodies in D is
determined by a set of applied motive fields. For a body named i E IDs to go from dynamic to kinematic, the
transition function would perform:

D D-i
K J{ + [i, k(D;)J

and for kinematic to dynamic:

remove from dynamic index
add kineflUltic stale to index

D D+ [i, [~I: X:]J adddynamicstatetoindex

I{ +---of [(- i remove from kinematic index

We maintain the body frame (and velocity) across the events, so the transitions appear seamless. The transi
tions can be controlled via the finite-state mechanism described in Sec. 12.3.

12.5 Flexible Bodies

On a related note, consider a model of 100,000
dominoes arranged on end, ready to be knocked
over. To perform a dynamic simulation of all the
dominoes would be infeasible. But we notice that

164

L~~rn/
there are only a few dominoes moving at anyone Figure 12.5. Mixed static and dynamic parts. The dominoes are
time-the rest are static. (Fig. 12.5) static before and after falling. 0

Thus we would design a model with separate "active" and "static" body indexes. When something collides
with a static body, we switch it to active, with an initial condition based on the collision impulse (Sec. 12.1).
When an active body is at rest and in contact only with static bodies, we switch it to static. Computationally,
we need only compute the behavior of the active bodies, and need only test for collisions amongst active
bodies and between active bodies and neighboring static bodies.

12.5 Flexible Bodies

We would like to extend our library to supportdy-
namic modeling of flexible bodies, integrated with
the rigid bodies (Fig. 12.6). It is common in com
puter graphics to model flexible bodies as a grid
of point masses, with some some sorts of springs
linking them together. This approach has the ad
vantage that it's easy to implement, especially
given an existing rigid-body modeling system. 3

However, we feel that this approach introduces ex-
cessive implementation detail into the conceptual
model, as discussed in Sec. 2.4. Instead. we per-
form much the same computation, but with a dif-
ferent outlook (choice A of Fig. 2.6, rather than the
mass-poinl/spring model, choice C) .

./
i

! // i
)

Figure 12.6. A flexible body, interacting v.>ith a rigid body. 0

Our basic conceptual model of a flexible body is that it is a smooth, continuous surface. For the mathe
matical model, we follow the development in [Terzopoulos et aI.8?] and [Platt89]: start with an expression
for the strain energy of the model; taking a variatonal derivative yields a partial differential equation (PDE)
describing the continuous surface that minimizes the energy. In order to numerically solve the PDE, it is dis
eretized using a finite element or finite difference approximation. As discussed in [Platt89], a finite difference
approximation can be made that is mathematically equivalent to a point-mass-and-spring system.

Programmatically. once we numerically solve the (discretized) equations, we propogate the result back
to the mathematical section, and thence to the conceptual section--this means reconstructing a continuous
function from the discretized results, by interpolation appropriate to the discretization method.

There are several advantages to creating a smooth surface at the mathematical and conceptual levels, rather
than using the mass-poinl/spring model:

• The body can be rendered without regard to the numerical discretization. Many rendering methods
will resample the smooth surface (adaptively) to create high-quality graphics; this resampling is not
restricted to the numerical discretization grid points.

• The interaction with the other objects in the model is not restricted to grid points. Penetration tests, e.g .•
can be performed on the smooth surface, without having to worry if small objects will "slip between
the cracks."

• The grid density can be chosen automatically by the numerical solver, based on problem-specific data,
or can vary adaptively over time or across the body. The user doesn't need to guess a grid density in
advance that will suffice throughout the simulation.

3In fact, we've done so: we've succesfully simulated models of flexible 3-D bodies as roughly 1000 point masses on sparse grids,
with roughly 10,000 springs between them, using ourimplementatioo of the prototype library modules of Ch. 6-8 .

12.6 Summary 165

• The solution method is independent of the higher levels. The numerics section doesn't have to al
ways use the finite-difference method if in some configurations, e.g., a modal analysis (see [Pentland,
Williams89]) or deforming rigid body method is appropriate. The various methods can be swapped in
without affecting the higher level of the program. 4

It might seem expensive to make and use the interpolated solution, rather than directly using the numerical
data. However, we feel that it will buy us much in the way of cleanliness, robustness, and applicability.
Moreover, the eventual use of "smart" or adaptive solvers will allow us to simulate systems that require fine
sampling for only a few extreme configurations; if we were to have only a pre-assigned sampling density,
we would need to globally choose the finest sampling, thus making the overall computation too slow to be
feasible. Thus, ultimately, this approach may be faster.

In order to integrate rigid-body and flexible-body dynamics, we must have a compatible mathematical
formalism. For rigid bodies, in Ch. 8 we chose a force-based, Newtonian formalism; but flexible bodies are
typically expressed using an energy-based, Lagrangian formalism. We may need to extendCh. 8 to include the
energy formulation, or, conversely, we may wish to express flexible bodies using a force-based formulation.
Or both.

12.6 Summary

This chapter has speculated on how several techniques and features could fit into the prototype library of
Ch.5-9. In doing so, we have doubtlessly glossed over many difficulties, incompatabilities, and so forth.
Our intent is to try to convey a feeling of where the modeling methodology might lead, and also to illustrate
how we use the methodology in thinking about as-yet-unsolved issues.

Our choice of topics in this chapter has deliberately emphasized models involving discontinuous events
and changes of state. We feel that a primary benefit of the structured approach towards modeling will ul
timately be in the ability to create models that are hetereogeneous-i.e., that incorporate various different
behaviors mixed together-both across time and across the elements of the model.

4. This is analogous to the linear system solver IUM: : linsys, discussed in Sec. B.4.3. that chooses between a sparse method or
singu lar-value decomposition.

Chapter 13

Concluding Remarks

T hiS chapter offers retrospective evaluation and comments on aspects of the design framework. We will elabo
rate on a small assortment of issues, based in particular on our experience with the prototype modeling library

of Ch. 5-12, and conclude with thoughts about where the ideas we have presented may lead.

13.1 Did We Meet Our Goals?

166

Sec. 1.2 enumerated various goals for a design framework. Here, we list the goals again here, accompanied by
discussion of how well the design strategy that we have presented meets those goals, based on our experience
developing and implementing the library described in Ch. 5-12.

• To Jacilitate the undersranding and communicarion oj models: We have found that the CMP structure
(Ch.2) helps us to undellitand models, by providing a powerful and convenient partitioning of the major
parts of a model. Having a common framework and terminology has proven helpful for discussing with
colleagues models that are under developmen~ and for presenting final velliions of models such as in
Ch.6-9.

• To Jacilitate the creatioll oJmodels with high degrees oj complexiry: The use of modularity in the design
of models (Sec. 2.5) helps manage complexity. The useof structured mathematical modeling techniques
(Ch. 3) helps us to isolate and write well·defined mathematical equations for complex models; in partic·
ular, the ability to defined the behavior of a complex model as a segmented function (Sec. 3.10, Sec. 4.7)
lends itself to very "clean" organization for models and programs.

• To Jacilitate the reuse oj models, techniques, and ideas. Modularity design as per Sec. 2.5 is helpful in
the re·use of models at the blackboard level. The toolbox-oriented program framework lets us re·use
models and program code at the implementation level; in particular, the "structured numerics" library
(Sec. B.4) has proven to be usable in a wide variety of applications.

• To Jacilitate the extension oj models. In our sample library, the "fancy forces" module (Ch. 9) was
successfully designed and implemented as an extension to the earlier rigid-body modeling modules;
it did of COUllie engender some minor alterations to the earlier models, but the modular design and
implementation framework kept those changes localized. Similarly, as per our discussion in Ch. 12,
future extensions to the library seem relatively straightforward.

• To Jacilitate the creation oj models thot are "correct." The emphasis on explicit statement of the goals
and conceptual properties of the model (Ch. 2) helps make sure that we are "on track" as we design

13.2 Notes on the Design Framework 167

models. The emphasis on standalone mathematical models (Sec. 2.4, Ch. 3) helps us to verify math
ematical consistency. The overall framework helps us to debug a model by identifying and localizing
various types of bugs, as discussed in Sec. 2.6.4 and Sec. 4.9 .

• To facilitate the translation of models into programs. By using object-oriented, functional, and proce
dural programming styles in the various separate sections of a program, rather than choosing a single
style overall, we have been able to best match the programming methods to the local programming
tasks. And, since the program framework (Ch. 4) follows the blackboard framework closely, it has
proven to be straightforward to implement models; in particular, the final version of the "fancy forces"
module was implemented without much difficulty, by following the description in Ch. 9. The program
framework lends itself to debugging, as discussed in Sec. 4.9.

13.2 Notes on the Design Framework

13.2.1 Structure of Physically-based Models

As per the discussion of applied mathematics in Ch. 2, we think that a primary part of physically-based
modeling is:

• Identification of a well-defined mathematical model, that has no "conceptual" or numerical solution
influences mixed into it.

The separation of equations from problems (as per Sec. 2.4.2) is perhaps less basic: for given goals, there are
often specific problems to be posed, and we may be best off posing them directly. But when we are interested
in reusable general-purpose models. in which different problems may be posed for different applications, the
separation becomes significant.

13.2.2 Mathematical Models

We have found the mathematical techniques in Ch. 3 to be convenient and helpful in designing complete
mathematical models. But can these techniques (or future ones) keep a rein on mathematical models that can
grow arbitrarily complex? It would be nice if mathematical models were always tractable by hand, via the use
of modularity, structuring techniques, and so forth. In our experience with the "fancy forces" mathematical
model, Ch. 9, however, we have found that we construct a long chain of definitions that can be tric!..]' to use
correctly.

If our goal of having well-<lefined mathematical models writtell all paper proves to be unattainable or
impractical, we may need to modify it: we'd rather not give up well-<lefined mathematical models, but we
may give up writing them on paper-that is , we may turn to computer-aided mathematical modeling, as
discussed in Sec. 13.4.

13.2.3 Program Framework

Our experience using the program framework that we defined in Ch. 4, with its conceptual/math/numerics
separation, has been favorable. Nevertheless, given the volatile nature of computer program technology,
we're skeptical about any specific program structure passing the test of time.

We have found that the approach of identifying and supporting changes of representation, as discussed in
Sec. 4.6, has been particularly valuable in defining a high-level, structured numerics library. The numerics
library described in Sec. B.4 has proven useful not just for our own prototype physically-based modeling
library, but for other projects as well.

In defining "math section" objects and classes for the modules of Ch. 6-9, we essentially implemented a
limited, special-purpose symbolic mathematics mechanism, directly in the C++ programming language. This
was a straightforward task, given well-defined "blackboard" mathematical models. Nevertheless, it would
perhaps be more elegant to define these in a mathematical modeling language; see Sec. 13.4.

13.3 Have We Made Modeling Easy? 168

13.3 Have We Made Modeling Easy?

We can't claim that we've "magically" made modeling easy. It can be a lot of work to completely specifY a
model in the "snucrured modeling" manner we have described-for example, if nothing else, the prototype
modules in Ch. 6-9 have a lot of bulk. In fact, for a small, one-time-use model, it would probably be easier
to just express and implement the model from scratch.

So what have we done? Our goal has been to maximize correctness, modularity, and reusability, so that
we can build models more intricate than we couId otherwise. Thus we:

• Invest more effon in the small-i.e., carefully describe the details of individual modules,

to yield

• Betterresults in the large-Le., complex models that are robust and flexible.

Even our simple prototype library has provided us with models and modeling programs that are more flexible
than were previously available to us. For example, we now consnuct programs that suppon the optional
calculation of work done by each force Object-this capability is achieved "for free" given the pre-existing
modular library.

But what about models that are very large? If we look at programming, we see that modularity and struc
ture are crucial elements for the design of large programs, but as projects get increasingly large, strucrured
programming is in itself insufficient: high-level languages are used, and for large enough projects, we en
ter the realm of software engineering (which addresses issues such as revision control, metrics, management
techniques, and so fonh). Similarly, we feel that our "structured modeling" approach includes some funda
mental elements for the design of large models, but for large models, higher level mechanisms than we have
described will need to be created, and for sufficiently large projects, an approach to "model engineering" will
be needed; this need is discussed by [8rooks91J.

13.4 Computer-Assisted Mathematical Modeling

Computer tools can potentially aid us to define and use mathematical models. We identify three areas in which
computer tools can be of use; there is of course some overlap between them.

CAD for Mathematical Models. Remember that for our purposes, a mathematical model is a collection of
definitions and equations, as opposed to a posed problem. Thus we want computer-aided design (CAD)
tools that help us to construct equations and definitions , rather than tools to solve equations. A mathe
matical modeling CAD tool would include such features as: 1

• Declarative definitions (rather than procedural).
• Modularity, including support for libraries, name scoping, etc.
• Data abstraction, i.e., definition of new abstract spaces.
• Extensible notation.
• '!ype-checking of operators and domains.
• Interface with programming languages and problem-solution tools.
• Ability to arrange and annotate models for clarity of presentation.

Note that the emphasis is not on automated generation of equations and definitions, but rather on a
utility that helps us to manually generate the equations and definitions that we're interested in.

1 Ourhypothetical CAD tool is simiJarin many respects to a "Smart Paper" proposal of [Barra6].

13.5 Future Directions 169

Solving Posed Problems. Symbolic mathematics programs, such as Maple ([Char at a1.91]) and Mathemat
ica ([Wolfram91]), are powerful tools for problem-solving.' These programs incorporate the ability to
manipulate expressions symbolically with built-in numerical evaluation and solution capability. On
a different slant, [Abalson at al.a9] describes techniques for automated construction, execution, and
analysis of numerical problems from high-level models.

Program Construction. Numerical problem-solving subroutines often require that the user provide "call
back" subroutines; e.g., a subroutine that computes a derivative for an ODE solver, or an objective
function for an optimizer. These subroutine are derived from mathematical model constructs, and thus
can potentially be created automatically by symbolic manipulation. The subroutines can be constructed
at runtime, based on end-user specified model configurations, resulting in special-purpose routines that
efficiently evaluate the necessary components for a given problem; this approach was used in [Witkin,
KassaB].

13.5 Future Directions

We hope that we have provided a stepping stone upon which others may build, to create new generations of
modeling methodologies. We can imagine the existence of rich modeling environments, full of building blocks
and modules (rigid bodies, constraints, flexible bodies, fluids, walking and running, quanrum mechanics,
weather, aerodynantics, molecular modeling, etc.) that can all be interconnected and expanded, so that users
and researchers can easily, build highly complex models. Future work for such environments might entail:

• Specification languages for physically-based models.

• Standards for exchanging physically-based models.

• Automated techniques to link together different model components.

• Interactive modeling/simulation workstations.

• Specialized hardware to suppon key aspects of the modeling/simulation process.

Clearly, the ideas that we have presented don'l directly provide the above capabilities-but we have tried 10
identify and examine some of the concepts that may underlie them.

2 Note that these programs are not quite suited 10 our idea of CAD formathematical modeling. They have procedural approaches; they
empbasizeautomarion in order to minimize the user's warle: and finally. they don't emphasize emphasize modularity or data abstraction.
both of wbich are fundamental to OUT mathematical modeling strategy.

170

Appendix A

Miscellaneous Mathematical
Constructs

ThiS appendix contains a few mathematical constructs that are used by some of the models in Ch. 6--9 . Notice
that these are purely mathematical utilities, rather than physically-based models. Thus they do not include

conceptual models, goal statements, and so forth, just some mathematical definitions.

The mathematical constructs defined here are not as fundamental as the various constructs of Ch. 3 (such as ill's
and state spaces); thus we have chosen not to include them in that chapter. On the other hand, these constructs
seem too general-purpose to be defined as auxiliary constructs of some specific physically-based model.

Therefore, to give such constructs a home, we have defined here a small library of miscellaneous mathemati
cal definitions. This library includes program implementations of the constructs, in the math section, numerics
section, and M-N interface parts of the program framework (Ch. 4).

A.1 Trees

The index mechanism of Sec. 3.8.2 provides a ba
sic structuring capability for mathematical mod
els: The ability to manipulate groups of elements
by name. Here, we define an additional structuring
capability, familiar from computer science: Hier
archical "tree" relationships between mathemati
cal entities.

We define a state space, such that each element
of the space is a forest

a b

h i j

Figure A.l. A sample forest. c's parent is a., h's parent is c, and
so forth. a. 's children are {c, d}, and so forth. {a, b} are the roots.
{d, f, h, i, j, k, m, n} are the leaves. c's descendants are {h, i,j}.
a. 's descendants are {c, d, h, i,j}, and so forth. 0

A.2 Arrays 171

(A.l)

Definition. I Dforesls

I Dforesls
[

ids
roots

>--> IDsets
>--> IOsets

nonroots >--> I Dsets
leaves >--> IOsets
parent >--> {IDs}IDs
children >--> {IDsets}IDs
descendants >--> {IDsets}IDs

I . Id5{parent) ~ ids

AUlD's in the forest
The ID's at the roots
The ID's not at che roots
The ID's at the leaves
Parem of anlD
Sec of children of each ID
Set of descendants of each lD

2. Ids(children) = Ids(descendants) = ids
3. roots U nonroots = ids, roots n nonroots = ¢
4. nonroots = Ids(parent)

5. leaves = {i E ids I children, = II}
6. 'Ii E IDs, j E children, ¢} parent; = i
7. 'Ii E IDs, descendants, = children, UjEchildren. descendantsj
8. 'Ii E IDs, i r/: descendants,

Defn. A.I: The space of forests of trees of ID's. Each element of IDforests is a forest, which may bave several trees.
(1) Not al l ID's need have parents. (2) All ID's have a set of children and a set of descendants (3) Every ID is a root or a
nonroot. (4) The nonroots are those !D's that have parents. (5) The leaves are those ID's that have no chi ldren. (6) Every
ID is the parent of its children. (7) The descendants of an ID are its children and its children's descendants. (8) No IO is its
own descendant. 0

This space is used for the kinematic hierarchical configurations, in Ch. 7.

A.2 Arrays

It is convenient (0 define some conslIUCIS for arrays. We define avec (0 be a I-D array of real numbers, of
arbitrary size, and a mat (0 be a 2-D array of real numbers, of arbitrary size: 1

(A.2)

Definicion. Vecs, Mals

Vecs _

Mals

{ Z E iRk I positive imeger k }

{Z E !Ri xk I posicive integers j, k }

Oefn. A.2: Vecs 15 the set of all I-D arrays of real numbers, no maUer what their stze; for example, if a E Vecs and
b E Vecs are two vecs, it maybe true that a E !R 2 while b E Rl. Similarly, Mats is the set of all 2-D arrays of rea1s. Thus,
Vecs and Mats are disparate unions as per Sec. 3.7.3; two vecs or two mats are agnates if they have the same sizes. 0

In order (0 tell us (he size of a mat or vee, we define operators:

1 We chose the names "vec" and "mat" to be reminiscent of "vector" and "matri.x"; we chose n Ol use the latter names directly, so as
to avoid potential confusion with the geometricobject.s in 01. 6.

A.3 Implementation Notes

Program definitions in scope HKISC:
class name abstract space
Forest IOforests
Plat Mats
•• tIdx {Mats}/Ds
MatIdxO {M3ts}iOs
Vee Vecs
Vecldx {Vecs} /Ds

(Defn. A.I)
(Defn.A2)
index of mats
index of mats, with 0

(Defn.A2)
index of vecs

Figure A.2: Math seaion definitions for the miscellaneous mathematical constructs. 0

(A.3)

Definition. lsz, Rsz, Sz

For m E Mats, v E Vecs

lsz{m)=j, wherem E Rjx'
n-z{m) = k, where mE Rjxk

sz{v) = k , where mE Rk

Defn. A.3: Operators for- the "'eft StU" (lsz) and "right SIze" (nz) of a mal, and for the Stze (sz) of a vee. 0

It is convenient to give ourselves shorthand notation for arrays of known sizes:

(A.4)

Notation. Vecs and Mats

Mats[j, k]

Mats[j, *]

Mats[*, k]

Vecs[k]

= mE Mats lsz{m) = j, n-z{m) = k}

mE Mats lsz{m) = j}
mE Mats rsz{m) = k}

v E Vecs I sz{m) = k}

172

Notn. A.4: Arrays of known Stzes. We use the bracket notabon on the left as shorthand for the subsets 00 !.he nghl For
example. Mats[4 .3] is the space of 4 x 3 arrays of reals, Vecs[3] is the space of all armys of3 leah. Mats [2, *] has its
size partially-specified---the space includes,e.g., 2 x 2 as well as 2 x 3 arrays. 0

We use will use standard matrix arithmetic for mats and vecs.

A.3 Implementation Notest

A.3.1 Implementation of Trees

The class KKISC: : IdForest that implements the space of forests could in principle be implemented in our
standard manner for state spaces (Sec. B.3.6), i.e., explicitly store all the aspect values. However, that can
quickly grow unwieldy, especially for the descendants aspect. Instead, a more compact mechanism is used,
and routines are defined to compute the various aspect values on demand.

For numerical computations involving trees, one often needs to perform an operation on each ID in a
tree. The routines NKISC: : IdForestPreorder(' ..) and NKISC: : IdForestPostorder (...) call a user
provided subroutine once for each ID in a forest, the former visiting a parent before visiting its children, and
the latter, after.

A.3 .2 Implementation of Arrays

The classes MMISC : : Vee and MMISC : : Mat are straightforward interfaces to a standard array package.

tSee Appendix B for di scussion of the termino1ogy,notation. and overall approach used here.

173

Appendix B

Prototype Implementation

ThiS appendix discusses a prototype implementation of a structured modeling environment as per Ch. 4 and
used by the modules in Ch. 6-9 . We discuss here the fundamental support routines and structure for the

conceptual/math/numerics framework discussed in Ch. 4; this structure is not specific to the rigid-body modeling
library in Ch. 6-9.

The appendix is in four parts. First. we give an overview of the presentation style that we use to describe the
implementation, both here and in the models in Ch. 6-9. This is followed by a brief discussion of the conceptual
section. Next, we describe the math section---focusing in particular on how to implement a mathematical model
such as in Ch. 6-9, using the support that is provided by the environment. Finally, we discuss the numerics
section, which contains a modular interface between low-level numerical subroutines and the higher levels of the
programming environment.

The discussion is at the level of functional specification, intending to provide a starting point for the design of
future implementations, rather than a prescription of syntactic details of the prototype. Note, however, that the
speci fication is taken from existing. working code-it is not speculation.

B.1 Overview of the Presentation Style

In describing the prototype implementation. both here and in the modules in Ch. 6-9 , we have tried to convey
the essentials of the structure and methodology, so that readers interested in designing and implementing their
own modeling environments would be able to draw on our experience.

We have chosen not to include listings (or even snippets) of our working C++ source code or class
definitions-we feel that the syntactic intricacies of the C++ language, compounded by the programming
idiosyncrasies of the author, would obfuscate the mostly simple mechanisms that are at work. Instead, we
give functional specifications of modules and classes. But we try to sprinkle in enough "grit" to keep the
description anchored to the implementation, rather than drifting off into hyperbole.

Object-oriented programming today does not have a widely accepted unitonn tenninology. We list the
tenns that we use, and refer the reader to [Booch91] for further discussion:

• Class. An abstract data type, in an object-oriented language.

• Illstalice. An object that belongs to some class.
• Data Member (or, just member). A named data element that contains part of the state of an instance.

• Method. A named operation on an instance.
• Operator. A method invoked via special syntax.
• Constructor. A method that is invoked to initialize a new object.

We will describe a class using the following fonn:

B.2 The Conceptual Section

class ClassnMle :
conslruclors: (.. . parameters . ..) a constmclbr/or lhe class

(.. . other panas . . .) we may have several constructors
members: gamma: double dora member named "gamma" a/type double

vidth: integer we may have several data members
metJwds: eval (... parms . ..) : integer method "eval" returns an integer

rep(, .. parms . ..) : double[3] returns an array of3 dOll.bles

174

We will leave various details out of our descriptions: implementation details such as private or hidden data
members (any interesting implementation issues will be discussed in the accompanying text); optimization
details such as pass-by-reference or inline definitions; class-mechanism administratrivia such as destructors
or assignment operators; debugging tools such as instance names and tracing methods; numerical details such
as tolerance parameters.

Our program descriptions will follow the LISP-like namespace style that is discussed in Sec. 3.6.2, in
which we specify a "current scope" for a module; all non-primitive terms presumed to be in that scope unless
explicitly prefixed with a scope name. Since C++ scoping doesn't work in that way, the actual implementa
tion explicitly prefixes all symbols with their scope names. To keep the program definitions from being too
unwieldy, we use abbreviated scope names:

scope name defi/led program section description
IICO Sec. 6.6 Math COordinate frames
11K I N Sec. 7.5.2 Math KINematic rigid bodies
11K I N Sec. 7.5 .3 m-N interface KINematic rigid bodies
IIRIG Sec. 8.5.2 Math dynamic RIGid bodies
NRI G Sec. 8.5.3 m-N interface dynamic RIGid bodies
IIFRC Sec. 9.5.2 Math fancy FoRCes
NFRC Sec. 9.5.3 m-N interface fancy FoRCes
IITSEG Sec. 11.5.1 Math Test SEGmented model
NTSEG Sec. 11.5.1 m-N interface Test SEGmented model
III1ISC Sec. A.3 Math MISCellaneous mathematics
NIIISC Sec. A.3 Numerics MISCellaneous mathematics
1111 Sec. B.3 Math supporr Modules
NUll Sec. BA Numerics structured nUMerics library

B.2 The Conceptual Section

The conceptual section maintains a data structure containing objects that correspond to things in the model.
The data structure objects are updated based on user interaction. simulation results, and so forrh .

As discussed in Sec. 4.2.1, the conceptual section of the program performs many of the same tasks as a
traditional (kinematic) modeling program, except that the behavioral computation is offtoaded to a mathe
matical/numerical computation "engine," via the C-M interface. We have focused on the construction of that
engine as the most novel pan of the program framework, and have given shorr shrift to the conceptual section.
Our prototype implementation provides some basic supporr interfaces:

• to [Snydar92J for shape models and their mass-distribution properties,

• to rendering software and hardware,

• to animation/control and recording software and hardware,

There is still much room for work at the conceptual leveL In particular, there is a need for high-level
physically-based modeling description languages and data formats.

8 .3 The Math Section 175

8.3 The Math Section

The math section of a program, as discussed in Sec. 4.2 and Sec. 4.4, is primarily a collection of definitions
of data types-Le., classes- that support the various entities in the blackboard mathematical models. Here,
we discuss how these definitions and support are implemented.

B.3.1 Overview: Classes and Abstract Spaces

Our mathematical models are based on abstract spaces, as discused in Sec. 3.7 (and evidenced in the models
of Ch. 6-9). This maps well into object-oriented programming-<>ur basic procedure to implement a given
model is:

• For each abstract space of interest in the mathematical model, we define a correspo/lding class
in the program.

For example, some classes that we define, and their corresponding spaces, are:

class name
1!M: : Id
I!M: : IdSet
Meo : :Vector
KeD : :Vect orPath
HRIG::ApplMotive
MRIG: : ApplMoti veldx

abslracc space
los
IDsets
Vectots
VectotPaths
AppliedMotives
{Applied Motives} IDs

(Defn.3.8)
(Defn.3.9)
(Defn.6.1)
(Defn. 6.19)
(Defn. 8.20)
(an index, NOln. 3.11)

Notice that we use singular names for the classes, in keeping with the programming style that the name is that
of the data type. Notice also that we often explicitly create classes, such as ApplMotiveldx, for commonly
used abstract spaces that are mathematically defined implicitly or indirectly, such as the space of all indexes
of applied motives, {AppliedMolives}IDS; we will discuss indexes in Sec. B.3.5. Finally, notice that we
create classes even for abstract spaces whose elements are functions, such as VectorPaths whose elements
are functions from reaJs to vectors; we will discuss functions in Sec. B.3.7.

Each class defines various methods that support mathematical operators and functions defined over the
abstract space. For example, as discussed in Sec. 6.6, the Mea: : Vector class has a method rep (Frame)
that supports the mathematical operator Rep (Defn. 6.5), rerurning the representation of a vector in a given
coordinate frame.

B.3.2 Immutable Objects

In Sec. 3.5.1 we pointed out that mathematical model entities have no changeable "internal state"--as opposed
to program objects, which typically do. However, we would like to closely follow the mathematical model in
our implementation . Thus we adopt a restricted style for the math section objects:

• The state of a math section object may /101 be changed after rhe object is consrructed.

This can be supported in object-oriented programming by defining no "modifier" methods-<>nly
"accessors"--and by declaring all the member data to be constant/read-only. The constructor method for
the class must correctly initialize the contents of the object, since it will not be changed later on; thus the
arguments to the constructor must be sufficient to completely specify an instance. '

We think of an instance of a math section object as a being a primitive abstract value, rather than a storage
area whose contents can be modified.' We will use math section objects as if they were primitive data types

1 If it is too cumbersome to require all necessary construction parnmeten to be avail able at once, we can take a more procedural
approach: Define a class to have a Oag that indicates "under construction," to have modifier methods that may only be used if the flag is
set, to have accessor methods that may not be used if the flag is set. and to have a special "wrap" method that resets the flag.

2 Note the contrast with conceptual section objects: each instance of a conceptual object corresponds with a thing in the model--it
is a storage location that holds various parameters that describe the configuration of the thing. and that are updated and modified as we
manipUlate or simulate the tlUng-and it may not be destroyed during the lifetime of the thing.

B.3 The Math Section 176

like integers or floating-point numbers. If we have two instances that represent the same value, they can be
used interchangeably.

In addition to being close to the mathematical model, this approach lends a certain ease of use to the
math section: An instance of a math object is always correct, by construction. We manipulate and copy
entire instances rather than pointers, so that pointer corruption and data aliasing are not major issues. We
write functions or operators that take math object instances as arguments and construct new instances for the
result (To minimize the runtime cost of copying arguments and return values, the arguments can be passed
by reference, and the user can specify the destination into which the return value should be constructed; see
Sec. 4.8.)

The strict adherence to immutability works well for primitive, fixed-size objects--even rather large ones,
such as KRIG: : State (Sec. 8.5.2). But for compound, variable-size objects such as sets and indexes, it can be
impractical as the objects grow large: we often perform operations such as x x U y in which we will replace
the value of variable x with anew value; but constructing a new value from scratch, only to immediately throw
away the old value can be prohibitively expensive. But since we know that the old value will no longer be
needed, we can provide an "increment" operator U, so that x U y efficiently updates variable x to have
the new value. Thus we relax our immutability requirement, to support arithmetic increment operators for
variable-size objects.

8.3.3 ID's

We define a class Id to implement the abstract space IDs (Defn. 3.8). The only operations that the class
supports are constructing a new unique ID, and testing to see if two instances are equal. Internally, an ID is
simply represented as a 32-bit integer code; to create a new ID, a global counter is incremented.

8.3.4 ID sets

We define a class IdSet to implement IDsets, the space of sets ofID's (Defn. 3.9). The class is implemented
using a standard "container" mechanism, including support for iterating through all elements of a set, and
testing to see if a given ID is an element of the set.

8.3.5 Indexes

We provide templates for defining indexes (Defn. 3.10) and indexes with zero (Nom. 3. 12). The template for
indexes provides:

class Indexed<Thing> :
members: ids: IdSet the set oflD'sllsedas labeLr in the index
operators: [i]: Thing the element labeled by 1D i

The subscripting operator x [i] for an index x generates a runtime error if i is not in ids . The template
additionally provides set and arithmetic operators (Notn. 3.15), both normally and in " increment" form as
discussed in Sec. B.3.2. Internally, the class is implemented using a standard "container" mechanism that
keys on the ID's internal integer code. The template for indexes with zero is the same except that it requires
an argument indicating the ''0'' element for the class that is indexed; that element is returned by x [i] if i is
not in ids.

8.3.6 State Spaces

State spaces are implemented by directly using the object-oriented mechanism. Consider the example space
Rectangles of Notn. 3.25:

8.3 The Math Section

Rectangles
[

length '- ~
width 1--+ lR
area I--+!R

length 2 0

width 20
area = length x width

177

We support each aspect directly as a data member-thus we are representing an element of the state space by
the full tuple of aspect values:

cla.ts Rectangle:
constructors: (double length. vidth)

(double length,area)
(double vidth,area)
(double length,vidth,area)

members: length: double
'ii'idth : double
area : double

minimal identifying tuple
minimal identifying tuple
minimal identifying tuple
full tuple

All the data members are declared to be constant, as per Sec. B.3.2. As discussed in Sec. 3.9.2, for this space,
any pair of the aspect values is sufficient to identify an element; we define three constructors accordingly,
each of which computes the third aspect value from the given two. We also define a constructor that accepts
a full tuple. All the constructors verify that the arguments are non-negative and that the area property holds;
a runtime error is generaled if this is not the case.

In general, we don ' t implement constructors for all possible identifying tuples-merely for those that we
find to be useful. But all constructors must be careful to construct an instance that satisfies all the internal
properties of the space (or else to generate a runtime error). As discussed in Sec. B.3.2, we want to guarantee
that alI math object instances are valid, by construction.

We do generally implement state spaces by providing members for alI aspect values, as described above,
because of its simplicity. However, if memory space is a concern, or if we don't want to spend the time
computing all aspect values at construction time, we can use a more compact representation. For example,
Rectangle could store just the length and width as members, and could provide an accessor method to
compute the area.

Nested state spaces (Sec. 3.9.4) are implemented as ordinary data members. Inherited aspects can simply
duplicate the data of the nested space, or can be references to the nested space's aspect values.

B.3.7 Paths and Other Functions

The mathematical models often define abstract spaces whose elements are paths (functions from
the reals) or more general functions . For example, we have KINEMATIC:: State Paths (Defn. 7.2),
SysVectorFields(Defn. 8.16), and ProtoGenS(Defn. 9.6).

Like state spaces, we don 'l provide any direct support for function spaces, but they are implemented
readily using the object oriented mechanism. Consider the space of Rectangles (Sec. B.3.6) as a function of
time:

RectanglePaths == the set offtmctions {a?~ Rectangles}

It is implemented simply as:

class RectanglePath :
methods: eval (double t) : Rectangle evaluate the function at time t

The class doesn't provide an implementation of the oval method. Instead, it is a base class, and we use
the object-oriented mechanism to define subclasses that implement various specific functions, based on their

9.4 The Numerics Section 178

constructor arguments. For example, one subclass might define oval to return a given constant value. Another
might define oval to compute a rectangle that oscillates as some explicit function of time.

Most importantly, we can define a subclass that invokes a numerical routine to solve a posed mathematical
problem-this is the primary "hook" through which we access the numerics section of the program. For
example, Sec. 8.5.3 describes a subclass of MRIG: : SysPath that invokes a differential equation solver to
evaluate the function, and Sec. 9.5.3 describes a subclass ofMRIG: : ApplMotivoldxField that sets ups and
solves a linear system of equations.

For paths into state spaces, we can often compose paths for each aspect operator. For example:

class RectanglePath :
members: length: double Path

vidth : doublePath
area : doublePath

methods: eva.l(double t) : Rectangle

Each aspect path is set to a subclass that implements its oval by calling RectanglePath 's eval, and returns
the proper aspect value of the result.

Every index of functions has an implied function that returns an index, by simply evaluating all the el
ement functions and making an index of the results (Defn. 3.17). Correspondingly, we may have a class
ThingFuncldx, being indexes of functions, and anotller class ThingldxFunc, being functions that return
indexes. The laner could support a subclass that is constructed from a specific index of functions instance,
and whose oval method simply evaluates all the element functions and constructs an index to hold the results.

8.3.8 Discussion

We have used the methods that we have outlined, to implement the mathematical models of the modules in
Ch. 6-9. We have found that the mathematical modeling method fits well with an object-oriented implementa
tion. Implementing a mathematical model from a given blackboard specification is not hard-simply a maner
of typing in the appropriate class definitions and so forth. There is a great deal of rote in the task, especially in
the minutiae of the object-oriented class specifications. We can imagine embedded or special-purpose mathe
matical modeling languages that more directly support our mathematical modeling constructs. See discussion
in Secs. 13.2.3, 13.4.

8.4 The Numerics Section

The numerics section of a program, as tliscussed in Ch. 4, is responsible for computing numerical solutions
to the posed problems. There is a large body of knowledge and software for numerical computation, that
we can take advantage of for physically-based modeling; see, e.g .. [Press et al.86l , [Ralston,Rabinowitz78l,
[Golub,Van Loan85l , [NAGl.

We can assume that we have a rich library of numerical subroutines readily available to us. So what more
needs to be done? The answer is that we need to join the "back end" numerical subroutines with the higher
levels of abstraction in a modeling program. This section discusses the structure/mechanism that we build on
top of an existing numerical library.

8.4.1 Overview of the "Structured Numerics" Library

The numerics section bridges between the numerical subroutines and the mechanisms that are used by the
math section and M-N interface of a program (Sec. 4.2.4), in order to overcome some basic design differences
(Fig. B.l). In bridging between them, we perform changes of representation as discussed in Sec. 4.6.

Thus we build a structured numerics library: A modular, object-oriented collection of interfaces to nu
merical techniques. The library is designed to provide access to numerical techniques in a form convenient
for the high-level abstraction and goals, rather than driven by the low-level design and implementation goals.

B.4 The Numerics Section

Numerical subroutine design

Data formats:
• Arrays of numbers. Numerical subroutines most
commonly operate on arrays of numbers.

Access methods:
• Procedural, arcane. Special-purpose routines or se
quences must often be followed to provide data or ac
cess solutions. E.g., ODE solvers typically require re
peated calls to a subroutine to advance the solution
by steps; a different routine can interpolate within the
most recent step.

Choice of algorithm:
• One algorithm per subrouJine. Each subroutine and
algorittun is typically suitable to to a specific regime of
the problem. E.g., a routine may solve a sparse linear
least squares problem using a Lanczos algorithm.

Programming paradigm:
• Subromine paradigm. Numerical routines often as
sume or are geared towards use by a program that
solves a single problem; they are often not re-entrant. 4

VS.

179

Program requirements

• Conceptually separate objects. We may group to
getherseparate objects for the purposeof solving a par
ticular problem. E.g., an index of dynamic body states
is grouped into an array for Eqn. 8.35

• Uniform interface. For any given problem, we would
like to specify the problem conveniently, and access
the solution freely. E.g., we want to evaluate a solu
tion function Y(t) for arbitrary values of time t , as dis
cussed in Sec. 4.7.

• One inlerface for various algorithms. A problem
may need to be solved in different regimes. E.g., a lin
ear system of equations may be sparse or dense, ill- or
well-conditioned.

• Object-oriented paradigm. Many separate objects
can coexist, each of which solves a particular problem;
solution evaluations may be intermingled.

Figure 8.1: This table lists various differences in design between numerical "back end" subroutines and higher levels of the program.
The designoI numerical routines is low-level, driven by algorithm and implementation issues, whereas forthe higher level of me program
we have explicitly tried to be driven by abstraction and high-level goals. Theslrtlctllrcd munerics Jibraryis designed to bridge between
the low and high levels. 0

Fig. B.2 i1luslnltes the hierarchy of modules in our prototype structured numerics library. As per Sec. 4.1 ,
we provide a collection of tools at various levels of representation, so that for any particular application, the
programmer may choose the most convenient fonn. We are not attempting to provide a single interface or
paradigm to span all problems.3

Despite our highfalutin talk of "abslnlction," "changes of representation," and so forth , the structured
numerics library is very mundane: it deals with programming details such as data fonnat and subroutine
interfaces, and the bulk of its implementation is involved with housekeeping issues such as storage allocation,
cacheing intennediate results, and so forth. Note in particular that little or no numerical computation takes
places within our modules-ultimately,lhey are merely interfaces to existing numerical subroutine libraries.

The next several sections discuss various modules in our prototype library (those that are used by the
models in Ch. 6-9). We will simply outline the structure and interface to the modules, to "give a feel"' for
the library~omplete implementation specifications are beyond the scope of this book. For the underlying
solution techniques, we refer readers to [Press at aI.86).

3In general, numerical computation today is a job for "hobbyists": to most effectively get meaningful results, one must have an
undentanding of issues such as accuracy and tolerance, a feel for thecharncter of the particuiarproblem being solved, a familiarity with
the strengths and weaknesses of various known solution techniques, and sofonh. This limits our ability to provide " univerul" high-level
interlaces that allow the userto ignore implementation and solution details. Stil l, well-packaged interfaces can be designed that apply to
a reasonably broad range of problems. And, by designing our library as a collection of tools at various levels, we allow users to "reach
down" and access lower-level routines as necessary without breaking the spirit or function of the library.

4 A re-entranJ technique is one that can be used simultaneously or in an interleaved manner by different applications. For example,
we might want to advance one ODE solution , then solve a different ODE. then cootinue advancing the original. FORTRAN numerical
libraries often store infonnation about a problem in shared "common blocks," so that starting a second problem solution precludes the
ability to continue the first

8.4 The Numerics Section 180

"Structured Numerics"Library

Module Hierarchies

OdeScatEx

tScat Pode P 01 59 men t s

de Roo t 01 eame ts

Figure B.2: Schematic diagram of some mooule hierarchies in Ollf prototype "structured nwnerics"library, built on lop of a standard
numerical subroutine library. The librruy is intended to be used as a toolbox, with mooules at various levels of representation available
for different applications. For example, Ode, OdeExt . and OdeScatExt provide different interfaces to ordinary differential equation
initial.value problems; the "best" one to use depend s on the application. Sees. B.4.2-B.4.11 describe the modules . 0

B.4.2 GatScat: Array Gather/Scatter

This is a utility class, that does the housekeeping to map between a collection of separate elements, each
having local data, and a single linear array of data The following methods are supported:

add(...)

gather (array)
scatter(array)

Add an element to the collection-an element is be specified via subroutines
to read and write its local data, or simply by the memory location of the local
data Each element can be a different size.
Gather each element's local data into an array.
Scatter an array of data into each element's local data

After adding each element once, the gather and scatter methods can be used repeatedly with different data
sets. Other methods map between elements and their array indexes, return the total size of the array, and so
forth. GatScat is used by OdeScatExt (Sec. B.4.6) and PodeScatExt (Sec. BA.9).

The class GatScat2 is similar, but maps between separate elements and a 2-d block matrix of data Each
element specifies its row and column in the matrix; not all entries in the matrix need to be specified. The
gather and scatt er methods support both sparse and full arrays. Additionally, GatScat2 can partition the
matrix into independent blocks, based on which entries have elements associated with them. GatScat2 is used
by the "fancy forces" model,IIFRC: :LsolveProto (Sec. 9.5.3), and is compatible with LinSys (Sec. B.4.3).

B.4.3 LinSys: Linear Systems of Equations

This is a class that solves marrix equations of the form M X + B = 0, computing values of matrix X given
values of M and B. If the matrix M is singular or ill-conditioned, the least-squares solution is computed.

For our applications, M is commonly sparse, though not always, and M may sometimes be ill-conditioned
or singular. We can' t always tell in advance-for example, a system may generally be well-conditioned, but
may occasionally pass through an ill-conditioned "wne" during the course of a simulation.

B.4 The Numerics Section 181

LinSys is a "black box" that lets the user specify the system using ordinary 2-d array data fonnat, and
that runs as fast as possible in the general case, yet is guaranteed to work (albeit more slowly) in the special
cases. Its features are:

• It partitions !vI into independent blocks, and solves each one separately.

• Within each block, if the matrix is sparse it constructs the appropriate sparse representation, and uses
Spars e (an interface to aLanczos method) to solve the system. Spars e may report failure if the matrix
is too ill-conditioned.

• If the matrix is not sparse, or if the sparse solution fails, singular-value decomposition is used instead,
which is slow but has essentially guaranteed success.

LinSys is compatible with GatScat2 (Sec. B.4.2), which can be used to pre-compute thepanitionand sparsity
of the matrix.

B.4.4 Ode : Ordinary Differential Equation

This is a class that solves ordinary differential equation (ODE) initial-value problems: it computes y(t) where
f.y = fey , t), given a value Yo = y(to).

Ode provides an object-oriented interface to various techniques in the numerical library; that is, an abstract
base class is defined, and assorted derived classes implement Runge-Kutta, Adams, and othertechniques. Ode
perfonns no changes of representation, supporting array data fonnat and sequential access methods:

step()
interp(t)
solve(t)

Advance the solution to some larger value of t.
Interpolate the solution within the last step.
Advance until and return the solution at time t.

UnlikeLinSys (Sec. BA.3). our currcntimplementation of Ode docs not choose solution techniques automat
ically.

B.4.5 OdeExt: Extruded ODE

This is a class that solves ordinary differential equation (ODE) initial-value problems, as does Ode (Sec. B.4.4).
Unlike Ode, however, this class doesn't require sequential access to the solution yet). Instead, the solutionis
"extruded," allowing the user to evaluate yet) for any values of t, in any order. Its primary interface method
is thus:

eva1(t) Evaluate the solution for any time t > to.

OdeExt uses array data fonnat, the same as Ode.
Internally, OdeExt works by maintaining the solution as a piecewise-polynomial function, using Ppo1y

(Sec. BA.lO). If evaluation is requested at a time beyond the bounds of the stored solution, Ode is used to
advance the solution as needed; the result of each step along the way is added the the stored solution. 5

For many problems, we only need to evaluate yet) for monotonically or almost-monotonically increasing
values oft. Thus, to save memory, OdeExt can maintain a "sliding window" that moves forward automatically
as the solutionis advanced-solution values prior to the start of the window are thrown away.

B.4.6 OdeScatExt: Scattered, Extruded ODE

This class combines the extruded ODE-solving functionality of OdeExt (Sec. B.4.5) with the array gather/
scatter functionality of GatScat (Sec. B.4.2). This is used, for example, by the rigid-body dynamics model
routine NRIG : : Sol veForward (Sec. 8.5.3) to construct an object that computes an index of rigid body states,
for any value of time t.

SMoot ODE-solving techniques internally compute a polynomiallo describe the value of the function in the most recent step. Often,
the polynomial itself 1S not made directly available--but its order k is known, thus we can accurately resample the solution to construct
an explicit polynomial function.

8.4 The Numerics Section 182

B.4.7 Pode: Piecewise-Continuous ODE

This class is analogous to Ode (Sec. B.4.4), but suppons piecewise-<:ontinuous ODE's, using the solution
technique discussed in Appendix C.

B.4.8 PodeExt: Extruded PODE

This class is analogous to OdeExt (Sec. B.4.5), butsupports piecewise-<:ontinuous ODE's. The solution y{t) is
a segmented function as described in Sec. 3.10, whose size may change at the discontinuous events. PodeExt
allows the transition function that starts a segment (see Appendix C) to specify arbitrary data for the solver
to associate with that segment; The eval(t) method returns the associated data for the segment that spans
time t, and the size of the solution within that segment, as well as the array containing the solution at time t.

The Segments utility (Sec. B.4.11) is used to keep track of the separate segments of the solution; within
each segment the solution is accumulated as a piecewise-polynomial function, in the same manner as OdeExt.

B.4.9 PodeScatExt : Scattered, Extruded PODE

Analogous to OdeScatExt (Sec. B.4.6), this class combines the functionality of PodeExt (Sec. B.4.8) with
the array gather/scatter functionality of GatScat (Sec. B.4.2). It is used by the "tennis ball cannon" model
(Sec. 11.5.2).

In addition to gathering and scattering the solution values, PodeScatExt allows the user to specify sep
arate event functions (see Appendix C), and will gather their values into an array for PodeExt. When an
event is detected, i.e., a root of an event functions is discovered, the user's transition function is passed a code
indicating which of the events was found (see Sec. 11.5.2).

We also provide a class PodeScat , that supports scattered data, but only sequential access to the solution.
Functionally it is equivalent to using PodeScatExt with a "sliding window" of zero width, so that no prior
values are saved---but the interface is simpler.

B.4.10 Ppoly: Piecewise Polynomial Functions

This class supports piecewise polynomial functions. It uses the Poly class (which implements Chebychev
polynomials) for each piece, and keeps track of them via the Segments utility (segments). It supports the
following methods:

addl(...)
addr(. ..)
eval(t)

Add a polynomial segment on the left end.
Add a polynomial segment on the right end.
Evaluate the solution for any time t within the endpoints of the stored func
tion. This method uses Segments to detennine which polynomial spans time
t, then evaluates that polynomial.

The class also provides miscellaneous support, such as methods to "trim" the function throwing away poly
nomials outside a given range.

Ppoly is used by OdeExt (Sec. B.4.5) and PodeExt (Sec. B.4.8).

B.4.11 Segments: Partition of the Real Number Line

This is a utility class that does the housekeeping to maintain a collection of adjacent segments of the real
number line, maintaining arbitrary data for each segment. Starting with an initial endpoint for the structure,
it supports the following methods:

addICt , data)
addr (t , data)
data (t)

Add a segment on the left end, and store the provided data
Add a segment on the right end, and store the provided data
Look up and return the data of the segment containing t.

8.4 The Numerics Section 183

The class also provides miscellaneous support, such as methods to iterate through all the segments.
Segments is used by PodeExt (Sec. B.4.8) and Ppoly (Sec. B.4.lO).

B.4.12 Discussion

We have presented the "structured numerics" library as part of the overall program framework for physically
based modeling, that we described in Ch. 4. However, it is not specific to that framework.

Our prototype structured numerics library has been used (and extended) by colleagues for applications
other than physically-based modeling: a modular, object-oriented numerics library that supports high-level
representations is useful even for projects that don' t include the rest of the "structured modeling" mechanism.

Currently, numerical subroutine libraries are as we have described-low-level, array-oriented, and so
forth-typically written in FORTRAN. However, with the advent and popularity of object-oriented program
ming, it is likely that in the near future, the bottom-level numerical routines available from vendors will be
object-oriented and modular, and will support high-level representations such as we described. If so, our
comment at the start of Sec. B.4:

"We can assume that we have a rich library of numerical subroutines readily available . .. So what
more needs to be done?"

will need to be updated:

"We can assume that we have a rich library of object-oriented numerical modules readily
available ... Nothing more needs to be done."

Appendix C

Solving Piecewise-Continuous ODE's

This appendix describes an algorithm to solve initial-value problems for Piecewise-Continuous Ordinary Dif
ferential Equations (PODE's). The solution to a PODE is a "segmented function" as discussed in Sec. 3.10;

we will use the mechanism developed there to specify a PODE to be solved.

The solution technique makes use of common ODE-solving and' Ioot-finding techniques as "black boxes," al
lowing easy tailoring of the solution mechanism to specific problems, by appropriate choice of "boxes" and their
parameters.

C.1 Formalism for Piecewise-Continuous ODE's (PODE's)

C.1.1 Definition

184

We define apiecewise continuous ordinary differential equation (PODE): an ordinary differential equation 1

(C.l)

f,y = F(y, t)

Eqn. C.l: Canonicalordinarydifferentlal equation. For a piecewise-eontinuoU'> ODE, the function F(y(t), t) is continuous
and has a boundedderivallve. except at isolated values of t. The solution function yet) to aPODE is C l-continuous except
at those values of t. 0

The solution to a PODE is a segmented junction, as per Sec. 3.10, i.e., is piecewise continuous. Note that in
general we are interested in solving for functions

y:t-> U !Ri
,

i:;:I ,2, ...

but for the present discussion we will assume that the solution stays in !R n for constant n; Sec. C.2 will
re-introduce arbitrary dimensionality in the solution.

1 The PODE method described in this chapter will work in exactly the same manner with piecewise-continuous differential-algebraic
equations (DAE's), e.g., of the fonn F(y, dy/ dt , t) = 0 [Petzold82]. However, because of their greater familiarity, we present the
discussion in tenns of ODE's.

C.1 Formalism for Piecewise-Continuous ODE's (PODE's) 185

a. H"

b.VoIo.ty

fl. FGl»

_ -

Figure C. I: Example of a PODE: A bouncing bal1, with damping. (a) The height of the ball. (b) The velocity of the ball. (c) The force
on the ball; at each bounce, an infinite force is required to instantaneously change the velocity. 0

y(t)

y

h(y,t)

\
g(y',ta: Q

Figure C.2: A PODE. y(t) i s the continuous solution of ftv = f(Yt t) [nOl shownl, until g(y(t), t) = O. Then y(t) is changed
discontinuously by adding hey, t). and the solution progresses con tinuously again. 0

We will use a "fu nctional characterization" to describe a PODE, as discussed in Sec. 3.10.3. That is, we
define three fun ctions:

(C.2)

"body [ullction"
"event jUlJction"
"transition ftmction"

t: 3/" x 3/~3/"
g:3/" x 3/~!R
h:3/" x 3/ 3/"

Eqn. C.2: Functional characterization of a POOE. We describe a PODE by three functions, in the manner of Defn. 3.39.
Note howevertbat here. we define the functions numerically. rather than in predicatefonn. The functions are discussed in
the text below. 0

t (y , t): t(y, t) = T (y, t) wherever T(y , t) is continuous and has a bounded derivative. t(y, t) need not be

C.1 Formalism for Piecewise-Continuous ODE's (PODE's) 186

defined where :F(y, t) is discontinuous or singular.

g(y, I): A "event" function, lhallocales discontinuities by defining legal slales: as long as lhe solution y(l) is
in a legal Slate, fey, I) must be continuous and well-behaved; if the solution attempts to enter an illegal
slate, a discontinuity occurs at the boundary. Thus we define:

(C.3) g(y, I)

> 0: y is a legal state at I
< 0: y is an illegal state at I
= 0: Boundary state: :F(y, I)

may be discontinuous or
singular; y(l) may be dis
continuous

g(y, I) = 0 occurs only at the discontinuities or singularities in :F(y, I). 2 The solution y(l) always has
the propeny that g(y(I), I) 2: o. g(y, I) itself must be continuous where it is non_03 ,4

hey, I): A "transition" function, that bridges discontinuities by describing the change in the solution y(I) :
at each discontinuity, y(l) is offset by adding hey, t) (see Fig. C.2). That is, given a I. such that
y - = y(t.) and g(y- , t.) = 0, we have

(CA)

In effecth(y, I) integrates fey, I) across the discontinuity; thus if fey , I) contains a delta-function, then
hey, I) is non-O. Le.,

(C.5)

if
:F(y, 1)=H(y, 1)5(1 - I.) + {
chen

t+
hey, I) = J,: :F(y, l)dl ,

=H(y(I.) , I.).

C.1 .2 Continuous ODE Segments

terms wlo }
5-ftlllctions '

As an alternative to Eqn. C.2, a PODE can be conveniently specified by a sequence of continuous ODE
segments (see Fig. C.3):

2For some applications, there may be several conditions, any of which might signal a discontinuity. Thus 9(Y, t) may be a ve<;tor,
and the comparisons g(y, t) > D, < 0, and = 0 refer to its minimum component. The implementation can support veclors; this allows
us to supportmulriple independent events, as discussed in Sec. BA.9

3 That is, we may have: g(y(t), t) conrinuousfor t "# t k. with hm
t

_
t

- g(y(t), t) = 0 and limr_ r+ g(y(t), t) ::f:: D. as in Fig. C.2 . ,
4 We could also just haveg 1= 0 is the continuous state, and 9 ;:; 0 signals a discontinuity. But having legaViliegal states is convenient

for debugging, and is typically not a hardship for the designer of the event function Gust negate it if you want it to be legal but it 's
negative).

C.1 Formalism for Piecewise-Continuous ODE's (PODE's)

y!t)
I

'\'---.. 9;+{.Y ;~\t), t)

} ~.

187

Figure C.3: A PODE considered as a sequence of continuous ODE segments. Y i(t) 1S the continuous solution of the ith segment
feYi = hey, t), unriI9i(Yi(t), t) = 0 at t = tj. hi(Yi(ti), til yields the initial conditions for segmenti + L 0

(C.6)

~Yl = MY1, t) while 91(Yl(t), t) > 0
TtY' = h(y" t) while 9,(y,(t), I) > 0

f,Yi = li(Y', I) while 9i(Yi(t), I) > 0

where each of the ti 's and 9i 's are continuous. t i is the time of the end of the ilh segment; that is, we define
Ii to be the earliest I ~ ti_l such that:

(C.?) 9i(Yi(t,), Ii) = 0

Notice that we may have ti = Ii_I; in such a case, we refer to segment i as having zero-length.
At t i, we switch from the i th to the (i + l)th ODE. The initial conditions for the new ODE are given by:

(C.8)

The functions ofEqn. C.2 are produced by:

(C.9)

and the solution isS

(C.lO)

l(y,I)=f;(y,t), where li_1 < t < ti
g(y, t)=gi(Y, t), where ti_1 < t :s; ti
h(y, t)=hi(Y' t), where t = ti,

y(t) = Yi(Y, t), where t'_1 :s; t:s; ti

5 Notice that at each t i, the solution y(t i) has two values: the value before and after the discontinuity. The solution techniquedescribed
in Sec. C.2 finds and returns both these values.

C.2 Solving a PODE 188

Figure C.4: UnsolvablePODE: The initial conditions of segment i + 1 are such that 9 .+1 (y, t) is negative at the start of the segment. 0

C.1 .3 Errors

There are two errors that are endemic to PODE 's defined as per the previous section:

• If gi+1 (Yi+1 (t;), ti) < 0, the initial conditions for segment i + 1 specify an illegal state; the PODE can
not be solved (see Fig. CA)

• If ti = ti_1 for all i after some io, i.e. if all segments after segment io have zero length, the PODE
cannot progress beyond ti,. Such an occurrence is often an indication of an an allemptto simulate a
continuous process by repeated application of the jump function h(y, t)

The solution technique described in Sec. C.2 can detect both these errors.

C.2 Solving a PODE

Note: For notational convenience, we define the following three functions:

(C.ll)

Overview

Fi(t) =j;(Yi(t), t)
Gi(t)=gi(Yi(t), t)
Hi(t)=hi(Yi(t), t)

A PODE described as a series of continuous ODE's (as per Eqn. C.6) can be solvedeasiJy: Each segment can
be solved in tum using a standard ODE solver; 6 the end of a segment is marked by a root of the composite
function Gi(t).

Thus the algorithm for solving a PODE, illustrated in Fig. C.S, is:

1. Solve segment i. Use a standard ODE solver to determine the function Yilt).

2. Monitor Gi(t). Watch to see if the value crosses below zero.

6 Each segment is an ODE initial-vahle problem. and can be solved using previously mentioned teclmiques.

C.2 Solving a PODE 189

(a) (b)

...............................
y {I) Y {I)

I I

"t--.... 9i+ tY i+ r\")" I .j

)~
t. •••••
I •••• •.......................

Figure C.S: Solving a PODE: (a) Yi (t) is determined using a standard ODE-solver. An ODE solution step might extend past the end of
the segment; 9i(Yi(t), t) is sampled to see ifit goes below zero; if it does the root t i is found, by using a standard root-finder with the
lnlelp)larion of Yi (t) overlhe last ODE step. (b) Once the end of segment i has been determined, at t = t i. hi (Yi (til, t i) is added to
Yi(tj) to yield the inirial..conditions for segment i + 1. The solution of segment i for t > t i is discarded. 0

3, Find root t ; . Ifazero-<:rossingis encountered. use a standardroot·finderto find the timet;. as perEqn. C.?
This mruks the end of segment i.

4. Switch to segment i + 1. H;(t;) is added to y;(t;). to yield the initial conditions of segment i + 1
(Eqn. C.8).

Note that the algorithm works by solving y;(t) some distance past t;. and by observing a negative value
of G;(t). Thus there are extra restrictions on the f is and 9; 's:

• f;(y, t) and 9;(y, t) must extend continuously some amount past t;

• The algorithm finds zero-crossings. rather than zeros. of G;(t); the composite function must be negative
for some t > t ;

To minimize the amount that y;(t) is solved past the end of its segment, we alternate (1) and (2) above.
That is, we have the ODE solver solve y;(t) for one step; then we verify that G;(t) remains positive; then we
take another ODE step, and repeat.

We discuss the four parts of the algorithm in greater detail in the following sections.

C.2.1 Solving Continuous Segment i

The standard ODE-solving technique may be used as a "black-box" to produce the continuous function y;(t)
that is the solution to f,Yi = f;(y;, t), The initial conditions are detenninedfrom the final state of the previous
segment (for the first segment. the initial conditions are provided by the user). We assume that the ODE-solver
takes steps. and reports back a local solution function after each step.7

Note that. at each step. we are interested in a continuous local solution function y;(t). rather than just
the value of y; at the end of the step. Thus our choice of ODE-solver is restricted to techniques that support
interpolation of the solution in the last step; Adams-based methods work well. Extrapolation-based tech
niques (e.g .. Bulirsch-Stoer) are not well-suited to our PODE method. (See, e.g .• [Ralston,Rabinowitz78] or
[Press et a1.86] for discussion of Adams and extrapolation methods.)

7The ODE-solver is free to use whatever step-size it determines to be appropriate; the step-size does not have to be constaJ)L

C.2 Solving a PODE 190

C.2.2 Sampling Gi(t)

Given the result of an ODE step, i.e., given a continuous function Viet) over some interval, we want to deter
mine whether Gi(t) is always positive. We attempt to do so by sampling Gi(t) at several values oft.

We can't guarantee to lind all zero-crossings of Gi(t) without extra information, such as a Lipschitz
bound on Gi(t).' Rather than require the user to provide explicit Lipschitz information, or perhaps the partial
derivatives of 9;(Y , t) withrespectto Y and t, the implementation described here takes the following approach:

• Sample at the end of every ODE step

• Sample at least every Tg , where Tg is a user-adjustable sampling interval.

To allow adaptive control over the sampling interval, the user may adjust T 9 "on the lIy", e.g., as a side-effect
of evaluating 9i(Y, t).

Again, we emphasize that this approach is chosen for progtamming convenience, and does not guarantee
correctness unless the user adjusts Tg based on the Lipschitz bounds of Gi(t).

For some PODE's, it is sufficient to sample G;(t) only at each ODE step (e.g. , because Gi(t) changes
slowly compared to Viet), or because G;(t) < 0 for all t > t il. The implementation supports " turning off'
the minimum sampling interval.

C.2.3 Finding ti, the Root of Gi(t)

if a sample of Gi(t) is negative, we have detected a zero<rossing. The previous (positive) sample and the
new (negative) sample bracket a root of the composite function G;(t). A standard root-linder can be used
to determine the root value t i at which G;(ti) = O. (Since Gi(t) is continuous, and since we start with a
bracketing interval, techniques such as Regula Falsi are guaranteed to lind the roo!. See, e.g., [Press at aI.86].)

Because G;(t) is sampled at the end of every ODE step, we know that the root bracket lies entirely within
the current step. Thus the ODE-solver 's local solution function Y i (t) can be used; no new ODE-solving steps
need to be taken during the root-finding process.

C.2.4 Switching to Segment i + 1

Given that we have found a discontinuity at t = t i, the following occurs:

• We compute the initial conditions for the next segment YHI (t;) = Viet;) + Hi(t;)

• i is (implicitly) incremented; i.e., the user switches to the next set of functions, /'+1,9'+1, and h,+I .

• We reset the ODE solver, to have it discard history and start integrating the new segment from the new
initial conditions.

G;+1 (t;) should be evaluated, to ensure that the initial conditions of the new segment describe a legal
state. If G;+1 (t;) < 0, the PODE is unsolvable (see Fig. C.4).

C.2.5 Zero-Length Segments

A zero-length segment occurs if two conditions hold (see Fig. C.6):

• Gi(t;-I) = 0; i.e., the initial conditions of the segment are on a boundary of the legal state, and

• Gi(t) < 0 for t > t;_ I; i,.e. the solution immediately attempts to enter an illegal state.

No special care need be taken to detect zero-length segments; we can merely check if t; = t i _ l .

8 A Lipschitz bound is a valueL such that IG i(tZ) - Gi(tl)1 :$ Llt2 - t i l forall tt, t2 in a region ofinteresL See [Kalra,Barr89] .

C.2 Solving a PODE 191

o
\ t

9;+ {.y ;+ ql, tl

Figure C.6: Zero-length segments: 9 i+l (y, t) = 0 at the start of segment i + 1 at t = t i. and 9itl (Yi+l (t), t) < 0 for t > tj. Thus
the end of the segment is the same as the start; t i+1 = tj. 0

C.2.6 Numerical Issues

There are several numerical issues that arise in the implementation of the PODE solution algorithm:

• As discussed earlier. without Lipschitz bounds on g(Yi (t), t). it is possible to sample too sparsely. and
miss zero-crossings.

• The test of 9 > 0 should be tolerant to within some bounds; proper error-analysis should be done to
determine the tolerance. A simplifying approach is to put the burden on the user. in the calculation of
g(y, t), to add the appropriate absolute tolerance terms, so that comparison against zero is valid.

• The root-finder typically doesn't find the exact 0, but instead brackets the root with a t pos and a tneg,
such that Gi(tPOS) > 0 and Gi(tneg) < 0, where tPOS and tneg differ by some small tolerance. A
handy trick is to choose tPOS as the root, thus ensuring that G i (t) is never negative.

• If G i (t) = 0 over a finite region before becoming negative, the root -finder is likely to choose an arbitrary
point within the region as the root. If G i (t) = 0 and then becomes positive, no zero-crossing will be
detected, hence no root will be looked for.

• As discussed in Sec. C.2.3, the initial root bracket lies within a single ODE step. The positive g-value
at the left side of the bracket, however, may have been determined by the value of Yi (t) at the end
of the previous step. Because of numerical imprecision, interpolating the current step back to the end
of the previous step yields a different value for Yi(t); thus the composite function Gi(t) may have a
discontinuity at the left endpoint of the bracket. Occasionally, the discontinuity is such that we have a
positive value at the left endpoint, and negative values in the rest of the region; in such a case, we lake
the left endpoint to be the root.

• In adaptively adjusting T g , the user must avoid continually decreasing Tg in a converging series, or the
solver will not be able to make any forward progress. (This might happen, e.g., if at each sample of
g(t), the user estimates that the next discontinuity will occur at some to, and conservatively sets Tg =
Hto - t)) .

C.3 Computational Costs 192

C.3 Computational Costs

The PODE algorithm doesn ' t directly do any numerical computation; rather it serves mainly to control the
execution of the underlying ODE-solver and root·finder. The computational cost thus depends heavily on the
choice of those routines.

We break down the costs into three major parts:

• "Startup overhead" for the ODE·solver, at each discontinuity.

• Cost of solving and testing the continuous segments.

• Cost of determining t i for each discontinuity.

C.3.1 Startup Overhead

The ODE "startup overhead," if any, at a discontinuity depends on the solution method. For example, adaptive
step-size methods may start with very small steps; multi-step methods may use slower methods to generate
initial samples; and implicit methods may need to numerically determine the initial Jacobian matrix.

For equations with a large number of discontinuities, the startup overhead may be a significant factor to
be considered when choosing the ODE·solver.

C.3.2 Continuous Segments

To solve each continuous ODE· segment, the only cost added by the PODE method over the underlying ODE·
solver is the cost of sampling gi(Yi(t), t) to ensure that the end of the segment hasn't been reached.

For globally continuous equations, the PODE method may be used by providing a constant positive func
tion, e.g. g(y, t) = I, with Tg large. The cost of using PODE over using the underlying ODE-solver is then
minimal. (But, of course, for this case PODE provides no advantage over using the underlying ODE·solver
directly.)

C.3.3 Determining ti

It is important to note that once a discontinuity is detected, no ODE·solving is performed to determine t i .

Rather, Yi(t) is interpolated in the last ODE step.
Thus, the cost of determining ti is the cost of doing the root·finding. This depends on the root·finding

technique, which will require evaluation of gi(Yi(t) , t) some number of times.
Each evaluation of the composite function incurs the cost of doing the interpolation to evaluate Y i (t); this

depends on the ODE·solver, butis typically a relatively fast operation.

193

Bibliography

[Abelson et a1.89] Harold Abelson, Michael Eisenberg, Matthew Halfant, Jacob Katzenelson, Elisha Sacks,
GeraldJ. Sussman, Jack Wisdom, and Kenneth Yip, "Intelligence in Scientific Computing," Com
munications of the ACM, Vol. 32 No.5, May 1989, pp. 546-562

Abrashkin see [Wiliiams,AbrashkinS8]

Aliaga see [Zeleznik et a1.91]

[Badler et a1.91] Norman I. Badler, Brian A. Barsky, David Zeltzer, ed., Making them move: mechanics,
control, and animation of articulated figures, Morgan Kaufmann, San Mateo, CA, 1991.

[Baraff89] David Baraff, "Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies,"
Compurer Graphics, Vol. 23 No.3 (Proc. SIGGRAPH), July 1989, pp. 223-232

[Baraff90] David Baraff, "Curved Surfaces and Coherence for Non-penetrating Rigid Body Simulation,"
Complller Graphics, Vol. 24 No.4 (Proc. SIGGRAPH), August1990, pp. 19-28

[Baraff91] David Baraff, "Coping with Friction for Non-penetrating Rigid Body Simulation," Complller
Graphics, Vol. 25 No.4 (Proc. SIGGRAPH), July 1991, pp. 31-40

[Barr86] Alan H. Barr, personal communication, 1986.

[Barr8?] Alan H. Barr, chair, "Topics in Physically-Based Modeling," Course Notes, Vol. 16, ACM SIG
GRAPH,1987.

[Barr91] Alan H. Barr, "Telological Modeling," in [Badler et a1.91]

Barr see also [Barzel,Barr88], [Kalra,Barr89], [Platt,Barr88] , [Terzopoulos at aI.8?] , [Von Herzen,Barr,
Zatz90]

Barsky see [Badler at a1.91]

[BarzaI88] Ronen Barzel, Controlling Rigid Bodies with Dynamic Constraints, Masters Thesis, California
Institute of Technology, Pasadena, CA, 1988.

[Barzel,Barr88] Ronen Barzel, and Alan H. Barr, "A Modeling System Based on Dynamic Constraints,"
Complller Graphics, Vol. 22 No.4 (Proc. SIGGRAPH), August 1988, pp. 179- 188

Beitz see [Pahl,Baitz88]

Binford see [Jain,Binford91]

[Bishop,Bridges8S] E. Bishop and D. Bridges, Constructive analysis, Springer-Verlag, Berlin, 1985.

[Blaauw,Brooks91] G.A. Blaauw and F.P. Brooks, Jr., Computer architecture, Addison-Wesley, Reading,
MA, in press.

Bibliography 194

[Blinn92] James F. Blinn, "Uppers and Downers," IEEE Computer Graphics & Applicarions, Vol. 12 No.2,
March, 1992, pp. 85-91

[Boehm88] Barry W. Boehm, "A Spiral Model of Software Development and Enhancement," Compurer,
Vol. 21 No.5, 1988, pp. 61- 72

[Booch91] Grady Booch, Object-oriented design with applications, The Benjamin/CummingsPublislring
Company, Redwood City, CA, 1991.

[Boyce81] W.E. Boyce, Case studies in mathematical modeling, Piunan Advanced Publishing Program,
Boston, MA, 1981.

[Boyce,DePrima77] William E. Boyce and Richard C. DePrima, Elementary differential equations and
boundary value problems, John Wiley & Sons, New York, 1977.

Bridges see [Bishop,Bridges8S]

[Brockett90] R.W. Brockett, "Formal Languages for Motion Description and Map Making," in Robotics
(Pree. Symposia in Applied Mathematics, Vol. 41), J. Bai1lieu1 et aI., American Mathematical
Society, Providence, RI, 1990.

[Brooks91] F.P. Brooks, Jr., speaker, Panel Proceedings, ACM SIGGRAPH, 1991.

Brooks see also [Blaauw,Brooks91]

[Bruderlin,Calvert89] Armin Bruderlinand Thomas W. Calvert, "Goal-Directed, Dynamic Artimation of Hu
man Walking," Compurer Graphics, Vol. 23 No.3 (Proe. SIGGRAPH), July 1989, pp. 233-242

[Ca~ech87] Caltech Computer Graphics Group, "Caltech studies in modeling and motion," ACM SIGGRAPH
Video Review, Issue 28, 1987.

Calvert see [Bruderlin,Calvert89]

Carpenter see [Cook,Porter,Carpenter84]

[CarroI160] Lewis Carroll, The annotated alice wirh an introduction and nores by Marrin Gardner, New
American Library, New Yolk, 1960.

[Chadwick,Haumann,Parent89] John E. Chadwick, DavidR. Haumann, and RichardE. Parent, "Layerd Con
struction for Defomable Animated Characters," Compurer Graphics, Vol. 23 No.3 (Proc. SIG
GRAPH), Ju1y 1989, pp. 243-252

[ChandY,Taylor92] K. Mani Chandy and Stephen Taylor, An introduction to parallel programming, Jones
and Bartlett, Boston, MA, 1992.

[Char et a1.91] Bruce W. Char et aI., Maple V language reference manual, Springer-Verlag, New Yolk,
1991.

[Cleaveland86] 1. Craig Ceaveland, An introduction to data types, Addison-Wesley, Reading, MA, 1986.

Cohen

Conner

see [lsaacs,Cohen87]

see [Zeleznik et a1.91]

[Cook, Porter,Carpenter84] Robert L. Cook, Thomas Porter, and Loren Carpenter, "Distributed Ray Tracing ,"
Compurer Graphics, Vol. 18 No.3 (Proc. SIGGRAPH), July 1983, pp. 137-145

[Craig89] John 1. Craig, Introduction to robotics: mechanics and control, 2nd edition, Addison Wesley,
Reading, MA, 1989.

Bibliography 195

[Cross89] Nigel Cross, Engineering design methods, John Wiley & Sons, Chichester, UK, 1989.

[Crow87] Frank Crow, "The Origins of the Teapot," IEEE Computer Graphics and Applications, Vol. 7
No. I, January 1987, pp. 8-19

[Dahl,Dijkstra,Hoare72] O.-J. Dahl, E.W. Dijkstta and C.A.R. Hoare, Structured programming, Academic
Press, London, 1972.

DePrima see [Boyce,DePrima77]

[Dijkstra72] Edsger W. Dijkstta, ''Notes on Structured Programming," in [Dahl,Dijkstra,Hoare72]

[Dijkstra76] Edsger W. Dijkstta, A discipline of programming, Prentice Hall, Englewood Cliffs , NJ, 1976.

Eisenberg see [Abelson et a1.89]

[Ellis,Stroustrup90] Margaret A. Ellis and Bjame Stroustrup, The annotated C++ reference manual,
Addison-Wesley, Reading, MA, 1990.

Feiner see [Foley et a1.90]

Flannery see [Press et a1.86]

Fleischer see [Terzopoulos et a1.87], [Terzopoulos,Fleischer88]

[French85] M. J. French, Conceptua l design for engineers, Springer-Verlag, London, 1985.

[Foley et a1.90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer graph
ics: principles and practice, Addison-Wesley, Reading, MA, 1990.

[Fournier,Reeves86] Alain Fournier and William T. Reeves, "A Simple Model of Ocean Waves," Compllter
Graphics, Vol. 20 No.4 (Proc. SIGGRAPH), August 1986, pp. 75--S4

[Fox67] E.A. Fox, Mechanics, Harper and Row, New York, 1967.

[Frailey91] Dennis J. Frailey, Managing complexity and modeling reality: strategic issues and and action
agenda from the 1990 A CM Conference on Critical Issues, The Association for Computing
Machinery, New York, 1991.

[Girard,Maciejewski85] Michael Girard and A. A. Maciejewski, "Computational Modeling for the Computer
Animation of Legged Figures," Computer Graphics , Vol. 19 No.3 (Proc. SIGGRAPH),July 1985,
pp.263-270

Gleicher see [Wnkin,Gleicher,Welch90]

[Goldberg,Robson89] Adele Goldbergeand David Robson, Smalltalk-80, Addison-Wesley, Reading, MA,
1989.

[Goldstein80] Herbert Goldstein, Classical mechanics, 2nd edition, Addison-Wesley, Reading, MA, 1980.

[Golub,Van Loan85] Gene H. Golub and Charles F. Van Loan, Matrix Computations, Johns Hopkins Uni
versity Press, Baltimore, MD, 1985.

Gunag

Halfant

see [Liskov,Guttag86]

see [Abelson et a1.89]

Haumann see [Chadwick,Haumann,Parent89]

Bibliography 196

[Henson87] Martin C. Henson, Elements of functional languages, Blackwell Scientific Publications, Ox
ford,1987.

Hoare see [Dahl,Dijkstra,Hoare72]

Hodgins see [Raibert,Hodgins91]

[Horebeek,Lewi89] Ivo Van Horebeek and Johan Lewi, Algebraic specifications in software engineering:
an introduction, Springer-Verlag, Berlin, 1989.

[Horn,Johnson85] Roger A. Horn and Charles A. Johnson, Matrix analysis, Cambridge University Press,
Cambridge, 1985.

Huang see [Zeleznik et al.9t]

Hubbard see [Zeleznik et al.9t]

[Hughes92] John F. Hughes,personal communication, March, 1992.

Hughes see also [Foley et aI.90], [Zeleznik et al.9t]

[lsaacs,Cohen87] Paul Isaacs and Michael Cohen, "Controlling Dynamic Simulation with Kinematic Con
straints, Behavior Functions and Inverse Dynamics," Compllfer Graphics, Vol. 21 No.4 (Proc.
SIGGRAPH), July 1987, pp. 215-224

[Jain,Binlard91] Rarnesh C. Jain and Thomas O. Binford, "Ignorance, Myopia, and Naivete in Computer
Vision Systems," CVGIP: Image Understanding, Vol. 53 No. I , January 1991, pp. 112-117

[James,James76] G. James and R.S. James, Mathematics dictionary, Van Nostrand Reinhold Company,
New York, 1976.

Johnson see [Horn,Johnson85]

Kajiya see [Lien,Kajiya84]

[Kalra90] Devendra Kalra, A UnifiedFrameworkfor Constraint-based Modeling, Ph.D. Dissertation, Cali
fornia Institute of Technology, Pasadena, CA, 1990.

[Kalra,Barr89] Devendra Kalra and Alan H. Barr, "Guaranteed Ray Intersections with Implicit Surfaces,"
Computer Graphics, Vol. 23 No.3 (Proc. SIGGRAPH), July 1989, pp. 297-306

Kass see [Witkin,Kass88]

Katzenelson see [Abelson et a1.89]

Kaufman see [Zeleznik et a1.91]

[Kernighan,Plauger78] Brian W. Kernighan, P.J. Plauger, The elements of programming style, 2nd edition ,
McGraw-Hill, New York, 1978.

[Kernighan,Ritchie88] Brian W. Kernighan and Dennis M. Ritchie, The C programming language, 2nd
edition, Prentice Hall, Englewood Cliffs, NJ, 1988./bidxRitchie

Knep see [Zeleznik et a1.91]

[Lakatos76] Imre Lakatos, Proofs and refutations, Cambridge University Press, Cambridge, MA, 1976.

[Landau,Lifshitz75] L.D. Landau and E.M. Lifshitz, The classical theory of fields (Course of theoretical
physics, Vol. 2), 4th edition, Pergamon Press, Oxford, 1975 (1983 printing).

Bibliography 197

[Lewis,Papadimitriou81] Harry R. Lewis and Christos H. Papadimitriou, Elements of the theory of compu
tation., Prentice Hall, Englewood Cliffs, NJ, 1981.

[Lien,Kajiya84] Sheue-ling Lien, and James T. Kajiya. "A symbolic method for calculating the integral prop
erties of arbitrary nonconvex polyhedra," lEEE Computer Graphics and Applicarions, Vol. 4
No. 10, October 1984,pp, 35-41

Lifshitz see [Landau,Lffshitz75]

[Lin,SegeI74] C.C. Lin and L.A. Segel, Mathematics applied to deterministic problems in the natural
sciences, Macmillan Publishing Co" New York, 1974,

[Liskov,Guttag86] Barbara Liskov and John Guttag, Abstraction and specification in program develop
ment, MIT Press, Cambridge, MA, 1986.

[Lucasfilm84] Lucasfilm Ltd. Computer Graphics Division, The Adve",ures of Andre and Wally B. (film),
1984.

Maciejewski see [Girard,Maciejewski85]

[Magnenat-Thalmann,Thalmann85] Nadia Magnenat-Thalmann, Daniel Thalmann, Computer animation,
Springer-Verlag, Tokyo, 1985.

[Marion7D] Jerry B. Marion, Classical dynamics of particles and systems, 2nd edition, Academic Press,
New York, 1970.

[Millman,Parker77] Richard S. Millman, George D. Parker, Elements of differential geometry, Prentice
Hall, Englewood Cliffs, NJ, 1977.

[Misner,Thorne,wheeler73] Charles W. Misner, Kip S. Thome, and John Archibald Wheeler, Gravitation,
W.H. Freeman and Co., San Francisco, 1973.

[Moore,Wilhelms88] M. Moore and J. Wilhelms, "Collision Detection and Response for Computer Anima
tion," Computer Graphics, Vol. 22 No.4 (Proc. SIGGRAPH), August 1988, pp. 289-298

[NAG] NAG Fortran Library, Numerical Algorithms Group, 1400 Opus Place, Suite 200, Downers
Grove, IL 60515

[Nihon Sugakkai77] Nihon Sugakkai (Mathematical Society of Japan), Encyclopedic dictionary of mathe
matics, MIT Press, Cambridge, MA, 1977.

[OOPSLA91] "Can Structured Methods be Objectified?" Panel, Conference on Object-Oriented Program
ming Systems, Languages, and Applications, ACM Sigplan Notices, Vol. 26 No. 11, November
1991.

[Pahl,Beitz88] Gerhard Pahl and Wolfgang Beitz, Engineering design: a systematic approach, Springer
Verlag, 1988, Beitz

Papadimitriou see [Lewis,Papadimitriou81]

Parent see [Chadwick,Haumann,Parent89]

Parker see [Millman,Parker77]

[Pentland,Williams89] Alex Pentland and John Williams, "Good Vibrations: Modal Dynamics for Graphics
and Animation," Computer Graphics, Vol. 23 No.3 (Proc. SIGGRAPH), July 1989, pp. 215-222

[Petzold82] L.R. Petzold, A Description of DASSL: A Differential/Algebraic System Solver, SAND82-8637,
Sandia National Laboratories, 1982.

Bibliography 198

[Platt87) John Platt, personal communication , 1987,

[Platt89) John Platt, ConstraintMethodsjor N ellralNetworks and Computer Graphics, Ph,D. Dissenation,
California Institute of Technology, Pasadena, CA, 1989.

Platt see also [Terzopoulos et a l.87)

[Platt,Barr88) John C. Platt and Alan H. Barr, "Constraint Methods for Flexible Bodies," Computer Graphics,
Vol. 22 No.4 (Proc. SIGGRAPH), August 1988, pp. 279-288

Plauger see [Kernighan,Plauger78)

Potter see [Cook,Porter,Carpenter84)

[Press et al.86) William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numeri
cal recipes/tbe art of scientific computing, Cambridge Univer.;ity Press, Cambridge, 1986.

Rabinowitz see [Ralston,Rabinowitz78)

[Raibert,Hodgins91) Marc H. Raibettand Jessica K. Hodgins, "Animation of Dynamic Legged Locomotion,"
Computer Graphics, Vol. 25 No.4 (Proc. SIGGRAPH), July 1991, pp. 349-358

[Ralston, Rabinowitz78) Anthony Ralston and Philip Rabinowitz, A first course in numerical analysis,
McGraw-Hill, New York, 1978.

Reeves see [Fournier,Reeves86)

[Reynolds8?) Craig W. Reynolds, "Flocks, Herds, and Schools: A DistributedBehavioraI Model," Computer
Graphics, Vol. 21 No.4 (Proc. SIGGRAPH), July 1987, pp. 25- 34

Ritchie

Robson

Sacks

see [Kernighan,Ritchie88)

see [Goldberg, Robson89)

see [Abelson et al.89)

[Schr6der,Zeltzer90) Peter SchrOder and David Zeltzer, "The Vinual Erector Set: Dynamic Simulation with
Linear Recursive Constraint Propagation," Computer Graphics, Vol. 24 No.2 (Symposium on
Interactive 3-D Graphics), March 1990, pp. 23- 31

Segel see [Lin,Segel? 4)

[Shoemake85) Ken Shoemake, " Animating Rotation with Quaternion Curves," Computer Graphics, Vol. 19
No.3 (Proc. SIGGRAPH), July 1985, pp. 245- 254

[Snyder92) JohnM. Snyder, Generative modeling for computer graphics and cad: symbolic shape design
using interval anlysis, Academic Press, Boston, 1992.

[Spanier66) Edwin H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

[Steele90) Guy L. Steele, Jr., COMMON llSP: the language, 2nd edition, Digital Press, Bedford, MA,
1984.

[Strauss85) Paul. S. Strauss, "Software Standards for The Brown Univer.;ity Computer Science Department,"
Brown Univer.;ity Computer Graphics Group, Technical Memorandum, June 1985.

Stroustrup see [Ellis,Stroustrup90)

Sussman see [Abelson et al.89)

Bibliography 199

Taylor see [ChandY,Taylor92]

[Terzopoulos et aI.B?] Demetri Terzopoulos , John Platt, Alan Barr, and Kun Fleischer, "Elastically De
formable Models," Campurer Graphics, Vol. 21 No.4 (Proc. SIGGRAPH) , July 1987, pp. 205-
214

[Terzopoulos,FleischerBB] Demetri Terzopoulos and Kurt Fleischer, "Modeling Inelastic Deformation: Vis
coelasticity,Plasticity, Fracture," Computer Graphics, Vol. 22 No. 4 (Proc. SIGGRAPH), August
1988, pp. 269- 278

Teukolsky see [Press et a1.B6]

Thalmann see [Magnenat-Thalmann,ThalmannB5]

Thorne see [Misner,Thorne,Wheeler?3]

[Traub, Wasilkowski, WoiniakowskiBB] J .P. Traub, G. W. Wasilkowski, H.Wot niakowski, Information-based
complexity, Academic Press, Boston, 1988.

[Traub,Woiniakowski91] J.P. Traub and H. Wotniakowski, '''Theory and Applications of Information-Based
Complexity," in 1990 Lectures in Complex Systems: tbe proceedings of the 1990 Complex
Systems Summer School, Santa Fe, New Mexico, June 1990, Lynn Nadel and Daniel L. Stein
ed. , Addison Wesley, Redwood City, CA.

[TruesdeIl91] C.A. Truesdell, A first course in rational continuum mecbanics, 2nd edition, Academic
Press, Boston, 1991.

[UpstiIl90] Steve Upstill, The RenderMan companion: a programmer's guide to realistic computer
graphics, Addison Wesley, Reading, MA, 1990.

van Dam see [Foley et a1.90], [Zeleznik et a1.91]

Van Loan see [Golub,Van LoanB5]

Vetterling see [Press et a1.B6]

[Von Herzen,Barr,Zatz90] Brian Von Herzen , Alan H. Barr, and Harold R. Zatz, "Geometric Collisions for
Time-Dependent Parametric Surfaces," Complller Graphics, Vol. 24 No.4 (Proc. SIGGRAPH),
August 1990,pp. 39-48

Wasilkowski see [Traub, Wasilkowski, WozniakowskiBB]

[WedgeB?] Chris Wedge, "Balloon Guy," ACM SIGGRAPH Video Review, Issue 36 , 1987.

Welch see [Witkin,Gleicher,Welch90]

[WexelblatB1] Richard L. Wedelblat, ed., History of programming langnages, Academic Press, New York,
1981.

Wheeler see [Misner,Thorne,Wheeler73]

Wilhelms see [Moore,WilhelmsBB]

[Wiliiams ,Abrashkin5B] Jay Williams and Raymond Abrashkin, Danny Dunn and tbe homework macbine,
Scholastic Book Services, New York, 1958 (1969 printing).

Williams see [Pentland,WilliamsB9]

Wisdom see [Abelson et a1.B9]

Bibliography 200

[Witkin,Gleicher, Welch90] Andrew Witkin, Michael Gleicher, and Wtlliam Welch, "Interactive Dynamics,"
Computer Graphics, Vol. 24 No.2 (Symposium on Interactive 3-D Graphics), March 1990,
pp. 11-21

[Witkin,Kass88] Andrew Witkin and Michael Kass, "Spacetime Constraints," Computer Graphics, Vol. 22
No. 4 (Proc. SIGGRAPH), August 1988, pp. 159-168

Wloka see [Zeleznik et a1.91]

[Woffram91] Stephen Wolfram, Mathematica: a system for doing mathematics by computer, 2nd edition,
Addison-Wesley, Redwood City, CA, 1991.

Wozniakowski see [Traub, Wasilkowski, Wozniakowski88] , [Traub,Woiniakowski91]

Yip see [Abelson et a 1.89]

Zatz see [Von Herzen,Barr,Zatz90]

[Zeidler88] Eberhard Zeidler, Nonlinear functional analysis and its applications IV: aplications to math
ematical physics, Springer-Verlag, New York, 1988.

[Zeleznik et a1.91] Robert C. Zelexnik, D. Brookshire Conner, Matthias M. Wloka, Daniel G. Aliaga, Nathan
T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes and Andries van
Dam, "An Object-Oriented Framework for the Integration ofInteractive Animation Techniques,"
Computer Graphics, Vol. 25 No.4 (Proc. SIGGRAPH) , July 1991, pp. 105-112

ZellZer see [Badler et a1.91], [Schr6der,Zeitzer90]

[Zwillinger89] Daniel Zwillinger, Handbook of differential equations, Academic Press, Boslon, 1989.

