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Abstract

This thesis is a report of the transport properties of bilayer two-dimensional electron

systems found in GaAs/AlGaAs double quantum well semiconductor heterostruc-

tures. When a strong perpendicular magnetic field is applied so that the total Lan-

dau filling factor is equal to one and if the two layers are close enough together, a

novel quantum Hall (QH) state with strong interlayer correlations can form. This QH

state is often described as an excitonic condensate, in which electrons in one layer

pair with holes in the other. As neutral particles, excitons feel no Lorentz force and

are not confined to the edges of the bilayer system like charged quasiparticles are.

Instead, excitons are expected to be able to move freely through the bulk and even

flow without any dissipation under proper conditions (i.e., excitonic superfluidity).

Counterflow studies that directly probe the bulk verify this exciton transport in the

electrically insulating interior. We also report on studies of the phase boundary be-

tween the correlated and uncorrelated phases at total Landau filling factor one as

the effective interlayer separation is tuned. When both phases are fully spin polar-

ized at high Zeeman energy, the phase transition is much broader than when the

uncorrelated phase is incompletely polarized at low Zeeman energy. This suggests a

possible change in the nature of the phase transition in the regime of complete spin

polarization.
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Introduction

A two-dimensional system of electrons (2DES) subjected to a large magnetic field

displays a rich plethora of unusual phenomena induced by electron–electron interac-

tions. While such interparticle interactions have only a minor effect on most Fermi

systems at zero field, the formation of highly degenerate Landau levels in large fields

quenches the kinetic energy term in the many-body Hamiltonian by transforming it

into a constant. To good approximation, only the Coulomb repulsion term remains

to govern the behavior of the electrons. One consequence is the fractional quantum

Hall effect (FQHE), which occurs when a fraction of a Landau level is occupied. In a

FQHE state, Coulomb interactions cause the electrons to execute an intricate dance

in order to avoid each other. The low-energy excitations of fractional quantum Hall

states act like particles exhibiting exotic properties such as carrying fractional charges

[73] and having fractional exchange-statistics [49, 5].

This thesis focuses on the particular quantum Hall state found in a bilayer system

comprised of two 2DESs separated by a small distance d and with a total electron

density NT equal to the degeneracy eB/h of one spin-resolved Landau level. For

large values of d, the electrons in one layer are not correlated with the electrons

in the other. However, if the ratio of d to the magnetic length ` =
√

h̄c
eB

is below

a critical value, then interlayer Coulomb interactions are comparable to intralayer

interactions, and a unique quantum Hall state can form at total Landau filling factor

νT ≡ NT/(eB/h) = 1. In this so-called νT = 1 state, the electrons in one layer

become bound to the holes in the other to form interlayer excitons. Figure 1 provides

a vastly simplified depiction of this electron–hole pairing. As bosons, the excitons

can condense into the same state [32] and exhibit superfluid-like properties [125].
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Signs of exciton condensation, such as Josephson-like interlayer tunneling [103] and

vanishing Hall resistance for currents driven in opposite direction in the two layers

[66, 121, 127], have already been observed. However, a number of questions about

the νT = 1 quantum Hall state remain.

Figure 1: Depiction of exciton condensation at νT = 1. The electrons (filled circles) in
the upper layer are bound to the holes (empty circles) in the lower layer. A particle-
hole transformation has changed the half-filled Landau level in the bottom layer into
a combination of a half-filled level of holes and a completely filled level of electrons,
which is not shown here.

First, the nature of the phase transition between the correlated and uncorre-

lated phases of the bilayer system at νT = 1 is not well understood. Originally, it

was anticipated that the onset of exciton condensation should be characterized by a

Kosterlitz-Thouless phase transition at a specific temperature TKT . While there is

evidence from tunneling spectroscopy for a finite temperature transition [12], other

transport measurements show activated behavior similar to other quantum Hall sys-

tems. One important clue is that spin might play a role under most circumstances:

recent measurements [106, 71] have revealed that the correlated phase has greater spin

polarization than the uncorrelated phase. A discontinuous change in spin polarization

across the phase transition would signal a first-order phase transition.
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Second, while interlayer tunneling studies show a sharp, Josephson-like peak at

zero bias, the width and height of the peak both seem to remain finite even when

extrapolated to zero temperature. This is in contrast to a true Josephson effect, where

the tunneling conductance should be infinite. Furthermore, the maximum interlayer

tunneling current is several orders of magnitude below expected values. These two

properties both suggest that disorder might play an important role in tunneling.

Third, evidence for true excitonic superfluidity remains elusive. Wen and Zee

[125] predicted that currents driven in opposite directions in the two layers (a flow

pattern known as counterflow currents) should correspond to a dissipationless flow of

excitons at νT = 1. Experiments in Hall bar-shaped samples have revealed counterflow

currents possess residual resistance at finite temperature. It is unclear whether the

compressible edge channels common to all quantum Hall states might play some role

in these counterflow experiments. Thus, up until recently there had been no evidence

that counterflow currents could even exist in the bulk of the νT = 1 system.

This thesis aims to clarify our understanding of the νT = 1 state by seeking

answers to these questions. It is organized as follows:

In chapter 1, we give an introduction to the physics behind the νT = 1 quan-

tum Hall effect. We review Landau quantization as well as the integer and fractional

quantum Hall effects in single-layer systems. We will see that similar states can occur

within bilayer systems, including the νT = 1 state. We will develop the formalism of

pseudospin ferromagnetism to describe the νT = 1 state and arrive at a model Hamil-

tonian for the order parameter. We will explain how this state can be equivalently

described as an exciton condensate with superfluid-like properties. We will discuss

previously reported experimental evidence of superfluid behavior.

Chapter 2 contains a summary of the various materials and methods we use

to realize and study bilayer quantum Hall systems. This includes an overview of

the GaAs/AlGaAs heterostructures that can house a bilayer system, our sample-

processing techniques, cryogenic equipment used to obtain millikelvin temperatures

required for the observation of the νT = 1 state, and bilayer transport techniques.

Two particular examples of bilayer transport measurements, interlayer tunneling
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and interlayer capacitance, are described in greater detail in chapter 3. We will

review the physics behind single-particle tunneling between two 2DESs at zero mag-

netic field and show some characteristic tunneling acquired under these conditions.

We will then discuss interlayer capacitance and how it is composed of both geometric

and quantum mechanical components. Preliminary capacitance measurements at zero

and high magnetic field are presented. The analysis of the capacitance data is rudi-

mentary, but this chapter should provide background for more detailed experiments

in the future.

In chapter 4, we explore how the phase transition between the correlated and

uncorrelated phases evolves with Zeeman energy. These results were first reported

in reference [38]. We find that while the phase transition is relatively narrow at low

Zeeman energy, it is much broader at high Zeeman energy, when both phases are

fully spin polarized. We discuss these results in the context of two different models

of the phase boundary in which the bilayer system comprises a mixture of correlated

and uncorrelated fluids. The increase in width of the phase transition for the two

spin regimes could indicate a change in the nature of the phase transition. We then

consider the phase transition at finite temperature and analyze the results in terms

of a first-order phase transition.

In chapter 5, we discuss the area and perimeter dependence of the Josephson-like

interlayer tunneling peak at νT = 1. We find clear evidence that the tunneling con-

ductance is proportional to the area of the νT = 1 system, suggesting that tunneling

is a bulk phenomenon. This runs counter to the initial expectation that tunneling

current should be confined to within a Josephson length λJ ≈ 1–10 µm from the

perimeter of the exciton condensate. A likely explanation is that disorder permits

tunneling in the bulk. Although most of the results we present in this chapter come

from a region of phase space near the phase transition, we do find hints that this area

dependence persists to relatively low d/` and temperature. These findings were first

published in reference [37].

Next, in chapter 6 we report on transport studies of a bilayer sample with a

Corbino geometry, which allows us to directly probe the properties of the bulk. While
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charged excitations are gapped out in the interior of the νT = 1 state, we find that

counterflow currents can propagate through the bulk with relatively little dissipation.

We identify these counterflow currents with exciton currents that are generated by an

Andreev-like process at the edges of the quantum Hall system. This chapter expands

upon our first report of bulk exciton currents in reference [39] and represents the

central finding of this thesis.

In the final chapter, we summarize our research on exciton condensation and trans-

port in the νT = 1 quantum Hall state. We consider future directions for exploring

this unusual correlated system.
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Chapter 1

Quantum Hall Effect at νT = 1

In this chapter we review the fundamental physics and phenomenology of the νT =

1 quantum Hall state. We start by discussing the quantum Hall effect, which is

observed in clean two-dimensional electron systems (2DESs) subjected to a strong

perpendicular magnetic field. The strong magnetic field causes the formation of

highly degenerate Landau levels (LLs) in the energy spectrum of single-particle states.

Whenever the chemical potential lies in the gap between two of these levels, the

interior of the system becomes incompressible, but current can flow along chiral,

dissipationless edge channels. These edge channels dominate the transport properties

of the sample, resulting in a quantized plateau in Hall resistance. This phenomenon

is known as the integer quantum Hall effect (IQHE) because it is associated with an

integral number of filled Landau levels.

A quantizing magnetic field effectively leads to a quenching of the kinetic energy

because each of the states within a given Landau level has (in the absence of disorder)

the same energy. The kinetic energy consequently can be treated as a constant term

in the Hamiltonian and thus the many-body energy spectrum becomes almost com-

pletely determined by the interactions between pairs of electrons. Strong Coulomb

repulsion leads to the electrons forming a highly correlated state in which they per-

form an intricate dance around each other. This behavior can lead to incompressible

quantum Hall states even when only a fraction of a Landau level is filled; thus, the

formation of these correlated states is known as the fractional quantum Hall effect

(FQHE). Through the picture proposed by Jain [57], a fractional quantum Hall state
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of electrons can be described in terms of an integer quantum Hall state of composite

particles known as composite fermions.

The physics of fractional quantum Hall states can be extended to bilayer samples

in which one 2DES is situated just above another. When the separation between

the two layers is small enough, Coulomb repulsion generates interlayer correlations as

electrons in one layer begin to avoid electrons in the other. One of the most famous

example of these states (and the focus of this thesis) is the bilayer quantum Hall state

occurring when the total Landau filling factor of the bilayer is equal to 1. Generally

called the νT = 1 state, this system is often described as an exciton condensate. This

description is motivated by a wave function in which the electrons in one layer become

bound to holes in the other, creating an exciton spread between the two layers. This

bilayer system has a number of dramatic transport properties, such as Josephson-like

tunneling, vanishing Hall resistance when currents are driven in opposite directions

in the two layers, and quantized Hall drag resistance.

1.1 Quantum Hall Effect

A two-dimensional system of electrons cooled to near absolute zero and subjected to

a strong perpendicular magnetic field exhibits a rich variety of physics known collec-

tively as the quantum Hall effect. In essence, an energy gap opens up at certain values

of the magnetic field due to either Landau quantization (in the case of the integer

quantum Hall effect) or Coulomb repulsion (in the case of the fractional quantum Hall

effect). Much like a simple band insulator (for example, see chapter 7 in reference

[68]), this gap prevents electrical currents from penetrating the interior of the system

(that is, the bulk conductivity σxx = 0). Unlike a band insulator, a quantum Hall

state has one or more edge channels at its boundary that permit the dissipationless

transport of charge. Consequently, the Hall conductivity σxy is nonzero. In this re-

gard, the quantum Hall state is the first known example of a topological insulator

[51].

In this section, we will describe how Landau quantization generates a single-
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particle energy spectrum that is characterized by a series of highly degenerate peaks

known as Landau levels. We will discuss how the combination of a disorder potential

and the edge channels lead to the quantized Hall conductivity that lies at the heart

of the dramatic transport properties whenever an integer number of Landau levels

are populated. We will also show that electron–electron interactions can generate an

energy gap and lead to quantized transport even when a Landau level is only partially

filled.

1.1.1 Landau Quantization

First, we consider a system of electrons confined to the x-y plane and subjected

to a magnetic field ~B = Bẑ. For now, we will ignore impurities, electron–electron

interactions, and spin. We will also treat the electrons as having a parabolic dispersion

with isotropic mass m. The Hamiltonian for each electron is then

H =
1

2m

(
~p+

e

c
~A
)2

, (1.1)

where the vector potential ~A is defined by ~B = ~∇× ~A. Here, we are using CGS units;

to convert to SI units, one should simply omit the c. To proceed, we choose to fix the

gauge of the problem and adopt what is known as the Landau gauge: ~A = −By x̂.

This leads to

H =
1

2m
p2
y +

1

2m

(
px −B

e

c
y
)2

. (1.2)

We observe that [H, px] = 0 and thus energy eigenstates can be chosen to be also

eigenstates of px. By replacing the implicit operator px with its eigenvalue h̄kx, we

can write the Hamiltonian as

H =
1

2m
p2
y +

1

2
mω2

c (y − `2kx)
2, (1.3)

where ωc = Be
mc

is the classical cyclotron frequency and ` =
√

h̄c
eB

is the magnetic

length. Now, the system looks identical to a harmonic oscillator with the character-
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istic frequency ωc, but with the potential well centered at y = `2kx. We can then

denote the allowed energy eigenvalues as

En = h̄ωc(n+
1

2
), n = 0, 1, 2, 3, ..., (1.4)

and the eigenstates should be of the form

ψn,kx(~r) =
1

C
eikxx exp

[
− 1

2`2
(y − `2kx)

2

]
Hn(

y

`
− `kx), (1.5)

in which Hn(z) are the Hermite polynomials [58] and C is a normalization factor.

Note that the energy spectrum does not depend on kx. Also, the wave functions are

localized in the y direction but extend as plane waves in the x direction. This is in

contrast to the usual semiclassical picture of electrons executing small, circular orbits.

In the absence of a magnetic field, a two-dimensional electron gas with an isotropic,

parabolic dispersion has a constant density of states in terms of energy. Equation

(1.4) informs us that a perpendicular magnetic field causes the density of states to

collapse into a series of equally spaced and highly degenerate peaks centered on the

discrete values of energy En. Without any impurities, these peaks are essentially

delta functions (see figure 1.3a). Each of these peaks, known as Landau levels (LLs),

comprise of a large number of states that are labelled by their momenta kx. To find

the degeneracy of a single Landau level (NL), we must find the number of allowed

kx values. We consider a rectangular sample with dimensions Lx × Ly. By applying

periodic boundary conditions, we find that the allowed values of kx are

kx = 2π
nx
Lx
, nx = 0, 1, 2, 3, ..., (NL − 1). (1.6)

With the relation y = `2kx, the index nx = 0 corresponds to y = 0 and nx = NL − 1

corresponds to y ≈ Ly. Thus, the number of states in each Landau level is essentially

NL = LyLx

2π`2
. For arbitrarily shaped samples, we can replace the product LxLy with

the sample area S, resulting in

NL =
S

2π`2
(1.7)
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for the general case. In the limit of zero temperature, N electrons will fill up a number

of LLs given by the Landau filling factor ν ≡ N/NL = 2π`2N/S = hc
eB
NS. Here, NS

is the areal density of electrons.

Real electrons have a spin quantum number, which we have ignored up to this

point. Spin provides an additional degree of freedom and adds the Zeeman term

µBgs
h̄
~S · ~B to the Hamiltonian. Here, ~S is the spin angular momentum of a single

electron, µB = eh̄/2mec is the Bohr magneton (in cgs units), and gs is the material-

dependent gyromagnetic ratio. Each spin has its own series of Landau levels, with the

spin degeneracy lifted by the Zeeman term. The magnitude of this Zeeman splitting

(often referred to as the Zeeman energy) is given by EZ = |µBgsB|.

1.1.2 Integer Quantum Hall Effect: Edge Channels and Dis-

order

In this section, we will consider magnetotransport in a system within the quantum

Hall regime, where the energy separation between Landau levels is well resolved.

Samples under such conditions can show vanishing longitudinal resistance Rxx = 0

and quantized Hall resistance Rxy = 1
n
h
e2

when the Landau filling factor ν is equal

to an integer n. Remarkably, the longitudinal and Hall resistances can remain at

these values for a range of ν within the vicinity of ν = n, giving rise to what are

known as Hall plateaux. We explain this phenomenon in terms of charge-carrying

edge channels, which will dominate transport when the bulk is insulating. We will

argue how disorder allows Hall resistance to remain quantized even when ν deviates

from an integer value.

Up until now, we have ignored the edges of the system and only considered the

bulk. However, real samples are limited in space by a confinement potential V (x, y).

While V (x, y) = 0 in the interior, the potential rises at the edges of the sample. For

a rectangular sample, we redefine these edges to occur at y = ±Ly/2 and x = ±Lx/2.

Assuming that the length scale over which V (x, y) varies is large compared to `, we

can make the estimation that the Landau levels merely rise in energy at the edges
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of the sample and are given by En(x, y) = h̄ωc(n + 1
2
) + V (x, y). This is depicted in

figure 1.1a.

x

E(x)

n = 0

n =1

n = 2
µ

(a) (b) 

V+	
   V-­‐	
  

Figure 1.1: (a) Cross section of energy spectrum and its spatial variation due to
the confinement potential. Here, the line associated with the chemical potential µ
intersects two of the Landau levels at each edge when ν = 2. (b) Cartoon of a square
sample at ν = 2, seen from above. Note the two chiral edge channels traveling along
the boundary of the sample, with the arrows denoting the direction of the electrons
moving through them. The white squares are electrical contacts, held at potentials
V+ and V−.

We now consider the case where the chemical potential µ lies halfway between two

Landau levels while in the bulk. In the interior of the sample, the density of states at

E = µ will be zero. The only way to add another electron in the bulk is to populate

a state in the lowest unoccupied LL, which will require an energy of 1
2
h̄ωc. In 2DESs

formed in the semiconductor GaAs, the cyclotron energy is 20.1× B K (for B given

in units of teslas). Therefore, excitations into higher LLs are strongly suppressed at

typical cryogenic temperatures and large magnetic fields. The interior is said to be

incompressible.
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However, figure 1.1a shows that the chemical potential intersects with each of

the LLs at the edges of the sample. This generates a compressible edge channel

for each LL occupied in the interior. As shown in figure 1.1b, these edge channels

circulate around the sample at its boundaries. The electrons within the channels can

only propagate in the clockwise or counterclockwise direction, depending on which

way the magnetic field is pointing. The chirality of the edge channels implies that

electrons cannot backscatter without somehow hopping from one side of the sample

to the other. For macroscopic samples, this is highly unlikely because there are no

accessible states within the interior so long as µ remains between two LLs. Instead,

current flows rigidly around any imperfections at the boundary. We depict this in

figure 1.1b for a sample at ν = 2.

In this picture, each edge channel provides a dissipationless and one-dimensional

path for current to travel along the boundary. For n edge channels, the two-terminal

conductance between two contacts along a particular edge will be n e
2

h
. In the ab-

sence of backscattering or interedge tunneling, one can show that each edge channel

provides a conductance of e2

h
by treating them as one-dimensional ballistic conduc-

tors with reflection-less contacts [72, 9]. Ignoring spin, the current I in such a con-

ductor connecting two ideal leads with perfect transmission coefficients is given by

I = L
2π

∫
ikdk = − L

2π

∫
e
L
vkdk, where L is the length of the conductor and vk is the

velocity of state k. The integral over k is performed over all occupied states and

can be converted into a sum over E by noting that dk = dE/∂E
∂k

. But because the

velocity of each k state is 1
h̄
∂E
∂k

, the current reduces to I = − e
h

∫
dE = e2

h
(V+ − V−),

where V+ − V− is the voltage difference between the two leads. Thus, we conclude

that one-dimensional channel has a conductance of e2

h
. Note that this result stems

from the fact that in a one-dimensional conductor the k dependence of the velocity

is cancelled out by the density of states in k space. The analysis can be generalized

for n channels, such that the two-terminal conductance will be n e
2

h
.

Returning to the case of a 2DES at integer filling factor n, if a potential difference

∆V = V+ − V− is applied to two contacts then a current I = n e
2

h
∆V will flow

between the contacts. The lack of dissipation implies that the chemical potential
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of the electrons in the edge channels will not vary as they travel from one contact

to another. Due to their low density of states, the edge states emanating from a

particular contact will have the same chemical potential as that contact. Thus, in

figure 1.1b, the edge channels along the lower edge will have be at potential V+ while

the channels along the upper edge will be at potential V−. Any ideal voltage probes

located along either edge (not shown in the figure) will draw no current from the

sample, and thus the edge channels entering such contacts will exit with the same

chemical potential. The voltage probe will then equilibrate with those edge channels

and measure their chemical potential. We can put this all together to conclude that

the longitudinal voltage drop Vxx between two voltage probes along a single current-

carrying edge will vanish and thus Rxx = 0. Furthermore, if the Hall voltage were to

be measured by using probes located on opposite edges (for example, one situated on

the lower edge and one situated on the upper edge in figure 1.1b), one would obtain

Vxy = ∆V and find a Hall resistance of Rxy = h
ne2

.

Analogous to the Shubnikov–de Haas effect in three-dimensional metals [68], one

expects there to be transport anomalies whenever the Landau filling factor ν is an

integer. The lack of dissipation implies that longitudinal resistance Rxx should vanish.

One should also observe a Hall resistance given by Rxy = B
ecNS

= 1
ν
h
e2

. Interestingly, it

was first discovered by von Klitzing et al. [122] that when ν is tuned (either by varying

the electron density at fixed magnetic field or sweeping the field at fixed density), the

Hall resistance remains fixed at Rxy = 1
n
h
e2

for a range of ν around the integer value

of n. This quantization of Hall resistance (known as the integer quantum Hall effect)

is thought to be perfect at T = 0 and generally found to be independent of sample

geometry.1 An example of such magnetotransport is shown in figure 1.2.

The appearance of Hall resistance plateaux is unexpected in the clean limit, where

the chemical potential should discontinuously jump from one LL to another once ν

is swept past an integer value. In that case, the Hall resistance should assume the

value of 1
n
h
e2

only for the single value of ν = n. As ν deviates from n, so should the

1Quantized Hall resistance can be disrupted in mesoscopic samples (L ≤ 1 µm) due to interedge
Coulomb scattering or tunneling of electrons between edge channels.
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Figure 1.2: Unpublished data for longitudinal resistance Rxx and Hall resistance Rxy

of a 2DES in the quantum Hall regime. Notice that at low magnetic fields Rxy is
linear but at high fields there are a series of plateaux at Rxy = 1

n
h
e2

for n = 1, 2, 3, ...
etc. These plateaux correspond to integer Landau filling factor ν = hc

eB
. Each plateau

in Rxy is also coincident with Rxx ≈ 0. Note the appearance of a plateau at ν = 4
3
.
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Hall resistance.

z z

(a) (b) 

E

D(E)

E

D(E) Extended	
  states	
  

Localized	
  states	
  

Figure 1.3: (a) Density of states D(E) versus energy E of 2DES in a magnetic field
without disorder. The Landau levels are represented by delta functions. (b) Density
of states with disorder. Black bands indicate extended states while grey regions are
localized states.

The precise quantization of Hall resistance over large ranges of filling factor cru-

cially depends on disorder. Imperfections in real samples will lead to scattering of

electrons off of impurities as well as spatial variation of carrier density. Electrons

can also be localized by local minima in the disorder potential. These effects will

broaden the Landau levels, which we illustrate in figure 1.3b. So long as disorder is

not too strong, narrow bands of extended states will exist at the energies En given by

equation (1.4). These extended states can carry current across the sample and form

the edge channels. However, in between the bands of extended states there will in

general be a number of localized states. These states represent electrons bound by

the disorder potential. One might expect that they do not influence transport mea-

surements because they cannot carry charge from one side of the sample to the other
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[47]. Instead, the edge channels alone should determine the transport properties.

N = 0

N =1

µ−

(a) (b) 

µ+

µ+ µ−

µ+

µ−

ŷ

E

y = 2kx
x̂

Figure 1.4: (a) Depiction of rectangular sample in the absence of disorder. Electrical
contacts are located along the left and right edges of the sample, at chemical potentials
µ+ and µ− respectively. Each contact sets the chemical potential of the edge channel
(red lines with arrows) traveling from it. (b) Energy diagram without disorder. Black
dots denote occupied states, white circles denote unoccupied states.

We argue that this is the case by first considering a rectangular sample with

dimensions Lx × Ly. We depict this geometry in figure 1.4a. Contacts are located at

x = −Lx/2 and x = Lx/2. The left contact is held at the potential V = −eµ+ and

the right is at V = −eµ−. For now, we assume that there is no disorder. We once

again choose a gauge in which ~A = −By x̂, such that each eigenstate of energy will

also be an eigenstate of momentum in the x̂ direction and centered on y = `2kx. We

assume that µ+− µ− is small compared to the cyclotron energy and that everywhere

the local chemical potential lies between the N = 0 and the N = 1 Landau levels.2

The left lead will populate all the states traveling in the +x̂ direction up to the energy

µ+, while the right lead will populate all states traveling in the −x̂ direction up to

2Be aware that we have made a slight change in notation from Section 1.1.1, where N had stood
for the total number of electrons and n had indicated the Landau level index.
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the energy µ−.

The energy diagram in the case of no disorder is shown in figure 1.4b. The black

dots indicate filled states while the open dots indicate unoccupied states. Because

of the relation y = `2kx, the states on the right half of this diagram (y > 0) will

travel in the +x̂ direction and the states on the left half of this diagram (y < 0) will

travel in the −x̂ direction. As mentioned previously, the confinement potential at the

edge causes the energy of the LLs to rise up and intersect with the local chemical

potential µ±, thus generating the compressible edge channels. In this sample there

are two such edge channels that are traveling in opposite directions and located at

y = ±Ly/2. Note that here the Hall voltage is the difference in chemical potential

between the two edges and is given by Vxy = −e(µ+ − µ−).

We now calculate the net current in the sample. Each energy eigenstate travels

in the ±x̂ direction with velocity vx = 〈 ∂H
∂px
〉 = 1

h̄
∂E
∂kx

= `2

h̄
∂E
∂y

. The net current in the

+x̂ direction is given by [58]

I =

∫
~J(~r) · x̂ dy (1.8)

=
1

Lx

∫ ∫
Jx dydx (1.9)

= − e

Lx

∫
d2r ρ(~r)vx(~r) (1.10)

= − e

Lx

∑
occupied

vx. (1.11)

Here, ~J(~r) is the current density and ρ(~r) is the number density of electrons. The

first integral is performed along an arbitrary line of constant x across the width of

the sample, which can be converted into an integral across the entire sample due to

current continuity. The summation in the last line is performed over all occupied

states.
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We now use the expressions for vx and kx to obtain

I = − e

Lx

Lx
2π

∫
occupied

vx dkx (1.12)

= − e

2π

∫
occupied

(
`2

h̄

∂E

∂y

)
1

`2
dy (1.13)

= − e
h

∫ µ+

µ−

dE (1.14)

= − e
h

(µ+ − µ−) (1.15)

=
e2

h
Vxy. (1.16)

Thus the Hall resistance is simply h
e2

for this particular case of a single filled Landau

level in the bulk of the sample. This formula can be generalized for n filled Landau

levels to arrive at Rxy = 1
n
h
e2

.

The key observation one obtains by examining figure 1.4b is that only the states at

the edges contribute to the net current flowing through the sample. So long as both µ+

and µ− at the edges stay within the localN = 0 LL, then the relation I = − e
h
(µ+−µ−)

should hold. But it should also be clear that even though any bulk variations in

the energy diagram from a disorder potential might generate local currents in the

interior, their net contribution to the observed current is zero. Such variations might

even generate hills and valleys in the bulk electron density. These features could have

their own edge channels circling them if the local chemical potential intersects a LL

in the bulk (see figure 1.5), but so long as such defects do not create a pathway from

one edge of the sample to the other they will not disrupt Hall quantization.

However, in order to fully explain the Hall plateaux we must account for why in

real samples the chemical potential remains between two different LLs as the filling

factor ν is changed, either by sweeping B or altering the electron density. The number

of states in the edge regions at y = ±Ly/2 is tiny compared to the Landau degeneracy

in the clean limit. Thus, according to our energy diagram in figure 1.4b any change

in ν should still cause the chemical potential to quickly jump from one LL to another.

The apparent paradox is resolved by recalling that disorder generates a large density
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µ+

µ!

µ+ µ!

Figure 1.5: Cartoon of disordered sample. Dark grey (white) regions in the bulk
indicate puddles of increased (decreased) electron density induced by the disorder
potential. Each hill or valley in the disorder potential can be encircled by a separate
edge channel. Note that the edge channels surrounding the hills have the opposite
chirality as those around the valleys. So long as there are no such puddles connecting
the two contacts, Hall resistance will remain quantized at Rxy = 1

n
h
e2

.
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of localized states between the bands of extended states, as depicted in figure 1.3b. As

mentioned before, these localized states do not alter the net current traveling through

the sample, but they can keep the chemical potential pinned between two adjacent

LL for a wide range ν. This is consistent with the observation that the width of Hall

plateaux are smaller in cleaner samples.

At finite temperature, one expects perfect quantization to break down. Thermal

fluctuations will lead to the population of excited states above the gap within the

bulk. Thus, backscattering becomes thermally activated, and in general one observes

a longitudinal resistance with the temperature dependence of Rxx ≈ R0e
−∆/2kbT .

Here, ∆ is the bulk energy gap. For the integer quantum Hall effect, ∆ is typically

given by ∆ ≈ h̄ωc − Γ, where Γ reflects the broadening of the Landau levels.

1.1.3 Fractional Quantum Hall Effect

Soon after the integer quantum Hall effect was discovered, Tsui, Stormer, and Gossard

[119] found evidence for an incompressible state forming at ν = 1/3 with a Hall

resistance plateau of Rxy = 3 h
e2

. Hints of a similar state at ν = 2/3 were also

seen. Further studies found quantum Hall states at even more fractional Landau

filling factors, such as ν = 4/3, 5/3, 2/5, 3/5, 4/5, and 2/7 [110]. These states at

fractional Landau filling factors are collectively known as the fractional quantum Hall

effect (FQHE). As shown in figure 1.6, modern 2DESs typically show a complicated

hierarchy. The appearance of the FQHE seems counterintuitive because it occurs

when a Landau level is only partially filled and the chemical potential should lie within

the band of extended states. Under these conditions, the system should instead be

compressible.

The origin of the FQHE ultimately lies in electron–electron interactions. Although

usually treated perturbatively in the case of degenerate Fermi systems, these interac-

tions become vastly more important in the quantum Hall regime. One can understand

this by considering the case of an extremely large magnetic field, such that only the

lowest Landau level is populated. The Hamiltonian for the many-body system is
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Figure 1.6: Example of magnetotransport from a high quality 2DES at T = 15 mK.
Unpublished data courtesy of Jing Xia.
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given by

H =
∑
i

1

2m

(
~pi +

e

c
~A
)2

+
∑
i<j

e2

|~ri − ~rj|
. (1.17)

Upon projecting to the lowest Landau level, the kinetic energy term in equation

(1.17) becomes a constant equal to
∑

i
1
2
h̄ωc in the clean limit. Subsequently, it can

be ignored and only the Coulomb repulsion term can play a role in electron dynamics.

The FQHE is fascinating becomes it involves the nonperturbative influence of electron–

electron interactions.

For example, Laughlin [73] constructed a trial wave function for the ν = 1/m

states with the following form:

Ψ1/m =
∏
j<k

(zj − zk)m exp

[
−1

4

∑
i

|zi|2
]
. (1.18)

Here, zj = xj + iyj represents the spatial coordinates of the jth electron expressed in

units of the magnetic length `. The critical term in equation (1.18) is the polynomial

(zj − zk)m, which vanishes as one electron approaches another. Thus, these Laughlin

wave functions serve to minimize Coulomb repulsion and provide an excellent ansatz

for describing the highly correlated state in which the electrons dance around each

other. Fermi-Dirac statistics requires any many-body wave function of fermions to be

antisymmetric with respect to particle exchange. This implies that equation (1.18)

can only describe systems with odd values of m. Indeed, quantum Hall states are

observed at ν = 1/3, 1/5, 1/7, ..., but not at ν = 1/2, 1/4, 1/8, ..., for conventional

single-layer systems. Through a particle-hole transformation of equation (1.18), one

can also describe the states ν = 1− 1/m as Laughlin states of holes.

Perhaps one of the most unusual properties of the Laughlin states is that they

contain excitations that can be described as quasiparticles with fractional charge.

Laughlin shows this in reference [73] by considering the insertion of an additional

quantum of magnetic flux hc/e into the system. Doing so causes the system to re-

arrange itself so as to accumulate an extra amount of charge near the inserted flux

equal to 1
m
e. Haldane [46] and Halperin [49] use these fractionally charged quasipar-
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ticles to iteratively construct wave functions to describe the various states that do

not fall within the Laughlin sequence of ν = 1/m and ν = 1 − 1/m. In the hierar-

chy approach, a new quantum Hall state can be formed as a Laughlin state of the

fractionally charged quasiparticles of a simpler fractional state.

1.1.4 Composite Fermions

Though mathematically elegant, the hierarchy approach of Haldane and Halperin

appears to incorrectly predict the relative strengths of the fractional quantum Hall

states [58]. For example, ν = 3/7 and ν = 5/13 are both direct “daughter” states of

ν = 2/5, but 3/7 is far more prevalent than 5/13 in real samples. As an alternative

to the hierarchy approach, Jain reformulated the problem of interacting electrons

moving in a magnetic field by describing it as a system of composite particles known

as composite fermions [57]. A composite fermion is an electron bound to an even

number of quantized vortices in the multiparticle wave function. Each vortex takes

the form of (zj − zk) and thus the wave function Ψν of the electrons at filling factor

ν can be related to the composite fermion wave function Φν∗ in the following way:

Ψν =
∏
j<k

(zj − zk)2pΦν∗ (1.19)

Like in the Laughlin states, the
∏

j<k(zj − zk)
2p will cause the electrons to avoid

each other and make the formation of composite fermions energetically favorable. By

minimizing the Coulomb repulsion, it is typical to assert that Φν∗ represents a wave

function for a system of weakly interacting composite fermions. We will show that

because the binding of vortices can be related to the binding of fictitious magnetic

flux, the composite fermions subsequently move about in a reduced magnetic field B∗

and fill up an integer number of fictitious Landau levels generated by B∗.

We start by considering a system of noninteracting electrons at integer filling fac-

tor ν∗ = n = NSφ0/|B∗|. Here, NS is the number density of electrons and φ0 = hc/e

is the quantum of magnetic flux. Because ν∗ is an integer, the system has an energy
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gap between the ground state and the first excited state. We convert the electrons

into composite fermions by attaching 2p magnetic flux quanta to each electrons.

This can be accomplished formally through a Chern-Simons gauge transformation,

which associates with each electrons the requisite amount of flux [137, 77, 50, 97].

The flux attachment does not change any observables because they make zero net

Aharonov-Bohm phase contribution to any Feynman path-integrals. The new system

of composite fermions will be incompressible because the original system of noninter-

acting electrons was also incompressible. We note that these fictitious magnetic flux

quanta are identical to the vortices (zj − zk)2p because they both cause the phase of

the multiparticle wave function to increase by the same amount when one moves one

particle in a complete circle around another.

Next, we adiabatically spread each attached flux until it merges with the external

magnetic field. This adiabatic evolution is permitted due to the finite energy gap.

So long as this gap does not close (which we assume that it does not), we will avoid

passing through a phase transition into a completely different state. Thus, we map

the problem of noninteracting composite fermions with integer filling factor ν∗ into a

problem of electrons moving in an external magnetic field B = B∗ + 2pNSφ0. Using

|B∗| = NSφ0/n and taking B to be positive, the electrons will have fractional filling

factor,

ν =
n

2pn± 1
. (1.20)

Therefore, the fractional quantum Hall effect for electrons can ultimately be explained

in terms of an integer quantum Hall effect for composite fermions. A simple example

of this is the case of n = 1 and p = 1. This gives the ν = 1/3 Laughlin state, which

can be rewritten as

Ψ1/3 =
∏
j<k

(zj − zk)3 exp

[
−1

4

∑
i

|zi|2
]

=
∏
j<k

(zj − zk)2Φ1. (1.21)

Here, the term
∏

j<k(zj − zk)
2 represents the binding of two flux quanta to each

electron and Φ1 =
∏

j<k(zj − zk) exp
[
−1

4

∑
i |zi|2

]
is the many-body wave function
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for a completely filled Landau level, corresponding to a ν∗ = 1 state of composite

fermions.

The treatment of composite fermions presented here is an oversimplification of the

complete theory. It provides an intuitive explanation for an energy gap for a system

of interacting electrons at fractional filling factor without accounting for the exact

evolution of the energy levels during the attaching and spreading of fictitious magnetic

flux. For example, one might incorrectly posit that the energy gap should be given

by the cyclotron energy for electrons at filling factor ν∗, which would be dependent

on the effective mass of the electrons. This clearly cannot be the case because the

projection of the system into the lowest Landau level will quench the kinetic energy

of the electrons and cause the spectrum to only depend on the Coulomb repulsion

term. Thus, the true energy gap for a system of composite fermions at filling factor

ν∗ should somehow scale with the Coulomb energy EC . For a more complete review

of composite fermions, see reference [58].

The theory of composite fermions makes a number of testable predictions about

the energy spectrum of fractional quantum Hall states. For example, one would ex-

pect that the energy gap of a particular FQHE would be grow along with the effective

magnetic field B∗, which governs the cyclotron splitting of the fictitious Landau levels

of the composite fermions. This is borne out in experiments [15, 74, 16] that observe

Shubnikov–de Haas oscillations in the vicinity of ν = 1/2, whose amplitude grows as

one moves away from ν = 1/2. Crucially, the theory of composite fermions also sug-

gests that at half-filling factor the composite fermions should feel no effective magnetic

field other than a Zeeman field leading to partial spin polarization. Consequently, the

composite fermions form a compressible Fermi sea. This is quite remarkable because

the system would have an effective mass that is determined by the Coulomb energy

rather than the effective mass of the underlying electrons. Experimentally, no quan-

tum Hall plateau is visible at ν = 1/2 in single-layer 2DESs, which is consistent with

a compressible system. However, the composite fermion system has no energy gap

at ν = 1/2, so it is unclear if it can survive gauge fluctuations during the adiabatic

creation of the composite fermions. Nonetheless, Halperin, Lee, and Read [50] have
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argued that the features of a Fermi surface likely persists. A variety of experiments

(for example, Refs. [128, 63, 43, 69]) have also supported the existence of a composite

fermion Fermi sea at ν = 1/2.

1.2 Bilayer Quantum Hall State at νT = 1

Up until now, we have considered electrons populating only a single 2DES. We now

add a second 2DES parallel to the first and separated from each other by a small

distance d. We assert that interlayer tunneling is absent so that no electrical charge

can transfer between the two layers. In the quantum Hall regime, these bilayer systems

can be characterized by the effective interlayer separation d/`. This particular ratio

is important because it measures the importance of the intralayer Coulomb energy

EC = e2/ε` relative to the interlayer Coulomb energy EI = e2/εd. For d/` � 1,

the repulsion between electrons is weak and one expects that the two layers will act

independently of one another. The situation can be quite different for d/` ≈ 1, in

which interlayer interactions are of similar strength as interactions between electrons

within the same layer. One anticipates that interlayer correlations can develop at low

d/`, leading to bilayer fractional quantum Hall states. This thesis is focused on the

particular bilayer state that forms when the total Landau filling factor νT ≡ ν1 + ν2

of the two layers is equal to 1. This νT = 1 state is compelling because it can be

described as a condensation of interlayer excitons and, unlike most other quantum

Hall states, shows signs of a spontaneously broken symmetry.

1.2.1 The 111 State

We first examine the wave functions of generic bilayer quantum Hall states. Analogous

to the Laughlin states, Halperin [48] proposed the following set of wave functions to

model two-component quantum Hall states:

Ψm1m2n =

N1∏
j<k

(zj − zk)m1

N2∏
r<s

(wr − ws)m2

N1,N2∏
j,r

(zj − wr)n. (1.22)
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Here, zj are the coordinates for the N1 electrons in the first component (e.g., the

top layer in a bilayer system) and wr are the coordinates for the N2 electrons in the

second component (e.g., the bottom layer in a bilayer system). Note that once again

we have dropped the exponential terms for the sake of simplicity. If either m1 or m2

are even, then a composite fermion Fermi sea term associated with the appropriate

component must be added to equation (1.22) to preserve antisymmetry with respect

to electron exchange. By considering the number of vortices bound to each electron,

the Landau filling factors for the two components are given by

ν1 =
m2 − n

m1m2 − n2
(1.23)

and

ν2 =
m1 − n

m1m2 − n2
. (1.24)

From now on, we specialize to bilayer systems, in which ν1 and ν2 represent the filling

factors for the two layers. We also assume that the spins of the electrons are frozen

out by the large Zeeman field, even though this will ultimately prove to be an over-

simplification. In the case of n = 0, equation (1.22) would be the product state of

two uncorrelated quantum Hall systems (e.g., a bilayer system with d/` = ∞), with

ν1 = 1/m1 and ν2 = 1/m2. As the strength of interlayer repulsions grow (i.e., d/` is

reduced from infinity), one expects that states with n 6= 0 would become more favor-

able energetically, and electrons in one layer will become anticorrelated with electrons

in the other layer. As n grows in value while the individual Landau filling factors re-

main constant, m1 and m2 will consequently decrease from their original values when

the two layers were uncorrelated with each other. This represents electrons unbinding

themselves from vortices associated with electrons in their own layer and becoming

attached to the vortices of electrons in the other layer. The exponents m1 and m2 will

switch back and forth between even and odd values, implying a series of transitions

between compressible and incompressible bilayer states as d/` is tuned [134, 94].

If we consider the situation where m1 = m2 = n, then equations (1.23) and (1.24)

seemingly imply that the filling factors for the individual layers are not well defined.
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However, we can still write the total filling factor as νT ≡ ν1 + ν2 = 1/n. One would

then have to invoke layer symmetry to arrive at ν1 = ν2 = 1/2n.

The focus of this thesis is the bilayer system occurring at νT = 1. We primarily

restrict measurements to the case of equal densities in the two layers, N1 = N2.

Following the previous discussion, in the limit of d/` =∞, the system will consist of

two independent layers with m1 = m2 = 2 and n = 0. Both layers are compressible

Fermi seas of composite fermions, with no Hall plateau. For d/` = 0, interlayer

Coulomb energies are entirely equivalent to intralayer Coulomb energies. One would

expect that the system should be described by the wave function in equation (1.22)

with m1 = m2 = n = 1 (i.e., the “111 state”), such that each electron is bound to an

equal number of upper and lower layer vortices.

Such a quantum Hall state at νT = 1 was first supported by numerical evidence

from Chakraborty and Pietiläinen [10]. Experimentally, conventional transport mea-

surements (i.e., driving a total current IT that is equally split between the two layers)

by Suen et al. [113] and Eisenstein et al. [25] found signs of an incompressible state

in bilayer systems at νT = 1. However, we should note that the splitting ∆SAS of the

symmetric and antisymmetric tunneling states can also generate an energy gap, even

in the absence of Coulomb interactions. Such a splitting is analogous to the Zeeman

splitting between spin-up and spin-down electrons. Murphy et al. [84] explored this

possibility by examining a series of weakly tunneling bilayer systems with variable d/`

and ∆SAS. Their studies of samples with the smallest tunneling energies revealed that

as d/` is reduced below a characteristic value of d/` ≈ 2, an incompressible quantum

Hall state develops at νT = 1. Samples with larger tunneling energies tended to have

larger critical values of d/`, but they found evidence that the νT = 1 quantum Hall

state remains even in the limit of ∆SAS = 0, leaving Coulomb interactions as the

origin of the νT = 1 quantum Hall state. In figure 1.7 we show a summary of their

results. Note that the critical d/` is finite even at ∆SAS = 0. An example of the

evolution of the minimum in Rxx with d/` is shown in figure 1.8. Here, the interlayer

separation d is kept fixed, but the total density is tuned so as to alter the magnetic

length ` at νT = 1. Thus, one may alter d/` within a single sample in situ.
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Figure 1.7: Phase diagram of νT = 1 QHE with respect to effective interlayer separa-
tion d/` and single-particle tunneling energy ∆SAS, obtained by Murphy et al. [84].
Below the black curve, an incompressible QH state is observed at νT = 1. Beneath
it, the bilayer is compressible. Note that the samples studied in this thesis are very
weakly tunneling and would lie along the left boundary of this phase diagram.
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Figure 1.8: Rxx in parallel flow versus magnetic field at various values of d/`, which is
tuned by changing the electron density and thus modifying the value of ` at νT = 1).
The black dots denote the condition νT = 1 for each trace. Data taken using sample
7-12-99.1R at T = 50 mK.
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Similar to other quantum Hall states, the νT = 1 system is characterized by a

minimum in Rxx and a quantized Hall resistance of Rxy ≡ Vxy/IT = h
e2

. In this

respect, the νT = 1 state greatly resembles a single layer of electrons at filling factor

1, with charged excitations confined to the edge. However, the bilayer system has

an additional degree of freedom in the form of whether a given electron occupies the

upper or lower layer. Wen and Zee [125] argue that because the 111 state does not

have a well defined ∆N ≡ N1−N2, states with different ∆N have the same energy in

the absence of capacitive coupling or interlayer tunneling. Charged excitations (as-

sociated with changes in the total number of electrons, NT ≡ N1 +N2) have a finite

energy cost and are said to be gapped out. This is connected with the appearance

of an incompressible state in conventional transport measurements. But excitations

that change ∆N apparently cost little or no energy and thus represent gapless ex-

citations. Wen and Zee note that at finite d/` the gapless mode is associated with

a spontaneously broken U(1) symmetry and should be accompanied by a superfluid

mode. Of course, real samples have a finite tunneling energy that will explicitly break

the U(1) symmetry by selecting the symmetric distribution of electrons between the

two layers as the ground state. Nonetheless, it is assumed that the essential physics

will remain so long as the tunneling energy is much smaller than any other relevant

energy such as the Coulomb energy EC or thermal energy kBT .

1.2.2 Pseudospin Ferromagnetism

The νT = 1 quantum Hall state can be described in a number of languages. As is often

the case for a physical system, the choice of language depends on which of its features

one wishes to explore. For example, the low-energy dynamics and spontaneous U(1)

coherence can be made apparent through an analogy to ferromagnetism. To do so,

we first adopt the pseudospin formalism [32, 131, 82, 92, 112]. In this language, the

“which layer” degree of freedom for each electron is mapped onto a pseudospin vector.

An electron occupying the upper layer is considered to have pseudospin-up |↑〉 and

an electron in the lower layer has pseudospin-down |↓〉. We take these states to be
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either parallel or antiparallel to the z-axis of the three-dimensional Hilbert space for

each pseudospin vector. The wave function for νT = 1 at finite d/` can be written as

ΨνT =1 =

NT∏
j

[
| j〉 ⊗ 1√

2
(|↑〉+ eiφ |↓〉)

]
, (1.25)

where | j〉 represents an electron in orbital state j. The pseudospin component of each

electron lies within the x-y plane of the pseudospin vector Hilbert space, indicating

that the electrons are not localized in one layer or the other. Instead, the electrons

are quantum mechanically spread between the two layers with a phase factor eiφ. In

the absence of tunneling (i.e., ∆SAS = 0), there is no energy difference between the

symmetric and anitsymmetric combinations of |↑〉 and |↓〉. Consequently, there is a

U(1) symmetry in which the phase angle φ can take any value between 0 and 2π.

Although equation (1.25) specifies a single value of φ, one can imagine that the

phase angle might fluctuate in space and time, corresponding to excited states. In

the low energy regime, the dynamics of φ are determined by three key factors. First,

strong Coulomb repulsion will generate exchange interactions that will favor all pseu-

dospin vectors pointing in the same direction (hence the term pseudospin ferromag-

netism). Second, finite interlayer capacitance will keep the pseudospin vector in the

x-y plane by imposing an energy cost proportional to mz, the pseudospin projec-

tion along the z-axis. Finally, real samples have small but nonzero tunneling energy,

which will favor pseudospins pointing in the x direction.3 Thus, the Hamiltonian in

the long-wavelength, mean-field theory treatment is [131, 82]

H =

∫
d2x

[
ρs
|∇φ|2

2
− ∆SAS

4π`2
cosφ+

β

2
|mz|2

]
. (1.26)

Here, ρs is the pseudospin stiffness [130] and β is proportional to the capacitive charg-

ing energy. For ∆SAS = 0, equation (1.26) indicates that rotations of the pseudospin

vector in the x-y plane will have zero energy in the limit of ∇φ→ 0. This is identical

3Thus, a strongly-tunneling bilayer sample is a pseudospin paramagnet. Tuning the tunneling
energy should therefore induce a quantum phase transition between paramagnetism and ferromag-
netism [131, 95].
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to the gapless mode associated with the spontaneous breaking of the U(1) symmetry.

Pseudospin textures carry a fermionic charge density given by the Pontryagin

topological density [101, 131, 82, 130]

δρ(~r) =
1

8π
εµν ~m · (∇µ ~m)× (∇ν ~m). (1.27)

At νT = 1, the low-lying charged excitations are thought to be topological defects

known as “merons.” The pseudospin stiffness implies a finite charge gap [131, 82], in

contrast to the gapless pseudospin waves.

1.2.3 Exciton Condensate

Alternatively, the νT = 1 state can be described as an exciton condensate [32], with

superfluid-like properties [125, 30, 82, 80]. This view can be made clear by writing

the pseudospin ferromagnet wave function (equation (1.25)) in second-quantized form

as

ΨνT =1 =

NT∏
j

1√
2

(
c†1j + eiφc†2j

)
| 0〉. (1.28)

Here, c†1j is an operator that creates an electron in the top layer in orbital state j while

c†2j creates a corresponding electron in the bottom layer. The symbol | 0〉 denotes a

vacuum state devoid of any particles in either layer.

Fertig [32] first noted that one can perform a particle-hole transformation on the

top layer by defining a new vacuum:

| 0′〉 =

NT∏
j

c†1j | 0〉. (1.29)

This new vacuum consists of a filled Landau level of electrons in the top layer but no

particles in the bottom layer. Equation (1.28) can then be expressed as

ΨνT =1 =

NT∏
j

1√
2

(
1 + eiφc†2jc1j

)
| 0〉. (1.30)
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This equation resembles the BCS ground state. The product c†2jc1j now generates

an electron in the lower layer and a hole in the upper layer. This is identical to

the generation of an exciton spread between the two layers. As bosons, the excitons

should condense into the same state at sufficiently low temperatures. Here, this is

equivalent to the excitons having uniform phase factor eiφ. We depict this exciton

condensation (minus the filled level of electrons) in figure 1.9.

Figure 1.9: Depiction of exciton condensation at νT = 1. The electrons in the upper
layer are bound to the holes in the lower layer. A particle-hole transformation has
changed the half-filled Landau level in the bottom layer into a half-filled level of holes
and a completely filled level of electrons, which is not shown here.

The excitonic nature of the νT = 1 then implies a host of superfluid-like behavior.

As first pointed out by Wen and Zee [125], the gapless and linearly dispersing mode is

linked to the flow of excitons. Because the excitons have their “electron component”

and “hole component” in different layers, a unidirectional flow of excitons would be

equivalent to counterpropagating (or counterflowing) electron currents in the two lay-

ers, JCF = J1 − J2. Analogous to superfluidity, the counterflow current is related to

the gradient of the phase angle by JCF = − eρs
h̄
∇φ. The excitonic order parameter

is a phase angle and falls within the XY universality class. Thus, it was anticipated

[125, 131, 82] that the system would exhibit a Kosterlitz-Thouless (KT) transition.
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This transition is characterized by mobile vortices and antivortices in the order pa-

rameter above a characteristic temperature TKT ∝ ρs. The motion of vortices lead to

dissipation and an ohmic response for exciton flow. Below TKT , each vortex becomes

bound to an antivortex, leading to a nonlinear I − V for the exciton flow.

Once the exciton condensate is well formed, one also expects that interlayer tun-

neling should be qualitatively similar to the Josephson effect. Thus, the tunneling

current density JT and the phase angle φ should obey the Josephson relations:

JT =
e

h̄

∆SAS

4π`2
sinφ, (1.31)

∂φ

∂t
=
eV

h̄
, (1.32)

where V is the interlayer voltage difference. The tunneling current is linear in ∆SAS

rather than quadratic, as in the case for weakly coupled bilayers [126]. These Joseph-

son relations and the expected long-range coherence of the condensate together imply

that a DC tunneling current IT ≡
∫
d2xJT can flow between the two layers at zero

interlayer voltage so long at JT does not exceed JT,max ≡ e
h̄

∆SAS

4π`2
. At finite interlayer

voltage, φ will evolve with time and the time-averaged tunneling current will vanish.

With equations (1.26) and (1.32), we may now derive the complete equation of

motion for φ. We can write the capacitive charging energy term in the Hamiltonian as

βm2
z = CTV

2/2S = (h̄2CT/2Se
2)(∂tφ)2, where CT is the total interlayer capacitance

and S is the system area. If we treat (∂tφ)2 as a kinetic energy and the remaining terms

in the Hamiltonian as potential energies [21], then we can construct the following

Lagrangian:

L =

∫
d2x

[
χ

2
(∂tφ)2 − ρs

2
|∇φ|2 +

∆SAS

4π`2
cosφ

]
, (1.33)

where χ ≡ h̄2CT/Se
2. To find the equation of motion for φ, we must minimize L

with respect to variations in φ. We can use the standard Euler-Langrange equation

(summing over the repeated index µ),

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0, (1.34)
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and finally obtain

χ
∂2φ

∂t2
− ρs∇2φ+

∆SAS

4π`2
sinφ = 0. (1.35)

Thus, φ obeys a sine-Gordon equation. When ∂tφ = 0 and φ is small enough that

we can use the approximation sinφ ≈ φ, the Sine-Gordon equation has exponentially

decaying or growing solutions. There also exist time-dependent soliton solutions that,

depending on the picture one uses, represent either Josephson vortices or pseudospin

waves traveling long distances (for example, see Refs. [130, 35, 36]).

Before ending this section, we should note that the exciton condensate wave func-

tion in equation (1.30) and the 111 wave function based on equation (1.22) are not

entirely equivalent. The exciton condensate wave function has the phase angle φ as

a good quantum number. On the other hand, the 111 wave function is an eigenstate

of total particle number NT . In condensed matter physics, φ and NT are conjugate

variables [3] with the commutation relation [NT , φ] = i. Thus, the exciton wave func-

tion and the 111 wave function are related to each other through a change of basis

transformation, using eiφNT as the transformation matrix [3, 102].

1.3 Phenomenology of νT = 1

We now give an overview of the bilayer transport properties of the νT = 1 quantum

Hall state. These measurements rely on making independent electrical contact to

the individual layers. We will provide greater detail of the measurement techniques

behind these studies in chapter 2 and beyond. For now, we will discuss how these

measurements reflect the strong interlayer correlations and superfluid-like properties

of the νT = 1 state.

1.3.1 Interlayer Tunneling

One of the most distinctive properties of the νT = 1 state is the appearance of a zero-

bias, Josephson-like peak in interlayer tunneling spectra. At large magnetic fields,

the tunneling current flowing between two 2DESs is generally suppressed near zero
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interlayer bias due to the Coulomb pseudogap [27]. The origin of this effect is that

at high magnetic fields it requires a finite amount of energy to inject an electron

into a highly correlated 2DES. The other electrons must rearrange themselves to

make room for an injected electron, but the high magnetic field inhibits this motion.

Consequently, injected electrons can only access the excited states on the timescale

of tunneling [61, 20]. This apparent gap in the tunneling spectrum will occur at

ν = 1/2 per layer for high d/`, even though the system is compressible for conventional

transport measurements. An example of this tunneling current suppression is shown

by the dotted trace in figure 1.10a.

When the νT = 1 quantum Hall state forms at low d/`, the story is entirely

different. As first discovered by Spielman et al. [103, 104], a tall and narrow peak

occurs in the differential tunneling conductance spectrum. An example of this peak

can be seen in the solid trace in figure 1.10a. This tunneling peak reflects the ability

of charge to transfer between the two layers with little energy cost. Intuitively, each

electron has a corresponding hole in the opposite layer (as evident in equations (1.22)

and (1.30)), and thus charge can be easily transferred between the two layers by having

the electron fall into its matching hole. The tunneling peak has been interpreted in

terms of macroscopic phase coherence [6, 34, 40, 55, 56, 60, 90, 107, 123, 124].

The tall and narrow interlayer tunneling peak is highly reminiscent of the Joseph-

son effect, bolstering the view that the νT = 1 is an exciton condensate. The appear-

ance of Josephson physics is made more obvious by plotting the DC tunneling current

versus interlayer bias, as seen in figure 1.10b. At the lowest temperatures, the tunnel-

ing current curve has a nearly discontinuous jump at zero bias. Thermal fluctuations

broaden this jump in current and reduce its height. Similar to a Josephson junction,

this behavior suggests that current can flow between the two layers with very little dis-

sipation (i.e., zero interlayer voltage difference), with I = Imax sinφ and ∂tφ = V = 0.

Once the tunneling current exceeds ±Imax, the phase angle can no longer be time-

independent and a finite interlayer voltage occurs. The rapidly evolving phase angle

will subsequently cause the DC tunneling current to decay. However, unlike in a true

Josephson junction, the interlayer tunneling peak at νT = 1 appears to have a finite
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Figure 1.10: Examples of interlayer tunneling measurements at νT = 1. All data were
taken using sample 7-12-99.1R with a four-terminal method in which the interlayer
voltage was measured between two voltage probes on opposite layers. (a) Tunneling
conductance spectra for low d/` and high d/`. T = 50 mK. (b) Tunneling current
versus bias at d/` = 1.48 taken at numerous temperatures.
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width even in the limit of zero temperature [102]. For example, under ideal conditions

(low d/` and low temperature) this peak is a few µV wide. It is unclear if this residual

width is due to intrinsically disordered superfluidity [6, 107, 98, 34, 123, 33, 54] or

finite series resistance [116, 112].

1.3.2 Counterflow Currents

Currents may travel through bilayer systems in two distinct ways. The first, known

as parallel flow, is realized by driving currents of the same magnitude and direction

through the two layers. Because this represents a net transfer of charge from one part

of the bilayer to another, parallel flow is equivalent to a current of charged excitations.

Consequently, at νT = 1 parallel flow is associated with a Hall voltage in either layer

of V
||
xy = h

e2
IT , where IT = I1 + I2 is the total current flowing through the sample.

However, one may also drive currents of equal magnitude but opposite direction

through the two layers. For example, a current I may flow in the top layer from the

left side of the sample to the right side, while an equal current flows from right to

left in the bottom layer. This current configuration is known as counterflow. Because

no net transfer of charge takes place during counterflow, it has been conjectured

[125, 30, 82, 109] that counterflow currents could be carried by excitons with no

dissipation. It has been shown [66, 121, 127] that the Hall voltage across either layer

will vanish in a counterflow measurement at νT = 1. An example of such transport

data for both parallel and counterflow currents can be seen in figure 1.11. Hall

resistance is clearly nonzero in parallel transport,4 but vanishes in counterflow.

These results were originally interpreted to be consistent with exciton flow be-

cause excitons are charge neutral and thus should feel no Lorentz force. Because

both the counterflow Hall resistance RCF
xy and longitudinal resistance RCF

xx were found

to be small, the calculated counterflow conductivity σCFxx = ρCFxx /
[
(ρCFxx )2 + (ρCFxy )2

]
appeared to be finite but still several orders of magnitude higher than the bulk con-

ductivity of charged excitations, as shown in figure 1.12. This apparently large con-

4In this figure, the Hall resistance at νT = 1 has the value of 2 h
e2 because here it is defined in

terms of the current flowing through a single layer: R
||
xy ≡ V ||

xy/I1, where I1 = 1
2IT .
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electrical contact to the individual 2DES layers [16].
Front and back gate electrodes, also not shown, cover
the central bar and allow for independent control of the
densities of the two 2DESs.

Resistance measurements are performed using 0.5 nA,
2.3 Hz excitation and standard lock-in detection. The
excitation current is first injected into one layer and
then withdrawn from it before being redirected into the
second layer. The redirection may be done at room tem-
perature where the choice between parallel and counter-
flow transport is made by selecting the appropriate mesa
arm for injecting the current into the second layer. By
comparing the current injected into the first layer with
the amount available for redirection into the second, we
can determine how much current tunnels from one layer
to the other inside the sample. For the data presented here
this leakage never exceeds 1% of the total transport
current, even deep inside the !tot ! 1 interlayer coherent
phase where interlayer tunneling is strongly enhanced [7].
This experimental configuration assures that the magni-
tudes of the currents in the two layers are essentially
identical in counterflow, even if leakage leaves them
slightly less than the total current injected into the
sample. Finally, we emphasize that the longitudinal and
Hall voltage drops in the system are measured in one of
the two layers, typically the top layer. This is done to
avoid creating current shunts between the layers at the
location of the voltage probes. Although quantitative
differences between the layer voltages are observed,
they are small and do not alter any of the conclusions of
this work.

Figure 2(a) shows the magnetic field dependence of the
longitudinal and Hall resistances, Rk

xx and Rk
xy, respec-

tively, at T ! 50 mK with equal currents flowing in par-
allel through the two layers. These resistances are
computed by dividing the appropriate voltages by the
current flowing in the individual layers. For the data in
the figure, the densities of the individual 2DESs have
been reduced to N1 ! N2 ! 2:54" 1010 cm#2 using the
front and back center gates. At this density the ratio of the

center-to-center separation of the quantum wells, d !
28 nm, to the magnetic length ‘ ! $ !h=eB%1=2 at !tot ! 1
is d=‘ ! 1:58. This value is small enough that the double-
layer 2DES at !tot ! 1 should be well within the QHE
phase [17]. This is confirmed by the well-developed mini-
mum in Rk

xx and the flat plateau in Rk
xy around !tot ! 1 at

B ! 2:1 T in Fig. 2. Since the tunnel-induced splitting
between the lowest symmetric and antisymmetric double
well eigenstates in this sample is estimated to be only
about "SAS & 0:1 mK, while the mean interelectron
Coulomb energies are roughly 106 times larger, this !tot !
1 QHE state should be well approximated by the sponta-
neously interlayer phase coherent excitonic (or pseudo-
ferromagnetic) model.

Note that the !tot ! 1 Hall plateau in Fig. 2(a) occurs at
Rk
xy ! 2h=e2. This is twice the value mentioned above

simply because we define the resistance as the voltage
divided by the current flowing in a single layer, not the
net current flowing through the bilayer. In addition to
this intrinsically bilayer QHE, numerous single layer
QHE states, e.g., at !tot ! 2, 4, 6, etc., are also evident
in the data.

Figure 2(b) illustrates our main result. The data in this
figure were taken under the same conditions as that in
Fig. 2(a), except that the currents in the two layers flow in
opposite directions. In this counterflow configuration
much of the data appears very similar to that obtained
in the parallel configuration. For example, at low mag-
netic fields and around the single layer QHE states at
!tot ! 2, 4, 6, etc., the counterflow resistances RCF

xx and
RCF
xy are very similar to the parallel flow resistances Rk

xx

and Rk
xy. At !tot ! 1 this similarity persists in the case of

the longitudinal resistances Rk
xx and RCF

xx ; both exhibit a
deep minimum near B ! 2:1 T. In contrast, however, the
Hall resistances are dramatically different. While Rk

xy is

FIG. 2. Hall and longitudinal resistances (solid and dotted
traces, respectively) in a low density double-layer 2DES at T !
50 mK. (a) Currents in parallel in the two layers. (b) Currents
in counterflow configuration. Resistances determined from
voltage measurements on one of the layers.

FIG. 1. Schematic drawing of a mesa structure confining the
2DES. Arms 1, 2, 3, and 4 are for injecting and withdrawing
current, while arms 5, 6, and 7 are for measuring voltages. The
solid line indicates the current pathway through one 2DES
layer; the dashed line indicates the pathway in the other layer.
Gates are not shown.

P H Y S I C A L R E V I E W L E T T E R S week ending
16 JULY 2004VOLUME 93, NUMBER 3

036801-2 036801-2

Figure 1.11: Comparison of parallel (top panel) and counterflow (bottom panel) trans-
port in a bilayer system at d/` = 1.58 and T = 50 mK. The solid lines are the
Hall resistance Rxy and the dotted lines are longitudinal resistance Rxx. Reprinted
with permission from M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 93, 036801 (2004). Copyright 2004 by the American Physical Society.
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quantized at 2h=e2, the counterflow Hall resistance RCF
xy

exhibits a deep local minimum.We reiterate that this Hall
resistance is measured with voltage probes connected to
only one of the 2D layers in the system; the small value of
RCF
xy does not result from a cancellation of opposite sign

Hall effects in two layers shorted together at the voltage
contacts.

Figure 3(a) demonstrates that the minimum in the
counterflow Hall resistance at !tot ! 1 develops rapidly
as the effective layer separation d=‘ is reduced below
about d=‘ " 1:8. This is not surprising since previous
tunneling [7] and Coulomb drag [8] measurements on
samples taken from the same semiconductor wafer as
the present one have established that the critical point
separating the strongly coupled excitonic !tot ! 1 QHE
state from a weakly coupled non-QHE phase occurs very
close to this value. As d=‘ is decreased further the
minimum in RCF

xy at !tot ! 1 deepens, falling to essen-
tially zero by d=‘ ! 1:48. Figure 3(b) shows that this
remarkable transport feature weakens as the temperature
is increased, becoming only a shallow local minimum by
T ! 500 mK.

Figure 4 summarizes our measurements of the tem-
perature dependences of all four relevant resistances, Rk

xx,
Rk
xy, RCF

xx , and RCF
xy , at !tot ! 1 and d=‘ ! 1:48. Figure 4(a)

shows the measured temperature dependences of Rk
xx and

Rk
xy from T ! 400 mK down to about 35 mK. Over this

range the Hall resistance remains nearly constant at
Rk
xy ! 2h=e2, while the longitudinal resistance vanishes

in a thermally activated fashion: Rk
xx # R0e$!=2T with the

energy gap ! " 0:5 K. Thus, the behavior of the parallel
flow transport at !tot ! 1 is qualitatively the same as that
of any ordinary QHE state.

Figure 4(b) displays the temperature dependence of
the counterflow resistances RCF

xx and RCF
xy . Both quanti-

ties appear to vanish in the low-temperature limit. The

two resistances are surprisingly similar in magnitude
over most of the temperature range. The general tem-
perature dependence of each is less clearly thermally
activated than Rk

xx. RCF
xy , in particular, shows significant

curvature on the Arrhenius plot in the figure. We note in
passing that quantitative variations in the various resis-
tances were encountered. We attribute these to the disor-
der in the sample which has been observed to change
upon thermal cycling and repeated strong gating of the
2DES densities. Indeed, as Fig. 2 makes clear, the !tot ! 1
QHE state occurs amid an otherwise rapid approach to an
insulating state at high magnetic field. This and other
indications suggest that disorder is quite important in
these samples.

The data described above vividly demonstrate that it
is possible for both the longitudinal and Hall components
of the resistivity tensor of a bilayer 2DES to vanish at
high magnetic field when oppositely directed currents
flow in the two layers. This result is consistent with the
expectation that the !tot ! 1 bilayer QHE state is an
excitonic superfluid. This unusual quantum fluid is be-
lieved to possess two distinct dissipationless transport
mechanisms. First, in parallel transport current is car-
ried through the sample by charged quasiparticle excita-
tions lying near the edges of the sample. This mode of
transport is dissipationless, but only in the conventional
QHE sense: both the longitudinal resistance Rk

xx and the
conductivity "k

xx vanish as T ! 0. Second, the !tot ! 1
excitonic state is also expected to possess a coherent
transport mechanism within its condensate. This mecha-
nism may be viewed as dissipationless transport of
charge neutral excitons or, equivalently, counterflowing
charge currents in the individual layers. Not surprisingly,
neutral excitons feel no Lorentz force and thus RCF

xy is
expected to vanish along with RCF

xx . The expectation is
that the longitudinal conductivity in counterflow, "CF

xx ,
should be infinite.

FIG. 3. Development of a deep minimum in RCF
xy with de-

creasing effective layer separation (a) and falling temperature
(b). In (a) data taken at various d=‘ (1.48, 1.59, 1.66, 1.71, 1.75,
and 2.29) are plotted versus inverse filling factor !$1

tot . In (b) the
fixed d=‘ data, taken at T ! 30, 150, 200, 250, 300, and
500 mK, are plotted versus magnetic field.

FIG. 4. Temperature dependences of various resistances and
conductivities at !tot ! 1 and d=‘ ! 1:48. (a) Parallel current
flow. Open dots: Rk

xx; closed squares: Rk
xy. (b) Counterflow. Open

dots RCF
xx , closed squares RCF

xy . (c) Parallel and counterflow
longitudinal conductivities, "k

xx and "CF
xx , respectively.

P H Y S I C A L R E V I E W L E T T E R S week ending
16 JULY 2004VOLUME 93, NUMBER 3

036801-3 036801-3

Figure 1.12: Temperature dependence of parallel and counterflow transport at νT = 1
and d/` = 1.48. In the first and second plots, the circles are Rxx and the squares are
Rxy. Reprinted with permission from M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Phys. Rev. Lett. 93, 036801 (2004). Copyright 2004 by the American
Physical Society.
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ductivity in counterflow was at first thought to be a sign of the anticipated excitonic

superfluidity. However, there are no signs of the KT transition between ohmic and

nonohmic behavior at a finite temperature. Instead, σCFxx evolves smoothly with tem-

perature and remains ohmic throughout the explored temperature range. Another

complication is that these counterflow studies were performed on Hall bars, in which

all of the electrical contacts were connected by charge-carrying edge channels. It is

unknown what role they might play in counterflow transport and they prohibit the

unambiguous detection of bulk exciton currents while using Hall bar samples.

1.3.3 Coulomb Drag

Finally, we comment on a class of transport measurements that is peculiar to bilayer

systems: Coulomb drag. A current is driven through only one layer (denoted as

the drive layer), while no current is permitted to flow in or out of the passive layer

(known as the drag layer). If the two layers are sufficiently close, then electrons in the

drive layer can scatter off of the electrons in the drag layer. This interaction can be

either due to direct Coulomb repulsion [44, 59] or through phonon-mediated coupling

[45]. The interlayer scattering will tend to transfer momentum from the drive layer

to the drag layer, whose electrons will want to travel in the same direction as the

drive current. However, because the drag layer is constrained to have no net current,

instead a voltage drop VD will develop in the drag layer to prevent any induced

current flow there. The ratio of this voltage to the drive current Idrive is known as the

Coulomb drag resistance. In this thesis, we use the convention Rxx,D = −Vxx,D/Idrive
and Rxy,D = Vxy,D/Idrive, where Vxx,D and Vxy,D are the longitudinal and transverse

(Hall) drag voltages, respectively. The negative sign in our definition of Rxx,D reflects

the fact that for bilayer electrons the longitudinal voltage drop in the drag layer is

typically in the opposite direction as the one in the drive layer from conventional

dissipation.

At either zero magnetic field or large effective layer separation (in the case of νT =

1 [76]), interlayer correlations are miniscule and Coulomb drag is only a perturbative



47

effect. However, as d/` is lowered below the same critical value associated with the

νT = 1 quantum Hall state, Coulomb drag becomes vastly enhanced [67, 65]. We

illustrate typical Coulomb drag data near νT = 1 in figure 1.13. We first note that

the Hall drag resistance rises up to the quantized value of h/e2. The robust plateau in

Hall drag reflects the nonperturbative interlayer correlations of the νt = 1 state; the

two layers are clearly not independent of one another. The longitudinal drag resistance

has a more complex behavior: as d/` is reduced a peak in Rxx,D rises up, achieving

a maximum height of ∼1.5 kΩ at nearly the same d/` at which Rxy,D = 1
2
h/e2. For

moderate d/`, the drag resistance peak is centered on the magnetic field corresponding

to νT = 1. At very low d/`, the peak splits in two and eventually Rxx,D ≈ 0 in the

vicinity of νT = 1. We emphasize that these results are obtained even when the

allowed interlayer tunneling current is much smaller than the drive current [67, 38].

The appearance of a plateau in Hall drag resistance is quite remarkable because

näıvely no current appears to be flowing through the drag layer and thus there should

be no Lorentz force to create a Hall voltage. The intuitive explanation for quantized

Hall drag is as follows: any charge current that is injected into one layer will become

quantum mechanically spread between the two layers. This generates an equal Hall

voltage across either layer due to the indeterminacy in which layer the charge current

is located. Because the νT = 1 state consists of a single, completely filled Landau

level that is shared between the two layers, the Hall resistance in either layer is h/e2.

Because the measurement circuit provides the constraint that no net current can enter

or leave the drag layer, a counterflow current must be simultaneously generated.

This counterflow current does not alter the Hall resistance, but ultimately cancels

out the charge current induced in the drag layer. One cannot determine the spatial

distribution of the counterflow current in this picture.

Kun Yang [129] has provided a more rigorous explanation of Hall drag in generic

bilayer quantum Hall states. His explanation focuses on the interlayer repulsion

between edge states. By driving a current through the drive layer, one populates

higher energy states in the edge channels. The chemical potential of the drive layer

will consequently rise; this increase is identified with the Hall voltage of the drive
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Figure 1.13: (a) Transverse (Hall) and (b) longitudinal Coulomb drag near νT = 1
for various d/` taken with sample 7-12-99.1R at T = 30 mK. For the sake of clarity,
the data in (b) have been binomially smoothed using IGOR Pro’s smooth funciton
with 1000 operations.
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layer. Coulomb repulsion prevents the population of the corresponding states in the

drag layer. Hence, the energy cost for adding another electron to the drag layer (i.e.,

the chemical potential) increases by an amount proportional to the rise in chemical

potential of the drive layer. In the case of the 111 state (where the electrons are

equally repelled by other electrons in their own layer and the opposite layer), this

ultimately leads to Rxy,D = h/e2. We should emphasize that Kun Yang’s theory can

be extended to other bilayer quantum Hall state and does not make explicit reference

to any bulk counterflow current.

1.4 Summary and Outlook

In a 2DES, the combination of high magnetic fields and Coulomb repulsion can lead

to strongly correlated states that are known as fractional quantum Hall states. A

particularly unusual quantum Hall state forms when two 2DESs at total filling factor

1 are placed in close proximity with one another such that interlayer interactions are

comparable to intralayer interactions. In this so-called νT = 1 state, the electrons

in one layer can be described as pairing up with the holes in the other to form

excitons. The excitons condense to create a bilayer quantum Hall with superfluid-like

properties. However, the analogy to superfluidity does not appear to be exact. The

anticipated KT transition at finite temperature has not been definitively observed.

The Josephson-like tunneling peak appears to have a residual width even in the limit

of zero temperature. Finally, evidence for excitonic superfluidity remains lacking. In

the following chapters we seek to address these issues and clarify our understanding

of the νT = 1 state.
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Chapter 2

Materials and Methods

This chapter describes the experimental methods we used to study bilayer samples at

low temperature in the quantum Hall regime. First, we describe the semiconductor

gallium arsenide (GaAs) and how it can be combined with aluminum gallium ar-

senide (AlxGa1−xAs) to form heterostructures that contain two-dimensional electron

systems (2DESs). Next, we summarize the sample-processing techniques that allow

us to shape the bilayer system into desired geometries and tune the density in either

layer. Finally, we discuss the implementation of the measurements used to probe the

transport properties of bilayers.

2.1 Gallium Arsenide

Here we review the basic properties of gallium arsenide (GaAs). GaAs is a semicon-

ductor within the III-V family. It possess a zincblende crystal structure, shown in

figure 2.1. This structure is similar to diamond’s face-centered cubic structure, but

with gallium and arsenic atoms occupying alternating lattice sites [14].

GaAs has a relatively simple band structure near the Fermi energy. Unlike silicon,

GaAs possesses a direct band gap. The gap between the electron (conduction) band

and the two hole (valence) bands is centered on the Γ high symmetry point. Because

we use n-type samples, we will focus on the conduction band. Electrons in the

conduction band have an isotropic effective mass of m∗ = 0.067me, where me is the

mass of the electron in vacuum. Residual spin-orbit coupling modifies the response of
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Figure 2.1: Zincblende crystal structure of GaAs.

the electronic energy levels to a Zeeman field, providing an effective g-factor of −0.44

in bulk GaAs [14].

2.2 GaAs/AlGaAs Heterostructures

When two semiconductors with unequal band gaps meet at an interface, charge will

transfer from one material to another until the chemical potential is equal in both

materials. This excessive charge is known as space charge. The negative and posi-

tive space charge will cause the bands to bend within the vicinity of the interface,

following Poisson’s equation. As seen in figure 2.2, a band offset will form at the in-

terface, in which the energies of the conduction and valence bands will change nearly

discontinuously at the heterojunction interface. The offset is generated by the very

large electric field between the negative space charge in the GaAs side of the interface

and the positive space charge in the AlGaAs side. This offset can act as a potential

barrier for electrons in the conduction band [68]. Through proper layering of different

semiconductors, one can tune the potential V (z) for electrons in the z direction.

Heterostructures can be grown to high precision and extreme cleanliness using
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Figure 2.2: Band structure of a GaAs/AlGaAs heterojunction. The dashed line
indicates the chemical potential.

molecular beam epitaxy (MBE). In MBE, elemental sources are vaporized within

Knudsen cells located in an ultra high vacuum. These Knudsen cells are essentially

crucibles with controlled shutters that can release a flux of gaseous atoms for desired

intervals. The atoms are directed towards a target wafer, where they combine to form

the crystal. The growth rate is slow (roughly one monolayer per second) and can be

monitored using reflected high-energy electron diffraction (RHEED). In the RHEED

process, a beam of electrons is reflected off of the wafer as the crystal is being grown

and forms a diffraction pattern whose intensity varies periodically with each layer

grown. Thus, MBE allows atomically precise creation of heterostructures. This in

turn permits sophisticated engineering of the band structure in the z direction [14].

For example, a simple heterostructure consisting of a GaAs slab adjacent to a

slab of AlGaAs can generate a triangular potential well that can confine the elec-

trons in the z direction. We depict this in figure 2.3. Electrons are free to move

in the x and y directions, however. In the absence of disorder, the energy eigen-

states can be labeled by their in-plane momentum k =
√
k2
x + k2

y. We can then write

the wave function of each electron as ψ(x, y, z) = 1√
S
φ(z)ei(kxx+kyy). Here, 1√

S
de-
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V (z)
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Figure 2.3: Diagram of subband potential V (z) (solid line) and subband wave function
φ(z) (dashed line) for a quantum well formed from a heterojunction.

notes a normalization constant and φ(z) is the subband wave function. The subband

wave function can be found by solving the time-independent Schrödinger equation[
− h̄2

2m∗
d2

dz2
+ V (z)

]
φ(z) = Eφ(z). In practice, the subband potential V (z) must be

determined self-consistently from the charge density ρ ∝ |φ(z)|2. If the Fermi level is

tuned to be above the lowest subband energy level (i.e., the lowest bound state for

electrons in the triangular potential), then the potential well will be populated with a

two-dimensional electron system (2DES). The energy of an electron in the triangular

well with momentum k can be written as E(k) = E0 + h̄2k2

2m∗
, where E0 is the energy

of the lowest subband [14].

A roughly square potential well can be generated by sandwiching a thin (typically

100–500 Å) layer of GaAs between two thicker layers of AlxGa1−xAs. Thin layers of

silicon one atom thick can then be positioned a couple thousand angstroms above and

beneath the quantum well. Also known as δ-doping layers for the delta function po-

tential wells that they create, these Si layers act as electron donors in the AlxGa1−xAs

and populate the quantum well with electrons. By spatially separating the charged

donor atoms from the 2DES, the scattering between the electrons and the donor sites
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Figure 2.4: Square quantum well and 2DES realized in a AlxGa1−xAs/
GaAs/AlxGa1−xAs heterostructure.

is greatly reduced. By combining this with other advances in MBE technology, mobil-

ities of up to 30×106 cm2/ V s can be obtained in these type of GaAs quantum wells.

These exceptionally clean samples allow us to see subtle electron–electron interaction

effects in the quantum Hall regime that would otherwise be destroyed [7, 99].

MBE also permits the creation of double quantum well (DQW) structures, illus-

trated in figure 2.5. These are formed by separating two GaAs quantum wells by a

layer of AlxGa1−xAs. This layer acts as a tunneling barrier. With finite tunneling en-

ergy, the subband wave functions for the two individual layers will then hybridize into

symmetric and antisymmetric combinations of the wave functions φL,U(z) that are

localized in either the lower or upper layer. The energy difference between these two

eigenstates is generally denoted as ∆SAS = t/2, where t is the associated tunneling

energy for an electron hopping from one layer to another. For a tall enough barrier,

tunneling can be exponentially suppressed and to good approximation the two layers

can be considered as separate 2DESs. As explained in chapter 1, if the barrier is also

sufficiently narrow then strong interlayer interactions in the quantum Hall regime can

induce interlayer correlations and destroy the notion of separate layers.
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Figure 2.5: Double quantum well heterostructure. Here, we show the lowest subband
wave functions for both the upper and lower layers.
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In figure 2.6, we show a diagram of the various layers in a typical DQW wafer. In

MBE, the layers are grown from bottom to top. We start with a ∼500 µm thick GaAs

substrate. A series of alternating GaAs and AlGaAs layers are grown to create what

is known as a superlattice. The superlattice stage serves to prepare the substrate

surface [102]. A 5000 Å layer of Al0.3Ga0.7As is deposited, followed by the lower Si

doping layer. The lower setback layer is then grown, consisting of a 2300 Å thick

layer of Al0.3Ga0.7As. The farther away the doping layer is from the actual 2DESs,

the lower their density will be. When the DQW wafers used in this thesis were grown,

MBE technology was such that the Si doping layer tended to migrate upwards during

this step and thus the actual distance between the δ-doping layer and the 2DESs was

less than 2300 Å. More recent advances have eliminated this behavior [21], but no

such wafers were used in this thesis.

Once the lower setback layer is completed, the critical DQW layers are grown.

The bilayer 2DES resides within these layers. They comprise of a 180 Å GaAs layer

(the lower 2DES), a 99 Å Al0.9Ga0.1As layer (tunneling barrier), and another 180 Å

GaAs layer (the upper 2DES). A high concentration of aluminum is used in the

tunneling barrier to minimize tunneling conductance while keeping the barrier width

sufficiently small to observe interlayer interaction effects. A small amount of gallium

is included in the tunneling barrier in order to minimize oxidation of the aluminum

in the tunneling barrier, which can hamper electrical contact to the lower 2DES [64].

This DQW structure has a computed ∆SAS of 0.4 neV, which is only a factor of 2 or 3

smaller than the values determined from experimentally observed tunneling currents

[102]. Slight variations in the tunneling barrier thickness (even on the order of one

or two atomic layers) can lead to sizable changes in the tunneling conductance due

to the exponential decay of the subband wave function in the barrier. It has been

empirically found that the tunneling conductance tends to increase as one moves away

from the center of a wafer, where the tunneling barrier is thickest.

Another setback layer (2050 Å of Al0.3Ga0.7As) is grown on top of the DQW

section, followed by the upper Si doping layer. Once again, this Si layer will migrate

upward and increase the ultimate setback distance beyond 2050 Å, resulting in a
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Figure 2.6: Diagram of MBE-grown layers for a typical DQW wafer. The two bottom-
most layers are not drawn to scale.
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symmetrically doped DQW with nearly equal nominal densities in the two 2DESs.

Another 3300 Å of Al0.3Ga0.7As is grown on top of the upper Si doping layer, followed

by a final Si doping layer. To complete the DQW wafer, a cap structure is then grown

by depositing 400 Å of Al0.3Ga0.7As and then 100 Å of GaAs. Gallium arsenide has

a high density of surface states in a narrow band near the middle of its band gap.

These surface states pin the Fermi level at the surface within the gap and help to

prevent parallel conduction layers beyond the DQW [14].

2.3 Sample Processing

Heterostructures grown by MBE allow for precise engineering of the confinement

potential in the z direction. Further processing allows the confinement of electrons in

the x and y directions to produce a desired sample geometry for specific experiments.

Metallic electrodes deposited on top of and beneath the DQW allow us to capacitively

tune the electron density in either 2DES. Here we will describe the basic steps of

sample processing used to form such structures.

The general strategy for the creation of micron- and nanometer-sized features is

to cover a wafer with a thin layer of organic polymer known as a resist. Some resists

(called photoresists) are photosensitive and their chemical properties will change upon

exposure to certain wavelengths of electromagnetic waves. For example, by exposing

the resist AZ5214E (a photoresist commonly used in our lab) to UV light, it becomes

soluble in developer solutions (e.g., AZ400K). To create features no smaller than 5 µm,

we can expose a pattern onto a photoresist-coated wafer by shining UV light through

an iron oxide mask, allowing certain portions of the photoresist to be subjected to the

radiation. Upon rinsing in developer, photoresist will be removed in those regions,

exposing the wafer there. Elsewhere, the wafer will still have a protective coating of

photoresist. This remaining photoresist thus acts as a stencil with the same pattern as

on the mask. A variety of other treatments can be selectively applied to the uncovered

regions of the wafer. The process described above is known as photolithography and

is limited by the wavelength of UV photons to features larger than 5–10 µm. To go
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beyond this limit requires the use of electron beam lithography, in which high energy

electrons are used to expose sections of resist as small as 10–30 nm.

We now outline the steps used to fully process DQW wafers. These sample-

processing steps are described in further detail in Appendix C. First, we cleave off a

5 × 5 mm2 piece of DQW wafer. Pieces from the center of the wafer generally have

higher mobility and lower tunneling conductance. Then we use photolithography to

define an etch mask made of photoresist in a particular shape near the center of the

wafer piece. By dunking the sample in an acid solution for a few minutes, we can etch

away the uncovered GaAs. The bilayer 2DESs are then confined to the resulting mesa

underneath the remaining photoresist. Once the acid etch is done, the photoresist is

removed in warm n-butyl acetate.

A fresh coat of photoresist is applied and exposed in a pattern to create small

uncovered squares overlapping with certain regions of the mesa. By thermally evap-

orating Ni/AuGe onto those exposed squares and then removing the unexposed pho-

toresist (along with the metal on top of it), we can deposit squares of Ni/AuGe in

desired locations. Heating the sample at 440◦ within a flow of H2 and N2 gas will

cause the AuGe to anneal down through the heterostructure and produce an electrical

contact with both 2DESs directly underneath it. Because these electrical contacts are

generally ohmic in behavior, they are known as ohmic contacts. Once the rest of the

fabrication steps are done, we can solder wires directly to the ohmic contacts in order

to permit electrical transport measurements of the 2DESs.

To tune the density of the 2DESs in the bilayer, we can deposit thin films of

aluminum in various shapes on the upper or lower surface of the DQW wafer. These

films of aluminum are known as top and bottom gates. Metals such as aluminum

will form a Schottky barrier with the semiconducting GaAs [14] that prevents direct

conduction between the metal and the 2DES. The aluminum and 2DES together act

like a parallel plate capacitor. By applying a negative voltage bias to the aluminum

while keeping the 2DESs grounded, one can reduce the electron density of the 2DES

within a region that overlaps with the gate.

Annealed Ni/AuGe ohmic contacts will diffuse down to both 2DESs in the bilayer
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Figure 2.7: Selective depletion technique. Voltage biases VTG and VBG are applied to
the top and bottom arm gates, respectively. These biases are set in order to deplete
the appropriate region of the 2DES that is closest to the corresponding gate. Thus,
ohmic contact 1 becomes effectively connected only to the top layer while ohmic
contact 2 is connected only to the bottom layer.

system, shorting them together. Thus, any wire soldered to a given ohmic contact

will be electrically connected to both layers simultaneously. The most spectacular

transport properties of the νT = 1 QH system require current leads and voltage

probes that are connected to only one layer at a time, however. To achieve this, we

uses the selective depletion technique [26], which we illustrate in figure 2.7. We first

note that the upper 2DES will almost totally screen the lower 2DES from the electric

field from a top gate, leaving the lower 2DES essentially unaffected by the top gate

until the upper layer is completely depleted of electrons. Similarly, the lower 2DES

will screen the upper 2DES from the electric field of a bottom gate. We can take

advantage of this by creating a mesa where a number of “arms” extend from the

central region, which is the region of interest. At the end of each arm, a Ni/AuGe

ohmic contact is formed. Each arm is usually also overlapped with both a top gate

and a bottom gate; these specialized gates are generally referred to as arm gates.

By applying the proper bias to a top arm gate (generally −0.5 V in the traditional
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DQW wafers), we can fully deplete the upper 2DES directly underneath that gate.

Thus, the ohmic contact in that arm will only be connected to the central region

via the bottom layer. By applying a large bias to the bottom arm gate for another

arm, we will similarly deplete the bottom layer within a localized region in that arm.

The ohmic contact associated with that arm will then be connected to the central

region only through the top layer. An ohmic contact can be fully disconnected from

the central region by applying a large bias to its matching top arm gate (generally

−1.2 V) to deplete both layers.

The central region itself is covered by one or more top and bottom gates to in-

dependently control the electron density in either layer within this central region.

Through proper application of biases to the arm gates, we can for example measure

interlayer tunneling within the central region using one contact to the upper layer and

another contact to the bottom layer. In order to reduce fringe fields to a tolerable

level, we must bring our bottom gates to within 50 µm of the bilayer system. To do

this, we thin the wafer piece to a thickness of 50 µm using a bromine-methanol etch.

Once the sample is thin, the bottom gates can be deposited. We must then carefully

solder and epoxy wires to the contact pads for each gate and ohmic contact. The

wires are then soldered to an 18-pin header, which can be plugged into the sample

holder of a dipping stick or dilution refrigerator.

2.4 Cryogenics

The physics of νT = 1 is best observed at low temperatures (T = 15 to 50 mK),

which requires the use of dilution refrigerators. However, samples may be tested and

characterized at higher temperatures (300 mK to 4.2 K) through quicker means before

beginning the relatively time-consuming process of cooling them down in a dilution

refrigerator for detailed study.
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2.4.1 Liquid Helium Dip: T = 4.2 K

One of the simplest ways of cooling down a device is to immerse it in liquid helium.

This allows us to test the ohmic contacts and gates at 4.2 K. Our lab has a number of

dipping sticks that can be used to lower a sample into a standard liquid helium storage

dewar. Each of these dipping sticks is essentially an enclosed tube with a series of

wires connecting the sample holder with a breakout box attached to the upper part of

the stick. The end of the tube holding the sample is dipped into the dewar while the

breakout box remains at room temperature. The breakout box consists of a number

of BNC connectors and switches that permit electrical connection to the sample while

it sits in the liquid helium.

The dipping stick should be lowered slowly into the liquid helium dewar in order

to minimize any thermal shocks to the sample as well as to avoid violent boil-offs

that ultimately waste liquid helium. To warm up the sample, the stick should be

raised slowly: about six inches per minute. Once the stick has been fully raised, the

sample space is likely to be below 0◦ C and there is the danger that ice can form on

it if it is exposed to air. Such ice can be harmful to sensitive samples. Generally

it is sufficient to remove the dipping stick once it is fully raised and then quickly

insert its bottom tip into a can through which dry nitrogen flows. To completely

avoid exposure to water vapor while the sample is still cold, we can instead install an

isolation chamber on top of the liquid helium dewar and clamp the dipping stick onto

the top of the chamber. The isolation chamber has a gate valve that can be closed

once the sample has been fully raised and spigots to permit the flow of nitrogen gas

through the chamber. In either case, the nitrogen should flow for at least 15 minutes

to fully warm up the sample before its removal from the dipping stick.

2.4.2 3He Cryostat: T = 300 mK

Colder temperatures can be reached using a helium-3 cryostat. Although limited to

300 mK, the helium-3 cryostat in our lab is top loading and allows us to quickly cool,

test, and warm fup a sample. Often this entire process can be completed in a single
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day. Equipped with a superconducting magnet capable of reaching 14 T, the helium-

3 cryostat permits magnetotransport studies and more careful characterization of

samples than is possible in liquid helium-4 dips.

The principle behind the helium-3 cryostat is conceptually straightforward. The

sample is immersed in liquid helium-3. By then pumping on the helium-3 and reducing

its vapor pressure, the liquid is evaporatively cooled to T ≈ 0.3 K. This is a lower

temperature than can be obtained with helium-4 for two reasons. First, the helium-3

atom is lighter than the helium-4 atom. Consequently, the vapor pressure of helium-3

will be higher than that of helium-4 at any temperature [78]. Second, helium-3 is a

fermion while helium-4 is a boson. Thus, helium-4 can form a superfluid film that

acts as a heat link and can limit the ultimate temperature for evaporative cooling

[78]. Helium-3, however, does not form a superfluid until its temperature has fallen

below 3 mK [87, 86].

Helium-3 is a rare and expensive isotope of liquid helium. To conserve helium-3,

we use a sorb pump to perform the evaporative cooling. The sorb pump is a chunk of

activated charcoal with enormous effective surface area. By flowing liquid helium-4

around it, the charcoal adsorbs the helium-3 atoms and allows for evaporative cooling.

Applying heat to the sorb releases the helium-3 so that it can be liquified once more.

2.4.3 Dilution Refrigerator: T = 15 mK

While rudimentary signs of νT = 1 physics are observable at 300 mK, we must go

to even lower temperatures to clearly observe the effects of excitonic condensation.

The dilution refrigerator is the standard instrument for reaching T ≤ 100 mK. Our

lab has two dilution fridges in operation, with base temperatures of 15 mK and 50

mK. A third is being developed with a demagnetization stage, with projected base

temperatures of T ≤ 1 mK.

The heart of the dilution refrigerator is the mixing chamber, which contains liqui-

fied helium-3 and helium-4 during operation. Below T = 0.86 K, this mixture will

physically separate into two distinct phases: a phase rich in helium-3 (the concen-
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trated phase) and a phase consisting of minute amounts of helium-3 dissolved in

helium-4 (the dilute phase). Below 0.5 K, helium-4 is essentially in its quantum

mechanical ground phase and inert. Only the helium-3 phase is thermodynamically

and hydrostatically relevant. The removal of helium-3 from the dilute phase will en-

courage the passage of helium-3 atoms from the concentrated phase into the dilute

phase. This provides cooling power analogous to evaporative cooling. However, the

concentration of helium-3 in the dilute phase remains finite even at absolute zero, sat-

urating at the value of n3

n3+n4
= 0.064 [78]. Thus, while the vanishing vapor pressure

Pvapor ≈ e−∆/kbT of most liquids will cause evaporative cooling to become exponen-

tially suppressed, the raw cooling power of a dilution refrigerator is proportional to

T 2 [78]. To allow for continuous operation, the pumped-away helium-3 is recooled

and returned to the mixing chamber. A more detailed explanation of the physics and

mechanics of dilution refrigeration is given in chapter 3 in reference [78].

2.5 Bilayer Transport Techniques

In this thesis we employ low-frequency transport measurements to probe the proper-

ties of bilayers. We make extensive use of lock-in detection [96] in combination with

low-noise preamplifiers. Here, we describe the various types of transport measure-

ments used throughout this thesis. This includes both conventional magnetotrans-

port as well as measurements that are unique to bilayer systems, such as interlayer

tunneling and Coulomb drag.

2.5.1 Magnetotransport in Bilayers

Longitudinal and Hall resistance measurements at low frequency are among the most

common and straightforward ways to probe 2DESs. For these measurements, a small

AC current of fixed magnitude is driven through the sample and the voltage differ-

ence between two contacts is measured. Depending on the location of the voltage

probes relative to the current flow, the ratio of the voltage drop to the drive cur-

rent gives either longitudinal (Rxx) or Hall (Rxy) resistance. A typical realization
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of this measurement is shown in figure 2.8. Here, the AC drive current is generated

by connecting a 10 MΩ resistor in series with a single-layer 2DES sample (denoted

by the grey square) and applying an oscillating voltage VAC to the resistor. This

voltage originates from a lock-in detector. A current I = VAC/10 MΩ is injected into

one edge of the square-shaped sample at a single contact and exits to ground from

a contact on the opposite edge. Rxx is detected by measuring the voltage between

two contacts along the same edge. The voltage difference is fed to the inputs of the

lock-in detector, which amplifies it to a detectable level. The Hall resistance Rxy is

found by measuring the voltage drop between two contacts on two opposite sides of

the square.

~	
  
VAC 10 M!

Vxx

Vxy

x

y

Figure 2.8: Diagram for conventional magnetotransport of a square-shaped single
2DES sample (grey square). Black dots denote ohmic contacts.

In DQW samples, the second layer provides an additional degree of freedom that

enables a series of additional transport measurements. For example, in a bilayer

sample currents may be driven in the same direction in the two layers (denoted as

parallel flow, shown in figure 2.9) or in opposite directions within the two layers

(denoted as counterflow, shown in figure 2.10). Rxx and Rxy are then measured

using contacts connected only to one layer; shorting the two layers using a voltage
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probe contact can cause current to flow between the two layers at that contact and

complicate the measurement. Due to the strong interlayer correlations in the νT = 1

QH state, the transport properties for the two current modes can be quite different.

For example, parallel flow represents a net transfer of charge from one part of the

sample to another. Consequently, parallel flow experiments at νT = 1 probe the

transport properties of charged excitations. Often, parallel flow is achieved by using

current leads that are connected to both the upper and lower layers simultaneously.

In a well formed QH state, longitudinal resistance in parallel flow (R
||
xx) vanishes and

the Hall resistance is quantized at R
||
xy = h

e2
IT , where IT = IU +IL is the total current

flowing through the system.1
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Figure 2.9: Diagram of parallel transport measurement in a bilayer system. For
simplicity, only the voltage probes for longitudinal resistance R

||
xx are shown here.

Counterflow currents, however, are thought to represent unidirectional exciton

transport. One possible counterflow measurement in a Hall bar is shown in figure

2.10. A current is driven through one layer at a particular edge, shunted between the

1Interestingly, the quantization of the Hall resistance across a single layer does not appear to be
disrupted if there is a slight mismatch of the two currents driven through the two individual layers.
Any deviation from parallel current is equivalent to a pseudospin current, which generates no Hall
resistance. Meanwhile, the total charge current IT induces the same Hall resistance in both layers.
This mechanism is related to the quantization of Hall drag at νT = 1.
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two layers at the other edge, and collected from the other layer at the first edge. It

has been shown in Hall bar samples [66, 121, 127] that RCF
xy will vanish at νT = 1.

As mentioned before, this class of measurements only probes the edge channels and

cannot directly detect bulk exciton currents. Outside of νT = 1, the two layers act

independently of each other and the counterflow Hall resistance is equal to the value

obtained for a single layer with current flowing through it.
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Figure 2.10: Diagram of counterflow transport measurement in a bilayer system. For
simplicity, only the voltage probes for longitudinal resistance RCF

xx are shown here.

2.5.2 Coulomb Drag

Coulomb drag is a slight variation on the conventional resistance measurement. In

a Coulomb drag setup (shown in figure 2.11), a current Idrive is driven through one

layer (known as the drive layer) and the voltage drops Vxx,D or Vxy,D across the other

layer (known as the drag layer) is measured. The Coulomb drag resistances Rxx,D

and Rxy,D are defined as the ratio between these voltage drops and the drive current:

Rxx,D = Vxx,D/Idrive and Rxy,D = Vxy,D/Idrive. These drag resistances reflect the

transfer of momentum from the drive layer to the drag layer, such as through direct

electron–electron scattering [44]. Because no current is allowed to flow in the drag
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layer, an electric field must develop to counteract the interlayer momentum transfer.

~	
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Figure 2.11: Diagram of Coulomb drag measurement. For simplicity, only the voltage
probes for longitudinal drag Rxx,D are shown here.

Ideally, Coulomb drag measurements should be restricted to samples with small

interlayer tunneling conductances. Any current leaking between the layers will give

anomalous signals. As an additional precaution, we usually ground the drag layer

using the same contact acting as the current drain in the drive layer. By grounding

this current drain contact while it is connected to both layers, we will ensure that

both layers are kept close to both AC and DC ground and thus suppress spurious

signals from interlayer capacitive coupling or tunneling [64].

2.5.3 Interlayer Tunneling

To measure interlayer tunneling, a voltage is applied to one layer while the other layer

is grounded through a single contact. The voltage bias drives current between the

two layers, which flows to ground and is subsequently detected.

An example of a tunneling measurement circuit is shown in figure 2.12. The volt-

age bias consists of a DC component (generated by a Kepco 488-122 programmer)

and an AC modulation (generated by the oscillator of a PAR 124A lock-in detector).
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Figure 2.12: Diagram of interlayer tunneling circuit.

The DC bias serves to offset the two layers in terms of energy. The AC excitation

enables the measurement of differential tunneling conductance through lock-in de-

tection. Both the DC and AC components are reduced from their raw values using

resistor-based voltage dividers. The AC component is added to the DC component

via a 1:1 transformer. The voltage bias is applied to a single ohmic contact connected

only to one layer (here, the top layer). This bias drives tunneling current between

the two layers, which exits the sample via an ohmic contact connected to the other

layer (here, the bottom layer).

The tunneling current passes to ground via the input of a DL Model 1211 cur-

rent preamplifier. The current preamplifier provides a virtual path to ground with

relatively low impedance. Its output is a voltage signal proportional to the tunneling

current. The DC component can be read directly by a digital voltmeter. The AC

component is measured by the lock-in detector.

The circuit shown in figure 2.12 is a two-terminal measurement. Although tunnel-

ing resistance is generally much larger than any series resistance, this is not always the

case at νT = 1. One might implement a four-terminal tunneling circuit by measuring

the interlayer voltage difference with probes connected to different layers. However,
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the interpretation of the resulting interlayer voltage is complicated by the possibility

that tunneling might be unevenly distributed across the sample. The placement of the

interlayer voltage probes just outside of the strongly tunneling νT = 1 region might

avoid this problem, but we will then likely encounter the ∼h/e2 resistance associated

with charge entering and exiting a quantum Hall state.

2.5.4 Conclusion

In this chapter, we have discussed the materials, equipment, and measurement tech-

niques employed throughout this thesis. At present, GaAs heterostructures grown

through MBE provide a gold standard for 2DESs. The precise subband engineering

provided by MBE enables the production of a unique system: two closely spaced

2DESs with vanishing interlayer tunneling. By cooling these high quality bilayer sys-

tems down to millikelvin temperatures in a dilution refrigerator, we can realize the

νT = 1 QH state. In the remainder of this thesis, we will use the various bilayer

transport measurements described in this chapter to probe exciton condensation and

transport properties of this exotic electronic system.
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Chapter 3

Interlayer Transport at Zero
Magnetic Field

In this chapter, we describe some of the physics and measurement techniques for

interlayer transport in the absence of a magnetic field. In the bilayer samples studied

in this thesis, conduction between the two layers is highly suppressed by a 10 nm

Al0.9Ga0.1As barrier. Consequently, at B = 0 the two 2DESs act as two separate and

degenerate Fermi seas of noninteracting electrons. Only weak interlayer transport

is permitted, primarily reflecting single-particle physics. Here, interlayer transport

includes tunneling and the capacitive coupling between the two layers. Tunneling

is a fundamentally quantum mechanical process and is dependent on the overlap of

the wave functions of electrons confined to either of the two individual layers. For

T � TF , 2D to 2D tunneling can reveal the electronic spectral function A(E, k) and

the lifetime of the electron states [85]. Meanwhile, interlayer capacitance originates

from classical electrostatics, but also includes information about the compressibility

of the 2DESs [79].

3.1 Interlayer Tunneling

3.1.1 Tunneling with No Disorder

Due to the tall tunneling barrier between the two 2DESs, the subband wave functions

for electrons localized in either quantum well are exponentially suppressed in the
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barrier. Thus, there is little overlap between an electronic state in one layer and

a state in the other layer. This allows us to treat tunneling as a perturbation and

employ Fermi’s golden rule. We will see that tunneling reflects the conservation of

in-plane momentum and will contain information about the lifetime broadening of

the electron states. This section is derived from [24] and the associated lecture notes.

We first consider the form of the energy eigenstates for electrons in either the upper

(U) or lower (L) layer. For decoupled layers, such wave functions will be localized

in one quantum well or the other. We will first consider the case of no disorder

and no electron–electron interactions. In the low temperature and degenerate limits,

each quantum well contains a 2DES best described as a Fermi sea. The absence of

impurities (magnetic or nonmagnetic) allows us to treat both the in-plane momentum

k and spin σ of each electron as good quantum numbers. Consequently, we can write

the energy eigenstates of electrons in the lowest subband of a given quantum well as

|k, σ, J〉. Here, J is the quantum well label (J = U or L).

To calculate the tunneling current, we will use Fermi’s golden rule and first write

the transition rate for electrons going from, say, the upper layer to the lower layer as

RU→L =
2π

h̄

∑
kσ

∑
k′,σ′

|〈k, σ, U |VL|k′, σ′, L〉|2δ(Ek,U − Ek′,L). (3.1)

Here, VL describes the quantum well for the lower layer, which acts as a perturbation

from the point of view of the electrons in the upper layer. Because VL is only a

function of z and is independent of spin, the matrix element in equation (3.1) is equal

to δkk′δσσ′|t|2. The interlayer tunneling matrix element t is given by

t =

∫
dzφ0,U(z)∗VL(z)φ0,L(z), (3.2)

where φ0,U(z) and φ0,L(z) are the subband wave functions of either layer. Finally,

the delta function in equation (3.1) enforces energy conservation by insuring that the

initial and final energies, Ek,U and Ek′,L respective, are the same.

We next use the transition rate given in equation (3.1) to determine the net
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tunneling current going from the upper layer to the lower layer. First, we must

consider not only the electrons tunneling from the upper layer but also the electrons

tunneling in the opposite direction from the lower layer. We can accomplish this by

subtracting a term given by the transition rate RL→U , which can be found by simply

transposing U and L in the equation for RU→L. Second, we must respect the Pauli

exclusion principle and only consider the electrons tunneling from filled states in one

layer to unfilled states in the other. We can do this by using the Fermi distribution

function f , which states the probability that a given state is filled. The result for the

net tunneling current is

I =
2eπ

h̄

∑
kσ

∑
k′,σ′

|t|2δkk′δσσ′δ(Ek,U − Ek′,L)(fk,U − fk′,L). (3.3)

In tunneling measurements, a voltage bias V is applied between the two layers and

the resulting tunneling current is detected. This voltage bias causes a displacement in

the electrochemical potentials of the two layers. We can then modify equation (3.3)

by writing the energy difference (Ek,U −Ek′,L) of the states in the two different layers

as
(
h̄2k2

2m
− h̄2k′2

2m
+ EF,L − EF,U + eV

)
, where EF,U and EF,L are the Fermi energies

for the upper and lower layers respectively. The expression for the tunneling current

can be simplified by performing the sums over k′ and σ′ to obtain

I =
2eπ

h̄

∑
kσ

|t|2δ(EF,L − EF,U + eV )(fk,U − fk,L). (3.4)

The sum over spin index produces an overall factor of 2. The sum over k can be

replaced with the integral S
(2π)2

∫
d2k = S

2π

∫
kdk, where S is the system area and we

have invoked cylindrical symmetry to perform the angular integral. The k integral can

be converted into an integral over kinetic energy ε = h̄2k2

2m
by noting that kdk = m

h̄2
dε.

This results in the integral

I = 2π|t|2 e
h̄
S

(
m

πh̄2

)
δ(EF,L − EF,U + eV )

∫
dε(fk,U − fk,L). (3.5)
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By taking the limit T � TF , the integral over the Fermi functions
∫
dε(fk,U−fk,L)

reduces to the difference in the Fermi energies EF,U − EF,L, which is simply eV . We

then arrive at

I = 2π|t|2 e
2

h̄
SρV δ(EF,L − EF,U + eV ). (3.6)

Here, ρ = m
πh̄2

is the density of states for a spin degenerate 2DES. As expected,

tunneling is proportional to the square of the tunneling matrix, the system area,

and the density of states. The delta function implies that tunneling can only take

place at a particular voltage bias, given by eV = (EF,U − EF,L). By referencing

energies with respect to the minimum subband levels E0,U and E0,L, we can express the

electrochemical different between the two layers as eV = (EF,U +E0,U)−(EF,L+E0,L).

Thus, in the clean limit tunneling only occurs when E0,U = E0,L. This is equivalent

to the statement that the bottoms of the two Fermi seas must coincide. One can

arrive at this same conclusion by noting that tunneling must conserve both energy

and in-plane momentum. If the dispersion curve E(k) = h̄k2

2m
+ E0 of one layer does

not have the same subband energy E0 as the other, the dispersion curves will not

intersect and one will not be able to identify any pairs of states in the two layers with

both the same energy and momentum.

3.1.2 Tunneling in the Presence of Weak Disorder

In real systems with disorder, electrons can scatter off of impurities. Through Coulomb

interactions, they can also scatter off of other electrons. Consequently, an electron in

a particular state with a given energy and momentum will scatter to another state

over a characteristic lifetime τ . We can model these scattering processes and finite

lifetime through the spectral function A(E,k), which gives the probability that an

electron with momentum k will have energy E. The bilayer systems studied in this

thesis have relatively little disorder and thus A(E,k) takes the form of a narrow

Lorentzian centered on the single particle energy [138]. The width of the Lorentzian

is inversely proportional to the lifetime of the momentum states. We ignore interac-

tions and collective motions so that we can describe the eigenstates of each 2DES as



75

single electron states. We will also assume that the spectral functions AU and AL for

each layer only depend on E and k through the combination ξ ≡ E − h̄k2

2m
+ EF . We

will also measure energy with respect to the Fermi energy of either layer.

To account for lifetime broadening in our formula for tunneling, we can rewrite

equation (3.3) to include the term
∫ ∫

AU(E,k)AR(E ′,k′)dEdE ′, where E and E ′ are

the energies for states in layers U and L respectively. By still assuming momentum

and spin conservation, we can easily perform the summation over k′, σ, and σ′. After

using the energy delta function to perform the integral over E ′, we get

I =
4eπ

h̄

∑
k

|t|2
∫ ∞
−∞

AU(E,k)AL(E + eV,k) (fU(E)− fL(E + eV )) dE. (3.7)

When the spectral functions are much narrower than the Fermi energy of either 2DES,

we can perform a change in variable to finally arrive at

I = 2π|t|2 e
2

h̄
SρV

∫ ∞
−∞

AU(ξ)AL(ξ + EF,L − EF,U + eV )dξ. (3.8)

Once again, the tunneling current is proportional to |t|2 and ρ. But now the delta

function previously seen in equation (3.6) is gone and is replaced by a convolution

between the spectral functions of the two 2DESs. Interestingly, there is no dependence

on the Fermi distribution functions in equation (3.8); this should hold true for as long

as T � TF . In that case, temperature can only play a significant role in the spectral

functions AU and AL. This equation ignores the slight change in E0,L and E0,U due

to the capacitive shift in charge when an interlayer bias is applied.

The convolution of two Lorentzians is also a Lorentzian. This allows us to write

the tunneling current as

I = 2π|t|2 e
h̄
SρV

Γ/2π

(V − V0)2 + Γ2/4
, (3.9)

where eV0 = EF,U −EF,L and Γ is the average of the widths of the spectral functions

for the two individual layers. The lifetime of momentum states in either layer is then

given by τ = 2h̄/Γ.



76

The broadening of the electron spectral functions as determined from tunneling

has a number of contributions. At zero temperature, it should contain information

only about quenched disorder, such as localized scatterers. At elevated temperatures,

electron–phonon scattering will come into play. At moderate temperatures (T ≈ 1−10

K), electron–electron scattering is dominant. Considerations of available phase space

leads to the prediction that such electron–electron scattering would have a rate that

is proportional to T 2 lnT . Indeed, it has been found by Murphy et al. [85] that the

width of the tunneling resonance has roughly parabolic behavior, α0 + α1T
2 in the

range of T = 2 − 10 K. Such electron–electron scattering conserved total momen-

tum and thus is not easily detected by standard resistance measurements. Interlayer

tunneling, however, allows one to determine the scattering time τee associated with

electron–electron scattering at zero magnetic field. The measurements by Murphy et

al. produced values for τee that were found to be in good agreement with calculations

based on the random-phase approximation with vertex corrections [62].

3.1.3 Examples of Tunneling Spectra

Here, we present some examples of tunneling traces taken with sample 7-12-99.1JJ

at zero magnetic field and T = 15 mK. This temperature is so low that the width of

the tunneling resonances should reflect only static disorder. The tunneling traces are

taken in the usual fashion. A voltage with both an AC (20 µV at 13 Hz) and DC

component is applied to an ohmic contact connected to the top layer. The resulting

AC tunneling current flowing from a bottom layer contact is measured by a current

preamp and a lock-in amplifier. The DC current was not directly measured but can

be obtained by numerically integrating the differential conductance dI/dV . This

method helps to avoid the noise and signal drifts present in the DC output of the

current preamp.

Figure 3.1 demonstrates how the relative densities in the two layers can alter the

tunneling spectra. The solid traces show the tunneling conductance dI/dV and DC

tunneling current I when the two layers have the same density of NL = NU = 0.558×
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1011 cm−2. The tunneling conductance trace forms a symmetrical peak centered

at zero interlayer bias. Under these conditions, the lowest subband energies of the

two layers will line up at zero bias and tunneling is allowed, in accordance with

equation (3.6). As suggested by equation (3.9), disorder and sample inhomogeneities

has broadened the tunneling resonance from a delta function to a peak with finite

width.

The dashed traces in figure 3.1 were taken under the same conditions as the black

traces, but the bottom layer was depleted slightly to create a small density imbalance.

Based on magnetotransport calibration, this density imbalance is estimated to be

∆N ≡ NU −NL = 9× 108 cm−2. Despite this small difference in the densities of the

two layers, the tunneling spectrum has clearly changed. The tunneling conductance

resonance has become asymmetric and its peak has shifted to negative bias. This

reflects the fact that the subband in the upper layer must be raised in energy in order

for it to coincide with the subband in the lower layer and achieve tunneling resonance.

The sensitivity of the tunneling spectra to imbalance shows that interlayer tunneling

is an excellent tool for balancing the density in the two layers at zero magnetic

field. After learning what set of top gate and back gate biases can achieve equal

densities in the two layers, one can then use magnetotransport (e.g., Shubnikov–de

Haas oscillations in tunneling) to determine the total density.

We now turn to zero field tunneling data taken at a range of electron densities,

as shown in figure 3.2a. For each trace, the upper and lower layers have the same

density. As the total density is reduced, the tunneling peak becomes shorter and

broader. This is consistent with a decrease in electron lifetimes due to a greater

rate of impurity scattering. At higher densities, these charged impurities (generally

thought to exist primarily within the delta doping layer) can be screened by 2DESs.

As the 2DESs become depleted, the impurities remain and the disorder that they

induce becomes relatively more important to electrons at the Fermi level. This is

visible in conventional transport measurements, which in general show that mobility

is more or less linearly proportional to density.

To determine the lifetime τ of the electrons, one can fit the tunneling current to
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Figure 3.1: (a) Differential tunneling conductance and (b) DC tunneling current
(determined by numerically integrating dI/dV ) for sample 7-12-99.1JJ at B = 0
and T = 15 mK. Here, the solid traces corresponds to equal densities in the two
layers (∆N = 0) and the dashed traces corresponds to a slight density imbalance
(∆N = 9 × 108 cm−2). Here, ∆N = NU − NL and the density in the upper layer is
kept at NU = 0.558× 1011 cm−2.
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Figure 3.2: (a) Tunneling conductance versus interlayer bias for various densities. In
each case, the two layers have equal density. (b) DC current versus interlayer bias at
NU = NL = 0.558×1011 cm−2. The dots come from numerically integrated measured
dI/dV while the solid trace is a fitted curve. (c) Electron lifetime τ determined from
width of tunneling resonance versus density in each layer. The dashed line is a fit to
the linear portion of τ versus density.
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equation (3.9). Here, one must also include a linear correction α1 + α2V to account

for as yet unknown background sources of conductance in this rather large sample.1

An example of such a fit is shown in figure 3.2b. After finding Γ from the fit, we then

plot τ = 2h̄/Γ versus density in figure 3.2c. The relation between electron lifetime

and density does not seem to be precisely linear, as shown in the dashed line fitted

to all but the highest two densities. One possibility is that some other mechanism

(such as fringe fields) is limiting the apparent electron lifetimes at high density, where

impurity scattering might be less prominent than other forms of disorder. Finally, we

note that the lifetimes determined from tunneling are far smaller than the lifetime

derived from mobility (τ ≈ 40 ps at nominal density). A likely explanation for this

discrepancy is that measurements of mobility based on resistivity are not as sensitive

to small-angle scattering as tunneling measurements are.

3.2 Interlayer Capacitance

We now consider the capacitive coupling between the two 2DESs in a bilayer sys-

tem. This coupling can contain information about the thermodynamical properties

of 2DESs. Furthermore, knowledge of some of the principles introduced in this sec-

tion will help us understand how a bilayer can behave under conditions of density

imbalance. Such behavior can be greatly affected by interactions at low density and

high magnetic fields, which are the characteristic conditions used to study the νT = 1

bilayer QHE.

3.2.1 Basic Theory

Interlayer capacitance reflects the energy cost for transferring charge from one layer to

the other. One must account for not only the energy in the electrical fields generated

by interlayer charge transfer, but also the change in energy of the 2DESs themselves.

Consequently, the total capacitance Ctotal takes the form:

1The active tunneling region of sample 7-12-99.1JJ is approximately 750,000 µm2.
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1

Ctotal
=

1

Cg
+

1

Cq
, (3.10)

where Cg = εS/d is the geometric capacitance and Cq is known as the quantum ca-

pacitance. We denote the dielectric constant of the insulating behavior as ε. The

geometric capacitance is classical in origin and can be found using standard electro-

static theory. The quantum capacitance, however, reflects the fact that the 2DESs

are Fermi systems with a finite compressibility; i.e., one must pay a price in energy

to add an electron to either 2DES (for example, see reference [79]).

We first consider the general case of applying an interlayer voltage V to a bilayer

system with interlayer separation d. We will assume that we can write the total

energy of the bilayer system (i.e., the sum of the kinetic and interaction energies

of the electrons) in the form Ebilayer(NT ,∆N), where NT = NU + NL is the total

number of electrons and ∆N = NU −NL is the difference in population between the

two layers. In this case, the total energy of the system will be equal to the sum of

three terms: the energy in the electric field between the two layers,2 the energy of

the bilayer system Ebilayer, and the classical potential energy of the charges residing

in the two layers. We write this as

Etotal = Efield + Ebilayer +
∑

QiVi, (3.11)

where Qi is the charge of layer i and Vi is the electrostatic potential of layer i.

The energy of the field is given by Efield =
∫ (

ε
2
~E · ~E

)
d3r = de2

2Sε
(∆N)2. The

potential energy term is given by
∑
QiVi = −e(NU

V
2
− NL

V
2

) = − e
2
V (∆N). This

gives us

Etotal =
de2

2Sε
(∆N/2)2 + Ebilayer(NT ,∆N)− e

2
V (∆N). (3.12)

Upon applying an interlayer voltage, one expects the total number of electrons to

stay the same, but some charge Q = e(∆N)/2 will transfer from one layer to another

2Here we will ignore the possibility of fields extending beyond the bilayer system. This should
be a good approximation if the interlayer separation is much smaller than the separation between
the bilayer system and either the top or bottom gates.
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layer. To find the resulting ∆N , we minimize Etotal with respect to ∆N . By insisting

that ∂Etotal

∂(∆N)
= 0, we can find that

1

Ctotal
≡ V

e
2
(∆N)

=
d

Sε
+

4

e2

1

(∆N)

∂Ebilayer
∂(∆N)

. (3.13)

In a classical bilayer system the Ebilayer term is absent and the above equation

would read
1

Ctotal
=
Sε

d
, (3.14)

which is gives the expected capacitance for a parallel plate capacitor. Thus, we

can now understand how the total capacitance Ctotal can be found by considering

the geometric and quantum capacitances (the second term in equation (3.13)) to be

connected in series with one another.

3.2.2 Special Case: Two Fermi Seas of Noninteracting Elec-

trons

We will now use equation (3.13) to examine the simple case of a bilayer system

consisting of two Fermi seas of noninteracting electrons at T = 0. We will neglect the

influence of band-bending induced by changes in the space charge density. The total

kinetic energy of a Fermi sea with N spin-degenerate electrons is πh̄2

2m∗
N2

S
, where m∗ is

the effective mass. We can then express Ebilayer as

Ebilayer =
πh̄2

2m∗S
(N2

1 +N2
2 )

=
πh̄2

4m∗S
(N2

T + (∆N)2). (3.15)

Thus,
∂Ebilayer

∂(∆N)
= πh̄2

2m∗S
(∆N) and equation (3.13) gives

1

Ctotal
=

d

Sε
+

2πh̄2

e2m∗S
. (3.16)
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Because the quantum capacitance is positive in this case, we expect that it will reduce

the total capacitance from its purely classical value.

3.2.3 Compressibility and Interactions

Up until now we have ignored electron–electron interactions. Using the Hartree-Fock

approximation, interactions can be treated by including both a Hartree term and

exchange term for the bilayer energy Ebilayer [93]. While the total Hartree term is

positive and proportional to (∆N)2, the exchange term for either layer is negative

and proportional to −(Ni)
3/2. This negative exchange contribution to the compress-

ibility of the 2DES has been measured by Eisenstein et al. [28, 29] by detecting

the electric field penetrating a single 2DES. Such a method bypasses the geometric

capacitance and directly reveals the single-layer compressibility ∂E
∂Ni

. The negative

exchange energy is expected to influence interlayer capacitance by lowering the total

energy cost of transferring charge from one layer to another.

At high magnetic fields, the large degeneracy of the Landau levels will quench

the kinetic energy term in Ebilayer(NT ,∆N). Interaction effects will become more

important. As we will see in a later chapter, an instability similar in nature to the one

proposed by Ruden and Wu [93] can occur within highly imbalanced bilayer systems

at large magnetic fields. In that particular case, the exchange-driven instability causes

an unexpectedly large number of electrons to transfer from one layer to another.

Thus, capacitance measurements can reveal interesting physics at νT = 1. Due to

excitonic effects, one expects that charge can transfer more easily from one layer to an-

other. Consequently, one might anticipate anomalies in the temperature dependence

of interlayer capacitance at νT = 1 (for example, see reference [8]). Once again, the

geometric contribution complicates the interpretation of interlayer capacitance mea-

surements. The next subsection will consider these issues and provide suggestions for

future measurements of interlayer capacitance at νT = 1.
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3.2.4 Measurements of Interlayer Capacitance

Here we will show some measurements of the interlayer capacitance, both with and

without a magnetic field. First, we will briefly describe our measurement technique.

Then we will present measurements of interlayer capacitance versus electron density

at B = 0. Finally, we will consider the influence of a magnetic field on the interlayer

capacitance.

Measurements of interlayer capacitance essentially use the same circuit as in tun-

neling. An AC voltage (usually 20 µV and 13 Hz) is applied to one layer and the

resulting current from the other layer is measured with a current preamp and lock-in

amplifier. In the limit of zero sheet resistance, one then expects the total conduc-

tance to be Gtotal = Gtunneling + iωC, where Gtunneling is the tunneling conductance

and ωC is the capacitive admittance. Thus, the out-of-phase current is proportional

to the interlayer capacitance. So long as sheet resistance is not too large compared

with 1/|Gtotal|, the presence of tunneling is not expected to significantly affect the

capacitance measurement because the tunneling currents and displacement currents

effectively flow in parallel with one another.

A major concern in capacitance measurements is the presence of background ca-

pacitance. For example, there might be stray capacitance between the measurement

wires. The use of independently shielded coax wires helps to strongly reduce this

stray capacitance, which can often be of order ∼1 nF for the meters-long pairs of

twisted wires commonly employed in cryostats.

Another source of background capacitance is within the bilayer system itself. Our

samples generally have both gated and ungated regions, with the gated regions being

of central interest during measurements. For tunneling measurements, the ungated

regions usually provide only a small amount of background tunneling because they

are either imbalanced (which suppresses tunneling near zero bias at B = 0) or not

at νT = 1 (and thus do not tunnel strongly at high magnetic fields). However,

such ungated regions can still provide interlayer capacitive coupling despite their

imbalanced state. Furthermore, the capacitance from the ungated regions is generally



85

not suppressed at high magnetic fields. Most annoyingly, this background signal

can vary significantly with magnetic field as the ungated regions enter and leave

incompressible QH states.

Fortunately, one can measure the background signal from the ungated regions

with a special geometry. In figure 3.3a we show the topside of sample 11-1-04.1M.

The geometry for this sample was created through improvised use of a variety of

photolithography masks intended for other types of samples, hence its unusual ap-

pearance. Here, we have defined a central mesa with ohmic contacts, top and bottom

arm gates for selective depletion, and a main gated region in the center of the photo-

graph. Normally the mesa pattern used has four arms leading to the central region.

However, we performed an additional etch to completely remove the bilayer 2DES

in the two right arms. Thus, the bilayer 2DES only consists of two arms (with one

ohmic contact each) leading to the main gated region.

We show a simplified drawing of the sample in figure 3.3b. The black dots denote

ohmic contacts. The grey rectangles are the top and bottom arm gates that implement

the selective depletion scheme. The hatched square shows the approximately 275 ×

200 µm2 region of the sample that is covered by the main top gate. The clear section

symbolizes the ungated regions, which are not covered by the main top gate but might

partially be depleted by the main bottom gate.

The geometry depicted in 3.3b allows one to directly measure the background

capacitance signal from the ungated regions. To do this, one first performs a capac-

itance measurement while the main top and bottom gates are tuned to the desired

biases. This will result in a capacitance signal containing the interlayer capacitance

from both the gated and ungated regions. One then applies a large negative bias to

the main top gate, depleting the gated region. But the ungated regions are essen-

tially left undisturbed. By repeating the same capacitance measurement, one then

directly measures the interlayer capacitance in the ungated regions alone. Subtract-

ing the second measurement from the first results in the desired capacitance of only

the gated region.

There is a small amount of error in this subtraction process due to the influence
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Figure 3.3: a) Top side photograph of sample 11-1-04.1M. The rightmost portions of
the bilayer 2DES has been etched away. b) Schematic of sample 11-1-04.1M, showing
gated and ungated regions. The gated region is approximately 275 × 200 µm2.
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of fringe fields from the top gate at the boundary between the gated and ungated

region. We have demonstrated this by studying samples where the interface region

has been shortened by reducing the width of the mesa at the boundary between the

gated and ungated regions. Doing so eliminated certain anomalies associated with

the determination of the capacitance signal from the gated region.

We now consider measurements of the capacitance of the gated region versus

density at zero field and T = 0.3 K. Here, we adjust the biases for the main top and

bottom gates to tune the total density but keep the densities in the two layers equal.

As seen in figure 3.4a, the interlayer capacitance grows by 15% as the electron density

in each 2DES is reduced from its nominal value of ∼0.508 × 1011 cm−2 per layer to

∼0.2×1011 cm−2 per layer. The capacitance from all background sources has already

been subtracted off as explained above. We found that Cbackground = 93 pF for all

studied 2DES densities.

One possibility for the observed increase of interlayer capacitance is that as density

decreases, there is an enhanced influence of exchange effects, which can increase the

interlayer capacitance by decreasing the value of the
∂Ebilayer

∂(∆N)
term in equation (3.13).

Another possibility is that the geometric capacitance is changing in response to

the alteration of charge density. As a bias is applied to the main top and bottom

gates, the electron density in each layer decreases, but the background positive charge

within the quantum wells remains the same. Consequently, each layer becomes more

positively charged at lower carrier density. According to Gauss’s law, the second

spatial derivative of the electrostatic potential d2V
dz2

within a given quantum well is

proportional to the net charge density within that well. Thus, when one depletes the

bilayer system, one expects that the bottoms of the quantum wells will become more

curved. These changes in quantum well shape could ultimately move the subband

wave functions closer together as one depletes the two layers, leading to a reduced

center-to-center separation d between the two 2DESs and thus an increase in the

geometric capacitance.

The interlayer capacitance can be numerically estimated using a self-consistent

Poisson-Schrödinger solver similar to the one described in reference [29]. By solving
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both the Poisson equation for the electrostatic potential and the Schrödinger equa-

tions for the subband wave functions, we can predict how much charge shifts from

one layer to another in response to a 1 mV applied interlayer bias. This numerical

solution includes exchange and correlation effects using a local density approximation

(LDA), in which the exchange and correlation energies are assumed to be purely a

function of the local carrier density. Here, we use the Hedin-Lundqvist [52] functional

for exchange and correlation energies.

The ratio of the interlayer charge transfer to the applied bias gives the expected

capacitance for a particular total electron density in the bilayer system. In figure

3.4a, the dashed line represents this theoretical prediction. The entire theoretical

curve has been rescaled somewhat so that it coincides with the observed capacitance

at the density of N = 0.5×1011 cm−2 per layer. Without this rescaling, the numerical

solver predicts C = 230 pF at this density; the source of this discrepancy is unknown.

It could reflect various uncertainties in the barrier thickness, effective area of the

gated region, or the effective dielectric constants of the barrier and quantum wells.

Nonetheless, by multiplying the original theoretical curve by correction factor 180
230

,

one can see that the resulting theoretical curve in figure 3.4a follows the observed

data quite well for the entire range of studied densities.

Figure 3.4a should serve as a warning that one must be careful when performing

interlayer capacitance measurements at νT = 1. One generally acquires transport

data at νT = 1 for various values of the effective interlayer separation d/`. In our

bilayers, we tune d/` by changing the density such that ` is altered. However, if

one wants to measure interlayer capacitance at νT = 1, one must be aware that the

center-to-center distance d between the subband wave functions is likely to be density

dependent. Thus, the geometric capacitance will evolve with d/` as well. To mitigate

this problem, one might focus on measurements of interlayer capacitance at fixed

d/` but varying temperature. This would keep the geometric capacitance constant

but would use thermal fluctuations to disrupt the νT = 1 and alter the interlayer

compressibility alone.

Finally, we turn to the capacitance data taken at high magnetic fields, plotted
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Figure 3.4: (a) Capacitance of gated region versus density at B = 0 and T = 0.3 K.
Solid trace is observed data and the dashed line is the theoretical curve.
(b) Capacitance (solid trace) and tunneling conductance (dotted trace) of gated region
versus magnetic field at T = 0.3 K. The bilayer is balanced at a density of N =
0.508× 1011 cm−2 per layer.
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in figure 3.4b. Here, each layer has a density of N = 0.508 × 1011 cm−2 and T =

0.3 K. One can see Shubnikov–de Haas oscillations, with clear minima each time

the individual layers enters a quantum Hall state. For comparison, the interlayer

tunneling conductance at the same density for up to B = 1.5 T is plotted as a dotted

line. The reduction in C during a quantum Hall state in the individual layers is due to

the combined effects of diminished compressibility and vanishing sheet conductance

σxx. Unfortunately, σxx cannot be directly measured in this device, which contains

only two contacts and precludes four-terminal transport measurements of ρxx and

ρxy. Interestingly, interlayer capacitance does not completely vanish at νT = 2 or

νT = 4, where the QH states are well formed and σxx = 0. Also note that in between

the QH dips, the interlayer capacitance assumes a value that is larger than the zero

field capacitance. This is consistent with the formation of highly degenerate Landau

levels, which is expected to increase the compressibility of the individual 2DESs at

high magnetic fields.

3.3 Conclusion

In this chapter, we have discussed the physics of interlayer tunneling at B = 0 and how

it reflects the conservation of in-plane momentum. While one would expect singular

behavior in the tunneling current without any disorder, various scattering mecha-

nisms shorten the lifetime of electron states and lead to the experimentally observed

broadening of the tunneling resonance. We have also considered how measurements

of interlayer capacitance can reveal the energy cost
∂Ebilayer

∂(∆N)
for transferring electrons

from one 2DES to another. While we anticipate that the interlayer compressibility

could be strongly altered at νT = 1, we demonstrated through measurements of in-

terlayer capacitance at zero field that the effective interlayer separation might change

with total density. Thus, one must analyze interlayer capacitance measurements care-

fully to account for changes in the geometric capacitance. Alternatively, we might

probe changes in the interlayer compressibility at νT = 1 at fixed density but at

variable temperature. Thus, geometric capacitance will remain constant, but thermal
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fluctuations will alter interlayer compressibility.
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Chapter 4

Phase Transition and Zeeman
Energy

In the absence of interlayer tunneling, the U(1) pseudospin symmetry is spontaneously

broken within the νT = 1 quantum Hall state. This suggests that there is a phase

transition between the correlated quantum Hall regime and uncorrelated compressible

regime. Indeed, as d/` is raised beyond a critical value (d/`)c, the characteristic

transport properties of νT = 1 (including enhanced interlayer tunneling and large

Coulomb drag) disappear and the two layers eventually behave as two independent

systems of composite fermions. Similar behavior is observed when d/` is held fixed

and temperature is instead increased. However, the nature of the phase transition is

not understood.

In this chapter, we explore how the phase boundary between the correlated and

uncorrelated phases evolves with Zeeman energy. This is motivated by previous stud-

ies that found evidence of a change in spin polarization across the phase boundary

[106, 71, 42], suggesting that spin could play a role in the phase transition. This also

leads to the question of how the phase transition might change when both phases

are fully spin polarized. Here, we probe the phase transition by studying Coulomb

drag in the presence of an in-plane magnetic field, which increases the Zeeman energy

without changing the Landau filling factor. We find that when the Zeeman energy

is large enough to fully spin polarize the uncorrelated phase, the phase transition as

function of d/` becomes dramatically broader than in the regime of low Zeeman en-
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ergy. We interpret this finding using two different models in which both the correlated

and uncorrelated phases are present during the phase transition.1

4.1 Nature of the Phase Transition

4.1.1 Overview

The nature of the phase transition between the correlated and uncorrelated phases at

νT = 1 is not well understood. Originally, a Kosterlitz-Thouless (KT) transition at fi-

nite temperature was anticipated [125, 131, 82] due to the XY universality class of the

correlated regime. In this picture, the disappearance of bilayer transport anomalies

would be governed by the unbinding of vortices in the order parameter at a charac-

teristic temperature TKT . This finite temperature phase transition would distinguish

the νT = 1 system from other quantum Hall systems, which only possess a T = 0

phase transition. Indeed, tunneling measurements near the phase boundary suggest

a phase transition occurs at finite temperature [12]. However, measurements of coun-

terflow dissipation show an activated behavior instead of the predicted discontinuity

at a finite temperature for a KT transition [66]. The expected nonlinear superfluid

response is also absent.

Alternatively, numerical studies have suggested a weakly first-order phase tran-

sition [95]. Measurements of Coulomb drag as a function of d/`, however, reveal a

rapid but smooth transition between the two phases [65]. This finite width of the

phase transition might be due to disorder, which can cause the system to break up

into spatially separated regions of correlated and uncorrelated fluids [108]. Another

possibility is that the transition is a continuous crossover, during which the system is

comprised of coexisting composite fermion and composite boson phases [100]. These

two views of the phase boundary will be discussed in greater detail later on in this

chapter.

1This chapter contains work first presented in A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer,
and K. W. West, Phys. Rev. Lett. 104, 016801 (2010). Copyright 2010 by the American Physical
Society.
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4.1.2 Spin Transition

We now consider the spin transition as the system evolves between the correlated and

uncorrelated regimes. Exchange interactions should favor full spin polarization in the

correlated phase. However, the uncorrelated phase is only partially spin polarized at

the low magnetic fields typically employed for low density bilayers at νT = 1. This

incomplete polarization has been observed in single-layer 2DESs [118, 75] and reflects

a low Zeeman energy relative to the Fermi energy of the composite fermions, which

is governed by the Coulomb energy. Thus, spin polarization changes across the phase

boundary; this has been experimentally demonstrated. For example, Spielman and

collaborators used NMR and heat pulses to depolarize nuclear spins and thus induce

small increases in the Zeeman energy through the hyperfine coupling [106]. They

found that such techniques enhanced the νT = 1 tunneling near the phase boundary.

An increase in the Zeeman energy could even lead to the appearance of a tunneling

peak under conditions (d/` > (d/`)c) where ordinarily no tunneling anomaly was

observed. Thus, (d/`)c can be tuned via Zeeman energy due to this difference in spin

polarization of the two phases. Another study by Kumada and collaborators also

detected this spin transition by observing an increase in the nuclear-spin-relaxation

rate 1/T1 as they moved from the quantum Hall phase to the compressible phase [71].

Spielman et al. reported seeing similar behavior in 1/T1.

While the difference in spin polarization of the two phases allows us to shift the

position of the phase boundary by tuning the Zeeman energy, one might wonder if

the phase transition might qualitatively change if the Zeeman energy is large enough

to fully spin polarize the uncorrelated phase. Such large increases in Zeeman energy

can be realized by tilting the sample with respect to the magnetic field, allowing an

increase in the total field (and thus Zeeman energy) while keeping the perpendicular

field constant.

However, the Josephson-like tunneling at νT = 1 is suppressed by the parallel field

introduced by this method [104]; thus, one must resort to alternative probes of the

phase boundary. For example, Giudici and collaborators utilized parallel transport
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measurements to determine the presence of an incompressible quantum Hall state

(i.e., the existence of a visible minimum in Rxx) at νT = 1 [42]. They observed the

expected increase in (d/`)c as they tilted the sample with respect to the magnetic

field and approached the point where the uncorrelated phase was presumed to be fully

spin polarized. However, they reported no qualitative change in the phase boundary.

4.2 Evolution of Phase Boundary with Zeeman En-

ergy

4.2.1 Coulomb Drag and the Phase Boundary

In this chapter, we seek to explore the phase boundary as it evolves with Zeeman

energy through measurements of Coulomb drag in the presence of a parallel magnetic

field. Coulomb drag is a convenient probe of the phase boundary. Not only is it robust

in the presence of a parallel magnetic field [67], it provides a direct measurement of

interlayer correlations that are specific to the νT = 1 phase. Coulomb drag also

has a characteristic behavior across phase boundary. As the system passes from the

uncorrelated to the correlated regime, a steady rise in Hall drag Rxy,D is observed

until it reaches a quantized value of h/e2 deep within the correlated regime. This

remarkable behavior is unexpected because no current is permitted to flow through

the drag layer and thus no Lorentz force should exist to provide a Hall resistance.

Ultimately, this reflects strong interlayer correlations that are far beyond the regime of

perturbation theory. Meanwhile, the longitudinal drag Rxx,D rises up to form a peak

in the middle of the phase boundary and then drops to nearly zero in the correlated

regime [65]. While there are various models [108, 100] to explain the observed peak

in Rxx,D, for the purposes of this chapter it is sufficient to adopt the convention of

identifying the position of the peak with the critical interlayer separation (d/`)c. We

also use the full width of the peak at its half-maximum points (FWHM) to define a

characteristic width ∆(d/`) of the phase transition.
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4.2.2 Sample and Methods

In this chapter, we study data collected from sample 7-12-99.1R. It was fabricated by

Ian Spielman from a wafer having the usual GaAs/AlGaAs double quantum well struc-

ture consisting of two 18 nm GaAs quantum wells separated by a 10 nm Al0.9Ga0.1As

barrier. Consequently, the center-to-center separation of the 2DESs in the quantum

wells is d = 28 nm. The 2DESs have a nominal density of n ≈ 5.5 × 1010 cm−2

per layer and a low temperature mobility of µ ≈ 1 × 106 cm2/Vs. Using standard

photolithographic techniques, a mesa is defined with a 250 µm square central region.

Four narrow arms extend from the square (one from each side) to diffused NiAuGe

ohmic contacts. Thermally evaporated aluminum top and bottom gates allow us to

independently tune the density of the upper and lower layers within the central re-

gion. Throughout this chapter, we confine our attention to the case of equal densities

in the two layers. Additional aluminum gates deposited on top of and beneath the

arms allow us to selectively connect each NiAuGe ohmic contact to one, both, or none

of the layers. The tunneling conductance in this sample is small (the peak tunneling

is ∼29 nS at zero magnetic field) such that even at νT = 1 little current can leak

between the two layers. For example, the maximum tunneling current at νT = 1 for

the lowest d/` and lowest T studied is ∼15 pA. This is only 3% of the drive current

(0.5 nA) employed during drag measurements. Thus, tunneling is expected to play

an insignificant role in Coulomb drag.

4.2.3 Hall Drag and Longitudinal Drag versus d/`

We first focus on data taken at low temperatures (30 - 50 mK). Figure 4.1 shows

Rxy,D and Rxx,D at νT = 1 versus d/` at two different tilt angles. Recall that we

tune d/` in our sample by changing the total density NT of the bilayer system and

adjusting the perpendicular magnetic field (and thus the magnetic length ` =
√

h̄c
eB⊥

)

to achieve νT = 1. The first data set was obtained when the applied magnetic field

was perpendicular to the bilayer system (θ = 0). It matches previously reported

results at zero tilt angle [65]. Here, the phase transition is relatively narrow, with
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∆(d/`) ≈ 0.025.

The second set was collected when the sample was tilted to θ = 66◦ with respect

to the magnetic field. As we will show below, the uncorrelated phase is fully spin

polarized at this tilt angle. In the large Zeeman regime, the phase transition has

clearly changed in two ways. First, the center of the phase boundary has shifted

to a higher value of d/`, from (d/`)c ≈ 1.75 to (d/`)c ≈ 1.85. This is consistent

with previous reports that increasing the Zeeman energy will increase (d/`)c [106,

42]. Second, the width of the phase boundary is significantly larger than at θ = 0,

obtaining a value of ∆(d/`) ≈ 0.086. This broadening is visible in both the Hall and

longitudinal Coulomb drag measurements and constitutes the main finding of this

chapter.

4.2.4 Longitudinal Drag versus d/` and η

We can see more clearly how the phase transition evolves with Zeeman energy in

figure 4.2. Here, we show a color plot of longitudinal drag Rxx,D at νT = 1 and

T = 50 mK versus both d/` and the normalized Zeeman energy η ≡ EZ/(e
2/ε`). We

construct this plot from measurements of Rxx,D versus d/` at nine different tilt angles,

ranging from θ = 0 to θ = 66◦. Examples of such traces were already shown in figure

4.1. By fixing angle and tuning d/`, we trace out a straight-line trajectory in (d/`, η)

space with a slope proportional to cos θ. For each tilt angle, we mark the center of

the phase transition with a black dot on the graph. The bottom portion of the plot

is the correlated quantum Hall phase while the top is the uncorrelated compressible

phase.

A number of features are visible in figure 4.2. First, as we tilt the sample with

respect to the magnetic field, the center of the phase transition initially moves to-

ward higher d/`. This is consistent with the increased Zeeman energy stabilizing the

correlated phase with respect to the uncorrelated phase, leading to a larger critical

interlayer separation (d/`)c. Eventually, the large Zeeman energy will fully spin po-

larize the competing uncorrelated phase. One would then expect (d/`)c to remain
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Figure 4.1: (a) Hall and (b) longitudinal Coulomb drag at νT = 1 versus d/` at
T = 30 mK. dots, θ = 0; triangles, θ = 66◦.



99

���

���

���

�
�
�

���	��������

� � �����

����

�
��

����


��

�

�
�
�

�
��
�
�

Figure 4.2: Longitudinal drag Rxx,D versus d/` and η = EZ/(e
2/ε`) at νT = 1 and

T = 50 mK. Solid dots: phase boundary, (d/`)c versus η. Dashed line: approximate
location of knee in drag contours. Left and right boundaries of colored region: θ = 0
and θ = 66◦, respectively.



100

constant with respect to tilt angle after this point since both phases should be fully

spin polarized, and any further rise in Zeeman energy should have no effect on the

phase boundary.

Although we do find that beyond a certain angle the advancement of (d/`)c does

halt, we also see that it then begins to slowly decrease toward even larger tilt an-

gle. The gentle decline of (d/`)c is likely due not to the Zeeman energy but to an

orbital effect induced by the large (>2 T) in-plane magnetic field. Because of the fi-

nite thickness of the 2DESs, the in-plane component can mix in the higher subbands

of the quantum wells [22]. As depicted in figure 4.3, this can squash the subband

wave function and increase the strength of intralayer interactions. Furthermore, sub-

band mixing can shift the position of subband wave function in the z direction, thus

increasing the separation between the two 2DESs and lower interlayer interactions.

These modifications in the two types of interactions ultimately reduce the stability

of the interlayer correlated phase relative to the uncorrelated phase (for example, see

reference [135]). We expect such orbital effects when the magnetic length associated

with the parallel field `|| =
√
h̄/eB|| is comparable to the width of either quantum

well.

We also see in figure 4.2 that the width of the phase transition broadens contin-

uously as Zeeman energy is increased. This is plotted explicitly in figure 4.4a. The

dramatic rise in ∆(d/`) (overall, by a factor of about three) ceases once the uncor-

related phase is fully spin polarized. Beyond this point the width grows only weakly

with further tilting of the sample. This rules out any orbital effects caused by the

in-plane fields as the sole mechanism for the large increase in the phase transition

width.

Finally, we remark on the location of the knee in the various drag contours in

figure 4.2. We show their approximate positions with a dotted line in the color plot.

These knees should indicate the location where the uncorrelated phase has become

fully spin polarized. In a simple model of the uncorrelated phase in which the bilayer

exists as two uncoupled systems of composite fermions, one would expect such systems

to become fully spin polarized when the normalized Zeeman energy exceed a critical
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(b)	
  

B|| = 0

B|| > 0

Figure 4.3: Subband wave functions in the (a) absence and (b) presence of a parallel
magnetic field. A sizable B|| will reduce the thickness of the 2DES and increase their
separation from each other.
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value that is independent of the effective interlayer separation. Instead, the finite

slope of the dotted line in figure 4.2 suggests that the critical Zeeman energy has a

d/`-dependence. Regions of the phase boundary at lower d/` and thus deeper within

the correlated phase enter the regime of full spin polarization before those that are

closer to the uncorrelated phase at high d/`. This raises the possibility that somehow

the presence of the excitonic phase makes it easier to spin polarize the competing

compressible phase. Later in this chapter we will discuss the possible mechanisms by

which this could occur, using two different theories of the phase boundary.

We close this section by commenting on the temperature dependence of ∆(d/`),

as shown in figure 4.4b. Here, we plot the width of the phase transition versus

temperature for θ = 0 and θ = 66◦. As first reported by Kellogg et al. [65], the width

of the transition at θ = 0 extrapolates to relatively small value in the limit of T → 0.

However, in the high Zeeman regime the width of the transition is clearly nonzero

even in the zero temperature limit. This eliminates the possibility that enhanced

thermal fluctuations alone cause the broader phase transition at high tilt angles.

4.3 Mixed-fluid Models of the Phase Boundary

We turn now to two different models of the crossover between the strongly correlated

regime at low d/` and the weakly coupled regime at high d/`. In one of the models,

the phase transition is argued to be first order. In the other model, the transition is

treated as a continuous crossover. Both describe the bilayer system in the transition

region as consisting of a mixture of correlated and uncorrelated fluid. However, the

spatial distribution of the two distinct types of fluids is different in these two models.

4.3.1 First-Order Phase Transition

Treating the phase transition as first order is motivated by the different spin po-

larizations of the two phases. If the transition between the two phases is a true

thermodynamic phase transition, then it should be of first order because the spin
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Figure 4.4: (a) Width, ∆(d/`), of the longitudinal drag peak at νT = 1 and T = 50 mK
versus normalized Zeeman energy η at the peak center. (b) Temperature dependence
of ∆(d/`) at θ = 0 (squares) and θ = 66◦ (triangles).
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polarization (a thermodynamic quantity conjugate to the Zeeman field) changes dis-

continuously across the transition. Furthermore, Zou and collaborators find that a

set of Clausius-Clapeyron relations seem to accurately and consistently describe the

behavior of the phase transition in response to changes in not only Zeeman energy,

but also temperature and density imbalance between the two layers [139].

A truly discontinuous first-order phase transition, however, is unlikely in real

samples because of disorder. For example, Stern and Halperin conjecture that during

the phase transition density fluctuations break up the system into spatially distinct

regions of correlated and uncorrelated fluids [108]. At high d/`, small puddles of

the correlated fluid occupy a fraction fcorr of the system. As d/` is lowered, the

number and size of the puddles presumably grow until they percolate at some critical

fraction f ∗corr. Stern and Halperin find that before percolation is achieved, the very

different transport properties of the two fluid types lead to a large peak in Rxx,D

over a relatively narrow range of fcorr. Meanwhile, Hall drag rises monotonically

with fcorr, from Rxy,D = 0 at fcorr = 0 to Rxy,D = h/e2 at the percolation point of

fcorr = f ∗corr. In particular, they derive a semicircle law for the longitudinal and Hall

drag resistivities,

(ρDxx)
2 + (ρDxy + πh̄/e2)2 = (πh̄/e2)2. (4.1)

This predicts a peak ρDxx of h/2e2 coincident with ρDxy = h/2e2, which qualitatively

agrees with measurements of Coulomb drag across the phase boundary [65, 120, 38].

While this model was originally constructed assuming fully spin polarized elec-

trons, it could be modified to permit unequal spin polarizations of the two phases.

This leads to the possibility that since the density of states of the composite fermions

in the uncorrelated phase drops by a factor of 2 upon full spin polarization, the ability

to screen the disorder potential would be changed. Consequently, the transition width

should grow in the high Zeeman regime, just as we observe. We depict the phase sep-

aration of the correlated and uncorrelated fluids for the two different Zeeman regimes

in figure 4.5.

However, recall that the boundary between the two spin polarization regimes (the
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Figure 4.5: Depiction of first-order phase transition in the low Zeeman (left of dashed
line) and high Zeeman (right of dashed line) regimes. In the high Zeeman regime,
the uncorrelated composite fermion phase is fully spin polarized and only one Fermi
sea exists to screen density fluctuations. Consequently, one anticipates disorder to be
more prevalent and the phase transition to be broader than at low Zeeman energy.
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dashed line in figure 4.2) is slanted in (d/`, η) space. We might ask if this behavior is

consistent with the first-order picture. In this scenario, the total area of CF regions

shrinks as d/` is decreased. However, the local density (and Fermi energy) of each

CF region will remain fixed once normalized by the Coulomb energy. Thus, the CF

regions should become fully spin polarized at a single value of normalized Zeeman

energy that is independent of d/`. This is in conflict with the boundary between the

two spin polarization regimes, which we observe to have a finite slope rather than

being a vertical line. We might explain this discrepancy by noting that exchange

interaction effects might lower the critical Zeeman energy at which the CF regions

become fully spin polarized. Such exchange interactions will become relatively more

important at lower density. Since we achieve lower effective interlayer separation in

our sample at fixed d by reducing the density of the 2DESs and tuning the magnetic

field appropriately, we would then expect the critical Zeeman energy to decrease with

d/`. This model does not require the presence of the correlated fluid and thus could

be tested by determining if the critical Zeeman energy is still density dependent in

bilayer samples at high d/`, when interlayer correlations are unimportant.

A second, more exotic possibility is that the spin polarized correlated fluid induces

an effective Zeeman energy in the uncorrelated fluids through a proximity effect. As

fcorr grows at lower d/`, the influence of this proximity effect should also increase

and lower the critical Zeeman energy required to fully spin polarize the uncorrelated

regions.

4.3.2 Continuous Crossover

As an alternative, the finite width of the transition can be understood without in-

voking a first-order phase transition. For example, Simon, Rezayi, and Milovanovic

(SRM) have suggested that instead of a true phase transition, a continuous crossover

separates the correlated and uncorrelated phases [100]. SRM construct a set of wave

functions for the νT = 1 bilayer system in which some number of the electrons in the

two layers act as composite fermions (CFs) and composite bosons (CBs). The CFs
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consist of electrons bound to correlation holes only within their own layers. The CBs

are constructed from electrons bound to one correlation hole in its own layer and to

another correlation hole in the other layer. While the CFs fill up a Fermi sea, the

CBs will eventually condense into the same state. The CBs provide the necessary

interlayer correlations associated with the νT = 1 phase while the composite fermions

lack such interlayer correlations.

As the system evolves from the completely uncorrelated phase at d/` = ∞ (con-

sisting only of composite fermions) to the correlated phase at d/` = 0 (consisting

only of composite bosons), the composite fermions are one-by-one transformed into

composite bosons. The growing number of composite bosons leads to a continuous

increase in interlayer correlations. SRM find numerical evidence that this variation

in composite boson number occurs over a range of d/`, which would naturally ex-

plain the residual width of the phase transition even in the zero temperature limit

[65]. They also construct a Chern-Simons transport theory that arrives at the same

semicircle law for drag resistivities (equation (4.1)) as found by Stern and Halperin.

A distinguishing feature of this view is that, unlike the first-order scenario, the two

types of quasiparticles are permitted to intermix spatially. As we shall see, this leads

to observable consequences when the Zeeman energy is increased and the composite

fermion phase becomes fully spin polarized.

In order to interpret our results using this view of the phase boundary, we first

create a simple mean-field model of the continuous crossover proposed by Simon,

Rezayi, and Milovanovic. We assume that the CBs are fully condensed and fully spin

polarized. The CFs fill up two Fermi seas that correspond to the two spin states and

are displaced in energy from each other by the Zeeman energy. Let fCF denote the

fraction of electrons in the CF phase, with f↑ occupying the spin-up Fermi sea and f↓

occupying the spin-down Fermi sea. We use the constraint fCF = f↑ + f↓. Ignoring

any interactions among the various flavors of composite particles or any dependence

of the CF effective mass on fCF , we write the total energy per electron as

E =
1

2
EF0(f 2

↑ + f 2
↓ )−

1

2
EZ(f↑ − f↓) + (1− f)(C − 1

2
EZ). (4.2)



108

Here, the first term in the sum represents the kinetic energies of the CFs, with EF0

being equal to the Fermi energy of the system when it consists only of spin polarized

CFs. The second term is the contribution from the Zeeman energies of the two spin

species of CFs. The third term includes the energy C of each condensed CB as well as

the Zeeman energy of each spin polarized CB. In this model, C is a phenomenological

parameter that represents the net Coulomb energy cost associated with converting

a CF into a CB. Presumably, C includes contributions from both intralayer and

interlayer interactions and thus is expected to be a function of d/`. That is, as the

effective interlayer separation becomes smaller it becomes energetically more cost

effective to lower interlayer interactions by forming a CB from a CF, even if that

gives rise to an increase of intralayer interactions. The simplest assumption is that C

varies linearly with d/` during the transition region.

To obtain the ground state, we minimize E and obtain the following solutions for

f↑ and f↓:

f↑ = C/EF0, (4.3)

f↓ = (C − EZ)/EF0. (4.4)

Thus, if EZ < C, CFs of both spins are present and fCF = (2C−EZ)/EF0. However,

if EZ > C, the CFs are fully spin polarized (f↓ = 0) and fCF = C/EF0. A mixed

phase (0 < fCF < 1) will exist over a range of C in both the partially and fully spin

polarized CF regimes. In the partially spin polarized regime, contours of fixed fCF

will satisfy the condition C = (fCFEF0 + EZ)/2 and thus will rise with EZ . This is

illustrated in upper-left half of figure 4.6 for the contours associated with fCF = 1/4

and fCF = 3/4.

However, when the Zeeman energy reaches EZ = C (denoted as a dashed line in

figure 4.6), the CF phase becomes fully spin polarized, and the contours will become

independent of Zeeman energy. This is indicated in the lower-right half of the phase

diagram in figure 4.6. The knee in each contour should occur at EZ = fCFEF0 and

is thus proportional to the CF fraction, fCF . This is consistent with the slanted
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boundary separating the partially and fully spin polarized regimes that we observe in

figure 4.2.

Figure 4.6 also illustrates how we can understand the broadening of the transition

region at high EZ within the coexistence picture. If we use the range 1/4 < fCF < 3/4

to define the transition width ∆C, we find that the width ∆C = EF0/2 in the fully

spin polarized regime is twice as large as ∆C = EF0/4 in the partially spin polarized

regime. For a linear relation between C and d/`, one would also expect ∆(d/`) to

grow by a factor of two between the low and high Zeeman regimes. This qualitatively

agrees with our data near T = 0, but is lower than the observed factor of ∼3 for the

change in the transition width. A better comparison between this simple model and

our Coulomb drag data might be obtained if there existed a theory relating fCF and

drag. However, such a theory remains lacking.

Before ending this section, we also note the possibility that both the first order

and the continuous crossover pictures could provide faithful descriptions of the phase

boundary, but under different regimes. That is, the phase transition could be first-

order at low Zeeman energy, when there is a difference in spin polarizations for the two

phases. However, as suggested by Zou and collaborators [139], the phase transition

does not have to be first-order in the fully spin polarized regime. There, either a

second-order transition or continuous-crossover might be allowed.

4.4 Phase Boundary at Finite Temperature

Until now, we have been focusing on the phase transition at low temperatures. In

this section we will turn to Coulomb drag data taken at elevated temperature. When

analyzing our data in the remainder of this chapter, we will restrict ourselves to using

the first-order model of the phase transition because it is unclear how to extend the

continuous-crossover model of Simon and collaborators [100] to finite temperature. In

the first-order model, the slope of the phase boundary can be derived using Clausius-

Clapeyron equations, as analyzed by Zou et al. [139].

To explore the evolution of the (d/`, EZ) phase diagram with temperature, we
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repeated the procedure of measuring Rxy,D at νT = 1 versus d/` at 9 different tilt

angles and various temperatures. This results in traces similar to those seen in figure

4.1a for each tilt angle and temperature. In figure 4.7a we show the phase boundary

in (d/`, η) space at various temperatures (T = 50, 100, 150, 200, and 300 mK). Here,

we use the condition Rxy,D = 1
2
h/e2 to define the location of the phase boundary. As

a guide to the eye, we have also plotted a cubic spline interpolation for the phase

boundary line at each temperature.

We first turn our attention to the slope of the phase boundary at each temperature

in the low Zeeman regime, when the compressible phase is not fully spin polarized.

By employing Clausius-Clapeyron relations [139], one would predict that this slope is

proportional to the difference in spin polarization ∆ξ = ξcorr−ξuncorr of the correlated

and uncorrelated phases. For each curve in 4.7a, we calculate the slope of the phase

boundary in (d/`, η) space at η = 0.01, using a linear fit to the three data points whose

domain of η values contain η = 0.01. We plot the results versus temperature in figure

4.7b. The slope of the phase boundary appears to decline steadily with temperature

in a linear fashion. This suggests a similar decrease in ∆ξ with temperature and that

the correlated phase becomes more quickly depolarized by thermal fluctuations than

does the uncorrelated phase.

Finally, we examine the critical Zeeman energy ηc at which the phase boundary

lines in figure 4.7a begin to bend over, signifying that the uncorrelated phase has

been fully spin polarized by the large Zeeman field. To consistently identify ηc for

each temperature, we locate the local maximum in the cubic spline interpolation of

our data points. Due to the limited angular resolution of our data, there is a large

amount of uncertainty associated with this method. Nonetheless, as shown in figure

4.7b, the difference in ηc between T = 50 and 200 mK is large enough to conclude

that the critical Zeeman energy increases with temperature. This is consistent with

thermal excitations causing the population of the spin-reversed CF Fermi sea. Such

spin-flips can occur even when EZ > EF , where EF is the Fermi energy of the CFs in

the uncorrelated phase. At finite temperature, complete spin polarization of the CFs

requires EZ − EF � kbT . Despite the large uncertainties in our determination of ηc,
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Figure 4.7: a) Critical interlayer separation (d/`)c versus normalized Zeeman energy
η = EZ/(

e2

ε`
) for T = 50, 100, 150, 200, and 300 mK. The solid lines are guides to

the eye. Black arrows point at the approximate critical η for each temperature. The
dotted lines are linear fits to the low Zeeman data. b) Slope of phase boundary at
η = 0.01. c) Approximate critical η versus temperature.
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we do see evidence for a linear trend in ηc versus T . Furthermore, we find that ηc

extrapolates to 0.015 in the limit of zero temperature. This is in good agreement with

the value found by Tracy et al. [118], who determined ηc from the resistively detected

nuclear magnetic resonance signal in a single layer at half filling. However, our result

for ηc is somewhat smaller than the values found by other groups [70, 81, 41, 42].

Those groups reported critical Zeeman energies that were in better agreement with

the predicted value of ηc = 0.022 from Park and Jain [88].

4.5 Critical Temperature versus Energy Gap

The νT = 1 is unique among quantum Hall states because of the possibility of having

a phase transition at finite temperature [12]. In this scenario, interlayer correlations

appear at a characteristic temperature Tc. This Tc would not necessarily be directly

related to the energy gap. Instead, Tc would be governed by the free energy com-

petition between the correlated and uncorrelated states. For example, if the phase

transition is a first-order transition between the spin polarized excitonic state and

the unpolarized CF state, then one would expect that Tc could be tuned with the

Zeeman energy. Deep within the phase, an increase in Zeeman energy should not

strongly affect the properties of the νT = 1 state at low temperature, such as the en-

ergy gap for charged excitations. In this section, we attempt to compare the critical

temperature for interlayer correlations and the energy gap. We will focus on the case

of d/` = 1.59, which is far from the phase boundary.

4.5.1 Determination of Tc

To complete our analysis of exciton condensation at finite temperature, we examine

Coulomb drag versus temperature at fixed d/`. For each tilt angle, we tune the

magnetic field and bilayer densities to achieve νT = 1 at d/` = 1.59 and measure

Coulomb drag while slowly increasing the temperature from 25 to 500 mK. This

temperature sweep is done over the course of several hours so that the electrons and

the main thermometer are fully equilibrated with each other during the sweep. In
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figures 4.8a and 4.8b, we show Rxy,D and Rxx,D (respectively) versus temperature.

We focus on the two extreme angles of θ = 0 and θ = 66◦.

At d/` = 1.59 and T = 0, the bilayer system is far from the phase boundary sep-

arating the correlated and uncorrelated regimes. Consequently, for both tilt angles

we observe that Rxy,D = h/e2 and Rxx,D ≈ 0 at the lowest temperatures. As tem-

perature increases, Rxy,D monotonically falls. Meanwhile, Rxx,D rises to ∼2 kΩ and

then gradually decreases. Just as in figure 4.1, the peak in Rxx,D occurs at nearly the

same temperature at which Rxy,D = 1
2
h/e2. Such behavior is reminiscent of Coulomb

drag versus d/`.

For the purposes of our analysis, we use Rxy,D = 1
2
h/e2 to define a critical tem-

perature Tc separating the strongly and weakly coupled regimes. Figure 4.8a shows

that Tc has risen from 186 mK at θ = 0 to 333 mK at θ = 66◦. This is analogous to

the rise in critical d/` with Zeeman energy at fixed temperature. The steady rise in

Tc versus η can be seen in figure 4.8c. The critical temperature shows signs of almost

saturating, but is still very slowly rising at tilt angle θ = 66◦. This is consistent with

the T = 300 mK trace in figure 4.7, which demonstrates that thermal fluctuations are

large enough at T ≥ 300 mK to prevent complete spin polarization of the competing

CF phase at θ = 66◦.

4.5.2 Measurement of Energy Gap from Coulomb Drag

Previous studies of Coulomb drag at νT = 1 [65, 127] had reported activated behavior

with an energy gap nearly the same as the one obtained by measurement of Rxx in

parallel flow. Here we will also use Coulomb drag to determine the energy gap of

charged excitations. We were unable to perform proper parallel flow measurements

using the sample studied in this chapter because we found that one of the two layers

had a larger series resistance2 than the other layer. Thus, we could not ensure equal

currents in the two layers as required in parallel flow.

An energy gap can be calculated from Arrhenius plots of either Rxx,D or ∆Rxy,D

2Here, series resistance is associated with the arms connecting the contacts with the active νT = 1
region.
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Figure 4.8: Temperature dependence of Coulomb drag at d/` = 1.59 and either θ = 0
(black traces) or θ = 66◦ (red traces). a) Rxy,D versus T. b) Rxx,D versus T . c) Critical
temperature Tc versus η at d/` = 1.59. The critical temperature is determined by the
condition Rxy,D = 1

2
h/e2.
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versus 1/T , where ∆Rxy,D ≡ h/e2 − Rxy,D. Here we use the condition Rxx,D ∝

exp (− ∆
2kBT

) to define the energy gap, such that ∆/2 is the slope from a linear fit

to portions of Rxx,D in the Arrhenius plots. A similar method is used to extract an

energy gap from ∆Rxy,D data.

We first concentrate on Arrhenius plots of Rxx,D. We show examples of such plots

in figure 4.9a. While only a single energy gap is evident for θ = 0, the Rxx,D data

at θ = 66◦ seem to show two different temperature regimes with two different slopes

(figure 4.9a). The crossover point between the two regimes is near T ≈ 150 mK. In

figure 4.9a, the ∆Rxy,D data show a similar disparity between the slopes at high and

low temperatures. The difference in slopes in the ∆Rxy,D Arrhenius plots is apparent

even at zero tilt angle.

The appearance of two different temperature regimes in the Arrhenius plots re-

quires us to be careful in interpreting their physical significance. Besides an energy gap

between the ground state and charge-carrying extended states, the low temperature

gaps might instead reflect the energy scales for alternative modes for bulk conduction

of charged excitations, such as nearest-neighbor hopping or variable-range hopping

between localized states in the bulk. Because the hopping conduction takes place be-

tween localized states with lower energy than the lowest unoccupied extended states,

these alternative modes of conduction become more prevalent in more disordered

samples and dominate transport at low temperature, when occupation of extended

states has been frozen out. In this scenario, one would expect the high temperature

slope in the Arrhenius plot to correspond to the band gap and the low temperature

slope would be associated with hopping conduction [7].

We plot all four sets of the Arrhenius slopes at d/` = 1.59 versus normalized

Zeeman energy in figure 4.10. All but one of the apparent energy gaps (that corre-

sponding to ∆Rxy,D at high temperature) decreases essentially monotonically with

Zeeman energy. The Arrhenius slope of ∆Rxy,D at high temperature rises somewhat

with η, but then declines.

Either of the possible origins for these Arrhenius slopes are consistent with the

observed decline with tilt angle. The previously mentioned orbital effect induced by
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Figure 4.9: Arrhenius plot of (a) Rxx,D and (b) ∆Rxy,D at d/` = 1.59 for both θ = 0
and θ = 66◦. Dashed lines are linear fits to the data at either high temperature
(dashed lines) or low temperature (solid lines). For Rxx,D at θ = 0, only the low
temperature slope is shown.
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Figure 4.10: Apparent energy gaps versus normalized Zeeman energy η.

the in-plane magnetic field would reduce the stability of the correlated state and thus

likely results in a decrease in a band gap for charged excitations. Also, the full spin

polarization of the competing CF phase could lead to a lessened screening of disorder

and enhanced hopping conduction between localized states; consequently, the energy

scale associated with variable-ranged or nearest-neighbor hopping would decrease. In

either case, figure 4.10 strongly suggests that the gap for charged excitations does not

increase with tilt angles. This is in agreement with a previous study of transport at

νT = 1 in the presence of a large parallel field [42], which found that the charge gap

at low d/` was independent of Zeeman energy.

4.5.3 Discussion

Over the studied range of Zeeman energy, the critical temperature increases by nearly

80% while no concomitant rise is seen in the energy gap for charged excitations. This

is consistent with a first-order phase transition occurring at finite temperature, where
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the location of the phase boundary does not influence the properties of the correlated

state at low temperature. Here, an increase in Zeeman energy increases Tc.

In a first-order phase transition, the location of the phase boundary should be

governed by a series of Clausius-Clapeyron relations. For example, Zou et al. [139]

did an extensive survey of the various experimental studies in which the νT = 1 phase

boundary shifted in response to Zeeman energy, temperature, and density imbalance.

Assuming that the phase transition was first order, they calculated the behavior of

the phase boundaries when these three parameters were tuned. They found good

agreement between their model and experimental data using the approximation,

∂(∆F )

∂x
= γ

e2

ε`3
. (4.5)

Here, ∆F ≡ Fcorr − Funcorr is the difference between the free energy densities of the

correlated and uncorrelated phases and γ was a constant that they determined by

fitting their models of Fcorr and Funcorr to the experimental results. They determined

that the value of γ = (1± 0.1)× 10−3 best fits the full set of data.

Although Zou et al. were focused on calculating (d/`)c, we can extend their anal-

ysis to predict the evolution of Tc as a function of Zeeman energy. We first invoke

the Clausius-Clapeyron relation

dT

dEZ
=
NT (ξuncorr − ξcorr)
∂Funcorr

∂T
− ∂Fcorr

∂T

(4.6)

to describe the slope of the phase boundary in T − EZ space. The numerator on

the right-hand side of equation (4.6) reflects the difference in spin polarization of the

two phases, with NT denoting the total electron density. The denominator is the

difference in entropy of the two phases.

We will invoke a number of simplifying assumptions about the correlated and

uncorrelated phases, so as to derive a mainly qualitative prediction for the behavior

of the phase boundary. First, we ignore any spin-flip excitations in the correlated

phase, such that ξcorr = 1 for the relevant temperatures. As suggested in the previous
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section, this may not be a totally accurate statement at high temperature.

Second, to account for the thermal depolarization of the CF phase we use the

estimate ξuncorr = η/η∗c , where η∗c is the critical Zeeman energy that is required to

fully spin polarize the uncorrelated phase at a fixed, finite temperature. As seen in

figure 4.7c, this term will grow with temperature and is expected to be η∗c ≈ 0.02 in

the relevant temperature range of T ≈ 200− 300 mK. For now, we will assume that

η∗c is a constant whose value will be used as a fitting parameter when comparing the

theoretical behavior of Tc with our observed data.

Third, we will ignore the contributions of both pseudospin waves and Chern-Simon

gauge field fluctuations in the entropy term ∂Funcorr

∂T
− ∂Fcorr

∂T
. This is motivated by

the observation of Zou et al. that such contributions are negligible compared to the

noninteracting composite fermion entropy density. Finally, we will restrict ourselves

to the case of η ≤ η∗c ; beyond η = η∗c , the critical temperature should be essentially

constant.

These assumptions allow us to write equation (4.6) as,

dT

dEZ
=

1− η/η∗c
αT

, (4.7)

where α = 4π2

3h̄2
mCF `

2k2
b , mCF is the composite fermion mass, and kb is Boltzmann

constant. Choosing a proper value for mCF can be incredibly tricky. We must empha-

size that composite fermions can appear to have different effective masses in different

contexts [58]. For example, one can define a polarization mass mp based on the con-

dition EF ≡
h̄2k2F
2mp

= EZ ; such a mass should reflect the full depth of the composite

fermion Fermi sea. However, here we are interested in the thermodynamical proper-

ties of the composite fermions. The mass mCF denotes the composite fermion mass if

we could treat the system as comprising of nearly free fermions with the same entropy

per particle as the composite fermion system. Consequently, mCF should provide a

measure of the density of states in the vicinity of the Fermi energy. A theoretical

estimate [50] for this type of mass arrives at the value mCF ≈ 0.079 me

√
B⊥[T ],
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where me is the electron mass in vacuum.3 However, the true value of mCF in a given

sample is expected to be strongly affected by the finite thickness of the quantum well,

disorder, and Landau level mixing [133, 88, 89, 83]. Because such conditions should

vary from sample to sample, there should not be a universal value for mCF . For this

reason, we will use mCF as another fitting parameter that can be varied to best fit

our data.

Simple algebraic manipulation and then integration of the ODE shown in equation

(4.7) lead to

T 2 =
2EC
α

η − EC
αη∗c

η2 + C0, (4.8)

where C0 is an arbitrary constant. Thus, one expects a plot of T 2
c versus η to follow a

parabolic curve whose peak coincides with the full spin polarization of the CF phase.

The square of the observed critical temperature as a function of normalized Zee-

man energy is shown in figure 4.11. A parabolic fit to the data gives T 2
c = C0 +C1η+

C2η
2, with C0 = (−0.00777 ± 0.0044), C1 = (15.92 ± 0.65), and C3 = (−329 ± 22).

From these fitting parameters, one obtains η∗c = 0.024 and mCF = 1.36me

√
B⊥[T ].

These values are in partial agreement with the expected η∗c ≈ 0.02 (as expected for

this range of temperatures in figure 4.7c) and mCF = 0.2me

√
B⊥[T ], which is the CF

mass as used by Zou et al. in reference [139]. This value for the composite fermion

mass originates from the measurement of activation gaps in the vicinity of ν = 1/2

by Du et al. [15, 17]. If one instead employs these values for η∗c and mCF , one arrives

at the red dotted line in figure 4.11. Note that in the predicted T 2
c versus η curve, we

also choose to use a different value of the arbitrary constant C0 so as to match with

the observed T 2
c value at zero tilt angle.

It should be clear from figure 4.11 that the observed critical temperature grows

much more slowly with Zeeman energy than expected. There are several possible ex-

planation for this discrepancy. One possibility is that our assumption that the entropy

of the composite fermion phase scales linearly with temperature is an oversimplifica-

3Although the effective masses of composite fermions are often given in terms of me, this formal-
ism is somewhat misleading because their properties should in principle be completely unrelated to
the bare electron mass [58].
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Figure 4.11: Expected and observed T 2
c versus η at d/` = 1.59. The solid black line

is a parabolic fit to the observed data points.
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tion. While that behavior is reasonable for noninteracting fermions, the entropy of

a composite fermion system at ν = 1
2

will include contributions from gauge fluctua-

tions that scale either as T 2/3 for the case of short-range interactions or as T lnT for

long-range Coulomb interactions (for example, see references [50] and [139]). Another

possibility for the discrepancy between the theoretical curve and experimental curve

is that our particular definition of Tc does not track precisely with the true location

of the phase boundary. Also, the value of mCF that Zou et al. uses might not be

appropriate for our particular double quantum-well system in the presence of a large

parallel magnetic field. As mentioned earlier, mCF can be sensitive to the effective

thickness of the quantum well and disorder, both of which might be modified by the

in-plane field. Finally, we note the possibility that the correlated phase is not fully

spin polarized at the phase boundary.

4.6 Conclusion

In this chapter, we studied the phase transition between the correlated and uncor-

related phases at νT = 1 using Coulomb drag. We found that the phase transition

becomes substantially broader when the Zeeman energy is large enough such that

both phases are fully spin polarized. This observation is consistent with two differ-

ent models of the phase boundary in which a mixture of correlated and uncorrelated

fluids exists during the transition. We also find evidence that the characteristic tem-

perature for interlayer correlations increases with Zeeman energy even though the

apparent charge gap seems to decrease. Such behavior can be qualitatively described

in a first-order model of the phase transition, although a quantitative understanding

for the phase boundary at finite temperature is lacking.



124

Chapter 5

Area Dependence of Interlayer
Tunneling at νT = 1

Having studied the phase transition between the uncorrelated and correlated phase

in a bilayer system, we now turn to studies of the correlated system itself. We

first consider the anomalously large and Josephson-like interlayer tunneling [103]. In

particular, we wish to learn about its spatial distribution across the νT = 1 region by

measuring the area dependence of the tunneling conductance.1

The enhanced tunneling at νT = 1 is thought to reflect the development of spon-

taneous interlayer quantum phase coherence among the electrons in the bilayer (for

example, see Refs. [6, 34, 40, 55, 56, 60, 90, 107, 123, 124]). In the exciton condensate

picture, each electron is bound to a correlation hole in the opposite layer, and there is

little energy penalty for the transfer of an electron from one layer to another. In this

chapter, we investigate the spatial distribution of the interlayer tunneling throughout

the νT = 1 system. We accomplish this by measuring the dependence of the tun-

neling conductance on the area and perimeter of the νT = 1 region. We thus find

evidence that tunneling is a bulk phenomenon. This finding might seem unsurprising,

but considerations of the Josephson-like tunneling in the clean limit would suggest

that tunneling currents should be restricted to a narrow region around the source

and drain contacts, in analogy with the same decay of the tunneling current in a

1This chapter contains work first presented in A. D. K. Finck, A. R. Champagne, J. P. Eisenstein,
L. N. Pfeiffer, and K. W. West, Phys. Rev. B 78, 075302 (2008). Copyright 2008 by the American
Physical Society.
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Josephson junction [31].

5.1 Simple Model of Tunneling

We begin with a simple model of tunneling, using the pseudospin picture. Recall that

the interlayer phase angle φ obeys the following Hamiltonian in the long wavelength

limit:

H =

∫
d2x

[
ρs
|∇φ|2

2
− ∆SAS

4π`2
cosφ+

β

2
|mz|2

]
. (5.1)

Here, ρs is the pseudospin stiffness, ∆SAS is the energy splitting between the symmet-

ric and antisymmetric states in the double-well potential by single particle tunneling,

and the third term is the renormalized capacitive energy [82, 107, 131]. Assuming the

validity of the Josephson relations, this capacitance term is proportional to (∂tφ)2.

One can derive an equation of motion for φ from this Hamiltonian. After restrict-

ing to the time-dependent case, one arrives at the following sine-Gordon equation:

sinφ = λ2
J

∂2φ

∂x2
(5.2)

In the limit of small φ (such that sinφ ≈ φ), this equation has exponential solutions

that decay over the characteristic length scale given by

λJ = 2`

√
πρs

∆SAS

. (5.3)

Estimates from mean-field theory (for example, see reference [60]) suggest that ρs ≈

0.5 K. The estimation of ∆SAS can be tricky due to its exponential dependence on

the thickness and height of the tunneling barrier. Disorder as well as thermal and

quantum fluctuations should also modify the values of these two parameters, but the

best approximations give λJ ≈ 1− 10 µm.

Next, we apply our model to a one-dimensional tunneling geometry with a sample

length of L, as depicted in figure 5.1. Here, current is injected into the top layer from

the left edge and withdrawn from the bottom layer at the left edge as well. In the
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small φ limit, the solutions to equation (5.2) are of the form ∼e−λJx. Thus, for large

samples in which L � λJ , one would expect that most of the tunneling would take

place within λJ of the left edge of the sample. The tunneling conductance should be

proportional to λJ rather than L and thus be insensitive to further increases in the

size of the sample.

This analysis can be made more sophisticated using the pseudospin-transfer torque

theory [92, 112], in which one considers a fully two-dimensional sample geometry and

accounts for the influence of the exciton condensate on the pseudospin degree of

freedom for electrons traveling along the edge of the sample. Ultimately, though, one

still expects that tunneling is confined to a small region along the perimeter of the

sample. The total tunneling conductance would approximately be proportional to the

perimeter of the sample instead of the system area due to relatively little tunneling

taking place within the bulk of the νT = 1 system.

! 

"JCurrent	
  in	
  

Current	
  out	
  

! 

L
Figure 5.1: Depiction of tunneling in a clean, one-dimensional sample at νT = 1. The
majority of the interlayer tunneling occurs within λJ of the left edge.

5.2 Area Tunneling Sample

To test these ideas, we seek to measure the area dependence of tunneling conductance

at νT = 1. We must induce νT = 1 regions of different sizes within the same device

to reduce systematic errors from sample variations. This is critical because tunneling
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conductance can vary dramatically even among samples from the same wafer due

to variations in the thickness of tunneling barrier. We accomplish this by studying

devices in which multiple top gates cover a single mesa. By applying a voltage bias

to a global back gate and to one of the top gates, we may create a section of the

bilayer at νT = 1. The remainder of the device remains in the uncorrelated state,

contributing negligible tunneling conductance to the overall signal. Thus, within a

single device we may create different sized regions of νT = 1 in situ and meaningfully

compare their individual interlayer tunneling conductances.

The first such device (sample 11-1-04.1K) can be seen in figure 5.2. It was

fabricated from a GaAs/AlGaAs wafer with a double quantum well (DQW) struc-

ture. The DQW comprises of two 18 nm GaAs quantum wells separated from a

10 nm Al0.9Ga0.1As barrier, such that the center-to-center separation of the 2DESs

in the quantum wells is d = 28 nm. As grown, the 2DESs each have a density

of n ≈ 5.5 × 1010 cm−2 and low temperature mobility of µ ≈ 1 × 106 cm2/Vs.

With standard photolithography techniques, we defined a mesa with a rectangular

300×200 µm2 central region and four arms extending to diffused NiAuGe ohmic con-

tacts. Each arm has both a top and bottom gate in order to implement the selective

depletion scheme and have independent contact to either (or neither) layer. A single

bottom gate can be used to tune the density in the bottom layer within the central

region. Four separate top gates with lengths of 100, 50, 20, and 10 µm each extend

over the 200 µm wide mesa. As mentioned above, these individual top gates allow us

to tune the density in the top layer under each gate in order to induce νT = 1 in a

localized region of the device.

When the top layer is kept at nominal density and a small (−2.59 V) bias is

applied to the bottom gate to match the lower layer density with the upper layer

density, one can see a tunneling resonance at zero magnetic field with a height of

G(0) ≈ 1 µS. Under these conditions the total tunneling area, which includes the

rectangular central region and the four arms, is approximately 126,000 µm2. This is

about twice the area of the standard 250× 250 µm2 tunneling square sample.
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Figure 5.2: Photograph of top side of Area Tunneling sample (11-1-04.1K). The mesa
is 200 µm wide and the four top gates are (respectively) 100, 50, 20, and 10 µm long.
A single back gate covers the central region of the mesa. The extent of this back gate
is indicated by the white dashed rectangle.
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5.2.1 Tunneling versus Area at B = 0

To test the device, we first measure tunneling conductance at zero magnetic field

and T = 60 mK. In this regime, each layer behaves as a Fermi liquid and interlayer

tunneling can be treated as a perturbation. As described in a previous chapter,

conservation of in-plane momentum and energy together dictate that tunneling at

zero interlayer bias is suppressed unless the electron densities in the two layers are

equal. This is illustrated in figure 5.3, in which we plot the zero bias tunneling

conductance G(0) versus top gate bias for each of the top gates. Here, a bias of

−15.18 V is applied to the back gate to reduce the bottom layer density from its

nominal value. A peak in the conductance occurs when the top layer density under

the swept gate matches that of the bottom layer, creating a balanced bilayer system.

Each peak sits on top of a background signal that comes from the rest of the

sample, which remains in an imbalanced state. Though imbalanced, the ungated

portions of the sample still shows a small tunneling conductance. By subtracting off

this offset (derived from the tunneling conductance at zero top gate bias), we can plot

the tunneling conductance from each top gated region versus top gate length in figure

5.3a. There is clearly a linear relationship between the two variables, signifying that

the tunneling conductance is proportional to area at zero field. The fitted line has a

small x-intercept of 3 ± 2 µm. Given that the top gates are situated 0.5 µm above

the bilayer system, it is expected that the top layer density might smoothly vary over

length scales of ∼1 µm at the edges of the gated regions. Consequently, the effective

area of the balanced bilayer system would be reduced from that of the gated region,

contributing to the observed x-intercept in figure 5.3b.

5.2.2 Tunneling versus Area at νT = 1

Having confirmed that the effective tunneling area at zero magnetic field matches

closely with the area of the lithographically defined regions, we now turn to tunneling

data taken at νT = 1. Below a critical interlayer separation (d/`)c, a narrow tunneling

resonance appears at zero interlayer bias. In this sample, (d/`)c ≈ 1.91 in the limit
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Figure 5.3: (a) Zero bias tunneling conductance G(0) versus top gate bias taken
at B = 0 and T = 60 mK and with an applied back gate bias of −15.18 V. Peaks
correspond, in order of decreasing height, to the 100, 50, 20, and 10 µm long top gates.
The traces are also identified by the corresponding symbol shown in the legend.
(b) Background subtracted peak heights from (a) versus top gate length. The line
fitted to these data has an x intercept of 3± 2 µm.
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of T → 0. Above this critical interlayer separation, we only observe incoherent

tunneling, which is suppressed at zero bias by the Coulomb pseudogap [27].

For a range of d/` and temperature, we apply a fixed bias to the back gate and

each of the top gates to create a region of νT = 1 and then measure the tunneling

conductance dI/dV versus interlayer bias. For a given d/` and temperature, this

results in four different tunneling traces, one for each top gate.

In order to make meaningful comparisons, we must take care that the back gate

and top gate biases are tuned so that the resulting correlated systems are at the same

total density (i.e., at the same d/`) and are density balanced. Such calibration at high

magnetic fields requires a different strategy than at B = 0. It has been empirically

found that the tunneling resonance remains centered at zero bias in spite of either

moderate deviations from total filling factor νT = 1 or small amounts of density

imbalance (that is, ν1 6= ν2) [13, 105]. This can be qualitatively explained by using the

pseudospin picture of the νT = 1 state to consider the linearly dispersing Goldstone

mode that is the origin of the zero bias tunneling resonance. Here, the Goldstone

mode is identified with the ability of the pseudospin vector to freely rotate around

the z-axis; this angle of rotation about the z-axis is the order parameter φ. Inducing

an imbalance by adjusting the top and back gate biases will cause the pseudospin

vectors of the electrons to tend to tilt above or beneath the x-y plane in order to

acquire a nonzero projection onto the z-axis, often denoted as 〈mz〉. A nonzero 〈mz〉

implies that a given electron is more likely to be in one layer or the other, consistent

with the density imbalance. However, the energy will still be independent of the

pseudospin vector’s angle φ in the x-y plane. Consequently, the Goldstone mode will

remain essentially massless and the tunneling resonance will still be located at zero

energy (i.e., at interlayer voltage V = 0).

We perform the necessary density calibration by adjusting the back gate and each

of the top gate biases so that G(0) versus B has a peak at the desired magnetic field.

To ensure density balance, further gate bias adjustments are made to perfect the

symmetry of the tunneling resonance shape dI/dV versus interlayer bias. We find

that there is a weak asymmetry of the tunneling resonance shape at νT = 1 when the
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bilayer is imbalanced. The origin of this asymmetry is not understood, but it may

result from residual incoherent tunneling for which imbalance induced asymmetry is

both expected and observed.

In figure 5.4, we show a characteristic set of the four tunneling resonances achieved

at d/` = 1.81 and various temperatures (T = 60 to 150 mK). Because incoherent

tunneling is suppressed at zero interlayer bias due to the Coulomb pseudogap [27],

the background tunneling from ungated regions of the sample are comparatively much

smaller than at zero magnetic field. Instead, the tunneling from the balanced νT = 1

regions is by far the most prominent feature in the observed measurement of dI/dV

versus interlayer bias. The exception is at higher temperatures, where the tunneling

peak begins to disappear. We see that at d/` = 1.81 and T = 175 mK, thermal

fluctuations have destroyed the interlayer coherence and no tunneling resonance is

observable.

We plot the height of the tunneling peaks versus top gate length in figure 5.5 for

a range of temperatures, all at d/` = 1.81. Once again, we find that the tunneling

conductance is proportional to top gate length. A linear fit to the data still results

in a positive x-intercept; for example, at T = 60 mK it is 3 ± 1 µm, similar to the

value at zero field. As noted in figure 5.5, this linear relation holds for a range of

temperatures. Indeed, we consistently find these results for a region near the phase

boundary, as illustrated in figure 5.6.

However, deep within the correlated phase (i.e., at low d/` and low temperature),

our data deviate from a simple linear relation between tunneling peak height and top

gate length. For example, in figure 5.7a we show tunneling traces taken at d/` = 1.70

and T = 60 mK. The relation between tunneling and top gate length now appears

to be sublinear, as shown in figure 5.7b. Furthermore, the tunneling resonance from

the 100 µm gate is clearly wider than the resonance from the 10 µm gate (FWHM

= 36 µV and 22 µV, respectively). We believe that this behavior is not intrinsic to

the νT = 1 state, but rather can be explained by the extrinsic effects of the finite

series resistance Rseries between the contacts and the νT = 1 region. Note that the

tunneling measurements presented in this chapter are two-terminal. Thus, the finite
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Figure 5.4: Tunneling spectra at d/` = 1.81 for various temperatures and all four top
gates. Gate lengths 100, 50, 20, and 10 µm; tallest to shortest in peak height.
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Figure 5.5: Peak height versus top gate length at d/` = 1.81 for T = 60, 85, and 125
mK.
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Figure 5.6: Phase diagram for area tunneling sample. The correlated νT = 1 phase
exists below the solid black line; above the line no tunneling resonance is observed at
zero interlayer bias. In the solid grey region, the tunneling conductance appears to
be proportional to top gate length. In the region below the dotted line, the tunneling
spectra are too distorted by series resistance to compare the tunneling data from the
various top gates.
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series resistance can distort the observed dI/dV versus V whenever the tunneling

conductance is large compared to 1/Rseries. In the regime of large tunneling, non-

negligible voltage drops occur across the series resistance and the interlayer voltage

across the tunneling junction significantly deviates from the applied voltage. There-

fore, the apparent tunneling conductance peak becomes shorter and broader than it

would be in the case of Rseries = 0.

This distortion of the observed tunneling peak becomes more prominent as the

tunneling conductance grows, and thus the data from the 100 µm top gate are more

severely affected by finite series resistance than the tunneling traces from the 10 µm

top gate. Therefore, we cannot meaningfully compare the various tunneling reso-

nances from the four gates at low d/` and low temperature. We instead limit our

attention to the range of d/` and temperature at which the four tunneling resonances

have the same width and thus are not distorted by series resistance. We plot this

region of parameter space in figure 5.6.

As the temperature is raised, the intrinsic tunneling conductance drops rapidly

and the series resistance is expected to decrease somewhat. The sample then re-

enters the regime where 1/Gtunneling � Rseries and the two-terminal resistance is

dominated by the tunneling resistance. For example, at d/` = 1.70 we observe that

series resistance appears to no longer distort the tunneling spectra at T ≥ 175 mK.

As illustrated in figures 5.7c and 5.7d, at T = 175 mK the tunneling resonances for

all four top gates have the same width and the relation between peak height and top

gate length becomes linear once more.

Although we find that the tunneling conductance at νT = 1 is proportional to

top gate length near the phase boundary, we cannot yet conclude that tunneling is

proportional to area because of the possibility that tunneling is somehow confined

to the mesa edge. In that situation, the tunneling conductance would also increase

linearly with top gate length. To rule this out, we must examine a second sample.
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Figure 5.7: (a) Tunneling spectra at d/` = 1.70 and T = 60 mK. (b) Peak height
versus top gate length from a). Line segments connect the data points, with no linear
fit performed. (c) Tunneling spectra at d/` = 1.70 and T = 175 mK. (d) Peak height
versus top gate length from c). A linear fit to the data is shown as well.
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5.3 Perimeter Tunneling Sample

In order to fully probe the perimeter dependence of tunneling, we next turn our

attention to a second device, sample 11-1-04.1L. This sample was created from the

same wafer as the previous sample. A photograph of this sample’s top side is shown in

figure 5.8. Like the area tunneling device, this sample has multiple top gates covering

a single mesa. However, the mesa now has two different widths: 100 µm and 200 µm.

Consequently, the top gates now define two different kinds of regions: two identical

200 µm by 50 µm rectangles and a single 100 µm by 100 µm square. These two types

of regions have identical areas (10,000 µm2) but different perimeters (600 µm versus

400 µm for the rectangles and square, respectively) and very different lengths along

the mesa edge (100 µm versus 200 µm).

5.3.1 Tunneling versus Perimeter at B = 0

As with the area tunneling sample, we first test the sample at zero magnetic field

by measuring the zero bias tunneling conductance G(0) versus top gate bias for each

of the gates. A representative sample of such data is shown in figure 5.9. A bias of

−17.08 V is applied to the back gate. The solid trace corresponds to the 100 µm by

100 µm square region and the dotted trace is obtained by sweeping one of the 200 µm

by 50 µm rectangles.

The tunneling resonance for the 100 µm square region is about 10 percent taller

and the width is 10 percent smaller than that in the 200 µm by 50 µm rectangle. The

origin of this discrepancy is not known precisely, but is likely due to differences in

density inhomogeneities. Such inhomogeneities might be caused by different length

scales of the fringe fields in the x and y directions, for example. Nonetheless, we can

account for this apparent difference in effective area by renormalizing the tunneling

data taken at νT = 1 by the ratio of the heights of the tunneling peaks at B = 0. We

determine this renormalization factor at each density (i.e., at each d/`) studied.
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Figure 5.8: Photograph of top side of Perimeter Tunneling sample. The central top
gate defines a 100 × 100 µm2 square region. The other two gates define identical
200 × 50 µm2 rectangular regions. A single back gate controls the density in the
bottom layer for all three tunneling regions. The extent of this back gate is indicated
by the white dashed rectangle.
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Figure 5.9: Zero bias tunneling conductance G(0) versus top gate bias taken at B = 0
and with an applied back gate bias of −17.08 V. Solid trace is 100 µm by 100 µm top
gate, dotted trace is 200 µm by 50 µm top gate.
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5.3.2 Tunneling versus Perimeter at νT = 1

After performing a calibration scheme identical to the one used for the area tunneling

sample, we measured the tunneling spectra for each of the gated regions for a range

of densities corresponding to 1.60 ≤ d/` ≤ 1.79 and temperatures from T = 60 to

300 mK. A sample of such traces (after renormalization) are shown in figure 5.10. We

focus on tunneling data taken from just one of the rectangular regions compared to

the single square region.

The renormalized traces for the two differently shaped νT = 1 regions are essen-

tially identical for a wide range of d/` and temperature. Thus, tunneling appears

to be proportional to area rather than perimeter, even reasonably deep within the

correlated regime.

It is important to note that we are able to use this sample to study tunneling far-

ther away from the phase boundary than was possible for the area tunneling sample.

There are two reasons for this. First, the bare tunneling matrix element appears to

be somewhat smaller in the perimeter tunneling sample than in the area tunneling

sample, leading to a diminished tunneling conductance overall. For example, 200 µm

by 50 µm rectangular region results in a zero field tunneling conductance G(0) = 60

nS in the perimeter tunneling sample versus G(0) = 130 nS in the area tunneling

sample. Consequently, the tunneling strength at νT = 1 is also lower and one can

perform two-terminal tunneling measurements at lower d/` before finite series resis-

tance significantly distorts the observed tunneling conductance.

Second, the two types of gated regions in the perimeter tunneling sample have

nearly the same tunneling conductance at νT = 1 and are identically affected by a

fixed amount of series resistance. Thus, although at lower d/` the two sets of tunneling

traces might be broadened by the finite series resistance, we expect that they will still

remain roughly equal to each other. We illustrate this in figure 5.11, in which finite

series resistance has distorted the tunneling spectra recorded at d/` = 1.60 and T = 60

mK. Raising the temperature to 75 mK causes the tunneling resonances to grow in

height and become narrower, indicating that the series resistance has lessened. For
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Figure 5.10: Tunneling conductance spectra at νT = 1 with d/` = 1.64 and T = 60 to
300 mK. The solid (black) trace corresponds to the 100 µm square tunneling region
and the dotted (red) trace to the 200 × 50 µm2 rectangular region. The dotted trace
has been multiplied by 1.086.
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the entire range of temperatures studied, the tunneling resonances for the square and

rectangular gates have essentially the same heights.

This is in contrast to the case in the area tunneling sample, in which the intrinsic

tunneling conductance will vary by an order of magnitude between the smallest and

largest νT = 1 regions. As mentioned in the previous section, the tunneling traces for

the 10 µm and 100 µm long regions will be qualitatively altered by finite series resis-

tance quite differently and the tunneling conductance will no longer be proportional

to top gate length.

5.4 Discussion

The results from the two samples described in this chapter provide strong evidence

that the tunneling conductance of the νT = 1 state is proportional to the system area,

at least for a regime near the phase boundary. The data from the perimeter tunneling

sample alone suggest that this conclusion is true even when relatively far away from

the phase boundary. Thus, it is likely that the Josephson-like tunneling at νT = 1 is

a bulk phenomenon and not confined to the edges of the sample.

5.4.1 Disorder

Although the experimental evidence presented in this chapter might conflict with

the expectation that tunneling should decay over the length scale of λJ ≈ 1 µm (as

shown in figure 5.12a), a likely solution is that the simple model of tunneling that was

presented earlier in the chapter is only appropriate in the limit of zero disorder. In

reality, our samples are quite disordered, with variations in density caused primarily

by inhomogeneity in the dopant layers. Such inhomogeneity leads to a disorder length

scale of approximately 100–200 nm, set by the separation between the dopant layers

and the 2DESs. Even the smallest νT = 1 region examined in this chapter has

dimensions much larger than this length. As depicted in figure 5.12b, such disorder

in the form of density inhomogeneity could break up the sample into some regions
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Figure 5.11: Tunneling conductance resonances dI/dV versus V (interlayer bias) at
νT = 1 with d/` = 1.60 and T = 60 to 300 mK. The solid (black) trace corresponds to
the 100 µm square tunneling region and the dotted (red) trace to the 200 × 50 µm2

rectangular region. The dotted trace has been multiplied by 1.088.
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that are at νT = 1 and some that are not. Thus, there could exist edges of νT = 1

fluid throughout the bulk of the sample, causing tunneling to scale linearly with area.

Strong	
  
disorder	
  

Weak	
  
disorder	
  

€ 

λJ

€ 

νT =1

€ 

νT ≠1

€ 

νT =1(a)	
   (b)	
  

Figure 5.12: (a) Possible distribution of tunneling current in the clean limit, with all
tunneling occurring within λJ of the left edge, at which the current leads are located.
(b) Possible distribution of tunneling current in a disordered sample, in which some
fraction of the bilayer is at νT = 1 and the remainder is not.

The important role that disorder could play in tunneling has been pointed out

by multiple authors [6, 18, 33, 40, 91, 107]. The exact mechanism by which disorder

reorganizes the tunneling current distribution is not fully known, though. Ultimately,

disorder nucleates charged merons, which are vortices in the order parameter φ. For

example, Fertig and Murthy [33] provide a model of disorder in which fluctuations in

the 2DES density lead to a complex network of channels and nodes throughout the

entire sample, in which the coherent νT = 1 exists. Tunneling occurs at the nodes

of the network, whose number are expected to be proportional to the sample area

in large, highly disordered regions. Eastham, Cooper, and Lee [18] expand on this

coherence network picture and describe how an emulsion of vortices-antivortices could

suppress the spatial decay of the tunneling current by at least an order of magnitude.

The disorder would effectively renormalize λJ to a value comparable to the dimensions

of the νT = 1 regions examined in this chapter. Much larger samples would have to be
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studied in order to observe the spatial decay of tunneling currents. We finally remark

that strong disorder is also consistent with the unusually large width of the tunneling

resonance [34] and the relatively small tunneling currents [112] that are observed

experimentally. The small disorder length scale also agrees with the coherence length

ξ = 0.2 µm derived from the decay of the tunneling resonance height with parallel

magnetic field [102].

5.4.2 Bulk Counterflow Currents?

One might ask how the tunneling currents can be distributed throughout the bulk

if charged excitations are confined to the edges due to the charge gap. Here, we

cannot directly measure ρxx for charged excitations in the νT = 1 regions due to our

inability to perform four-terminal measurements on the gated regions. Furthermore,

for the area tunneling sample we restrict our analysis to conditions close to the phase

boundary, where the quantum Hall state is not fully formed. However, the data

from the perimeter tunneling sample allow us to conclude that tunneling conductance

remains proportional to area rather than to perimeter for regions of parameter space

fairly deep within the correlated phase (down to d/` = 1.60 and T = 60 mK). A

Corbino sample constructed from the same wafer as the samples considered in this

chapter showed small conductivity of σxx ≈ 20− 30 nS for charged excitations under

similar temperatures and interlayer separation. This bulk conductivity is far smaller

than the 2500 nS of tunneling conductance observed under such conditions. This

suggests that tunneling currents occur within the bulk of the νT = 1 region despite

the low conductance for charged excitations.

One possibility is that tunneling currents are equivalent to spatially decaying coun-

terflow currents. Carried by neutral excitons, counterflow currents are conjectured

to be able to flow through the interior of the νT = 1 system, permitting tunneling

in the bulk. The existence of such bulk counterflow currents will be explored and

unambiguously demonstrated in the next chapter.
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5.5 Conclusion

In conclusion, we observe that the Josephson-like tunneling conductance is propor-

tional to the area of the νT = 1 system when near the phase boundary. This implies

that tunneling at νT = 1 is a bulk phenomenon in this regime. With one sample we

also find evidence for bulk tunneling deeper within the correlated phase. Our results

suggest that disorder plays a strong role in determining the spatial distribution of

interlayer tunneling at νT = 1.
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Chapter 6

Bulk Exciton Transport

While the previous chapter found evidence of tunneling occurring within the bulk of

the νT = 1 quantum Hall system, the analysis was mainly confined to regions of the

phase diagram near the boundary between the correlated and uncorrelated phases.

There, the interior of the bilayer system could remain relatively compressible with

respect to charged excitations. We next consider studies deep within the correlated

phase, where charge currents are highly suppressed and we find evidence of neutral

excitonic currents in the bulk.1

This chapter contains the central result of this thesis: counterflowing currents

may propagate through the bulk of the νT = 1 system, where charged excitations

are gapped out. These counterflow currents may carry energy through the insulating

interior without transporting charge and are identical to exciton currents. To un-

ambiguously detect the bulk exciton flow, we must resort to a Corbino geometry in

which there are two sets of electrical contacts that are separated from each other by

the bulk of the νT = 1 system. Thus, these two sets of contacts are not connected to

each other by charge-carrying edge currents, which could otherwise complicate mea-

surements of bulk exciton currents. We also must contend with the large interlayer

tunneling that is characteristic of the νT = 1 system and could greatly pollute our

results. These findings were first reported in reference [39].

1This chapter contains work that was first presented in A. D. K. Finck, J. P. Eisenstein, L. N. Pfeif-
fer, and K. W. West, Phys. Rev. Lett. 106, 236807 (2011). Copyright 2011 by the American Physical
Society.
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6.1 Theory of Exciton Currents at νT = 1

6.1.1 Previous Studies

Essentially all of the spectacular bilayer transport properties of νT = 1 can be linked

to the presence of neutral excitons that are condensed into a single state. The for-

mation of these phase-coherent excitons is thought to capture the essential physics of

the strong interlayer correlations at νT = 1 that lead to enhanced interlayer tunnel-

ing [103, 104], large Coulomb drag [67, 65, 120], and vanishing Hall resistance when

electrical currents are driven in opposite directions in the two layers (i.e., counter-

flow) [66, 121, 127]. These phenomena and the interlayer coherence that they imply

motivate the description of the νT = 1 QH state as a Bose-Einstein condensation of

excitons.

However, the evidence for exciton transport at νT = 1 has hitherto remained

indirect. Nearly all of the previous experiments of νT = 1 have employed samples

with the same topology as Hall bars. That is, they studied devices in which all of

the electrical contacts were along the same edge of a mesa. Thus, the contacts were

connected by topologically protected edge channels with gapless charged excitations

that are common to all quantum Hall systems. It is unclear if previous studies of

Hall bars were merely probing the transport properties of the charge-carrying edge

channels. Such samples cannot directly detect the flow of excitons in the bulk of the

νT = 1 system.

6.1.2 Hall Counterflow

For example, we consider the case of counterflow currents in a Hall bar sample at

νT = 1. Kellogg et al. [66] first found that when currents of equal magnitude

were directed in opposite directions within the two layers of a bilayer 2DES, the Hall

resistance Rxy of either layer vanished at low temperature and low d/`. Similar results

were reported by Tutuc et al. [121] using a bilayer hole system at νT = 1. Such

findings are consistent with exciton transport because excitons are charge neutral and
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should therefore feel no Lorentz force. Furthermore, both groups also found that the

longitudinal resistance Rxx was small, so that a näıve calculation of σxx seemed to

imply unusually large conductivity of exciton flow. This provided the first evidence

of the anticipated excitonic superfluidity [125, 30, 82, 80], in which the excitons flow

with vanishing dissipation.

As a side note, we should point out that in two dimensions true superfluidity is

thought to be impossible. The very act of driving current will cause the motion of

vortices in the order parameter, leading to dissipation [2]. Instead, it was anticipated

that the νT = 1 state should exhibit a power-law I−V curve for counterflow currents

[82, 1], in which the differential resistance vanishes at zero current. Beyond zero

current, resistance is expected to rise.

?	
  

Figure 6.1: Hall bar sample during a counterflow measurement. The arrows indicate
the possible flow pattern for charged currents in the edge channels as well as in the
external circuitry. The black dots are ohmic contacts.

However, the results the Hall bar studies are ultimately ambiguous about the

transport properties of the excitons themselves. For example, as depicted in figure

6.1, it is possible that charge currents are flowing through the edge channels during

a counterflow experiment. When an electrical current is injected into one layer at a

contact along the edge, it cannot enter the bulk because of the charged excitations are
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gapped out in the interior and thus have zero conductivity in the bulk. Instead, the

charge must continue to flow along the edge of the sample within the edge channels.

Charged quasiparticles can hop from one layer to the other at the edge by emitting

or absorbing an exciton (for example, see reference [112]), but charge conservation

requires that they cannot disappear altogether.

The charge currents in the edge channels during a counterflow measurement are

problematic for two reasons. First, measurements of dissipation in the form of longitu-

dinal voltage drops (that is, Rxx) might merely reflect the dissipation of the charged

quasiparticles rather than the excitons themselves. Like any other quantum Hall

state, charged quasiparticles at νT = 1 are expected to display activated dissipation

Rxx ∝ e−∆/2T that remains finite at nonzero temperature. This is in contrast to

the absolute absence of dissipation below a critical temperature in the limit of zero

current as expected in the case of two-dimensional superfluid. Indeed, measurements

of counterflow in Hall bars do find activated transport and no nonlinear behavior

[66, 121, 127]. Although this residual dissipation in counterflow has been explained

by invoking the influence of topological defects such as merons (for example, see ref-

erence [107, 33, 91]), the quasiparticle flow in the edge channels remains as another

possible source of resistance [112].

The second and more fundamental problem of charge currents at the edge is that

they prevent Hall bars from being able to directly detect bulk exciton flow. Since

excitons are neutral and not confined to the edges by the Lorentz force, they should

be able to carry energy through the interior of the νT = 1 system. However, it is not

immediately clear if they are free to do so in real samples. For example, weak layer-

antisymmetric disorder might pin exciton currents [19] or induce a pseudospin gauge-

glass state [98, 109] that could prevent the excitons from penetrating the interior of

the νT = 1 system. One cannot demonstrate this key property of exciton transport

using a Hall bar because the charged quasiparticles in the edge channels can also

carry energy between the various contacts without ever having to move through the

bulk.

While the observation of vanishing Hall resistance might suggest that counterflow
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currents are not confined to the edges of the sample, the charge currents depicted in

6.1 could also lead to the appearance of Rxy = 0. Following the argument that Kun

Yang gave to predict quantized Hall drag in bilayer QH states [129], driving a charge

current I through a edge channel in the lower layer will cause the electrochemical

potential of that edge channel to rise by an amount proportional to I. This reflects

the occupation of higher energy states in the compressible edge channel. In the case

of νT = 1, the rise in the electrochemical potential is given by ∆µL = h
e2
I. Because of

strong electron–electron repulsions, the electrons added to the lower layer will prevent

the occupation of the corresponding states in the upper layer. An electron added to

the upper layer must instead enter a state that is not directly above a filled state in the

lower layer. Because the Fermi energy of the lower layer has risen by ∆µL, this means

that the energy cost for adding an electron in the lower layer has risen by the same

amount. Thus, when current flows along the edge in one layer the electrochemical

potential for both layers rises by the same amount. Note that we did not have to

explicitly invoke a bulk exciton current to arrive at this result.

We next consider this phenomenon in the case of counterflowing currents within

a Hall bar. In figure 6.1, equal magnitude currents are flowing through two different

edges of the sample. Within a given layer, the electrochemical potential along either

edge will rise by the same amount: h
e2
I. For one of the edges, this rise in potential

will be due to charge flowing through the chosen layer. For the other edge, the rise is

because of charge flowing through the opposite layer. Thus, a measurement of Hall

voltage (i.e., the difference in electrochemical potential between the two edges along

a particular layer) will read zero.

In short, it seems possible that vanishing Hall resistance can be observed with

or without bulk exciton currents. Measurements of Hall bar samples are ultimately

unable to directly sense such exciton currents. In order to unambiguously demonstrate

exciton transport, one must drive counterflow currents through the interior of the

νT = 1 region, where charged excitations are gapped out. This requires an alternative

to the Hall bar topology.
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6.2 Description of Corbino Sample

In order to probe the bulk conductance of counterflow currents, we studied a bilayer

sample with a Corbino geometry. A photograph of this device (sample 7-12-99.1JJ) is

shown in figure 6.2a. This sample was fabricated from a wafer with the usual double

quantum well structure: two 18 nm wide GaAs quantum wells separated by a 10 nm

Al0.9Ga0.1As barrier. Each quantum well is populated with a 2DES with nominal

density n ≈ 5.5 × 1010 cm−2 per layer and low temperature mobility µ ≈ 1 × 106

cm2/Vs.

The sample is patterned into an annulus with inner diameter 1 mm and outer

diameter 1.4 mm. Due to the relatively large size of the device, great care was taken

during its fabrication in order to avoid any significant defects in the original GaAs

wafer that could short the two layers together. Six 100 µm wide arms extend from

the annulus to diffused NiAuGe contacts. There are four arms on the outer edge of

the annulus and two on the inner edge. Each arm is crossed by front and/or back

aluminum gates to implement the selective depletion technique. While each of the

outer arms has both a top and bottom depletion gate associated with it, the two

inner arms have either just a top depletion gate or just a bottom depletion gate. The

annulus itself is covered by a large top gate and has a bottom gate directly underneath

it. These two gates allow us to independently tune the 2DES densities in the upper

and lower layers within the annulus. We will confine ourselves to the case where the

two layers have equal densities.

In figure 6.2b we show a simplified picture of the sample, with the gates omitted.

Each ohmic contact is numbered. Contacts 1 through 4 are connected to the outer

edge of the annulus while contacts 5 and 6 are along the inner edge. We will refer to

this numbering scheme in circuit diagrams throughout this chapter.

In figure 6.3, we show measurements of interlayer tunneling conductance dI/dV

versus interlayer bias at zero magnetic field and T = 14 mK. Note we have subtracted

off from the recorded bias a small offset (20 µV) induced by the input of the current

preamp. Here, we show traces for two different densities: NT = 1.11 × 1010 cm−2
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Figure 6.2: (a) Photograph of top side of sample 7-12-99.1JJ. (b) Simplified diagram
of sample with labeled ohmic contacts. This labeling will be used throughout this
chapter.



155

(nominal density) and NT = 0.45 × 1010 cm−2 (corresponding to d/` = 1.49 at

νT = 1). Note that the peak tunneling conductance G(0) ≈ 1.5 µS is much larger

than seen in other samples made from the same GaAs/AlGaAs wafer. We attribute

this primarily to the large size of the device, which has 12 times the area of the usual

250 µm square samples. The sample is wired to a rotating sample mount, allowing

us to tilt the sample with respect to the magnetic field and introduce a field parallel

to either 2DES. This will permit us to suppress the νT = 1 tunneling current. We

will reveal below why this is vital for our counterflow measurements. It is important

to note that each wire is thermally sunk to the cold-finger of the dilution fridge using

an RC filters, with R = 10 kΩ and C = 500 pF. The resistors in the RC filters will

contribute to the series resistance in each measurement.
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Figure 6.3: Interlayer tunneling at zero magnetic field and T = 14 mK for total
density NT = 1.11×1011 cm−2 (solid black trace) and NT = 0.45×1011 cm−2 (dotted
red trace).
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6.3 Parallel Corbino Conductance

Corbino conductance2 σxx is a measure of the ability for charged excitations to travel

through the bulk of the bilayer system. In a single-layer system, σxx can be found by

inverting the resistivity matrix:

σxx =
ρxx

ρ2
xx + ρ2

xy

. (6.1)

In a classical 2DES, σxx can be severely reduced by a sizable ρxy because current

that is injected into an interior contact must circulate within the bulk multiple times

before it reaches the outer edge. Within the bulk of a standard quantum Hall state,

the Fermi energy lies within the energy gap separating two different bands of extended

states. Thus, there are no states near the Fermi energy that can transport charge

from one edge of the sample to the other. This implies that both ρxx = 0 and σxx = 0.

In a bilayer sample, one can consider both parallel Corbino conductance σ
||
xx and

counterflow Corbino conductance σCFxx . We first focus on parallel Corbino conduc-

tance, in which one drives currents within the same direction in the two layers from

one edge of the annulus to another. As depicted in 6.4a, we realize this current flow

pattern in our device by applying a small AC excitation voltage (20 µV at 13 Hz)

to an ohmic contact on the outer rim (for example, contact 1) and detecting the

current flowing to ground via a contact along the inner rim (contact 5). These two

ohmic contacts are connected to both layers at the same time while all other ohmic

contacts are fully disconnected from the annulus. The white triangle in the circuit di-

agram symbolizes a low impedance current preamp whose output is read by a lock-in

amplifier.

In figure 6.4b, we plot parallel Corbino conductance versus magnetic field while

the sample is near nominal density and T = 50 mK. Deep minima can be seen each

time the individual layers enter a quantum Hall state. Both integer and fractional

2We will use the symbol σxx to denote both conductance and conductivity. In reality, the Corbino
conductance is equal to the Corbino conductivity times the geometric factor 2π

ln (R2/R1)
, where R1

and R2 are respectively the inner and outer diameters of the annulus. In our device, this geometric
factor is approximately 18.7.
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QH states are visible. Nominal density corresponds to d/` = 2.34 at νT = 1, which

is well above the critical interlayer separation (d/`)c ≈ 1.8. Thus, no quantum Hall

state is observed at νT = 1 in figure 6.4b.

In figure 6.4c, the density has been lowered to NT = 0.45 × 1011 cm−2, which

corresponds to d/` = 1.49 at νT = 1. At this low d/` and low temperature (T = 25

mK), the νT = 1 quantum Hall state is well formed and is centered on B⊥ = 1.88 T.

As has been reported before by Tiemann et al. [117], parallel Corbino conductance

vanishes at νT = 1 because charged excitations are gapped out in the bulk. Note

that the minimum in σxx at νT = 1 is not as well developed as the minima associated

with integer QH states in the individual layers. This is consistent with the disparity

between the charge gaps for the relatively fragile νT = 1 QH state and the robust

integer states.

6.4 Tunneling and Counterflow with Zero Parallel

Field

While the νT = 1 QH state resembles single-layer QH states from the perspective of

parallel (i.e., charge) transport, its unique excitonic properties become apparent in

transport measurements that rely on contacting the two layers separately. In this sec-

tion, we will focus on tunneling and counterflow measurements of our Corbino sample

at zero tilt angle. In the absence of a parallel magnetic field, tunneling conductance

at νT = 1 is enormously enhanced beyond single particle tunneling. Strong inter-

layer tunneling complicates the interpretation of previous Corbino studies [117, 116]

by effectively shorting out the bulk counterflow path and lead to bilayer transport

anomalies that cannot directly demonstrate bulk counterflow currents. Here, we will

show how to overcome the tunneling problem by driving more current through the

sample than is allowed by interlayer tunneling [23, 117, 132]. This will permit us

to demonstrate bulk counterflow currents even in the presence of strong interlayer

tunneling.
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Figure 6.4: (a) Circuit for parallel Corbino conductance. We show the main annular
section of the sample as well as the external circuitry. (b) Parallel Corbino conduc-
tance at total density NT = 1.11 × 1011 cm−2 and T = 50 mK. This corresponds to
d/` = 2.34 at νT = 1. No quantum Hall state is observed at νT = 1. (c) Parallel
Corbino conductance at NT = 0.45× 1011 cm−2 and T = 25 mK.
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6.4.1 Two-Terminal Tunneling

We first consider two-terminal measurements of interlayer tunneling at νT = 1. We

employ the standard tunneling circuit, pictured in figure 6.5a. The two-terminal

I − V characteristics for tunneling are acquired by applying a bias to an ohmic

contact connected only to the top layer and measuring the current that exits from a

bottom layer contact. We denote this two-terminal bias as simply V . The interlayer

bias has both a DC and AC (usually 20 µV and 13 Hz) component. The differential

tunneling conductance for d/` = 1.49 and T = 25 mK is shown in figure 6.5b. The

DC tunneling current is simultaneously recorded and shown in figure 6.5c.

A number of important features can be seen in the two-terminal tunneling traces.

First, the differential tunneling conductance peak is dramatically wider than the

narrow tunneling resonance first reported [103] in bilayers at νT = 1. This is due

to the large series resistance, which is expected to distort the tunneling spectrum

whenever the resistance in series with the tunneling junction is large compared to

the tunneling resistance (for example, see reference [117]). Although a finite bias is

applied to the upper layer, nearly all of the voltage drop occurs along the 2DES leading

to the νT = 1 region rather than between the two layers at the tunnel junction. We

will demonstrate this later by considering four-terminal measurements of tunneling.

A second observation is that the tunneling conductance is highly nonlinear in

the region of −150 to 150 µV applied bias. One can see a clear dip in the two-

terminal conductance at zero bias. Such behavior will reappear in other conductance

measurements in this chapter. Thus, it is important to emphasize here that the dip is

not an intrinsic property of the νT = 1 state. Instead, the nonlinearity is associated

with the extrinsic series resistance between the contacts and the νT = 1 region.

When the tunneling resistance is small the two-terminal resistance in the tunneling

measurement should be dominated by this series resistance. The main contributors

of the series resistance are the portions of the bilayer system that lie at the interface

between the gated and ungated regions of the sample. In this interface, the electron

density in both layers varies between the nominal value and the reduced value in the
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νT = 1 region. For example, because the back gate is 50 µm away, its fringe fields

cause a density gradient in the bottom layer over a large region at the edge of the

gated area. Some parts of this region have a single-layer filling factor of less than one

but do not fall within the νT = 1 quantum Hall state; thus, they will lack an edge

channel. Consequently, their two-terminal conductance can be much less than e2/h.

Measurements of two-terminal conductance between two contacts that are connected

to the same layer and are along the same edge of the same layer reveal nearly the

same nonlinear behavior as seen in the two-terminal tunneling measurements. We will

examine the behavior and causes of this series resistance in greater detail in Section

6.7.

Finally, the DC tunneling current in figure 6.5c appears to change discontinuously

near applied bias V = −150 µV and V = 150 µV. This reflects an instability of the

composite I − V of the tunneling junction with finite series resistance [54].

6.4.2 Four-Terminal Tunneling

In a conventional four-terminal measurement, the influence of series resistance is

eliminated by directly measuring both the current and voltage drop associated with

the system of interest. For 2D to 2D tunneling, one might obtain the true I−V curve

by measuring both the tunneling current and the voltage difference between the two

layers. The circuit that we used to accomplish this for our Corbino sample is shown

in figure 6.6a. Voltage probes are on the same edge of the annulus as the current

leads. We plot the tunneling current I versus the detected interlayer voltage V4pt for

various temperatures in figure 6.6b.

First we focus on the T = 25 mK data. Just as in the case for previous studies

of strongly tunneling samples [116], we find that now the four-terminal I − V4pt trace

appears to closely resemble the two-terminal I − V traces measured using weakly

tunneling samples (for example, see reference [23] and [102]). More precisely, when

the applied bias falls within the range of −150 to 150 µV, the interlayer voltage V4pt

is nearly zero despite the large tunneling current flowing. Thus, as asserted earlier,
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Figure 6.5: (a) Circuit diagram for interlayer tunneling, using one contact connected
only to the top layer and a different contact connected only to the bottom layer. Here,
both contacts are both on the outer edge of the annulus. (b) Example of two-terminal
tunneling conductance and (c) tunneling current versus applied interlayer voltage at
d/` = 1.49, T = 25 mK, and tilt angle θ = 0. Note that these traces were taken using
contacts along the inner edge of the annulus.
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Figure 6.6: (a) Circuit diagram for four-terminal tunneling, employing four distinct
ohmic contacts. Two contacts act as current leads while the other two are used
as voltage probes. (b) Tunneling current versus 4-wire interlayer voltage at d/` =
1.49 and tilt angle θ = 0. The four curves were taken at (in decreasing tunneling
amplitude) T = 25, 100, 200, and 300 mK.
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nearly all of the voltage drops appear to occur along the series resistance. However,

one must take care in interpreting this kind of four-terminal data because they alone

do not specify where the tunneling is taking place within the sample. For example,

because additional voltage drops and tunneling currents might occur between the

current leads and the voltage probes [115], it is difficult to use the circuit in figure 6.6a

to determine the actual value of Rtunnel. It is conceivable that additional interlayer

voltage probes and a model of the system as a distributed circuit system could be

used to extract Rtunnel.

Also in figure 6.6b we plot individual data points, showing the nearly discontinu-

ous jump in V4pt as the tunneling current reaches its maximum amplitude Imax ≈ ±1.5

nA at an applied bias of V ≈ ±150 µV. This rapid change from zero V4pt to a finite

value is frequently seen in strongly tunneling bilayers [116] as well as in other resonant

tunneling junctions. It reflects a bistability that occurs whenever the intrinsic dI/dV

of the junction is both negative and larger in magnitude than the inverse of the series

resistance, 1/Rseries. Then there exist two different solutions for the current corre-

sponding to the same value of applied bias. This bistability was recently explained

in the context of νT = 1 bilayers by Hyart et al. in reference [54]. As temperature

increases and the tunneling conductance declines, the discontinuous behavior disap-

pears.

6.4.3 Hall Counterflow, Revisited

We briefly consider a counterflow measurement using our device in which all of the

contacts used are along the outer edge and thus connected by charge-carrying edge

channels. We denote this type of measurement as Hall counterflow to distinguish

it from Corbino counterflow, which will be described in detail later on. The circuit

diagram for Hall counterflow is pictured in figure 6.7a. Here, we apply a voltage V

to ohmic contact 1 (connected to the top layer), use an exterior 50 kΩ resistor as a

resistive shunt between the two layers using ohmic contacts 3 and 4, and then collect

the resulting current I1 using ohmic 2 while it is connected to the bottom layer. By
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measuring the voltage drop across the exterior shunt resistor, we will learn the current

going through the shunt (IS). This circuit mimics the one used by Kellogg et al. [65]

to implement counterflow within a Hall bar sample.

The I − V traces for Hall counterflow are shown in figure 6.7b. We plot both

the counterflow current I1 and shunt current IS versus the applied interlayer bias

V at d/` = 1.49 and T = 25 mK. We also plot the tunneling current ITunneling

obtained under the same conditions, but without the shunt resistor. As you can see,

for −150 µV <V< 150 µV, I1(V ) = ITunneling(V ) and IS = 0. Due to the vanishing

tunneling resistance, all of the injected current appears to be tunneling between the

two layers before being able to reach the shunt. Such results were also seen by Yoon et

al. [132] using a similar circuit in a Hall bar sample with strong interlayer tunneling.

For an applied interlayer bias |V | > 150 µV, the injected current exceeds the

maximum tunneling current at zero bias. The tunneling resistance is no longer van-

ishingly small, and an interlayer voltage begins to develop. This interlayer voltage

drives current through the shunt, and IS begins to grow as the applied bias is fur-

ther increased. Subsequently, the counterflow current I1 begins to diverge from the

tunneling current ITunneling acquired at the same applied interlayer bias. If one were

to calculate the sum IS + ITunneling (the results of which we do not show here), one

would find that it is nearly same as I1 for the whole range of applied bias, as expected

from current continuity.

Thus, for large enough bias it appears that counterflow currents are propagating

through the νT = 1 system in order to reach the shunt resistor. But where do these

counterflow currents travel? While counterflow currents may be carried by neutral

excitons residing in the bulk, all of the contacts in figure 6.7a are along the same rim of

the annulus and are connected by the edge channels. These edge channels might also

be carrying the current that passes through the shunt resistor. Thus, it is unclear if the

measurement depicted in figure 6.7 or any other counterflow measurement performed

in a Hall bar [66, 121, 127, 132] reflect bulk excitonic currents or the charge-carrying

edge channels. To distinguish between these two situations, one must perform a

counterflow measurement in which the current leads are not connected to the shunt
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Figure 6.7: (a) Circuit for Hall counterflow. All contacts are along the outer edge
of the annulus. (b) Hall counterflow measurement at d/` = 1.49, T = 25 mK, and
θ = 0. Only contacts along the outer edge are employed. The I−V trace for tunneling
Itunneling(V ) using the same currents leads (but no interlayer shunt) is also shown.
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resistor by the edge channels.

6.4.4 Corbino Counterflow

In our Corbino sample, ohmic contacts 5 and 6 are located along the inner edge of

the annulus. Subsequently, they are not connected by any edge channels to contacts

1 through 4, located on the outer edge. Any current traveling from the inner edge

to the outer edge (charged or neutral) must travel through the bulk. This allows

us to perform counterflow measurements in which the current leads are separated

from the shunt resistance by the bulk, where charged excitations are gapped out at

νT = 1. We denote this class of measurements as Corbino counterflow measurements.

Throughout the rest of this chapter, we will present Corbino counterflow data under

a variety of conditions in order to unambiguously demonstrate that excitons can flow

through the bulk of the νT = 1 system with relatively little dissipation.

The first and simplest example of a Corbino counterflow measurement is illustrated

in figure 6.8a. Here, we apply a voltage to ohmic contact 5 (located on the inner edge

and connected only to the top layer), provide a shunt between the two layers at the

outer edge using ohmic contact 2 (connected to both layers and left floating), and then

measure the resulting current I1 flowing from ohmic contact 6 (located on the inner

edge and connected to the bottom layer). If we could describe the bilayer system as

two independent layers, this configuration would drive current through the bulk of

the system in the top layer, through the shunt, and then back through the bulk in

the bottom layer.

In figure 6.8b, we plot the I − V trace for this Corbino counterflow measurement

at νT = 1 and compare it with a tunneling I − V trace obtained using contacts 5

and 6 under the same conditions but with no shunt. There measurements were taken

at d/` = 1.49 and T = 25 mK, where the νT = 1 QH state is well formed and the

bulk should permit few charged excitations. Just as in the case of Hall counterflow in

figure 6.7, the counterflow I1 and tunneling ITunneling curves coincide for |V | < 150 µV.

Outside of this region, the two curve diverge and the detected counterflow current
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Figure 6.8: (a) Circuit for Corbino counterflow measurement, with floated shunt.
Ohmic contact 2 is along the outer edge of the annulus while ohmic contacts 5 and 6
are along the inner edge. (b) Corbino counterflow measurement I1(V ) at d/` = 1.49,
T = 25 mK, and θ = 0. The I − V trace for tunneling Itunneling(V ) using the same
currents leads (but no interlayer shunt) is also shown.
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exceeds the maximum tunneling current.

The enhancement of I1 due to the inclusion of the shunt resistance between the two

layers seems to imply that counterflow currents are once again propagating through

the sample from the current leads to the shunt. But this time no edge channel connects

the current leads with the shunt resistance. What then accounts for the enhanced

current I1 at large bias? Due to the charge gap, one would expect that electrical

currents through the bulk between the current leads and the shunt should be highly

suppressed.

Instead, we assert that counterflow currents are propagating through the bulk in

the form of excitons rather than charged currents flowing independently in the two

layers. The flow of neutral excitons is unaffected by the large perpendicular magnetic

field and thus counterflow transport should have a large bulk conductivity σCFxx . In

fact, in the limit of zero current the excitons should ideally exhibit superfluidity and

have infinite conductance.

Although the data in figure 6.8b suggest that the presence of the shunt can dra-

matically change the I − V curve, it does not tell us the whole story of what is

occurring within the sample during counterflow. For example, we cannot yet rule out

the possibility that some unusual tunneling process allowed by the shunt is taking

place. Furthermore, it is unclear if the charge gap is not disrupted by the applied in-

terlayer bias. Indeed, we will show later on that parallel Corbino conductance σ
||
xx can

rise and become nonnegligible at a sufficiently large DC bias. Thus, it is conceivable

that charged excitations might still be flowing during the counterflow measurement

and explain our results instead.

To support the case of neutral exciton transport, we use a modification of the

Corbino counterflow circuit. This modified circuit is shown in figure 6.9a. Here, we

still drive current into the top layer at contact 5 and measure the current I1 flowing

from the bottom layer via contact 6. However, we now shunt the two layers together

at the opposite edge using an exterior 50 kΩ shunt resistor connected to the top

layer at contact 2 and to the bottom layer at contact 1. This exterior shunt resistor

is located outside of the dilution refrigerator and kept at room temperature. By
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measuring the voltage drop across the exterior shunt resistor, we can learn the actual

current going through the shunt. Also, we connect one end of the exterior shunt

resistor to the input of a current preamp, providing a low impedance (2 kΩ) path to

ground. The current preamp will report the current I2 that is flowing through this

alternative path to ground. If the enhanced counterflow currents are due to charged

excitations in its bulk, then one would expect this additional current preamp will

short-out the original preamp recording I1. That is, nearly all of the current flowing

through the shunt would leak to ground at the second current preamp, and very little

should return to the sample to complete the counterflow path, resulting in I1 ≈ 0.

In figure 6.9b, we show the results from this unusual counterflow circuit while

d/` = 1.49, T = 25 mK, and tilt angle θ = 0. We plot the three recorded currents

I1, I2, and IS along with the tunneling current that is observed while no shunt is

present. At low applied bias, the counterflow current I1 is identical to ITunneling and

both IS and I1 are zero. Once more, this is consistent with strong interlayer tunneling

preventing any current from reaching the shunt. At large bias, we see that I1 diverges

from the tunneling I − V . This is coincident with the shunt current IS beginning to

grow in magnitude. Thus, counterflow currents are propagating all the way through

the bulk of the νT = 1 system in order to deliver the energy that is dissipated across

the shunt resistance. Tunneling alone can not explain the large I1.

We also notice that the current I2 is much smaller than any of the other currents.

This result is quite remarkable; it implies that a relatively large amount of current is

flowing through the shunt yet most of it prefers to return to the sample to be detected

the I1 preamp. Even in the absence of a completely incompressible QH state, the

return path through the sample should have a much larger resistance than the input

impedance of the current preamplifier. Another unusual consequence of I2 = 0 is

that when a positive voltage is applied to contact 5, any current flowing through the

shunt resistance and past the grounding point provided by the current preamp would

require that contact 1 be at a negative voltage. We observe this behavior even when

the second current preamp is replaced by a simple physical connection to ground.

The small size of the current I2 leaking to ground from the shunt demonstrates
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Figure 6.9: (a) Circuit for Corbino counterflow measurement with exterior shunt
resistor. (b) Corbino counterflow measurement at d/` = 1.49, T = 25 mK, and θ = 0.
Current leads (I1) are on the inner edge and an exterior shunt resistor (IS) is placed
between the layers using contacts on the outer edge. One end of the exterior shunt
resistor is grounded using a current preamp (I2). The I − V trace for tunneling
Itunneling(V ) using the same currents leads (but no interlayer shunt) is also shown.
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that parallel currents are still suppressed within the νT = 1 system during the Corbino

counterflow measurement. In order to allow I2 6= 0, net charge would have to flow

from one edge of the annulus to another. That would require parallel currents to

transport the charge across the bulk. However, only counterflow currents are allowed

in the bulk of the νT = 1 state. This is an important point to emphasize, because one

might suggest that during the counterflow measurement there are certain regions in

the bulk where more current is flowing in the top layer than in the bottom layer and

that there are other regions where the reverse is true. In this scenario, one would only

require that the total current flowing through the top layer be equal in magnitude to

the total current flowing through the bottom layer. Such a hypothesis permits there

to be charged excitations in the bulk of the sample that are localized in one layer

or another. However, such charged excitations requires the presence of bulk parallel

currents. As we have shown, those parallel currents are still suppressed during the

counterflow measurement. Everywhere within the bulk the current in the top layer

must be equal in magnitude and opposite in direction as the current in the bottom

layer. Therefore, figure 6.9b demonstrates that counterflow currents can carry energy

through the bulk of the νT = 1 annulus without a net transfer of charge. These two

characteristics are key properties of exciton flow.

6.5 Transport in a Tilted Magnetic Field

The results in the previous section provide strong evidence for bulk exciton transport.

However, even at finite interlayer voltage (that is, V4pt 6= 0) the tunneling current is

still considerable. One might ask what sort of role tunneling might play during the

Corbino counterflow measurements. Fortunately, we can strongly suppress the coher-

ent tunneling at νT = 1 by applying a moderate in-plane magnetic field [104]. In this

section, we will describe transport measurements of our Corbino sample in a tilted

magnetic field. We will discuss how this tilted field can influence tunneling (both co-

herent and incoherent) and the charge gap at νT = 1. Here, coherent tunneling refers

to the Josephson-like tunneling associated with phase-coherent excitons and reflects
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a linearly-dispersing Goldstone mode. This mode is generated by the spontaneously

broken U(1) symmetry of the excitons. Meanwhile, incoherent tunneling is the hop-

ping of charged quasiparticles between the two layers. Such tunneling can take place

in the absence of any interlayer correlations and is typically much weaker than the

coherent tunneling at νT = 1 and low d/`. We will focus on transport studies at the

tilt angle θ = 28◦, where interlayer tunneling is insignificant but the charge gap is not

aversely affected by the orbital effects induced by an in-plane magnetic field. Under

these conditions, we can unambiguously observe large counterflow currents with lit-

tle charge transport, thus clearly demonstrating exciton transport in the bulk of the

νT = 1 QH state.

6.5.1 Tunneling versus θ

By tilting the sample at an angle θ with respect to the magnetic field, we introduce a

in-plane magnetic field B|| that is parallel to the bilayer system. Assume for now that

this in-plane field is in the y direction and we choose to express its vector potential

in the Landau gauge, such that ~A|| = zB||x̂. If we also include the perpendicular

magnetic field with a Landau gauge, the canonical momentum in the x direction is

thus PX = h̄kx + ezB||/c − eyB⊥/c. Thus, there is a shift in canonical momentum

between the two layers equal to edB||/c. This shift will not affect purely in-plane

motion, but it can influence electrons moving from one layer to another.

In the limit of small B||, most of the transport properties at νT = 1 such as

Hall drag [67, 38] are not qualitatively altered.3 However, the coherent interlayer

tunneling that is linked to phase-coherent excitons can be strongly influenced by a

relatively small B||. With respect to interlayer charge transport, the parallel field

provides a wave vector q = eB||d/h̄c, where d is the interlayer separation. In a

semiclassical picture, this wave vector corresponds to the displacement in canonical

momentum between the two quantum wells due to the vector potential of the in-

plane magnetic field [53]. Loosely speaking, electrons tunneling from one layer to

3More precisely, when both `|| ≡
√
h̄/eB|| is much larger than the quantum well width and the

Zeeman energy is not significantly increased.
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another will then access the collective Goldstone mode at finite q vector. In the

absence of a parallel field, tunneling electrons will probe the linearly dispersing mode

at q = 0. Because the mode is gapless in the limit of zero bare tunneling energy,

the tunneling resonance will occur at zero energy and thus zero interlayer bias. But

as B|| becomes nonzero, the tunneling peak should split into two peaks located at

finite bias eV = ±h̄ω(q), where h̄ω(q) is the energy associated with the Goldstone

mode [6, 107, 40]. In the low wave-length limit, h̄ω(q) = h̄c̄q ∝ B||, where c̄ is the

velocity of the linearly dispersive mode. This prediction was confirmed by Spielman

et al. [104], who observed the appearance of side resonances in the tunneling spectra

when an in-plane field was applied. Meanwhile, in the absence of disorder the central

peak should become suppressed as the Goldstone mode is no longer accessible at

q = 0. Spielman et al. did see the central peak at zero bias decrease in height as they

introduced an in-plane field, but the decline was much slower than expected, most

likely due to disorder [102].

We now comment on the coherent νT = 1 interlayer tunneling that we observe in

our sample in the presence of a parallel magnetic field. The two-terminal differential

tunneling conductance for various tilt angles are plotted in figure 6.10. The zero

bias conductance becomes suppressed as the tilt angle is increased, as expected. The

incoherent tunneling persists at this moderate in-plane field, as explained later on in

this section. One can also see the side resonances in tunneling dI/dV at finite bias

that were first observed by Spielman et al. [104]. As expected, the side resonances

move out to higher bias as the parallel field is increased.

Figure 6.10 also indicates that the zero bias tunneling resonance appears to be-

come narrower in our two-terminal measurement as the tilt angle is increased. This

can be understood in terms of the finite series resistance Rseries. In the limit of van-

ishing tunneling resistance, when a bias is applied nearly all of the voltage drops are

occurring along the series resistance. Thus, the two-terminal voltage width of the

zero bias tunneling resonance is given by ∆V = 2ImaxRseries, where Imax is the maxi-

mum tunneling current that can flow at zero interlayer voltage. As both the intrinsic

νT = 1 tunneling conductance and Imax become reduced by the parallel field, the
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Figure 6.10: Interlayer tunneling conductance at d/` = 1.49 and T = 25 mK for
various tilt angles.
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two-terminal voltage width of the resonance decreases. The role of series resistance

in determining the apparent width diminishes and other factors such as noise, thermal

fluctuations, disorder, and the magnitude of the AC excitations (20 µV in this case)

become relevant. This is why the width of the resonance saturates to a small value

at high tilt angle in figure 6.10b.

As a side note, we point out that a large B|| can also reduce the incoherent

interlayer tunneling, which is not associated with the interlayer correlations present

at νT = 1. This can be illustrated by measuring tunneling at high temperature, where

the coherent tunneling is negligible and only incoherent tunneling remains. We plot

the tunneling current as a function of applied interlayer bias for four different tilt

angles in figure 6.11. For each measurement, T = 600 mK and d/` = 1.49. Under

these conditions, we observe that the zero bias νT = 1 tunneling feature is essentially

gone. Each tunneling I−V has a maximum current I+ at positive interlayer bias and

a minimum current I− at negative bias. To characterize the strength of tunneling in

the presence of B||, we compute the average peak tunneling Iavg = 1
2
(I+ + |I−|) and

plot the results versus tan θ. We focus on Iavg to reduce systematic errors stemming

from preamp offsets and any interlayer asymmetries within the bilayer sample.

The average peak tunneling should be proportional to the square of the symmetric-

antisymmetric tunneling splitting ∆SAS. The tunneling splitting is reduced because

the wave function overlap between sets of states in different layers and equal in-

plane wave vector is reduced by the parallel magnetic field. Recall that in a large

perpendicular magnetic field one can choose a gauge for the vector potential in which

the wave functions are extended plane waves in the x direction and localized Gaussians

in the y direction. Without an in-plane field each Gaussian is localized at the guiding

center y0 = `2kx, where kx is the wave vector in the x direction. We next consider the

effect of an in-plane magnetic field, neglecting the finite thickness of the 2DESs. If

an in-plane field is applied in the y direction, one must replace kx in the Hamiltonian

with the expression kx+ezB||/h̄c. Thus, states in two different layers that correspond

to the same guiding center y0 will differ in kx by an amount equal to q = edB||/h̄c.

Because kx still commutes with the Hamiltonian and must represent a conserved
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quantity, an electron in one layer must tunnel into another state that is shifted in

the y direction by ∆y0 = `2q. This displacement causes the overlap between the two

states’ wave functions to decrease as B|| grows. The tunneling splitting is proportional

to this wave function overlap and, as shown by Hu and MacDonald [53], this will lead

to the equation

Iavg(θ) = I0 exp

[
1

2

(
d

`
tan θ

)2
]
, (6.2)

where we define I0 ≡ Iavg at θ = 0. We see that there is good agreement between ex-

periment and equation (6.2). While only a small parallel field is sufficient to suppress

coherent νT = 1 tunneling (B|| ≈ 0.1 T is required to reduce the coherent tunneling

by half [102]), a much larger parallel field (∼1.4 T for d/` = 1.49) is needed to shrink

the incoherent tunneling by the same fraction. However, because the incoherent tun-

neling is orders of magnitude smaller than the coherent tunneling at B|| = 0, we can

ignore its effects on counterflow measurements.

6.5.2 Parallel Corbino Conductance versus θ

Bulk exciton transport is most clearly observed when charged currents are fully sup-

pressed in the interior of the νT = 1 system. However, there are situations in which

the gap to charged excitations can be overcome. We illustrate this using measure-

ments of parallel Corbino conductance versus applied bias at d/` = 1.49, T = 25 mK,

and different tilt angles, shown in figure 6.12. The DC current is shown in panel (a)

while the differential conductance is plotted in panel (b). It is immediately obvious

that parallel Corbino conductance grows and becomes nonnegligible at large enough

voltage. This rise in bulk conductance may be caused by a number of factors. For

example, the large electric field from the applied bias can tilt the Landau levels in

space. At sufficiently high bias, this deformation of the Landau levels can allow elec-

trons to jump into excited states that are too high in energy to access at low bias,

as shown in figure 6.13. This interband tunneling is known as Zener tunneling [136]

and is akin to the process by which dielectrics break down and become conducting

under large electric fields. The excited states extend across the bulk and permit
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Figure 6.11: (a) Interlayer tunneling current at d/` = 1.49 and T = 600 mK for vari-
ous tilt angles. (b) Average of peak tunneling versus tan θ, compared with expected
curve.
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conductance from one edge to another. A alternative explanation is that as both the

applied voltage and current increase, the electrons are heated out of equilibrium. The

rise in thermal fluctuations leads to the population of the extended excited states in

the bulk. Regardless of the origins of this effect, during counterflow measurements

one must remain at small bias; otherwise, one might induce charge currents that will

pollute the exciton transport data.

Furthermore, figure 6.12 reveals that tilting the device with respect to the mag-

netic field can increase parallel Corbino conductance. This is consistent with orbital

effects diminishing the charge gap [38], which were examined in greater detail within

chapter 4. Thus, one should not tilt the sample too much or the charge gap will

be compromised. Fortunately, it appears that tilt angle θ = 28◦ appears to have

little effect on parallel Corbino conductance. As seen in figure 6.10b, this tilt angle

is sufficiently large to suppress interlayer tunneling conductance to less than 1 µS.

Therefore, we will focus on transport measurements taken at θ = 28◦.

6.5.3 Corbino Counterflow at θ = 28◦

At θ = 28◦, we repeat the Corbino counterflow measurement while using a single,

floated ohmic contact as the shunt. We employ the same circuit as depicted in figure

6.8a. However, now the interlayer tunneling has been greatly weakened by the ∼1 T

parallel field and thus should play little role in our counterflow measurement. Once

again, we perform our measurements at d/` = 1.49 and T = 25 mK, where the νT = 1

QH state is well formed and charged excitations are strongly suppressed in the bulk.

The I −V for Corbino counterflow under these conditions is shown as the solid black

trace in figure 6.14. We also plot the I − V curve for tunneling, recorded under the

same conditions but with no interlayer shunt. The counterflow current clearly exceeds

the tunneling current for the whole range of applied bias. Thus, it appears that large

counterflow currents do not rely on the presence of interlayer tunneling. Also, the

counterflow I−V curve has the same nonlinear behavior as the two-terminal tunneling

trace at zero tilt angle. Once again, this behavior is due to the series resistance of
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Figure 6.12: (a) DC current and (b) differential conductance versus DC bias for
parallel Corbino measurement at d/` = 1.49 and T = 25 mK.
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Figure 6.13: (a) Energy diagram of Landau levels when no voltage bias V is applied
across the bulk of the device. The left and right sides of the diagram are two distinct
edges of the system. Due to the charge gap, electrons cannot travel through the bulk
to go from one edge to another. (b) Energy diagram when a bias V is applied across
the sample. The Landau levels become tilted in space due to the resulting electric
field. Electrons at the left edge can tunnel into a higher Landau level and then cross
the bulk to the other edge.
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the arms leading to the νT = 1 state. We will later demonstrate that during this

bulk counterflow measurement the extrinsic series resistance dominates the two-point

conductance. The excitons themselves appear to flow with very little dissipation.
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Figure 6.14: Corbino counterflow (black) at d/` = 1.49, T = 25 mK, and θ =
28◦. Compare with tunneling current (red trace) and the expected charge current at
equivalent bias (dotted blue trace). The inset depicts the circuit used for the Corbino
counterflow measurement.

We can also compare the Corbino counterflow trace in figure 6.14 with the expected

I − V for charged excitations traveling along the same counterflow route through

the bulk, denoted as Icharge(V ). To estimate Icharge(V ), we make use of the I −

V obtained in the parallel Corbino measurement under identical d/`, temperature,

and tilt angle (shown in figure 6.12a). We first assume that the parallel Corbino

measurement reflects the transport properties of charge through two individual layers,

with each layer carrying half of the total current. Thus, if I||(V ) is the I − V for the

parallel Corbino measurement, then each layer carries a current IU,L(V ) = 1
2
I||(V ) for
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a particular DC bias. This gives us the I−V for charged excitations flowing through

just one layer. In a counterflow measurement with two independent layers, one would

expect that the I − V for charge transport should be modeled by the two layers

connected in series. This would require Icharge(V ) = IU(VL) = IU(VL), where VU,L is

the voltage drop across a given layer and V = VU + VL representing the total applied

voltage. Invoking symmetry between the two layers, we can write VU = VL = 1
2
V .

This results in the equation

Icharge(V ) =
1

2
I||

(
1

2
V

)
. (6.3)

In figure 6.14, we plot Icharge(V ) as a dotted line. It is clearly negligible for the bias

range |V | < 300 µV. Therefore, the enhanced counterflow current likely comes neither

from tunneling nor charge transport in the individual layers.

6.5.4 Expanded Corbino Counterflow

We now turn to the expanded Corbino counterflow measurement performed at tilt

angle θ = 28◦. As a reminder, the circuit diagram for this measurement is shown in

the inset of figure 6.15. Just like the measurement at θ = 0, we use an exterior shunt

resistor and directly measure the current IS going through the shunt. Once again,

the shunt resistor is grounded via a second current preamp. We denote the current

detected by this second preamp as I2. For now, we restrict ourselves to the case of

d/` = 1.49 and T = 25 mK.

We plot the three currents I1, I2, and IS in figure 6.15. We can see that I1 is

essentially the same value as IS. Thus, the current I1 reflects only the counterflow

currents that propagate through the bulk of the νT = 1 system to reach the shunt.

This bolsters the view that tunneling plays practically no role in the large I1 that we

observe. In addition, I2 is still nearly zero despite the large current going through

the shunt. This allows us to conclude that still very little net current is flowing from

one edge of the annulus to the other and that charged excitations are still suppressed

during the counterflow measurement. Figure 6.15 constitutes the central finding of
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Figure 6.15: Expanded Corbino counterflow with grounded shunt at d/` = 1.49,
T = 25 mK, and θ = 28◦. Inset depicts counterflow circuit.
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this thesis: counterflow currents can travel through the bulk of the νT = 1 system

even while charged excitations are forbidden. These counterflow currents transport

energy without carrying charge and thus are naturally interpreted within the exciton

picture as being equivalent to excitonic currents.

6.6 Corbino Counterflow with Weaker Interlayer

Correlations

Up until now, we have focused on data collected at low d/` and low temperature,

where the νT = 1 QH state is fully formed. In this section, we examine a variety of

situations where interlayer correlations have been weakened by elevated temperature

or higher d/`. Under these conditions, we find that the remarkable signatures of exci-

ton transport are less prominent and gradually replaced by the transport properties

of two independent 2DESs. In the fully compressible phase existing at either high

temperature or high d/`, our observed counterflow transport data can be explained

entirely in terms of charge currents flowing through two individual layers.

6.6.1 Elevated Temperature

Thermal fluctuations destroy the correlated state at νT = 1, as evidenced by the dis-

appearance of its Josephson-like tunneling with temperature [12]. Here, we consider

how Corbino counterflow measurements evolve as temperature is increased. Through

comparisons with parallel Corbino conductance data, we will show how exciton trans-

port fades with temperature.

We first show a set of Corbino counterflow data in figure 6.16a. Here we plot

the temperature dependence of differential conductance for Corbino counterflow at

d/` = 1.49 and θ = 28◦. For this set of traces, the shunt between the two layers

is a single, floating ohmic contact. At low temperature (for example, T = 25 mK),

the two-terminal conductance is strongly dependent on bias, reflecting the nonohmic

series resistance. At zero bias and 25 mK, the conductance obtains the minimum value
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of 2 µS. If excitons were dissipationless, this suggests that each arm would contribute

125 kΩ of series resistance under these conditions. Independent measurements of

series resistance will bolster this assumption. As a finite bias is applied, the resistance

per arm first rapidly declines to 36 kΩ and then slowly increases again. A hint of

the coherent tunneling peak can also be seen, manifested as a small bump in the

conductance at zero interlayer bias.

As the temperature rises, the nonlinearity in conductance goes away and is absent

above 100 mK. But at high bias (|V | > 100 µV), the Corbino counterflow conduc-

tance monotonically declines with temperature. This is consistent with the thermal

disruption of interlayer correlations required by exciton transport. Counterflow cur-

rents then begin to be carried by charged excitations instead, which are deflected by

the strong perpendicular magnetic field.

For example, consider the Corbino counterflow trace obtained at T = 274 mK. In

figure 6.17, we plot the observed counterflow current along with the expected charge

transport trace, derived using equation (6.3). The two traces are practically identical,

indicating that at this high temperature exciton transport is nearly absent and the

two layers act independently of each other.

In a second set of Corbino counterflow traces (figure 6.18), the shunt is an exterior

shunt resistor with one end grounded by a current preamp. Consequently, counterflow

current (as detected by the current preamp recording I1) falls to zero because σ
||
xx is

becoming finite and is permitting the current preamp recording I2 to essentially short

out the other current preamp. For comparison, we show parallel Corbino conductance

for multiple temperatures at d/` = 1.49 in figure 6.19. The rapid drop in counterflow

current in figure 6.18 between T = 48 and 94 mK is coincident with a sharp rise in

parallel Corbino conductance during that same temperature range.

To better illustrate how signatures of exciton transport disappear at elevated

temperature, we calculate the difference between the observed Corbino counterflow

current ICF (V ) and the expected charge transport Icharge(V ) for a given bias V . We

will focus on the case where the shunt is left floated and effective interlayer separation

d/` = 1.49. We limit ourselves to θ = 28◦ so that we can ignore tunneling. The
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Figure 6.16: Corbino counterflow (a) conductance and (b) DC current at d/` = 1.49
and θ = 28◦. As depicted in the inset of (a), the shunt resistance is provided by a
single, floating ohmic contact.
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Figure 6.17: Solid black trace: Corbino counterflow I − V for d/` = 1.49, T = 274
mK, and θ = 28◦. The dotted blue trace is the expected I−V for charged excitations,
as determined from a parallel Corbino measurement under the same conditions using
equation (6.3.
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Figure 6.18: Corbino counterflow (a) conductance and (b) DC current at d/` = 1.49
and θ = 28◦. Here, the shunt resistance is provided by an exterior 50 kΩ resistor that
is grounded at one end by a current preamp.
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Figure 6.19: (a) Parallel Corbino conductance and (b) Parallel Corbino current versus
applied DC bias at d/` = 1.49, θ = 28◦, and multiple temperatures.
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Corbino counterflow current was recorded under the same conditions as shown in

figure 6.16. We will use equation (6.3) and the data in figure 6.19b to determine

Icharge. We plot the difference ∆I(V ) ≡ ICF (V ) − Icharge(V ) versus V for various

temperatures in figure 6.20. Note that ∆I is positive even at moderate temperature,

when charge current is not fully suppressed. It becomes negative at T = 274 mK

likely because the series resistance during the counterflow measurement is somewhat

larger than in the parallel flow measurement from which Icharge(V ) is calculated. In

the counterflow measurement, an interlayer voltage is present due to the applied bias.

Because of the capacitive coupling between the two layers, this interlayer voltage will

induce a transfer of charge density from one layer to another. The layer with reduced

density will experience an increase in resistivity while the other layer will generally

have a nearly unchanged resistance. The total resistance for current traveling through

the bilayer system will ultimately increase. This effect is not present in the parallel

flow measurement.

We close our discussion of finite temperature effects on exciton transport by com-

menting on interlayer tunneling at θ = 28◦. In figure 6.21 we plot the tunneling

conductance versus interlayer bias for T = 25 to 274 mK. Interestingly, the height of

the zero bias tunneling peak declines with temperature at approximately the same

rate as ∆I. It is difficult to interpret the meaning of this similarity because the pre-

cise origin of the tunneling peak while at large B|| is not known. Nonetheless, the

persistence of the νT = 1 tunneling peak suggests that stationary, long-range phase

coherence is not completely destroyed by the sizable B|| or thermal fluctuations. This

might also be reflected in the gradual decline of ∆I with temperature.

6.6.2 Higher d/`

Although we have only considered measurements at the low effective interlayer separa-

tion of d/` = 1.49, we emphasize that signatures of excitonic transport are still visible

in counterflow at higher d/`. For example, in figure 6.22 we compare the Corbino

counterflow I − V at d/` = 1.61 and T = 25 mK with the expected charge transport
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Figure 6.20: Difference between counterflow current and expected current from par-
allel transport for various temperatures. d/` = 1.49 and θ = 28◦.
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Figure 6.21: Tunneling conductance versus interlayer bias for various temperatures.
d/` = 1.49 and θ = 28◦.
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Icharge(V ) derived from parallel Corbino conductance measurements under the same

conditions. Even when charged excitations are not fully gapped out, we observe that

the counterflow current is still larger than expected from parallel conductance. Thus,

at this moderate d/` we can still detect evidence for exciton currents at νT = 1. We

also note that the counterflow I−V curve at d/` = 1.61 has less pronounced nonlinear

behavior near zero bias than does the same curve at d/` = 1.49. The 2DES density

is larger at higher d/` and the bilayer system generally has higher mobility than at

lower d/`. This will tend to lead to a smaller longitudinal resistivity in the portions

of the sample leading to the νT = 1 region.
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Figure 6.22: Solid black trace: Corbino counterflow (floated shunt) I − V for d/` =
1.61, T = 25 mK, and θ = 28◦. Dotted, blue trace: predicted charge transport I−V ,
based on parallel Corbino conductance measured under the same conditions.

However, if d/` is raised above the critical interlayer separation of d/` ≈ 1.8, then

interlayer correlations disappear and the two layers act independently of one another.
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We illustrate this in figure 6.23. Here, we compare observed Corbino counterflow

with charge transport at d/` = 2.34, which is far from the phase boundary. The

two curves are essentially the same, indicating that counterflow currents and parallel

currents have the same bulk conductance at this high d/`. This is consistent with

other transport measurements such as tunneling [103, 12] and Hall drag [65, 38],

which show no excitonic anomalies at this d/`. Instead, transport measurements

reflect two compressible and essentially uncorrelated CF metals, both at half Landau

filling factor.
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Figure 6.23: Solid, black trace: Corbino counterflow (floated shunt) I − V for d/` =
2.34, T = 50 mK, and θ = 0. Dotted, blue trace: predicted charge transport I − V ,
based on parallel Corbino conductance measured under same conditions.
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6.6.3 Transport at νT = 2

For the sake of completeness, we consider the bilayer system at νT = 2. The system

is not expected to exhibit any interlayer correlations. Instead, it should be described

as two independent ν = 1 QH states. We affirm this in our Corbino sample by tuning

the total density to NT = 0.45 × 1011 cm−2 and adjusting the perpendicular field to

produce νT = 2. We then repeated the Corbino counterflow measurement at T = 25

mK and θ = 28◦ at this total filling factor. We used a single floating ohmic as the

interlayer shunt. In figure 6.24, one can see that the Corbino counterflow conductance

is highly suppressed at νT and is essentially the same as the tunneling conductance.

Practically no current is reaching the shunt due to the very large charge gap in each

ν = 1 layer.

8
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dI
/d

V
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 Tunneling

Figure 6.24: Corbino counterflow conductance (solid black trace) and tunneling (dot-
ted red trace) for νT = 2 at total density NT = 0.45 × 1011 cm−2. T = 25 mK and
θ = 28◦. Note that this density corresponds with d/` = 1.49 at νT = 1.
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6.7 Series Resistance

The Corbino counterflow measurements that we have presented so far are purely two-

terminal in nature. They include the effects of finite series resistance between the

electrical contacts and the exciton condensate. This includes not only the 10 kΩ of

resistance from RC filters but also the regions of the bilayer that are not at νT = 1.

In this section we will describe measurements in which we estimate the total series

resistance. We find that the low density 2DESs in series with the νT = 1 region

are responsible for the vast majority of the two-terminal resistance in the Corbino

counterflow measurements as well as its highly nonlinear behavior near zero bias.

6.7.1 Edge Conductance

We begin our examination of the large series resistance by examining measurements

of two-terminal conductance between contacts that share a common edge. We will

only consider data taken at d/` = 1.49. In figure 6.25 we plot the conductance

between the contacts 5 and 6 as a function of DC bias. These contacts are both on

the inner edge and thus connected by the QH edge channels. For this measurement,

the two contacts are connected to both of the layers simultaneously and the sample

is tilted to θ = 28◦ with respect to the magnetic field. Therefore, interlayer tunneling

should play no role in this measurement. All of the contacts on the outer edge are

isolated from the annulus and thus bulk conductance should also be unimportant.

We see that at T = 25 mK, there is a clear dip in the two-terminal conductance

between contacts 5 and 6 at zero DC bias. Raising the temperature to 100 mK

causes the dip to disappear, and the two-terminal conductance between contacts 5

and 6 becomes constant with respect to DC bias. When current is driven through

only one layer between contacts 5 and 6, we still observe dips in conductance through

both the bottom layer (figure 6.26a) and the top layer (figure 6.26b). Interestingly,

the conductance dip is broader when probing only the upper layer than while only

probing the lower layer. Although not pictured here, the results are qualitatively the

same when we use two contacts (1 and 2) along the outer edge instead. Note that



197

the minima in conductance in figures 6.26a and 6.26b both correspond to a resistance

of roughly 250 kΩ. Ignoring the contribution of any edge channels, this would imply

that the resistance of each arm has a maximum possible value of ∼125 kΩ. This is

consistent with the minimum two-point conductance seen in figure 6.16a.
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Figure 6.25: Conductance between two inner contacts (5 and 6), connected to both
layers. d/` = 1.49 and θ = 28◦.

The edge conductance data in figures 6.25 and 6.26 resemble the nonohmic behav-

ior of Corbino counterflow conductance (for example, see figure 6.16) and two-terminal

tunneling conductance (e.g., figure 6.5b). They suggest that the nonlinearities ob-

served in Corbino counterflow originate from the 2DESs connecting the contacts with

νT = 1 bulk.

The perimeter of the νT = 1 QH state is characterized by a dissipationless edge

channel with two-terminal resistance of h/e2. This is small compared with the

∼250 kΩ observed at zero bias in figure 6.26. Thus, we hypothesize that the low

edge conductance is to be blamed on the low density 2DESs in the arms leading

from the ohmic contacts to the νT = 1 region. While most of these arms are kept at



198

��

��

��

�

�

�

�
�	
�


��


�

�

�
� ����

��
��
��
���
���
���

���

��

��

��

��

�

�

�

�

�

�
�	
�


��


�

���� � ���

������� �� ���� ��
�

� �

� �

� ����
��
��
��
���
���
���

Figure 6.26: Conductance between two inner contacts (5 and 6), in the (a) bottom
layer or the (b) top layer alone. d/` = 1.49 and θ = 28◦.
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nominal density, parts of the arms fall within the fringe field region of the back gate.

We depict this in figure 6.27a. The main back gate is vertically separated from the

bilayer system by 50 µm, so its fringe fields could extend over a large area in which

the bottom layer is partially depleted by the back gate. This will create a situation

within certain sections of the arms near the νT = 1 region where the top layer is at

nominal density but the bottom layer is at a much lower density.

At high magnetic fields, the imbalanced bilayer is unstable to an additional trans-

fer of charge from the lower density layer to the higher density layer. This increase in

imbalance beyond the amount at zero field is caused by exchange interaction effects

whose importance are enhanced by the quenching of the kinetic energy in the lowest

Landau level. The exchange energy can drive a 2DES to have negative compress-

ibility at low density [28, 29] and counteract the geometric capacitive energy costs

for interlayer charge transfer from the lower density layer to the higher density layer.

Subsequently, the lower density layer is deprived of even more electrons and rendered

highly resistive due to its low Landau filling factor. Such changes in imbalance at

high fields have been observed before in our bilayer samples (for example, see ref-

erence [13]). The conductance rises at finite bias either because the electrons can

access extended states at higher energies or because the in-plane electric field tilts

the random potential and facilitates the hopping of electrons between the valleys and

hills induced by disorder. As depicted in figure 6.27b, there are even portions of the

arm where the top layer is at a lower density than the bottom layer. Thus, one would

also expect sections in the top layer to become highly resistive for similar reasons.4

To present evidence for this claim, we consider sample 7-12-99.1II. This is another

Corbino sample constructed from the same wafer and almost the same geometry as

sample 7-12-99.1JJ. However, the main top gate in sample 7-12-99.1II does not fully

overlap with the main bottom gate. Thus, it had much larger regions within its arms

in which the bottom layer was depleted by the bottom gate but the top layer was

left at nominal density. As one might expect, we found even more severe issues with

4Although here we ignore the fringe fields of the back arm gates (separated from the main back
gate by 100 µm), they may also somewhat perturb the bilayer system at the interface between the
main gated and ungated regions.
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Figure 6.27: (a) Side view of bilayer system at the fringe field region. Both the top
and bottom gates terminate at the x-coordinate x = 100 µm. (b) Qualitative density
profile of upper layer (solid line) and lower layer (dashed line) expected at the fringe
field region.
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series resistance within this sample. For example, the tunneling I −V in figure 6.28a

shows that the arms in sample 7-12-99.1II were essentially insulating at zero bias.

We illustrate the interlayer charge transfer effect as a mechanism for nearly in-

sulating behavior by considering sample 7-12-99.1II under two different conditions:

while the bilayer system in the annulus is at balanced density and when a density

imbalance is purposefully created. The solid trace in figure 6.28b shows the Corbino

conductance of the top layer while the top gate and back gates are biased to create a

balanced bilayer system with NU = NL = 0.219×1011 cm−2. One can see a dip in the

conductance for νT = 1 at B = 1.817 T. Immediately on either side of this dip, the

conductance in the top layer remains finite. For the dotted trace in figure 6.28b, the

top gate gate is kept at the same bias as during the solid trace. However, now the back

gate is left grounded so that the bottom layer is near nominal density. This results in

large difference between the densities of the two layers within the annulus. The QH

minima for νU > 1 have shifted to lower magnetic field, indicating that now NU has

been reduced from its value when the two layers were at the density. By raising the

density in the bottom layer, we have made it energetically favorable for additional

charge to transfer away from the top layer to the bottom layer. Consequently, the

upper layer becomes nearly insulating at high magnetic fields.

6.7.2 Estimation of Series Resistance from Tunneling

Although we are limited to making two-terminal measurements of Corbino counter-

flow resistance, we would like to estimate the series resistance within the arms and

compare it to the observed counterflow I−V trace. To estimate the series resistance,

we can analyze tunneling data at θ = 0, d/` = 1.49, and T = 25 mK. Here, the

tunneling resistance at νT = 1 is vanishingly small so long as the injected current

does not exceed the maximum tunneling current. Thus, the two-terminal resistance

will be dominated by the series resistance. If we perform tunneling measurements

using contacts along the inner edge and then along the outer edge, we can obtain,

respectively, the I − V characteristics Iinner(V ) and Iouter(V ) for the series resistance
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Figure 6.28: (a) Tunneling I − V trace for sample 7-12-99.1II at d/` = 1.47, T = 25
mK, and θ = 0. (b) Corbino conductance in top layer for sample 7-12-99.1II at T = 50
mK while a significant bias is applied to the top gate. In the solid black trace, a bias
is also applied to the bottom gate so as to produce a balanced bilayer system with
NU = NL = 0.219 × 1011 cm−2. In the dotted red trace, the top gate is at the same
bias as used in the solid trace but the bottom gate is kept grounded so as to produce
a highly imbalanced bilayer system. The arrow indicates νT = 1 for the balanced
curve.
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of the arms. However, we must restrict our analysis to where the total current I does

not exceed the maximum tunneling current. Beyond that bias range, an interlayer

voltage develops and the tunneling resistance is no longer negligible.

Each tunneling measurement reveals only the series resistance associated with

two arms. For the Corbino counterflow measurement in figure 6.15, four arms are

employed in addition to a 50 kΩ exterior shunt resistor. Thus, we must derive their

total resistance. We combine the two I − V traces from tunneling by inverting them

numerically and defining a composite I − V relation for the total series resistance as

Vtotal(I) = Vinner(I) + Vouter(I) +RsI, (6.4)

where Vinner(I) and Vouter(I) are the inverted I−V traces from the tunneling measure-

ments and Rs is the external shunt resistance. After numerically inverting equation

(6.4), one obtains Itotal(V ), the estimated I − V characteristics of a circuit composed

solely of the series resistance and the external shunt resistor.

In figure 6.29, we plot Itotal(V ) and compare it to the Corbino counterflow mea-

surement at the same d/` and T but at θ = 28◦. One can see that the two traces

are very similar to one each other. Indeed, the observed counterflow current can be

made to coincide with the estimated series resistance by numerically adding only an

additional ∼15 kΩ resistance to the observed I − V trace. This strongly suggests

that the two-terminal resistance in the observed counterflow current circuit is almost

entirely due to the series resistance and not from the excitonic condensate. Excitons

can flow through the bulk with comparatively little dissipation.

It should be pointed out that the dotted trace in figure 6.29 is likely an un-

derestimate of the true series resistance encountered during the actual counterflow

measurement. First, the tunneling measurements used to determine the series resis-

tance were taken at θ = 0; we expect the conductivity of the low density 2DESs to

decrease somewhat in the presence of a parallel field, as in the case for the counterflow

measurement at θ = 28◦. Second, the observed counterflow I−V trace was measured

while the shunt resistor was grounded at one end. Thus, a small amount of current is
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flowing to ground from the shunt, equivalent to I2 in figure 6.15. This loss of current

at the shunt could be causing at least some of the discrepancy between the solid and

dotted traces, leading to an overestimation of the excitonic dissipation.
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Figure 6.29: Solid, black trace: observed I−V for Corbino counterflow with grounded
exterior shunt resistance at d/` = 1.49, T = 25 mK, and θ = 28◦. Dotted, red trace:
estimated I − V for series resistance alone. The inset depicts the counterflow circuit
with the series resistance from the arms explicitly shown.

6.7.3 Four-Terminal Corbino Measurements?

The significant series resistance in our Corbino sample raises the question of how to

directly measure the dissipation of the bulk excitonic current. One might näıvely

argue that if counterflowing electrical currents are propagating through the bulk of

the annulus, then dissipation of such currents might be detected by measuring the

voltage drop from one edge of the annulus to another within a single layer. Such

a circuit is depicted in figure 6.30a. There, a bias is applied to a contact on the
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bottom layer and along the outer edge of the annulus. A shunt between the two

layers is provided along the inner edge, and the counterflow current is measured from

a top layer contact along the outer edge. Here, the shunt is grounded and the voltage

drop across the bulk is measured using contacts on the bottom layer. If counterflow

currents were dissipationless, one might guess that Vbottom = 0. If counterflow currents

had any residual dissipation, then presumably Vbottom would be a small but positive

number.

Vbo$om	
   +	
  -­‐	
  

V	
  

(a)	
  

(b)	
  

Vbo$om	
   +	
  -­‐	
  V	
  

Figure 6.30: Depiction of circuit for four-terminal Corbino counterflow measurements
in which the interlayer voltage is applied to either (a) the bottom layer or (b) the top
layer.
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However, this sort of measurement is ultimately insufficient because it only reveals

the electrochemical differences across just one layer. However, excitons do not directly

couple to this sort of chemical potential difference. We can demonstrate this by also

considering an alternative circuit shown in figure 6.30b. There, the bulk voltage

difference is measured across the same layer from which the current exits at the outer

edge. With the polarity of the voltage probes shown in the figure, one might guess that

in this circuit Vbottom would be zero for the case of dissipationless counterflow currents

and Vbottom would be a small and negative value in the case of residual counterflow

dissipation.

We have performed both such measurements at d/` = 1.49, T = 25 mK, and

θ = 28◦. Under these conditions, tunneling and charge currents are suppressed. As

shown in plot 6.31, we find that the magnitude of Vbottom is relatively large in both

measurements: about half of the applied DC bias. We also see that, contrary to

the näıve expectations, Vbottom is positive for both circuits. One can now see why

measuring the voltage across the bulk of one layer is inappropriate for determining

exciton dissipation. The results of such a measurement would reflect the dissipation

of charged excitations traveling through the individual layers. However, during a

counterflow measurement at νT = 1, essentially no charge flows across the bulk.

Otherwise, in the case of the circuit in figure 6.30a it would appear that any charged

excitations traveling in the bottom layer would be going in the opposite direction as

the radial electric field in that layer.

The circuits in figure 6.30 are the Corbino equivalents of measuring longitudinal

voltage drops Vxx along the edge of a single layer in Hall bars [66]. They both

only address dissipation of charge currents and do not direct detect bulk exciton

dissipation. Instead, we assert that one must compare interlayer voltages measured at

both edges simultaneously. According to the Josephson relations, the time derivative

of the order parameter is proportional to the interlayer voltage. If the interlayer

voltage is found to differ from one edge of the annulus to other in the presence of

an excitonic flow, then phase slips must be occurring in the order parameter. These

phase slips represent dissipation in the excitonic flow.
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Figure 6.31: Voltage drop across bulk on bottom layer (outer − inner) during Corbino
counterflow measurement at d/` = 1.49, T = 25 mK, and θ = 28◦. For the solid trace,
the voltage is applied to the bottom layer at the outer edge, and the current leaves
from the top layer at the outer edge. For the dotted trace, the voltage is applied to
the top layer at the outer edge and the current leaves from the bottom layer at the
outer edge. A single, grounded ohmic contact along the inner edge shunts the two
layers together.
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One may arrive at this conclusion through an alternative argument. If one treats

the bilayer system as a two-conductor transmission line, then in order for counterflow

currents to be dissipationless then the power injected at one end would have to be

equal to the power received at the other. The power entering or leaving either edge

would be equal to the current IL,R passing into or out of a given edge times the volt-

age difference ∆VL,R between the two conductors at that edge. Thus, dissipationless

counterflow currents would imply IL × ∆VL = IR × ∆VR. Assuming that there is

no tunneling current or loss of current to ground at the shunt, this would also re-

quire equal interlayer voltages at either edge. Within this picture a time-independent

order parameter is not necessary. Indeed, a transmission line constructed from two

superconductors would have a phase difference ∆φ = φ1 − φ2 that evolves with time

when delivering current to a load resistor. The counterflowing currents would be dis-

sipationless within the superconductors and any power loss would occur within the

load.

Unfortunately, our sample does not have a sufficient number of contacts to simul-

taneously measure the interlayer voltages at both edges of the annulus in the presence

of a bulk exciton flow. Thus, we cannot directly measure exciton dissipation.

6.8 Discussion

6.8.1 Andreev-Like Reflection

Following Su and MacDonald [111], the enhanced counterflow conductivity can be

interpreted in terms of Andreev reflection. Usually, Andreev reflection describes the

scattering phenomenon occurring when a low-energy electron from a normal metal is

incident on an interface with a superconductor. While single-particle transmission is

blocked within the superconductor’s energy gap, the electron can generate a Cooper

pair with charge 2e within the conductor. To conserve charge, the incident electron

is subsequently reflected as a hole in the metal [4]. For the νT = 1 QH state, an

analogous process occurs by which the electrical currents in the normal leads generate
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the bulk exciton flow in the condensate. We depict this in figure 6.32. Here, the left

and right sides of the diagram correspond to the inner and outer edges of our Corbino

disk, separated from each other by the electrically insulating bulk. When an electron

is injected into the top layer at one edge (shown in the upper left of figure 6.32), it is

unable to enter the bulk but can generate a neutral exciton. To conserve charge, the

condensate ejects an electron into the lower layer at the left side of the diagram, which

can be detected by our current preamp. The exciton flows through the bulk until it

hits the other edge, where it produces an electron in the upper layer and pulls in

another electron from the lower layer. This generates another electrical current that

passes through the shunt resistance. Without the shunt resistor in figure 6.32, the

system requires the exciton current to vanish at the other edge because nothing would

available to absorb it there. This corresponds to the spatially decaying solutions to the

sine-Gordon equation (equation (5.2)) and thus one will observe the usual tunneling

response.
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Figure 6.32: Depiction of bulk exciton current being generated by the current leads
on the left edge and absorbed by the shunt on the right edge. Based on the diagrams
by Su and MacDonald [111].

Please note that figure 6.32 is merely a one-dimensional picture of the exciton

flow. In real samples, we anticipate that one must consider a fully two-dimensional
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model that takes into account the electrical current flowing through edge channels

from one contact to another along the edge of the annulus. In this case, the charged

quasiparticles’ coupling with the exciton condensate will generate the exciton flow

and the concomitant transfer of charge from one layer to the other within the edge

channel. For example, one might adopt the pseudospin transfer torque model [92, 112]

originally developed to analyze the tunneling geometries. Then the relaxation rate of

the quasiparticle pseudospin vector would govern the length of the region along the

edge over which the excitons are created or absorbed.

6.8.2 Excitonic Superfluidity?

While we have demonstrated bulk exciton currents, it is an open question whether the

νT = 1 QH state can support a completely dissipationless flow of excitons. Using a

Corbino device we can remove the edge channels as a source of dissipation. But there

are other mechanisms that might impede excitonic superfluidity, which we briefly

describe here.

A prime villain is disorder, which can inhibit superfluidity in bilayers in a number

of ways. As mentioned earlier in this chapter, antisymmetric gauge fluctuations could

induce a gauge glass phase by pseudospin phase frustration [109, 98]. However, layer-

symmetric disorder could nucleate charged defects consisting of vortex-antivortex

pairs [34]. These defects may not be fully pinned by disorder and could experience

thermally activated hopping from one defect to another. The motion of these vortices

in the excitonic order parameter induces voltage drops and thus destroys superfluidity.

Although one would expect the vortex-antivortex pairs to bind to each other below

the Kosterlitz-Thouless temperature TKT , quenched disorder in bilayers may allow

them to become mobile under certain circumstances [34, 33, 91].

For example, in the coherence network model by Fertig and Murthy [33] doping

fluctuations create puddles of compressible, incoherent fluid surrounded by narrow

strips of coherent νT = 1 fluid. While the vortex-antivortex pairs are normally con-

fined in these regions of incoherent fluids, they might thermally hop from one puddle
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to another and contribute to dissipation in counterflow. Sun et al. [114] build on

this coherence network picture by modeling quenched disorder as a periodic poten-

tial. They find that this potential produces a quadratically dispersing mode that is

normally gapped but can become nearly gapless at certain strengths of the periodic

potential. The quadratic mode lowers the energy of vortices, so when it becomes

gapless it greatly reduces the pseudospin stiffness and TKT .

Thus, there is a strong need to produce a Corbino device that would allow the

measurement of dissipation in bulk exciton flow. This would allow us to determine

whether or not disorder is undermining excitonic superfluidity.

We close this section by noting that there might be inherent problems with the par-

ticular counterflow circuit employed in this chapter [35, 111, 36]. In order to support

an exciton flow within the νT = 1 region, there must be a current passing through the

resistive shunt. This requires an interlayer voltage and thus the Josephson relation

V = i h̄
e
(∂tφ) would imply a time-dependent order parameter. Fil and Shevchenko

[35, 36], for example, argue that this interlayer voltage both forces Josephson vortices

to move and create dissipation through the second viscosity of the condensate. It is

unclear if the motion of such vortices could be pinned by disorder, just as they are

in type-II superconductors. Spatial and temporal variations in the interlayer volt-

age could also lead to charged quasiparticle currents and another source of residual

resistance in counterflow that scales with the square of the bare-electron tunneling

amplitude.

Su and MacDonald [111] come to a similar conclusion and suggested an alternative

counterflow circuit known as drag-counterflow, depicted in figure 6.33. Here, the

shunt resistance is placed between contacts on one layer at the outer and inner edges

of the Corbino annulus. A current can then be injected and withdrawn from two

corresponding contacts on the other layer. It resembles a drag measurement, except

it allows a current to flow through the shunt and enables a counterflow current. No

interlayer voltage is required in this geometry and a stationary order parameter is

permitted. This drag-counterflow circuit is not with its own issues, however. First,

it would not necessarily avoid the disorder effects mentioned earlier. Second, this
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circuit does not appear to transmit energy from one edge to another [36] and cannot

be used to demonstrate bulk exciton currents. Indeed, this circuit has been studied

before by Tiemann et al. [116], but they were unable to distinguish their results from

the case of strong interlayer tunneling occurring at either edge of their Corbino ring.

Nonetheless, our group is in the process of studying our own Corbino device using

the drag-counterflow circuit. Preliminary results suggest that large currents can be

induced to flow through the shunt even in the absence of strong interlayer tunneling.
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Figure 6.33: Depiction of circuit for drag-counterflow, based on Su and MacDonald
[111]. This form of counterflow permits a time-independent order parameter.

6.9 Conclusion

In this chapter, we have presented unambiguous evidence that counterflowing current

can propagate through the bulk of the νT = 1 quantum Hall system, even as charged

currents cannot. Deep within the correlated phase, these counterflowing currents can

transmit energy through the bulk without a net transfer of charge, which are key

signatures of exciton transport. The conductance of counterflowing currents appear

to be larger than that of parallel currents even at elevated temperatures. Our findings
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help to confirm the excitonic nature of the νT = 1 system.
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Conclusion

The data presented in this thesis have shed light on exciton condensation in bilayer

quantum Hall systems. Here, we summarize our findings and consider future direc-

tions for studying this unique system of correlated electrons.

At low Zeeman energy, we find evidence that is consistent with a first-order phase

transition between the correlated and uncorrelated phases, broadened by disorder.

This is in agreement with other recent studies of the phase boundary, including ev-

idence for a spin transition at the phase boundary. It is likely that the first-order

phase transition preempts the previously predicted KT transition. However, when

both phases are fully spin polarized at high Zeeman energy, we see that the phase

transition becomes significantly broader. This could signal a change in a nature of the

phase transition to an intrinsically continuous one. The identity of this hypothetical

continuous transition is still unclear.

Near the phase boundary, we find that the magnitude of the Josephson-like tun-

neling peak scales linearly with the area of the νT = 1 region. In one sample, we find

hints that this linear relation holds true relatively far away from the phase boundary.

These results disagree with a simple model of the exciton condensate in which nearly

all of the tunneling current occurs within the Josephson length of the perimeter.

This suggests that disorder has a major effect on the spatial distribution of tunneling

current by causing fluctuations in the excitonic order parameter.

Finally, we have clearly demonstrated the ability of counterflow currents to travel

through the bulk of the νT = 1 bilayer system. These counterflow currents are iden-

tified with exciton transport. While charged excitations are confined to the edges of

the quantum Hall system, we find that neutral excitons may propagate freely through
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the system interior with relatively little dissipation. The existence of a neutral mode

in the bulk distinguishes the νT = 1 system from other quantum Hall states.

While we have made progress in expanding our understanding of the νT = 1

quantum Hall state, many questions still remain. The following is an incomplete list

of future directions.

Exciton dissipation

Our Corbino studies can only provide an upper bound on exciton dissipation. We

anticipate performing more direct measurements of dissipation in counterflow by fab-

ricating a Corbino sample with additional ohmic contacts in the interior. Such a

geometry would permit simultaneous measurements of the power transmitted into

and received from the edges of the νT = 1 system via excitons passing through the

bulk.

Continuous phase transition at high Zeeman energy

The nature of the phase transition at full spin polarization is largely unknown. We

have only performed Coulomb drag measurements in this regime. Other probes are

needed in order to distinguish between various candidates for this apparently contin-

uous phase transition.

Interlayer capacitance and compressibility

We have yet to perform an extensive study of the interlayer capacitance at νT =

1. A more thorough investigation at dilution fridge temperatures could reveal the

anticipated anomalies caused by the excitonic phase. This thesis has described our

progress in overcoming certain technical difficulties relating to background signals

such as the ungated regions of the bilayer and the geometric capacitance.
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Time-domain spectroscopy

Bilayer transport studies have generally been confined to low frequencies. Measure-

ments such as reflectometry at modestly high frequencies (megahertz to gigahertz)

could explore the collective modes of excitons. One would need to overcome the key

hurdle of the strong capacitive coupling between the two layers. Such strong cou-

pling could impede measurements of high frequency counterflow currents in a manner

similar to how strong tunneling can prohibit detection of bulk exciton currents.

Coupling with surface acoustic waves

Related to time-domain transport is the use of audio frequency surface acoustic waves

(SAW) to study the νT = 1 state. SAWs are expected to induce an interlayer electric

field, which can couple directly with excitons. The velocity of SAWs driven through

the bulk of the νT = 1 state could be altered by the counterflow conductance. Thus,

SAWs can probe the exciton condensate at finite wave-vector and provide information

about exciton dissipation at low temperature and the role of spatial fluctuations

during the phase transition.

Mesoscopic structures

Up until now, our group has only published results from bilayer samples whose di-

mensions were no smaller than 10 µm. This is far larger than the coherence length

ξ = 200 nm inferred from the rate at which the central tunneling peak collapses in the

presence of a parallel magnetic field [102]. Samples with dimensions no larger than

the coherence length would presumably permit a number of measurements that are

inhibited by disorder in larger devices. This includes the observation of Fraunhofer

diffraction (for example, see [102]), a sharper phase transition in the low Zeeman en-

ergy regime, and coherent tunneling of excitons between two weakly coupled νT = 1

regions [90]. Our current bilayer samples require both top and bottom gating in order

to reduce the density enough to achieve the νT = 1 QH state. The presence of the

top gate seems to rules out the usual quantum dot and quantum pot contact (QPC)
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structures, which are also defined using top gates. One possible solution is to etch

away channels in the aluminum top gate in order to define the desired geometry. This

could be combined with reactive ion etching of the GaAs mesa [11]. As demonstrated

in chapter 6, one must be sure to place the top gates for selective depletion fairly

close to the νT = 1 region in order to minimize the area of highly imbalanced bilayer

2DES between the νT = 1 region and the ohmic contacts.

Submillikelvin temperatures

The height and width of the Josephson-like tunneling resonance continues to evolve

even down to T = 15 mK [102]. It is not known what new excitonic physics might

pop up if the temperature were lowered by another order of magnitude or more.

Nonetheless, there is a long history in condensed matter physics of exotic quantum

states being discovered by getting closer to absolute zero. Our lab is highly motivated

to do the same. To this end, we have installed and tested a dilution refrigerator with

a nuclear demagnetization stage. Our goal is to achieve electron temperatures of

T ≈ 1 mK. Initial tests have shown that the nuclear coolant can reach submillikelvin

temperatures, but it will be an enormous challenge to cool the electrons in our 2DESs

to a similar temperature.
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Appendix A

Properties of the 2DES in GaAs

Units: Carrier Density NS 1011 cm−2

Resistivity ρ Ω per square

Mobility µ 106 cm2/Vs

Magnetic Field B T

Energy K or meV

Effective Mass (conduction band) m∗ = 0.067m0

g-factor: g = −0.44

Dielectric constant (appx.) ε = 13× ε0
Fermi Wavevector: kF = 7.93× 105 ×N1/2

s cm−1

Fermi Energy: EF = 3.58×NS meV

EF = 41.5×Ns K

Fermi Velocity: vF = 1.37× 107 ×N1/2
S cm/s

Mobility from Resistivity: µ = 62.4×N−1
S × ρ−1

Mobility Lifetime: τ = 38.1× µ ps

Mean Free Path: λ = 5.22× µ×N1/2
S µm

Magnetic Length: ` = 257×B−1/2 Å

Classical Cyclotron Radius: Rc = 522×N1/2
S ×B−1 Å

ν = 1 Magnetic Field: Bν=1 = 4.14×NS T

Cyclotron Energy: h̄ωc = 20.1×B K

Zeeman Splitting: gµBB = 0.29×B K

Coulomb Energy: e2/ε` = 50×B1/2 K
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Appendix B

List of Samples

The following chart lists the samples used in this thesis. The first column is the name

of the sample. The second column gives the chapter in which the sample appeared

in this thesis. The third column contains a brief description of the sample’s purpose.

The fourth column provides a characteristic tunneling conductance of the sample at

zero magnetic field and low temperature (T ≤ 300 mK) as well as the area of the

particular region in which that tunneling measurement was obtained. Some samples

(such as 11-1-04.1K and 11-1-04.1L) have multiple top gates covering a large mesa;

the tunneling conductance and system area given below reflect the properties of only

a single top gate.

Sample Chapter Purpose Zero field tunneling (area)

7-12-99.1R 4 Simple square sample 30 nS (62,500 µm2)

7-12-99.1II 6 Corbino counterflow 540 nS (∼750,000 µm2)

7-12-99.1JJ 6 Corbino counterflow 1300 nS (∼750,000 µm2)

11-1-04.1M 3 Interlayer capacitance 100 nS (51,400 µm2)

11-1-04.1K 5 Area tunneling 285 nS (20,000 µm2)

11-1-04.1L 5 Perimeter tunneling 65 nS (10,000 µm2)

Sample are made from two double quantum well wafers (7-12-99.1 and 11-1-04.1)

with essentially identical 18 nm:10 nm:18 nm (GaAs:Al0.9Ga0.1As:GaAs) structures

described in chapter 2. The wafers were grown by L.N. Pfeiffer and K.W. West at

Bell Labs.
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All samples have nominal densities of roughly n1,2 ≈ 5.5×1010 cm−2 and mobility

of µ ≈ 106 cm2/V-s at low temperatures. The name of each sample consists of the

name of the wafer plus a letter code.
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Appendix C

Sample Processing

The following is a list of steps I have used for to process bilayer GaAs samples.

This procedure is mostly based on the recipes of others, but I have made a few

modifications.

1. Cleaving

Cleave off a 5 mm × 5 mm piece from wafer using stylus and clean, plastic

tweezers. Cleave the piece on a lab book covered with a KimWipe.

2. Mesa Etch

(a) Clean sample by rinsing with acetone and isopropanol (IPA). Blow-dry.

(b) Spin on photoresist, AZ5214E, 5000 RPM, 30 seconds. Before adding

the photoresist, clean eye dropper by rinsing with IPA and blow-drying

thoroughly.

(c) Bake sample on hot plate at 100 ◦C for 45 seconds.

(d) Expose with mesa pattern on mask aligner for 15 seconds with UV intensity

of 15 mW/cm2. Choose a defect-free section of the sample (especially for

the tunneling region); defects might “short” the two layers together.

(e) Develop in premade AZ400K (1:4) solution for 40 seconds. This solution

is 1 part developer per 4 parts deionized (DI) water, by volume. Rinse in

DI water twice for 20 seconds each. Blow-dry (10 seconds) and evaluate

under the microscope.
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(f) Postbake on hot plate at 100 ◦C for 75 seconds.

(g) Phosphoric etch: Mix 10 mL H3PO4 (85%), 2 mL H2O2 (30%), and 100

mL of DI water. Stir with magnetic stirrer (stir setting = 7, stir for 30

seconds). Place sample in solution in covered Petri dish for 6 minutes.

Rinse in water and dry (10 seconds). Make sure no bubbles are present on

the top surface of sample during the etch. If you see any, use a sharpened

wood dowel to gently nudge them off.

It is also possible to use a premade phosphoric acid etch solution and keep

it in a sealed bottle in the refrigerator. If so, be sure to remove the acid

solution from the refrigerator and let it sit in a small bath of water for

at least 30 minutes prior to using it in order to allow it return to room

temperature.

(h) (optional) use Dektak to measure height of mesa + photoresist. In general,

try to DekTak a “nonfunctional” or “nonessential” part of the mesa (e.g., a

corner where one of the ohmics will be). Avoid bringing the DekTak probe

over your tunneling region; you do not want to possibly damage that area.

One could also try measuring the height of two different parts of the mesa

and comparing them.

(i) Remove photoresist by placing sample in n-butyl acetate at 75 ◦C for 15

minutes. Let cool at room temp for 5 minutes. Rinse in IPA and blow-dry.

DekTak mesa and evaluate.

3. Ohmic Contacts (evaporated Ni/AuGe)

(a) Clean sample again by rinsing in acetone and IPA. Blow-dry. Then turn

on evaporator (mechanical pump, cooling water, and diffusion pump). Be

sure to let the diffusion pump warm up for at least 30 minutes prior to

using the evaporator.

(b) Spin on photoresist, AZ5214E, 5000 RPM, 30 seconds.

(c) Bake at 100 ◦C, 45 seconds.
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(d) Expose with ohmic contact pattern for 15 seconds.

(e) Before developing, prepare the evaporator: put liquid nitrogen into cold

trap, insert boats and slugs for nickel (2 slugs) and AuGe (1 slug). Put

the nickel boat in stage 3 (the farthest one in) and the AuGe boat on stilts

in stage 2 (the middle one).

Note: the purpose of getting the evaporator ready ahead of time is to

minimize the amount of time that the developed portions of the sample

are exposed to air, thus reducing oxidation. Double-check tooling factors

for two different materials. Check the crystal in the thickness monitor by

pressing and holding the Life button. Replace crystal if life is less than

60%. Be wary if the life is between 60% and 70%: if the crystal gets too

old, its reading can be vary flaky.

(f) Develop sample in premade AZ400K (1:4) solution for 40 seconds. Rinse

in DI water twice, 20 seconds each. Blow-dry and evaluate.

(g) Evaporate Ni/AuGe. First evaporate 135 angstroms of Ni. Let cool for 5

minutes. Then evaporate 1600 angstroms AuGe. Wait 15 minutes before

venting and opening up chamber to allow everything to cool down.

(h) Lift-off: place sample in n-butyl acetate at 60 ◦C for 30 minutes. Do

not remove sample from n-butyl acetate until all excess metal has been

removed! You can facilitate lift-off after 30 minutes by squirting at sample

with eye dropper while the sample is still submerged in the n-butyl acetate

(be sure to hold the sample down with your plastic tweezers while squirting

at it with the eye dropper). If you get desperate, hold the n-butyl acetate

container in the sonicator and sonicate for 10 seconds. Check the sample

under the mask aligner microscope while the sample is still in the n-butyl

acetate, to make sure all excess metal has been removed.

(i) Clean sample again by rinsing in acetone and IPA. Dry.

(j) (optional) Photograph sample.
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(k) Place sample in center of annealing strip. Close the chamber and flow

forming gas (15% H2, 85% N2) for 5 minutes. Set flow rate to 2 units.

Anneal at 440 ◦C for 15 minutes. After the anneal is done, wait until the

annealing strip cools down to below 40 ◦C before opening up the chamber.

(l) (optional) Photograph sample. The surface of the Ni/AuGe should now

look very rough and wrinkled.

4. Top Gates

(a) Clean sample by rinsing in acetone and IPA. Blow-dry. If it is not still on,

turn on evaporator (mechanical pump, water, and diffusion pump).

(b) Spin on photoresist, AZ5214E, 5000 RPM, 30 seconds.

(c) Bake on hot plate at 100 ◦C for 45 seconds.

(d) Expose with top gates pattern for 15 seconds.

(e) Prepare evaporator (add liquid nitrogen to cold trap, put a new aluminum

boat and 3 Al slugs in position 2 (without stilts)). Check program (pro-

gram 1), tooling factor, and life of crystal. To reach 2000 angstroms, put

4 Al slugs in position 2 (without stilts).

(f) Develop sample in premade AZ400K (1:4) solution, 40 seconds. Rinse in

DI water twice, 20 seconds each. Blow-dry and evaluate.

(g) Evaporate aluminum: 1600-2000 angstroms. The thickness of the film

should be large enough so that the gates are continuous as they go over

the mesa edge. We have had problems with discontinuous top gates, likely

because not enough aluminum was evaporated.

(h) Lift-off in n-butyl acetate, 60 ◦C, for 30 minutes. As above, do not remove

sample from n-butyl acetate at all until all metal has been removed (check

with microscope). This is particularly important for aluminum top gates,

which might have small spacing between some of the gates, in which metal

can easily get caught.
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(i) (optional) Photograph sample.

5. Sample thinning

Warning: this step can be very dangerous and very tricky. You should get first-

hand training with someone knowledgeable before attempting it by yourself.

(a) Pick out 3 pieces of scrap GaAs. These are the dummies and help to

keep the sample level during the etching. Try to find three that are nearly

the same thickness and slightly thicker than the sample itself. If possible,

cleave off three dummies from the sample piece of scrap GaAs. Watch out:

I have seen at least one piece of scrap GaAs with some kind of blocking

layer that was impervious to the bromine etch solution, thus forcing me to

restart the etch with a new set of dummies.

(b) Clean sample and 3 dummies by rinsing them in acetone and IPA. Blow-

dry. Clean quartz disk by rinsing in acetone and IPA. Blow-dry.

(c) Mount sample on disk with wax. First, add 1-2 grains of wax to the center

of the disk. Use the grey hot plate at setting = 3 for 5 minutes to melt the

max. Gently place the sample upside down on the wax and then push down

firmly and smoothly with a thick wooden dowel. One wants to push the

sample down toward the quartz glass as much as one can without breaking

the GaAs. Try not to let the sample move during this step or you might

scratch the top side.

(d) Mount the dummies using a similar procedure, while the disk is still hot.

For each dummy, place 1-2 grains of wax at a spot that is about 10 mm

away from the center of the disk and then mount the dummy there. The

three dummies should be evenly spread around the sample, each located

at the vertex of an imaginary triangle centered on the sample.

(e) Remove excess wax by squirting with acetone and then IPA while holding

the quartz disk with plastic tweezers over a medium or large beaker. Blow-

dry and check to see that no wax or acetone residue is left behind.



226

(f) In the acid hood, prepare the quartz square and filter paper. Fold the filter

paper in half and wrap it around the quartz square. Secure with masking

tape. You want one surface that is as smooth and taut as reasonably

possible.

(g) In the acid hood, mix the bromine-methanol etch solution: 80 mL MeOH

and 5 mL Br2. Do not forget to wear lab coat, apron, heavy neoprene

gloves, and face shield. The original etch solution recipe calls for 40 mL of

MeOH and 5 mL of Br2, but Alex Champagne has found that diluting the

bromine in more methanol helps the etch to go slower and more evenly.

This helps to keep the back side of the sample smooth. The etching will

be performed in the acid hood. Be sure to keep acetone away from the

acid hood. Keep the bromine-methanol solution covered with glassware to

prevent the spread of bromine fumes.

(h) Perform etch. Place the quartz disk in a Teflon chuck by dropping three

drops of water onto the chuck and pressing the quartz disk down into the

depression with the sample facing out. There is a coarse side (indicated by

a divot on the chuck) and a fine side; start with the course side. Stir up the

etch solution with a wooden dowel (to homogenize the bromine-methanol

solution) and pour some onto the quartz square with the filter paper.

Add enough etch solution to get the filter paper to be evenly wet. While

holding onto the chuck with a neoprene glove, rub the sample against the

filter paper with the etch solution. Do large figure-eight motions. Start off

by performing 50 such motions and then rinse off the sample in DI water.

Pop off the quartz disk with pressurized air from a spigot inside the acid

hood (carefully!) and rinse it again with water. Blow-dry. Measure the

thickness of the sample. Also try to measure the thickness of dummies as

you etch to get a sense of whether you have a tendency to etch one side of

the sample more than the other.

After measuring the thickness of the sample, put the quartz disk back into
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the Teflon chuck and pour some more etch solution on the filter paper to

prepare for more etching. Be sure to stir the etch solution with a thin

wooden dowel just before each time you pour it onto the filter paper. Oth-

erwise, we have found that the bromine will tend to settle to the bottom

of the beaker as time goes on, leading to an increase in bromine concentra-

tion and etch rate as time goes on. Keeping the etch rate constant helps

to keep the back side of the sample smooth.

(i) Etch until the sample is 50 µm thick. Measure the thickness of the sample

more frequently as time goes on. Once the sample is less than 350 µm,

switch to the fine side. Be careful not to scratch the sample with the

thickness monitor’s probe.

(j) Once done with etching, clean up. Pour remaining etch solution in an open

glass container with sodium thiosulfate. I have found that pouring just a

little bit of water along with the bromine solution helps to neutralize the

bromine. At the very least, it makes the orange stain of the bromine go

away, which suggests it has been neutralized. Rinse out filter paper, quartz

disk, and tray with water in acid hood. Clean up glassware.

(k) Scrape off dummies from the quartz disk with a razor blade. Rinse off

with IPA and blow-dry. Keep the sample on the quartz disk. Try not to

let pieces of GaAs fly onto the sample.

6. Back gates

(a) While it is still on the quartz disk, clean sample by squirting with acetone

and IPA. Dry. Meanwhile, set hot plate to 100 ◦C and turn on evaporator

(mechanical pump, water, diffusion pump) if it is not already on.

(b) Spin on photoresist, AZ5214E, 5000 RPM, 30 seconds. After the quartz

disk disk has stopped spinning, quickly add another dose of photoresist

and spin again for 30 seconds.

(c) Bake on hot plate at 100 ◦C for 90 seconds.
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(d) Expose with back gates pattern for 15 seconds. Use IR camera to align

sample properly.

(e) Prepare evaporator (add liquid nitrogen to cold trap, put new aluminum

boat and 4 slugs of aluminum to stage 2, without stilts).

(f) Develop in premade AZ400K (1:4) solution, 40 seconds. Rinse in DI water

twice, 20 seconds each. Blow-dry. Evaluate.

(g) Evaporate aluminum: ∼1600 angstroms. Technically you could just add

1000 angstroms, but we often like to add more, just to make sure the back

gates are nice and continuous.

(h) Lift-off in n-butyl acetate at 60 ◦C for 30 minutes. Once again, do not

remove sample from n-butyl acetate until metal has been completely lifted

off.

(i) Rinse sample and disk in IPA. Blow-dry.

(j) Sample slide-off: place a piece of filter paper on the bottom of Petri dish.

Place the quartz disk upside down while using a clean magnetic stir bar

to prop up one edge of the disk. The sample should be facing down and

suspended over the filter paper without actually touching the filter paper.

Add enough acetone to completely submerge the sample, plus a little bit

extra (the acetone will evaporate during sample slide-off). Cover the Petri

dish with its top and let sit in the middle of the chemical hood (away from

the two vents at the front and back). The wax should be dissolved within

2 or 3 hours. You can watch its progress with a magnifying eyepiece. If

all of the wax becomes dissolved but the sample still seems to be stuck to

the quartz disk, try squirting a little bit more acetone into the Petri dish

to disturb it enough to fall off.

(k) Once the sample falls off of the quartz disk, carefully remove the quartz

disk (try not to let it slip and fall on top of the sample) and magnetic stir

bar from the Petri dish. Carefully remove the sample from the Petri dish

by grabbing one end of the submerged filter paper with a pair of plastic
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tweezers and then slowly lifting the filter paper with the sample out of

the Petri dish. While still submerged, the very thin sample might move

around a bit, but once it is out of the acetone the sample will tend to

stick to the wet filter paper. Place another piece of filter paper in another

(dry) Petri dish. Move the wet filter paper (holding your sample) over the

filter paper and flip it upside down and on top of the dry filter paper. The

sample should remain sticking to the wet filter paper while you flip the

paper over. Wait for the sample to fall off of the wet paper onto the dry

paper. Gently remove the wet paper, leaving the sample exposed. Very

gently squirt some drops of IPA onto the sample. Once again, transfer the

sample to another piece of dry filter paper in a Petri dish and squirt IPA

a second time. To dry off the sample, just transfer it to a new dry piece

of filter paper a few times.

7. Wire-Up

(a) Clean the Teflon wire-up chuck (usually kept in the shared drawer near

the wire-up station) by blowing with nitrogen gas.

(b) Set convection oven to 125 ◦C (set knob to a little bit less than 5). During

the rest of the wire-up procedures, check the temperature in the oven and

adjust the temperature knob accordingly. Try to get it to within 2 degrees

of 125 ◦C.

(c) Solder wires to ohmic contacts and top gates with indium. Using pieces

of 0.002” gold wire that are about 1-1.5 inches long. After soldering each

wire, test its connection by nudging it with tweezers. You should be able

to get the wire to bend near the solder blob without the wire becoming

disconnected.

(d) Transfer the sample (facing up) to the center of a circle of filter paper. Take

a small glass beaker, turn it upside down, and place it over the sample,

covering it. The wires should be poking out. Solder 4 of the top gate wires

to the lip of the beaker using indium.
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(e) Mix silver conducting epoxy (EpoTek H20E epoxy): 0.2 g of component

A plus 0.2 g of component B. Measure out the epoxy components onto a

glass slide covered with clean aluminum foil. Mix together the two com-

ponents and stir with a clean wooden dowel for two minutes. Do not

cross-contaminate the bottles with the two epoxy components.

(f) Epoxy wires to back gate pads. Use a sharpened wooden dowel to apply

small blobs of epoxy and then lower or push the tips of gold wires into it.

You can try adding a small blob on top of the wire’s tip to reinforce the

connection.

(g) Bake in oven at 125 ◦C for 25 minutes.

(h) Detach sample from glass beaker.

(i) Clip away the pins of an 18-pin header (leave behind a 1 mm of each pin

so that you can wrap wires around them). Clean header by squirting with

IPA and drying. Solder wires to header. Try to get the sample as level

as possible. Any small amount of tilt could introduce a parallel magnetic

field, which would influence interlayer tunneling at νT = 1. Try to wrap

excess wire around the header pins instead of just clipping them off; the

excess might be useful when transferring the sample to a rotating sample

holder.
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Appendix D

Wire Bonding to Thin GaAs
Samples

The Corbino samples used in this thesis contain a number of small contacts in their

central regions. These contacts are not quite large enough to be soldered to by hand.

Instead, we use a wire bonder to create conducting bridges from the inner contacts

to much larger contact pads on the outer portions of the 5 × 5 mm2 wafer piece.

One can then solder gold wires to these outer pads using a soldering iron. Due to

fabrication constraints, the wire bonding must be done after the GaAs piece has been

thinned down to 50 µm. The thin sample is exceedingly delicate and light, so we

must remount the sample with wax to provide mechanical support and to hold down

the sample during wire bonding. This appendix describes this procedure.

First, one must complete all of the sample fabrication steps listed in Appendix C

up until the back gates have been evaporated and the sample has been removed from

the quartz disk. At this point, all lithography steps are done but the sample has not

yet been wired up. To get the sample ready for wire bonding, one first solders a short

(∼1 inch) length of 0.002” gold wire with indium to one of the corners of the wafer

piece. Choose a bare, unused region. The purpose of this wire is to allow one to pick

up and manipulate the sample while it is thin.

Next, return to the clean room and place two or three grains of mounting wax

next to each other in the center a quartz disk. Ideally, this should be a different disk

then the one used for sample thinning. Melt the wax by using the grey hot plate on



232

setting 3. Make sure that there is a piece of aluminum foil covering the top of the

hot plate; its reflective surface will prove useful for monitoring the mounting process.

Wait for a few minutes to ensure that the wax has been completely melted. Try to

obtain a single puddle of melted wax that is roughly 2 mm in diameter. While holding

the attached gold wire with a pair of tweezers, lift up the thin sample directly over

the puddle of wax and gently lower the sample onto the puddle. Do not force or pull

it down once the sample is in contact with the wax. Instead, let go of the gold wire

and let the weight of the sample squash the puddle. The wax will slowly spread out

and cover most (if not all) of the back side of the sample. One can watch its progress

in the reflective surface of the aluminum foil.

After a minute or two, the puddle of wax should have flowed out to cover the

entire back side of the sample. Do not wait for so long that the wax begins to flow up

onto the top side of the sample. Once satisfied, turn off the heat to the hot plate and

gently remove the quartz disk. Allow to cool for five minutes. The sample should now

be firmly mounted onto the quartz disk by the wax and is ready for wire bonding.

Take the sample to the West-Bond wire bonder.1 The settings of the wire bonder

must be chosen with care and will probably have to be adjusted each time you use

it on a thin sample. We have found that the following settings are a good starting

point:

Ultrasonic power (bond 1) 150 to 300

Ultrasonic power (bond 2) 300

Ultrasonic time (bond 1) 80 - 150 ms

Ultrasonic time (bond 2) 150 ms

Tool heat 5 - 6

Create the first bond on one of the outer Ni/AuGe bonding pads.2 Make the

second bond on one of the inner pads. Repeat for all of the other inner pads. Try

1West-Bond Model 7476E two way convertible, wedge-wedge bonder from West-Bond.
2For our particular wire bonder, we have had the most luck with bonding to annealed Ni/AuGe

rather than just evaporated aluminum. Even annealed Ni/AuGe covered with aluminum will work
fine. We have had a lot of difficulty of bonding to aluminum alone, however. We suspect that the
rough surface of annealed Ni/AuGe helps with the bonding.
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not to make the bridges too tall.

Once the wire bonding is completed, return to the clean room. Place the quartz

disk with the sample in a Petri dish with a small circle of filter paper on the bottom.

The side with the sample should be facing up, of course. Using a squirt bottle, gently

squirt acetone into the Petri dish. Do not squirt directly at the sample! Add enough

acetone to completely immerse the sample. Cover and let it sit at room temperature

for 2 or 3 hours until the wax is completely dissolved. You can test this by using a

pair of tweezers to gently nudge at the gold wire soldered to the sample; if the sample

moves in response to this nudge, then the wax has been dissolved.

Get another Petri dish with filter paper and the isopropanol squirt bottle ready.

Grasp the gold wire with tweezers and carefully (but firmly) pull the sample out of

the acetone. The surface tension of the acetone will provide resistance. Without

delay (do NOT let the acetone dry fully or it will leave behind a residue), transfer the

thin sample to the other Petri dish and wet it with isopropanol. Again, do not squirt

directly at the sample. Merely let some drops of the isopropanol fall close to the

sample, but not directly onto it. One wants to quickly wash away any acetone before

it forms a residue. After the sample has been fully wetted with isopropanol, remove

it from that Petri dish and transfer to another (with filter paper on the bottom, once

again) and allow to air dry.

You may now proceed with the standard wire-up steps. Be sure to use the soldering

iron to remove the extra gold wire that was soldered to the corner of the sample.
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