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Abstract

This thesis explores new methods for geometric, structure-preserving Eulerian discretizations of dy-

namics, including Lie advection and incompressible fluids, and the manifolds in which these dynamics

occur. The result is a novel method for discrete Lie advection of differential forms, a new family of

structure-preserving fluid integrators, and a new set of energies for optimizing meshes appropriate

for some discrete geometric operators. First, high-resolution finite volume methods are leveraged to

introduce a new method for discretizing the Lie advection of discrete differential forms, along with

the related contraction operator, on regular grids. Through its geometric approach, the method

exactly preserves properties such as the closedness of Lie advected closed forms. This results in an

extension of finite volume techniques applicable to forms of arbitrary degree. After this, attention is

turned to simplicial meshes, where new meshing techniques are developed to give formal error bounds

on the discrete diagonal Hodge star, an important operator for geometric computations. Utilizing

weighted Delaunay triangulations, both the primal mesh and its dual are optimized simultaneously

over the entire space of orthogonal primal/dual pairs. Improved accuracy of the solution of Poisson

equations is demonstrated as a practical application, as well as an increase in percentage of well-

centered elements. Finally, a new structure-preserving method for the incompressible Navier-Stokes

equations on simplicial meshes is developed, offering in the inviscid case the exact conservation of

either the discrete energy or symplectic form. This leads to capturing the correct energy decay when

viscosity is added, resulting in dissipation independent of grid and time resolution.
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Chapter 1

Introduction

“I’m not really a fan of using quotations, you usually just end up regretting it.”—Mathieu

Desbrun

Geometric discretizations and methods are a powerful tool gaining more and more attention in a wide

spectrum of computation environments, ranging from geometry processing to Hamiltonian systems.

By respecting symmetries of their continuous counterparts, these approaches have resulted in a

variety of desirable properties, often in practice surprisingly outperforming their known theoretical

guarantees. The purpose of this thesis is to continue developing the state of the art of such methods,

in particular in the setting of Eulerian discretizations where much less work has been done, and to

present some applications in computer graphics. However, in order to do so we must first review the

current developments and terminology.

1.1 Setting the Stage

1.1.1 Structure Preservation: Identities, Invariants, and Symmetries

The notion of structure preservation will be pervasive in this thesis, and the term is used to cover

a range of ideas. In its simplest form it can refer to the preservation of identities in the continuous

domain. For example, the discrete exterior derivative, discussed in section 1.2, satisfies the identity

dd = 0, a fundamental property of the continuous exterior derivative encompassing several basic

vector calculus identities. Preserving identities in the discrete world allows proofs built on these

identities to carry over naturally to the discrete world as well, giving rise to additional properties

preserved by the discrete system, such as existence and uniqueness of solutions to Poisson problems.

Structure preservation is also used to describe the preservation of invariants of dynamic systems. For

example, rigid body dynamics exactly preserve linear momentum, and hence it would be desirable for

a rigid body simulator to also preserve a discrete notion of linear momentum, reducing the likelihood

of erratic or completely unphysical behavior. Such invariants often arise from a symmetry of the
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action of the physical system in the continuous world through Noether’s theorem, which connects

symmetries of the action to corresponding conserved quantities. For this reason, preserving the

symmetries of systems is deeply connected with preserving invariants, and frequently the term

symmetry is used almost interchangeably with invariant. Finally, the study of symmetries and

invariants is a, if not the, key purpose of geometry, thanks to the body of work dating back to Felix

Klein and his Erlangen Program. Hence, the term “geometric methods” is often used to refer to

methods designed to preserve symmetries and invariants, and geometry plays an important role in

their development.

1.1.2 Lagrangian vs Eulerian

When discretizing space for the purposes of physical simulations approaches often fall into two cat-

egories. Methods are referred to as Lagrangian when the location of the degrees of freedom (DOFs)

have fixed material coordinates—i.e. they are “stuck” to the medium being simulated and move in

the embedding space along with the material. Examples of Lagrangian discretizations include parti-

cles representing fluid molecules [1] or a mesh representing the surface of some deformable object [2].

The particles move around in the embedding space to represent the motion of the fluid, and similarly

the mesh vertices move as the object deforms. At the other end of the spectrum are Eulerian meth-

ods, where now the DOFs have fixed spatial coordinates in the embedding space, and the simulated

material can move with respect to them. Common examples include level set methods [3, 4], finite

volumes [5], and most methods employing a fixed “background” grid for computation. For instance,

in a finite volume method one may store the total volume of fluid in each cell of a fixed grid. As the

fluid moves, the volume for each cell is updated, but the location of the cells remain unchanged.

Both Lagrangian and Eulerian methods have their advantages and disadvantages. Accurate

tracking of moving surfaces and interfaces is often easier with Lagrangian methods since the DOFs

can be kept exactly on the surface, while Eulerian methods often suffer from diffusion resulting

from the fixed nature of the DOFs. On the other hand, many Lagrangian methods have difficulty

dealing with topology changes, where Eulerian methods can handle these more naturally. Lagrangian

methods can also have trouble converging to the proper vanishing viscosity solutions without extra

care for shocks and rarefactions [4], and large deformations can lead to badly shaped or distributed

elements causing other numerical issues. The handling of boundary conditions can vary greatly

between the two, with Eulerian methods often proving convenient for dealing with complex fixed

domain boundaries and Lagrangian methods excelling at accurate interface boundary conditions.

More advanced methods often combine or compromise between strict Lagrangian and Eulerian

discretizations. Particle level sets [6] employ both a set of Lagrangian particles for better surface

tracking along with an Eulerian grid for tracking topology changes. Arbitrary Lagrangian-Eulerian

(ALE) methods [7] use meshes that deform based on the current simulation state without having
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them exactly track the material, resulting in DOFs with both material and spatial coordinate varying.

While this thesis will explore structure preservation on the strictly Eulerian side of the spectrum,

extending these results to such hybrid methods is an area of active and interesting research.

1.1.3 Spatial Geometric Discretizations and DEC

With the goal of providing geometric approaches to PDE discretizations, structure-preserving geo-

metric computational methods have emerged, gaining acceptance among engineers as well as mathe-

maticians [8]. Computational electromagnetism [9, 10], mimetic (or natural) discretizations [11, 12],

and more recently Discrete Exterior Calculus (DEC, [13, 14]) and Finite Element Exterior Calculus

(FEEC, [15]) have all proposed similar discrete structures that discretely preserve vector calculus

identities to obtain improved numerics. In particular, the relevance of exterior calculus (Cartan’s

calculus of differential forms [16]) and algebraic topology (see, for instance, [17]) to computations

came to light.

Exterior calculus is a concise formalism to express differential and integral equations on smooth

and curved spaces in a consistent manner, while revealing the geometrical invariants at play. At its

root is the notion of differential forms, denoting antisymmetric tensors of arbitrary order. As integra-

tion of differential forms is an abstraction of the measurement process, this calculus of forms provides

an intrinsic, coordinate-free approach particularly relevant to concisely describe a multitude of phys-

ical models that make heavy use of line, surface, and volume integrals [18, 19, 20, 21, 22, 23, 24].

Similarly, many physical measurements, such as fluxes, are performed as specific local integrations

over a small surface of the measuring instrument. Pointwise evaluation of such quantities does

not have physical meaning; instead, one should manipulate those quantities only as geometrically

meaningful entities integrated over appropriate submanifolds—these entities and their geometric

properties are embodied in discrete differential forms.

Algebraic topology, specifically the notion of chains and cochains (see, e.g., [25, 17]), has been

used to provide a natural discretization of these differential forms and to emulate exterior calculus

on finite grids: a set of values on vertices, edges, faces, and cells are proper discrete versions of

respectively pointwise functions, line integrals, surface integrals, and volume integrals. This point

of view is entirely compatible with the treatment of volume integrals in finite volume methods, or

scalar functions in finite element methods [12]; but it also involves the edge elements and facet

elements as introduced in E&M as special Hdiv and Hcurl basis elements [26]. Equipped with

such discrete forms of arbitrary degree, Stokes’ theorem connecting differentiation and integration

is automatically enforced if one thinks of differentiation as the dual of the boundary operator—a

particularly simple operator on meshes. With these basic building blocks, important structures and

invariants of the continuous setting directly carry over to the discrete world, culminating in a discrete

Hodge theory (see recent progress in [27]). As a consequence, such a discrete exterior calculus has,
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as we have mentioned, already proven useful in many areas such as electromagnetism [9, 10], fluid

simulation [28], surface parameterization [29], and remeshing of surfaces [30] to mention a few.

1.1.4 Temporal Geometric Discretizations

Spatial discretizations are not the only components lending themselves to geometric methods. Many

methods for numerical integration of ODEs and PDEs have been developed as, or later discovered

to be, geometric methods with various structure-preserving properties. An excellent overview and

introduction focusing on ODEs can be found in [31]. The benefits of discretely respecting different

continuous symmetries can vary greatly depending on both the system being simulated and the

targeted application. Examples of commonly desired structures to preserve include mass, volume,

momentum, and energy. One less obvious but increasingly common structure whose preservation is

desired for Hamiltonian systems is the symplectic form. Integrators for Hamiltonian systems that

preserve a discrete notion of the symplectic form are referred to as symplectic integrators, or also

variational integrators as they can be derived through a variational principle. These integrators

tend to perform very well in a wide range of applications, with backwards error analysis combined

with some perturbation theory explaining some of these nice behaviors, while in practice they often

behave well even outside of the domain of their theoretical guarantees. A similar phenomenon arises

with time-symmetric integrators (often just shortened to symmetric integrators) when applied to

reversible systems. Again, while backwards error analysis points to some of the nice behavior, in

practice these integrators often outperform the expectations.

1.2 DEC Overview

Guided by Cartan’s exterior calculus of differential forms on smooth manifolds, DEC offers a calculus

on discrete manifolds that maintains the covariant nature of the quantities involved. Since the

methods and operators of DEC are used extensively throughout this thesis, we will briefly review

the relevant portions here. In this section continuous quantities and operators are distinguished

from their discrete counterparts through a bold typeface We will assume our mesh, be it a regular

grid or simplicial complex, forms an orientable 3-manifold cell complex K = (V,E, F,C) with vertex

set V = {vi}, edge set E = {eij}, as well as face set F and cell set C. Each face and edge is

assigned an arbitrary yet fixed intrinsic orientation, while vertices and cells always have a positive

orientation. By convention, if a particular edge eij is positively oriented, then eji refers to the same

edge with negative orientation, and similar rules apply for higher-dimensional mesh elements given

even vs odd permutations of their vertex indexing. We will also need the notion of the dual mesh,

constructed by assigning to each k-cell an (n−k)-cell, with connectivity and orientation given from

the corresponding primal mesh. While the choice of an appropriate dual mesh for simplicial meshes
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is the topic of chapter 3, we will generally restrict our discussion to orthogonal dual meshes, where

the dual elements span the orthogonal space of their corresponding primal elements (see section 3.2

for more details). For a mesh element σ (be it primal or dual), we will use the notation ∗σ to denote

the element dual to that element.

Boundary operators. Assuming that mesh elements in K are enumerated with an arbitrary (but

fixed) indexing, the incidence matrices of K then define the boundary operators. For example, we

let ∂1 denote the |V | × |E| matrix with (∂1)ve = 1 (resp., −1) if vertex v is incident to edge e and

the edge orientation points towards (resp., away from) v, and zero otherwise. Similarly, ∂2 denotes

the |E| × |F | incidence matrix of edges to faces with (∂1)ef = 1 (resp., −1) if edge e is incident to

face f and their orientations agree (resp., disagree), and zero otherwise. The incidence matrix of

faces to cells ∂3 is defined in a similar way. See [17] for details.

Chains and cochains. At the core of this computational tool is the notion of chains, defined as a

linear combination of mesh elements; a 0-chain is a weighted sum of vertices, a 1-chain is a weighted

sum of edges, etc. Since each k-dimensional cell has a well-defined notion of boundary (in fact its

boundary is a chain itself; the boundary of a face, for example, is the signed sum of its edges), the

boundary operator naturally extends to chains by linearity. A discrete form is simply defined as

the dual of a chain, or cochain, a linear mapping that assigns each chain a real number. Thus, a

0-cochain (that we will abusively call a 0-form sometimes) amounts to one value per 0-dimensional

cell, such that any 0-chain can naturally pair with this cochain. More generally, k-cochains are

defined by one value per k-cell, and they naturally pair with k-chains. The resulting pairing of a

k-cochain αk and a k-chain σk is the discrete equivalent of the integration of a continuous k-form

αk over a k-dimensional submanifold σk:

∫
σk

αk ≡ 〈αk, σk〉.

Alternatively, chains can be defined on the dual mesh, and the same ideas carry over. For example,

where as a primal discrete 0-form assigns each vertex of the primal mesh a real number, we will

refer to a dual 0-form as the discrete form that assigns each dual vertex a real number. While at-

tractive from a computational perspective due to their conceptual simplicity and elegance, the chain

and cochain representations are also deeply rooted in a theoretical framework defined by H. Whit-

ney [25], who introduced the Whitney and deRham maps that establish an isomorphism between the

cohomology of simplicial cochains and the cohomology of Lipschitz differential forms. With these

theoretical foundations, chains and cochains are used as basic building blocks for direct discretiza-

tions of important geometric structures such as the deRham complex through the introduction of

two simple operators: the exterior derivative and the Hodge star.
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Exterior derivative. The differential d (called exterior derivative) is an existing exterior calculus

operator that we will need in our construction of a Lie derivative. The discrete derivative d is

constructed to satisfy Stokes’ theorem, which elucidates the duality between the exterior derivative

and the boundary operator. In the continuous sense, it is written

∫
σ

dα =

∫
∂σ

α. (1.1)

Consequently, if α is a discrete differential k-form, then the (k+1)-form dα is defined on any

(k+1)-chain σ by

〈dα, σ〉 = 〈α, ∂σ〉 , (1.2)

where ∂σ is the (k-chain) boundary of σ, as defined in section 1.2. Thus the discrete differential d,

mapping k-forms to (k+1)-forms, is given by the coboundary operator, the transpose of the signed

incidence matrices of the complex K; d0 = (∂1)T maps 0-forms to 1-forms, d1 = (∂2)T maps 1-forms

to 2-forms, and more generally in nD, dk = (∂k+1)T . In relation to standard 3-dimensional vector

calculus, this can be seen as d0 ≡ ∇, d1 ≡ ∇×, and d2 ≡ ∇·. The fact that the boundary of a

boundary is empty results in dd = 0, which in turn corresponds to the vector calculus facts that

∇×∇ = ∇ · ∇× = 0. Notice that this operator is defined purely combinatorially, and thanks to

the integrated nature of discrete forms combined with Stokes’ Theorem is exact, and thus does not

introduce error or need a high-order definition, unlike the remaining operators we introduce next.

Hodge star. The continuous Hodge star operator ? arises in a variety of practical contexts, the

most common being in the computation of the ubiquitous Laplacian operator, written for differential

forms as ?d?d+d?d?. In n dimensions the Hodge star maps a k-form to an (n−k)-form, such that at

every point the new form has the same magnitude and spans the space orthogonal to that spanned by

the original (or more formally, the wedge product of the two normalized forms is the volume form).

Its simplest discretization, known as the diagonal Hodge star, utilizes this orthogonality along with

that between the primal and dual mesh, hence mapping a primal k-form to a dual (n−k)-form

and vice versa. This is done independently per primal/dual element pair, resulting in a diagonal

matrix from which it derives its name. Its computation is based on the assumption that the form is

locally constant, and therefore for a k-form αk the integral of ?αk over the dual element ∗σi can be

approximated by integrating the constant density
αk

i

|σi| over the orthogonal dual element. While this

approximation is very low order and can introduce significant error, its computational simplicity

and efficiency make it very appealing. Chapter 3 will discuss a new method to design meshes to

minimize the price paid for this convenience. Note that in some cases we will use the notation ?k to

refer to the particular Hodge star that is applied to primal k-forms, while in many cases the choice

of star is clear from context and no subscript is used.



7

Lie derivative and contraction. The Lie derivative is another important operator in exterior

calculus that generalizes the derivative of a function along a vector field to differential forms. Its

discretization, along with that of the related contraction operator, are the topic of chapter 2 and

will be discussed in detail there.

1.3 Outline

The remaining text of thesis will first discuss a novel approach on regular grids of Lie advection of

differential forms of arbitrary degree. After this, simplicial meshes will be discussed, starting with

an analysis of what properties of a mesh are attractive in DEC-like discretizations. This will be

followed by an example application, where new geometric Navier-Stokes integrators are developed

for Eulerian fluid simulation, including both energy-preserving and symplectic varieties. Finally,

the important lessons learned over the course of this work are discussed, along with the abundant

amount of potential future work it suggests.
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Chapter 2

Discrete Lie Advection of
Differential Forms

2.1 Introduction

In this chapter we introduce a finite volume based technique for solving the discrete Lie advection

equation, ubiquitous in most advection phenomena:

∂ω

∂t
+LXω = 0, (2.1)

where ω is an arbitrary discrete differential k-form [15, 12, 14] defined on a discrete manifold, and X

is a discrete vector field living on this manifold. Our numerical approach stems from the observation,

developed in this chapter, that the computational treatment of discrete differential forms share

striking similarities with finite volume techniques [32] and scalar advection techniques used in level

sets [3, 4]. Consequently, we present a discrete interior product (or contraction) computed using

any of the k-dimensional finite volume methods readily available, from which we derive a numerical

approximation of the spatial Lie derivative LX using a combinatorial exterior derivative.

2.1.1 Background on the Lie Derivative

The notion of Lie derivative LX in Elie Cartan’s Exterior Calculus [16] extends the usual concept of

the derivative of a function along a vector field X. Although a formal definition of this operator can

be made purely algebraically (see [19], section 5.3), its nature is better elucidated from a dynamical

perspective [19] (section 5.4). Consequently, the spatial Lie derivative (along with its closely related

time-dependent version) is an underlying element in all areas of mechanics: for example, the rate

of strain tensor in elasticity and the vorticity advection equation in fluid dynamics are both nicely

described using Lie derivatives.

A common context where a Lie derivative is used to describe a physical evolution is in the
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advection of scalar fields: a scalar field ρ being advected in a vector field V can be written as:

∂ρ/∂t + LV ρ = 0. The case of divergence-free vector fields (i.e., ∇·V = 0) has been the subject

of extensive investigation over the past several decades leading to several numerical schemes for

solving these types of hyperbolic conservation laws in various applications (see, e.g., [33, 34, 35, 36,

37, 28, 38]). Chief among them are the so-called finite volume methods [32], including upwind, ENO,

WENO, and high-resolution techniques. Unlike finite difference techniques based on point values

(e.g., [39, 40, 41]), such methods often resort to the conservative form of the advection equation and

rely on cell averages and the integrated fluxes in between. The integral nature of these finite volume

techniques will be particularly suitable in our context, as it matches the foundations behind discrete

versions of exterior calculus [12, 15].

While finite volume schemes have been successfully used for over a decade, they have been

used almost solely to advect scalar fields, be they functions or densities, or systems thereof (e.g.,

components of tensor fields). To our knowledge, Lie advection of inherently nonscalar entities

such as vorticity for fluids has yet to benefit from these advances, as such differential forms are

not Lie advected in the same manner as scalar fields. Concurrent to the development of high-

resolution methods for scalar advection, structure-preserving geometric computational methods have

been emerging as well, as discussed in section 1.1.3. Despite this previous work, the contraction

and Lie derivative of arbitrary discrete forms—two important operators in exterior calculus—have

received very little attention, with a few exceptions. The approach in [42] (which we will review in

section 2.3.1) is to exploit the duality between the extrusion and contraction operators, resulting

in an integral definition of the interior product that fits the existing foundations. While a discrete

contraction was derived using linear “Whitney” elements, no method to achieve low numerical

diffusion and/or high resolution was proposed. Furthermore, the Lie derivative was not discussed.

More recently Heumann and Hiptmair [43] leveraged this work to suggest an approach similar to ours

in a finite element framework for Lie advection of forms of arbitrary degree, however only 0-forms

were analyzed.

2.2 Mathematical Tools

Before introducing our contribution, we briefly review the existing mathematical tools we will need in

order to derive a discrete Lie advection. We assume a regular Cartesian grid discretization of space,

and will leverage the notation and DEC operators introduced in section 1.2. Given the integral

representation of discrete forms, a last numerical tool we will need is a method for computing

solutions to advection problems in integral form. Finite volume methods were developed for exactly

this purpose, and while we now provide a brief overview of this general procedure for completeness,

we refer the reader to [32] and references therein for further details and applications. One approach
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of finite volume schemes is to advect a function u(x) by a velocity field v(x) using a Reconstruct-

Evolve-Average (REA) approach. In one dimension, we can define the cell average of a function

u(x) over cell Ci with width ∆x as

ūi =
1

∆x

∫
Ci

u(x) dx i = 1, 2, . . . , N.

Given k adjacent cell averages, the method will reconstruct a function such that the average of p(x)

in each of the k cells is equal to the average of u(x) in those cells. High-resolution methods attempt to

build a reconstruction such that it has only high-order error terms in smooth regions, while lowering

the order of the reconstruction in favor of avoiding oscillations in regions with discontinuities like

shocks. Such adaptation can be done through the use of slope limiters or by changing stencil sizes

using essentially nonoscillatory (ENO) and related methods. This reconstruction can then be evolved

by the velocity field and averaged back onto the Eulerian grid.

Another variant of finite volume methods is one that computes fluxes through cell boundaries.

Employing Stokes’ theorem, the REA approach can be implemented by computing only the integral

of the reconstruction that is evolved through each face, and then differencing the incoming and

outgoing integrated fluxes of each cell to determine its net change in density. It is this flux differencing

approach that will be most convenient for deriving our discrete contraction operator, due to the

observation that the net flux through a face induced by evolving a function forward in a velocity

field is equal to the flux through the face induced by evolving the face backwards through the same

velocity field. This second interpretation of the integrated flux is the same as computing the integral

of the function over an extrusion of the face in the velocity field, as will be seen in the next section,

and therefore we may use any of the wide range of finite volume methods to approximate integrals

over extruded faces.

2.3 Discrete Interior Product and Discrete Lie Derivative

In keeping with the foundations of Discrete Exterior Calculus, we present the continuous interior

product and Lie derivative operators in their “integral” form, i.e., we present continuous definitions

of iXω and LXω integrated over infinitesimal submanifolds: these integral forms will be particularly

amenable to discretization via finite volume methods and DEC as we discussed earlier.

2.3.1 Toward a Dynamic Definition of Lie Derivative

Interior product through extrusion. As pointed out by [42], the extrusion of objects under

the flow of a vector field can be used to give an intuitive dynamic definition of the interior product.

IfM is an n-dimensional smooth manifold and X ∈ X(M) a smooth (tangent) vector field on the
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manifold, let S be a k-dimensional submanifold onM with k < n. The flow ϕ of the vector field X

is simply a function ϕ : M × R →M consistent with the one-parameter (time) group structure,

that is, such that ϕ(ϕ(S, t), s) = ϕ(S, s+ t) with ϕ(S, 0) = S for all s, t ∈ R. Now imagine that S

is carried by this flow of X for a time t; we denote the resultant “flowed-out” submanifold SX(t),

which is equivalent to the image of S under the mapping ϕ, i.e., SX(t) ≡ ϕ(S, t). The extrusion

EX(S, t) is then the (k+1)-dimensional submanifold formed by the advection of S over the time t

to its final position SX(t): it is the “extruded” (or “swept out”) submanifold. This can be expressed

formally as a union of flowed-out manifolds,

EX(S, t) =
⋃

τ∈[0,t]

SX(τ),

where the orientation of EX(S, t) is defined such that

∂EX = SX(t)− S −EX(∂S, t).

These geometric notions are visualized in figure 2.1, where the submanifold S is presented as a

1-dimensional curve, flowed out to form SX(t), or alternatively, extruded to form EX(S, t).

Using this setup, the interior product iX of a time-independent form ω evaluated on S can now

be defined through one of its most crucial properties, i.e., as the instantaneous change of ω evaluated

on EX(S, t), or more formally,

∫
S

iXω =
d

dt

∣∣∣∣
t=0

∫
EX(S,t)

ω. (2.2)

While this equation is coherent with the discrete spatial picture, for the discrete Lie advection we

will also wish to integrate iXω over a small time interval. Hence, by taking the integral of both

sides of equation (2.2) over the interval [0,∆t], the first fundamental theorem of calculus gives us

∫ ∆t

0

[∫
SX(t)

iXω

]
dt =

∫
EX(S,∆t)

ω, (2.3)

which will be used later on for the discretization of the time-integrated interior product.

Algebraic and flowed-out Lie derivative. Using a similar setup, we can formulate a definition

of Lie derivative based on the flowed-out submanifold SX(t). Remember that the Lie derivative is

a generalization of the directional derivative to tensors, intuitively describing the change of ω in the

direction of X. In fact, the Lie derivative LXω evaluated on S is equivalent to the instantaneous
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X

EX(∂S,±t)
∂S

SX(t)

EX(S, t)SS
SX(−t)

EX(S,−t)

(a) (b)

Figure 2.1. Geometric interpretation of the Lie derivative LXω of a differential form ω in
the direction of vector field X: (a) for a backwards advection in time of an edge S (referred to as
upwind extrusion), and (b) for a forward advection of S. Notice the orientation of the two extrusions
are opposite, and depend on the direction of the velocity field.

change of ω evaluated on SX(t), formally expressed by

∫
S
LXω =

d

dt

∣∣∣∣
t=0

∫
SX(t)

ω, (2.4)

as a direct consequence of the Lie derivative theorem [19](Theorem 6.4.1). As before, we can integrate

equation (2.4) over a small time interval [0,∆t], applying the Newton-Leibnitz formula to find

∫ ∆t

0

[∫
SX(t)

LXω
]
dt =

∫
SX(∆t)

ω −
∫
S
ω. (2.5)

Note that the formulation above, discretized using a semi-Lagrangian method, has been used, e.g.,

by [28] to advect fluid vorticity; in that case the right-hand side of equation (2.5) was evaluated

by looking at the circulation through the boundary of the “backtracked” manifold. Rather than

following their approach, we revert to discretizing the dynamic definition of the interior product

in equation (2.3) instead, and later constructing the Lie derivative algebraically. The primary

motivation behind this modification is one of effective numerical implementation: we can apply a

dimension-by-dimension finite volume scheme to obtain an approximation of the interior product,

while the alternative—computing integrals of approximated ω over SX(t) as required by a discrete

version of equation (2.5)—is comparatively cumbersome. Also, by building on top of standard

finite volume schemes the solvers can leverage pre-existing code, such as CLAWPACK [44], without

requiring modification.

We now show how the Lie derivative and the interior product are linked through a simple algebraic

relation known as Cartan’s homotopy formula. In particular, this derivation (using figure 2.1 as a

reference) requires repeated application of Stokes’ theorem from equation (1.1).

lim
∆t→0

1

∆t

∫ ∆t

0

[∫
SX(t)

LXω
]
dt = lim

∆t→0

1

∆t

[∫
SX(∆t)

ω −
∫
S
ω

]
(2.6)
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= lim
∆t→0

1

∆t

[∫
EX(S,∆t)

dω +

∫
EX(∂S,∆t)

ω

]
(2.7)

=

∫
S

iXdω +

∫
∂S

iXω (2.8)

=

∫
S

iXdω +

∫
S

diXω. (2.9)

The submanifolds S and SX(∆t) form a portion of the boundary of EX(S,∆t). Therefore, by

Stokes’, we can evaluate dω on the extrusion and subtract off the other portions of ∂EX(S,∆t)

to obtain the desired quantity. This is how we proceed from equation (2.6) to equation (2.7) of

the proof. The following line, equation (2.8), is obtained by applying the dynamic definition of

the interior product given in equation (2.3) to each of two terms, leading us to our final result in

equation (2.9) through one final application of Stokes’ theorem. What we have obtained is the Lie

derivative expressed algebraically in terms of the exterior derivative and interior product. Notice

that equation (2.9) is the integral form of the celebrated identity called Cartan’s homotopy (or

magic) formula, most frequently written as

LXω = iXdω + diXω. (2.10)

By defining our discrete Lie derivative through this relation, we ensure the algebraic definition

holds true in the discrete sense by construction. It also implies that the Lie derivative can be

directly defined through interior product and exterior derivative, without the need for its own discrete

definition.

Upwinding the extrusion. We may rewrite the above notions using an “upwinded” extrusion

(i.e., a cell extruded backwards in time) as well (see figure 2.1a). For example, equation (2.2) can

be rewritten as ∫
S

iXω = − d

dt

∣∣∣∣
t=0

∫
EX(S,−t)

ω. (2.11)

While this does not change the instantaneous value of the contraction, integrating equation (2.11)

over the time interval [0,∆t] now gives us

∫ ∆t

0

[∫
SX(t)

iXω

]
dt = −

∫
EX(S,−∆t)

ω. (2.12)

Similar treatment for the remainder of the above can be done and Cartan’s formula can be derived

the same way, however by using these definitions in our following discretization we will obtain

computations over upwinded regions equivalent to those computed by finite volume methods.



14

2.3.2 Discrete Interior Product

A discrete interior product is computed by exploiting the principles of equation (2.3) and applying

the finite volume machinery. Given a discrete k-form α and a discrete vector field X, the interior

product is approximated by extruding backwards in time every (k-1)-dimensional cell σ of the

computational domain to form a new k-dimensional cell EX(σ,−∆t). Evaluating the integral of α

over the extrusion and assigning the resulting value to the original cell σ yields the mapping 〈iXα, σ〉

integrated over a time step ∆t. This procedure, once applied to all (k-1)-dimensional cells, gives the

desired discrete (k-1)-form iXα.

(a) (b) z

x
y

Figure 2.2. Approximating Extrusions: In the discrete setting, the extrusion of a (k-1)-
dimensional manifold (k=1 on left, 2 on right) is approximated by projecting the Lagrangian ad-
vection of the manifold into

(
n
k

)
separate k-dimensional components.

K-dimensional splitting. One option for computing this integral would be to do an n-dimensional

reconstruction of α, perform a Lagrangian advection of the cell σ to determine EX(σ,−∆t), and

then algebraically or numerically computing the integral of the reconstructed α over this extru-

sion. In fact, this is the idea behind the approach suggested in [43]. However, with the exception

of when k = n, such an approach does not allow us to directly leverage finite volume methods,

as performing an n-dimensional reconstruction of a form given only integrals over k-dimensional

submanifolds would require a more general finite element framework. For simplicity and ease of

implementation we avoid this generalization and instead resort to projecting the extrusion onto the

grid-aligned k-dimensional subspaces and then applying a k-dimensional finite volume method to

each of the
(
n
k

)
projections. The integrals over the extrusion of σ from each dimension are then

summed. Again, note that in the special case of k = n no projection is required and we are left

exactly with an n-dimensional finite volume scheme. We have found that this splitting combined

with a high-resolution finite volume method, despite imposing at most first order accuracy, can still

give high quality results with low numerical diffusion, while being able to leverage existing finite

volume solvers without modification. However, if truly higher order is required then a full-blown

finite element method would most likely be required [43].
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Finite volume evaluation. As hinted at in section 2.2, we notice that the time integral of the

flux of a density field being advected through a submanifold σ is equivalent to the integral of the

density field over the backwards extrusion of σ over the same amount of time. In fact, some finite

volume methods are derived using this interpretation, doing a reconstruction of the density field,

approximating the extrusion, and integrating the reconstruction over this. However, many others

are explained by computing a numerical flux per face, and then multiplying by the time step ∆t:

this is still an approximation of the integral over the extrusion, taking the reconstruction to be a

constant (the numerical flux divided by v) and the extrusion having length v∆t. Indeed the right

hand side of equation (2.2) can be seen as analogous to the numerical flux, after which equation (2.3)

becomes the relationship between integrating the flux over time and the form over the extrusion.

Hence we may use any of the finite volume methods for k-dimensional density advection problems

when computing the contraction of a k-form. The only difference here is that rather than applying

Stokes theorem and summing the contributions back to the original k-cell (which will be done by the

discrete exterior derivative in the diXω term of the Lie derivative), the contraction simply stores

the values on the (k-1)-cells, without the final sum.

2.3.3 Discrete Lie Advection

We now have all the ingredients to introduce a discrete Lie advection. Given a k-form α, we

compute the (k+1)-form dα by applying the transpose of the incidence matrix ∂k+1 to α as detailed

in section 1.2. We then compute the k-form iX(dα), and the (k-1)-form iXα. By applying d to

the latter form and summing the resulting k-form with the other interior product, we finally get an

approximation of Cartan’s homotopy formula of the Lie derivative. An explicit example of this will

be given in the next section to better illustrate the process and details.

2.4 Applications and Results

We now present a few direct applications of this discrete Lie advection scheme. In our tests we

used upwinding one-dimensional WENO schemes for our contraction operator, splitting even the k-

dimensional problems into multiple one-dimensional ones. We found that when using high-resolution

WENO schemes we could obtain quality results with little numerical smearing despite this dimen-

sional splitting.

A note on vector fields. In this section we assume that vector fields are discretized by storing

their flux (i.e., contraction with the volume form) on all the (n−1)-dimensional cells of a nD regular

grid, much like the Marker-And-Cell “staggered” grid setup [45]. Evaluation of the vector fields at

lower dimensional cells is done through simple averaging of adjacent discrete fluxes. We pick this
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setup as it is one of the most commonly-used representations, but the vector fields can be given in

arbitrary form with only minor implementation changes.

2.4.1 Volume Forms and 0-Forms

Applying our approach to volume forms (n-forms in n dimensions) we have

LXω = iXdω + diXω = diXω.

Note that iXω is the numerical flux computed by the chosen n-dimensional finite volume scheme

while d will then just assign the appropriate sign of this flux to each cell’s update, and hence we

trivially arrive at the chosen finite volume scheme with no modification. Similarly, applying this

approach to 0-forms results in well-known finite difference advection schemes of scalar fields. Indeed,

we have in this case

LXω = iXdω + diXω = iXdω,

as the contraction of a 0-form vanishes. We are thus left with dω computing standard finite differ-

ences of a node-based scalar field on edges, and iX then doing componentwise upwind integration

of reconstructions of these derivatives. Such techniques are common in scalar field advection, for

example in the advection of level sets, and we refer the reader to [4, 3] and references therein for

examples.

2.4.2 Advecting a 1-Form in 2 dimensions

The novelty of this approach comes when applied to k-forms in n dimensions with n > k > 0.

We first demonstrate the simplest such application of our method by advecting a 1-form by a static

velocity field in 2 dimensions using the simple piecewise-constant upwinding finite volume advection.

To illustrate the general approach we will explicitly write out the algorithm for this case. We will

assume the velocity X is everywhere positive in both x and y components to simplify the upwinding,

and Xx and Xy will be used to represent the integrated flux through vertical and horizontal edges

respectively.

Suppose we have a regular two-dimensional grid with square cells of size h2, and with each

horizontal edge oriented in the positive x direction and each vertical edge oriented in the positive y

direction and numbered according to figure 2.3. A discrete 1-form ω is represented by its integral

along each edge. Due to the Cartesian nature of the grid, this implies that the dx component of the

form will be stored on horizontal edges and the dy component will be stored on vertical edges, and

we represent these scalars as ωxi,j and ωyi,j for the integrals along the (i, j) horizontal and vertical

edge respectively. The discrete exterior derivative integrated over cell (i, j), (dω)i,j , consists of the
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Figure 2.3. Grid setup: Indexing and location of the various quantities stored on different parts
of the grid. Arrows indicate the orientation of the edges.

signed sum of ω over cell (i, j)’s boundary edges, namely

(dω)i,j = ωxi,j + ωyi+1,j − ω
x
i,j+1 − ω

y
i,j .

Using piecewise-constant upwind advection, and remembering the assumption of positivity of the

components of X, we may now compute iXdω over a time interval ∆t for the horizontal and vertical

edges (i, j) as

(iXdω)xi,j = − ∆t

h2
Xy
i,j(dω)i,j−1,

(iXdω)yi,j =
∆t

h2
Xx
i,j(dω)i−1,j .

(2.13)

Note the sign difference is due to the orientation of the extrusions, and would be different if the

velocity field changed sign (see figure 2.1). To compute the second half of Cartan’s formula we must

now compute iXω at nodes, and then difference them along the edges. Using dimension splitting,

as well as averaging the velocity field from edges to get values at nodes, we get for node (i, j),

(iXω)i,j =
∆t

2h2

(
(Xx

i,j +Xx
i,j−1)ωxi−1,j + (Xy

i,j +Xy
i−1,j)ω

y
i,j−1

)
. (2.14)

We may now trivially compute diXω for edges as

(diXω)xi,j = (iXω)i+1,j − (iXω)i,j ,

(diXω)yi,j = (iXω)i,j+1 − (iXω)i,j .
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(a) (b) (c)

Figure 2.4. Advection of a 1-Form: (a) A piecewise-constant form (dy within a rectangular
shape, 0 outside) is advected in a constant velocity field (X = (1, 1), blue arrow) on a unit square
periodic domain with a grid resolution of 482 and a time step dt= 10−3. (b) Because the domain
is periodic, the form should be advected back to its original position after 1 second (1000 steps);
however, our numerical method with a piecewise constant upwind finite volume scheme results in
considerable smearing instead. (c) Using a high-resolution scheme (here, WENO-7) as the basic
component of our form advection procedure significantly reduces smearing artifacts (same number of
steps and step size).

Cartan’s formula and the definition of Lie advection now lead us to obtain

∆ω = −
∫ ∆t

0

LXωdt

discretized as the update rule

ωxi,j+ = −(iXdω)xi,j − (diXω)xi,j ,

ωyi,j+ = −(iXdω)yi,j − (diXω)yi,j .

A first example. An example of this low-order scheme can be seen in figure 2.4(a—b) where

we advect a piecewise constant 1-form by a constant vector field X = (1, 1) in a periodic domain.

Advecting the form forward in this velocity field for a time of 1 second brings the form back to

its original position in the continuous case; however, our numerical scheme proves very diffusive, as

expected on discontinuous forms. We can however measure the error of our scheme by comparison

with initial conditions as a function of the grid resolution with appropriately scaled time step sizes.

To measure the error we recall the Lp norm of a k-form ω is defined over a smooth manifoldM as

|ω|p =

[∫
M
|ω|pdµ

]1/p

, where |ω| = (ω,ω)
1
2

M,

and (·, ·)M is the scalar product of k-forms defined by the Riemannian metric, and dµ is its associated

volume form. We hence define the 1- and 2-norms of discrete 1-forms on a 2-dimensional regular
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Rudman vortical field

Figure 2.5. High-Order Advection: in a vortical vector field (left) typically used for scalar ad-
vection, a piecewise-constant form is advected on a unit square periodic domain with a grid resolution
of 482 and a time step dt=10−3 for 0, 200, and 400 steps (top), 600, 800, and 1000 steps (bottom).

grid with spacing h as

|ω|1 = h
∑
i,j

(|ωxi,j |+ |ω
y
i,j |),

|ω|2 =

∑
i,j

(|ωxi,j |2 + |ωyi,j |
2)

 1
2

for simplicity, but we found using more sophisticated discretizations of the norms all yielded similar

results. Figure 2.6(c) shows the error plot in L1 and L2 norms of this simple example under power-

of-two refinement, confirming the first-order accuracy of our approach.

High-resolution methods. Note that had we chosen to leverage more sophisticated finite volume

solvers in the previous example, the only changes would occur in equations (2.13) and (2.14), which

would use the new numerical flux for computing the discrete contraction: any 2-dimensional method

could be used for equation (2.13), while a 1 dimensional method is required for equation (2.14). Due

to the dimensional splitting obtaining higher-order schemes is not easy, but for many application

the order of accuracy is not always the most important thing. In particular, in the presence of

discontinuous solutions high-resolution methods are often preferred for their ability to better preserve

discontinuities and reduce diffusion. To test the utility and effectiveness of such schemes applied

to forms, we compare the piecewise-constant upwinding method from the previous section with

a Finite Volume 7th-order 1-dimensional WENO upwind scheme (see an overview of FV-WENO

methods in [46]). Figure 2.4(c) shows the high-resolution finite volume scheme does a much better
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job at preserving the discontinuities, despite both methods being of the same order of accuracy for

this discontinuous initial form (figure 2.6(c)).

Accuracy. To further demonstrate that properties from the underlying finite volume schemes cho-

sen (including their accuracy) carry over to the advection of forms, we provide additional numerical

tests. In figure 2.5, we advected a simple discontinuous 1-form in a vortical shearing vector field

(Rudman vortex, left) on a 48x48 grid representing a periodic domain. As expected, the form is

advected in a spiral-like fashion. By advecting the shape back in the the negated velocity field for

the same amount of time, we can derive error plots to compare the L1 and L2 norms for this example

under refinement of the grid; see figure 2.6 for other convergence tests when a first-order upwind

method or a WENO-7 method is used in our numerical technique.

2.4.3 Properties

It is easy to show that our discrete Lie derivative will commute with the discrete exterior derivative

as in the continuous case, by using Cartan’s formula and a discrete exterior derivative that satisfies

dd = 0 since we have

dLXω = d(iXdω + diXω)

= diXdω

= (diX + iXd)dω

= LXdω.

This commutativity does not depend on any properties of the discrete contraction and therefore

holds regardless of the underlying finite volume scheme chosen. A useful consequence of this fact is

that the discrete Lie advection of closed forms will remain closed by construction; i.e., the advection

of a gradient (resp., curl) field will remain a gradient (resp., curl) field.

Unfortunately other properties of the Lie derivative do not carry over to the discrete picture

as easily. The product rule for wedge products, for example, does not hold for the discrete wedge

products defined in [13], although perhaps a different discretization of the wedge product may prove

otherwise. However, the nonlinearity of the discrete contraction operator along with the upwinding

potentially picking different directions on simplices and their subsimplices makes designing a discrete

analog satisfying this continuous property challenging.

2.5 Conclusions

In this chapter we have introduced an extension of classical finite volume techniques for hyper-

bolic conservation laws to handle arbitrary discrete forms. A class of first-order finite-volume-based
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(a) (b)

(c)

Figure 2.6. Error Plots and Conver-
gence Rates: We provide error plots in
L1 and L2 norms for power-of-two refine-
ments for (a) advection of a smooth form
in a constant vector field, (b) advection of a
smooth form in the vortical vector field of fig-
ure 2.5(left), and (c) advection of the discon-
tinuous form used in figure 2.5. The black bold
segments indicate a slope of 1.

discretizations of both contraction and Lie derivative of arbitrary forms was presented, extending

Discrete Exterior Calculus to include approximations to these operators. Low numerical diffusion

is attainable through the use of high-resolution finite volume methods. The advection of forms and

vector fields are applicable in a multitude of problems, including conservative interface advection

and conservative vorticity evolution.

Although finite volume methods can offer high resolution at a relatively low computational cost,

numerical diffusion is still present and can accumulate over time. In addition, the numerical scheme

we presented is not variational in nature, i.e., it is not (a priori) derived from a variational principle.

These limitations are good motivations for future work.

While we have given numerical evidence demonstrating the manner in which resolution and

accuracy is inherited from the underlying finite volume scheme, a formal analysis of stability and

convergence remains to be performed. In particular, it is desirable to understand what the stability

of the underlying one-dimensional scheme implies about the stability of our method. Although

norms for discrete differential forms have been defined, such tools are not always suitable for the

analysis of nonlinear methods in multiple dimensions, even for scalar advection. We believe such an

investigation is an important next step for the present work.

In the future, we also expect that extensions can be made to make truly high-order and high-
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resolution discretizations of the contraction and Lie derivative through n-dimensional reconstructions

of k-forms and extrusions. In particular, this would greatly facilitate the extension to simplicial

meshes. While there has been recent progress on high-order schemes for triangular meshes [47, 48],

these are not directly applicable for contractions of arbitrary forms. Hence, despite having a well-

defined discrete exterior derivative for simplicial meshes, such an extension will require more than

just 0- or n-form advection schemes, as our current dimension splitting approach to generalize such

schemes for contraction of forms of other degrees does not immediately apply on nonrectangular

meshes.
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Chapter 3

Hodge-Optimized Triangulations

3.1 Introduction

The discrete Lie advection introduced in the previous chapter was developed for regular grids, as

its extension to simplicial meshes is not as easy. However, the traditional DEC operators can be

used directly on simplicial meshes as well as regular grids, and nontrivial boundaries often call

for such spatial discretizations. A vast array of modeling and simulation techniques assume that

a mesh is given, providing a discretization of a 2-dimensional or 3-dimensional domain in simple

triangular or tetrahedral elements. As the accuracy and stability of most computational endeavors

heavily depend on the shape and size of the worst element [49], mesh element quality is often a

priority when conceiving a mesh generation algorithm. Be it for finite-volume, finite-element, finite-

difference, or less mainstream computational schemes, the need for good triangle or tetrahedron

meshes is ubiquitous not only in computer graphics, but in computational sciences as well—and as

computational power increases, so does the demand for effective meshing.

While generically “good” dual or primal elements can be obtained via Centroidal Voronoi Tesse-

lations [50] or Optimal Delaunay Triangulation [51] respectively, an increasing number of numerical

methods need strict control over both primal and dual meshes: from discrete differential operators in

modeling (e.g., [52]) to pressure solves in fluid simulation (as recently mentioned in [53]), the place-

ment of primal elements with respect to their orthogonal dual elements is increasingly recognized as

crucial to reliable computations. However, very little is available to quickly and effectively design

such orthogonal primal-dual structures over complex domains. To address this lack of adequate

meshing tools, we introduce a theoretical analysis of what makes a mesh and its dual numerically

optimal in some common graphics contexts, along with practical algorithms to produce optimized

primal-dual triangulations.
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Figure 3.1. Primal/Dual Triangulations: Using the barycentric dual (top-left) does not gen-
erally give dual meshes orthogonal to the primal mesh. Circumcentric duals, both in Centroidal
Voronoi Tesselations (CVT, top-middle) and Optimal Delaunay Triangulations (ODT, top-right),
can lead to dual points far from the barycenters of the triangles (blue points). Leveraging the free-
dom provided by weighted circumcenters, our Hodge-optimized triangulations (HOT) can optimize
the dual mesh alone (bottom-left) or both the primal and dual meshes (bottom-right), e.g., to make
them more self-centered while maintaining primal/dual orthogonality.

3.1.1 Previous Work

Meshing complex 2-dimensional or 3-dimensional domains with high-quality elements has generated

a tremendous number of research efforts. Bounds on numerical errors have resulted in the use of

Delaunay triangulations [54] for finite-element computations, and Voronoi diagrams [55] for finite-

volume methods. However, the combined use of a primal mesh and its dual structure has increased

over the last decade in both modeling and simulation, with quantities of both geometric (normals,

mean and Gaussian curvatures, tangents) and physical (velocities, fluxes, circulations, vorticities)

nature inherently located either on the primal mesh or its dual [56]. Calculations involving these

primal and dual values in graphics were formalized in Discrete Exterior Calculus (DEC—see sec-

tion 1.2), now used in vision and image processing as well [57].

Delaunay/Voronoi pairs. In the context of discrete differential geometric operators, Meyer et

al. [52] recommended a Voronoi (circumcentric) dual for tighter error bounds—but locally reverted

to the barycentric dual when a dual vertex was not contained in its primal simplex. For fluid
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simulation, Perot and Subramanian [58] and Elcott et al. [28] advocated circumcentric duals as

well, this time to ensure that pressure gradients between adjacent cells were parallel to the velocity

samples stored on the common face. In DEC terminology, this simply means that the flux through a

face and the circulation along its associated dual edge measure the same component of a vector field.

Moreover, another advantage of the Delaunay/Voronoi duality for fluid simulation exploited in [28]

is that the convexity and non-self-intersection of dual Voronoi cells make them ideal for the use of

generalized barycentric coordinates [59]. Still, the seemingly natural choice of Delaunay/Voronoi

triangulation is far from being without drawbacks. First and foremost, it it extremely difficult in

practice to get “self-centered” Delaunay triangulations [60] for which each circumcenter lies inside

its associated tetrahedron: failure to satisfy this property locally can lead to numerical degeneracies.

Recent methods attempting to optimize meshes to avoid this issue remain impractical for complex

domains [61]. A second drawback of a Delaunay/Voronoi pair is the inability to choose the positions

of dual nodes locally without significantly degrading the primal mesh: having more flexibility in the

placement of pressure samples would significantly improve the treatment of free surfaces in embedded

boundary methods [53]. Consequently, and while abundantly vetted by theoretical guarantees,

Delaunay/Voronoi triangulations are too restrictive in many practical situations. We will, instead,

promote the use of arbitrary convex orthogonal primal/dual pairs to offer significantly more flexibility

(see figure 3.1).

Accuracy vs efficiency. Sparsity is crucial when dealing with large linear algebraic problems

frequently encountered in geometry processing. Graphics literature is replete with low-order methods

using as-sparse-as-possible formulations for efficiency. While nonlinear and/or high-order methods

have their own advantages and proponents, it is often highly desirable to find the simplest, fastest

approximation valid for most applications, even if only to initialize a subsequent nonlinear solver.

In the context of DEC, this quest for efficiency often translates to the use of the so-called diagonal

Hodge stars (which include the famous cotangent weights [62] widely used in geometry processing)

over other discretizations of Hodge stars [63, 64, 65] to approximate primal values based on dual

values (and vice versa); as inverse Hodge stars appear even in basic operators [66, 28], having

diagonal approximations can greatly increase computational efficiency. However, once a primal-dual

triangulation is chosen, one has no control over the error incurred by diagonal approximations:

efficiency may thus only be achieved on particularly good meshes. We will, instead, design meshes

to minimize formal error bounds of diagonal Hodge stars, generally increasing accuracy without the

additional costs associated with refinement (increasing system sizes) or higher-order Galerkin Hodge

stars (decreasing the sparsity and making inversion more difficult).
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3.2 Preliminaries and Definitions

Before introducing our Hodge-based meshes, we first provide some background on orthogonal pri-

mal/dual triangulations and optimal transport as we will make heavy use of these notions throughout

the chapter.

3.2.1 Regular-Power Triangulations

The notion of dual for a triangulation T in Rd is well-known and routinely used in graphics: each

d-simplex is associated with a dual vertex (dual 0-cell), each (d−1)-simplex is associated with a dual

edge (dual 1-cell) between the two dual vertices associated with the two adjacent d-simplices, etc.

Primal vertices xi are then associated with dual d-cells Vi, and the dual of T forms a cell complex

D. However, this concept of dual is abstract, as the location of the dual vertices are not specified

a priori. A very common dual to a triangulation is the cell complex that uses the circumcenters of

each d-simplex as dual vertices. If the initial triangulation is Delaunay (i.e., satisfying the empty

circumsphere property [54]), this dual is simply the Voronoi diagram of the primal vertices, and its

nice properties of non-self-intersection, convexity, and orthogonality of the primal and dual elements

have led to its use in countless papers in graphics and computational sciences. The barycentric dual,

for which barycenters are used instead of circumcenters (see figure 3.1), is also quite common in

particular for finite-volume computations; however, it fails to satisfy both the orthogonality and the

convexity conditions on general triangulations.

Desirable primal-dual pairs. Remaining agnostic with respect to the choice of a dual, we will

call a primal-dual triangulationM in Rn any pair (T ,D) with T being a triangulation in Rd and

D a compatible dual complex of T (i.e., their respective adjacency matrices are transpose of each

other). Moreover, if every edge [xi,xj ] of T and its dual Vi ∩ Vj in D are orthogonal to each other,

the pair (T ,D) is said to form an orthogonal primal-dual triangulation. Finally, we will denote as

∗ the operation of duality (see figure 3.2); that is, a primal simplex σ will have its dual referred

Figure 3.2. Duality: The dual of a triangulation in Rd associates to each k-simplex σk a (d−k)-
cell ∗σk (here, k = 0, 1, 2, 3). Having σk ∩ ∗σk “well centered” within the primal simplex and its
orthogonal dual cell is crucial to numerics in modeling and simulation.
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to as ∗σ with the orientation induced by the primal orientation and the manifold orientation. For a

more formal definition, see [67, 13].

Regular/power duality. Delaunay/Voronoi primal-dual triangulations are restrictive in that

they allow no choice on the dual once the primal mesh is fixed. A natural question to ask is are

there other primal-dual triangulations that satisfy the orthogonality, non-intersection, and convexity

conditions we require? The answer is affirmative: the known duality between regular triangula-

tions (also called weighted Delaunay triangulations) and power diagrams (also called Laguerre or

weighted Voronoi diagrams) provides all the satisfactory orthogonal primal-dual triangulations [68].

This exact characterization of the primal/dual triangulations we seek will be particularly convenient

as it will lead to a number of new geometric functionals measuring mesh quality; it will also yield

straightforward generalizations of standard DEC operators without some of the most limiting factors

that the Delaunay/Voronoi duality possesses.

Formally, a weighted point set is defined as a pair (X,W)={(x1, w1), . . . , (xn, wn)}, where X is a

set of points in Rd, and {wi}i∈[1,...,n] are real numbers called weights. The power of a point x ∈ Rd

with respect to a weighted point (xi, wi) (sometimes referred to as the Laguerre distance) is defined

as ‖x−xi ‖2−wi, where ‖.‖ stands for the Euclidean distance. Using this power definition, to each xi

we can associate its weighted Voronoi region V wi ={x∈Rd| ‖x−xi ‖2−wi ≤ ‖x−xj ‖2−wj ,∀j}. The

power diagram of (X,W ) is the cell complex whose cells are the weighted Voronoi regions. The dual

of the power diagram of (X,W ) is the regular triangulation of (X,W ): this triangulation contains

a k-simplex with vertices x0,x1, . . . ,xk in X iff
⋂j=k
j=0 V

w
j 6= ∅.

Note that in a regular triangulation, a point xi ∈ X can be hidden, i.e., it may not be used in the

triangulation because its weighted Voronoi region is empty. Note also that when the weights are all

equal, the power diagram coincides with the Euclidean Voronoi diagram of X. Geometrically, one

can think of the weight wi as the square of the radius of a unique circle centered at vertex xi; then

there exists in each triangle a circle, centered at what is known as the weighted circumcenter,

which is orthogonal to each of the circles centered at the vertices. All of these properties can

be extended to the case where the weights are negative [69], and thus regular triangulations and

their associated power diagrams generalize the usual Delaunay/Voronoi duality nicely. This simple

addition of a weight to each vertex allows us to conveniently parameterize the entire space of good

(i.e., orthogonal, convex, and non-self-intersecting) primal-dual triangulations M.

3.2.2 Basics of Optimal Transport

The optimal transport problem dates back to Gaspard Monge. (For a description of the vast liter-

ature on this topic, we refer the reader to [70].) In essence, it seeks to determine the optimal way

to move a pile of dirt M to a hole N of the same volume, where “optimal” means that the integral
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of the distances by which the dirt is moved (one infinitesimal unit of volume at a time) is minimal.

While Monge’s variational formulation of the problem assumed that all the dirt at a point x ∈ M

must be moved through a point-to-point mapping s to one location s(x) ∈ N , this restriction was

relaxed by Kantorovich who replaced the mapping s with a probability measure π ∈ P(M × N)

that specifies the joint measure of dirt-hole correspondences; i.e., π is a transport plan between a

probability measure µ on M and a probability measure ν on N with π(· ×N)=µ and π(M × ·)=ν.

This extension to the transport of measures marked a renewed interest in optimal transport as it

proved general enough to apply to many scientific fields (for recent graphics-related applications,

see [71, 72]).

Wasserstein metric. For measures the notion of “distance” (i.e., cost of transport) may vary

based on context. A common distance function defined between probability measures in Rd with

bounded support is the q-Wasserstein metric, defined as

Wq(µ, ν) =

(
inf

π∈P(µ,ν)

∫
Rd×Rd

‖x− y‖q dπ(x, y)

)1/q

.

To reuse the analogy mentioned above, if each measure is viewed as a unit amount of piled-up dirt,

the metric is the minimum “cost” of turning one pile into the other, which is assumed to be the

amount of dirt that needs to be moved times the Lp distance it has to be moved. Because of this

analogy, the metric is sometimes called the earth mover’s distance. Note, as it will be crucial in

section 3.3, that by a direct application of the Hölder inequality for two measures of unit mass,

W1(µ, ν) ≤W2(µ, ν). (3.1)

Finally, we will also need the Kantorovich-Rubinstein theorem, stating that for two measures µ and

ν with bounded support, the 1-Wassertein distance between µ and ν can be rewritten as

W1(µ, ν) = sup
ϕ:Rd→R

Lip(ϕ)≤λ

1

λ

∫
Rd

ϕ(x) d(µ− ν), (3.2)

where Lip(ϕ) represents the Lipschitz constant of function ϕ. This expression will be useful shortly

to link optimal transport and approximation error of diagonal Hodge stars.

3.3 Error Functionals for Diagonal Hodge Stars

To demonstrate the advantages of using regular/power triangulations, we focus on a particularly

relevant type of functional measuring primal and dual properties. Recall from section 1.2 that for

an arbitrary primal element σ, the diagonal approximation of the Hodge star ? [63] of a continuous
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differential form α assumes ∫
∗σ
?α ≈ | ∗σ|

|σ|

∫
σ

α, (3.3)

where |.| denotes the Lebesgue measure (length, area, volume) of a simplex or cell. In other words,

the discrete kth Hodge star is encoded as a diagonal matrix ?k with

∀i, (?k)ii :=
| ∗σki |
|σki |

,

where σki (resp., ∗σki ) is the ith k-simplex (resp., (d−k)-cell) of the primal-dual triangulation M =

(T ,D); the discrete Hodge star of a discrete primal k-form ωk is then computed as ?k ωk, and the

extension to dual discrete forms (now with (?k)−1) is trivial (for further details see, e.g., [56]).

3.3.1 Deriving Tight Bounds through Optimal Transport

While computationally convenient, diagonal Hodge stars are not very accurate: they are generally

only exact for constant forms. We can quantify the induced inaccuracy of ?k by defining the error

density ei on the dual of a k-simplex σi as the average difference between the discrete approximation

and the exact Hodge star value:

ei :=
1

| ∗σi|

∣∣∣∣ | ∗σi||σi|

∫
σi

ω −
∫
∗σi
?ω

∣∣∣∣ =

∣∣∣∣ 1

|σi|

∫
σi

ω − 1

| ∗σi|

∫
∗σi
?ω

∣∣∣∣ .
We now notice that due to the orthogonality of σ and ∗σ, the component of ω along σ is the same

as the component of ?ω along ∗σ (this is the same property that allows orthogonal primal-dual

triangulations to admit a diagonal Hodge star in the first place). Writing this component as a scalar

function f(x), we can rewrite the integrals involved above as

∫
σi

ω =

∫
σi

f(x) dµσi
and

∫
∗σi
?ω =

∫
∗σi
f(x) dµ∗σi

,

where dµσi and dµ∗σi are the volume forms of σi and ∗σi respectively. We can use these expressions

to rewrite the error density as

ei=

∣∣∣∣∫
σi

f(x)
dµσi

|σi|
−
∫
∗σi
f(x)

dµ∗σi

| ∗σi|

∣∣∣∣= ∣∣∣∣∫
Rd

f(x) d(µ̄σi
−µ̄∗σi

)

∣∣∣∣ , (3.4)

where now dµσi/|σi| and dµ∗σi/| ∗σi| are uniform probability distributions over σi and ∗σi respec-

tively, and dµ̄σi and dµ̄∗σi are their trivial extensions to Rd—i.e., for any measurable set S in Rd,

∫
S

dµ̄σi
=

∫
S∩σi

dµσi

|σi|
and

∫
S

dµ̄∗σi
=

∫
S∩∗σ

dµ∗σi

| ∗σi|
.
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From equation (3.4) and equation (3.2), we deduce that the tightest bound one can find on the Hodge

star error density per simplex for an arbitrary λ-Lipschitz form is simply λ times the minimum cost

over all transport plans between σi (seen as a uniform probability measure over the mesh element)

and ∗σi (also seen as a uniform probability measure over the dual element); that is, with a slight

abuse of notation,

ei ≤ λ W1(σi, ∗σi). (3.5)

This formally establishes a link between Hodge star accuracy and optimal transport. Note that we

only required ω to be Lipschitz continuous, a reasonable assumption in many graphics applications.

3.3.2 Error Functionals on Meshes

From these local error densities, we can assemble a total error by taking the Lp≥1 integral norm of

the error over the mesh area, i.e., by summing the integrals of the pth power of the error densities

ei over local regions, specific to σi and ∗σi, that tile the mesh. Such regions have been defined

in previous work, coined “support volumes” in [13] and “diamonds” in [73, 56]: when σi and ∗σi
intersect, these regions, which we will refer to as �(σi ∪ ∗σi), are just the convex hulls of σi and ∗σi;

in the general case, they become signed unions of convex hulls of the primal vertices of σi and each

boundary element of the dual cell ∗σi . Using Σk to denote the set of k-simplices of a triangulation,

the total error is thus

Ep(M, ?k)=

 ∑
σi∈Σk

∫
�(σi∪∗σi)

ei
p


1
p

=

 ∑
σi∈Σk

|σi|| ∗σi|(
d
k

) ei
p

1
p

,

since the volume of the diamond �(σi ∪ ∗σi) is, up to a dimension factor, simply the product of the

primal and dual volumes due to our primal/dual orthogonality assumption of mesh M.

From equation (3.5), we conclude that a tight bound for the pth power of the total error is

expressed as

Ep(M, ?k)p ≤ λp(
d
k

) ∑
σi∈Σk

| ∗σi||σi|W1(σi, ∗σi)p. (3.6)

Notice that E∞(M, ?k) is thus, up to the Lipschitz constant, bounded by the maximum of the W1

distances between primal and dual elements of the mesh as expected. For notational convenience,

we will denote by ?k- HOTp,1(M) the bound (with Lipschitz and dimension constants removed)

obtained in equation (3.6); more generally, we will define

?k- HOTp,q(M) ≡
∑
σi∈Σk

| ∗σi||σi|Wq(σi, ∗σi)p

as relevant functionals (or energies) to construct meshes, since minimizing them will control the
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quality of the discrete Hodge stars.

Continuity of HOT functionals. Because they are based on volume integrals, the HOT func-

tionals are continuous over the space of regular/power triangulations. They are indeed continuous in

the vertex positions of the primal and dual meshes, but also through primal mesh flips: an edge or

face flip in a regular triangulation happens when a dual (power) edge vanishes. Hence the diamond

weighting we use for our total error renders our HOT functionals continuous with respect to both

vertices and weights. This will be particularly convenient when it comes time to optimize a mesh in

order to minimize these functionals.

3.3.3 Discussion

Our HOT energies are archetypical, general-purpose examples of mesh quality measures imposed on

both primal and dual meshes, but they are by no means unique: from the local error densities ei,

other energies can be formulated to target more specific errors occurring in mesh computations (see

some examples in section 3.5). In particular, linear combinations of HOT energies may be used if

multiple Hodge stars are needed, for example when using Laplacians of k-forms with k > 1. Note also

that the use of a 1-Wasserstein distance is notably less attractive numerically than a 2-Wasserstein

distance as we will discuss in section 3.4.4. Fortunately, we can also provide a bound of the Hodge

star error, which, while less tight than the previously derived HOTp,1, will be particularly convenient

to deal with computationally: the existence of optimal transport plans when the cost is the distance

squared (i.e., W2) being well studied, a useful bound on the Hodge star error can be derived using

the inequality given in equation (3.1) to yield

E2(M, ?k)2≤
∑
σi∈Σk

| ∗σi||σi|W2(σi, ∗σi)2 ≡ ?k- HOT2,2(M).

The reader may have noticed that the functional ?0- HOT2,2(M) is, in the case of equal weights,

the well-known Centroidal Voronoi Tesselation (CVT) energy (
∑
i

∫
Vi
‖x−xi‖2dV ) for which several

minimization techniques, from Lloyd iterations [50] to quasi-Newton methods [74], have been devel-

oped. Lp variants (i.e., ?0- HOT2p,2(M) for p≥2) were also explored recently [75]. However, these

energies only correspond to ?0, and are not as tight as HOT1,p. Our HOT energies can thus be

seen as a direct generalization of the CVT-like functionals. Note finally that the Optimal Delaunay

Triangulation (ODT) energy used in [51] can also be seen as a variant of ?d- HOT2,2(M) in Rd for

which the dual mesh is restricted to be “barycentric”; alas, the resulting mesh will not necessarily

lead to an orthogonal primal-dual triangulation—even if the resulting simplices were proven to be

very close to isotropic.
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3.4 Hodge-Optimized Triangulations

In the remainder of this chapter, we call a HOT triangulation any pair M consisting of a regular

triangulation T and its associated power diagram D for which T , D, or both, have been optimized

in order to reduce one (or a linear combination of) HOT functional(s). We now describe the ba-

sic computations involved in optimizing meshes for two particularly interesting (and unexplored)

families of energies: HOT2,2 and HOT1,1.

3.4.1 General Minimization Procedure

Given that both (continuous) vertex positions and (discrete) mesh connectivity need to be optimized,

the task of finding HOT meshes is seemingly intractable. Thankfully, regular triangulations provide a

good parameterization of the type of primal-dual meshes we wish to explore: one can simply optimize

the continuous values of both positions and associated weights to find a HOT mesh. However,

HOT energies are not convex in general, and a common downfall of nonconvex optimization is

its propensity to settle into local minima. In our case, finding a good nonoptimal minimum is

often enough to dramatically improve the mesh quality. We thus start our minimization process by

initializing the domain with uniformly sampled vertices over the domain, and running a few iterations

of CVT [50] or ODT [51] to quickly disperse the vertices and get mesh elements roughly similar in

size: from such a decent initial mesh, an optimized mesh can be quickly obtained by performing

a gradient descent, or alternatively (without much added implementation complexity), an L-BFGS

algorithm [76]—a particular quasi-Newton method where the (inverse) Hessian is approximated

based on the M previous steps (we use M = 7). A (binary or golden-ratio) linear search is performed

to adapt the step size along the gradient or the quasi-Newton direction based on two simple tests

(known as Wolfe conditions): the step size should be small enough to make sure the energy decreases,

but large enough to induce a marked gradient change. This common minimization procedure works

quite well without requiring anything else but an evaluation of our HOT energies and their gradients,

which we will derive in closed form from direct integration and/or application of the Reynolds

theorem. Note finally that the positions xi and the weights wi have very different scales (units of

m vs m2); we thus proceed by alternatively minimizing our HOT energies with respect to vertex

positions and weights. After each step the connectivity is updated using the 2-dimensional or 3-

dimensional regular triangulation package of CGAL [77]. Pseudocode of our general procedure is

given in figure 3.3, but more specialized optimization techniques could most likely be devised; in

particular, based on the HOT energy we wish to minimize, a few alternative minimization procedures

may be simpler to implement or faster to converge. We will point out some such special cases shortly.

While both position and weight are optimized by default, HOT optimizations are relevant even

if only one of these optimizations is performed. For instance, if one has a given (possibly nonflat)
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triangulation, vertices could be held fixed while weights are optimized to better one or more of the

Hodge stars. Similarly, weights could be kept fixed, e.g., in contexts where they represent power or

capacity of the nodes, and a best node placement is sought after—or simply in cases where a given

connectivity needs to be maintained. We will discuss some useful variants in section 3.5.

Boundary handling. As in any variational method, boundary conditions can significantly affect

the results. Except for the work of Alliez et al. [51, 78, 79], we found very little about boundary

handling in previous related work in graphics; for instance, recent papers focusing on the CVT energy

like [75, 74] only discuss how to partition a given domain into well-shaped Voronoi cells, providing

no insight on dealing with the difficult issue of generating good simplices at the domain boundary.

While boundary treatment may be context dependent (fixing vertices or even weights [80] at the

boundary being two of the most desirable options), we experimented with a very simple procedure

to handle boundaries gracefully for all Hodge stars. We first make sure that each dual vertex c of a

boundary d-simplex T is associated with a “ghost” dual vertex ĉ used to enforce that dual edges at

the boundary never have negative lengths: ĉ is put at the projection of c onto the boundary face of T

if c is within T , and put on top of c otherwise. We also alter the definition of the energy to become

HOT /|M|, i.e., we simply divide the energy by the total area: as volume-shrinkage is no longer

rewarded, minimizing the HOT “volume density” makes the optimization steps behave well even at

the boundary. We left the evaluations performed to check the Wolfe conditions unchanged: we did

not alter the connectivity of the current triangulation (for efficiency reasons) or clamp vertices to

the domain during the line search. Once the Newton step is done, however, a vertex is reprojected

on the domain’s boundary if (a) the vertex has an unbounded weighted Voronoi region, (b) it is

outside the domain, or (c) it has one or more of its adjacent triangles’ circumcenters or barycenters

outside the domain. This approach is simple and it lets the vertices move freely from the inside to

the boundary and vice versa. We will not incorporate the term |M| in our derivations (to avoid

cluttering the explanations) as it is a trivial alteration of our procedure.

3.4.2 Weighted Circumcenters

Most of the derivations involved in this section rely on the crucial relation linking primal and dual

vertices in regular triangulations. We will use c(σ) to denote the weighted circumcenter of simplex σ,

i.e., the unique intersection of the mutually-orthogonal affine spaces supporting the primal simplex

σk and its weighted dual ∗σk (see figure 3.4). Of particular importance are the circumcenters of the

d-simplices for a mesh T in Rd: these form the vertices of its (weighted) dual complex D. For a
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// Mesh optimization
// Input: vertices x0 = {xi} and weights w0 = {wi},
// and a HOT functional E(x, w).
n← 0
repeat

Compute E(xn, wn) // See Appendices B.1 and B.2
// Optimize x
Pick step direction dx for E(xn, wn)
Find α satisfying Wolfe’s condition(s)
xn+1 ← xn + α dx // Vertex updates
Update regular triangulation
// Optimize w
Pick step direction dw for E(xn+1, wn)
Find β satisfying Wolfe’s condition(s)
wn+1 ← wn + β dw // Weight updates
Update regular triangulation
n← n+ 1

until (convergence criterion met)

Figure 3.3. Basic pseudocode of our HOT optimization. Step directions are picked as gradient
descent or quasi-Newton steps.

k-simplex σk, if xi is any of the vertices of σk, the (weighted) circumcenter is expressed as

c(σk) = xi +
1

2k!|σk|
∑

xj∈σk

(
|xi−xj |2 + wi−wj

)
σk̂ , (3.7)

where σk̂ denotes the inward-pointing normal of the face of σk opposite to xj weighted by the volume

of the face. With this general formula, weighted circumcenters are easy to differentiate, both with

respect to vertices and weights. Notice that when the weights of σk are all equal, one finds the

expression for the (Voronoi) circumcenter used in [51]. Armed with this useful identity, we can now

formulate the various HOT energies.

Figure 3.4. Weighted Circumcenters: Weights on primal vertices determine the placement of
the weighted circumcenters for each edge (left), triangle (middle), and tetrahedron (right). Moreover,
the orthogonal projection of the (weighted) circumcenter c(σ) onto one of σ’s faces falls on the
(weighted) circumcenter of that face.
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3.4.3 HOT2,2 Meshes

When a W2-based transport cost is used, the HOT functionals are quite easy to compute in closed

form. Indeed, a direct application of Pythagoras’ theorem reveals that an optimal transport plan to

move the normalized uniform measure for a simplex σ to its orthogonal dual ∗σ can be achieved by

splitting the plan into two stages: first, optimally transport the measure from σ to its (weighted)

circumcenter c(σ), then from c(σ) to the dual cell ∗σ. The fact that the circumcenter c(σ) is at

the intersection of the mutually-orthogonal affine spaces supporting σ and ∗σ makes the cost of the

direct optimal transport and the sum of transport costs via c(σ) equal. The optimal transport cost

is thus directly expressible as we now detail.

Energy computations. For both ?0 and ?d in dimension d=2, 3, HOT2,2 energies can be easily

computed by splitting weighted Voronoi d-cells or primal d-simplices into canonical simplices for

which a closed form for the optimal transport cost to a point is easy to obtain—see this splitting

in figure 3.5. For instance, for a right triangle T with width a and height b in 2 dimensions, the

integral over the triangle of the squared distance to the vertex p adjacent to a is

W (p, T )=

∫ a

0

∫ bx
a

0

(
x2+y2

)
dy dx=

a3b

4
+
ab3

12
.

The equivalent formula in 3 dimensions for the bi-orthogonal tetrahedron T split shown in figure 3.5

(right) is now:

W (p, T )=

∫ a

0

∫ bx
a

0

∫ cy
b

0

(
x2+ y2+ z2

)
dzdydx=

abc

10

(
a2 +

b2

2
+
c2

6

)
.

Costs for transport from edges are simpler to derive as they only involve 1-dimensional integrals,

and the other remaining stars are just combinations of transport over edges, areas, and volumes. For

completeness, all the transport costs needed in 2 and 3 dimensions can be found in appendix B.1.

?0- HOT2,2 in Rd. As mentioned in section 3.3.3, this energy turns out to be the well-known

CVT energy [50] when all the weights are equal. For this particular case, various optimization

strategies have been proposed, such as Lloyd iterations (to get near the optimal mesh) followed by

a quasi-Newton method (to accelerate convergence) [74], and our approach mimics these strategies

in this case. In the general case, however, the gradient with respect to a vertex position does not

only contain the usual centroidal term from CVT, but also extra terms based on weight differences.

As for the gradient with respect to a weight, its expression is surprisingly simple: it is simply the

Laplacian (using the conventional cotangent formula) of the weights, meaning that a ?0- HOT2,2

mesh will have harmonic weights. We can then conclude that a CVT mesh is, in fact, a HOT2,2
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Figure 3.5. Splitting Mesh Elements: Most of our HOT energies are evaluated by splitting sim-
plices/cells into canonical subsimplices (in green) for which closed-form integral expressions W (p, T )
of simplex-T -to-point-p transport are easily found. Notations used for 2 (left) and 3 (right) dimen-
sions in sections 3.4.3 and 3.4.4 are indicated.

Figure 3.6. ODT vs ?2-HOT2,2: An ODT mesh (left) and a ?2-HOT mesh (right) are computed
for the same 2-dimensional shape; while the primal triangulations are rather similar, the dual vertices
end up closer to the simplices’ barycenters for the HOT mesh thanks to the additional freedom
provided by the weights.

mesh with Neumann boundary condition for the weights; other nontrivial boundary conditions will

lead to HOT2,2 that are not CVT.

?d- HOT2,2 in Rd. Although seemingly the “dual” version of the ?0 case, this energy requires

specific derivations, which we now go over. Computing the energy gradient with respect to weights

is made easier if one notices that ∂c(σ)/∂wi is independent of the weights: equation (3.7) is indeed

linear in the weights of the mesh in any dimension. Consequently, the gradient of the energy (which

is quadratic in c) with respect to a weight is linear in the weights of the mesh, offering alternative

optimization approaches. One can for instance solve for the optimal weights directly by finding

the weights that make all gradients zero: this is simply achieved via a global, sparse linear system

collecting all the gradient equations and equating them to zero (see appendix B.1; notice that this

system is simply a Poisson problem). A slightly slower approach—but easier to implement and

parallelize—is to compute the optimal weight w∗i for each vertex assuming that the other weights
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Figure 3.7. Laplace equation: We plot the L2 errors (with respect to the solution on a very
fine mesh) of the solutions of a Laplace equation on a circle with Dirichlet boundary conditions
f(u, v) = (u2 +v2) sin(u) cos(v) for CVT, ODT, and HOT meshes with weight optimization only (w)
or vertex and weight optimization (wx). While the log-log plot of the errors as a function of mesh
size shows, as expected, that the convergence rate is not affected, our HOT meshes still noticeably
outperform both CVT and ODT meshes, with W1 only marginally better than W2.

are unchanged, and update wi ← (w∗i + wi)/2 (moving straight to the optimal value may lead

to overshooting, hence the half-way update). The gradient with respect to vertices is detailed in

appendix B.1, and we optimize vertex positions as sketched in figure 3.3. A ?d- HOT2,2 result in 2

dimensions can be seen in figure 3.6.

HOT2,2 for other stars. Be it in 2 (d=2) or 3 (d=3) dimensions, the HOT2,2 functionals for ?k

(where k=1 . . . d−1) can be derived using the circumcenter formula of equation (3.7). However, they

do not simplify in the same way as those for ?0 and ?d did above. Consequently, a direct application

of the general HOT algorithm (figure 3.3) is called for, and it performs as expected.

3.4.4 HOT1,1 Meshes

While the HOT1,1 functionals provide the tightest L1 bounds on Hodge star errors, their use of the

1-Wasserstein distance makes the equations more difficult: optimal transport plans are often much

less obvious to determine, and their costs more difficult to compute. In fact, the HOT1,1 energy for

?0 is directly related to facility location problems [55] that are commonplace in operations research,

as it amounts to find the location (sometimes called the (continuous, or integral) geometric median)

that minimizes the integrated Euclidean distance to the interior of a polygonal region. Thankfully,

closed forms of many of the energies can still be found (albeit, with more difficulty) as detailed

in appendix B.2. For a few of the energies, in particular those for ?1 and ?2 in 3 dimensions,

closed forms are not easily calculated, and numerical quadrature may be the only practical approach
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Figure 3.8. Surface Weight Optimization: For a given triangular mesh (left) there are several
triangles whose circumcenter is far outside the triangle (center, lines drawn in red). By optimizing
only the weights the new dual vertices are better placed inside the unchanged triangles (right) while
keeping primal/dual orthogonality.

for their computation. However, in practice we found the HOT1,1 energies to not give significant

improvements over their HOT2,2 counterparts, and thus may only prove useful when the tightest

formal bounds are required (figure 3.7).

3.4.5 Discussion

In many ways, HOT meshes can be seen as a generalization of CVT meshes. However, one must

be careful with the term “Centroidal Voronoi Tesselation,” as being centroidal is a only necessary

condition of a CVT energy minimum: for instance, a regular grid is centroidal, and yet the CVT

energy is not at a local minimum. Similarly, having each weighted circumcenter at the barycenter of

its associated triangle is not sufficient to minimize the ?d-HOT2,2 functional in Rd: the functional

also captures the error distribution throughout the domain. A HOT mesh for ?k tries instead

to strike a balance between being “centroidal” or “medial” (i.e., with each k-simplex being “self-

centered” for Wp), and having each k cell being of the same volume. In 2 dimensions, most of

these energies are globally minimized for a perfect hexagonal tiling of the plane; however, this is no

longer true in 3 or more dimensions, as an equilateral simplex no longer tiles Rd>2. Consequently,

while geometric functionals could be easily derived to simply force a mesh to be centroidal or medial

(in the generalized diamond-based sense), HOT functionals also favor uniform sizing of the optimal

mesh.
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Figure 3.9. HOT2,2 Sphere: Optimizing an ODT mesh of a sphere for both weights and vertex
positions results in a nice mesh (left) with 30 tetrahedra whose dual vertex is outside of the tet
(bottom right), compared to 206 in the original ODT mesh (top right).

3.5 Applications and Results

HOT meshes can be beneficial in a number of contexts in modeling of surfaces and volumes, as well

as in simulation. We mention a few examples to demonstrate the generality of our approach and

provide numerical experiments. We also discuss variants and extensions.

HOT DEC. Most of the DEC methods in graphics (including the huge literature on Laplacian,

Laplace-Beltrami, and discrete conformal parameterization) can be directly adapted to

work on HOT meshes as well. In fact, if one com-

putes the diagonal Hodge star using the usual ratio of

(signed) volume of a simplex and its dual, then no mod-

ification is required. If, instead, closed form formulae

are used to express each diagonal Hodge star, they only

need to be modified to include the contribution due to

the weights. For instance, the traditional Hodge star

(?1)ij =
(

cot(αikj) + cot(αjli)
)
/2 for a one-form between

vertex i and vertex j becomes

(?1)ij =
1

2

(
cotαikj + cotαjli

+(wi − wk)
cotαkji
||xi − xj ||2

+ (wj − wk)
cotαjik
||xi − xj ||2

+ (wi − wl)
cotαijl
||xi − xj ||2

+ (wj − wl)
cotαlij
||xi − xj ||2

)
.
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These changes can be accommodated seamlessly in existing codes, and allow for much greater flexi-

bility: weights can be, for instance, optimized (with fixed connectivity or not) to locally “displace”

dual vertices onto an immersed boundary [53] through a least-square fit. Vertices can be optimized

as well, for instance in applications requiring local remeshing to maintain good numerics.

Laplace and Laplace-Beltrami operators. A particularly common

linear operator in mesh processing is the Laplacian ∆, be it in the plane

or on a discrete surface. Its DEC expression for 0-forms being ∆ =

dt0 ?
1 d0 and the d0 operator being exact, the only loss of accuracy rises

from the Hodge star. Consequently, meshes minimizing the HOT energy

for ?1 should be appropriate for its accurate computation, as evidenced

by figure 3.7 where up to 65% error reduction is achieved compared to

CVT. In fact, [68] and [81] were the first to recognize the importance of

orthogonal primal/dual meshes to ensure good numerical qualities of the

Laplacian. A ?1-HOT2,2 mesh indeed results, on a 200V discretization of the test domain depicted in

the inset, in a 5% reduction of the condition number of the Laplacian matrix with Dirichlet boundary

conditions compared to a CVT mesh (much greater improvements are witnessed when compared to

arbitrary, nonoptimized meshes). The result is much more dramatic for the Laplacian of dual 0-

forms, where the condition number drops from 254 to 90 on the same example. This is partially due

to an increase of the minimum dual edge length (going from 2.0e−3 for CVT to 1.5e−2 on the same

mesh), providing an alternative approach to removing short dual edges presented recently in [79].

Similar improvements were found for the Laplace-Beltrami operator of the surface mesh in figure 3.8.

Improving dual structure. We often have to deal with situations where the triangulation is given

and cannot safely be altered. For instance, moving vertices and/or changing the connectivity of a

triangle mesh in R3 is potentially harmful, as it affects the surface shape. Still, the ability to optimize

weights to drive the selection of the dual mesh is very useful. We can easily find the weights to, e.g.,

minimize the L2 distance squared between weighted circumcenters (defined in equation (3.7) through

an equation that is linear in the weights) and triangle barycenters using a single linear solve. The

connectivity is kept intact, regardless of the weights—only the position and shape of the compatible

dual D is optimized. Although one cannot guarantee that the resulting dual will be flawless (self-

centered and non-self-intersecting), it will be improved compared to the original circumcentric dual.

Even for HOT energies, our 2-dimensional and 3-dimensional tests show that only optimizing the

weights is particularly simple and beneficial on a number of meshes. Figure 3.8 depicts a triangle

mesh of a hand and its intrinsic dual before and after weight ?2-optimization, showing a drastic

reduction in the number of negative dual edges—thus providing a practical alternative to the use of
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Figure 3.10. HOT1,1 Meshes: A “Medial Voronoi Tesselation” (i.e., a ?0- HOT1,1 mesh) has
vertices near the integral geometric median of each Voronoi cell (left); ?1- HOT1,1 mesh tends to have
primal and dual edges intersecting near their midpoints (right, weights shown as balls with color/size
indicating sign/magnitude).

intrinsic Delaunay meshes advocated in [66]. Similarly, figure 3.11 shows that even an ODT mesh

with exceptionally high-quality tetrahedra [78] can be made significantly better centered using a

simple weight optimization. Note also that in this example the number of tetrahedra with a dual

vertex outside of the primal tet dropped from 17041 on the ODT mesh to 5489 on the HOT mesh—a

two-third reduction of “outcentered” tetrahedra. As a final illustrative example we show results on

a 3-dimensional sphere (figure 3.9). Starting from an ODT mesh and optimizing only the weights

drops the number of outcentered tetrahedra from 206 to 52, while allowing the optimization to also

move the positions of the vertices further reduces this number to 30, resulting in the mesh shown

in the figure. On the other hand, if a weighted Delaunay mesh is undesirable, optimizing only the

positions still reduces the number of outcentered tetrahedra to 118, almost half of the original ODT

mesh, while still using a circumcentric (Voronoi) dual.

Accuracy and extensions. While we described archetypical primal-dual HOT energies, one can

use regular triangulations and power diagrams to derive other relevant energies. Even in the context

of Hodge star accuracy, we point out that the “diamond weighting” proposed in section 3.3 can be

modified if one wishes to improve a particular Hodge star (and not its inverse): for instance, the

discrete Hodge star between 0-forms and d-forms in Rd should use a weighting equal to 1, while the

inverse Hodge star should use the volume of the local d-cells. Similarly, one may minimize a linear

combination of HOT energies if multiple Hodge stars need to be optimized simultaneously. Designing

new energies based on targeted numerical tasks should be straightforward—although continuity and

convexity of these functionals will need to be studied on a case-by-case basis. Nevertheless, our

?k-HOT energies lead consistently to a 5% to 35% L1- and L∞- improvement on both ?k and (?k)−1

for linear and nonlinear functions alike on 2-dimensional nonconvex domains like depicted in the

inset earlier—even if the error minimization is not run to convergence. As for the 3-dimensional



42

Bimba mesh in figure 3.11, our ?3-optimization of only the weights already reduces both the L1 and

L2 norm of ?3-errors for linear functions by 16%.

HOT1,1 vs HOT2,2. While slower to converge when the 1-Wasserstein distance is used, HOT1,1

and HOT2,2 meshes are visually quite similar. Numerical tests, similarly, do not demonstrate major

differences: a simple Laplace’s equation with Dirichlet boundary conditions on various mesh sizes

clearly indicate that HOT1,1 are slightly better than HOT2,2, but both are significantly better than

CVT or ODT (see figure 3.7). HOT1,1 meshes can, in fact, be slightly worse than theirW2 equivalents

when their accuracy is tested using polynomial test functions. It is therefore unclear that using the

W1 cost is worth the added computational burden for graphics applications, despite offering tighter

theoretical bounds.

3.6 Future Work

Several future directions are ripe for exploration. For instance, formulating other functionals based

on particular numerical tasks (such as eigenvalue problems) or other families of functions (other than

just Lipschitz) could be of interest. In fact, the induced symmetries of our HOT meshes may improve

other operators as well. Deriving Lp-based functionals (using the quadratures pointed in [75]) or

incorporating a sizing field in the functionals should be relatively straightforward. We also believe

that a sustained effort to produce better optimizations for HOT-like energies is in order to ensure

efficient, industrial-strength implementation. Finally, as always in meshing, providing a richer set

of boundary conditions would also extend the number of potential applications, thus helping the

adoption of HOT meshes. Combining HOT optimization with feature protection through boundary

weights as proposed in [80] could offer a practical extension of our approach in this direction.
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Figure 3.11. Weight Optimization in 3 Dimensions: A high-quality ODT mesh of the Bimba
con Nastrino (top left cross section; 195K tets, 36K vertices) can be ?3-optimized by a few (30)
iterations of our weight optimization, thus improving minimal dual edge length and self-centeredness
(bottom left; weights are displayed according to sign (red/green) and magnitude (radius)). When
we single out the tetrahedra with a distance between weighted circumcenter and barycenter greater
than 0.5% of the bounding box, one can see the HOT mesh (bottom right) is significantly better than
the original ODT (top right), even if the primal triangulations are exactly matching. If we further
increase the visualization threshold to the point when the HOT mesh has a single “bad” tetrahedron,
the nonweighted original Bimba mesh then exhibits 192 such tetrahedra.
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Chapter 4

Geometric Eulerian Integrators for
Fluid Simulation

4.1 Introduction

Having seen in the last chapter how to develop simplicial meshes computationally appropriate

for DEC, we now address a problem where complex boundaries often necessitate the use of such

boundary-conforming meshes, namely fluid simulation. Physically based animation of fluids is often

modeled using the incompressible Navier Stokes equations. Numerically integrating these equations

presents numerous practical challenges, however, and has been a focus of Computational Fluid Dy-

namics (CFD) for the past thirty years. When visual impact matters most, more elaborate CFD

methods are generally considered unnecessary: simple Eulerian discretizations with explicit semi-

Lagrangian or upwind advection have been the methods of choice in computer animation for the

last few years.

A significant numerical difficulty in all CFD techniques is avoiding numerical viscosity, which

gives the illusion that a simulated fluid is more viscous than intended. It is widely recognized that

numerical viscosity has substantial visual consequences, hence several mechanisms (such as vorticity

Figure 4.1. By developing an integration scheme that exhibits zero numerical dissipation, we can
achieve more predictable control over viscosity in fluid animation. Dissipation can then be modeled
explicitly to taste, allowing for very low (left) or high (right) viscosities.
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confinement and Lagrangian particles) have been devised to help cope with the loss of fine scale

details. Common to all such methods, however, is the fact that the amount of energy lost is not

purely a function of simulation duration, but also depends on the grid size and number of time steps

performed over the course of the simulation. As a result, changing the time step size and/or spatial

sampling of a simulation can significantly change its qualitative appearance. Such a dependence can

make it difficult to compute coarse previews, for example.

In this chapter, we propose a family of fully Eulerian schemes that provide full control over the

amount of dissipation, independent of temporal and spatial resolution. Control over viscosity stems

from the use of a nondissipative integration scheme for the Euler equations on arbitrary simplicial

grids. We can then add implicit diffusion to model viscosity directly. We demonstrate the efficiency

and robustness of these schemes via numerical comparison with current techniques.

4.1.1 Previous Work

Early work on fluid animation for computer graphics widely favored the use of Eulerian staggered

grid discretizations [82, 83], where the fluid velocity components are stored per face instead of be-

ing collocated at nodes. Semi-Lagrangian advection techniques [84] have been prevalent due to

their unconditional stability and ease of implementation. Their resulting excessive energy dissipa-

tion was later mitigated by the adoption of vorticity confinement to partially reinject lost vorticity

into the flow [85, 83], or through higher-order advection schemes using repeated semi-Lagrangian

steps [86, 87]. However, the stability of these methods is guaranteed only if spurious extrema are

eliminated by a limiter. More recently, a case was made for explicit, third-order upwind-based ad-

vection [88] as a low dissipation technique at reasonable computational cost. Subscale modeling

was also proposed [89] to get energy cascading in line with the empirical behavior of statistically

stationary isotropic turbulence despite numerical viscosity, although at a scale much larger than

intended.

Another remedy to combat dissipation is to add Lagrangian machinery to the Eulerian solver.

Selle et al. [90] proposed to add vortex particles to track vorticity and inject a tuneable confinement

force into the flow. Zhu and Bridson [91] even advocated the substitution of the semi-Lagrangian

advection scheme in stable fluids with the Lagrangian fluid-implicit-particle (FLIP) scheme [92],

which exhibits significantly less numerical dissipation than semi-Lagrangian advection after pressure

projection. While fast, these mixed schemes require careful management of particle distribution in

order to achieve good quality and performance.

Another line of research in computer animation of fluids focused on offering more versatile spatial

discretizations to capture complex geometries with low node count. Spatially adaptive discretiza-

tions such as octrees were proposed to improve resolution of highly turbulent flows [93, 94], albeit

with significant computational overhead and grid-aligned aliasing artifacts. Integration schemes for
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Figure 4.2. Flow Past Sphere: Although completely inviscid flows may look unnatural (top),
the absence of numerical viscosity gives animators more predictable control over fluid appearance
(bottom); here, smoke rises in a closed box containing a round obstacle.

simplicial and hybrid meshes through semi-Lagrangian backtracking were introduced, for which the

computational overhead brought by non-regular mesh data structures were largely compensated for

by the increased visual complexity per element [95, 96]. Even if circulation preservation can be

enforced [97], these schemes on arbitrary grids still suffer from noticeable energy dissipation, leading

to an uncontrolled energy decay in the flow that depends on both the mesh size and the time step

size.

Energy preservation for inviscid fluids on unstructured grids had not received much attention in

CFD in the past due to the prevalence of methods based on regular grids. This has changed recently

with the introduction of discrete energy-conserving schemes on 2-dimensional and 3-dimensional

unstructured grids [98, 99, 100]. The role of discrete differential operators for the curl and diver-

gence (as used in [97]) in ensuring kinetic energy conservation was acknowledged, and numerical

benefits from non-dissipative advection were demonstrated. In particular, energy preservation guar-

antees that the velocity will always remain bounded, bringing unconditional stability to the schemes.

Derivations of these new schemes were obtained through discretization of the vorticity form of the

continuous Euler equations, but the final update rules require a fairly large stencil to compute ad-

vection. Moreover, it is not known whether these schemes can be derived from first principles (as

was successfully done for Lagrangian integrators; see [101] for a review).

4.2 Discrete Setup of Fluid Motion

Before describing our Eulerian schemes for fluid animation, we establish the equations of motion of

both viscid and inviscid fluids, and discuss the physical properties that our discrete time integrators
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should preserve.

4.2.1 Equations of Motion

Consider an inviscid, incompressible, and homogeneous fluid on domain M with velocity u and

pressure p. Assuming constant unit density (ρ = 1), the motion of such a fluid is governed by the

Euler equations, which consist of a momentum equation,

∂u

∂t
= −(u · ∇)u−∇p, (4.1)

along with an incompressibility constraint,

∇ · u = 0. (4.2)

Along with boundary conditions, these equations define the fluid behavior and have been thoroughly

studied both from a mechanics point of view [102] and from a computational perspective [103].

Vorticity formulation. A particularly convenient expression in which the Euler equations can

be rewritten is a function not only of the velocity u, but also of its vorticity ω = ∇×u:
∂u

∂t
+ ω × u = −∇P,

∇ · u = 0,

(4.3)

where now P is the Bernoulli pressure, i.e., the former pressure p plus the kinetic energy density:

P = p+ u2/2.

Handling viscosity. For a viscous fluid, the incompressible Navier-Stokes equations are used

instead. A diffusion term ν∆u is added to the previous momentum equation as an extra body force,

where ν controls the amount of viscosity in the flow. This term diffuses the momentum of the fluid,

damping down turbulences.

4.2.2 Relevant Continuous Properties

Euler and Navier-Stokes flows have a number of properties that one may want to preserve in the

discrete realm to ensure a close visual match between the discrete results and typical flows in nature.

Of particular visual significance is the fact that the Euler equations preserve kinetic energy in time.

Energy preservation is, however, only rarely observed in practice by the fluid simulators used in

computer animation, visually producing overly viscous animation. Additionally, this energy tends

to seep toward small scales, a general mechanical property called energy cascading : the kinetic



48

energy is thus conservatively transferred to smaller and smaller length scales statistically, meaning

that a large vortex will, over time, erode into several smaller ones.1 Faithfully reproducing this

energy cascading in the discrete case is impossible due to the limited resolution of meshes, and can

only be approximated through subscale modeling [89]—although it is quite unclear that the type

and scale of animations used in computer graphics can visually benefit from the restricted physical

assumptions used in the modeling of forward cascading. Kelvin’s circulation theorem (stating that

vorticity is advected along the flow) was also pointed out in [97] as a crucial property to preserve

to visually capture the traditional turbulent behavior of nearly inviscid flows. A last property

of the Euler equations that has been shown important to preserve independently of the numerical

approximation is time reversibility [104]: applying the integration with negated fluxes should exactly

run the simulation backwards in time. Notice that this symmetry in time is what was sought after

in the BFECC [86] and modified MacCormack [87] schemes: both schemes try to get the backward

and forward semi-Lagrangian to numerically agree, leading to much decreased numerical viscosity.

Finally, some applications are interested in the preservation of the total enstrophy of the fluid.

However, the benefit of this to computer animation is currently less evident and our methods do not

address the preservation of this quantity.

We will thus focus on developing numerical schemes that, by pushing vorticity forward with

the flow, will exactly achieve time reversibility and remove numerical energy dissipation for inviscid

flows. As we generally want to animate viscous flows, proper treatment of the nonviscous part of

the Navier-Stokes equations will ensure proper energy decay even for large time steps. Note that

potential artifacts due to energy accumulating at fine scales will be removed with an appropriate

viscosity coefficient ν.

4.2.3 Discretization of Physical Quantities

To derive a computational procedure to integrate Euler and/or Navier-Stokes equations, we must

discretize both space and time, and define a discretization of our physical quantities as well.

Spatial discretization. We use a tetrahedral mesh T to discretize the spatial domain M ; i.e., the

domain is decomposed into a series of tets {Ti}, i = 1...|T |. For simplicity of presentation we will

assume the mesh is Delaunay and use the Voronoi dual, although the methods are easily applied to

regular triangulations and their dual power diagrams as discussed in chapter 3, as the primal/dual

orthogonality is the only required property due to our use of the diagonal Hodge star. We assume

that these tets are all oriented so as to have positive volume, and their faces and edges are given

arbitrary orientations. We denote the Voronoi dual of the mesh as V, having a dual vertex ci as

1Note that the energy may sometimes go back up to larger scales temporarily, as when two same-sign vortices
merge.
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the circumcenter of tet Ti, dual edge hij as the edge between ci and cj (that is, dual to face fij),

and dual face se dual to primal edge e. Note that the dual cells are also given orientations. We will

also use the intersections of the primal and dual elements, including cij (the circumcenter of face

fij) and ce (the midpoint of edge e). We will denote by we,j the quad-shaped intersection of cell j

and the dual face se (see figure 4.3). Finally, |.| will denote the Lebesgue measure (length, area, or

volume) of the elements (edges, faces, or tets).

Field discretization. As in [105, 97], we adopt a flux based discretization of the velocity field.

This particular discrete setup is well-known, on regular grids, for offering less aliasing than the node-

based discretization, as well as for preventing spurious modes in Poisson problems. We will denote

by Fij the flux of the fluid through the face fij common to tet Ti and tet Tj (note that Fji=−Fij),

while the discrete Bernouilli pressure on the dual node of tet Ti will be denoted Pi. The velocity

field will thus be represented by all the fluxes Fij , stored in a vector F of size equal to the number

of faces. Similarly, P will represent the pressure field as a vector of all tet-based pressure values.

Discrete operators. We will utilize the DEC operators discussed in section 1.2. Recall that in

this notation the divergence of u is directly ∇ · u ≡ d2F , i.e., the divergence per tet Ti is the sum

of the outward fluxes of Ti . Similarly, the curl of u is represented via its surface integrals over dual

faces by ∇×u ≡ dt1 ?2 F , i.e., the curl per dual face ωe is the sum of line integrals of u along the

dual edges between adjacent tets around an edge e.

4.3 Discrete Energy-Preserving Time Integrator

In this section, we first present a time integration that preserves total energy while respecting time-

symmetry for inviscid fluids, before describing our treatment of viscosity.

Figure 4.3. Spatial Discretization: we will refer to primal and dual mesh elements using the
notation depicted in this figure.
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4.3.1 Discrete Euler Equations

From the vorticity form of Euler equations given in equation (4.3), integrating the continuous terms

over each face fij leads to

Ḟij +

Adv(F )ij︷ ︸︸ ︷∫
fij

(ω × u) · n dA = −(?2)−1
ij (Pj − Pi)∑

j∈N (i)

Fij = 0,

where N (i) are the cells sharing a face with i. Note that the diagonal Hodge star (?2)ij = |hij |/|fij |

was used to turn the line integral of ∇P into a surface integral. Using Adv(F )ij as a shorthand for

the area integral over face fij we just derived, we can write the discrete version of equation (4.3) as

a function of F through  Ḟ + Adv(F ) = − ?−1
2 dt2P,

d2F = 0.
(4.4)

In order to update the Eulerian fluxes F and construct an Euler fluid integrator, we must therefore

design a numerical approximation of this “advection term” Adv(F ).

4.3.2 Advection Term

To approximate this advection term, we proceed through local averages of the flux of ω×u on face

fij in a finite volume manner. Our procedure is conceptually simple: first we reconstruct a piecewise-

constant velocity vector Ui per tet Ti based on the known fluxes of each of its four faces: since U

is divergence free there is a unique vector such that the four fluxes of the tet represent the area

integral of this vector along the face normals. (Note that this vector can similarly be found through

discrete Whitney basis functions to reconstruct the vector field [97].) For each reconstructed vector

Ui, we can evaluate the face integral that defines Adv(F )ij : treating the vorticity vector around

edge e as a constant ωe = ωe/|se|.(e/|e|) in the region, we can integrate the flux of ωe×Ui over

the region of fij inside the convex hull of the edge e and the circumcenter cij of the face. Summing

the contributions from the two other edges of fij will provide us directly with the area integral.

Finally, we antisymmetrize this evaluation to enforce that our discrete approximation of ω×u also

satisfies
∫
M

(ω×u)×u = 0; we will see that this will enforce energy preservation when we integrate

our equations in time. This procedure provides a low-order approximation of the advection term

Adv(F )ij on each fij . The reader can find the exact terms involved in this summation, as well as

the explanations leading to energy preservation, in appendix C.
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Assembly per edge. While this integration can be performed literally as explained above, we

found it more efficient to reorganize the terms involved so as to ensure an easy implementation and

an efficient evaluation. We instead proceed as follows:

For each edge e,

• evaluate the vorticity ωe on edge e

• for every pair of consecutive faces fij and fjk around e,

– add contribution of Fjk and ωe on Adv(F )ij :

Adv(F )ij −=
|fij |
hij

ωe
|se|

Fjk
2|we,j |
3|Tj |

– add contribution of Fij and ωe on Adv(F )jk:

Adv(F )jk +=
|fjk|
hjk

ωe
|se|

Fij
2|we,j |
3|Tj |

Note that Adv represents a flux change through oriented faces, thus Adv(F )ji = −Adv(F )ij ; also,

consecutive faces must be ordered consistently with the edge orientation and vorticity computation.

Now that we have defined the advection operator, we can proceed to build Eqs. (4.4) required to

evolve our fluid forward in time.

4.3.3 Time-Reversible Integration

Until now, we only focused on spatial integration of the Euler equations, and did not discuss which

fluxes to use in the advection operator. One could use an explicit time integration by using the fluxes

at time tn in Adv(F )ij to compute the fluxes at time tn+1. Conversely, an implicit integration could

be used instead, assuring much better numerical stability at the price of a greater energy dissipation.

As argued in section 4.2.2, we would rather derive a time integration devoid of numerical viscosity

to offer better control over the fluid viscosity once diffusion is included, as well as enforcing time

reversibility.

Therefore, we use a midpoint integration for the updates of flux in time, resulting in the following

integrator: 
Fn+1 =Fn−hAdv

(
Fn + Fn+1

2

)
−h ?−1

2 dt2P
n+ 1

2 ,

d2F
n+1 = 0,

(4.5)

where h= tn+1−tn is the time step size, F refers to the vector of all fluxes Fij , and the superscript

n (resp., n+ 1
2 ) is used to indicate evaluation at time tn (resp., between time tn and tn+1).
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Nonlinear solve. Evolving the fluid in time thus amounts to finding Fn+1 and Pn+ 1
2 such that

the following residual is zero:

R(F, P ) :=

 1
h (F − Fn) + Adv

(
Fn + F

2

)
+ ?−1

2 dt2P

d2F

 .

This update equation allows us to derive the next set of fluxes Fn+1 as a function of the current

fluxes Fn through a nonlinear solve. Notice however that this equation only involves linear and

quadratic terms in Fn+1, so a simple nonlinear solver using Newton’s method is sufficient. We thus

repeatedly solve the following Newton steps:

J︷ ︸︸ ︷ 1
h Id+ ∂Adv

∂F ?−1
2 dt2

d2 0

δF
δP

 = −R(Fn+1, Pn+ 1
2 ),

until the norm of the residual R is below an accuracy threshold.

Improving solver performance. Directly solving the system J(δF t, δP t)t = −R during each

Newton step can be burdensome since J is asymmetric and needs to be assembled for each step.

We take two measures to improve performance. First, we approximate the Jacobian matrix J by

omitting any entries of its upper left block not on the diagonal. In practice we have found that

taking this approach both reduces the amount of work required to set up each Newton step and

greatly increases the sparsity of the system without significantly increasing the required number of

steps for convergence. We are then left with a typical saddle-point problem: A ?−1
2 dt2

d2 0

 δF

δP

 = −

 RF

RP


where A is the sum of Id/h and of the diagonal part of the Jacobian matrix ∂Adv/∂F containing

the derivatives of the advection term with respect to fluxes. Notice in particular that, besides being

diagonal, the matrix A has only positive terms for sufficiently small time steps (or sufficiently small

velocities); hence in practice, our matrix A is positive definite. Saddle point problems of this form

can be efficiently solved using the Schur complement method [106]. We can indeed solve the linear

system:

d2A
−1?−1

2 dt2 δP = −d2A
−1RF +RP , (4.6)

for the change of pressure δP , then derive the new flux change through

δF = A−1
(
−RF − ?−1

2 dt2δP
)
.
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Notice that the pressure update is solved via a Poisson equation (as d2A
−1 ?−1

2 dt2 is a symmetric

Laplacian matrix for the metric induced by ?2A), for which a preconditioned conjugate gradient

is most appropriate; thus, applying the Schur complement amounts to solve a system similar to

pressure projection to find δP , followed by a trivial backsubstitution to get δF (as A is diagonal).

Overall the work done in each Newton step is thus identical to the work done for a single step of the

stable fluids algorithm [84].

Further improvement. If the time step needed for animation is small enough, we can further

simplify the non-linear solver by only using the dominant term Id/h in matrix A. Discarding

∂Adv/∂F renders the matrix A constant, removing the need to rebuild the matrix and allowing

for the precomputation of preconditioners. For reasonably sized systems (in our experience, less

than 150K tets when using Matlab) we can even LU factorize the Laplacian matrix hd2?
−1
2 dt2 once

at the beginning, and efficiently solve each Newton step through the Schur complement method in

equation (4.6) by constant-time backsubstitution. This simplification is the method of choice in

practice when possible. However, for large time steps with respect to the motion, this approach can

fail to converge; we then either revert to the previous method and add to A the diagonal of the

Jacobian of the advection term, or simply reduce our time step.

4.3.4 Other Time Integration Schemes

While this implicit, time-reversible energy preserving scheme is the one we used in all our examples,

we can easily derive other fully Eulerian integrators with similar numerical properties.

Variational integration. Instead of a midpoint rule, we can maintain time reversibility by choos-

ing a trapezoidal time update for which the momentum equation is expressed as

1

h
(Fn+1 − Fn) +

1

2
Adv(Fn) +

1

2
Adv(Fn+1) = − ?2 d

t
2P

n+ 1
2 .

The implementation of this different integrator is nearly identical to the midpoint case, and will thus

not be detailed here. Unlike the previous integration scheme, this time-reversible update rule does

not conserve energy exactly. Nevertheless, the energy remains nearly constant, basically oscillating

around the initial energy. Such a behavior is typical of symplectic integrators, and in fact, we derived

this integrator through first principles. This lengthy derivation will not be shown here, but we refer

the reader to section 4.4 for an overview of the geometric mechanical arguments leading to this

variational time update.

Hybrid time integration. One can also play around with the basic approach and derive other

interesting integrators. The vorticity ω used in our derivation can in fact be evaluated at any point
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Figure 4.4. Taylor vortices on a periodic domain: for the particular initial separation distance
used here, two vortices of the same sign should split apart as in the reference solution (top left).
Many schemes fail to reproduce these results. From top to bottom, left to right; Reference solution;
Stable fluids [84]; energy-preserving scheme (Harlow-Welch [45] w/ midpoint time discretization);
our simplicial energy-preserving scheme; a MacCormack scheme [87]; FLIP [91]. All results were
computed on grids of around 2 16 cells or triangles.

in time between tn and tn+1, and the update will remain exactly energy preserving—while still

corresponding to an advection of the vorticity in the velocity field. We can exploit this property to

now provide a time update that only requires a linear solve in Fn+1 and Pn+ 1
2 :

1

h
(Fn+1 − Fn) + Adv(Fn+ 1

2 ,ωn) = − ?−1
2 dt2P

n+ 1
2 ,

d2F
n+1 = 0.

For a reasonably small time step, this approach offers a fast alternative to midpoint integration.

Our experience shows that for larger timesteps, the conditioning of the linear system goes down,

and solving this linear system may not always be faster than the full-blown nonlinear alternative.

However, this offers a viable fallback solution if the Newton solver of the nonlinear time integrator

fails.
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Figure 4.5. Smoking Bunny: hot smoke rising in a bunny-shaped domain, then cooling down
over time.

4.3.5 Viscosity

In practice, fluid animation in computer graphics requires a small amount of viscosity to render the

motion more realistic. We thus need to approximate the dissipation term ν∆u to be added to the

right-hand side of equation (4.1) to transform the Euler equations into the Navier-Stokes equations.

As we represent the divergence-free velocity field u by its fluxes on mesh faces, we can directly

apply the discrete Laplacian operator as defined in [97], which, with our notations, is expressed as

−d1?
−1
1 dt1?2. Therefore, we modify our integrator to include this term evaluated at the midpoint

(we will denote F̄n+ 1
2 :=(Fn+Fn+1)/2), resulting in the following momentum update rule:

Fn+1 = Fn − h
[
Adv

(
F̄n+ 1

2

)
− ?−1

2 dt2P
n+ 1

2 − νd1 ?
−1
1 dt1 ?2 F̄

n+ 1
2

]
, (4.7)

This simple dissipation model turns out to be mostly independent of the time step size and the

spatial discretization. As we will see in section 4.5, this is particularly convenient for computer

animation, as one can easily and predictably adjust the viscosity of the fluid simulated without

having to worry that the visual results are, in fact, dependent on the time step. Note that this also

allows adaptive time stepping strategies to be used for more efficient computations without inducing

motion artifacts.

4.3.6 Boundary Conditions

Basic boundary conditions can be dealt with quite simply in our Eulerian framework. First, we can

control the normal component of the velocity along the boundary by specifying the desired fluxes

Fij on boundary faces. No-transfer conditions are thus implemented by simply setting fluxes to

zero, while forced fluid influx or outflux is achieved by forcing nonzero Fij values in the solver (note
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that to ensure divergence-freeness, the total flux through the boundary should still sum to zero).

We can also prescribe pressure values on the outside of boundary faces to achieve “open” boundary

conditions, where the boundary flux will now be determined by the gradient of the pressure across

the boundary. Both types of boundary conditions fix the same degrees of freedom for the momentum

update rule, although if only flux boundary conditions are used, the pressure is arbitrary up to a

constant, in which case the pressure of one tet may be fixed to keep the system definite.

Tangential velocity conditions may, however, seem less obvious since we encoded the fluid velocity

only by its normal component to each face: while Harlow and Welch [45] implement free-slip condition

by mirroring the tangential velocity component across the wall and no-slip boundary condition by

reverting the tangential component across the wall, this type of symmetrization of the velocity is

no longer simple for simplicial grids. Fortunately, we can implement the same boundary conditions

by simply acting on the vorticity instead. For instance, free-slip condition is achieved by setting the

vorticity on boundary edges to 0 since if the half-Voronoi face (loop of dual edges) is completed by its

mirror image across the boundary surface, copying the tangential velocity component on this mirror

image will cancel out the local vorticity integral. Conversely, no-slip condition is achieved by setting

the vorticity on boundary edges to be set to the sum of existing dual circulations (?2)ijFij along

the half-Voronoi face: reverting the tangential velocity component on the mirrored half Voronoi face

simply double the integral over the full Voronoi face, leaving only the terms including inside fluxes

in the vorticity. Partial slip can then be implemented by combining these two and using only some

percentage of the vorticity around boundary edges, allowing the modeling of varying “roughness”

of boundary materials. Note the choice of the tangential conditions does not affect the energy

preservation in the abscence of viscosity.

4.3.7 Discussion

One can easily show that the midpoint integration we introduced is energy preserving: indeed,

F̄n+1/2?2Adv(F̄n+1/2) is zero due to the antisymmetrization of the advection term (see appendix C).

Therefore, assuming the solver converges, this scheme preserves energy exactly up to machine ac-

curacy and solver tolerance—resulting in stability as the velocity must thus remains bounded. This

midpoint integrator on unstructured grids is, in fact, an extension of Harlow and Welch’s scheme [45]

designed for regular grids: the same reasoning (either through the finite volume derivation presented

in this chapter, or via a variational derivation) leads to their skew-symmetric, conservative form of

the advection when applied to regular hexahedral cells. Notice that this advection was used by Foster

and Metaxas [82], albeit with an explicit integration in time and an iterative pressure projection—

both of which lead to a change of energy. Instead, our approach shares most of the well-studied

numerical benefits of the original Harlow-Welch conservative scheme [107]. Our integrator also in-

volves a sparser system of equations than the most recent energy-preserving fluid integrators on
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unstructured meshes [99, 100], as only the topological one-ring of a face is involved in its update.

While this property also means a lower-order accuracy, it provides fast fluid animation at low cost.

Further, the precise choice of mesh refinement or time step (which can be nonintuitive to an anima-

tor) becomes less critical in the design of an animation, and no extra parameters (like a number of

Lagragian particles, or a coefficient of vorticity restitution) is needed. Note finally that simulating

fluids in 2 dimensions basically follows the same procedure, with the edge/face/tet volumes replaced

by vertex/edge/face volumes, and the 2/3 coefficient in the advection replaced by 1/4.

4.4 Alternate Derivation of Symplectic Integrator

Our trapezoidal-based numerical integrator (section 4.4) can also be derived from first principles.

We only sketch the derivation here—a full derivation can be found in [108]. While time integrators

for fluids are often derived by approximating equations of motion, we instead discretize the configu-

ration space of incompressible fluids and then derive the equations of motion through the principle

of stationary action. Our approach uses an Eulerian representation of discrete, volume-preserving

diffeomorphisms that encodes the displacement of a fluid from its initial configuration using matrices

whose rows and columns sum to one. From this particular discretization of the configuration space,

which forms a finite-dimensional Lie group, one can derive a discrete equivalent to the Eulerian

velocity through its Lie algebra, i.e., through matrices whose rows and columns sum to zero. After

imposing nonholonomic constraints on the velocity field to ensure physical transfer only between

neighboring cells during each time update, we apply Lagrange-d’Alembert principle (a variant of

Hamilton’s principle for nonholonomic systems) to obtain the discrete equations of motion for our

fluid representation. The update rule obtained this way (using a simple finite-volume advection

operator to define kinematic advection) corresponds to what we detail in section 4.4. The result-

ing Eulerian variational Lie-group integrator is structure-preserving, and as such, has numerous

numerical properties, from momentum preservation (through a discrete Noether theorem) to good

long-term energy behavior. This approach also benefits from being easily generalizable to a larger

class of problems, including semidirect products as done in [109], which encompasses the behavior

of physical systems such as magnetohydrodynamics and complex fluids.

4.5 Results

To validate our approach, we ran a series of tests in 2 and 3 dimensions, for both visual and numerical

evaluations. Note that we used Delaunay meshes for our domains, as this prevents having to deal

with negative dual edge lengths or dual surface areas. One could locally revert to the barycentric

dual as well, most likely at the price of accuracy.
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Vortices in periodic domain. A setup commonly used in CFD was used in 2 dimensions to

evaluate the quality of the integrators presented in this chapter. A periodic 2-dimensional domain

was initialized with two Taylor vortex distributions of same sign for which pseudospectral solutions

(with 3/2 dealiasing) are available in the literature. As figure 4.4 shows, our results match the

expected qualitative behavior (vortices separating) on any (reasonably good) triangle mesh. With

the exception of the FLIP method, which, while failing to capture the proper behavior, still results

in visually pleasing results, none of the other methods were found to provide reasonable results on

arbitrary grids.

+

-

Spiral maze. We also used a 2-dimensional example with many boundaries

forming a spiral maze, to demonstrate how much diffusion previous methods

engender: while the initial conditions are set up to create a vortex that should

propagate through the maze, all our tests of other methods exhibit either

significant dissipation, or unexpected behavior. However, our time-reversible

scheme does advect the vortex along; no viscosity was added in this example

to emphasize energy preservation.

Flows in 3 dimensions. Examples we tried in 3 dimensions include particles blown in a flow

past a sphere (figure 4.2), and smoke in a 31K-tet bunny-shaped domain (figure 4.5; buoyancy is

incorporated based on the local density of marker particles passively advected through the flow).

These examples were chosen to offer easy comparison with previous methods. In these examples, we

set our nonlinear solver l∞ threshold to 10−3, and the typical range of Newton steps needed to reach

convergence was between 3 and 15. We found that in practice our method was not substantially

slower than existing schemes for velocity advection, and it is worth pointing out that rendering or

advecting a density field in the flow still largely dominates the cost of animation. Therefore, it is

well worth a little extra time on velocity integration, especially since it can have a profound effect

on the appearance of the final animation. All of our 3-dimensional examples took no more than an

average of 40 seconds per time step, and we typically used 2—6 time steps per frame. Additionally,

we found that a naive adaptive time stepping method based on the CFL condition helps improve the

computational complexity without detriment to the dynamics. A change of time step size in previous

methods does, in contrast, significantly alter the results as it introduces a change of viscosity in time.

Numerical comparison of dissipation. As a stress test to estimate numerical energy dissipation

of typical fluid integrators used in graphics, we computed the kinetic energy in time for the simulation

of an inviscid flow on a periodic domain in figure 4.6. While the decay rate varies significantly from

method to method, no integrator but ours is devoid of numerically induced energy dissipation. Notice

that even with a very low Newton’s accuracy threshold of 10−1, our midpoint implicit Eulerian
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Figure 4.6. Even for completely inviscid flows, time integration schemes used in computer anima-
tion dissipate a significant percentage of total energy over time. Our fully Eulerian scheme not only
preserves energy exactly, but also demonstrates excellent energy behavior even for very approximate
solutions (here we use an l∞ tolerance of 10−1 in the Newton solver).

scheme still preserves energy remarkably well. We also tried to adjust the parameters involved

in vorticity confinement and vortex-particle-enriched methods to limit energy loss. However, as

figure 4.7 indicates, finding good coefficients to eliminate dissipation as much as possible is very

animation dependent and creates rather unpredictable energy behavior, making the parameter-

tweaking process difficult and unintuitive. In contrast, our approach requires no parameter tuning.

Robustness to time step. We also confirmed the robustness of our implicit integrators with

respect to time step and grid sizes in the realistic context of viscous flows. Such improved numerics

makes the design of fluid animations easier, as the viscosity parameter will have a predictive value

on the results, instead of depending heavily on other simulation parameters (see figure 4.1).

4.6 Conclusion

Fully Eulerian implicit integrators have been largely unexplored in graphics. We have presented

evidence that they not only offer a robust computational tool for fluid integration, but possess

numerical qualities highly desirable in animation: damping of the fluid flow is no longer a numerical

artifact, but a controllable parameter.

Future work. Methods such as FLIP used in [91] effectively eliminate numerical diffusion (before

pressure projection) but not numerical energy dissipation, as demonstrated in section 4.5. In con-
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Figure 4.7. For carefully chosen parameter values, some existing schemes can roughly preserve
initial energy; even then, energy behavior is highly unpredictable. We show the energy curves resulting
from several nearby parameter values for each scheme above.

trast, our fully Eulerian approach is devoid of numerical energy dissipation, but does not eliminate

diffusion: vorticity diffusion is unavoidable in a purely Eulerian context, since discretization onto a

fixed grid acts as a low-pass filter of the velocity field. Particle-based methods do not have this prob-

lem since Lagrangian particles carry information instead of diffusing it around. However, the nature

of fluid flows makes the Eulerian approach particularly convenient, as no seeding or redistribution

of particles is needed even for vastly turbulent flows. It may be worthwhile to develop Eulerian

schemes with lower diffusion, while maintaining their energy-preserving characteristics. Another in-

teresting research direction is the design of better subscale modeling models; however, adding noise

in the flows may well be more practical for graphics application than subscale modeling. Nonlin-

ear schemes can also be fairly well approximated through less computationally intensive explicit

integrators [107], although most likely at the cost of more stringent condition on time step size.

Finally, the type of conservative integrators we discussed in this chapter may be very appropriate

for coarse-to-fine design of fluid animation, possibly offering an Eulerian extension to Lagrangian

tracking methods [110].
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Chapter 5

Conclusions

In this final chapter, we will first review the contributions of the work presented in the previous

chapters, followed by a discussion of the high-level lessons learned and the potential future work

they point to.

5.1 Review of Contributions

We first extended the discrete exterior calculus machinery by introducing discretizations of contrac-

tion and Lie advection with low numerical diffusion, and important tool previously missing from the

DEC toolbox. By directly discretizing Cartan’s formula we preserved the fact that a closed form

remains closed when Lie advected. This work can also be seen as an extension of classical numeri-

cal techniques for hyperbolic conservation laws to handle advection of arbitrary discrete differential

forms. In particular, the scheme in 3 dimensions is a generalization of finite volume techniques

where not only cell averages are used, but also face and edge averages, as well as vertex values.

We demonstrated that this generalization preserves the low diffusion behavior of the corresponding

finite volume method.

Next we provided a unifying approach to mesh quality based on the placement of primal and

orthogonal dual elements, while most previous meshing methods focused on designing well-shaped

primal triangulations or dual complexes. In an effort to provide meshes most appropriate for fast yet

reliable DEC-based computations, we proposed functionals on regular triangulations along with their

associated power diagrams that offer formal bounds on the numerical error induced by the use of

diagonal Hodge stars. Moreover, we unveiled an important connection between Hodge star accuracy

and optimal transport. We then demonstrated that meshes that minimize these functionals have

desirable geometrical and numerical properties, resulting in Hodge-optimized meshes, which offer

a much-needed alternative to the traditional use of barycentric or circumcentric duals in discrete

computations. The resulting set of meshing tools has wide applications: even when a specific

connectivity is needed, some of our contributions can be applied to improve condition numbers of
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basic operators as well as increase numerical robustness and accuracy.

Finally, we presented purely Eulerian integrators for fluid flow on simplicial grids. These inte-

grators involve very sparse equations, are unconditionally stable, and can be made time reversible,

while exhibiting excellent long-term energy behavior in the sense that total kinetic energy of inviscid

fluids is conserved over arbitrarily long durations without any parameter tuning. In the important

case of viscous fluids, our schemes capture the correct energy decay, mostly independently of the

time step and grid size. Efficiency was achieved via an application of the Schur complement to

quickly solve the saddle-point problem arising from the implicit integration step. Consequently, the

implicit schemes are nearly as efficient as other integrators for typical animation sequences, with

the benefit of being robust to change of time and space resolution. We showed that the resulting

schemes share the same numerical benefits as the Harlow-Welch scheme with a Crank-Nicolson time

discretization on regular grids, and discussed how some of these integrators are, in fact, variational,

offering a connection between discrete forms and discrete diffeomorphisms that has proven useful in

several applications.

5.2 Takeaways and Future Work

As discussed in section 1.1.2, Eulerian methods have both their advantages and disadvantages. While

the goal of this thesis was to further the state of the art in geometric Eulerian methods, in practice

the disadvantages of purely Eulerian methods remain as evident as their advantages. In particular,

when dealing with nonsmooth geometry or dynamics, diffusion can quickly become a problem if care

is not taken. For Lie advection on regular grids this problem was dealt with using larger stencils

with conditional upwinding at the price of higher computational costs and memory requirements.

A similar approach could in theory be used for the incompressible Navier-Stokes equations, but

such methods are not nearly as easy on non-regular-grid spatial discretizations, and the conditional

nature of such methods can quickly break the antisymmetry required for the energy preservation. At

the same time, the nonlinearity of the Euler equations can greatly amplify the computational costs

induced by larger stencils or conditionals, quickly turning many approaches impractical. Moving

boundaries, be they free surfaces or just time-varying domains, bring up similar issues, and it

is clear that more work needs to be done to better address such problems. Likely some hybrid

Eulerian/Lagrangian methods will be needed for the practitioner, be they ALE-like, moving the

mesh along with the dynamics, or involving the addition of particles or similar elements.

However, how to introduce such extensions in such a way that the desirable geometric properties

such as energy preservation or symplecticity are preserved is not clear. For example, a remeshing

method that preserves the symplectic form of the dynamics could have enormous benefits. The

weighted triangulations discussed in chapter 3 may be able to play a role in this future, as changing
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only a scalar per vertex can control the entire orthogonal dual structure without altering the mesh

topology, allowing increased control of the location of important quantities like pressure, which

becomes crucial in dealing with boundary conditions of free surfaces [53]. By placing quantities

on appropriate elements perhaps adapting only the dual mesh would be sufficient to introduce

enough “Lagrangianess” to alleviate a large quantity of the diffusion while remaining computationally

tractable.

There remain an enormous number of applications ripe for the type of approaches discussed in

this thesis that remain to be explored. While some of these ideas have recently been extended to

a more general class of theories, including magnetohydrodynamics and complex fluids [109], their

application to other areas could be equally fruitful. For example, most methods for discretizing

relativity, including the famous Regge calculus [111], fail to satisfy important geometric properties

such as the Bianchi identities. In addition, they can operate on simplicial meshes in dimensions

higher than 3, and developing appropriate meshing techniques along with the operators is also

important. One large step in this direction would be to generalize the notions of DEC to operate

on not only differential forms, but arbitrary tensors, in such a way that key geometric identities are

preserved.

Finally, while high-resolution methods are useful in preserving sharp features in advection prob-

lems, high-order methods, and in particular spectral methods, have proven both powerful and useful

in many fields including fluid simulation. Low-order approximations like the diagonal Hodge star

are convenient and computationally efficient, but extending the dynamic discretizations presented

here to spectral convergence in a computationally efficient manner, as well as developing appropriate

meshes for such methods, is an important step that combines the the advantages of fast convergence

with the power of geometric discretizations. While there has been some work along these lines for

quadrangular grids, for example [112, 113], a full framework remains to be developed.
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Appendix A

Details on HOLA-7

For completeness, we provide the stencils and weights for a HOLA-7 advection. Third-order stencils

are used, requiring 4 values per stencil. The 4 stencils can be combined using the weights w0 =

1
35 , w1 = 12

35 , w2 = 18
35 , and w3 = 4

35 to obtain a 5th-order approximation at a point in smooth

regions [114]. The following qi (see figure A.1) compute the integral of the reconstructed ρ from the

boundary between ρx and ρx+1 to the boundary minus h for each stencil (generally v · dt), where

∆x is the width of each grid cell.

q0

q1

q2

q3

ρx−3 ρx−2 ρx−1 ρx ρx+1 ρx+2 ρx+3

Figure A.1. WENO Stencils: each stencil uses a different group of adjacent cells to compute
the integral of a polynomial reconstruction over the orange region. Note all stencils used include the
upwind (bold) cell ρx.

q0 =
h4

24∆x3
(ρx−3 − 3ρx−2 + 3ρx−1 − ρx) +

h3

12∆x2
(−3ρx−3 + 11ρx−2 − 13ρx−1 + 5ρx) +

h2

24∆x
(11ρx−3 − 45ρx−2 + 69ρx−1 − 35ρx) +

h

12
(−3ρx−3 + 13ρx−2 − 23ρx−1 + 25ρx)

q1 =
h4

24∆x3
(ρx−2 − 3ρx−1 + 3ρx − ρx+1) −

h3

12∆x2
(ρx−2 − 5ρx−1 + 7ρx − 3ρx+1)−

h2

24∆x
(ρx−2 − 3ρx−1 − 9ρx + 11ρx+1) +

h

12
(ρx−2 − 5ρx−1 + 13ρx + 3ρx+1)

q2 =
h4

24∆x3
(ρx−1 − 3ρx + 3ρx+1 − ρx+2) +

h3

12∆x2
(ρx−1 − ρx − ρx+1 + ρx+2) +

h2

24∆x
(−ρx−1 + 15ρx − 15ρx+1 + ρx+2) −

h

12
(ρx−1 − 7ρx − 7ρx+1 + ρx+2)

q3 =
h4

24∆x3
(ρx − 3ρx+1 + 3ρx+2 − ρx+3) +

h3

12∆x2
(3ρx − 7ρx+1 + 5ρx+2 − ρx+3) +
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h2

24∆x
(11ρx − 9ρx+1 − 3ρx+2 + ρx+3) +

h

12
(3ρx + 13ρx+1 − 5ρx+2 + ρx+3)

The smoothness function we used is the sum of the integral squared of each derivative of the

reconstructed polynomial over the region of the reconstruction Ω, i.e.,

S(ρ(x)) =

3∑
k=1

∫
Ω

(
∂k

∂xk
ρ(x))2 dx. (A.1)

For the cubic polynomial constructed from ρ0, ρ1, ρ2, and ρ3 this evaluates to

S(ρ0, ρ1, ρ2, ρ3) =
1

60
(867ρ2

0 + 6083ρ2
1 − 11606ρ1ρ2 +

6083ρ2
2 + 3802ρ1ρ3 − 4362ρ2ρ3 + 867ρ2

3 −

2ρ0(2181ρ1 − 1901ρ2 + 587ρ3)).

We also tried several other smoothness functions, including weighting the derivatives based on their

order and varying the range of integration, but found little to no qualitative differences in the results.

The above equations are all used in standard WENO fashion to compute the final flux through the

face between ρx and ρx+1 (assuming h = v · dt is positive) as

1

α

3∑
i=0

wiqi
S(ρx+i−3, ρx+i−2, ρx+i−1, ρx+i) + ε

, (A.2)

where

α =

3∑
i=0

wi
S(ρx+i−3, ρx+i−2, ρx+i−1, ρx+i) + ε

(A.3)

is a normalization factor, and ε is a small number to avoid division by 0 (taken as 1 × 10−6 in our

experiments).
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Appendix B

HOT Energies

B.1 HOT2,2 Energies

In this appendix, we give explicit 2-dimensional and 3-dimensional formulations of HOT2,2 energies

and their gradients in a form most amenable for direct implementation. In any dimension d, HOT2,2

energies can be expressed as a function of the signed distances between the (weighted) circumcenters

of n− and (n+ 1)-simplices, for 0 ≤ n ≤ d− 1 (considering the primal vertices as circumcenters of

0-simplices). This is based on the simple geometric observation that the (weighted) circumcenter of

an (n+1)-simplex projects orthogonally to the (weighted) circumcenters of its n-subsimplices. We

will make use of this property when deriving closed-form expressions of the HOT2,2 energies.

Signed distances between circumcenters. Let c0...n denote the (weighted) circumcenter of sim-

plex [x0, . . . ,xn]. For any 0≤n≤d−1, the signed distance between the circumcenter of the n-simplex

[x0, . . . ,xn] to the circumcenter of the (n+ 1)-simplex [x0, . . . ,xn+1] is defined as the Euclidean dis-

tance between c0...n and c0...(n+1) and its sign is positive if the simplex [x0, . . . ,xn, c0...(n+1)] has

the same orientation as [x0, . . . ,xn,xn+1], and negative otherwise.

We further denote by dij the signed distance between

the circumcenter of the 0-simplex [xi] to the circumcenter

of the 1-simplex [xi,xj ], i.e., the distance between ci(=

xi) and cij , with a positive sign if (xi− cij) has the same

orientation as (xi − xj), and negative otherwise. Note

that dji thus corresponds to the signed distance between

xj and cij . It is easy to see that

dij =
|eij |2+wi−wj

2|eij | , dji =
|eij |2+wj−wi

2|eij | , where eij = xj−xi.

Going further up in dimension, we denote by hk the signed distance between cij and cijk in a triangle
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tijk = [xi,xj ,xk]. We have

hk =
cotβk|eij |

2
+

cotβiwj + cotβjwi
2|eij |

− wk|eij |
4|tijk|

,

where βk is the angle at xk in triangle tijk. Finally, we denote by Hl the signed distance between

cijk and cijkl in tetrahedron Tijkl.

Through the cell and simplex splitting explained in section 3.4.3, we can use the integral forms

of W (p, T ) given earlier, resulting in closed-form expressions of all the HOT2,2 energies for every

triangle tijk and tetrahedron Tijkl as a function of the signed distances dij , hk, and Hl between

circumcenters as follows:

HOT2,2 formulas in 2 dimensions:

?0- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

4
+
dijh

3
k

12

)
.

?1- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

6
+
dijh

3
k

6

)
.

?2- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

12
+
dijh

3
k

4

)
.

HOT2,2 formulas in 3 dimensions:

?0- HOT2,2(Tijkl)=
∑
i,j,k,l

1

5

(H3
l hkdij
12

+
Hlh

3
kdij
4

+
Hlhkd

3
ij

2

)
.

?1- HOT2,2(Tijkl)=
∑
i,j,k,l

1

3

(H3
l hkdij
12

+
Hlh

3
kdij
4

+
Hlhkd

3
ij

6

)
.

?2- HOT2,2(Tijkl)=
∑
i,j,k,l

1

3

(H3
l hkdij

6
+
Hlh

3
kdij
4

+
Hlhkd

3
ij

12

)
.

?3- HOT2,2(Tijkl)=
∑
i,j,k,l

1

5

(H3
l hkdij

2
+
Hlh

3
kdij
4

+
Hlhkd

3
ij

12

)
.

Vertex position optimization. In order to find the optimized position of the vertices of the

mesh, we only need the derivative of the signed distances between (weighted) circumcenters with

respect to vertices. Some of them may be easily derived from the formulas we provided before in

this appendix. For instance:

∂dij
∂xi

= − (xj − xi)

2|eij |
+

(wi − wj)(xj − xi)

2|eij |3
.
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∂dji
∂xi

= − (xj − xi)

2|eij |
+

(wj − wi)(xj − xi)

2|eij |3
.

More generally, we can derive all other formulas by using equation (3.7), which defines the equation

for the vector from xi to the (weighted) circumcenter of any simplex incident to xi. Through

repeated uses of Pythagoras’ theorem, one can then easily differentiate the signed distances between

(weighted) circumcenters with respect to xi.

Weight optimization. The weight optimization of each HOT2,2 energy can be easily done using

the following simple formulas:

∂dij
∂wi

=
1

2|eij |
,
∂dji
∂wi

= − 1

2|eij |
,

∂hk
∂wi

=
cot θj
2|eij |

,
∂hj
∂wi

=
cot θk
2|eik|

,
∂hi
∂wi

= − |ejk|
4|tijk|

.

While the derivative of the weighted circumcenter with respect to primal vertices does not have a

short expression, the derivative with respect to the weights can be easily computed in any dimension:

this derivative at a vertex is proportional to the inverse of the distance to the opposite facet in the

outward normal direction of that facet. In 2 dimensions, this results in ∂cwtijk/∂wi = e⊥jk/(4|tijk|),

while in 3 dimensions, ∂cwTijkl
/∂wi = ni(Tijkl)/(12 |Tijkl|), where ni(Tijkl) is the normal (weighted

by its area) of the facet opposite to xi in tetrahedron Tijkl.

?d- HOT2,2-optimal weights in Rd: In this particular case, there is a linear expression for the

optimal w∗i ’s when all other weights are considered fixed. In 2 dimensions, we get

w∗i =
2
∑
j∈Ω(i)

(
cot(βk)+cot(βl)

)
wj+4

∑
tijk

(
ct−bt

)
· e⊥jk∑

tijk

‖ejk‖2
|tijk|

where βk is the angle at xk in triangle tijk, and bt is the barycenter of the triangle tijk. In 3

dimensions, we have instead:

w∗i =

( ∑
Tijkl∈Ω(i)

[
wj cot(αkl)|ekl|+wk cot(αjl)|ejl|+wl cot(αjk)|ejk|

+2(cT−bT ) · ni(Tijkl)
])
/

( ∑
Tijkl∈Ω(i)

2 |tjkl|2

3 |Tijkl|

)

where αkl is the dihedral angle at edge ekl.

B.2 HOT1,1 Energies

In this appendix, we give explicit 2-dimensional and 3-dimensional formulations of HOT1,1 energies

for those which are practical to compute.
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Figure B.1. W1 transport between orthogonal edges: For two arbitrary edges parameterized
by the length a1, a2, b1, and b2 (left), the transport plan (sampled in dotted lines) and cost of the
normalized measure from one edge to the other can be computed in closed form for the three possible
configurations displayed above. Notice that the measure of an edge is sometimes evenly transported
to two locations on the other edge (cases 2 and 3).

HOT1,1 for ?0 and ?d in R2 and R3. Using the cell and simplex splitting used in section 3.4.3, we

can derive closed-form expressions for both ?0- HOT1,1(M) and ?d- HOT1,1(M) as these two cases

only involve transport plans between convex regions and points. In 2 dimensions we can express the

integral over a right triangle with width a > 0 and height b > 0 to the point p adjacent to a (see

figure 3.5(left)) as

W (p, T ) =

∫ a

0

∫ bx
a

0

√
x2+y2 dy dx

=
1

6

[
ab
√
a2+b2 + a3 sinh−1

(
b

a

)]
.

The gradients of these energies are then expressed as

∂W (p, T )

∂a
=

1

6

[
b
√
a2+b2 + 3a2 sinh−1

(
b

a

)]
,

and
∂W (p, T )

∂b
=

1

3
a
√
a2+b2.

The 3-dimensional counterpart for a biorthogonal tetrahedron and one of its vertices (see figure 3.5

(right)) becomes:

W (p, T )=

∫ a

0

∫ bx
a

0

∫ cy
b

0

√
x2+y2+z2 dzdydx

=
1

24

(
abc
√
a2+b2+c2+ab

(
b2+3a2

)
sinh−1

(
c

√
a2+b2

)
+3a4

[
tan−1

( b
c

)
−tan−1

( l√a2+b2+c2

ac

)]
+a4

[
tan−1

( c
b

)
−tan−1

( ac

l
√
a2+b2+c2

)] )
.

The algorithm in figure 3.3 can then be applied directly using these expressions. As expected for ?0,

we obtain what could be called a “Medial Voronoi Tesselation”: each vertex is on (or very near) the

geometric median of its weighted Voronoi regions, see figure 3.10. (Note that when the weights are
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all constant, a Lloyd-like algorithm could also be used, for which each vertex is repeatedly moved

to the median of its own Voronoi cell; we found, however, the quasi-Newton method with Wolfe

conditions to be more efficient as in the HOT2,2 case.) Similarly for ?d, the resulting meshes have

their dual complex centered at the median of each triangle.

?1- HOT1,1 in 2 dimensions. The optimal transport cost from a primal edge to a dual edge

for the 1-Wasserstein distance can be computed in closed form with some effort. We first com-

pute the optimal transport cost between two separated, orthogonal edges (depicted in figure B.1)

parameterized as

W (s, t, u, v) =

∫ t

s

√
x2 +

(v−u
t−s

(x− s) + u
)2

dx, (B.1)

where t > s ≥ 0 and v > u ≥ 0, for which a closed-form expression can be found in Mathematica. The

general cost E is then computed as one of three possible edge configurations depicted in figure B.1

(with a=a1+a2, b=b1+b2):

• b1<0 and a1<0: (case 1)

E =
a

2
W (|b1|, b2, |a1|, a2)

• b1<0 and a1>0: (case 2)

E=
a

2
(W (|b1|, 2a1b/a+|b1|, 0, a1)+W (2a1b/a+|b1|, b2, a1, a2))

• Otherwise: (case 3)

E=
a

2
(2W (0, b1, 0, ab1/b) +W (d1, 2a1b/a−b1, ab1/b, a1)

+W (2a1b/a−b1, b2, a1, a2)).

The optimality of these transport plans can be seen by noting that, by the triangle inequality of

the Euclidean metric, transport lines for the optimal transport plans cannot cross (see chapter 8

of [70]). This uniquely defines the optimal transport plan for case 1, while the density splitting in

cases 2 and 3 follow from this and the symmetry of the regions in which the density is split.
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Appendix C

Finite Volume Discretization of
Advection Term

We briefly provide a derivation of the advection term in this section. With first-order accuracy, we

rewrite the area integral involved as

∫
fij

(ω×u) · n dA ' −
∫
fij

∇×(u · (x−cij)ω) · n dA

= −
∫
∂fij

(u·(x−cij))ω · dl.

Consequently, Adv(F )ij can be approximated by summing, over the edges of face fij , the product

of ω dotted with an edge e and u dotted with he,ij = cij−ce (midpoint quadrature). Thus, using

the vorticity ωe approximated on face se dual to edge e, the contribution from flux Fjk to Ḟij is

ωe|e|
|se|

(u · he,ij) =
ωe|e|

|se| sin(α)

(
Fjk
|fjk|

− cos(α)
Fij
|fij |

)
|he,ij |,

where α is the dihedral angle of tet Tj at edge e: indeed, u projected onto the direction of he,ij is

determined by the projection of u onto the plane orthogonal to e, i.e., by its projections Fij/|fij | and

Fjk/|fjk| on two noncolinear directions within that plane. We then convert the above expression to

?2Adv(F ) by multiplying through |hij,j |/|fij |:

ωe
|se|

(
Fjk

4|fij,e||hij,j |
3|Tj ||e|

− Fij
2|fij,e||hij,j |
|fij |2 cotα

)
,

where fij,e is the triangle formed by e and the circumcenter cij of the face, and hij,j is the partial

dual edge in cell j.

Notice that in the continuous limit, one should have
∫
(ω×u)×u = 0 for arbitrary ω and u.

We enforce this property at the discrete level by further ensuring that its discrete equivalent, F ?2

Adv(F, ω) = 0, is automatically satisfied. It is easy to see that if the discrete version of
∫

(ω×u)×u=0
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is to hold for all ω and u, we must antisymmetrize the contribution from Fij to ?2Adv(F )jk and

from Fjk to ?2Adv(F )ij . Thus, the contribution of ωe and Fjk to ?2Adv(F )ij is rectified to

2
ωe
|se|

Fjk
|fij,e||hij,j |+ |fik,e||hik,j |

3|Tj ||e|
=
ωe
|se|

Fjk
2|we,j |
3|Tj |

,

where we,j is the quad-shaped partial dual face of e in cell j.

This discretization of the advection term now enforces energy preservation. Indeed, if we denote

F̄n+ 1
2 :=(Fn+Fn+1)/2 as before, our antisymmetrization of the finite-volume approximation of the

change of flux directly yields

F̄n+ 1
2 ?2 Adv(F̄n+ 1

2 ) = 0.

Multiplying the time update in equation (4.5) by F̄n+ 1
2 proves that this condition enforces that the

energy at time tn+1 is equal to the energy at time tn.
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[52] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete differential-geometry oper-

ators for triangulated 2-manifolds,” in Visualization and Mathematics III, H.-C. Hege and

K. Polthier, Eds. Springer-Verlag, 2003, pp. 35–57.

[53] C. Batty, S. Xenos, and B. Houston, “Tetrahedral embedded boundary methods for accurate

and flexible adaptive fluids,” Computer Graphics Forum (Eurographics), vol. 29, pp. 695–

704(10), May 2010.

[54] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[55] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and Appli-

cations of Voronoi Diagrams, 2nd ed., ser. Probability and Statistics. Wiley, 2000.

http://www.clawpack.org


77

[56] M. Desbrun, E. Kanso, and Y. Tong, “Discrete differential forms for computational modeling,”

in Discrete Differential Geometry, A. Bobenko and P. Schröder, Eds. Springer, 2007.
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