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Abstract 

In the research reported in this thesis, two methods for synthesizing alkylidene 

complexes were investigated: (1) ring-opening of cyclopropenes to give vinyl alkylidene 

complexes and (2) alkylidene transfer from phosphorus ylides to metal centers. 

Tungsten(IV) imido precursors of the fonn WX2(NAr)Ln (X = Cl or OR; Ar = Ph, 2,6-

C6H3-Me2, 2,6-C6H3-(i-Prh; Ln = PR3, P(OR)3 or ether donor ligands) were used 

throughout the investigation. 

A brief overview of the syntheses and uses of high-valent alkylidene complexes is 

given in Chapter 1. The reactions of WCl2(NAr)(PX3)3 (X = R or OR) precursors with 

3,3-diphenylcyclopropene and 4,8-dioxaspiro[2.5]oct-1-ene are reported in Chapter 2. 

,,2-Cyclopropene complexes [W(,,2-cyclopropene)Ci2(NAr)(PX3h] were synthesized 

from precursors containing the smaller imido ligands; increasing the steric bulk of the 

imido ligand favored the ring-opening of the cyclopropenes to yield the vinyl alkylidene 

compounds [W(=CH-CH=CR'2)Cl2(NAr)(PX3h]. Conversion of thennally stable ,,2-

cyclopropene complexes to give the corresponding vinyl alkylidene compounds was 

observed upon photolysis or addition of catalytic amounts of HgCl2. 

The transfer of alkylidenes from Ph3P=CHAr' and Ph3P=CH-CH=CMe2 to 

WCI2(NPh)(PMePh2h to give W(=CHR')CI2(NPh)(PMePh2h is reported in the first half 

of Chapter 3, and the effects of varying the solvent, the ylides, and the tungsten 

precursors are discussed. The remainder of Chapter 3 deals with the in situ reduction and 

trapping of WCl2(NAr)[OCMe(CF3hh(THF) precursors by Ph3P=CHAr' to give 

W(=CHAr')(NAr)[OCMe(CF3hh(PPh3). The use of the chelating o-methoxy­

benzylidene was especially effective here, as coordination by the o-methoxy group 

greatly aided the transfer reaction and, in addition, stabilized the resulting product. 

Chapter 4 documents initial studies involving the reactions of WCI2(NAr)(PX3)3 

precursors with exo-5,6-dimethoxymethyl-7-oxanorbornene. For reactions involving 

tungsten precursors with the smaller imido ligands, fonnation of ,,2-olefin complexes 
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W[112_(7-oxanorbomene]Cl2(NAr)(PX3h was observed. Oxygen abstraction to give 5,6-

dimethoxymethylcyclohexadiene occurred upon reaction of this olefin with WCl2[N-2,6-

C6H3-(i-Prh] [P(OMe >313. 
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Background 

Transition-metal alkylidene and metallacyclobutane complexes are important 

intermediates in acyclic olefin metathesis, 1 ring-opening metathesis polymerization 

(ROMP),I acyclic diene2 and alkyne3 polymerizations, and carbonyl 0lefinations4 (Figure 

1). Notable among the isolable complexes5,6 that catalyze these transformations are the 

titana-7 and tantalacyclobutane8 derivatives and certain alkylidene complexes of tungsten,9-

12 molybdenum,13 rhenium,I4 and rutheniumI5 (Figure 2). The arylirnido tungsten and 

molybdenum alkylidene complexes are the most effective metathesis catalysts synthesized 

to date.9,13 These tetracoordinate, monomeric complexes are stabilized by the substantial 

steric bulk of the imido, alkoxide, and alkylidene ligands, although addition of a strong 

Lewis base does enable less bulky derivatives to be isolated. The electrophilicity of the 

metal center and, hence, the reactivity of the catalyst, can be varied by the substitution of 

trifluoromethyl groups on the alkoxide ligands. The t-butoxide derivative of these 

complexes catalyzes the living polymerization of strained, cyclic olefins, while the more 

active hexafluoro-t-butoxide derivative rapidly metathesizes acyclic olefins and catalyzes the 

polymerization of relatively unstrained cyclic olefins such as cyclooctatetraene and its 

derivatives. 16 Several methods for synthesizing these catalysts have been reported, making 

them readily available. For example, the synthesis of W( =CHR)(NAr)(OR'h, as shown in 

Scheme 1, is short and easily reproduced.9c 

Scheme 1. Synthesis of Arylimido Tungsten Alkylidenes9c 

3 TfOH, dme 
W(CHR)(NAr)(OTf)2(dme) 

2 LiOR' 
W(CHR)(NAr)(OR'b 

(R = t-Bu or CMe2Ph 
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Figure 1. Reactions catalyzed by transition-metal alkylidene and metallacyclobutane 
catalysts. 1-4 
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Table 1. Formation of Alkylidene Ligands by a-Hydrogen Abstractiona,b 

Starting Complex Additive Product 

Ta(CH2PhbCI2 CpTI CP2 Ta(=CHPh)(CH2Ph) 

Ta(Np)CI4 PMe3. Na(Hg) Ta( =CH-t-Bu)H(PMe3)CI2 

Cp*Ta(CH2Ph)2CI2 Ph3P=CH2 Cp*Ta(=CHPh)(CH2Ph)CI 

Ta[N(TMS)212Cb LiCH2TMS Ta( =CHTMS)(CH2 TMS)[N(TMS)212 

TaMe3(OAr}2 hv Ta(=CH2}Me(OAr)2 

Ta(Np)CI2(C2H4)(PMe3)2 Ta(=CH-t-Bu)EtCI2(PMe3)2 

Ta(=CH-t-Bu)(NPb PMe3 Ta(=CH-t-Bu)2(Np)(PMe3)2 

Mo(N-t-Bu)(NPbCI LiNp Mo(N-t-Bu)(=CH-t-Bu)Np2 

MoCls LiCH2SiMe3 Mo(=CHSiMe3}(CH2SiMe3l3 

W(OAr}2CI4 MgNP2'dioxane W(=CH-t-Bu}(OAr}2CI2 

W(NPh}(NPbCI Ph3P=CH2 W(N Ph}( =CH-t-Bu} NP2 

Re(NAr}2(Np}CI2 DBU Re( NAr} 2( =CH-t-Bu)CI 

Re(N-t-Bu)2CI3 NpMgCI Re(N-t-Bu)2(=CH-t-Bu)Np 

aReproduced from p. 53 of Metal-Ligand Multiple Bonds by W. A. Nugent and J. M. Mayer. 19 

bAbbreviations: Np = neopentyl; TMS = trimethylsilyl; 
DBU = 1,8-diazabicyclo[5.4.01undec-7-ene 

The incorporation of different alkylidene ligands in metathesis catalysts is 

important, as it enables the tuning of catalyst reactivity,17 the incorporation of different 

polymer end-groups in ROMP,18 and the variation of the products synthesized in carbonyl 

olefinations.4 Presently, the vast majority of all known alkylidene syntheses involve a-

hydrogen abstraction routes, and Table 1, which is reproduced from a recent review that 

provides a comprehensive discussion of alkylidene syntheses,19 contains representative 

examples. As is illustrated in this table, the cleavage of an a C-H bond can be achieved by 

a number of methods, and it is often promoted by an increase in steric congestion around 

the metal center. For example, the incorporation of strongly basic, bulky alkyl groups such 

as neopentylligands or the addition of a strongly coordinating base such as PMe3 nom1ally 

precedes alkylidene formation via a-hydrogen abstraction. 19 Thus, alkylidene ligands are 

usually limited to the sterically bulky neopentylidene and its analogues (e.g., the 
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neophylidene ligand), although benzylidene and methylidene ligands have also been made 

by this method. Other alkylidene ligands must be incorporated on the metal center by the 

metathesis reaction.20 

Thesis Research 

The goal of the research reported in this dissertation was the further development of 

alternative routes to alkylidene complexes, as such routes might lead to the synthesis of 

new metathesis catalysts and/or enable greater flexibility in varying the structure of existing 

catalysts. Two promising, but currently underdeveloped, methods for synthesizing 

alkylidene complexes were investigated: (1) ring-opening of cyc1opropenes to give vinyl 

alkylidene complexes (eq 1)21 and (2) alkylidene transfer from phosphorus ylides to metal 

centers (eq 2).22 

[M] 

R-:...l 
~ (1) + 

[M] + [M]=CHR (2) 

Tungsten(lV) imido precursors of the form WX2(NAr)Ln (X = CI or OR; Ar = Ph, 

2,6-C6H3-Me2, 2,6-C6H3-(i-Prh; Ln = PR3, P(ORb or ether donor ligands) were used 

throughout the investigation for the following reasons: (1) Tungsten commonly 

participates in metal-ligand multiple bonding, thus favoring the potential synthesis of 

alkylidene ligands by the above methods.23 (2) The electronic structure of the 

tungsten(IV) d2 center (Figure 3) is ideal for alkylidene formation. The two d electrons 

occupy the relatively high energy dxy HOMO and are thus available for 1t-bonding to the 

alkylidene.24 In the resulting complex, the alkylidene ligand will be coplanar with the 
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Figure 3. Partial molecular orbital diagram for an octahedral imido complex. 
(Reproduced from p. 33 of Metal-Ligand Multiple Bonds by W. A. Nugent and J. M. 
Mayer.) 

imido ligand, with the alkylidene alkyl substituent lying either syn or anti to the imido 

ligand.25 (3) Numerous variations in the imido, anionic, and donor ancillary ligands of 

the starting complex are possible, enabling the steric and electronic tuning of the precursor. 

(4) Finally, the resulting complexes are potential precursors to the arylimido tungsten 

alkylidene metathesis catalysts.9 

Ar Ar 
N R 
II / 

L W=C 
n \ 

N H 
II / 

L W=C 
n \ 

H R 
syn anti 



8 

References and Notes 

(1) For general references on the metathesis reaction, see: (a) Grubbs, R. H.; Tumas, W. 
Science 1989,243,907-915. (b) Ivin, K. J. Olefin Metathesis; Academic Press: 
London, 1983. (c) Grubbs, R. H. In Comprehensive Organometallic Chemistry; 
Wilkinson, G., Ed.; Pergamon Press, Ltd.: New York, 1982; Vol. 8, pp 499-551. (d) 
Leconte, M.; Basset, J. M.; Quignard, F.; Larroche, C. In Reactions of Coordinated 
Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1, pp 371-420. 

(2) Wagener, K. B.; Boncella, J. M.; Nel, J. G. Macromolecules 1991,24, 2649-2657. 

(3) (a) Schlund, R.; Schrock, R. R.; Crowe, W. E. f. Am. Chem. Soc. 1989, 111, 
8004-8006. (b) Park, L. Y.; Schrock, R. R.; Stieglitz, S. G.; Crowe, W. E. 
Macromolecules 1991,24, 3489-3495. (c) Wallace, K. c.; Liu, A. H.; Davis, W. M.; 
Schrock, R. R. Organometallics 1989,8, 644-654. 

(4) (a) Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo, L.; Clawson, L.; Ho, S.; 
Meinhardt, D.; Stille, J. R.; Straus, D.; Grubbs, R. H. Pure & Appl. Chem. 1983,55, 
1733-1744. (b) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. f. Am. Chem. 
Soc. 1980,102,3270-3272. (c) Aguero, A.; Kress, J.; Osborn, J. A. 1. Chem. Soc., 
Chem. Commun. 1986, 531-533. (d) Heppert, J. A.; Dietz, S. D.; Morton, M. D. 
Abstracts of Papers, 199th National Meeting of the American Chemical Society, Boston, 
MA; American Chemical Society: Washington, DC, 1990; INOR 262. (e) Bazan, G. c.; 
Schrock, R. R.; O'Regan, M. B. Organometallics 1991, 10, 1062-1067. 

(5) For general references on transition-metal alkylidene complexes, see: (a) Feldman, 1.; 
Schrock, R. R. In Progress in Inorganic Chemistry; Lippard, S. J., Ed.; John Wiley & 
Sons: New York, 1991; pp 1-74. (b) Nugent, W. A.; Mayer, J. M. Metal-Ligand 
Multiple Bonds; John Wiley & Sons: New York, 1988. (c) Schrock, R. R. In Reactions 
of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1, pp 
221-283. (c) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and 
Applications ofOrganotransition Metal Chemistry; University Science Books: Mill Valley, 
CA, 1987; 119-137. (d) Crabtree, R. H. The Organometallic Chemistry of the Transition 
Metals; John Wiley & Sons: New York, 1988; Chapter 11. 

(6) For general references on metallacycle complexes, see: (a) Ingrosso, G. In Reactions 
of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1, pp 
639-677. (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and 
Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, 
CA, 1987; Chapter 9. 

(7) Gilliom, L. R.; Grubbs, R. H. 1. Am. Chem. Soc. 1986,108, 733-742. 

(8) (a) Wallace, K. c.; Liu, A. H.; Dewan, J. c.; Schrock, R. R. f. Am. Chem. Soc. 
1988,110,4964-4975. (b) Wallace, K. c.; Schrock, R. R. Macromolecules 1987,20, 
448-450. (c) Wallace, K. c.; Dewan, J. c.; Schrock, R. R. Organometallics 1986,5, 
2162-2164. 

(9) (a) Schrock, R. R.; DePue, R. T.; Feldman, J.; Schaverien, C. J.; Dewan, J. C.; Liu, 
A. H. f. Am. Chem. Soc. 1988,110, 1423-1435. (b) Schrock, R. R.; Feldman, J.; 
Cannizzo, L. F.; Grubbs, R. H. Macromolecules 1987,20,1169-1172. (c) Schrock, R. 
R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. C.; Park, L.; DiMare, M.; 
Schofield, M.; Anhaus, 1.; Walborsky, E.; Evitt, E.; Kruger, C.; Betz, P. Organometallics 
1990,9, 2262-2275. 



9 

(10) (a) Kress, J.; Aguero, A.; Osborn, J. A. J. Mol. Catal. 1986,36, 1-12. (b) Kress, 
J.; Osborn, 1. A.; Greene, R. M. E.; Ivin, K. J.; Rooney, J. J. J. Am. Chem. Soc. 1987, 
109, 899-901. 

(11) (a) Quignard, F.; Leconte, M.; Basset, J. M. J. Mol. Cata!. 1986,36, 13-29. (b) 
Quignard, F.; Leconte, M.; Basset, 1.-M. J. Chem. Soc., Chem. Commun. 1985, 1816-
1817. 

(12) Blosch, L. L.; Abboud, K.; Boncella, J. M. 1. Am. Chem. Soc. 1991, 113, 7066-
7068. 

(13) (a) Murdzek, J. S.; Schrock, R. R. Organometallics 1987,6, 1373-1374. (b) 
Murdzek, 1. S.; Schrock, R. R. Macromolecules 1987,20, 2640-2642. (c) Schrock, R. 
R.; Murdzek, 1. S.; Bazan, G. C.; Robbins, 1.; DiMare, M.; O'Regan, M. J. Am. Chem. 
Soc. 1990, 112, 3875-3886. (d) Bazan, G. C.; Oskam, J. H.; Cho, H.-N.; Park, L. Y.; 
Schrock, R. R. J. Am. Chem. Soc. 1991,113, 6899-6907. 

(14) (a) Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1990,112,2448-2449. (b) 
Schofield, M. H.; Schrock, R. R.; Park, L. Y. Organometallics 1991, 10, 1844-1855. 

(15) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 
1992, 114, 3974-3975. 

(16) Schrock, R. R. Acc. Chem. Res. 1990,23, 158-165, and references therein. 

(17) For example, see: Wu, Z.; Wheeler, D. R.; Grubbs, R. H. 1. Am. Chem. Soc. 
1992,114, 146-151. 

(18) (a) Cannizzo, L. F.; Grubbs, R. H. Macromolecules 1987,20, 1488-1490. (b) 
Risse, W.; Grubbs, R. H. Macromolecules 1989,22, 1558-1562. (c) Mitchell, J. P.; 
Gibson, V. c.; Schrock, R. R. Macromolecules 1991,24, 1220-1221. 

(19) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: 
New York, 1988; Chapter 3. 

(20) (a) Crowe, W. E.; Mitchell, J. P.; Gibson, V. C.; Schrock, R. R. Macromolecules 
1990,23,3536-3538. (b) Schrock, R. R.; Yap, K. B.; Yang, D. c.; Sitzmann, H.; Sita, 
L. R.; Bazan, G. C. Macromolecules 1989,22,3191-3200. (c) Kress, 1.; Osborn, J. A. 
1. Am. Chem. Soc. 1987, 109, 3953-3960. 

(21) Binger, P.; Muller, P.; Benn, R.; Mynott, R. Angew. Chem., Int. Ed. Engl. 1989, 
28, 610-611. 

(22) (a) Sharp, P. R.; Schrock, R. R. J. Organomet. Chem. 1979, 171, 43-51. (b) 
Schwartz, J.; Gell, K. I. 1. Organomet. Chem. 1980, 184, CI-C2. (c) van Asselt, A.; 
Burger, B. J.; Gibson, V. c.; Bercaw, J. E. J. Am. Chem. Soc. 1986,108, 5347-5349. 

(23) Nugent, W. A.; Mayer, 1. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: 
New York, 1988; pp 29-32 and 145-147. 

(24) (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: 
New York, 1988; pp 33-36. (b) Su, F.-M.; Bryan, J. c.; Jang, S.; Mayer, J. M. 
Polyhedron 1989,8, 1261-1277. 



10 

(25) Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; 
Schofield, M. H. Organometallics 1991, 10,1832-1843. 



11 

Chapter 2 

Synthesis and Reactivity of WCh(NAr)(PX3)3 (X = R, OR) Complexes: 
Formation of Tungsten Vinyl Alkylidenes via the Rearrangement of Cyclopropenes 
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Introduction 

Recently, it was reported that 3,3-disubstituted cyclopropenes react with 

bis(cyclopentadienyl)titanium(II) and -zirconium(II) precursors containing labile 

phosphine and olefin ligands, respectively, to give vinyl alkylidene, 112-cyclopropene, and 

metallacyclopentane complexes (eq 1).1 Clean vinyl alkylidene formation was observed 

in the reaction of 3,3-diphenyl- and 3-methyl-3-phenylcyclopropene with Cp2Ti(PMe3h, 

while the reaction of 3,3-dimethylcyclopropene with CP2Ti(PMe3h yielded a mixture of 

all three products. The zirconium olefin complex CP2Zr(PMe3)(H2C=CHCH2CH3) 

formed the metallacyclopentane product exclusively upon reaction with 3,3-

dimethylcyclopropene, and the reaction of the same precursor with 3,3-

diphenylcyclopropene produced a 1:1 mixture of the vinyl alkylidene and 112-

cyclopropene complexes. The failure of these latter two complexes to equilibrate or 

interconvert upon heating (eq 2) led to the conclusion that vinyl alkylidene formation 

occurred by direct opening of the 3-membered ring, not via an 112-cyclopropene 

intermediate. 

R\,j' 
l\ 

For M = Ti, L = PMe3 

0- 20°C 
- L 

For M = Zr, L = H2C=CHCH2CH3 

R, R' = Ph, Ph; Ph, Me; Me, Me 

and/or 

R R' 

Cp,,(Me3P)M 4' (1) 

H 

and/or 
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Ph Ph * cPzIMe3Plzr4 (2) 

H 

The ring-opening of cyclopropenes to give vinyl alkylidenes constitutes a new 

entry to transition-metal alkylidene complexes,2,3 and the generality of this reaction is 

thus of interest, especially given the importance of transition metal alkylidenes/carbenes 

in catalyzing a number of synthetically useful transformations, including olefin 

metathesis4 and carbonyl 01efinations.5 Therefore, the reactivity of 3,3-disubstituted 

= R, OR] complexes was investigated. The synthesis of WC12(NPh)(PR3)3 complexes 

was first reported in 1983,6 and their selection as precursors for this study was based 

upon their ability to form a variety of It-acceptor (L) complexes of the form 

WC12(NPh)(L)(PR3h via the substitution of one phosphine ligand (eq 3).7 The formation 

R' R' 
N N 

CI/., II •• PR3 L CI/., II .' PR3 ·w· • ·W' (3) 
R P" I 'PR - PR3 R3P" I 'L 

3 CI 3 CI 

R' = Ph, i-Pr; PR3 = PMe3, PMePh2 

L = CO, CN-t-Bu, MeC(O)H, olefins, and acetylenes 

of the It-complex is sensitive to the steric bulk and donating ability of the phosphine 

ligand, with the displacement of PMePh2 being particularly facile, presumably due to 

steric crowding in the equatorial plane. The smaller cone angle and greater donating 

ability of PMe3 versus PMePh2 make the formation of It-acceptor complexes from 

WCl2(NPh)(PMe3h more difficult; high temperatures are often required. This difficulty 

in displacing PMe3 led to the development of the in situ trapping of the tungsten(IV) 
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intermediate [WCl2(NPh)(PMe3h] by 1t-acceptors upon reduction of the corresponding 

tungsten(V) precursor WCl3(NPh)(PMe3h (eq 4).8 In addition, similar imido complexes 

Ph 
N 

CI" •. " ~.PMe3 
W 

Me P~ I 'CI 
3 CI 

Na(Hg), L .. 

L = CO, olefins 

Ph 
N 

CI I, •• " ... PMe3 
W 

MeP~I'L 
3 CI 

(4) 

containing 1t-acceptor ligands have been synthesized by the oxidative addition of 

unsaturated molecules to WCl2(PMePh2)4 (eq 5).9 

CI 
Ph2MeP". I .,PMePh2 'W' 
Ph2MeP~ I 'PMePh2 

CI 

RN=L .. 
- 2 PMePh2 

R 
N 

CI" •. " .• ,PMePh2 
W 

Ph MeP" I 'L 
2 CI 

RN=L: t-8uN=CO, t-8uN=CN-t-8u, p-Me-CsH4N=CO, 
Me3SiN=CO, Me3SiN=N2, p-Me-C6H4N=CR'2 

Results and Discussion 

(5) 

Synthesis, Characterization, and Reactivity of WCI2(NAr)(PX3h Complexes 

Synthesis. The thermal ring-opening of 3,3-disubstituted cyclopropenes to give 

tungsten vinyl alkylidene complexes required the synthesis of several new 

WCh(NAr)(PX3b derivatives containing both substituted arylimido ligands and labile 

PX3 ligands (vide infra). Substituted arylimido precursors WC14(NAr) [Ar = 2,6-C6H3-

Me2, 2,6-C~3-(i-Prh] were synthesized via the established method of reacting WC14(O) 

with the corresponding isocyanate (eq 6).6 However, in comparison to the generation of 

WC14(NPh) by this route, longer reaction times and higher temperatures were required for 

complete formation of the substituted arylimido derivatives. For example, the synthesis 
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of WCI4(NPh) was reported in refluxing benzene, while the syntheses of WC4(N-2,6-

C6H3-Me2) and WC4[N-2,6-C6H3-(i-Prh] were accomplished in refluxing toluene and 

p-xylene, respectively.lO The lowering of the reaction rates when employing sterically 

demanding isocyanates is consistent with the postulated [2+2] cycloaddition of the 

tungsten oxo bond and the isocyanate (eq 6),11 and it also corresponds with the report 

that WC14(NCMe3) cannot be made by this method. 12 

.. CI W--O 
4 I I 

I • 

ArN --C 
~ o 

Ar 
N 
II 

---1"'-, Clu· .. ·W· .. "CI (6) 
CI~ 'CI 

Since one PMePh2 ligand of WCh(NPh)(PMePh2b is readily displaced at room 

temperature,7 initial efforts focused on the synthesis of the 2,6-dimethyl- and 2,6-di-i­

propylphenylimido analogues WC12(NAr)(PMePh2b. Although resonances consistent 

with the formation of WCh(N-2,6-C6H3-Me2)(PMePh2)3 were observable by IH NMR 

spectroscopy, 13 initial attempts to cleanly isolate this complex in reasonable yields were 

unsuccessful. For reactions involving the 2,6-di-i-propylphenylimido precursor, NMR 

signals characteristic of WCI2(N Ar)(PMePh2)3 were not observed. Presumably, 

unfavorable steric interactions between the arylimido alkyl substituents and the bulky 

PMePh2 ligands, which are known to favor coordination in a meridional arrangement cis 

to the imido group,6,14 were responsible for the poor yields in these reactions. When 

PEt2Ph, a more donating and slightly smaller phosphine than PMePh2,15 was used, the 

synthesis and clean isolation of WCI2(N-2,6-C6H3-Me2)(PEt2Phh (1) was achieved. 

Due to the sensitivity of the stability of WCI2(NAr)(PR3)3 complexes to the size 

of the phosphine ligand, the synthesis of phosphite analogues was pursued. It was hoped 

that the small size of P(OMeb in combination with its weak donating ability, relative to 
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that of phosphines,16 would enable the synthesis of isolable complexes containing both 

bulky arylimido substituents and labile donor ligands. This proved to be the case: 

complexes were synthesized via the sodium amalgam reduction of their respective 

WCI4(NAr) precursors in the presence of P(OMe>3 and isolated in good yields (eq 7). 

The formation of a light purple-gray solution, typically after about one hour of rapid 

stirring, provided a clear indicator of the complete formation of 

WC12(NAr)[(POMe)3b. 17 The reaction was stopped at this point, as additional stirring 

led to poor yields and difficulties in clean isolation of the product. The syntheses of the 

phosphine analogues do not exhibit the same sensitivity to reaction times,6 and therefore, 

it is likely that the 1t-accepting capability of the phosphite ligand enables reduction 

beyond the tungsten(IV) oxidation state. 16 

Ar 
N 
II 

CI"''''W·''''CI + 3 P(OMeb 
CI~ 'CI 

Na(Hg) .. 
Ar 
N 

(MeObP" .. II .•• P(OMe)3 
W 

CI"'I 'P(OMeb 
CI 

(7) 

Characterization. Spectroscopic data for the WC12(NAr)[(P(OMehb complexes 

(Table 1) is consistent with the expected meridional arrangement of the P(OMe>3 

ligands.6 For example, a virtual triplet and a doublet appear in the IH and l3C NMR 

spectra of these species and correspond, respectively, to the two mutually trans phosphite 

ligands and the phosphite ligand trans to a chloride ligand. In the 31 P NMR spectra, 

coupling between the inequivalent phosphite ligands gives rise to doublet and triplet 

resonances in a 2: 1 ratio. The structure of these complexes was further confirmed by an 

X-ray crystallographic study ofWC12[N-2,6-C6H3-(i-Prh][(POMe)3b (4).18 An ORTEP 

diagram of this complex is shown in Figure 1 and selected bond distances and angles are 
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C4 

C17"-----

C18 

Figure 1. ORTEP plot of WC12[N-2,6-C()ll3-(i-PrhHP(OMe)3b (4). Thennal ellipsoids 
are drawn at the 50% probability level. 
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Table 2. Selected Bond Lengths and Angles for WCi2[N-2,6-C6H3-(i-Prh)[P(OMehh 
(4) 

Bond Lengths (A) 

W(1) - CI(1) 2.495(1 ) W(1) - CI(2) 2.475(1) 

W(1)-P(1) 2.451 (1) W(1) - P(2) 2.486(1) 

W(1) - P(3) 2.497(1 ) W(1)-N(1) 1.767(3) 

Bond Angles (0) 

CI(1) - W(1) - CI(2) 85.0(1) CI(1) - W(1) - P(1) 163.0(1) 

CI(2) - W(1) - P(1) 78.1(1) CI(1) - W(1) - P(2) 83.4(1) 

CI(2) - W(1) - P(2) 89.1 (1) P(1) - W(1) - P(2) 97.7(1) 

CI(1) - W(1) - P(3) 89.5(1) CI(2) - W(1) - P(3) 88.6(1) 

P(1) - W(1) - P(3) 88.6(1) P(2) - W(1) - P(3) 172.7(1) 

CI(1) - W(1) - N(1) 98.0(1) CI(2) - W(1) - N(1) 177.0(1) 

P(1) - W(1) - N(1) 98.9(1) P(2) - W(1) - N(1) 90.9(1 ) 

P(3) - W(1) - N(1) 91.8(1) W(1) - N(1) - C(1) 173.5(2) 

given in Table 2. The arrangement of the ligands about the metal center exhibits several 

distortions from a perfect octahedral geometry: The equatorial chloride ligand and the 

phosphite ligand trans to it [Cl(1) and P(1)] both lie on the opposite side of equatorial 

plane from the imido group, a wide angle [97.7(1)°] exists between two of the cis 

phosphite moieties [P(1) and P(2)], and the imido group is bent away from these same 

two phosphite ligands. These distortions appear to relieve sterie crowding between the 

arylimido substituents and the equatorial ligands, an observation that is consistent with 

the proposal that WCl2[N-2,6-C6H3-(i-Prh](PMePh2)3 could not be synthesized due to 

unfavorable steric interactions between the imido substituents and the PMePh2 ligands 

(vide supra). The W(1) - P(1) bond length of the phosphite lying trans to a chloride 

ligand (2.451 (1) A) is shorter than the W(1) - P(2) and, W(1) - P(3) bond lengths of the 
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two mutually trans phosphite ligands (2.486(1) and 2.497(1), and this difference is 

reflected in the 31 P NMR chemical shifts and coupling constants. That is, the triplet 

resonance for P(1) is shifted downfield and exhibits a larger tungsten-phosphorus 

coupling constant than the doublet resonance for P(2) and P(3). 

It-Complex Formation. The lability of the phosphine/phosphite ligands of 

complexes 1 - 4 was determined by the reactions of these complexes with ethylene and 

with phenyl- and diphenylacetylene.19 Diphenylacetylene reacted at room temperature 

Me2)(PEt2Phh (5). The high lability of a PEt2Ph ligand of 1 is apparent when this 

reaction is contrasted with the synthesis of the analoguous PMe3 complex 

W(PhC::CPh)CI2(NPh)(PMe3h, which required 20 h of refluxing in benzene.7a 

(5) 

The phosphite complexes 2 - 4 readily underwent substitution reactions, generally 

at room temperature, with even relatively weak It-acceptors such as ethylene. In the 1 H 

Prh][P(OMe)3h (6), two multiplets were observed for the ethylene protons (syn and anti 

to the imido ligand) at 3.25 and 2.85 ppm. According to difference NOE measurements, 

the upfield ethylene multiplet (2.85 ppm) is syn to the imido ligand. For example, an 

8.1 % enhancement was observed at 2.85 ppm upon irradiation of the i-propyl methine 

proton, and conversely, an 8.0% enhancement was observed for the i-propyl methine 
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proton upon irradiation of the 2.85 ppm ethylene multiplet. In the 13C NMR spectrum, 

an upfield shift to 42.3 ppm (~ = 80.9 ppm) was observed for the ethylene carbon 

resonance upon complexation. This value lies inbetween the chemical shifts reported for 

W(H2C=CH2)CI2(NPh)(PMe3h (39.4 ppm)7e and W(H2C=CH2)Ch(NPh)(PMePh2h 

(48.0 ppm)7e and thus indicates that in W(L)Ch(NAr)[P(OMebh complexes, there is 

strong back-donation to the rt-acceptor ligand (L), despite the poor donating/competing 1t-

accepting ability of the ancillary phosphite ligands. 

N H 
(MeObP'.II ~H 

CI-W I H 
II 

(MeObP CI H 

(6) 

The room temperature reaction of WCl2(N-2,6-C6H3-Me2)[P(OMe)3b (3) and 

PhC=CH in toluene resulted in the formation of the corresponding acetylene complex 

W(PhC=CH)CI2(N-2,6-C6H3-Me2)[P(OMe)3h (7) in good yield. According to the NMR 

spectral data of 7, the two phosphite groups are inequivalent, but not coupled. That is, 

these ligands appeared as two separate doublets in the 1 Hand 13C NMR spectra and as 

two singlets [118.8 ppm (Jpw = 354 Hz) and 117.6 ppm (Jpw = 366 Hz)] in the 31p NMR 

spectrum. Coupling of the acetylenic proton to the two inequivalent phosphites gave rise 

to a doublet of doublets at 10.43 ppm (JHP = 16.85,5.62 Hz). NOE enhancements were 

observed in both directions between the acetylenic proton and the imido methyl groups 

and also between the acetylenic proton and the phosphite ligand at 3.58 ppm. In addition, 

irradiation of the imido methyl groups resulted in small NOE enhancements of both 
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phosphite ligands. Slow rotation about the imido group in 7 was evidenced by the 

observation of a broad singlet for the imido methyl protons. 

The above data is consistent with a crowded equatorial plane containing two 

phosphites, one of which lies cis to the acetylenic proton. Although the lack of coupling 

between the two inequivalent phosphites initially appears indicative of a cis arrangement 

of these ligands, a comparison with the analogous phosphine complex of phenyl acetylene 

W(PhC=CH)CI2(NPh)(PMe3h suggests otherwise.7a The only indication of a trans 

geometry for the inequivalent phosphine ligands in this complex is a large Jpp coupling 

constant; coupling between these two phosphines was not observed in the 1 H or 13C 

NMR spectra. The doublet of doublets observed for the acetylenic protons (JHP = 17.26, 

5.90 Hz) closely resembles the same resonance of the phosphite complex 7. In addition, 

for initial investigations involving W(PhC=CPh)Cl2[N-2,6-C6H3-(i-Prh][P(OMe)3h, a 

mutually trans arrangement of the phosphites could be unambiguously assigned on the 

basis of IH, 13C, and 31p NMR spectral data.20 Therefore, the geometry of the phosphite 

moieties in 7 is most likely trans, with the extremely close chemical shifts of the two 

phosphite ligands responsible for their lack of coupling. 

0 0 
(MeOhP,\ .. ~ ..• "Ph 

N 
CuCI (MeOhP, II ...• "Ph 

CI-W~ .- CI"'f~ (8) 
II - CuCI[P(OMeblx 

(MeOhP CI H CI H 

(7) (8) 

In contrast to the analogous phosphine complexes of PhC=CH,7 an equilibrium 

between 7 and the monophosphite adduct W(PhC=CH)CI2(N-2,6-C6H3-Me2)[P(OMe)3] 

(8) was observed in solution.21 The addition of CuCl, a phosphine/phosphite "sponge",22 



23 

resulted in the clean and selective formation of 8 (eq 8), which was characterized by its 

IH, l3C, and 3lp NMR spectra. Loss of one phosphite resulted in a downfield shift of the 

remaining tungsten-bound phosphite ligand in the 3lp NMR spectrum and an increase in 

the phosphorus-tungsten coupling constant, and it also caused a downfield shift of the 

acetylenic carbons in the l3C NMR spectrum, all consistent with stronger donation by the 

phosphite and acetylene ligands to the 16-electron complex 8.23 The decrease in steric 

crowding upon loss of a phosphite ligand enabled free rotation about the imido ligand, as 

was indicated by the appearance of a sharp singlet for the imido methyl protons. 

According to IH and l3C NMR data, the phosphite ligand lies trans to the acetylenic 

proton (JHP = 20.03 Hz for PhC=CH) and cis to the acetylenic phenyl group (Jcp = 7.55 

Hz for PhC=CH). 

In general, these reactions with simple It-acceptor ligands demonstrated several 

points: (1) One donor ligand in complexes 1 - 4 is readily displaced at room 

temperature. (2) The phosphite complexes are capable of strong back-donation to It-

acceptor ligands. (3) The major difference between the reactivity of the phosphine and 

phosphite tungsten(IV) complexes is the higher lability of a second phosphite ligand upon 

It-complex formation. This latter observation is consistent with the relative donating/It-

accepting abilities of phosphine and phosphite ligands. More specifically, the electron 

density of the metal center of the tris(phosphine) precursors WC12(NPh)(PR3)3 should be 

greater than that of the resulting It-acceptor (L) complexes WC12(L)(NAr)(PR3h, thus 

electronically favoring more rapid loss of phosphine from the tris(phosphine) precursor. 

In contrast, the combined donating/It-accepting ability of a phosphite ligand and the It-

acceptor ligand (L) may be fairly comparable, making the rate of loss of a phosphite 

ligand from the tris(phosphite) and It-acceptor complexes competitive and perhaps 

determined by the relative sizes of the two ligands. 
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112.Cyclopropene Complexes 

Synthesis and Stability. The reactions of the WCl2(NAr)(PX3)3 precursors with 

3,3-dipheny1cyc1opropene24 and 4,8-dioxaspiro[2.5]oct-l-ene25,26 (referred to throughout 

P\.fh 
A 

the remainder of this chapter as diphenylcyc1opropene and ketalcyc1opropene, respective­

ly) were investigated, and two modes of reactivity were identified: 112-cyc1opropene 

coordination and vinyl alkylidene formation.27 Many of the 112-cyc1opropene complexes 

were not stable at room temperature in standard NMR solvents (e.g., C6D6, tol-dB, THF­

dB, and CD2Cl2), thus limiting the conditions under which they could be synthesized (eq 

9). The preparation of 112-cyc1opropene complexes from phosphite precursors 2 - 4 was 

most readily accomplished in Et20, as the starting tris(phosphite) complexes were 

moderately soluble in Et20 and the resulting 11 2-cyc1opropene complexes were only 

sparingly soluble. Thus, when the cyc1opropene was added to a concentrated, 

heterogeneous purple mixture of the tris(phosphite) complex, in Et20, the yellow 112-

cyc1opropene complex began to precipitate almost immediately. The low solubility and 

high concentrations of the 112-cyclopropene complex generally prevented any measurable 

conversion to the vinyl alkylidene on the time-scale of the reaction. After the reaction 

was complete, the resulting yellow or tan powders were purified by filtration and washing 

with Et20 or pentane. Although recrystallization was not feasible for the less stable 

derivatives, it was possible to obtain X-ray quality crystals of W(112-diphenylcyc10-

propene)CI2(NPh)[P(OMe)3h (10) upon cooling a saturated toluenelbenzene solution of 

this complex to 0 °C (vide infra). 
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R 
Ar AfJA N l X3p,U X3P .... II ... PX3 

... 
w· + ~ (9) 

CI"'I 'PX - PX3 CI"'I 'PX 
CI 3 CI 3 

The preparations of Tl2-cyclopropene complexes from the phenylimido precursor 

WCI2(NPh)[P(OMehh 2 were especially sensitive to concentration effects. In dilute 

C6D6 solutions, the cyclopropenes were rapidly transformed to unidentified products 

without any measurable loss of 2. A reasonable explanation, based on the reactivity of 2 

- 4 with simple 1t-acceptor substrates and on the extensive documentation of oxidative 

addition reactions by cyc1opropenes to form metallacycles, is that the small size of the 

phenylimido group, the lability of a second phosphite ligand, and the dilute conditions 

favor the competitive reaction of the Tl2-cyc1opropene complex with a second equivalent 

of cyclopropene. Careful identification of the organic products would provide further 

insight. 

Several Tl 2-cyclopropene complexes were synthesized and are listed in Table 3 

along with observations regarding their thermal stability. Two general trends emerged 

from the observations reported in this table: (1) The stability of the Tl Lcyclopropene 

complexes decreased as the steric bulk of the imido substituents increased. (2) For the 

same imido and phosphite ancillary ligands, the 1l2-diphenylcyclopropene complexes 

were more stable than the corresponding Tl2-ketalcyclopropene complexes. 

Spectroscopic Data. Characteristic of Tl 2-01efin complex formation, upfield 

shifts were observed for the olefinic proton and carbon resonances of the cyclopropenes 

upon complexation, along with corresponding 24 - 36 Hz decreases in the value of JCH. 

(Table 4). These resonances appeared as triplets due to coupling with the two trans 

phosphine/phosphite ligands. The trends in stability documented in Table 3 were 

supported by the NMR spectroscopic data: For the phosphite complexes, the upfield shift 
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of the 112-cyc1opropene olefinic proton and carbon resonances decreased as the steric bulk 

of the imido ligand increased, corresponding to weaker binding of the cyclopropene. 

Although the chemical shifts of the olefinic proton resonances differed substantially in 

CD2Cl2 and C6D6, the trend remained the same in both solvents. Clear trends in the 

coupling constants (e.g., Jcw and JCH) were not discernable, although for the three 112-

ketalcyclopropene complexes, Jcw did decrease as the stability of the complexes 

decreased. 

For the 112-diphenylcyc1opropene complexes 9 and 10, substantial upfield shifts 

to 5.51 and 6.31 ppm, respectively, were observed for the artha protons of the imido ring. 

These upfield shifts are best explained by the shielding of these resonances by one of the 

phenyl rings of the 112-cyclopropene, requiring that the cyclopropene substituents lie syn 

to the imido ligand. Consistent with this explanation, similar upfield shifts of the 

phenylimido artha protons were not observed in the corresponding 112-ketalcyclopropene 

complexes 12 and 13. However, a syn arrangement of the imido ligand and the ketal 

substituent of the cyclopropene was indicated by difference NOE spectroscopy of W(112-

ketalcyclopropene)C12(NPh)[P(OMe)}h (13). Specifically, irradiation of the 

phenylimido artha protons resulted in a 2% enhancement of the 3.72 ppm resonance 

corresponding to one set of ether methylene protons and conversely, irradiation of the 

13 
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C7 

Figure 2. ORTEP plot of W(HC=CH-tPh2)Ch(NPh)[P(OMehh (10). Thermal 
ellipsoids are drawn at the 50% probability level. 

C13 
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Table 5. Selected Bond Lengths and Angles for W(HE=CH-CPh2)Ch(NPh)­
[P(OMe)3h (10) 

Bond Lengths (A) 

W(1) - CI(1) 2.486(3) W(1) - CI(2) 2.482(3) 

W(1) - P(1) 2.517(2) W(1) - P(2) 2.530(3) 

W(1) - N(1) 1.747(8) W(1)-C(1) 2.171 (9) 

W(1) - C(2) 2.160(9) W(1) - Cnta 2.040 

N(1)-C(16) 1.404(13) C(1)-C(2) 1.452(12) 

C(1) - C(3) 1.526(12) C(2) - C(3) 1.518(13) 

C(3) - C(4) 1.484(14) C(3) - C(10) 1.531(13) 

Bond Angles (0) 

CI(1) - W(1) - CI(2) 83.9(1) CI(1) - W(1) - P(1) 84.3(1 ) 

CI(2) - W(1) - P(1) 89.3(1 ) CI(1) - W(1) - P(2) 84.2(1 ) 

CI(2) - W(1) - P(2) 86.1 (1) P(1) - W(1) - P(2) 168.0(1) 

CI(1) - W(1) - N(1) 90.8(2) CI(2) -W(1) - N(1) 174.6(2) 

P(1) - W(1) - N(1) 91.5(2) P(2) - W(1) - N(1) 92.1(2) 

CI(1) - W(1) - C(1) 156.3(2) CI(2) - W(1) - N(1) 82.9(2) 

P(1) - W(1) - C(1) 76.0(2) P(2) - W(1) - C(1) 114.3(2) 

N(1) - W(1) - C(1) 102.5(3) CI(1) - W(1) - C(2) 156.7(3) 

CI(2) - W(1) - C(2) 83.6(2) P(1) - W(1) - C(2) 115.1(3) 

P(2) - W(1) - C(2) 75.3(3) N(1) - W(1) - C(2) 101.0(3) 

C(1) - W(1) - C(2) 39.2(3) Cnt - W(1) - N(1)a 102.5 

Cnt - W(1) - p(1)a 95.5 Cnt - W(1) - p(2)a 94.9 

Cnt - W(1) - CI(1)a 166.7 Cnt - W( 1) - CI(2)a 82.8 

W(1) - N(1) - C(16) 170.8(6) C(2) - C(1) - C(3) 61.3(6) 

C(1) - C(2) - C(3) 61.8(6) C(1) - C(3) - C(2) 57.0(6) 

C(1) - C(3) - C(4) 123.7(8) C(2) - C(3) - C(4) 124.3(8) 

C(1) - C(3) - C(10) 112.4(7) C(2) - C(3) - C(1 0) 113.2(8) 

C(4) - C(3) - C(10) 114.3(8) 

aCnt is the centroid of the C(1) - C(2) bond. 
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Figure 3. A comparison of the structural data and strain energies of cyclopropane, 3,3-
dimethylcyclopropene, and W[1l2-diphenylcyclopropene ]CI2[ (NPh)[P(OMe bh. 3a, 28 

3.72 ppm resonance resulted in a 4.5% enhancement of the phenylimido artha protons. 

Irradiation of the olefinic protons did not enhance the artha proton resonance of the 

arylimido ligand and vice versa. 

Crystal Structure. A syn arrangement of the imido ligand and the cyclopropene 

substituents was further supported by an X-ray diffraction study of W(11 2-

diphenylcyclopropene)Clz(NPh)[P(OMe)3h (10). An ORTEP diagram of this complex is 

shown in Figure 2 and selected bond lengths and angles are given in Table 5. This 

molecule is best described as a distorted octahedron with the olefinic carbons occupying 

one position in the equatorial plane. In addition to relieving steric crowding between the 

equatorial ligands, the displacement of the olefinic carbons -12.5° beneath the equatorial 

plane also reduces unfavorable steric interactions between the imido phenyl ring and the 

cyclopropene phenyl ring that lies syn to tungsten. Adjustments that further 

accommodate the steric bulk of this cyclopropene phenyl ring include its stacking 

arrangement with the imido phenyl ring, the bending of the imido ligand away from the 

cyclopropene substituents, resulting in a W(1) - N(1) - C(16) angle of 170.8(6)°, and the 

bending of the cyclopropene phenyl rings away from the imido ligand (e.g., the C(2) -

C(3) - C(4) angle is 11.1 ° larger than the C(2) - C(3) - C(10) angle). 

A similar syn arrangement of a substituted arylimido ligand and the cyclopropene 

would yield unfavorable steric interactions between the imido substituents and the 
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phosphite ligands and/or the cyclopropene substituents, thus accounting for the lesser 

stability of the substituted arylimido derivatives. The arylimido methyl substituents of 

W(112-dipheny1cyclopropene)CI2(N-2,6-C6H3-Me2)[P(OMehh (11) are equivalent at 

room temperature and at -80°C, according to IH NMR spectroscopy. Given the crowded 

nature of this molecule, restricted rotation about the imido ligand is likely, especially at -

80°C, and this would place the arylimido ring in the P - WeN) - P plane, similar to the 

solid-state structure of 10. 

Strong 1t-back-donation by tungsten to the cyclopropene is evidenced in the 

structure of 10 by a substantial lengthening of the double bond and an accompanying 

large increase of the apical angle of the cyclopropene ring as compared to that of 

uncomplexed cyclopropene (Figure 3). The structure of the complexed cyclopropene 

more closely resembles that of a cyclopropane ring than a cyclopropene ring, and thus, a 

large decrease in ring strain accompanies complexation. Given this substantial amount of 

1t-back-donation, the 112-cyclopropene complexes are most accurately described as 

metallabicyclobutanes. 

Diphenylvinyl Alkylidene Complexes 

General Observations and Trends. In general, diphenylvinyl alkylidene 

formation was slower than 112-diphenylcyclopropene coordination and an increase in the 

steric bulk of the imido ligand of the tungsten(IV) precursor favored the generation of the 

diphenylvinyl alkylidene complex over the 112-diphenylcyclopropene complex. The 

W(=CH-CH=CPh2)CI2(NAr)(PX3h compounds were observed as bright orange solutions 

and isolated as orange or yellow-orange powders. Coordination of the diphenylvinyl 

alkylidene moiety to tungsten was indicated spectroscopically by the downfield shifts of 

Ha and Ca,29 the splitting of these resonances by the phosphite ligands, and the coupling 

of Ca to tungsten (Table 6). In addition, a downfield shift of H~ of the alkylidene moiety 
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was also observed, and the large coupling between Ha and HI3 was indicative of a trans 

arrangement of the double bonds of the diphenylvinyl alkylidene ligand. 

r.t. 

(a) 

(b) 

r.t. or 
above 

syn 

(c) r.t. or above or 
(d) HgCI2/CH2CI2or 
(e) hv 

Ar 
N 
1I .•• ,PX3 

(10) 

+ CI-W,==<Ph 
~I 

X3P CI -

anti Ph 

2,6-Di-i-Propylphenylimido Precursor. The clean synthesis of W(=CH-

CH=CPh2)CI2[N-2,6-C6H3-(i-Pr)2][P(OMehh (15) and complete consumption of both 

starting materials was achieved when a slight excess of diphenylcyclopropene and 

WCI2[N-2,6-C6H3-(i-Pr)2][P(OMe)3b (4) were stirred together for 2 hours at 80°C (eq 

lOb). Small amounts of 4 that remained unreacted could be separated from 15 by 

recrystallization from Et20 or by washing the product mixture with a solution of THF in 

pentane. The observation of characteristic Ha and HJ3 resonances coupled to the two 

mutually trans phosphite ligands provide confinnation of the preparation of 15, and 

difference NOE and low-temperature spectra lent further insight into its structure. For 

example, the observation of a 19.2% NOE enhancement of the alkylidene Ha resonance 

of 15 upon irradiation of the i-propyl methine resonance and a 12.4% NOE enhancement 

in the other direction was indicative of an anti arrangement of the alkylidene ligand 

relative to the imido group. In the 90 MHz 1 H NMR spectrum of 15 at room 

temperature, the i-propyl methyl and methine protons gave rise to one doublet and one 

septet, respectively, indicative of free rotation about the arylimido ligand. Upon cooling 
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Table 6. Selected NMR Spectral Data for 2,6-Dimethyl- and 2,6-Di-i-Propylphenyl­
imido Diphenylvinyl Alkylidene Complexesa 

Ha HI} Ca 
Diphenylvinyl Alkylidene Complex 0 JHH JHP 0 0 JCH Jcp Jcw 

anti-W[trans( =C H-C H=C Ph2) lC12-
[N-2,6-C6H3-(i-Pr)2][P(OMe)312 (15) 12.9b 12.8 6.37 10.2 277 130 18.2 123 

anti-W[trans(=CH-CH=CPh2)][N-2,6-C6H3-
(i-Pr)2][OCMe(CF3)212[P(OMe)31 (16) 12.3 14.4 8.06 8.72 264 151 20.8 153 

syn-W[trans(=CH-CH=CPh2)][N-2,6-C6H3-
(i-Pr)21[OCMe(CF3)212[P(OMebl (16) 11.6 11.0 5.13 8.72 256 - 21.7 -

anti-W[trans(=CH-CH=CPh2)][N-2,6-C6H3-
(i-Pr)21[O-2,6-C6H3-(i-Pr)212[P(OMebl (17) 12.4 14.3 7.89 9.32 259 152 20.8 156 

syn-W[trans(=CH-CH=CPh2)][N-2,6-C6H3-
(i-Pr)2][O-2,6-C6H3-(i-Pr)212[P(OMe)31 (17) 12.2 11.4 6.31 8.89 253 125 22.2 164 

anti-W[trans(=CH-CH=CPh2)]CI2-
(N-2,6-C6H3-Me2)(PEt2Ph)2 (18) 12.2 13.1 4.4 9.55 272 128 12.6 -

syn-W[trans(=CH-CH=CPh2)]CI2-
(N-2,6-C6H3-Me2)(PEt2Ph)2 (18) 11.9 13.1 4.4 8.72 278 130 12.6 -

anti-W[trans(=CH-CH=CPh2)]CI2-
(N-2,6-C6H3-Me2)[P(OMe)3]2 (19) 12.9 13.0 6.24 9.62 277 130 17.6 117 

syn-W[trans(=CH-CH=CPh2)]CI2-
(N-2,6-C6H3-Me2)[P(OMeb]2 (19) 12.4 13.3 6.69 8.80 284 133 17.5 -

aAIl s ectra were ac uired in CD CI p q 2 2 unless indicated otherwise. trrol-d . 8 

to -80°C, restricted rotation resulted in two doublet resonances for the i-propyl methyl 

protons and two septet resonances for the methine protons, thus requiring that the 

arylimido ring lie in the Cl- WeN) - Ca plane, an arrangement that would minimize steric 

interactions between the i-propyl groups and the phosphite ligands. 

High temperatures were necessary for the complete conversion of 4 and 

diphenylcyclopropene to the diphenylvinyl alkylidene 15. For example, stirring a I: 1 

mixture of diphenylcyclopropene and 4 in a concentrated Et20 or Et20/CH2Cb solution 

for as long as 48 h at room temperature did not lead to complete vinyl alkylidene 

formation. Instead an orange mixture composed of 4, 15, and what are tentatively 
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assigned as two 112-cyclopropene species was isolated. An approximately 2: 1 ratio of 

triplets at 5.31 (JHP = 5.91 Hz) and 5.36 (JHP = 5.36 Hz) ppm in the IH NMR spectrum in 

C()l)6 were indicative of 112-cyclopropene complex formation. These chemical shifts are 

slightly down field of that observed for the analogous dimethylphenylimido compound 11, 

again consistent with weaker binding of the cyclopropene to the sterically more bulky 

imido precursor. For all other combinations of imido and phosphine/phosphite ancillary 

ligands that were studied, only one form of the 112-cyclopropene complex was observed. 

Perhaps for the di-i-propylphenylimido complex, the stabilities of the syn and anti 112-

cyclopropene isomers are comparable, due to a large destabilization of the syn adduct by 

the steric bulk of the imido substituents. 

Ar Ph Ph 

(Meo),p •• ~J 
CI~ I 'P(OMeb 

CI 

syn 

Ar 

~l(OMeb 
CI-WX II 

(MeOhP CI 
Ph Ph 

anti 

Reactions of 15 with two equivalents of LiOCMe(CF3h or LiO-2,6-C6H3-(i-Prh 

yielded the mono(phosphite) adducts of the corresponding tungsten alkoxide complexes 

W(=CH-CH=CPh2](N-2,6-C~3-(i-Prh][OCMe(CF3hh[P(OMehl (16) and W(=CH­

CH=CPh2)[N-2,6-C6H3-(i-PrhHO-2,6-C6H3-(i-Prhh[P(OMehl (17) (eq 11). Both 

complexes were isolated as a mixture of syn and anti rotamers. Difference NOE 

measurements for 16 were consistent with the synthesis of mainly the anti rotamer, and 

syn and anti designations for 17 are based on comparisons with analogous vinyl 

alkylidene complexes.30 

An X-ray diffraction study of 16 provided further confirmation of the ring­

opening of diphenylcyclopropene to give the corresponding vinyl alkylidene ligand. An 

ORTEP diagram of the structure is shown in Figure 4 and selected bond lengths and 
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N 
1I .... P(OMeb 

CI-W,_/Ph 
(MeObP~ 61 \-

[
OR = OCMe(CF3 l2 or 1 

0-2,6-C6 H3-(i-Prh 

Ph 

2 LiOR! - 2 LiCI 
- P(OMeb 

(11 ) 

N 
(MeObP,,, .. 1I 

W~Ph I ~OR 
RO -

+ 

Ph 

(MeObP, ••. ~ fi 
W_ Ph 
I 'OR 

RO 
Ph 

angles are given in Table 7. The geometry of 16 is a distorted trigonal bipyramid with 

the phosphite ligand and one alkoxide ligand [P(1) and 0(2)] occupying the apical 

positions. This structure closely resembles that of anti-W[trans(=CH-CH=CHMe)][N-

2,6-C()H3-(i-PrhHOCMe(CF3hJ2(quinuclidene),30 and therefore, the similar geometries 

and ligand environments of the two complexes should enable a fairly accurate 

comparison of the two different vinyl alkylidene ligands. These alkylidenes are bound to 

tungsten(VI) and are therefore nucleophilic, or Schrock-type alkylidenes, that are 

polarized in the M+-C- direction)1 Both vinyl alkylidene ligands are resonance-

stabilized, however, the potential for greater delocalization of the negative charge on the 

1.947(5) 1.450(9) 1.942(6) 1.420(9) 

[W~ \1 t 
I Ph 

I:; { \ 
I Me 

1.363(7) 1.307(8) 
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C4 

Fa 

F1 
F11 

F12 

C25 

Figure 4. ORTEP plot ofW(=CH-CH=CPh2)[N-2,6-C6H3-(i-Prh][OCMe(CF3hh­
[P(OMe»l (16). Thermal ellipsoids are drawn at the 50% probability level. 
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Table 7. Selected Bond Lengths and Angles for W(=CH-CH=CPh2)[N-2,6-C6H3-(i­
PrhHOCMe(CF3hh[P(OMe)3] (16) 

Bond Lengths (A) 

W(1)-P(1) 2.505(1 ) W(1)-0(1) 1.975(4) 

W(1)-0(2) 1.996(3) W(1)-N(1) 1.753(4) 

W(1) - C(13) 1.947(5) C(13) - C(14) 1.450(9) 

C(14) - C(15) 1.363(7) C(15) - C(16) 1.479(7) 

C(15) - C(22) 1.483(9) 

Bond Angles (0) 

P(1) - W(1) - 0(1) 81.8(1) P(1) - W(1) - 0(2) 163.7(1) 

0(1) - W(1) - 0(2) 84.6(1) P(1) - W(1) - N(1) 83.6(1) 

0(1) - W(1) - N(1) 146.9(2) 0(2) - W(1) - N(1) 103.3(2) 

P(1) - W(1) - C(13) 86.7(1) 0(1) - W(1) - C(13) 109.8(2) 

0(2) - W(1) - C(13) 106.4(2) N(1) - W(1) - C(13) 98.8(2) 

W(1) - 0(1) - C(31) 150.4(3) W(1) - 0(2) - C(35) 137.5(3) 

W(1) - N(1) - C(1) 168.0(3) W(1) - C(13) - C(14) 122.2(4) 

C(13) - C(14) - C(15) 127.5(5) C(14) - C(15) - C(16) 123.1(5) 

C(14) - C(15) - C(22) 118.7(5) 

diphenylvinyl alkylidene ligand is illustrated by the lengthening of the bonds of this 

alkylidene as compared to those of the methylvinyl alkylidene moiety and is consistent 

with the observation that in the crystal structure of 16, the phenyl rings lie in conjugation 

with the vinyl alkylidene group. 

2,6-Dimethylphenylimido Precursors. The room-temperature reaction of 

diphenylcyclopropene with the phosphine precursor WChCN-2,6-C6H3-Me2)CPEt2Phh 

(1) in a mixture of Et20 and pentane produced the yellow-orange vinyl alkylidene 

approximately two to one mixture of rotamers (eq lOb). Irradiation of the imido methyl 

groups of the major rotamer resulted in a 20% NOE enhancement of the alkylidene Hex 
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resonance, indicative of an anti arrangement of the two ligands, and correspondingly, 

irradiation of the imido methyl groups of the minor rotamer caused a 14% enhancement 

of the alkylidene H~ resonance, indicative of a syn arrangement of the two ligands. 

In contrast, stirring a mixture of dipheny1cyc1opropene with the analogous 

phosphite precursor WC12(N-2,6-C6H3-Me2)[P(OMebb (3) in Et20 gave the yellow 112-

cyc1opropene complex W(112-dipheny1cyc1opropene)CI2(N-2,6-C6H3-Me2)[P(OMebJ2 

(11) (eq lOa). A room-temperature, concentrated CD2Cl2 solution of this compound was 

monitored over a 24 h period by IH, 13C, and 31p NMR spectroscopy, enabling the 

observation of the clean and complete conversion of the 112-diphenylcyclopropene species 

to the diphenylvinyl alkylidene complex W(=CH-CH=CPh2)CI2(N -2,6-C6H3-

Me2)[P(OMebh (19) (eq lOc). Addition of excess diphenylcyc1opropene to a CD2Cl2 

solution of 11 slowed the rate of conversion to vinyl alkylidene and also resulted in the 

production of what is tentatively assigned as the alkylidene complex resulting from ring­

opening metathesis of diphenylcyclopropene by 19 (Table 10, Experimental Section). 

Phenylimido Precursors. The phenyl imido precursors WCh(NPh)(PMePh2b 

and WCI2(NPh)[P(OMebb formed relatively stable 112-cyc1opropene complexes, and the 

results of initial attempts to thermally convert these complexes to vinyl alkylidenes were 

not promising. However, there are literature precedents for the ring-opening of 

cyc1opropenes upon photolysis32 or upon catalysis by HgC12,33 and therefore, both of 

these methods were investigated. Catalytic amounts of HgCb converted CH2Cl2 

solutions of the metallabicyc10butanes 9 and 10 to the corresponding tungsten vinyl 

alkylidenes within several hours (eq lOd and Table 11, Experimental Section). 

Conversion was complete within minutes upon the addition of 1 equiv of HgCI2; 

however, such large amounts of HgCl2 also slowly catalyzed the decomposition of the 

vinyl alkylidene complex. Photolyzing dilute solutions of the 112-cyclopropene 

complexes 9 and 10 at a °C also resulted in the rearrangement to the corresponding vinyl 

alkylidene compounds (eq lOe and Table 12, Experimental Section). 
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Ketalvinyl Alkylidene Complexes 

Similar to vinyl alkylidene syntheses from diphenylcyclopropene, an increase in 

the steric bulk of the imido ligand favored formation of the ketal vinyl alkylidene complex 

over the corresponding 112-ketalcyclopropene complex. Moreover, ring-opening of 

ketalcyclopropene occurred more readily than for 3,3-diphenylcyclopropene. However, 

the chemistry was also more complex, as several forms of the ketalvinyl alkylidene were 

noted. As shown in eq 12, in addition to syn and anti rotamers of the trans-vinyl 

alkylidene ligand A, the chelating cis-vinyl alkylidene ligand B and the ring-opened 

chelating chloro-alkylidene C were also observed and were the thermodynamic products 

of the reaction. In the remainder of this chapter, the formulas for these ketal vinyl 

alkylidene compounds will be written as W(CHRy)Clm(NAr)(PX3)n, where Y = A, B, or 

C and denotes the structure of the alkylidene. 

(a) r.t. 
(12) 

and/or 

A (syn) 

and/or 

C CI 

0 8 
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Table 8. Selected NMR Spectral Data for 2,6-Dimethyl- and 2,6-Di-i-Propylphenyl­
imido Ketalvinyl Alkylidene Complexes a 

Diphenylvinyl Ha Ca C'V OCH2 XCH2 
Alkylidene Complex 8 JHH JHP 8 JCH Jcp Jcw 8 8 8 

W(CHRS)CI2[N-2,6-C6H3-
(i-Pr)2][P(OMebl (20-8) 11.7 9.81 6.82 260 144 20.7 124 165 68.8 67.6b 

W(CHRc)CI[N-2,6-C6H3-(i-
Pr)21[P(OMeb12 (20-C) 12.6 8.26 2.30 257 - 10.2 - 177 62.3 41.1c 

W(CHRA)CI2(N-2,6-C6H3-
Me2)(PEt2Ph)2 (21-A)d 12.7 14.2 3.98 264 - 11.0 - - - -

W(CHRA)CI2(N-2,6-C6H3-
Me2)(PEt2Ph)2 (21-A)d 12.6 13.6 3.79 270 - 10.8 - - - -

W(CHRS)CI2(N-2,6-C6H3-
Me2)(PEt2Ph) (21-8) 11.5 9.93 5.51 - - - - - - -

W(CHRC)CI(N-2,6-C6H3-
Me2)(PEt2Ph)2 (21-C) 12.3 8.07 2.13 262 134 7.2 119 174 61.9 41.6c 

W(CHRs)CI2(N-2,6-C6H3-
Me2)CI2[P(OMebl (22-8) 11.9 9.79 6.80 260 145 20.5 122 165 68.7 67.5b 

W(CHRC)CI(N-2,6-C6H3-
Me2)[P(OMeb12 (22-C) 12.7 - - 258 135 10.0 114 177 62.2 41.0c 

a b' _ - d. All spectra were acquired m CD2CI2 unless mdlcated otherwise. X - O. ex - CI. Syn or anti 
rotamer. 

The ketalvinyl alkylidenes A, B, and C could be distinguished by color and by 

spectroscopic data. Solutions of A and/or B were red, whereas solutions of C were green. 

The distinguishing feature of A was the large coupling between Ha and H~ of the trans­

ketalvinyl alkylidene ligand, which was similar to that of the diphenylvinyl alkylidene 

ligand. The coupling between Ha and H~ was smaller in both Band C, due to the cis 

arrangement of the double bonds. However, a marked upfield shift (-20 ppm) of the l3C 

NMR resonance of one of the ether methylene carbons occurred upon substitution of 

oxygen by chlorine and provided a clear indication of the formation of C. In addition, 

another very characteristic indication of conversion to C was an approximately 10 ppm 

downfield shift of Cy, resulting from the contribution of the enone resonance form to the 

structure of C (Table 8). 
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2,6-Di-i-Propylphenylimido Precursor. Ketalcyclopropene reacted with 

WCI2[N-2,6-C@-I3-(i-Prh][P(OMe)3b (4) at room temperature to give the corresponding 

cis-vinyl alkylidene 20-B. When the reaction was followed by IH NMR spectroscopy, 

the n2-cyclopropene complex was not observed. The reaction yields were highest when a 

highly concentrated, heterogeneous mixture of the tris(phosphite) precursor 4 in Et20 

was mixed with a slight excess of ketalcyclopropene, although even under these 

conditions, some of the tris(phosphite) precursor always remained after all of the 

ketalcyclopropene had reacted. The nature of the side reaction was not identified. The 

tris(phosphite) compound was separated from 20-B by washing the reaction mixture with 

an Et20 solution containing -5-6 equiv of P(OMeh, and the product was then isolated as 

a golden bis(phosphite) adduct, which exhibited poor solubility in C6D6 and tol-d8 but 

dissolved readily in THF-d8 and CD2CI2. In CD2Cl2, only the red mono(phosphite) 

adduct of the cis-vinyl alkylidene B was observed along with one equivalent of free 

P(OMeh· 

The proposed structure of the chelating cis-ketalvinyl alkylidene B is based upon 

substantial spectroscopic data and comparisons with known compounds of similar 

geometry. For complex 20-B, the proton and carbon assignments are based upon IH, 

l3C, DEPT (coupled and decoupled), and IH-IH and IH-l3C COSY spectra. In the 

NOESY spectrum of 20-B, enhancements were observed between Ha and the i-propyl 

me thine resonance and also between Ha and H/3, consistent, respectively, with an anti 

orientation of the alkylidene ligand relative to the imido group and a cis arrangement of 

the double bonds of the alkylidene moiety. The coupling constant between Ha and H/3 is 

9.55 Hz, which is smaller than that of trans-vinyl alkylidene ligands and again indicative 

of cis double bonds. 

In previous studies of vinylalkylidene ligands, a trans geometry of the vinyl 

alkylidene double bonds was observed, and therefore, chelation by the ketal vinyl 

alkylidene group, which would necessarily require a cis geometry of the double bonds, is 
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implied. The coordination of only one phosphite/phosphine ligand in complexes B 

further supports displacement of the other donor ligand by the chelating alkylidene 

ligand. In order to maximize 1t-bonding, the alkylidene substituents must lie in the N - W 

- Ca plane, which would place the chelating ketal functionality trans to the imido 

ligand.34 Given these restrictions, the phosphite and chloride ligands must lie in the 

equatorial plane, with the phosphite ligand either cis or trans to the alkylidene ligand. A 

comparison of all the ketalvinyl alkylidene complexes A, B, and C indicates that the 

coupling of the alkylidene Ha and Ca resonances with phosphorus is larger in B than in A 

or C, and therefore, the structure in which the phosphite ligand lies trans to the alkylidene 

ligand is tentatively assigned. Given this geometry, the observation of one i-propyl 

methine resonance and two i-propyl methyl resonances at both room temperature and -80 

°C implies that there is restricted rotation about the imido ligand with the aryl ring lying 

in the CI - W(N) - CI plane. Further support for the proposed structure of B is evidenced 

by its resemblance to the structure of the analogous chelating o-methoxybenzylidene 

complex, which was determined by X-ray crystallography. 

B 

The poor solubility of complex 20-B in C6D6 and tol-dB and its isolation as a 

bis(phosphite) adduct were puzzling. The most reasonable explanation at the present 

time is that the form of 20-B that precipitates from the Et20 solution is a cationic species 

in which a phosphite ligand has displaced a chloride. This would account for the 

difficulties encountered in redissolving 20-B in benzene or toluene and is consistent with 
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the observed rearrangement of complexes B to form C. Upon dissolution in CH2CI2, the 

cationic species must rapidly rearrange to the neutral complex 20-B, the form that is 

observed in solution Ceq 13). 

~.f(OMeb 
(13) (MeOhP-W-CI + 

II 
(MeObP CI 

.. 
- P(OMeh 

precipitate 

In CD2Cl2 solution and in the solid state, slow conversion of 20-B to 20-C was 

observed. Specifically, less than 50% of 20-B converted to 20-C during 12 hours in a 

concentrated CD2Cl2 solution, and conversion of 20-8 to 20-C occurred over a period of 

months in the solid state at room temperature. These observations are consistent with the 

proposed ability of 20-8 to form a cationic species and the isolation of 20-B in this form. 

Upon removal of one equivalent of phosphite from the complex, the rearrangement of 20-

B to 20-C was not observed after a few days in CD2Cl2 solution, and this observation 

implies that in the absence of a second equivalent of phosphite, the cationic intermediate 

is quickly trapped by the chloride anion to generate the neutral complex. Slower 
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nucleophilic attack of the chloride anion on the ether methylene carbon, which would 

result in opening of the 6-membered ring and production of 20-C, is thus not observed. 

2,6-Dimethylphenylimido Precursors. The room-temperature reaction of 

ketalcyclopropene with WC12(N-2,6-C6H3-Me2)(PEt2Phb in a mixture of Et20 and 

pentane resulted in the isolation of a mixture of 21-A, 21-B, and 21-C as a red powder in 

good yield. NMR spectra (lH, 13C, and 31p) of solutions of this powder were clean but 

complex, and only the Ha and Ca resonances were assigned. Large Ha - H~ coupling 

constants of two of the isomers, which composed 71 % of the isomeric mixture, were 

indicative of syn and anti rotamers of 21-A. The Ha resonances of these rotomers 

appeared at 12.70 (JHH = 14.17 Hz, JHP = 3.98 Hz) and 12.66 (JHH = 13.60 Hz, JHP = 

3.79 Hz) ppm and the Ca chemical shifts appeared at 270.4 and 263.9 ppm. Five percent 

of the product mixture was the mono(phosphite) adduct 21-B. Consistent with its 

assigned structure, the Ha resonance of 21-B was shifted one ppm upfield of that of 2l-A 

to 11.54 ppm, and the Ha - H~ coupling constant and Ha - P coupling constant of this 

resonance (JHH = 9.93 Hz, JHP = 5.51 Hz) were smaller and larger, respectively, than the 

analogous couplings observed for Ha of 21-A. 

The red isomeric mixture turned green upon dissolution in CD2Cl2 for less than a 

day at room temperature, and only the founh isomer, 21-C, was then observed. Single 

crystals of 21-C were grown from a saturated pentane solution that was slowly cooled to -

20°C, and the structure of this complex was then determined by an X-ray diffraction 

study. An ORTEP diagram of 21-C is shown in Figure 5 and Table 9 contains selected 

bond angles and lengths. The geometry of 21-C is basically a distoned octahedron with 

all of the equatorial ligands lying on the opposite side of the plane from the apical imido 

ligand. The arylimido ring lies in the N(l) - W(l) - C(l) plane, thus funher minimizing 

unfavorable steric interactions between the imido methyl groups and the equatorial 

phosphine ligands. The W(1) - CO) bond length is longer than that of a normal tungsten 

alkylidene, and a substantial amount of 1t-delocalization of the chelating 5-membered ring 
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C10 

C32 
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Figure 5. ORTEP plot of 21-C. Thermal ellipsoids are drawn at the 50% probability 
level. 
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Table 9. Selected Bond Lengths and Angles for 21-C 

Bond Lengths (A) 

W(1) - Cr(1) 2.49S(1 ) W(1) - P(1) 2.S09(1) 

W(1) - P(2) 2.S12(1 ) W(1)-0(1) 2.191 (3) 

W(1) - N(1) 1.766(3) W(1)-C(1} 2.032(S} 

CI(2) - C(6) 1.819(8) 0(1) - C(3) 1.275(6) 

0(2) - C(3} 1.3S0(S) 0(2} - C(4} 1.430(7} 

N(1) - C(7} 1.393(S) C(1) - C(2} 1.398(6} 

C(2) - C(3) 1.388(7) C(4) - C(S) 1.S19(8) 

C(S} - C(6) 1.430(10) 

Bond Angles (0) 

Cr(1) - W(1) - P(1) 8S.S(1) Cr(1) - W(1) - P(2) 85.7(1) 

P(1) - W(1) - P(2} 166.1(1) CI(1) - W(1) - 0(1} 81.0(1) 

P(1) - W(1) - 0(1) 83.9(1) P(2) - W(1} - 0(1} 84.2(1) 

CI(1) - W(1) - N(1} 106.6(1) P(1} - W(1) - N(1) 9S.7(1) 

P(2) - W(1} - N(1} 97.1(1} 0(1} - W(1} - N(1} 172.4(1) 

Cr(1} - W(1} - C(1} 1S4.S(1} P(1) - W(1) - C(1} 94.7(1} 

P(2) - W(1) - C(1) 88.7(1) 0(1) - W(1) - C(1) 73.8(1} 

N(1} - W(1) - C(1) 98.8(2} C(3} - 0(2) - C(4) 11S.7(4} 

W(1} - 0(1} - C(3} 114.9(3) W(1) - C(1) - C(2) 120.0(4) 

W(1) - N(1) - C(7} 177.6(3) 0(1) - C(3) - 0(2) 119.4(4) 

C(1) - C(2) - C(3} 111.S(S) 0(2) - C(3) - C(2) 121.0(4) 

0(1) - C(3) - C(2) 119.6(4) C(4) - C(S) - C(6} 111.8(6) 

0(2) - C(4) - C(S) 109.S(S} CI(2) - C(6) - C(S} 113.0(6) 

is indicated by its structure, which lies intermediate between the tungsten enolate and 

chelating enone resonance forms, although the bond lengths are slightly closer to those of 

the latter resonance structure. The two phenyl rings of the phosphine ligands stack with 

the 5-membered, tungsten-containing ring. 
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The NMR spectra of 21-C are consistent with its structural determination. For 

example, the Ha and Ca resonances are coupled to the two mutually trans phosphine 

ligands and are shifted slightly upfield of the same resonances of 21-A. The coupling of 

these resonances to phosphorus and to tungsten is smaller than the analogous coupling 

observed in 21-A, indicative of a lengthening of the W - Ca bond, and the coupling 

between Ha and H~ is relatively small (7.96 Hz) due to the cis arrangement of the 

alkylidene double bonds. In the l3C NMR spectrum, only one methylene carbon 

adjacent to oxygen was observed at 61.9 ppm, the methylene carbon adjacent to chlorine 

appeared 20 ppm upfield at 41.6 ppm, and Cy was shifted downfield to 174 ppm. 

Stirring an extremely concentrated Et20 mixture of WC12(N -2,6-C6H3-

Me2)[P(OMehh (3) and ketalcyclopropene for several hours yielded the tan 112-

cyclopropene complex 14. Clean and complete conversion of W(112-ketalcyclopropene)-

C12(N-2,6-C6H3-Me2)[P(OMehh (14) to 22-B (25%) and 22-C (75%) was observed 

after it was dissolved in a concentrated CD2Cl2 solution at room temperature for one day. 

When the same starting materials, 3 and ketalcyclopropene, were stirred together 

in a more dilute Et20 solution, the red vinyl alkylidene 22-B was isolated as a 
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mono(phosphite) adduct, which did not undergo a rearrangement when dissolved in 

CD2C12 for 12 h or when stored in the solid state for months at room temperature, again 

indicating that a second equivalent of phosphite is needed to promote the conversion of B 

to C. An anti arrangement of the alkylidene and imido ligands of 22-B was determined 

by difference NOE measurements, and the methyl groups of the imido ligand were 

equivalent at both room temperature and -80°C. 

Phenylimido Precursors. As with the 1l2-diphenylcyclopropene complexes, 

clean thermal conversion of the 1l2-ketalcyclopropene phenylimido complexes to the 

corresponding vinyl alkylidene species was not observed. In fact, the cleanest thermal 

conversion observed thus far for the phenylimido compounds, was the decomposition of 

W(1l2-ketalcyclopropene)Ch(NPh)[P(OMehh (12) in the solid state over a period of 

several months, which resulted in the formation of the ketalvinyl alkylidene ligand along 

with WCI2(NPh)[P(OMehb and other products. Although W(1l2-ketalcyclopropene)­

CI2(NPh)(PX3h decomposed upon addition of HgCI2, photochemical conversion to the 

ketalvinyl alkylidene was observed (Table 12, Experimental Section). 

Possible Mechanism for the Formation of Band C. A mechanism for the 

formation of isomers Band C is tentatively proposed in Scheme 1 and is based upon the 

following observations: (1) The trans-vinyl alkylidene A was only observed in the case 
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Scheme 1. Proposed Mechanism for the Formation of Band C 

8 

Ar 

~lX3 
X3P- W- C1 

II 
X3P CI 

.. 

.. 

+ 
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of the phosphine precursor WCh(N-2,6-C6H3-Me2)(PEt2Phb, and (2) for the same 

precursor, only a small percentage of B was observed and conversion to C was more 

rapid than for the phosphite precursors. (3) For the phosphite precursors, isomer B was 

formed more rapidly than for the phosphine complex and slower conversion to C was 

then observed in CH2Cl2. (4) All of the experimental data pointed toward the isolation 
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of 20-B as a cationic complex, in which a phosphite ligand had displaced one of the 

chloride ligands. 

These observations are consistent with the initial formation of the trans-vinyl 

alkylidene complex A upon ring-opening of ketalcyclopropene. Strong donation by the 

ketalvinyl alkylidene to the metal center via the M--C+ resonance form would aid loss 

of a chloride ligand or loss of a phosphite/phosphine ligand. Loss of a chloride ligand 

and rotation of the alkylidene ligand would enable trapping of a cationic intermediate, 

such as was proposed in the isolation of 20-B, by the ketal functionality of the alkylidene 

ligand. Alternatively, loss of a phosphite/phosphine ligand and rotation to a cis 

alkylidene ligand would result in formation of B. One or both pathways (c and c') may be 

operating, perhaps depending on the nature of the donating ligand. For example, poorer 

binding by the phosphite ligand may favor path c and thus account for the rapid 

production of B by phosphite precursors. Stronger donation by the phosphine versus the 

phosphite ligands would stabilize the cationic intermediate and thus promote rapid 

rearrangement to C via nucleophilic attack by the chloride counter ion on the ether 

methylene carbon. 

Regarding the Mechanism of the Rearrangement of Cyclopropenes to 

Tungsten Vinyl Alkylidenes. Observations that may be relevant to the mechanism of 

the rearrangement of cyclopropenes to tungsten vinyl alkylidenes are as follows: (1) 

Vinyl alkylidene formation was generally slower than 1l2-cyclopropene complex 

formation and was observed thermally for those precursors that formed the least stable 

1l2-cyclopropene complexes or that were unable to form 1l2-cyclopropene complexes. (2) 

Conversion of 1l2-cyclopropene complexes to vinyl alkylidene compounds was slowed by 

the addition of excess cyclopropene. (3) An equimolar mixture of W(1l 2-

diphenylcyclopropene)Ci2(N-2,6-C6H3-Me2)[P(OMe)3h (11) and ketalcyclopropene and 

an equimolar mixture of W(1l2-ketalcyclopropene)C12(N-2,6-C6H3-Me2)[P(OMehh (14) 

and diphenylcyclopropene did not yield the same ratio of products after 5.6 h in CD2Ci2 
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solution (Table 13, Experimental Section). The product mixtures were complex, and 

more careful reactions and more detailed product analyses need to be done. However, a 

bias was noted toward the formation of the vinyl alkylidene corresponding to the 

cyclopropene that was originally coordinated to tungsten. (4) The formation of both 

diphenyl- and ketalvinyl alkylidenes was observed at room temperature. 

Although additional studies are needed in order to determine the mechanism of 

conversion, the above observations point toward a metal-catalyzed rearrangement, as 

uncatalyzed thermal ring-openings of cyclopropenes normally require higher 

temperatures.35 One potential mechanism is the interaction of tungsten with one of the 

sigma bonds of the cyclopropene ring to give a metallacyclobutene intermediate. This 

mechanism is consistent with the present evidence and is supported by (1) extensive 

documentation of the ring-opening of cyc1oproprane rings by transition metals,36 (2) the 

proposed rearrangement of metallacyclobutene intermediates to vinyl alkylidenes in the 

metathesis of acetylenes by alkylidene complexes (Figure 1, Chapter 1), and (3) the 

isolation of a stable platinum metallacyclobutene complex upon reaction of [(Ph3PhPt] 

with cyclopropenone.3c Future studies by others should shed further light on the 

mechanism of rearrangement and enable the further development of this promising 

method for the synthesis of transition-metal alkylidene complexes. 
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Experimental Section 

General Considerations 

All manipulations of air- and/or water-sensitive compounds were performed using 

standard high-vacuum or Schlenk techniques. Argon was purified by passage through 

columns of BASF R3-11 catalyst (Chemalog) and 4 A molecular sieves (Linde). Solid 

organometallic compounds were transferred and stored in a nitrogen-filled Vacuum 

Atmospheres drybox. All photolyses were pyrex-filtered and conducted with a 450 watt 

high-pressure mercury Hanovia lamp. Temperatures were maintained with a clear pyrex 

dewar filled with ice water. NMR spectra were recorded with either a lEOL FX-90Q 

(89.60 MHz IH; 22.53 MHz 13C; 36.20 MHz 31p), a JEOL GX-400 (399.65 MHz IH; 

100.40 MHz 13C), or a QE-300 Plus (300.10 MHz IH; 75.49 MHz 13C) spectrometer. 

All coupling constants are reported in Hz. 

Materials 

Toluene, benzene, diethyl ether and tetrahydrofuran were distilled or vacuum­

transferred from sodium-benzophenone ketyl. p-Xylene was dried over CaH2 and distilled 

under argon. Pentane was stirred over concentrated H2S04, dried over MgS04 and CaH2, 

and then transferred onto sodium-benzophenone ketyl solubilized with tetraglyme. 

Benzene-d6, toluene-d8, and THF-d8 were dried over sodium-benzophenone ketyl. 

Chloroform-d and methylene chloride-d2 were dried over P20S, vacuum-transferred, and 

then degassed by repeated freeze-pump-thaw cycles. Isocyanates were purified by 

fractional distillation under argon. WC4(O) was purchased from Aldrich or synthesized 

according to published methods)7 WCI4(NPh) was synthesized according to the 

procedure of Nielson.6 (CF3hCH3COH was purchased from PCR, dissolved in Et20, 

and deprotonated with one equivalent of BuLi. White crystals of (CF3hCH3COLi were 

obtained by recrystallization at low temperature from a filtered Et20/pentane solution. The 
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high lability of the PEt2Ph ligands prevented satisfactory analyses of complexes 1 and 5 

from being obtained. 

2,6-Dimethylphenyl isocyanate (11.2 mL, 80A mmol) was added via syringe to a 

suspension of WC14(O) (25.02 g, 73.24 mmol) in 115 mL of toluene. After refluxing for 

48 h, the toluene was removed in vacuo, and the resulting brick-red powder was dissolved 

in 400 mL of Et20. The solution was filtered and then slowly cooled to -50°C to give 37.2 

g of brown crystals in three crops (97.8%): IH (C6D6) 0 6.75 (d, 2, J = 7.6, Hm), 5.89 

(t, 1, J = 7.6, Hp), 4.34 (q, 4, J = 6.9, Et20), 3.29 (s, 6, Me), 1.07 (t, 6, J = 6.9, Et20); 

13C (C6D6) 0 148.3 (Cipso), 145.4 (Co), 133.9 and 126.1 (Cm and Cp), 65.9 (Et20), 17.6 

(Me) and 13.0 (Et20). After removing the Et20 in vacuo (several days under vacuum), an 

elemental analysis was obtained for orange-brown WCI4(N-2,6-C6H3-Me2): Anal. Calcd 

for (CgH9CI4NW): C, 21.60; H, 2.04; N, 3.15. Found: C, 21.96; H, 2.15; N, 3.08. 

2,6-Diisopropylphenyl isocyanate (11.59 g, 57.00 mmol) was added via cannula 

to a suspension of WCI4(O) (19.47 g, 57.00 mmol) in 100 mL of p-xylene. After 

refluxing for 12 h, the hot solution was added via cannula to 400 mL of pentane, inducing 

the precipitation of a red-brown powder. After cooling the solution to -50°C, brick-red 

crystals (25.9 g, 90.5%) were isolated: IH (THF-ds) 07.63 (d, 2, J = 8.06, Hm), 6.74 (t, 

1, J = 7.69, Hp), 4.62 (septet, 2, J = 6.59, CHMe2), 1.37 (d, 12, J = 6.59, CHMe2); 13C 

(THF-ds) 0 156.3 (Cipso), 146.1 (Co), 135.0 and 122.7 (Cm and Cp), 28.2 (CH(CH3h), 

26.4 (CH(CH3h). 
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W CI4[N -2,6-C6H3-(i-Pr)z] (THF) 

Brick-red W[N-2,6-C6H3-(i-PrhlC14 (3.02 g, 6.03 mmol) was dissolved in 10 mL 

of THF and 90 mL of Et20. After the solution was filtered, recrystallization at -50°C gave 

feathery green crystals (2.58 g, 74.7%): IH (CD2Cl2) (57.59 (d, 2, J = 7.81, Hm), 6.71 

(t, 1, J = 7.81, Hp), 4.74 (m, 4, THF), 4.58 (septet, 2, J = 6.59, CHMe2), 2.17 (m, 4, 

THF), 1.40 (d, 12, J = 6.59, CHMe2); 13C (CD2Cl2) (5 156.3 (Cipso), 145.7 (Co), 134.7 

and 122.1 (Cm and Cp), 74.1 (THF), 27.8 (CH(CH3h), 26.3 (CH(CH3h), 26.1 (THF). 

Anal. Ca1cd for (C16H2SCI4NOW): C, 33.54; H, 4.40; N, 2.44. Found: C, 33.72; H, 

4.35; N, 2.57. 

Trimethylphosphine (12.0 mL, 116 mmol, 3.87 equiv) was vacuum-distilled into a 

flask equipped with a teflon Kontes valve and then transferred via cannula into a 150 mL 

THF suspension of WC4[N-2,6-C6H3-(i-Prhl. The suspension was refluxed for 13.5 h 

and allowed to cool. An additional 120 mL ofTHF was then added in order to dissolve all 

of the product, and the solution was filtered off of the white precipitate. Brown crystals 

formed as the solution was slowly cooled to -50°C. Isolation of 4 crops yielded 16.7 g 

(90.1%) of product. Anal. Calcd for (C18H3SCI3NP2W): C, 35.00; H, 5.71; N, 2.27. 

Found: C, 34.72; H, 5.70; N, 2.14. 

WCI2(N-2,6-C6H3-Me2)(PEt2Phh (1) 

Diethylphenylphosphine (14.4 mL, -3.5 equiv) was added via syringe to a green 

solution of WCI4(N-2,6-C6H3-Me2)·Et20 (12.25 g, 24.0 mmol) in 140 mL of benzene. 

The resulting brown solution was transferred via cannula onto a 1 % sodium amalgam (1.99 

g Na, 86.6 mmol) and stirred for 11.5 h. The spent amalgam was allowed to settle and the 

solution was transferred via cannula into a septum-covered centrifuge tube that had been 

previously evacuated and back-filled with argon. After being centrifuged, the solution was 
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transferred via cannula into another flask. The spent amalgam was washed twice with a 

total of 165 mL of benzene and the resulting solution was also centrifuged. The combined 

solvent was then removed in vacuo and the product was washed 3 times with a total of 240 

mL of pentane. A tan powder (11.31 g, 53%) was obtained: 1 H NMR (C6D6) 8 7.4-6.5 

(m, 18, Haryl), 3.21 (m, 2, P(CH2CH3hPh), 2.59 (m, 2, P(CH2CH3hPh), 2.22 (br s, 6, 

Ar: Me), 2.17-1.84 (m, 8, P(CH2CH3hPh), 1.39 (m, 6, P(CH2CH3hPh), 0.74 (m, 12, 

P(CH2CH3hPh); l3C NMR (C6D6) 8 156.5 (Ar: Cipso), 141.5 (t, JCp = 15.4, Cipso of 

mutually trans PEt2Ph's), 138.0 (d, JCp = 29.4, Cipso of PEt2Ph trans to CI), 135.2 (br s, 

Ar: Co), 133.3 (d, JCp = 7.0, Co of PEt2Ph trans to CI), 131.6 (t, JCp = 3.8, Co of 

mutually trans PEt2Ph's), 129.1 and 128.4 (Ar: Cm, and Cp of mutually trans PEt2Ph's), 

128.6 (Cp of PEt2Ph trans to CI), 128.0 (t, JCp = 3.5, Cm of mutually trans PEt2Ph's), 

127.8 (d, JCp = 7.5, Cm of PEt2Ph trans to CI), 123.8 (Ar: Cp ), 27.5 (d, Jcp = 25.6, 

P(CH2CH3hPh trans to CI), 21.4 (Ar: Me), 18.1 (t, JCp = 11.0, mutually trans 

P(CH2CH3hPh's), 15.8 (t, JCp = 11.9, mutually trans P(CH2CH3hPh's), 11.4 (d, JCp 

= 7.7, P(CH2CH3hPh trans to CI), 8.3 and 8.0 (mutually trans P(CH2CH3hPh's); 31p 

NMR (C6D6) 8 -6.9 (s, Jpw = 356, PEt2Ph trans to CI), -9.2 (s, Jpw = 295, mutually 

trans PEt2Ph's). 

WCI2(NPh)[P(OMehb (2) 

Benzene (210 mL) was added to olive-green WCI4(NPh) (20.85 g, 50.02 mmol). 

Subsequent addition of 24 mL of P(OMeh to the WCI4(NPh) suspension resulted in the 

formation of a green solution, which was then transferred via cannula onto a 1 % sodium 

amalgam (4.15 g Na). After stirring for 27 minutes, the solution turned purple, and the 

mixture was then allowed to settle. The purple solution was transferred via cannula into 

another Schlenk flask. After the spent amalgam was washed with 90 mL of benzene, 

benzene and excess P(OMeh were removed in vacuo. The resulting residue was dissolved 

in 200 mL of THF, the solution was filtered, and THF was then removed in vacuo. The 
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remaining purple powder was washed with 100 mL of pentane and dried in vacuo (28.60 

g,79.6%): IH NMR (CD2CI2) 8 7.25-7.17 (m, 5, Haryl), 3.65 (t, 18, JHP = 5.4, 

mutually trans P(OMeb's), 3.63 (d, 9, JHP = 10.5, P(OMe)3 trans to CI); l3C NMR 

(CD2Cl2) 8 156.6 (Cipso), 128.6 (Ar: Cm), 126.1( Ar: Co), 125.7 (Ar: Cp), 53.3 (d, Jcp = 

6.6, P(OMeb trans to CI), 52.9 (t, Jcp = 2.6, mutually trans P(OMeb's); 31p NMR 

(C()I)6) 8 141.1 (t, Jpp = 22, Jpw = 564, P(OMeb trans to CI), 129.3 (d, Jpp = 22, Jpw = 

454, mutually trans P(OMeb's). Anal. Calcd for (ClSH32ChN09P3W): C, 25.09; H, 

4.49; N, 1.95. Found: C, 24.82; H, 4.37; N, 1.99. 

WCI2(N-2,6-C6H3-Me2HP(OMebb (3) 

Trimethylphosphite (25.5 mL) was added to a benzene (210 mL) solution of 

WCI4(N-2,6-C6H3-Me2)(THF) (25.86 g, 50.0 mmol). The resulting green solution was 

transferred via cannula onto a 1 % sodium amalgam (4.20 g N a), and the mixture was 

stirred until it turned purple (1 h). After the mixture settled, the solution was transferred 

via cannula into another Schlenk flask, and then the spent amalgam was washed with a total 

of 120 mL of benzene. After benzene and excess P(OMe)3 were removed in vacuo, the 

remaining solid was dissolved in 180 mL of THF, and the solution was filtered. Next, 

THF was removed in vacuo, and the product was washed with 100 mL of pentane and 

dried in vacuo to give 29.86 g (80.0%) of gray powder: IH NMR (CD2Cl2) 8 6.99 (t, 1, J 

= 7.6, Ar: Hp), 6.87 (d, 2, J = 7.6, Ar: Hm), 3.71 (t, 18, JHP = 5.2, mutually trans 

P(OMeb's), 3.68 (d, 9, JHP = 10.5, P(OMeb trans to CI), 2.46 (s, 6, Ar: Me); l3C NMR 

(CD2Cl2) 8 154.0 (Ar: Cipso), 137.9 (Ar: Co), 127.9 (Ar: Cm), 125.8 (Ar: Cp ), 53.2 (d, 

Jcp = 7.3, P(OMeb trans to CI), 52.8 (t, JCp = 2.6, mutually trans P(OMe)3's), 19.2 (Ar: 

CH3); 31p NMR (C6D6) 8 144.8 ( t, Jpp = 19.5, JpW = 568, P(OMeb trans to CI), 127.8 

(d, Jpp = 19.5, Jpw = 456, mutually trans P(OMeb's). Anal. Calcd for 

(C17H36Cl2N09P3W): C, 27.37; H, 4.86; N, 1.88. Found: C, 27.48; H, 4.68; N, 1.87. 
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WCI2[N -2,6-C6H3-U-Prhl [P(OMebb (4) 

Brick-red WC4[N-2,6-C6H3-(i-Prhl (25.04 g, 49.99 mmol) was suspended in 

210 mL of benzene. Upon addition of 24.8 mL of P(OMe)) to the suspension, a green 

solution was formed. The solution was transferred via cannula onto a 1 % sodium amalgam 

(4.15 g Na), and the mixture was stirred until it turned purple (45 min). After allowing the 

mixture to settle, the solution was transferred via cannula into another Schlenk flask, and 

the spent amalgam was washed with 70 mL of THF. The combined solvents and excess 

P(OMe)) were removed in vacuo, and the solid residue was dissolved in 250 mL of THF 

and filtered twice. After removing THF in vacuo, the purple-gray powder was washed 

with 100 mL of pentane and dried in vacuo to give 31.17 g (77.7%) of product: IH NMR 

(C6D6) 8 7.06 (2, Ar: Hm ), 7.01 (t, 1, J = 5.7, Ar: Hp), 4.51 (septet, 2, J = 6.6, CHMe2), 

3.67 (t, 18, JHP = 5.2, mutually trans P(OMe))'s), 3.58 (d, 9, JHP = 10.5 Hz, P(OMe)) 

trans to CI), 1.32 (d, 12, J = 6.6, CHMe2); 13C NMR (CD2Ci2) 8 150.9 (Ar: Cipso), 

147.9 (Ar: Co), 126.5 (Ar: Cp ), 123.5 (Ar: Cm), 53.5 (d, Jcp = 7.3, P(OMe)3 trans to 

CI), 52.9 (t, JCp = 2.2, mutually trans P(OMe))'s), 27.3 (CH(CH3h), 25.1 (CH(CH3h); 

31p NMR (C6D6) 8 143.4 (t, Jpp = 20, Jpw = 566, P(OMe)) trans to Cl), 128.0 (d, Jpp = 

20, Jpw = 456, mutually trans P(OMe))'s). Anal. Calcd for (C21H44Ci2N09P3W): C, 

31.44; H, 5.53; N, 1.75. Found: C, 31.54; H, 5.52; N, 1.68. 

W(PhC=CPh)CI2(N-2,6-C6H3-Me2)(PEt2Phh (5) 

A 7 mL Et20 solution of PhC=CPh (314 mg, 1.76 mmol) was added to 1.54 g 

(1.76 mmol) of WCI2(N-2,6-C6H3-Me2)(PEt2Ph)) (1). After the solution was stirred for 

11.5 h, 30 mL of pentane was added in order to precipitate the product. The suspension 

was filtered, the light tan powder was washed with an additional 15 mL of pentane and 

then dried in vacuo to yield 674 mg (43.2%) of 5: IH NMR (C6D6) 8 7.74-6.64 (m, 23, 

Haryl), 3.44 (m, 2, P(CH2CH3hPh), 2.99 (s, 3, NAr: Me), 2.62 (m, 2, P(CH2CH3hPh), 

2.22 (m, 2, P(CH2CH3hPh), 2.08 (s, 3, NAr: Me), 1.99 (m, 2, P(CH2CH3hPh), 1.38 



59 

(quintet, 6, J == 7.52, P(CH2CH3)(CH2CH3),Ph), 0.52 (quintet, J == 7.18, P(CH2CH3)­

(CH2CH3),Ph); l3C NMR (CD2Cl2) 0 157.3 (t, JCp == 11.57, PhC=CPh), 153.6 (t, JCp = 

2.33, NAr: Cipso), 144.2 (PhC=CPh: Cipso), 143.0 and 139.7 (NAr: Co, Co'), 133.3 (t, 

JCp = 20.11, PEt2Ph: Cipso), 130.6 (t, JCp = 3.81, PEt2Ph: Co), 128.5 (PEt2Ph: Cp ), 

129.1, 128.1, and 127.9 (NAr: Cm, Cm', Cp ), 127.5 (PhC=CPh: Cm), 127.4 (t, Jcp = 

4.28, PEt2Ph: Cm), 126.0 (PhC=CPh: Co), 125.2 (PhC=CPh: Cp ), 21.5 (NAr: Me), 19.9 

(NAr: Me'), 16.6 (t, JCp = 12.69, P(CH2CH3)(CH2CH3),Ph), 14.9 (t, JCp = 12.10, 

P(CH2CH3)(CH2CH3),Ph), 8.0 (P(CH2CH3)(CH2CH3),Ph), 7.3 (t, JCp = 3.10, 

P(CH2CH3)(CH2CH3),Ph); 31p NMR (C6D6) 06.80 (Jpw = 203). 

W(H2C=CH2)CI2[N-2,6-C6H3-(i-Prh][P(OMehh (6) 

Purple WCl2[N-2,6-C6H3-(i-PrhHP(OMe)313 (4) (1.56 g, 1.79 mmol) was 

dissolved in 20 mL of toluene, and the resulting solution was stirred under 1 atm of 

ethylene for 0.5 h at room temperature. Orange crystals precipitated from the toluene 

solution at -50°C, and subsequent addition of the supernant to 60 mL of rapidly stirring 

pentane yielded a golden yellow powder. A total of 0.80 g (64%) was isolated: IH NMR 

(C6D6) 0 6.87-6.89 (s, 3, Haryl), 3.95 (br m, 2, CH(CH3h), 3.55 (t, 18, J = 5.19, 

P(OMe)3), 3.25 (m, 2, HH'C=CHH', protons anti to the imido ligand), 2.85 (m, 2, 

HH'C==CHH', protons syn to the imido ligand), 1.23 (d, 12, J = 6.75, CH(CH3h); l3C 

NMR (CD2Cl2) 0 150.0 (t, JCp = 2.9, JCW = 33, Ar: Cipso), 149.8 (Ar: Co), 127.5 (Ar: 

Cp ), 123.5 (Ar: Cm ), 53.7 (JCP = 3.1, P(OMe)3), 53.6 (JCP = 2.9, P(OMe)3), 42.3 (t, 

JCH = 160.6, Jcw = 29, H2C=CH2), 26.9 (CH(CH3h), 24.4 (CH(CH3h); 31p NMR 

(CD2Cl2) 0 120.48 (JPW = 385.7, P(OMeh); NOEDS (C6D6) irradiation at 3.95 ppm, 0 

3.55 (4.5% NOE), 2.85 (8.1 % NOE), 1.23 (2.3% NOE); irradiation at 3.25 ppm, 0 2.85 

(20.2% NOE); irradiation at 2.85 ppm, 0 3.95 (8.0% NOE), 3.55 (0.3% NOE), 3.25 

(20.6% NOE), 1.23 (0.2% NOE); irradiation at 1.23 ppm, 0 3.95 (23.9% NOE), 3.55 
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(1.3% NOE), 2.85 (1.2% NOE). Anal. Calcd for (ClsH3SCI2N06P2W): C, 31.88; H, 

5.20; N, 2.07. Found: C, 32.11; H, 5.37; N, 2.05. 

W(PhC=CH)CI2(N-2,6-C6H3-Me2)[P(OMe}Jh (7) 

A 15 mL benzene solution of phenylacetylene (1.09 g, 10.7 mmol) was transferred 

via cannula onto a 40 mL purple solution of WCI2(N-2,6-C6H3-Me2)(P(OMe)3)3. The 

solution turned golden brown after stirring for 1 h at 25°C and then for 1 h at 44°C. The 

solvent and free P(OMeh were removed in vacuo to yield a yellow powder, which was 

moderately soluble in Et20 and toluene. Recrystallization from these solvents yielded 6.45 

g (85.8%) of yellow product: IH NMR (C6D6) 0 10.43 (dd, 1, JHP = 16.85, 5.62, 

PhC=CH), 7.74 (d, 2, J = 7.57, PhC=CH: Co), 7.26 (t, 2, J = 7.81, PhC=CH: Cm), 7.05 

(t, 1, J = 7.57, PhC=CH: Cp ), 6.68 (d, 2, J = 7.81, NAr: Cm), 6.63 (t, 1, J = 7.57, NAr: 

Cp ), 3.58 (dd, 9, J = 9.3, 0.98, P(OMeh), 3.42 (dd, 9, J = 9.8, 0.98, P(OMe)3), 2.6 (br 

s, 6, NAr: Me2); l3C NMR (CD2Cl2) 0 153.1 (t, J = 2.9, NAr: Cipso), 148.6 (dd, Jcp = 

21.3,6.6, PhC=CH), 142.6 (t, PhC=CH: Cipso), 140.8 (br s, NAr: Co), 135.6 (m, JCH = 

217.6, Jcp = 28.2, 7.7, PhC=CH), 128.5, 127.9, 127.8, 127.5, and 126.7 (NAr: Cm, Cp 

and PhC=CH: Co, Cm, Cp), 54.4 (d, Jcp = 6, P(OMeh), 52.9 (d, Jcp = 6, P(OMe))), 

20.0 (NAr: Me2); 31p NMR (CD2Cl2) 0 118.8 (Jpw = 354),117.6 (Jpw = 366); NOEDS 

(C~6) irradiation at 10.43, 0 3.58 (1.2% NOE), 2.6 (2.2% NOE); irradiation at 3.58, 0 

10.43 (7.3% NOE); irradiation at 3.42, no NOE's; irradiation at 2.6, 0 10.43 (6.9% 

NOE), 7.74 (5.8% NOE), 6.68 (12.2% NOE), 3.58 (0.5% NOE), 3.42 (0.6% NOE). 

Anal. Calcd for (C22H33Cl2N06P2W): C, 36.49; H, 4.59; N, 1.93. Found: C,36.78; 

H, 4.51; N, 1.95. 

Observation of W(PhC=CH)CI2(N-2,6-C6H3-Me2)[P(OMe}Jl (8) 

Even in concentrated solutions (tol-d8, C6D6, THF-d8, and CD2CI2), 7 was 

observed to be in equilibrium with the monophosphite adduct 8. After equimolar amounts 
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of CuCl and 7 were dissolved in CD2Cl2 for 24 h, only 8 was observed: 1 H NMR 

(CD2Cl2) 8 10.72 (d, 1, JHP = 20.03, JHW = 9.71, PhC=CH), 7.81 - 6.75 (m, 8, Haryl), 

3.85 (d, 9, JHP = 10.71, W(P(OMe)3», 3.67 (d, 9, JHP = 12.59, Cu(P(OMeb», 2.32 (s, 

6, NAr: Me2); 13C NMR (CD2Cl2, selected Caryl only) 8 161.3 (d, JCp = 7.55, 

PhC=CH), 153.1 (d, JCp = 3.49, NAr: Cipso), 139.9 (d, Jcp = 2.14, NAr: Co), 138.4 

(m, PhC=CH), 136.6 (Jcp = 3.78, PhC=CH: Cipso), 54.0 (d, Jcp = 6.58, W(P(OMe)3», 

51.2 (Cu(P(OMeb», 19.14 (NAr: Me2); 31p NMR (CD2Cl2) 8130.44 (Jpw = 405). 

3,3-Diphenylcyclopropene (420 mg, 2.19 mmol) was dissolved in 15 mL of 

toluene and then added via cannula to a 90 mL toluene solution of WCl2(NPh) (PMePh2b 

(2.01 g, 2.13 mmol). After the reaction mixture was stirred for 9 h, all but -10 mL of the 

toluene was removed in vacuo. Addition of 30 mL of pentane and filtration yielded 1.45 g 

(76.5%) of yellow powder, which was dried under vacuum: IH NMR (CD2Cl2) 8 7.68-

6.59 (m, 33, Haryl), 5.51 (d, 2, NPh: Hm ), 3.75 (t, 2, J = 5.63, HC=CH), 2.47 (t, JHP = 

4.59, PMePh2); l3C NMR (CD2Cl2; only select Caryl chemical shifts are listed) 8 153.2 

and 153.1 (NAr: Cipso and CPhPh': Cipso), 144.6 (CPhPh': C'ipso), 134.1 (PMePh2: 

Cipso), 130.5 (PMePh2: Cipso), 72.4 (t, JCH = 195, JCp = 9, Jcw = 45, HC=CH), 69.7 

(CPh2), 12.1 (t, JCp = 16, PMePh2); 31p NMR (CD2Cl2) 84.7 (Jpw = 208, PMePh2). 

A 6 mL Et20 solution of 3,3-diphenylcyclopropene (154 mg, 0.803 mmol) was 

added to a purple suspension of WCl2(NPh)[P(OMe)3h (538 mg, 0.749 mmol) in 6 mL 

of Et20. A yellow precipitate formed as the reaction mixture was stirred for 23 h. Pentane 

(10 mL) was added to the suspension, the reaction mixture was filtered, and the pale 

yellow powder (477 mg, 80.9%) was dried in vacuo: IH NMR (CD2Cl2) 87.22-6.67 (m, 

13, Haryl), 6.31 (d, 2, J = 6.74, NPh: Hm ), 4.50 (t, 2, J = 6.01, HC=CH), 3.92 (t, 18, 
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JHP = 5.24, P(OMeh); 13C NMR (CD2Cl2) 8 152.9 (CPhPh': Cipso), 152.8 (t, JCp = 3.3, 

NPh: Cipso), 143.1 (CPhPh': C'ipso), 131.7, 128.1, 127.5, 127.2 and 127.0 (NPh: Cm 

and CPhPh': Co, C'o, Cm, C'm), 126.1, 125.9 and 125.4 (NPh: Cp and CPhPh': Cp, 

C'p), 125.8 (t, JCp = 3.3, NPh: Co), 64.8 (t, JCH = 193, Jcp = 16, Jcw = 37, HC=CH), 

64.3 (CPh2), 54.4 (t, JCp = 3.3, P(OMe))); 31p NMR (CD2Cl2) 8 118.1 (Jpw = 364); 31p 

(to1-dB) 8 117.6 (Jpw = 361). 

A 30 mL Et20 solution of 3,3-dipheny1cyclopropene (392 mg, 2.04 mmol) was 

added via cannula to a 1.52 g (2.04 mmol) suspension of WCI2(N-2,6-C6H3-

Me2)[P(OMe)3b in 120 mL of Et20. After being stirred for several h, the reaction mixture 

was filtered, and the yellow powder (668 mg, 40.2%) was dried in vacuo and stored at -30 

°C: IH NMR (CD2Cl2) 8 7.35 - 6.49 (m, 13, Haryl), 4.74 (t, 2, J = 5.79, HC=CH), 3.99 

(t, 18, J = 4.64, P(OMe))), 2.22 (s, 6, NAr: Me); l3C NMR (CD2Ci2) 8 153.2 (Jcw = 

5.4, CPhPh': Cipso), 151.2 (t, JCp = 5.4, NAr: Cipso), 142.1 (CPhPh': C'ipso), 136.1 

(NAr: Co), 132.3, 127.7, 127.5, 127.0, and 126.6 (NAr: Cm and CPhPh': Co, C'o, Cm, 

C'm), 125.6, 125.5 and 125.4 (NAr: Cp and CPhPh': Cp, C'p), 66.7 (Jcw = 2.9, CPh2), 

66.2 (t, JCH = 194, JCp = 15, JCW = 40, HC=CH), 55.3 (t, JCp = 4, P(OMe))), 19.7 

(NAr: Me2); 31 P NMR (CD2CI2) 8 109.8 (Jpw = 379, P(OMe)3). Anal. Calcd for 

(C29H39Cl2N06P2W): C, 42.77; H, 4.83; N, 1.72. Found: C, 42.63; H, 4.73; N, 1.48. 

A 20 mL Et20 solution of ketalcyclopropene (247 mg, 2.20 mmo!) was added via 

cannula to a suspension ofWCI2(NPh)(PMePh2)) (2.01 g, 2.13 mmo!) in a mixture of 130 

mL of Et20 and 50 mL of toluene. After being stirred for 12 h, the reaction mixture was 

filtered to yield 643 mg (35.2%) of yellow powder, which was dried under vacuum: IH 

NMR (CD2CI2) 8 7.67-6.86 (m, 25, Haryl), 3.74 (t, 2, J = 5.07, OCH2), 3.66 (t, 2, J = 
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5.15, OCH2), 3.30 (t, 2, J = 5.71, HC=CH), 1.69 (quintet, 2, J = 5.22, CH2CH2CH2); 

13C NMR (CD2Cl2) 154.1 (NPh: Cipso), 134.2 (t, JCp = 23.1, PMePhPh': Cipso), 133.8 

(t, JCp = 4.4, PMePhPh': Co), 132.9 (t, JCp = 4.4, PMePhPh': C'o), 131.4 (t, JCp = 

21.6, PMePhPh': Cipso), 130.1 (2, PMePhPh': Cp, C'p), 128.1 (t, Jcp = 4.8, PMePhPh': 

Cm) 128.0 (t, Jcp = 4.4, PMePhPh': C'm), 127.8 and 127.5 (NPh: Co, Cm), 127.2 (NPh: 

Cp ), 106.4 (HC=CHC02), 67.5 (t, JCH = 188, Jcp = 9.2, Jcw = 41.6, HC=CH), 67.0 

(OCH2), 66.4 (OCH2), 26.3 (CH2CH2CH2), 12.0 (t, Jcp = 15.8, PMePh2); 31p NMR 

(CD2Cl2) 85.1 (Jpw = 212, PMePh2). Anal. Calcd for (C38H39Cl2N02P2W): C,53.17; 

H, 4.58; N, 1.63. Found: C, 52.78; H, 4.38; N, 1.22. 

An 8 mL Et20 solution of ketalcyclopropene (220 mg, 1.96 mmol) was added to 

1.10 g (1.53 mmol) of purple WCI2(NPh)[P(OMe»b. The suspension was stirred for 23 

h, washed with 75 mL of pentane, and then filtered. The pale yellow powder (985 mg, 

91.5%) was dried in vacuo and stored at -30°C in the drybox freezer. (This compound 

decomposed to a black, sticky oil when stored at room temperature under nitrogen for 5 

months.): IH NMR (CD2Cl2) 87.25 - 7.09 (m, 5, Haryl), 4.14 (t, 2, J = 5.98, HC=CH), 

4.03 (t, 2, J = 5.39, OCH2), 3.86 (t, 18, J = 5.32, P(OMe»), 3.65 (t, 2, J = 5.22, 

OCH2), 1.70 (quintet, 2, J = 5.23, CH2CH2CH2); 13C NMR (CD2Cl2) 8 153.0 (t, JCp = 

3.1, NPh: Cipso), 127.5 (NPh: Cm), 126.7 (NPh: Cp ), 126.4 (t, Jcp = 2.8, NPh: Co), 

103.5 (HC=CH-C02), 66.5 (OCH2), 65.2 (OCH2), 59.9 (t, JCH = 209.9, Jcp = 15.3, 

Jcw = 36.6, HC=CH), 52.3 (t, Jcp = 2.0, P(OMe»), 25.7 (CH2CH2CH2); 31p NMR 

(CD2Cl2) 8 120 (Jpw = 361, P(OMe»); IH NMR (C6D6) 8 7.47 (d, 2, J = 7.58, NPh: 

H o ), 6.98 (t, 2, J = 7.83, NPh: Hm ), 6.81 (t, 1, J = 7.51, NPh: Hp), 4.81 (t, 2, JHP = 

5.77, JHW = 1.74), HC=CH), 3.96 (t, 2, J = 5.42, OCH2 anti to tungsten), 3.72 (t, 2, J = 

5.52, OCH2 syn to tungsten), 3.60 (t, 18, J = 5.31, P(OMe)3), 1.46 (quintet, 2, J = 5.39, 

CH2CH2CH2); NOEDS (C6D6) irradiation at 7.47,8 6.98 (9.2% NOE), 4.81 (0.8% 
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NOE), 3.96 (1.5% NOE), 3.72 (2.0% NOE), 3.60 (1.2% NOE), 1.46 (0.9% NOE); 

irradiation at 4.81, no NOEs; irradiation at 3.96,84.81 (5.2% NOE), 3.60 (0.4% NOE), 

1.46 (3.7% NOE); irradiation at 3.72, 0 7.47 (4.5% NOE), 3.96 (1.5% NOE), 1.46 

(3.3% NOE); irradiation at 1.46,03.96 (3.3% NOE), 3.72 (1.1 % NOE). Anal. Calcd for 

(ClgH31Cl2NOgP2W): C, 30.62; H, 4.42; N, 1.98. Found: C, 29.86; H, 4.26; N, 1.91. 

A 10 mL Et20 solution of ketalcyclopropene (458 mg, 4.08 mmol) was added to 

3.00 g (4.02 mmol) of WCI2(N-2,6-C6lI3-Me2)[P(OMeb13, and the resulting suspension 

was stirred for 13 h. Removal of the solvent and free P(OMeb in vacuo yielded a pale 

yellow powder, which was washed with one 30 mL portion and one 150 mL portion of 

pentane. The tan product (2.58 g, 87.4%) was dried under vacuum and stored at -30°C in 

the drybox freezer: IH NMR (CD2Cl2) 0 7.02 - 6.78 (m, 3, Haryl), 4.27 (t, 2, J = 5.91, 

HC=CH), 3.98 (t, 2, J = 5.32, OCH2), 3.89 (t, 2, J = 5.15, P(OMe)3), 2.50 (s, 6, NAr: 

Me2), 1.60 (quintet, 2, J = 5.31, CH2CH2CH2); l3C NMR (CD2Cl2) 0 150.9 (t, JCp = 2, 

Jcw = 16, NAr: Cipso), 138.3 (NAr: Co), 126.9 (NAr: Cm), 126.1 (NAr: Cp ), 104.0 

(HC=CH-C02), 66.7 (OCH2), 64.9 (OCH2), 61.5 (t, JCH = 193.7, Jcp = 14.9, Jcw = 

31.2, HC=CH), 54.5 (t, Jcp = 3.45, P(OMe)3), 25.8 (CH2CH2CH2), 18.8 (NAr: Me2); 

31p NMR (CD2Cl2) 0 113 (Jpw = 376, P(OMe)3). Anal. Calcd for (C20H3SCl2NP20gW): 

C, 32.72; H, 4.81; N, 1.91. Found: C, 33.01; H, 4.71; N, 1.59. 

A 30 mL benzene solution of 3,3-diphenylcyclopropene (1.84 g, 9.55 mmol) was 

added via cannula to a 60 mL benzene solution of WCI2[N-2,6-C6H3-(i-Prh][P(OMeb13 

(7.12 g, 8.88 mmol), and the reaction mixture was then stirred for 2 h at 80°C. The 

solvent was removed in vacuo, and the resulting orange oil was left under dynamic vacuum 

for an additional 12 h. The product was then dissolved in 95 mL of THF and the resulting 
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orange solution was filtered. After all but 10 mL of THF was removed in vacuo, addition 

of 150 mL of pentane yielded 5.50 g (72.1 %) of orange powder: IH NMR [tol-d8, r.t., 90 

MHz (broad multiplets were observed for the CHMe2 protons at higher fields due to slow 

rotation about the arylimido ligand)] 8 12.85 (d of t, 1, JHH = 12.75, JHP = 6.37, Ha), 

10.23 (d of t, 1, JHH = 12.65, JHP = 2.45, H~), 7.6 - 7.0 (m, Haryl), 4.56 (br m, 2, 

CHMe2), 3.58 (t, 18, JHP = 5.40, P(OMeb), 1.15 (d, 12, J = 6.37, CHMe2); IH NMR 

(CD2Cl2, 300 Mz, -80°C) 8 12.6 (d of t, 1, Ha), 9.36 (d, 1, JHH = 12.02, H~), 7.44-

7.00 (m, 13, Haryl), 4.30 (m, 1, CHMe2), 3.91 (m, 1, CH'Me2), 3.65 (t, 18, P(OMeh), 

1.09 (d, 6, J = 5.82, CHMe2), 0.65 (d, 6, J = 5.35, CHMe'2); 13C NMR (CD2Cl2) 8 

276.8 (t, JCH = 129.9, JCp = 18.2, Jcw = 122.9, Ca ), 150.5 (br s, NAr: Co), 149.0 (t, 

JCp = 3.0, NAr: Cipso), 142.8 (t, JCp = 5.9, Cy), 141.1 (t, JCp = 2.3, CPhPh': Cipso), 

139.5 (CPhPh': Cipso), 139.0 (t, JCH = 158.7, JCp = 5.8, C~), 131.6 (CPhPh': Co), 

129.7 (CPhPh': Co), 128.5 (CPhPh': Cp ), 128.3 (CPhPh': Cm), 128.2 (NAr: Cm), 128.1 

(CPhPh': Cp ), 128.0 (CPhPh': Cm), 123.1 (NAr: Cp ), 53.3 (t, Jcp = 2.3, P(OMebL 

27.4 (CHMe2), 24.5 (CHMe2); 31p NMR (tol-d8) 8 130.5 (Jpw = 439, P(OMe)3); 

NOEDS (C6l)6) irradiation at 12.85 ppm, 8 10.23 (5.9% NOE), 4.56 (12.4% NOE), 1.15 

(2.8% NOE); irradiation at 10.23,8 12.85 (3.3% NOE), 1.15 (1.9% NOE); irradiation at 

4.56 ppm, 8 12.85 (19.2% NOE), 1.15 (3.3% NOE); irradiation at 1.15,8 12.85 (6.6% 

NOE), 4.56 (21.6% NOE). Anal. Calcd for (C33ILnCl2N06P2W): C, 45.54; H, 5.44; 

N, 1.61. Found: C, 44.96; H, 5.34; N, 1.58. 

W(=CH-CH=CPh2][N-2,6-C6H3-(i-Prh][OCMe(CF3hh[P(OMe}J] (16) 

A 30 mL THF solution of (CF3hMeCOLi (878 mg, 4.67 mmol) was cooled to -78 

°C and added via cannula over a period of 15 min to a 30 mL THF solution of W[=CH­

CH=CPh2]Ch[N-2,6-C6H3-(i-PrhHP(OMeh] (2.02 g, 2.35 mmol). After the addition 

was complete, the orange solution was allowed to warm to room temperature as it was 

stirred for a total of7.5 h. After the solvent and free P(OMe)3 were removed in vacuo, the 
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yellow powder was dissolved in Et20, filtered, and recrystallized from Et20 at -SO °C 

(1.56 g, 64.0%): IH NMR (CD2Cl2) Anti Rotamer: 0 12.25 (dd, JHH = 14.41, JHP = 

8.06, Ha ), 8.72 (d, J = 14.16, H~), 7.51 - 7.02 (m, 13, Haryl), 3.74 (septet, 1, J = 6.59, 

CHMe2), 3.60 (d, 9, JHP = 10.25, P(OMeb), 3.53 (m, 1, C'HMe2, overlaps with Syn: 

P(OMe)3), 1.88 (s, 3, OCMe(CF3h), 1.35 (s, 3, OC'Me(CF3h), 1.27 (d, 3, J = 6.84, 

CHMeMe'), 1.23 (d, 3, J = 6.34, CHMeMe'), 1.09 (d, 3, J = 6.83, C'HMeMe'), 1.00 

(d, 3, J = 6.83, C'HMeMe'); Syn Rotamer: 0 11.62 (dd, 1, JHH = 11.00, JHP = 5.13, 

Ha ), 8.72 (d, 1, H~, overlaps with Anti: H~), 3.53 (d, 9, JHP = 10.25, P(OMeb), 1.73 

(s, 3, OCMe(CF3h), 1.48 (s, 3, OC'Me(CF3h), 1.3 - 1.2 (m, 12, CHMe2, overlaps with 

Anti: CHMe2); 13C NMR (CD2Cl2) Anti Rotamer: 0264.3 (d, JCH = 150.6, JCp = 20.8, 

Jcw = 153.4, Ca), 151.0 (d, Jcp = 3.0, NAr: Cipso), 147.6 (d, Jcp = 2.5, NAr: Co), 

146.0 (d, Jcp = 2.5, NAr: C'o), 140.3 (d, Jcp = 3.0, CPhPh': Cipso), 138.9 (d, Jcp = 

2.0, CPhPh': Cipso), 136.0 (d, Jcp = 7.1, Cy), 131.3 (CPhPh': Co), 129.2 (CPhPh': 

Co), 128.7 (CPhPh': Cm), 128.6 (d, NAr: Cm), 128.6 (CPhPh': Cp ), 128.5 (CPhPh': 

Cm), 128.4 (d, J = 2.5, NAr: C'm), 128.1 (CPhPh': Cp ), 127.1 (NAr: Cp ), 125.2 (q, JCF 

= 287, OCMe(CF3)(CF3)'), 124.94 (q, JCF = 290, OCMe(CF3)(CF3)'), 124.87 (q, JCF = 

290, OC'Me(CF3)(CF3)'), 124.8 (q, JCF = 188, OC'Me(CF3)(CF3)'), 122.9 (d, J = 6.6, 

C~), 82.1 (septet, JCF = 29.0, OCMe(CF3h), 80.8 (septet, JCF = 28.3, OC'Me(CF3h), 

53.4 (d, Jcp = 7.1, P(OMeb), 29.9 (CHMe2), 28.3 (C'HMe2), 24.0 (CHMe2), 23.54 

(C'HMeMe'), 23.50 (C'HMeMe'), 19.4 (OCMe(CF3h), 17.8 (OCMe(CF3h); Syn 

Rotamer: 256.3 (d, Jcp = 21.7, Ca); 31p NMR (CD2Cl2) Anti Rotamer: 0 147.6 (Jcw = 

476); Syn Rotamer: 0 147.9 (JCW = 481). Anal. Calcd for (C38H44F12NOSPW): C, 

43.99; H, 4.27; N, 1.35. Found: C, 44.22; H, 4.14; N, 1.32. 

w (=C H- C H=C Ph 2)[N -2,6- C6H 3-(i- Pr h]­
[O-2,6-C6H3-U-Prhh[P(OMebh (17) 

A mixture of W(=CH-CH=CPh2)Cl2[N-2,6-C6H3-(i-PrhHP(OMe)3h (3.53 g, 

4.11 mmol) and LiO-2,6-C6H3-(i-Pr2h (1.51 g, 8.17 mmol) was suspended in 40 mL of 
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cold (-78°C) Et20. The solution was allowed to warm to room temperature as it was 

stirred for a total of 1.5 h. The solvent and free P(OMe)3 were removed in vacuo, and then 

the product was dissolved in 120 mL of hexane. The solution was filtered, concentrated to 

-90 mL, and then cooled to yield 2.96 g (70.0%) of a deep yellow powder. Two isomers 

were observed in a 61:39 ratio, and the diagnostic NMR signals are as follows: IH NMR 

(CD2C12) Major Isomer: 0 12.24 (dd, 1, JHH = 11.37, JHP = 6.31, Ha ), 8.89 (d, 1, J = 

11.30, H~); 3.68 (d, 9, JHP = 10.39, P(OMe)3); Minor Isomer: 0 12.38 (dd, 1, JHH = 

14.28, JHP = 7.89, Ha ), 9.32 (d, 1, JHH = 14.55, H~); 3.70 (d, 9, JHP = 10.33, 

P(OMeh); l3C NMR (CD2Cl2) Major Isomer 8 252.9 (d, JCH = 125.4, JCp = 22.2, Jcw 

= 163.8, Ca ), 150.8 (Jcw = 31.1, NAr: Cipso), 53.3 (Jcp = 7.0, P(OMe)3); Minor 

Isomer: 8 258.9 (d, JCH = 152.2, JCp = 20.8, JCW = 156.1, Ca ), 151.6 (Jcw = 35.3, 

NAr: Cipso), 53.2 (JCP = 6.5, P(OMeh); 31p NMR (CD2Cl2) Major Isomer: 8 145.3 (Jpw 

= 459); Minor Isomer 8 146.6 (Jpw = 435). Anal. Calcd for (Cs4HnNOsPW): C,62.97; 

H, 7.09; N, 1.36. Found: C, 61.95; H, 7.17; N, l.37. 

W(=CH-CH=CPh2)CI2(N-2,6-C6H3-Me2)(PEt2Phh (18) 

A 6 mL Et20 solution of 3,3-diphenylcyclopropene (469 mg, 2.44 mmol) was 

added to a Schlenk flask containing 2.02 g (2.31 mmol) of tan WCl2(N-2,6-C6H3-

Me2)(PEt2Phh. The solution was stirred for 0.5 h before 10 mL of pentane was added. 

After the yellow-orange suspension was stirred for an additional 16.5 h, the solvent was 

removed in vacuo. Next, the product was washed with one 25 mL portion and one 50 mL 

portion of pentane in order to remove free PEt2Ph, and then the remaining orange-yellow 

powder (1.66 g, 79.9%) was dried in vacuo: IH NMR (CD2Cl2) Anti Rotamer: 8 12.15 (d 

of t, 1, JHH = 13.1, JHP = 4.4, Ha ), 9.55 (d, 1, J = 13.1, H~), 7.6-6.6 (m, Haryl), 2.5-

2.3 (m, P(CH2CH3hPh), 2.42 (s, 3, NAr: MeMe'), 1.63 (s, 3, NAr: MeMe'), l.2-l.0 

(m, P(CH2CH3hPh); Syn Rotamer: 8 11.89 (d of t, 1, JHH = 13.1, JHP = 4.4, Ha ), 8.72 

(d, 1, JHH = 13.3, Hp), 2.33 (br s, NAr: Me2); l3C NMR (CD2Cl2) Anti Rotamer: 8271.7 
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(t, JCH = 128, JCp = 12.6, Ca.), 151.6 (NAr: Cipso), 140.5 (t, JCp = 4.7, Cy), 138.2 (t, 

JCH = 155.6, JCp = 4.4, C~), 21.0, 20.5 and 19.4 (NArMeMe' and Syn: NArMeMe'), 

17.0 (t, Jcp = 13.4, P(CH2CH3)(CH2CH3)'Ph), 15.6 (t, JCp = 13.0, P(CH2CH3)­

(CH2CH3),Ph), 7.9 (NAr: MeMe'), 7.5 (P(CH2CH3hPh and Syn: P(CH2CH3hPh); Syn 

Rotamer: 8277.9 (t, JCH = 130, JCp = 12.6, Ca.), 150.6 (NAr: Cipso), 141.2 (br m, JCH 

= 157.0, CI3), 139.3 (t, Jcp = 4.2, Cy), 18.1 (t, Jcp = 13.6, P(CH2CH3)(CH2CH3)'Ph), 

16.9 (t, JCp = 15.5, P(CH2CH3)(CH2CH3),Ph); 31p NMR (CD2Cl2) Anti Rotamer: 8 

15.3 (JPW = 266); Syn Rotamer: 8 16.2 (JPW = 263); NOEDS (CD2Cl2) Anti Rotamer: 

irradiation at 12.15 ppm, 89.55 (3.6% NOE), 2.58-2.19 (1.8% NOE), 1.63 (5.1 % NOE), 

1.2-1.0 (1.8% NOE); irradiation at 9.55 ppm, 8 12.15 (1.0% NOE); irradiation at 1.63 

ppm, 8 12.15 (19.7% NOE); Syn Rotamer: irradiation at 8.72 ppm, 8 2.33 (0.3% NOE); 

irradiation at 2.33 ppm, 8 8.72 (13.9% NOE). Anal. Calcd for (C34H47N02P2W): C, 

57.48; H, 5.72; N, 1.56. Found: C, 56.36; H, 5.71; N, 1.57. 

Observation of W(=CH-CH=CPh2)CI2(N-2,6-C6"3-Me2)[P(OMebh (19) 

The cyclopropene complex W(CH=CHCPh2)Cl2(N-2,6-C6H3-Me2)[P(OMe)3h 

(205.3 mg) was dissolved in 450 ilL of CD2Cl2. In less than 24 h, complete conversion to 

the corresponding vinylcarbene complex (an 87: 13 mixture of rotomers) was observed by 

NMR spectroscopy. No other products were observed: 1 H NMR (CD2Ci2) Major 

Rotomer: 8 12.88 (dt, 1, JHH = 12.99, JHP = 6.24, Ha.), 9.62 (d, 1, J = 12.93, H~), 7.5 

- 6.8 (m, 13, Haryl), 3.73 (t, 18, JHP = 5.48, P(OMeb), 2.55 (s, 6, NAr: Me2); Minor 

Rotomer: 8 12.41 (dt, 1, JHH = 13.28, JHP = 6.69, Ha.), 8.80 (d, 1, J = 14.54, H~), 2.75 

(s, 6, NAr: Me2); l3C NMR (CD2Cl2) Major Rotamer: 8 276.6 (t, JCH = 129.6, JCp = 

17.6, Jcw = 116.8, Ca.), 151.9 (t, JCp = 3.0, Jcw = 35.6, NAr: Cipso), 142.8 (t, JCp = 

5.6, Cy), 140.3 (br s, NAr: Co), 140.1 (CPhPh': Cipso), 139.3 (CPhPh': C'ipso), 138.2 

(t, JCp = 5.7, C~), 131.0 (CPhPh': Co), 129.5 (CPhPh': C'o), 128.5, 128.1, 127.9, 

127.7, 127.6, 127.2 (NAr: Cm, Cp and CPhPh': Cm, C'm, Cp, C'p), 53.1 (t, Jcp = 2.2, 
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P(OMeh), 19.5 (NAr: Me2); Minor Rotamer: 8283.7 (t, JCH = 132.7, JCp = 17.5, Ca ); 

31p NMR (CD2C12) Major Rotamer 8 132.4 (Jpw = 442). 

W (=CH RB)CI2[N -2,6-C6H3-(i-Prhl [P(O Mebl (20-B)'P(O Me)3 
and Observation of W(=CHRc)CI[N-2,6-C6H3-(i-PrhHP(OMebh (20-C) 

A 10 mL Et20 solution of ketalcyclopropene (0.99 g, 8.85 mmol) was added via 

cannula to a purple suspension of WCI2[N-2,6-C6H3-(i-PrhHP(OMe)3J3·THF* (6.12 g, 

7.00 mmol) in 20 mL of Et20. After a few minutes of stirring, the solution turned deep 

red. As the stirring was continued for a total of 19.5 h, a large amount of tan precipitate 

formed. Pentane (120 mL) was added to the reaction mixture, which was then filtered to 

yield 4.48 g of tan powder and a pale green-yellow filtrate, which was discarded. At this 

point, a 1 H NMR spectrum of the tan powder in CD2Cl2 indicated a 86: 14 mixture of 20-

B'P(OMeb and the tris(phosphite) precursor. The tan powder was then washed first 

with 30 mL of Et20 containing 5 equiv of P(OMe)3 and next with 30 mL of pentane to 

yield 2.84 g (51.3%) of pure 20-B·P(OMe}J as a tan powder. Anal. Calcd for 

(C24H43CbNOgP2W): C, 36.47; H, 5.48; N, 1.77. Found: C, 36.82; H, 5.34, N 1.42. 

A IH NMR spectrum of the tan powder indicated the presence of 21-B and one 

equiv of free P(OMe)3. This powder was sparingly soluble in most standard NMR 

solvents other than CD2CI2. Characterization of 21-B·P(OMe}J by l3C NMR 

spectroscopy was thus difficult, as a mixture of 21-B and 21-C was always observed due 

to the relatively fast rate of isomerization in CD2Cl2. Removal of the second equivalent of 

phosphite from 21-B·P(OMeb was difficult and was only achieved after washing the 

compound several times with -100 rnL portions of pentane and leaving the compound 

under dynamic vacuum for at least a day after each washing. In the absence of the second 

equivalent of phosphite, isomerization of 21-B to 21-C was not observed and 

unambiguous characterization by l3C NMR spectroscopy was possible: 1 H NMR 
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(CD2Ch) 8 11.73 (dd, 1, JHH = 9.81, JHP = 6.82, Ha ), 7.15 (s, 3, Haryl), 6.00 (dd, 1, 

JHH = 9.81, JHP = 1.84, Hp), 5.08 (m, 1, OCHH), 4.82 (m, 1, OCHH'), 4.32 (m, 2, 

OCH2), 4.16 (septet, 2, J = 6.83, CHMe2), 3.65 (d, 9, J = 10.89, P(OMe»), 2.55 (m, 1, 

CH2CHHCH2), 2.09 (m, 1, CH2CHH'CH2), 1.28 (d, 6, J = 6.89, CHMeMe'), 1.25 (d, 

6, J = 6.82, CHMeMe'); 13C NMR (CD2CI2) 8 259.5 (d, JCH = 143.8, JCp = 20.7, Jcw 

= 124.2, Ca ), 165.4 (d, JCp = 5.1, Cy), 151.7 (d, Jcp = 3.0, Jcw = 38.9, NAr: Cipso), 

165.5 (d, JCp = 2.4, NAr: Co), 127.7 (NAr: Cp ), 123.2 (NAr: Cm), 93.0 (d, Jcp = 6.1, 

Cp), 68.8 (OCH2), 67.6 (OCH2'), 53.4 (d, Jcp = 5.8, P(OMe)3), 28.0 (CHMe2), 24.5 

(CH2CH2CH2), 24.2 (CHMeMe'), 23.9 (CHMeMe'); 31p NMR (CD2Cl2) 8 147.1 (Jpw 

= 520). 

As mentioned previously, resonances assignable to 21-C were observed in the 13C 

NMR spectrum of 21-B·P(OMe}J in CD2Cl2 solution. Also, 21-B·P(OMe}J was 

observed to convert slowly to 21-C in the solid state at room temperature (-15% 

conversion after 2 months). Spectral Data for 21-C: IH NMR (CD2Cl2) 8 12.64 (d of t, 

JHH = 8.26, JHP = 2.30, Ha ); l3C NMR (CD2CI2) 8 257.0 (t, JCp = 10.2, Ca ), 176.7 

(Cy), 98.8 (Cp), 62.3 (OCH2), 41.1 (CH2CI); 31p NMR (CD2Cl2) 8 144.1 (Jpw = 459). 

A very concentrated CD2Cl2 solution was used for the l3C spectrum of 21-

B·P(OMeh and under these conditions, a third alkylidene resonance was observed. This 

same resonance was also observed when 6 equiv of P(OMe)3 was added to a more dilute 

sample of 21-B·P(OMe}J. [Spectral Data for third alkylidene resonance: IH NMR 

(CD2Cl2) 8 12.89 (d of t, JHH = 13.97, JHP = 5.04, Ha ); 13C NMR (CD2CI2) 8 264.0 (t, 

JCp = 14.4, Ca ), 101.4 (Cp)]. 

[*Note: The THF adduct of the tris(phosphite) complex 3 was synthesized 

according to the procedure of this chapter, and the complex was then recrystallized from 

THF. The complex is easier to handle and very pure without recrystallization, and thus, 

recrystallization is not recommended.] 
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W(CHRA)CI2(N-2,6-C6H3-Me2)(PEt2Phh (syn and anti) (21·A), 

W(CHRB)CI2(N-2,6-C6H3-Me2)(PEt2Ph) (21-B), and 
W(CHRC)Cl(N-2,6-C6H3-Me2)(PEt2Phh (21-C) 

A 6 mL solution of ketalcyclopropene (274 mg, 2.45 mmol) was added to a 

Schlenk flask containing 2.01 g (2.30 mmol) of tan WCI2(N-2,6-C6H3-Me2)(PEt2Ph)). 

The solution was stirred for 0.5 h before adding 10 mL of pentane. After the red 

suspension was stirred for an additional 16.5 h, the solvent was removed in vacuo. Next, 

free PEt2Ph was removed by washing the product with one 25 mL portion and one 50 mL 

portion of pentane, and the brick-red powder (1.39 g, 73.6%) was then dried in vacuo. 

1 H, 13C, and 31 P NMR spectra acquired immediately after the complex was dissolved in 

C()l)6, tol-d8, or CD2Cl2 indicated the presence of 4 alkylidene species: 3 bis(phosphine) 

adducts [21·A (syn and anti rotamers) and 21·C] and one monophosphine adduct (21-

B). An equivalent amount of free PEt2Ph relative to the mono(phosphine) adduct 21-B 

was observed by 31p NMR spectroscopy: IH NMR (C6D6) 21-A (syn and anti): 8 12.70 

(d of t, JHH = 14.17, JHP = 3.98, Hex, 11%), 12.66 (d of t, JHH = 13.60, JHP = 3.79, 

Hex, 60%); 21-C: 8 12.42 (d of t, JHH = 7.96, JHP = 2.03, Hex, 24%); 21·B: 8 11.54 (d 

of d, JHH = 9.93, JHP = 5.51, Hex, 5%); 13C NMR (CD2Cl2) 21-A (syn and anti) 8 270.4 

(t, JCp = 10.8, Cex), 263.9 (t, JCp = 11.0, Cex), 21-C: 8 262.1 (t, JCp = 7.14, Cex); 31p 

NMR (tol-d8) 33.0, 17.8 (Jpw = 283), 15.3 (Jpw = 278), 13.4 (Jpw = 276). 

The red isomeric mixture of 21-A, 21-B, and 21-C (812 mg, 1.00 mmol) was 

dissolved in 25 mL of CH2Cl2 and stirred for 19.5 h before removing the solvent in vacuo. 

The green residue (512 mg, 63.1 %) was washed with 50 mL of pentane and dried in 

vacuo: IH NMR (CD2CI2) 8 12.23 (d of t, 1, JHH = 8.07, JHP = 2.13, Hex), 7.7-6.8 (m, 

13, Haryl), 5.18 (d, 1, J = 8.04, H~), 3.53 (t, 2, J = 6.58, CH2Cl), 3.52 (t, 2, J = 5.99, 

OCH2), 2.3 - 2.0 (m, 8, P(CH 2CH3hPh), 2.15 (s, 6, NAr: Me2), 1.84 (quintet, 2, J = 

6.27, CH2CH2CH2), 1.08-0.87 (m, 12, P(CH2CH3hPh); 13C NMR (CD2CI2) 8 261.6 
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(t, JCH = 134.2, JCp = 7.2, Jcw = 118.6, Ca ), 174.3 (Jcw = 4.8, Cy), 155.4 (Jcw = 

19.0, NAr: Cipso), 136 (br s, NAr: Co), 132.6 (t, Jcp = 19.5, PEt2Ph: Cipso), 130.3 (t, 

JCp = 3.8, PEt2Ph: Co), 128.3 and 128.0 (NAr: Cm and PEt2Ph: Cp), 127.2 (t, Jcp= 3.8, 

PEt2Ph: Cm), 123.0 (NAr: Cp ), 94.8 (JCH = 164.6, C~), 61.9 (OCH2), 41.6 (CH2CI), 

32.0 (CH2CH2CH2), 19.7 (br s, NAr: Me2), 16.2 (t, Jcp = 12.1, 

P(CH2CH3)(CH2CH3),Ph), 14.4 (t, J = 12.0, P(CH2CH3)(CH2CH3),Ph), 6.9 

(PCH2CH3hPh); 31p NMR (CD2Cl2) 0 18.6 (Jpw = 283, PEt2Ph); NOEDS (CD2Cl2) 

irradiation at 12.23 ppm, 0 5.18 (11.6% NOE), 2.15 (2.2% NOE); irradiation at 5.18 

ppm, 0 12.23 (3.2% NOE); irradiation at 3.53 ppm, 0 1.84 (5.4% NOE), irradiation at 

3.52 ppm, 0 1.84 (7.0% NOE), irradiation at 2.15 ppm, 0 12.23 (18.5% NOE); irradiation 

at 1.84 ppm, 0 3.52 (2.6% NOE). Anal. Calcd for (C34H47N02P2W): C, 49.90; H, 

5.79; N, 1.71. Found: C, 50.23; H, 5.78; N, 1.70. 

w (=C HRB)CI2(N-2,6-C6H 3-Me2) [P(O Meb] (22-B) 

A 30 mL Et20 solution of ketalcyclopropene (319 mg, 2.84 mmol) was transferred 

via cannula onto a 30 mL Et20 suspension of purple WCI2(N-2,6-C6H3-Me2)[P(OMeh13 

(2.06 g, 2.76 mmol), and the reaction mixture was stirred for 14.25 h. Almost 

immediately, a yellow precipitate formed; later in the reaction, a red precipitate was 

observed. Pentane (60 mL) was added to the reaction mixture, which was then filtered, 

and the resulting red powder (758 mg, 45.0%) was dried in vacuo: IH NMR (CD2Cl2) 0 

11.88 (dd, 1, JHH = 9.79, JHP = 6.80, Ha ), 7.05 - 6.95 (m, 3, Haryl), 6.00 (dd, 1, JHH = 

9.78, JHP = 1.83, H~), 5.08 (m, 1, OCHH), 4.82 (m, 1, OCHH') , 4.32 (m, 2, OCH2), 

3.65 (d, 9, J = 10.95, P(OMe}J), 2.64 (s, 6, NAr: Me2), 2.35 (m, 1, CH2CHH'CH2)' 

2.20 (m, 1, CH2CHH'CH2); l3C NMR (CD2Cl2) 259.7 (0, JCH = 144.7, JCp = 20.5, 

Jcw = 122, Ca ), 165.3 (Cy), 154.2 (Jcw = 19.6, NAr: Cipso), 137.5 (NAr: Co), 127.7 

(NAr: Cp), 126.8 (NAr: Cm), 92.7 (JCH = 168.0, C~), 68.7 (OCH2), 67.5 (OCH2), 53.1 

(d, Jcp = 5.7, P(OMe}J), 24.3 (CH2CH2CH2), 19.1 (NAr: Me2); 31p NMR (CD2Cl2) 0 
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147.5 (Jpw == 522); NOEDS (CD2CI2) irradiation at 11.88 ppm, 0 6.00 (10.70/0 NOE), 

4.32 (1.30/0 NOE), 2.64 (2.00/0 NOE); irradiation at 6.00 ppm, 0 11.88 (6.60/0 NOE), 4.32 

(1.60/0 NOE); irradiation at 4.32 ppm, 07.0 (1.20/0 NOE), 5.08 (4.30/0 NOE), 4.82 (9.70/0 

NOE), 2.64 (1.60/0 NOE), 2.35 (5.60/0 NOE), 2.20 (6.00/0 NOE); irradiation at 2.64 ppm, 

o 11.88 (12.90/0 NOE), 3.65 (0.40/0 NOE). Anal. Calcd for (C17H26C12NOSPW): C, 

33.47; H, 4.30; N, 2.30. Found: C, 33.35; H, 4.32; N, 2.57. 

Observation of 
W (=CHRB)CI2(N -2,6-C6H3-Me2) [P(OMehl (22-B) 

and W(=CHRc)CI(N-2,6-C6H3-Me2)[P(OMehh (22-C) 

The cyclopropene complex 14 (289 mg) was dissolved in 300 /J.L of CD2Cl2. In 

less than 24 h, complete conversion to a mono(phosphite) (22-B, 250/0) and a 

bis(phosphite) (22-C, 75%) vinyl alkylidene complex was observed by NMR 

spectroscopy. The IH, 13C, and 31p NMR spectra of the mono(phosphite) vinyl 

alkylidene complex are identical with those of isolated 22-B and the spectral assignments 

for 22-C follow: IH NMR (CD2Cl2) 0 12.74 (m, 1, Ha ); 13C NMR (CD2Cl2) 257.5 (t, 

JCH == 135.0, JCp == 10.0, Jcw == 113.6, Ca ), 176.5 (Cy), 155.2 (Jcw == 38.8, NAr: 

Cipso), 135.7 (NAr: Co), 127.6 (NAr: Cm), 124.1 (NAr: Cp), 98.9 (JCH == 166.7, Cf3), 

62.2 (OCH2), 51.6 (P(OMe)3), 41.0 (CH2CI), 31.6 (CH2CH2CH2), 18.9 (NAr: Me2); 

31p NMR (CD2CI2) 0147.1 (Jpw == 520). 
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Table 10. Conversion of 11 to 19 in the Presence of Excess Diphenylcyclopropenea 

19 + 
n time 11 diphenyl- 19 19 diphenyl-

c~c1°EroEene anti s~n c~cl°EroEene 

0 3h 38% 0% 28% 14% 0% 

2.2 3h 52% 141% 8% 5% 8% 

0 22 h 0% 0% 65% 17% 0% 

2.2 22 h 26% 131% 10% 10% 40% 

aGeneral Procedure: Complex 11 (34.2 mg, 0.0420 mmol) was dissolved in 600 ilL of CD2Cl2 (0.0036 
M in mesitylene internal standard) together with n equivalents (n = 0 or 2.2) of dipheny1cyc1opropene. The 
solution was transferred to an NMR tube, the NMR tube was capped with a rubber septum, and the septum 
was wrapped with Parafilm. The tube was mechanically rotated for 3 h before a 1 H NMR spectrum was 
acquired; after rotating the tube for an additional 19 h, another 1 H NMR spectrum was acquired. The 
percentages of compounds were determined by integration relative to the mesitylcne internal standard. The 
insertion product derived from the reaction of diphenylcyclopropene with 19 is tentatively proposed on the 
basis of the following chemical shifts: 0 11.39 (d, JHP = 4.79, Hex), 6.49 (d, J = 15.59, =C(f1)-CPh2 or 
C(f1)=CPh2), 6.08 (d, J = 11.l7, =C(I/)-CPh2 or C(l-f)=CPh2), 5.73 (dd, J = 15.69, 11.13, C(H)­

C(H)=CPh2)· 
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Table 11. IH NMR Spectral Data for the HgCl2-Catalyzed Conversions of the 
Phenylimido 112-Cyclopropene Complexes 9 and 10 to Vinyl Alkylidene Complexesa 

Cmpd 

9 

9 

1 0 

1 0 

Reaction 
Conditions 

0.8 equiv HgCI2 
rotated 2.7 hb 

1 equiv HgCI2 
shook brieflyb 

rotated 
overnight 

0.9 equiv HgCI2 
rotated 2.7 hb 

HgCI2 
shook brieflyd 

Observations 
and 1H NMR Spectral Data 

Complete Conversion to Vinyl Alkylidene 

Major Rotamer (85%): 0 12.39 (dt, JHH = 13.09, JHP = 5.71, Ha), 9.00 

(dt, JHH = 13.13, JHP = 1.87, H~). 
Minor Rotamer (15%): 012.55 (dt, JHP = 6.24, Ha), 9.44 (dt, JHH = 

12.70, H~). 

Complete Conversion to Vinyl Alkylidene 
Solution Immediately Turned from Yellow to Orange 

>95% Rotamer with 12.39 ppm Ha Resonance 

Only 28% of the Vinyl Alkylidene Remained 

1.3:1 Ratio of 1l2-Cyclopropene to Vinyl Alkylidene C 

1 H (CD2CI2) 0 11.96 (dt, JHH = 13.28, JHP = 4.23, Ha), 8.82 (dt, JHH = 
13.16, JHP = 1.29, H~). 

Complete Conversion to Vinyl Alkylidene 

1H (C6DsfTHF-dS) 0 12.39 (dt, JHH = 13.24, JHP = 4.17, Ha), 9.16 (dt, 

JHH = 13.24, H~), 2.38 (t, JHP = 4.41, PMePh2). 

aAttempted conversions of the T)2-ketalcyclopropene complexes 12 and 13 resulted only in decomposition. 

lrrhe T)2_cyclopropene complex (46 mg) was dissolved in 600 ilL of CD1CIl and a 1 H NMR spectrum was 
acquired. Solid HgCll was then added to the solution, and the mixture was shaken or mechanically rotated 
before acquiring a second 1 H NMR spectrum. 
c A 6.3: 1 ratio of T)l_cyclopropene to vinyl aJkylidene was observed before the addition of HgClz. 
dThe T)z-cyclopropene complex (21 mg, 0.023 mmol) and HgCll (6 mg, 0.02 mmo\) were combined in a 
mixture of C6D6 and THF-d8 and the reaction mixture was shaken briefly before acquiring a 1 H NMR 
spectrum. 
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Table 12. 1 H NMR Spectral Data for the Photolyses of the Phenylimido 112-

Cyclopropene Complexes 9, 10, 12, and B.a 

Cmpd 

9 

1 0 

After Photolysis 

Complete Conversion to Vinyl Alkylidene b 

75% Major Rotamer: 012.32 (dt, 1, JHH = 13.35, JHP = 4.27, Ha), 9.13 (dt, 1, JHH = 
13.41, JHP = 13.41, Hill. 2.36 (t, 6, JHP = 4.49, PMePh2). 
25% Minor Rotamer: 813.35 (Hal. 9.35 (HIl' JHH = 13), 2.38 (t, JHP = 4.23, PMePh2)· 

1 :3.4 ratio of Tl2-Cyclopropene to Vinyl Alkylidene 

012.84 (dt, 1, JHH = 13.22, JHP = 6.57, Ha), 9.36 (dt, 1, JHH = 13.06, JHP = 2.05, HIl)' 
3.61 (t, 18, JHP = 5.41, P(OMeb). 

Complete Conversion to Vinyl Alkylidene 

12 Major Rotamer (Isomer A): 012.48 (dt, 1, JHH = 13.58, JHP = 3.74, Hal. 3.49 (t, 2, J = 
6.13, OCH2), 3.44 (t, 2, J = 6.19, OCH2), 2.47 (t, 6, J = 4.37, PMePh2). 

1 :3.3 ratio of Tl2-Cyclopropene to Vinyl Alkylidene 

1 3 53% Major Isomer: 013.14 (dt, JHH = 13.98, JHP = 4.69, Ha). 

47% Minor Isomer (Form B): 011.72 (dd, JHH = 9.54, JHP = 7.02, Ha), 6.10 (dd, JHH = 
9.33, JHP = 1.58, HIl)' 

aGeneral Procedure: The ,,2_cyclopropene complex (10.5 mg) was dissolved in 600 ~L of toluene-ds 

(0.0035 M in mesitylene internal standard), the solution was immediately cooled to 0 °C, and a 1 H NMR 
spectrum was acquired. (Note: Complexes 10 and 13 were not completely soluble in tol-d8 at these 
concentrations, possibly explaining their incomplete conversion.) The complex was photolyzed for 7 hat 0 
°C before acquiring another 1 H NMR spectrum. 
bBefore photolysis a 10.4: 1 mixture of 9:vinyl alkylidene was observed. 
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Table 13. Reaction of 11 with Ketalcyc1opropene and of 14 with Diphenyl­
cyc1opropene-Species Observed after 5.6 Hours at Room Temperaturea .b 

Ketal- Diphenyl-
Reaction 1 1 1 4 1 9 22- cyclopropene cyclopropene 

B 

11 + Ketalcyclopropene 55% 0% 7% 4% 39% 12% 

14 + Diphenylcyclopropene 0% ?C <5% 25% 0% 63% 

QGeneral Procedure: The ,,2_cyclopropene complex (0.086 mmol) and 1 equiv of 3,3-disubstituted 
cyclopropene were dissolved together in 600 ilL of CD2CiZ (0.0036 M in mesitylene internal standard). 
The NMR tube was capped with a rubber septum. the septum was wrapped with Parafilm. and the solution 
was then left at room temperature for 5.6 h without any external mixing. A 1 H NMR spectrum was then 
acquired. and the percentages of species present were determined by integration versus the mesitylene 
internal standard. 
hN"ote: The reactions were quite complex. and only the readily identifiable species are reported here. 
cTwo overlapping triplets (84% together) were observed at 4.3 ppm. It is uncertain whether they can both 
be assigned as "Z-ketalcyclopropene complexes. 
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X-ray Data Collection, Structure Determination and 
Refinement for WCI2[N-2,6-C6"3-(i-Pr)z] [P(OMehb (4) 

A purple crystal of approximate dimensions 0.28 x OAO x 0.43 mm was oil-

mounted on a glass fiber and transferred to the Siemens P3 diffractometer which is 

equipped with a modified LT-2 low temperature system. Determination of Laue symmetry, 

crystal class, unit cell parameters and the crystal's orientation matrix were carried out by 

previously described techniques similar to those of Churchill. 38 Low temperature (158 K) 

intensity data were collected via a 8-28 scan technique with MoKa radiation under the 

conditions given in Table 1. 

All 7579 data were corrected for absorption and for Lorentz and polarization effects 

and placed on an approximately absolute scale. Any reflection with r(net) < 0 was assigned 

the value 1Fol = O. The systematic extinctions observed were OkO for k = 2n + 1 and hOI for 

I = 2n + 1; the diffraction symmetry was 21m. The centrosymmetric monoclinic space 

group P21/c [~h; No. 14] is thus uniquely defined. 

All crystallographic calculations were carried out using either the ucr modified 

version of the UCLA Crystallographic Computing Package40 or the SHELXTL PLUS 

program set.41 The analytical scattering factors for neutral atoms were used throughout the 

analysis;42a both the real (i1f) and imaginary (ii1f') components of anomalous 

dispersion42b were included. The quantity minimized during least-squares analysis was 

Lw(IFol - 1Fcl)2 where w-1 = (J2(IFol + 0.0005(IFol)2. 

The structure was solved via an automatic Patterson routine (SHELXTL PLUS); 

and refined by full-matrix least-squares techniques. Hydrogen atoms were included using 

a riding model with d(C-H) = 0.96 A and U(iso) = 0.06 A2. Refinement of positional and 

anisotropic thermal parameters led to convergence with RF = 2.8%, RwF = 3.2% and GOF 

= 1.26 for 334 variables refined against those 6690 data with 1Fol > 3.00"(IFol)). A final 

difference-Fourier map yielded p(max) = 0.94 eA-3. 
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X-ray Data Collection, Structure Determination and 
Refinement for W(HC=CH-CPh2)CI2(NPh)[P(OMehh (10) 

A yellow/gold crystal of approximate dimensions 0.20 x 0.30 x 0.30 mm was oil­

mounted on a glass fiber and transferred to the Syntex P21 diffractometer which is 

equipped with a modified LT-110w temperature system. Determination of Laue symmetry, 

crystal class, unit cell parameters and the crystal's orientation matrix were carried out by 

previously described techniques similar to those of Churchil1.38 Low temperature (183 K) 

intensity data were collected via a 8-28 scan technique with MoKa radiation under the 

conditions given in Table 1. 

All 4899 data were corrected for absorption and for Lorentz and polarization effects 

and placed on an approximately absolute scale. Any reflection with I(net) < 0 was assigned 

the value IFol = O. The systematic extinctions observed were OkO for k = 2n + 1 and hOI for 

I = 2n + 1; the diffraction symmetry was 2/m. The centrosymmetric monoclinic space 

group P21/c [~h; No. 14] is thus uniquely defined. 

All crystallographic calculations were carried out using either the UCI modified 

version of the UCLA Crystallographic Computing Package40 or the SHELXTL PLUS 

program set.41 The analytical scattering factors for neutral atoms were used throughout the 

analysis;42a both the real (i1f) and imaginary (ii1f') components of anomalous 

dispersion42b were included. The quantity minimized during least-squares analysis was 

The structure was solved via an automatic Patterson routine (SHELXTL PLUS); 

and refined by full-matrix least-squares techniques. Hydrogen atoms were included using 

a riding model with d(C-H) = 0.96 A and U(iso) = 0.08 A2. There is a benzene molecule 

located about an inversion center (1/2, 1/2, 1/2). Refinement of positional and anisotropic 

thermal parameters (isotropic for the three unique benzene carbon atoms) led to 

convergence with RF = 4.5%, RwF = 6.0% and GOF = 1.45 for 364 variables refined 

against those 3721 data with IFal > 3.0a(IFal)). A final difference-Fourier map yielded 

p(max) = 1.38 eA-3. 
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X-ray Data Collection, Structure Determination and 
Refinement for W(=CHRC)CI2(N-2,6-C6H3-Me2)(PEt2Phh (21-C) 

A green crystal of approximate dimensions 0.23 x 0.33 x 0.37 mm was oil-

mounted on a glass fiber and transferred to the Siemens P3 diffractometer which is 

equipped with a modified L T -2 low temperature system. Determination of Laue symmetry, 

crystal class, unit cell parameters and the crystal's orientation matrix were carried out by 

previously described techniques similar to those of Churchil1.38 Low temperature (158 K) 

intensity data were collected via a 8-28 scan technique with MoKa radiation under the 

conditions given in Table 1. 

All 6596 data were corrected for absorption and for Lorentz and polarization effects 

and placed on an approximately absolute scale. Any reflection with I(net) < 0 was assigned 

the value 1Fol = O. There were no systematic extinctions nor any diffraction symmetry other 

than the Friedel condition. The two possible triclinic space groups are the 

noncentrosymmetric PI [Ci; No.1] or the centrosymmetric PI [Ci; No.2]. With Z = 2 and 

no expectation of a resolved chiral molecule, the latter centrosymmetric space group is far 

more probable,39 and was later shown to be the correct choice. 

All crystallographic calculations were carried out using either the UCI modified 

version of the UCLA Crystallographic Computing Package40 or the SHELXTL PLUS 

program set.41 The analytical scattering factors for neutral atoms were used throughout the 

analysis;42a both the real (~f) and imaginary (i~f') components of anomalous 

dispersion42b were included. The quantity minimized during least-squares analysis was 

Lw(IFol - 1Fcl)2 where w- 1 = (J"2(IFol + 0.0004(IFol)2. 

The structure was solved by direct methods (SHELXTL PLUS); and refined by 

full-matrix least-squares techniques. Hydrogen atoms were included using a riding model 

with d(C-H) = 0.96 A and U(iso) = 0.08 A2. At convergence, RF = 3.0%, RwF = 3.7% 

and OOF = 1.37 for 379 variables refined against those 6920 data with 1Fol > 2.0<Y(IFol)). 
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A final difference-Fourier map yielded p(max) = 0.94 eA-3 at a distance of 1.36 A from 

Cl(2). 

X-ray Data Collection, Structure Determination and Refinement 
for W(=CH-CH-CPh2)[N-2,6-C6H3-(i-Prhl [OCMe(CF3hh[P(OMe}Jl (16) 

A yellow crystal of approximate dimensions 0.20 x 0.30 x 0.37 mm was oil-

mounted on a glass fiber and transferred to the Siemens P3 diffractometer which is 

equipped with a modified L T -2 low temperature system. Determination of Laue symmetry, 

crystal class, unit cell parameters and the crystal's orientation matrix were carried out by 

previously described techniques similar to those of Churchil1.38 Low temperature (158 K) 

intensity data were collected via a 8-28 scan technique with MoKa radiation under the 

conditions given in Table 1. 

All 6801 data were corrected for absorption and for Lorentz and polarization effects 

and placed on an approximately absolute scale. Any reflection with I(net) < 0 was assigned 

the value 1Fol = O. There were no systematic extinctions nor any diffraction symmetry other 

than the Friedel condition. The two possible triclinic space groups are the 

noncentrosymmetric PI [C;; No.1] or the centrosymmetric PI [C~; No.2]. With Z = 2 and 

no expectation of a resolved chiral molecule, the latter centrosymmetric space group is far 

more probable, and was later shown to be the correct choice. 

All crystallographic calculations were carried out using either the UCI modified 

version of the UCLA Crystallographic Computing Package40 or the SHELXTL PLUS 

program set.41 The analytical scattering factors for neutral atoms were used throughout the 

analysis;42a both the real (i1f) and imaginary (ii1f') components of anomalous 

dispersion42b were included. The quantity minimized during least-squares analysis was 

L,w(IFol - 1Fcl)2 where w-1 = a2(IFol + 0.0005(IFol)2. 

The structure was solved via an automatic Patterson routine (SHELXTL PLUS); 

and refined by full-matrix least-squares techniques. Hydrogen atoms were included using 

a riding model with d(C-H) = 0.96 A and U(iso) = 0.06 A2. Refinement of positional and 
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anisotropic thermal parameters led to convergence with RF = 2.8%, RwF = 3.2% and GOF 

= 1.26 for 334 variables refined against those 6690 data with 1Fol > 3.0a(IFol)). A final 

difference-Fourier map yielded p(max) = 0.94 eA-3. 
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Figure 6. IH-IH COSY spectrum of 20-8. 
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Figure 7. IH-13C COSY spectrum of 20-B. 
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Chapter 3 

Alkylidene Transfer from 
Phosphoranes to Tungsten(IV) Imido Complexes 
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Introduction 

The chemical reactivity and physical properties of phosphorus ylides, or 

phosphoranes, are dominated by the zwitterionic resonance structure A. The carbanionic 

ROO R" 
A B 

nature of the ylide carbon is manifested in the diverse reactivity of phosphorus ylides 

with organometallic species. i For example, Figure 1 depicts reactions of phosphoranes 

involving the synthesis and/or transformation of transition-metal carbene/alkylidene 

complexes and their phosphine adducts. Phosphoranes act as bases in the deprotonation 

of alkylidene ligands to yield alkylidynes,2 as nuc1eophiles in the transformation of 

carbene ligands to give olefins,3 and as donor ligands in the reaction with metal centers to 

form metal-carbon bonds.4 

Alkylidene Deprotonatlon 

H 
I 

CI2CpTa=C 
\ 
CMe3 

(1) PMe3. THF 

Nucleophilic Attack on a Carbene Ligand 

Ph 
I 

(OC)sW=\ 

OMe 

Ylide Adduct Formation 

(OC)sCr(THF) 

.. 

Ph 
I 

+ H2C=C 
\ 
OMe 

Figure 1. Examples of reactions of phosphoranes with transition-metal complexes.2-4 
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.. 
- PR'3, - PMe3 

- PPh3, - PMePh2 

/CH3 

Cp2Ta~ 
~CHR 

R = H, Me, Ph 

Figure 2. The three known examples of alkylidene transfer from phosphoranes to 
transition-metal centers.5-7 

Although a myriad of transition-metal compounds with ylide donor ligands have 

been synthesized,l loss of phosphine to yield an alkylidene complex has rarely been 

observed. The three known examples are shown in Figure 2 and include the first 

synthesis of a terminal ethylidene complex.5-7 In these examples, nucleophilic alkylidene 

ligands were formed, thus favoring loss of phosphine from the proposed intermediate 

ylide adducts.5 The crowded coordination spheres of these intermediates may also have 

aided phosphine loss, as well as prevented alkylidene deprotonation by excess 

phosphorane.5 

The further extension of this reaction would be desirable for the following 

reasons: (1) A wide variety of phosphorus ylides are easily synthesized and readily 

isolated, making them attractive precursors to metal alkylidenes. Upon development of 

suitable transition-metal precursors, phosphorus ylides could potentially enable the 

synthesis of alkylidene ligands incorporating a number of different substituents (eq l). 

Variation of metal alkylidene substituents is important, as it would allow control of the 

polymer end-group in ring-opening metathesis polymerization (ROMP)8 and the 
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+ (1 ) 

R, R' = H, alkyl, aryl, etc. 

selection of the products obtained from the Wittig-type olefinations of carbonyl 

compounds, including esters and amides.9 (2) In addition, the synthesis of di-initiators 

for ROMP can easily be envisioned via the use of bis(ylide) precursors (eq 2). A 

---.;-.- LnM=C(H)-X-(H)C=MLn (2) 
- 2 PR3 

bis(titanacyclobutane) initiator C has already been reported, and its efficacy in the 

synthesis of block copolymers was demonstrated. lO However, the isolable chain-carrying 

species of ROMP catalysts of later metals, for example, Groups VI and VII, are 

alkylidenes,11 and di-initiators of these catalysts must be synthesized by different routes. 

The promise of phosphorus ylides as precursors to metal alkylidenes prompted the 

following research, which involved an investigation of the reactivity of reduced tungsten 

imido complexes, including WCI2(NPh)(PMePh2b,12 with phosphorus ylides. Impetus 

for the selection of this precursor was two-fold: (1) Following the loss of a phosphine 

ligand, WCI2(NPh)(PMePh2h readily reacts with a number of 1t-acceptors (L), including 

carbon monoxide, isonitriles, aldehydes, olefins, and acetylenes, to give WCI2(L)(NPh)-
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(PMePh2h,13 and thus similar substitution reactions with phosphorus ylides to give 

W(=CHR)CI2(NPh)(PMePh2)z complexes were likely. (2) Analogs of the expected 

alkylidene transfer products, for example, W(=CH-t-Bu)CI2(NAr)(PR3)z (R = Me, Et), 

are known, and the nucleophilic alkylidene ligands of these stable compounds does not 

bind to phosphines. 14 Therefore, upon addition of the ylide carbon to tungsten, loss of 

phosphine and generation of a stable alkylidene was probable. 

Results and Discussion 

Reactions ofPhosphoranes with WCI2(NAr)(PX3h Complexes 

Synthesis of W(=CHR)CI2(NPh)(PMePh2h Complexes. The reactions of 

WCI2(NPh)(PMePh2h with a number of triphenylphosphoranes were surveyed, and clean 

alkylidene transfer was observed for variously substituted aryl ylides Ph3P=CHAr', where 

Ar' = Ct#s, Ct#4-p-Me, Ct#4-m-Me, Ct#4-o-Me, C6~-p-OEt, Ct#4-0-0Me, Cifs, 0-

Np, and m-Np, and also for the vinyl ylide Ph3P=CH-CH=CMe2 (eq 3). Several of these 

derivatives were synthesized on a preparatory scale, and selected NMR data for these 

complexes is listed in Table 1. Transfer of the alkylidene moiety from phosphorus to 

tungsten was clearly indicated by the down field shifts of the alkylidene Ha and ea 

resonances,IS by the appearance of both of these resonances as triplets due to coupling 

with the mutually trans phosphine ligands, and also by the coupling of the alkylidene Ca 

resonance to tungsten. 

Ph 
N 

CI, II ., PMePh2 
/W, 

Ph2MeP I PMePh2 
CI 

R = Ar' and CH=CMe2 

.. 
Ph 
N 

CI, II ., PMePh2 
W 

Ph2MeP/ I ~CHR 
CI 

(3) 
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Table 1. Selected NMR Data for W(=CHR)C12(NPh)(PMePh2h Complexesa 

Cmpd R Ha JHP Ca JCH Jcp Jcw 

1 Ph 12.51 b 4.77 290.9 126.5 12.0 132.8 

2 C6H4-p-Me 12.12 4.64 290.7 126.7 

3 C6H4-p-CF3 12.13 4.63 288.3 128.6 12.2 131.6 

4 2-Np 12.31 4.72 290.4 125.3 12.1 132.3 

5 C6FS 11.71 4.12 261.5 133.9 12.0 146 

6 CH=CMe2 (syn) 12.22c 4.14 284.0 134.4 11.6 129.3 

6 CH=CMe2 (anti) 12.45d 4.35 274.2 126.3 11.9 

aSpectra were acquired in CD2CI2 unless indicated otherwise. bin C6D6. CO 8.00 (H~, JH(l-H~ = 
12.77 Hz). do 7.9 (H~, JH(l-H~ = 13.11 Hz). 

X-ray Diffraction Study of W(=CHC6H4-p-Me)CI2(NPh)(PMePh2h (2). The 

structure of the alkylidene transfer products was further confirmed by an X-ray 

diffraction study of the p-methylbenzylidene complex 2. An ORTEP diagram is shown 

in Figure 3, and selected bond lengths and angles are given in Table 2.16 The geometry 

of the complex is a distorted octahedron in which Ca of the alkylidene moiety and the 

two phosphorus atoms all lie beneath the equatorial plane, on the side opposite to the 

imido ligand. The p-methylbenzylidene ring is syn to the imido ligand, and a roughly 

perpendicular arrangement of the two aryl rings minimizes steric interactions between the 

two groups. Steric interactions between the alkylidene and imido substituents are further 

minimized by the widening of the W(1) - C(1) - C(2) angle to 138.1(3)° and the bending 

of the imido ligand away from the alkylidene moiety at an angle of 168.8(2)° [W(1) -

N(1) - C(9) angle]. 

Synthetic and Mechanistic Observations. The alkylidene tranfer reaction 

proceeded slowly at room temperature in C6D6 or tol-dB, and the reactions could 

therefore be monitored by IH NMR spectroscopy. With the exception of the a-naphthyl 

and pentafluoroaryl alkylidenes, two alkylidene Ha resonances, consistent with the 

formation of both the syn and anti rotamers of the alkylidene ligand,17 were initially 
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C40 

C27 

Figure 3. ORTEP plot of W(=CHC614-p-Me)C12(NPh)(PMePh2h (2). Thermal 
ellipsoids are drawn at the 50% probability level. 
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Table 2. Selected Bond Lengths and Angles for W(=CHC6H4-p-Me)C12(NPh)­
(PMePh2h (2) 

Bond Lengths (A) 

W(1) - CI(1) 2.556(1 ) W(1) - CI(2) 2.490(1) 

W(1) - P(1) 2.546(1 ) W(1) - P(2) 2.538(1 ) 

W(1) - N(1) 1.752(3) W(1)-C(1) 1.975(3) 

Bond Angles (0) 

CI(1) - W(1) - CI(2) 84.7(1) CI(1) - W(1) - P(1) 83.4(1 ) 

CI(2) - W(1) - P(1) 81.4(1) CI(1) - W(1) - P(2) 85.8(1) 

CI(2) - W(1) - P(2) 80.7(1) P(1) - W(1) - P(2) 159.8(1) 

CI(1) - W(1) - N(1) 89.5(1) CI(2) - W(1) - N(1) 173.5(1) 

P(1) - W(1) - N(1) 100.9(1) P(2) - W(1) - N(1) 96.1 (1) 

CI(1) - W(1) - C(1) 170.8(1) CI(2) - W(1) - C(1) 86.9(1 ) 

P(1) - W(1) - C(1) 91.8(1) P(2) - W(1) - C(1) 96.3(1) 

N(1) - W(1) - C(1) 99.1 (1) W(1) - N(1) - C(9) 168.8(2) 

W(1) - C(1) - C(2) 138.1(3) 

observed in the 1 H NMR spectra for the aryl and vinyl alkylidenes. With time and 

heating, gradual conversion to one rotamer was observed. For the aryl alkylidenes, the 

down field Ha resonance corresponded to the thermodynamic rotamer, whereas for the 

vinyl alkylidene complex 6, the rotamer with the upfield Ha resonance was the 

thermodynamic product. Based on the X-ray diffraction study of 2, the thermodynamic 

product is the syn rotamer. 

NMR studies indicated that the transfer of aryl alkylidenes was hindered by the 

incorporation of ortho substituents (e.g., o-methyl, o-methoxy, and o-napthyl) on the 

benzylidene ring and also by the incorporation of electronegative substituents, as in the 

case of pentafluorobenzylidene. As the reaction progressed, the rate of alkylidene 



98 

transfer was slowed by the build-up of free phosphine, and high temperatures (-60 - 80 

°C for several h) were required to drive the reactions to completion. 

Observation of the alkylidene transfer product depended markedly on the choice 

of solvent. Transfer was most favorable when the reaction was conducted in benzene 

and, to a slightly lesser extent, toluene. Formation of the tungsten alkylidene also 

occurred in THF-d8, but at a much slower rate. In CD2C12, alkylidene transfer to 

tungsten was not observed, although the ylide did react relatively rapidly with the 

tungsten precursor. Identification of the products of the CD2C12 reaction was not 

pursued. 

The aryl and vinyl phosphoranes, Ph3P=CHAr' and Ph3P=CH-CH=CMe2, are 

both partially resonance-stabilized ylides with moderate steric requirements. The larger, 

more nucleophilic ylides, Ph3P=CH-t-Bu and Ph3P=CHSiMe3, did not react with 

WC12(NPh)(PMePh2)3. Similar to WCh(NPh)(PMePh2)3, the 2,6-dimethylphenylimido 

complex WCl2(N-2,6-C6H3-Me2)(PEt2Phh readily forms 1t-acceptor complexes upon 

displacement of a PEt2Ph ligand at room temperature. I8 However, alkylidene transfer 

was not observed from Ph3P=CHAr' and Ph3P=CH-CH=CMe2 to this complex. 

According to 1 H NMR spectroscopy, alkylidene transfer from Ph3P=CH2 and 

Ph3P=CHMe to WCb(NPh)(PMePh2h and WCI2(N-2,6-C6H3-Me2)(PEt2Phh occurred 

in low to moderate yields in THF-dS; transfer was not as clean in C6l)6 or tol-ds. I9 These 

reactions were not pursued on a preparative scale due to their low yields and complex 

product mixtures. 

All of the above observations are consistent with a mechanism in which loss of 

phosphine from the metal precursor precedes nucleophilic attack by the ylide carbon on 

the metal center of the 16-electron pentacoordinate intermediate D (Scheme 1). Addition 

of the ylide is thus slowed by excess phosphine, an increase in the steric bulk of the 

alkylidene or imido substituents, or a decrease in the nucleophilicity of the ylide carbon. 

In contrast to the metal precursors involved in previous examples of alkylidene transfer 
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Scheme 1. Proposed Mechanism for Alkylidene Transfer from Ph3P=CHR to 
WCh(NPh)(PMePh2h 

Ph 
N 

CI I, II .' PMePh2 "w· 
Ph2MeP" I 'PMePh2 

CI 

Ph 
N 

CI I,. II 
'W-PMePh2 
~I 

Ph2MeP CI 

o 

CH2CI2 
? -----------

.. 
Ph 
N 

- PPh3, - PMePh2 

CI" II ". PMePh2 
W 

Ph2Mep ..... I.::::::.CHR 

Ph3P=CHR 

Ph 
N 

, , 

CI , 
" - PPh3 

CI/., II .•• PMePh2 ---------- W- + 
Ph2MeP" I 'CHR-PPh3 

CI 

CI- ", + "CI- E ,,' -
Ph 

~lMePh2 
Ph2MeP-W, + 

I CHR-PPh3 
CI 

F 

(Figure 2), WCh(NPh)(PMePh2h has readily substituted anionic ligands and therefore, 

two possible reactions, loss of triphenylphosphine or loss of a chloride ligand, would 

relieve the steric crowding of the zwitterionic ylide adduct E. In nonpolar solvents such 

as C@)6 and tol-d8, loss of phosphine to generate W(=CHR)Ch(NPh)(PMePh2h should 

be favored. However, polar solvents such as THF-d8 and CD2Cl2 should stabilize the 

zwitterionic intermediate E, thus slowing the rate of alkylidene transfer. 

Loss of a chloride ligand to generate the pentacoordinate cationic complex F, 

which would be stabilized by strong donation by the phosphine and imido ligands, is 

highly probable in CD2Cl2 and may be the reason that alkylidene transfer was not 

observed in this solvent. Aside from the addition of the chloride ligand to regenerate the 

zwitterionic ylide adduct, several other transformations of this cationic complex are 
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conceivable, including reactions with a second equivalent of ylide or trapping by free 

phosphine. The alkylidene ligand of this cationic complex may be electrophilic and thus 

form a stable phosphine adduct. In addition, steric crowding would be relieved by loss of 

a chloride ligand upon formation of F and would no longer provide a strong driving force 

for the loss of PPh3. 

Reactions of W(=CHR)CI2(NPh)(PMePh2h with Alkoxides. The alkylidene 

complexes synthesized in these studies are potential precursors to analogs of the 

arylimido metathesis catalysts W(=CH-t-Bu)[N-2,6-C6H3-(i-Prh](ORh,lla,c and 

therefore the reactions of these complexes with alkoxides were investigated. Monitoring 

the reaction of the benzylidene complex W(=CHPh)C12(NPh)(PMePh2h with two 

equivalents of LiOCMe(CF3h by IH NMR spectroscopy indicated that a chloride ligand 

was rapidly displaced by the first equivalent of alkoxide to yield W(=CHPh)Cl(NPh)­

[OCMe(CF3h](PMePh2). Reaction with the second equivalent of alkoxide proceeded 

more slowly and resulted in the formation of W( =CHPh)(NPh)­

[OCMe(CF3hh(PMePh2). Methyldiphenylphosphine was coordinated reversibly to this 

complex, and in donor solvents such as THF-dS and dioxane-dS, the phosphine-free 

complex was also observed. The reversible coordination of PMePh2 and the small steric 

bulk of the imido and alkylidene ligands resulted in the fairly rapid decomposition (-1 

day) of the bis(alkoxide) complex in solution.20 Only unidentified decomposition 

products were observed for the reaction of the same precursor with LiOCMe3. Most 

likely, the formation of a more electron-rich metal center prevented strong donation by 

PMePh2 and, hence, observation of the pentacoordinate intermediate. In general, these 

studies indicated that stronger donor ligands, such as PMe3, are needed to stabilize the 

pentacoordinate base adduct and permit its isolation. 

The use of larger alkoxides, such as LiOC6H3-(i-Prh and LiOCEt3, enabled 

relatively clean formation of the tetracoordinate benzylidene and vinyl alkylidene 

compounds. For example, when two equivalents of LiOC6H3-(i-Prh in a small amount 
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of THF-ds, the dimethylvinyl alkylidene complex 6 in C6D6, and an excess of CuCI were 

mixed, sharp doublets for Ho. (9.06 ppm, JRa - R~ = 16.11 Hz) and H~ (8.12 ppm, JRa - H~ 

= 16.12 Hz) were observed. A sharp singlet at 10.3 ppm was observed for the reaction of 

the benzylidene compound 1 with two equivalents of LiOCEt3 in a mixture of C6D6 and 

dioxane-ds. These results are very preliminary and first attempts to synthesize the 

tetracoordinate alkoxide complexes on a preparative scale in THF were unsuccessful. 

Two modes of decomposition are likely: (1) bimolecular decomposition upon solvent 

removal or (2) CuCI-catalyzed decomposition. If CuCl was responsible for the 

decomposition, perhaps a noncoordinating and less polar solvent than THF should be 

used in order to minimize the solubility of CuCl. 

In Situ Trapping of Reduced 
Tungsten Complexes by Phosphoranes 

The above examples of alkylidene transfer to WCI2(NPh)(PMePh2h and the 

examples shown in Figure 2 all involved transfer to reduced metal complexes that were 

stabilized by donor ligands. Prior loss of a donor ligand was required for alkylidene 

transfer to occur, and therefore transfer was often slow and normally required high 

temperatures. A more attractive method of alkylidene synthesis would involve the in situ 

trapping of reduced metal species by phosphoranes, thereby eliminating the synthesis and 

isolation of reduced intermediates. In order to determine the viability of this method, the 

following study was undertaken. 

WCI4(NAr) Precursors. Initial investigations involving WCl4(NAr) precursors 

were not promising. Benzylidene triphenylphosphorane reacted with these complexes in 

C6D6 to give an intractable precipitate. A green powder was formed when the reaction 

was carried out in CH2Cl2 and the solvent was removed in vacuo. Although the NMR of 

the product was broad and uninterpretable, initial displacement of a chloride ligand by the 

ylide is precedented.21 

WCI2(NAr)[OCMe(CF3hh(THF) Precursors. The increased steric stabiliza-
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Table 3. Selected NMR Data for Alkylidene Complexes Prepared by the In Situ 
Trapping of Reduced Tungsten Species by Phosphoranes 

Cm~d Formula Ha Ca JCH Jcw 

11 W(CHPh)(N-2,6-CsH3-Me2)[OCMe(CF3)212(PMe3) 12.16a 266.5a 144 154 

12 W(=CHCsH4-o-0Me}(NPh}[OCMe(CF3)212(THF} 10.46b 246.4 149 161 

13 W( =CHCsH4 -o-OMe) (N-2 ,6-CsH3-Me2)- 10.81 a 240.2a 151 160 
[OCMe(CF3)212(THF) 

14 W(=CHCsH4-o-0Me)[N-2,6-C6H3-(i-Pr2)]- 10.60b 248.1 b 148 167 
[OCMe(CF3)212(THF) 

15 W(=CHC6H4-o-0Me)(N-2,6-C6H3- 12.48c 259.5c 147 148 
Me2)[OCMe(CF3)2]2(PMe3) 

16a W(=CHCsH4-o-0Me)(N-2,6-CsH3-Me2)[OCMe(CF3)212 10.94a 228.1a 155 172 

16b W(=CHCsH4-o-0Me)[N-2,6-CsH3-(i-Pr2)1- 10.79c 229.4c 155 176 
[OCMe(CF3)212 

aln CsDs. bfn THF-ds. cln CD2CI2. 

tion of WCI2(NAr)[OCMe(CF3hh(THF) precursors [Ar = Ph (7), 2,6-C6H3-Me2 (8), 

and 2,6-C6H3-(i-Prh (9)], which were synthesized by the addition of two equivalents of 

LiOCMe(CF3h to WC4(NAr), prevented their reaction with aryl ylides in the absence of 

a reducing agent and enabled the reduction of these complexes in the presence of a 

number of phosphoranes to be investigated. When the 2,6-dimethylphenylimido 

precursor 8 was reduced by an excess of 1 % sodium amalgam in the presence of 

phosphoranes, alkylidene transfer (yields of 60 - 85% by 1 H NMR spectroscopy) from 

phosphorus to tungsten was observed for several aryl ylides Ph3P=CHAr' (eq 5), where 

Ar' = Ph, C6~-p-Me, C6H4-m-Me, C6H4-o-Me, and C6H4-P-OEt [10(a - e)], but not 

where Ar' = C6FS, I-Np, and 2-Np. Alkylidene transfer from Ph3P=CH-CH=CMe2 and 

Ph3P=CH2 was also not observed, and Ph3P=C6H4-P-CF3 reacted with 8 prior to 

reduction.22 

Yields of the tungsten alkylidene complexes were low for the reactions of 

Ph3P=CHPh with the analogous phenyl- and 2,6-di-i-propylphenylimido precursors 7 and 
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~ 0 
N It.pCMe(CF3h (CF3hMeCO ... II .. ,CI NaJHg 

'w' + Ph3P=CHAr' • W=CHAr' (5) 
(CF3hMeCO" I 'CI C6H6 ", 

THF - NaCI Ph3P OCMe(CF3)2 

9. Also, reduction and alkylidene transfer were less favorable when alkoxide ligands 

other than hexafluoro-t-butoxide were used. For example, the bis(t-butoxide) complex 

WCb(N-2,6-C6H3-Me2)(O-t-Buh was not measurably reduced by sodium amalgam 

under the standard conditions used for the alkylidene transfer reaction. Tungsten 

decomposition products and unreacted aryl ylides were observed when either two 

trifluoro-t-butoxide or substituted phenoxide [O-2,6-C6I-4-Me2 and 0-2,6-C6I-4-(i-PrhJ 

ligands were incorporated on the tungsten precursor. Apparently, the very electron-

withdrawing hexafluoro-t-butoxide ligands enabled rapid reduction of the tunsten(IV) 

precursor, and the combined steric bulk of the alkoxide and the 2,6-dimethylphenylimido 

substituents was sufficient to stabilize the reduced intermediates, but not so great as to 

prevent alkylidene transfer. 

Transfer of the benzylidenes to tungsten was indicated by the large downfield 

shifts of the Hex resonances (12.26 - 12.65 ppm) for complexes 10(a - e)lS and the 

coupling of these resonances to tungsten-coordinated PPh3 (JHP = 6.37 - 6.87 Hz). The 

imido methyl groups and the alkoxide ligands are inequivalent in these complexes, and 

comparisons with crystal structures of similar complexes suggest that the geometry 

shown in eq 5 is likely.17,18 Triphenylphosphine was coordinated reversibly to these 

alkylidene complexes and could be removed from the metal center by the addition of one 

equivalent of CuCl, a phosphine sponge. 14 The alkylidene complexes were stable in 

solution in the presence of PPh3, but not in its absence, and the isolation of these 

complexes required the addition of a stronger donor ligand to prevent decomposition 
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Scheme 2. Reaction Sequence for the Synthesis of o-Methoxybenzylidene Complexes 
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upon solvent removal. For example, addition of PMe3 to the final reaction mixture 

enabled the isolation of the benzylidene complex W(=CHPh)(N-2,6-C6H3-

Me2)[OCMe(CF3hh-(PMe3) (11) as an 18: 1 mixture of rotamers. 

Chelation by o-Methoxybenzylidene23 

THF-Adducts of o-Methoxybenzylidene Complexes. In contrast to the 

reactivity of the other aryl ylides, alkylidene transfer from Ph3P=CHC6H4-o-0Me to 

tungsten was observed in high yields for the phenyl- and 2,6-di-i-propylphenylimido 

precursors 7 and 9, as well as for the 2,6-dimethylphenylimido precursor 8, and stable 

alkylidene complexes that did not bind PPh3 were isolated. Recrystallization of the 

complexes from Et20 or pentane in the presence of THF yielded the yellow, crystalline 

THF adducts W(=CHC614-o-0Me)(NAr)[OCMe(CF3hh(THF) [NAr = Ph (12), 2,6-

C6H3-Me2 (13), and 2,6-C6H3-(i-Prh (14)] in good yields. The reaction sequence for the 

syntheses of these complexes is shown in Scheme 2. 

The structure of the 2,6-dimethylphenylimido complex 13 was determined by X-

ray diffraction. An ORTEP diagram is included in Figure 4 and selected bond lengths 
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CS 

FS 

Figure 4. ORTEP plot of W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3h12-
(THF) (13). Thermal ellipsoids are drawn at the 50% probability level. 
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Table 4. Selected Bond Lengths and Angles for W(=CHC6H4-o-0Me)(N-2,6-C6H3-
Me2)[OCMe(CF3hh(THF) (13) 

Bond Lengths (A) 

W(1)-C(1) 1.943(5) W(1) - N(1) 1.737(4) 

W(1) - 0(1) 2.346(3) W(1) - 0(2) 1.995(4) 

W(1) - 0(3) 1.995(3) W(1) - 0(4) 2.294(3) 

Bond Angles (0) 

C(1) - W(1) - N(1) 99.2(2) C(1) - W(1) - 0(1) 74.2(2) 

N(1) - W(1) - 0(1) 173.0(2) C(1) - W(1) - 0(2) 97.6(2) 

N(1) - W(1) - 0(2) 101.2(2) 0(1) - W(1) - 0(2) 82.0(1) 

C(1) - W(1) - 0(3) 103.0(2) N(1) - W(1) - 0(3) 100.2(2) 

0(1) - W(1) - 0(3) 79.7(1) 0(2) - W(1) - 0(3) 147.3(1) 

C(1) - W(1) - 0(4) 153.7(2) N(1) - W(1) - 0(4) 107.0(2) 

0(1) - W(1) - 0(4) 79.8(1 ) 0(2) - W(1) - 0(4) 75.2(1) 

0(3) - W(1) - 0(4) 75.1(1) W(1) - N(1) - C(9) 174.6(4) 

W(1) - 0(1) - C(7) 112.1(3) W(1) - 0(1) - C(8) 128.4(3) 

W(1) - 0(2) - C(17) 138.8(3) W(1) - 0(3) - C(21) 138.4(3) 

W(1) - 0(4) - C(25) 123.5(3) W(1) - 0(4) - C(28) 126.9(3) 

W(1) - C(1) - C(2) 121.9(4) C(1) - C(2) - C(7) 117.4(5) 

C(2) - C(7) - 0(1) 112.8(4) 

and angles are given in Table 4. In complex 13, the geometry about the metal center is a 

distorted octahedron with the imido and alkylidene ligands lying in the expected cis 

orientation.24 The methoxy group of the benzylidene ligand is coordinated to tungsten 

and occupies an axial site of the octahedron; the 2.346(3) A WO) - 00) bond distance is 

comparable to the 2.294(3) A W(1) - 0(4) (THF) bond distance.25 As a result of 

chelation by the methoxy group, the W(1) - C(1) - C(2) bond angle is approximately 16° 

and 23° smaller, respectively, than the analogous angles in W(=CHC6H4-P-

Me)C12(NPh)(PMePh2h (2) and W( =CHPh)(NAr)[OCMe(CF3hh.lla The angle size is 
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reflected in the respective Co. - Ho. coupling constants of these three complexes: JeHu = 

151 Hz for 13, 127 Hz for 2, and 121 Hz for W(=CHPh)(NAr)[OCMe(CF3hh.lla 

Difference NOE and low-temperature spectra were consistent with the solid-state 

structure of 13. Strong NOE enhancements, indicative of an anti orientation of the 

alkylidene substituents relative to the imido ligand, were observed between the methyl 

groups of the imido ligand and the alkylidene Ho. resonance, and irradiation of the THF 

ether protons enhanced the o-methoxy resonance and the imido methyl resonance and 

vice versa. NOE enhancements were not observed in either direction between the 

methoxy group and the alkylidene a-proton, consistent with irreversible coordination by 

the o-methoxy group to tungsten. At room temperature, the aryl imido ligand of 13 

rotated freely, however, at -70°C, two imido methyl groups were observed in the IH 

NMR spectrum, requiring that the aryl ring not lie in the RO-W(N)-OR plane. 

THF Lability. The reversible coordination of THF to complexes 12 - 14 was 

demonstrated by the rapid exchange of deuterio-THF with coordinated protio-THF, the 

production of yellow W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PMe3) 

(15) upon treatment of 13 with PMe3, and the formation of red, pentacoordinate, THF­

free W(=CHC~-o-OMe)(N-2,6-C6H3-Me2)[OCMe(CF3hh (16a) and W(=CHC6R4-o­

OMe)[N-2,6-C6H3-(i-PrhHOCMe(CF3hh (16b) upon heating toluene solutions of 13 

and 14 under vacuum. An increase in solubility was noted upon loss of THF, and the 

downfield chemical shifts of the a-protons of the o-methoxybenzylidene ligands of 16a 

and 16b can be compared with the downfield shifts reported for alkylidene complexes 

coordinated by Lewis bases,26 which suggests that in solution the methoxy groups of 16a 

and 16b coordinate to the tungsten metal centers. The continuum of the alkylidene Co. 

chemical shifts of 14 in THF-dS (248.1 ppm, sharp singlet, Jew = 167 Hz) and CD2Cl2 

(239.6 ppm, broad multiplet) and of 16b in CD2Cl2 (229.4 ppm, sharp singlet, Jew = 176 

Hz) further demonstrates the reversible coordination of THF to 14, and the increase in the 
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F4 
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Figure 5. ORTEP plot of W(=CHC6H4-o-0Me)[N-2,6-C6H3-(i-Prh] [OCMe(CF3hh 
(16b). Thermal ellipsoids are drawn at the 50% probability level. 
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Table 5. Selected Bond Lengths and Angles for W(=CHC614-o-0Me) [N-2,6-C6H3-(i­
Prh][OCMe(CF3hh (16b) 

Bond Lengths (A) 

W(1) - 0(1) 2.352(3) W(1) - 0(2) 1.952(3) 

W(1) - 0(3) 1.923(3) W(1) - N(1) 1.741(4) 

W(1)-C(1) 1.939(5) 

Bond Angles (0) 

0(1) - W(1) - 0(2) 74.2(1) 0(1) - W(1) - 0(3) 82.4(1) 

0(2) - W(1) - 0(3) 121.1(1) 0(1) - W(1) - N(1) 170.2(1 ) 

0(2) - W(1) - N(1) 106.4(2) 0(3) - W(1) - N(1) 105.1(2) 

0(1) - W(1) - C(1) 74.1(2) 0(2) - W(1) - C(1) 111.7(2) 

0(3) - W(1) - C(1) 112.4(2) N(1) - W(1) - C(1) 96.9(2) 

W(1) - 0(1) - C(7) 112.9(3) W(1) - 0(1) - C(8) 125.5(3) 

W(1) - 0(2) - C(21) 134.3(3) W(1) - 0(3) - C(25) 143.6(3) 

W(1) - N(1) - C(9) 177.4(3) W(1) - C(1) - C(2) 122.0(3) 

C(1) - C(2) - C(7) 117.8(4) 

Ca - W coupling constant is indicative of a shortening of the Ca - W bond upon loss of 

THF. 

The synthesis of the THF-free complexes 16(a - b) was confirmed by an X-ray 

diffraction study of 16b. Selected bond lengths and angles are given in Table 5 and an 

ORTEP diagram is shown in Figure 5. The complex is best described as a distorted 

trigonal bipyramid with the imido and o-methoxy groups occupying the axial positions. 

All of the equatorial ligands again lie on the opposite side of the plane from the arylimido 

ligand, thus relieving unfavorable steric interactions with the i-propyl groups, and a 

comparison with the structure of 13 indicates that the major adjustment upon loss of THF 

is a widening of the angles between the alkoxide and alkylidene ligands. A slight 
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decrease in the W - Ca bond length is observed upon loss of THF, consistent with the 

trends noted previously for the W - Ca coupling constants. 

Reactivity Studies. The potential of the o-methoxybenzylidene complexes to 

serve as metathesis catalysts was determined by studying the reactions of the 2,6-

dimethylphenylimido THF-adduct 13 and its THF-free derivative 16a. For [W] = 0.012 

M and [norbornene] = 0.63 M, the THF-adduct 13 polymerized norbornene at a rate of 18 

equiv/h at -40°C [PDI = 1.5 (polydispersity index: Mw/Mn)], and THF-free 16a 

polymerized norbomene at a rate of 17 equiv/h at -60°C (PDI = 1.6). The latter rate is 

the same as that of the analogous neopentylidene complex, 11 b however, 16a metathesized 

cis-2-pentene at a much slower rate (lower limit = 1.4 equiv/min) than the neopentylidene 

derivative. 11a The molecular weights were obtained by GPC analysis vs. polystyrene 

standards, and the relatively broad polydispersities are typical of polymerizations initiated 

by hexafluoro-t-butoxide arylimido alkylidene catalysts. lIb Analysis by l3C NMR 

spectroscopy indicated that cis- polynorbomene was formed by the ROMP of norbornene 

initiated by both 13 and 16,27 again typical of hexafluoro-t-butoxide catalysts. 11b 

Finally, complex 13 reacted in a Wittig-type fashion with carbonyl compounds, including 

esters and amides, in yields of 82 - 100% as measured by NMR spectroscopy.9,28 

For practical applications, it is important to note that the reaction sequence shown 

in Scheme 2 requires the use of the hexafluoro-t-butoxide ligand. Arylimido metathesis 

catalysts incorporating this ligand are very active, but are not living, lIb and therefore 

these catalysts are best utilized in the polymerization of relatively unstrained monomers, 

such as cyclooctatetraene.29,30 For the living polymerization of strained monomers and 

corresponding control over molecular weights and polydispersities, the t-butoxide 

derivatives are needed. 11 b Clean substitution of the hexafluoro-t-butoxide ligands by two 

equivalents of the more donating t-butoxide moiety was observed. However, the addition 

of PMe2Ph was necessary in order to separate the complex from free hexafluoro-t-
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butoxide, and therefore, the living t-butoxide catalysts are best prepared by other 

methods. I Ie 

Conclusions 

In this investigation, several examples of successful alkylidene transfer from 

phosphorus to reduced arylimido tungsten complexes were observed, demonstrating that 

this is a viable method for synthesizing high-valent tungsten alkylidenes, as well as 

providing the first extension of this reaction to Group VI metals. Insights gained from 

this study include the following: 

(a) Transfer of partially resonance-stabilized alkylidenes (e.g., Ph3P=CHPh and 

Ph3P=CH-CH=CMe2) is especially favorable, most likely for several reasons: (1) Stable 

alkylidene complexes are formed, as the substituents on the alkylidene ligand also 

stabilize the M+-C - resonance structure of the resulting nucleophilic tungsten 

alkylidene. (2) The steric requirements of these alkylidenes are moderate, enabling the 

ylide carbon to approach the metal center. (3) The nucleophilicity of the ylide carbon is 

sufficient to enable transfer to the metal, but not so great as to result in further side 

reactions, such as deprotonation of the metal alkylidene. For very sterically congested 

precursors, methylidene transfer from smaller and more nucleophilic Ph3P=CH2 is more 

likely, and in general, the results of this research suggest that survey reactions with three 

triphenylphosphoranes, Ph3P=CH2, Ph3P=CHPh, and Ph3P=CHC6H4-o-0Me, provide a 

good indication of whether alkylidene transfer to a given metal precursor is possible. 

(b) Alkylidene transfer to complexes containing labile anionic ligands is possible 

with the proper choice of solvent and/or the incorporation of sufficient steric bulk around 

the metal center. For example, for the WCI2(NPh)(PMePh2)3 precursors, alkylidene 

transfer was observed in nonpolar solvents, such as benzene and toluene, that disfavor 

formation of ionic intermediates, such as those resulting from displacement of a chloride 

ligand by the ylide. For the in situ reduction and trapping of reduced tungsten complexes 
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by phosphoranes, the incorporation of bulky alkoxides on the metal precursor prevented 

displacement of its chloride ligands by the phosphorane prior to reduction. 

(c) Transfer of the alkylidene is extremely sensitive to the steric congestion 

around the metal center, and therefore precursors with potentially variable structures are 

useful. In the present study, the steric bulk of the imido, alkoxide/chloride, and 

phosphine/phosphite ligands could all be varied, and it was this flexibility that enabled 

the alkylidene transfer reaction to be observed under several circumstances. 

(d) Although the in situ reduction and trapping of the tungsten complex by the 

phosphorane provides a very efficient method for the synthesis of alkylidenes, the 

appropriate tuning of the steric and electronic properties of the metal precursor and the 

phosphorane is critical, since if the reduced metal species is not trapped immediately by 

the phosphorane, there are no stabilizing donor ligands to prevent it from undergoing 

detrimental side reactions. Therefore, the use of the chelating o-methoxybenzylidene was 

especially effective in this case, as coordination by the o-methoxy group greatly aided the 

transfer reaction and, in addition, stabilized the resulting product. 

(e) One of the motivations of this study was the potential ability to synthesize a 

variety of metal alkylidene structures by alkylidene transfer from phosphorus. This goal 

was achieved by the successful synthesis of a number of new high-valent tungsten aryl 

and vinyl alkylidenes. Although there are some restrictions to the transfer reaction, these 

complexes may potentially be valuable catalysts for end-group control in ROMP or for 

G 

Ph 

Ph2Me~~ 
~---::'-....;;;::- --W - CI 

1\ 
CIPMePh2 
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carbonyl olefinations in organic synthesis. Furthermore, the utility of the alkylidene 

transfer reaction in synthesizing a bis(initiator) G was recently demonstrated by Frey and 

Grubbs) 1 
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Experimental Section 

General Considerations 

All manipulations of air- and/or water-sensitive compounds were performed using 

standard high-vacuum or Schlenk techniques. Argon was purified by passage through 

columns of BASF R3-11 catalyst (Chemalog) and 4 A molecular sieves (Linde). Solid 

organometallic compounds were transferred and stored in a nitrogen-filled Vacuum 

Atmospheres drybox. NMR spectra were recorded with either a JEOL FX-90Q (89.60 

MHz IH; 22.53 MHz 13C; 36.20 MHz 3Ip), a JEOL GX-400 (399.65 MHz IH; 100.40 

MHz 13C), or a QE-300 Plus (300.10 MHz IH; 75.49 MHz 13C) spectrometer. All 

coupling constants are reported in Hz. Gel permeation chromatography was performed 

on a Waters GPC-120C, and molecular weights are reported relative to narrow molecular 

weight polystyrene standards. 

Materials 

Toluene, benzene, diethyl ether and tetrahydrofuran were distilled or vacuum­

transferred from sodium-benzophenone ketyl. p-Xylene was dried over CaH2 and 

distilled under argon. Pentane was stirred over concentrated H2S04, dried over MgS04 

and CaH2, and then transferred onto sodium-benzophenone ketyl solubilized with 

tetraglyme. Benzene-d6, toluene-d8, and THF-d8 were dried over sodium-benzophenone 

ketyl. Chloroform-d and methylene chloride-d2 were dried over P20S, vacuum­

transferred, and then degassed by repeated freeze-pump-thaw cycles. Isocyanates were 

purified by fractional distillation under argon. WC14(NAr) complexes and 

(CF3hCH3COLi were synthesized as described in Chapter 2. Organic halides, which 

were used as precursors to the ylides, were purchased commercially with the exception of 

Me3CCH2I.32 Phosphonium salts were generally synthesized by refluxing a I: 1 mixure 

of triphenylphosphine and the organic halide overnight in THF and then filtering. 

However, Me3CCH2PPh31 and Me3SiCH2PPh31 were synthesized by refluxing 

triphenylphosphine in a small excess of the corresponding halide.33 
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Table 6. Comparison of the Rates of Alkylidene Transfer from ortho-, meta-, and para­
Substituted Aryl Ylides Ph3P=CHAr' to WCh(NPh)(PMePh2ba 

Yield of W{=CHAr')CI2{NPh)(PMePh2)2; Ar' = 

Timeffemp CsH4-p-Me CsH4-m-Me CsH4-o-Me CsH4-o-0Me 

0.33 h/r.t. 6% 4% 0% 0% 

3.33 h/r.t. 15% 10% 0% 0% 

6.33 h/r.t. 19% 20% 0% 0% 

24.33 h/r.t. 35%b 34%C 0% 0% 

+ 8 hi 70°C 41%d 42%8 25%' 19%9 

aGeneral Procedure: Dissolved WCI2(NPh)(pMePh2h (10 mg, 0.011 mmol, 0.018 M) in 600 J.lL of tol-dB 
(0.014 M in mesitylene internal standard) together with 1 equiv of the respective triphenylphosphorane. 
The solution was transferred to an NMR tube, the NMR tube was capped with a septum, and the septum 
was wrapped with Parafilm. The tube was rotated at room temperature for a total of 24.33 h; 1 H NMR 
spectra were acquired periodically. (All four reactions were run simultaneously, and the tubes were rotated 
together at the same rate.) Subsequently, the tube was heated in an oil bath at 70°C without any external 
mixing for 8 h, and a IH NMR spectrum was then acquired and integrated. bo 12.38 (t, J = 4.9S, Ha , 21 %); 
o 12.42 (t, J = 4.58, Ha, IS%). Co 12.39 (t, J = 4.SS, Ha, 21 %); 0 12.46 (t, J = 4.64, Ha, 13%). d12.42 Ha 
resonance only. e12.46 Ha resonance only. to 12.71 (t, J = 4.79, Ha, 2S%). go 12.63 (t, J = 2.72, Ha, 
10%); 013.14 (t, J = S.2S, Ha , 9%). 

CpFeCs14CH2PPh31 was the gift of Dr. Seth R. Marder.34 Ylides were synthesized by 

deprotonation of the phosphonium salt with an excess of NaH in refluxing THF until 

evolution of H2 ceased. After filtering the solution, the ylide was recrystallized from 

THF or Et20 at low temperature. Gifts of Ph3P=CH2 were received from Dr. David R. 

Wheeler and Dr. Scott C. Virgil. 

W(=CHPh)CI2(NPh)(PMePh2h (1) 

An orange solution of Ph3P=CHPh (0.765 g, 2.17 mmol) in 60 mL of benzene 

was transferred via cannula into a Schlenk flask containing 2.05 g (2.17 mmol) of 

WCl2(NPh)(PMePh2b dissolved in 40 mL of benzene. After refluxing for 21.5 h, the 

solvent was removed in vacuo, and the remaining brown oil was washed twice with 40 

mL portions of pentane to yield a golden yellow powder. The powder was dissolved in 

20 mL of toluene, and the resulting solution was filtered, layered with pentane, and 



116 

Table 7. Survey of the Reactivity of Phosphoranes with WC12(NPh)(PMePh2ba 

Triphenylphosphorane 

Ph3P=C(H)-Q-OEt 

F. F 

Ph3P=C(H)*F 

F F 

Ph3P=C(H)-Q-N02 

Ph3P=C(H) --L§> 
I 

Fe 

® 

Solventltime 
color 

tol-dB, 7 h 
yellow 

tol-dB, 10 h 
orange 

tol-dB. 7 h 
yellow 

tol-dB, 7 h 
yellow 

THF-d8. min's 

tol-d8. 7 h 
magenta 

THF-d8. 10 h 
yellow 

THF-d8. 10 h 
yellow 

THF-d8.1 h 
yellow 

THF-d8.1 h 
red 

Yield/1 H NMR 
Data for Ha of [W](=CHR) 

69% 0 12.34 (t. JHP = 4.6) 
15% 0 12.26 (t. JHP == 4.6) 

16% WCI2(NPh)(PMePh2h unreacted. 

71 % 0 13.46 (t. JHP == 4.6) 
25% WCI2(NPh)(PMePh2h unreacted. 

-73% 0 12.59 (t. JHP = 4.6) 
-23% 0 12.47 (t. JHP = 4.9) 

4% WCI2(NPh)(PMePh2b unreacted. 

70% 0 11 .96 (br m) 
33% WCI2(NPh)(PMePh2h unreacted. 

Not acquired-precipitate formed. 

12% 012.36 (t. JHP = 4.15) 
Starting materials remained unreacted. 

No alkylidene observed-starting materials 
remained unreacted. 

No alkylidene observed-starting materials 
remained unreacted. 

20% 010.70 (m. CHI-l') 
010.30 (m. CHH, 

23% WCI2(NPh)(PMePh2b unreacted. 

1% 012.47 (m) 
1%o12.15(m) 
7% 010.77 (m) 

39% WCI2(NPh)(PMePh2b unreacted. 

aGeneral Procedure: Dissolved WCI2(NPh)(PMePh2b (10 mg. 0.011 mmol, 0.018 M) in 600 ilL of 
solvent [either wI-dB (0.014 M in mesitylene internal standard) or THF-d8 (0.0034 M in mesityiene internal 
standard)] together with 1 equiv of the respective triphenylphosphorane. The solution was transferred to an 
NMR tube, the NMR tube was capped with a septum, and the septum was wrapped with Parafilm. The 
tube was heated in an oil bath at 60 - 65°C without any external mixing for several h. and a 1 H NMR 
spectrum was then acquired and integrated. 
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cooled to -50°C. Yellow-brown crystals (1.1 g, 61 %) were isolated: IH NMR (C6l)6) 0 

12.52 (t, 1, JHP = 4.77, Hu), 7.8-6.5 (m, 30, Haryl), 2.47 (t, 6, JHP = 4.57, PMePh2); 13C 

NMR (CD2Cl2) 0 290.9 (t, JCH = 126.5, JCp = 12.0, Jcw = 132.8, Cu), 152.8 (t, JCp = 

1.9, Jcw = 37.6, NPh: Cipso), 146.7 (t, JCp = 3.0, CHPh: Cipso), 133.8 (t, Jcp = 23.4, 

PMePhPh': Cipso), 132.9 (t, JCp = 5.1, PMePhPh': Co), 132.7 (t, JCp = 21.2, PMePhPh': 

Cipso), 132.5 (t, JCp = 5.2, PMePhPh': Co), 130.8 (CHPh: Co), 130.3 (PMePhPh': Cp ), 

129.9 (PMePhPh': Cp), 129.6 (CHPh: Cp), 128.04 (t, JCp = 5.04, PMePhPh': Cm), 127.97 

(t, Jcp = 4.92, PMePhPh': Cm), 127.8 (CHPh: Cm), 127.5 and 127.4 (NPh: Co and Cm), 

126.9 (NPh: Cp), 13.9 (t, JCp = 16.4, PMePh2); 31p NMR (CD2Cl2) 0 11.9 (Jpw = 283.2). 

Anal. Calcd for (C39H37Ci2NP2W): C, 56.00; H, 4.46; N, 1.67. Found: C, 55.47; H, 

4.32; N, 1.60. 

W(=CHC6H4-p-Me)CI2(NPh)(PMePh2h (2) 

In the drybox, WCI2(NPh)(PMePh2h (1.98 g, 2.09 mmol) and Ph3P=CHC(}l4-p­

Me (0.77 g, 2.09 mmol) were placed in a 250 mL round-bottom Schlenk flask that was 

equipped with a Teflon stir bar and a reflux condenser. The sealed apparatus was 

removed from the drybox and attached to a Schlenk line. Benzene (100 mL) was added 

via cannula to yield a deep red-brown solution. All solids were dissolved. With stirring, 

the reaction was heated in an oil bath at 80°C for approximately 6 h to give a yellow­

brown solution. The solvent was removed in vacuo, and the resulting orange-brown oil 

was left under dynamic vacuum for approximately 12 h. Upon addition of pentane, the 

oil solidified and formed a mustard-gold powder. The powder was washed twice (2 x 30 

mL) with pentane, and the pale yellow pentane wash solution was discarded. The powder 

was dissolved in toluene (35 mL) and placed in a freezer to crystallize. Brown-orange 

crystals (1.04 g, 58.4%) were isolated: IH NMR (CD2CI2) 0 12.21 (t, 1, JHP = 4.64, Hu), 

7.6-6.7 (m, 29, Haryl), 2.53 (s, 3, CHAr': p-Me), 2.43 (t, 6, JHP = 4.40, PMePh2); l3C 

NMR (CD2Cl2) 0 290.7 (m, JCH = 126.7, Cu), 153.2 (t, JCp = 2.3, NPh: Cipso), 144.3 (t, 
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Jcp = 3.3, CHAr': Cipso), 140.2 (CHAr': Cp), 134.1 (t, JCp = 23.5, PMePhPh': Cipso), 

133.1 (t, JCp = 21.1, PMePhPh': Cipso), 133.1 (t, JCp = 5.1, PMePhPh': Co), 132.7 (t, JCp 

= 5.1, PMePhPh': Co), 130.4 (PMePhPh': Cp ), 130.0 (PMePhPh': Cp ), 128.2 (t, JCp = 5.1, 

PMePhPh': Cm), 131.2, 128.1, 128.0 and 127.7 (NPh: Co, Cm and CHAr': Co, Cm), 126.9 

(NPh: Cp), 14.1 (t, Jcp =16.5, PMePh2); 31p NMR (CD2CI2) 8 12.5 (Jpw = 283). Anal. 

Ca1cd for (C40H39ChNP2W): C, 56.49; H, 4.62; N, 1.65. Found: C, 56.79; H, 4.40; N, 

1.32. 

W(=CHC6H4-P-CF3)Ch(NPh)(PMePh2h (3) 

In the drybox, WCI2(NPh)(PMePh2b (2.02 g, 2.13 mmol) and Ph3P=CHC6H4-p­

CF3 (0.90 g, 2.13 mmol) were placed in a 250 mL round-bottom Schlenk flask that was 

equipped with a Teflon stir bar and a reflux condenser. The sealed apparatus was 

removed from the drybox and attached to a Schlenk line. Benzene (100 mL) was added 

via cannula to yield a deep red-brown solution. All solids were dissolved. With stirring, 

the reaction was heated in an oil bath at 80°C for 6.5 h to give an orange-brown solution. 

The solvent was removed in vacuo, and the resulting orange-brown oil was left under 

dynamic vacuum for approximately 12 h. Upon addition of pentane, the brown oil 

partially solidified. The solid was washed twice (2 x 25 mL) with pentane. The powder 

was dissolved in toluene (30 mL) at 40°C. The toluene solution was layered with 

pentane and cooled to -50°C. Gold crystals (805 mg, 42%) were isolated: IH NMR 

(CD2Cl2) 8 12.13 (t, 1, JHP = 4.63, Hex), 7.6-6.7 (m, 29, Haryl), 2.43 (t, 6, JHP = 4.46, 

PMePh2); l3C NMR (CD2CI2) 288.3 (t, JCH = 128.6, Jcp = 12.2, Jcw = 131.6, Cex), 152.4 

(t, JCp = 1.8, Jcw = 37.5, NPh: Cipso), 149.8 (CHAr': Cipso), 133.5 (t, JCp = 21.8, 

PMePhPh': Cipso), 132.7 (t, JCp = 5.1, PMePhPh': Co), 132.4 (t, JCp = 5.1, PMePhPh': 

Co), 132.2 (t, JCp = 21.7, PMePhPh': Cipso), 130.4 (PMePhPh': Cp ) 130.3 (PMePhPh': 

Cp ), 129.9 (q, JCF = 32.1, CHAr': Cp ), 128.0 (t, JCp = 5.0, PMePhPh': Cm), 128.0 (t, Jcp 

= 4.9, PMePhPh': Cm), 129.9, 127.8, 127.6, 127.2 (NPh: Co, Cm, Cp; CHAr': Co), 124.1 
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(q, JCF = 3.5, CHAr': Cm), 124.1 (q, JCF = 271.8, CF3); 13.8 (t, JCp = 16.6, PMePh2); 31p 

NMR (CD2Cl2) 8 11.9 (Jpw = 280); 19F NMR (CD2Cl2) 8 -62.3 (CF3). Anal. Calcd for 

(C40H36C12F3NP2W): C, 53.12; H, 4.01; N, 1.55. Found: C, 53.09; H, 3.99; N, 1.44. 

W[=CH(2-Np)]CI2(NPh)(PMePh2h (4) 

In the drybox, WCh(NPh)(PMePh2h (3.09 g, 3.27 mmol) and Ph3P=CH(2-Np) 

(1.50 g, 3.29 mmol) were placed in the same Schlenk tube. The mixture was dissolved in 

60 mL of toluene and stirred for 4 h at 83°C. After the solution was stored at -20°C for 

1 day, the supernatant was transferred into another Schlenk tube via a cannula equipped 

with a filter. Approximately 35 mL of the solvent was removed in vacuo, and the 

remaining brown solution was transferred via cannula into 150 mL of rapidly stirring 

pentane. Filtration yielded 2.58 g (89.0%) of yellow powder, which was dried in vacuo: 

IH NMR (CD2C12) 812.31 (t, 1, JHP = 4.72, Ha), 7.8-6.6 (m, 32, Haryl), 2.45 (t, 6, JHP = 

4.50, PMePh2); l3C NMR (CD2Cl2, not all aryl chemical shifts were assigned) 8290.4 (t, 

JCH = 125.3, JCp = 12.1, Jcw == 132.3, Ca), 153.0 (t, Jcp == l.9, Jcw == 37.6, NPh: Cipso), 

144.4 (t, Jcp = 3.2, CHAr': Cipso), 133.9 (t, JCp = 21.1, PMePhPh': Cipso), 133.9 (t, JCp == 

23.5, PMePhPh': Cipso), 133.0 (t, JCp = 5.1, PMePhPh': Co), 132.8 (t, JCp == 5.1, 

PMePhPh': Co), 130.4 (PMePhPh': Cp), 130.0 (PMePhPh': Cp), 128.2 (t, JCp = 5.1, 

PMePhPh': Cm), 128.2 (t, Jcp = 4.9, PMePhPh': Cm), 14.2 (t, Jcp = 16.4, PMePh2); 31p 

NMR (CD2Cl2) 11.8 (Jpw = 281). Anal. Calcd for (C43H39Cl2NP2W): C, 58.26; H, 

4.43; N, 1.58. Found: C, 57.95; H, 4.29; N, 1.64. 

W(=CHC6FS)CI2(NPh)(PMePh2) (5) 

A mixture of WCh(NPh)(PMePh2h (3.07 g, 3.25 mmol) and Ph3P=CHC6Fs 

(1.62 g, 3.67 mmol) was dissolved in 30 mL of benzene and stirred at 75°C for 4.25 h. 

Most of the benzene (-23 mL) was removed in vacuo, and 150 mL of pentane was added 

to the reaction mixture. Upon vigorous stirring, a bright yellow powder formed, and the 
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reaction mixture was then filtered. At this point, the 1 H NMR spectrum of the yellow 

powder indicated a 28:72 mixture of WCI2(NPh)(PMePh2h and W(=CHCt>F5)CI2(NPh)­

(PMePh2h. The powder was redissolved in 30 mL of benzene together with 543 mg 

(1.23 mmol) of Ph3P=CHC6F5, and the solution was stirred for 2 h at 75°C. After 

removing benzene in vacuo, the yellow powder was washed with 30 mL of pentane and 

then dissolved in a mixture of 100 mL of toluene and 30 mL of pentane. This solution 

was filtered, and subsequent removal of the solvent in vacuo yielded an oil. The oil was 

partially dissolved in 17 mL of benzene. Slow addition of 50 mL of hexane and 

subsequent filtration resulted in the isolation of 1.78 g (56.7%) of yellow powder: IH 

NMR (CD2Cl2) 8 11.71 (t, 1, JHP = 4.12, Ha), 7.69-6.51 (m, 25, Haryl), 2.42 (t, 6, J = 

4.55, PMePh2); l3C NMR (CD2Cl2) 8261.5 (t, JCH = 133.9, JCp = 12.0, JCW = 146, Ca ), 

152.3 (t, JCp = 1.9, Jcw = 39, NPh: Cipso), 133.0 (t, Jep = 22.8, PMePhPh': Cipso), 132.8 

(t, JCp = 5.3, PMePhPh': Co), 132.7 (t, Jep = 5.0, PMePhPh': Co), 131.9 (t, Jep = 22.6, 

PMePhPh': Cipso), 130.5 (PMePhPh': Cp ), 130.0 (PMePhPh': Cp ), 128.2 (t, Jep = 4.9, 

PMePhPh': Cm), 127.9 (t, Jep = 4.8, PMePhPh': Cm), 127.74, 127.69, and 127.67 (NPh: 

Co, Cm, and Cp ), 14.9 (t, Jep = 16.8, PMePh2), (multiplets for the CHC6F5 ring carbons 

were observed between 124-145 ppm); 19p NMR (CD2Cl2) 8 -136.68 (d, JFF = 25.7, Fo), 

-158.13 (t, JFF = 20.1, Fp), -164.87 (t, JFF = 22.0, Fm); 31p NMR (CD2Cl2) 8 13.7 (JpW = 

280). Anal. Calcd for [C32H32C12F5NP2W ·l/2(C6H6)]: C, 52.25; H, 3.65; N, 1.45. 

Found: C, 51.94; H, 3.29; N, 1.27. (Inclusion of one-half of a molecule of benzene was 

supported by the IH and l3C NMR spectra.) 

W(=CH.CH=CMe2)CI2(NPh)(PMePh2h (6) 

WCh(NPh)(PMePh2h (10.24 g, 10.82 mmo!) and Ph3P=CH-CH=CMe2 (3.66 g, 

11.1 mmol) were placed together in a Schenk flask equipped with a reflux condenser, 

dissolved in 150 mL of benzene, and stirred for 20.5 h at 90°C. After -40 mL of 

benzene was removed in vacuo, the solution was transferred via a cannula equipped with 
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a filter into 300 mL of rapidly stirring pentane. A golden-yellow powder (7.24 g, 82.2%) 

precipitated and was filtered away from the pentane solution. The complex was always 

isolated as a mixture of syn and anti rotamers of the alkylidene ligand, the relative 

amounts of which varied according to the reaction time. The thermodynamic rotamer 

with the more upfield Ha resonance is tentatively assigned as the syn rotamer on the basis 

of comparisons with the chemical shifts of the rotamers of W(=CH-CH=CPh2)Cl2(N-2,6-

C6H3-Me2)(PEt2Phh, which were assigned on the basis of difference NOE 

measurements, and comparisons with the analogous aryl alkylidenes, for which the 

thermodynamic rotamer was determined by an X-ray diffraction study to be the syn 

isomer: IH NMR (CD2Cl2) Syn Rotamer: 0 12.22 (d of t, 1, JHH = 12.77, JHP = 4.14, 

Ha), 8.00 (d, 1, JHH = 12.73, Hp), 7.7-6.8 (m, 25, Haryl), 2.44 (t, 6, JHP = 4.39, PMePh2), 

2.30 (s, 3, =CMeMe'), 1.90 (s, 3, =CMeMe'); Anti Rotamer: 0 12.45 (d of t, 1, JHH = 

13.11, JHP = 4.35, Ha ), 7.9 (d, 1, Hp), 2.41 (t, 6, JHP = 4.32, PMePh2), 2.15 (s, 3, 

=CMeMe'), 1.98 (s, 3, =CMeMe'); l3C NMR (CD2Cl2) Syn Rotamer: 0284.0 (t, JCH = 

134.4, JCp = 11.6, Jcw = 129.3, Ca), 153.2 (t, Jcp = 1.9, Jcw = 38.2, NPh: Cipso), 140.0 

(t, JCH = 155.6, Jcp = 3.9, Cp), 138.7 (t, Jcp = 3.7, Cy), 134.4 (t, Jcp = 23.3, PMePhPh': 

Cipso), 133.3 (t, Jcp = 21.1, PMePhPh': Cipso), 132.8 (t, Jcp = 5.1, PMePhPh': Co), 132.7 

(t, Jcp = 5.2, PMePhPh': Co), 130.0 (PMePhPh': Cp ), 129.8 (PMePhPh': Cp), 128.1 (t, 

Jcp = 4.9, PMePhPh': Cm), 128.0 (t, Jcp = 4.8, PMePhPh': Cm), 127.9 and 127.8 (NPh: 

Co and Cm), 126.5 (NPh: Cp), 25.2 (=CMeMe'), 18.0 (=CMeMe'), 13.6 (t, JCp = 16.0, 

PMePh2); Anti Rotamer (only selected Caryl chemical shifts listed): 0274.2 (t, JCH = 

126.3, Jcp = 11.9, Ca), 153.9 (t, Jcp = 1.7, NPh: Cipso), 138.1 (Cy), 136.9 (JCH = 159.7, 

Cp), 24.9 (=CMeMe'), 17.8 (=CMeMe'), 13.4 (t, Jcp = 18.2, PMePh2); 31p NMR 

(CD2Cl2) 0 12.0 (Jpw = 283, Syn Rotamer), 11.5 (Jpw = 276, Anti Rotamer). Anal. 

Calcd for (C37H39Cl2NP2W): C, 54.57; H, 4.83; N, 1.72. Found: C, 54.56; H, 4.60; N, 

1.45. 
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Observation of W( =CHPh)(NPh)[OCMe(CF 3hh(PMePh2) 

A 20 mL THF solution of 180 mg of (CF3hMeCOLi (0.90 mmol) was 

transferred via cannula into a 10 mL THF solution of 380 mg of 1 (0.45 mmol). After the 

reaction mixture was stirred at room temperature for 14 h, the THF was removed in 

vacuo: IH NMR (dioxane-dB) 8 11.07 (d, JHP = 2.93, Ha), 11.06 (d, JHP = 2.93, Ha). 

[Note: After the addition of one equiv of (CF3hMeCOLi to tungsten, loss of one 

PMePh2 ligand was observed, and the Ha resonance appeared as a doublet at 11.86 ppm 

in dioxand-ds.] 

Reaction of W(=CHPh)(NPh)[OCMe(CF3hh(PMePh2) with CuCI 

W(=CHPh)(NPh)[OCMe(CF3hh(PMePh2) was generated in dioxane-dB by the 

addition of excess (CF3hMeCOLi to 1. Addition of CuCI resulted in the observation of 

two singlet Ha resonances at 9.95 and 9.75 ppm. A small singlet at 9.9 ppm was 

observed even before the addition of CuCI. 

WCl2(NPh)[OCMe(CF3hh(THF) (7) 

A solution of (CF3hCH3COLi (18.72 g, 99.55 mmol) in 120 mL of THF was 

added via cannula over a 15 minute period to a suspension of WCI4(NPh) (20.74 g, 47.74 

mmol) in 120 mL of THF cooled to 0 0c. After stirring the solution for 16 h at room 

temperature, the solvent was removed in vacuo, and the product was dissolved in 90 mL 

of Et20. The solution was filtered and then cooled to -50°C to afford 34.89 g of bright 

orange crystals (93.7%, 3 crops): IH NMR (CD2CI2) 87.63 (dd, 2, Hm), 7.30 (d, 2, J = 

7.57, Ho), 7.14 (t, 1, J = 7.57, Hp), 4.40 (m, 4, THF), 2.06 (m, 4, THF), 1.75 (s, 6, 

OCMe(CF3h); 13C NMR (CD2Cl2) 8 150.7 (Cipso), 132.3, 128.6, and 128.3 (Caryl), 

123.7 (q, JCF = 290, CF3), 86.2 (septet, JCF = 30, OCMe(CF3h), 73.0 (THF), 25.9 

(THF), 17.7 (OCMe(CF3h). Anal. Calcd for (ClSH19C12F12N03W): C, 27.71; H, 2.46; 

N, 1.80. Found: C, 27.84; H, 2.47; N, 1.83. 
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WCI2(N-2,6-C6H3-Me2)[OCMe(CF3hh(THF) (8) 

Two equivalents of (CF3hMeCOLi (17.14 g, 91.17 mmol) were dissolved in 90 

mL of THF. The resulting solution was added slowly via cannula to a -78°C solution of 

WC4(N-2,6-C()H3-Me2)(Et20) (23.24 g, 44.79 mmol) in 60 mL of THF. After wanning 

to room temperature, the solution was stirred for 19 h before the solvent was removed in 

vacuo. The red powder was then dissolved in 150 mL of Et20, and the solution was 

filtered. Recrystallization at -50°C afforded red crystals in 93.4% yield (33.8 g, 2 crops): 

IH NMR (C6D6) 8 6.80 (d, 2, J = 7.6, Hm), 6.35 (t, 1, J = 7.6, Hp), 4.25 (m, 4, THF), 2.93 

(s, 6, NAr: Me), 1.54 (s, 6, OCMe(CF3h), 1.29 (m, 4, THF); l3C NMR (C6D6) 8 148.7 

(Cipso), 144.9 (Co), 131.5 and 127.8 (Cm and Cp), 123.8 (q, JCF = 288, CF3), 85.8 (septet, 

JCF = 30, OCMe(CF3h), 72.2 (THF), 25.1 (THF) , 19.8 and 16.4 (NAr: Me and 

OCMe(CF3h). Anal. Calcd for (C20H23CI2F12N03W): C, 29.73; H, 2.87; N, 1.73. 

Found: C, 29.72; H, 2.86; N, 1.76. 

WCI2[N-2,6-C6H3-(i-Prhl[OCMe(CF3hh(THF) (9) 

Two equivalents of (CF3hCH3COLi (7.20 g, 38.3 mmol) were dissolved in 40 

mL of THF. The resulting solution was added over a period of 10 minutes to a 

suspension of WC4[N-2,6-C6H3-(i-Prhl (9.59 g, 19.1 mmol) in 40 mL of THF at 0 dc. 

After wanning to room temperature, the solution was stirred for 15 h before the solvent 

was removed in vacuo. The red solid was dissolved in pentane, and the solution was 

filtered and slowly cooled to -50 dc. Red crystals (13.68 g) were isolated in 82.7% yield 

(2 crops): IH NMR (C6D6) 8 7.07 (d, 2, J = 8.06, Hm ), 6.57 (t, 1, J = 8.06, Hp), 4.61 

(septet, 2, J = 6.59, CHMe2), 4.25 (m, 4, THF), l.58 (s, 6, OCMe(CF3h), l.29 (m, 4, 

THF) , l.28 (d, 12, J = 6.59, CHMe2); l3C NMR (C6D6) 8 154.1 (Co), 146.6 (Cipso), 

132.1 and 123.5 (Cm and Cp ), 123.8 (q, JCF = 288, CF3), 86.5 (septet, JCF = 30, 

OCMe(CF3h), 72.1 (THF), 27.6 (CH(CH3h), 25.1 (THF), 24.9 (CH(CH3h), and 17.1 
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(OCMe(CF3h). Anal. Calcd for (C24H31CI2F12N03W): C, 33.35; H, 3.62; N, 1.62. 

Found: C, 33.60; H, 3.65; N, 1.75. 

W(=CHAr')(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (10) 

Representative Procedure: A 600 ~L C6D6 solution of WCI2(N-2,6-C6H3-

Me2)[OCMe(CF3hh(THF) (30 mg, 0.037 mmol) and one equivalent of Ph3P=CHAr' was 

added to an excess (-6 - 8 equiv) of 1 % Na(Hg) in an NMR tube in the drybox. The 

NMR tube was capped with a septum, the septum was wrapped with Parafilm, and the 

tube was then rotated for 4 h. The NMR tube was returned to the drybox and the reaction 

mixture was poured into a vial. After allowing the salts to settle, the orange-brown 

solution was transferred via pipet off of the spent sodium amalgam and placed in the 

NMR tube again. IH and 31p NMR spectra of the product were then acquired. 

W(=CHPh)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (lOa): IH NMR (C~6) 

o 12.32 (d, 1, JHP = 6.87, Hex), 7.5 - 6.5 (m, Haryl), 2.63 (s, 3, NAr: Me), 2.16 (s, 3, 

OCMe(CF3h), 1.80 (s, 3, NAr: Me), 1.44 (s, 3, OCMe(CF3h); 31p NMR (C6D6) 0 37.4 

(Jpw = 284, PPh3). 

W(=CHC6H4-p-Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (lOb): IH NMR 

(C6D6) 0 12.31 (d, 1, JHP = 6.87, Hex), 8.0 - 6.5 (m, Haryl), 2.63 (s, 3, NAr: Me), 2.36 (s, 

3, CHAr': Me), 2.19 (s, 3, OCMe(CF3h), 1.81 (s, 3, NAr: Me), 1.45 (s, 3, OCMe(CF3h); 

31p NMR (C~6) 0 35.7 (Jpw = 283, PPh3). 

W(=CHC6H4-m-Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (lOe): 1 H 

NMR (C6D6) 0 12.32 (d, 1, JHP = 6.87, Hex), 7.9 - 6.2 (m, Haryl), 2.64 (s, 3, NAr: Me), 

2.27 (s, 3, CHAr': Me), 2.19 (s, 3, OCMe(CF3h), 1.82 (s, 3, NAr: Me), 1.45 (s, 3, 

OCMe(CF3h); 31p NMR (C6D6) 0 37.6 (Jpw = 283, PPh3). 

W(=CHC6H4-o-Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (10d): IH NMR 

(C6D6) 0 12.65 (d, 1, JHP = 6.84, Hex). [Not as stable as the other derivatives-

decomposes within - 12 h.] 
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W(=CHC6H4-P-OEt)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PPh3) (10e): IH 

NMR (C6D6) 8 12.26 (d, 1, JHP = 6.37, Ha ), 8 - 6 (m, Haryl), 3.61 (q, 2, J = 6.87, 

OCH2CH3), 2.64 (s, 3, NAr: Me), 2.19 (s, 3, OCMe(CF3h), 1.81 (s, 3, NAr: Me), 1.49 

(s, 3, OCMe(CF3h), 1.12 (t, 3, J = 6.87, OCH2CH3); 31p NMR (C6D6) 8 35.8 (Jpw = 

283, PPh3). 

W(CHPh)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PMe3) (11) 

A solution of Ph3P=CHPh (2.25 g, 6.38 mmol) and WCI2(N-2,6-C6H3-

Me2)[OCMe(CF3hh(THF) (5.05 g, 6.25 mmol) in 50 mL of benzene was added to a 1 % 

sodium amalgam (1.47 g Na, 64.1 mmol) and stirred for 3 h. After adding 1.98 mL of 

PMe3 (3 equiv, 19.1 mmol) via syringe and stirring for an additional 16 h, the mixture 

was allowed to settle. The golden brown solution was separated from the residual sodium 

amalgam, which was then washed with 45 mL of benzene. The solvent was removed in 

vacuo, and the brown residue was dissolved in 90 mL of Et20. After filtering the 

solution, it was added via cannula to 0.66 g (6.6 mmol) of CuCI and stirred for 15 h. The 

Et20 was removed in vacuo and the solid was extracted with 230 mL of pentane to give a 

yellow-brown solution. After the solution was filtered and concentrated, recrystallization 

at -50°C afforded 2.51 g of yellow-brown crystals (48.3%): (This complex was isolated 

as an 18: 1 ratio of isomers. Spectroscopic data for the major isomer is reported here.) IH 

NMR (C6D6) 812.16 (d, 1, JHP = 9.59, Ha), 7.27 (t, 2, J = 7.57, Haryl), 7.13 (m, 2, Haryl), 

6.91 (d, 2, J = 7.57, Haryl), 6.78 (m, 1, Haryl), 6.73 (t, 1, J = 7.57, Haryl), 2.54 (s, 3, NAr: 

Me), 2.43 (s, 3, NAr: Me), 2.14 (s, 3, OCMe(CF3h), 1.40 (s, 3, OCMe(CF3h), 0.79 (d, 9, 

JHP = 9.28, PMe3); 13C NMR (C6D6) 8 266.5 (JCH = 144, Jcw = 154, JCp = 14, Ca), 

153.8 (NAr: Cipso), 141.09 and 136.7 (CHPh: Cipso and NAr: Co), 134.4, 128.7, 128.1, 

127.9, and 126.7 (all Caryl), 125.7 (q, JCF = 289, CF3), 125.1 (q, JCF = 289, CF3), 82.8 

(septet, JCF = 29, OCMe(CF3h), 80.4 (septet, JCF = 28, OCMe(CF3h), 19.2, 18.7, and 

17.4 (NAr: Me and OCMe(CF3h), 14.2 (d, JCp = 29, PMe3); 31p NMR (CD2CI2) 8 12.7 
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(Jpw = 318, PMe3). Anal. Calcd for (C26H30F12N02PW): C, 37.56~ H, 3.64~ N, 1.68. 

Found: C, 37.74~ H, 3.69~ N, 1.84. 

W(=CHC6H4-0-0Me)(NPh)[OCMe(CF3hh(THF) (12) 

A solution of Ph3P=CHC6H4-o-0Me (7.82 g, 20.5 mmol) and 

WCh(NPh)[OCMe(CF3hh(THF) (15.49 g, 19.85 mmol) in 160 rnL of benzene and 5 

rnL of THF was added to a 1 % sodium amalgam (3.66 g Na, 8.02 equiv) and then stirred 

for 4.5 h. After the mixture settled, the solution was added via cannula to 2.07 g (20.9 

mmol) of CuCl, and the residual sodium amalgam was washed with 60 mL of benzene. 

The combined benzene solutions were stirred with CuCI for 13 h before the solvent was 

removed in vacuo, and the brown solid was then extracted with 135 rnL of pentane. THF 

(4 mL) was added to the red solution, which was then filtered and slowly cooled to -50 

°C. Burnt-orange crystals (10.5 g, 63.8%) were obtained: IH NMR (THF-dS) () 10.46 (s, 

1, Hu), 7.38 (dd, 2, NPh: Hm), 7.23 (d, 2, J = 7.69, NPh: Ho), 7.11 (m, 3, Haryl), 6.68 (t, 1, 

J = 7.69, Haryl), 6.39 (d, 1, J = 7.69, Ar': Hm), 4.09 (s, 3, OMe), 3.61 (m, 4, THF), 1.78 

(m, 4, THF), l.14 (s, 6, OCMe(CF3h); 13C NMR (THF-ds) () 246.4 (JCH = 149, Jcw = 

161, Cu), 159.6 and 156.2 (Ar': COMe and NPh: Cipso), 133.5 (CHAr': Cipso), 129.0, 

128.8, 126.5, 126.3 125.0, and 122.6 (all Caryl), 108.4 (1, CHAr': Cm), 125.6 (q, JCF = 

288, CF3), 80.9 (septet, JCF = 28, OCMe(CF3h), 68.2 (THF), 57.1 (OMe), 26.4 (THF), 

18.0 (OCMe(CF3h). Anal. Calcd for (C26H27F12N04W): C, 37.66; H, 3.28; N, 1.69. 

Found: C, 37.93; H, 3.45; N, 2.16. 

W(=CHC6H4-0-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(THF) (13) 

WCI2(N-2,6-C6H3-Me2)[OCMe(CF3hh(THF) (16.0 g, 19.8 mmol) and 

Ph3P=CHC6H4-o-0Me (7.78 g, 20.3 mmol) were dissolved in 160 rnL of benzene and 

2.5 rnL of THF, and the solution was added to a 1 % sodium amalgam (3.59 g of Na, 7.90 

equiv). After being stirred for 8 h at room temperature, the mixture was allowed to settle, 
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and the orange-brown supernatant was added via cannula to 2.07 g of CuCl (20.9 rnrnol). 

The residual sodium amalgam was washed with a total of 120 mL of Et20, and the 

combined benzenelEt20 solution was stirred with CuCI for 12 h before removing the 

solvent in vacuo. The brown solid was then extracted with 260 mL of Et20. After 2 mL 

of THF was added to the extract, the solution was filtered and then slowly cooled to -50 

°C to give 12.0 g (70.6%) of an olive-yellow powder: IH NMR (C6D6) 8 10.81 (s, 1, 

Ha), 6.96 (m, 1, Haryl), 6.95 (d, 2, J = 8.06, NAr: Hm), 6.75 (m, 1, Haryl), 6.53 (d, 1, J = 

7.32, CHAr': H), 6.48 (m, 1, Haryl), 6.26 (d, 1, J = 7.32, CHAr': Hm), 3.93 (m, 4, THF), 

3.59 (s, 3, OMe), 2.66 (s, 6, Ar: Me), 1.37 (m, 4, THF), 1.19 (s, 6, OCMe(CF3h). 

Difference NOE experiments: irrad. of 8 10.81 enhances 8 6.26, 2.66; irrad. of 8 3.93 

enhances 8 3.59, 2.66, 1.37; irrad. of 8 3.59 enhances 8 6.53, 3.93; irrad. of 8 2.66 

enhances 8 10.81,6.95,3.93; irrad. of 8 1.19 enhances 8 10.81. l3C NMR (C6D6) 8 

240.2 (JCH = 151, Jcw = 160, Ca), 158.0 (CHAr': COMe), 153.5 (NAr: Cipso), 134.9 and 

132.5 (CHAr': Cipso and NAr: Co), 128.0, 127.8, 125.6, 124.3, and 122.3 (all Caryl), 107.8 

(CHAr': Cm), 124.8 (q, JCF = 291, CF3), 124.6 (q, JCF = 290, CF3), 81.0 (septet, JCF = 

28, OCMe(CF3h), 70.3 (THF), 56.1 (OMe), 25.6 (THF), 18.9 and 18.1 (NAr: Me and 

OCMe(CF3h). Anal. Calcd for (C28H31F12N04W): C, 39.22; H, 3.64; N, 1.63. Found: 

C, 39.33; H, 3.71; N, 1.65. 

IH NMR (-70°C, tol-ds) 8 10.78 (s, 1, Ha), 6.99 (m, 3, Haryl), 6.80 (m, 1, Haryl), 

6.48 (m, 2, Haryl), 6.11 (d, 1, J = 7.32, Haryl), 4.11 (br s, 4, THF), 3.40 (s, 3, OMe), 2.92 

(s, 3, NAr: Me), 2.37 (s, 3, NAr: Me), 1.25 (s, 6, OCMe(CF3h), 1.22 (br s, 4, THF). 

W(=CHC6H4-0-0Me)[N-2,6-C6H3-(i-PrhHOCMe(CF3hh(THF) (14) 

A solution of Ph3P=CHC614-o-0Me (7.12 g, 18.6 mmo!) and WCh[N-2,6-C6H3-

(i-Prh][OCMe(CF3hh(THF) (15.16 g, 17.54 mmol) in 150 mL of benzene and 4 mL of 

THF was added via cannula to a 1 % sodium amalgam (3.37 g Na, 8.35 equiv) and stirred 

for 8 h at room temperature. After the mixture settled, the orange-brown supernatant was 
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added via cannula to CuCl (1.79 g, 18.1 mmol). Next, the residual sodium amalgam was 

washed with a total of 120 mL of benzene, and the combined benzene solutions were 

stirred with the CuCl for 12 h before the solvent was removed in vacuo. Diethyl ether 

(330 mL) was used to extract the product from the brown solid. After being filtered, the 

Et20 solution was cooled to -50°C to yield 7.3 g of golden crystals (46%): IH NMR 

(THF-d8) 810.60 (s, 1, Hex), 7.17 (d, 2, J = 7.69, NAr: Hm), 7.13 (m, 2, Haryl), 6.98 (t, 1, 

J = 7.69, NAr: Hp), 6.72 (m, 1, Haryl), 6.41 (d, 1, J = 7.33, CHAr': Hm), 4.03 (s, 3, OMe), 

3.63 (m, 4, THF), 3.62 (m, 2, CH(CH3h), 1.78 (m, 4, THF), 1.34 (br s, 2, CH(CH3J2), 

1.18 (s, 6, OCMe(CF3h); l3C NMR (THF-dS) 8248.1 (JCH = 148, Jcw= 167, Cex), 159.8 

(CHAr': COMe), 151.3 (NAr: Cipso), 145.8 and 133.1 (CHAr': Cipso and NAr: Co), 129.3, 

126.2, 125.2, 123.3, and 122.4 (all Caryl), 108.7 (CHAr': Cm), 125.6 (q, JCF = 290, CF3), 

125.4 (q, JCF = 291, CF3), 80.8 (septet, JCF = 28.3, OCMe(CF3h), 68.1 (THF) , 56.9 

(OMe), 28.6 (CH(CH3h), 26.4 (THF), 24.4 (CH(CH3h), 18.0 (OCMe(CF3h). Anal. 

Calcd for (C32H39F12N04W): C, 42.08; H, 4.30; N, 1.53. Found: C, 42.22; H, 4.33; N, 

1.82. 

W(=CHC6H4-0-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(PMe3) (15) 

W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(THF) (2.01 g, 2.34 

mmol) was dissolved in 50 mL of benzene. Three equivalents of PMe3 (0.73 mL, 7.1 

mmol) were added, and the red solution turned golden brown within a few minutes. After 

the reaction mixture was stirred for 12 h, the solvent was removed in vacuo, and the 

product was recrystallized from pentane at -50°C to give 1.44 g of golden crystals 

(71.4%): (This complex was isolated as a 12: 1 ratio of isomers. Spectroscopic data for 

the major isomer is reported here.) IH NMR (CD2Ch) 0 12.48 (d, 1, JHP = 7.08, Hex), 

7.32 (d, 1, J = 7.57, Haryl), 7.22 (d, 2, J = 7.57, NAr: Hm), 7.18 (m, 1, Haryl), 7.04 (m, 3, 

Haryl), 4.05 (s, 3, OMe), 2.79 (s, 6, NAr: Me), 2.07 (s, 3, OCMe(CF3h), 1.45 (s, 3, 

OCMe(CF3h), 1.37 (d, 9, JHP = 9.52, PMe3); l3C NMR (CD2C12) 8 259.5 (JCH = 147, 
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Jcw = 148, JCp = 15, Ca), 154.3 and 153.9 (CHAr': COMe and NAr: Cipso), 136.4 and 

132.4 (CHAr': Cipso and NAr: Co), 131.4, 130.3, 128.5, 126.8, and 121.1 (all Caryl), 

109.9 (CHAr': Cm), 125.9 (q, JCF = 290, CF3), 125.3 (q, JCF = 289, CF3), 82.4 (septet, 

JCF = 28, OCMe(CF3h), 80.6 (septet, JCF = 28, OCMe(CF3h), 56.6 (OMe), 19.7, 19.4, 

and 18.2 (NAr: Me and OCMe(CF3h), 15.3 (d, Jcp = 29, PMe3); 31p NMR (CD2C12) 0 

11.0 (Jpw = 324). Anal. Calcd for (C27H32F12N03PW): C, 37.65; H, 3.74; N, 1.63. 

Found: C, 37.89; H, 3.79; N, 1.56. 

W(=CHC6H4-0-0Me)(NAr)[OCMe(CF3hh (16) 

W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh (16a). A 150 mL 

toluene solution of the THF adduct W(=CHC6H4-o-0Me)(N-2,6-C6H3-

Me2)[OCMe(CF3hh(THF) (7.92 g, 9.17 mmol) was heated to 50°C as the solvent was 

removed in vacuo. The resulting red powder was dissolved in 30 mL of toluene, and the 

solution was filtered, layered with 120 mL of pentane, and cooled to -10 °c to give red 

crystals in 73% yield (5.2 g, 2 crops): IH NMR (C6D6) 0 10.94 (s, 1, Ha ), 6.93 (m, 1, 

Haryl), 6.90 (d, 2, J = 7.69, NAr: Hm), 6.73 (t, 1, J = 7.69, NAr: Hp), 6.49 (m, 2, Haryl), 

6.37 (d, 1, J = 6.96, CHAr': Hm), 3.75 (s, 3, OMe), 2.69 (s, 6, Ar: Me), 1.11 (s, 6, 

OCMe(CF3h); 13C NMR (C6D6) 0 228.1 (JCH = 155, Jcw = 172, Ca), 156.3 (CHAr': 

COMe), 153.0 (NAr: Cipso), 135.6 and 132.4 (CHAr': Cipso and NAr: Co), 127.9, 126.8, 

126.6, 123.6, and 122.6 (all Caryl), 107.6 (CHAr': Cm), 124.0 (q, JCF = 288, CF3), 82.3 

(septet, J = 29, OCMe(CF3h), 56.7 (OMe), 18.73 and 18.66 (NAr: Me and 

OCMe(CF3h). Anal. Calcd for (C24H23F12N03W): C, 36.71; H, 2.95; N, 1.78. Found: 

C, 36.90; H, 3.03; N, 1.70. 

W(=CHC6H4-o-0Me)[N-2,6-C6H3-(i-PrhHOCMe(CF3hh (16b). Removal of 

THF from W(=CHC6H4-o-0Me)[N-2,6-C~3-(i-Prh][OCMe(CF3hh(THF) was much 

more difficult than for the dimethylphenylimido analogue. After the above procedure 

was repeated twice, the product was dissolved in pentane, filtered, and cooled to -10°C. 
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Red single crystals of 16b precipitated from solution, but a small amount of yellow single 

crystals of the THF-adduct 14 also precipitated. Due to the differences in color, the 

crystals were easily separated by hand, and pure 16b was then characterized: 1 H NMR 

(CD2Cl2) 8 10.79 (s, 1, Hex), 7.28 (d, 2, J = 8.06, NAr: Hm), 7.18 (t, 1, J = 6.96, Haryl), 

7.14 (t, 1, J = 7.70, Haryl), 7.09 (d, 1, J = 8.06, CHAr': Ho), 6.81 (t, 1, J = 7.89, Haryl), 

6.59 (d, 1, J = 7.33, CHAr': Hm), 4.22 (s, 3, OMe), 4.06 (septet, 2, J = 6.96, CH(CH3h), 

1.34 (d, 2, J = 6.96, CH(CH3)2), 1.29 (s, 6, OCMe(CF3h); 13C NMR (CD2Cl2) 8 229.4 

(JCH = 155, Jcw = 176, Cex), 156.6 (CHAr': COMe), 150.4 (NAr: Cipso), 146.4 and 132.4 

(CHAr': Cipso and NAr: Co), 127.5, 127.0, 123.9, 123.1, and 122.8 (all Caryl), 107.9 

(CHAr': Cm), 124.0 (q, JCF = 289, CF3), 123.9 (q, JCF = 289, CF3), 82.5 (septet, JCF = 

29.3, OCMe(CF3h), 57.4 (OMe), 28.6 (CH(CH3h), 24.3 (CH(CH3h), 19.0 

(OCMe(CF3h). Anal. Calcd for (C28H31F12N03W): C, 39.97; H, 3.71; N, 1.66. Found: 

C, 40.11; H, 3.73; N, 1.82. 

W(=CHC6H4-0-0Me)(N-2,6-C6H3-Me2)(O-I-Bu)2(PMe2Ph) 

(General Procedure.) W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)(O-t-Buh was 

formed upon mixing 13 with 2 equiv of NaO-t-Bu, but numerous difficulties were 

encountered in separating this complex from free LiOCMe(CF3h. After several 

manipulations of the product, it was discovered that the addition of PMe2Ph, which binds 

reversibly to tungsten, to a pentane solution of the t-butoxide complex and subsequent 

filtration enabled the removal of the free alkoxide. The PMe2Ph adduct was then 

recrystallized from pentane. Due to the number of manipulations that were carried out on 

the reaction product prior to the addition of PMe2Ph, it is not possible to report a more 

specific procedure or the reaction yield here: IH NMR (C6D6) 8 10.55 (br s, 1, Hex), 7.35 

- 6.54 (m, 12, Haryl), 3.72 (s, 3, OMe), 2.79 (s, 6, NAr: Me2), 1.18 (s, 18, OCMe3), 1.07 

(s, 6, PMe2Ph); 13C NMR (CD2Cl2, selected Caryl only) 8208 (br, Cex), 155.4 (br, CHAr': 
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COMe), 154.0 (NAr: Cipso), 136.4 (br, CHAr': Cipso), 134.7 (NAr: Co), 107.9 (CHAr': 

Cm), 80.0 (OCMe3), 56.3 (OMe), 32.6 (OCMe3), 19.4 (NAr: Me2), 14.6 (PMe2Ph). 

Polymerization of Norbornene by U. Norbornene (35.9 mg, 0.381 mmol) was 

dissolved in 300 ilL of tol-ds and transferred via pipet into a small flask equipped with a 

Kontes valve. Complex 13 (6.3 mg, 0.0073 mmol) and 4.9 mg (0.041 mmol) of 

mesitylene were dissolved in 300 ilL of tol-dg and transferred via pipet into a sealable 

NMR tube. After both solutions were freeze-pump-thaw-degassed several times, the tol-

dS solution of norbornene was vacuum-transferred onto the solution of 13 ([13] = 0.012 

M; [norbornene] = 0.635 M, 52.9 equiv), and the tube was sealed and then stored in 

liquid nitrogen before it was placed in the probe of the 400 MHz NMR at -82°C. After 

an initial spectrum was acquired at -82 °C, the probe was warmed to -61°C and the 

polymerization was monitored at this temperature for 50 min. After 50 min, integration 

versus the mesitylene internal standard indicated that [norbornene] = 0.606 M and 

[polynorbornene] = 0.002 M. The probe was then warmed to -40°C, and the 

polymerization was again monitored for 80 min. A plot of the rate of disappearance of 

norbornene versus time was linear with rate = 17.5 equiv/h. 

Polymerization at -40°C by U 

Time (min) [Norbornene] (M) [Pol ynorbornene] (M) 

0 0.590 0.007 

10.23 0.559 0.036 

20.03 0.514 0.077 

30.01 0.478 0.121 

40.01 0.433 0.158 

49.96 0.404 0.196 

60.08 0.372 0.227 

70.06 0.341 0.251 

79.99 0.319 0.277 
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Polymerization of Norbornene by Ma. Norbornene (35.6 mg, 0.378 mmol) was 

dissolved in 300 ilL of tol-ds and transferrred via pipet into a small flask equipped with a 

Kontes valve. Complex 16a (5.7 mg, 0.0073 mmol) and 4.5 mg (0.037 mmol) of 

mesitylene were dissolved in 300 ilL of tol-dg and transferred via pipet into a sealable 

NMR tube. After both solutions were freeze-pump-thaw-degassed several times, the tol­

ds solution of norbornene was vacuum-transferred onto the solution of 16a ([16a] = 0.012 

M; [norbornene] = 0.630 M, 52.5 equiv), and the tube was sealed and then stored in 

liquid nitrogen before it was placed in the probe of the 400 MHz NMR at -82°C. After 

an initial spectrum was acquired at -82 °C, the probe was warmed to -61°C and the 

polymerization was monitored at this temperature for 120 min. A plot of the rate of 

disappearance of norbornene versus time was linear with rate = 16.5 equiv/h. (Note: The 

starting alkylidene peak disappeared during the polymerization at low temperature and 

then reappeared when the solution was warmed to room temperature. This observation, 

together with the occurrence of a doublet at 4.77 ppm and a triplet at 0.65 ppm, may 

indicate that the resting state of the catalyst is the norbornene metallacycle at low 

temperature. ] 
Polymerization at -61°C by 16a 

Time (min) [N orbornene] (M) [Pol ynorbornene] (M) 

0 0.630 0.004 

9.98 0.606 0.023 

20.02 0.590 0.052 

29.97 0.546 0.084 

40.05 0.516 0.121 

50.02 0.480 0.158 

60.00 0.432 0.188 

70.03 0.405 0.233 

80.03 0.367 0.273 

110.02 0.269 0.377 

120.02 0.234 0.400 
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General Procedure for the Olefination of Carbonyl Compounds by U. A 

small excess of the carbonyl compound and 25 mg of 13 were dissolved together in 600 

~L of C6D6, and the reaction was monitiored by 1 H NMR spectroscopy. The reactions 

were carried out at room temperature unless specified otherwise for the following: 

EtC(O)H, PhC(O)H, PhC(O)Me, PhC(O)Ph, MeC(O)OEt (65°C), and MeC(O)NMe2 (65 

°C). A mixture of trans and cis isomers was observed in all cases for the alkene products. 

Isomerization of cis-2-Pentene by.1.6..a. Complex 16a (1.4 mg, .0018 mmol, 

0.0030 M), cis-2-pentene (17.5 mg, 0.250 mmol, 0.416 M, 140 equiv), and mesitylene 

(internal standard, 2.8 mg, 0.023 mmol) were dissolved together in 600 ~L of tol-ds, and 

the reaction was monitored by IH NMR spectroscopy. An equilibrium mixture of cis­

and trans-2-pentene was obtained within 75 min, establishing a lower limit of 1.4 

equiv/min for the metathesis of cis-2-pentene by 16a. 

time (min) [cis-2- entene] (M) time (min) [cis-2- entene] (M) 

0 0.416 65.5 0.114 

10.4 0.372 75.0 0.100 

23.7 0.319 85.4 0.095 

34.8 0.283 106.1 0.089 

49.2 0.176 128.7 0.091 

57.0 0.136 

X-ray Data Collection, Structure Determination and Refinement 
for W (=CH C6H4-P-Me )C12(NPh )(PMePh2h 

A yellow crystal of approximate dimensions 0.23 x 0.40 x 0.47 mm was oil-

mounted on a glass fiber and transferred to the Siemens P3 diffractometer which is 

equipped with a modified LT-2 low temperature system. Determination of Laue 

symmetry, crystal class, unit cell parameters and the crystal's orientation matrix were 

carried out by previously described techniques similar to those of Churchil1. 35 Low 
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temperature (168 K) intensity data were collected via a 8-28 scan technique with MoKa 

radiation under the conditions given in Table E-l (Appendix). 

All 8664 data were corrected for absorption and for Lorentz and polarization 

effects and placed on an approximately absolute scale. Any reflection with I(net) < 0 was 

assigned the value 1Fol = O. There were no systematic extinctions nor any diffraction 

symmetry other than the Friedel condition. The two possible triclinic space groups are 

the noncentrosymmetric PI [C~; No.1] or the centrosymmetric P1 [C~; No.2]. With Z = 2 

and no expectation of a resolved chiral molecule, the latter centrosymmetric space group 

is far more probable,36 and was later shown to be the correct choice. 

All crystallographic calculations were carried out using either the UCI modified 

version of the UCLA Crystallographic Computing Package37 or the SHELXTL PLUS 

program set.38 The analytical scattering factors for neutral atoms were used throughout 

the analysis;39a both the real (~f) and imaginary (i~f') components of anomalous 

dispersion39b were included. The quantity minimized during least-squares analysis was 

The structure was solved by direct methods (SHELXTL PLUS); and refined by 

full-matrix least-squares techniques. Hydrogen atoms were included using a riding 

model with d(C-H) = 0.96 A and U(iso) = 0.08 A2. Refinement of the model led to 

convergence with RF = 3.0%, RwF = 4.1 % and GOF = 1.08 for 415 variables refined 

against those 7811 data with 1Fol > 3.0a(IFol). A final difference-Fourier map yielded 

p(max) = 1.25 eA-3 at a distance of 1.53 A from tungsten. 

X-ray Data Collection, Structure Determination and 
Refinement for W (=CH C6H4-0-0 Me )(N -2,6-C6H3-Me2)[OCMe( CF 3h]z(THF) 

A yellow/gold crystal of approximate dimensions 0.32 x 0.34 x 0.40 mm was 

immersed in Paratone-N (lube-oil additive), mounted on a glass fiber and transferred to 

the Nicolet P3 diffractometer which is equipped with a modified LT-2 low temperature 

system. Determination of Laue symmetry, crystal class, unit cell parameters and the 
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crystal's orientation matrix were carried out by previously described techniques similar to 

those of Churchill.35 Low temperature (173 K) intensity data were collected via a 8-28 

scan technique with MoKa radiation under the conditions given in Table F-1 (Appendix). 

All 6054 data were corrected for absorption and for Lorentz and polarization 

effects and placed on an approximately absolute scale. Any reflection with I(net) < 0 was 

assigned the value 1Fol = O. The systematic extinctions observed were OkO for k = 2n + 1 

and hOI for I = 2n + 1; the diffraction symmetry was 21m. The centrosymmetric 

monoclinic space group P21/c [C~h; No. 14] is thus uniquely defined. 

All crystallographic calculations were carried out using either the ucr modified 

version of the UCLA Crystallographic Computing Package37 or the SHELXTL PLUS 

program set.38 The analytical scattering factors for neutral atoms were used throughout 

the analysis;39a both the real (~f) and imaginary (i~f') components of anomalous 

dispersion39b were included. The quantity minimized during least-squares analysis was 

Lw(IFol - 1Fcl)2 where w-1 = ()2(IFol + 0.OOO5(IFol)2. 

The structure was solved via an automatic Patterson routine (SHELXTL PLUS); 

and refined by full-matrix least-squares techniques. Hydrogen atoms were included using 

a riding model with d(C-H) = 0.96 A and U(iso) = 0.08 A2. Refinement of positional and 

anisotropic thermal parameters led to convergence with RF = 3.8%, RwF = 4.4% and 

GOF = 1.39 for 415 variables refined against all 5269 unique data with 1Fol > 0; (RF = 

3.1 %, RwF = 4.1 % for those 4576 data with 1Fol > 6.0<J(IFol)). A final difference-Fourier 

map yielded p(max) = 2.29 eA-3 at a distance of 0.95 A from tungsten. 

X-ray Data Collection, Structure Determination and 
Refinement for W(=CHC6H4-o-0Me)[2,6-C6H3-(i-Pr h] [OCMe(CF 3hh 

A bright red crystal of approximate dimensions 0.20 x 0.30 x 0.32 mm was 

immersed in Paratone-N (lube-oil additive), mounted on a glass fiber and transferred to 

the Syntex P21 diffractometer which is equipped with a modified LT -1 low temperature 

system. Determination of Lau symmetry, crystal class, unit cell parameters and the 
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crystal's orientation matrix were carried out by previously described techniques similar to 

those of Churchill.35 Low temperature (183 K) intensity data were collected via a 8-28 

scan technique with MoKa radiation under the conditions given in Table G-l 

(Appendix). 

All 6092 data were corrected for absorption and for Lorentz and polarization 

effects and placed on an approximately absolute scale. Any reflection with I(net) < 0 was 

assigned the value 1Fol = O. The systematic extinctions observed were OkO for k = 2n + 1 

and hOI for I = 2n + 1; the diffraction symmetry was 21m. The centrosymmetric 

monoclinic space group P21/c [C~h; No. 14] is thus uniquely defined. 

All crystallographic calculations were carried out using either the UCI modified 

version of the UCLA Crystallographic Computing Package37 or the SHELXTL PLUS 

program set.38 The analytical scattering factors for neutral atoms were used throughout 

the analysis;39a both the real (~f) and imaginary (i~f') components of anomalous 

dispersion39b were included. The quantity minimized during least-squares analysis was 

L.w(IFol - 1Fcl)2 where w-1 = a2(IFol + 0.0010(IFol)2. 

The structure was solved via an automatic Patterson routine (SHELXTL PLUS); 

and refined by full-matrix least-squares techniques. All hydrogen atoms were located 

from a series of difference-Fourier syntheses and included in the refinement with 

isotropic temperature factors. Full-matrix least-squares refinement of the model led to 

convergence with RF = 3.4%, RwF = 4.1 % and GOF = 1.00 for 530 variables refined 

against all 5195 unique data with 1Fol > 0; (RF = 2.5%, RwF = 3.7% for those 4434 data 

with 1Fol > 6.0o(IFol». A final difference-Fourier map showed no significant features, 

p(max) = 1.17 eA -3 at a distance of 1.06 A from tungsten. 
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Chapter 4 

Reactions ofWC(z(NAr)(PX3b [PX3 = PR3, P(OMe)3] 
Complexes with exo-5,6-Dimethoxymethyl-7 -Oxanorbornene 
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Introduction 

Aqua ruthenium complexes of 7-oxanorbomenes rapidly initiate the ring-opening 

metathesis polymerization (ROMP) of strained, cyclic olefins (eq 1).1 These catalysts are 

active in pro tic solvents, including water, and are able to metathesize monomers 

incorporating a number of functional groups. However, the small percentage of 

ruthenium that actually initiates the polymerization has thus far prevented a detailed 

understanding of the polymerization mechanism, although evidence in support of a 

ruthenium carbene intermediate now exists.2 In the following study, the reactions of exo-

5,6-dimethoxymethyl-7 -oxanorbomene (7 -oxanorbornene) with WCl2(NAr)(PX3b 

complexes were investigated in order to gain further insight into the modes of reactivity 

of this olefin with transition metals. 

n 

o 

r1:r::'oMe 
OMe 

OMe OMe 

(n - 1) equiv 

Ru(H20)6(tosh 

H20 

+ 

(tos = p-toluenesulfonate) 

Results 

(1) 

112_(7-0xanorbornene) Complexes. The phenyl- and 2,6-dimethylphenylimido 

tungsten(IV) precursors WCI2(NPh)(PMePh2)3, WCI2(NPh)[P(OMeb13, and WCI2(N-

2,6-C6lf3-Me2)(PEt2Phb reacted at room temperature with 7-oxanorbomene to form the 

corresponding 112-olefin complexes (eq 2).3-5 Large upfield shifts of the olefinic proton 
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and carbon resonances, characteristic of 1l2-complex formation, were observed by NMR 

spectroscopy.6 These resonances appeared as triplets due to coupling with the two trans 

phosphine/phosphite ligands (Table 1). Upon irradiation of the artha proton of the 

phenylimido ligand of W[1l2-(7-oxanorbornene)]Cl2(NPh)[P(OMe)3h, NOE 

enhancements were observed for the bridgehead and ether proton resonances, but not for 

the olefinic proton resonance. These observations are consistent with a syn orientation of 

the imido ligand and the oxo substituent of the olefin, as depicted in eq 2. 

Ar 0 

+ ~:Xr1r:: CI-W·- r OMe (2) 
II 

X3P CI OMe 
- PX3 

Oxo Abstraction. In the reaction of 7-oxanorbornene with the 2,6-di-i-propyl-

phenylimido precursor WCI2[N-2,6-C6H3-(i-Prh][P(OMe)313, an upfield triplet 

indicative of an 1l2-olefin complex was not observed in the 1 H NMR spectrum; instead, 

two olefinic multiplets were observed between 5.5 and 6 ppm. The volatile components 

of the reaction mixture were identified by 1 H, I3C, and GC-mass spectral data as 

P(OMeb and 5,6-dimethoxymethylcyclohexadiene, the product of oxygen abstraction 

from 7-oxanorbomene (eq 3). The organometallic products were not identified, although 

the 31p NMR spectrum of the original reaction mixture indicated the presence of only 
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free P(OMe)3 and tungsten-complexed P(OMe)) [123.8 ppm, Jpw = 451.6 Hz] in a 

roughly 3:2 ratio. In addition to the 112-0Iefin complex, a small amount of 5,6-

dimethoxymethy1cyclohexadiene was also observed for the room temperature reaction of 

7-oxanorbornene and WC12(NPh)(PMePh2)3 in C()l)6. 

Discussion 

Paralleling the trends observed for the formation of 11 2-(3,3-disubstituted)cyclo­

propene complexes, the observation of 112-0Iefin complexes upon reaction of 7-

oxanorbornene with WCl2(NAr)(PX3h precursors is dependent on the steric bulk of the 

imido ligand.? Use of phenyl- and 2,6-dimethylphenylimido precursors enables the rapid 

formation of 11 2-(7-oxanorbornene) complexes. The orientation of the olefinic 

substituents syn to the imido ligand, as indicated by difference NOE spectroscopy, is the 

same orientation that was confirmed by an X-ray crystallographic study for the analogous 

complex of 3,3-dipheny1cyclopropene.? 

Use of the more bulky 2,6-di-i-propylphenylimido precursor enables the 

observation of an oxygen-abstraction reaction. The lack of formation of OP(OMe)) and 

the occurrence of the reaction at room temperature suggest that the oxo abstraction from 

7-oxanorbornene is not catalyzed by P(OMe)3, although the deoxygenation of epoxides 

by P(OEth to form OP(OEth and the corresponding olefins has been observed at high 

temperatures.8 It is more likely that the abstraction of oxygen is catalyzed by tungsten, 

which would be consistent with previous demonstrations of epoxide deoxygenation by 

several reduced tungsten species.9 Unfavorable steric interactions between the i-propyl 

substituents of the arylimido ligand and the 7-oxanorbornene substituents probably 

prevent formation of a stable 112-0Iefin complex and instead allow observation of the 

products resulting from the coordination and subsequent reaction of the oxo functionality 

with tungsten. 
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[Ru] + O2 .. [RU]-02 

[RU]-02 + tb .. [Ru]=O + ozzb 
[Ru] + ozzb .. IRUltz:b 

[Ru]=O + tb ... IRu!~ 
I RUltrb 

0 

.. 
H 

Figure 1. Proposed activation of metathesis catalyst precursors by oxygen. 10 

Further investigations, including the clean isolation of 5,6-dimethoxymethyl­

cyclohexadiene, the identification of the tungsten product, and additional NMR studies, 

are needed in order to confirm oxo-abstraction by tungsten and to determine the 

mechanism of this reaction. However, the isolation of 5,6-dimethoxymethylcyclo­

hexadiene strongly indicates that 7-oxanorbornene is a potential source of oxo ligands for 

transition metals. This observation is of interest as oxo ligands have been implicated in 

the initiation of ROMP by late-metal systems. For example, in a study involving two 

ruthenium(II) complexes RuC12(PPh3)4 and RuC12(Pyh(PPh3h, it was noted that 

addition of 02 to solutions of these catalyst precursors and norbornene greatly increased 

the rate of ROMP.lO exo-2,3-Epoxynorbornene, a reaction product, activated the 

catalysts in the absence of oxygen. A mechanism involving both ruthenium oxo and 

metallaoxetane intennediates was suggested (Figure 1). The relevance of these studies to 
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the mechanism of ROMP initiation by aqueous 112_(7 -oxanorbornene) ruthenium(II) 

catalyst precursors is being investigated. I I 
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Experimental Section 

General Considerations 

All manipulations of air- and/or water-sensitive compounds were performed using 

standard high-vacuum or Schlenk techniques. Argon was purified by passage through 

columns of BASF R3-11 catalyst (Chemalog) and 4 A molecular sieves (Linde). Solid 

organometallic compounds were transferred and stored in a nitrogen-filled Vacuum 

Atmospheres drybox. NMR spectra were recorded with either a JEOL FX-90Q (89.60 

MHz IH; 22.53 MHz 13C; 36.20 MHz 31p), a JEOL GX-400 (399.65 MHz IH; 100.40 

MHz 13C), or a QE-300 Plus (300.10 MHz IH; 75.49 MHz 13C) spectrometer. All 

coupling constants are reported in Hz. 

Materials 

Toluene, benzene, diethyl ether, tetrahydrofuran, and pentane were distilled or 

vacuum-transferred from sodium-benzophenone ketyl. Pentane was first stirred over 

concentrated H2S04 and dried over MgS04 and CaH2 before being transferred onto 

sodium-benzophenone ketyl solubilized with tetraglyme. Benzene-d6, toluene-ds, and 

THF-dS were dried over sodium-benzophenone ketyl. Methylene chloride and methylene 

chloride-d2 were dried over CaH2, vacuum-transferred, and .then degassed by repeated 

freeze-pump-thaw cycles. exo-5,6-Dimethoxymethyl-7-oxanorbornene was the generous 

gift of Pui Tong Ho, WC12(NPh)(PMePh2)3 was synthesized according to the published 

procedure,13 and WCl2(NPh)[P(OMehb, WCI2(N-2,6-C6H3-Me2)(PEt2Phh, and 

WCI2[N-2,6-C6H3-(i-Prh][P(OMe)3h were synthesized as previously described'? 

W[Tl2-(exo-5,6-Dimethoxymethyl-7-oxanorbornene)]C12(NPh)[P(OMebh 

A 6 mL Et20 solution of exo-5,6-dimethoxymethyl-7-oxanorbornene (347.8 mg, 

1.89 mmol) was added to an 8 mL Et20 suspension of WC12(NPh)[P(OMehb (1.31 g, 

1.83 mmol). A yellow precipitate formed as the reaction mixture was stirred for 22.5 h. 
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Following the addition of 20 mL of pentane, the suspension was filtered to yield 1.25 g 

(87.7%) of pale yellow powder: IH (~6) 8 7.76 (d, 2, J = 7.45, NPh: H o), 6.91 (t, 2, J 

= 7.69, NPh: Hm), 6.76 (t, 1, J = 7.42, NPh: Hp), 5.04 (s, 2, =CH-CH), 3.97 (t, 2, JHP = 

5.13, JHW = 5.26, HC=CH), 3.63 (t, 18, JHP = 5.23, P(OMeh), 3.34 (m, 4, CHCH20Me), 

3.12 (s, 6, CHCH20Me), 2.58 (m, 2, CHCH20Me); 13C (CD2CI2) 8 153.7 (t, JCp = 2.8, 

Jcw = 36, NPh: Cipso), 127.4 (NPh: Cm), 126.7 (t, Jcp = 2.6, NPh: Co), 126.2 (NPh: Cp), 

83.0 (=CH-CH), 71.5 (CHCH20Me), 61.7 (t, JCH = 167.0, Jcp = 8.5, Jcw = 25.2, 

HC=CH), 57.9 (CHCH20Me), 53.3 (t, Jcp = 3.19, P(OMeb), 47.2 (CHCH20Me); 31p 

(CD2Cl2) 8 119.9 (Jpw = 374); NOEDS (C6D6) irradiation at 7.76 ppm, 8 6.91 (11.7% 

NOE), 5.04 (1.8% NOE), 3.63 (1.1% NOE), 3.34 (0.5% NOE), 3.12 (1.2% NOE); 

irradiation at 5.04, 8 7.76 (2.7% NOE), 3.97 (4.5% NOE), 2.58 (2.9% NOE); irradiation 

at 3.97, 05.04 (5.2% NOE), 3.12 (0.7% NOE), 2.58 (6.6% NOE); irradiation at 3.34, 0 

5.04 (7.2% NOE), 3.12 (3.2% NOE); irradiation at 3.12, 0 5.04 (1.9% NOE), 3.63 (0.3% 

NOE), 2.58 (1.7% NOE). 

W[1l2-(exo-S,6-Dimethoxymethyl-7-oxanorbornene)]CI2(N-2,6-C6"3-Me2)(PEt2Ph)2 

A 7 mL Et20 solution of exo-5,6-dimethoxymethyl-7 -oxanorbornene (317 mg, 

1.72 mmol) was added to 1.50 g (1.72 mmol) of solid WCh(N-2,6-C6H3-Me2)(PEt2Ph)3, 

and the reaction mixture was stirred for 17.5 h. Next, 30 mL of pentane was added to the 

reaction mixture, and the resulting suspension was filtered. The tan product was washed 

with an additional 15 mL of pentane before it was dried under vacuum (837 mg, 54.6%): 

IH (C6D6) 0 7.6 - 6.7 (m, 13, Haryl), 4.14 (s, 2, =CH-CH), 3.3 - 2.1 (m's, 16, HC=CH, 

CHCH20Me), P(CH2CH3hPh), 3.04 (s, 6, CHCH20Me), 2.55 (s, 6, NAr: Me2), 1.12 (m, 

6, P(CH2CH3)(CH2CH3),Ph), 0.92 (m, 6, P(CH2CH3)(CH2CH3)'Ph); 13C (CD2Cl2) 8 

152.2 (Jcw = 37.7, NAr: Cipso), 137.7 (NAr: Co), 132.0 (PEt2Ph: Co), 131.7 (t, JCp = 

19.5, PEt2Ph: Cipso), 129.4 (PEt2Ph: Cp), 127.9 (PEt2Ph: Cm and NAr: Cm), 126.0 (NAr: 

Cp ), 82.3 (=CH-CH), 71.7 (CHCH20Me), 67.8 (JCH = 167.3, HC=CH), 58.3 
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(CHCH20Me), 47.8 (CHCH20Me), 21.1 (NAr: Me2), 16.2 (t, Jcp = 11.2, P(CH2CH3)­

(CH2CH3)'Ph), 15.1 (t, Jcp = 13.2, P(CH2CH3)(CH2CH3),Ph), 8.8 (P(CH2CH3)­

(CH2CH3),Ph), 8.3 P(CH2CH3)(CH2CH3),Ph); 31p (C@)6) 84.2 (Jpw = 212). 

Observation of the Reaction of exo-5,6-Dimethoxymethyl-
7 -Oxanorbornene with WCh[N-2,6-C6H3-(i-Prh][P(O Mehb 

The tungsten complex WCh[N-2,6-C6H3-(i-Prh][P(OMe))b and a slight excess 

of exo-5,6-dimethoxymethyl-7-oxanorbornene were dissolved in CD2Cl2 and then mixed. 

After -12 h, IH and 31p NMR spectra were acquired. (Prior monitoring of the same 

reaction in C6D6 had indicated that the reaction was only 50% complete after 4 h at room 

temperature.) The 31 P NMR spectrum indicated that WCi2[N -2,6-C6H3-(i­

Prh][P(OMeh13 was completely consumed and that free P(OMeh (141.5 ppm) and a 

new tungsten species (123.8 ppm, Jpw = 451.6 Hz) were formed in roughly a 3:2 ratio. 

According to the IH NMR spectrum, a small amount of 7-oxanorbornene (-5%) 

remained unreacted, and new olefinic multiplets appeared at 5.5 - 6.0 ppm. In order to 

identify the organic products, the reaction was repeated on a preparative scale and the 

volatile components were vacuum-transferred. Spectrocopic data was consistent with the 

presence of free P(OMe)) and 5,6-dimethoxymethylcyclohexadiene. Spectroscopic data 

for the latter compound follow: LRMS: m/e 168 (M+); IH (C6D6) 85.85 (m, 2, =CH-

CH=), 5.76 (m, 2, CH-CH=CH), 3.41 (dd, 2, J = 9.16,6.65, OCHH), 3.24 (dd, 2, J = 

9.10,7.17, OCHH'), 3.07 (s, 6, OCH3), 2.78 (m, 2, CH2CH); l3C (C6D6) 8128.59 (JCH = 

163.5, =CH-CH=), 124.6 (JCH = 158.7, CH-CH=CH), 72.0 (JCH = 143.7, OCH2), 58.4 

(JCH = 140.1, OCH3), 36.5 (JCH = 129.3, CH2CH). 
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Appendix 

Data for X-ray Diffraction Studies 
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A. X-ray Diffraction Study ofWCI2[N-2,6-C6H3-(i-Prh][P(OMehb 

(See Chapter 2, Figure 1 for the ORTEP plot.) 

Table A-I. Experimental Data for the X-ray Diffraction Study of WC12[N-2,6-C6H3-(i­
PrhHP(OMe)313 

Formula: C21f44N09P3C12W 

Temperature (K): 158 

Space Group: P21/C 

i! == 10.891(2) A 

12 == 15.477(2) A 

£== 19.439(3)A 

Radiation: MoKa ();. == 0.710730 A) 

Data Collected: +h, +k, ±l 
Scan Range: 1.20° plus Ka-separation 

28 Range: 4.0 to 55.0° 

Absorption Correction: 

Semi-empirical ('V-scan method) 

No. of Variables: 334 

Goodness of Fit: 1.26 

Fw: 802.2 

Crystal System: Monoclinic 

Z==4 

V = 3276.2(9) A3 

~ = 91.071(12)° 

DcaIcd, Mg/m3 = 1.626 

Diffractometer: Siemens P3 (R3m/V System) 

Monochromator: Highly oriented graphite 

Scan Type: 8-28 

Scan Speed: 3.0 deg min-1 (in OJ) 

Il(MoKa), mm- 1 = 3.95 

Reflections Collected: 7579 

Reflections with 1Fol > 3.0a(lFol): 6690 

RF = 2.8%, RwF = 3.2% 
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Table A-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

W(1) 8221(1) 7938(1) 1328(1) 147(1) 

Cl(1) 7782(1) 8687(1) 2433(1) 224(2) 

Cl(2) 9983(1) 8943(1) 1265(1) 240(2) 

P(1) 9120(1) 7536(1) 227(1) 217(3) 

P(2) 9486(1) 6975(1) 2079(1) 177(2) 

P(3) 6941(1) 9034(1) 701(1) 220(3) 

N(1) 6992(2) 7193(2) 1334(1) 163(7) 

0(1) 8996(3) 8210(2) -398(1) 330(9) 

0(2) 8400(3) 6748(2) -111(1) 387(10) 

0(3) 10541(3) 7336(3) 123(2) 518(12) 

0(4) 8989(2) 6753(2) 2829(1) 246(7) 

0(5) 9754(2) 6055(2) 1752(1) 231 (7) 

0(6) 10832(2) 7277(2) 2308(1) 224(7) 

0(7) 5768(3) 8663(2) 288(2) 374(9) 

0(8) 7676(2) 9631(2) 194(1) 340(9) 

0(9) 6111(3) 9699(2) 1123(2) 380(9) 

C(1) 5980(3) 6646(2) 1410(2) 182(9) 

C(2) 6045(3) 5766(2) 1208(2) 201(9) 

C(3) 5022(3) 5244(3) 1312(2) 272(11) 

C(4) 3966(3) 5564(3) 1601(2) 291(11) 

C(5) 3903(3) 6421(3) 1792(2) . 264(11) 

C(6) 4900(3) 6977(2) 1709(2) 213(10) 

C(7) 7168(3) 5374(2) 883(2) 235(10) 

C(8) 6877(4) 5092(3) 146(2) 352(13) 

C(9) 7666(4) 4611(3) 1304(2) 353(13) 

C(10) 4794(3) 7904(2) 1964(2) 259(11) 

C(ll) 3740(4) 8383(3) 1608(2) 354(13) 

C(12) 4666(4) 7922(3) 2751(2) 361(13) 

C(13) 9895(4) 8849(3) -566(2) 397(14) 

C(14) 8674(5) 6472(3) -811(2) 547(18) 

C(15) 11368(4) 6967(3) 595(2) 457(16) 
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Table A-2 (cont'd). Atomic Coordinates (x l(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x l(4)a 

x ~ z U(eg) 

C(16) 7743(3) 6476(3) 2929(2) 319(12) 

C(17) 10441(4) 5399(3) 2133(2) 326(12) 

C(18) 10982(3) 7970(3) 2808(2) 307(11) 

C(19) 5828(4) 7954(3) -180(2) 409(14) 

C(20) 7063(4) 10242(3) -265(2) 447(15) 

C(21) 6738(5) 10389(3) 1495(3) 551(19) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized Uij tensor. 
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Table A-3. Interatomic Distances (A) with Esd's 

W(1) - Cl(1) 2.495(1) W(1) - Cl(2) 2.475(1) 

W(l) - P(1) 2.451(1) W(1) - P(2) 2.486(1) 

W(1) - P(3) 2.497(1) W(1) - N(1) 1.767(3) 

P(1) - 0(1) 1.605(3) P(1) - 0(2) 1.586(3) 

P(1) - 0(3) 1.595(3) P(2) - 0(4) 1.600(3) 

P(2) - 0(5) 1.589(3) P(2) - 0(6) 1.594(2) 

P(3) - 0(7) 1.604(3) P(3) - 0(8) 1.579(3) 

P(3) - 0(9) 1.605(3) N(1) - C(l) 1.400(4) 

0(1) - C(13) 1.434(5) 0(2) - C(14) 1.462(5) 

0(3) - C(15) 1.397(6) 0(4) - C(16) 1.440(5) 

0(5) - C(17) 1.456(5) 0(6) - C(18) 1.455(5) 

0(7) - C(19) 1.428(5) 0(8) - C(20) 1.454(5) 

0(9) - C(21) 1.453(6) C(1) - C(2) 1.420(5) 

C(1) - C(6) 1.418(5) C(2) - C(3) 1.394(5) 

C(2) - C(7) 1.514(5) C(3) - C(4) 1.382(5) 

C(4) - C(5) 1.380(6) C(5) - C(6) 1.397(5) 

C(6) - COO) 1.523(5) C(7) - C(8) 1.526(5) 

C(7) - C(9) 1.530(5) CO 0) - COl) l.522(5) 

C(10) - CO2) 1.540(6) 
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Table A-4. Interatomic Angles (Deg.) with Esd's 

Cl(l) - W(l) - CI(2) 8S.0(1) CI(l) - W(l) - P(l) 163.0(1) 

CI(2) - W(1) - P(l) 78.1(l) Cl(1) - W(1) - P(2) 83.4(1) 

Cl(2) - W(I) - P(2) 89.1(1) P(1) - W(1) - P(2) 97.7(1) 

CI(1) - W(1) - P(3) 89.5(1) CI(2) - W(1) - P(3) 88.6(1) 

P(1) - W(I) - P(3) 88.6(1) P(2) - W(1) - P(3) 172.7(1) 

CI(O - W(1) - N(1) 98.0(1) Cl(2) - W(I) - N(l) 177.0(1) 

P(1) - W(1) - N(1) 98.9(1) P(2) - W(1) - N(1) 90.9(1) 

P(3) - W(1) - N(1) 91.8(1) 

W(l) - P(l) - 0(1) 117.8(1) W(1) - P(1) - 0(2) 110.8(1) 

0(1) - P(1) - 0(2) 98.8(2) W(l) - P(l) - 0(3) 124.4(1) 

0(1) - P(1) - 0(3) 9S.6(2) 0(2) - P(1) - 0(3) lOS.8(2) 

W(I) - P(2) - 0(4) 118.0(1) W(1) - P(2) - 0(5) 114.0(1) 

0(4) - P(2) - O(S) 103.9(1) W(1) - P(2) - 0(6) 119.0(1) 

0(4) - P(2) - 0(6) 97.7(1) O(S) - P(2) - 0(6) lO1.S(1) 

W(1) - P(3) - 0(7) 11S.7(1) W(1) - P(3) - 0(8) 114.7(1) 

0(7) - P(3) - 0(8) 107.8(2) W(1) - P(3) - 0(9) 120.1(1) 

0(7) - P(3) - 0(9) 92.0(2) 0(8) - P(3) - 0(9) 103.9(2) 

W(1) - N(1) - C(1) 173.S(2) P(l) - 0(1) - C(13) 124.9(3) 

P(1) - 0(2) - C(14) 120.1(3) P(1) - 0(3) - C(1S) 127.7(3) 

P(2) - 0(4) - C(16) 121.S(2) P(2) - 0(5) - C(17) 121.2(2) 

P(2) - 0(6) - C(18) 119.6(2) P(3) - 0(7) - C(19) 123.3(3) 

P(3) - 0(8) - C(20) 122.1(3) P(3) - 0(9) - C(21) 117.S(3) 

N(l) - C(l) - C(2) 120.6(3) N(l) - C(1) - C(6) 119.0(3) 

C(2) - C(1) - C(6) 120.4(3) C(1) - C(2) - C(3) 118.2(3) 

C(l) - C(2) - C(7) 123.0(3) C(3) - C(2) - C(7) 118.9(3) 

C(2) - C(3) - C(4) 121.7(4) C(3) - C(4) - C(S) 120.0(4) 

C(4) - C(S) - C(6) 121.2(3) C(1) - C(6) - C(5) 118.S(3) 

C(1) - C(6) - C(10) 122.8(3) C(5) - C(6) - C(lO) 118.6(3) 

C(2) - C(7) - C(8) 110.6(3) C(2) - C(7) - C(9) 111.6(3) 

C(8) - C(7) - C(9) 110.3(3) C(6) - C(10) - C(ll) 111.8(3) 

C(6) - C(lO) - C(12) 110.S(3) C(ll) - C(lO) - C(l2) 111.1(3) 
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Table A-5. Anisotropic Displacement Coefficients (A2 x 1(4)a 

Un U22 U33 U12 Ul3 U23 

W(1) 148(1) 151(1) 144(1) 5(1) 3(1) 7(1) 

C1(1) 242(4) 234(4) 196(4) 13(3) 10(3) -46(3) 

C1(2) 230(4) 228(4) 264(4) -65(3) 18(3) 12(3) 

P(1) 223(4) 247(5) 182(4) 2(4) 35(3) -13(4) 

P(2) 168(4) 192(4) 169(4) 19(3) -8(3) 11(3) 

P(3) 212(4) 224(5) 224(4) 38(3) -7(3) 39(3) 

N(1) 149(12) 177(14) 163(12) 9(11) -3(10) -2(11) 

0(1) 382(15) 362(16) 248(13) -56(13) 44(11) 40(12) 

0(2) 564(19) 364(16) 238(14) -195(15) 136(13) -123(12) 

0(3) 329(16) 929(29) 299(15) 218(17) 75(13) -10(17) 

0(4) 202(12) 334(14) 202(12) 17(11) -3(10) 78(11) 

0(5) 244(12) 174(12) 275(13) 29(10) -28(10) 5(10) 

0(6) 185(12) 257(14) 230(12) 14(10) -8(9) -36(10) 

0(7) 273(14) 442(18) 402(16) 47(13) -105(12) 27(14) 

0(8) 262(14) 363(16) 395(16) 75(12) 46(12) 203(13) 

0(9) 405(16) 374(17) 363(16) 187(14) 40(13) 53(13) 

C(1) 163(15) 225(18) 157(15) -13(13) -30(12) 25(13) 

C(2) 216(16) 203(17) 184(16) -18(13) -28(13) 3(13) 

C(3) 289(19) 262(20) 263(18) -78(15) -20(15) 6(15) 

C(4) 271(19) 296(20) 308(20) -109(16) 19(15) 10(16) 

C(5) 196(17) 334(21) 263(18) -41(15) 24(14) -6(16) 

C(6) 206(16) 243(19) 188(16) -3(14) -6(13) 31(13) 

C(7) 241(17) 183(17) 280(18) 12(14) -2(14) 8(14) 

C(8) 377(22) 372(24) 308(21) -50(18) 38(17) -110(18) 

C(9) 295(20) 268(21) 496(25) 35(17) 16(18) 77(18) 

C(10) 211(17) 260(19) 307(19) 16(15) 60(14) -9(15) 

C(ll) 282(20) 331(23) 451(24) 66(17) 79(18) 36(19) 

C(12) 336(21) 423(25) 327(21) 34(19) 71 (17) -111(19) 

C(13) 508(26) 355(23) 330(21) -174(20) 90(19) 30(18) 

C(14) 833(38) 582(33) 233(21) -238(28) 175(22) -156(21) 

C(15) 294(22) 709(36) 370(23) 174(22) 70(18) 78(22) 
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Table A-S (cont'd). Anisotropic Displacement Coefficients (A2 x 1(4)a 

Un U22 U33 UI2 U13 U23 

C(16) 280(19) 440(24) 239(18) -31(17) 59( 15) 62(17) 

C(17) 322(21) 252(20) 402(22) 84(16) -79(17) 64(17) 

C(18) 240(18) 395(23) 285(19) -43(17) -20(15) -123(17) 

C(19) 409(24) 486(27) 326(21) -18(21) -123(18) 

C(20) 451(26) 423(27) 469(26) 123(21) 38(20) 

C(21) 971(44) 314(26) 366(25) 170(27) -61(26) 

aThe anisotropic displacement exponent takes the form: -21t2(h2a*2U 11 + ... + 
2hka*b*U 12). 

-88(20) 

277(22) 

-11(20) 
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Table A-6. H-Atom Coordinates (xl04) and Isotropic Displacement Coefficients 
(A2 x 1(4) 

x ~ z U 

H(3A) 5097 4633 1237 600 
H(4A) 3303 5185 1717 600 
H(5A) 3158 6650 1975 600 
H(7A) 7840 5772 852 600 
H(8A) 6585 5577 -119 600 

H(8B) 7663 4904 -14 600 
H(8C) 6263 4648 157 600 
H(9A) 7778 4783 1775 600 
H(9B) 7088 4144 1319 600 
H(9C) 8479 4450 1171 600 
H(10A) 5525 8217 1852 600 
H(11A) 3834 8364 1119 600 
H(11B) 2974 8088 1668 600 
H(l1C) 3721 8980 1744 600 
H(12A) 5281 7616 3015 600 
H(12B) 4697 8508 2912 600 
H(12C) 3924 7635 2880 600 
H(13A) 9647 9192 -956 600 
H(13B) 9991 9253 -195 600 
H(13C) 10620 8563 -724 600 
H(14A) 7872 6318 -984 600 
H(14B) 8609 6945 -1129 600 
H(14C) 9304 6044 -748 600 
H(15A) 12188 6947 423 600 
H(15B) 11321 7281 1020 600 
H(15C) 11143 6401 749 600 
H(16A) 7627 6365 3409 600 
H(16B) 7131 6848 2727 600 
H(16C) 7642 5914 2727 600 

H(17A) 10508 4889 1854 600 

H(17B) 11270 5591 2213 600 
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Table A-6 (cont'd). H-Atom Coordinates (xl04) and Isotropic Displacement 
Coefficients (A2 x 1(4) 

x ~ z u 
H(17C) 10032 5204 2537 600 
H(18A) 11701 8276 2666 600 
H(18B) 10290 8355 2797 600 
H(18e) 10967 7725 3261 600 
H(19A) 5098 7871 -457 600 
H(19B) 6446 8162 -484 600 
H(19C) 6246 7489 53 600 
H(20A) 7647 10661 -419 600 
H(20B) 6608 9929 -611 600 
H(20C) 6355 10539 -99 600 
H(21A) 6355 10504 1926 600 
H(21B) 7513 10219 1695 600 
H(2IC) 6701 10843 1158 600 
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B. X-ray Diffraction Study of W(Ht=CH-CPh2)CI2(NPh)[P(OMehh 

(See Chapter 2, Figure 2 for the ORTEP plot.) 

Table B-1. Experimental Data for the X-ray Diffraction Study of W(HE=CH-CPh2)­

CI2(NPh)[P(OMe)3h 

Temperature (K): 183 

Space Group: P21/C 

a = 18.406(2) A 
11 = 9.9413(7) A 
.£ = 18.5405(14) A 
Radiation: MoKa (~= 0.710730 A) 
Data Collected: +h, +k, ±l 

Scan Range: 1.20° plus Ka-separation 

28 Range: 4.0 to 45.0° 

Absorption Correction: 

Semi-empirical ('V-scan method) 

No. of Variables: 364 

Goodness of Fit: 1.45 

Crystal System: Monoclinic 

Z=4 

V = 3359.3(5) A3 
~ = 98.026(7)° 

Dcalcd, Mg/m3 = 1.632 

Diffractometer: Syntex P21 (Siemens R3mN) 

Monochromator: Highly oriented graphite 

Scan Type: 8-28 

Scan Speed: 3.0 deg min-1 (in co) 

Il(MoKa), mm-1 = 3.806 

Reflections Collected: 4899 

Reflections with 1Fol > 3.0a(IFol): 3721 

RF = 4.5%, RwF = 6.0% 
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C29 C30 

~C28' 
C28~ C19 

C~ C29' 
C7 

C18 

C13 

Figure B·l. ORTEP plot ofW(Ht=CH-CPh2)Ch(NPh)[P(OMehh showing the 
inclusion of a benzene molecule at the inversion center. Thermal ellipsoids are 
drawn at the 50% probability level. 
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Table B-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x l(4)a 

x ~ z U(eg) 

W(1) 1986(1) 528(1) 1799(1) 224(2) 

C1(1) 967(1) 2126(3) 1415(2) 376(9) 

Cl(2) 2266(1) 854(3) 540(1) 327(8) 

P(1) 1060(1) -1241(3) 1332(1) 250(8) 

P(2) 2732(1) 2638(3) 2113(2) 287(8) 

0(1) 201(4) -911(7) 1228(4) 320(23) 

0(2) 1113(3) -1845(6) 555(3) 271(22) 

0(3) 1162(3) -2517(7) 1845(3) 323(23) 

0(4) 2380(4) 4098(7) 1999(4) 353(24) 

0(5) 3439(4) 2725(6) 1722(4) 383(25) 

0(6) 2970(4) 2633(7) 2959(4) 413(25) 

N(1) 1735(4) 431(7) 2672(4) 261(27) 

C(1) 2638(5) -1280(9) 1744(5) 200(29) 

C(2) 3110(5) -160(10) 2004(5) 233(30) 

C(3) 3172(5) -1451(9) 2446(5) 231(30) 

C(4) 2939(5) -1594(11) 3176(5) 307(33) 

C(5) 3144(6) -647(11) 3724(6) 378(38) 

C(6) 2991(7) -877(15) 4420(6) 562(51) 

C(7) 2662(7) -2018(15) 4589(6) 536(49) 

C(8) 2447(6) -2978(13) 4055(7) 511(47) 

C(9) 2578(5) -2747(10) 3363(6) 368(37) 

C(10) 3842(5) -2300(9) 2334(5) 241(31) 

C(11) 4233(5) -3026(10) 2919(6) 310(34) 

C(12) 4855(5) -3748(10) 2834(5) 290(33) 

C(13) 5109(5) -3786(10) 2157(6) 317(35) 

C(14) 4738(5) -3060(9) 1596(5) 264(32) 

C(15) 4116(5) -2329(9) 1696(5) 278(33) 

C(16) 1439(5) 491(9) 3330(5) 267(32) 

C(17) 1509(6) 1692(12) 3729(6) 442(41) 

C(18) 1213(6) 1733(15) 4379(7) 571(49) 

C(19) 846(6) 618(14) 4616(6) 505(46) 
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Table B-2 (cont'd). Atomic Coordinates (x 1(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

C(20) 759(7) -521(11) 4205(6) 440(41) 

C(21) 1071(6) -617(11) 3551(6) 402(40) 

C(22) -141(6) -417(11) 1831(6) 387(38) 

C(23) 787(6) -1171(11) -96(5) 390(38) 

C(24) 653(6) -3653(11) 1713(6) 423(40) 

C(25) 2233(7) 4642(11) 1257(7) 493(44) 

C(26) 3937(6) 3864(11) 1774(8) 543(48) 

C(27) 3308(7) 3720(11) 3408(6) 540(46) 

C(28) 4583(9) 6065(16) 4924(8) 773(44) 

C(29) 4277(9) 4931(17) 5050(8) 785(44) 

C(30) 4670(9) 3734(18) 5171(9) 878(49) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized 
Uij tensor. 



167 
Table B-3. Interatomic Distances (A) with Esd's 

W(I) - Cl(l) 2.486(3) 

W(l) - P(l) 2.517(2) 

W(1) - N(1) 1.747(8) 

W(l) - C(2) 2.160(9) 

P(1) - 0(1) 1.601(7) 

P(1) - 0(3) 1.581(7) 

P(2) - 0(5) 1.578(8) 

0(1) - C(22) 1.444(13) 

0(3) - C(24) 1.465(12) 

0(5) - C(26) 1.452(13) 

N(1) - C(16) 1.404(13) 

C(1) - C(3) 1.526(12) 

C(3) - C(4) 1.484(14) 

C(4) - C(5) 1.397(14) 

C(5) - C(6) 1.378(16) 

C(7) - C(8) 1.393(18) 

C(10) - C(11) 1.414(13) 

C(11) - C(12) 1.379(14) 

C(13) - C(14) 1.368(13) 

C(16) - C(17) 1.401(15) 

C(17) - C(18) 1.392(17) 

C( 19) - C(20) 1.363(17) 

C(28) - C(29) 1.295(23) 

C(29) - C(30) 1.394(24) 

a Cnt is the centroid of the C(l) - C(2) bond. 

Wei) - Cl(2) 2.482(3) 

W(1) - P(2) 2.530(3) 

W(1) - C(1) 2.171(9) 

W(1) - Cnta 2.040 

P(1) - 0(2) 1.576(7) 

P(2) - 0(4) 1.591(7) 

P(2) - 0(6) 1.568(7) 

0(2) - C(23) 1.437(12) 

0(4) - C(25) 1.468(14) 

0(6) - C(27) 1.449(13) 

C(1) - C(2) 1.452(12) 

C(2) - C(3) 1.518(13) 

C(3) - C(10) 1.531(13) 

C(4) - C(9) 1.393(15) 

C(6) - C(7) 1.344(20) 

C(8) - C(9) 1.357(17) 

C(10) - C(15) 1.349(14) 

C(12) - C(13) 1.399(15) 

C(14) - C(15) 1.391(14) 

C(16) - C(21) 1.385(15) 

C(18) - C(19) 1.400(19) 

C(20) - C(21) 1.416(17) 

C(28) - C(30') 1.425(24) 
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Table B-4. Interatomic Angles (Deg.) with Esd's 

CI(1) - W(1) - CI(2) 83.9(1) CI(l) - W(1) - P(l) 84.3(1) 

CI(2) - W(1) - P(1) 89.3(1) CI(1) - W(1) - P(2) 84.2(1) 

CI(2) - W(l) - P(2) 86.1(1) P(1) - W(1) - P(2) 168.0(1) 

Cl(1) - W(1) - N(1) 90.8(2) CI(2) -W(1) - N(1) 174.6(2) 

P(l) - W(1) - N(1) 91.5(2) P(2) - W(1) - N(1) 92.1(2) 

C1(1) - W(1) - C(1) 156.3(2) CI(2) - W(1) - C(1) 82.9(2) 

P(1) - W(1) - C(1) 76.0(2) P(2) - W(l) - C(1) 114.3(2) 

N(1) - W(l) - C(1) 102.5(3) CI(I) - W(I) - C(2) 156.7(3) 

CI(2) - W(1) - C(2) 83.6(2) P(1) - W(1) - C(2) 115.1(3) 

P(2) - W(1) - C(2) 75.3(3) N(1) - W(1) - C(2) 101.0(3) 

C(1) - W(1) - C(2) 39.2(3) Cnt - W(1) - N(1)a 102.5 

Cnt - W(I) - p(1)a 95.5 Cnt - W(I) - p(2)a 94.9 

Cnt - W(I) - Cl(I)a 166.7 Cnt - W(1) - CI(2)a 82.8 

W(1) - P(1) - 0(1) 120.5(3) W(1) - P(1) - 0(2) 117.1(3) 

0(1) - P(1) - 0(2) 98.8(3) W(1) - P(1) - 0(3) 109.6(2) 

0(1) - P(1) - 0(3) 105.6(4) 0(2) - P(l) - 0(3) 103.2(4) 

W(1) - P(2) - 0(4) 121.9(3) W(1) - P(2) - 0(5) 113.3(3) 

0(4) - P(2) - 0(5) 103.6(4) W(1) - P(2) - 0(6) 107.1(3) 

0(4) - P(2) - 0(6) 100.8(4) 0(5) - P(2) - 0(6) 109.0(4) 

P(1) - 0(1) - C(22) 120.5(6) P(1) - 0(2) - C(23) 121.2(6) 

P(1) - 0(3) - C(24) 119.9(6) P(2) - 0(4) - C(25) 118.6(7) 

P(2) - 0(5) - C(26) 124.5(7) P(2) - 0(6) - C(27) 127.5(7) 

W(1) - N(1) - C(16) 170.8(6) W(1) - C(1) - C(2) 70.0(5) 

W(1) - C(1) - C(3) 110.3(6) C(2) - C(1) - C(3) 61.3(6) 

W(1) - C(2) - C(l) 70.8(5) W(1) - C(2) - C(3) 111.1(6) 

C(1) - C(2) - C(3) 61.8(6) C(l) - C(3) - C(2) 57.0(6) 

C(1) - C(3) - C(4) 123.7(8) C(2) - C(3) - C(4) 124.3(8) 

C(1) - C(3) - C(10) 112.4(7) C(2) - C(3) - C(10) 113.2(8) 

C(4) - C(3) - C(10) 114.3(8) C(3) - C(4) - C(5) 121.0(9) 

C(3) - C(4) - C(9) 121.0(9) C(5) - C(4) - C(9) 117.7(10) 

C(4) - C(5) - C(6) 119.9(11) C(5) - C(6) - C(7) 121.2(12) 
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Table B-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

C(6) - C(7) - C(S) 120.3(12) C(7) - C(S) - C(9) 119.1(11) 

C(4) - C(9) - C(S) 121.9(10) C(3) - C(10) - C(11) 120.S(9) 

C(3) - C(10) - C(l5) 122.5(S) C(ll) - C(lO) - C(15) 116.6(9) 

C(10) - C(11) - C(12) 121.4(10) C(11) - C(12) - C(13) 120.2(9) 

C(12) - C(13) - C(14) 11S.3(9) C(13) - C(14) - C(15) 120.4(9) 

C(lO) - C(5) - C(14) 123.0(9) N(l) - C(16) - C(7) 118.5(9) 

N(l) - C(16) - C(21) 119.2(9) C(17) - C(16) - C(21) 122.3(10) 

C(16) - C(17) - C(1S) 117.6(11) C(17) - C(1S) - C(19) 120.9(12) 

C(1S) - C(19) - C(20) 120.4(11) C(19) - C(20) - C(2l) 120.4(11) 

C(16) - C(21) - C(20) 11S.3(10) C(29) - C(2S) - C(30A) 126.6(16) 

C(2S) - C(29) - C(30) 122.9(16) C(29) - C(30) - C(2SA) 110.4(15) 

a Cnt is the centroid of the C(l) - C(2) bond. 
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Table B-5. Anisotropic Displacement Coefficients (A2 x l()4)Q 

Un U22 U33 Ul2 Ul3 U23 

W(1) 230(3) 210(3) 228(3) -7(2) 14(2) 1(2) 

Cl(1) 300(14) 320(14) 483(17) 71(11) -35(12) -1(12) 

Cl(2) 365(14) 344(14) 270(13) -5(11) 37(11) 45(11) 

P(1) 248(14) 263(14) 239(14) -6(11) 34(11) -18(11) 

P(2) 316(15) 224(14) 309(15) -6(12) 8(12) 8(12) 

0(1) 246(37) 391(40) 321(40) 5(31) 31(31) -26(32) 

0(2) 285(37) 277(37) 248(37) -45(29) 29(29) -40(29) 

0(3) 277(37) 342(40) 341(40) -62(32) 12(31 ) 36(33) 

0(4) 359(41) 316(38) 381(43) 39(33) 37(34) -21(33) 

0(5) 312(40) 216(37) 636(51) -88(32) 123(36) -9(35) 

0(6) 546(47) 282(40) 350(41) -170(36) -155(36) 23(33) 

N(1) 244(44) 210(44) 322(49) 5(34) 20(37) -164(35) 

C(1) 217(50) 173(49) 213(50) 33(40) 48(39) 58(40) 

C(2) 137(47) 333(57) 214(51) 30(42) -27(38) 51(43) 

C(3) 294(53) 154(46) 245(51) 6(42) 40(41) -48(41) 

C(4) 287(55) 357(59) 287(56) 136(49) 78(44) 67(49) 

C(5) 322(61) 501(70) 292(62) 68(52) -23(48) -39(53) 

C(6) 666(90) 808(10) 231(66) 60(76) 127(61) 78(63) 

C(7) 500(76) 907(10) 225(65) 236(74) 130(56) 212(70) 

C(8) 390(68) 592(83) 603(86) 145(60) 255(62) 473(72) 

C(9) 297(58) 277(58) 547(73) 39(47) . 114(53) 166(52) 

C(10) 178(48) 264(53) 279(55) -12(41) 24(42) 54(44) 

C(ll) 259(56) 281(56) 392(61) -62(46) 54(47) -39(47) 

C(12) 223(54) 314(57) 307(58) -8(45) -55(44) -26(45) 

C(13) 257(56) 264(55) 436(66) 115(45) 71 (49) -37(48) 

C(14) 274(54) 282(54) 260(54) 33(45) 124(44) 22(44) 

C(15) 333(57) 182(50) 313(58) -52(44) 25(46) 60(43) 

C(16) 230(52) 324(58) 237(54) 66(45) 1(42) -2(45) 

C(17) 335(62) 570(75) 442(69) -138(57) 129(53) -246(61) 

C(18) 392(70) 721(94) 593(84) -30(68) 44(63) -399(75) 
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Table B-5 (cont'd). Anisotropic Displacement Coefficients (A2 x l(4)a 

Un U22 U33 Ul2 Un U23 

C(19) 385(69) 843(99) 261(62) 236(71) -49(52) 9(67) 

C(20) 584(78) 402(67) 377(66) 243(59) 218(58) 86(56) 

C(21) 343(63) 418(68) 477(71) 112(52) 172(54) 149(55) 

C(22) 341(61) 498(70) 337(61) -9(53) 101(49) -27(53) 

C(23) 418(65) 486(69) 283(61) -3(55) 105(50) -107(52) 

C(24) 348(63) 337(64) 597(77) -44(51) 111(55) 211(55) 

C(25) 453(72) 374(68) 618(83) -16(55) -49(61) 210(59) 

C(26) 400(70) 300(64) 931(14) -127(55) 100(68) -48(65) 

C(27) 735(88) 363(71) 483(76) -67(64) -56(65) -72(59) 

aThe anisotropic displacement exponent takes the form: -21t2(h2a*2U 11 + ... + 
2hka*h*U 12). 
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Table B-6. H-Atom Coordinates (xl04) and Isotropic Displacement Coefficients (A2 x 
1(4) 

x l z u 
H(1A) 2673 -1760 1301 800 
H(2A) 3493 190 1756 800 

H(5A) 3409 148 3623 800 
H(6A) 3105 -206 4791 800 
H(7A) 2565 -2183 5077 800 
H(8A) 2224 -3809 4171 800 

H(9A) 2418 -3367 2976 800 
H(l1A) 4073 -2980 3390 800 

H(12A) 5115 -4241 3235 800 
H(13A) 5550 -4269 2103 800 
H(14A) 4883 -3129 1119 800 

H(15A) 3874 -1786 1307 800 
H(17A) 1756 2467 3572 800 

H(18A) 1244 2545 4662 800 
H(19A) 655 655 5072 800 
H(20A) 503 -1287 4359 800 
H(21A) 1027 -1414 3255 800 
H(22A) -652 -256 1670 800 
H(22B) -90 -1087 2208 800 
H(22C) 88 403 2017 800 
H(23A) 880 -1675 -515 800 
H(23B) 267 -1128 -84 800 
H(23C) 978 -276 -123 800 
H(24A) 793 -4341 2069 800 
H(24B) 165 -3352 1752 800 
H(24C) 668 -4008 1234 800 
H(25A) 2025 5526 1269 800 
H(25B) 2684 4689 1052 800 
H(25C) 1895 4062 964 800 
H(26A) 4324 3688 1489 800 
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Table B-6 (cont'd). H-Atom Coordinates (xl04) and Isotropic Displacement 
Coefficients (A2 x 1(4) 

x ~ z U 

H(26B) 3676 4659 1594 800 
H(26C) 4143 3995 2274 800 
H(27A) 3386 3441 3908 800 
H(27B) 3771 3919 3250 800 
H(27C) 3004 4508 3359 800 
H(28A) 4245 6800 4827 800 
H(29A) 3765 4929 5100 800 
H(30A) 4472 2862 5250 800 
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C. X-ray Diffraction Study of 
W(=CH-CH=CPh2)[N-2,6-C6H3-(i-Prhl[OCMe(CF3h12[P(OMe}Jl 

(See Chapter 2, Figure 3 for the ORTEP plot.) 

Table C-l. Experimental Data for the X-ray Diffraction Study ofW(=CH-CH=CPh2)[N-
2,6-C()lI3-(i-Prh] [OCMe(CF3h]2[P(OMeh]. 

Formula: C38I-44NOsF 12PW 

Temperature (K): 158 

Space Group: PI 

~ = 9.8392(15) A 

12= 11.317(2) A 

£. = 20.184(4) A 

V = 2093.5(6) A3 

Radiation: MoKa (~= 0.710730 A) 

Data Collected: +h, ±k, ±l 

Scan Range: 1.20° plus Ka-separation 

28 Range: 4.0 to 48.0° 

Absorption Correction: 

Semi-empirical ('V-scan method) 

No. of Variables: 699 

Goodness of Fit: 1.64 

Fw: 1037.6 

Crystal System: Triclinic 

Z=2 

a = 82.610(13)° 

~ = 89.708(13)° 

Y = 70.074(12)° 

Dcalcd, Mglm3 = 1.65 

Diffractometer: Siemens P3(R3m/V System) 

Monochromator: Highly oriented graphite 

Scan Type: 8-28 

Scan Speed: 3.0 deg min- l (in w) 

Il(MoKa), mm- l = 2.95 

Reflections Collected: 680 I 

Reflections with IFol > 2.0cr(IFol): 6200 

RF = 3.4%, RwF = 3.7% 



175 

Table C-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

W(1) 1715(1) 2383(1) 2809(1) 165(1) 

P(l) -243(1) 3907(1) 3386(1) 226(5) 

0(1) 856(4) 1167(3) 3260(2) 262(13) 

0(2) 3271(3) 837(3) 2583(2) 214(12) 

0(3) 51(4) 4072(3) 4139(2) 333(15) 

0(4) -468(4) 5288(3) 3022(2) 321(14) 

0(5) -1786(4) 3781(4) 3461(2) 361(15) 

N(l) 2639(4) 3434(3) 2899(2) 174(14) 

F(l) 2115(4) -1678(3) 4411(2) 599(16) 

F(2) 1758(6) 226(4) 4559(2) 782(21) 

F(3) 3366(4) -667(4) 3904(2) 662(18) 

F(4) -629(4) -1106(3) 3993(2) 576(16) 

F(5) -1057(5) 807(3) 4174(2) 679(19) 

F(6) -1493(4) 438(4) 3207(2) 676(19) 

F(7) 5989(3) -280(3) 3133(2) 459(14) 

F(8) 6856(3) -901(3) 2216(2) 437(13) 

F(9) 5284(3) -1599(3) 2695(2) 436(13) 

F(10) 2937(4) 1126(3) 1183(2) 601(16) 

F(11) 5035(4) -272(3) 1132(2) 458(14) 

F(12) 3400(4) -759(3) 1668(2) 462(15) 

C(1) 3321(5) 4224(4) 3113(2). 164(16) 

C(2) 3444(5) 5220(4) 2637(2) 209(17) 

C(3) 4065(6) 6033(5) 2855(3) 282(20) 

C(4) 4549(6) 5886(5) 3512(3) 314(21) 

C(5) 4446(6) 4908(5) 3964(3) 309(21) 

C(6) 3816(5) 4055(4) 3781(3) 235(18) 

C(7) 2924(6) 5398(5) 1911(3) 236(19) 

C(8) 1603(8) 6587(7) 1748(4) 453(28) 

C(9) 4119(8) 5407(7) 1437(3) 429(28) 

C(10) 3769(6) 2938(5) 4274(3) 283(20) 

C(11) 3553(10) 3222(7) 4989(3) 488(31) 
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Table C-2 (cont'd). Atomic Coordinates (x 1(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

C(12) 5132(9) 1794(7) 4233(4) 481(29) 

C(13) 626(5) 3229(5) 1977(3) 224(18) 

C(14) -243(6) 2675(5) 1628(3) 245(19) 

C(15) -1169(5) 3229(5) 1088(2) 220(18) 

C(16) -1551(5) 4582(5) 812(3) 234(18) 

C(17) -1645(6) 4970(5) 119(3) 273(20) 

C(18) -1984(6) 6218(5) -144(3) 319(21) 

C(19) -2255(6) 7139(6) 285(3) 376(23) 

C(20) -2193(6) 6794(5) 959(3) 371(22) 

C(21) -1869(6) 5541(5) 1227(3) 292(21) 

C(22) -1822(6) 2441(5) 759(3) 250(19) 

C(23) -3208(6) 2961(6) 455(3) 297(21) 

C(24) -3834(7) 2221(7) 158(3) 379(25) 

C(25) -3090(8) 946(6) 150(3) 446(28) 

C(26) -1723(8) 416(6) 444(3) 481(28) 

C(27) -1079(7) 1152(5) 745(3) 372(23) 

C(28) -208(11) 3283(8) 4704(4) 555(35) 

C(29) -1348(12) 6418(7) 3288(5) 604(35) 

C(30) -2537(7) 3498(7) 2921(3) 351(24) 

C(31) 960(5) -69(4) 3503(3) 245(18) 

C(32) 2036(7) -549(5) 4093(3) 401(24) 

C(33) -563(7) 21(6) 3730(3) 413(24) 

C(34) 1408(9) -963(6) 2979(3) 377(26) 

C(35) 4421(5) 558(4) 2170(3) 232(18) 

C(36) 5642(6) -559(5) 2549(3) 272(19) 

C(37) 3960(6) 149(5) 1539(3) 308(20) 

C(38) 4995(7) 1655(5) 1968(4) 363(24) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized 
Uij tensor. 
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Table C-3. Interatomic Distances (A) with Esd's 

W(1) - P(1) 2.S0S(1) 

W(1) - 0(2) 1.996(3) 

W(1) - C(13) 1.947(S) 

P(l) - 0(3) 1.S94(4) 

P(l) - 0(5) 1.S77(4) 

0(2) - C(35) 1.374(6) 

0(4) - C(29) 1.447(9) 

N(1) - C(1) 1.394(7) 

F(2) - C(32) 1.331(8) 

F(4) - C(33) 1.339(8) 

F(6) - C(33) 1.327(8) 

F(8) - C(36) 1.331(6) 

F(10) - C(37) 1.340(6) 

F(12) - C(37) 1.320(8) 

C(l) - C(6) 1.403(7) 

C(2) - C(7) 1.S20(7) 

C(4) - C(S) 1.372(8) 

C(6) - C(10) 1.S19(7) 

C(7) - C(9) 1.513(9) 

C(10) - C(12) 1.S24(8) 

C(14) - C(1S) 1.363(7) 

C(1S) - C(22) 1.483(9) 

C(16) - C(2l) 1.406(8) 

C(18) - C(19) 1.39S(9) 

C(20) - C(2l) 1.379(8) 

C(22) - C(27) 1.39S(7) 

C(24) - C(2S) 1.380(9) 

C(26) - C(27) 1.400(11) 

C(31) - C(33) 1.S39(9) 

C(3S) - C(36) 1.S34(6) 

C(3S) - C(38) 1.S40(9) 

W(1) - 0(1) 1.97S(4) 

W(l) - N(l) 1.7S3(4) 

pel) - 0(4) 1.582(4) 

0(1) - C(31) 1.391(6) 

0(3) - C(28) 1.433(9) 

O(S) - C(30) 1.448(9) 

F(1) - C(32) 1.331(7) 

F(3) - C(32) 1.328(8) 

F(S) - C(33) 1.317(8) 

F(7) - C(36) 1.334(7) 

F(9) - C(36) 1.337(7) 

F(11) - C(37) 1.330(6) 

C(1) - C(2) 1.421(7) 

C(2) - C(3) 1.380(9) 

C(3) - C(4) 1.381(8) 

C(S) - C(6) 1.398(9) 

C(7) - C(8) 1.S19(8) 

C(10) - C(11) 1.518(9) 

C(13) - C(14) 1.4S0(9) 

C(1S) - C(16) 1.479(7) 

C(16) - C(17) 1.404(7) 

C(17) - C(18) 1.370(8) 

C( 19) - C(20) 1.362(9) 

C(22) - C(23) 1.397(7) 

C(23) - C(24) 1.386(11) 

C(2S) - C(26) 1.373(10) 

C(3l) - C(32) 1.S12(8) 

C(31) - C(34) 1.S17(9) 

C(3S) - C(37) 1.S30(8) 
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Table C-4. Interatomic Angles (Deg.) with Esd's 

P(1) - W(1) - 0(1) 81.8(1) P(l) - W(l) - 0(2) 163.7(1) 

0(1) - W(1) - 0(2) 84.6(1) P(l) - W(1) - N(1) 83.6(1) 

0(1) - W(1) - N(1) 146.9(2) 0(2) - W(l) - N(1) 103.3(2) 

P(1) - W(1) - C(13) 86.7(1) 0(1) - W(1) - C(13) 109.8(2) 

0(2) - W(1) - C(13) 106.4(2) N(l) - W(l) - C(13) 98.2(2) 

W(1) - P(l) - 0(3) 119.0(1) W(l) - P(1) - 0(4) 107.4(1) 

0(3) - P(1) - 0(4) 100.6(2) W(1) - P(1) - 0(5) 121.4(2) 

0(3) - P(1) - 0(5) 98.8(2) 0(4) - P(1) - 0(5) 107.4(2) 

W(l) - 0(1) - C(31) 150.4(3) W(1) - 0(2) - C(35) 137.5(3) 

P(1) - 0(3) - C(28) 122.9(5) P(1) - 0(4) - C(29) 122.4(4) 

P(1) - 0(5) - C(30) 122.5(4) W(1) - N(I) - C(l) 168.0(3) 

N(1) - C(1) - C(2) 117.6(4) N(1) - C(1) - C(6) 120.4(4) 

C(2) - C(1) - C(6) 121.9(5) C(1) - C(2) - C(3) 117.6(5) 

C(l) - C(2) - C(7) 122.1(5) C(3) - C(2) - C(7) 120.3(5) 

C(2) - C(3) - C(4) 121.3(5) C(3) - C(4) - C(5) 120.6(6) 

C(4) - C(5) - C(6) 121.3(5) C(l) - C(6) - C(5) 117.3(5) 

C(l) - C(6) - C(lO) 121.5(5) C(S) - C(6) - C(lO) 121.1(5) 

C(2) - C(7) - C(8) 111.3(5) C(2) - C(7) - C(9) 111.6(5) 

C(8) - C(7) - C(9) 111.1(5) C(6) - C(10) - C(11) 113.9(5) 

C(6) - C(10) - C(12) 109.9(5) C(ll) - C(10) - C(12) 110.6(5) 

W(l) - C(13) - C(14) 122.2(4) C(l3) - C(14) - C(15) 127.5(5) 

C(14) - C(15) - C(16) 123.1(5) C(14) - C(15) - C(22) 118.7(5) 

C(16) - C(15) - C(22) 118.3(4) C(l5) - C(16) - C(17) 121.3(5) 

C(1S) - C(16) - C(21) 121.8(5) C(l7) - C(16) - C(21) 116.9(5) 

C(16) - C(17) - C(18) 121.9(5) C(17) - C(18) - C(19) 119.5(5) 

C(18) - C( 19) - C(20) 119.9(5) C(19) - C(20) - C(21) 120.9(6) 

C(16) - C(21) - C(20) 120.8(5) C(15) - C(22) - C(23) 121.2(5) 

C(15) - C(22) - C(27) 121.3(5) C(23) - C(22) - C(27) 117.6(6) 

C(22) - C(23) - C(24) 121.3(5) C(23) - C(24) - C(2S) 120.5(6) 

C(24) - C(25) - C(26) 119.1(7) C(2S) - C(26) - C(27) 120.9(6) 

C(22) - C(27) - C(26) 120.5(5) 0(1) - C(31) - C(32) 109.0(5) 

0(1) - C(31) - C(33) 105.4(4) C(32) - C(31) - C(33) 110.3(5) 
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Table C-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

0(1) - C(31) - C(34) 112.9(5) C(32) - C(31) - C(34) 109.7(4) 

C(33) - C(31) - C(34) 109.5(6) F(1) - C(32) - F(2) 105.7(5) 

F(l) - C(32) - F(3) 106.1(4) F(2) - C(32) - F(3) 105.8(6) 

F(1) - C(32) - C(31) 114.3(6) F(2) - C(32) - C(31) 113.2(4) 

F(3) - C(32) - C(31) 111.2(5) F(4) - C(33) - F(5) 107.3(5) 

F(4) - C(33) - F(6) 106.8(6) F(5) - C(33) - F(6) 106.8(4) 

F(4) - C(33) - C(31) 112.4(4) F(5) - C(33) - C(31) 113.7(6) 

F(6) - C(33) - C(31) 109.6(5) 0(2) - C(35) - C(36) 106.8(4) 

0(2) - C(35) - C(37) 108.3(4) C(36) - C(35) - C(37) 109.3(4) 

0(2) - C(35) - C(38) 114.7(4) C(36) - C(35) - C(38) 108.5(5) 

C(37) - C(35) - C(38) 109.2(5) F(7) - C(36) - F(8) 106.5(4) 

F(7) - C(36) - F(9) 105.9(4) F(8) - C(36) - F(9) 106.5(4) 

F(7) - C(36) - C(35) 111.3(4) F(8) - C(36) - C(35) 113.3(4) 

F(9) - C(36) - C(35) 112.8(5) F(lO) - C(37) - F(11) 106.7(4) 

F(10) - C(37) - F(12) 106.1(5) F(11) - C(37) - F(12) 106.3(4) 

F(10) - C(37) - C(35) 110.4(4) F(11) - C(37) - C(35) 113.6(5) 

F(12) - C(37) - C(35) 113.2(4) 
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Table C-S. Anisotropic Displacement Coefficients (A2 x 1(4)a 

Ull U22 U33 Ul2 Ul3 U23 

W(I) 181(1) 142(1) 179(1) -64(1) -34( 1) -21(1) 

P(1) 221(7) 209(6) 231(7) -51(6) -17(6) -33(5) 

0(1) 276(20) 199(17) 310(20) -91(15) 51(16) -14(15) 

0(2) 239(18) 141(16) 259(19) -62(14) 19(15) -27(14) 

0(3) 401(23) 355(21) 230(20) -107(18) 8(17) -58(17) 

0(4) 374(22) 183(18) 326(21) 17(16) -5(17) -62(16) 

0(5) 265(20) 461(23) 364(23) -105(18) 10(17) -133(19) 

N(1) 162(20) 141(19) 202(21) -36(17) -37(17) -13(16) 

F(1) 764(28) 377(20) 537(24) -147(20) -61(21) 226(18) 

F(2) 1272(41) 512(24) 411(23) -91 (26) -210(24) -117(19) 

F(3) 472(24) 837(30) 578(26) -237(22) -169(20) 299(22) 

F(4) 629(25) 363(20) 811(29) -308(19) 235(22) 33(19) 

F(5) 734(28) 479(22) 917(32) -273(21) 542(25) -268(22) 

F(6) 398(22) 657(26) 991(35) -300(21) -101(23) 165(24) 

F(7) 350(19) 572(22) 404(20) -64(17) -133(16) -132(17) 

F(8) 308(18) 386(19) 519(22) 8(15) 59(16) -67(16) 

F(9) 404(20) 188(16) 644(24) -62(14) -90(17) 100(15) 

F(10) 730(27) 510(22) 283(19) 151 (20) -168(18) -55(17) 

F(11) 496(21) 534(21) 392(20) -183(18) 162(17) -225(17) 

F(12) 638(24) 581(22) 343(19) -408(20) 6(17) -138(16) 

C(1) 155(24) 133(22) 191(25) -14(19) -20(20) -67(19) 

C(2) 229(26) 176(24) 225(27) -69(21)· -8(21) -42(20) 

C(3) 370(33) 201(26) 290(31) -125(25) -13(25) -14(23) 

C(4) 379(33) 266(28) 367(33) -175(26) -49(26) -111(25) 

C(5) 369(33) 311(30) 244(30) -90(25) -106(25) -99(24) 

C(6) 208(26) 193(25) 276(28) -16(21) -31(22) -70(21) 

C(7) 301(30) 178(26) 267(29) -130(23) -21(23) -27(22) 

C(8) 446(42) 450(40) 358(40) -20(33) -152(35) -52(31) 

C(9) 482(42) 581(44) 282(36) -258(38) 3(30) -53(31) 

C(10) 284(31) 306(29) 268(30) -112(26) -60(24) -35(23) 

C(ll) 710(55) 480(42) 272(35) -207(42) 12(35) -40(30) 
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Table C-5 (cont'd). Anisotropic Displacement Coefficients (A2 x 1(4)a 

Ull U22 U33 Ul2 U13 U23 

C(12) 535(47) 330(36) 478(46) -73(34) -40(37) 90(32) 

C(13) 261(28) 182(25) 216(27) -56(22) -38(22) -36(21) 

C(14) 284(29) 215(27) 289(29) -133(23) 1(23) -94(23) 

C(15) 216(26) 234(26) 216(27) -77(22) -23(22) -44(21) 

C(16) 177(26) 247(25) 280(28) -65(21) -51(21) -58(22) 

C(17) 254(29) 299(30) 263(30) -79(24) -67(23) -70(25) 

C(18) 291(31) 360(32) 264(32) -82(25) -78(25) 28(25) 

C(19) 325(33) 279(31) 487(39) -85(26) -114(28) 36(28) 

C(20) 399(35) 245(29) 431(37) -29(26) -139(28) -128(27) 

C(21) 331 (32) 284(29) 221(31) -58(24) -92(25) -18(24) 

C(22) 311(29) 277(27) 201(27) -144(24) -9(22) -56(21) 

C(23) 319(31) 377(33) 224(29) -158(28) -12(24) -39(24) 

C(24) 352(36) 598(42) 282(32) -298(33) -27(28) -26(29) 

C(25) 627(45) 540(41) 339(35) -396(37) -68(32) -117(30) 

C(26) 694(49) 353(35) 489(41) -243(35) -32(36) -210(30) 

C(27) 398(36) 337(32) 405(35) -131 (28) -56(29) -121(27) 

C(28) 894(68) 427(43) 311(39) -195(45) 43(39) -18(32) 

C(29) 750(64) 275(36) 559(52) 129(39) 111(47) -99(34) 

C(30) 227(32) 409(37) 415(38) -84(29) -30(29) -116(32) 

C(31) 257(28) 161(24) 349(30) -122(22) 79(23) -7(21) 

C(32) 531(41) 319(32) 346(34) -166(29) -4(29) 36(27) 

C(33) 409(36) 317(32) 567(42) -205(29) 127(33) -31(30) 

C(34) 501(44) 273(32) 390(38) -159(31) 97(35) -95(28) 

C(35) 239(27) 144(23) 309(29) -51(21) 74(23) -55(21) 

C(36) 246(29) 243(27) 326(31) -65(23) 3(24) -82(23) 

C(37) 336(32) 297(29) 270(30) -69(26) 58(25) -68(24) 

C(38) 464(39) 219(30) 446(39) -155(29) 164(34) -85(28) 

aThe anisotropic displacement exponent takes the fonn: -21t2(h2a*2U 11 + ... + 
2hka*b*U 12). 
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Table C-6. H-Atom Coordinates (x1Q4) and Isotropic Displacement Coefficients 
(A2 x l(4) 

x ~ z U 

H(3) 4252(48) 6607(44) 2573(23) 106(118) 

H(4) 4925(52) 6441(46) 3683(25) 219(131) 

H(5) 4870(60) 4752(52) 4395(30) 396(164) 

H(7) 2744(49) 4761(45) 1834(23) 113(122) 

H(8A) 1246(64) 6641(54) 1302(33) 430(170) 

H(8B) 899(74) 6574(61) 2011(34) 500(220) 

H(8C) 1822(75) 7362(71) 1797(36) 678(228) 

H(9A) 4985(89) 4661(76) 1544(40) 837(270) 

H(9B) 4499(69) 6092(63) 1467(32) 530(194) 

H(9C) 3798(66) 5492(56) 985(34) 486(182) 

HOO) 3025(52) 2769(42) 4166(23) 107(121) 

H(l1A) 4336(80) 3325(67) 5133(37) 637(250) 

H(11B) 2562(77) 3909(65) 4967(33) 576(203) 

H01C) 3445(63) 2517(58) 5329(31) 438(69) 

H(12A) 5896(67) 1995(56) 4324(30) 384(187) 

H(12B) 5204(91) 1606(79) 3774(48) 969(308) 

H(12C) 5098(81) 1121(74) 4475(39) 725(250) 

H(13) 558(54) 4061(50) 1758(26) 272(140) 

H(14) -89(52) 1859(48) 1771(24) 195(130) 

H(17) -1441(65) 4364(57) -103(31) 422(82) 

H(18) -2050(52) 6464(45) -607(27) 202(130) 

H(9) -2475(63) 7991(58) 81(30) 453(174) 

H(20) -2460(64) 7418(57) 1267(31) 478(176) 

H(21) -1848(55) 5340(47) 1636(28) 223(145) 

H(23) -3731(56) 3762(50) 494(26) 254(145) 

H(24) -4702(64) 2666(53) -20(29) 350(165) 

H(25) -3517(73) 462(64) -71(35) 657(215) 

H(26) -1136(74) -437(67) 392(35) 651(216) 

H(27) -4(69) 771(57) 894(31) 513(84) 

H(28A) -54(100) 3626(86) 5081(49) 1098(336) 
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Table C-6 (cont'd). H-Atom Coordinates (x104) and Isotropic Displacement 
Coefficients (A2 x 1(4) 

x ~ z U 

H(28B) -1294(92) 3612(74) 4642(40) 826(281) 

H(28C) 326(106) 2527(95) 4690(49) 1125(376) 

H(29A) -1319(93) 7147(87) 2958(47) 1037(313) 

H(29B) -1060(108) 6477(95) 3738(56) 1299(406) 

H(29C) -2194(86) 6450(74) 3354(40) 654(290) 

H(30A) -1903(58) 2838(50) 2700(26) 258(139) 

H(30B) -2867(73) 4191(67) 2615(36) 581(218) 

H(30C) -3352(88) 3418(72) 3083(39) 789(263) 

H(34A) 702(62) -645(52) 2601(30) 356(162) 

H(34B) 2194(67) -1064(55) 2827(30) 343(187) 

H(34C) 1481(78) -1854(71) 3212(37) 769(236) 

H(38A) 4196(66) 2394(59) 1695(30) 449(172) 

H(38B) 5346(55) 1813(48) 2336(28) 222(146) 

H(38C) 5730(54) 1475(44) 1616(25) 194(126) 
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D. X-ray Diffraction Study of 

W[CH=CH-C(6)-OCH2CH2CH2CI]CI(N-2,6-C6H3-M~)(PEhPhh 

~lEt2Ph 

I' , CI-W_=<_, 
PhEt2P 6~~,/ 

~ CI 
(See Chapter 2, Figure 4 for the ORTEP plot.) 

Table D-l. Experimental Data for the X-ray Diffraction Study of W[CH=CH-C(6)­
OCH2CH2CH2CI]CI(N-2,6-C~rMe2)(PEt2Phh 

Formula: C34HnN02P2Cl2 W 

Temperature (K): 158 

Space Group: PI 

g, = 10.301(2) A 
12= 12.981(3)A 

£ = 13.903(3) A 
V = 1753.9(6) A3 
Radiation: MoKa (~= 0.710730 A) 
Data Collected: +h, ±k, ±l 
Scan Range: 1.20° plus Ka-separation 

29 Range: 4.0 to 50.0° 

Absorption Correction: 

Semi-empirical ('V-scan method) 

No. of Variables: 379 

Goodness of Fit: 1.37 

Fw: 818.4 

Crystal System: Triclinic 

Z=2 
a = 93.752(16)° 

13 = 104.624(14) ° 

Y = 100.901(15)° 

DcaIcd, Mg/m3 = 1.55 

Diffractometer: Siemens P3(R3m/V Syst.) 

Monochromator: Highly oriented graphite 
Scan Type: 9-29 

Scan Speed: 3.5 deg min- l (in (0) 

Jl(MoKa), mm- l = 3.637 

Reflections Collected: 6596 

Reflections with 1Fol > 2.0cr(IFol): 5920 

RF = 3.0%, RwF = 3.7% 
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C10 

C24 

C17 

C19 

Figure D-l. ORTEP plot ofW[CH=CH-C(6)-OCH2CH2CH2CI]CI(N-2,6-C~3-
Me2)(PEt2Ph)z (second view). Thermal ellipsoids are drawn at the 50% probability 
level. 
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C34 

Figure D-2. ORTEP plot of W[CH=CH-C(6)-OCH2CH2CH2CI]CI(N-2,6-C~r 
Me2)(PEt2Phh (third view). Thennal ellipsoids are drawn at the 50% probability 
level. 
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Table D-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x l(4)a 

x ~ z U(eg) 

W(l) 806(1) 2672(1) 2709(1) 244(1) 

Cl(1) -522(1) 4101(1) 2580(1) 354(4) 

C1(2) -2442(2) 1509(1) -3823(1) 712(6) 

P(1) 2767(1) 4077(1) 2570(1) 285(3) 

P(2) -1467(1) 1429(1) 2477(1) 283(3) 

0(1) 151(3) 2611(2) 1075(2) 295(10) 

0(2) 70(4) 1744(3) -415(2) 434(12) 

N(1) 1465(3) 2598(3) 3999(3) 268(11) 

C(1) 1502(5) 1461(3) 2153(3) 357(16) 

C(2) 1175(5) 1179(4) 1119(3) 428( 18) 

C(3) 456(5) 1862(3) 596(3) 337(15) 

C(4) -541(6) 2557(4) -867(4) 485(19) 

C(5) -774(7) 2380(6) -1994(5) 674(26) 

C(6) -1987(9) 1596(8) -2464(6) 1028(41) 

C(7) 1999(4) 2586(3) 5023(3) 283(13) 

C(8) 3097(5) 2080(3) 5375(3) 349(15) 

C(9) 3635(5) 2116(4) 6407(4) 417(17) 

C(10) 3119(5) 2623(4) 7072(3) 468(18) 

C(ll) 2043(5) 3108(3) 6725(3) 414(17) 

C(12) 1458(5) 3108(3) 5707(3) 331(15) 

C(13) 3642(5) 1474(4) 4668(4) 456(19) 

C(14) 297(5) 3657(4) 5364(3) 406(17) 

C(15) 2713(4) 4342(3) 1290(3) 309(14) 

C(16) 1969(5) 5058(4) 846(3) 393(17) 

C(17) 1890(5) 5272(4) -122(3) 404(17) 

C(18) 2568(5) 4763(4) -675(3) 426(17) 

C(19) 3295(7) 4050(6) -262(4) 681(28) 

C(20) 3345(6) 3819(5) 712(4) 575(23) 

C(21) 4444(4) 3744(4) 3061(3) 351(15) 

C(22) 5700(5) 4566(4) 3042(4) 457(18) 

C(23) 2920(5) 5396(3) 3198(3) 380(16) 
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Table D-2 (cont'd). Atomic Coordinates (x 1(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

C(24) 3149(5) 5425(4) 4335(3) 453(18) 

C(25) -2614(4) 1327(3) 1217(3) 324(14) 

C(26) -3292(5) 2150(4) 953(4) 452(18) 

C(27) -4127(5) 2100(5) -10(4) 524(20) 

e(28) -4292(5) 1252(4) -720(4) 474(18) 

C(29) -3611(5) 467(4) -470(3) 430(17) 

C(30) -2755(4) 497(4) 503(3) 353(15) 

C(31) -2494(5) 1766(4) 3308(3) 408(17) 

C(32) -3874(6) 1015(5) 3162(5) 593(23) 

C(33) -1354(5) 65(3) 2657(3) 357(15) 

C(34) -629(5) -56(4) 3730(3) 441(17) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized 
Uij tensor. 
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Table D-3. Interatomic Distances (A) with Esd's 

W(1) - Cl(1) 2.495(1) 

W(1) - P(2) 2.512(1) 

W(1) - N(1) 1.766(3) 

Cl(2) - C(6) 1.819(8) 

P(1) - C(2l) 1.833(5) 

P(2) - C(25) 1.829(4) 

P(2) - C(33) 1.826(5) 

0(2) - C(3) 1.350(5) 

N(l) - C(7) 1.393(5) 

C(2) - C(3) 1.388(7) 

C(5) - C(6) 1.430(10) 

C(7) - C(12) 1.414(7) 

C(8) - C(13) 1.498(8) 

C(lO) - C(11) 1.375(8) 

C(12) - C(14) 1.499(7) 

C(15) - C(20) 1.375(8) 

C(17) - C(18) 1.376(8) 

C( 19) - C(20) 1.397(8) 

C(23) - C(24) 1.536(7) 

C(25) - C(30) 1.377(6) 

C(27) - C(28) 1.385(8) 

C(29) - C(30) 1.409(6) 

C(33) - C(34) 1.523(6) 

W(1) - P(1) 2.509(1) 

W(l) - 0(1) 2.191(3) 

W(1) - C(1) 2.032(5) 

pel) - C(15) 1.824(5) 

P(l) - C(23) 1.830(5) 

P(1) - C(31) 1.836(6) 

0(1) - C(3) 1.275(6) 

0(2) - C(4) 1.430(7) 

C(1) - C(2) 1.398(6) 

C(4) - C(5) 1.519(8) 

C(7) - C(8) 1.412(6) 

C(8) - C(9) 1.396(6) 

C(9) - C(10) 1.369(8) 

C(11) - C(12) 1.392(6) 

C(15) - C(16) 1.392(7) 

C(16) - C(17) 1.378(7) 

C(18) - C(l9) 1.364(9) 

C(21) - C(22) 1.520(6) 

C(25) - C(26) 1.402(7) 

C(26) - C(27) 1.386(7) 

C(28) - C(29) 1.358(8) 

C(31) - C(32) 1.521(7) 
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Table D-4. Interatomic Angles (Deg.) with Esd's 

Cl(l) - W(1) - P(1) 8S.S(1) Cl(l) - W(l) - P(2) 8S.7(1) 

P(1) - W(l) - P(2) 166.1(1) Cl(l) - W(1) - 0(1) 81.0(1) 

P(l) - W(1) - 0(1) 83.9(1) P(2) - W(l) - 0(1) 84.2(1) 

Cl(1) - W(l) - N(1) 106.6(1) P(1) - W(l) - N(l) 9S.7(1) 

P(2) - W(l) - N(1) 97.1(1) 0(1) - W(1) - N(1) 172.4(1) 

C1(1) - W(1) - C(1) lS4.5(1) P(l) - W(l) - C(l) 94.7(1) 

P(2) - W(1) - C(l) 88.7(1) 0(1) - W(1) - C(1) 73.8(1) 

N(1) - W(1) - C(1) 98.8(2) 

W(1) - P(1) - C(1S) 114.1(1) W(1) - P(1) - C(21) 112.9(2) 

C(1S) - P(1) - C(21) 104.8(2) W(1) - P(1) - C(23) 116.4(2) 

COS) - P(1) - C(23) 102.2(2) C(2l) - P(1) - C(23) 105.2(2) 

W(1) - P(2) - C(2S) 113.1(1) W(1) - P(2) - C(31) 11S.7(1) 

C(2S) - P(2) - C(31) 104.2(2) W(1) - P(2) - C(33) 114.S(2) 

C(2S) - P(2) - C(33) 104.0(2) C(31) - P(2) - C(33) 104.0(2) 

W(1) - 0(1) - C(3) 114.9(3) C(3) - 0(2) - C(4) 11S.7(4) 

W(1) - N(l) - C(7) 177.6(3) W(1) - C(1) - C(2) 120.0(4) 

C(1) - C(2) - C(3) 111.S(S) 0(1) - C(3) - 0(2) 119.4(4) 

0(1) - C(3) - C(2) 119.6(4) 0(2) - C(3) - C(2) 121.0(4) 

0(2) - C(4) - C(S) 109.S(S) C(4) - C(S) - C(6) 111.8(6) 

Cl(2) - C(6) - C(S) 113.0(6) N(1) - C(7) - C(8) 120.2(4) 

N(l) - C(7) - C(12) 119.S(4) C(8) - C(7) - C(12) 120.3(4) 

C(7) - C(8) - C(9) 118.S(S) C(7) - C(8) -'C(13) 121.4(4) 

C(9) - C(8) - C(13) 120.1(4) C(8) - C(9) - C(10) 121.4(S) 

C(9) - C(10) - C(11) 119.8(4) C(10) - C(ll) - C(12) 121.9(5) 

C(7) - C(12) - C(11) 118.1(4) C(7) - C(12) - C(14) 122.0(4) 

C(11) - C(12) - C(14) 120.0(5) P(1) - C(l5) - C(l6) 120.5(4) 

P(1) - C(15) - C(20) 122.1(4) C(16) - C(1S) - C(20) 117.4(4) 

C(l5) - C(16) - C(l7) 122.4(5) C(16) - C(17) - C(18) 119.1(5) 

C(17) - C(18) - C(19) 119.8(S) C(18) - C(19) - C(20) 120.7(6) 

C(15) - C(20) - C(19) 120.S(6) P(1) - C(21) - C(22) 116.7(3) 

P(1) - C(23) - C(24) 113.3(3) P(2) - C(2S) - C(26) 119.2(3) 

P(2) - C(2S) - C(30) 121.S(4) C(26) - C(2S) - C(30) 119.2(4) 
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Table D-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

C(25) - C(26) - C(27) 

C(27) - C(28) - C(29) 

C(25) - C(30) - C(29) 

P(2) - C(33) - C(34) 

119.8(5) 

119.3(4) 

119.8(5) 

112.8(3) 

C(26) - C(27) - C(28) 

C(28) - C(29) - C(30) 

P(2) - C(31) - C(32) 

120.8(5) 

121.0(5) 

115.5(4) 
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Table D-5. Anisotropic Displacement Coefficients (A2 x 1(4)a 

Un U22 U33 UI2 UB U23 

W(l) 279(1) 243(1) 198(1) 64(1) 35(1) 44(1) 

C1(1) 422(6) 336(6) 306(5) 168(5) 36(4) 52(4) 

C1(2) 763(10) 860(11) 382(7) 177(9) -45(7) -74(7) 

P(1) 331(6) 257(5) 234(5) 38(4) 33(4) 44(4) 

P(2) 286(5) 304(6) 242(5) 61(4) 35(4) 50(4) 

0(1) 342(16) 280(15) 237(14) 39(12) 52(12) 34(11) 

0(2) 634(22) 354(17) 262(16) 22(16) 99(15) -9(13) 

N(1) 252(17) 258(17) 270(17) 28(14) 41(14) 59(14) 

C(1) 445(26) 300(23) 354(24) 125(20) 110(20) 106(18) 

C(2) 634(32) 361(25) 341(24) 177(23) 176(23) 19(19) 

C(3) 431(25) 318(23) 217(20) -16(19) 85(18) 8(17) 

C(4) 580(32) 515(31) 3317(25) 103(25) 39(23) 98(22) 

C(5) 706(41) 839(46) 496(34) 262(36) 116(30) 112(31) 

C(6) 1021(63) 1284(77) 663(48) 208(56) 120(44) -181(48) 

C(7) 292(21) 276(21) 225(19) -17(17) 22(16) 54(16) 

C(8) 337(23) 331(23) 325(23) 19(18) 15(19) 106(18) 

C(9) 388(25) 383(25) 392(26) 11(20) -35(21) 175(20) 

C(10) 551(31) 428(28) 257(22) -70(24) -78(22) 94(20) 

C(11) 571(30) 304(24) 279(23) -74(21) 87(21) 17(18) 

C(12) 394(24) 290(22) 257(21) -43(18) 77(18) 48(17) 

C(13) 392(26) 595(32) 446(27) 220(24) 110(22) 206(24) 

C(14) 509(28) 399(26) 287(22) 90(22) 89(21) -22(19) 

C(15) 336(22) 308(22) 250(20) 25(18) 49(17) 53(16) 

C(16) 524(29) 349(24) 338(24) 153(21) 112(21) 115(19) 

C(17) 566(30) 351(25) 303(23) 118(22) 101(21) 102(19) 

C(18) 402(25) 602(31) 283(23) 114(23) 80(20) 139(21) 

C(19) 826(43) 1099(53) 319(27) 634(42) 190(28) 125(29) 

C(20) 756(39) 812(41) 309(25) 533(34) 130(25) 139(25) 

C(21) 315(22) 399(25) 294(22) 29(19) 19( 18) 106(18) 

C(22) 359(26) 527(31) 419(27) -9(22) 49(21) 111(22) 

C(23) 490(27) 297(23) 303(23) 31(20) 63(20) 6(18) 
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Table D-5 (cont'd). Anisotropic Displacement Coefficients (A2 x 1(4)a 

Ull U22 U33 U12 U13 

C(24) 516(29) 450(28) 333(25) 106(23) 31(22) 

e(25) 256(21) 410(25) 265(21) 20(18) 26(17) 

C(26) 392(26) 506(30) 418(27) 175(23) -25(21) 

C(27) 426(29) 618(35) 496(31) 167(25) -15(24) 

e(28) 355(26) 657(35) 313(24) 46(24) -53(20) 

C(29) 392(26) 550(31) 298(23) 26(23) 69(20) 

C(30) 302(22) 404(25) 313(22) 34(19) 41(18) 

C(31) 415(26) 493(29) 337(24) 108(22) 137(21) 

C(32) 453(30) 721(40) 640(36) 35(28) 282(28) 

C(33) 365(24) 322(23) 347(23) 47(19) 31 (19) 

C(34) 451(27) 392(26) 397(26) 34(22) -20(22) 

aThe anisotropic displacement exponent takes the fonn: -21t2(h2a*2U 11 + ... + 
2hka*b*U 12). 

U23 

-64(21) 

77(18) 

65(22) 

223(26) 

110(23) 

15(21) 

49(19) 

31 (20) 

59(30) 

110(18) 

168(21) 
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Table D-6. H-Atom Coordinates (xlQ4) and Isotropic Displacement Coefficients 
(A2 x l(4) 

x ~ z u 
H(IA) 2056 1082 2601 800 
H(2A) 1419 587 811 800 
H(4A) 41 3237 -601 800 
H(4B) -1407 2535 -720 800 
H(5A) 7 2164 -2135 800 

H(5B) -862 3028 -2273 800 
H(6A) -1841 923 -2266 800 
H(6B) -2737 1755 -2232 800 
H(9A) 4388 1780 6654 800 
H(10A) 3504 2638 7779 800 
H(l1A) 1681 3459 7196 800 
H(13A) 4380 1185 5041 800 
H(13B) 2919 910 4278 800 
H(13C) 3972 1937 4230 800 
H(14A) 84 3965 5936 800 
H(14B) 555 4203 4971 800 
H(14C) -494 3154 4965 800 
H(16A) 1500 5415 1233 800 
H(17A) 1367 5768 -410 800 
H(18A) 2540 4915 -1345 800 
H(19A) 3763 3692 -650 800 
H(20A) 3831 3297 986 800 
H(21A) 4458 3101 1685 800 
H(21B) 4528 3606 3742 800 
H(22A) 6521 4317 3315 800 
H(22B) 5647 4697 2363 800 
H(22C) 5718 5209 3433 800 
H(23A) 2096 5641 2922 800 
H(23B) 3672 5873 3067 800 
H(24A) 3220 6131 4630 800 
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Table D-6 (cont'd). H-Atom Coordinates (x104) and Isotropic Displacement 
Coefficients (A2 x 1(4) 

x ~ z U 

H(24B) 2390 4960 4470 800 

H(24C) 3982 5194 4617 800 

H(26A) -3184 2739 1441 800 

H(27A) -4598 2661 -188 800 

H(28A) -4878 1222 -1383 800 

H(29A) -3716 -118 -963 800 

H(30A) -2266 -55 673 800 

H(31A) -2656 2460 3210 800 

H(31B) -1966 1792 3988 800 

H(32A) -4340 1250 3623 800 

H(32B) -4424 996 2488 800 

H(32C) -3725 320 3277 800 

H(33A) -861 -181 2221 800 

H(33B) -2263 -371 2477 800 

H(34A) -588 -781 3795 800 

H(34B) 285 370 3908 800 

H(34C) -1130 179 4167 800 
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E. X-ray Diffraction Study of W(=CHC6H4-p-Me)CI2(NPh)(PMePh2h 

(See Chapter 3, Figure 3 for the ORTEP plot.) 

Table E-l. Experimental Data for the X-ray Diffraction Study of W(=CHC6H4-P­
Me )Ch(NPh)(PMePh2h 

Formula: C4oH39NP2ChW 

Temperature (K): 168 

Space Group: PI 

~ = 9.6139(12) A 

12 = 11.0269(14) A 

£ = 17.559(2) A 

Dcalcd, Mg/m3 = 1.556 
Radiation: MoKa (~= 0.710730 A) 

Data Collected: +h, ±k, ±f 
Scan Range: 1.20° plus Ka-separation 

29 Range: 4.0 to 50.0° 

Absorption Correction: 

Semi-empirical ('V-scan method) 

No. of Variables: 415 

Goodness of Fit: 1.08 

Fw: 850.4 

Crystal System: Triclinic 

Z=2 

a = 92.665(11)° 

~ = 102.399(10)° 

Y= 90.705(10)° 

V = 1815.6(4) A3 

Diffractometer: Siemens P3 (R3m/V System) 

Monochromator: Highly oriented graphite 

Scan Type: 9-29 

Scan Speed: 3.0 deg min-1 (in 0) 

Jl(MoKa), mm-1 = 3.51 

Reflections Collected: 8664 

Reflections with IFol > 3.0cr(IFol): 7811 

RF = 3.0%, RwF = 4.1 % 



197 

Table E-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x 1(4)a 

x y z U(eq) 

W(1) 3976(1) 1766(1) 2691(1) 177(1) 

Cl(1) 6013(1) 1796( 1) 3898(1) 301(3) 

CI(2) 5096(1) -111(1) 2284(1) 284(3) 

P(1) 5839(1) 2750(1) 2069(1) 220(2) 
P(2) 2778(1) 218(1) 3380(1) 198(2) 

N(1) 3275(3) 3048(3) 3087(2) 209(8) 

C(l) 2603(4) 1583(3) 1677(2) 252(10) 

C(2) 1392(4) 2237(3) 1240(2) 267(11) 

C(3) 661(5) 1762(5) 516(3) 467(15) 

C(4) -476(5) 2351(6) 65(3) 522(17) 

C(5) -914(4) 3463(5) 321(3) 409(14) 

C(6) -194(4) 3942(4) 1048(3) 382(13) 

C(7) 929(4) 3351(3) 1503(2) 314(11) 

C(8) -2113(5) 4137(6) -168(3) 562(19) 

C(9) 2882(4) 3997(3) 3538(2) 222(9) 

C(10) 3916(4) 4843(3) 3926(2) 297(11) 

C(11) 3533(5) 5749(4) 4418(2) 377(13) 

C(12) 2146(5) 5807(4) 4523(2) 410(14) 

C(13) 1133(5) 4987(4) 4128(3) 401(14) 

C(14) 1471(4) 4070(3) 3634(2) 307(11) 

C(15) 5467(4) 2547(4) 1005(2) 304(12) 

C(16) 4539(5) 3294(5) 534(3) 466(16) 

C(17) 4174(5) 3068(6) -274.(3) 540(18) 

C(18) 4712(7) 2100(5) -614(3) 543(19) 

C(19) 5638(8) 1378(5) -154(3) 700(26) 

C(20) 6028(7) 1576(4) 648(3) 556(20) 

C(21) 6016(4) 4379(3) 2279(2) 228(10) 

C(22) 7337(4) 4937(3) 2604(2) 311(12) 

C(23) 7440(5) 6163(4) 2794(3) 383(13) 

C(24) 6252(5) 6874(4) 2650(3) 398(14) 

C(25) 4921(5) 6340(4) 2328(3) 366(13) 



198 

Table E-2 (cont'd). Atomic Coordinates (x 1(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

C(26) 4814(4) 5092(3) 2154(2) 291(11) 

C(27) 7622(4) 2171(3) 2389(3) 346(13) 

C(28) 1474(4) -794(3) 2751(2) 241(10) 

C(29) 365(4) -311(4) 2201(2) 316(12) 

C(30) -626(4) -1063(4) 1711(3) 387(13) 

C(31) -497(5) -2310(5) 1736(3) 475(16) 

C(32) 605(6) -2802(4) 2264(3) 496(17) 

C(33) 1577(4) -2053(3) 2777(3) 335(12) 

C(34) 1868(4) 940(3) 4086(2) 240(10) 

C(35) 2738(4) 1653(4) 4693(2) 315(12) 

C(36) 2148(5) 2223(4) 5269(2) 402(14) 

C(37) 693(5) 2083(4) 5242(2) 402(14) 

C(38) -159(5) 1403(4) 4632(3) 417(15) 

C(39) 425(4) 829(4) 4060(2) 320(12) 

C(40) 4019(4) -777(3) 3972(2) 283(11) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized Uij tensor. 
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Table E-3. Interatomic Distances (A) with Esd's 

W(l) - Cl(l) 2.556(1) 

W(1) - P(1) 2.546(1) 

W(1) - N(1) 1.752(3) 

P(1) - C(15) 1.829(4) 

P(1) - C(27) 1.818(4) 

P(2) - C(34) 1.825(4) 

N(l) - C(9) 1.387(5) 

C(2) - C(3) 1.389(5) 

C(3) - C(4) 1.392(7) 

C(5) - C(6) 1.391(6) 

C(6) - C(7) 1.387(5) 

C(9) - C(14) 1.405(5) 

C(11) - C(12) 1.386(7) 

C(13) - C(14) 1.389(6) 

C( 15) - C(20) 1.387(7) 

C(17) - C(18) 1.360(8) 

C( 19) - C(20) 1.384(7) 

C(21) - C(26) 1.390(5) 

C(23) - C(24) 1.378(7) 

C(25) - C(26) 1.394(5) 

C(28) - C(33) 1.395(5) 

C(30) - C(31) 1.384(7) 

C(32) - C(33) 1.385(6) 

C(34) - C(39) 1.382(5) 

C(36) - C(37) 1.395(7) 

C(38) - C(39) 1.383(6) 

W(l) - Cl(2) 2.490(1) 

W(1) - P(2) 2.538(1) 

W(1) - C(1) 1.975(3) 

P(l) - C(21) 1.814(3) 

P(2) - C(28) 1.815(3) 

P(2) - C(40) 1.821(4) 

C(1) - C(2) 1.467(5) 

C(2) - C(7) 1.404(6) 

C(4) - C(5) 1.388(8) 

C(5) - C(8) 1.508(7) 

C(9) - C(10) 1.397(5) 

C(10) - C(11) 1.395(6) 

C(12) - C(13) 1.370(6) 

C(15) - C(16) 1.387(6) 

C(16) - C(17) 1.396(6) 

C(l8) - C(19) 1.359(8) 

C(21) - C(22) 1.398(5) 

C(22) - C(23) 1.375(6) 

C(24) - C(25) 1.394(6) 

C(28) - C(29) 1.404(5) 

C(29) - C(30) 1.379(5) 

C(31) - C(32) 1.385(7) 

C(34) - C(35) 1.406(5) 

C(35) - C(36) 1.392(6) 

C(37) - C(38) 1.384(6) 
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Table E-4. Interatomic Angles (Deg.) with Esd's 

Cl(1) - W(l) - Cl(2) 84.7(1) Cl(l) - W(1) - P(I) 83.4(1) 

C1(2) - W(l) - P(l) 81.4(1) Cl(1) - W(1) - P(2) 8S.8(1) 

Cl(2) - W(1) - P(2) 80.7(1) P(1) - W(1) - P(2) IS9.8(1) 

Cl(l) - W(1) - N(1) 89.S(1) Cl(2) - W(I) - N(1) 173.S(1O 

P(1) - W(1) - N(1) 100.9(1) P(2) - W(1) - N(1) 96.1(1) 

Cl(l) - W(l) - C(1) 170.8(1) Cl(2) - W(1) - C(l) 86.9(1) 

P(1) - W(I) - C(l) 91.8(1) P(2) - W(I) - C(1) 96.3(1) 

N(1) - W(l) - C(1) 99.1(1) 

W(1) - P(I) - C(1S) 113.9(1) W(1) - P(l) - C(21) 112.7(1) 

C(1S) - P(1) - C(21) 10S.S(2) W(1) - P(l) - C(27) 114.0(2) 

C(1S) - P(1) - C(27) 104.S(2) C(21) - P(1) - C(27) lOS.4(2) 

W(1) - P(2) - C(28) 11S.7(1) W(1) - P(2) - C(34) 111.9(1) 

C(28) - P(2) - C(34) 106.3(2) W(1) - P(2) - C(40) 113.7(1) 

C(28) - P(2) - C(40) lOS.1(2) C(34) - P(2) - C(40) 103.0(2) 

W(1) - N(l) - C(9) 168.8(2) W(l) - C(1) - C(2) 138.1(3) 

C(1) - C(2) - C(3) 119.6(4) C(I) - C(2) - C(7) 123.7(3) 

C(3) - C(2) - C(7) 116.7(4) C(2) - C(3) - C(4) 122.4(S) 

C(3) - C(4) - C(S) 120.6(4) C(4) - C(5) - C(6) 117.4(4) 

C(4) - C(S) - C(8) 121.7(4) C(6) - C(S) - C(8) 121.0(4) 

C(5) - C(6) - C(7) 122.1(4) C(2) - C(7) - C(6) 120.7(3) 

N(1) - C(9) - C(lO) 119.4(3) N(1) - C(9) -.C(14) 120.2(3) 

C(10) - C(9) - C(14) 120.3(3) C(9) - C(10) - C(11) 119.1(4) 

C(10) - C(11) - C(12) 120.S(4) C(11) - C(12) - C(13) 120.0(4) 

C(12) - C(13) - C(14) 121.3(4) C(9) - C(l4) - C(13) 118.8(3) 

P(1) - C(1S) - C(16) 121.4(3) P(1) - C(1S) - C(20) 120.4(3) 

C(16) - C(1S) - C(20) 118.1(4) C(1S) - C(16) - C(17) 120.8(5) 

C(16) - C(17) - C(18) 120.S(S) C(17) - C(18) - C(19) 118.7(5) 

C(18) - C(l9) - C(20) 122.4(6) C(15) - C(20) - C(19) 119.5(5) 

P(l) - C(21) - C(22) 121.4(3) P(1) - C(21) - C(26) 120.0(3) 

C(22) - C(21) - C(26) 118.4(3) C(21) - C(22) - C(23) 120.6(4) 



201 

Table E-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

C(22) - C(23) - C(24) 120.9(4) C(23) - C(24) - C(25) 119.7(4) 

C(24) - C(25) - C(26) 119.3(4) C(21) - C(26) - C(25) 121.0(4) 

P(2) - C(28) - C(29) 119.8(3) P(2) - C(28) - C(33) 121.5(3) 

C(29) - C(28) - C(33) 118.7(3) C(28) - C(29) - C(30) 120.7(4) 

C(29) - C(30) - C(31) 119.8(4) C(30) - C(31) - C(32) 120.2(4) 

C(31) - C(32) - C(33) 120.3(4) C(28) - C(33) - C(32) 120.2(4) 

P(2) - C(34) - C(35) 115.6(3) P(2) - C(34) - C(39) 124.8(3) 

C(35) - C(34) - C(39) 119.5(4) C(34) - C(35) - C(36) 119.9(4) 

C(35) - C(36) - C(37) 119.8(4) C(36) - C(37) - C(38) 119.7(4) 

C(37) - C(38) - C(39) 120.6(4) C(34) - C(39) - C(38) 120.3(3) 
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Table E-5. Anisotropic Displacement Coefficients (A2 x 1(4)a 

U11 U22 U33 U12 U13 U23 

W(1) 191(1) 178(1) 149(1) 24(1) 15(1) -19(1) 

Cl(1) 238(4) 390(5) 233(4) 53(3) -35(3) -19(3) 

Cl(2) 382(5) 211(4) 277(4) 89(3) 114(3) -14(3) 

P(1) 210(4) 220(4) 235(4) 32(3) 61(3) -18(3) 

P(2) 219(4) 210(4) 159(4) 32(3) 24(3) 10(3) 

N(1) 198(12) 231(14) 190(13) 27(11) 26(10) 14(11) 

C(1) 261(16) 290(18) 194(16) -23(14) 27(13) 10(13) 

C(2) 229(16) 348(19) 218(17) -17(14) 31(13) 45(14) 

C(3) 374(22) 687(32) 259(21) 118(21) -90(17) -108(20) 

C(4) 338(22) 913(40) 257(22) 111(24) -58(17) -13(23) 

C(5) 227(17) 631(29) 348(22) -10(18) -33(16) 241(21) 

C(6) 316(19) 317(20) 465(25) 2(16) -44(18) 134(18) 

C(7) 308(18) 281(18) 306(20) -1 (15) -43(15) 54(15) 

C(8) 294(21) 805(38) 564(31) 10(22) -37(20) 394(29) 

C(9) 271(16) 204(15) 171(15) 47(13) 9(13) -13(12) 

COO) 375(19) 233(17) 249(18) 29(15) -1(15) -20(14) 

C(ll) 524(25) 274(19) 265(20) 72(17) -53(18) -52(15) 

C(12) 603(27) 369(22) 232(19) 259(20) 33(18) -39(16) 

C(13) 415(22) 423(24) 394(23) 216(19) 143(19) 11 (18) 

C(14) 316(18) 305(19) 299(9) 89(15) 65(15) -32(15) 

C(15) 370(19) 330(19) 247(18) -117(16) 167(16) -71(15) 

C(16) 384(22) 693(32) 275(21) 108(22) -5(17) -115(21) 

C(17) 445(25) 876(41) 252(22) -6(26) -7(19) -73(23) 

C(8) 907(40) 491(28) 252(22) -286(28) 214(24) -88(20) 

C(9) 1425(63) 345(26) 443(30) 44(32) 474(36) -99(22) 

C(20) 1106(46) 318(22) 347(24) 156(26) 373(28) 47(18) 

C(21) 288(17) 211(16) 188(16) 12(13) 60(3) -14(12) 

C(22) 326(19) 251(18) 333(20) 6(15) 32(15) -35(15) 

C(23) 487(24) 316(21) 319(22) -87(18) 51 (18) -72(16) 

C(24) 684(30) 244(19) 288(21) 21(19) 151(20) 8(15) 
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Table E-S (cont'd). Anisotropic Displacement Coefficients (A2 x l(4)a 

Ull U22 U33 U12 Ul3 U23 

C(25) 513(24) 271(19) 339(21) 122(17) 127(18) 74(16) 

C(26) 334(18) 288(18) 261(18) 72(15) 73(15) 51(14) 

C(27) 223(17) 261(18) 554(26) 47(14) 84(17) 22(17) 

C(28) 248(16) 254(17) 217(17) -40(13) 51(13) -10(13) 

C(29) 308(18) 361(20) 257(19) -19(15) 10(15) 31(15) 

C(30) 310(19) 486(25) 322(21) -55(18) -25(16) 20(18) 

C(31) 400(23) 460(26) 503(28) -189(20) -16(20) -47(21) 

C(32) 515(27) 297(22) 630(33) -111(20) 44(24) -31(21) 

C(33) 338(19) 267(19) 385(22) -10(15) 48(17) 3(16) 

C(34) 265(16) 270(17) 184(16) 75(13) 36(13) 42(13) 

C(35) 307(18) 421(22) 205(17) 100(16) 34(14) -46(15) 

C(36) 428(23) 517(26) 236(19) 173(20) 16(17) -49(18) 

C(37) 431(22) 522(26) 275(20) 223(20) 116(17) 5(18) 

C(38) 339(21) 549(27) 389(24) 194(19) 114(18) 67(20) 

C(39) 313(18) 421(22) 236(18) 95(16) 68(15) 47(16) 

C(40) 313(18) 274(18) 243(18) 93(14) 7(14) 44(14) 

aThe anisotropic displacement exponent takes the fonn: -2rc2(h2a*2U 11 + ... + 
2hka*b*U 12)' 
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Table E-6. H-Atom Coordinates (x 1()4) and Isotropic Displacement Coefficients 
(A2 x 1()4) 

x ~ z U 

H(IA) 2784 866 1386 800 
H(3A) 951 998 324 800 
H(4A) -968 1986 -428 800 
H(6A) -488 4706 1239 800 
H(7A) 1394 3704 2005 800 
H(8A) -2290 3812 -698 800 
H(8B) -1859 4984 -150 800 
H(8C) -2960 4058 34 800 
H(10A) 4880 4793 3860 800 
H(11A) 4233 6343 4679 800 
H(12A) 1900 6422 4873 800 
H(13A) 170 5044 4194 800 
H(14A) 761 3491 3362 800 
H(16A) 4146 3972 771 800 
H(17A) 3547 3607 -591 800 
H(18A) 4436 1933 -1168 800 
H(19A) 6024 700 -396 800 
H(20A) 6688 1053 958 800 
H(22A) 8179 4458 2701 800 
H(23A) 8351 6533 3025 800 
H(24A) 6336 7733 2773 800 
H(25A) 4090 6831 2224 800 
H(26A) 3894 4721 1944 800 
H(27A) 7912 2427 2930 800 
H(27B) 8257 2503 2094 800 
H(27C) 7614 1302 2324 800 
H(29A) 295 554 2169 800 
H(30A) -1398 -723 1349 800 
H(31A) -1169 -2835 1383 800 
H(32A) 686 -3667 2286 800 
H(33A) 2334 -2400 3144 800 
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Table E-6 (cont'd). H-Atom Coordinates (x 1()4) and Isotropic Displacement 
Coefficients (A2 x 1()4) 

x y z u 
H(35A) 3737 1755 4707 800 

H(36A) 2736 2705 5688 800 

H(37A) 288 2457 5647 800 

H(38A) -1164 1332 4608 800 
H(39A) -173 352 3642 800 

H(40A) 3538 -1212 4305 800 

H(40B) 4787 -306 4295 800 

H(40C) 4387 -1340 3635 800 
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F. X-ray Diffraction Study of 
W(=CHC6H4-o-0Me)(N-2,6-C6H3-Me2)[OCMe(CF3hh(THF) 

(See Chapter 3, Figure 4 for the ORTEP plot.) 

Table F-l. Experimental Data for the X-ray Diffraction Study of W(=CHC6H4-0-
OMe)(N-2,6-C~3-Me2)[OCMe(CF3hh(THF) 

Formula: C28H3IN04F12W 

Temperature (K): 173 

Space Group: P2I/c 

i! = 12.606(3) A 

12= 12.981(3)A 

£ = 18.998(5) A 

Radiation: MoKa (x = 0.710730 A) 

Data Collected: +h, +k, ±l 

Scan Range: 1.20° plus Ka-separation 

28 Range: 4.0 to 50.0° 

Reflections Collected: 6054 

No. of Variables: 415 

Goodness of Fit: 1.39 

Fw: 857.4 

Crystal System: Monoclinic 

Z=4 

V = 3108.0(13) A3 

~ = 91.85(2)° 

Dcalcd, Mg/m3 = 1.830 

Diffractometer: Nicolet P3 

Monochromator: Highly oriented graphite 

Scan Type: 8-28 

Scan Speed: 3.0 deg min- I (in co) 

Il(MoKa), mm- I = 3.90 

Reflections with IFol > 0: 5269 

RF = 3.8%, RwF = 4.4% 
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Table F-2. Atomic Coordinates (x 1(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x l(4)a 

x ~ z U(eg) 

W(l) 2489.6(.1) 1575.3(.1) 1961.6(.1) 182.9(.7) 

C(l) 4022(4) 1477(3) 1899(3) 224(15) 

C(3) 5674(4) 2045(4) 1274(3) 318(17) 

C(4) 6117(4) 2482(4) 688(3) 344(18) 

C(5) 5469(5) 2781(5) 119(3) 371(19) 

C(6) 4376(4) 2641(4) 132(3) 307(17) 

C(7) 3955(4) 2229(4) 728(3) 240(15) 

C(8) 2208(5) 1998(5) 180(3) 340(18) 

C(9) 2165(4) 829(4) 3503(3) 226(15) 

C(10) 2987(4) 411(4) 3936(3) 268(16) 

C(ll) 2758(4) 105(4) 4616(3) 276(16) 

C(12) 1750(5) 210(4) 4869(3) 329(17) 

C(13) 948(5) 654(4) 4445(3) 307(17) 

C(14) 1136(4) 961(4) 3759(3) 260(16) 

C(15) 4096(4) 315(5) 3678(3) 347(18) 

C(16) 273(4) 1447(4) 3303(3) 352(19) 

C(17) 2953(4) 3866(4) 2458(3) 241(15) 

C(18) 2354(5) 4082(5) 3126(3) 431(22) 

C(19) 2897(5) 4820(4) 1972(3) 314(17) 

C(20) 4119(5) 3643(5) 2663(4) 404(20) 

C(21) 2337(4) -626(4) 1242(3) 296(17) 

C(22) 1532(5) -1039(5) 687(3) 405(21) 

C(23) 2309(6) -1325(4) 1897(4) 467(24) 

C(24) 3433(5) -648(5) 942(4) 555(26) 

C(25) -23(4) 1262(4) 1390(3) 300(17) 

C(26) -1041(4) 1884(4) 1445(3) 352(18) 

C(27) -723(5) 2919(4) 1153(3) 361(19) 

C(28) 388(4) 3067(4) 1469(3) 321(17) 

F(1) 2377(4) 3265(3) 3551(2) 641(17) 

F(2) 2774(3) 4867(3) 3512(2) 531(13) 

F(3) 1335(3) 4313(3) 3012(2) 617(15) 
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Table F-2 (cont'd). Atomic Coordinates (x 1(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x 1(4)a 

x ~ z U(eg) 

F(4) 1938(3) 5103(2) 1790(2) 475(12) 

F(5) 3409(3) 5637(3) 2255(2) 505(13) 

F(6) 3390(3) 4590(3) 1371(2) 508(13) 

F(7) 552(3) -1120(3) 910(2) 555(14) 

F(8) 1473(4) -406(3) 133(2) 632(16) 

F(9) 1799(3) -1969(3) 432(2) 554(14) 

F(10) 3086(4) -1080(3) 2356(2) 742(18) 

F(ll) 2416(4) -2309(3) 1748(3) 858(21) 

F(12) 1404(5) -1231(4) 2238(3) 780(19) 

N(l) 2360(3) 1134(3) 2818(2) 237(13) 

0(1) 2872(3) 2084(3) 812(2) 267(11) 

0(2) 2402(3) 3096(3) 2102(2) 231(10) 

0(3) 1972(3) 345(3) 1422(2) 265(11) 

0(4) 823(3) 2018(3) 1546(2) 235(10) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized 
Uij tensor. 
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Table F-3. Interatomic Distances (A) with Esd's 

W(l) - C(1) 1.943(5) 

W(1) - 0(1) 2.346(3) 

W(1) - 0(3) 1.995(3) 

C(1) - C(2) 1.436(7) 

C(2) - C(7) 1.405(7) 

C(4) - C(5) 1.389(8) 

C(6) - C(7) 1.374(7) 

C(8) - 0(1) 1.446(6) 

C(9) - C(lO) 1.411(7) 

C(9) - N(1) 1.391(6) 

C(10) - C(15) 1.502(8) 

C(12) - C(13) 1.396(8) 

C(14) - C(16) 1.507(8) 

C(17) - C(18) 1.523(8) 

C( 17) - C(20) 1.535(8) 

C(18) - F(1) 1.333(8) 

C(18) - F(3) 1.330(8) 

C(19) - F(5) 1.345(6) 

C(2l) - C(22) 1.536(8) 

C(2l) - C(24) 1.512(9) 

C(22) - F(7) 1.323(8) 

C(22) - F(9) 1.347(7) 

C(23) - F(1l) 1.316(7) 

C(25) - C(26) 1.523(8) 

C(26) - C(27) 1.513(8) 

C(28) - 0(4) 1.474(6) 

W(1) - N(1) 1.737(4) 

W(1) - 0(2) 1.995(4) 

W(1) - 0(4) 2.294(3) 

C(2) - C(3) 1.407(7) 

C(3) - C(4) 1.383(8) 

C(5) - C(6) 1.391(8) 

C(7) - 0(1) 1.393(6) 

C(9) - C(14) 1.410(7) 

C(10) - C(11) 1.391(7) 

C(ll) - C(12) 1.380(8) 

C(13) - C(14) 1.390(7) 

C(17) - C(19) 1.545(7) 

C(17) - 0(2) 1.382(6) 

C(18) - F(2) 1.353(8) 

C(19) - F(4) 1.299(7) 

C(19) - F(6) 1.352(7) 

C(21) - C(23) 1.542(9) 

C(2l) - 0(3) 1.389(6) 

C(22) - F(8) 1.336(7) 

C(23) - F(lO) 1.328(9) 

C(23) - F(12) 1.336(10) 

C(25) - 0(4) 1.473(6) 

C(27) - C(28) 1.518(8) 
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Table F-4. Interatomic Angles (Deg.) with Esd's 

C(l) - W(1) - N(1) 99.2(2) C(l) - W(1) - 0(1) 74.2(2) 

N(1) - W(1) - 0(1) 173.0(2) C(l) - W(1) - 0(2) 97.6(2) 

N(1) - W(l) - 0(2) 101.2(2) 0(1) - W(1) - 0(2) 82.0(1) 

C(1) - W(l) - 0(3) 103.0(2) N(1) - W(1) - 0(3) 100.2(2) 

0(1) - W(l) - 0(3) 79.7(1) 0(2) - W(I) - 0(3) 147.3(1) 

C(l) - W(1) - 0(4) 153.7(2) N(l) - W(1) - 0(4) 107.0(2) 

0(1) - W(1) - 0(4) 79.8(1) 0(2) - W(l) - 0(4) 75.2(1) 

0(3) - W(1) - 0(4) 75.1(1) W(1) - N(1) - C(9) 174.6(4) 

W(1) - 0(1) - C(7) 112.1(3) W(l) - 0(1) - C(8) 128.4(3) 

W(1) - 0(2) - C(17) 138.8(3) W(1) - 0(3) - C(21) 138.4(3) 

W(l) - 0(4) - C(25) 123.5(3) W(I) - 0(4) - C(28) 126.9(3) 

W(l) - C(1) - C(2) 121.9(4) 

C(1) - C(2) - C(3) 126.6(5) C(l) - C(2) - C(7) 117.4(5) 

C(3) - C(2) - C(7) 116.0(5) C(2) - C(3) - C(4) 121.6(5) 

C(3) - C(4) - C(5) 120.0(5) C(4) - C(5) - C(6) 120.5(5) 

C(5) - C(6) - C(7) 118.3(5) C(2) - C(7) - C(6) 123.6(5) 

C(2) - C(7) - 0(1) 112.8(4) C(6) - C(7) - 0(1) 123.6(4) 

C(7) - 0(1) - C(8) 117.2(4) 

C(10) - C(9) - C(14) 120.8(4) C(10) - C(9) - N(1) 120.5(5) 

C(14) - C(9) - N(l) 118.7(4) C(9) - C(lO) - C(ll) 118.7(5) 

C(9) - C(10) - C(15) 121.0(5) C(ll) - C(10) - C(15) 120.3(5) 

C(10) - C(11) - C(12) 121.1(5) C(1l) - C(12) - C(13) 119.8(5) 

C(12) - C(13) - C(14) 121.1(5) C(9) - C(14) - C(13) 118.4(5) 

C(9) - C(14) - C(16) 120.5(5) C(13) - C(14) - C(16) 121.1(5) 

C(18) - C(17) - C(19) 109.7(5) C(18) - C(17) - C(20) 108.7(5) 

C(19) - C(17) - C(20) 109.1(4) C(18) - C(17) - 0(2) 106.6(4) 

C(19) - C(17) - 0(2) 105.9(4) C(20) - C(17) - 0(2) 116.7(4) 

C(17) - C(18) - F(1) 110.9(5) C( 17) - C(18) - F(2) 113.2(5) 

F(1) - C(18) - F(2) 105.7(5) C(17) - C(18) - F(3) 114.2(5) 

F(1) - C(18) - F(3) 106.2(5) F(2) - C(18) - F(3) 106.1(5) 

C(17) - C(19) - F(4) 114.2(5) C(17) - C(19) - F(5) 112.3(4) 
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Table F-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

F(4) - C(19) - F(5) 108.3(4) C(17) - C(19) - F(6) 108.4(4) 

F(4) - C(19) - F(6) 106.7(5) F(5) - C(19) - F(6) 106.5(5) 

C(22) - C(21) - C(23) 108.5(5) C(22) - C(21) - C(24) 109.0(5) 

C(23) - C(21) - C(24) 109.7(5) C(22) - C(21) - 0(3) 105.6(4) 

C(23) - C(21) - 0(3) 108.6(5) C(24) - C(21) - 0(3) 115.1(5) 

C(21) - C(22) - F(7) 114.3(5) C(21) - C(22) - F(8) 110.2(5) 

F(7) - C(22) - F(8) 105.8(5) C(21) - C(22) - F(9) 113.1(5) 

F(7) - C(22) - F(9) 106.9(5) F(8) - C(22) - F(9) 106.0(5) 

C(21) - C(23) - F(lO) 110.7(5) C(21) - C(23) - F(11) 113.1(6) 

F(10) - C(23) - F(11) 107.2(6) C(21) - C(23) - F(12) 112.3(5) 

F(10) - C(23) - F(12) 106.5(6) F(11) - C(23) - F(12) 106.8(6) 

C(26) - C(25) - 0(4) 103.9(4~ C(25) - C(26) - C(27) 102.2(4) 

C(26) - C(27) - C(28) 102.7(5) C(27) - C(28) - 0(4) 104.9(4) 

C(25) - 0(4) - C(28) 109.3(4) 
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Table F-5. Anisotropic Displacement Coefficients (A2 x 1(4)a 

Un U22 U33 U23 Ul3 Ul2 

W(l) 190(1) 183(1) 174(1) -6(1) -33(1) 7(1) 

C(1) 259(27) 235(26) 179(24) -70(20) 13(20) -9(20) 

C(2) 248(27) 212(24) 275(27) 24(21) -9(21) 53(21) 

C(3) 240(28) 349(30) 367(31) 41(26) 31(24) 45(23) 

C(4) 247(29) 396(32) 391(33) 0(26) 73(25) 38(24) 

C(5) 353(33) 349(32) 419(34) 17(27) 101(27) 65(26) 

C(6) 357(32) 297(28) 267(28) -23(23) 11(24) 55(24) 

C(7) 246(27) 246(25) 227(26) -15(21) -4(21) 6(21) 

C(8) 391(33) 426(33) 196(26) 12(24) -109(24) -8(26) 

C(9) 309(28) 194(24) 172(24) 9(20) -20(21) -28(21) 

C(10) 289(28) 289(27) 223(26) -33(22) -47(21) -11(23) 

C(ll) 399(31) 236(26) 191(25) 41(21) -20(22) -16(22) 

C(12) 426(33) 335(30) 225(27) 21(24) -6(24) -8(26) 

C(13) 348(31) 272(28) 304(29) -6(22) 62(24) -64(23) 

C(14) 218(27) 285(27) 274(27) -40(22) -39(21) -39(22) 

C(15) 287(29) 441(33) 308(29) 29(27) -57(23) 43(26) 

C(16) 223(29) 456(35) 375(33) 69(26) 9(24) 21(24) 

C(17) 262(28) 243(26) 215(26) -31(21) -33(21) 1(21) 

C(18) 500(41) 434(36) 361(35) -132(29) 28(30) -124(30) 

C(19) 379(31) 193(26) 363(32) 18(24) -71(25) -93(24) 

C(20) 292(32) 392(33) 517(39) -110(29) -155(28) 0(26) 

C(21) 324(30) 192(25) 366(31) -85(23) -79(24) 8(22) 

C(22) 494(40) 331(32) 383(35) -120(28) -93(29) 21(28) 

C(23) 741(51) 81(25) 562(44) 35(25) -254(39) 10(27) 

C(24) 377(38) 459(39) 829(55) -301(38) 8(36) 40(30) 

C(25) 186(27) 319(28) 388(32) -49(24) -117(23) -42(22) 

C(26) 245(29) 301(29) 503(37) 4(27) -94(26) 29(23) 

C(27) 316(31) 286(29) 474(36) -1(27) -114(26) 11(24) 

C(28) 326(31) 205(25) 423(34) 7(24) -115(25) 30(23) 

F(l) 1177(40) 485(24) 266(20) -2(17) 77(22) -207(23) 
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TabJe F-S (cont'd). Anisotropic Displacement Coefficients (A2 x l(4)a 

Ull U22 U33 U23 U13 U12 

F(2) 725(27) 434(21) 434(21) -226(18) 8(19) -107(19) 

F(3) 444(24) 715(28) 705(29) -266(22) 209(20) -46(20) 

F(4) 478(22) 299(18) 635(24) 77(17) -179(18) 12(16) 

F(5) 664(26) 282(18) 556(23) -8(16) -194(19) -165(17) 

F(6) 641(25) 506(22) 380(20) 54(17) 79(18) -158(19) 

F(7) 390(22) 493(22) 776(29) -243(21) -95(20) -78(18) 

F(8) 1013(35) 503(23) 364(21) -47(18) -262(21) -127(22) 

F(9) 659(26) 381(20) 614(25) -314(19) -79(20) 30(19) 

F(10) 1133(40) 435(23) 624(28) 43(21) -508(27) 108(24) 

F(11) 1464(50) 154(18) 920(35) -50(20) -517(33) 125(23) 

F(12) 1044(40) 714(30) 589(29) 235(24) 144(27) -194(28) 

N(1) 218(22) 201(21) 288(23) -28(18) -34(18) 21(17) 

0(1) 251(19) 347(20) 199(18) 12(16) -48(15) -1(16) 

0(2) 214(18) 201(17) 273(19) -40(15) -73(15) -2(14) 

0(3) 271(19) 219(18) 301(19) -41(16) -48(15) 38(15) 

0(4) 225(18) 170(16) 302(19) 26(15) -97(15) 0(14) 

aThe anisotropic displacement exponent takes the form: -21t2(h2a*2U 11 + ... + 
2hka*b*U 12). 
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Table F-6. H-Atom Coordinates (xlQ4) and Isotropic Displacement Coefficients (A2 x 
l(4) 

x ~ z U 

H(IA) 4425 1134 2267 800 
H(3A) 6127 1834 1664 800 

H(4A) 6870 2585 676 800 
H(5A) 5778 3082 -288 800 
H(6A) 3926 2829 -264 800 
H(8A) 2582 2277 -209 800 
H(8B) 2049 1286 91 800 
H(8C) 1560 2373 234 800 
H(11A) 3313 -182 4914 800 
H(12A) 1600 -22 5335 800 
H(13A) 255 746 4630 800 
H(15A) 4547 15 4040 800 
H(15B) 4089 -118 3268 800 
H(15C) 4361 984 3558 800 
H(16A) -373 1478 3556 800 
H(16B) 481 2131 3174 800 
H(16C) 163 1039 2886 800 
H(20A) 4161 3060 2973 800 
H(20B) 4496 3496 2243 800 
H(20C) 4430 4233 2894 800 
H(24A) 3438 -215 533 800 
H(24B) 3940 -395 1288 800 
H(24C) 3618 -1339 813 800 
H(25A) 39 975 927 800 
H(25B) 6 714 1729 800 
H(26A) -1252 1939 1924 800 
H(26B) -1609 1580 1167 800 
H(27A) -1192 3452 1303 800 
H(27B) -720 2909 648 800 
H(28A) 366 3399 1920 800 
H(28B) 810 3476 1164 800 
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G. X-ray Diffraction Study of 
W(=CHC6H4-o-0Me)[N-2,6-C6H3-(i.Prh][OCMe(CF3hh 

(See Chapter 3, Figure 5 for the ORTEP plot.) 

Table G-l. Experimental Data for the X-ray Diffraction Study of W(=CHC6H4-0-
OMe)[N-2,6-C6H3-(i-Prh] [OCMe(CF3hh 

Formula: C28H3IN03F12W 

Temperature (K): 183 

Space Group: P2I/c 

il = 14.341(2) A 

11 = 9.736(1) A 

£ = 22.217(3) A 
Radiation: MoKa (~= 0.710730 A) 

Data Collected: +h, +k, ±l 
Scan Range: 1.20° plus Ka-separation 

28 Range: 4.0 to 50.0° 

Reflections Collected: 6092 

No. of Variables: 530 

Goodness of Fit: 1.00 

Fw: 841.4 

Crystal System: Monoclinic 

Z=4 

V = 3100.1(6) A3 

13 = 92.21(1)° 

Dcalcd, Mg/m3 = 1.803 

Diffractometer: S yntex P2I 

Monochromator: Highly oriented graphite 

Scan Type: 8-28 

Scan Speed: 3.0 deg min- l (in (0) 

~(MoKa), mm- I = 3.91 

Reflections with 1Fol > 0: 5195 

RF = 3.4%, RwF = 4.1 % 
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F5 

Figure G-2. ORTEP plot of W(=CHC614-o-0Me)[N-2,6-C6H3-(i-PrhHOCMe(CF3h12 
(second view). Thermal ellipsoids are drawn at the 50% probability level. 
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Table G-2. Atomic Coordinates (x l(4) and Equivalent Isotropic Displacement 
Coefficients (A2 x l(4)a 

x ~ z U(eg) 

W(I) 2318.6(.1) 1182.4(.2) 1293.2(.1) 203(1) 

C(1) 1074(3) 1902(5) 1395(2) 256(14) 

C(2) 884(3) 2955(5) 1841(2) 260(14) 

C(3) -1(4) 3501(6) 1941(2) 341(16) 

C(4) -100(5) 4521(6) 2373(3) 398(18) 

C(5) 652(5) 4996(6) 2710(2) 429(19) 

C(6) 1535(4) 4457(6) 2625(2) 377(17) 

C(7) 1625(4) 3440(5) 2195(2) 327(15) 

C(8) 3236(5) 2941(7) 2502(3) 458(21) 

C(9) 1758(3) -1118(4) 357(2) 235(13) 

C(10) 2315(3) -1346(5) -138(2) 298(15) 

C(11) 2054(4) -2407(5) -538(2) 372(17) 

C(12) 1275(4) -3187(6) -450(3) 397(18) 

C(13) 721(4) -2926(5) 33(2) 355(16) 

C(14) 949(3) -1908(5) 453(2) 292(15) 

C(15) 3195(4) -545(6) -246(3) 351(17) 

C(16) 3220(5) 74(8) -882(3) 528(23) 

C(17) 4051(5) -1434(8) -134(4) 576(26) 

C(18) 310(4) -1639(5) 964(2) 313(15) 

C(19) -544(4) -854(7) 726(3) 392(18) 

C(20) 39(5) -2948(7) 1291(3) 472(21) 

C(21) 3231(4) -1053(5) 2111(3) 342(16) 

C(22) 4227(5) -906(7) 1897(3) 569(23) 

C(23) 3250(5) -1281(7) 2793(3) 572(24) 

C(24) 2756(6) -2261(7) 1792(4) 561(27) 

C(25) 3144(3) 3785(5) 643(2) 311(15) 

C(26) 3230(4) 3617(6) -39(3) 379( 17) 

C(27) 4050(4) 4424(6) 916(3) 425(19) 

C(28) 2305(5) 4675(6) 776(3) 394(20) 

F(1) 4733(3) -10(5) 2210(2) 816(18) 

F(2) 4197(3) -436(7) 1331(2) 937(21) 
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Table G-2 (cont'd). Atomic Coordinates (x l(4) and Equivalent Isotropic 
Displacement Coefficients (A2 x l(4)a 

x ~ z U(eg) 

F(3) 4696(3) -2074(5) 1907(2) 903(20) 

F(4) 3747(4) -2371(5) 2960(2) 905(19) 

F(5) 3581(4) -222(5) 3106(2) 866(19) 

F(6) 2392(4) -1509(7) 2972(2) 1110(25) 

F(7) 3944(3) 2845(3) -187(2) 513(12) 

F(8) 2460(3) 3019(4) -275(2) 551(13) 

F(9) 3315(3) 4826(4) -322(2) 605(13) 

F(lQ) 4787(3) 3673(4) 862(2) 722(16) 

F(l1) 4208(3) 5659(4) 694(2) 809(18) 

F(12) 3967(3) 4613(4) 1514(2) 608(13) 

N(1) 2009(3) -69(4) 763(2) 224(11) 

0(1) 2469(2) 2847(3) 2058(1) 311(11) 

0(2) 2784(3) 204(3) 2010(2) 325(11) 

0(3) 3100(2) 2445(3) 878(1) 269(10) 

aEquivalent isotropic U defined as one third of the trace of the orthogonalized 
Uij tensor. 
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Table G-3. Interatomic Distances (A) with Esd's 

W(1) - 0(1) 2.352(3) 

W(1) - 0(3) 1.923(3) 

W(I) - C(1) 1.939(5) 

C(1) - C(2) 1.459(7) 

C(2) - C(7) 1.381(7) 

C(4) - C(5) 1.370(9) 

C(6) - C(7) 1.386(7) 

C(8) - 0(1) 1.452(7) 

C(9) - C(10) 1.400(7) 

C(9) - N(1) 1.401 (6) 

C(10) - C(15) 1.511(7) 

C(12) - C(13) 1.384(8) 

C(14) - C(18) 1.508(7) 

C(15) - C(17) 1.515(9) 

C(18) - C(20) 1.525(8) 

C(21) - C(22) 1.528(9) 

C(21) - C(24) 1.521(9) 

C(22) - F(1) 1.317(8) 

C(22) - F(3) 1.322(8) 

C(23) - F(5) 1.322(8) 

C(25) - C(26) 1.534(8) 

C(25) - C(28) 1.521(8) 

C(26) - F(7) 1.322(7) 

C(26) - F(9) 1.343(6) 

C(27) - F(11) 1.322(7) 

W(1) - 0(2) 1.952(3) 

W(1) - N(1) 1.741(4) 

C(2) - C(3) 1.401(7) 

C(3) - C(4) 1.392(8) 

C(5) - C(6) 1.391(9) 

C(7) - 0(1) 1.385(6) 

C(9) - C(14) 1.415(7) 

C(10) - C(11) 1.404(7) 

C(11) - C(12) 1.371(8) 

C(13) - C(14) 1.391(7) 

C(15) - C(16) 1.538(9) 

C(18) - C(19) 1.522(8) 

C(21) - C(23) 1.532(9) 

C(21) - 0(2) 1.395(6) 

C(22) - F(2) 1.337(8) 

C(23) - F(4) 1.324(8) 

C(23) - F(6) 1.326(9) 

C(25) - C(27) 1.543(8) 

C(25) - 0(3) 1.408(6) 

C(26) - F(8) 1.337(7) 

C(27) - F(10) 1.295(7) 

C(27) - F(12) 1.351(7) 
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Table G-4. Interatomic Angles (Deg.) with Esd's 

0(1) - W(1) - 0(2) 74.2(1) 0(1) - W(l) - 0(3) 82.4(1) 

0(2) - W(l) - 0(3) 121.1(1) 0(1) - W(1) - N(1) 170.2(1) 

0(2) - W(l) - N(1) 106.4(2) 0(3) - W(1) - N(1) 105.1(2) 

0(1) - W(1) - C(1) 74.1(2) 0(2) - W(l) - C(1) 111.7(2) 

0(3) - W(1) - C(1) 112.4(2) N(1) - W(1) - C(1) 96.9(2) 

W(1) - 0(1) - C(7) 112.9(3) W(1) - 0(1) - C(8) 125.5(3) 

W(l) - 0(2) - C(21) 134.3(3) W(1) - 0(3) - C(25) 143.6(3) 

W(1) - N(l) - C(9) 177.4(3) W(1) - C(1) - C(2) 122.0(3) 

C(1) - C(2) - C(3) 124.7(4) C(1) - C(2) - C(7) 117.8(4) 

C(3) - C(2) - C(7) 117.5(4) C(2) - C(3) - C(4) 119.9(5) 

C(3) - C(4) - C(5) 121.2(6) C(4) - C(5) - C(6) 120.1(5) 

C(5) - C(6) - C(7) 118.2(5) 0(1) - C(7) - C(2) 113.1(4) 

0(1) - C(7) - C(6) 123.6(5) C(2) - C(7) - C(6) 123.2(5) 

C(7) - 0(1) - C(8) 118.1(4) 

N(1) - C(9) - C(10) 118.7(4) N(l) - C(9) - C(14) 119.5(4) 

C(10) - C(9) - C(14) 121.9(4) C(9)- C(10) - C(11) 117.8(5) 

C(9) - C(10) - C(15) 123.3(4) C(11) - C(10) - C(15) 118.9(5) 

C(10) - C(11) - C(12) 121.1(5) C(ll) - C(12) - C(13) 120.2(5) 

C(12) - C(13) - C(14) 121.6(5) C(9) - C(14) - C(13) 117.3(5) 

C(9) - C(14) - C(18) 123.0(4) C(13) - C(14) - C(18) 119.6(5) 

C(10) - C(15) - C(16) 113.5(5) C(10) - C(15) - C(17) 110.8(5) 

C(16) - C(15) - C(17) 109.1(6) C(14) - C(18) - C(19) 109.3(4) 

C(14) - C(18) - C(20) 112.8(5) C(19) - C(18) - C(20) 111.6(5) 

0(2) - C(21) - C(22) 107.3(4) 0(2) - C(21) - C(23) 106.0(4) 

C(22)- C(21) - C(23) 109.9(5) 0(2) - C(21) - C(24) 114.1(5) 

C(22) - C(21) - C(24) 109.6(5) C(23) - C(21) - C(24) 109.8(5) 

C(21) - C(22) - F(l) 113.6(6) C(21) - C(22) - F(2) 109.1(5) 

F(1) - C(22) - F(2) 105.5(6) C(21) - C(22) - F(3) 113.3(6) 

F(l) - C(22) - F(3) 106.9(5) F(2) - C(22) - F(3) 108.0(6) 

C(21) - C(23) - F(4) 112.5(5) C(21) - C(23) - F(5) 113.6(5) 
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Table G-4 (cont'd). Interatomic Angles (Deg.) with Esd's 

F(4) - C(23) - F(5) 107.4(6) C(21) - C(23) - F(6) 109.9(5) 

F(4) - C(23) - F(6) 106.1(6) F(5) - C(23) - F(6) 107.0(6) 

0(3) - C(25) - C(26) 105.8(4) 0(3) - C(25) - C(27) 106.1(4) 

C(26) - C(25) - C(27) 109.4(4) 0(3) - C(25) - C(28) 114.2(4) 

C(26) - C(25) - C(2S) 110.3(5) C(27) - C(25) - C(2S) 110.S(4) 

C(25) - C(26) - F(7) 113.5(4) C(25) - C(26) - F(S) 109.7(4) 

F(7) - C(26) - F(8) 106.9(4) C(25) - C(26) - F(9) 112.4(4) 

F(7) - C(26) - F(9) 107.3(5) F(S) - C(26) - F(9) 106.7(4) 

C(25) - C(27) - F(10) 114.5(5) C(25) - C(27) - F(ll) 112.0(5) 

F(lO) - C(27) - F(11) 109.0(5) C(25) - C(27) - F(12) 109.6(5) 

F(10) - C(27) - F(12) 105.8(5) F(11)- C(27) - F(12) 105.4(5) 



222 

Table G-5. Anisotropic Displacement Coefficients (A2 x l(4)a 

Ull U22 U33 U23 Ul3 U12 

W(l) 218(1) 191(1) 198(1) -8(1) -12(1) 6(1) 

C(1) 174(22) 259(24) 338(26) -13(20) 49(20) -26(19) 

C(2) 307(26) 248(23) 230(23) 17(18) 55(20) -7(20) 

C(3) 369(29) 363(27) 295(27) 67(23) 66(23) 23(24) 

C(4) 503(36) 320(28) 382(30) 33(23) 171(26) 163(26) 

C(5) 714(43) 275(27) 308(28) -71(23) 128(28) 9(27) 

C(6) 549(36) 331(28) 252(26) -61(22) 27(25) -4(26) 

C(7) 412(29) 290(24) 281(26) 19(21) 51 (22) 34(22) 

C(8) 403(35) 428(35) 526(39) -170(30) -195(29) 21(28) 

C(9) 282(24) 202(22) 214(22) -5(17) -71(18) 66(18) 

C(10) 332(26) 302(25) 258(24) -20(20) -13(20) 74(21) 

C(11) 466(34) 321(27) 331(28) -78(22) 33(25) 53(24) 

C(12) 498(34) 303(28) 376(30) -125(24) -153(26) 22(25) 

C(13) 375(29) 291(25) 388(29) -25(22) -118(23) -29(23) 

C(14) 348(27) 216(23) 304(26) 34(19) -90(21) 24(20) 

C(15) 359(29) 345(29) 351(29) -98(24) 48(23) 74(23) 

C(16) 557(41) 665(43) 374(33) -21(31) 195(30) -54(36) 

C(17) 441(39) 524(40) 764(55) 7(40) 21 (36) 102(32) 

C(18) 324(27) 301(26) 307(27) 44(21) -62(22) -21(22) 

C(19) 293(29) 457(33) 422(33) -5(28) -40(25) 30(25) 

C(20) 550(40) 381(32) 491(38) 72(28) 112(33) -62(30) 

C(21) 344(28) 272(26) 401(29) 54(21) -106(22) 49(21) 

C(22) 476(38) 637(42) 591(42) 83(34) -22(32) 150(33) 

C(23) 632(43) 622(43) 453(36) 196(33) -100(32) 95(34) 

C(24) 666(53) 285(32) 713(53) 17(31) -206(42) 46(31) 

C(25) 301(26) 278(26) 355(27) 84(20) 25(21) -7(20) 

C(26) 397(30) 369(28) 378(29) 35(23) 87(24) -5(25) 

C(27) 419(32) 298(27) 564(36) -48(25) 85(27) -80(24) 

C(28) 387(34) 240(28) 561(42) 85(27) 106(29) 49(25) 

F(1) 408(22) 797(29) 1222(38) 13(27) -247(24) -108(21) 
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Table G-5 (cont'd). Anisotropic Displacement Coefficients (A2 x l(4)a 

Ull U22 U33 U23 U13 U12 

F(2) 540(25) 1664(50) 619(28) 319(31) 169(21) 133(30) 

F(3) 559(26) 888(33) 1248(41) -123(29) -143(26) 418(24) 

F(4) 1212(41) 770(30) 709(29) 360(24) -276(27) 265(29) 

F(5) 1329(44) 844(32) 398(22) -48(21) -303(24) 222(30) 

F(6) 875(38) 1778(57) 689(32) 588(35) 182(28) 37(38) 

F(7) 584(22) 502(20) 464(19) 9(16) 166(17) 63(17) 

F(8) 522(22) 708(24) 417(19) 10(17) -70(16) -92(18) 

F(9) 815(27) 472(20) 540(22) 223(17) 159(19) 29(19) 

F(10) 308(19) 807(28) 1047(34) -291(24) -30(20) 51(19) 

F(11) 841(31) 477(22) 1103(36) 192(23) -54(27) -384(22) 

F(12) 606(23) 620(23) 594(23) -160(19) -36(18) -182(19) 

N(1) 206(19) 226(19) 239(19) 15(15) 7(15) 55(15) 

0(1) 298(19) 355(19) 274(18) -78(15) -74(15) -11(15) 

0(2) 394(20) 289(18) 285(18) 10(14) -81(15) 69(15) 

0(3) 274(18) 203(15) 329(18) 33(13) 10(14) 20(13) 

aThe anisotropic displacement exponent takes the form: -21t2(h2a*2U 11 + ... + 
2hka*h*U 12)' 
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Table G-6. H-Atom Coordinates (x104) and Isotropic Displacement Coefficients (A2 x 
1(4) 

x ~ z u 
H(1) 559(33) 1590(47) 1175(20) 16(11) 

H(3) -471(35) 3211(49) 1702(22) 21(12) 

H(4) -680(46) 4756(65) 2410(28) 55( 19) 

H(5) 675(40) 5750(62) 2982(26) 41(15) 

H(6) 2084(41) 4709(60) 2862(25) 45(17) 

H(8A) 3388(40) 3868(57) 2515(26) 38(16) 

H(8B) 3779(41) 2430(58) 2316(24) 41(15) 

H(8C) 3053(47) 2431(72) 2842(31) 60(21) 

H(l1) 2525(38) -2615(54) -811(24) 35(15) 

H(12) 1093(37) -3807(49) -721(24) 28(14) 

H(13) 153(40) -3535(55) 63(25) 37(15) 

H(15) 3232(36) 78(53) -9(23) 27(14) 

H(16A) 2592(55) 648(79) -1007(33) 75(22) 

H(16B) 3830(49) 587(69) -909(28) 57(18) 

H(16C) 3252(43) -577(70) -1195(29) 51(17) 

H(17A) 4093(34) -1731(49) 242(24) 19(13) 

H(17B) 4036(53) -2251(85) -406(33) 81(25) 

H(17C) 4663(61) -896(80) -219(37) 90(27) 

H(18) 619(38) -1148(47) 1259(25) 29(14) 

H(19A) -875(43) -1428(60) 386(29) 51(17) 

H(19B) -932(39) -693(56) 1020(25) 33(14) 

H(19C) -412(32) 28(51) 585(21) 17(12) 

H(20A) -332(54) -2767(79) 1601(34) 78(25) 

H(20B) 525(52) -3479(74) 1417(32) 63(22) 

H(20C) -426(50) -3498(69) 994(32) 64(20) 

H(24A) 2808(40) -2231(58) 1348(28) 42(16) 

H(24B) 2191(51) -2188(74) 1907(31) 61(24) 

H(24C) 2922(48) -3111(81) 1962(31) 69(21) 

H(28A) 2369(36) 5512(60) 599(23) 29(13) 

H(28B) 2247(39) 4757(65) 1168(30) 45(18) 

H(28C) 1856(43) 4265(64) 665(26) 36(17) 


