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Abstract 

In this thesis we show that if n ~ 2, and </> is a convex function on the 

bounded convex domain 0, then there is a constant A = A(n,p, q, 10/) such 

that 

holds for all f E Coo(O), and for the following values of p and q: p = n/2 

and q < 2n/(n - 3) when n ~ 3, and p> 1 and q < 00 when n = 2. 

For the one parameter family of weights {et<l>h;:::b where </> is essentially 

uniformly convex on a bounded domain 0, we prove an LP(O) ---t Lq(O) 

inequality for l/p -l/q :s; 2/n and 2n/(n + 3) < p :s; q < 2n/(n - 3), n ~ 3, 

(1 < p :s; q < 00 for n = 2). 

For the family of radial weights e1xlP , 1 < p < 00, we obtain an LP(Rn) ---t 

Lq(Rn) inequality for 1/p-1/q = 2/n and 2n/(n +3) < p:S; q < 2n/(n - 3), 

n ~ 3. For 2 :s; p < 00, this can be improved to l/p - l/q :s; 2/n and 

2n/(n - 3) < p :s; q < 2n/(n - 3) when n ~ 3. If n = 2, the valid range is 

1 < p :s; q < 00. 

Finally, if </> is any convex function on R, we obtain an LP(Rn) ---t Lq(Rn) 

Carleman inequality for the family of one-dimensional weights e<l>(xn ) , for 

n ~ 3, and when l/p - l/q = 2/n and 2n/(n + 3) < p < q < 2n/(n - 3). 
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0.1 Introduction 

A fundamental problem in partial differential equations is to determine the 

extent to which solutions are unique. For example, suppose p(D) is a differ­

ential operator and p( D)u = 0 in some domain n ~ R n. If u vanishes on an 

open subset of n, does it follow that u is identically zero in n? In other words, 

does the differential operator p(D) have the unique continuation property? 

The link between weighted Sobolev inequalities and unique continuation was 

established in the 1930's by Carleman [2], and thereafter this approach to 

unique continuation became known as the Carleman method. There is a 

large literature on the use of Carleman inequalities in proving unique con­

tinuation theorems. See [8], or [13] for more recent results. If n ~ 3, and 

V(x) E L;!c2 (Rn), unique continuation for the Schrodinger operator -~ + V 

is a consequence of the following Carleman inequality, due to Kenig, Ruiz, 

and Sogge [9]. 

Theorem 0.1 Letn ~ 3, and letp andp' satisfy1lp+1lp' = 1, lip-lip' = 
21n. If kERn, there is a constant A = An such that 

holds for all f E co(Rn). 

It is natural to ask whether the family of linear weights k·x can be replaced 

by a larger class of functions in this Carleman inequality. In seeking an 

appropriate generalization, if the class is to be closed under multiplication by 

positive constants, then a simple necessary condition is that the class satisfy 

some type of maximum principle. For instance, suppose ¢J is a continuous 

function on a domain n ~ Rn, and there is a point Xo E n, and an open set 
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U containing Xo, with compact closure in 0, such that 

(i) </>(y) ~ </>(xo) Vy E U 

(ii) </>(y) < </>( xo) Vy E aU 

Then there does not exist a constant A, independent of t, such that 

holds for all t 2 1, and all f E C8"(O). Although this fact is elementary and 

well known, we will prove it since we do not have an exact reference. 

We may suppose 0 E 0, </>(0) = O. Then, for lJ > 0 sufficiently small, 

Bs = {x E U : </>( x) > -lJ} has compact closure in U. Thus there is an 

f E C8"(U) with f = 1 on Bs. Then 

and 

lIet</> .6.fIlLP(O) < Clle
t
</>IILP(U\B6) 

< CIUle-St 

C -St 
Ie . 

Thus in order for such an inequality to hold, we must have 

for all t 2 1. Equivalently, 
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but since 4>(x) + h > h/2 for x E B S/ 2 , this implies 

for all t ~ 1. This is impossible, since the nonempty open set BS/2 has 

positive measure. 

There is a positive result in dimension 2 for subharmonic weights due to 

D. Jerison (private communication with T Wolff). 

Theorem 0.2 Let D be the unit disc in R2. Then if w is subharmonic in 

D, there is a constant C such that 

holds for all f E Cgo(D). 

Jerison has also pointed out that a similar inequality, (which he proved 

in dimension 2), in higher dimensions would answer the following question, 

originally posed by L. Bers. See [15] for a discussion, and related results. 

Conjecture 0.1 Let n ~ 2, and suppose u is a harmonic function on the 

upper half space R+ c Rn, which is C2 up to the boundary, and whose 

gradient vanishes on a boundary set of positive measure. Then u is constant. 

The purpose of this thesis is to present results concerning the smaller 

family of convex weights. In this situation, there are natural osculation 

arguments using linear weights. Similar osculation arguments appear in [6] 

and [13]. We now state the main result of this thesis. 

Theorem 0.3 Let 0 be a bounded convex domain in Rn, n ~ 3. Then 

if 4> is a convex function on 0, and q < 2n/(n - 3), there is a constant 
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C = C(n, q, 101) such that 

holds for all f E CO'(O). 

Let 0 be a bounded convex domain in R2, and suppose 1 < p :s; q < 00. 

Then if <jJ is convex on 0, there is a constant C = C(p, q, 101) such that 

holds for all f E CO'(O). 

The effect of osculation is to localize matters to the sets where a convex 

function is close to its linear part. Specifically, we make local estimates on 

the sets st(C) = {x EO: <jJ(x) - <jJ(a) - V<jJ(a) . (x - a) < C}. The ability 

to add up these local estimates amounts to proving a covering lemma for the 

sets st( C). For an arbitrary convex function, the st( C) satisfy an L1 type 

covering lemma. 

Theorem 0.4 (Covering Lemma) Let 0 be a bounded convex domain in 

Rn. Suppose <jJ is a convex function on O. Then there is a constant Dn and 

a covering 0 = UaO st( C) such that 

L Ist(C)1 :s; DnIOI· 
aEJ 

The gap condition in theorem 0.3 approaches the expected value of 2/n 

only in low ~imensions. To prove Carleman inequalities for the correct gap, 

we restrict our attention to certain subsets of the convex functions, allowing 

us to prove stronger L 00 type covering lemmas. 

One result in this direction concerns essentially uniformly convex weights 

on bounded domains, (defined in section 3.2). Hormander [6] proved an 
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L2(0) -----+ L2(0) Carleman inequality for these weights in connection to 

unique continuation. We show that this can be extended to LP -----+ Lq 

estimates for l/p - l/q :::;: 2/n. Specifically, we have the following result . 

Theorem 0.5 Suppose 0 is a bounded domain in Rn, n ;:::: 2. Let </> E C2(0) 

be essentially uniformly convex, with k linear directions. When n ;:::: 3, let 

(p,q) satisfy l/p - l/q :::;: 2/n, and 2n/(n + 3) < p :::;: q < 2n/(n - 3) . 

When n = 2, let (p, q) satisfy 1 < p :::;: q < 00. Then there is a constant 

A = A(n,p,q, </>,0) such thatfort;:::: 1 

holds for all f E CO'(O). 

By restricting the range of p and q somewhat, we obtain inequalities for 

other second order operators p(D) with the correct gap condition. This is 

described in chapter 3. 

If the weights are sufficiently convex, the restriction to bounded domains 

is not necessary, and the osculation argument can be used to prove esti­

mates on R n. We demonstrate this for the weights </>( x) = Ix IP, for p > 1. 

Stromberg [12] proved a surprising L2(Rn) -----+ L2(Rn) result for these 

weights as part of a general study of L2 Carleman inequalities. We present 

an estimate for the natural 2/n gap. 

Theorem 0.6 Let n;:::: 3, and p > 1. Let (p,q) satisfy l/p-l/q = 2/n and 

Il/p - 2n/(n + 2)1 < 1/2n. Then there is a constant C = C(n,p, p), such 

that 

lIe1xlP 
fIlM(Rn) :::;: Clle,lx lP .6f II LP(Rn) 

holds for all f E CO'(Rn) . 
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When p ~ 2, the extra convexity allows us to prove estimates for smaller 

gaps as well. Specifically, if p ~ 2 the estimate in theorem 0.6 holds for the 

following values of p and q. When n ~ 3, the valid range is l/p-l/q:5 2/n, 

and 2n/(n + 3) < p :5 q < 2n/(n - 3). For n = 2 it is I < p :5 q < 00. 

In particular, for n = 2 or 3, we have LP(Rn) ---t LP(Rn) estimates for 

1 < p < 00. 

Finally, for weights which are one dimensional, the relevant covering 

lemma becomes much simpler and an adaptation of an argument in [13] 

proves the following. 

Theorem 0.7 Let 4> be a convex function on R, and for n ~ 3, suppose 

l/p - l/q = 2/n and 2n/(n + 3) < p < q < 2n/(n - 3). Then there is a 

constant A = Ap such that, for 4> = 4>(xn ) we have 

holds for all f E Cg:>(Rn). 
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Chapter 1 

Preliminaries 

1.1 Some notation 

For p E [1,00), and 0 ~ R n, we denote the usual Lebesque space norms on 0 

by IIgIlLP(fl) = Ufllg(x)IPdx)l/p. And for such p we let p' denote the exponent 

conjugate to p. Namely, p and p' satisfy lip + lip' = 1. 

If E is a measurable subset of R n, we let XE be the characteristic function 

of E, and lEI be the n-dimensional Lebesque measure of E. In particular, 

we have lEI = fRn XE(x)dx. 

The space of smooth functions whose support is compactly contained in 0 

is denoted Co(O). If k ~ 1, then Ck(O) consists of functions whose partial 

derivatives of order ~ k exist and are continuous functions on O. If the 

partial derivatives of 9 of order ~ k extend to continous functions on 0, we 

say that 9 E Ck(TI). 

We denote the unit sphere in Rn by sn-l. If a,b E Rn, we denote their 

inner product by a· b. Also, if a E Rn, and f E sn-t, we let L(a, f) 

{ a + sf: s E R} be the line through a in the direction of f. 
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1.2 Convex sets and functions 

In this section we will set our notation and state some well known facts about 

convex sets and functions. Througout this thesis, C will denote a constant 

whose value may change at each occurence. 

If FeRn is compact and convex, then for I E sn-l we let 

,F(f) = sup{ x . I : x E F} 

be the support function of F, and let 

be the width in the I-direction. If F also has nonempty interior, we let 

be the barycenter of F. For such F, and h > 0, we let hF denote the dilation 

of F by h about the barycenter. Sometimes a convex set will be dilated about 

a point other than the barycenter. When this happens we will explicitly refer 

to the base point for clarity. 

The following five lemmas are standard facts about convex sets. They 

can be found for instance in [14]. We state them here without proof. 

Lemma 1.1 Suppose FI, F2 are compact convex subsets of Rn, with Fl C 

F2 • If WFt (f) ::::; fWF2(f) for some f E sn-l, and f > 0, then there is a 

constant C such that IFll ::::; Cf1F21. 

Lemma 1.2 Suppose F is a compact, convex subset of Rn, and BF = 0. 

Then there is a constant C such that WF(f) ~ C'F(f), for all f E sn-l. 
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Lemma 1.3 Suppose Ft,F2 are compact, convex subsets ofRn, and Fl n F2 :/= 
0. Suppose also that for some A 2:: 1 and for all f E sn-l we have WFt (J) ~ 

AWF2(J)· Then Fl C )"F2 with ).. ~ CA. 

Definition 1.1 A rectangle in Rn is the image under a rotation of a set 

IIj=lIj , where each I j is a closed interval in R with nonempty interior. 

Lemma 1.4 If F is a compact convex set with interior, then there is a rect­

angle R with the same barycenter as F such that ReF c CR. 

Lemma 1.5 Suppose F is compact and convex, a E F, and A 2:: 1. Let 

FA = {x : x - a = A(y - a) for some y E F} be the dilation of F by A 

around a. Then FA C (CA)F. 

Corollary 1.1 If F is a compact convex set with interior, then for p E F 

and f E sn-l we have 

Proof: This is obvious if F is a rectangle, and in that case we may take 

C = 1. For a general F, choose a rectangle R with ReF c CR, with 

barycenter BF . Then if p E FCC R, and f E sn-l, we have 

IL(p, J) n FI < IL(p, J) n C RI 
< IL(BF,J)nCRI 

C IL(BF,J)nRI 

< C IL(BF,J)nFI. 
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Corollary 1.2 Suppose Fb F2 are compact, convex subsets ofRn with Fl C 

F2. Suppose also that IFll ;:::: :\:IF21 for some A;:::: 1. Then 

holds for all f E sn-l, and all p E F2. 

Proof: The hypotheses together with lemma 1.1 imply that if f E sn-t, 

then 
C 

WF1 (I) ;:::: A WF2 (I). 

Then lemma 1.3 implies that F2 C >'Fl with >. :::; CA. Then, using corollary 

1.1, for any p E F2 we have 

IL(p,f)n F21 < IL(p,f) n(>'Fl ) I 
< C IL(BFnf) n(>'Fl ) I 

C>.IL(BFnJ)nFll· 

This proves the corollary since >. :::; CA. 

We require a few simple properties of convex functions. This material 

can be found in [3] or [10]. 

Definition 1.2 If n is a convex domain in Rn, we say a function </> : n ---+­

R is convex if 

</>(tx + (1- t)y) :::; t</>(x) + (1- t)</>(y) 

holds for all x, yEn and for all 0 :::; t :::; 1. 

Then it follows that </> is differentiable almost everywhere in n. Moreover, 

the restriction of </> to any line is convex, and for f E sn-l, >. > 0, the 

following monotonicity property of V</> holds almost everywhere. 

V </>( x) . f :::; </>( x + >.~) - </>( x) (1.1 ) 
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For points a E 0 where V¢>(a) exists, we set T1(x) = ¢>(a) + V¢>(a)· (x - a). 

Our local Carleman inequalities will be made on sets where ¢> is close to its 

linear part. For this we make the following: 

Definition 1.3 For a E 0, ¢> convex on 0, and t > 0, we define st(t)= 

{x EO: ¢>( x) - Tl( x) < t}. 

The following easy lemma will be used in the proof of the proposition below. 

Lemma 1.6 For any p 2:: 1, st (pt) ~ pst(t), where pst(t) denotes the 

dilation by p of the set st(t) about the point a. In particular, 1st (pt) I :::; 
pnlst(t)l· 

Proof: If f E sn-l, we let L( a, 1) = {a + sf: s E R} be the line through a 

parallel to f. It then suffices to show 

L(a, 1) n st (pt) ~ P [L(a, 1) n st(t)] , 

where the right hand side refers to the dilation by p of the line segment 

L(a,J)nst(t) about the point a. 

Suppose that z satisfies ¢>(z) - T1(z) = t. Then (1.1) and the mean 

value theorem imply that (V¢>(z) - V¢>(a)) . (z - a) 2:: t. To prove lemma 

1.6, we must show that if p 2:: 1, and y is such that y - a = p(z - a), then 

¢>(y) - Tl(y) 2:: pt. To establish this, we notice that 

¢>(y) - T;(y) ¢>(y) - T{(y) + T{(y) - Tf(y) 

> T{(y) - Tf(y) 

- ¢>(z) - Tf(z) + (V¢>(z) - V¢>(a))· (y - z) 

t + (p - 1) (V¢>(z) - V¢>(a)). (z - a) 

> t + (p - l)t 

pt. 
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The following proposition will be used to make Carleman estimates on 

the sets st(t). 

Proposition 1.1 Let 0 C Rn be a bounded convex domain with 0 E O. 

Suppose'IjJ : 0 ----+ R is convex and satisfies 'IjJ(0) = 0, and 'IjJ(x) 2:: 0 for all 

x E O. Then there is a dimensional constant Cn such that 

10 e-.p(x)dx ~ Cnlst (1) I· 

Proof: Since for any f 2:: 0, In f(x)dx = Iooo I{x EO: f(x} > t}ldt, we have 

after a change of variable: 

We break the integral up into two pieces and apply lemma 1.6 

For the other term we have, using the lemma, 

This proves the proposition with Cn = (J~ e-wdw) + (It wne-Wdw). 
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Chapter 2 

Convex Weights 

This chapter is devoted to proving the following Carleman inequality for 

convex weights. 

Theorem 2.1 Let n ~ 3. Let n be a bounded convex domain in Rn, and 

4> : n ~ R a convex function on n. Then if q < 2nj(n - 3), there is a 

constant A = A(n, q, In!) such that 

holds for all f E C«f(n). 

Let n = 2. Then if p > 1, and q < 00, there is a constant A = A(p, q, In!) 
such that 

lie'" fIILq(o) ~ Aile'" 6fIILP(o) 

holds for all f E C«f (n) . 

2.1 Osculation by linear weights 

The local Carleman estimates we will make are based on the following. 

13 



Theorem 2.2 (Kenig-Ruiz-Sogge, [9]) Suppose n ~ 3, and ~ - ~ = ~. 

Let the pair of exponents (p, q) satisfy 

1 1 2 
p q n 

(2.1) 

I~-~I <~. 
p r 2n 

(2.2) 

Then if kERn, there is a constant A = A(n,p) such that 

holds for all f E C;>(Rn). 

Suppose n = 2, and! -! < 1. Ifn c R2 is bounded, and k E R2, there 
p q 

is a constant A = A(p, q, 10,1) such that 

holds for all f E c;>(n). 

Also, when n ~ 3 and p = r, we may replace 6.f by p(D)f, where p(D) is 

any second order constant coefficient differential operator with principal part 

Q( e) = -e; - ... - eJ + eJ+I + ... + e~, for some 0 ~ j ~ n. This substitution 

is also valid when n = 2, and l/p - l/q < 1. 

We remark that condition (2.1) is a necessary scaling condition, and that 

(2.2) involves an interval around r because the adjoint of the operator under 

consideration is another operator of the same type. Also notice that (2.1) 

and (2.2) imply that q < 2n/(n - 3), which is the condition on q appearing 

in theorem 2.1. 

We begin with the local osculation estimate. This is done by replacing </> 

by its linear part on stet) and applying theorem (2.2). The result is a local 
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inequality with a factor proportional to the measure of stet). We then cover 

o with the sets stet) and add up the estimates. This can be done in several 

ways, each reducing the Carleman inequality to a certain covering lemma for 

the sets stet). For the case of general convex weights the relevant estimate 

is given below. 

Proposition 2.1 Let n ~ 3, and t ~ 1. If 0 = UaEJ stet) is any covering 

of 0 by the sets stet), and q < 2n/(n - 3), there is a constant A = A(n, q) 

such that 

lIe<P fllq ::; Aet (E Ist(t)l) l/q lIe<P .6.flln/2 
aEJ 

holds for all f E C~ (0). 

When n = 2, and l/p - l/q < 1, there is an A = A(p, q) such that 

lIe<Pfllq ::; Aet (E Is t(t)I)I/
q 

Il e<P.6.fllv 
aEJ 

holds for all f E C~(O). 

Proof: We give the proof for n ~ 3. Notice first that q < 2n/(n - 3), as 

in theorem 2.2. For any such q, let p be the corresponding exponent in that 

theorem. That is, l/p - l/q = 2/n. Then since e<p(x) ~ eTt(x) on stet) we 

have 

[ eq<Plflqdx < eqt [ eqTt(x)lflqdx. 
Jst(t) - Jst(t) 

Applying theorem 2.2 to the right hand side gives 

iSt(t) eq<Plflqdx ::; CqeqtlleTt(x).6.fll~· 

Now applying Holder's inequality (since l/p - l/q = 2/n) to the right hand 

side gives 
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Since 4>( x) - T1a (X) is a nonnegative convex function on n, an application of 

proposition 1.1 then implies 

Now since n = UaEJ st(t), the integral over n is majorized by the sum of 

the integrals over the sets st(t). Thus, 

This completes the proof of the proposition. 

2.2 Covering estimates 

We state and prove a covering lemma for the sets st(t), which combined 

with proposition 2.1 proves theorem 2.1. 

Theorem 2.3 (Covering Lemma) Let n be a bounded domain in Rn, n ~ 

2. Suppose </> is a convex function on n. Then there is a constant Dn and a 

covering n = UaEJ st(t) such that 

L Ist(t)1 ~ Dnlnl· 
aEJ 

This covering property significantly restricts the manner in which these sets 

may intersect. While it is impossible to bound the numbei' of sets st(t) 

to which a given point may belong, (as can be seen by considering the one 

parameter family </>(x) = tlxl for t > 0), it does turn out that these sets 

can always be made disjoint by performing dilations by a fixed factor. This 

property reflects the specific structure of these sets, and is not merely a 

consequence of the convexity of the st(t). Specifically, taking n = 2 it is 
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easy to see theorem 2.3 is false for coverings by general convex sets. More 

precisely, we mean that given any constant D n , there is a bounded domain 

o and a covering 0 = Uj Fj of 0 by convex sets Fj , such that if 0 = U Fk(j) 

is any subcover then Ek(j) IFk(j)1 > DnIOI. It is also not difficult to show 

it remains false if we only consider coverings by squares. This is somewhat 

surprising given that squares have extremely nice covering properies. The 

problem here of course is that we are requiring the sets to cover all of n, 
and not merely a certain fraction. However, even if we relax the statement 

of theorem 2.3 in this manner, it can still be shown to be false for coverings 

by arbitrary rectangles. This can be shown by a Kakeya set construction as 

. in [5]. 

The proof of the Covering Lemma will be broken into several stages. 

We begin by analyzing the intersection properties of the sets st(t) in one 

dimension, and hence along lines in Rn, and proceed to deduce some covering 

properties of the st(t). 

2.2.1 Intersection properties 

Suppose n is a bounded convex domain in Rn, and 'IjJ : n -+ R is convex. 

Then in f { 'IjJ(y) : yEn} exists and is finite. We will denote this infimum by 

infYEo'IjJ(y). For such 'IjJ, set 

v'" = {x En: 'IjJ(x) < infYEJ'IjJ(y) + I}. 

The convexity of 'IjJ implies that V", is a convex open subset of n. Our first 

result is an intersection estimate when n = 1 for the sets V",(x)-kx' 

Proposition 2.2 If'IjJ is convex on an interval J = (JI, J2 ), then for k, IE R 

we have 
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Proof: Replacing 1/J by the (convex) function 1/J - 1 shows we may assume 

1=0. Now suppose bE V",. We claim that if hk 2: 2 then b - h f/: Vc",(x)-kx). 

To prove this for such an h, we may assume b - h E J, for otherwise it is 

obvious. If b - h E J, then since b E V", 

1/J(b - h) - k(b - h) - infwEJ(1/J(W) - kw) 2: 

1/J(b - h) - k(b - h) - infwEJ(1/J(W) - kw) + [1/J(b) - infYEJ1/J(Y) -1] = 

[1/J(b - h) - infYEJ1/J(Y)] + [1/J(b) - kb - infwEJ(1/J(W) - kw)) + kh-1. 

Since the first two terms are nonnegative, the preceding line is 2: kh - 1, and 

so if kh 2: 2 we obtain 

1/J(b - h) - k(b - h) - infwEJ(1/J(W) - kw) 2: 1 

and so b - h f/: Vc"'-k). The proposition now follows by taking b to be the 

right endpoint of V", when k > 0, and the left endpoint when k < O. 

Observe that if ¢> : J ~ R is convex, then 

S:(t) = {x E J: ¢>(x) - Tf(x) < t} = Vt-l(¢(x)-¢'(a)x). (2.3) 

The intersection estimate in proposition 2.2 immediately implies an es­

timate for the intersection of the sets st(t) along lines in Rn. As before, if 

pEn, and f E sn-l, then L(p,1) denotes the line through .p in the direction 

f· 

Proposition 2.3 Suppose the convex set st(t) n st(t) is nonempty, and let 

B denote its barycenter. Then 

holds for all f E sn-l. 
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Proof: We reduce to the situation of proposition 2.2. Specifically, set h(x) = 
t-1 (</>(X) - V</>(a). x), and let hBJ(S) = h(B + sf). Then hBJ is a convex 

function on the bounded open interval J = {s E R : B + sf En}. Now 

using (2.1) we have 

= {B + sf En: h(b + sf) < infyEoh(y) + 1} 

~ {B + sf En: h(B + sf) < infy=B+sJ.sEJh(y) + I} 

but as hBJ( s) = t-1 (</>BJ( s) - (V</>( a) . f) s) - rl V</> ( a) . B, this implies 

st(t) n L(B, f) C "Vt-1(c!>BJ(s)-Vc!>(a)"Js)-t-1Vc!>(a)"B 

"Vt-1(c!>BJ(s)-Vc!>(a) "Js) • 

Of course we also have 

The proposition now follows from proposition 2.2. An important consequence 

of this is the following. 

Corollary 2.1 For any A ~ 1, if Ist(t) n st(t)1 ~ 1Ist(t)1 then there exists 

an a = a(A) such that 

I(V</>(b) - V</>(a)) . (x - a)1 $ ta(A) 

holds for all x E st(t). 
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Proof: We may assume x #- a. Taking f = (x - a)/Ix - al E sn-t, we see 

from proposition 2.3 that 

2tlx - al 
I(V4>(b) - V4>(a)) . (x - a)1 s Ist(t) n stet) n L(B, (x - a)/Ix - aDI' 

The corollary now follows from corollary 1.2 by taking F t = stet) n stet), 

F2 = stet), and observing that for x E stet) = F2 we have 

In the next proposition we consider the situation when two of the sets 

stet) have "large"overlap. We'll show that when this happens their union 

is contained in a set of the form St(At), for some dimensional constant A. 

Since a local Carleman estimate can be made (using theorem 2.2) on such a 

set, this allows us to basically throw out one of the two sets in this situation. 

We will see that this will reduce matters to consideration of the case when 

two such sets have "small" overlap. 

Proposition 2.4 For any A;::: 1, iflst(t)nst(t)l;::: 1Ist(t)1, then there is 

a C = C(A) such that stet) ~ st (tC(A)). 

Proof: Suppose x E stet) and y E stet) n stet). Then 

4>(x) - n(x) = 

[4>(x) - T~(x)] + [(V4>(b) - V4>(a)). (y - a)] + [Tta(y) - T;(y)] 

-[(V4>(b) - V4>(a)) . (x - a)]. 

Taking absolute values and applying the triangle inequality, we see it suffices 

to show that each of the four terms on the RHS has absolute value S C(A)t. 

The first term is nonnegative and less than t, as x E stet). The second and 
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fourth terms have absolute value less than ta(A) by corollary 2.1. And the 

third term has absolute value at most 2t, as y E st(t) n st(t). Hence 

cf>(x) - r;(x) < tC(A) 

and so x E st (tC(A». This proves the proposition. 

2.2.2 Covering properties 

Our first proposition in this section will tell us that we may select a cover­

ing 0 = UaEJ st(t) such that the sets st(t) don't overlap too much. This 

preliminary statement will be refined to give the Covering Lemma (theorem 

2.3). 

First, there is a set :I ~ 0, with 1:11 = 101, and such that if a E :I, then 

\1cf>(a) exists. Then since :I has full measure in 0, we have 0 = UaE..7 st(t). 

We next pick a countable subcover 

(X) 

0= U S:,,(t) 
Ie=l 

with the property 

(2.4) 

Proposition 2.5 Suppose A ~ 1, and let C = C(A) be as in proposition 

2.4. Then given the cover 0 = Uk:,l st,,(t) with property (2.4) above, we 

can obtain a new cover 0 = US~(tC) with {bj : j = 1,2, ... } ~ {ale: k = 

1, 2, ... } and the property 

(2.5) 

holds whenever bi =J. bj • 
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Proof: We begin by selecting st
1 
(t) and for j :2: 2, if Ist

1 
(t) n st/t) I :2: 

(1/ A)lstj(t)l, we throw out stj(t) and notice that stj (t) ~ st
1 
(Ct) by propo­

sition 2.4. We thus obtain a new covering of n by taking all those sets we 

did not throw out and replacing st
1 
(t) with st

1 
(Ct). Namely 

with the property that 

IS:1 (t) n s:Ou/t )I < (1/ A) IS:ou/t ) I 
< (2/ A)min [IS:1 (t)l, IS:o(j) (t)l] 

holds for all j. 

Next, we choose st ( (t), recalling that 1st (t)1 > 12suPJ">tlst (")(t)l· 
a 1) 0(1) - - OJ 

Then for j :2: 2, we throw out St,.(j)(t) if ISt,.(1)(t)nst,.u/t)1 :2: 1ISt,.(j)(t)l. 

We then obtain a new cover 

This cover has the property 

IS:1 (t) n st(t)1 s : min [IS:1 (t)l, Ist(t)l] 

for bE {a(l), ,BU)}, and 

IS:O(l/t ) n st(t)1 s : min [IS:O(l/t ) I, Ist(t)l] 

holds for d E {at,,BU)}. This construction can be iterated, obtaining a cover 

with the desired property. 
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2.2.3 Proof of the covering lemma 

We have obtained a preliminary cover by the sets st(Ct) in proposition 2.5. 

When A is large, the sets in this cover have small relative intersection. This 

covering property is not sufficient to prove our covering lemma, even when 

we restrict our consideration to coverings by convex sets. This fact can be 

demonstrated by a Kakeya set construction, as in [5]. 

At this point we have not fully exploited the special structure of the sets 

st(t), which is necessary to gain the full strength of the covering lemma. 

The crucial fact is that when the sets st(t) have a small relative intersection 

as in proposition 2.5, they can be shrunk around their barycenters by a fixed 

factor and be made disjoint. Since dilations have a known effect on volume, 

the estimate in the covering lemma follows easily. We begin with the main 

proposition, and then deduce the covering lemma. In what follows, € > 0 

should be considered small, but otherwise fixed. 

Proposition 2.6 110 < Ist(t) n st(t)1 < €nmin{lst(t)l, Ist(t)l} then 

where the dilations by € are taken with respect to the barycenters. 

Proof: We consider two cases. Let C be the constant appearing in lemma 

1.2. 

Case 1: 

(2.6) 

The proof in this case relies only on the convexity ofthe sets st(t). We show 

that if (€st(t») n (€st(t») # 0 then (€st(t») <;, st(t). Then 

Ist(t) n st(t)1 ~ l€st(t)1 = €nlst(t)1 
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which is a contradiction. 

In proving this, we may assume the barycenter of st(t) is the origin. 

For convenience we let Ba denote the barycenter of S:(t). Now we suppose 

p E fS:(t). We need to show that p E st(t). By definition, there is a point 

p' E S:(t) such that 

p = fP' + (1 - f)Ba. 

Now (2.6) implies that p' = ~~~' for some bl E st(t). So p = (bI/8C) + (1 -

f)Ba. As fS:(t) n fSt(t) =J 0, there are a2 E S:(t) and b2 E st(t) such that 

Another application of (2.6) implies that 

c 1b3 
a2 =W-

holds for some ~ E st(t). Combining the preceeding two lines shows that 

(1 - f)Ba = f~ - (~/8C). Now lemma 1.2 implies that (-~/C) E st(t), 

and so we set b4 = (-~/C). Thus 

(2.7) 

Since st(t) is a convex set with its barycenter at the origin, (2.7) implies 

that pESt (t). This proves case 1. 

Case 2: Here we have 

(2.8) 

As before, we assume that fS:(t) n fSt(t) =J 0 and reach a contradiction. 

This case is more difficult, and it is here that the structure of the sets S:(t) 

will be used. 
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By lemma 1.4, we may choose a rectangle Ra with Ra C stet) c CRa, 

with the same barycenter as stet). We may assume this barycenter is the 

origin. Now (2.8) and lemma 1.3 imply 

(2.9) 

holds for some f E sn-l. We may assume that Ra has a side parallel to f. 
Let P E (ESt(t)) n (EStCt)). Then (2.9) implies 

'st(t/J) < (p. J) + Wst(t)(f) 

< (p. J) + CEWS!(t)(f) 

~ (p. J) + CqS!(t)(f) 

< CqS!(t)(f) + CqS!(t) (f). 

We have used lemma 1.2 in stating Ws!(t)(f) ~ 'st(t) (f). Thus we have 

(2.10) 

and similarly we have 

(2.11) 

We claim that there exists a point PI E L(p,J)nSt(t) with 

The existence of such a point Pl can be seen as follows. (2.10) implies 3xo E 

Ra with Xo· f ~ CE-I'st(t)(f)· Set Pl = p+ [(xo - p). f)J· Then Pl ERa C 

stet) as Ra has a side parallel to f, and PI . f = Xo . f ~ Ccl'st(t/J)· 

Since P,Pl E stet), the convexity of stet) implies the line segment con­

necting P and Pl lies in stet). Let P2 E stet) denote the midpoint of this 
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line segment. So 

and 

Set 

g(x) = ¢>(x) -' T;(x) and h(y) = ¢>(y) - Tt(y). 

Claim: g(P2) ~ Ct-lt. 

To prove this claim, first observe that if y E st(t), then 

Let q = ).P2 + (1 - )')b, for some). > O. If). is sufficiently small, then 

q E st(t). Choose). so that q E st(t) with g(q) = (t/2). We can now show 

that ). ~ Ct. In fact, 

But then since q E st(t), 

t-
l 

< C(~"f) 
C(P2· J) 

- ).(P2 . J) + (1 - ).)(b· J) 
C 

- )'+(1-).)(~~f1 
C 

- ). + (1- ).)(O(t)) , 
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Thus ..\ ~ Ct. Then, since g is convex and g(b) = 0, we have 

This proves the claim, and in particular implies that if f. is small, then g(pz) 2: 

(lO)t. Also, since p E stet), g(p) < t, and so g(pz) - g(p) 2: 9t. The mean 

value theorem implies that 

g(pz) - g(p) = Vg(c)· (Pz - p) 

for some c = ap + (1 - a)pz .E stet). Since (pz - p) = IPz - pi!, we have 

9t 
V g( c) . ! 2: I I· pz - p 

Now since hey) = ¢>(y) - Tl(y) is convex, then (using (1.1)) 

Vh(c). ! < h(c+IPz-plJ)-h(c) 
IPz -pi 

< t 
Ipz - pi 

(2.12) 

(2.13) 

since both c and c+ IPz - pi! lie in stet). (Notice that the latter lies on the 

line segment connecting Pl and pz in st(t).) Subtracting (2.13) from (2.12) 

and using the definitions of g and h gives 

[V¢>(b) - V¢>(a)] .! ~ I 8t I > O. 
pz - p 

Running the exact same argument, using (2.11) in place of (2.10) will show 

we also have the same estimate for -!, namely 

[V¢>(b) - V¢>(a)]· (-J) > O. 

This is of course impossible, and we have reached the desired contradiction. 

This proves case 2, and completes the proof of the proposition. 
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We now have all the ingredients to prove the covering lemma. 

Proof of Theorem 2.3 (Covering Lemma): We begin by fixing an 

A ~ 1, and let 
00 

0= U st(C) 
j=l 

be the covering in proposition 2.5. (We are taking t = 1). We must show 

there is a constant Dn such that L:~l Ist(C)1 :::; DnIOI. First notice that 

lemma 1.6 implies 

L Ist(C)1 :::; en L ISt(I)1 
j j 

Then the covering property (2.3) shows that the sets St(l) satisfy the hy-
J 

pothesis of proposition 2.6 when A is large. Since the sets ( -rJ2/ A) Sf; (1) are 

disjoint, 

~ I ( \f2/A) Sf;(1)1 :::; 101 
J 

Thus, using the effect of dilations on volumes, we have 

(2/ A) ~ IS:;(I)1 :::; Inl 
J 

Putting these estimates together yields 

L ISf;(C)1 :::; (Acn /2)lnl 
j 

This completes the proof of the Covering Lemma. 

In order to complete the proof of theorem 2.1, we need only combine the 

Covering Lemma with proposition 2.1. 
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Chapter 3 

Uniform Convexity and 
Related Results 

The strength of theorem 2.2 is that it holds for the general class of convex 

weights. Unfortunately, it is a low dimensional result in the sense that it 

is only in low dimensions that the exponents have nearly the expected gap 

of 2/n. The purpose of this chapter is to demonstrate how the method of 

chapter 2 can be applied to various subclasses of the convex weights to yield 

Carleman inequalities with the correct gap. 

3.1 Osculation estimates 

In chapter 2 we performed the osculation in a manner that would yield an 

L1 type covering estimate for the sets st(t). In order to obtain Carleman 

inequalities with the gap 2/ n, it is necessary to prove £,)0 type covering 

lemmas for the st(t). We do not have a covering property of this type for 

general convex weights, so we must restrict our attention to certain subclasses 

to obtain the sharp gap. The analogue of proposition 2.1 is the following. 
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Proposition 3.1 Let n ~ 2, and let the pair of exponents (p, q) be as in 

theorem 2.2. Let n ~ Rn be convex, and 4> be convex on n. Let n = 
UaEJ stet) be any covering of n by the sets stet). Then there is a constant 

A = A(n,p, q) such that 

holds for all f E cg:'(n). 

Proof: This follows the same pattern as proposition 2.1. As before, we give 

the proof for n ~ 3. We begin with the local estimate 

f eqq,lflqdx ~ (Aet)q (f e-P(q,(X)-Ti'(X))epq,(X)16fIPdx)q/P 
ist(t) in 

which follows from theorem 2.2. Then since the stet) cover n, we have 

f eqq,lflqdx ~ (Aet)q L (f e-p(q,(x)-Ti'(x))ePq,(x) 16 fl Pdx ) q/p . 
in aEJ in 

Now as (qlp) > 1 we may bring the sum inside the integral and obtain 

The proposition now follows by taking qth roots and applying Holder's in­

equality to the right hand side. 

In some situations it is desirable to have an LOO type covering estimate 

with a smaller gap between exponents. For this we record the following 

generalization of proposition 3.1. 

Proposition 3.2 Let (p,q) be as in proposition 3.1. For1/q ~ lis ~ 11r ~ 

1 I p, there is a constant A = A( n, r, s) such that 
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Aet SUPaEJlst( t) 12/ n+1/ s-l/r II L: e-(r/2)(t/>(x)-Tt(x)) Il
l

/r Ilet/> ~fll£r(o) 
aEJ Loo(O) 

holds for all f E Cgo(O). 

Proof: The proof of this proposition is really a composite of the proofs of 

proposition 2.1 and proposition 3.1. First, Holder's inequality and theorem 

2.2 imply 

[ est/>Iflsdx ~ (Aet )SISt/>(t)IS(l/S-l/q ) IleTt(x) ~flls . i st(t) a LP(O) 

We then write eTt(x) = e( -1/2)(t/>(x)-Tt(x)) e( -1/2)(t/>(x)-Tt(x)) et/>(x) and then an­

other application of Holder's inequality along with proposition 1.1 gives 

(C AetYISt(tW(l/S-l/Q)+S(l/V-l/r) Ile( -1/2)(t/>(x)-Tt(x))et/> ~fll:r(o) . 
Since l/p - l/q = 2/n, we may take the sup over a E J and obtain 

[ e"t/>lfIBdx ~ 
ist(t) 

(C Aety SUPaEJISt( t) 18 (2/n+1/B-l/r) Ile( -1/2)(t/>(x)-Tt(x))et/>(x) ~fll£r(o) . 
Now we proceed as before, dominating the integral over 0 by the sum of the 

integrals over the st(t). Since (s/r) ~ 1, we may bring the sum inside the 

integral on the right hand side obtaining 

liet/> fIl1 0 (0) ~ 

(CAet)BSUPaEJISt(t)IB(2/n+l/B-l/r) ( [ L: e(-r/2)(4>-Tla)ert/>l~flr dx)B/r 
io aEJ 

To complete the proof we simply take the 1/ s power and apply Holder's 

inequality once more. 
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3.2 Uniform convexity 

Our first application of these osculation estimates is a result concerning es­

sentially uniformly convex weights. Hormander [6] proved an L2 Carleman 

inequality for this class of weights in connection to uniqueness for the Cauchy 

problem. Our definition comes from that paper. 

We suppose that 0 is a bounded convex domain in Rn, and that 4> E 

C2(O). For X,y E 0, consider the linear hull of the vectors 

V4>(X) - V4>(y) 

This is a subspace of Rn, and we may choose coordinates so that this subspace 

is defined by 

Observe that k = 0 if and only if 4> is linear. Now if a = (al,'" ,an) is a 

multi-index, we define the multi-index a* = (al,"" ak, 0, ... ,0), and for 

y = (Yb'" ,Yn) ERn, we set lyl*2 = Y; + ... + y~. 

Definition 3.1 The function 4> E C2(O) is essentially uniformly convex if 

the quadratic form Ej=l Ek=l yjykf)24>/ f)Xjf)xk is positive definite in the plane 

{yHI = ... = yn = o}. 

In this situation, we will say 4> is linear in the (xHb" . ,xn ) directions. Our 

aim is to use proposition 3.2 to deduce a Carleman inequality for the one 

parameter family of weights et<P, where t 2:: 1, and ¢> is essentially uniformly 

convex. The following lemmas estimate the relevant quantities in proposition 

3.2. 
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Lemma 3.1 Suppose </> E C 2 (0) is essentially uniformly convex, and t 2: 1. 

Then there is a constant C = C(</>,O) such that 

Proof Since </> is linear in the (Xk+b ... , xn) directions, it follows that there 

is a constant C such that 

The constant C is uniform as </> E C2 (TI). The lemma follows immediately 

from the left inequality, since the set where the left hand side is < 1 is 

essentially a cube in R k of side (C jt)1/2, crossed with a rectangle in the 

remaining n - k directions whose side lengths are bounded by the diameter 

of O. 

Lemma 3.2 Let R be a rectangle in Rn, centered at 0, and with sides parallel 

to the axes. Let F be a bounded subset of Rn, and for a E F, let Ra be 

the translate of R with center at a. Then for A 2: 1, there is a constant 

C = C(n, A) and a covering F = Uf=l Raj such that each point in F lies in 

at most C of the sets ARaj . 

Proof: We begin by selecting a covering F = UaEJ Ra with the property 

that if Xj is the center of Raj' then Xj ¢ Rar for j 1= 1. Then it follows that 

there is a constant Cn such that 

(3.2) 

This follows from the fact that if ARa n ARb 1= 0 there is a constant Cn such 

that 

(3.3) 
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Hence if (3.2) is false, then G;;l Raj ~ Raj' which contradicts Xi ~ Raj" 

Now suppose y E F, lies in M of the sets ARaj' say y EARl n· .. n ARM. 

Then (3.3) implies that 
M 

U ARj ~ GnARl. (3.4) 
j=l 

Now (3.2) implies that the sets (GnAt1 ARj are disjoint and so 

M M 

U (GnA)-l ARj 
j=l 

L I(GnA)-l ARjl 
j=l 

On the other hand, (3.4) implies that 

M M 

U(GnA)-lARj < UARj 
j=l j=l 

< IGnARII 

- (GnAtIRII· 

Combining these two observations yields M S (G~A)n. This proves the 

lemma. 

Proposition 3.3 Suppose <p E G2 (TI) is essentially uniformly convex, and 

t ~ 1. Then, for any p > 0, there is a constant G = G(p, <p, n) and a covering 

n = UaEJ S!4>(l) such that 

II 
L e( -pt)(4)(x)-Tf(x)) II S G 
aEJ Loo(O) 

Proof: First observe that (3.1) implies that for some G we have 
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We then cover n with the sets 

We then have 

aEJ 

Since the Ra are rectangles of the same size with sides parallel to the axes, 

lemma 3.2 is applicable, and so we may assume that each point in n is 

contained in at most Cn elements of UaEJ C3 Ra. 

Then, as Ra C S!4>(1), we also have 

and each point in n lies in at most Cn elements of UaEJ S!4>(1). This is 

because 

S:'(I) c {x: E,IXi - ail' <:: C /t} C C3 R", 

where we have used lemmas 1.5 and 1.6. 

Now if x E n, we have 

L e(-pt)(4>(x)-Ti(x» ~ Ctk / 21 e(-pt)(4>(x)-Tf(x»da. 

aEJ 0 

But then (3.1) implies that 

L e(-pt)(4>(x)-Tf(x» ~ Ctk / 2 1 e-c-lptlx-al·2 da. 

aEJ 0 

We may integrate out the last n - k variables with a bound diam(n)(n-k) . 

We are left with 

35 



After a linear change of variables, we obtain 

Since the RHS is bounded by a constant independent of x, this proves the 

proposition. 

We remark that proposition 3.3 is false if </>( x) is assumed only to be 

convex. For example, if </>(x) = lxi, then 

II L e(-pt)(,p(x)-Tf(x)) II LOO(O) ~ C-1 t(n-l)/2101· 
aEJ 

We may now put together lemma 3.1 together with propositions 3.2 and 

3.3 to prove the following. 

Theorem 3.1 Suppose 0 is a bounded domain in Rn, n ~ 2, and </> E C 2 (0) 

is essentially uniformly convex, and linear in the (Xk+h"" x n ) directions. 

Also suppose t ~ 1, and (p,q) is as in theorem 2.2. Then for l/q ~ l/s ~ 

l/r ~ l/p there is a constant A = A(n, r, s, </>, 0) such that 

holds for all f E COO(O). 

lfn ~ 3 and2n/(n+2) ~ r ~ 2,(orn = 2 and1 < r ~ 2), we may replace 

!:::.f by p(D)f, where p(D) is any second order constant coefficient differential 

operator with principal part given by Q(e) = -ei - ... - e; + e;+1 + .. , + e~, 
for some 0 ~ j ~ n. 

When r = s = 2, this is essentially in [6], with the inclusion of an additional 

estimate on the gradient. In that paper, it is necessary that </> E C 3 (0) since 

</> is approximated uniformly by quadratic polynomials rather than linear 

ones. 
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3.3 Estimates on Rn 

We show here that in some cases where <fJ(x) is sufficiently convex, we may 

obtain Carleman inequalities on all of Rn. The particular example we have 

in mind is the family <fJ( x) = Ix IP, for p > 1. There are Carleman inequalities 

on L2(Rn) for these weights due to Stromberg [12]. We will prove LP - Lq 

inequalities for l/p - l/q = 2/n. When p ~ 2, the extra convexity can be 

used to prove estimates with smaller gap conditions. 

Theorem 3.2 Let n ~ 3, 1 < p < 00, and suppose (p, q) are as in theorem 

2.2. Then there is a constant A = A(n,p,p) such that 

lIe1xlP 
fIlLq(Rn) :::; Alle1xlP 

6fIILP(Rn) 

holds for all f E cgo(Rn). 

Proof: First, observe that 

lIe1xlP fIlLq({Y:IYIP~100}) < elOOPllfIlLq(Rn) 

< AelOOP II 6 fIlLP(Rn) 

< Ae lOOP II e1xlP 
6fIlLP(Rn). 

Thus in order to prove the theorem it suffices to show lIe1xlP fIlLq({Y:IYIP~lOO}) :::; 

Clle1xlP 6fIlLP(Rn). In view of proposition 3.1, this latter estimate is a con­

sequence of lemma 3.3 below. (Notice that in proposition 3.1, n is assumed 

convex only to insure a direct definition for the convexity of cf> on n. In 

particular, the proposition is valid on (nonconvex) subsets of n.) 

Lemma 3.3 Letn ~ 2, and p > 1. Set <fJ(x) = Ixlp. Then there is a constant 

A = A(n,p), and a covering {y: lylP ~ 100} = UaEJ S:(p-1) such that 

II E e-p(<p(x)-Tf(x)) IILoo(Rn) :::; A. 
aEJ 
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Proof: We begin by showing that the sets st(p - 1) are essentially balls of 

radius lal(2-p)/2 centered at a. We then obtain a covering {y : lylP ~ 100} = 

UaEJ st(p - 1), with the property that at most Gnp of the sets st(p - 1) 

intersect. Finally, we demonstrate that this covering has the desired property. 

Step 1: If lalP ~ 100, there is a Gp such that 

To prove the assertion, first note that Xo E st(p - 1) if and only if 

IxolP + (p - 1 )lalP - plalP- 2a . Xo < p - 1. 

Write (xo-a)·a = ILlal, and A = Ixo-a-f;;TI. Then IxolP = [(lal+J.L)2+A2]P/2 

and a· Xo = lal2 + ILlal. Thus, we have Xo E st(p - 1) iff 

[{lal + IL)2 + A2r/2 - lalP - plalp
-

1 IL < P - 1. 

Factoring lalP from the left hand side, and setting x = J.L/lal, and y = A/lal, 

we see the above line is equivalent to 

[ ] 
p/2 

(1 + x)2 + y2 - px - 1 < (p -1)lal-P < (p - 1)/100. (3.6) 

If we set f(x,y) = [(1 + x)2 + y2]P/2, then f(x,y) is convex and the left 

hand side of (3.6) is f(x,y) - Tf(x,y) = H(c)(x,y) . (x,y), where H(c) is 

the 2 x 2 matrix of second partial derivatives (a;:J~»), and c is a point on 

the line segment connecting (x, y) to (0,0). The eigenvalues of H(c) are 

A1 = p(p -1)[(1 + C1)2 + cWp- 2)/2, and A2 = p[(1 + C1)2 + c~](p-2)/2, and since 

we can conclude that 
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as Al and A2 are ~ Cp on the set where (3.6) is valid. Recalling now the 

definitions of x and y, we have shown that z E step - 1) implies 

This proves the assertion of Step 1. 

Step 2: If lal P ~ 100, and A ~ 1, there is a covering 

{lal P ~ 100} = U B (a, C;I/2Ial(2-P)/2) = U B(a, ra), 
aEJ aEJ 

with the following properties: 

$ C of the sets B(a,Ara) intersect, (3.7) 

if B(a,ra)nB(b,rb) =1= 0 then lal/2 < Ibl < 21al. (3.8) 

We begin by showing (3.8) holds. If x E B(a,ra)nB(b,rb), then 

la - bl $ Ix - al + Ix - bl $ r a + rb· 

Then, as Cp ~ 1, lalP ~ 100,lb1P ~ 100, we have 

lal $ Ibl + la - bl $ Ibl + lal/lO + Ibl/10. 

Hence, lal $ lllbl/9, and similarly Ibl $ lllal/9. This proves (3.8). We ac­

quire a covering satisfying (3.7) along the lines of lemma 3.2. Begin by choos­

ing some B(al' raJ. Suppose B(ak' rak ) have been chosen for k = 1,2, ... ,n. 
If this collection does not cover the set, select B(an+I,Tan+J with an+l rt 
Uk=1 B(ak' rak ). In this way, we obtain a covering of {kiP ~ 100} by the 

sets B(a,ra)' To show that this cover satisfies (3.7), first note that (3.8) im­

plies that if B(aj,raj)nB(ak,rak) =1= 0 then B(aj,raJ ~ B(ak,CpTak)' This 

implies that if k =1= j ,then 

(3.9) 
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since ak ~ B(aj, raj) if k > j. The verification of (3.7) now follows exactly 

as in lemma 3.2. We omit the details. 

Step 3: Let {y : lylP ;:::: IOO} = UaEJ B (a, ra) be the covering obtained in 

Step 2. Then {y: lylP;:::: 100} = UaEJ St(l) as B(a,ra) ~ St(I). We fix anx 

and show LaEJ e-(4)(x)-T{,(x)) :::; C, where C is independent of x. This estimate 

is obtained by dividing the sum into 3 regions. Let J1 = In{a: lal;:::: :~ilxl}. 

We begin by showing LaEJl e-(4)(x)-T{,(x)) :::; C. 

For a E J}, we have </>(x) - T;(x) ;:::: cplalP, and hence 

L: e-(4)(x)-T{,(x)) :::; E e-cplaIP. 
aEJt aEJl 

We next replace the sum by the appropriate integral. More precisely, we 

claim 

L: e-cplalP :::; C f e-cplyIPlyl(p-2)n/2dy. 
aEJl JRn 

This inequality is justified as follows. We have 

1 f e-cplYIP dy _ e-cplaIPIS4>(l)l-l f e-cp(lyIP-laIP)dy 
ISt(l)1 JSt(l) a JSt(l) 

> e-cplaIPls4>(l)l-l f e-cp(ltlIP-laIP)dy 
a J St(l) n{lyl~lal} 

> d e-cplalP IS1(1) n{lyl :::; lal}1 
P ISt(l)1 

> d -cplalP 
C pe . 

Thus we have 

L: e-cplalP :::; L: 1 e-CpIYIPXS:!I)(y) dy. 
aEJ1 aEJ1 Rn ISa(l)1 

Bringing the sum inside the integral, and observing that (3.7) and (3.8) imply 

that 
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we see that 

L e-cplalP :$ C p [ e-cplyIPlyl(p-2)n/2dy. 
aEJl JRn 

This proves the claim, and since the integral on the right is clearly bounded 

by a constant depending only on p and n, we have the required estimate for 

the sum over J1 • 

Let J2 = In{a: I!;!P :$ lal:$ :~'1lxl}. Recall also that a E J implies 

that lal P ~ 100. Recall from the proof of Step 1 that the estimate </>(x) -

T1(x) ~ cpn lalp- 2lx - al2 holds for all x. In particular, for a E J2 we have 

</>(x) - T1a(x) ~ cpnlxl P-
2lx - a1 2

• Hence 

L e-(¢(x)-Ti'(x)) < L e-cplxIP-2Ix-aI2 

aEh aEh 

< C pn [ e -cplxIP-2Ix-yI2Ix I (p-2)n/2 dy 
JRn 

C [ e -cplul2 du 
- pn JRn 

< CCnp ' 

This provides the desired estimate for the sum over J2 • 

Lastly, let J3 = J n{ a : lal :$ I!;!P}' If a E J3, then </>(x) - T1(x) ~ IxlP /2. 

Hence, we have 

L e-(¢(x)-Tf(x» < e-lxIP/2 E 1 
aEJ3 aEJ3 

-lxIP/2 '" 1 [ ( )d 
- e a~3Ist(1)1 JRnXS£(l) y y 

_ e-lxIP/2 [ (E XStJl)(Y)) dy 
JRn aEJ3 ISa (1)1 

< Ce-lxIP/2 [ lyl(p-2)n/2dy 
JIYI~clxl 

< Cle-lxIP/2 foC1X1 
r(p-2)n/2+n- 1dr 
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< C2Ixlpn/2e-lxIP/2 

< C3 . 

Combining our estimates, we have obtained a cover {y : lylP 2: IOO} = 

UaEJ S:(l) with the property that L:aEJ e-(rf>(x)-T;'(x» :::; C. This completes 

the proof of lemma 3.3. 

We finish by presenting a strengthening of theorem 3.2 which is valid 

when p ~ 2. 

Theorem 3.3 Let p ~ 2. For n = 2J let l/p - l/q < 1. For n ~ 3J let 

l/p - l/q :::; 2/n and 2n/(n + 3) < p :::; q < 2n/(n - 3). Then there is a 

constant A = A( n, p, p) such that 

holds lor all IE Cg'(Rn). 

Proof: When p = 2, the cover obtained in lemma 3.3 extends to a cover 

of Rn, as the sets st(t) are all balls of constant radius. The theorem for 

p = 2 then follows from proposition 3.2. If p > 2, lemma 3.3 and proposition 

3.2 imply that 

On the other hand, 

lIelxlP IIILQ({lvIP900}) < e
lOO

II IIILQ({lvIP9 00}) 

< eloollelxI2/I1LQ(Rn) 

< Clle
1xl2 ~/IILP(Rn) 

< Cll!elxlP ~/IILP(Rn). 
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Combining the two estimates proves the theorem. 

We conclude by considering the situation of one-dimensional weights. 

In this instance, the covering lemma is particularly simple to prove, and we 

obtain LP(Rn ---+ Lq(Rn) estimates for the same range of exponents valid for 

linear weights. A similar osculation argument using one-dimensional weights 

appears in [13]. 

We wish to invoke proposition 3.1 so we first prove the following lemma. 

Lemma 3.4 Suppose </> is a convex function on R, and Q is a cube with 

sides parallel to the coordinate axes in Rn. For X ERn, we write </> = </>(xn). 

Then for p 2:: I, there is a covering Q ~ UaEJ St(I), and a constant A such 

that 

aEJ 

Proof: We have Q = UaERn (st(l)nQ). Using the Besicovitch covering 

lemma, we may select a sub cover Q = Uk (st" (1) n Q) with the property 

that each point in Q belongs to at most 2 elements of the cover, and that 

each element of the cover intersects at most 2 other elements. Let en = 

(0, ... ,0, 1). We may assume the sets are ordered so that k > j implies that 

Ist,,(l)nQ( en) 2:: Istj(1) nQ( e~). Then if (k - j) > 1, st" (1) n St,{l) n Q = 0, 
and ak . en > aj . en. 

Claim If x E St,,(I) nQ, then 

</>(xn) - Tt"+2j(xn) > Ijl, 

and 

holds for all integers j. We prove the first assertion of the claim for j 2:: 0. 

The other cases are similar. If j = 1 the claim is just a restatement of the 

43 



fact that st,,+2(1)nst,,(1)nQ = 0. We proceed for j > 1 by induction on j. 

If x ESt" (1) n Q, then 

c/>(Xn) - T;"+2 j (Xn) _ <!>(xn) - T;"+2 j -2(Xn) + Tt
a"+2 j -2(xn) - Tt

a"+2j (xn) 

> (j -1) + T;"+2 j -2(Xn) - T;"+2 j (X n). 

The linear function g(y) = T;"+2 j -2 (y) - T;',+2 j (y) satisfies 

and so g(y) is decreasing. Hence, since Xn < ak+2j-2 . en, we have 

g(Xn) > g(ak+2j-2' en) 

T a"+2 j -2 ( ) T a"+2j ( ) - t ak+2j-2 . en - 1 ak+2j-2 . en 

- <p( ak+2j-2 . en) - T;"+2
j 
(ak+2j-2 . en) 

> 1, 

since ak+2j-2 f/. St"+2j (1). Hence, we have 

which completes the induction, and proves the claim. 

We may show that our covering has the required property by summing a 

geometric series. If x ESt" (1) n Q, then 

L e-p(t/>(xn)-Tt'(xn» 
I 

L e-p(¢(xn)-T1

a
/C+2 j (Xn)) + L e-p(t/>(Xn)-T;"+2j+l(Xn» 

j j 

00 

< 4Le-pj 

j=O 

< A. 
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This proves the lemma. 

For a given f E COO(Rn), we may choose a cube Q, as in lemma 3.4, large 

enough to contain the support of f. We may then apply lemma 3.4 together 

with proposition 3.1 to conclude the following. 

Theorem 3.4 Suppose cP is convex on R, and for n ~ 3, we have l/p-l/q = 

2/n and 2n/(n + 3) < p < q < 2n/(n - 3). Then there is a constant A = Ap 

such that 

lIe¢(xn) fIlLq(Rn) ~ Alle¢(xn ) .6.f II LP(Rn) 

holds for all f E COO(Rn). 

We remark that in theorems 3.2, 3.3 and 3.4, we may replace .6.f by 

p(D)f under the conditions provided in theorem 2.2. 
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