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ABSTRACT

Accurate quantum mechanical reactive scattering calculations within the
framework of symmetrized hyperspherical coordinate techniques are presented for
several processes involving collisions of an electron with a hygrogen atom and
an atom with a diatomic molecule in three-dimensional space, and the collinear
collision of an atom with a diatomic molecule. In addition to the interest of the
processes themselves, the results are compared with previous experimental and
theoretical results in such a way as to provide tests of the general usefulness of the
methods used.

The general theory for the calculation of accurate differential cross sections
in the reactive collision of an atom with a diatomic molecule including the
geometric phase effect in three-dimensional space is described. This methodology
has permitted, for the first time, the calculation of integral and differential cross
sections over a significantly larger range of collision energies (up to 2.6 eV total
energy) than previously possible for the system H + H,.

We present numerical solutions of the quantum mechanical streamlines of
probability current density for collinear atom-diatom reactions. It is used to study

the barrier height dependence of dynamics on the Cl + HCI reaction
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Introduction

This thesis is composed of a series of papers in which different aspects of
computational methodology and results are presented. Four of these papers are
already in the literature. The focus of this thesis is the use of symmetrized
hyperspherical coordinate technique to study reactive collision in three-dimensional
space. Since each chapter is individual paper that contains its own background
materials, they can be read more or less independently. This introduction will give
only a summary for each chapter in order to bring a measure of coherence to the
thesis as a whole.

Chapter two present a method for accurately solving the Schrodinger equation
for the reactive collision of an atom with a diatomic molecule in three dimensions
on a single Born-Oppenheimer potential energy surface including the geometric
phase effect. The Schrodinger equation is first expressed in symmetrized principal-
axis body-fixed hyperspherical coordinates. The formal expansion in a basis set,
the local hyperspherical pseudo-surface functions, and the resulting coupled set
of ordinary differential equations are discussed. Symmetry considerations that
simplify the calculations are analyzed in detail. The formalism for the calculation
of the differential and integral cross sections is given. This method permits a very
complete description of the atom-diatom scattering processes.

Chapter three gives a numerical detail about the method of chapter two. We
apply the method to the H + H, system to explore the behavior of the product
rotational state distributions and the integral cross sections. Convergence test are
performed and comparison are made to previous independent calculations and the
agreements of the results are good, thus validating the method. The influences of

the conical intersection and the associated geometric phase effect are also discussed.
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Chapter four is a reprint of the publication presenting results from the first
successful reactive scattering calculations that include the geometric phase effect.
The calculations are for H+ Hy on the LSTH potential energy surface. Differential
cross sections for ortho to ortho transition are shown both with and without the
inclusion of the geometric phase effect. The calculations are extended to all total
angular momenta needed to obtain converged integral and differential cross sections
over the enrgy range from 0.7 eV to 1.2 eV.

Chapter five and six are reprint of publications that explore the three-dimensional
quantum mechanical reactive scattering calculations on high-performance distributed-
memory parallel computer. Parallel algorithm is presented for Caltech/JPL Mark
IIIfp hypercube and J = 2 resonances for H + H, system are also analyzed.

Chapter seven presents a method that uses hyperspherical coordinates for
accurately solving the Schrodinger equation for the scattering of an electron from
a hydrogen atom in three dimensions.

Chapter eight describes the work of quantum mechanical streamlines of
probability current density calculation. Both the formal and numerical aspects
of the method are discussed in detail. The dynamics of the collinear Cl + HCI
reaction on a low and high barrier potential energy surface is investigated by the
help of the quantum streamlines and the results are presented in Appendix A. It
is found that the vibrational excitation leads to enhancement of the reaction rate
on the high barrier surface but inhibition of reaction on the low barrier surface.

Appendix B is a reprint of a publication that describes work related to
topic of three-dimensional reactive scattering, namely the logarithmic derivative
propagator. Matrix inversion and multiplication are the necessary part of
algorithms for propagating the coupled ordinary differential equations that results

from the expansion of the scattering wave function in a surface function basis set.
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The implementation on the hypercube concurrent processors and detailed tests of

the performance of the parallel code are provided in this section.
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Quantum Mechanical Reactive Scattering for Three Body
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Quantum Mechanical Reactive Scattering for Three Body

Systems Including the Geometric Phase Effect. Theory

Yi-Shuen Mark Wu ¢ and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125, USA

Abstract

A method is present for accurately solving the Schrédinger equation for the
reactive collision of an atom with a diatomic molecule in three dimensions on a
single Born-Oppenheimer potential energy surface including the geometric phase
effect. The Schrodinger equation is expressed in symmetrized principal-axis body-
fixed hyperspherical coordinates. The formal expansion in a basis set, the local
hyperspherical pseudo-surface functions, and the resulting coupled set of ordinary
differential equations are discussed. We show how permutational symmetry of the
total wave function with respect to the interchange of nuclei can be enforced both in

the presence and the absence of the geometric phase effect. Expressions have been

obtained for the integral and differential cross sections in helicity representation

including two and three identical nuclei.

¢ Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.



1. Introduction

The reactive atom-diatom collision is the fundamental microscopic event that
underlies the chemical reaction. The ability to describe this process from the
knowledge of forces operating at the molecular level has long been the goal of
the theoretical dynamicist. However, accurate quantum mechanical solutions for
reactive atom-diatom scattering have proved to be difficult and computationally
expensive to obtain[l]. In fact, only a few groups to date have published accurate
integral and differential cross sections, and most of these calculations are based on
the system H + Hz[2-10].

The exchange reaction between a hydrogen atom and a hydrogen molecule
is the prototype example of an elementary bimolecular reaction. This reaction
provides the simplest case where, for neutral species, the fundamental kinetic
process of bond breaking under the influence of new bond formation can be studied
experimentally and theoretically. Most of the quantum theoretical calculations
of experimentally observable reaction cross sections for the H + H; system
performed so far have used the Born-Oppenheimer adiabatic approximation[2-21],
and assumed the reaction occurs on the single ground electronic potential energy
surface. This approximation is expected to be quite accurate below about 2.6 eV
of total energy (with respect to the bottom of the Ha potential well) since this
is about 0.1 eV below the energy of the minimum of the first excited electronic
potential.

However, a complication may arise in using the Born-Oppenheimer approxi-
mation when two electronic potential energy surfaces display a conical intersection.
Tt has been shown[22] that in a triangular system of three hydrogen-like atoms the
lowest doublet state is linked with an exciated doublet state by a conical intersec-

tion even when all three atoms are dissimilar. The ground state Born-Oppenheimer
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electronic wave function (considered as a function of the nuclear coordinates) must
undergo a change in sign when one follows a closed path in nuclear configuration
sapce around the curve along which two potential surfaces intersect conically[23-
28]. There must be a compensating sign change on the part of the nuclear wave
function if the full electronuclear wave function is to be continuous and single
valued[22-26]. This sign change is a particular case of Berry’s geometric phase[29]
and is sometimes referred to as the molecular Aharonov-Bohm effect[30]. Berry’s
geometric phase is an example of holonomy, the phenomenon by which some vari-
ables change when other variables or parameters characterizing a system return to
their initial values[31,32]. It is a purely geometric phenomenon that depends solely
on the area and curvature of the surface enclosed by the circuit. This effect may
have nonnegligible effects on the results for H 4+ Hy system and other cases where
the potential energy hypersurface involves a conical intersection.

Mead and Truhlar[24] have shown formally for H + Hy system that, if the
condition that the wave function is zero in a certain region of nuclear configuration
space separating different arrangement channels is fulfilled, the only effect of the
geometric phase is to change the sign of the corresponding exchange scattering
matrix elements and of the associated total scattering amplitude, while leaving
the absolute value of their real and imaginary parts unchanged. This condition
is likely to be satisfied for the para — ortho and ortho — para transition cross
sections at low collision energies considered in the earlier quantum studies[2-21]. It
has been recently shown however[27], that in the absence of coupling to the ground
electronic state, the geometric phase completely modifies the energy spectrum and
the permutation symmetry properties of the quasi-bound rovibrational states of
the first electronically excited state of Hj. It has also been shown[28,33] that the

integral and differential cross sections of para — para and ortho — ortho transitions
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for this system are significantly changed by this effect. Therefore, to perform a
numerical study including the geometric phase effect is necessary to find out if this
condition remains valid at higher energy and accurately asses the magnitude of its
effect on this system. In addition, it is even more important to develop a general
methodology for a system composed of three atoms, which may be dissimilar, that
can take the geometric phase effect into account in the absence and the presence
of conical intersections.

In this paper and the subsequent papers to follow, we present a method
for accurately solving the Schrodinger equation for the reactive collision of an
atom with a diatomic molecule in three dimensions on a single Born-Oppenheimer
potential energy surface including the geometric phase effect. This method is
developed within the framework of the symmetrized hyperspherical coordinate
technique[27,28,33-35]. It easily allow inclusion of the full permutation symmetries
of the three body system and permits inclusion of the effect of the conical
intersection on the phase of the nuclear wave function.

Section 2 will describe a general formalism for the conical intersection and
associated geometric phase effect. Section 3 presents the various Jacobi coordinates
and the corresponding Schrédinger equation. Section 4 introduces the symmetrized
hyperspherical coordinates and associated pseudo surface functions. Section 5 has a
discussion of the diabatic coupled channel expansion and the propagation equation
from the expansion of the wave function in terms of pseudo surface functions. The
formalism for the propagation of general triatomic systems will be given. Section
6 introduces the asymptotic boundary conditions and the determination of the R
and S matrices of the system. The formalism for determination of the cross sections
from the S matrix is developed. In section 7, the symmetry properties of the system

are discussed. Section 8 presents the construction of physically observable cross
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sections from irreducible representation scattering amplitudes. A summary of the

main points are provided in section 9.

2. Conical Intersection

Geometric phase is known to appear in problems involving the Born-
Oppenheimer approximation, in which electronic and nuclear degrees of freedom are
separated. This separation of electronic and nuclear motion provides a widely used
framework for interpreting molecular energy levels and collision processes. As we
recall, in this approximation the electronic problem is solved for each configuration
of the nuclei; the positions of the nuclei define a slowly varying environment,
which the electrons "follow” adiabatically[36]. Surprisingly, this well-understood
procedure gives rise to apparently anomalous results, especially near electronic
degeneracies. One such example is the E Q) e Jahn-Teller effect[37] which involves
the vibronic interaction of a doubly degenerate electronic state (F) with a doubly
degenerate vibrational mode (e). The nuclear motion lifts the electronic degeneracy
and distorts nuclear configurations of lower energy than the symmetric state. The
two surfaces diverge linearly from one another at the origin, at a point called
the conical intersection. Of course, near the origin the adiabatic approximation
breaks down, and this point is a singularity of the Born-Oppenheimer prodecure.
The conical intersection at the degeneracy is the source of geometric phase for
the evolution of adiabatic states. The simplest molecules subject to this effect are
trimers, with an electronic degeneracy at the symmetric D3;, configuration of the
nuclei.

In this section, we consider a system of three atoms, not necessily identical.

Following Mead and Truhlars’ analysis, in the Born-Oppenheimer approximation
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the electronuclear wave function corresponding to the ith electronic state can be

written as
¥(r;R) = ¢(R) | thie(r; R)) (2.1)

where r and R represents the electronic and nuclear coordinates respectively.
| ¥ie(r; R)) is the ith member of the set of orthonormal eigenstates of the electronic

Hamiltonian H,(r;R), such that
He(r; R) | $ie(r;R)) = Ui(R) | ie(r; R)). (2.2)

To obtain the equation for the nuclear wave function we retain all derivatives
of the electronic wave function with respect to nuclear coordinates. By this we
mean simply that all coupling to other electronic states is neglected. If we choose
a scaled coordinate system such that the effective mass of every nucleus is M, the

total nuclear kinetic energy operator becomes
TN = ——VR: (2.3)

where R’ is a 3N-dimensional vector formed by 3N nuclear coordinates. In these
mass-scaled coordinates, the nuclear wave function W(R.) satisfies
2 2 h2

(e Vh + Ui(R) — L FR) - Vi — g GROJU(R) = BUR)  (2.4)

where
F(R') = ($ie(R") | VR | $ic(R'))

G(R') = ($i(R") | VR | $ie(R"))
In general, F(R') must vanish if ¢;.(R') is chosen to be real. Even if it does

(2.5)

not vanish, we can multiply the electronic wave function by a phase factor e!f(®")
for which iVgs f(R') equal to —F(R') in order to cancel out the F(R') term.
However, if F(R') has non-zero curl, it cannot be made to vanish everywhere

by a phase factor with the single-valued function f(R'). The phase factor can still
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be determined along any path to make F(R') vanish, but there may be a net change
in the phase of ¢;.(R') on traversing a closed path, which means that ;.(R’) is
no longer a single-valued function of the nuclear configuration R'.

Consider a case[22] in which one may neglect the spin terms in the electronic
Hamiltonian, so that the electronic wave function may always be taken in real form.
We can examine the behavior of the electronic wave function near the vicinity of the
conical intersection. We imagine, that all but two of the electronic wave functions
have been found, and that ¢; and ¢, are any two functions which, together with
the found solutions, consititude a complete orthonormal set. These functions are
assumed independent to the nuclear configuration. It is then possible to express

each of the two electronic eigenfunction in the form

e = c1p1 + C2ip2. (2.6)

The matrix elements of the electronic Hamiltonian H . are expressed as

Hy = {p1 | He | ¢1)
Hap = {p2 | He | p2) (2.7)
Hyz = Hay = (o1 | He | 2)

where, the following secular equation must be satisfied

Hy1-FE Hy, (61 )
=0 2.8
( Hoy sz*E) 2 (2:8)
All quantities in this equation are real.

In order for equation (2.8) to have degenerate solutions, it is necessary to

satisfy two independent conditions, namely,

Hyy = Haa, Hyy =Hyn =0 (2.9)
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and this requires the existence of at least two independently variable nuclear
coordinates. We denote a local (z,y,z) coordinate system where the conical
intersection happens at ¢ = y = 0 with any fixed z. The secular equations may be

cast in the following form without any loss of generality:

W+ hlm —E l‘y Cq .
( Iy W+h2:c#E> <c2 e wAalll)

The eigenvalues are

E =W 4+ mz + /(K222 + 12y2) (2.11)

where m = (k1 + h2), and k = 3(h1 — h2). It is easy to see that this equation
corresponds a double cone with vertex at the origin, as the two potential energy
surfaces would form around the conical intersection.

If we define an angle ¢ by the equations
kz = dcosd, ly = dsing (2.12)

where
d= (k%222 +12y42)> 0 (2.13)

The eigenvalues and eigenfunctions are then expressed as

Es = W + d(cosd £ 1) (2.14)

and
| 4%) = sind [ ) + cosd [ 0) (2.15)
|47) = cos? | 1) —sin | o2) (2.16)

The choice of phase factor in equations (2.15) and (2.16) comes from convention

alone, since one can easily verifies that

0 1 i 0 _ 1
55 1¥N =5197) gz lvT)=51v") (2.17)
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so that

W | oz | §%) = (87 | oz |97) =0 (219

a¢ a¢

When one traverses a closed path around the conical intersection, the angle ¢,
increases by 27, so both eigenfunctions 11 and ¢~ undergo a change of sign (phase
change of w). This sign-change is a particular case of Berry’s geometric phase[29]
which holds not only in the vicinity of the conical intersection point but for any
closed path enclosing the conical intersection.

In order to make the electronic wave function single valued, one must draw a
cut to the conical intersection point, and have the function change sign on going
through the cut. Since the full wave function must be continuous, this would
require a compensating discontinuity in the nuclear function. Alternatively, one can
add extra complex phase factors to the electronic and nuclear parts of the wave
function to enforce the continuity and single-valuedness of each of them. These
extra phases add to the nuclear Schrodinger equation a term formally similar to a
vector potential associated to a delta-function magnetic field located on the conical
intersection line[24,25].

The case of three identical hydrogen atoms near the vertices of an equilateral
triangle is shown in the center of Figure 1. According to both the valence-bond
and molecular orbital theories, the ground state is of species 2E' in the Dsj
configuration. Let ¢4 be the valence-bond wave function for a situation in which
the eleictron on A has spin up and the electrons on B and C are spin-paired; let ¢ 5

and ¢ be similarly defined, so that

vatestec=0. (2.19)

We now take the system around a series of continuous loops in the nuclear geometry

configuration of the H; system in an equilateral triangle configuration. If we require
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the electronic wave function to be real, this cyclic set of deformations changes the
sign of that wave function, which as a result is not single-valued. Since the total
electronuclear wave function is continuous and single-valued, there has to be a

compensating sign change in the nuclear part of the wave function.

3. Schroédinger Equation

In this section, the Schrédinger equation in Jacobi coordinates and in the
mass-scaled coordinates of Delves for a three particle system is examined. This
discussion is entirely general with regard to the nature of the particles.

We begin with a system of three atoms A, 4, and A, with masses my, m,
and m, respectively. Let A, v, k be an arbitary cyclic permutation of &, 3,«. There
are three sets of body-fixed Jacobi coordinates, (R, r! ), for this system, where r/,
is the vector from atom A, to atom A, and R/, is the vector from the center of mass

of {A,,A.} to the atom A). The index A can be any of the values o, # or 7. In

the present catculations, we neglect-all spin-orbit and spin-spin interactions. Under
conditions of validity of the Born-Oppenheimer approximation, the electronuclear
wave function can be written as a product of the electronic part 1., which we chose
to be real, and the nuclear part. The latter can be factored into a nuclear spin part
and a spacial part /M J is the total angular momentum quantum number, M
its projection onto a laboratory-fixed axis, II the parity with respect to inversion of
the nuclei through the system’s center of mass and I" the irreducible representation
of the nuclear permutation group (Ps for the Hs system) to which ¥/MIT the

electro-nuclear wave function excluding the nuclear spin part, belongs:

ey "»l’JMHP(RfMI"A)";be(Qd Rf\,r'a). (3-1)
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Here g, refers to the set of all, spacial and spin, electronic coordinates. /MUl
is an eigenfunction of the nuclear motion hamiltonian[11-13] which is required to
be single-valued, continuous and differentiable. The Hamiltonian for the three

particles in this Jacobi, center of mass coordinate system is

—h? A
Thy —

H}\ = Q”A,Wc A 2#‘”& VE;\ -+ V;(R&,T’/\,’y,\) (32)

in which the reduced masses are

mh(mu +mn) S e My
i e o ——
my+m,+m,

Hx,ve = (33)

[ mr
The Born-Oppenheimer potential energy surface V) depends on the interatomic
distances R} and r) and on the angle v, = arccos %;’;%%—l.

The Hamiltonian can be put in a simpler form by the introduction of Delves’
mass-scaled coordinates[38,39], defined as

1 L
Bave N2 Hoe Y2
Ry = (—’) Ry Bi= ( ) r 3.4
“ 5\ - A (3.4)

where

1 1
2 2
- ( M\, My ) — ( Maliginy ) (3.5)

my + my + My Mo + Mg -+ May

The Hamiltonian in this mass-scaled, center of mass coordinates is

2 —h? 2

-HA = 2“ (VR;\ -+ Vm) + V;\(RA;T/\s'YA)- (36)
A change of coordinates, A — v, is a simple orthogonal transformation in the
six-dimensional configuration space spanned by (R,,r)) when the mass scaled
coordinates are used. The mass-scaled Schrodinger equation has the same form as
that for a single particle of mass p in a six dimensional space.

The complete symmetry group of the Hamiltonian is the set of all operators

which commute with the Hamiltonian and is organized into operator subgroups
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which follow naturally from the character of the symmetry operations. Rotational
invariance of the Hamiltonian permits us to choose the spatial wave function to
belong to an irreducible representation of the subgroup SO(3) of the complete
symmetry group of the Hamiltonian. Therefore, the wave function can be chosen
to transform as an irreducible representation of SO(3) and it is a simultaneous
eigenfunction of J2 and J,.

The discrete symmetry subgroups of the symmetry group of the Hamiltonian
are the inversion group, the time-reversal group, and the group of permutations
of the identical particles among the system. The inversion group consists of
two operators [ and E, where E denotes the identity and I inverts the spatial
coordinates of all the particles through the center of mass. The inversion group
has two irreducible representations labelled II = +. The time reversal subgroup
permits us to chose the time-independent wave function to be real function which
leads to a symmetric scattering matrix. The final symmetry group is the set of all
possible permutations of identical particles. For the Hs system, it belongs to the Ps
permutation group. It has irreducible representations labelled by I' € (A1, 4,, E)
and is isomorphic with the point group C3,. The E representation is doubly
degenerate while A; and A, are nondegenerate. In the asymptotic regions of
configuration space, the spatial solutions which transform as A4, (A2 ) are composed
of even (odd) rotational states of the diatomic molecules while those that transform
as F contain both even and odd rotational diatomic states.

The existence of symmetry in a physical system leads to the ability to construet
solutions to the Schrodinger equation which transform under the symmetry
operations as irreducible representations of the operator groups. We will show latter
how permutational symmetry of the total electronuclear wave function with respect

to interchange of nuclei can be enforced in the Born-Oppenheimer approximation
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both in the presence and the absence of conical intersections. The treatment
of nuclear motion wave functions in the presence of conical intersections and
the treatment of nuclear interchange symmetry in general both require careful
consideration of the phases of the electronic and nuclear motion wave functions,

and this will discussed in detail latter.

4. Symmetrized Hyperspherical Coordinates

It has been proposed[34,35] and validated[11-14,17] that symmetrized hyper-
spherical coordinates which are derived from the R, r),7v coordinates are well
suited for three dimensional reactive atom-diatom scattering. There is more than
one possible set of hyperspherical coordinates[40-45] which may be used for the cal-
culations. All these coordinates share the same spirit to treat all three arrangement
channels in equivilent ways.

We use a set of principal-axis body-fixed hyperspherical coordinates closely
related to the modified Whitten-Smith coordinates[41,42,46]. Three of the 5
hyperangles are the Euler angles ( af7y) which specify the orientation of the body
frame in space. The other two are the symmetrized hyperangles (6, ¢, ) obtained by
a rotation of the internal configuration space axis described previously[34] through
Euler angles (7, 7, 7). The angle 6 is in the [0, §] range and ¢y in the [0, 27) range.
These two angles describe the shape of the molecular triangle, such that § = «/2
corresponds to linear configurations and 8 = 0 to symmetric top configurations.
The quantization axis Z for the internal motion is chosen to be the axis of least
inertia and the Y axis is associated to the axis of maximum inertia, perpendicular to
the molecular plane. This choice enables one to minimize coupling due to rotation

of the body frame at linear or near-linear configurations(17,46].
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The cartesian components of ry and Ry in this body-fixed frame are given by

rax = —psin(r/4 — 6/2)cos($x/2); (4.1a)
ray = 0; (4.18)
raz = peos(m/4 — 0/2)sin(¢px/2); (4.1c)
Rax = psin(n/4 — 8/2)sin($x/2); (4.1d)
Ryy = 0; (4.1¢)
Rz = peos(w/4 — 6/2)cos($2/2). (4.1f)

The corresponding Hamiltonian is expressed as
Hy = T(p) + ha({ni p) (4.2)

where we have defined the quantity () to represent all five hyperangles in the A
arrangement channel: «,8,7,8, ¢x. The hyperradial kinetic energy operator 1'(p)

has the form

A 50 gd R _s 0% 5  15W°
i p 2 =—p° ——p 2 z ;
(p) = T % o 2’ e T 8up? (£3)
and the surface hamiltonian & A(Cr; p) is
In(@xip) = 5 4 V(5,0,02) (+3)
The square of the grand canonical angular momentum operator A? can be
expressed in terms of these angles as
A?=AZ4 i 4R (4.4)
® " cos?d '
where A2 and R are given by
o 1 9 3 1 &
2 = —4n? 20— ,
Ao =40 225 56""2 56 * 5?5 593 (45)



5 1 JE-Jz 2402 | A,
Ro= Z =+ = Z
cos2(-’4’- —g [ 2 + 4 Z 511129[ 2
J_?.-I—JA’E cosf 0
- . L |52 .
R e (AT (4.6)

Jz being the body-fixed Z component of the total angular momentum J, and
dig= Ty idly.

This principal-axis hyperspherical formalism has an attractive feature in which
the quantization axis for the internal motion is the axis of lowest inertia where the
Coriolis coupling remains minimal in that frame. Calculations[17,47] neglecting
them still yield good results for low partial waves at low energy, while strongly

coupled states are notably reduced.

5. Expansion of the Partial Waves in terms of Pseudo Surface Functions

Since the Hamiltonian operator (4.2) commutes with J2, J,, 7 and
permutation operator P, we can expand the wave function of the system in terms

of their simultaneous eigenfunctions ¥/MI'x(p () ):
oo J nr
Wt =2, 2. G20 0 w0, (5.1)

= O=0 T k=1

The partial wave functions U/MITx(p () simultaneously satisfy the equations

Hx(p, ()YTTMITr (p, () = BUTMITa(p )Y (5.2)
TH(0, 2, %2) M0 (p, (3) = B2 J(J + 1)ETMITk(p, ¢y) (5.3)
Te(@2) WMk (p, ¢3) = RMETTMITH(p, () (5.4)

Z(6x, 62, ¥2)TTMITR(p, () = (1)L MITx(p, ¢3) (5.5)

BE(G)WMITR (o, ¢3) = 8F 68 @IMITw( ¢3). (5.6)
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We now define a set of five-dimensional pseudo surface functions &JMIT gt

the hyperradius p for the expansion of the six dimensional scattering wave function

‘pJMIIPk(ps C)\) by
ég‘{gnr(av ,61 v, 67 é)l; 16) == ‘Pgnr (97 éz\; ra)NS{MH(as ﬁ: 7) (57)

The functions NgMI are linear combinations of Wigner rotation matrices with

definite parity II = £1[17,48].

2J+1
JMTL _ T W TER i
NQ - \/?6]:[2(1 e SQO)IDMQ(aaﬁa 7) Sig ( 1) DM,—Q(aa ﬁ,’)’)] (58)

where (2 > 0 is the absolute magnitude of the quantum number for the projection
of the total angular momentum onto the body-fixed Z axis.

The 1T are - and p-dependent eigenfunctions of the hamiltonian

1 e 40?
AZ
2.&,52( A

H®(,6x;p) = )+ V (6, éx;5)- (5.9)

cos2d

These eigenfunctions are obtained variationally by expanding them in a body-fixed

basis xﬂf& built from products of simple analytical functions[17]:

Xnony (85 83) = Fry (O)gny “(63) (5.10)

where ng and ngy are integers or half-odd integers, and fg (8) and ggfﬂ(gé A) are
simple linear combinations of trigonometric functions.

The functions f5. (6) can be chosen as the functions cos(ng#) or sin(ne6), with
ng integer or half-odd integer, in terms of which the hyperspherical harmonics
can be written as polynomials in cosé [7,49-51]. Table 1 indicates how to choose
the functions of ggfg(qb ) to obtain electronuclear wavefunctions with correct Ps

permutation symmetries, with and without the effect of the geometric phase.
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We now focus our attention on the special case of three identical nuclei and
describe how to build electronuclear wave function ¥/MIT which are bases for the
irreducible representation of the P permutation group of the three identical nuclei.
The operations of this group correspond to simple changes in ¢ (which are related
to the isomorphism between P; and Cj,) as indicated in Table II.

If there is no conical intersection between electronic states, a non-degenerate
electronic wave function %.(ge; p€) belongs to a one-dimensional representation
of the nuclear permutation group (A; for symmetric with respect to pairwise
permutation of nuclei, or A, for antisymmetric with respect to pairwise
permutation of nuclei), and is also single-valued with respect to the nuclear
configuration. For this reason, the nuclear wave function also needs to be single-
valued, which subsequently means that | ng | has to be an integer.

For even parity, even {) quantum number, with | n4 |= 3m, basis functions
defined in Table I will give sin(3m¢y) (an Az-type function) or cos(3md¢,) (an A;-
type function). For even parity, even ) quantum number, with | ng |= 3m % 1,
pairs of basis functions of the form (S:;((gz ::E 1))

proven to form an E irreducible representation of the P; permutation group.

) with m integer can be easily

If there is a conical intersection between two electronic states for the equilteral
triangular configuration of the nuclei and if the geometric phase effect is taken into
account, in the vinicity of the conical intersection (¢ = 0) the ¢, dependence of
those two non-degenerate Born-Oppenheimer electronic wave function is given by

(2.15) and (2.16)
| 9,y = cos [ pFr) — sin% | P2 (lower energy) (5.11)

-?5,\

) = cos== | pP2) + m | p ) (higher energy) (5.12)
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where 21, ¥F2 are two degenerate p-dependent but ¢ independent states at
¢ = 0 which form a basis for the E irreducible representation of P3 ( ¢F* being
symmetric for the pairwise permutation of nuclei and F? being antisymmetric for
the pairwise permutation of nuclei). Under the permutation operation of the P
permutation group, although % and ¥2 do not depend on ¢, explicitly, the
permutation operation does change the internal coordinate system in which ¢
and ¥ P2 are described. If we take the active view of those symmetric operations,
then ¥ and ¥ would behave like a pair of unit vectors under the Cs, point
group operations, except that the rotation angles are -120° and -240° instead of
120° and 240° as described in Table II.

As mentioned before, 1. and ¢} are both singlet (non-degenerate) electronic
states with their phase factors to be chosen in such a way as make both of them
real functions. Their behavior under the operation of the P; nuclear permutation
is also listed in Table II. It can be seen that although permutation of the nuclei
can only change the sign of ¥} and %, these Born-Oppenheimer electronic wave
functions do not belong to any one-dimensional irreducible representation of Pj
and they are discontinuous in the internal configration space when crossing the
plane of ¢, = 0.

However, we can build continuous electronuclear wave functions that do form
irreducible representation of P3 by using the new set of ng values as indicated
in Table I. For example, with even parity, even {2 quantum number, and with the
choice of ng = 3m+32, we can form basis functions sin(3m+3 )¢ and cos(3m+32 )¢

which behave as

sin(3m + %)q’b\ | o) — Ay 7 (5.13)

and

cos(3m + x| W) = Ao (5.14)
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It can also be proven that for even parity, even {2 quantum number, the pairs of

functions
b )
conom 1 119} (5.15)

and

sin(3m = 1) | ;)
(SeniBlis) 619

form E irreducible representation of P; nuclear permutation group.

The pseudo surface functions ®JAM' in addition to being discrete, span the
three arrangement channels and provide an effective basis set in which to expand
the scattering wave function. We expand the six-dimensional sacttering wave

functions as
1 " =]
"M (o, B,7,0, 6x, p) = 7 > b (5 P)BINTT (o, B,7,0, 605 8)  (5.17)
nfl

where the pseudo surface functions are calculated at p This is an efficient expansion
when p is near p. In this sense we say that the pseudo surface function basis set is
a local basis set. In addition, due to the factorization of pseudo surface functions

QI wwhich is independent of total angular mementum J,

into an internal part
and an external part NJM the evaluation of matrix elements from the expansion
become easy. As a result of the isotropicity of space and the indistinguishability of
the particles, it can be shown that the coefficients in the expansion are independent
of M, so these labels do not appear in the differential equation for the coefficients.
Since the parameter rb is considered to be fixed in any given expansion, the pseudo
surface function basis set is diabatic in p.
The expansion in pseudo surface functions yields the following set of coupled
ordinary differential equations in the variable p:
K2 d* | 15R°

13 pJOT( ). = yuLe
T e . At = 5 ; ? b b
[ o1 4 8#9 7 2(p)— Elbygt (p p)+§nrf (p; P)bg (p; P)



= P25

hZ
Z Won® (03 D)7 (038) + 25 D X (03 P)6 a3 )

n'

2#92

Hl" Q
nn" Q:l:z(pa p)bn’ 9:!:2(001 P) =0 (5-18)

4#P2

where

Q- 0,1,2,....] for J +II even;
—11,23,..0 for J4IIodd;

with coupling matrix elements given by
U (p;9) =< i | V (8, 6, p) — —V(*9 $x2;P) | ot * > (5.19a)

i} 1
Wina = [ 7 1Y) © ptFs -

— <en™ g +3;in9 * 251129 ont ™ > S
X = ~6 ()20 < e o 3“”225“ >
+§_(J,Q)E7%i < P | ::99 | a‘*”;;j o (5.19¢)
Yihas = G DR+ DI L I i
(e - DI I | S LI (5100

1

where 770, 77041, NJe+2 are normalization constants for NZMU(q, 3,7),
Ng¥(«, B,v) and NJY¥(«, B,7) functions. The coupling constants £4(%, k) are

defined as
Ex(5, k) = [i(5 + 1) — k(k £ 1)]*/2. (5.20)

The coupling matrix is penta-diagonal in £ and can be evaluated efficiently by
2D-numerial quadratures. The potential energy coupling matrix U is independent
of J and connects states with the same {2 which only needs to be calculated at

the boundaries and the middle of each sector. For the coupling matrix elements
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W, X,Y, the integrals over 8¢, are independent of J, the J dependence arising
from the analytically known matrix elements of the total angular momentum body-
fixed frame components.

Pseudo surface functions at single rb are not efficient for expanding the wave
function for all values of p. The strategy is to calculate a set of pseudo surface
functions at each of a family of values of the hyperradius p;, 7= 0,1,2,3... For
each value of p;, the system of ordinary differential equations is integrated as an
initial value problem. The range of p over which a single pseudo surface function
set is used is called a sector. With the exception of the very first sector beginning
at pg, the initial conditions follow from continuity of the wave function and its p

derivative between sectors. This is accomplished by imposing the conditions

T (piir1; Bivr) = D bi(piiv1; 5O N2 (Biga, Bi); (5.21)

(%TJ}[F(P; 15:'+1)) — Z (56,{}11“(.0;,5»5)) [OJTIP]n'(ﬁ__]_l pi);
8'0 sl k13 T (N VAl

% i W e
(5.22)
in which the overlap matrices O’ are defined by
(O™ (Big1, Bi) = <¢iMHPk(Ca;ﬁi+1) (bifMHrk(CA;pi)>- (5.23)

These matrices are also independent of M.

For small values of the hyperradius for which the three atoms interact strongly,
simple trigonometric basis functions proved to form an efficient set in which to
expand the electronuclear wavefunctions ¥/MIL' However, for large values of the
hyperradius for which the system has nearly separated into an atom and a diatom,
the nuclear wavefunction is highly localized in each arrangement channel. This
localization makes the trigonometric basis set inefficient and suggests the use of a

basis set based on the previously defined symmetrized hyperspherical coordinates
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wx,¥A[34,35] defined by wx = 2arctan(ra/R)) and yx = arccos(Ry - ra/Rary),

instead. These are related to 8, ¢, by the transformation

sinfcosf = coswy; (5.24a)
sinfsing) = sinwycosya; (5.24b)
cosf = sinw)sinyy. (5.24¢)

The basis set based on wy and -, for large values of p has previously been shown to
be very efficient[13]. The pseudo surface functions are now expanded in a product
basis[13] of Legendre polynomials in cosyy and vibrational type functions in wj.
Since product bases associated to different arrangement channels do not overlap for
large values of p, the pseudo surface functions which include the geometric phase
differ from the ones which exclude it only by simple changes in the signs of the
pieces of the wave function within each arrangement channel. The geometric phase
can be included straightforwardly in this region since it does not change the overlap
and potential coupling matrices.

Equation (5.18) for the p-dependent part of the wavefunction has as many
linearly independent solutions as there are pseudo surface functions in the

expansion. We may write (5.18) in matrix form as

b7 (p; 5:) = K(p, pi)b ™ (p; 5:) (5.25)
where
ou 1 2 1 "
R Py g . S 0 Sy % 2
Ut W 5K o (5.26)
i vk

T 15h% A
k*(p, i) = h—‘iéz (E— B (%) eﬁﬂ(ﬁi)) : (5.27)

If we define the logarithmic derivative[52] of the b’ matrix of coefficients to be

YT (p; 5i) = BT (p, i) (b7 (p, 5:)) (5.28)
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we find by differentiation of (5.28) and using (5.25) that Y satisfies the matrix

Ricatti-Bessel equation
112 _ _\?
Y (e pi) =K(p, pi) — (ymr(p;ps)) : (5.29)

We have used a version of Johnson’s logarithmic derivative integrator[52],
modified to include the improvements suggested by Manolopoulos[53], for
integrating the matrix Ricatti-Bessel equation. In this method, the initial log
derivative matrix is set to correspond to a wavefunction with very small amplitude,

and the matrix is propagated according to the rules
Zo = P+ApY(ps) + Vo
Z;=2P+V;+Q[Z;1]"1Q; i=1,N;r—1 (5.30)

y(pNI) P (P 5 VN; £ Q[ZNJ—I}_IQ)/AP

where
wf n' | Appncoth(App,) p% >0
PI* =6 n 5.31
L brvcikion v ok (5.31)
! » | Appn/sinh(App,)  p 20
n =6p g n 5.32
Qs | Sl oni ), 2 (5:3%)

and there are Ny steps of size Ap = (pn; — po)/Nr1 between calculations of the log

derivative Y. The potential terms V; are given by

£LU; ; =0, Ny
Vz': %—EUg i=2,4,6,...NI—2 (533)

2

-1
SI—S[I——A—%Ui] i=1,8,5...Nr—1

with the matrix U defined as

U=K- Kref (5-34)

where

(5.35)
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with K N being the value of K at the center of the interval between calculations of
.2

Because U is independent of F, this version of the logarithmic derivative
integrator[53] can effectively eliminate —:1; of operations and computer time necessary
for the second and subsequent energies. In addition, it allows one to start the

integration at a larger value of p than the previous version would permit.

6. Asymptotic Analysis

In this section, the asymptotic boundary conditions are considered. To obtain
differential and integral cross sections, it is necessary to use an asymptotic form
which corresponds to the physical conditions of a scattering process. The numerical
solutions to the Schrodinger equation are labelled by J,II, and I' whereas the
asymptotic boundary conditions which represent a scattering experiment have no
such labels. Therefore, construct the P; irreducible representation space-fixed
scattering wave function first and then transforming it to the helicity form will
be a most straightforward procedure

An asymptotic form which describes a scattering experiment has an incident
plane wave multiplying the initial state wave function of the diatomic molecule and
outgoing spherical waves multiplying each energetically accessible diatom state.
One possible form for the asymptotic scattering spatial wave function arises if we
assume the particles are distinguishable. The coordinates and diatom rotational
angular momentum projection quantum numbers are refered to the laboratory-fixed

axes. The boundary conditions for energies significantly below the dissociation



- 30 -

energy are given as:

I ) I PP L | !
\Ili\ LSV SVALLEY etk’wxi.\ ‘R 6A T";\!J)\lm)\l
b R5—oo Z Z Avajama

A ‘U)\J-Am}\

Al 5, m)
+ Frocyoan™ (6, #3)=

(6.1)

zkkuajl\ Ry
Qo)wxj;\ ma (rA)

where {\,v',k'} is a cyclic permutation of the arrangement channel indices
{a, 8,7} and X is a fixed but otherwise arbitrary channel index which corresponds
to the asymptotic arrangement channel under examination. The coefficients

A ! / / ! . . . . .
fszEAJ%A »" are the space-fixed scattering amplitudes and contain the information

needed for the cross section determination. The diatomic wavefunction (Pgi;l i
is given in space-fixed coordinates by
m ¢¢\u ] T/\)
P iams (F2) = 7] *(Hh,qbn)——-—-*“( (6.2)

LN

where 6., and ¢, are the polar coordinates of r) with respect to the space-fixed
Z axis. The quantum number vy labels the vibrational levels for a given j) where
ja(jx + 1)A?) is the square of the diatom rotational angular momentum. The
projection of the diatom rotational angular momentum onto the space-fixed Z axis
is mah. The quantum numbers vy, jx and m) are labeled with the subscript A to
differentiate between the states of distinguishable diatomic molecules.

The corresponding boundary conditions for the body-fixed helicity represen-

tation are given by[2]

A’v’,j”m" 1kA]ul it Ryt f
ATIATTEAL IEEY] S
lpi Rx—o—ooe s Priv ,\JJArm' (I'AI)
3k}w Ry (63)
A vl r.? Im ' Adx bf
AldN A
+§ : _S_ : f Avajaa (9)\796/\) Qo)w.\jxﬂ;\(r/\)
A wadafa

where the body-fixed expression for the diatomic wavefunction is given by

Avada (A
cPEEAjAﬂA(rA) = Y}?A(’Y/\, %@\)M’\:—:g—) (6.4)
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and the quantum number 2, labels the orientation of the diatom with respect to
the body-fixed z) axis so that the projection of the diatomic angular momentum
on the z, axis 1s {2,7A.

The transformation of the final diatom projection quantum number to the
corresponding helicity quantum number is accomplished by using the definition of

the Wigner rotation matrices[54]:

Ym(grxaqsl‘.\)— Z D ﬂ(éAan\aO)Y ('}’A,lb,\) (65)

R=—j

Combining equations (6.5), (6.2), (6.1) and (6.3), yields the relation
Y Aw Ie ,m.
Frocian™ (63, 83) = ZDmAQA(éx,eA,O) P ™ 6x,63)  (6.6)

Since the Hamiltonian commutes with the operators of SO(3), so any
solution to the Schrodinger equation can be written as a linear combination of
solutions which seprately transform as irreducible representation of SO(3). If the
decomposition is done using body-fixed coordinates, then the partial wave series
is given in terms of the Wigner rotation matrices. Here we define the asymptotic
form for a partial wave body-fixed solution to the Schrédinger equation for an
atom-diatom collision at energies below dissociation of the diatom to be

'm-a.w

11 éAvA ¥
‘I,JM R:\—roo Z Z DJAQX(GA’¢A’7A’¢A)Z frj}z( A)G’\”AJAQA(R’\)

Qa=—J jr=|2| vy =0
(6.7)
where the function DJJS{"I is defined as

oJ +1\ %
Dia' = (“gr) Di1a(éx, 60, P2)P; (cos 7). (6.8)
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with Wigner rotation functions[54] Dj,, and normalized[2] associated Legendre

functions P§. The coefficients G’;’"" (Ry) are given by[2]

Q
J
Jn' _ -1 g Jn' J,a" Jn'
where the term vy is the channel velocity, defined by
h 2
vy= by =3B -ex) (6.10)

For open states, i.e., those states with E > ey, the resulting wavenumber is real
and positive; for closed states (E < ex) the wavenumber is positive imaginary, so
that the parts of the wavefunction in equation (6.7) which are associated to closed
states of the system decay exponentially. The sum over the diatomic quantum
numbers in equation (6.7) is over all open and closed states for the system.

The preceeding scattering asymptotic boundary conditions involve plane waves
and spherical waves because these are familiar boundary conditions for a scattering
wave function; however it is most convenient for numerical purposes to calculate
solutions to the Schrodinger equation which are real functions. These are the well

known reactance matrix formalism given by

je(kzRa)cos [F(J+j—£€)] + ne(kzRa)sin [Z(J+j—£)] open

*;’E(R,\) —
2i¢(|kx|Rx) closed
(6.11)
je(kxRa)sin [F(J+j —0)] — ne(kgRa) cos [Z(J+5—L)] open
C(Ry) =

2 ke(|k5|RA) closed
in which j, and 7, are spherical Bessel functions of the first and second kind,

respectively[55]. At sufficiently large Ry the spherical Bessel functions reduce to



- 88 -

trigonometric functions, and we can write,

r . m . Jn'
sin (kxRa = 57 +9)) 437
Jn' -1 i open
Gia (Ba)= o5 7% § +cos (kxBa— 2(J +1)) B } . (6.12)
L {e"“ﬂR’*A;g’ 4 e_”“X'RAB;’;'} closed

From the matrices A” and BY, we obtain the reactance matrix by using the

expression

R7=B’(A7)\. (6.13)

The reactance matrix is unique, real, and the open part °R is symmetric[56].
The relationship between the open-channel parts of the scattering and
reactance matrices is also well known|[56]. For a fixed collision energy, the number

of open initial states and final states is equal. It is simple to show that
i
°s” = (1+°R’) (1-R’) (6.13)

where the left hand superscript o indicates that we are referring to the open parts
of the corresponding matrices. Physical quantities such as reaction cross sections

can be eagily related to the scattering matrix.

7. Symmetry Considerations

There are three possible permutation groups for three particles, depending
on the number of these particles which are indistinguishable, and the number
of operators needed in each case differs. These three permutation groups are:
Py, which corresponds to a system in which all three particles A, B and C are
distinguishable, and the only permutation operation under which the hamiltonian

is invariant is the identity; P, for a system that has two indistinguishable particles
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(the AB; system), and for which the hamiltonian is invariant under the identity
and one two-particle permutation; and Ps, for a system with three indistinguishable
particles (the A system), with six permutations under which the hamiltonian
is invariant, the identity, two three-particle permutations and three two-particle
permutations.

The distinguishable atom representation asymptotic form, ‘I!;'”;"j;'mi", does
not transform according to any irreducible representation of permutation group.
To find spatial asymptotic forms that do transform as irreducible representations
of permutation group, the distinguishable atom asymptotic form is multiplied by
the appropriate group theoretic projection operator[57]. This projection operator
is given by
L= DS MTR)R (7.1)

t,’ ? %4
R

where ' is the irreducible representation, 2,4’

are the row and column of the
representation, Ir is the dimensionality of the representation, h is the order of
the group and MII: #(R) is the 4,4 element of the matrix representing the operator
R for the T irreducible representation. The sum is over all of the operators in
the group. The transformations R and the permutations which generate them are
defined in Table III.

We want a scattering wave function corresponding to equation (6.3) which
transforms as an irreducible representation of permutation group. Such an

irreducible asymptotic wave function is derived by applying the projection operator

(7.1) to the asymptotic form (6.3) followed by normalization of the resulting wave



- 85

function. With this information, the irreducible asymptotic form is

mue: vmaz
RS Y0 M DT TP 3

T A Q.=—Jj,=|Q] vy =0

J
e[ ST (S e el W )
(7.2)
where W may stand for either R or S matrix. Since the arrangement channels of
type 7 are all identical, the form of the functions in these arrangement channels
must all be the same, and therefore we may replace the label ) in these functions
with the label 7. The composite index 7 is defined similarly to X, .85 T S {100}
The coefficients CEij,, are easily determined from the transformation matrices from
Table ITI and are given in Table IV; they are defined so that a summation over A will
result in non-zero contributions from all channels of type 7 and zero contributions
from channels of types 7/ # 7, and a summation over both A and 7 will result
in a single term from each arrangement channel. The irreducible representation
asymptotic form (7.2) has a interesting characteristic that the matrix W has the
same functional form in all arrangement channels.
By taking the appropriate projection for the P; group, the irreducible
asymptotic wave functions are

=A ! !
\IJiM{Pk }in - \IfiM'n

JM{Ly=A},n' JM,n'
PSR gt LB (7.3)
Q:{M{I‘k:A},n' — lIl‘_{M:n’

which in this case are the same functions defined in each arrangement channel. For
the P, permutation group, we have

‘I’iM{I‘k=A’},n' - ﬁA'\I,gM,n'
miM{Tk=A }in :PA”,;L,&TM,n' 5 (7 4)
.lI‘.JM{PIc:A,}:n‘ _ ﬁA'\I’;M1n’ 2 .

‘D;M{Fk:-A“}' PA”‘IIJMH
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If the three particles are identical, all three arrangement channels are indistinguish-

able, giving
| Y

gIMITi=tadn' _ pasgIMa’ | py (7.5)
GIM=Ebn _ pE g M

We can apply the permutation operators (shown in Table III) to the equation
(7.3), and take group theoretic projections which leads to expressions between the
irreducible representation R and S matrices and the corresponding distinguishable

particle matrices. The P; permutation group can be expressed as

Q) ; .
WA ;!;-’a]ag; S {Wav:j:ﬂa _7.Q and J; even
aladio Ja OT J; odd (7 6)
" ’ o' i Q.r !
WA :::"’J“g = Wavw:ﬂa Jo and Ja odd
" Ja Or jl, even
PN P a”;jfmﬂ:x -
WA g:a _Jaga sy ﬁwﬁvﬁjﬁﬂﬂ -7_0 even
e 0 5!, odd
vy jo U -t
W ,;'Umjan e f U'@]’Bﬂg Ja Odd
Vplpisp ji even (7 7)
o
Afﬂu:?j;jgf \/—Wﬁvﬂgﬁ e
W oulital = oveiuly de
e 1 ol
QJ
A" g, 5 ﬁ”,s.?,s .
W C\‘v'sj‘sﬂa { ‘\/_Wa'vaj‘aﬂa j.cg Odd
o Ja €VEN
Al Bol i Q) Bl sl i ijﬁ%
¥ BvpipSta — Wﬂ”ﬁiﬂﬂﬁ + (1) W, BrpiaQg (7.8)
Artﬂv}sj:aﬂ }B’Ulﬂ.?g 3 'Yvﬁjlaﬂﬂ
W BvpipQs — Wﬂ‘v‘sjpﬂg (—1) Wﬁv,amﬂp
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Wit = WP e e e
Wherhs = L (W pisine  wt i)
; 1 i i
W;;).s‘ff;gﬂ = E (WA;f;J;QYZ i WA gfﬁaj;‘g&) (7.9)
Weeklint = 2 (W e+ w L)
wiva® _ (Z1) (W Biss _ A" ousisa
YvpipQp 2 BupipSlp BupipSls

For the three identical particles (Ps), we can derive the set of relation between

R and S matrices for the irreducible representation and those for distinguishable

particles:
I ty! " N
Wi {Wiﬁgé“ F2WA" and j' even
jorj o
Anv' Q! W/\'v i’ 2Wv‘v i’ 3 4 47 wdd
ijf; 7 — Avi§2 + AvgQ2 -7 an "-7 o
Av'5'Qf vo' ' : .
. ) ’Q’ T/V)\'UJQ ’ ’Q’W IJJQ j +J’ cven
WUJ?]J =< /3 X;’sz j even, 7' odd
1!
—3W ﬁ’}én j odd, j' even
The inverses of these relations are:
4 ! '
[T+ I and v
WMJQ = 1W£§;’ i T/T/'E"U 7e j and j' odd
\ J +j’ odd
Ar0'§'Q Bo'jQ ,
[ sV, J., ' WHJ;’%J, 3 and j' even {fii
e 79 _ ) LAY _1wEeSY jand j odd
—_— ] 1
Avyst IWIﬁBJ & 7 even, j' odd
E ! IQI . s
{ \/-WUJ;’IJ 7 odd, j' even

The parity label has not appeared in the foregoing analysis but is a label for

the numerical solutions, so it is desirable to have the asymptotic form expanded

in the corresponding parity components.

The parity labeled components have a

simple phase change when the sign of the final state index changes sign.
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Multiplying by the parity projection operators, which are special cases of
equation (7.1), we can find the parity components of the asymptotic form and
express the asymptotic form as an expansion in the parity components. Since the
inversion parity operator acts only on the generalized Wigner rotation function as

fpféu = (—1)‘]1‘)3{‘"_49, we get from (7.2) that

maa} vmaﬂ:
JMHI‘k,r'v:_ Jfr Q TMII
- i ZZ Z O DI, br ) 3

Qr==J i, =2 | vr=0
96?(7')\) ""% 4 S‘I,Q“ R 6"' v! tJ.,.f C R JT"' v! 1.7 _Q’l
‘J"AR)\ IU?| QrZ:—-J( T ( A) TUrJr Q“ + T ( A) TV jr 9'“ )
(7.12)

where the function DJJS{VI I is defined by
D ™ (0x, 62,720 %2) = Diza(éa, 0x, %2 )P§ (cos 7x) (7.13)

With some manipulation this can be reorganized into the form

ma:}
JMIITy, v ’ur,_','r,ﬂ,_, TMTI
2 P S L DI 6 )

T A QT_OJT—‘IQ I
mnm 0 1
$ ), g {1t \° ZJ:
ko= T)\RA 1+6§02,,. anzo

JII,9" JI o, 5,0, JTII‘rv il -,
(S?Q; (R’X)Efvrjrd-f,’r ’ +C'F (R)\) TV ﬂ” B T)

(7.14)

in which both indices 2, and Q! are greater than or equal to zero. Furthermore,

By Sl — (BIM)T OO0 _ 21 g (<)) gL (18)

T"UTj-,-,Q-,-=0 1"”-;—]1' T T'U-,-J,-ﬂfr

v, ,.ﬂ 1 ol 5,9,
(WJT[F) 3 = [1+( 1)J+TI] (WJHI‘) J .

TV Jr, an 2 TV Jr

(er)r "0l Q,=0 1 [ +{-1 J+1'I] (er)f 'v,:j 12,=0

TUr jr s TUr jr Qs

(7.16)
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As a result, (er)r Verde et pas the symmetry property

TV Jr,82r
vl .’Iﬂ’I Tv, ,Q
(W) ot = (1) (W) s (7.17)

so if the parity labelled scattering matrix elements with 2 > 0 are calculated, then

the elements with € < 0 are known by equation (7.17).

8. Pauli Principle and Observable Cross Sections

The differential cross section is defined as the outgoing flux into a unit solid
angle for some final state of the diatomic molecule divided by the total incident flux.
Before writing down this expression in terms of the helicity scattering amplitude,
it is necessary to undo the effects of mass-scaling on the latter.

The use of mass scaled coordinates affects the normalization of the diatomic
molecule wave functions, the wave vectors, and the spherical wave terms of the

asymptotic form. First, consider the diatomic molecule normalization.

max "muz

/’"x |pe(ra)l* dry =1 = a7 /m |$#(r)I* dr (8.1)
0 0

If the diatomic molecule wave functions in unscaled Jacobi coordinates are defined

to have normalization

de.’ﬂ

A
[ P ar =1 (32)
0
then the following relationship exists between the mass-scaled and unscaled

diatomic wave functions:

$r(rh) = a2 @e(r}) (8.3)

where we have defined

- (ui)% B (%) 4 s
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Also, the wave vector corresponding to unscaled coordinates is
k’,—,,j = a,k.m,j (8.5)

which implies that
ki ;- Bs = Key - Ry

TUJ
(8.6)
kf\ij’A = kxpj R
The unscaled scattering amplitude can be related to scaled scattering
amplitude by

1

] T"U' ‘fml a,.r 2 T'I'J m
FET™ 0,8 = (55) AR ™ 05, 00) (5.7

From the scaled helicity scattering amplitude, the irreducible representation

differential cross section can be defined

,'U, 'm — UT T m

0-‘11—“:_;93 (0x,02) =a 2——%':; ,1:,,,5 7 (6x, ¢A)| (8.8)

which can be rewritten as[2]

o0 - 2
'rvj;EJ i ( /\) = h__,____' Z(ZJ £ 1)d1{1’9(gk) [TJT] :.:‘5; " (89)
4k TI,UI'J? J:O J
where
T =1-~8"T (8.10)
I\rf’ufjlmf

The integral cross section @ is obtained by integration of (8.10) over 6,

TUjm

and ¢ and using the orthonormality property of the d7 functions giving

2
I\Tf I v
Grri ™ = Z(2J +1)|[ [ T :wé o (8.11)
k' i J=0
When the three-particle system under consideration has P; or P; permutation

symmetry, the nuclear spin of the identical particles must be taken into account.

The Hamiltonian considered so far does not include spin dependent terms;
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therefore, the complete wave function can be written as a direct product of a spatial
wave function, which satisfies the Schrédinger equation, and a spin wave function
for the three particles. In earlier sections we have discussed the explicit construction
of the spatial part of the scattering wave function. From the direct product
of the spatial and spin functions, differential cross sections for appropriately
antisymmetrized scattering wave functions can be extracted. The existence of
nuclear spin does not affect the previous sections and becomes important here in
connection with the Pauli principle.

Rotational invariance implies conservation of the spin total angular momenta
squared and one of its space-fixed components. The spin functions that we will
use are chosen to be eigenfunctions of $2, the square of the total spin angular
momentum operator and Sz, its space-fixed Z component.

The permutation operators also affect the spin functions. Since the operators
of permutation group all commute with those of SO(3), the spin functions just
chosen form irreducible representations of permutation groups. For example, the

direct product for the P; representations are (spin ® spatial)

A1 R A =A@ Ay = Ay

A @A =A@ Ay = Ay

EQA =A1QE=F (8.12)

EQA=AQFE=F

EQE=A10A:®FE

It is seen that in the case of fermions the only irreducible representation spatial
solutions that contribute to nature are As and E. When the Pauli principle is

satisfied, we associate the quartet nuclear spin state with the A, spatial scattering

amplitude and the doublet nuclear spin state with the E spatial scattering

amplitude for spin 1 nuclei like hydrogen. It is easily seen that bosons require
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spatial solutions that transforms as A; and E. If the initial rotational state of the
diatomic j is even (para-hydrogen), then the corresponding spatial wave function
must belong to the E irreducible representation because A, solutions contain no

even rotational states. The explicit form for the observable cross sections in this

case is
E Y ! i 2
o :J.flm j and j' even
2 szrj-fmr 1 Ev’j‘ o " o
Py s=1/2: ottt ) B wany 39 0 7 and 7' odd _
3,8 = ‘Ovin T\ 1 _EBvim . 7 (8.13)
39 40 7 even, j' odd
Ev'j'm' . .t
o7 i j odd, j' even

Summing up for this example, all differential cross sections are composed solely
of F differential cross sections except the ortho to ortho ones which are simple linear

combination of the F and A, differential cross sections.

9. Summary

We have presented in detail a methodology for performing accurate quantum
mechanical reactive scattering calculations based on symmetrized principal-axis
moment inertia hyperspherical coordinates. The formalism includes the expansion
of the wave function in terms of local hyperspherical pseudo surface functions which
are independent of total angular momentum. The geometric phase effect due to the
conical intersections requires careful consideration of the phases of the electronic

and nuclear wave functions.
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FIGURE CAPTIONS

Figure 1. Diagram displaying a pseudo-rotation in the H; system. The electronic
degeneracy occurs at the symmetric configuration, shown as the equilateral triangle
in the center. As one round a series of continuous loop in the space of nuclear
coordinates, this cyclic evolution as a result changes the sign of the electronic wave

function.
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Operations and irreducible representations for P,

5}
Operation Permutation a2
3 B 'r)
9, “ 1
& (a B v
P,
Operation Permutation d4s d“z
. a B v
Og (a 3 7) 1 1
A a B v s
Oa (a ’Y ﬁ) 1 1
Py
Operation Permutation d4: dAz df
= 1 0
E
oo | (@a) || ()
A a B v _ 1 0
o | @D 2] (Y
oo | (58D || (F7)
7 B o« ¥ 32
1 3
A « B 7 L -1
% | (5a7) (5
O (O“' b 7) 1 1 (_% 32&)
> | (a5 % 4
a B v (‘% "’zé)
o ) 1 1
i (571 * -3
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Table IV: Symmetry coefficients c:: x; for P

b
A
Tk 5 o B ¥
A 1 0 0
A B 0 1 0
C 0 0 -1
P
A
| A T 44 18 vy
I 1+("1)J
A A 7 0 0),-
1 -1
B 0 2 -
1—(—1)J
A A . 0 0 )j
1 —1
B 2 Vo — 5
Py
A
| T 2 ﬁ g
14(—1) 1+(—1)7 14+(—1)!
Ay A 2/3 2/3 23 ]
LI{=1)} S 1=(=1)
As A S 273 23
C C
Bu | & | % | —wxtin | ik

a=[1-()"] o =[-D"+(-1)]
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CHAPTER III

Effect of the Geometric Phase on Product Rotational

State Distributions and Integral Cross Sections
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Effect of the Geometric Phase on Product Rotational

State Distributions and Integral Cross Sections

Yi-Shuen Mark Wu and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics
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California Institute of Technology
Pasadena, CA 91125, USA

Abstract

The effect of the geometric phase induced by the conical intersection between
the two lowest electronic states for the H + H, system on product rotational state
distributions and integral cross sections is investigated by an accurate quantum
mechaincal calculation with total collision energies up to 2.6 eV above the bottom
of the ground state H; electronic well. Inclusion of the effect of the geometric
phase is shown to change significantly the rotational state distributions and para-
to-ortho integral cross sections for energies higher than 1.8 eV. These results are in
excellent qualitative agreement with the experimentally measured distributions for
the D 4+ Hj reaction, and strongly suggest that under appropriate conditions the
geometric phase effect may be significant in the many systems that display conical

intersections.

¢ Contribution number 8603.
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1. Introduction

The H+H, reaction and its isotopic variations, such as the D+H; reaction, play
a special role in chemical kinetics[1]. They are the simplest and most fundamental
of the gas-phase exchange reactions for which the procesess of concurrent bond
breaking and bond formation can be studied in detail both experimentally and
theoretically. Early three-dimensional quantum cross section calculations for the
H + H, reaction were carried out about 17 years ago[2-6] at energies below the
opening of the first vibrationally exciated state of Hy. The methods used have
proven computationally too expensive to extend to higher energies[1].

As a result of the current development of efficient methodologies and increased
access to supercomputers, beginning in 1986 with the publication of J = 0 partial
wave results for the H + Hs reaction up to energies of 1.6 eV above threshold
using symmetrized hyperspherical coordinates|7,8], there has been a remarkable
surge of activity in this field[9-51]. These calculations are of three basic types: the
propagation methods of Kuppermann et al.[7-12], Pack et al.[13-17], Schatz[18,19],
Linderberg et al[20], and Launay et ol [21-23], all involving some form of
hyperspherical coordinates; the variational methods of the Truhlar and Kouri
groups[24-38], Miller et «l.[39-43], and Manolopoulos, Wyatt et al.[44-49], using
Jacobi coordinates; and the recent work of Webster and Light[50-51] using a natural
collision coordinate[52] method related to earlier approaches|2-6].

Most of the above calculations for reactive scattering implicitly assume that
the Born-Oppenheimer approximation is valid and that the reaction occurs on the
ground state electronically adiabatic potential energy surface. Since the minimum
of the first excited electronic state surface is 2.7 eV above the minimum of the
ground state surface (which is the bottom of the isolated H; diatom potential well

), it would seem that this is a very good approximation for the energy range of
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the previous calculations (0.3-1.6 €V). However, a complication arises in using the
Born-Oppenheimer approximation when two electronic potential energy surfaces
exhibit a comnical intersection. It has been shown[53] that in a system of three
atoms each having only one valence electron of the s-type (such as hydrogen atom
isotopes or alkali atoms), the lowest electronic doublet state displays a conical
intersection even when all three atoms are dissimilar. If one traces a path in
nuclear configuration space which encircles the line of the conical intersections and
returns to the original configuration, the electronic wavefunction, if forced to be
real, changes sign. Since the total wavefunction including electronic and nuclear
parts must be single-valued and continuous, there must be a compensating sign
change in the nuclear wavefunction. This is known as the molecular Aharonov-
Bohm effect[54-57] and is a special case of Berry’s geometric phase[58].

Recently, Kliner, Zare et al.[59-60] have reported resonance-enhanced multi-
photon ionization and time-of-flight mass spectroscopic measurements of product
rotational state distributions for the D + Hj reaction in which the H; reagent was
either thermal (v=0, j) or prepared in the level (v=1, j=1) by stimulated Raman
pumping. Previous quantum calculations[37,41] are in perfect agreement with the
measured distribution[59] for the D +Hy(v = 0,j) — HD(v' = 1,j') + H reaction at
center-of-mass collision energy Ey. = 1.05 eV. However, quantum calculations of
the D+ Hz(v =1,j =1) — HD(v' = 1,j') + H distribution at Ey, = 1.02 eV[37,38]
do not agree with experiment[60]. Specifically, the calculated distribution is 2-3
quanta hotter than the experimental one. It has been suggested|12] that for the
D + H, reaction the influence of the geometric phase on integral and differential
cross sections is apt to manifest itself at total energies above 1.8 eV. Since only
exchange processes contribute to this reaction (as opposed to the contribution of

both direct and exchange processes in the H + H, reaction), the influence of the



- 57-

geometric phase on D + H; should be qualitatively similar to that on the para —
ortho and ortho — para transitions for H + H,.

In this letter, we present accurate numerical results for H + Hy including and
excluding the geometric phase in order to assess the magnitude of its effect on
the product rotational state distributions and on para — ortho and ortho — para
integral cross sections. We performed these calculations for energies up to 2.6
eV (about 0.1 eV below the minimum of the first electronically excited potential
energy surface) and to all total angular momenta needed to obtain converged cross
sections. In section 2 we provide an overview of the methodology based on a
hyperspherical coordinate formalism[12]. The numerical details of the calculations
are discussed in section 3. In section 4 results of the scattering calculations for
the H 4+ H; with and without the geometric phase effect are presented. We focus
attention on the influence of the geometric phase on the product rotational state
distributions and on the para — ortho and ortho — para integral cross sections.

In section 5 we summarize the main points of this letter.

2. Methodology

The calculations were carried out using a symmetrized hyperspherical coordi-
nate formalism, as described elsewhere[12]. In particular, we use symmetrized
hyperspherical coordinates[61,62] and local hyperspherical pseudo surface func-
tions[12] to solve the three-dimensional Schrddinger equation including the geo-
metric phase effect. This approach has several attractive features. First, it can be
incorporated into a body-fixed formalism[14,21], in which the body frame is tied

to the instantaneous principal axes of moment inertia, and in which a reference
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hamiltonian is used which omits some centrifugal couplings terms[12,21]. The re-
sulting pseudo surface functions can be calculated very economically and provide
a very efficient basis set for expansion of the six-variable wave function.

In the Born-Oppenheimer approximation , the total wave function is expressed
as a product of an electronic wave function ., which we choose to be real, and a
nuclear wave function. The latter is a product of the nuclear space wave function
¢J MTIIT

and a nuclear spin wavefunction. The electronuclear wave function ¥/l

excluding the nuclear spin part is expressed as

GIMIL = o TMIT (5 £Yihe(ges 2, €) (1)

which is chosen to belong to an irreducible representation I' of the nuclear
permutation group (P;) of Hs. Here ¢, refers to the set of all spacial and spin
electronic coordinates. The symbol p designates the system’s hyperradius and ¢
an appropriately chosen set of five symmetrized hyperangles. It is also labelled by
the total spatial nuclear angular momentum quantum number J, its component
M along a laboratory-fixed axis and the spatial nuclear parity II. In the absence
of the geometric phase, we make the electronic wave function belong to the A4,
irreducible representation of the nuclear permutation group. In this case, the
spatial part /M of the nuclear wave function belongs to the same irreducible
representation T' as U/MU'  In the presence of the geometric phase, although
WIMIT sti1] belongs to the irreducible representation I' of P, the spatial part of
the nuclear wave function and the electronic wave function do not.

The details of the methodology have been described previously[11,12,63] and
will not be repeated here.

For H + H; reaction, in the P3; permutation group, only two independent
scattering amplitude matrices between a given initial state vym and final state

v'j'm’ need be considered, which may be represented as fN (the non-reactive one)



- 59 -

and f® (the reactive one). For the purposes of the present paper it is convenient
to relate these matrices to those corresponding to the irreducible representations

Ay, A, and E. In the helicity representation these relations are[64]:

1 pA v j'm! 9 cBv'i'm!' . "
va"j’m' = 4 f z:g;?r‘j’m’ N g 'g:?j'm' j g J'_, -
e 3/ vjm + 3Jvjm J and j' odd
L j+ ' odd
P ]
e[ ol
vajm j even, j' odd
Tf,fng e j odd, j' even

To convert these distinguishable-atom scattering amplitudes into Pauli-
antisymmetrized differential cross sections one may use the relations[3]:

(a) para — para (7, even)

'u'j’m . ]va_;rm _fR'vjm (3)

vjm vjm
(b) para — ortho (j even, j' odd)

oi'mt V'v'j’ rYi'm g
s =35 @

(c) ortho — para (j odd, j' even)

Lot Voo ¥ bl
vim _ TV RYJ 2
vim = ij I f vim (5)
(d) ortho — ortho (j,7" odd)
'u'j’m' Vu'j’ erjiml Rvijfml 9 Rv’j’m' 9
Tpim = 7‘;;-(‘ f vim + f vim l +2 l f vim I ) (6)

where V,; and V,j stand for initial and final relative velocities respectively.
In addition, for comparison with the D 4+ H, — DH 4 H reaction one may

treat the H + Hy reaction as having the P2 permutation group and derive the
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following relations between the helicity scattering amplitudes for the P; irreducible

representations (A’ and A") and those for distinguishable particles:

m

v’ ' m! rv'i'm’ .
fA - _ V2f il j even
0

j odd 1)
fAuv";j'm' _ { \/i R:;{nm 7 odd
- 0 j even

The explicit form for the Pauli-antisymmetrized reactive differentical cross

section is given by the simple expression

i I
v 3m .
O_Rv"j'm' . 71'0“& vim 7 even 8
vygm 3 A,,v’j'm’ . ¥ ( )
9 wim 7 odd

The corresponding state-to-state, QRZJ-“:“m , and degeneracy-averaged, QF. J-j ,

integral cross sections can be obtained by analytical integration of the expressions
above over the scattering angle and are easily expressed in terms of the absolute

values of associated transition matrices|[3].

3. Numerical Parameters

The pseudo surface function and propagation matrix element calculations
were carried out on the Cray-2/4-256 supercomputer at the NASA Ames
Supercomputer Center. The integrations of the coupled-channel equations and the
final asympototic analysis tasks were carried out on two Cray Y-MP /864s, one at
the San Diego Supercomputer Center and the other at NASA Ames Supercomputer
Center.

The LSTH Born-Oppenheimer electronic potential energy surface[65] has been
used throughout the calculations covering the energy range between 0.3 eV to 2.6

eV measured with respect to the bottom of the Hy well.
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Pseudo surface functions were computed at 20 values of the hyperradius p
between 2 and 6 bohr and at 31 values of p between 6 and 12 bohr. The results
described in this paper were obtained by using 10000 products of trigonometric
functions (100 for each of the two hyperangular coordinates 6 and ¢,[12]) for p
between 2 and 6 bohr and 4000 asymptotic rovibrational states in the hyperangular
coordinates w) and «x[12] for p between 6 and 12 bohr. 2500 pseudo surface
functions were kept for the integration of the coupled-channel equations. This
number of basis functions was found to be enough to produced sufficiently
converged results over the energy range of these calculations, as described below.
The boundary at which we change from the principal-axis moment of inertia frame
to the body-fixed Jacobi frame[15] was set at p, = 6 bohr. This value was used
for all J, since the change-over distance is determined mainly by the p-dependence
of the potential energy function V. For the present converged calculations, the
results do not change as p, is further increased.

The largest value of the angular momentum quantum number 2 along the
smallest principal axis of inertia was determined by checking the convergence and
the unitarity of the scattering matrix with respect to this quantity. A value of
Qmaz = 26 sufficed and as a result the size of the basis set increases with J for
J = 0 — 26 and then remains the same for J = 26 — 52. For total energies E up
to 2.6 eV values of J up to 52 were needed. Calculations were performed with a
uniform energy grid of 0.01 eV.

Two important overall measurements of the accuracy of a scattering
calculation are the conservation of flux and symmetry of the scattering matrix.
For all energies below 2.0 eV, the deviations from flux conservation are 2.5 % or
less. Over the same energy range, the scattering matrix is symmetric to within

8 % for elements with squared modulus greater than 0.01. If all elements of the
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open part of the matrix was considered, the maximum deviation of the phases of
the scattering matrix elements is found to be 9.2°. Limiting the comparison of
elements with modulus greater than 0.01 reduces this figure to about 2.3°. For
energies between 2.0 eV to 2.6 eV, the maximum deviations from flux conservation
are between 5.0 % and 12 % while the scattering matrix is symmetric to within 10
% - 16 % for elements with squared modulus greater than 0.01. The corresponding
maximum deviation of the phases of the scattering matrix elements was found to be
within 8°. These are the worse cases and at lower collision energies, the scattering
matrix unitarity and symmetry are much better. The flux conservation of the
results given in the figures is better than 4% and the maximum deviation of the

symmetry of the scattering matrix elements is within 5%.

4. Results of Scattering Calculations

We have performed the calculations of product rotational state distributions
and for para — ortho and ortho — para integral cross sections of the H + H,
reaction both with and without inclusion of the geometric phase effect for total

energies below 2.6 eV (measured with respect to the bottom of the isolated H,

well).
4.1 Rotational State Distributions

Experimental measurements of these distributions for the D + Hy reaction
have been made recently[59,60]. Since many aspects of this reaction are similar
to those of the H + H; reaction, we will compare the current calculations with
the experimental and theoretical results for the D 4 H; reaction in order to
assess the importance of the geometric phase effect for the latter. Figure 1(a)

shows a comparison of the theoretical results of Mielke et al.[38] (using the
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DMBE[66] potential energy surface), and of Zhang and Miller[41] (using the LSTH
potential energy surface[65]) with the experimental measurements of Kliner, Rinnen
and Zare[59] on the integral cross section for the D + Ha(v = 0,j = 0,1) —
DH(v' = 1,j') 4+ H reaction at a relative translational energy E;; of 1.05 eV. The
theoretical values are appropriately weighted averages over the initial rotational
states j = 0, 1 according to their respective populations at T = 294 K°. The
experimental distributions are normalized such that the sum of the cross sections
for 7' = 0—9 is the same as for the theoretical results. The absolute cross sections
are also displayed on the figure. The two quantum calculations are in excellent
agreement with the experimental results. The slight differences between the two
calculations are consistent with the differences between the DMBE and LSTH
potential energy surfaces. Figure 1(b) shows the corresponding cross sections of
the H+ Hy(v=0,j=0,1) — Ha(v' = 1,') + H reaction treated as having the P,
symmetry and weighted by the j = 0 and j = 1 contributions according to their
respective populations at T = 294 K° , as a function of final rotational states. The
inclusion of the geometric phase produces no detectable difference to about three
significant digits. The qualitative feature of the H 4+ Hy product rotational state
distribution is similar to that for the D + Hy reaction. This lack of influence of the
geometric phase is in agreement with the semi-classical argument of Mead[56] and
with the previous quantum calculations[12].

More recently, Kliner, Rinnen and Zare[60] have determined the product
rotational state distributation for the reaction D + Hy(v = 1,j = 1) in which the
H, reagent was vibrationally excited. These results are shown in Figure 2(a). Also
shown here are the results of converged 3D quantum calculations by S. L. Mielke
et al.[38]. The calculations qualitatively reproduce the experimental results, but

there are significant differences between them which are outside of the experimental
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uncertainty. The theoretical distribution peaks at j' = 10 whereas the measured
distribution peaks at 7' = 7 and the predicted enhancement in the v’ = 1 rate
with reagent vibrational excitation is a factor of 4.2 + 0.3 whereas the calculated
one is 6.4, z.e. 52 % higher than the experimental one. Since the calculations
are well converged and use an accurate ab inifio potential energy surface and
the experimental measurements are carefully checked, the discrepency shown in
Figure 2(a) is unlikely to be either attributed to the experimental uncertainty
or the accuracy of the calculations. However, when we plot the corresponding
converged quantum calculation of the product rotational states distributions for
the H 4+ Hy reaction in Figure 2(b), inclusion of the geometric phase effect results
in significant differences. Without inclusion of this phase the calculated rotational
state distribution is similar to the theoretical D 4 H; results obtained previously
(also without inclusion of this phase). When the geometric phase effect is included
in our H 4 Hs calculations, the results are much closer to the experimnental ones. It
has been suggested[12] that at the energies of these D+Hy(v = 1, j = 1) experiments
the influence of the geometric phase on D + H, should be qualitatively similar to
those for the para — ortho and ortho — para transitions in H 4+ Hs because only
exchange processes contribute both to the latter and to D + H; as opposed to the
contribution of both direct and exchange processes for para — para and ortho —
ortho transitions in H + Hy. When the geometric phase effect is included in the
calculation, vibrational excitation of the Hy reagent results in substantial rotational
excitation of the Ha(v' = 1) product and increase the reaction rate into v’ =1 by
about a factor of 4.

Figure 3 shows a similar relation between the experimental D + H, rotational
states distributions at E¢; = 1.4 eV and the present theoretical results for H + Hj.

Theoretical results for D+ H, are not available for comparison with the experiment



- 65 -

at this energy. The present calculations strongly suggest that the discrepancy
between theory and experiment for the D + H, system is due to the geometric
phase effect. For reactions involving dissimilar hydrogen atoms, such as D + Hj, it

will become necessary to include this effect in the high energy regime.

4.2 Para — ortho and ortho — para Integral Cross Sections

In Figures 4 and 5 we display the integral cross sections as a function of
energy for the H+Hy(v =0,j =0,1) — Ha(v' = 1, = 0,1)+H reaction treated as
having the Py symmetry, summed over the angular momentum projection quantum
number of the molecular product. Each of these figures displays three curves, one

QNGP | and the one

for the case in which the geometric phase effect is not included,
for which it is included, Q%%, and their difference. As can be seen, both figures
display differences for energies higher than about 1.8 eV.

It is expected that as the system’s energy increases towards the lowest conical
intersection energy ( 2.7 €V ) , there should be two kinds of semi-classical paths
which contribute to the exchange scattering amplitude, that which encircles the
conical intersection and that which does not[11,12,56]. Figure 6 depicts these two
kinds of semi-classical paths. For energies lower than 1.8 eV the semi-classical
path does not encircle the conical intersection, it is expected that the phase of the
scattering matrix elements and of the scattering amplitude should change by 7 as
a result of the inclusion of the geometric phase effect. For energies higher than 1.8
eV, it is expected that both semi-classical paths will contribute to the reaction.
As a result inclusion of the geometric phase effect will affect the phases of the
corresponding contributions to the scattering matrix differently, and the net effect

will result in a more complicated behavior. For sufficiently high energies it will be
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necessary to include the nonadiabatic effects of coupling to the upper sheet of the

potential energy surface.

5. Summary

We have investigated the effect of the geometric phase on the product
rotational state distributions and on para — ortho and ortho — para integral cross
sections for the H + H; system at total collision energies up to 2.6 eV above the
bottom of the ground state H; electronic potential well. Inclusion of the effect of
the geometric phase is shown to significantly change the distributions and integral
cross sections for energies higher than 1.8 eV. The results for the H + H, reaction
that include the effect of the geometric phase are in qualitative agreement with the
measured distributions for the D + H; reaction. Our results strongly suggest that
the geometric phase effect is very significant in the D+ Hj system at these energies.
It may also be significant in other systems displaying conical intersections, under
conditions for which paths in configuration space encircle the line representing such

intersections.
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Figure Captions

Figure 1. (a) Comparison of theoretical and experimental integral cross sections
as a function of the product rotational state quantum number j' for D + Ha(v =
0,j = 0,1) — DH(v' = 1,j’/) + H at Ey; = 1.05eV. The circles connected by
solid lines represent the experimental results of ref.[59]. Error bars represent one
standard deviation. The squares connected by solid lines are the theoretical values
of ref. [41] (using the LSTH surface), and the triangles connected by solid lines
are the theoretical values of ref. [38] (using the DMBE surface). The experimental
results are normalized such that the sum of the cross sections for j' = 0 — 9 is the
same as for the theoretical results. (b) The present calculations of integral cross
sections for H+ Ha(v = 0,j = 0,1) — Hy(v' =1,j')+ H reaction ,treated as having
the P, symmetry, as a function of the product rotational state j' at Ei; = 1.05
eV. The cross sections have been weighted for the j = 0 and 7 = 1 contributions
according to their respective populations at T = 294K °. The open circles (squares)

correspond to the case in which the geometric phase is included (is not included).

Figure 2. (a) Comparison of theoretical and experimental integral cross sections
as a function of the product rotational state quantum number j' for D + Ha(v =
1,j = 1) — DH(v' = 1,j') + H at Ey; = 1.0eV. The circles connected by
solid line represent the experimental results of ref.[60]. Error bars represent one
standard deviation. The squares connected by solid lines are the theoretical values
of ref. [38] (using the DMBE surface). The experimental results are normalized
such that the sum of the cross sections for j° = 0 — 12 is the same as for the
theoretical results. (b) The present calculations of integral cross sections for
H 4+ Ho(v = 1,j = 1) — Hy(v' = 1,i') + H reaction, treated as having the P,

symmetry, as a function of the product rotational state quantum number j' at E¢;
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= 1.0 eV. The open circles (squares) correspond to the case in which the geometric

phase is included (is not included).

Figure 3. (a) The experimental integral cross sections from ref.[60] as a function
of the product rotational state quantum number j' for D + Hy(v = 1,j = 1) —
DH(v' = 1,j') + H at Ey, = 1.4eV. Error bars represent one standard deviation.
(b) The present calculations of integral cross sections for H 4+ Hy(v = 1,j = 1) —
Hz(v' = 1,j') + H reaction, treated as having P; symmetry, as a function of the
product rotational state quantum number j' at Ei;, = 1.4 eV. The open circles
(squares) correspond to the case in which the geometric phase is included (is not

included).

Figure 4. Degeneracy-averaged integral cross sections for the H + Hy(v = 0,j =
0) — Hz(v' = 0,j’ = 1) + H reaction, treated as having the P, symmetry, as a
function of total energy. The open circles (squares) correspond to the case in which
the geometric phase is included (is not included). Also plotted is the difference (
represented by triangle ) between those two curves which were multiplied by a

scaling factor of 25 before being plotted.

Figure 5. Degeneracy-averaged integral cross sections for the H + Hy(v = 0,j =
1) — Hy(v' = 1,j’ = 0) + H reaction, treated as having the P, symmetry, as a
function of total energy. The open circles (squares) correspond to the case in which
the geometric phase is included (is not included). Also plotted is the difference (
represented by triangle ) between those two curves which were multiplied by a

scaling factor of 25 before being plotted.

Figure 6. This figure depicts two kinds of semi-classical path which contribute

to the exchange scattering amplitude, that which encircles ( represented by dash
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line ) the conical intersection and that which does not ( represented by solid line ).
The motion of the approaching reagent molecules is represented by a point moving
in from above at the gap between the two nearly vertical tubes displayed at the
top of the figure. The motion of the product molecules receding from each other
is represented by a point moving outward in the gap between the tubes pointing

toward the bottom of the figure.
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CHAPTER IV

Theoretical Calculation of Experimentally Observable
Consequences of the geometric Phase on

Chemical Reaction Cross Sections

i This paper appeared in J. Chem. Phys. 186, 319 (1991).
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ABSTRACT

Any system composed of three similar or dissimilar atoms whose ground states
are 2S, displays a conical intersection, as well as a corresponding geometric phase
effect. We report for the first time the results of accurate quantum mechanical
calculations including this effect. Integral and differential cross sections for the
simple H + Hy system over the energy range 0.7 eV to 1.2 €V are presented. For
para — para and ortho — ortho transitions they are changed significantly, whereas
for para — ortho and ortho — para transitions they are not. These results are

verifiable experimentally.

I Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
2 Current address: 111 Rue Olivier De Serres, 75015 Paris, France
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1. INTRODUCTION

It has been shown[l] that a system composed of three atoms, which may be
dissimilar, but which have 2S ground states, displays a conical intersection between
its two lowest electronically adiabatic potential energy surfaces. As one follows a
closed path in nuclear configuration space around the line along which these two
surfaces conically intersect, the ground state Born-Oppenheimer electronic wave
function changes sign if it is required to real[1-7]. This sign change is a special
case of Berry’s geometric phase[8], and is sometimes referred to as the molecular
Aharonov-Bohm effect[9]. Particular systems which display this sign change effect
are those composed of three alkali atoms, be they identical or dissimilar, and of
three isotopic hydrogen atoms, identical or dissimilar. For the isotopic H3 system,
the two lowest electronic states belong to the ?E’ irreducible representation of the
D3n point symmetry group at equilateral triangular geometries of the three nuclei,
whether these are identical or not, i.e., the geometry of the conical intersection is
that of an equilateral triangle.

Mead and Truhlar[3] have shown that the change in sign associated with such
conical intersections has consequences for the corresponding nuclear motion. A
corollary of that change in sign is that the nuclear wavefunction must also change
sign when taken through such closed path, to make the total product wavefunction
single-valued. Berry’s geometric phase is an example of holonomy, the phenomenon
by which some variables change when other variables or parameters characterizing
a system return to their initial values[10,11]. The origin of this additional phase
are anholonomic, that is, they depend only on the geometry of the parameter space
and the circuit traversed rather than on other aspects of the hamiltonian. Notably
lacking are accurate quantitative predictions or experimental observations on real

chemical reactions demonstrating the magnitude of this effect.
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All quantum mechanical calculations of experimentally observable reaction
cross sections for the H + H, system performed so far have assumed that the
reaction occurs on the single ground electronic potential energy surface[12-28]. Tt
has been recently shown however[6] that, in the absence of coupling to the ground
electronic state, the geometric phase completely modifies the energy spectrum and
the permutation symmetry properties of the quasi-bound rovibrational states of
the first electronically excited state of H3. In addition, it has also been shown that
the J = 0 total angular momentum partial cross sections of para — para and ortho
— ortho transitions for this system is significantly changed by this effect[7]. In this
letter, we report results obtained by extending these calculations to all total angular
momenta needed to obtain converged integral and differential cross sections over
an energy range from 0.7 eV to 1.2 eV. By performing these calculations including
and excluding the geometric phase, we have been able to accurately assess the
magnitude of its effect on this reaction.

We divide this paper into four additional sections. In Section 2 we provide
an overview of the methodology based on a hyperspherical coordinate formalism.
The numerical details of the calculations are discussed in Section 3. In Section 4
results of scattering calculations for the H 4+ Hy performed with and without the

geometric phase are presented. Section 5 contains some concluding remarks.

2. METHODOLOGY

In the present calculations, we neglect all spin-orbit and spin-spin interactions.
Under conditions of validity of the Born-Oppenheimer approximation, the
electronuclear wave function can be written as a product of the electronic part .,
which we chose to be real, and the nuclear part. The latter can be factored into

a nuclear spin part and a spacial part ¥7 MIL 7 is the total angular momentum
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quantum number, M its projection onto laboratory-fixed axis, II the parity with
respect to inversion of the nuclei through the system’s center of mass and I' the
irreducible representation of the nuclear permutation group (P for the Hy system)
to which W/MIT  the electro-nuclear wave function excluding the nuclear spin part,

belongs:
gL = "/)'IMHP(P: £)pe(ge; P, 6) (1)

Here g¢. refers to the set of all, spacial and spin, electronic coordinates. The

symbol p designates the system’s hyperradius and £ an appropriately chosen set

,l,bJMl'II"

of 5 symmetrized hyperangles. is an eigenfunction of the nuclear motion

hamiltonian[15-17)

~

B2 8 48  A?

. ST L
2up® Op" Op = 2up*

+V(p,§) (2)

where 4 is the three-body reduced mass. A the grand canonical angular momentum
operator and V the Born-Openheimer electronic potential energy function.

We use a set of principal-axis body-fixed hyperspherical coordinates closely
related to the modified Whitten-Smith coordinates[27,29,30]. Three of the 5
hyperangles are the Euler angles ( af87v) which specify the orientation of the body
frame in space. The other two are the symmetrized hyperangles (6, ¢,) obtained by
a rotation of the internal configuration space axis described previously[31] through
Euler angles (5, 7, 7). The angle 6 is in the [0, §] range and ¢, in the [0, 27) range.
These two angles describe the shape of the molecular triangle, such that 8 = = /2
corresponds to linear configurations and 8 = 0 to symmetric top configurations.
The quantization axis Z for the internal motion is chosen to be the axis of least
inertia and the ¥~ axis is associated to the axis of maximum inertia, perpendicular to
the molecular plane. This choice enables one to minimise coupling due to rotation

of the body frame at linear or near-linear configurations[27,28]. Let r) and Ry be
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respectively the mass scaled vectors from A, to A, and from the center of mass of
A, A, to Ay, where the three nuclei are labelled A, A5 and A, and Avk is a cyclic
permutation of afy. The cartesian components of ry and R in this body-fixed

frame are given by

rax = —psin(x /4 — 6/2)cos($x/2); (3a)
ray = 0; (3b)
raz = peos(m/4 — 6/2)sin(¢x/2); (3¢)
Rax = psin(m/4 — 0/2)sin(¢1/2); (3d)
Ryy = 0; (3e)
Rz = peos(m/4 — 8/2)cos(x/2). (3f)

The square of the grand canonical angular momentum operator A? can be expressed

in terms of these angles as

. . 42 R
2 _ A2 Z
A ﬁAo—l-coszo—]-R (4)
where A2 and R are given by
o 1 9 7] 1 92
2 an2 9 . .,2 , 1 O
A; = —4h [sin28 6981112839 - oy 8«75%] (5a)
A R T T TS R
= —J
@ EoR( S — % [ 2 4 zt sin26[ 2
j.?_ +J% cosf | - o
— g A Fg gt gy ()

Jz being the body-fixed Z component of the total angular momentum J, and
Ji = Jx £ idy.
We define a set of five-dimensional pseudo surface functions @ﬁ-‘fnr at the

hyperradius p by

&ML (o, B, 4,6, dx; ) = w2 (8, éx; )Na (e, B,7) (6)
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The functions NS{ MII gre linear combinations of Wigner rotation matrices with

definite parity IT = +1[28,32].

27 +1
JMI JTx O+ J+Q nyJ*
Mo = \/16112(1 +5QD)[DMn(a=ﬁa'r)+( 1) Dif,—a(e,8,7)]  (7)

where 2 > 0 is the absolute magnitude of the quantum number for the projection
of the total angular momentum onto the body-fixed Z axis.
The @ are Q- and p-dependent eigenfunctions of the hamiltonian

4072

—7) TV (6,6:7) ®)

" _ D =
HO(0,63:7) = 3 (A2 +

These eigenfunctions are obtained variationally by expanding them in a body-fixed

basis xm,n, built from products of simple analytical functions|28]:

Xnong (6, 82) = fr, (6)9n, (62) 9)

ng and n, are integers or half-odd integers, and f£}(8) and ggfﬂ(qb,\) are simple
linear combinations of trigonometric functions.

The functions f§, (f) can be chosen as the functions cos(ng6) or sin(ngf), with
ng integer or half-odd integer, in terms of which the hyperspherical harmonics

can be written as polynomials in cosf [6,33-35]. Table 1 indicates how to choose

are

ny (#2) to obtain electronuclear wavefunctions with correct

the functions of g¢
permutation symmetries, with and without the effect of the geometric phase.
The complete six-dimensional scattering wavefunction is solved by expanding

it over spherical sectors centered around the value of p in terms of the corresponding

five-dimensional pseudo surface functions

1 i =
HTMIT (o B 7.0, $x, p) = 7 > b (03 2) 20N T (a, 8,7,6, 62;5)  (10)
n
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The @r{QMHP are determined at a set of discrete values of p. The hyperradial

functions b/ are solutions of the set of coupled second-order differential equations

h: & 15R® ,a_
2

o E IS
=552 t g e ()~ Bl (p,p)+—§£:cauz (ps b3 (03 )
L2 X =
(o5 p)omrs (5 p)+ Zanr o1 (P )T G 11 (p3 5)
Wy yme (p; B)bp a2 (p3 5) = 0 11
2507 ant 0+2(P; P qa2(p; P) = (11)
nl

where
Q- 0,1,2,....J for J+II even,
—11,23,..J forJ+1II odd;

with coupling matrix elements given by

UTLR(p; P) =< 5T | V(9, é2,p) — p V(9 $x;P) | opr & > (12a)

1 1
IVHPQ D=\ ara IIra
nn' (P? P) s [J(J + 1)] < Pn | T sinf g QSiIlzG I P =

3 i
_? < LT . nre 126
<¢n | 1+ sinf t 2sin%6 [ (12}
T, 241
1r,0 n7,92+1 nra | cosf 9y,
: = ) & o =
Kl = —E+(5, @)= nig | 5?0 | O
+e_(J,0)188=1  jira €086 Opw " (12¢)
i e C
i nJ.Q ¥n sin4 Oda
- 17,042 nre 1 _ 1 ar,Q+2

L oy giz = &+ (1,Q)64(J, 2+ 1) nIe <¢n | 1+ sind  2sin’0 | & o

nIQ-—2 re 1 1 nr,o—2
X G —1 ) o - — > 12d
+£-(J, Q)6 (J, 82 ) n1Q <y | 1+ sinf  2sin%6@ | G

NI, NI0+1, 77042 are normalization constants for NgM(a, 8,7), Ng¥ ™ (a, 8,7)

and NJ¥(a, 8,v) functions. The coupling constants (7, k) are defined as

£x(i k) =[G + 1) — k(E £ ]'/? (13)
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The coupling matrix is penta-diagonal in 2 and can be evaluated efficiently
by 2D-numerial quadratures. The matrix U is independent of J and only needs to
be calculated at the boundaries and the middle of each sector.

For small values of the hyperradius for which the three atoms interact strongly,
simple trigonometric basis functions proved to be an efficient set in which to
expand the electronuclear wavefunctions ¥/MIT' However, for large values of the
hyperradius for which the system has nearly separated into an atom and a diatom,
the nuclear wavefunction is highly localized in each arrangement channels. This
localization makes the trigonometric basis set inefficient and suggests the use of a
basis set based on the previously defined symmetrized hyperspherical coordinates

wx,val15,31] instead. These are related to 6, ¢, by

sinfcosf = coswy; (14a)
sinflsing, = sinwjycosya; (14b)
cosf = sinwysinyy. (14¢)

The basis set based on wy, v, for large values of p has previously been shown to be
very efficient[18].

Eq.(11) is integrated over each sector as an initial value problem by using a
log-derivative algorithm[36,37], and by imposing continuity conditions of the 6D
wave function and its first derivative with respect to p at the separations between
consective spherical sectors. For the first sector the initial value of p is chosen to be
sufficiently small for the WKB solution to be applicable. All aspects of the physics

can be extracted from the solutions at large p by a constant p projection[17,18].

3. NUMERICAL PARAMETERS
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The LSTH Born-Oppenheimer electronic potential energy surface[38,39] was
used throughout the calculations. The boundary at which we change from the
principal-axis moment of inertia frame to the body-fixed Jacobi frame[17,18] was
set at p, = 6 bohr. This value was used for all J, since the change-over distance
is determined mainly by the p-dependence of the potential energy function V.
For the present converged calculations, the results do not change as p, is further
increased. Pseudo surface functions are computed at 20 values of p between 2 and
6 bohr and 31 values of p between 6 and 12 bohr. One of the most important
parameters for these calculations is the number of basis functions used to expand
the pseudo surface functions. The results described in this paper were obtained
by using 2500 product functions (50 for each of the two angular coordinates € and
¢») for p between 2 and 6 bohr and 800 asymptotic rovibrational states for 6 to 12
bohr. The maximum value of {2 used was determined by checking the convergence
and the unitarity of the scattering matrix with respect to this quantity. A value
of Qmaz = 10 sufficed. In the present study, all total angular momenta up to
J = 34 were needed for the covergence of ortho—ortho and para—para differential
cross sections for total energies E up to 1.2 e€V. The unitarity of the resulting
scattering matrix was always better than 1% for J < 15 and 3.5% for J > 15. For
each parity and each irreducible representation the computation of pseudo surface
functions for all values of g took about 24 minutes on a single CPU of a CRAY
Y-MP. The logarithmic-derivative integrations for each parity and each irreducible
representation for total angular momentum up to 34 took about 15 minutes for
each energy. The results for para—ortho transitions were in very good agreement

with those published previously[22,23,28].

4. RESULTS AND DISCUSSION
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We have performed converged calculations of integral and differential cross
sections for the H + Hj system over the total energy range (measured with respect
to the bottom of the isolated Hy potential energy curve) of 0.7 eV to 1.2 eV. These
calculations were performed both with and without inclusion of the geometric phase
effect, for a large variety of different transitions. Preliminary results were published
elsewhere[40].

For para—ortho and ortho—para transitions the only effect of the inclusion
of the geometric phase was to change the sign of the corresponding scattering
matrix elements and of the associated total scattering amplitudes, while leaving
the absolute value of their real and imaginary parts unchanged to about 3 significant
digits. This sign change leaves both the differential and integral cross sections of
the corresponding transitions unchanged. These results are in complete agreement
with the semi-classical predictions of Mead[5], since at the energies considered
semi-classical paths do not encircle the conical intersection[7]. As a result it is
expected that the phase of the scattering matrix elements and of the scattering
amplitude should change by 7 as a result of the inclusion of the geometric phase
effect. At higher energies, closer to the lowest conical intersection energy (~ 2.7
eV) it is expected that semi-classical paths which encircle the conical intersection,
as well as those which do not, will contribute to these transitions. For these two
kinds of paths, inclusion of the geometric phase effect will affect the phases of
the corresponding contributions to the scattering matrix differently, and the net
results will be much more complicated. We are currently extending our calculations
to higher energies, in an attempt to penetrate into this intersecting high energy
regime. Eventually, coupling with the upper sheet of the potential energy surface

must be included in such calculations.
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For para—para and ortho—ortho transitions, inclusion of the geometric phase
effect over the energy range considered affects both the differential and integral
cross sections very significantly, in a manner accessible to experimental verification.
In Figures 1 through 3 we display the results of converged calculations of differential
cross sections as a function of scattering angle for thev =0,7 =0 —v' =0, 7' =2
para-to-para process, summed over the angular momentum projection quantum
number of the molecular product. These calculations were performed at total
energies of 0.7 €V, 0.9 eV and 1.2 eV. Each of these 3 figures displays two curves,
one for the case in which the geometric phase effect is not included and one for
which it is included. As can be seen, all these curves display pronounced oscillations
which, at each energy, are out of phase with each other. For all 3 figures, the
first extremum in these curves is a minimum for the case for which the geometric
phase effect is included and a maximum for the case in which it is not. As a
logical exercise let us assume that the curves obtained including the geometric
phase effect are experimental. If we were trying to fit these results by using the
reasonably accurate LSTH potential energy surface but performing calculations
which ignored the geometric phase effect, we would obtain a strong disagreement
between theory and experiment. We might try to decrease this disagreement by
iteratively changing the potential energy surface, but this procedure would result
in a worse rather than a better surface. Without additional calculations, it is not
known at present whether reasonable agreement could ever be obtained. However,
the present results obviate the need for such calculations, since the necessity of
including the geometric phase has hereby been strongly demonstrated. It would
nevertheless be very interesting to make measurements of the H + H, differential
cross sections under conditions corresponding as closely as possible to Figures

1 through 3. If such measurements were done, further theoretical calculations
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would be necessary for comparison purposes. This could lead to a more accurate
potential energy surface for this important system. The interesting point is that
measurements of para—para and ortho—ortho differential cross sections would
be much more informative, at these energies, than of para—ortho or ortho—para
cross sections. The former are larger than the latter and because of the interference
between direct and exchange processes described, the effect of the exchange part is
magnified by the large direct one. The origin of the difference in the phases of the
oscillations between the differential cross sections obtained including the geometric
phase effect and excluding it can be understood on the basis of the same semi-
classical argument given above[5] for the cross sections for the para—ortho and
ortho—para transitions. That argument indicates that at the energies considered,
inclusion of the geometric phase effect should not affect the direct scattering
amplitude but should change the phase of the exchange scattering amplitude by
m. We have performed our calculations by decomposing the wave function into
its irreducible representation contributions and calculating the latter. However,
in order to test the validity of the Mead’s argument, we used these irreducible
representation components to then calculate the direct and exchange scattering
amplitudes. We found that Mead’s predictions were quite accurate, up to the
maximum energy of 1.2 eV for which these calculations were made. Since, for
para—para processes, the collision cross section is proportional to the square of
the absolute value of the difference between the direct and exchange scattering
amplitudes[12], inclusion of the geometric phase effect should indeed produce
oscillations of the differential cross sections as a function of angle which are out of
phase with those obtained when this effect is neglected.

As for the para—ortho and ortho—para processes, it is expected that as the

system’s energy increases towards the lowest conical intersection energy, there
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should be two kinds of semi-classical paths which contribute to the exchange
scattering amplitude, that which encircles the conical intersection and that which
does not. As a result, inclusion of the geometric phase effect in the calculations will
result in a more complicated behavior. Furthermore, at sufficiently high energies
it will also become necessary to include the effect of coupling to the upper sheet of
the potential energy surface.

As a result of the contributions of both direct and exchange processes to
para—para and ortho—ortho transitions, the geometric phase effect influences
significantly the corresponding integral cross sections also. For example, at a total
energy of 1.2 eV, the ratio of the summed and averagedv =0, j = 0—v' =1,j' =2
cross section including the geometric phase effect to that excluding it is 1.28. This
indicates that the angular integration performed over the differential cross sections
to obtain integral ones does not totally cancel the effect of the opposite phases
in the oscillations of those cross sections with scattering angle. Calculations are
currently under way to determine the energy dependence of these integral cross
sections over a finer energy grid.

For isotopic variations of H + Hs, such as the D + Hy — DH + H reaction, the
influence of the geometric phase on integral and differential cross sections is apt to
manifest itself only at higher energies. The obvious reason is that only exchange
processes contribute to this reaction, as opposed to the contribution of both direct
and exchange processes to para—para and ortho—ortho transitions in H 4+ H,. In
other words, the influence of the geometric phase on D + Hz should be qualitatively
similar to that on para—ortho and ortho—para transitions in H 4+ H,. This means
that as one approaches the lowest conical intersection energy of ~ 2.7 eV, the
influence of the geometric phase on reactive processes on systems such as D 4 Hy

should manifest itself through the interference of contributions from reaction paths
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which encircle the conical intersection with those that do not. Differential cross
section measurements for this system in the energy range 1.3 eV to 1.8 eV[41,42]
are in reasonably good agreement with theory[43,44] but integral cross sections
of the product rotational state distribution measurements at the relatively high
energy of 2.1 eV[45] are not. It is worth investigating whether this discrepancy is

or is not due to the geometric phase effect.

5. CONCLUSIONS

For para—para and ortho—ortho transitions in Hj, the geometric phase
strongly influences differential cross sections and to a lesser extent, integral cross
sections, even at total energies of 1.2 eV and below. This effect is therefore
experimentally measureable, and such measurements would be strongly desirable.
For para—ortho and ortho— para transitions measureable effects should only occur
at substantially higher energies, in the vicinity of 2.2 eV or above, and calculations
in this energy regime are currently underway. For reactions involving dissimilar
hydrogen atoms, such as D + Hy — DH + H, measureable effects of the geometric
phase will also require such higher energies and it is worth pursuing experments
and calculations in this energy regime. In addition, triatomic systems composed
of alkali atoms, whether dissimilar or not, may also manifest experimentally
detectable consequences of the geometric phase. Finally, transitions involving
electronically excited states of molecules displaying conical intersections, such as
photodissociation or predissociation of appropriate states of CyH[46,47], NH,[48]
and NO,[48] are worthy of consideration from the point of view of the geometric

phase effect.
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FIGURE CAPTIONS

Figure 1. Degeneracy-summed differential cross sections for the v =0, j =0 —
v' =0, j' = 2 cross sections, at a total energy of 0.7 eV, as a function of scattering
angle. The squares (circles) correspond to the case in which the geometric phase
is included ( is not included).

Figure 2. Degeneracy-summed differential cross sections for the v =0, j =0 —
v’ =0, j' = 2 cross sections, at a total energy of 0.9 eV, as a function of scattering
angle. The squares (circles) correspond to the case in which the geometric phase
is included ( is not included).

Figure 3. Degeneracy-summed differential cross sections for the v =0, j =0 —
v' =0, j' = 2 cross sections, at a total energy of 1.2 eV, as a function of scattering
angle. The squares (circles) correspond to the case in which the geometric phase

is included ( is not included).
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CHAPTER V

Quantum Mechanical Reactive Scattering
Using a High-Performance Distributed-Memory

Parallel Computer

1 This paper appeared in Chem. Phys. Lett. 168, 429 (1990)
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PARALLEL COMPUTER
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ABSTRACT

We have performed accurate three-dimensional quantum mechanical reactive
scattering calculations for the H + Hj system on the Caltech/JPL Mark I1Ifp 64
processor hypercube, using the method of symmetrized hyperspherical coordinates
and local hyperspherical surface functions. The results and timing obtained
demonstrate that such distributed memory parallel architectures are competitive
with the CRAY X-MP, CRAY 2 and CRAY Y-MP supercomputers and should
allow the study of larger, more complicated chemical systems. In addition, we show
that a selection rule for scattering resonances developed previously and tested for
J = 0,1 resonances is also satisfied by the J = 2 resonances obtained in the present

calculations.

1 Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
2 Current address: 2338 Redwood Road, Scotch Plains, NJ 07076.
3 Contribution number 8068
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1. INTRODUCTION

There is considerable current interest in performing accurate quantum me-
chanical three-dimensional reactive scattering cross section calculations. Accurate
solutions have until recently proved to be difficult and computationally expensive
to obtain, in large part due to the lack of sufficiently powerful computers[1-7]. Prior
to the advent of supercomputers, one could only solve the equations of motion for
model systems or for sufficiently light atom-diatom systems at low energy[1-4].
As a result of the current development of efficient methodologies and increased
access to supercomputers, there has been a remarkable surge of activity in this
field[8-19]. The use of symmetrized hyperspherical coordinates[20] and of the lo-
cal hyperspherical surface function formalism[21,8,9] has proven to be a successful
approach to solve the three-dimensional Schrédinger equation[8,9,15,16]. However,
even for modest reactive scattering calculations the memory and CPU demands
are so great that CRAY-type supercomputers will soon be limiting progress.

Although there has been a steady improvement in the necessary technologies
of the basic logic speeds of computers, there is little prospect of substantially
faster single processor designs in the near future. Concurrent supercomputers are
a natural next step in meeting the need for both increased memory and faster CPU.
Individual processors, although slower than a single sequential supercomputer
processor, can be connected together in sufficient number to make a powerful
supercomputer. Such architectures offer the potential to obtain large increases in
computing speed by simply increasing the number of processors. The actual speed-
up depends on the nature of the algorithm, the characteristics of the processors
, and the particular way these communicate with each other. The algorithms

used and the codes developed on sequential machines should be replaced by codes

optimized for parallel machines.
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The essential property a calculation must have to be efficiently done on a highly
parallel computer is that it be decomposable in such a way that in performing it
almost all processors should be computing efficiently almost all of the time, and that
the communication time between the processors should represent a small fraction
of the computation time. In the present paper we show how quantum mechanical
reactive scattering calculations can be structured so as to fulfil these criteria.

The hypercube architecture is a leading design for MIMD-type (Multiple
Instruction Multiple Data) distributed memory parallel architectures based on
message passing. The first such machine was developed by Charles Seitz[22] and
used by Geoffrey Fox[23,24], both at Caltech. We have created efficient codes
to solve the quantum mechanical equation of motion for reactive collisions of an
atom with a diatomic molecule using a hypercube computer of this type. Very
similar codes should be appropriate for other MIMD distributed memory parallel
architectures.

In this paper, we present a concurrent algorithm for calculating local
hyperspherical surface functions (LHSF) and use a parallelized version|[25] of
Johnson’s logarithmic derivative method[26], modified to include the improvements
suggested by Manolopoulos[27], for integrating the resulting coupled channel
reactive scattering equations. We review the formalism briefly in section 2. In
section 3 we discuss the parallel algorithms and in section 4 we compare the results
of scattering calculations on the Caltech/JPL Mark IIIfp 64 processor hypercube
for the H + Hj system J=0,1,2 partial waves on the LSTH[28,29] potential energy
surface with those of calculations done on a CRAY X-MP/48 and a CRAY-2.
Both accuracy and performance are discussed, and speed estimates are made for

the Mark IITfp 128 processor hypercube soon to become available and the San
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Diego Supercomputer Center CRAY Y-MP /864 machine which has just been put

into operation. We summarize the conclusions in section 5.

2. METHODOLOGY

The detailed formulation of reactive scattering based on hyperspherical
coordinates and local variational hyperspherical surface functions (LHSF) is
discussed elsewhere[8,9,15]. We present a very brief review to facilitate the
explanation of the parallel algorithms.

For a triatomic system, we label the three atoms A,, Ag and A.. Let (A, v, k)
be any cyclic permutation of the indices (@, 2,v). We define the A coordinates
, the mass-scaled[30] internuclear vector ry from A, to A, and the mass-scaled
position vector Ry of A, with respect to the center of mass of 4, A, diatom. The
symmetrized hyperspherical coordinates[20] are the hyper-radius p = (R% +r3)'/2,
and a set of 5 angles wy, v, Ox, ¢a and ), denoted collectively as (5. The first
two of these are in the range 0 to = and are respectively 2 arctan % and the angle
between Ry and ry. The angles 8y, ¢ are the polar angles of R in a space-fixed
frame and v is the tumbling angle of the R, r) half-plane around its edge R..
The hamiltonian H is the sum of a radial kinetic energy operator term in p, and
the surface hamiltonian A A, which contains all differential operators in () and the
electronically adiabatic potential V(p,wx,v))- hy depends on p parametrically and
is therefore the “frozen” hyperradius part of Hy.

The scattering wave function ¥/MHT js labelled by the total angular
momentum J, its projection M on the laboratory-fixed Z axis, the inversion
parity II with respect to the center of mass of the system and the irreducible
representation I' of the permutation group of the system (Ps; for H + H3) to which

the electronuclear wave function, excluding the nuclear spin part[31,32], belongs.
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It can be expanded in terms of the LHSF ®/MIT  defined below, and calculated
at the values p, of p:

TIMIT (5 03) = 60T (05 5) @M (Cx; ) (1)

n

The index ¢ is introduced to permit consideration of a set of many linearly
independent solutions of the Schrédinger equation corresponding to distinct initial
conditions which are needed to obtain the appropriate scattering matrices.

The LHSF &ML (¢, p,) and associated energies €J17' (p,) are respectively the
eigenfunctions and eigenvalues of the surface hamiltonian hy. They are obtained
using a variational approach[15]. The variational basis set consists of products
of Wigner rotation matrices Dj;q(dx,0x,%), associated Legendre functions of
va and functions of wy which depend parametically on p, and are obtained
from the numerical solution of one-dimensional eigenvalue-eigenfunction differential
equations in wy involving a potential related to V(p,wx,va)-

The variational method leads to an eigenvalue problem with coefficient and
overlap matrices /1T (5,) and s/MT'(5,) and whose elements are 5-dimensional
integrals involving the variational basis functions.

The coefficients b1 (p; o) defined by equation (1) satisfy a coupled set of

second order differential equations involving an interaction matrix Z71T (p; 5,)

whose elements are defined by

@,{Mﬂf@x;m)
®)

The configuration space p, ¢y is divided in a set of ) hyperspherical shells p, < p <

[IJ]II"(p’ P_q)]:' = <@1{MHF(C1\; F_’q) V(p! Wi, 7)\)_(.5q/p)2v(p7q7wkv'y)\)

pe+1(¢ = 1,2,...,Q) within each of which we choose a value p, used in expansion

(1)
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When changing from the LHSF set at p, to the one at p 41 neither W7MIL por
its derivative with respect to p should change. This imposes continuity conditions
on the 61T and their p-derivatives at p = pgy1, involving the overlap matrix

O (5,41, py) between the LHSF evaluated at g, and pgi1

(O (5,41, )] = <@2MHP(<,\;pq+1) @ii‘fﬂf(o;ﬁq)) 3

The 5-dimensional integrals required to evaluate the elements of A1, sJIT"
Z/0T and @M are performed analytically over ¢y, @\ and ¥, and by two-
dimensional numerical quadratures over ) and wy. These quadratures account
for 90% of the total time needed to calculate the LHSF & MU' and the matrices
T amd OFHT,

The system of second-order ordinary differential equations in the b/} is
integrated as an initial value problem from small values of p to large values using
Manolopoulos’ logarithmic derivative propagator[27]. Matrix inversions account

for more than 90% of the time used by this propagator. All aspects of the physics

can be extracted from the solutions at large p by a constant p projection[8,9,33].

3. PARALLEL ALGORITHM

The computer used for this work is a 64-processor Mark IIIfp hypercube.
Each node consists of two independent Motorola 68020 microprocessors, one
for computation and one for [/O, and four megabytes of dynamic memory.
The computation microprocessor has a Motorola 68882 floating-point arithmetic
coprocessor and 128 kilobytes of static private memory. The I/O microprocessor
has 64 kilobytes of static private memory. An additional daughter board with
a pipe-lined 32-bit floating point unit based on the Weitek XL series of chips is

attached to each node and has a nominal peak speed of 16 Mflops. The Crystalline
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Operating System(CrOS)-channel-addressed synchronous communication provides
the library routines to handle communications between nodes[24,34,35]. Program
development is done on a Motorola 68020-based Counterpoint workstation that
runs on UNIX. The programs are written in C programming language except for
the time-consuming two-dimensional quadratures and matrix inversions, which are
optimized in assembly language.

The hypercube is configured as a two dimensional array of processors.
The mapping is done using binary Gray codes[24,36] which gives the Cartesian
coordinates in processor space and communication channel tags for a processor’s
nearest neighbors. With a distributed-memory machine like the hypercube, the
elements of a large matrix of data must be distributed across the memory of all
the processors. This makes it possible to fully utilize the large memory available
and facilitates the load-balancing task of keeping most of the processors busy
doing useful arithmetic most of the time. The parallelization of scientific codes
is frequently based on a large grain size decomposition of the task. A method of
distributing the global matrix among the processors is the first choice that must
be made and it is closely related to the parallel algorithm chosen.

We mapped the matrices into processor space by local decomposition. Let N,
and N, be the number of processors in the rows and columns of the hypercube
configuration, respectively. Element A(z,7) of an M x M matrix is placed in
processor row P, = int(%%:) and column P, = int(%ﬁ), where int z means the
integer part of z.

The parallel code implemented on the hypercube consists of five major steps.
Step one constructs, for each value of p,, a primitive basis set composed of
the product of Wigner rotation matrices, associated Legendre functions, and the

numerical one-dimensional functions in w, mentioned in Section 2 and obtained
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by solving the corresponding one-dimensional eigenvalue-eigenvector differential
equation using a finite difference method. This requires that a subset of the
eigenvalues and eigenvectors of a tridiagonal matrix be found.

A bisection method[37] which accomplishes the eigenvalue computation using
the TRIDIB routine from EISPACK[38] was ported to the Mark IIIfp. This
implementation of the bisection method allows computation of any number of
consecutive eigenvalues specified by their indices. Eigenvectors are obtained using
the EISPACK inverse iteration routine TINVIT with modified Gram-Schmidt
orthogonalization. Each processor solves independent tridiagonal eigenproblems
since the number of eigenvalues desired from each tridiagonal system is small but
there are a large number of distinct tridiagonal systems. To achieve load balancing,
we distributed subsets of the primitive functions among the processors in such a
way that no processor computes greater than one eigenvalue and eigenvector more
than any other. These large grain tasks are most easily implemented on MIMD
machines; SIMD (Single Instruction Multiple Data) machines would require more
extensive modifications and would be less efficient because of the sequential nature
of effective eigenvalue iteration procedures. The one-dimensional bases obtained
are then broadcast to all the other nodes.

In step two a large number of two-dimensional quadratures involving the
primitive basis functions which are needed for the variational procedure are
evaluated. = These quadratures are highly parallel procedures requiring no
communication overhead once each processor has the necessary subset of functions.
Each processor calculates a subset of integrals independently.

Step three assembles these integrals into the real symmetric dense matrices
s/ (5,) and R/ (p,) which are distributed over processor space. The entire

spectrum of eigenvalues and eigenvectors for the associated variational problem
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is sought. With the parallel implementation of the Householder method[39],
this generalized eigensystem is tridiagonalized and the resulting single tridiagonal
matrix is solved in each processor completely with the QR algorithm[40]. The QR
implementation is purely sequential since each processor obtains the entire solution
to the eigensystem. However, only different subsets of the solution are kept in
different processors for the evaluation of the interaction and overlap matrices in
step four. This part of the algorithm is not time-consuming and the straightforward
sequential approach was chosen. It has the further effect that the resulting solutions
are fully distributed, so no communication is required.

Step four evaluates the two-dimensional quadratures needed for the interaction
T (p; p,) and overlap O/ (5,1 y; p,) matrices. The same type of algorithms are
used as were used in step two. By far, the most expensive part of the sequential
version of the surface function calculation is the calculation of the large number
of two-dimensional numerical integrals required by steps 2 and 4. These steps are
however highly parallel and well suited for the hypercube.

Step five uses Manolopoulos’[27] algorithm to integrate the coupled linear
ordinary differential equations. The parallel implementation of this algorithm is
discussed elsewhere[25]. The algorithm is dominated by parallel Gauss-Jordan
matrix inversion and is I/O intensive, requiring the input of one interaction matrix
per integration step. To reduce the I/O overhead a second source of parallelism
is exploited. The entire interaction matrix (at all p) and overlap matrix (at all
pq) data sets are loaded across the processors and many collision energies are
calculated simultaneously. This strategy works because the same set of data is
used for each collision energy and because enough main memory is available.
Calculation of scattering matrices from the final logarithmic derivative matrices

is not computationally intensive, and is done sequentially.
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The program steps were all run on the Weitek coprocessor which only supports
32-bit arithmetic. Experimentation has shown that this precision is sufficient
for the work reported below. The 64-bit arithmetic hardware needed for larger

calculations was installed after the present calculations were completed.

4. RESULTS AND DISCUSSION

Accuracy:

Calculations were performed for the H + H; system on the LSTH surface[28,29]
for partial waves with total angular momentum J = 0,1,2 and energies up to 1.6
eV. Flux is conserved to better than 1% for J = 0, 2.3% for J = 1 and 3.6% for
J = 2 for all open channels over the entire energy range considered.

To illustrate the accuracy of the 32-bit arithmetic calculations, the scattering
results from the Mark IIIfp with 64 processors are shown in figures 1, 2, and 3
for J = 0,1,2, respectively, in which some transition probabilities as a function of
the total collision energy E are plotted. Also shown are the differences between
these results and those obtained using a CRAY X-MP/48 and a CRAY-2. These
differences do not excede 0.004 in absolute value over the energy range investigated.
The effect of the geometric phase associated with the conical intersection between
the two lowest electronic potential energy surface of H3[32] is not included in these
results. Much of the structure in the transition probability curves is due to the
underlying resonances[1,9,16] and are discussed below. The two sets of data in each
figure are virtually indistinguishable on the scale of the plots.

Analysis of J =2 resonances:

Table I contains a list of the J = 2 resonance energies detected from

the maxima in the lifetime versus energy curves, calculated as described

previously[9,16], as well as their quantum number assignments, permutation and
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inversion symmetry labels, and lifetimes. The permutation symmetries are given
with and without the inclusion of the effect of the geometrical phase (GP)
associated with the conical intersection between the two lowest electronic state
potential energy surfaces[31,32]. The energy of these resonances is consistent with
the physical model for the selection rule previously developed[16] and tested with
the J = 0,1 resonances. The results of Table I adds additional credence to the
generality of that rule. According to it, if GP effects are ignored, a necessary
(but not sufficient) condition for resonances to occur in A;(A;) partial waves is
that (—1)1+% be equal to 1(—1), where K is the vibrational angular momentum
quantum number, whereas they are permitted in E partial waves for all K. To
include the GP effect, it suffices to interchange 4; and A, in this selection rule[32].
In agreement with this picture, not all higher energy J = 2 resonances which are
allowed by this rule were detected.
Tvming and parallel efficiency:

In Tables II and III we present the timing data on the 64 processor Mark ITIfp,

a CRAY X-MP/48 and a CRAY 2, for both the surface function code (including

OJI[I‘ IJHI‘

calculation of the overlap and interaction matrices) and the logarithmic
derivative propagation code. For the surface function code, the speeds on the first
two machines is about the same. The CRAY 2 is 1.43 times faster than the Mark
[IIfp and 1.51 times faster than the CRAY X-MP /48 for this code. The reason is
that this program is dominated by matrix-vector multiplications which are done in
optimized assembly code in all 3 machines. For this particular operation the CRAY-
2 is 2.03 times faster than the CRAY X-MP /48 whereas for more memory-intensive
operations the CRAY 2 is slower than the CRAY X-MP/48[41]. A slightly larger

primitive basis set is required on the Mark IIIfp in order to obtain surface function

energies of an accuracy equivalent to that obtained with the CRAY machines. This
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is due to the lower accuracy of the 32-bit arithmetic of the former with respect to
the 64-bit arithmetic of the latter.

The absolute times presented in Table II and III are apt to decrease as the
codes are improved and the numerical parameters are further tuned. As a result,
they are not well suited for an appropriate comparison of the relative effectiveness
of different reactive scattering methodologies[8-19]. The relevant information in
those tables is, instead, the relative times among different machines as given by
the corresponding speeds. These are indicative of the relative effectiveness of these
machines for performing the reactive scattering calculations described in this paper.

The efficiency () of the parallel LHSF code was determined using the
definition ¢ = (T%,ﬁ where T} and Ty are respectively the immplementation
times using a single processor and N processors. The single processor times are
obtained from runs performed after removing the overhead of the parallel code,
i.€., after removing the communication calls and some logical statements. Perfect
efficiency (¢ = 1.0) implies that the N-processor hypercube is N times faster than a
single processor. In figure 4 efficiencies for the surface function code (including the
calculation of the overlap and interaction matrices) as a function of the size of the
primitive basis set are plotted for 2, 4, 8, 16, 32 and 64 processor configurations of
the hypercube. The global dimensions of the matrices used are chosen to be integer
multiples of the number of processor rows and columns in order to insure load
balancing among the processors. Because of the limited size of a single processor
memory, the efficiency determination is limited to 32 primitives. As shown in figure
4, the efficiencies increase monotonically and approach unity asymptotically as the
size of the calculation increases. Converged results require large enough primitive
basis sets so that the efficiency of the surface function code is estimated to be about

0.95 or greater.
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The data for the logarithmic derivative code given in Table III for a 245 channel
(i.e., LHSF) example show that the Mark IIIfp has a speed about 62% to that of
the CRAY 2 but only about 31% of that of the CRAY X-MP/48. This code is
dominated by matrix inversions, which are done in optimized assembly code in all
three machines. The reason for the slowness of the hypercube with respect to the
CRAYs is that the efficiency of the parallel logarithmic derivative code is 0.52. This
relatively low value is due to the fact that matrix inversions require a significant
amount of inter-processor communication. Figure 5 displays efficiencies of the
logarithmic derivative code as a function of the number of channels propagated
for different processor configurations, as done previously for the Mark III[25,42]
hypercubes. The data can be fit well by an operations count formula developed
previously for the matrix inversion part of the code[43]; this formula can be used to
extrapolate the data to larger numbers of processors or larger numbers of channels.
It can be seen that for an 8 processor configuration, the code runs with an efficiency
of 0.81. This observation suggested that we divide the Mark IIIfp into 8 clusters
of 8 processors each and perform calculations for different energies in different
clusters. The corresponding timing information is also given in Table ITI. As can
be seen from the last row of this table, the speed of the logarithmic derivative code
using this configuration of the 64 processor Mark IIIfp is 48.5 Mflops, which is
about 44% of that of the CRAY X-MP /48 and 88% of that of the CRAY 2. As the
number of channels increases, the number of processors per cluster may be made
larger in order to increase the amount of memory available in each cluster. The
corresponding efficiency should continue to be adequate due to the larger matrix
dimensions involved.

In the near future, the number of processors of the Mark Illfp will be

increased to 128 and the I/O system will be replaced by high performance CIO
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(concurrent 1/0) hardware. The new Weitek coprocessors installed since the
present calculations were done perform 64 bit floating point arithmetic at about
the same nominal peak speed as the 32 bit boards. From the data in the present
paper it is possible to predict with good reliability the performance of this upgraded
version of the Mark I1Ilfp. A CRAY Y-MP /864 has just been installed at the San
Diego Supercomputer Center. Initial speed measurements show that it is 2 times
faster than the CRAY X-MP /48 for the surface function code and 1.7 times faster
for the logarithmic derivative code. In Table IV, we summarize the available or
predicted speed information for the present codes for the current 64 processor and
near future 128 processor Mark IIIfp as well as the CRAY X-MP /48, CRAY 2 and
CRAY Y-MP/864 supercomputers. It can be seen that Mark IIIfp machines are
competitive with all of the currently available CRAY's (operating as single processor

machines).

5. SUMMARY

We performed quantum mechanical reactive scattering calculations on the
Mark IIIfp hypercube parallel computer. The results obtained for the H + Hy
system J = 0, 1,2 partial waves agree well with those from a CRAY X-MP /48 and
a CRAY-2. The resonance structure in the J = 2 calculations is consistent with
a selection rule developed previously[9,16]. The high degree of parallelism of the
most time-consuming step of the surface function calculation (the evaluation of two-
dimensional numerical quadratures) leads to a high efficiency for that calculation.
As a result, the speed of the 64 processor Mark IIIfp for the surface function
calculation is about the same as that of the CRAY X-MP /48 and about 0.7 of that
of the CRAY 2. When configuring the Mark IIIfp into 8 clusters of 8 processors
each, the logarithmic derivative code is about 56% slower than the CRAY X-MP /48
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and 12% slower than the CRAY 2. The speed of the 128 processor Mark ITIfp soon
to become available should exceed, both for the surface function calculation and
the logarithmic derivative calculation, those of the CRAY X-MP/48 and CRAY
2; however, although still comparable to the CRAY Y-MP /864 for the surface
function code, it will be 32% slower for the logarithmic derivative code (the CRAYs
operating as single processor machines). These results demonstrate the feasibility of
performing reactive scattering calculations with high efficiency in parallel fashion.
As the number of processors continues to increase, such parallel calculations in

systems of greater complexity will become practical in the not too distant future.
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FIGURE CAPTIONS

Figure 1 Probabilities (a) and probability differences (b) as a function of
total energy E (lower abscissa) and initial relative translational energy Egp (upper
abscissa) for the J=0 (0,0,0) — (0,0,0) A; symmetry transition in H + H, collisions
on the LSTH potential energy surface. The symbol (v, j,{2) labels an asymptotic
state of the H + Hy system in which », j, and Q are the quantum numbers of the
initial or final H, states. The vertical arrows on the upper abscissa denote the
energies at which the corresponding Hz(v, j) states open up. The length of those
arrows decreases as v spans the values 0, 1 and 2, and the numbers 0, 5, and 10
associated with the arrows define a labelling for the value of j. (a) the results from
the Mark ITIfp hypercube; (b) differences between these and those from the CRAY
X-MP/48. The number of LHSF used was 36 and the number of primitives used

to calculate these surface functions was 80.

Figure 2 Same as for fig. 1 except for J=1, 4,, odd parity (II = 1), (0,0,0) —
(0,0,2) transitions. The number of LHSF used was 74 and the number of primitives

used to calculate these surface functions was 152.

Figure 3 Same as for fig. 1 except for J=2, A, odd parity (IT = 1), (0,2,1)
— (0,2,1) transition. The differences plotted in (b) are between the Mark 1IIfp
hypercube and the CRAY-2 results. The number of LHSF used was 65 and the

number of primitives used to calculate these surface functions was 136.

Figure 4 Efficiency of the surface function code ( including the calculation of
the overlap and interaction matrices) as a function of the global matrix dimension
(i.e., the size of the primitive basis set) for 2, 4, 8, 16, 32, and 64 processors.
The solid curves are straight line segments connecting the data points for a fixed

number of processors and are provided as an aid to examine the trends.
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Figure 5 Efficiency of logarithmic derivative code as a function of the global
matrix dimension (i.e., the number of channels or LHSF) for 8, 16, 32, and 64
processors. The solid curves are straight line segments connecting the data points

for a fixed number of processors and are provided as an aid to examine the trends.
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Table II: Performance of the surface function code®

Mark IIIfp? 64 processors CRAY X-MP/48 CRAY 2

Time (hr) Speed (Mflops) Time (hr) Speed (Mflops) Time (hr) Speed (Mflops)
0.71¢ 1004 0.74° 96/ 0.49¢ 145k
2.88 1124 3.04 106/ 2.01% 180"
5.60' 1249 5.94™ 17" 3.96° 176*

(1]

L]

This code calculates the surface functions at the 51 values of 5 from 2.0 bohr to 12.0 bohr in steps of 0.2 bohr,
the corresponding overlap matrices between consecutive values of p and the propagation matrices in p steps of
0.1 bohr. The number of primitives used for each J and described in the remaining footnotes permits us to
generate enough LHSF to achieve the accuracy described in the text.

64 single precision processors.

For 80A1, 804y and 160E primitives, This basis is larger than the one described in e. below and is needed to
generate the same number of linearly independent surface functions as in e. The reason for this difference is the
32-bit arithmetic of the Mark IIIfp compared to the 64-bit arithmetic of the CRAY X-MP/48.

Estimated on the basis of the absolute measured speed on the CRAY X-MP/48 and the measured relative speeds
of the Mark IIIfp with respect to the CRAY X-MP/48.

For T6A;, 76 A2 and 152F primitives.

Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines.

This time, for the same primitives as described in e. was estimated on the basis of the relative speeds of the -
CRAY 2 and CRAY X-MP/48 measured for a set of 5 values of g. It is smaller than the time in e. for the reason
given in h.

Estimated on the basis of the relative speed of the CRAY 2 with respect to the CRAY X-MP/48 described in
g. The reason this speed is 2/3 of the corresponding CRAY X-MP/48 speed is that the dominant parts of the
calculation are optimized assembly code matrix-vector multiplications for which the CRAY 2 is 50 % faster than
the CRAY X-MP/48. Otherwise, the CRAY 2 is slightly slower than CRAY X-MP/48. See Text.

For 72A,, 80A; and 152E primitives of even parity and 1524, 160A; and 312F primitives of odd parity. These
numbers of primitives are larger than the ones given in j. for the reson given in c.

For 64A;, 764, and 140F primitives of even parity and 1404,, 1524, and 292F primitives of odd parity.
Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY 2 and the measured CRAY
X-MP/48 times or speeds.

For 216A4;, 2324, and 448FE primitives of even parity and 136.4,, 1524, and 288F primitives of odd parity.
These numbers are larger than those in o. for the reason given in c.

This time is estimated as in k., since the calculation cannot be done on the CRAY X-MP/48 because of insufficient
memory.

Estimated to be the same as in f. since the calculation cannot be done on the CRAY X-MP/48 for the reason
given in m.

For 2044, 2164, and 420F primitives of even parity and 1284,, 1404, and 268 E primitives of odd parity.
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Table III : Performance of the logarithmic derivative code®

Mark I1Ifp?
CRAY X-MP/48 CRAY 2

64 processor 8 clusters of

global configuration® 8 processors?
Total time(hrs) 4.8¢ 3.4419 1.5 2.9
Time for 1 energy(min) a8 1.6% 0.7 1.3
Efficiency 0.52 0.81 — —
Speed’ (Mflops) 34.4% 48.5% 110 55.4

a. Based on a calculation using 245 surface functions and 131 energies, and a logarithmic derivative integration
step of 0.01 bohr.

b. 64 single precision processors.

The calculation for each energy was distributed among all 64 processors.

d. The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations for 16

energies, for a total of 128 energies. The times reported were multiplied by 131/128 for normalization purposes.

All 8 clusters operated simultaneously.

This includes 1.9 hours of I/O time.

f. This includes 1.6 hours of [/O time. This time is shorter than that in e. because of a different and more efficient
broadcast of the data between the host and the 8 clusters.

g. Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported was obtained
by subtracting the I/O time from the measured time, multipling the result by 131/128 for normalization to 131
energies and adding the I/O time.

h. Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY 2 and CRAY
X-MP/48 for the logarithmic derivative code.

i. This includes the pro-rated I/O contribution.

j. All speeds include I/O contribution.

k. Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code and the
relative speeds of the Mark IIIfp and CRAY X-MP/48 for this code.

e

®
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CHAPTER VI

Quantum Chemical Reaction Dynamics on

a Highly Parallel Supercomputer

i This paper appeared in Theor. Chim. Acta 79, 225 (1991)
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QUANTUM CHEMICAL REACTION DYNAMICS ON

A HIGHLY PARALLEL SUPERCOMPUTER

Yi-Shuen Mark Wu ! , Steven A. Cuccaro, Paul G. Hipes ? and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering 3
California Institute of Technology
Pasadena, CA 91125, USA

(Received September 1990)
ABSTRACT

In this paper we describe the solution of the quantum mechanical equation for
the scattering of an atom by a diatomic molecule on a high-performance distributed—
mermory parallel supercomputer, using the method of symmetrized hyperspherical
coordinates and local hyperspherical surface functions. We first cast the problem
in a format whose inherent parallelism can be exploited effectively. We next discuss
the practical implementation of the parallel programs that were used to solve the
problem. The benchmark results and timing obtained from the Caltech/JPL Mark
I1Ifp hypercube are competitive with the CRAY X-MP, CRAY 2 and CRAY Y-MP
supercomputers. These results demonstrate that such highly parallel architectures
permit quantum scattering calculations with high efficiency in parallel fashion
and should allow us to study larger, more complicated chemical systems. Future

extensions to this approach are discussed.

L 'Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
2 Current address: 2338 Redwood Road, Scotch Plains, NJ 07076.

3 Contribution number 8209
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1. INTRODUCTION

Chemistry has long been one of the primary application areas for computers
in scientific research. Quantum mechanical reactive scattering calculations, in
particular, have consumed vast quantities of computer time on machines of all
sizes. Accurate solutions have proved to be difficult and computationally expensive
to obtain[1-4]. Such calculations would allow an interplay between theory and
experiment which is vital to advance our understanding of the details of chemical
reactions at the molecular level. Perhaps more importantly, the existence of
accurate benchmark calculations permits the testing of approximate theories which
in turn provides physical insights into the chemistry.

The first calculations of accurate quantum mechanical cross sections were
reported in 1975 by Schatz and Kuppermann[5,6] and Elkowitz and Wyatt[7] for the
simplest chemical reaction H + Hy — Hy + H. After this, there was a lapse of over
10 years before these results were extended to higher energies and other systems.
The problem is not only the inherent limitations in the theoretical methods but
also due to the lack of sufficiently powerful computers[1-9]. Recently, a variety
of efficient methodologies have been developed for carrying out calculations of
reaction cross sections. With the current access to the CRAY-type supercomputers,
there has been a remarkable surge in the number of publications in this field[10-
21]. In particular, the use of symmetrized hyperspherical coordinates (SHC)[22,23]
and local hyperspherical surface functions (LHSF)[10,17,18] is a very promising
approach[ 12,24,25]. However, even the fastest available supercomputers are not
sufficiently fast to allow the study of chemical reactions involving more than three
atoms. Mathematical modelling and understanding the chemistry involved have
progressed to a point that only the lack of sufficient computing power is delaying

a detailed insight into the nature of many chemical reactions.
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The initial route to supercomputing led by the CRAY machines is based on
the construction of computers with very fast cycle times. Although this approach
has produced very powerful machines, it is generally believed[26-28] that the key to
future high performance computation to satisfy our need for both large numbers of
CPU cycles and large amounts of fast memory is concurrent processing or the use of
several computers tied together through a very high speed network to solve a single
problem. The algorithms used and the codes developed on sequential machines
must be adapted to parallel computing. Hence, these new parallel algorithms,
coupled with the capabilities of parallel supercomputers, permit theoretical studies
of a wide variety of chemical reactions.

The considerations above provide motivation for investigating the use of highly
parallel computers as a possible way to reduce the computational time for such
calculations. We chose the Caltech/JPL Mark IIlfp 64 processor hypercube[26-
28], a distributed memory message passing parallel computer, as our test machine.
The essential property a calculation must have to be efficiently done on a highly
parallel computer is that it be decomposable in such a way that in performing
it almost all processors should be computing efficiently almost all of the time,
and that the communication time between the processors should represent a small
fraction of the computation time. In this paper, we show how quantuin mechanical
reactive scattering calculations can be structured so as to fulfill these criteria. The
performance of this implementation is also examined.

We divide this paper into four additional sections. In section 2 we provide an
overview of the methodology and computational requirements for calculating LHSF
and for using Johnson’s logarithmic derivative method[29,30], modified to include
the improvements suggested by Manolopoulos[31], for integrating the resulting

coupled channel reactive scattering equations. In section 3 the parallel algorithm is



- 142 -

presented. In section 4 benchmark results of scattering calculations for the H 4+ H,
system total angular monentum J = 0,1,2 partial waves on the LSTH[32,33]
potential energy surface are presented. We emphasize that even though the results
we report were obtained for three identical particles, the implementation itself is
applicable to general three body system in a parallel fashion. Ongoing and future
extensions to this approach are also discussed. The last section contains some

concluding remarks.

2. QUANTUM CHEMICAL DYNAMICS

The goal of bimolecular quantum chemical dynamics is to calculate from first
principles the reaction cross sections for an atom (or molecule) scattered by another
molecule. Most chemical reactions take place as a result of interactions among
three or four atoms. The only type of chemical reaction we are likely to be able
to solve rigorously in the forseeable future is a three atom reaction of the type
A+ BC — AB + C or its four atom counterpart. Given the potential energy
surface that governs an electronically adiabatic reaction, we use the nuclear motion
Schrodinger equation to describe the collision of an atom and a diatomic molecule
and the ensuing chemical reaction process.

The Schrodinger equation is a linear, second-order partial differential equation
with 3N independent variables where N is the number of atoms in the
system. One fruitful approach to solve this equation is based on hyperspherical
coordinates[10,11,17,18]. The detailed formulation of this approach is discussed
elsewhere[10,11,17] and we will present a very brief review of the theory, listing the
equations necessary to facilitate the explanation of the parallel algorithms.

For a triatomic system, we label the three atoms A,, Ag and A,. Let (A, v, k)

be any cyclic permutation of the indices («, 3,7). After removing the motion of
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the center of mass, we define as the A coordinates the mass-scaled[34] internuclear
vector r) from A, to A., and the mass-scaled position vector R, of A4, with
respect to the center of mass of A, A, diatom. The symmetrized hyperspherical
coordinates[22] are the hyper-radius p = (R} + r3)!/%, and a set of 5 angles
Wi, Y, Ox, ¢x and 1y, denoted collectively as (5. The first two of these are in
the range 0 to m and are respectively 2arctan 22 and the angle between R and
ry. The angles 8y, ¢, are the polar angles of R) in a space-fixed frame and ) is
the tumbling angle of the R, r) half-plane around its edge R). The hamiltonian
H, is the sum of a radial kinetic energy operator in p, and the surface hamiltonian
By, which contains all differential operators in () and the electronically adiabatic

potential energy function V(p,wx,yx)-

" B 92 50 5
A 2#(&,2 pap)-l- A (1)
where
ﬂ A2
hy = 577 + V(p,wx,vr) (2)
and
A 2 b 72 2
2 g oo @y O 2 t A X 3
A @ (aw,\?\ L wxaw)‘) e sin® —“-’24\ * cos? 32& (3)

~

7 is the angular momentum operator correspondiﬁg to ry, [x is that corresponding
to Ra and p = [mampme/(ma + mg + m.)|}/? is the reduced mass appropriate
for the mass-scaled coordinates. Ay depends on p parametrically and is therefore
the “frozen” hyperradius part of Hi.

The scattering wave function ¥/MIT s labelled by the total angular
momentum J, its projection M on the laboratory-fixed Z axis, the inversion
parity II with respect to the center of mass of the system and the irreducible

representation I' of the permutation group of the system (P for H 4+ H,) to which

the electronuclear wave function, excluding the nuclear spin part[35,36], belongs.
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It can be expanded in terms of the LHSF ®/MIT  defined below, and calculated

at the values p, of p:
TMI (o, ) = X bl (23 50) @M (Cxi 24) @)
The equation that defines the LHSF ®/MIT with associated eigenvalues e/TT is
rr@MIT(Cx; 5g) = €T (5) @M1 (Cas Bg) (3)

The domain of the surface function equation is closed and the spectrum is real and
discrete. The index ¢ is introduced to permit consideration of a set of many linearly
independent solutions of the Schrédinger equation corresponding to distinct initial
conditions which are needed to obtain the appropriate scattering matrices.

The LHSF &®]MIT(¢y: 5.) and associated energies €J"''(5,) are obtained by
using a Rayleigh-Ritz variational approach[17]. The key to the success of the
variational approach is finding a set of functions which are numerically inexpensive
to calculate and also embody some of the structure of the true surface function.
One effective set of functions consists of products of Wigner rotation matrices
Di;q(éx,0x, %), associated Legendre functions of 7y, and functions of wy which
depend parametically on p, and are obtained from the numerical solution of
one-dimensional eigenvalue-eigenfunction differential equations in w) involving a
potential related to V(p,wx,va)-

The variational method leads to an eigenvalue problem with coefficient and
overlap matrices A" (5,) and s/ (5,) and whose elements are 5-dimensional
integrals involving the variational basis functions.

The coefficients b7 (p; p,) defined by equation (4) satisfy a coupled set of

second order differential equations involving an interaction matrix Z7IL'(p;p5,)
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whose elements are defined by

V(pa Wi, 7J\)_(F_}q/p)2 V(ﬁqaw,\a 7z\)

(7 (s )1 :<<I>,{M“P(<A;ﬁq)

BIM (C3ip,) )
(6)
The configuration space p, () is divided in a set of  hyperspherical shells p, < p <
pe+1{g = 1,2,...,Q) within each of which we choose a value p, used in expansion
(4).
When changing from the LHSF set at p, to the one at p 41 neither ¥7/MIT' nor
its derivative with respect to p should change. This imposes continuity conditions
on the b/MT and their p-derivatives at p = p, 41, involving the overlap matrix

O (5,41, py) between the LHSF evaluated at p, and p,q1

(O (5,00, 5] = <<I>iM“F<<,\;ﬁg+1) IV (¢, m} @)

The 5-dimensional integrals required to evaluate the elements of A7/ g/
T/ and O/ are performed analytically over the three Euler angles ¢y, 6
and 1) and by two-dimensional numerical quadratures over v, and wy. These
quadratures are the most expensive part of the entire LHSF computation and

account for over 90% of the total time needed to calculate the ®;JMIT' and the

matrices Z/IT and OJIT,

The system of second-order ordinary differential equations in the &M is
integrated as an initial value problem from small values of p to large values using
Manolopoulos’ logarithmic derivative propagator[31]. Matrix inversions account
for more than 90% of the time used by this propagator. All aspects of the physics

can be extracted from the solutions at large p by a constant p projection[10,11,37].

3. PARALLEL ALGORITHM
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One must first have an idea of what can be gained by parallel processing. Vast
speedup can only be achieved for problems that can be grouped into concurrent
cooperative subtasks. This, of course, involves an understanding the level of
parallelism that a problem manifests. Even with such understanding and of an
adequate mapping onto a system of cooperative processors, there still remains
the critical issue of how to best implement processor coordination. Further, it is
vitally important that the local data in processors be correct in a global sense,
i.e., data modifications must be distributed across private memory boundaries.
Since quantum reactive scattering calculations are well suited to multiprocessor
systems, the parallel structures in which parallelism is achieved is at the processor
level rather than at the functional decomposition level. In building a parallel
implementation on the hypercube architecture, our main guidelines have been
simplicity and utilization of as much of the original sequential code as possible.

The computer used for this work is a 64-processor Mark IIIfp hypercube.
It consists of an ensemble of individual processing elements called nodes. The
design of the Mark IIIfp hypercube permits as few as one and as many as 256
nodes in the ensemble. It is a leading design for MIMD-type (multiple instruction
stream multiple data stream) distributed memory parallel architectures based on
message passing[26-28]. Each node consists of two independent Motorola 68020
microprocessors, one for computation and one for I/0O, and four megabytes of
dynamic local memory with an access speed of 400 nanoseconds. The computation
microprocessor has a Motorola 68882 floating-point arithmetic coprocessor, two
serial ports, one printer port and 128 kilobytes of static private memory. The
I/O microprocessor has 64 kilobytes of static private memory, one serial port and
hardware to support the node to node communication within the hypercube. An

additional daughter board with a pipe-lined 32-bit floating point unit based on
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the Weitek XL series of chips is attached to each node which further contains
128 kilobytes of code cache, 128 kilobytes of static memory and has a nominal
peak speed of 16 Mflops. The Crystalline Operating System(CrOS)-channel-
addressed synchronous communication provides the library routines to handle
communications between nodes[28,38,39]. Program development is done on a
Motorola 68020-based Counterpoint workstation that runs on UNIX. It acts as
an access controller mechamism to the peripherals for the entire hypercube. This
allows the native compilers and linkers of the control processor to be used to
construct executable code to run on the nodes of the hypercube. The programs
need to provide two parts with one running on the control processor and one
running on each hypercube node. It is written in C programming language except
for the time-consuming two-dimensional quadratures and matrix inversions, which
are optimized in Weitek XL assembly language.

The hypercube is configured as a two dimensional array of processors.
The mapping is done using binary Gray codes[28,40] which gives the Cartesian
coordinates in processor space and communication channel tags for a processor’s
nearest neighbors. With a distributed-memory machine like the hypercube, the
elements of a large matrix of data must be distributed across the memory of all
the processors. This makes it possible to fully utilize the large memory available
and facilitates the load-balancing task of keeping most of the processors busy
doing useful arithmetic most of the time. The parallelization of scientific codes
is frequently based on a large grain size decomposition of the task. To port a
sequential code to a hypercube, a method of distributing the global matrix among
the processors is the first choice that must be made and it is closely related to the

parallel algorithm chosen.
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We mapped the matrices into processor space by local decomposition. Let N,
and N, be the number of processors in the rows and columns of the hypercube
configuration, respectively. Element A(z,j) of an M x M matrix is placed in
processor row P, = int(*38=) and column P, = int(%f\fi), where int = means the
integer part of z. This data decomposition has been found easy to maintain and
has provided satisfactory load balancing; it has the further advantage that it does
not require matrices of special dimensions.

The parallel code implemented on the hypercube consists of five major steps.
Step one constructs, for each value of p,, a primitive basis set composed of
the product of Wigner rotation matrices, associated Legendre functions, and the
numerical one-dimensional functions in w) mentioned in Section 2 and obtained
by solving the corresponding one-dimensional eigenvalue-eigenvector differential
equation using a finite difference method. This requires that a subset of the
eigenvalues and eigenvectors of a tridiagonal matrix be found.

A bisection method[41] which accomplishes the eigenvalue computation using
the TRIDIB routine from EISPACK[42] was ported to the Mark IIIfp. This
implementation of the bisection method allows computation of any number of
consecutive eigenvalues specified by their indices. Eigenvectors are obtained using
the EISPACK inverse iteration routine TINVIT with modified Gram-Schmidt
orthogonalization. Each processor solves independent tridiagonal eigenproblems
since the number of eigenvalues desired from each tridiagonal system is small but
there are a large number of distinct tridiagonal systems. To achieve load balancing,
we distributed subsets of the primitive functions among the processors in such a
way that no processor computes greater than one eigenvalue and eigenvector more
than any other. These large grain tasks are most easily implemented on MIMD

machines; SIMD (single instruction stream multiple data stream) machines would
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require more extensive modifications and would be less efficient because of the
sequential nature of effective eigenvalue iteration procedures. The one-dimensional
bases obtained are then broadcast to all the other nodes.

In step two a large number of two-dimensional quadratures involving the
primitive basis functions which are needed for the variational procedure are
evaluated.  These quadratures are highly parallel procedures requiring no
communication overhead once each processor has the necessary subset of functions.
Each processor calculates a subset of integrals independently.

Step three assembles these integrals into the real symmetric dense matrices
s/M(p,) and h'MT(p,) which are distributed over processor space. The entire
spectrum of eigenvalues and eigenvectors for the associated variational problem
is sought. With the parallel implementation of the Householder method[43],
this generalized eigensystem is tridiagonalized and the resulting single tridiagonal
matrix is solved in each processor completely with the QR algorithm[44]. The QR
implementation is purely sequential since each processor obtains the entire solution
to the eigensystem. However, only different subsets of the solution are kept in
different processors for the evaluation of the interaction and overlap matrices in
step four. This part of the algorithm is not time-consuming and the straightforward
sequential approach was chosen. It has the further effect that the resulting solutions
are fully distributed, so no communication is required.

Step four evaluates the two-dimensional quadratures needed for the interaction
21T (p; 5,) and overlap O1T (5,115 p,) matrices. The same type of algorithms are
used as were used in step two. By far, the most expensive part of the sequential
version of the surface function calculation is the calculation of the large number
of two-dimensional numerical integrals required by steps 2 and 4. These steps are

however highly parallel and well suited for the hypercube.
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Step five uses Manolopoulos’[31] algorithm to integrate the coupled linear
ordinary differential equations. The parallel implementation of this algorithm is
discussed elsewhere[29]. The algorithm is dominated by parallel Gauss-Jordan
matrix inversion and is I/O intensive, requiring the input of one interaction matrix
per integration step. To reduce the I/O overhead a second source of parallelism
is exploited. The entire interaction matrix (at all p) and overlap matrix (at all
pq) data sets are loaded across the processors and many collision energies are
calculated simultaneously. This strategy works because the same set of data is
used for each collision energy and because enough main memory is available.
Calculation of scattering matrices from the final logarithmic derivative matrices
is not computationally intensive, and is done sequentially.

The program steps were all run on the Weitek coprocessor which only supports
32-bit arithmetic. Experimentation has shown that this precision is sufficient
for the work reported below. The 64-bit arithmetic hardware needed for larger

calculations was installed after the present calculations were completed.

4. RESULTS AND DISCUSSION

Accuracy:

Calculations were performed for the H + Hj system on the LSTH surface[32,33]
for partial waves with total angular momentum J = 0,1,2 and energies up to 1.6
eV. Flux is conserved to better than 1% for J = 0, 2.3% for J = 1 and 3.6% for
J = 2 for all open channels over the entire energy range considered.

To illustrate the accuracy of the 32-bit arithmetic calculations, the scattering
results from the Mark IIIfp with 64 processors are compared with the results
obtained using a CRAY X-MP /48 and a CRAY-2. The differences of the transition

probability do not excede 0.004 in absolute value over the energy range investigated.
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Timing end parallel efficiency:
In Tables I and II we present the timing data on the 64 processor Mark IIIfp,
a CRAY X-MP/48 and a CRAY 2, for both the surface function code (including

OJHF IJ‘HI‘

calculation of the overlap and interaction matrices) and the logarithmic
derivative propagation code. For the surface function code, the speeds on the first
two machines is about the same. The CRAY 2 is 1.43 times faster than the Mark
IIIfp and 1.51 times faster than the CRAY X-MP /48 for this code. The reason is
that this program is dominated by matrix-vector multiplications which are done in
optimized assembly code in all 3 machines. For this particular operation the CRAY-
2 is 2.03 times faster than the CRAY X-MP /48 whereas for more memory-intensive
operations the CRAY 2 is slower than the CRAY X-MP /48[45]. A slightly larger
primitive basis set is required on the Mark IIIfp in order to obtain surface function
energies of an accuracy equivalent to that obtained with the CRAY machines. This
is due to the lower accuracy of the 32-bit arithmetic of the former with respect to
the 64-bit arithmetic of the latter.
The absolute times presented in Table I and II are apt to decrease as the codes
——are improved-and-the numerical parameters are further tuned. As a result, they
are not well suited for a comparison of the relative effectiveness of different reactive
scattering methodologies[10-21]. The relevant information in those tables is,
instead, the relative times among different machines as given by the corresponding
speeds. These are indicative of the relative effectiveness of these machines for
performing the reactive scattering calculations described in this paper.
The efficiency () of the parallel LHSF code was determined using the
definition ¢ = (W%IT) where 77 and T are respectively the implementation

times using a single processor and N processors. The single processor times are

obtained from runs performed after removing the overhead of the parallel code,
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i.e., after removing the communication calls and some logical statements. Perfect
efficiency (¢ = 1.0) implies that the N-processor hypercube is N times faster than a
single processor. In figure 1 efficiencies for the surface function code (including the
calculation of the overlap and interaction matrices) as a function of the size of the
primitive basis set are plotted for 2, 4, 8, 16, 32 and 64 processor configurations of
the hypercube. The global dimensions of the matrices used are chosen to be integer
multiples of the number of processor rows and columns in order to insure load
balancing among the processors. Because of the limited size of a single processor
memory, the efficiency determination is limited to 32 primitives. As shown in figure
1, the efficiencies increase monotonically and approach unity asymptotically as the
size of the calculation increases. Converged results require large enough primitive
basis sets so that the efficiency of the surface function code is estimated to be about
0.95 or greater.

The data for the logarithmic derivative code given in Table II for a 245 channel
(i.e., LHSF) example show that the Mark IIIfp has a speed about 62% to that of
the CRAY 2 but only about 31% of that of the CRAY X-MP/48. This code is
dominated by matrix inversions, which are done with optimized assembly code in
all three machines. The reason for the slowness of the hypercube with respect to the
CRAYs is that the efficiency of the parallel logarithmic derivative code is 0.52. This
relatively low value is due to the fact that matrix inversions require a significant
amount of inter-processor communication. Figure 2 displays efficiencies of the
logarithmic derivative code as a function of the number of channels propagated
for different processor configurations, as done previously for the Mark II1[29,46]
hypercubes. The data can be fit well by an operations count formula developed
previously for the matrix inversion part of the code[47]; this formula can be used to

extrapolate the data to larger numbers of processors or larger numbers of channels.
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It can be seen that for an 8 processor configuration, the code runs with an efficiency
of 0.81. This observation suggested that we divide the Mark IIIfp into 8 clusters
of 8 processors each and perform calculations for different energies in different
clusters. The corresponding timing information is also given in Table II. As can be
seen from the last row of this table, the speed of the logarithmic derivative code
using this configuration of the 64 processor Mark IIIfp is 48.5 Mflops, which is
about 44% of that of the CRAY X-MP /48 and 88% of that of the CRAY 2. As the
number of channels increases, the number of processors per cluster may be made
larger in order to increase the amount of memory available in each cluster. The
corresponding efficiency should continue to be adequate due to the larger matrix
dimensions involved.

Ongoing and future extensions:

From the previous discussions it appears that our application is well adapted to
the hypercube architecture. However, our systems are experimental and continually
evolving in terms of both hardware and software. In the near future, the number
of processors of the Mark ITIfp will be increased to 128 and the I/O system will be
replaced by high performance CIO (concurrent I/O) hardware. The new Weitek
coprocessors installed since the present calculations were done perform 64 bit
floating point arithmetic at about the same nominal peak speed as the 32 bit boards.
From the data in the present paper it is possible to predict with good reliability
the performance of this upgraded version of the Mark IIlfp. Speed measurements
on the CRAY Y-MP/864 of the San Diego Supercomputer Center show that it
is 2 times faster than the CRAY X-MP /48 for the surface function code and 1.7
times faster for the logarithmic derivative code. In Table III, we summarize the
available or predicted speed information for the present codes for the current 64

processor and near future 128 processor Mark IIIfp as well as the CRAY X-MP /48,
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CRAY 2 and CRAY Y-MP/864 supercomputers. It can be seen that Mark ITIfp
machines are competitive with all of the currently available CRAYs (operating as
single processor machines).

From Table I-ITI, we can find that the design details of the most advanced
supercomputers make some better-suited for certain computations than other. The
surface function code is most efficient on the hypercube while the logarithmic
derivative code will run better on CRAY-type machines. Distributing large
computations among several supercomputers will provide the opportunity both to
bring to bear greater computing power than is available in any single machine and
to use the most suitable machine for each step of the task. In the near future a high
performance network will be built which can support host interfaces that operate
at 1600 million bits per second (Mbps) and connects multiple supercomputers at
the Los Alamos National Laboratory, the California Institute of Technology, the
Jet Propulsion Laboratory and the San Diego Supercomputer Center. With such a
distributed heterogenous computer, it should be possible to run a single program on
the eight processors of the CRAY Y-MP /864 and the 128 processors of the Mark
IIIfp hypercube at the same time, with a speedup of 18 times the speed of one
CRAY X-MP/48. Quantum scattering calculations on larger, more complicated

chemical systems will become feasible at that time.

5. SUMMARY

We have developed and implemented a strategy for performing quantum
mechanical reactive scattering calculations on the Mark IIIfp hypercube parallel
supercomputer. The results obtained for the H+H, system J = 0, 1, 2 partial waves
agree well with those from a CRAY X-MP /48 and a CRAY-2. The high degree of

parallelism of the most time-consuming step of the surface function calculation (the
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evaluation of two-dimensional numerical quadratures) leads to a high efliciency for
that calculation. As a result, the speed of the 64 processor Mark IIIfp for the
surface function calculation is about the same as that of the CRAY X-MP /48
and about 0.7 of that of the CRAY 2. When configuring the Mark IIIfp into 8
clusters of 8 processors each, the logarithmic derivative code is about 56% slower
than the CRAY X-MP /48 and 12% slower than the CRAY 2. The speed of the
128 processor Mark IIlfp soon to become available should exceed, both for the
surface function calculation and the logarithmic derivative calculation, those of the
CRAY X-MP/48 and CRAY 2; however, although still comparable to the CRAY
Y-MP /864 for the surface function code, it will be 32% slower for the logarithmic
derivative code (the CRAYs operating as single processor machines). These results
demonstrate the feasibility of performing reactive scattering calculations with high
efficiency in parallel fashion. As the number of processors continues to increase and
with the gigabit network that is currently been planned, such parallel calculations

in systems of greater complexity will become practical in the not too distant future.
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FIGURE CAPTIONS

Figure 1 Efficiency of the surface function code ( including the calculation of
the overlap and interaction matrices) as a function of the global matrix dimension
(i.e., the size of the primitive basis set) for 2, 4, 8, 16, 32, and 64 processors.
The solid curves are straight line segments connecting the data points for a fixed

number of processors and are provided as an aid to examine the trends.

Figure 2 Efficiency of logarithmic derivative code as a function of the global
matrix dimension (i.e., the number of channels or LHSF') for 8, 16, 32, and 64
processors. The solid curves are straight line segments connecting the data points

for a fixed number of processors and are provided as an aid to examine the trends.
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Mark IT1fp® 64 processors CRAY X-MP/48 CRAY 2
/ Time (hr) Speed (Mflops) Time (hr) Speed (Mflops) Time (hr) Speed (Mfops)
0 0.71° 1004 0.74° 96/ 0.494 145"
1 2.88 112¢ 3.04/ 106/ 2.01* 160"
2 5.60! 1244 5.94™ 117" 3.96° 176*

a. This code calculates the surface functions at the 51 values of g from 2.0 bohr to 12.0 bohr in steps of 0.2 bohr,
the corresponding overlap matrices between consecutive values of 5 and the propagation matrices in p steps of
0.1 bohr. The number of primitives used for each J and described in the remaining footnotes permits us to

generate enough LHSF to achieve the accuracy described in the text.
64 single precision processors.

¢. For 80A;, 804, and 160F primitives. This basis is larger than the one described in e. below and is needed to
generate the same number of linearly independent surface functions as in e. The reason for this difference is the

32-bit arithmetic of the Mark IIIfp compared to the 64-bit arithmetic of the CRAY X-MP/48.

d. Estimated on the basis of the absolute measured speed on the CRAY X-MP /48 and the measured relative speeds

of the Mark ITIfp with respect to the CRAY X-MP/48.
For T6A,, T6 Az and 152F primitives.
Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines.

meo

g. This time, for the same primitives as described in e. was estimated on the basis of the relative speeds of the
CRAY 2 and CRAY X-MP/48 measured for a set of 5 values of 5. It is smaller than the time in e. for the reason

given in h.

h. Estimated on the basis of the relative speed of the CRAY 2 with respect to the CRAY X-MP/48 described in
g. The reason this speed is 2/3 of the corresponding CRAY X-MP/48 speed is that the dominant parts of the
calculation are optimized assembly code matrix-vector multiplications for which the CRAY 2 is 50 % faster than

the CRAY X-MP/48. Otherwise, the CRAY 2 is slightly slower than CRAY X-MP/48. See Text.

i. For 724, 80A, and 152F primitives of even parity and 1524,, 160A4; and 312F primitives of odd parity. These

numbers of primitives are larger than the ones given in j. for the reson given in c.
j. For 64A,, T6A2 and 140F primitives of even parity and 1404,, 1524, and 292F primitives of odd parity.

k. Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY 2 and the measured CRAY

X-MP/48 times or speeds.

l. For 2164, 2324, and 448F primitives of even parity and 1364;, 1524, and 288F primitives of odd parity.

These numbers are larger than those in o. for the reason given in c.

m. This time is estimated as in k., since the calculation cannot be done on the CRAY X-MP /48 because of insufficient

mermory.

n. FEstimated to be the same as in f. since the calculation cannot be done on the CRAY X-MP/48 for the reason

given in m.
o. For 2044, 2164, and 420F primitives of even parity and 1284, 14045 and 268 £ primitives of odd parity.
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Table IT : Performance of the logarithmic derivative code?

T Mark IIIfp®
CRAY X-MP/48 CRAY 2

64 processor 8 clusters of

global configuration® 8 processors?
Total time(hrs) 4.8¢ 3.459 1.5 gign
Time for 1 energy(min) 2.9 1.6 0.7 1.3
Efficiency 0.52 0.81 — —
Speed’ (Mflops) 34.4F 48.5% 110 55.4

& 7

™o

Based on a calculation using 245 surface functions and 131 energies, and a logarithmic derivative integration
step of 0.01 bohr.

64 single precision processors.

The calculation for each energy was distributed among all 64 processors.

The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations for 16
energies, for a total of 128 energies. The times reported were multiplied by 131/128 for normalization purposes.
All 8 clusters operated simultaneously.

This includes 1.9 hours of I/O time.

This includes 1.6 hours of I/O time. This time is shorter than that in e. because of a different and more efficient
broadcast of the data between the host and the 8 clusters.

Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported was obtained
by subtracting the I/O time from the measured time, multipling the result by 131/128 for normalization to 131
energies and adding the I/O time.

Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY 2 and CRAY
X-MP/48 for the logarithmic derivative code.

This includes the pro-rated I/O contribution.

All speeds include I/O contribution.

Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code and the
relative speeds of the Mark ITIIfp and CRAY X-MP /48 for this code.
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Table I'V : Hypothetical future parallel supercomputer characteristics

Class A Class B Class C
Mark [1Ifp (1991-1995)2 (1996-2000)%
Sustained speed/node
(Mflops) 2 20 200
Memory/node
(Mwords) 0.5 4 32
|
Inter-node communication \
bandwidth(Mbyte/sec) 1 100 1000
Number of nodes 128 1024 8192
Total sustained speed 256 Mflops 20 Gflops 1.6 Tfops
Total memory 64 Mword 4 Gword 262 Gword
Total I/O rate 128 Mbyte/sec 10 Gbyte/sec 1 Thyte/sec

a. Time frame within which this machine class is expected to become available.
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CHAPTER VII

Three-Dimensional Quantum Mechanical
Electron-Hydrogen Scattering by the Symmetrized
Hyperspherical Coordinate Method. Theory
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Three-Dimensional Quantum Mechanical Electron-Hydrogen Scattering

by the Symmetrized Hyperspherical Coordinate Method. Theory

Yi-Shuen Mark Wu! , Diane M. Hood and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125, USA

Abstract

We present an efficient numerical method for obtaining accurate solutions to
the Schrodinger equation for the collision of an electron with a hydrogen atom
using symmetrized hyperspherical coordinates. The scattering wave functions are
expanded in a set of local space-fixed hyperspherical surface functions that are
eigenfunctions of a reference hamiltonian. This results in coupled differential
equations in the hyperradius variable that are integrated to generate primitive
wave functions. These solutions are linearly combined to satisfy the reactance and
scattering matrix boundary conditions, from which the integral and differential
cross sections are obtained. Symmetry considerations that simplify the calculations
are discussed in detail. This formulation permits a very complete description of
the electron-hydrogen scattering processes and can be extended to energies above

the ionization threshold.

1 Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
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1. Introduction

Studies of collisions of electrons with hydrogen atoms have been of great
interest for the past two decades[l]. It is one of the simplest processes in atomic
physics and has been extensively studied, both theoretically and experimentally.
One of the intriguing aspects of this problem is that agreement between experiment
and even the most sophisticated of current theories is not satisfactory, because of
the strong correlation between the two electrons|2].

Over the years many theoretical approaches have been made particularly for
the electron-hydrogen problem. One of the major difficulties in the past has been
the lack of a computationally efficient method for obtaining accurate cross sections.
The close-coupling method used by Burke et al.[3,4] uses target hydrogen atom
eigenfunctions to expand the full wave function. The convergence of this basis set
is slow because it does not take the presence of the second electron into account.
This method can be modified to include correlation functions[5] and pseudostate
functions[6] in the expansion, and fairly converged results have been obtained for
energies below the n = 3 threshold[7]. However, there is disagreement with the
magnitude of the experimental 1s — 23 cross section.

In the variational approach, the scattering equations are formulated by using
a pseudostate basis[8]. The pseudostate basis contains all the open channel exact
hydrogen eigenstates, while the higher bound and continuum states are represented
by pseudostates chosen to be orthogonal, each of which has an associated effective
energy level[9,10]. The primary problem associated with using pseudostates
concerns the selection of a pseudostate basis set that will accurately represent
the complete set of states. There have been various schemes proposed for this
selection such as requiring that the basis set predict the correct value for some

atomic parameter such as the static dipole polarizability. However, there is no
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guarantee that these types of criteria are appropriate for scattering problems since
the atomic parameter may be sensitive to a different radial range of the wave
functions than that for the scattering calculation. Another problem is the existence
of non-physical resonances below the pseudostate effective energies.

The use of hyperspherical coordinates and of the local hyperspherical
surface function formalism in electron-atom scattering problems[11,12] and three-
dimensional reactive scattering problems[13-17] has proven to be a successful
approach to solving the Schrédinger equation. One of the difficulties in applying
this approach is the accurate and efficient calculation of local hyperspherical surface
functions, especially for reactive scattering processes.

The two electrons in the electron-hydrogen system do not move independently;
indeed they are strongly correlated with each other. Correlation is totally ignored in
the simpliest versions of the independent electron model[3], but more sophisticated
methods attempt to add in short range correlation effects[5]. The utility of
hyperspherical coordinates becomes clear because a large part of the electron
correlation is contained in the corresponding surface function basis set.

In this paper, we report the development and implementation of a general
quantum theory for solving the electron-hydrogen system using symmetrized
hyperspherical coordinates. We will set up the general Schrédinger equation
for a three particle system in hyperspherical coordinates and discuss features of
the potential energy surface. The method used for obtaining the solution of
the Schrodinger equation, including the surface function expansion, calculation
of potential matrix elements, and the solution of the coupled radial equation will

be described.
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2. The Space-fixed Schrédinger Equation

For electron-hydrogen scattering below the ionization threshold there are two
arrangement channels, e; + H and es + H, where e; and ez are the two electrons.
The third arrangement channel, in which the electrons are close to each other but
distant from the proton, does not need to be considered, since it is not a stable
one.

Let (A, v, k) be any cyclic permutation of the indices (a, 3,7). Given a system
of three particles A,, Ag and A, with masses m,,mg and m., respectively, we
define the A coordinates as (R/,r}) where R/ is the vector from the center of
mass of vk to A and r), is the vector from v to k. The Hamiltonian, after removing
the center of mass motion, for the three particles in this Jacobi center of mass

coordinate system is

. R? h*
WK VK
where px v = %%, s = s are the reduced masses corresponding to

the vectors R and r. V'(R),r),7a) is the potential energy function describing
the interactions of the three particles. The coordinate «y, is the angle between R/
and r.

The Hamiltonian can be put in a simpler form by the introduction of Delves’

mass-scaled coordinates[18], defined as

RA = G)\RS\;

R SO
£y =8y T (2.2)
gy, = (P22 %

VK

The Schrodinger equation in Delves’ mass-scaled coordinates is

hz
-5, VR, + Vi) + V(Ra,ram) — EI¥(Ra,m) = 0 (2.3)
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where

2,0 7. %

VZR-J\ = ( R2 ) + (aR ) - ﬁsz (2,3@)
A
2
(37'2) r,\(af;\) B hlé (238)

where p = ( ﬁ%—m)% is the single reduced mass for the system of particles
and E is the total energy in the center of mass coordinate system.

Let us consider space-fixed axes, by which we mean a system Ozyz whose
origin O is the center of mass and whose axes are parallel to a system of laboratory-
fixed axes, ry is represented by distance ry, azimuth 8., , and polar angle ¢, , while
R, is represented by Rj, 8r, and ¢r,. The orbital angular momentum terms f;%h
and f}ﬁA are expressible in terms of the angles 8g, ,¢r, and 6., ,¢,,, respectively.

Since the two angular momentum operators describe the same rotation but for

different electrons; therefore we will use i for L R, and I, for f;,.,\

3. Symmetrized Hyperspherical Coordinates

The A symmetrized hyperspherical coordinates for this system are obtained
by conversion from the two distance variables Ry and r) to a hyperradius p and

an additional angle w[13],

= (r3 + R} )% wy = 2arctan%; 0 <w)y) <. (3.1)
%

The four angular degrees of freedom remain the same. In this coordinate system
the Hamiltonian is expressed as

5 B .8 58 A?
B=——(55+-5
2u"0p>  pIp

2 + V(prw)\af)’/\) (32)
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where the Grand Canonical angular momentum operator A2 is

A2=1% + ¢ 5 3.3
TR sin?2  cos?4} (3.3)
and the hyperspherical angular momentum operator is
-~ o? 7]
12 = —ah® 2cot —
“A ¢ (8w§ W BwA)
1L AP
= —4h® —— + 1)sinwj. i
sinw;\(c?w?\ Lty (34)
The orbital angular momentum operators f% and f% are expressed as
- o? g 1 o2
HEE YRy ) = . + cotfgr + — 3.5
1( A ) [89?{* A 89RJ\ SanGRA 6(49?2A ] ( )
o2 a | d?
26, Ory ) = —B2[—— + cotb, + — . 3.6
2( A A ) 89,2"’\ A 897-;\ Slnzgu agagA ] ( )

This system has several advantages: The hyperradius p is independent of the
arrangement channel; the operators for the hyperradius and hyperangles may be
separated; and the conversion between different arrangement channels is relatively

easy.

4. Potential Energy Function

The potential energy function for the system of two electrons and a proton is

the sum of the Coulomb interaction of the three particles:

2 2 2

et € + [
[ra| [Ra| [ra—Riy|

VR, ra)= (4.1)

Here the zero of energy is taken to be energy of the configuration for which the

three particles are infinitely separated. Since the mass scaling factors are very

close to unity, we set 7y = ry and Ry = R) without loss of accuracy. The error
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introducted by this assumption is negligible compared with the desired scattering
calculation accuracy, and this can be corrected for if desired by an appropriate
perturbation expansion.

In hyperspherical coordinates the potential energy function transforms into

e? 1 1 1

V ,w = —— o+ = il
(Pswx,7a) p cos®  sin® /T — sinwycosya

(4.2)

This potential has a simple 1/p dependence and we might expect the forces involved
to be long range and die off slowly.

In order to better visualize the properties of the potential energy function,
we obtained contour plots of V' for energies both above and below the ionization

potential in a system of coordinates OX Y, Z,[13] defined as
X\ = psinwycosya;
Y, = psinwysiny,; (4.3)
Z)\ = pcoswy.

The range of v is 0 to w, and there is a one-to-one correspondence between
points in the ¥\ > 0 half-space of the OX,Y,Z, space and configuration of the
system. This mapping of V shows that the hyperspherical surface not only has the
same symmetry as the physical problem, but also treats the different arrangement
channels evenly.

In Figure 1 we show several contours obtained at Zx = 0 bohr. There is a
pointed profusion that reaches to the origin, which corresponds to ¥, = 0, X, > 0.
This region is due to the high energy of the configuration when the two electrons
are very close to one another. Contours obtained by taking Yy = 0 which are
perpendicular to Figure 1 are shown in Figure 2. The potential energy surface is

symmetric with respect to the Zx = 0 plane, which is due to the two identical
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electrons. Thus the three-dimensional internal configuration space is divided into

two symmetric arrangement channels.

5. Partial Wave Expansion of the Wave Function

The complete symmetry group of the Hamiltonian is the set of all operators
which commute with the Hamiltonian and is organized into operator subgroups
which follow naturally from the character of the symmetry operations. Rotational
invariance of the Hamiltonian permits us to choose the spatial wave function to
belong to an irreducible representation of the subgroup SO(3) of the complete
symmetry group of the Hamiltonian. A basis for the invariant subspace
corresponding to an irreducible representation is fixed by choosing each function
to be an eigenfunction of the operator J,, the operator for the space-fixed Z
component of the total angular momentum, which is the vector sum of {; and
[, with eigenvalues Mh, where M = 0,41, %2, ..., +J.

The Hamiltonian of the system is also invariant with respect to exchange
of the electrons and to inversion through the center of mass of the system. As a
result, solutions to the Schrédinger equation can be found which are simultaneously
eigenfunctions of the exchange operator 1512 and the inversion operator &. The
Pauli principle requires that the total wave function change sign when the
coordinates of the two identical fermion particles are exchanged. Therefore, a
singlet (S = 0) spin state must be spatially symmetric with respect to exchange
and the triplet (S = 1) spin state must go with an anti-symmetric spatial wave
function.

We therefore expand ¥ in terms of their simultaneous eigenfunctions ¥7M>1

oo J 1

e z Z CJ'M Z ZI: \IJJMSH (51)

J=0 M=—J TII=0 S=0
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where /M5 are the solutions of the set of eigenfunction equations

j;[lII‘IMSH — E‘I‘JMSH

J'"Z‘I}JMSH — J(J+ 1)52‘PJMSH

J @M = pp g TMST (5.2)
ﬁ12\pJMSH - (—I)S‘IJJMSH

SpIMSI _ (—1)Tg7MsT

6. Expansion of the Partial Waves in Terms of Surface Functions

Motion in the p coordinate is almost decoupled from the hyperangular
coordinates whose motion is greater than the radial motion. We define local
hyperspherical surface functions ®JMST to be well behaved solutions to the
Schrédinger equation for the five-dimensional hamiltonian defined by equation
(3.2), which resulted from omitting from H the radial kinetic energy operator.
This operator commutes with the same set of operators as the full six-dimensional
hamiltonain operator, and therefore we define the surface functions to be
simultaneous eigenfunctions of J2, J, , P, and §. It depends on p only

parametrically, and is given explicitly by

~

% A2
h(w)\; 4a'ngles; P) — 2#‘02 1 V(p: WX, TA) (61)
Therefore
ho@MsT _ s gJusT (6.2)

The index n arises from the quantization of the energies of the surface functions,

which follows from the finite bounds on the values of the five hyperangles.

JM SIL
én

The five-dimensional surface functions are an excellent basis set

for expansion of the six-dimensional scattering wavefunction ¥/MSH gince they
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contain much of the effect of the kinetic energy operators and of the potential

energy function. The UM are therefore expressed as:

GIMST = p=3 7 pISTgIM ST (6.3)

n
Although n' spans a denumerably infinite but discrete set of surface functions,
in practice it must be truncated to a finite number which are needed to obtain
appropriate scattering matrices.

To solve for these coefficients, the ®/MST are determined at a set of
discrete values of p. Substituting equation (6.3) into the Schrédinger equation
corresponding to the hamiltonian defined by equation (3.2) and using equation
(6.2), the coefficients are found to satisfy

h d®  15K* P, ysm JMSTI
{__ 2 2 +(_)26n (ﬁ)_E}bnM (-‘9; ;—0—)
2udp*  Bup p (6.4)

+Zb (os PYTTIZ (01 2) = O

in which the interaction matrix Z75", which is a measure of the coupling of the
surface functions by the potential, or equavalently of the change in the wavefunction

as a function of p from the values at p = p, is defined by
(2750 (03 5) = (@M | V(p,wr, 725 5) | 22MT). (6.5)
The potential of interaction V{(p,wx,vx; p) is defined as
V(ponmi) = Vipwnm) = EPV(a0n1). (6.6)

Since we will expand the six-dimensional wave function in terms of a finite
number of surface functions, the expansion (6.3) will become inaccurate for
sufficiently large value of | p — p; | (Here we label p;, with ¢ = 0 for the smallest

value of p and increasing with p), as some of the coupling is with functions excluded
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from the truncated surface function basis. Therefore, the coefficient 5;°%(p; p) are
calculated as a function of p in a region near p; corresponding to a hyperspherical
shell. It is then necessary for determination of the scattering wavefunction at all p
to smoothly match the wavefunction calculated for each shell across the boundary

p = pii+1 of adjacent hyperapherical shells. This is accomplished by imposing the

conditions
b7 (pii1; Pivr) = D, 037 (piir1; PO (Biga, i) (6.7)
n.l
3b,5M (p; pit1) 35771 (ps i) :
(n 1 S PP Pi) " ISIn! (= =,
< dp )P_"P:','ilq Z( dp )p—"PE,i-)H [© I (Pit1,P:);  (6.8)

n!

in which the overlap matrices @75 are defined by
[O7T)% (piga, pi) = (@M (4angles; pit1) | D7/ (4angles; pi)). (6.9)

Equation (6.4) can be put in matrix form

hZ deJSH

1552
“2u dp?

8up?

4+ 77SIRIST [(-E)%JSH +( _EpSP =0 (6.10)

All the matrices appearing in this equation are square and their dimension equals

the number of surface functions used in equation (6.3). To put this equation in

more general form we define U75:
2 p 15h%
YIS —g';(IJSH + (;)Ze’sn + (g7 — B (6.11)
which gives
d2bJSH
et Ll e ¢ (6.12)
0

7. Basis Set for Expansion of the Surface Function
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The eigenfunctions of {7 and 2 are spherical harmonics, Yi, m,(#1,%1) and
Y1,,m2(02,92). Here we set O, = 01,¢r, = 1 and 0,, = 63,¢,, = 2. A set of
one-dimensional surface functions, f7 SH:l 1,(wa; p), independent of the orientation
of the system in space can be defined by expansion of the surface function in terms

of coupled spherical harmonics, ,')J,“; Il‘f -

(I);.IMSH = Zyli?f(az,({?2:9]:(iol)fJSH;gll(w)\;p) (71)
Il

where y, I (92,902,91 1) are orthonormal eigenfunctions of the total angular
momentum operator J 72 and its projection Jz, ae well as ll and lg :

yfi?f(621tp21917{:01)= Z C(llli’J;mlsz)}rlz'fﬂ?(e?:(p?)yrllml(917901) (72)

MM
The C’s are Clebsch-Gordan coefficients in the notation of Rose[19].

Substitution of this expansion into equation (6.1), multiplication by y,g f‘fl (02,¢2,01,¢01)

and integration over the four angles leads to the equation satisfied by these func-

tions:
5 '+ DR | L'+ DR e
B, '
2#!’ 2 sin® o i cos? 7 (Wi p)
121
+ S VI P (s 0) = ()T
120y
(7.3)
where the Vm::ffm;ma,i, are the surface potential matrix elements
Il
VI (@i p) = (Vi 1 Ve, wx, 1) | Vi) (7.4)

and can be calculated analytically. It is symmetric with respect to wy — 7 — wy

and lzll o lllg.
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The variational basis set t];r 261 (wy; p) with associated eigenvalues ijm"”l that
we have chosen to use to expand the surface functions was obtained by neglecting

the off-diagonal terms of the potential matrix, such that

1 A l]_(l] + 1) 12(12 + 1) Jolh

L2 Jlaly .
[2.1592( 8 sinz%b- cosz%& 1211("" 1P)]t (wasp) (7.5)
= v 1 (p) T (w5 p)
We can introduced the function
Tpﬂz h (wa;p) = Sim)AtPJl2ll (wa; p) (7.6)

to force the boundary condition Tp'n2 hiwy = 0; p) = TPJ 201 (wy = 7;p) = 0 in order
for tg"*’l(w)\; p) to be finite at those values of wy.
Replacement of equation (7.6) into (7.5) leads to the following set of coupled

differential equations:

2h* d?
”pg dwz Tﬂzlz( ;P) + e.;l;thﬂzh(wA;p) s V_'Jnlzh(P)ijlzll(P)ijlzll (WA;P)
7.1
where Vﬂzl1 is the effective potential defined as
_bL(B+1) 11(11 +1) Jilal
V-”zll — 21 ‘ ;
eff 2#‘02 0082% e W ) lgl]_ (("’31 P) (7 8)

The eigenfunctions ij I2li(y; p) are solved numerically using finite difference
methods. They must be computed separately at a discrete values p; of p such that
for each p;, that set is appropriate for a range of values of p.

The basis functions T}/%2" (wy; p) are orthogonal with the same [I115]
/0 Tpﬂ"“1 (wx; p)TPJ,I"’l‘(wA; p)dwx = &, (7.9)

If I, equals Iy, the TPJ” functions are either symmetric or antisymmetric, and

are obtained in separate calculations. Since the parity II is always even when
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I equals Iy, if J is even, the singlet basis functions will be symmetric with respect
to wy = m/2, but if J is odd, then it is the triplet basis functions that have this
symmetry.

The basis functions in which we expand the surface functions @;JMSH
need to posses appropriate symmetry properties regarding electron exchange
and inversion through the proton. To obtain such a property we take linear
combination of two simple product functions y,{{‘f (92,502,91,@1)15;1211 (wa; p) and

y,{f,‘f (02,402,014, gol)tg’m(fr — wy; p) according to
OLYS = Nyyt, [V (82, 02, 01,01 )] (wi; )

(7.10)
+ (—D)A VI (02, 02,01, 1)t (1 — wy; p)]

where

A=8§+J-T (7.11)

and Ny,;, is a normalization coefficient. For [; = ls = [ only one term is needed:

GuMSH Vil (927‘P2;911‘P1)t5)’.¥+5(w)\5p) (7.12)

The basis functions must be linearly independent and this leads to a restriction on

the values assumed by [, and I3, because @,Ji"fffﬂ differs from © ;2 I,‘ffn by at most,
a sign change. We therefore expand over pairs [l;13], for which, I; < I,
I
@JMSH Z a{fmn Mlp (wA,éangles P) (7.13)

[tiiz]p
Using the functions defined by equation (7.7) and (7.9), we can transform
equation (7.3) into an algebraic eigenvalue-eigenvector equation in €]°"(p) and
a{z'?;l},” by multiplying sin2w)\tg,l"’l‘(w)\; p) and integrated over dwy. Stating the

eigenvalue-eigenvector problem in matrix notation we have

(VgSH + uJSII)aJSI'I - a.'lSl'Ie.'lSH (714)
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where we define the diagonal matrices

JSIIIal Ial
(IS = 6210 vy () (7.15)
JSIIyn
(e = émen™(p) (7.16)
The interaction matrices V35! are obtained by a unitary transformation:
Vg oo 0 T
—i | =TSV .
[ o Vims=1 0 (7.17)
The matrix Vg™ is given as
JIIyIal I21 lalip
(Vam)2ih () = (1= 820 )VIT L (7.18)

which is symmetric and only has elements in off-diagonal blocks.

8. Calculation of Potential Matrix Elements

In order to calculate the surface functions we need to calculate potential
functions V71 ;2,,1 (wy; p) as well as the matrix elements Vmizf}pf (p).

The first two terms of the potential function in equation (4.2), representing
electron-nucleus attraction, are independent of the integration variables (6;, 1,02, ¢2,71),
and lead to diagonal terms in the potential matrix. The off-diagonal elements in
those matrices results from the third term (electron repulsion) term.

It is convenient for the evaluation of the potential energy matrix elements
to use products of body-fixed Wigner rotation functions[19] and renormalized
Legendre polynomials[20].

2J +1
872

Dé?f(G,(p,"}’,i,b) = Djfdﬂ(cpsgﬂﬁ(ﬁ)pg(qf) (81)
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The V¥ and DJ}M are inter-related by the expression[21]
J
Vil (62, 00,ta,01) = ) (-1)""0C(Thl; @ — Q0D (6,0,7,%)  (8:2)
Q=—J
where 02 = 8 and @2 = ¢. Substituting JJ,J M into the potential matrix element
expression (7.4), and taking the advantage of the orthonormality of DJM , gives

2l L
PR e R E C(JlL'L';Q — Q0)C(Tlla; @ — QO (wa; p)

8.3
1 11'12( 1 ) ( )
Suats cos—é- sm%’-L
where we have defined a new quantity Vl?h,(w A3 p) by
Viori) =5 [ PRI - simnco) TP sinydy  (84)

In order to compute this integral, we expand the repulsion energy term in a series

of Legendre polynomials of cosy[22].

(]_ i SiﬂL&JACOS’)’)“% :COSJ- Z (cos*y)tan ?A for 0 Cwy <

(o o]
San_ ZPL(COS’Y)COtk for % <wa<mw
2

Using this expression leads to integrals over products of three associated Legendre
functions, which can be evaluted analytically.

The final exact expression for V ,2:1;1: is found to be the following:

120 I+ll 211"‘1 tan T"
yImEs  =(—1)h C(lymliy'; 000
Ly =(—1) p‘/211'+1; cosz (Iimly )

x 3 C(TL'L'; 0 — Q0)C(Tlhly; © — Q0)C(Lymly'; Q02)  (8.6)
Q

- 155221’1'( 1 1
261 =Y in %A
P cos; sin

).
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lip

The matrix elements V2% ,(p) are obtained by trapezoidal rule integration

OVer wy.

9. Solution of Coupled Equations

It is most convenient to solve the coupled equation (6.12) by using logarithmic
derivative integration[23]. The unknown function b'5M(p; p) to its logarithmic

derivative is defined as
¥ (o) = BIFSE g g A PE I a3, 1)1 (9.1)

We find by differentiation of equation (9.1) and using equation (6.12) that

bfy”°0(p; p:) satisfies the matrix Ricatti-Bessel equation[24]
Y (p; i) + ¥ 750 pi) + U™ (p;5:) = 0 (9.2)

Similarly, equation (6.7) and (6.8), which interrelate the wavefunction and its
derivative in the various surface function basis sets at different p, may be expressed

in matrix form as
bR Ben ) = O B, B 02 s 2) O (Pra, 5i) (9-3)
b Biv1) = [O7 (i1, 5:)] DT (03 5))O T (B4, 5i) (9-4)

Therefore, the logarithmic derivative matrices in different p basis sets can be related

in the same way:
Y S (p; piv1) = (07 (piga, p)] Ty 5 (03 5:) O (Pia, i) (9.5)

We use an efficient procedure developed by Johnson[23] to numerically

integrate equation (9.2), using the initial condition y = 10%°I. This corresponds to
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the initial conditions of b = 0,b’ =1 at p = pg, where pg is a value close to zero.
The integration of y is carried out to a large enough p for the electron-hydrogen
atom interaction to have become negligible. One then projects the resulting
scattering solutions at constant p on the asymptotic hydrogen atom wavefunctions

from which all aspects of physics can be extracted.

10. Asymptotic Analysis - R and S Matrices

To obtain differential and integral cross sections, it is necessary to use an
asymptotic form which corresponds to the physical conditions of a scattering
process. Asymptotically in each arrangement channel A, as R) — oo, the
wavefunction of physical interest has the form

LM Ry oo Z Ui A (B (1, ) (10.1)
nilali A
where @M (ry\,Q) is the product of Y/}(6;,vb,ta,va) and the hydrogen

radial function Ry, (72). In addition, the radial functions U75(R,) behave

asymptotically as a combination of Riccati-Bessel functions{24],

nlgh nlyls nl]_lz ‘nhlz Al iy

fly I 1 ‘nfg_lz i
..TSl'h (R,\) ~ Ry 00 Z[J {; lz(RA) — Z N I lg RJ'SHA 1 ]CJ.STI (102)
alyl

nlllz

In matrix form, this equation can be rewritten as

UISI L oo [J(R)) — N(R)RTSI IS (10.3)

RIS ig the reactance matrix for partial

where J and N are diagonal matrices and
wave J, spin S, and parity IT. The diagonal matrix CSI! is a square matrix whose
row and column is spanned by the quantum number (nl;l3) and is given by

Criy1,(R)) =cos(kn Ry — la7/2)for open channels
(10.4)
exp(— | kn | Ra)for closed channels.
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where k, is the channel wave number given by
1 4
ki = g[2,u(E — E,)|z (10.5)

The open channel elements of J and IN are given by

[N((R);)] = §hhy, (k”R")[;;(knRi%] (10.6)

1‘11112
where j;, and y;, are spherical Bessel functions[24], v, is the channel velocity
B | kn | /. The closed channel elements of J and N are given by
Al by 3
J(Ry) _ gnhb, =% i1, (KnRx)
IZN(R)\).J - 611,!1[20” (K’“R)\) klz(ﬁ;nR,\) (107)

nlllz

where 4;,(z) and k&, (z) are modified spherical Bessel functions of the first and third
kinds, and &, =| kn |.

The open-open part of the reactance matrix RIS™ is real and symmetric in
an exact calculation. The amount of asymmetry in the actual open-open part of
reactance matrix can be used to be a measure of error in the calculation. The
e

open-open part of the scattering matrix S is obtained from reactance matrix

using the relationship(25]
sim = p iR (108)
oo
The open-open part of scattering matrix is both symimetric and unitary due to
time reversal invariance of the Schrédinger equation[26].

In order to determine RJIS™ we need to project the basis from surface
functions to asymptotic solutions. Since the latter is expressed in terms of the
distances Ry and the former in terms of the hyperradius p, we must perform a
transformation of variables to a common one. This transformation is accomplished

by combining equation (7.13), (10.3) and integrate over the full range of the four

angles (61,1, 02,92), but over wy from 0 to 7/2 only. It is important that this
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integration not be carried over the whole range of w;l. The reason is that the
hydrogen atom bound states, Ry, (ry) are defined in one channel only, which can
be considered to be separated from the other channel by the wy = 7/2 boundary.
The resulting expression is:

N G J STl Jstnlil ML
& U Z R PO L Z E fF 11 p (WX, 73 P) ::I:l:(RA)

L'h'p’ nrlily a1

v (10.9)
s L1,
-> Nn::lI:(RA)RJSHZI}f]Sm wadwy x CIEH
Rl s
where we define
11
FJSH;;f,ﬁP, = f ,sz};‘flsf (wil,4 angles; ,o)@n,l,2 (ra,4 angles)d(4 angles)
(10.10)

The corresponding expression for the derivative of b¥SI! with respect to p is:

db’ST = E.bJSII _l_p%aJSII / B‘E; SH(J NRJSH)Sln w,\d )\CJSH

dp 2p p w2
4 %aJSII/ an(a-] N an)sm WA g oIsIL G
& dp Op cos: -
In matrix form, equation (10.10) and (10.11) can be rewritten as
b.TSl_.[ — p%aJSH(AgSH _ BgSHRJSH)CJSH (1012)
dp?sT 3 s
= — _2._bJSIl' _'_pEaJSII(AgSII _ BgSHRJSH)CJSH (1013)
p P
where the following matrices are defined
AP Jsm J(R,) ] _sin’
[B{sn = /F (w)n’}’) N(R,\) COS? dw, (10.14)
A%SH =/[( aFJSH(UJA,"y)) J(R)\) ]
By dp “ [ N(Ra)
(10.15)

JSII OJ(Rx)/0p sin”w
+EF wn 1) [ ON(R.,))/0p ] cos“> dox
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Forming the logarithmic derivative from equation (9.1), we eliminate CYSII

and solve for the R-matrix:

ISII db? jom1 8 L\ SIS JSH pJSTi—1
R = [(Tb = 2—.[)(1. Bl —a Bg ]

o . (10.16)
% [( pisi=1 _ I)GJSHAiTSH e aJSl‘IAgSI'I]

The scattering matrix can be calculated from equation (10.8).

11. Asymptotic Analysis - Differential and Integral Cross Sections

In the space-fixed representation, the asymptotic form of the physical

scattering wavefunctions are given by:

Ma'ly'm! Mty m) %k za n'ly'my
v P Z [6)m11m1 " +f)\n11 (913‘191)

Anlymq
etkanlymy Ba ] R)m,l]_m1 (T'\)
R A

(11.1)

Yigmz (827 (;02)

The axis of quantization for mj is the direction of the initial wave-number vector
k. which has been chosen to lie along the space-fixed Oz axis. The component of
R along that axis is 2.

We can define the transition matrix from the open-open sub-block of the

scattering matrix as

TIST 1 gIST (11.2)

With this definition and equation (10.1) through (10.16), the scattering amplitude

can be obtained as the following:

lii=ls_ ., [l 4 1. seitis
' m! 3 m! —m 2 m
:hlml = E : ( n’ )61( . K 2 'P 1(0)

i (11.3)
I STn’ ll'lz’C(llflz'J;m’lom’l)C(llng;mlm'l —mymy)

ﬂl]lz
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The space-fixed Pauli antisymmetrized differential cross section ¢° is found

from the scattering amplitude, and is independent of the angle ¢:

Sn'ly'm} _ Sn LWW'mi By 12
nlymq - I nlymy (R‘) I
11.3)
— 2 _.12 ml—ml SIIT!. 11 m112 2 ( =
- 2k2 | E P (9)(212 + 1) 00 nlymilymy I
IIlsls!
n'l ] f{ f ’ .
where TSHZ,II,nT,;,i:n ? is defined as
sn’' i/ mily m 0 TN ! ' ' Jgsmun'h'ly'
T i tams © = Oy Y C(' L T;mi 0m)C(lhly Ty mamam )T
J
(11.4)

These functions are zero for 8 = 0, 7 except if m = 0, which leads to the selection
rule mj = m; for non-zero scattering in those directions.

To obtain the integral cross section we integrate over dR and can be written

TR S SR Crers IR
"I (11.5)

x [(TE ™) o e

oconlym, oconlym, I
where we have indicated in square brackets the multiplication of a sub-block of
T-matrix with its adjont.
The summed and averaged cross section with respect to the magnetic quantum

numbers m; and m), can be calculated from

n'ly! n'ly'my
th (21 E 1) ZZthml (116)

Summary

We have presented the theory using the hyperspherical coordinate formulation

for electron-hydrogen elastic and inelastic scattering using local surface functions.
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This method can in principle be extended to energies above the ionization threshold
by including hyperspherical harmonics in the surface function basis set. This
approach is very promising and should lead to a very complete description of the

electron-hydrogen scattering processes.
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FIGURE CAPTIONS

Figure 1. Potential contours for the electron-hydrogen reaction in the OX,Y,Z,
space having spherical coordinates p = (r2 + R})?, wy = 2arctanry/Ry and 7y,
for v5» = 0 to 180° for Zy = 0 bohr.

Figure 2. Potential contours for the electron-hydrogen reaction for v, = 0°.
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Chapter VIII

Quantum Mechanical Streamlines of Probability Current Density
and Tunneling Fractions for Collinear Atom-Diatom Reactions

Using Hyperspherical Coordinates
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Quantum Mechanical Streamlines of Probability Current Density
and Tunneling Fractions for Collinear Atom-Diatom Reactions
Using Hyperspherical Coordinates
Yi-Shuen Mark Wu ! and Aron Kuppermann
Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering 2
California Institute of Technology
Pasadena, CA 91125, USA
ABSTRACT

We have developed a procedure to generate physical wave functions from
hyperspherical coordinate coupled channel calculations of collinear atom-diatomic
molecule collisions.  Using the wave functions generated, we calculate the
corresponding probability density, probability current density vector fields, and
the associate streamlines and tunneling fractions. The streamlines of probability
current density provide a pictorial way of obtaining informétion about scattering
processes which is not otherwise obtainable. Special attention is given to the
formation of vortices which appear in the streamlines. By examining the variations
of the streamlines, one can see what portions of the potential energy surface are
most sampled in the reaction and it also helps us to locate the dynamical resonances
on the surface. These vortices in the streamlines provide a visual explanation of why
the collision cross sections do not agree with the classical expectations. Both the
formal and numerical aspects of the present method are discussed in detail. These
calculations are very useful in examing various models for chemical reactions and

in testing absolute reaction rate theory.

1 Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
2 Contribution number xxxx
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1. INTRODUCTION

The emphasis in reactive scattering calculations is usually on quantities
which can be observed experimentally, e.g. cross-sections, branching ratios, rate
constants, etc. These quantities, which are the results of the chemical reaction
after it has occurred, are not all that one wishes to know about chemical reactions.
In addition, one would like to know how a chemical reaction occurs.

Classical trajectory[l] calculations allow one to see physically what sort
of relative motion leads to chemical reaction and the importance of multiple
crossings of the barrier to reaction, which is important for the application of
classical transition state theory(2]. However, classical trajectory calculations do
not aid in the understanding of the important quantum mechanical effects, such as
dynamical resonances and tunneling. The complete characterization of a chemical
reaction, which includes the asymptotic observables as well as information about
the transition region, is contained in a quantal calculation of the chemical reaction.
However, only a small amount of information can be extracted. The additional
information can be obtained by using the wavefunction generated in the course
of quantum mechanical scattering calculations to determine the corresponding
probability density, probability current density vector field and the associated
streamlines. By examining the variations of streamlines, one can see which portions
of the potential energy surface are most sampled in the reaction as well as locate
the resonances on the surface. In addition, one can also extract quantitatively the
extent of tunneling. In this manner, streamline calculations demonstrate, in a way
which is intuitively clear, the various features of the reaction probability versus
energy curve which might provide insight towards new mathematical and physical

approximations.
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Such calculations have been performed by a number of researchers. Among
these, Mortensen and Pitzer[3] presented figures of the colinear H 4 H, reaction
probability density at the total energy of 10 Kcal/mole. Hirschfelder[4] and
coworkers use various simple model systems to examine the streamlines of the
probability current density vector field. McCullough and Wyatt have made a much
more extensive investigation for the collinear H+ Hj[5] and F -+ H;[6] reactions and
the three-dimensional (J = 0) F + H;[7] reaction. From a plot of the flux map
they found a vortex formation which they named "the quantum whirlpool effect”.
Similar observations have been made by Kuppermann, Adams and Truhlar[8].

The mathematics used in streamline calculations is simple, but the scattering
wavefunctions generated during the scattering calculations have had serious
limitations. The methods previously developed for studing collinear processes are
restricted to energies significantly below that of breakup collinsions. In addition,
they do not efficiently permit us to study for systems in which the central atom
is significantly lighter than the end atoms, such as the I 4+ HI — IH + I reaction.
With the use of hyperspherical coordinates, developed by Kuppermann, Kaye and
Dwyer[9,10], and also by Rémelt, Hauke and Manz[11,12] independently, such
reactions can now be easily studied.

In this paper, we have developed a formalism to extract the scattering
wavefunction from the hyperspherical formulation so that the probability current
density field can be calculated. We will briefly review the hyperspherical coordinate
method first and outline the theory necessary for this approach. The numerical
aspects of its implementation will then be discussed. Finally, applying this method
we have computed and displayed streamlines for the collinear H + H, reaction at
several values of the total energy which span the energy range where the reaction

probabilities have been calculated.
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2. Hyperspherical Coordinate in Quantum Mechanical Collinear
Reactive
Scattering

The detailed formulation of collinear reactive scattering based on hyperspher-
ical coordinates is discussed elsewhere[9,10]. We present a very brief review here
for the sake of completeness.

The fundamental idea of the hyperspherical coordinates approach to the
collinear reactive atom-diatomic molecule scattering problems is simple. Triatomic
exchange reactions are of the type A + BC — AB + C, with A, B, and C
representating atoms confined to move on a laboratory-fixed straight line. The
two coordinates necessary to describe the system are the hyperradius p and the

hyperangle w, which are defined as

p=(R:+r2) (1)
g == tan_l(%) (2)

where R,, 7 are, respectively, the Delves[13| mass scaled BC internuclear distance
and the distance of atom A to the center of mass of the BC molecule.
The nuclear motion Hamiltonian in these coordinates is

R 92 19 1 H?

H(P:w)=—§;[w+;5—p+p—25;§]+V(Paw)- (3)

The wavefunction is expanded in terms of the basis set ¢;(w; p), which is obtained
by solving equation (3) at a fix value of p = p that cuts through the potential and
is given by
N
Tnlp,w) =p~% D gunlp; p)bn (w3 P) (4)

n/=0
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where the radial wave functions g,/ (p; p) are solutions of the differential equation,

_;_“ﬁi(;_@ + Wi(p; 2)g(p: ) = E(p: p)e( 3 5)- (5)

The matrix elements W and E are given by the expression

=2

W2 (pip) = {n | V(p,w) — g—zvcw; p) | n') (6)
h2
Er(p,7) = [E+ gz — En(PI6 ()

where | n') = ¢p(w;p), En(p) is the eigenvalue of ¢,(w;p), E is the total energy
of the system, and &7}, is the Kronecker symbol.

In solving the differential equation (5), one starts at a value of p which is
sufficiently small that all eigenvalues E, are much greater than the total energy E.
To a very good approximation, we may take our initial condition to be g(p,) = 0,
g'(po) = I and the differential equation is integrated from po to pmax, where
Pmax must be far away from the strong interaction region. At that point, the
wavefunctions ¥,, are numerically projected onto the bound state eigenfunction of
the diatomic molecule. From the coefficients of this projection the reaction (R),
scattering (S), and probability (P) matrices are determined.

The asymptotic physical scattering wavefunction can be written as
t _—ikxpn, R t _tkan
U ~ D[S €™y 4 fr N ehanaa g (1) ()
Ana

where r) is the internal coordinate of the diatomic molecule in the A channel,
A'n, denotes the initial state of the reagents and kx,, is the wave number of the

asymptotic wavefunction for state n of the diatomic molecule defined by

kxny = ﬁ_l['Zp(E - E/\n,\)]%' (9)



- 202 -

The f (scattering amplitude) and S matrix elements are related in the following
way

Ml Y. A'nt,
f,\T:\A I(T)"—A—)I/ZS " (10)

Ana
ny

where vyn, is the channel velocity & | kxn, | /&-

3. Generating the Physical Wavefunction

In order to study the streamlines of the probability current density, one must
obtain adequate wavefunctions at a large number of points along the potential
energy surface. A crucial point that should be made here is that the wavefunctions
generated in the course of integrating equation (5) do not correspond to the physical
wavefunctions we want. In order to maintain the linear independence of the radial
wavefunction being integrated, the numerical integrator which was developed by
Gordon[14] has to perform some sort of stabilizing transformation to prevent the
exponential growth associated with the closed channels. These transformations
will alter the wavefunctions during the integration. The stabilizing process used in
the hyperspherical coordinate method is the so-called reorthogonalization method
developed by Riley and Kuppermann[15]. Therefore, the major difficulties in
constructing physical wavefunctions for the calculation of probability current
density vector fields are purely numerical in origin. Therefore, to actually generate
consistent physical wavefunctiond we need to undo the stabilizing transformations
performed on the radial wavefunction.

In principle, any choice of initially linear independent sets of solutions should
lead to the same scattering wavefunctions. When we get to the asymptotic region
we can form linear combinations of these solution and one of these combinations

will be associated to the solution we are interested in. Sometimes this is difficult
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to achieve because when we start we do not know exactly how to pick the initial
values. However, it is very easy to pick up a linearly independent set of initial values
and any set we choose will be in general a random mixture of all solutions. When
we integrate toward large p, each set will contain some contribution from the most
rapidly growing solution. If the small components become insignificant compared
to the large component, then those solutions are all essentially the same and taking
linear combination of them is useless for contructing the solutions. However, this
apparent instability can be completely eliminated by simply back-integrating the
solutions.

Since we are interested in the wavefunction in the strong interaction region
rather than in the asymptotic region, one can force the wavefunction to be
consistent with respect to the beginning of the integration. We first do the
scattering calculations with the stabilizing transformation and obtain the S matrix
as accurately as possible. From equation (8), we can use S matrix to construct
the physical wavefunctions along the asymptotic region. Then we start again
integrating at large p and integrate toward small p without performing any
stabilizing steps. All the initial starting values we choose have the exact linear
combinations associated to the scattering solutions. Therefore, if the integrator
worked well, the consistent wavefunction generated in the course of integration will
decay to zero or to insignificantly small values near the origin.

Mathematically, the physical wavefunction ¥PM* can be calculated by taking
the linear combination of the ¥,, obtained from integrating equation (4). In other

words, we want to determine the coefficient matrix W, where

N
T (p,w) = 3 Uw(p,0)Wan, 1Sn<Nepew <N (1)

n'=1
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where NV is the total number of basis determined and Nypen is the number of
asymptopically open vibrational states. This procedure is discussed in detail in
Appendix A.

In a series of calculations performed on the well-studied collinear H 4 H,
reaction, we found in all cases the numerical integrator successfully reached to
nonclassical region without difficulties. Another advantage of this method is that
the integrator can generate the wavefunction and its first derivatives simultaneously

which can be saved for future calculations.

4. Quantum Mechanical Streamline and Tunneling Fraction

The description of the motion of a fluid in hydrodynamics requires a knowledge
of the vector field[16]. The vector field describes the direction of motion of a fluid
particle and the magnitude of its velocity in that direction at any time t. The fluid
particle is a differential element of the fluid. Equivalently, we can use the current

density vector field defined by[17]

z\n’; vq,)\ng . lIJ)\‘n,\ (vqy\n,\ )*] (12)

P = o
Qui ' Phys " “phys phys phys

where j*®* is the current density vector and ¥*™* is the physical wave function.
The streamlines of j*™* are defined as curves in configuration space which at
every point P(Ry,ry) in that space are tangent to the j*** vector at that point.

Thus, the equation of motion[18] for the fluid particle analogy to

dR) dry
TAna  sAna (13)
‘]R_\ Jiy

where j 2 and js are the current density vector components for each axis. A

streamline is a particular solution to the set of differential equations.
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Typical quantum mechanical streamlines and profiles of the component of j
normal to various straight line cuts along the current density field for the collinear
H + H; reaction on the LSTH surface[18-20] are displayed, respectively, in Figures
1 and 2. The streamlines are broken up into a series of curve arrows which by
definition are everywhere tangent to the probability current density vector jA"*.
The length of the arrows are proportional to the magnitude of j*™* evaluated at
its center.

In order to display the relationship between the streamlines and the surface,
the streamline plots are superimposed on a contour diagram of the potential energy
surface. The solid lines are equipotentials, whose energies in eV, measured with
respect to the bottom of the Hy well, are designated on the plot. The 0.43 eV
equipotentials are the two curves labelled E in the figure and correspond to the
energy of the calculation. Any classical trajectory at this energy will have to be
confined to the region of configuration space between these two equipotentials. The
minimum energy path is marked by a dashed line, the saddle point is indicated by
a Ccross.

The streamline plots have some interesting properties which result directly
from the principle of conservation expressed by the continuity equation. Because
the wavefunction is everywhere single valued and continuous, the streamlines will
not cross each other. In addition, by applying the divergence theorm, for any closed

contour, C, which encircle the reaction zone, the integral

fV-j"“*dA:j{j"“*dl:O (14)
A C

vanishes. A is the area inclosed by the contour C, dl is the boundary line element.
This is a consequence that the probability is neither created nor destroyed in the
chemical reaction. Therefore, the normal flux of j*** through a line segment

connecting any two streamlines is independent of the shape of this segment or
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where it is placed. It depends only on which two streamlines it connects. In other
words, we can say that each streamline carries with it an element of flux.

It is then straightforward to show that for chemical reactions, in which the
breakup channel is energetically closed, a given line segment L,; which lies in the
steep repulsive region of the configuration space at one end and the other end lies

in the plateau region, the total flux @Q*** through Li; is equal to

inc

J)\nx - / j,\n;; .dl = P’\TU‘ . an)\ (15)
Lis

where PA" ig the total reaction probability and Q;::;" is the incident flux.
Thus, we can define the current density profile, J,, for a given line L in the
configuration space as

J, =#-jrm (16)

where the unit vector 7t is normal to the line L and 1s oriented to the left of that
line. A plot of J,, along a series of lines can reveal a great deal of information

about the distribution of the probability current density field.

Any

JA
Equation (13) can be solved by integrating C;—i* = jTR,%; starting at any

a
point in the configuration space or by using a mathematical device called the

stream function[21]. The stream function is a natural outcome of the continuity

relationship. Consider a function ®(Rx, 1) = constant such that

'An_\ . _ag -An,\ —— a¢

% T an ™ T Tamy (17)
From the continuity relationship, it follows that
a 0% a 09 0 (18)

Ry drx  OrxORx
which shows that ® always satisfies the principle of continuity; in other words, the
existence of ® implies that the continuity relationship is satisfied and conversely

the continuity equation implies the existence of a stream function.
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-An).

By introducing the value of j%’:" and j;"* as function of @ yields the equation

for the streamlines in terms of the stream function

od 0

It is the total differential d®(with respect to distance) of ®(Ry, ). Hence, the
equation of any streamline expressed as a function of ® is given by the equation
d® = 0, or ®(Rx,r)) = constant. Changing the value of the constant gives different
streamlines for the considered flow, but the function ®(Rj, 7)) keeps the same
analytical form.

Consider the flow pattern as shown by Figure 3. The flux d@ passing through

an element dn perpendicular to the streamlines is
d@Q =V®-dn=d® (20)

which is also the total differential of d® with respect to distance. It is deduced
that

dQ do

g ws O5 o BT 9

dn dn (21)

where J is the current density vector. Therefore, the total flux between two

streamlines ®; and ®, is given by their difference
AQ = @, — ;. (22)

The average value of J between A and B is

A® A

I=Fn = aB

(23)

The streamline representation of J also provides a method of performing an
exact tunneling calculation. We define the tunneling current on a surface as the

current that originates in the reactant channel and arrives in the product channel by
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traversing a path which at some point goes through a region of configuration space
classically inaccessible at that energy. As can be seen from Figure 1, the streamlines
cut those classical margins, labeled as E, penetrating into regions of configuration
space which are classically inaccessible and carrying with them tunneling flux.
Since the streamlines do not cross each other all of the flux which starts to one side
of the streamline in the reactant channel must remain on that side throughout the
interaction region and the product channel. Let us consider the short-dashed lines
of Figure 2. These are limiting streamlines which are each tangent to one of the
two E equipotentials. Any other streamline inbetween these never penetrates into
the classically forbidden regions of the configuration space, whereas any streamline
outside this band necessarily penetrates into such forbidden regions. The total flux

carried by the latter streamlines will be defined as the tunneling flux 31,"11*, and

Any

the ratio of it to the incident total flux Q.7 will be called the tunneling coefficient

~2"A . Therefore,
A A
Any __ JtunnA - Ptu?l) (94
77 T Jiax T Ppana 24)
inc

The product of ¥*™* and the total reaction probability is by definition the tunneling
probability PA™. '

The bell-shaped curves of Figure 2 represent the profiles of the component of
J normal to the cuts indicated by the segments of straight lines. The area between
those curves and the corresponding straight lines are all equal to one-another and
equal to the product of the reaction probability by the incident flux. In addition,
the areas under the bell-shaped curves outside of the region between the limiting

streamlines are also the same for all cuts and are equal to the tunneling flux.

5. Method of Computation



- 209 -

The physical wave function was obtained from a code developed previously[9,10]
by using back-integration. The physical wave functions were in the form of values of
¥ corresponding to grid points of a polar mesh in (R4, r4) space. This polar mesh
ranged from 200 x 200 points for the low energy range and 400 x 400 points in the
high energy range. The stream function is obtained by integrating equation (13)
for each mesh point. Off-grid values of ¥ were obtained with a two-dimensional
five point Lagrangian interpolation formula.

The streamline plot is simply the contour lines of the stream function. The
starting points for the streamlines were selected so that their density along a line,
located at the right hand side of the figure, is proportional to the flux distribution
across the line. This line was initially selected to have a slope equal to the skew
angle of the system. This initial selection of points permits the streamlines to
satisfy equation (5). Both the streamlines and the current density profile diagrams
are superimposed on contours of the potential energy surface. Usually, there are six
potential contours spaced at energy increments of 0.5 eV. The additional contour,
E, is inserted amongst these to pictorially separate out the contributions to the
current from tunneling.

The current density profile diagrams show the cross sections of flux normal to
six lines placed perpendicular to the minimum energy path of the potential energy
surface. Thus, we can see immediately the relative distributions of these currents
at various positions along the minimum energy path. As we pointed out in section
IV, the behavior of the streamlines and the arrows reflect the property of flux
conservation. Initially, the lines are grouped close together and the arrows indicate
the flow is relatively large. When the flux enters the interaction region where the
channel created by the potential widens, the streamlines spread out and there is a

corresponding decrease in the lengths of the arrows superimposed on the lines. As
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the flux enters the product channel where the potential becomes deep and narrow
again the streamlines group back together.

The streamlines isolating the tunneling current are calculated by first
producing a general streamline plot then selecting from this plot initial points for
streamlines which were approximately tangent to the potential contours labeled as
E. The initial position of the streamline was shifted along a line in steps which
were successively halved until one or more points on the streamlines satisfied the
condition | V(Rq,Te) — E |< 0.001eV and the remaining points of the streamlines
fell within the classically allowed region. This technique isolated the position of
the initial points to an interval of < 0.001 bohr. Seven current density profiles are
constructed, three in the reactant channel, three in the product channel and one
through the saddle point, each of which intersected the two limiting streamlines
defining the tunneling current. The initial point and the final point of each line
were in a region were the flux was negligible, i.e., far into the inner wall and far
out on the plateau of the potential energy surface. From these seven lines, the
tunneling coefficient is calculated by using equation IV.11 and IV.13. In practice,

the average deviation for the normal currents was better than 0.5 %.

6. SUMMARY

We have developed a general and efficient means of the calculation of
probability density, streamline of the probability current density vector field and
tﬁnneling fraction for collinear atom-diatomic molecule reactions. This method
should be applicable to all such reactions, including heavy-light-heavy systems. It

should be also allow to study reactions involving collision-induced dissociation.
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APPENDIX A. Determination of the Coefficient Matrix W.

To simplify the ensuing discussion, we will suppress the coordinate dependen-
cies of the various functions and matrices.

The physical wavefunction ¥R"* can be obtained by taking linear combination
of the primitive wavefunctions ¥, which are available from solving equation (4).
The coefficient matrix W in equation (11) can be expressed in terms of its open

and closed parts.

w=(we W) (42

At the asymptotic region[22], the radial wavefunction g can be written as
g =v'/*[IA - OB] (A.2)

where the A and B are integration constants, v is a diagonal matrix whose elements

are the channel velocity given by
v=nh|k|/u (A.3)

where k is the channel wavenumber given by equation (9). Z and O are the incoming

and outgoing waves given by

__ | exp(—ikxn,Ryx) for open channels
Dina (Ba) = {ewp(l kxn, | Ry) for closed channels (4.4)
_ | exp(ikan, Ry) for open channels
Oxna(Bx) = {e:rp(— | kExn, | Ba) for closed channels (A3
The scattering matrix S is defined by the relation
S=BA! (A.6)

Equation (A.2) can also be put in the equivalent form

g = v!/2[SC 4 CD] (A.7)
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where § and C are diagonal sine and cosine stationary wave matrices whose diagonal

elements are given by

sin(kan, RBx) for open channels

Siny(Ba) = { exp(| kan, | a) for closed channels (A&)
| cos(kxny R») for open channels
Cany (Ry) = { exp(— | kxn, | Rx) for closed channels (4.9)
The reactance matrix R is defined by the relation
R=DC* (A.10)

Substituting equation (A.6) into equation (A.2) and equation (A.10) into
equation (A.7T), we get
g=v"Y¥ T -08)A (A.11)

g =v'/}S§-CR)C (A.12)
These two equations can be related by a matrix ®

(I — 0S) = (S + CR)R. (A.13)

The coefficient matrix W can be obtained by combining equation (10), (11),
(A.6), (A.10) and (A.13) which gives

W = C 1Rv1/2 (A.14)

To evaluate matrix #, we break up equation (A.13) into its open and closed

parts

So 0 CO 0 Roo Roc ] ‘SRoo §Roc - Io 0 _ Oo 0 Soo Soc
o s )0 e )\re r M m. %)= 0 z.)7\0o o )5, s

(A.15)
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From equation (A.4), (A.5), (A.8) and (A.9), we have

Sg =1Ly
Ce =0
I, =C, —1iS,
O, =0C, +18,

(A.16.a)
(A.16.5)
(A.16.c)

(A.16.d)

By substituting equation (A.16) into equation (A.15), we get eight equations

Roo = —i(I + Soo)
RooRoo + RocReo = I — Soo
Roe = —150c
RooRoc + RocRee = —Sc
Rip=0
ReoRoc + ReeReo = —Seo
| Roo=1I
ReoRoc + RecRee = —Seo
From equation (A.17.a), (A.17.b) and (A.17.e), we can show
Roo = =T = iRoo)
Combining equation (A.17.c), (A.17.d) and (A.17.g), we can get
Roe = i(I — iRy0) ™" Roc

The entire I matrix can be constructed as

P — —2i(I —iR,,)™' (I —iRy0) ' Ry
- 0 b

(A.17.a)
(A17.b)
(A.17.¢)
(A.17.d)
(A.17.€)
(A17.f)
(A.17.9)

(A.17.h)

(A.18)

(A.19)

(A.20)

Since we have expressions for the three matrices v1/2, ® and C~1, the matrix W

can be constructed from equation (A.14) and thus the physical wavefunction may

be obtained from equation (11).
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Figure Captions

[Figure 1.]

[Figure 2.]

[Figure 3.]

Plot of streamlines of probability current density for the collision of H+H(v=
0) at energy 0.47 eV. The arrows point in the direction of the current density
vector; the length of the arrows is proportional to the magnitude of the current
density vector at its midpoint. The streamlines are superimposed on a contour
plot of the potential energy surface, contours are drawn every 0.4 €V from 0.2
eV t071.8 eV, measured with respect to the bottom of the Hy well. Contours
are also drawn at the energy E of the collision. The minimum energy path is
indicated by a dashed line, the saddle point is marked by a cross.

Plot of the probability current density profiles at collision energy 0.47 eV.
Seven lines normal to the minimum energy path and the maginitude of the
current density normal to these lines are drawn. The limiting streamlines
are shown by short dashes. The plot is superimposed on a contour plot of
the potential energy surface as was used in Figure 1. The maginitude of the
currents is proportional to the distance from the line to the corresponding
curve.

Flux in terms of stream function - notation.
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Hyperspherical Study on the Barrier Height
Dependence of the Dynamics for the Collinear
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ABSTRACT

Quantum dynamical calculations for the collinear Cl’ + HCl — CI'H + (1
reaction on low and high barrier potential energy surfaces are presented and
discussed within the framework of the hyperspherical coordinate representation.
Vibrational excitation of the reactant diatomic was found to decrease the reaction
rate for the low barrier surface and increase the reaction rate for the high barrier
surface. Quantum mechanical streamline calculations were used for analysis, and
discussion of the results is made in terms of the topology of the potential energy
surface, in which the skew angle and the barrier height of the system play a leading

role in explaining the dynamics of the reaction.

1 Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology
3 Contribution number xxxx



1. Introduction

The use of hyperspherical coordinates to study the dynamics of heavy-light-
heavy (H-L-H) reactive triatomic systems[1-18] in the collinear approach has
become a powerful method not only for the calculation of transition probabilities,
but also for the interpretation of several dynamical phenomena which appear to be
characteristic of this kind of reaction. Investigation of the hydrogen atom transfer
between two heavy atoms has especially benefitted due to the hyperspherical
coordinates ability to accurately represent the small skew angles often encountered
in these systems. The collinear light atom transfer reactions exhibit several
interesting features: (A) the reaction probabilities oscillate with energy[14]; (B)
vibrational adiabaticity is highly favored[19]; (C) in reactive and nonreactive
processes vibrationally nonadiabatic transition probabilities tend to be equal; and
(D) resonances in the transition probability profiles are present at well-defined
energies[20]. All of these features, mainly of quantum nature, have been reviewed
recently[21-23].

This paper presents new results for the Cl' + HCl[24] reaction emphasizing
the effects of vibrational excitation on reaction probabilities, for which little
attention has previously been directed. It is observed that the barrier height of the
potential energy surface plays a vital role in the final reaction rate upon vibrational
excitation. This observation is in itself not surprising, however the outcome is
actually opposite of what one intuitively expects. Vibrational excitation ensues an
increased reaction rate for a high barrier surface and a decreased reaction rate for
a low barrier surface. Other H-L-H collinear reactions are expected to exhibit the

same behavior since the primary cause for this observation is acredited to the small

skew angle.
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Quantum mechanical streamline calculations[25-30] provide a great deal of
information pertaining to the wavefunction in the interaction region of the
potential. Specifically, they are informative on how the reacting system goes from
its initial to its final configuration by exhibiting more details of the mechanism of
the collision. The streamlines are quantum mechanical analogous to the classical
trajectories of a single particle of corresponding reduced mass traveling through
the potential surface[25]. Thus they have become a crucial part of the analysis of
the sensitvity of the reaction rate to the barrier height for vibrationally excited
reactants.

In section 2 we describe the potential energy surfaces we used. In section 3 we
briefly discuss the methodology and the selection of the appropriate values of the
numerical parameters. In section 4, the interesting feature of the enhancement of
the reaction rate on the high barrier surface but inhibition of the reaction rate on
the low barrier surface for vibrational excitation reactions is studied with the help

of quantum mechanical streamlines. The results are summarized in section 3.

2. Potential Energy Surface

Two different LEPS surfaces[31] were used for both the quantum mechanical
and quasiclassical calculations performed on the reactions CL' + HCl(v = 0,1) —
Cl'H(+') + Cl. The two potential energy surfaces correspond to those of Smith[32]
and have parameters listed in Table 1. Surface A with a barrier height of 6.21
kcal/mole, corresponding to the experimentally determined activation energy(33],
is near the upper limit as determined by ab initio calculations[34] and a value
predicted by calculations correcting for dispersion interactions[34]. In contrast.
the barrier of surface B lies near the lower limit[34] and shows much better

agreement with quasiclassical trajectory calculations and experimental deactivation
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processes[32] Cl + H(D)Cl(v = 1) — Cl+ H(D)Cl(v = 0). Since surfaces A and B
have barriers close to the upper.and lower limits for this reaction it is reasonable
to expect the actual value of the barrier height to lie somewhere inbetween. Both
surfaces are shown in Figure 1 and their corresponding minimum energy path

profiles are shown in Figure 2. The horizontal lines indicate the vibrational energies

of the isolated HCl(» = 0) and HCl(v = 1) molecules.

3. Methodology

The method of hyperspherical coordinates, as decribed elsewhere[2], was
chosen for these calculations because it requires fewer basis functions to acheive
convergence of reaction probabilities and is optimum for describing the small
skew angle of the Cl' + HCIl system, which is about 13°. The hyperspherical
method differs from other methods mainly in that: (A) one of the coordinates, the
hyperradius p, is independent of the rearrangement channel, and (B) the reaction is
viewed in this formalism as an evolution from small values of p, where the particles
are close together, to large values of p, where the reactants and products channels
are separated.

The coupled equations are solved by the usual Gordon propagator[35], together
with the reorthogonalization procedure of Riley and Kuppermann[36]. The
propagation is made by dividing the configuration space into several sectors defined
by discrete values of p, and imposing the continuity of the function and of its
derivative with respect to p at the boundaries p = p; between the p;—; to p; and
p: to pi41 regions. The propagation begins at small values of p and gradually to
large values of p where the interaction between the reactants and the products can
be neglected. The solutions are then projected onto the asymptotic Jacobi basis

from which we get, by standard methods[37], the transition probability.
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A total of 16 basis functions (8 symmetric and 8 antisymetric) were used
at energies below that of the first vibrational state while 24 basis functions (12
symetric and 12 antisymetrc) were used for all energies above that of the first
vibrational state. Since fast oscillations in the reaction probability profile are
predictable for H-L-H system, the standard energy grid was fixed at 0.001 eV, but
was reduced where necessary to a minimum of 0.0001 eV in the resonant regions. A
total of about 200 and 400 points for the overall energy range provides the proper
precision for the plots of reaction probability vs. energy for surfaces A and B
respectively. The convergence of the reaction probability with projection distance
was examined for p = 26,28, 30 bohr and it was found that a projection distance
of p = 26 bohr sufficed for energies below 1.2 eV. The transition probabilities
converged to +0.001 and flux to +0.0001 for all energies on both surfaces. For
comparison, quasiclassical trajectory calculations[38], performed with the distance
from the Cl' atom to the HCI center of mass, Rcr mc1 at 12 bohr, and terminated
when either Rcr mer or Reyuci, are more than 12 bohr, are presented.

The physical wave functions used for the quantum streamline calculations[30]
were obtained by using back-integration from p = 26 bohr. The physical wave
functions were in the form of values corresponding to grid points of a polar mesh.
This polar mesh ranged from 200 x 200 points for the low'energy range and 400 x
400 points in the high energy range. The streamlines are obtained by taking the
contour lines of the stream function which the off-grid values of the function are

interpolated with a two-dimensional five point Largangian interpolation formula.

4.Results and Disscussion

For surfaces A and B both the quantum mechanical and quasiclassical reaction

probabilities vs. energy curves are plotted in Figures 3 and 4 for the reactant
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vibrational quantum number v = 0,1 respectively. The total reaction probability

is defined, for a reactant vibrational quantum number v as

Pl=3 PR (1)

where the sum is over all possible n, n being the product vibrational quantum
number. Figures 5 and 6 show the thermal rate constants calculated from the
quantum mechanical probabilities in figures 3 and 4.

With the exception of the resonances the quasiclassical trajectory calculations
qualitatively agree with those of the quantum calculations. The v = 0 transition
probabilities appear to oscillate with energy on both surfaces. There is a sudden
increase of reactivity just above the energy threshold, followed by a continued
decrease leading to a minimum, and afterwards, a slight, smooth and quasi-
linear increase until the highest value of the energy range studied is reached.
The curves oscillating sinusudally as a function of E can be interpreted as a two
state interference pattern for scattering on the gerade and ungerade vibrationally
adiabatic potentials[24] which are shown in Figure 7. The oscillatory behavior
of the Pf versus energy curves is not of a quantum nature, as it is also present
in the quasiclassical trajectory results. The vibrational adiabatic approximation
underlying this oscillation is quite valid for both these surfaces since nonadiabatic
transitions contribute less than 1 percent to the total reaction probability for the
energies considered, although the nonadiabatic effects will become significant for
much higher E.

The curious aspect and therefore the focus of this paper is the difference in
the curves for the reactive probabilities upon vibrational excitation of the reacting
diatomic for the two surfaces. Initially the reaction probability is practically
zero but then suddenly becomes extreamly high at about 0.05 eV above the

opening of the first vibrational state on surface A. However on surface B the
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reaction probability curve is significantly greater that zero upon opening of the
first vibrational state but with increasing energy exhibits no sudden increase and
only begins to slowly rise at about 0.15 eV translational energy. This is further
reflected in the Arrhenius plots of thermal rate constants where the vibrational
excitation leads to an enhancment of the reaction rate by a factor almost 100 at
200° K and 10 at 500° K on surface A, while for surface B the ground state reaction
is faster at all temperatures. An indication that surface A may be more realistic
is that the large enhancement of the exchange rate with vibrational excitation
has been observed experimentally[33]. The resonances observed on the v = 0,1
probability curves have been seen previousely for similar surfaces and are discused
elsewhere[24]. Previous studies of this reaction have used a high barrier surface (8.5
kcal/mole)[6,24] and computed reaction rates only for the ground state reagents.
This behavior of reaction probability »s. energy curves is in marked contrast to
that in the H + Hj reaction[2], which has a relatively high barrier to reaction.
The difference in behavior between surface A and B regarding the effect of
vibrational energy can be understood from the quantum mechanical streamlines
calculations for a series of energies just above the first vibrational state. Figures 8
and 9 display the streamlines for vibrationally excited transitions for both surfaces
at 0.075 eV transitional energy. The streamlines are broken up into a series of
curved arrows which by definition are everywhere tangent to the probability current
density vector. The length of each arrow is proportional to the magnitude of
the probability current density vector evaluted at its center. In order to display
the relationship between the streamlines and the surface, the streamline plots are
superimposed on a contour diagram of the potential energy surface. The solid lines
are equipotentials with energies in eV, measured with respect to the bottom of

the HCI well, designated on the plot. The 0.614 eV equipotentials are the curves
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labelled E in the figure and correspond to the energy of the calculation. The
minimum energy path is marked by a dashed line, and the saddle point is indicated
by a cross. Comparing the streamline plots for the two surfaces at identical energies
clearly indicates that the flux through surface A is substantially greater than that
through suface B.

The corresponding classical picture demonstrates that the higher barrier on
surface A actually prohibits the reaction from returning to the reactants channel
after crossing the saddle point region where as the lower barrier of surface B
does not. For the vibrationally excited reactants the classical particle begins
by oscillating in the reactants channel as it aproaches the interaction region of
the surfaces. Upon reaching the strong interaction region the particle crosses the
barrier near the saddle point and hits the repulsive wall in the products channel.
Since the skew angle is so small for this system, upon rebounding from the repulsive
wall the particle will approach the dissociation plateau very close to the symetric
stretch coordinate of the saddle point region. On surface A the energy in the
interaction region is much higher than it is for surface B, therefore it is a barrier
against the classical particle returning to the reactants channel. However, for
surface B this barrier is too small to inhibit the particle from again crossing the
saddle point region and falling back into the reactants channel. From the paths
of the streamlines on surface B obviously only a very few classical trajectories will
rebound from the repulsive wall and hit the dissociation plateau deep enough into
the products channel to result in a reactive process.

Since many hydrogen transfer reactions of the type studied here are expected
to have a barrier to reaction on the order of or smaller than the reagent zero-
point energy[39], it seems reasonable that for such reactions, vibrational excitation

might be expected to be extremely ineffective in promoting chemical reaction.
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The restriction to collinearity is an obvious limitation in assessing the importance
of this effect in the three-dimensional world. Approximate three-dimensional
quantum mechanical calculations on this system have been reported[40] for ground
state reagents and indicate that the oscillations in reaction probabilities with
energy persist in three dimensions. Three-dimensional quasi classical trajectory
calculations[41] also suggest that such oscillations may be detectable in molecular
beam experiments. It is not impossible, therefore, that vibrational inhibition on a

low barrier surface might also persist in three dimensions.

5. Summary

In this paper we have presented the results of the dynamical hyperspherical
calculations for the reaction Cl' + HCl — CI'H + Cl on a low and high barrier
potential energy surface , in the collinear configuration approach, together with an
analysis and interpretation of them. Vibrational excitation was found to enhance
the reaction rate on the high barrier surface but to inhibit it on the low barrier
surface. This effect is observed in both quantum mechanical and quasiclassical
trajectory calculations. Quantum mechanical streamlines are found to be a valuable
tool in helping to understand the dynamics. Since low barriers to reaction are
expected for many light atom transfer reactions, especially for reactions involving

the heavier halogen atoms, three-dimensional calculations of reaction probabilities

would be of great interest.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Equipotential contour plot for the Cl' — H — Cl system for the potential energy
surface A (top) and B (bottom) described in the text and in Table 1. The
solid lines are the contours and are equally spaced in increments of 0.1 eV from
0.1 to 0.8 eV. The dashed lines depict to the minimum energy path. he zero
of energy is the bottom of the HCl well. The surface is plotted in the Delves
mass-scaled cartesian coordinates system as described in reference [2].
Potential along the minimum energy path for potential energy surface A and B
as a function of distance along the path, in Delves coordinates, from the saddle
point. The horizontal lines indicate the eigenvalues of the isolated HCl(v = 0)
and HCl(» = 1) molecules.

Reaction probabilities as a function of energy for the Cl + HCl(v = 0) reaction
for potential energy surfaces A (top) and B (bottom). Solid lines are used to
indicate total (state-to-all) quantum mechanical (QM) results; dashed lines
are used to indicated. total quasi-classical trajectory (CL) results.

Reaction probabilities as a function of energy for the Cl + HCl(v = 1) reaction
for potential energy surfaces A (top) and B (bottom). Solid lines are used to
indicate total (state-to-all) quantum mechanical (QM) results; dashed lines
are used to indicated total quasi-classical trajectory (CL) results.

Arrhenius plots of quantum mechanical rates kf for reaction computed from
the reaction probabilities shown in Figures 3 and 4 for surface A. Solid lines
are used for reaction of ground state reagents (v = 0); dashed lines are used
for reaction of vibrationally excited (v = 1) reagents.

Arrhenius plots of quantum mechanical rates k® for reaction computed from

the reaction probabilities shown in Figures 3 and 4 for surface B. Solid lines



Figure 7.

Figure 8.

Figure 9.

- B =

are used for reaction of ground state reagents (v = 0); dashed lines are used
for reaction of vibrationally excited (v = 1) reagents.

Eigenvalues E,(p) for surface A (top) and B ( bottom) as a function of the
propagation coordinate p. These curves are pairwise degenerate at large p, the
symmetric one being always lower than the corresponding antisymmetric one
at small p. Values of n for the symmetric curves are shown at the top of the
figures.

Plot of streamlines of probability current density for the collision at Cl' +
HCl(v = 1) at translational energy E¢ = 0.75 eV for surface A. The arrows
point in the direction of the current density vector; the length of the arrows
is proportional to the magnitude of the current density at its midpoint. The
streamlines are superimposed on a contour plot of the potential energy surface;
contours are drawn every 0.2 eV from 0.2 eV to 0.8 €V, measured with respect
to the bottom of the HC! well. Contours are also drawn at the energy E of the
collision. The minimum energy path is indicated by a dashed line; the saddle
point is marked by a cross. The coordinate system is the Delves mass-scaled
cartesian coordinates.

Plot of streamlines of probability current density for the collision at Cl' +
HCl{v = 1) at translational energy F;, = 0.75 eV for surface B. The arrows
point in the direction of the current density vector; the length of the arrows
is proportional to the magnitude of the current density at its midpoint. The
streamlines are superimposed on a contour plot of the potential energy surface;
contours are drawn every 0.2 eV from 0.2 eV to 0.8 €V, measured with respect
to the bottom of the HCI well. Contours are also drawn at the energy E of the

collision. The minimum energy path is indicated by a dashed line; the saddle
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point is marked by a cross. The coordinate system is the Delves mass-scaled

cartesian coordinates.
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Appendix B

Chemical Reaction Dynamics: Integration of Coupled Sets of

Ordinary Differential Equations on the Caltech Hypercubet

1 This paper appeared in Proceedings of the Third Coference on Hypercube
Concurrent Computers and Applications, Pasadena, 1988 (ACM, New York, 1988)
pp. 1051-1061.
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Chemical Reaction Dynamics: Integration of Coupled Sets of

Ordinary Differential Equations on the Caltech Hypercube

Paul G. Hipes, Tim Mattson®, Yi-Shuen Mark Wu ® and Aron Kuppermann

Caltech Concurrent Computation Project
206-49, California Institute of Technology
Pasadena, CA 91125, USA

Abstract

Use of the Caltech/JPL hypercube multicomputer to solve problems in
chemical dynamics is the subject of this paper. The specific application is quantum
mechanical atom diatomic molecule reactive scattering. One methodology for
solving this dynamics problem on a sequential computer is based on symmetrized
hyperspherical coordinates. We will discuss our strategy for implementing the
hyperspherical coordinate methodology on the hypercube. In particular, the
performance of a parallel integrator for the special system of ordinary differential

equations which arises in this application is discussed.

¢ Current address: 50 Kerr Parkway, # 51, Lake Oswego, OR 97035
5 Work performed in partial fulfillment of the requirements for the Ph.D. degree

in Chemistry at the California Institute of Technology.
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1. Introduction

The physics of systems consisting of a few interacting atoms is governed by
a second order linear partial differential equation, the Schrédinger equation. An
example of an interesting process involving a few atoms is the reactive scattering
of an atom and a diatomic molecule. Accurate numerical solutions to the
corresponding Schrodinger equation would provide a quantitative picture which
could be compared with experimental results. In such a case, interplay between
experiment and theory would permit a detailed understanding of the mechanisms of
chemical reactions. Unfortunately, accurate numerical solutions to the Schrodinger
equation for reactive scattering problems are very difficult to obtain because of the
large number of degree of freedom in the partial differential equation. Currently,
supercomputers are used to obtain partial solutions to the Schrodinger equation.
That experience leads us to believe that significant progress in ab initio chemical
dynamics may well rest with the next generation of computers. Parallel computing
is an attractive means of increasing the CPU cycles available for our application
codes. The combination of a robust efficient algorithm and the performance of
parallel computers may permit the simulation of chemical reaction dynamics which
are too complicated to solve today.

The outcome of electronically adiabatic bimolecular chemical reactions is
governed by the initial quantum states of the reagents and by the potential energy
function V which determines the forces at play during the reaction. The molecular
level details of such a reaction are embodied in the state-to-state diferential cross
sections oy (0; Ey) and integral cross sections Q¢—¢ (Ey,). Here ¢t and t' are sets
of quantum numbers which specify the internal state of the reagents and products,
respectively, Ey, is the kinetic energy of the relative motion of these reagents, and

6 the angle between the initial relative velocity vector of the reagents and the final
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relative velocity vector of the products. These quantities contain information about
the effectiveness of the internal and translational degrees of freedom of the reagents
in promoting the reaction, as well as the deposition of the available energy among
the degrees of freedom of the products.

There are a number of interesting issues in chemical dynamics of simple gas
phase atom diatomic molecule reactions. It is important to perform accurate
calculations for several reactions to help establish the relation between reaction
cross sections and potential energy surfaces. Such studies will provide insight into
the effect of features of the potential energy function on the physics of chemical
reactions. Furthmore, the existence of dynamic resonances, which are very sensitive
to the shape of the potential energy function, was predicated in approximate
models of chemical reactions.)? It is of major scientific importance to understand
theoretically the signature of resonant processes in the real world and to calculate
the differential cross sections at resonance energies. Currently it is not possible to
thoroughly explore these questions because the numerical calculations are simply
too expensive to perform in all but the simplest case.

The calculation of reaction cross sections from an ab initzo numerical solution
of the corresponding Schrédinger equation is very difficult and so far has only been
sucessfully performed for the H 4+ Hy — Hy + H reaction over a relatively limited
range of total energies.®~® For higher energies for which experimental results are
available,®~1% lack of convergence problems set in. Furthermore, applications to
other reactions!! which has less thermoneutral, for which the different arrangement
channels are less isolated, or for which the atoms have very different masses,
present severe numerical difficulties which have so far not been overcome using

the methodology previously developed.
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In the last two years we have succeeded in implementing a new computational
methodology based on symmetrized hyperspherical coordinates (SHC),'? which
permits accurate calculations on a diversity of chemical reactions over extended
energy ranges. This method has been extensively tested for collinear models!?
and, more recently, for the J = 0,1 angular momentum partial waves of the H+ Hy
exchange reaction.!*~'® In addition to our work with SHC, two new methods,
based on an integral equation formalism of reactive scattering have been applied
to the J = 0 partial wave of this reaction ( or an isotopic counterpart)!”*® and of
the O 4+ Hj reaction!® during the last year. Also, in the past year a methodology
based on a different variety of hyperspherical coordinates has been implemented

20

for the J = 0, 1 partial waves of some isotopic H + H; reactions,*® as well as a more

conventional approach for the J = 0 partial wave.?

This flurry of activity augurs well for the further development of quantum
mechanical reactive scattering, and makes it particularly timely for such
calculations to be extended to J > 1 in order for experimentally measurable
quantities to be calculated for some important elementary chemical reactions, such
as H+H;, O+H,, Cl+H,, and F-+H; and some of their isotopic counterparts. Such

calculations would permit direct comparison with recent experimental results,®—1!

as well as with the results of approximate calculations.?2—24

2. Methodology Based on Symmetrized Hyperspherical Coordinates

The methodology to be employed involoves the use of symmetrized hyper-
spherical coordinates (SHC).'? In summary, the SHC consist of a distance p called
the hyperradius, and five hyperangles denoted colectively by w. The former is
an overall mass-scaled size parameter. Large values of p correspond to separated

reagents or products, whereas small ones, of the order of equilibrium interatomic
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distances, correspond to reagents or products in close proximity to each other. The
five hyperangles w describe the orientation of the triatomic system in space as well
as the ratio of mass-scaled atom-diatom distances to diatom internuclear distances.

The essence of the SHC methodology is the expansion of the scattering
wave function in a separable basis set. The basis set is derived from a piece
of the Hamiltonian of the system of particle. The full Hamiltonian H (p,w) is
defined in a six dimensional configuration space and is the sum of a hyper-radial
kinetic energy operator T(p) and a surface Hamiltonian A(w;p) which contains
the hyperangular kinetic energy operator and the potential energy function and
depends parametrically on p (i.e. contains no derivatives with respect to p). The
local hyperspherical surface functions (LHSF)*® &M (w; p) are defined to be the
simultaneous eigenfunctions of the surface Hamiltonian i(w;p), the total angular
momentum squared operator J2 and the laboratory-fixed Z component of the total
angular momentum Jz. The LHSF @) M(w; ;) are calculated at a discrete set of
values of p; where j = 0,1,2,... and which cover the domain of p. The scattering
wave functions ¥/M(p,w) (defined as the simultaneous eigenfunctions of H, J2,

and Jyz) are expanded in the LHSF for p in some neighborhood of 3;.

LM (), ) p%an(p,pJ)é M(; 5,) (1)

p€(pj—6,pj+9)
The parameter 6 is determined by the gradient of the potential energy function.
The expansion (1) is required to solve the Schrodinger equation. By employing
the orthogonality of the LHSF, a set of coupled ordinary differential equations

(ODEs) for the coefficients of the expansions as a function of the continuous variable

p is derived.

Z[(Sn"dg +Vnn(pvp3)}fn (P,PJ)—O (2)
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In equation (2), p; is considered a fixed parameter. A distinct set of ODEs exist
for each value of this parameter. The system of coupled ODEs which are derived
from the Schrédinger equation is referred to in the chemical dynamics literature
as the coupled channel Schrodinger equation. The elements of the matrix VY in
equation (2) involve the total energy E and integrals with integrands which are
the product of two LHSF and the potential energy function V. VY is called the
interaction matrix because it describes the coupling of the LHSF induced by the
physics of the system.

The introduction of symmetrized hyperspherical coordinates and the sequen-
tial algorithms based on these coordinates are significant advances in chemical
dynamics simulations. The previous techniques used different coordinates for dif-
ferentregions of configuration space. Continuity of the solutions at the boundaries
between different regions had to be enforced separately. This matching of solutions
is the source of numerical problefns in the old methods. Hyperspherical coordinates
bypass this troublesome problem.

The methodology based on SHC has three distinct phases. The first phase is
the calculation of a set of numerical functions, the LHSF. The next phase consists
of numerical quadratures using the LHSF. The third phase is the integration of a
set of coupled ODEs.

The LHSF have been calculated on sequential machines in a variety of ways.
The first successful approach was based on the finite element method,'*'3 but
is very expensive in computer resources. DBased on that experience, another
variational approach!®2® has been implemented and is less expensive than the finite
element method. The new approach uses a basis set of global support instead of
the local support shape functions of the finite element method. The global basis

functions form a rapidly converging expansion of the LHSF and so many fewer
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global basis functions are require than local shape functions leading to significant
computational savings.

The ODE initial value problem (2) can be integrated with any numerical
integrator; however, several special integrators optimized for these problems exists.
From the results, a scattering matrix is obtained which contains the experimentally
relevant information about the underlying physics of the system. Integration of the

set of ODEs has been implemented on the Caltech Mark II and III hypercubes.

3. Logarithmic Derivative Integrator

One sequential algorithm for integrating the special systems of ODEs which
occur in chemical dynamics simulations is the logarithmic derivative method of
Johnson.?” This is a fourth-order method which enjoys good numerical stability
properties and has been used by ourselves and others on sequential computers. It
has the appealing feature of requiring only matrix inversion and multiplication, but
not matrix eigenvalues and eigenvectors.

The linear algebra tools necessary to write a parallel logarithmic derivative
integrator (propagator) for the Caltech hypercube multicomputer are already
available. Parallel matrix inversion using the Gauss-Jordan algorithm has been
described in another contribution to these proceedings.?® It is efficient and simple
to use. Likewise, parallel matrix multiplication has been described and tested for
the hypercube by Fox, Otto, and Hey.??

What about the distribution of the matrix onto the hypercube? Both Gauss-
Jordan inversion and matrix multiplication use the same data distribution mapping.
The data need not be reorganized for the two algorithms. Since the inverter
and multiplier are called a large number of times, reorganization of the data

might significantly reduce the efficiency of the parallel propagator. In contrast,
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the data distribution for inversion by Gaussian elimination is the shuffled-row
distribution which is not natural for the matrix multiplication. The shuffled-row
data distribution must be used with Gaussian elimination to achieve work load
homogeneity.?®

The algorithm of Johnson is based on the Ricatti form of the coupled channel
Schrédinger equation (2). A matrix f7 is formed by collecting together solution
column vectors f;] corresponging to different initial conditions. If the number of
different initial conditions is chosen to equal the number of terms in the expansion
(1), then fJ is a square matrix. If the initial conditions are all distinct and
nontrivial, then the matrix fJ is nonsingular. To transform the dependent variables

we define the logarithmic derivative matrix (omitting the superscript J)

i) = L3-8 P )lE s 2] (3)
For the statement of the algorithm, we will suppress the explicit reference to the
p; in the quantities. The p domain is divided into an even number L of equally
spaced steps where the constant step size is denoted h. All bold face quantities

are N by N real matrices. The algorithm for integrating the logarithmic derivative

matrix 1s

zo =1 —Ug + hy(po);

21 =21 - U —2;7}; 1 =188, ali (4)

y(pr) = (2 —I)/A

where the input data is

Uz:{ %ﬁvgp,); l=2,4,6,...,L -2
81— 8[I+ & V(p)~% 1=1,3,5,...,L—1
hZ
Ug = -3—V(p0)
h2

U = ?V(PL)

The initial value of the logarithmic derivative or zp is required to start the
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algorithm. For sufficiently small values of p, the scattering wave function (1)
has a vanishing amplitude implying that the f; are also vanishingly small. As
a consequence, for p;—q we have z; * = 0 as the initial data for the recursion in (4).

The LHSF form a good basis set for expanding the complete scattering wave
function only in a neighborhood of p; where the LHSF are calculated. Different
sets of LHSF are required for the neighborhoods of different ;. Different sets
ofcoefficients correspond the same scattering wave function expanded in different
sets of LHSF. Matrix multiplication is not required in Johnson’s algorithm itself,
but is needed to transform the coeflicients from the expansion in one set of LHSF

to the coefficients corresponding to another set of LHSF:

£(p; p;) — £(p; Pj+1) (5)

The transformation is defined by the requirement of continuity of the scattering
wave function and its p derivative at the boundary between adjacent neighbor-
hoods. This transformation provides the initial logarithmic derivative matrix for
a neighborhood p; from the final logarithmic derivative matrix of the previous
neighborhood p;—; where j > 0.

The logarithmic derivative integrator has been written and tested on the
Caltech Mark IT and III hypercubes. Its performance is essentially that of parallel
Gauss-Jordan matrix inversion which represents the dominant user of CPU cycles.
The test problems include the Secrest-Johnson®® model of the nonreactive collision
of a helium atom and a hydrogen molecule. The adjective nonreactive means that
following each collision the products are the same as the reactants: a helium atom
and a hydrogen molecule. The model is simple because the atom and diatomic
molecule are confined to a space-fixed straight line. In other words the particles
have only one physical dimension to move in. The Secrest-Johnson model is a

good test case because the interaction matrix is obtained from a simple function
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call so no loading of data from disk drives is required. This model does not use
hyperspherical coordinates, but the system of ODEs that must be integrated is of
the same structure as equation (2). The efficiency of the logarithmic derivative
integrator is shown in the figure 1. The integration used 10® steps.

In addition to the Secrest-Johnson problem, the parallel propagator has
been applied to a currently interesting chemical dynamics problem: the reactive
scattering of H + Hy in three dimensional space. Using the interaction matrix
data generated on a Cray X-MP/48, a system of 14 ODEs was integrated on a
4-node Caltech/JPL Mark III hypercube. The results of the parallel propagator
were compared to those of a sequential computer and are in satisfactory agreement.,
The number of p; is 100 and the total number of integration step is 10®. This test
of the parallel propagator brought to light a difficulty with the current Mark III
hypercube. The integrator requires an interaction matrix for each step and this
data is stored on disk. The movement of data from the disk to the hypercube
dominates the entire calculation.

There is a solution to the loss of parallel efficiency due to data movement
between the hypercube and disk drive. It is based on the fact that the system of
ODEs is solved independently for each collision energy using the same input data.
Instead of integrating the logarithmic derivative for each collision energy over the
full p domain, several logarithmic derivative corresponding to different collision
energies could be integrated over a section of the domain using a given part of the
data set, increasing the use of the interaction matrix data once its in the hypercube.
In fact, hundreds of collision energies are often desired to map out the dynamics as
a function of total energy, so this seems a viable means of improving the parallel

efficiency of the propagator given external data. This is not yet implemented, but
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appears to require only a small modification of the existing algorithm and data

structure.

4, Future Work

We are considering a variety of strategies for calculating the LHSF and inter-
action matrix quadratures on the hypercube. Parallelization of the quadratures
can be accoﬁplished by performing a subset of the integrals over the entire domain
in each processor. In this case the matrix of integrals is the domain that is de-
composed (i.e., the matrix elements are distributed among the processors and each
processor is responsible for complete integrals). Another approach is to divide the
domain of integration and have each processor do all of the integrals over a part of
the doamin. The matrix decomposition method of doing the quadratures has been
tested and has almost perfect efficiency. Parallel calculation of the LHSF is more
difficult because the sequential algorithm is more elaborate. One requirement of
the LHSF calculation is a parallel eigensystem solver. It is this facet of the machi-
nary that is currently being implemented. We hope to be performing full reactive

scattering calculations on the Mark IIIfp in the near future.
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Figure Caption

Figure 1. Efficiency of the logarithmic derivative integrator on the Mark III
hypercube as a function of global matrix dimension for the Secrest-Johnson
problem. The ordered pairs associated with each curve give the number of processor
rows and the number of processor columns, in that order. The straight line
segments between the data points are provided to display the trends and do not

represent data.
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