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Abstract 

This thesis describes the development and testing of a simple visual system fabricated us­

ing complementary metal-oxide-semiconductor (CMOS) very large scale integration (V LSI) 

technology. This visual system is composed of three subsystems. A silicon retina, fabri­

cated on a. single chip, transduccs light and performs signal processing in a manner similar 

to a. sinlple vertebrate retina. A stcrcocorrcspondcncc chip llses bilateral retinal input to 

estimate the location of objects in depth. A silicon optic nerve allows communication be­

tween chips by a method that preserves the idiom of action potential transmission in the 

nervous system. Each of these subsystems illuminates various aspects of the relationship 

between VLSI analogs and their neurobiological counterparts. The overall synthetic visual 

system demonstrates that analog V LSI can capture a significant portion of the function 

of neural structures at a systems level , and concomitantly, that incorporating neural ar­

chitectures leads to new engineering approaches to computation in VLSI. The relationship 

between neuml systems and VLSI is rooted in the shared limitations imposed by computing 

in similar physical media. The systems discussed in this text support the belief that the 

physical limitations imposed by the computational medium significantly affect the evolving 

algorithm. Since circuits are essentially physical structures, I advocate the use of analog 

VLSI as powerful medium of abstraction, suitable for understanding and expressing the 

function of real neural systems. The working chip elevates the circuit description to a kind 

of synthetic formalism. The behaving physical circuit provides a formal test of theories of 

function that can be expressed in the language of circuits . 
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Chapter 1 

Introduction 

I have been exploring mechanisms of computation in VLSI analogs of biological visual 

systems. By mechanism of computation I mean a physical structure that executes an 

implicit algorithm mapping input to output. I argue that analog circuit design is an ex­

perilnental tool for the investigation of neurobiological systems and that the analog circuits 

are an efficient language for expressing neural function. Furthermore, these VLSI circuits 

are the building blocks of entirely new kinds of computers whose algorithms are wed to 

their structure, and hence may be orders of magnitude more efficient at specific tasks than 

general-purpose COlnputcrs . 

The study of biological systems brings us up against the issue of the relationship between 

form and function, the objective and the subjective. Unlike lnan-Inade structures, whose 

purposes we know and whose histories we have dOClllnented, biological systems come to us 

without COS111ic blueprint; all that we can see are the traces of the forces and constraints 

that gave rise to the modern organism. It is as if we are presented with the living artifacts 

of a magnificent civilization and are left to winnow out their purposes and functions. If we 

do not admit a purpose, we arc reduced to a description of the brain as an organic soup 

of lipids, sugars and proteins. An alternative to objective description is to invoke natural 

selection as the process by which biological organisms have evolved. Of all the organs, the 

brain is unique because it is explicitly subjective. It generates abstractions to represent 

long-tenn and instantaneous infonnation, which is used to facilitate survival. The task of 

perception is specifically not one of instrumentation. The goal is not to represent exactly 

what is out there but in S0111e other way; instead, the brain lnust represent reality in the 
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lllost sinlplified way possible while Inaintaining the distinctions necessary for appropriate 

behavior. For example, it is critical to recognize a hungry tiger whether it is moving or 

standing still , in light or in shadow. The solution to this problem is not reserved for a 

homunculus in the higher centers of the brain who sits and watches the movie of reality 

through the eyes. The solution starts in the retina itself. 

The evolutionary process endows the material with special significance. Man-made com­

putational systems are created by a designer who regards the system from the outside. The 

creator analyzes the cOlnputation in terms of external constraints, and designs an algorithm 

to perform the computation which then can be implemented on a machine . Implementation 

is specifically excluded from algorithmic considerations. This was the approach expounded 

by David MmT in his classic text, Vision. Natural selection, however, seems unconcerned 

with the distinctions between objective constraint, algorithm, and implementation. The 

constraints on the computation are just as much a function of the material with which the 

tnachine is made as they arc of the external task. 

The CMOS VLSI medium is related to the neural medium at the base level. The 

CMOS transistor is analogous to the ligand- or voltage-sensitive channel that is the basis 

of neural computation. The current ftow through a transistor is a monotonic function of 

the voltage dift'erence across it and and a steep (exponential or square-law) function of the 

gate voltage. In a population of neuronal channels, the current through the membrane is 

a function of difference between the reversal potential and the intracellular potential, and 

exponentially gated by the intracellular potential or a transmitter concentration. In addition 

to these gain elements, threshold and saturating nonlinearities are computational primitives 

of both media. For example , current-limited transistors might be analogous to finite channel 

density in the nerve mClnbranc. In addition , elclnentary arithmetic functions arise from 

Kirchoff's laws a.nd systems dynamics are an inevitable consequence of conductances and 

capacitances. At a systems level , both neural and CMOS VLSI systems are made of large 

numbers of mismatched elements . This property necessitates mechanisms of self-calibration. 

Furthermore, limitations in the amount of DNA and in the technical difficulty of a circuit 

design both favor systems that are specified algorithmically. The computations performed 

by both of these systems are limited by the physical medium. Wiring density, bandwidth 

limitations, and thc high cost, of encrgy tTIust be taken into account. 
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If we could succeed in defining algorithms that are consistent with the properties of the 

VLSI medium, we could create new machines that are far more compntationally efficient 

than the general-purpose digital computer in use today. The digital representation allows 

the computation to proceed in spite of element mismatch but strips the transistor of much 

of its intrinsic computational power. The digital encoding of a number is susceptible to 

device failure, since single failures are just as likely to affect the most-significant as the 

least-significant bit . The fight against the intrinsic capacitances of the material leads to 

large power consumption as devices are forced to switch as quickly as possible. Biological 

systems have evolved algorithms and representations that are efficient and robust and which 

take advantage of natural dynamics. To the extent that neural systems and VLSI systems 

share the same fundamental hardware limitations and attempt to perform similar tasks, the 

algorithms and representations of neural systems will be appropriate for incorporation into 

VLSI circuits. 

If the computational requirements of the algorithm are tailored more and more closely to 

the requirements of the medium , the specification of the algorithm may be most conveniently 

rendered by a description of the materii-.\.l that embodies it. Certainly in one sense, the best 

description of a.n organism is the orga.nism itself. However, in contrast to description, 

understanding specifically requires the creation of an abstraction that is not a replica of the 

organism. This abstraction BUIst capture essential qualities and relationships, which can 

be generalized to silnilar situations. To understand highly evolved biological systems, it is 

likely that the abstractions that preserve the essential qualities of the form of the organism 

will most efficiently cOlnmunicate its function. 

Analog circuits arc abstractions capable of representing many of the essential qualities 

of neural systems. They arc a more natural bas is for representing neural circuits than words 

or equations because the patterns of interrelationship that are the essence of the collective 

function arc implicit in the form of the circuit itself. Although a circuit may be physically 

instantiated, it also has a.n ideal existence. Like the circuits in the brain , analog circuits 

cannot physically be taken out of context because then they are not circuits anymore- their 

circular nature is interrupted. However , they can be distinguished and thought of as entities 

in much the same way as a word in a language. The attributes of this ideal circuit remain 

physical in nature. The circuit as abstraction is well situated between undifferentiated ideal 
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and uninformed matter. 

The fundamental difference between the biological system and the analog is that the 

analog is explicitly designed to perform a particular function. Its circuits arc defined by their 

functional significance, rather than an arbitrary morphological demarkation . The functional 

approach to understanding neural systems was introduced by Gordon Shepherd. He points 

out that the obvious physical characteristics of neural systems, like the cell boundaries of 

the neuron , are not the appropriate conceptual units of the nervous system. He states, "the 

neuron can no longer be regarded as the basic functional unit of the nervous system; rather, 

the nervous system is organized on the basis of functional units whose identity in many 

cases is independent of neuronal boundaries." The functional units can only be discerned 

by their participation in the computation. Oecause the analog is created for a purpose, the 

functional boundaries of the circuits arc clear. 

Existing both in the domain of form and function , the analog system provides a frame­

work in which to integrate information from disparate experimental and theoretical tech­

niques. It incorporates the electrical characteristics that arc the domain of electrophysiology, 

the behavioral characteristics that are the domain of psychophysics and the purposive char­

acteristics that are the domain of engineering. At all of these levels of complexity, the analog 

can be compared to the neural systcln. This dialectical interaction between the analog and 

the real system depends simultaneously on the similarities and the differences between the 

two media. 

Analog VLSI IS, ultimately, a synthetic tool for understanding neural systems. Al­

though the circuit exists in an abstract sense, its true power is revealed only when it is 

realized. The instantiated circuits exist as written words that express neural function and 

our understanding is tested by the performance of the systems that we build. 

1.1 Overview 

I describe the components of a primitive analog CMOS vision system for doing real-time 

stereopsis. These components include a silicon retina, an optic nerve, and a stereoscopic 

Inatching array. The choice of representation of infornlation and the computations per­

formed using that representation are suggested by the properties of the analog medium in 
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which the system is implemented. 

1.1.1 The Silicon Retina 

Chapter 1 describes the silicon retina. The silicon retina shares several featmes with its 

biological counterpart. Transducers and computational elements (silicon neurons) are ar­

rayed in a thin layer over a two-dimensional surface. The lens focuses the image directly on 

the transducers. Image processing occurs in parallel at each node of the array. The com­

putation proceeds in real-time. Like the biological retina, the silicon retina acts to reduce 

the bandwidth needed to communicate reliable information. The need for data compression 

arises because mnbient light intensity varies over many orders of magnitude, yet the local in­

tensity variation in a single image is usually small. In the presence of noise, communication 

of absolu te image intensity would require a large dynamic range to encode reliably small 

differences in image intensity over the full possible illumination range. The retina reduces 

the bandwidth by subtracting average intensity levels from the image and reporting only 

spatial and temporal changes. Adaptation at the photoreceptor level prevents amplification 

of static com poncnt ll1ismatch. 

The goal of keeping retinal output confined to a reasonable bandwidth creates an ab­

stract representa.tion of an image. For example, by reporting only contrast edges the retinal 

output provides sensory invariance. The contrast of white square on a black background is 

invariant under changes in illumination even though the photon flux from the black back­

ground in bright illumination may be larger than the photon flux from the white square in 

dim illumination. The abstraction created by the silicon retina results in output patterns 

that are reminiscent of several visual illusions, such as simultaneous contrast, the Herring 

grid illusion and the Mach band illus ion. The process of adaptation results in the formation 

of after-images, since the receptors cannot tell the difference between internal miscalibration 

and a persistent pattern of illumination. 

The advantages of using a ne twork of resistors and conductances to perform this com­

putation are discussed . The concept of conductance, typically seen as a passive discrete 

elelnent, is generalized to include the action of nonlinear feedback circuits. A relationship 

between feedback inhibition and the conductance properties of light sensitive channels in 

vertebrate cones is postulated. 
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The abstraction created by the silicon retina has several ramifications for further vi­

sual processing in our analog CMOS system. The form of retinal output suggests a novel 

representation that allows data to be transferred reliably between chips. 

1.1.2 Optic Nerve 

Communication of high bandwidth information between chips is a major impediment to 

progress in building parallel, neural-network computers. I have designed an interchip com­

munication protocol that takes advantage of the representation of the visual world created 

by the silicon retina. Experimental results are reported from a simple two chip system: a 

silicon retina and a receiver that copies the image from the retina. I call this system the 

silicon optic nerve . 

The silicon optic nerve IS based on a self-timed digital multiplexing technique which 

uses an add1'ess-event 1'cpresentation. The address-event representation has much in com­

mon with the action-potential representation used by real neurons. Like neuronal action 

potentials, events in this system are stereotyped digital amplitude events and the interval 

between events is analog. Iufortnation is encoded in the time between events. The action 

potential events of all the neurons arc transmitted one at a time in an asynchronous fashion 

as the address of the neuron that issued the event . This encoding scheme reduces N wires 

to (1 + log2 N) wires. The retinal encoding of visual information insures that only a few of 

the neurons in the retinal array will be firing with high spike rates in response to the image. 

This protocol devotes all of the bandwidth of the bus to transmitting accurate temporal 

information when the data rate is low . As the data rate increases 1 the protocol resembles 

more and more closely the traditional sequential scanning methods of data transfer. 

Because the address-event representation preserves tilning information, it is particularly 

suited for signaling dynamic events. These dynamic events arc an integral part of real-time 

scnSOrilTIotor processing. If this data. transmission protocol is widely adopted, it will allow 

many types of chips to easily be interfaced to each other. 

1.1.3 Stereopsis 

I have designed a chip for fusing data frOln two one-dilnensional retinal regions into a 

single depth image. The chip is designed to use the communications framework described 
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above to receive data from two retina chips. Because the retinal output using the address­

event representation has not been perfected yet, artificial data was provided by a hardware 

interface to a digital COlnputer. 

The algorithm for stereo matching embedded in the stereo chip is novel. It evolved from 

an earlier attempt to do stereo matching on an analog VLSI chip that was based on Marr and 

Poggio's cooperative stereo correspondence algorithm. Marr and Poggio's algorithm uses a 

place valued encoding of disparity; it requires an array of correlators, each one tuned to a 

different disparity. Positive feedback between correlators in the array helps disambiguate 

matching, so that fusion can be achieved even in dense arrays of identical targets in which 

there are many possible false matches. The pattern of interaction between correlators limits 

the images which can be correctly fused to those that are in a fronto-paraliel plane with 

respect to the observer. We have extended their algorithm so that it performs correctly on 

images that are tilted in depth. The innovation in this chip is the transformation of place 

encoding into an analog value encoding of disparity. This is convenient because the analog 

domain provides a natural representation for surface interpolation. The analog encoding is 

used to guide the stereo matching process that takes place in the correlator array. 

The performance of this chip can explain the human performance on dot patterns de­

scribed by Mitchison and McKee. These patterns arc constructed with combinations of 

ambiguous and unambiguous targets and attempt to reveal the matching strategy used by 

the visual system. The results obtained with these patterns have not previously been ex­

plained by any computational model. The correspondence between the performance of the 

circuit and humans on these patterns, suggests that the model may be capturing something 

fundamental about the way stereoscopic fusion is achieved by the visual system. 

The nodes of the analog circuit mimic the response of the major disparity celi types 

observed in the macaque monkey primary visual cortex. There is no generally accepted 

biological explanation of how the tuning characteristics arise, or what their cOlnputationai 

function is. However, since the circuit was designed to perform a specific computation, 

the cOlnputational function and origin of these tuning characteristics are known in this 

case. The tuning characteristics of these nodes cannot be understood by analysis of inputs. 

Instead the responses are a result of the neuron's etnbedding in a nonlinear network. There 

is no proof that the analog circuit is performing the same computation that is performed 
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in the monkey; however, the circuit docs provide a number of hypotheses of brain fWIction 

that are testable. For example, the analogy between a particular class of nodes in the circujt 

and disparity flat cells suggests that the disparity flat cells are smooth inh.ibitory cells. This 

hypothesis can be tested using currently available electrophysiological techniques. 
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Chapter 2 

The Silicon Retina 

The retina is a thin sheet of neural tissue that partially lines the orb of the eye . This tiny 

outpost of the central nervous system is responsible for collecting all the visual information 

that reaches the brain. Signals from the retina must carry reliable information about 

properties of objects in the world over many orders of magnitude of illumination. 

The encoding of visual infonnation in the retina is generated, in la.rge part, by the initial 

analog stages of retinal processing, from the photoreceptors through the outer-plexiform 

layer (OPL). Processing in the OPL relies on lateral inhibition to adapt the system to a 

wide range of viewing conditions, and to produce an output that is mostly independent 

of the absolute illumination level. A byproduct of lateral inhibition is the enhancement of 

spatial and tClnporal changes in the image. 

In collaboration with Carver Mead, I have designed two versions of silicon retinas mod­

eled on the outer-plexiform layer (OPL) of the vertebrate retina. These chips generate, in 

real time, outputs that correspond directly to signals observed in the corresponding levels 

of biological retinas. In this chapter, I describe the silicon retinas and compare and contrast 

their performances. I interpret some of the biophysical mechanisms of signal processing in 

the OPL of the vertebrate retina in light of these si licon circuits. 

2.1 Vertebrate Retina 

The retina has been the subject of a tremendous number of investigations (see Dowling [8J 

for a review). Although the details of each animal's retina are unique, the gross structure 
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of the retina has been conserved throughout the vertebrates. 

2.1.1 Basic Anatomy 

The major divisions of the retina are shown in cross-section in Figure 2.1. Light is trans­

duced into an electrical potential by the photoreceptors at the top. The primary signal 

pathway proceeds from the photoreceptors through the triad synapses to the bipolar cells, 

and thence to the retinal ganglion cells, the output cells of the retina. This pathway pen­

etrates two dense layers of neural processes and associated synapses. The horizontal cells 

are located just below the photo receptors, in the outer-plexiform layer (OPL). The inner­

plexiform layer (IPL) , just above the ganglion cell bodies, contains amacrine cells. The 

horizontal and a,lnacrinc cells spread across a large area of the retina, in layers transverse to 

the primary signal fl ow. The OPL and IPL are the site of interaction between the various 

cell types of the retina. 

2.1.2 Function of the Oute r-Plexiform Layer 

The most salient feature of the OPL is its ability to adapt to prevailing light conditions. The 

photoreceptors, horizontal cells and bipolar cells take widely varying amounts of incoming 

light and produce a signal with much narrower dynamic range that nonetheless captures 

the ilnportant infol'lnation in an image. The outer-plexiform layer allows a system with 

liInited output range and finite analog resolution to comtnunicate small local changes in 

ilIlage intensity when the background intensities may vary by a factor of onc Inillion. 

The initial stage of retinal processing is performed by the photoreceptors that trans­

duce light into an analog electrical signal. In fact , all of the neurons in the OPL represent 

information with smoothly varying analog signals, rather than action potentials used by 

most neurons. The photoreceptor amplifies the photon-event with a second messenger cas­

cade . The absorption of a s ing le photon activates a.n c nzynlc that catalyzes the destruction 

of many molecu les of cGM P. Lowering the cGMP concentration causes sodium-permeable 

channels to close and the cell becomes hyperpolari zed. 

Because the photoreceptor must respond over several orders of magnitude in photon 

flux, it Blllst change its gain to be COlnlllensurate with the average number of incoming 

photons. Cones possess an intrinsic light-adaptation mechanism operating over a time 
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OPL 

IPL 

Figure 2.1: Artist's conception of a cross-section of a primate retina, indicating the pri-

mary cell types and signal pathways. The outer-plexiform layer is beneath the foot of the 

photoreceplors. The invagination into the foot of the photoreceptor is the site of the triad 

synapse. In the center of the invagination is a bipolar-cell process, flanked by two horizontal 

cell processes. R:photoreceptor, I-I:horizontal ceil, IB:invaginating bipolar cell, FB:flat bipolar 

cell, A:amacrine cell, IP:intcrpiexiform cell, G:ganglion cell. Adapted from Dowling (8} 
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course of a couple of seconds that is based on calcium regulation of cGMP synthesis (for a 

review see [26]). Calcium enters the cell through open sodium-permeable channels and is 

removed by a pump. When channels close in response to light stimulation, more calcium 

is pumped out than is flowing in so the intracellular concentration of calcium decreases to 

a lower equilibrium value. Low calcium concentration stimulates the synthesis of cGMP 

so the light-adapted cone recovers quickly from the absorption of light (the destruction of 

cGMP). Light-adaptation allows the cone to respond at high illumination without depleting 

its store of sodium-permeable channels and consequently saturating its voltage to maximum 

hyperpolarization. A more rapid adjustment of the electrical operating point of the cone is 

provided by interactions between the cones and the OPL network . 

Some of the cellular interactions in the OPL are summarized briefly here. The cones 

make excitatory (glutaminergic) synapses onto both horizontal cells and bipolar cells [8J. 

The horizontal cells inhibit both the cones and the bipolar cells by electrogenic GABA 

release [15J. In addition, horizontal cells are electrically coupled to each other with gap 

junctions. The gap junctions couple the horizontal cells into a resistive sheet. The sheet 

has capacitance to the extra-cellular fluid due to the cell membranes . The horizontal cells 

thus compute a spatially and temporally smoothed version of the photoreceptor signal. This 

average is used as a reference point for the system. 

The horizontal cells provide two forms of lateral inhibition, one by feedback inhibition 

to the cones, the other by feed forward inhibition of the bipolar cells . Feedback inhibition 

allows the cones to respond with high gain to small local changes in illumination and still 

span a large input range [31J. Feedforward inhibition to the bipolar cells gives these cells 

their classical center-surround receptive field structure; bipolar cells amplify the difference 

between the average computed by horizontal cells and the local photoreceptors [38J. Hyper­

polarizing and depolarizing bipolar cells transmit a differential signal to the retinal ganglion 

cells. 

2.2 Silicon Retina 

Several versions of the silicon retina have been previously described [17, 18, 22, 20J. Al­

though each version is different, they have several features in common. For example, because 
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Figure 2.2: Diagram of the silicon retina showing the resistive networki a single pixel element 

is illustrated in the ci,'cular window. The silicon model of the triad synapse consists of a 

follower-connected transconductance amplifier by which the photoreceptor drives the resistive 

network, and an amplifier that takes the difference between the photoreceptor output and the 

voltage stored on the capacitance of the resistive network. These pixels are tiled in a hexagonal 

array. The resistive network results from a hexagonal tiling of pixels. 

they arc implemented on a physical substrate, they have a straightforward structural rela­

tionship to the vertebrate retina. A simplified plan of a typical silicon retina is shown in 

Figure 2.2. This view en1phasizcs the lateral spread of the resistive network, corresponding 

to the horizontal cell layer. The image signal is transduced and processed in parallel by 

circuitry at each node of the network. 

The computations performed by these retinas are based on the interaction between the 

photoreceptor, the horizontal cells and the bipolar cells in the OPL. These retinas include 

the following clClncnts: 

1. A phototransducing element that generates a current proportional to the light inten­

sity coupled with an MOS transistor whose subthreshold voltage-current relation is 

logarithmic. 

2. A resistive network modeling the horizontal cell layer that spatially and temporally 
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averages the photoreceptor output. 

3. A bipolar cell output that is proportional to the difference between the phototrans­

duced signal and the horizontal cell signal. 

The data presented here are taken from two types of silicon retina. These retina are 

are described in parallel in the text. The first retina is a feedforward retina [17]. The 

feedforward retina is so called because the signal path is in the forward and lateral directions 

only. It demonstrates the ability of the resistive network to be used for lateral inhibition. 

The silnple resistive structure gives rise to complex spatiotemporal behavior. The second 

retina described here [18] is an extension of the first. It includes feedback from the resistive 

network to the photoreceptors. In addition, the photoreceptor includes a mechanism for 

light adaptation that also cancels transistor Inisillatch to improve imaging performance. 

Analogies between the feedback retina and the vertebrate retina lead to a new interpretation 

of biophysical phenomena observed in the OPL. 

2.2.1 Photoreceptor Circuits 

The photoreceptor transduces light into an electrical signal. The logarithmic nature of the 

response of the biological photoreceptor is supported by psychophysical and electrophysio­

logical evidence. Psychophysical investigations of human visual-sensitivity thresholds show 

that the threshold incl'crncnt of illU111ination for detection of a stimulus is proportional to 

the background illumination over several orders of magnitude [28]. Physiological record­

ings show that the photoreceptors' electrical response is logarithmic in light intensity over 

the central part of the photoreceptors' range, as are the responses of other cells in the 

distal retina [8]. The logarithmic nature of the response has an important system-level 

consequence: the vol tage difference between two points is proportional to the contrast ra­

tio between the two corresponding points in the image. In a natural image, the contrast 

ratio is the ratio between the rcflcctances of two adjacent objects, refiectances which are 

independent of the illumination level. 

The silicon photoreceptor circuit consists of a photodetector, which transduces light 

falling onto the retina into an electrical photo current, and a logarithmic element, which 

converts the photo current into an electrical potential proportional to the logarithm of the 
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local light intensity. Our photodetector is a vertical pnp bipolar transistor, which occurs 

as a natural byproduct in the CMOS process [2] . The base of the transistor is an isolated 

section of well, the emitter is a diffused area in the well , and the collector is the substrate. 

Photons with energies greater than the band gap of silicon create electron- hole pairs as 

they are absorbed. Electrons are collected by the n-type base of the pnp phototransistor, 

thereby lowering the energy barrier from emitter to base, and increasing the flow of holes 

from emitter to collector. The gain of this process is determined by the number of holes 

that can cross the base before one hole recombines with an electron in the base. The 

photo detector in our silicon photoreceptor produces several hundred holes for every photon 

absorbed by the structure. 

The current from the photo detector is fed into an MOS transistor arrangement. The 

operation of an MOS tra.sistor in the subthreshold regime is described by Mead in Analog 

VLSI and NeU7"U1 Systems [2]. The current-voltage relation of a MOS transistor operating 

in the subthreshold regime is exponential. 

The voltage on the gate of the transistor required to supply a particular current is propor­

tional to the logarithm of the current. The MOS transistor transforms the current from the 

photodetector that is proportional to the light intensity, to a voltage that is logarithmic in 

the light intensity. 

Logarithmic compressioll can be used to compress a. large input range into a smaller 

output range. This was the approach adopted in the feed forward silicon retina. However, 

this compression leads to a lack of sensitivity. The feedforward silicon retina produced a 

mottled out,put because the intensity variations within a uniformily illuminated scene are 

8111a11, roughly the same order as the transistor Inisl11atch . In fact, in biological systems, the 

range of response of the cones at a particular level of background light adaptation spans only 

a fraction of the perceptual range [31 , 14]. The region of sensitivity of the cones is shifted 

by feedback from the horizontal cell network. This interaction was incorporated in the 

feedback silicon retina to increa.se sensitivity. However, in addition to alnplifying the visual 

signal, feedback of this kind amplifies static transistor mismatch, so an adaptive mechanism 
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Figure 2.3: Measured response of a logarithmic photoreceptor. Photocurrent is proportional 

to incident-light intensity. Response is logarithmic over more than four orders of magnitude 

in intensity. Direct exposure of the chip to room illumination resulted in an output voltage 

of 2.1 volts. The symbol for the photoreceptor circuit is shown in the inset. 

was incorporated into the photoreceptor in the feedback retina. These two photo receptors 

are described sequentially in the following text. 

The low-gain photoreceptor in the feedforward retina, depicted in Figure 2.3, uses two 

diode-connected MOS transistors in series to supply the photocurrent. The photo current 

biases these transistors in the subthreshold region. This arrangement produces a voltage 

proportional to the logarithm of the current, and therefore to the logarithm of the incoming 

intensity. The constant of proportionality is Va"' ex .-/(.- + 1), rather than .- as is the 

case for a single diode, because the change in the output voltage of the second diode must 

compensate for the change in the gate voltage with current of the first diode. We use two 

transistors to ensure that, under normal illumination conditions, the output voltage will be 

within the limited allowable voltage range of the resistive network. Even so, at very low 

light levels, the output voltage of the photoreceptor may be close enough to VDD that the 

resistor bias circuit described by Mead [2J cannot adequately bias the horizontal resistive 

connections. 
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The voltage out of the low-gain photoreceptor circuit is logarithmic over four to five 

orders of magnitude of incoming light intensity, as shown in Figure 2.3. The lowest pho­

tocurrent is about 10- 14 amps, which translates to a light level of 105 photons per second. 

This level corresponds approximately to a moonlit scene focused on the chip through a 

standard camera lens, which is about the lowest illumination level visible to the cones in 

a vertebrate retina. At high light levels, the diode-connected transistors enter the above­

threshold operating regime where the output voltage goes as the square root of the current. 

The photoreceptor of the feedback retina, shown in Figure 2.4, includes a transducing 

element embedded in a feedback loop from a high-gain amplifier. The photo current is 

supplied from the power supply through the action of transistor Ql. The current through 

Q1 clamps the emitter voltage, VE , to be equal to the absolute value of the gate-source 

voltage on the bias transistor, Vbias ' Small variations in VE are amplified by the inverting 

stage comprising the bias transistor and Q2. The output of the receptor, VO"t, is the voltage 

output of the inverting amplifier. Because Ql has an exponential current-voltage relation 

in subthreshold, the voltage response of the receptor is proportional to the logarithm of 

the light intensity. To the extent that the gain of the amplifier is effective at clamping the 

emitter voltage, the gate voltage , W of Q1 is related to the current through the bipolar 

transducer by the equation 

( 
1) ( Iphoto ( l) W = ;;: In ---r;;- + V DD - Vbias . 

If the horizontal network potential is held fixed , this gate voltage is modulated exclusively 

by the capacitor, C 1 , coupling it to the output of the inverting amplifier. The change in 

gate voltage, W , is related to a change in the output voltage, VO"t, by the equation: 

bW= 

So the final output of the high-gain receptor is given by: 

v; - (CF + C2 + C 1) (1 Iphoto + (V _ Vi· l) 
out - elK- n 10 DD bias . 

The high-gain photoreceptor circuit has higher sensitivity and a commensurately reduced 
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Figure 2.4: Schematic of the high-gain photoreceptor in the feedback retina. 

output range relative to the low-gain receptor. In order to function over a wide input 

range, the operating point of the receptor must shift. The operating point of the receptor 

is controlled for short times by feedback from the horizontal cell network and in the long 

term by adaptation within t.he photoreceptor itself. 

2.2.2 Adaptation 

A silicon analogue of light-adapta.tion in cones was first incorporated in a silicon retina 

by Mead [22J using an ultraviolet-programmable floating gate. As is done in the tiger 

salamander retina, the operating point of a high-gain receptor was modulated by feedback 

from the resistive network [31]. Although the transduction processes in cones and in silicon 

are unrelated, slow adaptation plays all import.ant role in silicon circuits. Slow adaptation 

was incorporated in the Mead retina in order to keep transistor miSlnatches fr0111 being 

amplified by t.he feedback from the resistive network. After adaptation this retina responded 

quite well to low-contrast images without offsets. However, the adaptation needed to be 

repeated if the background light level changed significantly. Because ultraviolet could not 

be used continuously to adapt the chip while it was in operation, this adaptive retina had 

practical limitations. 
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Adaptation in the high-gain receptor is mediated by slow negative feedback through the 

diode connected transistors, Q3 and Q4. Adaptation reduces the gain of the receptor for 

long times to kT/ql< volts per e-fold increase in photo current from the transducer. The time 

scale of this adaptation is set by the leakage current through Q3 or Q4 and the amount of 

capaci tance on node W. These transistors share a common gate that is tied to the well in 

which the transistors are sitting. No matter which way the light changes, one of the diodes 

will be reversed biased. 

As current flows through the diodes onto node W, current flows back out through 

the coupling capacitors connected to the node. Adaptation through the diodes allows the 

photoreceptor and the horizontal network to relax. This slow adaptation insures that offsets 

between transistors will not be amplified in a sustained way by feedback from the resistive 

network. Continuous adaptation of this kind provides a "single point correction" at every 

operating point. 

2.2.3 Horizontal Resis tive Layer 

The retina provides an excellent example of the computation that can be performed using 

a resistive network. The horizontal cells are connected to one another by gap junctions to 

fonn an electrically continuous network in which signals propagate by electrotonic spread 

[8J. The lat.eral spread of information at the outer-plexiform layer is thus mediated by the 

resistive network formed by the horizontal cells. The voltage at every point in the network 

represents a spatially weighted average of the photoreceptor inputs. The farther away an 

input is from a point in the network, the less weight it is given . 

Inspired by the horizontal cells of the retina, the silicon retina was the first VLSI system 

to incorporate a resistive network to perform computation. Each photoreceptor in the 

network is linked to its six neighbors with resistive elements, to form the hexagonal array 

shown in Figure 2.2. Each node of the array has a single bias circuit to control the strength 

of the six associated resistive connections. The photoreceptors act as voltage inputs that 

drive the horizontal network through conductances. By using a wide-range amplifier in place 

of a bidirectional conductance, we have turned the photoreceptor into an effective voltage 

source. No current can be drawn from the output node of the photoreceptor because the 

amplifier input is connected to only the gate of a transistor. 
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The horizontal network computes a spatially and temporally weighted average of pho­

toreceptor inputs. The spatial scale of the weighting function is affected by the product of 

the lateral resistance and the conductance coupling the photoreceptors into the network . 

Varying the conductance of the wide-range amplifier or the strength of the resistors changes 

the space constant of the network, and thus changes the effective area over which signals 

are averaged. The time constant of intergration is determined by the capacitance at each 

node of the network and the magnitude of the conductance. The space constant and time 

constant of integration can be varied independently. 

The spread of activity in a passive resistive network is analyzed extensively in Analog 

VLSI and Neural Systems [2]. This analysis applies to the feed forward retina in which the 

voltage output of the photo receptors is unaffected by the voltage of the network itself. A 

short summa.ry of the analysis of a one-dilnensional passive network, shown in Figure 2.5, 

is provided here. This analysis is extended to the feedback retina, in which the network 

activity modifies the magnitude of the voltage sources driving it. The equations show that 

signals propagate with exponential decay in the feedback network just as in the feedforward 

network , with an appropriate change in variables. Whereas in the feedforward network, 

signal propagation depends only on the passive components, R and G, in the feedback 

network, signal propagation depends also on the active gain of the feedback loop. 

The analysis of the passive network begins with conservation of charge. By Kirchoff's 

current law, the network obeys the equation: 

Un - Un - l 
+ R 

Rearranging to get the driving term on one side, the equation becomes: 

GR(-V"l = U,,+I - 2o:U" + Un- I, 

where 20: = 2 + RG. Set all the Vn equal to zero and guess that the form of the solution for 

Un will be A'Yu . Then divide out a factor of A,u-I to derive the characteristic equation: 

o = .--? - 20:1' + 1. 
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T 

Figure 2.5: One-dimensional passive resistive network driven by photo receptors acting 8S 

voltage sources. 

The solution to this equation, derived with the quadratic formula, is: 

Substituting for a, the solution becomes: 

'Y = 1 + RG/2 - JRGJl + RG/4. 

This root is chosen t.o insure that the solution decays to zero for infinite n. The solution 

for negative n must be the same by the symmetry of the network. 

The solution decays exponentially from the point of drive. As it is difficult to grasp 

intuitively the behavior of such expressions 1 Mead [2} has compa.red this discrete case to 

the more f;-.'L1l1iiia.r continuous casco The continuum approximation to the solution for a 

one-dimensional network is: 

v = Voe- t 1xl 

where I/L = JRG. The variable x is analogous to n. The factor e-/: is analogous to 'Y. 
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Substituting I/L for v'RG in the expression for 'Y gives: 

This expression is close to the Taylor expansion for e - t : 

The continuum approximation is very good, even for values of L as low as 1. The intuitive 

interpretation of I/L = v'RG is that a signal spreads farther in the network when R is small 

and G is small because it meets little resistance to its spread within the network and it has 

small opportunity to escape. 

The amplitude of the response of the network to a single input of magnitude V is 

calculated by considering the effective impedance of the network. The current through the 

resistor connecting two adjacent nodes of the network is given by: 

Dividing both sides by U" R the equation becomes: 

In 1 - 'Y 
= 

U" R 

GIN is the efFective conductance seen by node Un of the network going to ground through 

the network accessed by that resistor. At each node of the network there are two such 

conductances being driven by a voltage source v,. through the conductance G, as shown in 

Figure 2.6. To solve for the voltage on the network Un set the currents flowing in and out 

of the node equal to each other. 

Solve this equation for U" to calculate the response of the network to a single input, v, •. 

G v: 
2GIN + G n 
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Figure 2.6: Calculation of the amplitude of response of a one-dimensional network driven by a 

single voltage source. A voltage source, Vn ! drives a network node Un through a conductance, 

G. The network has been replaced by an equivalent input conductance, GIN. 

Substitute for GIN to obtain the solution in terms of Rand G. 

1 
Un = ( lV" 

';1 + rtc 
U,t approaches \1';1 when RG is large; the more effective an input is at driving the network 

to its own voltage, the less distance signals will be able to propagate in the network. 

Linear superposition can be used to calculate the response at any point in the network 

to a complex input pattern. The effects of the inputs sum together at each node weighted 

by the distance between each node and the input . 

00 

L'l'I;-nl v; 
1=-00 

This analysis is easily extended to the feedback retina, III which the response of the 

network modulates the output of the receptor. A one-dimensional version of the circuit is 

shown in Figure 2.7. 
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Figure 2.7: A one-dimensional network provides feedback inhibition for the high-gain pho­

toreceptor. 
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The resistive network is capacitivcly coupled via C2 to the control voltage of the pho­

toreceptor, W". The whole circuit satisfies the constraint that the voltage Wn is sufficient to 

supply the CUlTent being drawn by the phototransistol'. W" is logarithmic in the incoming 

light intensi ty, hght. 

The capacitor C2 acts as a reference point for Wn , much as the capacitor CF, but in this 

case, the reference voltage, computed by the resistive network, changes with time. The 

equation that governs steady-state changes in the output voltage of the amplifier is : 

where CT = C 1 + C2 + CF . The output of the photoreceptor amplifier, which is the input 

voltage to the resistive network, is a function of the difference between the local light 

intensity, Wn1 and the average, Un) computed by the resistive network. 

This system can be represented in a simplified visual way by replacing the detailed 

circuit clements with abstract amplifiers. The abstracted system is depicted in Figure 2.8. 

The values for the gains and the inputs to the system are derived from the equation for 

0\1;,. 

The multiplier, P , multiplies the phototransducer voltage, Wn , while the multiplier, H, 

multiplies the network voltage, Un. P is analogous to the gain of the isolated photore­

ceptor, described in the previous section, when the horizontal network potential is held 

constant. H is a measure of the extent to which changes in the network voltage affect the 

photoreceptor output. If the light level is held constant and the network voltage is charged, 

the photoreceptor must compensate so that the voltage Wn stays constant. This value is 

simply the ratio of the capacitor coupling the network to Wn and the capacitor that couples 

the output of the photoreceptor to W". 

Feedback f!'Om the resistive network prevents saturation of the receptor when the back-

ground illumination level changes . The network voltage acts as a 1110ving reference point 

for the photoreceptor by adjusting the reference voltage for the C2 capacitor. If the input 
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Figure 2.8: Abstract representation of the one-dimensional feedback network. 

to the retina is spatially uniform, then the voltages on all of the nodes of the network are 

identical and so no current flows through the lateral resistors, R. Setting oVn = oUn in the 

equation for 8V,1 gives: 

olf,,= CT P 
C C oWn = --oWn· 

1+ 2 l+H 

Spatially uniform changes in intensity will give rise to changes in the network voltage 

that are proportional to changes in Woo. As described in the photoreceptor section, Wn 

is proportional to the logarithm of the light intensity. The amount that the receptor and 

the network have to shift to sink a change in the photocurrent is determined by the size 

of the fixed capaci tor, Cr. If the fixed capaci tance on the Wn node of the photoreceptor, 

Cr, is much less thml C 1 + C2, then the system responds with approximately unity gain for 

spatially uniform changes in intensity. Feedback from the network extends the operating 

range of the photoreceptor by centering its operating point around the response to uniform 

illumination. 

The equation describing Kirchoff's Current Law in the resistive network is: 

G[(PW" - HUN) - Un] = 
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This equation is identical to the equation for that of the passive resistive net except that 

the driving term is now P W" and the term multiplying Un on the left-hand side is (1 + H) 

instead of l. The solution of this equation is therefore identical to that of the passive RG 

network, except that the effective conductance is given by: 

GEff = G(l + H). 

Just as in the feedforward network, the solution for the spatial spread of signals in the 

network is an exponential decay. However, the decay of signals is more rapid with distance, 

with 1/ L = JITGEif. 
The origin of the increased effective conductance at each node of the network is illus­

trated in Figure 2.8. The definition of effective conductance is the amount of current that 

needs to be injected to charge the network by a fixed voltage increment . 

If a current is injected into node Un, and the change in voltage measured to determine the 

conductance of the node, the conductance will appear larger than the physical conductance 

because no account has been taken of the fact that Vn has changed by an amount 8U" H, so 

the total voltage change driving current through the physical conductance is 

So the effective conductance, 1& = G(l + H). 

The photoreceptors in the feedback retina have a center-surround response, shown in 

Figure 2.9. The decay of signals in the network is due not only to passive decay through 

a conductance, G, but also to active absorption by the receptors thclnselves. As a current 

propagates and charges the network, it affects the voltage output of the receptor and a 

larger fraction of the current leaks out of the feedback network than would have leaked out 

of a passive network. The larger the response of the photoreceptor to differences between 

itself and the network, the harder it forces the resistive network to its own voltage and, 

therefore, the more quickly the signal in the network decays. 
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Figure 2.9: Mathematically computed spatial response of a one-dimensional array of receptors 

(a) and horizontal cells (b) in a feedback arrangement. The ordinate is distance in the array; 

the coordinate is the response of the cell at that location. Input to the system is a unit delta 

function at position 10. Notice that the receptor response has a gentle inhibitory surround. 
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The temporal response of the network is a result of the natural physical properties 

of the medium. Both biological and silicon resistive networks have associated parasitic 

capaci tances. The fine unmyelinated processes of the horizontal cells have a large surface­

to-vOlUl11C ratio, so their 111Clnbrane capacitance to the extracellular fluid will average input 

signals over time as well as over space. The effect of the capacitance of the horizontal cells 

is to delay their response. Even changes in the background intensi ty of the image are passed 

through the bipolar cells since the horizontal cell surround signal takes time to catch up 

with the photoreceptor center signal. 

Our integrated resistive clements have an unavoidable capacitance to the silicon sub­

strate, so they provide the SaI11C kind of time integration as do their biological counterparts. 

The effects of delays due to electrotonic propagation in the network are most apparent 

when the input image changes suddenly. The temporal integration time of the network is 

determined by the magnitude of the conductance, G, and the capacitance of the network. 

The capacitive coupling of the horizontal cell node to the photoreceptor in the feedback 

retina must be properly ratioed to the horizontal cell node capacitance to achieve the 

proper tClnporal response from the pixel. In order to lnaintain a large response from the 

pixel for short times, CII must be much larger than C2 . In this case, the network acts as an 

effective reference voltage. The capacitors CH and C2 combine like conductances in series . 

If CH > > C2 the network acts as a fixed reference, because charge can be drawn from CH 

to hold W" fixed without changing U" very much . 

2.2.4 Bipolar Cell 

The receptive field of the bipolar cell shows an antagonistic center-surround response [35]. 

The center of the bipolar cell receptive field is excited by the photoreceptors, whereas the 

antagonistic surround is due to the horizontal cells [38]. The gain of the bipolar cell is larger 

than that of the photoreceptors or the horizontal cells and so the bipolar cell saturates over 

a smaller range of inputs. The center-surround organization keeps the high-gain of the 

bipolar cell centered a.round an appropriate operating point . 

The final outputs of both silicon retinas arc analogous to the output of a bipolar cell 

in a vertebrate retina. The bipolar cell analog is a transconductance amplifier that senses 

the voltage difference across the conductance, and generates an output proportional to the 
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difference between the photoreceptor output and the network potential at that location. The 

output of the bipolar cell analog thus represents the difference between a center intensity 

and a weighted average of the intensities of surrounding points in the image. 

Schematic diagrams of all circuits in the feedforward and feedback pixels are shown in 

Figure 2.10. 

2.3 Accessing the Array 

The floorplan for the retina is shown in Figure 2.11. The chip consists of an array of pixels, 

and a scanning arrangement for reading the results of retinal processing. The output of any 

pixel can be accessed through the scanner, which is Inade up of a vertical scan register along 

the left side of the chip and a horizontal scan register along the bottom of the chip. Each 

scan-register stage has I-bit of shift register, with the associated signal-selection circuits. 

Each register normally is operated with a binary 1 in the selected stage, and binary Os in all 

other stages. The selected stage of the vertical register connects the out-bias voltage to the 

horizontal scan line running through all pixels in the corresponding row of the array. The 

deselected stages force the voltage on their horizontal scan lines to ground. Each horizontal 

scan line is connected to the bias control (Vb) of the output amplifiers of all pixels in the 

row. The output of each pixel in a selected row is represented by a current; that current is 

enabled onto the vertical scan line by the Vb bias on the horizontal scan line. The current 

scale for all outputs is set by the out-bias voltage, which is supplied from off-chip. A 

more complete description of the data scanning Inethods, including particular circuitry, is 

provided in [2 , 29J. Improvements on these circuits and associated current-sensing amplifiers 

are described in [23J. 

The scanners can be operated in one of two modes: static probe or serial access. In 

static-probe mode, a single row and column are selected, and the output of a single pixel 

is observed as a function of time, as the stimulus incident on the chip is changed. This 

lnethod is equivalent to all intracellular electrode recording frOlTI a single cell. In serial­

access mode, both vertical and horizontal shift registers are clocked at regular intervals to 

provide a sequential scan of the processed image for display on a television monitor. A 

binary 1 is applied at horizontal, and is clocked through the horizontal shift register in 
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Figure 2.10: Schematics of single pixels of the feed forward (a) and feedback (b) silicon retinas. 

The pixe l is hexagonally tiled t o generate the retinal array. Each pixel contains the photore­

ceptor, the transconductance a mplifier coupling the photoreceptor into the resistive network, 

and the resistOl"s that couple the node of the ."esistive network to adjacent pixels. 



Vertical 

Out bias 

Horizontal 

32 

Offchip 

Out 

Figure 2.11: Layout of the retina chip. The main pixel array is made up of alternating 

rows of rectangular tiles, arranged to form a hexagonal array. The scanner along the left 

side allows any I"OW of pixels to be selected. The scanner along the bottom allows the output 

current of any selected pixel to be gated onto the output line, where it is sensed by the off-chip 

current-sensing amplifier. 



33 

the time required by a single scan line in the television display. A binary 1 is applied at 

vertical, and is clocked through the vertical shift register in the time required by one frame 

of the television display. The vertical scan lines are accessed in sequential order via a single 

binary 1 being clocked through the horizontal shift register. After all p ixels in a given 

row have been accessed, the single binary 1 in the vertical shift register is advanced to the 

next position , and the horizontal scan is repeated. The horizontal scan can be fast because 

it involves current steering and does not require voltage changes on the capacitance of a 

long scan wire . The vertical selection, which involves the settling of the output bias on the 

selected amplifiers, has the entire horizontal flyback time of the television clisplay to settle, 

before it must be stable for the next horizontal scan. This method is like a brain scan 

with single cell resolution; the outputs of all the cells are displayed simultaneously from the 

perspective of a person viewing the lTIonitor. 

The core of the chip is made up of rectangular tiles with height-to-width ratios of v'3 
to 2. Each tile contains the circuitry for a single pixel, as shown in Figure 2.10, with the 

wiring necessary to connect the pixel to its nearest neighbors. Each tile also contains the 

sections of global wiring necessary to form signal nets for VDD, the bias controls for the 

resistive network , and the horiwntal and vertical scan lines . The photoreceptors are located 

near the vertical scan line , such that alternating rows of left- and right-facing cells form 

a hexagonal array. This arrangement allows the vertical scan wire to be shared between 

adjacent rows, being accessed from the left by the odd rows, and from the right by even 

rows. Covering the chip with a solid sheet of second-layer metal, with openings directly 

over the photoreceptors protects the processing circuitry from the effects of stray minority 

carriers . This second-layer metal covering also distributes the ground of the power supply 

to the pixels. 

2.4 Data-An Electrode's Eye View 

Neurophysiologists have undertaken a trcluenclous variety of experiments in an attempt 

to understand how the retina perforIns computations, and they have come up with many 

explanations for retinal operation. Different investigators emphasize different aspects of 

retinal function, such as spatial-frequency filtering, adaptation and gain control, edge en-
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hancement, and statistical optimization [32 , 1). It is entirely in the nature of biological 

systems that the results of several experiments designed to demonstrate one or another of 

these points of view can be explained by the properties of the single underlying structure. 

A highly evolved mechanism is able to subserve a multitude of purposes simultaneously. 

Experiments on the silicon retina have yielded results remarkably similar to those ob­

tained from biological systems. From an engineering point of view, the primary function 

of the computation performed by the silicon retina is to provide an automatic gain control 

that extends the useful operating range of the system. It is essential that a sensory system 

be sensitive to cha.nges in its input, no matter what the viewing conditions. The structure 

executing this gain-control operation can perform many other functions as well , such as 

computing the contrast ratio or enhancing edges in the image. Thus, the mechanisms re­

sponsible for keeping the system operating over an enormous range of image intensity and 

contrast have important consequences with regard to the representation of data. 

2.4.1 Sensitivity Curves 

The computation performed in the distal portion of the retina prevents the output from 

saturating over an incredible range of illumination levels. Feedback from the horizontal cells 

to the cones provides a varying anlount of current to compensate for the current flowing 

into the cell through the light-sensitive channels. The cone can avoid saturation over six 

orders of magnitude change in light level. The shift in photoreceptor output is mediated 

by feedback from the horizontal cells, which compute a spatially averaged version of the 

photoreceptor outputs. The cone response is dominated by contrast in the image, rather 

than absolute light level. 

In addition to keeping the cones out of saturation, the horizontal cell response defines 

the gray-level for the image by feedforward inhibition onto the bipolar cells. The bipolar cell 

senses the difterence between the photoreceptor output and the potential of the horizontal 

cells, and generates a high-gain output. The maximum response occurs when the photore­

ceptor potential is different from the space- time averaged outputs of many photoreceptors 

in the local neighborhood. This situation occurs when the image is changing rapidly in 

either space or tilne. 

The eft'ects of feedback from the horizontal cells to the receptor are illustrated in Fig-
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ure 2.12. The response of the photoreceptor was measured in isolation on a small test chip 

so that all of the nodes in the circuit could be instrumented. Feedback to the pixel was pro­

vided by an external pad that emulated the response of the network. The receptor response, 

measmed at node V depicted in Figure 2.4, is similar around all four operating points. The 

response has slightly lower gain at light levels lower than tenths of a milliwatt/mm2 (How­

ever, the absolute light level is unreliable.) The gain of the adapted response of the receptor, 

mediated by the diode-connected transistors, Q3 and Q4, coupling the receptor output, V, 

directly to W, is 30 m V /e-fold change in light level. This value is consistent with a value 

of 0.85 for ". The gain of the receptor was measured in two different conditions at each op­

erating point a.nd compared to the gain predicted from estimates of the circuit capacitance 

values derived from the layout. Estilnated capacitance values are: 

C 1 = 70fF; C2 = 422fF; andC!, = 315fF 

The value for Cp was larger on the test chip than in the two-dimensional array due to 

parasitic capacitance introduced by the instrumentation pad. The receptor is operating in 

its high-gain condition when C2 is tied to a fixed potential. This condition emulates the 

response of the retina to a small test flash. A small flash does not significantly affect the 

average computed by the horizontal cell network, so the network voltage is nearly constant. 

The photorecept.or gain in this condition is 430 m V /e-fold. This response is 20% larger 

than predicted by the capacitance values estimated from the circui t layout. The receptor 

operates in its low-gain condition with C2 driven directly by the photoreceptor output, V. 

This condition emulates the response of the system to full-field illumination. The gain of 

the receptor in the low-gain condition averaged over the three brighter illumination trials 

61 m V /e-fold. This value is 20% higher than that predicted by the capacitance values 

estimated from the layout. The deviation between estimated and measured photoreceptor 

gain may be due to the finite gain of the clamping amplifier. 

In the feedback silicon retina, the photoreceptor in isolation demonstrates invariance 

to overall changes in illumination. This invariance docs not appear in the feedforward 

retina until the bipolar-cell level. Figure 2.13 shows the shift in operating point of the 

bipolar-cell ou tput of bot.h a biological and a two-dimensional feedforward silicon retina, as 
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Figure 2.12: Response of the photoreceptor to changes in light intensity of a green light 

emitting diode (LED). Each set of c urves was taken within the same range of currents through 

the LED. Light energy from the LED was calibrated with a photometer, in milliwatts/mm2
• 

Due to the light leve l calibration method, the light intensity values are low. The estimated area 

of the detector is 336 lim'}.. Neutral density filters were used to shift the light intensity over 

four orders of magnitude. The heavy line indicates the receptor 's DC response to illumination 

measured after fully adapting to that illumination level. The response of the photoreceptor 

was measured at each adaptation level under a high-gain (solid line) and low-gain (broken 

line) condition (see text). Light level was briefly displaced and peak voltage response was 

measured. 
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Figure 2.13: Curve shifting. Intensity-response curves shift to higher intensities at higher 

background illuminations. (a) Intensity-response curves for a depolarizing bipolar cell elicited 

by full-field flashes. The test flashes were substituted for constant background illuminations. 

These curves are plotted from the peaks of bipolar response to substituted test flashes. Peak 

responses are plotted, measured from the membrane potential just prior to response. (Data 

from Werblin, 1974 [35].) (b) Intensity-response curves for a single pixel of the silicon retina. 

Curves are plotted for four different background intensities. The stimulus was a small disk 

centered on the receptive field of the pixel. The steady-state response is plotted. 

a function of surround illumination. At a fixed surround illumination level, the output of 

the bipolar cell has a familiar tanh characteristic; it saturates to produce a constant output 

at very low or very high center intensities, and it is sensitive to changes in input over the 

middle of its range. Using the potential of the resistive network as a reference centers the 

range over which the output responds on the signal level averaged over the local surround . 

Image features arc reported with high gain without fear that the output will be driven into 

saturation in the absence of local image information. 

The action of the horiwntal cell layer is an example of lateral inhibition, a ubiquitous 

feature of peripheral sensory systems [34J. Lateral inhibition is used to provide a reference 

value with which to COInpare the signal. This reference value is the operating point of the 

systelll. In the retina, the operating point of the system is the local average of intensity as 
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computed by the horizontal cells . Because it uses a local rather than a global average, the 

eye is able to see detail in both the light and dark areas of high-contrast scenes, a task that 

would overwhelm a television camera, which uses only global adaptation. 

2.4.2 Time Response 

Time is an intrinsic part of an analog computation. In analog perception systelTIS, the time 

scale of the computation must be matched to the time scale of external events, and to 

other real-time parts of the system. Biological vision systems use an inherently dynamic 

processing strategy. 

Figure 2.14 shows the response of a single bipolar cell output of the feedforward retina 

to a sudden increase in incident illumination. Output from a bipolar cell in a biological 

retina is provided for comparison. The initial peak represents the difference between the 

voltage at the photoreceptor caused by the step input and the old averaged voltage stored 

on the capacitance of the resistive network. As the resistive network equilibrates to the new 

input level , the output of the amplifier diminishes. The final plateau value is a function 

of the size of the stimulus, which changes the average value of the intensity of the image 

as computed by the resistive network. Having computed a new average value of intensity, 

the resistive network causes the output of the amplifier to overshoot when the stimulus is 

turned off. As the network decays to its former value, the output returns to the baseline. 

The temporal response of the silicon retina depends on the properties of the horizontal 

network. The voltage stored on the capacitance of the resistive network is the temporally 

as well as spatially averaged output of the photoreceptors . The horizontal network is like 

the follower- integrator circuit [2], which weights its input by an amount that decreases 

exponentially into the past. The time constant of integration is set by the bias voltages of 

the wide-range amplifier and of the resistors. The time constant can be varied independently 

of the space constant, which depends on only the difference between these bias voltages, 

rather than on their absolute magnitude . 

The form of time response of the system varies with the space constant of the network. 

When the resistance value is low, "I approaches one, and the network is computing the global 

average. A test flash of any limited size will produce a sustained output. COllversely, when 

the resistance value is high, I approa.ches zero, and the triad synapse is just a temporal 
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Figure 2.14: Temporal response to different-sized test flashes. (8) Response of a bipolar cell 

of the mud puppy, Neciu1'1t., 71WC1do.",.,. (Data from Werblin, 1914 [35].) (b) Output of a pixel in 

the silicon retina. Test flashes of the same intensity but of different diameters were centered 

on the receptive field of the unit. The space constant of the network was 'Y = 0.3. Larger 

flashes increased the excitation of the surround. The surround response was delayed due to 

the capacitance of the resistive network. Because the surround level is subtracted from the 

center response , the output shows a decrease for long times. This decrease is larger for larger 

flashes. The overshoot at stimulus offset decays as the surround returns to its resting level. 
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differentiator circuit [2], which has no sustained output. Because the rise time of the pho­

toreceptor is finite, the space constant also can affect the initial peak of the time response. 

The dynamics of a small test flash are dominated by a pixel charging the capacitance of the 

surrounding area through the resistive network . In contrast, a pixel in the middle of a large 

test flash is charging mainly its own capacitance, because adjacent nodes of the network 

are being charged by their associated photoreceptors. The peak value of the output is thus 

larger for a small test flash than it is for larger test flashes . 

2.4.3 Edge Response 

The suppression of spatially and temporally smooth image information acts as a filtering 

operation designed to enhance edges in the image. The outputs of the bipolar cells directly 

drive the sustained X-type retinal-ganglion cells of the mud puppy, Necturus maculosus. 

Consequently, the receptive-field properties of this type of ganglion cell can be traced to 

those of the bipolar cells [35J. Although the formation of the receptive field of the X­

type ganglion cells of the cat is somewhat more complex [8], the end result is qualitatively 

similar. The receptive fields of these cells are described as antagonistic center-surround 

fields. Activation of the center of the receptive field stimulates the cell's response, and 

activation of the surround produces inhibition. Cells with this organization are strongly 

affected by discontinuities in intensity. The response of a sustained X-type ganglion cell 

to a contrast edge placed at different positions relative to its receptive field is shown in 

Figure 2.15. The spatial pattern of activity found in the cat is similar to the response of our 

silicon retina to a spatial-intensity step, as shown in Figure 2.15. The way the second spatial 

derivative is computed is illustrated in Figure 2.16. The surround value computed by the 

resistive network reflects the average intensity over a restricted region of the image. As the 

sharp edge passes over the receptive-field center, the output undergoes a sharp transition 

frOiTI lower than the average to a.bove the average. Sharp edges thus generate large output, 

whereas smooth areas of the image produce no output, because the local center intensity 

matches the average intensity_ 

Figure 2.17 shows the exponential nature of the spatial decay of the response on one 

side of an edge for different space constants. The edge stimulus, being uniform in one 

dilnensioI1, generates current flow in only the transverse direction. The one-dimensional 



p'ulsesis 
90 

80 

60 

50 +-t--+--+-t--t--+-f-+ -+--+1 -il degrees 
-4 -2 o 2 

Edge position 
(a) 

4 

41 

~ 
" 

V 
0.15 

0.1 

0.05 

g, 0 
~ 

~ 
-0.05 

-0.1 

14 18 22 
Distance 

(b) 

26 30 pixels 

Figure 2.15: Spatial.derivative response of a retinal ganglion cell and of a pixel to a contrast 

edge. The v e rtical edge was held stationary at different distances from the receptive-field 

center. Contrast of the edge was 0.2 in both experiments. (a) On-center X-type ganglion cell 

of the cat. The contrast edge was turned alternately on and off. The average pulse density 

over the period 10 to 20 seconds after the introduction of the edge was m eas ure d for each edge 

position. (Data rrom Enroth-Cugell e t al. 1966 [9)_) (b) Pixel output measured at steady state 

as the edge was moved in incre ments of 0 .01 centimeter at the image plane. Interpixel spacing 

corresponded to 0.11 ce ntimeter at the image plane. Response is shown for two different 

space constants. The rate of decay of the response is determined by the space constant of the 

resistive network. 
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Figure 2.16: Model illustrating the mechanism of the generation of pixel response to spatial 

edge in intensity. The solid linc, labeled f'ecelJtof'~, represents the voltage outputs of the pho­

toreceptors along a cross-section perpendicular to the edge. The resistive network computes a 

weighted local average of the photoreceptor intensity, shown by the dashed line. The average 

intensity differs from the actual intensity at the stimulus edge, because the photoreceptors on 

one side of the edge pull the n e twork on the other side toward their potential. The difference 

between the photoreceptor output and the resistive network is the predicted pixel output, 

shown in the trace labeled difJc1·cncc. This mechanism results in increased output at places in 

the image where the first derivative of the intensity is changing. 
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Figure 2.17: Exponentia l dec ay of one side of t he response to an edge, as shown in Figure 2.15. 

Each curve was taken with the setting o f the Vc control show n. For a ll c urves, VR was 0.55 

vo lt. The slope of the decay corresponds to t he space constant o f the network. 

network therefore is a good approximation to the response of the two-dimensional network 

to an edge. 

In t he feedforward si licon retina, t he value of L is determined by the product of the 

conductance G and the resis tance R. Doth G and R are exponential functions of their 

respective bias cont.rols: 

and 

Substit.ut.e these expressions int.o the equation for the space constant to get the space con­

stant in terms of the bias control voltages: 

1 = .; RG ()( e(VG-Vn )/2 
L 

The space constant t.hus should be a function of Vc - V R , and should not be dependent 
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Figure 2.18: The response of a pixel to a 0.2 contrast edge measured for a fixed difference 

betwee n the conductance bias voltage and the resistor bias voltage. (DC offsets in the re~ 

sponse were subtracted out.) The space constant of the network depends on only the ratio of 

conduc tance bias current. to resistor bias curre nt. Resistor bias voltages were 100 millivolts 

greater than were the conductance bias voltages. The form of the response stayed essentially 

unchanged as bias voltages were swept over a 250-millivolt range, thereby changing the bias 

current by more than three orders of magnitude. 
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on the absolute voltage level. The constant of proportionality contains the width-to-length 

ratios for transistors in the horizontal resistor and in the resistor bias circuit , and those for 

transistors in the transconductance amplifier. Figure 2.18 shows the edge response of the 

silicon retina measured for several values of bias voltages, with a fixed difference between Vc 

and VI! , and thus a fixed ratio between the transconductance bias current and the resistor 

bias current. The form of the static response of the system is unchanged, as expected. 

The continuum form of the resistive decay is a good approximation to the horizontal 

network when the space constant is greater than one and the slopes of the decay curves in 

Figure 2.17 can be compared to the theoretical expression, where all voltages are expressed 

in terms of kT /q". The comparison is shown in Figure 2.19; the voltage dependence of the 

decay constant is in excellent agreement with the theoretical prediction. The absolute value 

of the curve in Figure 2.19 was adjusted for the best fit to the data, and is higher, by a factor 

of about two , thru) the value deduced from the device geometries in the resistive connections 

and in the transconductance amplifiers. A number of factors may be responsible for this 

discrepancy, including inaccurate calibration of the interpixel spacing, partial saturation of 

resistive connections due to voltage offsets, uncertainties in the channel lengths of short­

channel devices, and so on. None of these factors should have a large effect on the voltage 

dependence of the decay, in keeping with our observations. 

The space constant determines the peak amplitude of the response as well as the decay 

constant of the exponential. The decay length L is small when the conductance feeding 

the local input to the network is large relative to the lateral conductance. Under these 

conditions, the difference between the local photoreceptor and the network also is small, 

because the average is dominated by the local input. The decay length L is large when 

the conductance feeding the local input to the network is small relative to the lateral 

conductance. Under these conditions, the difference between the local photoreceptor and 

the network approaches the full difference between the local photoreceptor and the average 

over many photoreceptors, because the average is affected very little by the local input. Tilis 

dependence of peak amplitude on space constant can be seen in the curves in Figure 2.17. 

The precise nature of this dependence cannot be determined frolll the continuUlll limit, 

because the input conductance is inherently tied to the discrete nature of the network. 

Feinstein discusses these matters in more detail [lOJ. 
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Figure 2.19: Space constant of the res ponse data of Figure 2.17, plotted 8S a function of 

Va - Vn . The straight line is the theoretical expression, using the measured value of K. = 0.73. 

The magnitude of the curve was adjusted for best fit to the data, and is about a factor of two 

higher than ex p ected from the width-to-Iength ratios of transistors in the transconductance 

amplifier and in the resistor bias circuit. 
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2.4.4 Adaptation 

Adaptation is " much slower process than the spatio-temporal edge enhancement previously 

discussed. Adaptation takes place in the photoreceptor circuit itself. It is mediated by the 

two diode-collnected transistors, Q3 and Q4, shown in Figure 2.4. Although it is not 

depicted in the diagram, the transistor gate node is also tied to the well containing Q3 

and Q4, which eliminates the back-gate effect. The adaptation of a single photoreceptor to 

large steps in illumination is illustrated in Figure 2.20 and Figure 2.21. The time-course 

of adaptation is set by the leakage current through these transistors. In principle, the 

leakage current should be the same for both transistors and so the temporal characteristics 

of adaptation to either direction of step should be the same. However , Delbruck (personal 

communicatioll ) has showll that both photo- and thermally generated carriers flowing from 

the well to the substrate are significant. In a dark-going transition, the output of the 

photoreceptor, V, goes low. Thus V acts as the ill'ain for Q3 and the source, gate, and bulk 

of Q3 are tied together, and Q3 acts as a diode. In contrast , the gate, bulk, and drain of 

Q4 are tied together and the source is node W . Thus transistor Q4 is in a conducting state. 

Any carriers that '\l'e fl owing from the well t o the substrate are pulled off of W through 

Q4. Therefore, the time-cou rse of adaptation to dark-going steps is not set by the leakage 

current through Q3, but by the photo- ,md t hermally generated carriers in the well . In spite 

of this asymmetry in temporal response, the circuit still adapts to the proper level with a 

time course longer than necessary for proper spatio-temporal edge enha.ncement. 

The performance of the adaptive feedback retina to static edge detection is compared 

to the performance of the nonadapting feedforward retina in Figure 2.22. Adaptation ad­

justs the operating point of the receptor to the appropriate level. Adaptation is driven by 

t he voltage V at the output of the receptor. The photoreceptor amplifies the difference 

between its OWIl phototransducer and the average computed by the horizontal cells. If the 

phototransducing clClllcnts could be perfectly calibrated with respect to each other by some 

OIuniscicnt external agent , this computation would be straightforward . Without external 

calibration there is no guarantee that two receptors will respond identically when stimulated 

with the same amount of light. Difl'erences in their responses are amplified by the output 

circuitry as if there were real differences in the incoming light intensity. The system is faced 

with the problem of having to calibrate itself provided only with its own response. It does 
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Figure 2.20: Response of a single photoreceptor to a step increase in light from a green LED. 

The LED intensity was varied from darkness to 315 mW /mm2. Top trace shows the output 

of the photoreceptor, V, and the bottom trace is the response of the emitter voltage of the 

phototransistor, VE (see Figure 2.4). The adapting current flowing onto 'H' is limited by the 

diode-connected tra nsistor, Q4. The data were collected at room tempe rature. 
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Figure 2.21: Response of a single photoreceptor to a step decrease in light intensity from a 

green LED. The LED intensity decreased from 315 mW /mm2 to darkness. Top trace shows the 

output of the photoreceptor, V, and the bottom trace is the response of the emitter voltage 

of the phototransistor, VE; (see Figure 2.4). The adapting current flowing onto W is limited 

by the diode-connected transistor, Q3. The data were collected at room temperature. 
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this calibration via slow adaptation, which is a fundamental component of neural systems. 

The outcome of this process is that any static image, which cannot be differentiated from 

offsets in the detectors, is canceled out . If the image is removed, a negative afterimage 

appears that reveals the pattern of adaptation. 

2.5 Form and Function: Encoding Information with a Phys­

ical System 

The retina, as the first stage in the visual system, provides gain control and image enhance­

ment, as well as transduction of light into electrical signals. The evolutionary advantage 

of this kind of preprocessing is evidenced by the ubiquitous occurrence of retina structures 

in the vertebrates, and even in invertebrates such as the octopus . From an engineering 

viewpoint, the center-surround receptive field encodes visual information in an optimal way 

when the a,tllOunt of correla.tion in the ilnage is large. Using measures derived from infor­

mation theory, several investigators have provided a definition of visual information and 

examined the efficacy with which the retina transmits this information to the brain [1, 32J. 

These analyses show that the retina makes highly efficient use of the bandwidth of the optic 

nerve and adapts its encoding to be appropriate at different light levels. The retina devotes 

its lilnited output dynanlic range to transmitting visual information; it excludes redundant 

aspects of the image and minimizes the effects of noise. 

At low illumination levels , the major source of noise is in the phototransducers, which 

are trying to measure a small numbcr of photons in the presence of spontaneous photo iso­

mcrization. Noise is a form of redundancy since, by definition, it contains no information. 

Under these conditions, the receptors themselves average over a larger area by coupling 

to each other and the effects of the inhibitory surround disappear. The retina reports the 

actual light level. 

The silicon retina operates III the photopic region. In photopic lighting conditions, 

redundancy in the image comes from correlations . When the number of photons falling on 

the retina is large, the spatial variation caused by objects of different reflectances is relatively 

small. If the retina simply tried to report the number of photons received as a function of 

position, noise in the output would be confused with the properties of objects and the most 
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Figure 2.22: Comparison of the edge responses oC the Mead and Mahowald retina and the 

adaptive retina. Stimulus was a 0.2 log unit, one-dimensional step in intensity. Data were 

taken by multiplexing the analog responses of a row of pixels perpendicular to the intensity 

edge to a digital storage scope. The current output of the chip was converted to a voltage by 

an off-chip sense ampliAer. The gain of this amplifier, hence the voltage scale of the response, 

is arbitrary. The DC offsets of the pholoreceplors and the output amplifiers appear 8S small 

differences in the responses of different pixels. The s patial averaging areas of the resistive 

grids in both retinas were large. (a) Response of the Mead and Mahowald retina. Top trace 

shows the response to a uniform field. Middle trace shows raw edge response. The bottom 

trace s hows the edge response minus the uniform field response. The position of the edge is 

visible only after performing this differencing operation off-chip. (b) Response of the adaptive 

retina. Top trace shows the response to a uniform field to which the retina was adapted. 

Middle trace shows raw edge response. The edge was centered roughly around the intensity 

of the uniform field. The position of the edge is immediately apparent. 
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apparent feature of neural activity would be the overall illumination level. Instead of taking 

this direct approach , the retina removes much of the redundant information about uniform 

light level and encod es the image as a pattern of changes occurring over particular spatial 

and t emporal scales . The overall illumination level is represented with small variations in low 

spontaneous firing rate, which occur over large regions in the image. One could imagine that 

neurons with different spontaneous rates might divide the ambient illumination level into 

different populations, those with sensitive spontaneous rates encoding lower illumination 

levels and those with higher t hresholds being recruited as the illumination level increased . 

Contrast information would be superimposed on this background activity with much higher 

spike rates. This encoding leads naturally to perceptual constancy since the pattern of 

neural activity in response to a particular image is not greatly affected by the constant 

illumination level. 

The constraints imposed by the physical medium determine the way that information 

is represented. The graceful transition between one type of infonnation encoding (scotopic­

mesopic) and another (photopic) is implicit in the biophysics of the retina. It is possible to 

abstract these functions into simple circuits in such a way that major aspects of information 

processing are retained. The description of such a circui t is a COlnpact parruneterization 

of retillal function. For example, the receptive field size of the X-type ganglion cell ana­

lyzed by Atick can be characterized by the strength of lateral electrotonic coupling and the 

strength of the feedback from the hori 7.ontal cells to the photoreceptors. Parameterization 

in circuit terms leads to an understanding of the relationships between functions that might 

otherwise remain disjoint, such as lateral inhibit ion and receptor calibration. Finally, the 

characteristics of the representation that arise from these physical constraints affect further 

processing, as is evidenced by the existence of several visual illusions. 

2.5.1 Wiring 

The center-surround computation is the basic feature of information encoding in the retina. 

In COlnputer vision , a cotumon visual priluitive is the Laplacian filter, which can be approx­

imated by a dift'erence of Gaussians [4]. These filters have been used to help computers 

localize objects; they work because discontinuities in intensity frequently correspond to ob­

ject edges. Both of these mathematical forms express, in an analytically tractable way, the 
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computation that occurs as a natural result of an efficient physical implementation of local 

level normalization. The information processing abilities of the retina are a direct result of 

its physical structure. 

It is possible to generate a center-surround function in a variety of ways. As previously 

shown, the center-surround may be computed by a feedforward or feedback mechanism. 

The surround may be computed using point-to-point wiring [6J or with a resistive net. If 

feedback is coupled with a structure in which multiple nodes are coupled to each other, 

as in point-to-point coupling [6] or two coupled resistive networks, then spatial oscillation 

may result [3J. Although point-to-point connections and resistive networks can compute the 

same functions , the resistive net is more economical in terms of wiring required to create 

the same sized receptive field . A comparison of the wiring density needed to compute a 

receptive field with discrete connections and the wiring requirements of the resistive net 

is plotted as a function of receptive field size in Figure 2.23. In the figure, the wiring 

requirements of the resistive net are constant irrespective of receptive field size. In addition 

to wiring efficiency, the receptive field size can be easily manipulated by changing the space 

constant of the network. 

The retina, like lnany other areas of the brain, Ininimizes wire by arranging the signal 

representation such that as much wire as possible can be shared. The resistive network 

formed by horizontal cells is the ultimate example of shared wiring. By including a pixel's 

own input in the average , we can C0I11pute the weighted average over a neighborhood for 

every position in the image, using the same shared structure. The principle of shared wire 

is found , in less extreme forms , throughout the brain. Computation is always done in the 

context of neighboring information. For a neighborhood to be meaningful, nearby areas in 

the neural structure must represent information that is more closely related than is that 

represented by areas farther away. Visual areas in the cortex that begin the processing se­

quence are ma.pped retinotopically. Higher-level areas represent more abstract information, 

but areas that. are close together still represent similar information. The topographic nature 

of the cortex insures that most wires can be short; it is perhaps the s ingle most important 

architectural principle in the brain. 
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Figure 2.23: Relationship between receptive field size and wire density. The wire density is the 

wire used per pixel and is equal to the amount of wire necessary per receptive field, assuming 

one receptive field per pixel. The pixels are assumed to be in a hexagonal array and the radius 

of the receptive field is in units of the internode spacing of the hexagonal array. The formula 

for calculating the wire required for point.to-point connectivity is: W = 6[Cl:::~= 1 i) + R]. This 

function is quadratic in R. The wire density required for a resistive net (nearcst neighbor 

connectivity) is constant with receptive field radius with six units of wire per pixel. 
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2.5.2 Interpretation of Biological Data 

In the previous sections, an argull1cnt was lllade for adopting the principle of center-surround 

organization in sensory systems, both biological and man-made. An engineering approach 

to interpretation of biological function leads to new appreciation of the biophysical details 

of retinal processing. 

The retina executes a center-surround computation at the level of the cones by means 

of feedback from the horizontal cells [2j and again by feedforward synapses onto the bipolar 

cells [38j. As in the silicon retina, the feedback from horizontal cells to cones balances 

the current from light-sensitive channels with the average photo current computed by the 

horizontal cells. 

Biological systems do not have direct access to either current sources or voltage sources. 

Instead , they perform most of their computations by modulating the amplitudes of conduc­

tances. One InajaI' diH'crcnce between biological neuronal elements and CMOS transistors 

is the ohmic behavior of illdividualtnctnbrane channels. The current through a transistor 

biased in subt.hreshold is exponential in the gate voltage and, for voltages greater than a 

few k;, it beha.ves as an almost perfect current source with respect to the voltage across 

its terminals. The n'umber of channels open in a biological membrane is some function of 

voltage across the I11embrane or of neurotransmitter, either exponential or sigmoidal. In 

addition, the current through an open channel is linear in the driving potential across it. 

The l11odulation of a conductance is an essentially nonlinear operation. Because the 

biological system modulates conducta.nces in the membrane, it is a challenge to keep the 

space constant of the horizontal cell resistive network fixed while input from the cones 

is presumably changing with light level. It is important that the spread of activity in the 

horizontal cell network remain unchanged as a function of the background illumination level 

if the center-surround characteristics of the bipolar cells is to remain fixed. The biological 

retina has corne up with clever Inechanisn1s to c0111pensate for its own nonlinearities, thus 

giving the appearance of a linear systeln. 

It is known that the cones hyperpolarize and decrease their release of transmitter in 

response to light. The cone transmitter, probably glutamate, holds open a depolarizing 

conductance in the horizontal cell membrane [8j. In the light, this conductance decreases 

[36], thus hyperpolarizing the horizontal cell. One expects that the increased membrane 
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resistance of the horizontal cell would result in a larger electrotonic spreading distance, L, 

resulting in a larger receptive field. However, in turtle [5] and cat [24] the spreading distance 

of the horizontal cells appears to he, if not constant, then decreasing slightly with increased 

ambient illumination. 

One straightforward mechanism for keeping the space constant constant is to mediate 

changes in potential with a resistive voltage-divider mechanism that operates on a push-pull 

basis, one conductance increasing while another is decreasing. Lasater and Dowling [8] have 

found evidence for a potassium channel in isolated carp horizontal cells that closes in re­

sponse to L-glutaInate. This channel would act in concert with the sodium sensitive channel 

to keep the membrane resistance of the horizontal cell constant. Thus the spread of voltage 

in the network should follow an essentially linear passive electrotonic decay irrespective of 

light level. 

However, In any expcrilllcnts demonstrate that a linear model fails to account for the 

response properties of horizontal cells. Measurements of the spread and summation of 

signals in cat horizontal cells [16] have shown that the best-fit estimate of the passive space 

constant depends on whether a slit or a spot StilllUlu8 is used. In addition, the space 

constant appem·s to he a function of time [16 , 5] . Experiments in which the memhrane of 

the horizontal cell has been artificially polarized [36, 4] show that impedance is a nonlinear 

function of mClnbrane voltage. 

Several mechanisms for how these phenomenon might occur have been proposed, such 

as nonlinear gap junction resistance [33] and nonlinear voltage-dependent conductmlces in 

the non-synaptic horizontal cell membrane [4]. There is no evidence for gap junctions with 

intrinsically nonlinear conductance properties. Gap junction conductance is modulated by 

the release of dopamine, probably from interplexiform cells [7]. However, this process, 

which relates to retinal light adaptation, is too slow to account for the observed temporal 

changes in the spread of signals in the horizontal cells. Evidence for a voltage-dependent 

conductance in the non-synaptic membrane of the horizontal cells has been obtained for the 

lnost part by experilnents in intact retinas, in which the network properties could not be well 

controlled [36 , 4]. Evidence against a voltage-dependent conductance has been obtained in 

the L-type horizontal cells of the carp retina [13] . These cells receive input from two types 

of cones, red and green. The spread of activity in the horizontal network is dependent on 
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Figure 2.24: A simple model of a single photoreceptor in a feedback loop with a single hori­

zontal cell. 

which type of cone was activated, irrespective of absolute voltage level. Karnermans et al. 

modeled this effect using a network with different strength feedback from the horizontal 

cell to each type of cone. The feedback to the cones influences the spread of activity in 

the horizontal cell network [13J . Kamermans's elegant simulations suggest a role for future 

experilllcntation on the silicon retina. 

In the silicon retina, the feedback contributed an additional effective conductance to the 

horizontal cell network. This effective conductance was mediated by changing the voltage 

source that was driving the network. A simplified model of the analogous situation in the 

biological retina is shown in Figure 2.24. 

In order to 11laintain a. unifol'll1 space constant, the effective impedance of each node 

lTIUst rClnain invariant. The crux of this model is to divide the effective impedance into two 

components, one due to mCI11brane conductance and the other due to the relation between 

the photoreceptor and the horizontal cell. 

This analysis leads to a set of non-linear partial differential equations for the synaptic 

efficacies of the excitatory and inhibitory synapses between the horizontal ceJls and the 

photoreceptors as a function of presynaptic voltages. A simulation technique using discrete 
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Figure 2.25: Modulation of input impeda nce by feed back. (a) The volta ge, V, oCthe photore­

ceptor (left) is set by a balance between the conductance due to light, gL, and the hyperpolar­

izing conductance modulated by the horizontal cell, gp [U]. The voltage, U, of the horizontal 

cell (right) is se t by a balance between the passive m embrane conductance, gm- Conductance 

is the s lop e of th e line on the current-voltage plot . (b) When a t est current 61 is injecte d into 

the photoreceptor (left) or horizonta l cell (right), until a fixed 6V is produced, some of the 

c urrent is absorb ed by the change. in conductance produced by the action of the feedback loop 

from horizo nta l cells to photoreceptors. 
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steps was developed by Lloyd Watts was used to examine the simplified case in which current 

is injected into the the photoreceptor. The horizontal cell interactes were lumped into a 

black box, so the conductance gp changes as a function of V. From an initial starting point 

with gL=gp=O.Ol, a fixed amount of current Ii"j was injected into the photoreceptor. The 

conductance gp was adjusted so that the change in V was constant . In order to take the next 

step in the iteration, the iujected current was removed and the light-sensitive conductance, 

gL was adjusted to maintain the voltage V that was developed in the previous step. The 

results are plotted in Figure 2.26. The actual conductance changes by a factor of 100 but 

the effective conductance evaluated at a particular 8V and Iinj remains constant. 

This simulation demonstrates the qualitative effect of feedback on modulating the ef­

fective input conductance of a node. When the physical conductance values are small, the 

feedback must be large in order to maintain a constant input conductance. When the physi­

cal conductance values are large, the feedback must be diminished. This result is consistent 

with the observed shift in relative strength of the center and surround component of the 

receptive fields in the retina as a function of light-level. At high light levels (low conduc­

tance values) the surround component is prominent, implying large amounts of feedback. 

At low light levels (high conductance values) the surround component drops out, indicating 

that there is no feedback. This change in the balance of center surround is predicted by 

inforIllation theoretical argUlnents about optimal encoding of visual information at differ­

ent light levels. The modulation of synaptic strength is a simple parameter that is able to 

generate the required changes in a resistive network architecture. Further work is necessary 

to determine if the input impedance of both the photoreceptor and the horizontal cell can 

be held constant by the same mechanism simultaneously. The implications of 

this model extend to spatial summation in two dimensions [16, 13], and dynamical changes 

in space constant [5 , 16J. The interaction of spatial and temporal factors in the feedback 

retina is complex and Ilil.S not yet been explored. curious dynamical behavior has been 

observed in vertebrate OPL. Changes in the spread of activation in a gap junction coupled 

cell syncytium have been observed in turtle [6, 5J. This response has been attributed to 

voltage-sensitive channels [6J and modeled as an inductive element in the cell membrane. 

However, a delayed feedback mechanism is another possibility [5J. This system illustrates 

the importance of models in the interpretation of data. The behavior of a neuron embedded 
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Figure 2.26: Conductance, 9p, as a function of photoreceptor voltage. Although the actual 

conductance is changing, the effective conductance of the photoreceptor defined as a specific 

change in potential for a fixed magnitude of injected current is constant. The large change in 

conductance when the voltage output is small compensates for the small actual conductance. 
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in a network cannot be taken as evidence for intrinsic membrane channels without careful 

consideration of the alternatives. I believe that silicon retinas are effective modeling tools 

in this area and that future silicon modeling efforts will lead to a deeper understanding of 

these phenomena. 

Few experiments have been done on light adaptation as relates to the function of the 

retinal network. However, the silicon retina suggests that cone adaptation serves to can­

cel out inter-cone variability. Cone adaptation is mediated by the intracellular calcium 

concentration, which is a function of the number of light-sensitive channels that are open 

[26J. This number is in turn a function of the potential of the cone, due to the divalent 

cation block of the channels. This voltage-dependence allows the electrical feedback from 

the horizontal cells to affect the chclnical concentration of calcium that determines the 

state of light adaptation in the cone. The voltage-dependence of the current through the 

light-sensitive channels is unique to cones, which do receive feedback from the horizontal 

cells, and is absent in rods, which do not receive horizontal cell feedback. The functional 

significance of the voltage-dependence of the cone channels is unclear. Yau and Baylor [39J 

sta.te, "It is possible that the peculiar current-voltage relation of the cone conductance has 

a deeper significance that has not yet been appreciated." The silicon retina has suggested 

one functional property of this conductance may be a method of inter-receptor calibration. 

As in the silicon retina, cone light adaptation serves not only to get the cone into the proper 

operating ra.nge, but it cancels out differences between adjacent cone responses through the 

feedback action of the horizontal network. 

2.5.3 Visual Illusions 

The brain interprets retinally encoded information to create a model of the objective world. 

This process remains largely mysterious. However, visual illusions provide some hints about 

the interaction between retinal output and cortical processing. When the brain perceives an 

illusion, it is in SOlne sense confusing the real stilTIulus pattern and another possible stimulus 

pattern; what one sees looks like something else. In fact, the output of the silicon retina 

correlates well with several well-known visual illusions, such as the simultaneous contrast 

illusion (Figure 2.27 and Figure 2.28), Mach Bands (Figure 2.29), a.nd the Hermann- Hering 

grid illusion (Figure 2.30-Figure 2.35). The center-surround encoding process maps the 
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illusory input to an output that looks like the illusory percept. 

There are some cases in which the retinal responses to the illusory stimulus and the 

actual stimulus are identical. For example , in retinal afterimages (Figure 2.36-Figure 2.39) 

the response to the removal of the image to which the retina has adapted is identical to what 

the retinal response would be if it had been adapted to a uniform field and then presented 

with the negative image. The extent to which the identity between the illusory stimulus 

and an actual stimulus exists at the output of the retina indicates the relative role of retinal 

and cortical processing in producing an illusion. 
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Figure 2.27: The stimulus to produce a simultaneous contrast illusion. The stimulus consists 

of two identical grey rectangles placed over backgrounds of opposite contrast. The grey square 

surrounded by black looks brighter than the grey square surrounded by white. 
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Figure 2.28: The response of the silicon retina to this stimulus. The retina encodes the sign 

of the contrast , which is positive (bright) for the grey square on black and negative (dark) for 

the grey square on white. 
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Figure 2.29: Mach bands are illusory bright and dark bands that appear at the edges of an 

intensity ramp. The positions of the illusory bands correspond to the positions where the 

the first derivat.ive of the intensity is changing. Because the retina performs a second-order 

filtering of the image, changes in the first derivative of intensity are enhanced. (a) Ramp 

stimulus illustrates the (unction of a second-order filter. The solid line indicates the intensity 

profile of an ideal Mach-band stimulus. The dashed line is the weighted local average of the 

intensity. The difference between the local average and the point intensity is the output of 

the retina. The magnitude of the difference is large at the point in the image where the first 

derivative is changing. 

(b)Response of a pixel to ramp stimulus. This stimulus is a shadow cast by an opaque sheet 

between an extended light source and the image plane. The stimulus is moved over the retina 

in 50-mic.'on steps. The enhanced response at the edges of the ramp is due to the second-order 

behavior of the retinal response. The shift in DC value across the response is due to intensity 

variation as the light source approaches the pixel. 
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Figure 2.30: The HelTing gloid illusion appears 8S grey spots at the intersection points of 

a square grid viewed at the correct distance. The center-surround receptive fields of the 

retina compare the average int.ensity in the surround (dotted outline) to the intensity in the 

center (solid outline). The neighborhood of the intersections contains more white space and 

so reduces the apparent brightness of the intersection itse lf. 
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Figure 2.31: Output of the silicon retina. When the center is roughly the size of the white 

space and the surround is mode rately sized, the positive output of the pixels centered at the 

intersections of the grid are smaller than the outputs of pixels in the boarders. At this viewing 

distance, this diminished output is interpreted by the brain as dark spots in the intersections. 
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Figure 2.32: When the surround is large relative to the grid then the retina reports the 

image intensity reference to the average grey leve l. T h e spread of activity in the resistive 

network is large enough that the average is the same everywhere in the image. 
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Figure 2.33: Response of the retina to grid stimulus when the averaging distance in the 

resistive net is very large. In this configuration, the resistive net is essentially reporting the 

global lighting conditions. The output is not edge-enhanced; intensity is reported relative to 

the global average. 
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Figure 2.34: When the center and surround are small relat.ive to the grid, then the edges are 

enhanced. In this viewing condition, no illusion is perceived, although the mechanism used 

by the brain to interpret the retinal output is unknown. 
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Figure 2.35: Response of the retina to grid stimulus when the center of the receptive field is 

small compared to the width of the grid. The center lines of the grid are neutral gray except 

at the outermost edges. 



72 

Figure 2.36: High-contrast line drawing of Abraham Lincoln used to illustrate the formation 

of after-images by the feedback retina. 
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Figure 2.37: Response of the retina to the stimulus shown in Figure 2.36. The image is 

positive and edge-enhanced. 
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Figure 2.38: After 2 minutes, the response has faded due to photoreceptor adaptation. 



75 

Figure 2.39: When the image of Lincoln to which the retina has adapted is replaced by a 

uniform intensity pattern, a netative contrast afterimage appears. 
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2 .6 Summary 

The primary task of the retina is to produce meaningful output in a wide range of lighting 

conditions. It must do so within the constraints of its own physical medium. The power 

supply limits the output range and the resolution within that range is limited by noise 

and device imperfections. Furthermore, the nature of optical projection requires that the 

transducing surface form a two-dimensional sheet with detector-packing density limiting 

resolution. The solution to this problem under these constraints leads naturally to lateral 

inhibition via a resistive network. 

The silicon retina is a simple physical structure similar to the vertebrate retina. The 

resistive network computes with minimUlll wire density a spatiotclnporai average that is used 

as a reference point for the system . By feedback to the photoreceptors, the network signal 

balances the photoClIlTCnt over several orders of 1l1agnitude. As the surround Inechanism 

for the bipolar cell receptive field, the horizontal cell also computes the gray-level (zero) 

for retinal output. The silicon retina's response to spatial and temporal changing images 

captures much of the complex behavior observed in the OPL. 

Analysis of the silicon retina highlights the role of active processes in controlling signal 

spread in the horizontal network. A comparison between the silicon retina and the biological 

retina suggests a dual role for the voltage sensitivity of light-gated channels in the cone; the 

voltage-sensit.ivit.y maillta.ins t.he cfl'cctive conductance of the active feedback and provides 

a means of inter-cone calibration through calcium adaptation. 

Physical constraiuts on the operation of the retina detennine the way in which infor­

mation is represented. This point is of further biological significance because the encoding 

affects later stages of visual perception. The real-time two-dimensional output of the sili­

con retina illustrates the relationship between lateral inhibition and several visual illusions. 

From an engineering viewpoint, the efficieJlcy with which the retina encodes visual infor­

mation encourages a rc-cvaluation of tbc way in which image data are transmitted. The 

silicon retina has inspired the development of a novel protocol for efficient transmission of 

neural-like sig""ls between chips, which is described in Chapter 3. 
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Chapter 3 

The Silicon Optic Nerve 

3.1 Introduction 

Communication between neuronal elements is a principal limiting factor in the design of 

VLSI neuromorphic systems. This fact is not surprising considering that a large fraction 

of the volume of the nervous system is composed of myelinated axons. The degree of 

convergence and divergence of single neurons is staggering in comparison with man-made 

COlnputers. It might appear impossible, even in principle, to build such structures in VLSI 

circuits , which are limited to an a.lmost two-dimensional plane of silicon. Surprisingly, the 

cortices of the brain arc nearly two dimensional as well. In fact , it has been shown that 

the degree of connectivity in a systcln whose wires occupy space cannot be increased by 

employing a structure in which nodes are arrayed in three dimensions [27J . There is nothing 

fundamental about the structure of neural tissue that cannot be embedded in silicon. The 

thickness of cortical structures can be represented with a correspondingly larger silicon 

surface area. However , silicon surface area is avai lable on small die, which are several 

millimeters on a side and so the number of neurons that can be fabricated on a single die 

is limited. Consequently, connections between silicon neurons located on different chips are 

essential for bui lding even moderately sized artificial neural systems. 
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3.2 Summary of Existing Techniques 

The degree of connectivity and the real-time nature of neural processing demand different 

approaches to the problem of interchip communication than those used in traditional digital 

computers . VLSI designers have adopted several strategies for interchip communication in 

silicon neural networks . Each strategy has advantages and the choice of method depends 

on which factors are most crucial to the system. 

One of the most literal approaches to interconnecting processing nodes has been adopted 

by Paul Mueller's group [19). Mueller uses a direct physical connection between nodes on 

different chips through a cross-bar switching array. A major advantage of this approach is 

that it allows continuous time communication between nodes. In addition, the switching 

arrays provide flexible connectivity and can be programmed digitally by a host computer. 

The system is able to handle large connectivities because the dendrites of a single artificial 

neuron can extend over multiple chips. However, this approach requires many chips to 

Inodcl even a small number of neurons. The number of artificial neurons on each output 

chip is limited to roughly half the number of pins that are avai lable. Current technology 

supports 84-pin grid arrays, and in the ncar future will be extended to 128, meaning at most 

64 neurons per chip. A further disadvantage of this design is that, in order to acbieve a 

reasonable degree of matching between the analog performance of the different chips in the 

SyStC111, the transistors arc llsed in their above threshold regime, where power dissipation is 

great. 

Some applications, s tich as sensory transduction (16) in which the si licon surface acts as a 

sensory epithelium, require many neurons to be placed on the same chip. The total number 

of neurons in such a structure greatly exceeds the number of pins avai lable for transmitting 

their outputs to ofl~chip targets. The standard approach to resolving this difficulty is to 

satnplc and tl'ansrnit the states of the neurons in sequence. In this case continuous tilTIC 

comlnunication must be sacrificed ill order to time-multiplex the outputs of many neurons 

onto a small number of wires. The output of each neuron is sampled and tra.nsmitted for 

a brief time. The speed at which data can be transmitted determines the frequency above 

which information will be lost due to temporal aliasing. 

Traditional multiplexing schemes arc serial access. Each node is polled in fixed sequence 
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and its output sent off-chip. Each time slot is allocated to a particular node and the receiving 

device must be synchroni zed with the sending device in order to preserve the identity of 

the transmittiug node. Most multiplexing schemes rely on a global clock to perform this 

synchronization. Global clock signals may be skewed to the point of dysfunction if the chips 

comprising the system are too far from each other. 

The choice of multiplexing technique depends on how the neural elements in the system 

encode information. Some systems use analog-valued outputs, which encode several bits of 

information on a single wire. In analog multiplexed systems, the receiver chip samples the 

data stream and holds the data in a buffer until the next frame [10 , 18J . This approach 

is particularly useful for iuteracting with video equipment as such equipment is designed 

to work with analog-valued image frames [26J. However , analog data transfer is difficult 

betweeu chips, in part because the analog data are easily perturbed by noise due to mul­

tiplexing. More importantly, the variations in the parameters of fabri cation on different 

wafers means that different chips will have disparate interpretations of analog voltages. 

These difficulties are avoided by transmi tting digital amplitude signals. 

Doth synchronous and asynchronous techniques have been used to time-multiplex digital 

am plitude data [20J. Digital signal transmission can be very fast because the settling time 

for an a.nalog atnplificr is avoided. Furthermore, digital signals are noise resistant and 

independent of va.riations in fabrication parameters. Synchronous transmission of multiple 

bits of information has the drawback that synchronous switching of many elements causes 

noise on the power supply. Asynchronous serial digital comlnunication Inethods in which 

the duration of the digital pulse encodes several bits of information have been used [3 , 20J. 

In the voltage-controlled-oscillator encoder used by Murray and collaborators [20 , 3], the 

duration of t he pulse is inversely proportional to the analog value of the output. Rather 

than using a global clocking lllcchanis lll to allocate specific time-slots to particular nodes, 

the identity of the scnciillg neuron is determined by its position in the pulse stream. The 

node position is computed from the number of transitions in the stream itself. The pulse 

strealTI provides its own clock. The pulse streanl technique uses tinle to encode analog state, 

rather than to cornnll111icate explicitly temporal inforn1<.l.tion. 
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3.3 The Address-Event Representation 

The interchip communication protocol that we have developed is an asynchronous digi­

tal multiplexing technique which uses an address-event representation. The address-event 

representation has much in common with the action-potential representation used by real 

neurons. Like neuronal action potentials, events in this system are stereotyped digital am­

plitude events and the interval between events is analog. Information is encoded in the 

time between events. The principle of this encoding scheme is that N axonal fibers, with 

one active at a time, can be replaced by (1 + log N) wires, willch are simultaneously ac­

tive. Several fibers in a real nerve bundle may be simultaneously active and so violate the 

encoding condition. This situation can be dealt with in the address-event representation 

by making the event duration very short (approximately 1 ,<second) compared with the 

width of neural action potentials (approximately 0.5 millisecond). Short-duration events 

have 81na11 opportunity to overlap. Since, as in a real neuron, the InaxilTIUlll firing rate of 

a node is limited , even if events from several nodes did occur synchronously, they could be 

arbitrarily arranged so that they occulTed in close succession with little loss of information. 

The address-event representation is illustrated in Figure 3.1. The neurons in the sender 

array generate a temporal sequence of digital amplitude events to encode their output, 

a representation conceptually equivalent to a train of action potentials. Each neuron is 

associated with a digital address which uniquely identifies it. Whenever a neuron signals 

an event, the multiplexing circuitry broadcasts that neuron's address on the inter-chip data 

bus. The nodes have a refractory period that limits the frequency at which they can issue 

events. The inter-event interva.l at a neuron is much longer than the tilne required to 

broadcast the neuron 's address. Therefore, many addresses can be multiplexed on the same 

bus. The receiver interprets the broadcast of the address as an event that corresponds to 

the occurrence of an action potential from the neuron identified by that address. For this 

reason , we have nalllcd our COlllI11Unication code an address-event representation. 

Although I have chosen to transmit only the neuron address, which corresponds to a 

digital alnplitucie event, it is possible in principle to use the address-event representation 

to transmit explicitly analog signals. In such a system, the address would be transmitted 

along with one 01' more analog values associated with the identified pixel. The pixel would 
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Figure 3.1: The address-event representation. Self-timed neurons on the sending chip gener­

ate trains of act ion potentials. T he neurons request control of the bus when they generate 

action potentials and are selected to transmit their addresses by the multiplexing circuitry. 

A temporal stream of addresses passes between the sender chip and the receiver chip. This 

temporal stream is decoded by the receiver into trains of act ion potentials that reach their 

proper postsynaptic targets. The detailed timing of the events is preserved. 
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make a request to transmit the analog data when some control signal indicated a threshold 

had been passed. 

The address-event representation is designed to provide high-bandwidth communication 

between large arrays of neuron elements. Time-multiplexing is the only way to transfer 

data from several thousand output nodes within the pin limitations of existing packaging 

technology. The premise underlying the address-event representation is that the channel 

bandwidth should be devoted to the transmission of significant signals. For example, the 

silicon retina [16J has roughly 4000 output nodes. Conventional scanning techniques require 

that each node be sampled once every frame. Since the retina generates output only at 

areas in the image where there is spatial or temporal change in the image, most of the 

nodes will have almost no output, but are sampled anyway. The address-event protocol, in 

contrast, is data driven. Ollly pixels that have something to report are transmitting their 

output over the da.ta. bus. Therefore, areas of uniform illUlnination do not contribute to 

the communication load. A further major advantage of the address-event communications 

framework is that it minimizes temporal aliasing by transmitting events as they occur. It 

need not introduce the degree of sampling inherent in a sequential scanning technique. At 

low data rates, the bandwidth of the bus is completely devoted to accurate transmission of 

relative titning of events. 

3.3.1 Model of Data-Transfer Timing Efficiency 

The temporal efficiency of a tmditional, sequentially scanned data-multiplexing system is 

easy to evaluate because it is exclusively a property of the machine and not a property 

of the data. The data will occur at random within the frame, and so the average error 

introduced by waiting to scan the data out of the array is half a frame time. The frame 

time increa.ses linearly with the number of elements in the array. 

Since the address-event communications protocol specifically synchronizes data transfer 

with the timing of the data, the details of timing efficiency cannot be analyzed without a 

model of the data to be transmitted. However, an analysis of the average behavior of the 

system can be performed by assuming that the elements in the array are initiating data 

transfer requests independently of each other, each at some rate. 

A simple model is shown in Figme 3.2. In this model, all of the elements in the array 
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data sent 

free waiting refractory 

Figure 3.2: Model of the address-event data transfer process. Each sending neuron can be in 

one of three state, free to generate an event, waiting to transmit an event that it has already 

generated, or refl'actory, having just transmitted an event. 

are initiating requests at the same rate, cr, which has units of events/unit time/elclnent. An 

element can be in one of three states: it can be free to initiate a request, it can be waiting 

to have its da.ta transmitted, or it can be in a refractory state. The refractory period is a 

time in which the element is prohibited from making another request for data transfer after 

it has successfully tnmsmitted an event. This send time plus the refractory period sets the 

absolute Inaximum event rate that an clClTICnt can attain. Since all of the elements must 

be in one of these three states, t.he sum of the clements in all of the states is equal to the 

total number of elements . 

N=f+w+r 

where N is the total number of clcrncnts, f is the nUlnber free, W is the number waiting 

and r is the number refractory. The equations governing the lTIOVements of elements from 

one pool to another a.re: 
df r 
- = -af+­
dt Tr 
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dw { al _..L if w ;?: 1 
= T, 

dt al - J!!.) if 0:5 w :5 1 T, 

dr {--'- +..L _ = 'T.. Tp 

dt _-'- + J!!. 
Tr Tp 

if w ;?: 1 

if 0 :5 w :5 1 

None of the pools is allowed to contain a negative number of elements. Elements move 

from the free pool to the waiting pool at an average rate of al. The waiting elements are 

serviced one every T p , the data transfer time. If there is less than one element wai ting on 

average, the event will be transmitted as soon as it occurs. Of course, the time between 

events is longer, which is reflected in the equations when 0 :5 w :5 1. Elements enter the 

refractory pool as they arc serviced. They leave the refractory pool and re-enter the free 

pool at a. rate t, the IllllTlbcr of ClClTlCnts that are refractory divided by the refractory tinlC. 

This term depends on the system having reached steady state, so that the elements are 

hopping in and out of the refractory pool at the same rate. If events stopped entering the 

refractory pool, all of the elements that were in the pool would be gone after one refractory 

time, T r , had elapsed. Therefore, in time dt, ~ fraction of them will leave the refractory 

pool. 

In steady state, all of the derivatives arc zero, and the solutions for wand T become: 

When the data rates are low, a is small, and w :5 1. When the system is operating within 

its design limits, the total number of events generated per second, No, is smaller than the 

data transfer rate, ..L. If the refractory period is fairly short, the equations for w and r 
T" 

have denominators approximately equal to 1. The number of neurons waiting is just equal 

to the number of events in one da.ta transfer time, and the number of neurons refractory is 
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Figure 3.3: Comparison of address-eve nt data transfer timing error with that of a serial 

scanning system. Ordinate is the average event-rate of the neurons in the array. Coordinate 

is the average waiting time for the transmission of the event. 

just equal to the number of events in one refractory time. At these d ata rates, the system 

functions ideally and ba.rring correlations in the data strcruTI, each event is transmitted as 

soon a.s it is generated. 

When the data. ra.te is high , there is more tha.n one element waiting to transmit its data. 

In this case, the refractory period is holding as many elements as it can , which is :fr. If the 
T, 

refractory period is so large that N events can be transmitted in one refractory time, the 

number of neurons waiting must be none, because they ca.n be serviced as soon as they fall 

out of the refractory state. At higher rates, the system fails gracefully, since the neurons 

that cannot be serviced are taken out of the pool that is free to generate new events and 

placed in the waiting pool and the refractory pool. 

If the neurons arc selected l.'Lt random from the waiting pool, W , then the mean waiting 
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time will be 2WTp. In the implementation of the address-event communications framework 

described in this chapter, the data transfer time, Tp , scales logarithmically with the number 

of neurons. A comparison of a sequential scanning system with the address-event system 

is shown in Figure 3.3. The mean event delay is plotted against the events per second 

generated by each neuron; tinlc is given in units of seconds. The data transfer titne, 'Tp ! is 

1 microsecond. This plot shows the data rates for which the address-event protocol gives 

shorter time delays than sequential scans. The sequential scan data transfer rate per pixel 

is estimated to be 0.05Tp . The refractory time is set to (N /4)Tp. This plot shows that the 

data transfer delay in the address-event system is much better than that in the sequential 

SCan system when the data rate is less than the critical value, after which the address-event 

sYStC111 bccOlncs rapidly worse than sequential scan. As mentioned previously, this model 

does not take into consideration correlations between events either due to random chance or 

correlated input . It simply illustrates the maximum allowable data rate for the system. The 

critical point is reached when the number of events generated per second is larger than the 

number of data transfer times per second. The refractory period can absorb some neurons 

so that , at the point of failure, the number of neurons that are free to generate events at 

rate c> is N - Tr/Tp- When the system fails , it simply transmits data as quickly as it can, 

but all of the neurons may be waiting to send more data. If the system briefly exceeds the 

maximum spike rate, the neurons enter the wait ing queue and are rClnoved when their data 

are transferred. Transient periods of high spike rate cause a loss of temporal resolution, but 

do not calise irrevocable failure. 

This model is over-simplified in several respects, one aspect being that the data are 

unlikely to be evenly distributed over all of the clements in the system. The model can 

be extended to include several sub-populations of elements generating events with different 

rates. Each sub-population follows its own conservation law: 

where N .. is the number of neurons in the sub-population that generates events at a rate, ai 

events/second /element. The total number of clements is N = 2: i = IMNi, where M is the 

number of different sub-populations. The populations are coupled together by the fact that 
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they arc serviced by a common data transfer mechanism. If this mechanism is unbiased 

then the equations that govern the distributions of elements within each population are: 

dWi 
--= 
dt 

d/; r; 
dt = -01;/; + Tr 

if W; :::: 1 

if 0 ::; W; ::; 1 

if W; :::: 1 

if 0 ::; W; ::; 1 

Once again, none of the h, Wi, or Tj is allowed to be negative. This system is nOll-linear in 

the case of 0 ~ w 5 1, and is difficult to solve. Some progress, however, can be made in the 

case where 'W :::: 1. Setting all of the derivatives equal to zero gives: 

L t W Wj e = ,,>t . 
L.d,= 1 WI.-

1 Tr 
W N; = (- + W + - )w; 

Ct;'Tp 'Tp 

Rearranging to solve for Wi yields: 

WN; 
Wj = ~-----'--,,-

-'- + W + "" O;Tp 'Tp 

The fraction of N; that is waiting is larger for the populations that are generating events 

at a higher rate, OJ. 

To calculate the delay time, it is necessary to solve for W. Unfortunately, even with 

such a simplified model, the mathematics once again becomes intractable. The equation for 
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W is polynomial of order M, and can only be solved when M = 2. Summing both sides of 

the previous equation over all the populations gives: 

M M WNi 
~ Wi = W = L -:"1_ -+--'W-=-+-!L=-
1_1 1=1 QiTp Tp 

Dividing through by W gives: 

M 

1- '" Ni 
- L.... _1_ + W +!L 

i= 1 O,Tp r,. 

I have used these equations to calculate the waiting time for event transfer in one 

systeul in which I intend to usc the address-event cOlnmuuications framework namely in , , 
the silicon retina. The silicon retina has roughly 4000 pixels. In a typical image about a 

quarter of them are activated above the spontaneous level. The spontaneous rate for our 

silicon neurons is 15 Hz and a fast event rate is 300 Hz. The refractory time of a neuron 

is about 1 millisecond. The data transfer time measured for the system described here is 

Tp = 2 x 10- 6 With these parameters, there is no queue for data transfer. The average 

nUlnbcr of spikes/second/neuron is 86, which is within the working range for the event­

address system depicted in Figure 3.3. This estimate does not account for correlations in 

the image that give rise to correlated firing. However, it does indicate that at these data 

rates, the system is performing as well as it could; it has not reached the domain where 

neurons are not able to generate new events whenever they wish. Used with a system 

that has a sparse activation profile, the address-event COlnlllunication framework is able to 

preserve timing infonnation orders of magnitude better than a sequential scan. 

3.3.2 Advantages of Address-Events 

The address-event representation provides a unifying framework for the construction of 

multi-chip systems. Digital-amplitude analog-time events have been used successfully in 

many silicon neuromorphic systems: auditory localization and pitch perception [11], elec­

trolocation models [12], central pattern generators [21], sensory-motor systems [5], and 

prototype real-time learning systems [14] . These existing chips could be easily integrated 

to form more complex systems by placing them in an address-event design frame. 
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The usc of a digi tal address to specify the identi ty of the sending neuron makes the 

mapping of pre-synaptic signals onto post-synaptic targets extremely flexible because the 

address-event carries its place of origin within itself. Unlike serial-scanning multiplexors, in 

which temporal order is easily confused with spatial position, the address-event can be easily 

decoded into any physical ordering on the receiving chip. The ordering can be specified when 

the chip is designed, particularly if the technique of silicon compilation is used to specify the 

design. Alternatively, the connectivity pattern can be specified dynamically when the chip 

is being tested by using static digital latches. In the latter case, specification of the mapping 

between input and output can be controlled by a host digital computer. The mapping of 

input to output is itself a complex computation in the nervous system [22J and is a task 

more easily performed by com I'" ter than by hand wiring. 

The address-event ITIultiplcxing method bears a close resemblance to the action potential 

representation that is the common coinage of communication in the nervous system. It is 

likely that the underlying reasons arc similar. In an event-based communication scheme, 

the amplitude of a signal is represented by the numbe,· and times of events. Time is the 

srune everywhere in the system, and I1Ulnbcl' is an abstract quantity that is also the same 

everywhere in the systen1. For eXaJuple, a signallnay be at Inaximum value when there are 

200 events generated per second. The actual voltage value that this maximum corresponds 

to may be specified independently for each unit in the system. This normalized encoding 

is useful bec"'lse an actual analog value is difficult to transmit when the ground potential 

is not the same everywhere. The lack of a common ground is like the problem of transistor 

mismatch, which can be modeled to first order as an offset voltage on the transistor gate. 

It is certainly the case in the nervous system that the ground potential is not uniform in 

different areas of the brain. In addition to reducing the impact of such static noise, the 

problem of dynalnic noise on the axonal "wires" is alnclioratcd by using a strongly restored 

signal. 

The richness of this biological representation is not fully understood. Sensory processing 

has been shown in some cases to take full advantage of the event-like nature of the action 

potential. For example, the timing of action potentials in the auditory system is crucial in 

auditory localization [17J. Psychophysical studies indicate that event timing is significant in 

visual stereo and motion processing [4J. Recently, interest in the spatio-temporal processing 
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capabili ties of cortical neurons has given rise to several hypotheses of information processing 

in the brain. For example, it has been proposed that information is encoded as synchronized 

neuronal activities over populations of action-potential generating neurons [8]. This type of 

synchronization cannot be emulated with multiplexing systems whose frame rate is on the 

Salnc time scale as the neural oscillation. 

The choice of representation of information for inter-chip communication is critical be­

cause it determines the way that the system can easily evolve. I believe that this choice of 

representation can lead to the development of silicon systems whose fundamental informa­

tion processing strategies are similar to those of neuronal systems. For example, learning 

based on spatio-temporal processes within the dendritic tree is under investigation [2] and 

may turn out to be a key issue in neuronal information processing. The flexibility of the 

digital address allows individual synapses in an artificial dendritic tree to be mapped to 

their presyn"ptic elements after fabrication. The address-event representation preserves 

the temporal order of events. The role of placement of inputs along the dendritic tree in 

learning spatio-temporal patterns can therefore easily be investigated. If the computational 

primitives arc correctly chosen, the processes of understanding biological systems and of 

building silicon systems are complementary. 

3.4 Data Transfer In One Dimension 

A more complete review of self-timed systems can be found in [23]. A few definitions and 

basic principles arc described here to provide background for the remaining discussion. 

A self-timed system generates its own idea of time, independently of an external clock, by 

keeping track of a sequence of events. The nature of sequence is exemplified by a handshake. 

Like an ordinary handshake, involving two people, a simple handshake involves two chips. 

One chip, the sendc,', initiates the process, by the equivalent of putting forth its "hand" 

initiating a 1·eq'lLest. The second chip, the receiver, must acknowledge the request by "shaking 

hands" with the seneler. To complete the handshake, the sender drops his "hand," removing 

the request , and the receiver drops his "hand" by removing the acknowledge. The system is 

returned to its initial state. Both parties are quiescent until some process within the sender 

initiates another request. The address-event protocol is said to be data d,iven because the 
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Figure 3.4: The hands hake. The INITIATION s'ignal is s trictly within the sending chip, while 

the REQU EST, DATA OUTPUT, and ACKNOWLEDGE s ignals travel between the sender 

and the receive r. A pixel with data to transmit initiates data transfer by prompting the 

sender to make a re ques t. After the sender makes the request, it places the output data on 

the bus without waiting for the receiver to do anything. The receiver acknowledges receipt of 

the d a t a. The initiation signal is reset so the sender drops the request. The data are removed 

from the data bus and the acknowledge is withdrawn. 

initiation of the handshake depends on the neural nodes in the sender trying to transmit 

an event . 

We have fabricated a sender retina with 64 x 64 pixels and a receiver chip with 64 x 64 

nodes in a 2u p-well CMOS process. Data transfer between the retina and the receiver is an 

asynchronous procedure, which is driven by the data generated by the pixels on the sender 

chip. The request initi ated by a pixel begins a cycle of events that results in the transfer of 

that pixel's address to the receiving chip . When the data transfer cycle terminates, the state 

of the system is reinitialized so th"t the cycle is free to occur again when there is another 

data event. This data transfer protocol is illustrated in simplified form in Figure 3.4. The 

protocol used by the im plementation of address-event data transfer descri bed in this chapter 

is based on the absolute voltage levels of the signals, rather than their transitions. 

In this section , the transfer of address-events between one-dilnensional neuronal a.rra.ys 
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is developed. The data transfer process resembles the sequence of events that takes place 

in the generation of an action potential in real neurons. The communications framework is 

described in terms of a simple circuit described by Mead [16J as the "axon hillock" circuit 

which has been used extensively in VLSI neuromorphic systems that use action potential­

like communication within and between chips [11 , 12, 21, 5, 14J. 

3.4.1 The Action Potential 

The action-potential of a neuron is generated by two main currents, the sodium current and 

the potassium current. The sodium CUl'l'ent is activated when the membrane voltage crosses 

a threshold level. It depolarizes the membrane and generates the rising phase of the voltage 

spike. The membrane is repolarized by the delayed potassium current . This function is 

captured abstractly by the basic circuit shown in Figure 3.5. It is like a three-inverter 

oscillator except that instead of being fully connected head to tail, the closing link is split 

into a pull up transistor PP, and a pull down, N A. Since the tail activates the pull-down 

transistor, the oscillator goes through a single cycle and stops. The oscillation, which is 

similar to the generation of an action potential, is equivalent to the data transfer process. A 

single cycle of oscillation (i.e. a single datum transfer) is initiated by the pull up transistor 

PP. 

As a starting point for analysis of the circuit, assume that PP is off and the capacitor on 

the Initiation node is discharged to ground. In this resting state, the Request node is high 

and the Acknowledge node is low. The data event initiating a cycle activates PP, which pulls 

up the Initiation node. In this analysis, we are assuming that PP supplies enough current 

to pull the Ini tiation node well above the inverter threshold before the signal can propagate 

through the oscillator. Because the real system has many stages of delay which have been 

lumped together in the inverting amplifiers in this diagram, the circuit cannot hang in a 

state in which PP is just balanced by N A. (The "axon hillock" circuit was prevented from 

hanging by positive feedback through a coupling capacitor between the Initiation node and 

the Acknowledge node.) When the Initiation node goes high, the signal propagates through 

the oscillator. The Request node goes low and the Acknowledge node goes high, activating 

NA. Assume that NA is stronger than PP, so that the Initiation node is pulled down, 

independent of the gate voltage controlling PP. When the Initiation node is pulled below 
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Figure 3.5: A modified three-inverter oscillator and timing diagram illustrating the sequence 

of events in 8. single cycle of the oscillator. Inverter A is part of the sending chip. Inverter B 

is part of the receiving chip. 

the inverter threshold, that transition cycles through the oscillator, the receiver withdraws 

the Acknowledge and turns off N A. The circuit is now ready to begin another cycle, as soon 

as the Initiation node is charged up again past the inverter threshold. 

The voltages on the nodes of the oscillator arc shown as a function of time in Figure 3.5. 

The Initiation node is ana.logous to the nlcnlbrane voltage of a neuron before an action 

potential is generated. Current is integrated on the Initiation capacitor until it passes the 

inverter threshold. The request, which is amplified by the inverter, is analogous to the 

sodium conductance in an active membrane. The delayed rectifier potassium current that 

repolarized the membrane is analogous to the Acknowledge signal. When the Acknowledge 

node is pulled up, it begins the second phase of the cycle by discharging the Initiation 

capacitor through NA and resets the system to its initial state. In previous applications of 
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Figure 3.6: Address-event communicat ion system with a single neuron and single-bit address 

(I). The output of the A inverter has been split into two halves, one of which is directly 

transmitted to the receiver as the request, the other of which goes back into the neuron to 

reset the neuron's state and places the neuron's address on the data bus. These two outputs 

from the A inverter are recombined on the Receiver to ge ne rate the Acknowledge signal. 

the axon hillock circuit , the action potential waveform was compared to tbe fully restored 

digital signal that has been called the Acknowledge in this discussion. The temporal course 

of the Acknowledge signal is a digital amplitude pulse whose onset is triggered by the 

Initiation node going above the inverter threshold . 

Our data transfer procedure must transfer an address, rather than a single digital am­

plitude pulse. The axon hillock circuit has been adapted to this end. The adapted circuit 

is shown in Figure 3.6. The output of the inverter, A, is broken into two parts to be passed 

on to the Receiver: the select , which places the address on the data bus, and Request sig­

nal, which indicates that the data transfer process is activated . The Request signal is low 

(active) while data transfer is in progress . 

The Receiver, which was originally a simple inverter, has been extended to accept the 

address-event passed on by the sender. The address-event is decoded on the receiver chip 

into a current that stimulates the pos t-synaptic neuron. In addition to stimulating the post-
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synaptic target, the decoded address pulls up on the Acknowledge node. The pull down 

transistor driving the Acknowledge node is turned off because the active Request from the 

A inverter indicates that data transfer is in progress. The successful transfer of an address is 

the culmination of the forward phase of the data transfer cycle. The reset phase is initiated 

by the Acknowledge being pulled high by the decoded address. The Acknowledge indicates 

that data have been transferred. It returns to the Sender and discbarges the Initiation node 

below the inverter threshold. 

3.4.2 One-Dimensional Arrays 

This circuit is generalized to perform event lllultiplexing and translnission for many neu­

rons . A one-dilncnsional sender array is illustrated in Figure 3.7. It is possible to translnit 

events simply a.s they happen; however, when events overlap temporally, spurious addresses 

might be generated. In order to preserve the fidelity of the data witbout simply discarding 

the colliding data, arbitration necessary to resolve contention for the bus. The Arbiter, an 

extension of the A inverter, is responsible for multiplexing events that occur nearly simul­

taneously onto a single data bus by forcing the neurons to take turns sending their data. 

III order to perform its multiplexing function, the Arbiter, described in the next section, is 

extended to have as rnany inputs as there are neurons in the array. Each neuron controls 

its own Initiation node. Several neurons may drive their respective Initiation nodes above 

threshold nearly simultaneously. As in the single pixel case, the output of the Arbiter is 

split into two types, a single Request signal that is transmitted to the Receiving chip, and 

the select signals, one for each neuron in the array. The Request signal is activated when­

ever any event has been supplied to the Arbiter, even if the Arbiter has not selected which 

event to process. In each data transfer cycle, the Arbiter activates a single Select signal. 

The Select s ignal transfers the address of the chosen neuron onto the data bus. 

The address encoder is illustrated in Figure 3.8 for a simple two-bit address with the 

particular value 01. The bits arc added to the address encoder as needed and the layout is 

arra.nged in such a way that 1 's and D's are interchangeable. This encoder was developed 

by J ohn Wawrzynk. The address bits are driven onto the address lines by activating the 

select signal. I have incorporated pull-down transistors at the ends of the address lines so 

that the address goes to all ~eros, which is a null address, when none of the neurons is 
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Figure 3.7: A one-dimensiona l data transfer system. The select signals coming from the 

Arbiter are depicted as coming from the left side of the Arbiter amplifier. T he Request that 

the arb iter transmits to the Receiver is labeled f. 

selected. Since the address lines may take different amounts of time to stabilize and, in 

the process, take on spurious valid addresses, a DATA VALID signal has been incorporated 

into the address encoder. The DATA VALID signal is another address bit whose settling 

time is manipulated by making its pull-down current , through POl , stronger than that of 

the other bits , PD2. The stronger pull down makes the DATA VALID bit to go high more 

slowly than the address bits and also makes it go low more quickly than the address bits. 

When the DATA VALID line is high , the address should have stabilized. The encoder is 

redundant for this application since the bits that are low in the address are already pulled 

down. 

The Receiver is generalized so that the Acknowledge signal can be pulled up by the 

receipt of any valid address. The address is decoded by a circuit shown in Figure 3.9. This 

example shows the decoding of the address 01 , corresponding to the encoder in Figure 3.B. 

The decoded address pulls up directly on the Acknowledge node. The Acknowledge node is 

a wired-OR structure. The Acknowledge signal returns to the Sender and marks the reset 

phase transfer process. 
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Figure 3 .8: An address encoder for the address 01 with a DATA VALID bit. The DATA 

VALID pull-down is biased by a DC voltage POI and the pull-downs on the address bits are 

biased by a DC voltage P02. The expected time course of the DATA VALID signal relative 

to that of the address bits is shown below. 
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Figure 3.9: An address decoder for the address 01 with an additional DATA VALID bit. The 

decoded addl'ess pulls up directly on the Acknowledge node. 
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In a one-dimensional system, the Acknowledge need only reset the initiation node of the 

neuron whose data were transferred. The reset transistor, NA, shown in Figure 3.6, may 

be put in series with a gating transistor that allows current to flow only when the neuron 

is selected. This implementation is particularly space efficient because part of the data 

processing of the neuron can be incorporated in the data transfer machinery. The initiation 

node is analogous to the membrane capacitance of a biological neuron. The membrane is 

hyperpolarized by the delayed-rectifier potassium current even though the synaptic input 

(the current through the PP transistor in Figure 3.6) is still flowing. The discharge of 

the initiation node terminates the data event from that neuron. This implementation is 

also temporally efficient because events from other neurons that occurred during this data 

transfer period and have propagated some distance into the Arbiter can be selected with 

l11inin1Ulll dela.y because they a.re not reset. However, some consideration must be given to 

the method of distinguishing individual events, since there will be no reset signal from the 

Arbiter to remove the Acknowledge between events. I have not implemented such a system. 

The implementation described in this chapter is conservative . The entire state of the 

system is reset at the end of each data transfer cycle. In this implclnentation, the Acknowl­

edge signal returns to the Sender and resets all of the Initiation nodes. This protocol is 

necessary for generaliza.tion to arbitration in two dimensions. When all of the Initiation 

nodes have been reset, the Arbiter reinitializes itself. Upon reinitialization, the select signal 

is terminated and the Request signal from the Arbiter goes high, indicating that there is 

no data transfer in progress. When the select signal is terminated, the data are removed 

from the bus. Although the Acknowledge is no longer pulled up by PR, it will remain high 

until it is pulled down by the withdrawal of the Request. The Arbiter ensures that the 

Request signal will not be withdrawn before the select is terminated. When the Request 

signal is withdrawn, the state of the enti re Arbiter has been initialized. At this point, the 

data transfer cycle is completed, the Acknowledge goes low, and the Initiation nodes can 

once again be a.ctivated by the neurons. 

Because the Acknowledge must reset all of the initiation nodes, a problem arises that 

was not evident when only a single neuron generated events. The problem is that the system 

111USt keep tra.ck of which neuron has succeeded in broadcasting its address in such a way 

that it docs not send the same data more than once and that it docs not crase any data that 
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arc still waiting their turn to be transmitted. TILis problem has several possible solutions. 

The one described here is suited for extension to two-dimensional arbitration. 

The problem of deciding who has transmitted data is solved in this system by creating an 

additional state variable inside the neuron. This state variable is reset only when the neuron 

is selected and has presumably transmitted its data. Although all of the Initiation nodes 

must be discharged by the Acknowledge signal from the Receiver in order to complete one 

cycle of data transfer, the neurons that have not been selected remember that they would 

still like to transmi t their addresses. Their data are not erased by the data transfer cycle. 

The internal state variable of the neuron must be regulated in such a way that one and 

only one event is transmitted during the data transfer process. The event which initiated 

the data transfer process must be terminated by the time the process is eomplete, and no 

new events may be generated before the process is completed. The mechanisms by which 

these conditions arc enforced are depicted in Figure 3.10. The select signal going back to 

the neuron from the Arbiter activates these mechanisms. 

To ensure that the state of the pixel has been reset before another data transfer cycle is 

initiated , the Acknowledge signal resets the Initiation nodes in one of two ways, depending 

on whether the pixel is selected or not. The select signal is active low. If the pixel has not 

been selected, the Acknowledge signal is able to pull down on the Initiation node through 

transistor N A and forcibly reset the Initiation node. If the pixel is selected, the pull down 

transistor limits the current that the Acknowledge signal can apply through transistor NA2. 

The Initiation node associated with the selected pixel will not be discharged until the pixel 

itself has removed its data from PP. This mechanism is similar to one that is seen in real 

neurons and has to do with the strength of the potassium current. A neuron cannot fu·e a 

second action potential unless it has been hyperpolarized sufficiently to reactivate its sodium 

channels [9]. This feature has been used to advantage by the amacrine cells of the retina, 

which have a. potassium CUlTcnt tha.t turns off before the sodiuIU inactivation is released [1]. 

These cells generate a single spike in response to a persistent bipolar cell input. By making 

the potassium current sufficiently weak, the cell is prevented frOln generating another event 

until the depolarizing current into the cell is sufficiently reduced that it hyperpolarizes 

enough to reactive its sodium channels. Unfortunately, in this multiplexing system, waiting 

for a single neuron to hyperpolarize means that a single recalcitrant neuron can hold up 
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Figure 3.10: Mechanisms for resetting data transfer. The internal state variable of the neuron 

is the voltage on capacitor eN. This state variable integrates the input data with a time 

constant set by eN and the leak voltage. The state variable eN is put through a non-linear 

threshold and the output of that thres hold function drives the initiation node of the Arbiter. 

The neuron contains a circuit to reset eN and make it refractory ifit is selected by the Arbiter. 

The duration of the refractory period is set by the size of capacitor CR and the magnitude 

of the refractory contro l voltage. The reset of the initiation node proceeds independently oC 

that of eN. Once activated, the initiation node remains activated until the Acknowledge is 

returned. The initiation node is reset through transistor N A iC this neuron is not selected. If 

the neuron is selected, reset is accomplished by transistor NA2. 
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data transfer from the whole array. Although this waiting mechanisms has been included 

in the design , it is probably not really necessary, since the mechanism for resetting the 

neuron's internal state variable is rapid and can be made arbitrarily strong. 

The resetting of the neuron's internal state variable, CN, is mediated by transistor QR 

whose gate is cOImected to capacitor CR. Capacitor CR is charged when the neuron is 

selected. Since the select is a rapid digital-amplitude signal, CR is quickly charged up so 

that the current through QR is larger than the current through the data transistor and the 

voltage on CN drops below the inverter threshold. When CN has heen reset, the neuron 

turns off transistor PP. However, the select signal is not removed until the Acknowledge 

signal resets the Initiation node. The selected pixel cannot initiate another event until 

the current through QR has become smaller than the data current so that CN can be 

charged up past the inverter threshold. The reset variable, CR, provides an opportunity 

to create a refractory period for the neuron. If the charge leaks off of CR slowly, the 

neuron will be unable to charge CN above threshold for some time after the select has been 

withdrawn. The current through QR is similar to the delayed rectifier potassium current of 

the biological neuron. It limits the maximum spike rate of the cell. The refractory period 

allows arbitration between coincident events to proceed more effectively than if neurons 

were allowed to fire at arbitrarily high firing rates . 

When the data transfer cycle is completed, competition for the bus begins again, as if 

all nodes were requesting for the first time. Because the pixels that were not selected have 

not had their states reset, their PP transistors have remained on. When the Acknowledge 

goes low, their Initiation nodes will go high. Arbitration in this system is not fair since no 

attempt is made to keep a list of who has initiated data transfer previously and in what order. 

Making the refractory period of the neuron long prevents it from reengaging in competition 

with the neurons whose data events have not been transmitted. The maximum desirable 

refractory period considering tTIultiplexing constraints alone is one that will allow all of 

the events tha.t could possibly occur simultaneously to be transferred in rapid succession, 

before a new event is generated. All of the neurons are able to send all of their data if 

the refractory period of a neuron is longer than the number of neurons sharing the bus 

multiplied by the data transfer period. Addresses must be transferred faster than the the 

maximum event frequency of the neuron multiplied by the number of neurons in order to 
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guarantee that all the events will be transferred. However, if the system is operating in the 

intended regime, in which the number of events to be transmitted is sufficiently small, the 

length of the refractory period should be set equal to the number of anticipated coincident 

events. A refractory period of 2 milliseconds, which is a biologically plausible time, would 

be sufficient to transmit about 1000 effectively synchronous events, before a neuron that 

had already had a turn could get back into the queue. 

3.4.3 Arbiter 

The Arbiter itself is central to the success of the address· event protocol. It selects one of 

many requests for transmission by using a high gain positive feedback element to resolve 

contention. The Arbiter was designed and the basic circuit element analyzed by Mass 

Sivilotti [27J. The arbiter described here was slightly modified for more robust behavior. 

Binary Tree 

The Arbiter was designed to scale well , in terms of both area and speed, as the size of the 

pixel array is increased. The basic one-dimensional Arbiter is a binary tree of simple arbiter 

elements as shown in Figure 3.11. For a linear array of size N, the total number of Arbiter 

elements required is N-1. The ent.ire Arbiter thus occupies only a thin strip along the edge 

of the array. I have implemented a silicon compiler written in WOLCOMP [25], which is 

described in Appendix A. The compiler to automatically and reliably construct Arbiters 

for any si"ed array from a library of cell types included in the WOLCOMP module. Each 

Arbiter element receives two input request lines from the lower level and sends a single 

request line to the next level of the tree. Each element receives a single select line from 

above and sends two select lines to the lower level. The job of each element is to choose one 

of the two incOIning request signals, and to pass along the select from above to the chosen 

request. If the select is not received frOlTI above, then neither of the incoming requests is 

selected. Starting from a completely initialized state, the time required to complete the 

arbitration is detennincd by the amount of tilTIe required for a request to propagate to 

the top level of the tree and for the select to propagate back down. Arbitration occurs in 
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Figure 3.11: The Arbiter is a binary tree of two-input arbitration cells. Each cell receives two 

requests from below and an Acknowledge from above. It transmits a request to the higher 

level of the tree and passes down two Acknowledge signals. 

parallel at each level of the tree, so the delay through the Arbiter increases only slowly with 

the size of the array. The total delay through the Arbiter is proportional to 10g(N). 

Circuit 

A circuit schematic of the Arbiter element is provided in Figure 3.12. The circuit is 

composed of three parts. The first pm·t is an OR gate that transmits a request signal to 

the next level of the tree if either incoming request is activated. The second circuit chooses 

one of the two incoming requests. This circuit is composed of two cross-coupled NAND 

gates. The cross-coupled element ensures that only one request will be chosen even if both 

requests are active. The incoming requests are labeled R, and R2. The lines indicating 

which request has been chosen are labelled R\ and R2. Unlike the request lines, the choose 

variables are active when they are at a low voltage. If R', is low, it indicates that R, has 

been chosen by this Arbiter element. There are eight possible incoming signal states, listed 

in Table 3.l. The third circuit directs the select signal coming from the next level of the 

tree to the descending select output corresponding to the chosen request. This circuit acts 

as a differential amplifier whose power is turned on by the incoming select. The chosen 

variable that is in the more active state will drive the corresponding select signal high. 

The interaction between the choosing circuit and the select steering circuit is the crux of 

safe arbitration. The problem is to prevent a select froln propagating down the tree before 
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Figure 3 .12: Schematic of two-input Arbiter e lement . (8): the request-generating circuit. (b): 

the choosing circuit. (c): the steering circuit . 
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RI R2 SIN R\ ~ SI S2 ROUT 

0 0 0 1 1 0 0 0 

0 1 0 1 a 0 0 1 

1 0 0 0 1 0 0 1 

1 1 0 0 1 0 0 1 

1 1 0 1 a 0 0 1 

0 0 1 1 1 0 0 0 

0 1 1 1 a 0 1 1 

1 0 1 0 1 1 0 1 

1 1 1 0 1 1 0 1 

1 1 1 1 a 0 1 1 

Table 3.1: Truth table for a single arbitration element in the Arbiter. Input parameters are: 

incoming request from below R" incoming request from below R1 , incoming select from above 

S IN. Output parameters are: outgoing request to above ROUT, outgoing select to below 5" 

and outgoing select to below 52. The intermediate results indicating which of the incoming 

requests have been chosen are: RII and n;. These two signals are active low. The table is 

divided in half for convenience; all of the s tates in which this Arbiter cell has not been selected 

from the higher level of the tree, a nd which therefore have no active outgoing select signals, 

are shown in the top half of the table. 
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a clear choice has been made. Since the OR gate that issues a request to the higher level 

of the tree can do so while the choosing circuit is hung in a metastable (and undecided) 

state, it is possible that the select could be issued before the choice has been made. The 

select C'Ul be kept from propagating down the tree if the choice lines do not cross threshold 

while the choice circuit is in its metastable state. Even when SIN is active, the outputs S1 

and S2 must be low when R'1 is equal to R'2. (R'1 equal to R'2 is the metastable state of 

the cross-coupled nand gates if they have identical geometries.) This condition can be met 

by making N6/N7 strong relative to P6/P7 and/or P3/P4 wide relative to N3/N4. Using 

conservative estimates, Sivilotti [27J calculated that safe arbitration could be achieved if 

the P3/P4 transistors were six times stronger than N3/N4. This ratio is satisfied by the 

current Arbiter. 

In the forward phase of the data transfer cycle, the requests propagate from the lowest 

level of the tree to the top. At the top level of the tree, the outgoing request is tied to the 

incoming select . This signal is the request that goes to the receiver chip. When the select 

propagates back to the bottom level of the tree, the selected neuron address is placed on 

the data bus . In the reset phase of the data transfer cycle, the neuron Initiation nodes are 

reset at the lowest level of the tree by the Acknowledge from the receiver. When both of the 

requests coming into an Arbiter leaf cell are off, the select signal does not pass through that 

leaf cell. Therefore, the select to the pixel is inactivated before the state of the whole Arbiter 

has been reset. In the communications protocol that I have implemented, the request to 

the receiver is terminated only when the reset of the requests has propagated to the top of 

the tree. If the Acknowledge from the receiver remains active until the request has been 

terminated, the state of the system is fully reset at the end of a data transfer cycle. 

3.5 Data Transfer In Two Dimensions 

The example system is a 64xG4 pixel retina that uses the address-event representation 

to copy its image onto a receiving chip. The data transmission protocol for this system 

is complicated by the fact that the retina is a two-dimensional structure. The complexity 

arises because of geometrical constraints in implementation of the circuit. The multiplexing 

machinery is best kept to a small area at the edge of the data processing array. Not only 
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does this arrangement save area, but the delicate analog machinery responsible for light 

transduction within each pixel is best kept as well isolated as possible from the fast digital 

signals involved in multiplexing. The consequence of restricting the multiplexing machinery 

to the periphery of the chip is that each pixel is specified by an x- y-coordinate address. 

This encoding system has relatively little impact on the receiver chip, depicted in Fig­

ure 3.13. The core of the receiver chip is a 64x64 square array of nodes. The circuitry at 

each node is shown in Figure 3.17 and will be described in the next section. Each node on 

the receiver is driven by the pixel in the corresponding position in the sender array. The 

address-events are decoded into a position by a set of digital decoders located on two edges 

of the array. Input to the node requires that the decode line in the x-dimension and the de­

code line in the y-dimension be activated by the propel' address. The ANDing of the address 

coordina.tes in the two dimensions is a straightforward extension of the decoding process 

described in the one-dimensional system. An additional modification for a two-dimensional 

receiver is that the pull up of the Acknowledge of this system must be aggregated in two 

dilnensions, as shown in Figure 3.13. The coincidence of activation on the x- and y-decode 

lines pulls down a line that runs along that column. The column lines correspond to the 

individual node pull-ups in the one-dimensional system. In this way, if any of the nodes in 

the array is activated, the Acknowledge is pulled-up to indicate that the address-event has 

been received. 

The generalization of the data transfer protocol is more difficult for the two-dimensional 

sender. The selection of the pixel which will transmit its address must be coordinated 

in the two dimensions. If there were two contending pixels, (xl,yd and (X2,Y2), and the 

arbitration in the two dimensions were allowed to proceed independently, two ghost events 

at (Xl, Y2) and (X2, Yl) might be transmitted. In order to avoid this problem, arbitration in 

the two dilnensions proceeds sequentially. 

The sender is illustrated in Figure 3.14. The core of the chip is a 64 x 64 array of pixel 

elements. One pixel is depicted in Figure 3.20. The circuitry of the pixel will be described in 

detail in the next section. The portion of the circuit involved in data transfer is identical to 

that illustrated in Figure 3.10. Two sides of the array are occupied by the sequential analog 

multiplexors for video display, which have been described previously [26]. The remaining 

two sides of the array are occupied by the data transfer mechanism. 
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Figure 3.13: Schematic of receiver. The address is decoded independently in the x- and y­

dimensions. When the address has been successfully decoded, the Acknowledge signals from 

all the pixels are aggregated by a wire OR structure, first along columns and then along rows. 

Because only one address can appear on the data bus, only one node will be pulling on the 

wire OR at any time (see Figure 3.17). 
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x-arbiter 

Figure 3.14: The sending chip contains an array of pixels surrounded by multiplexing circuitry; 

the Arbiter, two white boxes, which decides which pixel has control of the data bus at each 

instant; two gray boxes adjacent to the Arbiter , which include the address encoders and 

circuitry involved in coordinating the data transfer process between the two chips; and analog 

scanning ell'cuitry, depicted as two black boxes along the remaining two sides of the chip. 
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The data transfer process is initiated by a pixel. The initiation process is sequential, 

occurring first in the vertical, then in the horizontal dimension. When the data processing 

circuitry inside a pixel decides that it would like to transmit an event, it pulls up on the 

initiation line which runs the length of the row. If that row is selected by the vertical 

Arbiter, the select signal on that row is activated and the y-dimension address bits of that 

row are placed on the bus. The row select allows all of the pixels along that row to pull up 

on initiation lines running the length of the columns. In the second stage of the initiation 

cycle, the horizontal Arbiter selects an initiating pixel on the row that was just selected 

by the vertical Arbiter and activates the appropriate column select line. This places the 

x-dimension address bits on the bus. The completed address can then be decoded by the 

receIver. 

The two-dimensional data transfer protocol requires some modification from the one­

dimensional case. The pixel must have an internal state variable and threshold , as described 

in Figure 3.10. There are several reasons for this additional state variable. For example, 

the initiation process is asyul111ctrical in the two dilnensiol1s. The initiation lines in both 

dimensions have one pull-up transistor for each pixel. Because the effects of the pull-up 

transistors stun, it is possible for several pixels on a row in cOInbination to bring the row 

initiation line above threshold. However, since only one pixel pCI' column is enabled by 

the row select, only one pixel may pull up on the column initiation line of the horizontal 

Arbiter. If the pixel outputs are small analog values , they may sum to initiate an event 

on the row but llone of them individually may be able to bring the column line above 

threshold. Therefore, the pixel must have an internal threshold amplifier with enough gain 

to ensure that it is either fully on or off. This internal state variable provides a mechanism 

for generating a refractory period for the pixel once it has been selected. As in the one­

dimensional case, the state of the selected pixel is reset, this time by the AND of a row and 

column select signal. 

There are more possible reset protocols for the Arbiter in the two-dimensional system 

than there were in the one-dimensional system. I have chosen to implement an extremely 

conservative protocol, which resets the state of the entire system, including all of the in­

termediate nodes in both the horizontal and vertical Arbiter trees, after each data transfer 

cycle. However, nl0re temporally efficient Inechanisills are possible. I will describe two such 
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hypothetical protocols before describing what I actually implemented. One hypothetical 

protocol would not reset the selected row of the vertical (row-selecting) arbiter until all of 

the neurons making column requests had transmitted their data. This sequence is necessary 

so that the proper x- and y-addresses remain associated. Only the selected column and row 

initiation nodes would be reset, and they would be reset with weak NA2 transistors so that 

the neurons would have to have been transmitted before their initiation nodes could be 

reset. This protocol has the disadvantage that one row might control the bus indefinitely if 

it had a persistently active pixel on it. 

An alternative Arbiter reset protocol, suggested by Alain Martin (personal communi­

cation) entails resetting the entire horizontal (column-selecting) Arbiter and resetting only 

the selected row. The vertical Arbiter would be forced to choose a new row and the initi­

ation nodes of the horiwntal Arbi ter would be reset so that the new row could enter into 

fresh competition. The address stream would be punctuated by the reset of the horizontal 

Arbiter, which would toggle the request to the Receiver chip. The selected vertical Arbiter 

initiation node could be reset by the Acknowledge signal, which would also reset all of the 

horizontal A rbiter initiation nodes. If necessary, the method of resetting the initiation nodes 

used in the one-dimensional case could be applied to the reset of the horizontal Arbiter be­

cause the selected row is essentially a one-dimensional system. This reset mechanism would 

be faster thall the one that I implemented because the partial state of the vertical Arbiter 

tree would be conserved. In light of my present experience, this protocol appears to be 

preferable to the one that I have implemented, which is described next. 

In the implemented system, all of the initiation nodes of the the vertical Arbiter are 

forcefully reset by the AND of the horizontal Arbiter top-level request, indicating that all of 

the column-initiation lines have been reset , and the Acknowledge. It is not necessary, nor is 

it possible, to determine at this point whether or not the internal state of the selected pixel 

has been reset. This dctcnllination is luacle previously in the reset protocol by the horizontal 

Arbiter reset , as described in the one-dimensional case. When the vertical Arbiter has been 

reset, the withdrawal of the request pulls down the Acknowledge and completes the data 

transfcr cycle. The reset of the initiation lines is terminated and the pixels are free to 

reinitiate requests at the base of the vertical Arbiter tree. A single complete data transfer 

cycle performed by the sender and the receiver chips is shown in Figure 3.15. 
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Figure 3.15: Timing diagram for data transfer between sender and receiver. 

3.6 Image Transfer 

The systcnl used to dClllonstrate the address-event protocol transfers a time-derivative image 

from a translnitting retina to a receiver. The circuits on the sender that encode the image 

and the circu its on the receiver that reconstruct the image arc described here. A node in 

the receiver array is illustrated in Figure 3.17. The node that is tiled to make the receiver 

array contains both multiplexing circuits and the actual integrator that reconstructs the 

address-event s tream into an analog potential. The address is decoded independently in 

the x- and y-dimensions and ANDed inside the pixel. When both the x- and y-decode lines 

are active, the Acknowledge aggregation line is pulled low through transistors Ax and Ay. 

In addition , some current flows onto the state capacitor C through transistors Sx and Sy. 

The generation of an Acknowledge in response to the decoding of an address-event and 

the placing of an increment of charge on the state capacitor is shown in Figure 3.18. The 

magni tude of the current is controlled by delta and the total amount of charge is a function 

of the length of time the address data are valid. Current leaks from the capacitor at a rate 

set by tan. The data from the capacitors are scanned out serially for display on a video 

monitor. 
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Figure 3.16: Data transfer between sender and receiver. Data taken from real system. [Not 

all the signals shown in the t.iming diagram (Figure 3.15) are instrumented on the chips]. Data 

were collected with a digital scope triggering off of the falling edge of the x-select signal and 

are synchronized t.o that. The chip was configured in such a way that all the neurons were 

firing at a high rate, in order to measure the minimum data transfer period. The minimum 

period was approximately 2· 10- 6 seconds. 
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Figure 3.17: Schematic of single node in the receiver array. 
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Figure 3.18: The receiving e leme nt generates a step in potential in response the arriving 

address-event. The voltage step size was arbitrarily scaled by the off-chip current-sensing 

amplifier. The bottom trace is the Acknowledge signal that terminates the data transfer. The 

Acknowledge signal is 5 volts in amplitude and 1 microsecond in duration. 
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The behavior of the receiving pixel is illustrated in Figure 3.19. Synthetic data in the 

form of a temporal stream of digital addresses were generated on an HP 9836C workstation 

and transmitted to the chip with a custom hardware interface board. The time constant of 

integration on the receiver determines the time over which spikes can be averaged. This time 

constant of integration, controlled by tau, can be varied over several orders of magnitude. 

A long integration time is advantageous for integrating a small signal that is contaminated 

with sporadic randOlTI noise. A short integration time increases the temporal resolution 

of the system and a simple threshold is able to detect spike coincidence to within the 

integration time of the integrator. 

This receiving pixel should be modified to include a leak whose magnitude is a function 

of the voltage level of the integrator. This feature would allow a stable translation of event 

frequency into analog voltage level. Additional circuitry may be necessary to control better 

the quantity of input charge for each event . In the existing design, the event duration is 

linearly related to the amount of charge that is deposited on the integration capacitor for 

a given event . Events of different duration will result in different amounts of current being 

integrated on the capacitor. One solution to this problem would be to put a timing element 

in each pixel that regenerated a long-duration spike, triggered by the event. If such a long­

duration spike tnechanislll were incorporated the fractional va.riation in event width would 

be caused by transistor rniSlnatch on the receiving chip rather than transmission variability. 

A longer spike would presumably have less fractional duration variation. However, this 

solution requires lllorc area. Event durations do not appear to vary by more than 50 percent. 

Until it can be demonstrated that there is a significant impact on the computation, there 

is no reason to include such a mechanism. 

The first step in image transfer is the creation of the image on the retina. The retinal 

pixel incorporated into the self~timed data transfer system generates events when the light 

level increases . In this way, it is similar to the on-transient retinal ganglion cell [7]. A 

schematic diagram of the pixel circuitry is shown in Figure 3.20. The drive to the spike­

generating pixel generated by a circuit similar to that of the feedforward retina described 

in the previous chapter, but the resistors have been omitted to reduce the size of the pixel. 

The drive circuit averages the output of the logarithmic photoreceptor with a follower­

integrator whose tilne consta.nt is controlled by tau. The output of the drive circuit is a 
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Figure 3.19: The output of a single pixel on the receiver chip shown for two different inte­

gration times. Address-events were generated with a custom hardware interface board and 

an HP9836C computer for the receiver pixel accessed by the serial scanner. The integration 

time of the pixel was modified by changing the bias voltages on the tau and delta controls. 

Level was set to 4.046 volts. For the fast integration time trace, delta was set to 0.67 volts 

and tau was set to 2.756 volts. For the slow integration time trace, delta was set to 0.62 Yolts, 

and tau was set to 2.85 volts. See Figure 3.17. 
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Figure 3.20: Schematic of a single pixel in the sender array. 
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current proportional difference between the average intensity and the instantaneous values 

of intensity, which is scaled by the control voltage i. This system is analogous to the bipolar 

cell of the outerplexiform layer of the retina. The spike-generation circuitry of the pixel 

is like that shown in Figure 3.10, except that data transfer sequence takes place in two 

dilnensions. The primary state variable, eN, is like the Inembrane capacitance of a retinal 

ganglion cell. This capacitor is a leaky integrator with a time-constant set by the leak 

parameter, which determines the quiescent voltage on CR. Capacitor CN integrates the 

charge supplied by the drive circuitry until its voltage reaches the inverter threshold. The 

inverter initiates the data transfer process. Once the pixel is selected in both the x- and 

y-dimensions, capacitor eN is discharged. 

The parameter settings of the pixel affect the number of spikes that it generates in 

response to a particular stimulus. The responses of a pixel to a flashing LED for several 

different settings of the time-constant of the differentiator are shown in Figure 3.21. If 

the follower integrator is able to follow the stimulus intensity more quickly, less current is 

produced by the differencing amplifier and so fewer spikes are produced. 

Figure 3.22 shows the clift·erence in response caused by the refractory period, which is 

analogous to the duration of the delayed-rectifier current , 1Ko ' in biological neurons. Like 
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Figure 3.21: The response of the complete 8ender~receiver system to a flashing light-emitting 

diode (LED) of intensity 63.2 UlW /mml with three different time-constants for the differen­

tiator. Stimulus onset is indicated by a vertical line. The output of the sending pixel and 

the corresponding node on the receiver arc shown 8S a pair, the sender pixel waveform above 

the r eceiver response. Responses w e re averaged by the digital oscilloscope over eight stimulus 

presentations. The voltage, lint, controlling the time constant of the differcntiator in the send­

ing pixeJ is shown next to each pair of responses. All other parameters were held constant. 
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Figure 3.22: The output of a single pixel on the sender chip and the corresponding node on 

the receiving chip. Stimulus was a flashing LED of intensity 63.2 mWJmm2 • Stimulus onset is 

indicated by a vertical line. Values of the refractory transistor gate voltage are shown next to 

each pair of responses. As the re fractory period dec reases, the maximum event rate increascs 

so the numb e r of events p e r stimu lus presentation increases. 

the 1"0 current, the reset current is sensitive to the voltage of the pixel. The reset current 

increases in amplitude unt il the voltage on capacitor CN is discharged below the inverter 

threshold. When the Acknowledge has reset either the x- or y-initiation node, the select 

signals that are contributing to the reset current arc withdrawn. The magnitude of the reset 

current set by the voltage on capacitor CR decays at a rate set by the refractory control. 

When the reset current is smaller than t he current from the differentiator , the pixel voltage 

begins to increase. When the reset current is of longer duration, the voltage on the p ixel 

capacitor rClnains low longer. Fewer spikes arc produced in response to the same stimulus 

and thus there is less activity in the receiving nod e. 

The gain of the action-potential is generated in biological neurons by the positive feed-
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back from the sodium spike channels. The sodium phase of the action potential is generated 

by the digital circuitry on the chip. Even with the gain of the inverter, the parameter i 

that scales the difference current driving the state capacitor must not be too small, or else 

the inver ter will not cross threshold quickly enough for the data transfer process to proceed 

quickly. Several of the inverters in a row may be approaching their transitions and their ef­

fects sum to initiate a horizontal request. Once the row is selected, there is a delay until one 

of the inverters crosses threshold far enough to initi ate data transfer in the column. This 

delay is apparent only when the current flowing into the state capacitor is very small. The 

gain problem may be ameliorated by incorporating positive feedback from the row select to 

the pixel. However, all of the pixels along the row would receive this positive feedback. Any 

such feedback mechanism should be capacitive, so that the feedback cannot be integrated 

by the initiation mechanism into an entirely new event . The magnitude of the feed back 

should be small enough not to bring all the pixels in the row past the inverter threshold. 

The major drawback to this particular pixel is that it is not sufficiently sensitive with 

low-offset to make a pra.ct ical imager using this cOl1uuunications protocol. The gain of this 

photoreceptor is low and the DC offsets arc integrated by the pulse generation mechanism so 

that much of the bandwidth is occupied transmitting offset da ta. The data that were taken 

in this chapter were taken with the chip configured to have a large quiescent leak , which 

reduced DC off·set problems. However, the stimulus needed to be high contrast enough to 

elicit an above-threshold response. 

Figure 3.23 shows the response of the system to increasing intensity steps. The mag­

nitude of the step in light intensity is encoded by the number of spikes generated. Event 

timing as well as total number of events carry information about the image since the latency 

of response is increased when the stiluuius has lower contrast. A silnilar phenomenon is 

observed in biological visual systems. It forms the basis of the Pulfrich effect, a stereoscopic 

depth illusion. Placing a. neutral density filter in front of one eye causes a delayed response 

to the stimulus from that eye. This delay is interpreted by the motion-interpolation pro­

cessing in t he cortex as a shift in the position of the target between the two eyes. This 

artificially ind uced disparity is indistinguishable from real depth. A pendulum bob swinging 

back and forth in a plane in front of the viewer is seen to lnove in a circle in depth. 

The representation of temporal change is natural for the address-event representation; 
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Figure 3.23: Analog data from a single sender pixel and the corresponding receiver node to 

flashing LED of different intensities. Light onset is indicated by a vertical line. The intensity 

of the flash is shown ne xt to each pair of traces. The number of spikes and the response 

latency are a function of the step size. The bottom pair of traces shows the response of the 

sending pixel to a small intensity flash. Current is integrated on the state capacitor, but the 

pixel fa ils to reach threshold. The current decays away at a rate set by the leak voltage. In 

this case, the leak voltage was 0 .65 volt. 
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tClnporai accuracy is inlportant and events are sparse in the retinal array. In general, a 

delta-modulated encoding of data is best for this communication protocol. The full signal 

must be represented by changes in the signal, and the effects of these changes integrated 

by the receiver, if the full DC value is to be reconstructed. For such a reconstruction, the 

time constant of integration on the receiver should be long. In contrast, the time constant 

of integration on the receiver should be short for the detection of temporal coincidence of 

events. Both of these regimes of operation are easily achieved within the range of CUlTent 

levels in subthreshold CMOS transistors. Both can be done in parallel on the same re­

ceiving chip, 01' on different receivers. Different time constants of integration or frequency 

characteristics are observed in parallel streams of the visual system. The magnocellular 

system is responsible for transmitting high temporal frequency information and has a lower 

integration time, while the parvoccllular system is responsible for higher spatial frequencies 

but with longer integratioll times. 

Of course, it is desirable to instrument the entire ituaging array. The retinotopic nature 

of image transfer is best illustrated by comparing images scanned from the sender and the 

receiver chip using traditional analog video scanning techniques. The image of a flashing 

LED as it appears on the sending retina is depicted in Figure 3.24 and the corresponding 

image on the receiver is shown in Figure 3.25. 

3.7 Future System D evelopment 

I have used the particular example of the retina to illustrate the usc of the address-event 

representation. However, the address-event representation can be used to advantage by any 

system whose event generation rate is sufficiently low. The significance of the representation 

lies in its generali ty, which makes possible the modular design of multi-chip systems. The 

general technical issues faced in the development of multi-chip systems are discussed in the 

following section. Some biologically motivated example systems are then discussed. 

3.7.1 Extensions of the Address-Event Representation 

The arbitration procedure that has been described for a single sender and a single receiver 

can be extended to systems with multiple senders and receivers. In the one-dimensional 
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Figure 3.24: Response of the retina to a flashing LED. The voltage on the pixel state variables 

is sequentially scanned to the video monitor. The origin of the addresses is in the upper-left­

hand corner of the image. The response is indistinct because the voltage of the sending pixel 

only rises to the threshold level before it is reset by data transmission. 
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Figure 3.25: The receiver integrates the address·events coming from the sender. The voltages 

on the nodes of the receiver are sequentially scanned for display to the video monitor. The 

origin of the addresses is in the lower-left-hand corner of the image. Consequently, the pattern 

of activity on the receiver is mirrored around the horizontal axis from that of the sender in 

Figure 3.24. 
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Figure 3.26: System of 16 neurons (black squares) distributed over four identical chips. The 

binary arbitl'ation tree is distributed over all the chips and constructed by the wiring pattern 

between chips. Each bit of the address bus is driven by the Arbiter elements at the appropriate 

level of the ll"ce. When the clement to the right is selected, a zero is placed on the bus (filled 

circle) and whe n the element to the left is se lected, a one is placed on the bus (open circle). 

case, the binary arbitration tree can be distributed over multiple translnitters , as shown 

in Figure 3.26. All of t,hc tra.llsmitters compete for control of a COlllmon bus. A Inajor 

constraint 0 11 the size of the system is, as in the single chip case, the number of events 

generated by the combination of all the nemons in the system per address broadcast time. 

The layout of the Arbiter elements on each chip is identical; each chip contains a complete 

binary tree of Arbiter clements for its own neurons and a single additional Arbiter element 

whose inputs and outputs arc brought off-chip. Binary trees of any size can be concatenated 

from the appropriate n\lmber of chips . The address is generated by logic distributed over 

all of the chips . The bits of the address are set by the Arbiter element at the appropriate 

level of the tree. 

The Acknowledge generation in a multi-receiver system may be Inade conditional on all 

of the chips having received the data; however , this approach is useful only when all of the 

receiving chips would like to listen to all of the data. The decoding structure on each chip 
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would have to span the entire address space. Alternatively, each address might go to only one 

receiver, in which case, the Acknowledge would simply be the OR of the Acknowledges from 

all of the receivers. The simplest and most general method for terminating data transfer is 

to have the transmitter simply generate its own Acknowledge after some pred efined waiting 

period . This procedure does not guarantee that the data have actually been received , 

but it may be perfectly adequate for the nemomorphic systems for which the address­

event representation was designed. Unlike digital-logic-based systems, the occasional failure 

to transmit an event should not change the outcome of the computation. Even if the 

handshaking protocol is dropped , procedure for decoding the address performed by the 

receiving chips depends on the desired connectivi ty pattern of the system. One possible 

connectivity pattern is illustrated in Figure 3.27. In this case, the connectivity pattern is 

semi-local, with each receiver configured to accept d at a from a local address space. The 

higher-order bits of the desired address are externally established for each chip. This address 

is subtracted from the address on the bus to transform the address into local coordinates. 

The address-event representation is particularly attractive for use in multi-chip systems 

because it transforms a concrete signal associated with a particular time a.nd place into 

the abstract domain of digital logic. Space in the abstract domain can be manipulated to 

extend across the physical chip boundaries and time can be divided so finely that many 

digital events can go by in an instant on the timescale of the macroscopic biological world. 

The address-event representation attCI11pts to overcome the volumetric wiring deficiencies 

of VLSI relative to neural t issue by using t he strengths of digital VLSI medium, its speed, 

and its abstract symbolic manipulation effi ciency. 

In terms of circuit archi tecture, time a.nd spa.ce <'U"C often interchangeable. This principle 

is the foundation of multiplexing, which reduces the number of wires needed to transmit 

the activity of all array of clements. The number of wires in the address-event represen­

tation can be further reduced by multiplexing the bits of the address. Since arbitration 

proceeds sequentially, the same data bus could transmit the y- and x-address bits for a 

two-dimensiollal array as they are selected without delaying transmission of the event. This 

address encodillg is used in commercial dynamic RAM circuits and requires only half as 

many add ress pins. This procedure could be ext ended to all of the bits of the address, since 

the address is really determined one bit at a time as the select signal proceeds down the 
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Figure 3.27: Semi-loca lly connected multi-receiver system. (a) Five receivers accept events 

from a contiguous, local region of the global address space. The origin of the contiguous region 

is programmed onto each chip. The regions spanned by the various chips overlap. (b) The 

decoding of the address by the receiver is accomplished by subtracting the origin of the local 

coordinate system, stored in the static latch (gray rectangle), from the incoming address. 
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binary arbitration tree. 

The trade-off of time and space can be taken advantage of in a multi-chip address-event­

based system by using digital logic and multiplexing to construct artificial dendritic and 

axonal arborizations, which are extended in time rather than in space. One idea would be 

to construct a look-up table that would transform a single event from pre-synaptic address 

to a stream of post-synaptic target locations, as illustrated in Figure 3.28 The post-synaptic 

target locations would be transmitted as a stream of events before the next pre-synaptic 

event could be issued. Temporal resolution is compromised for the space saved by reducing 

the number of synapses necessary for the post-synaptic neurons. Since only one pre-synaptic 

event is transmitted at a ti lTI C, the same post-synaptic synapse can be used to receive events 

from a number of pre-synaptic neurons. The synaptic weight connecting each pre- and post­

synapt.ic pair could be st.ored on the digital transforming chip and transmitted along with 

the event to the receiver, either as an analog voltage or as the duration of the post-synaptic 

address. 

3.7.2 Systems Examples 

The computational significance of temporal relationships between action-potentials in neural 

systems has not been extensively explored in a systems context . A VLSI nemomorphic 

systClTI based on the address-event representation would allow experilnentation in tllls area. 

In any sizable neural system the axonal conduction delays rnust be taken into account if 

timing relationships arc to be preserved. Conduction delay is critical in aud;tory localization 

[17J and has been incorporat.ed into silicon auditory models [l1J. Delays can be incorporated 

in the address-event representation. Events might propagate through several ch;ps that are 

only locally interconnected , as shown in Figure 3.29. In this very simple system, each chip 

simply loads events into synchronous delay lines as they are received. This method reduces 

the temporal resolution of the address-event encoding to the synchronous clock period. One 

delay line runs in each direction. Each chip inserts its locally generated addresses in the 

center of both delay lines. The inserted addresses have their chip coorclinate set to zero and 

the chip coordinate is incremented as the data arc passed from chip to ch;p. The data bus 

therefore encodes the original address bits, plus bits that ind;cate how many chips the data 

had passed through. The address changes in time since it is expressed in local coord;nates. 



134 

PRESYNAPTIC NEURONS 

(a) 

8 88 
POSTSYNAPTIC NEURONS 

ADDRESS FROM SENDER 5 

L::! --+ ACKs 
____ --InL-_ 

DIGITAL 

(b) PROCESSING 

"";:: 
0-- ACJ(fl 

1 3 6 7 

ADDRESS TO RECEIVER 

Figure 3.28: Constructi ng artificial receptive fi e lds using address-eve nts and digital process ing 

to store the receptive fi e ld str uct ure. The projection pattern illustrated in part (a) is recalle d 

by the digital processor (b) when ne uron 5 generates an event . The digital processor transmits 

e vents to the post-synaptic neurons on the receiver to which ne uron :; projec t s . When all 

of the postsynaptic ne urons have acknowledged rece ipt of a n event, the digital processor 

acknow ledges the sender, wh ich the n is free to transmit another e vent. 
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One advantage to this encoding scheme is that receptive fi elds are easily made translationally 

invariant . As the event propagates away from the source , its coordinate bits get bigger and 

bigger. The events must be rejected after they have propagated some distance in order to 

make room for new events to be inserted into the delay lines. Alternatively, locally generated 

addresses could simply overwrite non-local events in the delay line . The prohahility of being 

overwritten would increase with distance. The number of events that can be stored and 

their temporal resolution are determined by the number of stages in the delay line. The 

system can be extended to two-dimensions. The number of d elay lines necessary for events 

to propagate to each node in t he array via a unique path is eight for a square grid and 

twelve for a hexagonal grid. 

Investigat ion of the interaction of the morphology and conduction properties of a neu­

ronal dendri t ic t ree requires spat io- temporally patterned inputs. The address-event rep­

resentation is fl exible enough to allow reconfigurable spatial d ecoding of the event into a 

posit ion a long t he post-synap t ic dendri te by means of d igital ly-p rogrammable static-latch 

decoders. Al t hough these latches are larger t han hard-wi red decoders, they are critical to 

this applicat ion. In fact, a number of such configurable synapses may be desirable in general 

systems if the space used by including them is less than the space taken up by the wlUsed 

synapses in a general system hard-wired to allow full connectivi ty. 

The next cha.pter describes stereopsis chips that pcrfornl one-dimensional matching using 

an address-e vent representation. Stcrcomatching of real images requires that the imaging 

foci be separated by a dist ance much larger than that available on the surface of a s ingle chip. 

Al though in principle t his problem can be solved using optics, it is much more convenient 

to separate t he image phmes and communicate the information electronically. Furthermore, 

stereopsis is believed to rely heavily on the ou tput of transient (change-detecting) magna­

cells [13J and be influenced strongly by the temporal order of events [24 , 4J . The task of 

:s tcrcomatching provides a systc m-lcvelt;est of the ability of the address-event representation 

to preserve salient tC1l1porai and spatial sensory information. 
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Figure 3.29: Address-event encoding scheme that generates axonal conduction delay. A linear 

array of three chips (black rectangles), each containing neurons and an associated address­

event generator, and associated delay-lines, is depicted for three timesteps. When a chip 

generates an address-event, the event is loaded into the delay lines. The event propagates 

with delay throughout. the system. In this architecture, the delay lines are synchronous. 
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Chapter 4 

Stereopsis 

4 .1 Introduction 

Stereopsis is the combination of visual information from two eyes for the determination 

of depth. Stereopsis has been studied using psychophysics, neurophysiology and computa­

tional vision. The analog stereo-matching chip presented in this chapter represents a new 

experimental approach to the study of stereocorrespondence, a primary sub task of stere­

opsis . It organizes much of what has been learned about stereo correspondence using more 

traditional approaches, in a physical framework supplied by the basic circuits that underlie 

the cOlnputation. 

Stereoscopic depth is a derived quantity, not immediately present in the two-dimensional 

images formed by the retinae. Neuroanatomical studies place the most peripheral locus at 

which stereopsis may occur at the primary visual cortex, the first site at which information 

from the two eyes is combined in higher animals. The step into cortex opens a Pandora's box 

of possibilities. It could be that stereopsis relies on object recognition, semantic knowledge 

and consciousness . Fortunately, psychophysical studies show t hat the problem of stereopsis 

may be approached without addressing the full complexity of the brain . Indeed, Julesz [14J 

has described stereopsis as a process mediated by a centrally located "cyclopean retina," 

not so different from the monocu"'r retina. l3y using random dot stereograms (see Fig­

ure 4.1) , Julcsz has shown that stercofusion can occur without cognitive cues . Stereopsis is 

a fascinating problcnl that lies in the alluring region somewhere between passive sensation 

and active imagination . 
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Figure 4.1: 

Random-dot stereograms. (a) Making a random-dot stereogram. A random pattern of Is 

and Os is generated to be presented to the left eye. An identical copy of the pattern is made 

for the right eye, except that a central square region within the image (labeled with As and 

Bs) is displaced to the right. When the two images are fused, this square region will appear 

closer than the background. Occluded areas (areas having no counterpart in the opposite eye's 

image) are labe led with X's and V's. (Modified from Julesz, 1971[14].) (b) A random-dot 

stereogram showing a raised square. You can fuse the stereogram by letting your eyes diverge 

8S though you were looking at infinity. Your left eye should see the pattern on the left, and 

your right eye should see the pattern on the right. The primary difficu1ty is focusing on the 

paper while your eyes are diverged. Myopic readers may find it helpful to remove their glasses. 
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Because the random dot stereogram reduced the problem of stereopsis to comprehensible 

primitives, it has become the canonical test case for the computational vision community, 

which has proposed a variety of algorithms for its solution. Each algorithm is rooted in a dif­

ferent tradition. These traditions include: robotic vision [16, 10], psychophysics [26, 41, 40J 

and computational theory [25J. By and large, these algorithms have been expressed in and 

constrained by the language of the digital computer and are thus often difficult to relate 

to analog neurophysiological function. In spite of the gap between experimental electro­

physiology and theoretical model, the existence of working algorithms makes stereopsis an 

attractive arena for the study of cortical function; there is some hope that computational 

functions lllight be associated with individual neuronal response. 

The study of the neurophysiological basis of stereopsis has indicated that stereoscopic 

fusion has correlates in neuronal response as early as primary visual cortex (for a review see 

[36]). Primary types of response to binocular stimuli (including random dot patterns) have 

been identified and individual neurons are classified on this basis . As is often the case, it is 

not possible to definitively assign a computational function to a particular class of neurons. 

Aside from the teleological difficulties that arise from consideration of the computational 

purposes of neurons , it has been difficult just to gather enough information using single 

electrode recording to place the neurons in a network context. 

Network intera.ctions a.re a critica.l part of stereopsis because disparity tuning is funda­

mentally unlike the classical prohlems of orientation tuning [l1J or velocity tuning, which 

can in principle be performed by spatiotemporally oriented receptive fields that are con­

volved with the retinal input [28J. Computational and psychophysical experiments indicate 

that stcrcofusion of a random dot pattcrn is an inJlcrcntly non local and nonlinear operation, 

which probably requires positive feedback [14 , 25J. Although anatomy and basic neuronal 

biophysics reveal that these opcrations are consistent with the predOininant features of cor­

tical circuitry, few models explaining neuronal response characteristics have attempted to 

incorporate them because they are difficult to analyze or even to simulate numerically. 

This chapter explores the interaction between computational algorithm and physical 

implementation. The system described is an analog CMOS stereo-matching circuit based 

on a new stercocorrespondence aigoritllln. The algoritllln was devised under the constraints 

of the analog electronic medium. It is embodied in a compact circuit that is able to solve 
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one-dimensional randOll1 dot patterns. The circuit implmnentation is efficient since the 

algorithm requires relatively low wiring density and takes advantage of the device physics. 

The circuit includes nonlinear positive and negative feedback elements and converges to a 

solution in less than 25 milliseconds. Unlike previous circuits [22J that were based on MaIT 

and Poggio's cooperative stereocorrespondence algorithm [24], the new algorithm/circuit 

performs well on surfaces that arc tilted in depth. Individual electrical nodes in the circuit 

can be related to the types of stereo-tuned neurons found in primary visual cortex. The 

tuning curves of the electrical nodes in the circuit are explained in terms of the function of 

the whole network. 

4.2 The Problem of Stereo correspondence 

The problem of recovering the three-dimensional geometry of space f1'0111 two-dimensional 

projectiolls can be broken down into several related subtasks, such as feature extraction, eye 

vergence control, computation of real distance [rOl11 image disparity and eye position, etc. 

The subtask solved by the circuitry described in this chapter is called stereo correspondence, 

which allows the determination of image disparity. A more complete description of the 

problem of stereocolTespondence can be found in [14 , 37J. 

Binocular vision generates two images of a scene, one from each eye. Because the two 

eyes regard the scene frolll dilTerent points of view, they differ in their impression of the 

relationships between objects. Figure 4.2 shows two eyes of an observer in cross-section. 

The lens of the eye focuses an image of the scene composed of discrete targets located in 

three-dimensional space onto the surface of the retina. Stereo correspondence is the pairing 

of features in one retinal image with features on the other retinal ilnage that a.rose from the 

SaIne target in three-dimensional space. 

The task of finding matching features in each eye would be straightforward if features 

could be identified uniquely. However, random dot stereograms [13J demonstrate that the 

hUlnan visual system call compute disparity even when there al'e many identical features 

in close proximity (sec Figure 4.1). necause no pattern is visible monocularly, the deter­

mination of correspondence must take place without cognitive assistance. Furthernlorc, no 

single pair of targets is sufficient to determine the appropriate correspondences; since all 
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Figure 4.2: Stereopsis. This figure illustrates the projection of images of four identical targets 

(dark disks) onto the right and left eyes of an observer. The lines going through the lenses 

connecting each target with the retinas are lines of sight. The intersections of the lines of 

sight indicate possible target positions in space. False targets (transparent disks) are located 

at the intersections of lines of sight that originate from different targets in the two eyes. 
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targets are identical, they could be matched with any of the others. The intersection of 

lines of sight for features that do not correspond represents false targets . There is no way to 

differentiate a false target from a real target without making some assumptions about the 

three-dimensional structure of the targets . The determination of appropriate correspon­

dence is a cooperative process that must consider simultaneously many possible feature 

pall"mgs . 

Calculation of stereo correspondence is simplified by the fact that the search need not 

take place over the entire two-dimensional image. The features in the right and left image 

corresponding to the sanle target are confined to lie along lines on each of the retinae, as 

shown in Figure 4.3. These lines, called epipolar lines, are the locus of points that must 

be searched to establish the stereo correspondence of the features that line on them. The 

origin of the epipolar lines can be understood by imagining that the image position of a 

single feature is known, as are the positions of the two eyes , but that the 3-D position of the 

target giving rise to the image feature is not. The feature in the image projects through the 

nodal point of the eye along a line of sight. The target could lie anywhere along this line. 

That line of sight is imaged through the nodal point of the other eye to the corresponding 

cpipolar line. Corresponding epipolar lines in the two images result frOlll intersection of the 

plane defined by the nodal points of the two eyes and the target , with the image planes . 

When the eyes arc verged to infinity so that the optical axes of the eyes are parallel, the 

epipolar lines are all parallel to the horizontal axis (assuming that the image planes are flat). 

Features in the right image at a particular elevation must correspond to features in the left 

image at that same elevation. However, as vergence changes, the epipolar lines tilt. All of the 

epipolar lines intersect at the point defined by intersection of the line connecting the nodal 

points of the eyes and the (infinitely extended) image plane [lOJ. In this case, the search for 

corresponding features must extend over different ve,·tical displacements, depending on the 

state of vergence of the eyes. Although the region of possible correspondence shifts as the 

cpipolar lines arc tilted, for any given state affixation, the search for possible correspondence 

is a one-dimensional problem. 

Once the stereo correspondence of the targets has been determined, the disparity can be 

calculated. In this chapter, dispari ty is defined geometrically, as if the points in the retina 

were assigned coordinates (Xl. yil in the left eye and (Xc, y,) in the right eye. The geometry 
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Figure 4.3: The epipolar lines for two targets at different elevations. The retinas (vertically 

oriented image planes) are shown symmetrically verged about the midline. The nodal points 

of the lenses arc shown as filled circles. Two targets (filled squares), one above the other, are 

shown with associated lines of sight (dotted lines). Each target, along with the nodal points, 

defines a plane, which intersects the retinas to form epipolar lines. The epipolar lines intersect 

at the point of intersection between the line joining the nodal points of the eyes and the image 

plane. 
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of the epipolar lines depicted in Figure 4.3 demonstrates that, in general, receptors with 

the same coordinates on the two retinae cannot be stimulated by the same target. The 

locus of points in space that stimulate the same coordinates on the two retinae is called the 

horopter and is the zero-disparity surface of fixation. The horopter exists over an entire 

two-dimensional image only when the optical axes of the eyes are parallel. Otherwise, the 

geometrical horopter exists only in the horizontal plane that intersects the nodal points of 

the eye and is perpendicular to the image plane. This horopter is known as the Vieth­

Miiller circle. The simplest interpretation of the one-dimensional stereocorresponciencc 

ch.ip is that it is computing correspondence on the epipolar line of this circle. All the 

image features corresponding to targets in the plane of the Vieth-Muller circle have the 

same retinal y-coordinate. Targets closer to the viewer than the horopter have crossed 

(negative) disparity, (XI < x,). (See Figure 4.5.) Targets more distant than the horopter 

have uncrossed (positive) disparity, (XI> x,). 

4.3 Overview 

A number of algorithms for the computation of stereo correspondence have been proposed, 

several of which are based in part on psychophysical measurements and/or neurophysio­

logical recordings from single cells. The stereo correspondence algorithms that are executed 

on digital machines have provided new insight into the function of neural systems by cre­

ating a level of abstraction that organizes individual mcasurclnents. The stereomatching 

chip described in this chapter differs from digital algorithms because, in addition to taking 

account of neurophysiological and psychophysical data, it is constrained by the properties 

of the ana.log electronic medium. These constraints create another level of correspondence 

between form and functiolJ. Because it is designed to function in the real world, it must deal 

with unnol'malizcci, continuous tilne input. In contrast to a sequential digital simulation, 

the cost of connectivity in the analog mcciillln is higher tha.n the cost of iteration, so a 

feedback structure with local connectivity is cheaper than a globally connected feedforward 

structure. Electronic analogs make new links between single-cell physiology, algorithm and 

psychophysics because they incorporate electrical behavior, purposive design, and real-time 

system performance. 
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4.3.1 Neurophysiology 

The mechanisms that biological systems use to compute stereodisparity are unknown. How­

ever, some of the neurophysiological characteristics of the neurons believed to participate 

in the computation have been elucidated. Giarl Poggio has summarized the physiologic 

responses of cell types sensitive to binocular disparity in macaque monkey, which are il­

lustrated in Figure 4.4 [36, 38J. He lists five major categories of cell: the tuned excitatory 

cell, which is stimulated strongly only by binocular stimuli that are close to zero dispar­

ity; the tuned inhibitory cell, which is typically strongly stimulated by monocular targets 

presented to one of the two eyes and is always inhibited by binocular stimuli at zero dis­

parity; the tuned-near/tuned-far cells and the near/far cells, which are driven by stimuli 

of larger crossed or uncrossed disparity; and the disparity flat cells that are stimulated by 

targets presented through either eye alone, or by binocular targets at any disparity. All 

of these cells are usually also tuned to other stimulus parameters, such as contrast, spatial 

frequency, orientation , and direction of Illotion, and may be classified as simple or complex 

based on the structure of subregions in their receptive fields. Similar proportions of simple 

and complex neurons arc sensitive to the disparity of narrow bars. Only cOlnplcx cells, 

however, appear to be sensitive to random dot stereogrruTIs. 

4.3.2 Computational Algorithms 

Many stcrcocorrespondence algoritluns that are lTIorC or less consistent with neurophysio­

logical and psychophysical data have been proposed , a number of which are reviewed by 

Poggio and Poggio [37J and make and Wilson [2J. These algorithms fan into two major 

classes: those that discriminate true targets from false targets based on cooperative inter­

actions, and those that pre-filter the input across multiple spatial scales and restrict the 

search area in order to reduce the probability of a false match. 

Coopen\tive algoritllllls typically include arrays of units that are narrowly tuned for 

disparity, simi lar to the tuned-zero neurons. These elements participate in two fonns of 

interaction: 

1. A nonlinem· inhibitory mechanism that suppresses false targets. 

2. A nonlocal interaction that gathers evidence to guide this decision. 
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Figure 4.4: Schcmatizntion of the disparity tuning curves of several of the major cell types 

believed t.o be involved in the co mputation of disparity in the m acaque monkey. (a) TE: tuned 

excitatory ce ll; (b) NE/NF: tuned ncar and tune d far cells. (e) TI: tuned inhibitory celli (d) 

FL: dispa rity fiat cell. Dotted lines show the response of the cells to monocular stimulation. 

Adapted from Poggio ot a l. [38]. 
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A diagram of a network structure that supports a typical cooperative algorithm is shown in 

Figure 4.5. The algorithm is implemented with an array of correlators (circles) depicted be­

neath two retinas . The correlator array represents internally the space outside the observer. 

Each row of correlators responds to targets at a particular depth. Columns in the array 

correspond to horizontal image position, or cyclopean angle. The outputs of each retina are 

projected into the correlator array at 45 degrees. The lines of retinal projection correspond 

to lines of sight. There is a non-linear competition between correlators to select the true 

luatchcs. The corrclators in competition with each other are either those in a column or 

those along the same line of sight. This competition is based on the idea that eacll feature 

in one retina should only correspond to one feature in the other retina. This constraint 

arises because one object along a line of sight occludes another object behind it. 

The accumulation of evidence favoring true targets over false ones is gathered for some 

distance across the image. This interaction shown in Figure 4.5 by heavy lines coupling 

correlators at the same disparity. Candidate matches support other candidates that are 

consistent with themselves. Which candidates are consistent with each other depends on 

some assumption about the structure of physical objects. Typically, the assumption is that 

objects are continuous in depth. (Pollard et a!. [40J have employed a constraint on the 

solution based on psychophysics that has a similar effect- namely, that the correct solution 

should not include targets whose depth changes too quickly with horizontal distance.) Since 

the candidates of a consistent solution mutually support each other, this interaction is a 

form of positive feedback. Positive feedback may be implemented explicitly [7, 24, 40J or 

via disinhibition [46J. 

The Marr and Poggio cooperative stereomatching algorithm [24J was translated into an 

analog VLSI circuit [22J. There were several shortcomings to the algorithm. First, the 

positive coupling must pass from node to node in the correlator array. The depth solution 

is filled in and lTIUst exist at every point in the image. Targets lTIUst be close together if 

they arc to influence each other, or else the excitation must be strong enough to propagate 

over hu·ge distances through the correlator array. Second, the algorithm only works well on 

franta-parallel surfaces, since the excitation propagates only within a single disparity. 

Another class of algorithm, illustrated in Figure 4.6, relies on spatial frequency filters 

to eliminate false matches. MalT and Poggio [25J pointed out that false matches occur 
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General framework of the cooperative algorithms. The left and right retinas with five pixels 

are depicted looking out at a scene (above) with two targets at zero disparity and a false target 

visible at -1 disparity (another false targe t is implied at +1 disparity but is not shown). The 

externa l scene is reconstructed beneath the two retinas in a corre lator array (circles). Gray 

circles are correlators responding to false matches, and black circles are correlators responding 

to true matches. Inhibitory interaction among correlation elements run along lines of sight 

(dotted lines) or along lines of equal cyclopean angle (dashed line). Solid lines along disparity 

planes indicate positive coupling bctwe.en correia tors. 
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only at disparities on the order of the width of the spatial frequency of the filter. If the 

peaks of spatial intensity modulation are considered targets, then another target closer than 

the spatial frequency of the filter would constitute a higher spatial frequency and would 

have been filtered out. Observing that cortical cells respond at roughly half amplitude for 

frequencies twice their peak frequency, Blake and Wilson [2) have proposed a "quarter-cycle 

limit." To eliminate false matches, the maximum disparity for fusion should be less than a 

quarter cycle of the spatial wavelength of the stimulus. 

Combining the outputs of filters tuned to different spatial frequencies gives rise to a range 

of disp,u'ity tuning curves. Filters tuned to high spatial frequency have narrow disparity 

tuning, like the tuned-zero cells, and filters tuned to low spatial frequency have broad 

disparity tuning , similar to that of the tuned-near/tuned-far or ncar/far cells [27J. Low 

spatial frequency filters with shallow tUlling curves respond in an analog fashion over a 

range of stimulus disparities. 

Because only low-spatial-frequency units can be used at large disparities without in­

troducing false matches, the stereoacuity at large disparities is poor. In order to acllieve 

fine disparity resolution over a large range of disparities , these algorithms shift the range 

of the high-spatial-frequency filters to be centered around the disparity indicated by the 

coarser resolution channels. This shift can either be accomplished with eye movements [25) 

or by gating the activity of the high resolution units with the activation of the low-spatial­

frequency units [35). 

The multi-resolution algorithms arc practical and effective. Nishihara [35) has imple­

mented a. 111ulti-resolution algorithm with special-purpose digital signal processing hardware, 

which is able to find the disparity in real scenes illuminated with speckled light, which in­

creases target density. The disparity map is generated at a rate of 30 seconds per frame. 

However , comparison with huma.n performance on stereo correspondence tasks suggests 

that these l11uiti-resoilltion algorithms a.re incomplete. Psychophysical Ineasurements indi­

cate that the quarter-cycle limit reasonably obeyed for spatial frequencies less than about 

2 cycles per degree. However, at higher spatial frequencies , the fusional limit is constant 

at about 15 111inutes of arc, large enough for significant lllllnbcl's of false matches to oc­

cur [44). Humans arc able to process images with large disparities even in the absence of 

low-spatia.l-frequency infonnation. 
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Figure 4.6: Multi-resolution algorithm. Two one-dimensional retinae with two arrays of band­

pass fille."s are s hown above. The le ft retina shows highlighted the receptive fields, correspond· 

ing to the position of retinal features. The outputs of the filters of the same type in the two 

retinae are convolved by binocular cells to produce the disparity tuning curves depicted below. 

Correlation of the activated filters of the right and left retinae produce candidate matches in 

the correia tor array. The low-spatial-frequency binocular cells activate the portions of the flne 

disparity array that is corre lated with their own response (grey box). This activation selects 

the true targe ts, which are unambiguously indicated in the coarse disparity array. 
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Figure 4.7: Transformation between place-value encoding of disparity in the correlator array 

and analog-valued encod ing of disparity. 

4.3.3 Electronic Analog 

I have invented a new algorithm, embodied in a VLSI circuit, that generates electrical re­

sponses similar to those found in neurobiology. The algorithm links multiple-scale disparity 

algorithms and cooperative algorithms to remedy some of the shortcomings of each. The 

principal iUllovation is the addition of analog-encoded disparity units that interact via posi­

tive feedback with the correlators in the disparity array. Unlike the multi-scaled algorithms 

which are feedforward from low-spatial-frequency to high-spatial-frequency encoding, my al­

gorithm generates a low-spatial-frequency estimate of disparity from high-spatial-frequency 

units. The system as a whole performs a transformation of the representation of disparity 

from a place-valued encoding of disparity in the corrclator array to an analog-valued en­

coding of disparity [1], which is analogous to a low-spatial-frequency estimate of disparity. 

This transfonnation, illustrated in Figure 4.7, allows interpolation to occur in the analog 

dOinain where it is implemented tnorc easily. 

A block diagram showing the major components of the algorithm is depicted in Fig­

ure 4.8. The largest block is the correlator array. The units in this array are analogous 



155 

to the tuned excitatory cells . They receive input from binocular receptive fields that are 

slightly displaced from each other on the two retinae. The magnitude of the displacement 

determines the peak disparity tuning of each unit. 

Beneath the COlTclator array is an array of Inonocularly driven units that have electrical 

responses that arc similar to the tuned inhibitory cells. The response characteristics of these 

units arise because they are in competition with the correlator array. When the correlator 

array is stimulated by a binocular input, it suppresses activity in the monocular units. 

Competition between the cells in the correlator array and the monocular units is me­

diated by an array of Winner-Take-All (WTA) units shown beneath the monocular units. 

The WTA units provide feedback inhibition to all the cOlTelators and monocular units at 

a particular horizontal position in the image. llecause they receive input from all the cor­

relators, they respond to input at all disparities, like the disparity flat neurons. The effect 

of the WTA inhibition is to suppress the activity driven by a retinal feature at the WTA 

horizontal position in all but onc correlator or Inonocular unit. This non-linear inhibition 

suppresses false targets. 

The final a.rray of units is the a.nalog-va.lued disparity units, which arc analogous to the 

ncar/far neurons in that their response magnitude is monotonic in disparity over a larger 

range than that of the tUlled cells. These analog-valued units are part of a positive feedback 

loop with the tuned units in order to lend support to feature matches that are smoothly 

varying in disparity. 

The major interactions between the clements of the circuit are illustrated in Figure 4.9. 

Most of the interactions take place within the correlator array. A correlator receives input 

from a single position on each retina. Inputs from the right and left retinas are multiplied 

before summing into the output node, V. 

The correlators compete with each other at each horizontal position via negative feed­

back from a common winner-take-all circuit. The negative feedback pathway is indicated 

by dashed lines in Figure 4.8. The winner-take-all (WTA) circuit suppresses false matches. 

The inhibition level is averaged over horizontal position since the WTA circuits are spatially 

coupled. 

The WTA circuit cannot discriminate between correlations of equal strength . Therefore, 

false matches are distinguished from true Inatches by providing additional input to the true 
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Figure 4.8: Block diagram of the major co mponents of the algorithm. This diagram presents 

a narrow horizo ntal slice through the c hip. The chip contains 57 retinal positions in the 

horizontal dimension (3 are shown). The re tinas are not s hown. There are 9 X 57 correlators 

(grey boxes), 2 X 57 monocular units (one linea r array for each eye) shown in dotted outline, 

and linear 8 nays of analog-valued units (black squares) and WTA units (squares in heavy 

outline). Each component corresponds to a cell type observed in biological systems. (See 

t ext.) D as hed vertical lines indicate negative feedback from the WTA circuit to the correlator 

array and the monocular units. Solid ve rtica llines indicate positive feedback from the analog­

disparity units t o the corre la tor a rray. The WTA and the analog-valued units are coupled to 

their neighbors at a dj ace nt horizonta l image positions. 
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match via a positive feedback from the analog disparity unit . The analog disparity unit 

estimates the true disparity in the image by converging to a non-linear, non-local average 

of the correlations. 

Although in principle the analog units could receive low-spatial-frequency retinal input, 

in this implementation, input to the analog disparity units is provided exclusively by the 

correiator array. Each correlator drives the analog-valued unit associated with horizontal 

position through a variable conductance, which is modulated by that correlator's activity. 

The value to which the correlator drives the analog-valued unit is determined by the cor­

relator's peak disparity tuning . Each disparity peak is assigned a disparity reference value, 

which is cornputed by a resistive voltage-divider. Correlators tuned to larger disparities 

drive the analog-disparity unit to larger voltages. The analog-disparity unit thus computes 

a weighted average of activity at that point in the image. 

The analog units arc coupled to each other in a one-dimensional resistive network, which 

averages the local average of disparity across horizontal image position. The voltage on each 

node of the resistive net represents the best estimate of the image disparity at that position. 

The resistive coupling allows the disparity solution to be linearly interpolated so that objects 

tilted in depth can be properly resolved. The interpolated value in the analog net represents 

the depth at t.hat point in the image, although there are no retinal targets present at that 

location. In this way, depth is represented at every point, without the necessity of activating 

the correlation units directly. 

The discrimination between true and false targets performed by the WTA circuit is 

biased to the smooth solution by feedback from the analog-disparity units into the corre­

lator array. The alU,log-disparity unit maximally stimulates the correlator whose disparity 

reference voltage most closely agree with its own voltage. This interaction is represented 

in Figure 4.9 by the clement represented as a circle enclosing a tuned response. The peak 

response of the clement occurs at the disparity reference voltage. The maximally stimulated 

correlator begins to win the competition and the losing corrclators make less and less con­

tribution to the voltage of the analog-disparity unit. The systcln converges to a solution in 

which at most one correlator is activated at each horizontal position. The amplitude of the 

tuned feedback is in proportion to the magnitude of the input at that horizontal position, 

which is measured by the WTA circuit. This scaling insures that the positive feedback will 
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be in proportion to the level of retinal input. When the input is large, the feedback must 

be large enough to elevate the true matches above the false ones. Yet when the input is 

weak, the feedback must not be so strong that the system locks into a state from which it 

cannot escape. 

In addition to the analog units, a set of units that report the existence of unmatched 

monocular targets was incorporated in the network. Monocular units receive input from 

only one retina. The retinal input is summed with positive lateral inputs from neighboring 

monocular cells so that regions of Ulllnatched features in the same eye support each other 

and compete with unmatched regions in the other eye. The monocular units of the right and 

left retinas compete with each other and with the corrclator units via the WTA inhibition. 

The system tries to decide if a retinal feature has a match in the other retinal image; 

however, it has a place to represent the feature if there is no match. Unmatched targets 

arise in real ilnagcs from occlusion events at depth discontinuities . The 111onocular units 

are used to break the dispa.rity interpolation by controlling a fuse circuit that disconnects 

the analog units from each other where there is an occlusion event. The analog estimate of 

depth therefore is not averaged across occluded targets that signal a depth discontinuity. 

T he use of fuses in stereodisparity computations has been previously proposed in the context 

of an analog network interpolation algorithm based on a variational principle [5]. In my 

algorithm , however, the fuse is controlled by the monocular unit driven by retinal input, 

rather than the voltage representing disparity at the terminals of the fuse . This external 

control allows the system to remain continously sensitive to changing retinal input. 

The convergence properties of this chip are difficult to analyze, as the behavior of all 

the elements depends nonlinearly on the stimulus. An attempt to characterize convergence 

empirically is presented after the circuit details are discussed. The performance of the chip is 

compared to human psychophysical performance on stereo disparity tasks . Stimuli include 

randalll dot stcrcognuTIs with a.brupt transitions and occluded features, disparity patterns 

that are tilted in depth , and periodic patterns whose disparity is unambiguous only at the 

end points. Also, the disparity gradient limit for fusion of two targets is measured. 
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Figure 4.9: Summary of the major interactions b e twee n elements of the stereocorrespondence 

chip. A single correia tor e le m e nt is shown in gray at the top of the figure. The resisitive 

voltage -divider that generates the dis parity re fe re nce voltage is s hown at the left. B e neath 

the corre ia tor is a dotted box containing a monocular unit. Monocular units are coupled 

to their neighbors . B e neath that is the WTA element and beneath the WTA is the analog­

valued uni t. Both the WTA c le m e nts and the analog-valued units are resistively coupled to 

their n e ig hbors. The r esis tors co upling the analog-valued units are drawn with fuses that are 

controlled by the output of the monocular units. Inte raction with the WTA takes place along 

the dashe d line . Interaction with the analog-valued unit takes place along the solid line . " .. : 

right retinal input, r,: le ft retina l input. 
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4.4 The Chip 

The architecture of the stereo matching chip is shown in Figure 4.10. The chip correlates 

the outputs of two one-dimensional retinas, and the representation of the solution expands 

into the second dimension of the silicon surface. 

There arc two principle paths along which information propagates, lines of sight and 

lines of average retinal position, illustrated in Figure 4.5. Retinal input units, of course, 

project into the cOlTelator array along lines of sight. Most of the interesting computation , 

however, takes place along lines of average retinal position. If the eyes are symmetrically 

verged, these lines arc lines of equal cyclopean angle. Cyclopean angle is equivalent to 

horizontal cyclopean image position. If i is the locat ion of a pixel in one retina and j is the 

location of a pixel ill the other l'ct illa. , then the cOl'l'ciatol's associated with the nth cyclopean 

angle line receive input from the retinal coordinates i = n - d/ 2; j = n + d/2 where d is 

the disparity to which the correla tor is tuned. Monocular units are assigned a cyclopean 

position that is equal to their retinal position . This assignment places them on the same 

cyclopean angle line a.s the zero-disparity cell with which they have a COmlTIOn re tinal input. 

There are twi ce as lll<lll Y cyclopean angles as there arc monocular retinal positions, s ince 

both pixel positions and disparities arc integer valued. The negative and positive feedback 

interactions in the algori thm take place along lines of cyclopean angle. 

4.4.1 Input 

The input to the stereo chip is buffered in two one-dimensional retinas which represent 

the corresponding epipolar lines from each eye along which matclling can take place. Each 

retinal army has 57 elements. These retinas are not themselves light sensitive, rather they 

are driven by address-events like the receiver chip d escribed in Chapter 3. The circuit 

diagram of the retinal node is shown in Figure 4.11. Two eight-bit-wide input ports supply 

addresses and DATA VALID signals. Although the structure was designed to be used 

with two retinae that generate address-events, the chip was characterized with computer­

generated stimuli , as described in Chapter 3. 

The address-events represent features that has been detected by SOlTIe earlier stage of 

processing . The features could be spatia-temporal image contrast derived by a center-
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Figure 4.10: The architecture of the stereocorrespondence chip. The topography is deformed 

from the conceptua l correlator arrays shown in Figure 4.6 and Figure 4.5 to facilitate the 

layout . The retinas project. into the corre lator array and monocular arrays along lines of 

sight. Line of sight from the lower retina is dashed and the line of s ight from the upper retina 

is dotted. The analog-value resist.ive network and the inhibitory resistive network are below 

the lower retina. An analog-va lued unit, indicated with a dot, interacts with the correlator 

array along the line of equal cyclopean angle shown in thin, unbroken line. Corresponding 

retina and monocular positions are indicated by dots. The shape of the line of equal cyclopean 

angle (average retinal position) on the surface of the chip is the average of the shapes of the 

upper and lower lines of sight. The output of the chip is scanned with a two-dimensional analog 

scanner shown in black. Images scanned from the chip for video display s how activity on the 

retinac, the monocular arrays, and the cor re lator array. The responscs of the analog-valued 

array and the inhibitory array are monitored on an oscilloscope. 
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tau --9 

~-------------,----~output 

address-event ---1 T 
delta ---1 

rail 

Figure 4.11: Schematic of r et inal pixel that receives address-events. When an address-event 

is decode d , it r e moves an amount of charge from the output capacitor. The amount of charge 

removed is r eg ulated by delta. Charge gradually leaks onto the capacitor at a rate controlled 

by tau. The output of the pixel is a voltage that is active low. 
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surround silicon retina, or a lTIore complex signal, like a bandpass oriented edge. The image 

feature that drives stereo correspondence is entirely a function of the circuitry generating 

the addresses. 

4.4.2 Correlators 

The heart of the chip is the correlator array, analogous to the tuned excitatory cells . The 

disparity·tuning curve for a single correlator is depicted in Figure 4.12. The corre/ator 

response is high at a single value of stimulus disparity and low at all other disparities. 

The tuning curves of all the correlators are similar except that they are shifted across the 

disparitya.xis. The maximum disparity to which cOlTclators are tuned in this chip is ±4, for 

a total of 9 rows of corrclators. The range of disparity over which these corrclators is tuned 

is the range of disparity over which images can be fused. Psychophysically this area is called 

Panum's F\,sional area. The extent of Panum's area is a function of the spatial frequencies 

present in the stimulus [44) . These units represent high·spatial·frequency features and the 

constant disparity range of the chip is similar to the 15 minutes of arc fusional lilnit at 

frequencies greater than 2 cycles per degree. 

The ci rcuit schematic of a corrclator is shown 111 Figure 4.13. The retinal input to a 

correlator is a nonlinear c0111bination of the output of two pixels, one pixel from each retina. 

Each row of the correlator array is an iso·disparity plane that represents a point·by·point 

cross-corrc1ation between the two retinas, at a spatial offset corresponding to that plane's 

disparity. The combination of s ignals from the right and left pixels is performed in the 

corrclator cell by means of two serially connected transistors. In subthreshold , these two 

transistors compute the function: 

I,ll 
I mu l1 = -I I' ,+ I 

I, and II are the currents through the rectifiers in the right and left pixels, respectively. 

This operation is a normalized multiplication of the two retinal inputs. If either retinal 

input is small , the current into the corrclator is small . In principle, the algorithm does not 

depend on the nonlinearity in the combination of retinal inputs; the nonlinear inhibition 

should be suffi cient to eliminate the units that arc stimulated by only one retinal input. 
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Figure 4.12: Response of a single correlator as a function of disparity plotted for the correlator 

tuned to zero disparity. The tuning curves of all of the correlalors are similar, but shifted 

on the disparity axis. There is no response to monocular stimulation due to the nonlinear 

combination of inputs f.oom the two retinae. These t.uning curves are similar to those of the 

tuned e xc itatory cells (TE) . 
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WTA 

reference 

WTA common line 
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Simplified version of the electrical interactions at a correlation element. The correlator output 

voltage, V, is determined by the sum of the currents flowing into the node. The retinal input, 

provided by current-mirror Ml, is a current that is a nonlinear AND- type function of the 

signals from pixel i in the right retina and pixel j in the left retina. Input from analog­

valued units through mirror M3 is summed with the retinal input. The WTA circuit provides 

feedback inhibition that sinks the input current to Vdd • Mirror M3 is controlled by a bump 

circuit whose bias is set by the voltage on the winner-take-alliine. The current onto the WTA 

common line supplied by the correlator is mirrored by M2 to bias the follower driving the 

analog-valued unit. 

However, the signal-to-noise ratio is much higher if this nonlinearity is present . The retinal 

input is summed into the output node, V, by current mirror Ml. 

The correlator receives an additional input through current mirror M3, which provides 

feedback from the analog-valued unit via the bump circuit. The feedback from the analog­

valued units to the correlators is the basis for convergence to a solution that is globally 

optimal. The sum of the currents through mirrors M1 and M3 is the total positive input to 

the correlator. This current is counterbalanced by inhibition from the WTA circuit . 

The feedback pattern from the analog-valued unit into the correlator array is depicted 

in Figure 4.14. The distribution pattern is along lines of equal cyclopean angle. The bump 



166 

circuit measures the difference between the analog-value unit voltage and the disparity 

reference voltage of the corrclator and provides input to the correlator whose disparity is in 

agreement with the analog disparity estimate. The amount of feedback to a correlator at 

disparity d is a function of the analog-valued unit voltage that is a bump centered around 

the disparity reference voltage , which is denoted by Vd. This function is specified by the 

following equation: 
In 

Ifeedbackd = ----:-02-:[ ,,-:-:(':-:----:-:,----:-:-)J 
1 + a cosh II' Vd - Vanalog. 

where a and f3 arc constants and In is exponential in the difference between voltage on the 

common line of the WTA circuit at cyclopean angle n and the control voltage labeled gain. 

The gain of the positive feedback is adjusted to be sufficiently low to prevent the system from 

latching up into a fixed state . The fact that the magnitude of the feedback is proportional 

to the activity at the cyclopean angle of the corrclator itself has several consequences. It 

means that the feedback gets stronger as the solution gains strength. The magnitude of the 

positive feedback scales with the magnitude of the retinal input so that the input magnitude 

can vary widely and the feedback strength does not need to be externally adjusted. This 

scaling could also be accomplished by making the positive feedback proportional to the 

activity of the correlator itself; however this method would not allow correlators that were 

losing the competition to receive any positive feedback. Offsets in the magnitude of the 

retina.l input might be able to keep the correct solution from winning the competition by 

preventing the correct correlator from receiving any positive feedback . 

4.4.3 Inhibition 

Inhibition in this system is responsible for normalizing the output in the face of inputs 

of various magnitudes and selecting between competing hypotheses about the true image 

disparity. It is implemented hy a Winner-Take-All (WTA) circuit [17J. 

A s imple, two-channel, WTA circuit is illustrated in Figure 4.15. To understand how 

the circuit works in subthreshold , imagine that the circuit is in equilibrium and that each 

channel is receiving an identica.l input current. In this configuration, IJ = /2 = Ioutl = lout ,}" 

The voltage on the common line, Vel is therefore constrained to be logarithlnic in the input 

current. The voltages on the output nodes, VI and V2, are constrained to supply the bias 
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Figure 4.14: Positive feedback from the analog-valued units to the correlator array along a 

line of cyclopean angle is mediated by bump circuits. 

current to the C0l111non line through source-follower transistors, T21 and T22' These voltages 

are above the common line voltage by a.ll anlount that is logaritlunic in the bias current. 

To 111ake one channel win over the other , we increase its input current . Increasing the 

current to one channel charges up that channel's output node. The voltage on the common 

line follows the output voltage of the winning channel with a voltage difference set by the 

bias current. The output node stops charging when the current through its T J transistor 

is equal to the new input current . The output voltage of the winning channel increases 

logarithmically with input current while the loser 's voltage decreases. 

The loser is suppressed because the inhibition is drawing more current than is being 

supplied by its input. Since the voltage on the common line, Vc , controls the current out 

of both channels, the ca.pacitor of the channel with less current is discharged until its Tl 

transistor draws only its input current . For current differences between the channels of more 

than a few percent, the T, transistor of the losing channel will come out of saturation ; the 

output voltage is within a few k~' of ground. When the current difference between channels 

is small, tbe output voltage on the losing channel is determined by the Early voltage of the 

T, transistor alld by the level of the input current . 
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Figure 4 .15: The winner-take-all circuit. (a) Schematic of a simple two-channel winner-take­

all circuit. (b) Current-voltage characteristic of the two channel WTA circuit. The voltage 

output of the two channe ls is plotted against the ratio of their input currents. 

The WTA circuit is extended to N input channels by simply connecting each channel to 

the same common line. T he connectivity of such a system is 2N. The common line collects 

input from all N nodes in the competit ion and inhibi ts aJl of them. 

In this stereocorrepondence chip , the WTA circuit establishes a competitive feedback 

interaction between all the correlators along a line of cyclopean angle [7 , 34], rather than 

along lines of sight [24, 22]. The monocular units also engage in the WTA competition 

along the same line of cyclopean angle as the zero-disparity correlators that are driven by 

t he monocular units' retinal input. All the correlators along a line of cyclopean angle drive 

the same common line, thus the disparity-tuning curve of the WTA common line is flat. 

Since the lnonocuial' cells are also in c0111pe tition with the COlTelators, the WTA circuit 

also responds to monocular stimulation. The extent to which it responds to monocular 

targets compared to binocular targets is a function of the magnitude of the input to the 

111onocular cells relative to the cOlTclator cells. The disparity tuning curve for the voltage 

on the common line of the WTA circuit is shown in Figure 4.16. 

The common lines of the WTA circuits are resistively coupled , thus inhibition is spatiaJly 
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Figure 4.16: Disparity tuning c urve for voltage on the com mon line of the winner-take-all 

circuit . This tuning curve is analogous to the disparity tuning c urve of the disparity flat cell. 

averaged across multiple lines of cyclopean angle. The spread of inhibition allows correlators 

on different cyclopean angles to inhibit one another. The strength of the resistor relative 

to the bias CUl'l'ent on the common line (h;as in Figure 4.15 and WTA bias in Figure 4.17) 

sets the spread of inhibition across retinal position. 

An additional channel with fixed input , depicted III Figure 4.17, participates in the 

WTA competition at each cyclopean angle and thereby sets a threshold for activation of 

the correia.tors. The threshold level is set so that the bump circuit feedback from the analog­

valued units is unable to bring a correlator above threshold. The system does not latch into 

a s tate and stay there because the correlator input falls below threshold when the retinal 

input is removed. When the threshold element is winning the WTA competition, it drives 

the analog-valued unit to a. resting potential through a follower that acts as a conductance. 

The magnitude of the conductance is set by the lilnit transistor. 

4.4.4 Analog-Valued Units 

The analog-valued units encode disparity as an analog voltage. Theil' response to stimuli at 

different disparities, shown in Figure 4.18 , is similar to the near/far cells. In the biological 
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Figure 4.17: Circuit schematic for threshold element. The threshold input level sets the 

magnitude of input a correlator or monoc ular unit must attain in order to win the WTA 

competition. The threshold elements set the resting voltage and passive conductance for the 

analog-valued units. 
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Figure 4.18: Disparity tuning curve of the analog-va lued units is most similar to that of the 

near/far or tuned-near/tuned-far ce lls . 

system, these cells probably receive input from the retina as well as intra-cortical input. 

However, in this chip, the voltage output of the analog-valued units is derived exclusively 

froln the activity within the corrclator array. 

The analog-valued units aggregate the activity in the correlator array along equal cy­

clopean angle lines to forlll an analog estimate of the image disparity. The activity in the 

cOl'rclator array is tl'ansfonncd into au analog value using a follower aggregation circuit (2] 

shown in Fignre 4.19. Each correlator on the cyclopean angle line controls the conductance 

of a transconductance amplifier th;,t couples the analog-valued unit to a disparity reference 

voltage. The volt;lge of the am,log disparity unit is the weighted average of the voltages of 

the disparities indicated by active correlators. The equation for this average is: 

Vanalog = 
r:,;/=-N Cdv;/ 

r:, ;/=-N Cd 

where Vanalog is the voltage of the analog disparity unit, 11,/ is the disparity reference voltage 

associated with disparity d, and Cd is a. function of the activation of the correlator tWled 

to disparity d . Cd is set by the current that the correlator at disparity d is supplying to the 
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Figure 4.19: Follower aggregation. The corre lator at disparity d drives the analog-valued unit 

voltage to its disparity reference voltage with a normalized driving signal. The normalized 

signal is the c urrent that the correlator is providing to the WTA. Winning correlators provide 

more current to the WTA and thus drive the analog-valued unit vo ltage more strongly. 

WTA common line. This current. is mirrored into the bias control of the follower by M2 (see 

Figure 4.13). Since the total current flowing into the common line is set by the WTA bias 

(Figure 4.17) the total conductance onto the analog-valued unit, "L;(=-N Cd, is constant. 

In the final state of the system, only one correlator should be active so all the other Cd are 

zero and the conductance set by the winning correlator is equal to the WTA bias. The final 

output of the analog disparity unit is simply equal to the voltage that corresponds to the 

disparity of the active correlator. 

In addition to being stimulated by correlators, analog-valued units are resistively coupled 

to each other across equal cyclopean angle lines. The follower-aggregation circuitry and the 

resistive coupling between analog-valued units fOrIn a one-dimensional resistive network . 

The coupling between analog units means that their estimate of disparity is no longer 

purely local, but instead is based on a semi-global average. When the analog-valued units 

are resistively coupled, their voltage response is influenced by the responses of adjacent 

analog units. The current from the aggregation circuitry is summed on a capacitor, as 
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shown in Figure 4.20. The total current into each analog unit is given by this equation: 

+ Vanalogn+1 - Vanalogn 

Ragg 

+ Vanalog.,. _I - Vanalog.,. 

Ragg 

The space constant of aggregation is set by the magnitude of the resistors and the mag­

nitude of the WTA bias current. However, when there is no retinal input at a particular 

cyclopean angle, all of the correlators are below threshold. The threshold unit then de­

termines the space constant of the analog-valued network with the follower that drives the 

analog-valued unit to its resting potential. Typically the limit transistor (Figure 4.17) is 

set to a lower conductance than the WTA bias, so that the voltage on the analog-valued 

network decays very slowly where there are no retinal features. In this way, the analog 

estimate of disparity can propagate for a long way in the network with little attenuation. 

The distance over whicll the information travels in the absence of retinal targets is inde­

pendent of the degree of averaging between targets. Since the conductance at each node in 

the analog unit array is a function of the activity level of the correlators along its cyclopean 

angle line, this system is highly stimulus dependent. The spread of activity in the resistive 

net cannot be calculated without knowing the state of the corrclator array. 

The qualit.ative effect of resistive coupling of the analog-valued units is to perfonn an 

interpolation in depth. The averaging effect may be undesirable when the change in dis­

parity is too large, indicating a boundary between objects at different depths. In order to 

investigate this issue, a fuse whose state is controlled by the monocular lmits described in 

the next section was included to bl'eak the averaging across disparity discontinuities. The 

principle is that the presence of a binocularly unfused target may represent an area of occlu-

sian that occurs at disparity edges. The lnonocular units activate a fuse circuit that Inakes 

the resista.nce between two units in the analog-valued network very lru:gc. This circuit was 

invented by Carver Mead. It. has the advantage that the activation of the fuse keeps the bias 

circuit in a well-behaved , well-defined state. Even if the fuse operation of the monocular 

units is disabled by making the pullup very strong, the current that can be drawn across 

a disparity discontinuity is limited by the nonlinearity of the resistor. Saturation of the 

resistor allows a large voltage difference to form across the edge [121. 
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Figure 4.20: The analog-valued units are coupled across lines of cyclopean angle with resistor 

circuits. The bias circuit sets the magnitude of the resistance by raising the gate voltage of 

the lateral transistors above the voltage of the central node. The maximum current through 

the lateral transistors is equal to the current flowing through the diode-connected transistor 

PD. When t.he fuse line is pulled low, the current flowing through PD goes to zero so the 

resistance becomes very large. Although the current through PD is zero, the currents flowing 

in the bias circuit remain unperturbed 80 that the circuit docs not transit into an undefined 

state. 
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Figure 4.21: Circuit diagram of the monocularly stimu lated element. 

4.4.5 Monocular Units 

In addition to representing binocularly correlated targets, the system also includes state 

variables tha.t indi cate the prescncc of unpaired , or monocular targets. The circuit diagram 

for the 1110nocular unit is depicted in Figure 4.21. Monocular units arc driven by input from 

a single pixel. The magnitude of the retinal input to the monocular cell relative to that in 

the correlator array is set by the input gain control. Monocular units are inhibited by the 

WTA circuit on the lille of cyclopean angle associated with their retinal input . Monocular 

units excite each other by lnea.ns of an active lateral excitation circuit. The gain of the 

positive feedback loop is controlled by the source labelled FB gain. As in the correlator 

array, the magn itude of the positive feedback scales with the magnitude of the retinal input. 

The response of these units to stimulation with binocular targets is shown in Figure 4.22. 

The response is vigorous for disparities that arc not fused in the cOlTelator array. The 

response is inhibited when the disparity range is within the disparity range of the correlator 

array. This tuning curve resembles that for the tuned inhibitory cells (TI) [36J. Although 

it is not apparent in this measurement, the inhibition between the lnonocular units and the 

correlator arra.y is largest at zero disparity and dinlinishes at larger disparities. The reason 
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Figure 4.22: Monocular response as a function of disparity. 

for this decrement is the geometry of the line of cyclopean angle. The only correlator on 

the SalTlC line of cyclopean angle as the monocular unit that receives input from the same 

pixel is at 1.ero disparity. Correlators at different disparities that receive input from the 

JTIonoculal' unit's pixel mllst be on different lines of cyclopean angle. 

4.5 Analog Psychophysics 

In this section, classical stimu li are used to cxam1l1c the performance of the stereocorrc-

spondence chip and a qualitative understanding of its function is developed. The stimuli 

were presented as address-events generated by computer. Unless otherwise stated, the pa­

rameter settings on the chip were the same for all of the stimulus patterns presented. The 

input gain of the ITIOnOCttlar units was very low except for the Ineasurclnent of the disparity 

gradient limit and the random-dot stimulus. The chip is very sensitive to the timing of the 

presentation of even ts. The data bus was able to present a single target to the two retinae 

simultaneously. Care was taken to randomiz.e the pairing of the address-events so that the 

chip could not usc temporal correlation as a method for detennining stereo correspondence. 

In addition, the order of presenta.tion of ta.rgets across the ilnage was randOlnized as much 
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as possible, since it was observered that the order of presentation of targets could affect 

the final state of the system. This occurred because the data presentation rate from the 

computer was much slower than the convergence time of the chip. To test that stimuli 

were being fairly evaluated, the positive feedback was disabled until the complete stimulus 

pattern had established itself on the retina. If the solution obtained in this way was not the 

same as the one immediately generated upon serial presentation of the stimulus, the order 

of address generation was changed. The reduction in the gain of the positive feedback has 

the advantage that it makes most of the false targets visible in the cOlTelator array. The 

inhibition is unable to dctenninc a wiIUlcr because the true and false targets receive equal 

amounts of retina.l stimula.tion. 

The pcrfonnancc of the chip on these stilTlUli suggests interpretations of canonical psy­

chophysical resllits in terms of the underlying circuitry. The data presented in this section 

are scanned of!' the chip IIsing the same method as in previous chapters. The output of 

the inhibitory units and the analog-values units are captured on an oscilloscope trace and 

presented separately fro III the two-dimensional correlator output. 

4.5.1 Tilted Surfaces 

Many stereo algorithms have been designed to cooperatively solve stereograms. However, 

they frequently assume assume that the stereogram depicts a surface that is fronto-parallel 

[24 , 7, 34J . The pattern of excitatory interactions between correlators that assist in the 

dctcnnination of true matches are localized to one disparity plane, and so false matches 

that occur on the same disparity plane will be encouraged instead of true matches that lie 

along a smoothly varying trajectory. 

The stereo correspondence chip is able to fuse tilted stereograms, as depicted in Fig­

ure 4.26 and Figure 4.25. The addition of the analog-valued units allows interpolation to 

occur in a more naturall'cpl'cscntation. A comparison of the analog-valued unit output in 

the false target case (Figure 4.24) and the case in which the positive feedback has been es­

tablished (Figure 4.26) show that the analog-valued output converges to match the correct 

solution. The convergence to a correct solution depends to SOlne extent on the depth aver­

aging of the follower aggregation network. Even before the false matches in the cOlTelator 

array have been suppressed, the analog-valued solution lies in the vicinity of the correct re-
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sponse because the fal se targets on one side of the true solution ca.ncel out the effects of the 

false targets on the other side of the true solution. Disparity averaging to eliminate false tar­

gets has been proposed by Tyler [47J. Analog-valued units have the additional feature that 

an analog representation of disparity is easier to average across space than the place-valued 

representation used in the narrowly tuned corrclator array. Analog interpolation has been 

used previously in intensity-gradient disparity algorithms [5J. These algorithms use the spa­

tial d erivative of intensity in a single image and the change in intensity at identical spatial 

locations in the images from the two eyes to compute the disparity. Intensity-gradient algo­

rithms depend on image features with smooth intensity-gradients that are larger than the 

disparities that you would like to perceive. Like feedforward multi-resolution algorithms, 

they p lace a constraint on the perceived disparity and the spatial frequency content of the 

image. This constraint is not obeyed by onc-dinlcnsional dot patterns . 
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Figure 4.23: The retinal input is depicted at the top and bottom of the figure. Lighter grey 

indicates activity. The correlator array shows activity at all the possible feature correlations 

when the positive feedback to the analog-valued disparity units is disabled. 
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Figure 4.24: Analog-valued disparity output when positive feedback is disabled. 



181 

Figure 4.25: Positive feedback from the analog.valued units allows the WTA competition to 

suppress false targets. 
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4.5.2 Interpolation from Unambiguous Endpoints 

Mitchison and McKee [30 , 31 , 32J have shown that the perception of the depth of closely 

spaced targets can be predicted by interpolation between unambiguous end points. Some 

of the simpler stimuli used in their experiments, shown in Figure 4.27 through Figure 4.34, 

were presented to the stereo correspondence chip. These stimuli consist a periodic array of 

dots whose stereo correspondence is ambiguous except at the ends of the array. Like human 

observers, the chip is able to perceive the stimulus configura.t ion most consistent with the 

unanlbiguous endpoints. The analog-valued units perform an interpolation into the target 

array from the unambiguous endpoints. 

The solution to which the chip converges IS biased by the average computed by the 

analog-value units . A compa.rison of the analog-value unit response shown in Figure 4.28 

and Figure 4.32 reveals that the average computed by the analog-value units is closer to the 

solut.ion at disparity + 2 when the endpoints are set at + 1 and that the average is closer to 

the solution at disparity -2 when the endpoints are at disparity -1. The chip fails to find the 

correct solution when the array of ambiguous points is too large relative to the averaging 

distance of the analog-value units . An asymmetry in the design of the bump circuit biases 

the solution to larger disparity values. 
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Figure 4.26: Analog-valued disparity output converges to the correct solution when positive 

feedback to the correia tors is enabled. 
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Figure 4.27: Output of the correlator array. Endpoints have disparity +1. Possible targets 

visible when positive feedback is disabled. 
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Figure 4.28: Analog-valued disparity output when endpoints have disparity +1 and positive 

feedback is disabled. The voltage corresponding to zero disparity is shown by the dotted line. 
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Figure 4.29: Solution at disparity +2 is favored by endpoints at +1 when positive feedback is enabled. 
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Figure 4.30: Analog-valued disparity output for so lution at +2. The voltage corresponding to 

zero disparity is shown by the dotted line. 
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Endpoints have disparity -1. False targets visible when positive feedback is 
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Figure 4.32: Ana log-valued disparity output when endpoints have dis parity -1 and positive 

feedback is disabled. The voltage correspond ing to zero disparity is shown by the dotted line. 
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Figure 4.33: Solution at disparity -2 is favored by endpoints at -1 when positive feedback is 

enabled. 
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4.5.3 Setting Parameters 

Identical pal'anlcter settings were used for all of these experilnents. Convergence was most 

greatly affected by the spread of activity in the analog-value network and in the inhibitory 

network . C hanges in the final state of the stereo correspondence chip in response to the same 

stimulus for different configurations of the analog-value network and the WTA inhibitory 

network arc shown in Figure 4.35 and Figure 4.40 respectively. Due to the non-linearity 

introduced by the low resting conductance of the analog-network (see Figure 4.17), it is 

difficult to evaluate whether the inhibition spreads farther than the excitation , although the 

parameter settings indicate that this is the case. The conductance, and thus the spreading 

distance of both networks is scaled by the WTA bias voltage (Figure 4.17). A difference 

in bias voltage of the resistor bias and the WTA bias voltage of 40 millivolts accounts for 

an approximately .;e change in the spreading distance. When the difl'erence between the 

WTA bias voltage and t he resistor bias voltage is large and negative, the averaging distance 

in the network is large. Activity in both networks lTIllst be allowed to spread over several 

spatial posit ions in order for the solution to converge properly. 
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Figure 4.34: Analog-va lued disparity output for solution at -2. The voltage corresponding to 

zero dispar ity is shown by the dotted line. 
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Figure 4.35: Activity in the analog-valued array in response to a random dot stereogram for 

four different coupling resistor strengths. The voltages on the resistor bias circuits are shown 

next tot each trace. The WTA bias voltage was -4.26 volts. The WTA-coupling resistor bias 

was -3.91. The chip was p-well and voltages are reported according to the grounded substrate 

convention. 
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Figure 4.36: Activity in the correlator array in response to a random dot stereogram with 

analog-valued-unit-coupling resistor bias voltage at -4.71. See Figure 4.35. This solution shows 

little false target supression. 
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Figure 4.37: Activity in the correIa tor array in response to a random dot stereogram with 

analog-valued-unit-coupling resistor bias voltage at -4.49. See Figure 4.35. This solution shows 

some false target suppression. 



196 

Figure 4.38: Activity in the cOITelator array in response to a random dot stereogram with 

analog-valued-unit-coupling resistor bias voltage at -4.00. See Figure 4.35. This solution is 

optimal. 
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Figure 4.39: Activity in the cOI'relator array in response to a random dot stereogram with 

analog+valued-unit-coupling resistor bias voltage at -3.70. See Figure 4.35. This solution is 

smoothed too much across the disparity discontinuity. 
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Figure 4.40: PI'ofile of activation of the WTA common-line array for WTA-coupling resistor 

bias voltages -4.22 and -3.91 volts . The WTA bias voltage was -4.26 volts. 
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Figure 4.41: Activity in the correlator array in response to a random dot stereogram with 

WTA.coupling resistor bias voltage at -3.70. Compare with Figure 4.38, in which the WTA­

coupling resistor bias voltage was -3.91. This solution is undesirable. 
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4.5.4 Disparity Gradient Limit 

The disparity gradient limit was first described by Burt and Julesz [4). The disparity 

gradient is defined as the binocular disparity between two targets divided by their binocular 

separation. The limiting case in which the two targets are aligned along the same line of 

sight in one eye, and so appear as a single target, but are visible separately from the other 

eye's perspective is known as PanUlu's limiting case and corresponds to a disparity gradient 

of two. Objects with a higher disparity gradient than this will appear in opposite order 

on the two retinae. The disparity gradient for fusion in humans is about one. Figure 4.42 

depicts the forbidden area resulting from a disparity gradient of two and one in terms of 

the stereo correspondence chip architecture. The black square in the center of the correlator 

array indicates the presence of a target at zero disparity. The shaded areas represent the 

positions of matches which would be prohibited by the presence of a match at zero disparity, 

if the chip generated the same disparity gradient liluit as the hUlnan visual system. 

The disparity gradient limit has been the basis for several stereo-matching algorithms 

[40, 41). These algorithms assumed that a forbidden region existed around each possible 

Inatch and chose a set of luatches which were consistent with each other. However, the 

mechanism by which the forbidden region is generated has not received much attention. 

The dispa.rity gradient linlit for fusion arises in this chip through a combination of inhibition 

that incllldes the corrclators and the monocular cells , and excitatory interactions between 

the corrclators and t.he a.nalog-valued units. 

Several features of these interactions are revealed by data from the stereocorresponclence 

chip, depicted in Figure 4.43. The limit was measured by placing one target at zero disparity 

and presenting the additional target. When the disparity gradient was greater than two, a 

new solution arose that paired one retinal feature of the original zero disparity target with 

the other retinal feature of the new target . The match at zero disparity disappeared and 

two new lnatches of similar ncar or far disparity appeared. When the disparity gradient 

was equal to two, the fusion of the new target was often inhibited. (Positions of inhibition 

are shown as medium grey squares). However, inhibition is ineffective when the positive 

feedback between the two targets is strong, so that one cannot suppress the other. Thus 

two adjacent targets on one retina both match with a single target on the other retina a 

produce a blurred target that activates two cOiTelators, one at zero disparity, the other at 
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±l. This output may be interpreted as a target at ±O.5 and so represents a reasonable 

interpolation of the disparity of a single blurred target. When the disparity gradjent is 

between 1 and 2, the target is often not fused or incompletely fused. When the target is not 

fused, it appears in the lllonocular unit array. In a state of inCOlnplctc fusion, the correlator 

that should represent the match flickers due to oscillation in the circuit. This oscillation 

may be analogous to the lusterous quality perceived by humans viewing improperly fused 

targets. Often the monocular cell associated with the new target is partially activated . 

The monocular cells extend the disparity gradient limi t. If the input gain to the monoc­

ular cells is decreased, they cannot compete as effectively with the correlator array, and the 

disparity gradient limit of the chip diminishes. The monocular units help suppress the for­

mation of a fused match because the corrclator that would represent the match is flanked by 

an active correlator at zero disparity, and a monocular cell on the other side. The combined 

inhibition from these two units and the lack of positive feedback is sufficient to suppress 

the fused target. Further experiments must be performed to tease apart the interaction of 

excitation and inhibition in the stereo correspondence network. A illsparity gradient could 

be enforced by many connectivity patterns in a network. However, the results in this bio­

logically plausible network suggest that the tuned inhibitory neurons may playa significant 

role in establishing the psychophysically measured disparity gradient limit . 

4.5.5 Occlusion 

Occlusion is a significant clue to depth. Nakayalna has shown that occlusion alone is 

able to generate the perception of a raised surface and a lso generates a sharp edge at 

the boundary of a surface that has targets on it [33J. The monocularly activated units in 

this stereocorrespondence algorithm provide a natural opportunity to explore the role of 

occlusion in stcrcocorrcsponcicnce. 

Few network 1110dcls have considered the role of occlusion in the computation of stcrc­

OCOlTcspondcnce. The question of whether occlusion is computed before, after or during 

stereocorrespondence is unanswered. Intensity gradient stereo algorithms based on Markov­

rando1l1 field modcIs have used fuses to elilninate disparity interpolation across discontinu­

ities [5J. While this approach cannot generate depth from occluded areas alone, it is easy 

to implement in a VLSI resistive network. 
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disparity gradient = disparity difference /cyclopean position 
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Figure 4.42: Disparity gradient limit. A:ldealized represe ntation showing disparity gradient 

greater than two (ordering constra int violated) in dark grey, disparity gradient equals two 

(Panum's limiting case) in medium grey, and disparity grad ient great.er than or equal to one 

(human fusional limit) in light grey. 
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chip data 
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Figure 4.43: Dis parity gradient limit. Data from the chip s howing areas of target r eordering 

(numbers indicate perceived t a rge ts) , no fusion (medium grey), and incomplete fusion (light 

grey) . The area of target r e ordering is equivalent to disparity gradient greater than two. The 

areas of incomplete fu s ion nearly correspond to a disparity gradient limit of one . 
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I have incorporated fuses to interpolation in the analog unit array that are broken by 

activation of a monocular cell. This strategy improves the disparity estimate computed by 

the a.nalog-valued units in response to a one-dimensional random dot stereogram, shown in 

Figure 4.44 and Figure 4.46. The stimulus has a single disparity discontinuity and a single 

unpaired feature on the lower retina. The disparity estimate computed by the analog­

valued units smooths over the discontinuity when the fuse is disabled (Figure 4.47). When 

the fuse is enabled, however, the disparity solution at +2 is filled in up to the discontinuity 

(Figure 4.48). 
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Figure 4.44: Activity in the correlator array in response to a random dot stereogram with 

single disparity discontinuity and occluded target. Positive feedback is disabled 50 false targets 

are visible. The input gain of the monocular units was temporarily reduced so that the 

monocular units did not suppress the unreinforced targets in the correlator array. 
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Figure 4.45: Response of ana log-va lued units with positive feedback disabled. Analog-valued 

units compute the average disparity of all the active corre ia tors. 
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Figure 4.46: Response of correlator array to random dot stimulus when positive feedback is 

enabled. Compare to Figure 4.44. 



208 

1200 millivolts 

o 114 
Cyclopean Angle 

Figure 4.4 7 : R andom dot stereogram with s ingle disparity discontinuity and occluded target. 

Positive feedback is e nable d a nd fuse is disabled. The analog-valued unit output is smoothed 

across the discontinuity a nd the occluded target visible as activity in the lower array of monoc­

ular units in Figure 4.46. The position of the occlusion ha d to be d etermined in an ambiguous 

string of four contig uous feat ures. 
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Figure 4.48: Random dot stereogram with single disparity discontinuity and occluded target. 

Positive feedback and monocular fuse circuits are enabled. An occluded target breaks the 

interpolat ion in the analog-valued unit array and allows the solution to be filled in at disparity 

+2 up to the occlusion event, although there are no additional targets on the surface. 
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4 .6 D iscussion 

The analog stereo matcher suppresses false matches by a collective interaction that re­

quires a transforma.tion of representation. This transformation allows the generation of 

stable states of the system in which the units have analog-valued outputs. This feature 

distinguishes the stereomatcher from the traditional Hopfield network in which the state 

of the system is pushed to corners of the hyperspace by the positive feedback responsible 

for reconstruction of the stored memory [9]. However, this stability arises from a llcurobi­

ologically unfounded type of ~~synaptic" interaction; namely, synapses whose magnitude is 

a non-monotonic function of the value of the presynaptic neuron. This type of interaction 

has previously been proposed for the construction of radial basis functions [39J. The radial 

basis fUllction has mainly been used in the context of interpolation in a high dimensional 

input space, rather than in the context of associative memory. Although the radial basis 

function may not be the function of a single synapse, it is possible that a network of neurons 

with proper traditiona.l syna.ptic connections might compute such a non-monotonic func­

tion. The success of this algorithm and circuit at solving the stereocorrespondence problem 

as well as the successes of ra.dia.l basis function networks, lTIotivates the search for such a 

llctwork architecture. 

Although this algorithm has used a single "feature" based input, this is not the ideal 

form. It is likely that there arc several interacting populations of neurons that are tuned 

for different orientations, directions and spatial frequencies. The analog valued units of this 

algorithm most likely correspond to disparity units tuned to low spatial frequencies. The 

analog valued units should not be seen as derived or secondary to the finely tuned corre­

lator array. The algorithm was designed to operate specifically on tasks in which the low 

spatia.l frequency information had been removed. I believe tha.t the algorithm represents 

only a small fraction of the interactions normally taking place in cortical computation of 

stcrcocorrcspondencc. The general principle is that the state of cortex lnust be consistent 

with itself over small distances in all its dimensions. This algorithm embodies the require­

lllcnt for consistency between narrowly tuned units and broadly tuned analog units at one 

physical location and consistency between analog units at different spatial locations . This 

requirement for consistency wa.s sufficient to perfonn stcl'cocorrcspondence, even when the 
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low spatial frequency units receive no retinal input. 

One of the novel features of the stereo correspondence chip is the incorporation of monoc­

ular units iuto the cooperative cOInputation. However, this experiment has had an ambigu­

ous result; the role of the monocular units in binocular fusion remains mysterious. Measure­

ment of the disparity gradient limit of the chip indicates that the monocular units playa 

significant role in the formation of the forbidden zone. However, activation of the monocular 

units during the nonna.l fusion process in general seclned to produce a negative effect, even 

if the fuse governing analog-value unit interpolation was disabled. This effect was manifest 

as an unwillingness of the network that included monocular units to find solutions near 

zero disparity. It arises because the competition between the zero disparity correlators and 

the monocular units is direct. The difficulty may well be a result of the inhomogeneity of 

the positive feedback mechanisms in the array. In order to get the monocular units into 

the cOlnpctit.ioll, their input gain had to be adjusted to a high level , relative to the retinal 

input level of the corrclator array. This increased fccdforward gain places the monocular 

cells at an unfair advantage early in the convergence process. The development of a lnore 

consistent cooperative fralllcwork, in which all units participate on an equal footing, will 

be necessary before the role of monocular units in the computation of stereo correspondence 

can be evaluated. 

The necessity for a common framework for neul"al interaction is counterbalanced by the 

need to limit thc possibilities. Invcstigators in neural networks havc adopted a strategy 

of employing predefined architectures and fixed neuronal representations. For exa.mple, 

Qian and Sejnowski [42] have shown that a. back-propagation network initially configured 

according to the architecture of the cooperative stereo correspondence algorithms is capable 

of learning to fuse random dot stereograms and can even handle tra.nsparency. Lehky and 

Sejnowski [20] have demonstrated depth interpolation and representation of transparency 

using a population encoding of disparity that had both narrowly tuned and broadly tWled 

features. Howcver, their analysis assulucd that the units tuning curves were given and 

did not address issues of finding stereo correspondence in random dot patterns. Since the 

analog circuit relates interpolation and stercocorrespondence, one logical extension of the 

circuit would be to add a number of analog-valued units as arc present in Lehky and 

Sejnowski's representa.tion and explore the perception of transparency. Transparent surfaces 



212 

would gather consistent patterns of activation. As long as both surfaces had equal levels 

of consistency, they would both rise above the adaptive threshold level set by the common 

line inhibition of the WTA. 

The stereo correspondence chip can be expanded in many directions. One generalization 

of the circui t is the incorporation of adaptation in the neurons. I believe that adaptation 

will allow the monocular or tuned-inhibitory units to exhibit binocular rivalry [18]. The 

psychophysics of long-term adaptation (i.e. to oriented gratings) and binocular rivalry has 

been studied by Lehky and make [21]. They conclude that binocular rivalry must occur 

before binocula.r fusion. However, these expcrilnents do not rule out the possibility of rivalry 

occurring in the monocular cells that are participating in the fusional process, as is the case 

for the monocular cells in this algorithm. 

Another interesting avenue of investigation is the use of temporal correlation in stereop­

sis. I have observed that the stereo correspondence problem that the chip needs to solve is 

greatly simplified by the addition of temporal correlation of the address-events supplied to 

the two retinae. The addition of analog delay structures, perhaps based on dendritic mor­

phology, will allow the exploration of motion interpolation and stereopsis. Little research 

has been done in time-based algorithms for stereopsis because it is difficult to simulate tem­

poral functions using traditional methods. Previous stereomatching chips [22] have used 

time-deriva.tives as the input for stereo ma.tching. The use of time derivatives improved the 

performance of the matcher by amplifying the input signal relative to the offsets. It is known 

that time is an intrinsic part of the disparity cOlnputation in natural systclns. Perceptual 

psychologists have shown that binocular time delay and disparity can be substituted for 

each other in moving stimuli [3]. Dinocular time delay has been used to characterize dispar­

ity sensitive nemons in visual cortex [8] . Signals that are time delayed between the two eyes 

result frOlTI Illotion in a complex environment in which surfaces occlude one another [45]. 

The address-event communication protocol facilitates investigation of these issues since it 

does not introduce the kind of temporal aliasing as does a sequential-scanning multiplexing 

method. 
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4.7 Summary 

The stereo correspondence chip embodies a new algorithm, intermediate between multi­

resolution algorithms and cooperative algorithms. It can find the correct stereocorrespon­

dence in an one-dimensional random dot stereogram depicting front-parallel or oblique 

surfaces. Its performance on a number of stimuli that have been used in psychophysical re­

search resem bles the performance of the human subjects. Furthermore, the disparity-tuning 

curves of severa.l of the electrica.l units of the circuit are siluilar to the disparity-tuning curves 

of stereo-tuned neurons in primate cortex. Thus, the stcrcocorrespondence chip links elec­

trophysiology with psychophysical behavior and computational fun ction. 

The stcl'cocorrcspondcnce chip has opened a nUlnbcr of avenues for future research in 

the fi elds of nelll'ophysiology, computational neurobiology and engineering. The perfor­

mance of the chip suggests that the disparity tuning characteristics of the disparity flat 

cell and the tuned inhibitory cell may be a result of network interactions. The algorithm 

used by the chip motivates the search for neurally plausible architectures that perform a 

transformation of representation between p lace-valued and analog-valued encoding. The 

rapid and robust function of the stcreocorrcsponciencc chip raises the possibility of building 

an analog multi-chip system to compute stereocorrespondence in real time based on the 

address-event communication protocol. Although the directions and possibilities for future 

research arc ma.ny, they al11ead towards the development of a vocabulary of realizable circuit 

clements that form a rich and self-consistent framework for the synthesis of architecturally 

differentiated neural structures. 
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Chapter 5 

Conclusion 

This thesis has described the development and testing of a simple artificial visual system 

fabricated \Ising analog CMOS VLSI. This visual system is composed of tlu'ee novel subsys­

tClTIS. A silicon retina. that t.ransduces light a.nd performs signal processing of kind similar 

to that observed in simple vertebrate retinae. A stereo correspondence chip uses bilateral 

retinal input to estimate the location of objects in depth. A silicon optic nerve provides 

a cornrnunication SystClll between chips by a Inethod that preserves the idiom of action 

potential transmission in the nervous SystClll. Each of these subSystClTIS illuluinates various 

aspects of the relationship between VLSI analogs and their neurobiological counterparts. 

The silicon retina described in chapter 2 is a classical example of the unity of form and 

function in evolved systems [6, 1) . The purposive function of the retina, to provide relevant 

visual infonnation to the organism, is performed in the context of physicallirnitation, such 

as finite communication bandwidth. The center-surround receptive field structure that is 

optilnal for infonnation transmission is cOlnputed with lateral inhibition via a resistive net­

work. The resistance of the network and the gain of the feedback to the photoreceptors are 

parameters controlling the size of the center-surround operator. Modulation of these intrin­

sic parameters adapts the retina to different viewing conditions. Photoreceptor adaptation 

is naturally integrated into the feedback retina. In this case, the feedback serves to calibrate 

the individua.l receptors with respect to each other. Relative calibration is the 1110St that 

autonomOllS systems , which act without external reference, can achieve. The constraints 

of form in the retina lead to a representation of visual information that is largely invariant 

with respect to changes in illu111ination. Thus, the process of scene abstraction, usually 
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considered a purely cognitive phenomenon, in fact commences in the most peripheral stages 

of vision . As evidence for this I have shown that several subjective visual illusions are 

observed in the output of the chip. 

The address-event communications protocol described in Chapter 3 capitalizes on the 

representation generated by the retina to efficiently transmit information between chips. 

I30th VLSI chips and neuronal systems suffer from bandwidth limitations. The communi­

cations bandwidth is set by the product of the number of wires in the channel and the speed 

of each. Therefore, the strength of silicon technology relative to neurons, its speed, can be 

used to compensate for its weakness, the smalllluinber of pins available to cOInmunicate be­

tween chips. This trade-off is accomplished while preserving the event-like quality of nerve 

impulse transmission. The viability of this protocol depends explicitly on the efficiency of 

information encoding that is used in the retina, and which may be a general characteris­

tic of neural systems. More work needs to be done in this area in order to define a precise 

inter-chip communication protocol that can be used commonly among VLSI neural network 

designers. The speed of the arbitration protocol and the interface of arbitration to internal 

analog circuitry can both be improved substantially. In addition, provisions for interfacing 

multiple senders and receivers and systems for determining the optimal number of data 

buses, the width of the data buses, and the partitioning of neurons onto these buses must 

be devised . The design of buses for interchip communication in analogs of specific neural 

structures will require a through understanding of their anatomy. 

The stereocorresponcience chip described in chapter 4 is based on a novel stereocorrc­

spondence algorithm t.hat unites cooperative and mult.i-resolution approaches . The electrical 

element.s of the chip have disparity-tuning characteristics similar to those found in biologi­

cal systems. These characteristics arise from network interactions. The form and function 

of tbese electrical elements suggest plausible hypothesis for the mechanism of formation of 

biological receptive field properties and hints at their role in the computation of stereo dis­

parity. Future research should explore new architectures based on stereotyped elements . 

The Sllccess of the present algorithlll, based on a transformation of representation, suggests 

that we should search for architectures that can perform similar transformations, but have 

more neurally-plausible subuuits. The computation of transparency and the rectification 

of the illlbalance between the cOlTelator array and the 111onOctIlar units both require the 
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development of stereotyped subcircuits that can be combined into complex architectures. 

Just as the silicon retina is able to emulate the spatial and temporal response of the biolog­

ical retina to arbitrary stimuli within a single physical structure, the evolution of a physical 

structure for the computation of stereo disparity should result in a system whose behavior 

is consistent with psychophysical and neurophysiological data over a large range of stimuli. 

The silicon retina, the silicon optic nerve and the analog stereo correspondence chip 

demonstrate that analog VLSI can capture a significant fraction of the function of neural 

structures at a systems level, and, concomitantly, that neural architectures can lead to new 

engineering approaches to computation in VLSL The relationship between neural systems 

a.nd VLSI is rooted in the shared lilnitations ilnposed by performing computation in similar 

physical media. The systems discussed in this text support the belief that the physical 

liluitations imposed by the cOInputational medium have as significant an effect on the algo­

rithm. Since circuits are essentially physical structures, I advocate the use of analog VLSI 

as powerful medium of abstraction, suitable for understanding and expressing the function 

of real neural systems. The working chip elevates the circuit description to a kind of syn­

thetic formalisrn. Thus, the physical circuit provides a formal test of theories of function 

that can be expressed in a circuit language. 

Circuit language exists only in embryonic form. Carver Mead [2] has begun development 

of such a. langua.ge, but. at this tilne, the definition of the semantics of the pritnitive circuit 

elClncnts and the syntax of their cOlnbination is still unclear. However, dramatic progress 

has been made towards standardizing design techniques in the related field of digital VLSI 

design [3]. There is every reason to believe that similar techniques will emerge in the field 

of neurOlllorphic analog design. The address-event cOlnmunications protocol described in 

Chapter 2 is a major step towards such a standardization. 

Neurobiological systems are sufficiently complex that the transition from description to 

traditional formal ana.lysis is difficult . These systenls consist of large numbers of non-linear 

elements and are analytically intractable and computation intensive for numerical simula­

tion. Circuit design will play an increasingly significant role in computational neuroscience. 

One major advantage to building analog VLSI circuits is that, unlike digital simulation, 

VLSI analogs can be cascaded without affecting their performance. The real-time sensor­

driven analog systenl exists at the same level as its biological counterpart . It can be driven 
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with real stimuli and generate electrical and even motor behaviors that can be observed 

with the same tools used to evaluate the performance of biological organisms. The ability 

to harness such extraordinary computational power will inevitably lead to qualitatively new 

understanding that will benefit both neuroscience and technology. 
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Appendix A 

Compiling the Arbiter 

Silicon compilation is an essential tool for constructing VLSI chips that use the binary 

tree arbiter described in Chapter 3. Constructing a large binary tree structure is difficult in 

VLSI because the structure is regular between scales but not at any particular scale. Simple 

tiling of small clements cannot capture the large scale structure. In order for the Arbiter to 

be used in a practical sense as a design frame, it must be automatically scalable to any size 

array. I have written a WOLCOMP program in Pascal that automatically places a fixed 

set of slTlall geometry cells to build an arbiter tree of whatever size is specified by the user. 

The compilation of the arbiter means that the design frame is essentially transparent to 

the user , although currently the library of geometry cells must be modified by each user to 

have the Sa.lTIC pitch as user's base neuron clClTICnt . 

A well-commented program is listed at the end of the text . It will build arbiters of any 

size that have an even lllllnber of input neurons. However, Arbiters that are not a power of 

2 will have timing asymmetries and thus favor some pixels over others. The tree generated 

by this routine is folded so that it occupies minimum space at the edge of the neuron array. 

A simple folded tree that arbitrates between four neurons is depicted in Figure A.I. The 

program is designed to fill the tree in from the bottom up. A tree with six neurons is shown 

in Figure A.2. The wiring for the tree is composed of small routing cells, illustrated in 

Figure A .3. The cell configuration for the four neuron tree is shown in Figure A.4. 

import 

$search '/LIn/ WOLLIB/ WOLCOMP/WOLCOMP'$ wolcomplib, 
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Figure A.I: Folded four-neuron tree arbiter. 

Figure A.2: Folded six-neuron tree arbiter. 
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$search '/LlI3/WOLLIB/WOLCOMP /WOLCOMPII'$ wolcompII, 

const 

maxdepth=9; allows for 512 arrays 

type 

intarray= arraY[l .. maxdepth] of integer; 

var 

numlayer : intarray; number of cells in each layer of the arbiter tree 

digit: intalTay; binary encoding of the number of the current pixel 

dig: intarray; binary encoding of the number of pixels 

depth: integer; tells the depth of the array 

depth2: integer; tells the number of address bits 

numcclls..x: integer; 

numcclls_y: integer; function cxpol1(base,powcr:integcr) :integer; 

val' 

i,temp:integcr; 

begin 

temp:=l; 

for i:=l to power do 

begin 

temp:=temp*base; 

end; 

expon:=tenlp; 

end; procedure binary(num:integer); 

deals with the structure of the binary tree of arbiter elements 

it calculates the number of two-input arbiters at each layer of the tree 

and stores the result in nurnlaycr 

it also calculates the structure of the tree and stores it in dig array 

when dig[n]=l , then the tree is complete at level n 

complete means that all of the inputs coming up from n-1 have been allocated 

to a two-input arbiter element at the nth level of the tree 

the tree is built to be complete from the bottom 
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odd men out are left to the top of the tree structure 

var 

tClnp,i:integerj 

begin 

tcmp:=num-l; 

initialize dig variable that stores the binary encoding of num 

for i:=l to maxdepth do 

begin 

dig[i]:=O; 

end; 

i:=O; 

while tempi.=l do 

begin 

start with LSB level of the tree- call it level 1 

i:=i+l; 

nU1111aycr[i]:=temp div 2; 

if (temp mod 2)=1 then 

begin 

dig[i]:=l; 

numJayer[i]:=numlayer[i]+l; 

end 

else 

dig[i]:=O; 

temp:=temp div 2; 

end; 

depth:=i; 

depth is the number of levels in the binary arbiter tree 

if expon(2,depth)=num then 

figures out how many address bits (depth) are needed for num pixels 

since counting begins at onc, 2N pixels need N + 1 address bits 

depth2:=depth+ 1 
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else 

depth2:=depth; 

end; procedure binarY2(num:integer) ; 

calculates the addresss bits for the numth pixel and stores it in digit 

val' 

temp,i:intcgcr; 

begin 

ternp:=nUln; 

for i:=l to maxdepth do 

begin 

digit[iJ: = O; 

end; 

i:=O; 

while tempi,=l do 

begin 

i:= i+l ; 

if (temp mod 2)=1 then 

begin 

digit[iJ:=l; 

end 

else 

digit[iJ :=O; 

ternp :=temp div 2; 

end; 

end; procedure arbiter ..luake(num:integer; dnuln:integer; horizontal:booican); 

num is the actual number of pixels in the array 

dnum controls the desired width of the address bus , typically equal to num 

the width of the address bus is as wide as if there were dnum pixels 

num and dnum must be even 

val' 

tID pvar 1, tm pvar2 , tIn pvar3 ,pi teh ,level, toplevel , i j ,k: integer; 



noconncct,try:booleanj 

begin 
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decide to build arbiter for horizontal side of pixel array, 01' vertical 

since the neurons lnay not be square, a different set of buffers lnay be necessary 

if horizontal then 

pitch: =celLwid th ('pixel') 

else 

pitch:=cellJleight ('pixel'); 

binary( dnum); 

calculate the strudure of the tree 

for i:=l to num-1 do 

place the arbiter clement. that abbuts pixel i at the correct level in the tree 

for all but the last pixel in the array- begin counting pixels at 1 

begin 

j:=depth; 

guess that the arbiter cell associated with pixel i 

is at the top level of the tree 

the guess is decremented at the end of the routine 

try:=true; 

while try do 

keep trying until you get it right 

begin 

if (i mod expon(2j-1))=O then 

if this is the position for an arbiter at depth j 

begin 

arbiter is built from bottom to top (1 st pixel to num th pixel 

and from left to right 

order of cells is pixel-reset circuits (hreset, vreset) 

- address bits (1 addr, 0 addr)- interface (*arbull1, *arbuflO)­

two input arbiter element(scan)-

arbiter tree wiring cells (in1, ip, imn, dn, un) 
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add initiation node reset c ircuitry to aribtcr 

xO :=O; 

yO:=(pitch*(i-l) ); 

calculate vertical coordinate of the i th pixel 

if horizontal then 

place(,hreset' ) 

else 

place(,vreset') ; 

xO:=xl; make address bits of the ith pixel 

since the pixel numbering starts at I , there a.re "depth2" bits 

binary2 (i); 

fm- k:=l to depth2 do 

begin 

if digit[kJ=l then 

place(' laddr') 

else 

placc('Oaddr' ); 

xO:=x l ; 

end; 

place buffers to interface cells to arbiter 

if (i mod 2)=0 then 

begin 

if horizontal t hen 

place(,harbufll ') 

else 

place('varbufll ') 

end 

else 

begin 

if horizontal then 

place(,harbuflO') 



else 

place(,varbuflO') 

end; 

xO:=xl; 

if horizontal then 

place('harbbuf') 

else 

place('varbbuf'); 

yO:=yl; 

place('scan '); 

xO:=xl; 

place('inv'); 

xO:=xl ; 

yO:=(pitch*(i-l) ); 
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re-calculatc vertical coordinate of the i th pixel 

find the level in the tree that you need to send connection to 

provision for non-2 N trees 

if ii,=(num-expon(2 ,(j- l))) then 

test if i is close enough to the top of the tree to be irregular 

begin 

k:=j+l; 

noconncct:=truc; 

while noconncct do 

find the level of the tree that you will connect to 

begin 

if k;=depth then 

begin 

if dig[kJ=O then 

there is no one for you to connect with at this level 

begin 

noconncct:=true 



end 

else 
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dig[kJ=1 and you are connecting at level k-I 

begin 

levcl:=k-I; 

noconnect:=false; 

end; 

end 

clse 

if k i. depth you are at the top and should connect 

begin 

noconnect:=false; 

level:=k; 

end; 

k:=k+l; 

end; 

end 

else 

you are regular and the level in the tree you are connecting to is your depth 

level:=j; 

do routing 

there are (depth-I) routing channels that need to be placed 

for k:=1 to (depth-I) do 

begin 

if kj(j-I) then 

if you will connect to an arbiter clement farther out than 

the current wiring track level k 

placeCimn ') 

make sure your inputs will get to you and break wiring tracks that shouldn 't pass 

else 

if k=(j-I) then 
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make your connection to one level below you on the tree 

place{'inl ') 

else 

if k=level then 

send your output to the arbiter element you should connect to 

begin 

test to see if lower or upper branch in the arbiter tree 

tmpvarl:=trunc(i/expon(2j)); 

tmpvar2:=i+expon(2j-l) ; 

if ((tmpvarl mod 2)=0) and (num~tmpva.r2) then 

you are reaching IIp 

place(' un ') 

else 

you arc reaching down 

place{'dn'); 

end 

else 

k ~ your connection level and you should provide wiring tracks 

and send your output up in case you are the top level arbiter 

place{'ipn '); 

xO:=xl; 

end; 

try:=false ; 

you have successfully built pixel i's segment of the arbiter 

so you can stop trying 

end 

else 

else this is not a position for arbiter level j 

j:=j-l; 

decrease your guess and try again 

end; 



end; 

top off the arbiter 

place reset circuitry 

xO:=O; 

yO:=pitch*(num-1) ; 

if horizontal then 

place(,hreset') 

else 

place(,vreset') ; 

xO:=x1; 

binary2 (num); 

find the address of the top bit 

place address bits 

for i:=1 to depth2 do 

begin 

if digit[i]=l then 

place(' 1addr') 

else 

place('Oaddr'); 

xO:=xl; 

end; 

place interface circuitry 

if (num mod 2)=0 then 

begin 

if horizontal then 

place(,harbufl1 ') 

else 

place(,varbufl1 ') 

end 

else 

begin 
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if horizontal then 

placet 'harbllflO') 

clse 

place(,varbllflO') 

end; 

place dummy cells at the top 

xO:=xl; 

place('arbtop '); 

xO:=xl; 

place(,arbtinv') ; 

xO:=xl; 

yO:=(pitch*(11l11n-l) ); 

for i:=l to (depth-l) do 

begin 

place(, arbtch ') ; 

xO:=xl; 

end; 

end; 

end of making arbiter 
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