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ABSTRACT 

A more comprehensive mathematical theory for liquid chromatography is set 

forth, incorporating dynamical models for mixed solvents and solutes, and new 

mathematical models for adsorption, including adsorbent and exchange processes. 

The equations for solvent and solute are shown to possess unique solutions, us

ing so-called energy methods. The solvent modulation of local velocity is found 

theoretically, as is solvent control of solute adsorption, diffusivity, and dispersion. 

The theory for solvent control of solute adsorption is found to be very accurate 

against experiment , and offers a useful method of treating normal phase, reversed 

phase, ion exchange, and ion pair liquid chromatography in a unified mathemati

cal framework, under the name catalyzed adsorption. The long- recognised problem 

of solvent localization is modelled, and the model shown to be consistent with ex

periment. Another classical problem, solvent demixing, is explained in terms of 

the nonlinear multi component solvent model, wherein solvent gradients steepen ac

cording to the adsorption and shock formation. Perturbation theory, based on a 

small ]lacking number dplL « 1 (where dp is substrate particle diameter, L is col

umn length), is applied to the solvent- controlled pulsed solute dynamical equations. 

When moment techniques are used in conjunction with perturbation theory, very 

useful and simplified system control equations are obtained. These control equa

tions are used in some model problems to di scuss HETP (Height Equivalent to a 

Theoretical Plate) variations with Peclet number, with relative solvent concentra

tion, and between solutes. Finally, numerical methods for the solvent and solute 

equations are discussed. 
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INTRODUCTION 

Probably the most commonly used method for organic quantitative and qual

itative analysis in chemistry today is HPLC - High Performance Liquid Chro

matography, used for the separation and analysis of chemical mixtures. Over the 

past several years many advances in instrumentation have been made leading to 

higher efficiency and better applicability of HPLC, but there always has been room 

for improvement. The variables most directly affecting the capabilities of HPLC for 

the separation of chemical mixtures are solvent type, solvent strength, flow rate, and 

column type. Though accurate models for the uncontrolled dynamics of solutes have 

been developed over the past forty years, no apparent attempt has been made to 

generali ze them to controlled dynamics. A more comprehensive and unified model 

for the solvent- solute dynamics and control is developed here; it is apparent that 

the methods presented in this paper for liquid chromatography will find important 

applications also in thin layer chromatography, gas chromatography, ion exchange 

chromatography, electrophoresis, et c. Figure 1 depicts the various classes of chro

matography. Column liquid chromatography is among the most popular, primarily 

in the form of Reversed Phase Liquid Chromatography (RPLC), which also presents 

perhaps the most difficulties theoretically and experimentally. 

In HPLC, a cylindrical container typically of steel is filled with a substrate, 

for example porous silica particles or gel (see Figure 2). The substrate is then 

saturated with a solvent such as water, alcohols, hydrocarbons, et c. and a pressure 

gradient is applied across the ends of the column to establish a flow of solvent. 

At some time a (possibly unknown) mixture of chemicals dissolved in the chosen 

solvent is introduced to the "top" (the end at higher pressure) of the column, and 

these solutes subsequently flow down the column. The solutes may interact with 
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the substrate, typically with different equilibrium reaction coefficients. This results 

in differing effective speeds down the column for each solute in the mixture, and 

hence the solutes gradually separate spatially from one another. Usually at the 

bottom of the column a detector of some sort (e.g., using light absorbance at a 

single wavelength or over a range of wavelengths) registers the concentrations of 

solutes as they elute. Hopefully the chromatographic system is chosen such that 

all the solutes a re resolved when they arrive a t the bottom of the column; if not, 

the system should be changed in some manner. The more solutes there are in 

the mixture, the more difficult it is to gu ess how to change the system to improve 

performance. Figure 3 depicts an example of a complex mixture run through a 

column , with many solutes still confounded despite the long analysis time. 

In HPLC the most important mechanisms act ing inside the column to effect 

separa tion of solutes are as follows. The solute travels in the flow around particles 

(i.e., the mobile phase). Near the surface of each particle there is a boundary layer 

in which the flow speed is sharply reduced, to zero at the particle surface. Thus 

there is mass transfer of the solute through each particle's fluid film. The surface 

of the par t icle is usually porous (see Figure 4) and the solute molecules diffuse into 

the pores, possibly adsorbing to the solid surface of the substrate. The molecule 

is said to be in the stationary phase when it enters the particles' boundary layer. 

The solvent may then displace the adsorbed molecule, which may in turn eventually 

diffuse out of the stationary phase back into the mobile phase. It is often the case 

that not all of these mechanisms need to be included in a model to accurately 

describe the system. That is, it may be that there a re clearly rate limiting steps 

- those steps which are the slowest and thus limit the rate of the whole process. 

The substrate is not always a collection of porous particles, but sometimes a matrix 

of nonporous particles. In this case, we would delete the above steps involving 
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diffusion into and out of particle pores. 

The dynamical equations of mixed solvent systems flowing through a porous 

medium are found in chapter 1. The solvent equations are in part adapted from 

equations originating from the study of ground water flow; changes were made due 

to the markedly variable viscosity and density of many solvent systems utilized in 

chromatography. From the solvent equations comes the loca l velocity at which the 

mobile phase (unadsorbed solvent and solute molecules) travels. The calculated 

local solvent concentration controls solute adsorption, diffusivity, and dispersion in 

a specified manner. The solvent and solute dynamical equations are a system of 

fairly complicated second order nonlinear partial differential equations; the existence 

and uniqueness of solutions to these equations is shown in chapter 2 by means of 

"energy methods." 

Chapters 3 and 4 briefly cover the simpler uncontrolled solute dynamical models 

and their solutions that have appeared in the li terature. 

Chapters 5 and 6 cover the basics of a theory of solvent modulation of solute 

adsorption, which is found to be quite accurate against experiment. The theory 

includes the effect of an inhomogeneous adsorbent surface - resulting in what has 

been called solvent localization in the experimental literature - and also provides a 

means of treating normal phase, reversed phase, ion exchange, and ion pair liquid 

chromatography in a unified mathematical fran1ework, under the name catalyzed 

adsorption. 

Due to the nature of the nonlinear solvent equation, a solvent gradient will 

steepen if the gradient is increasing in time, and will flatten if the gradient is de

creasing in time. If the steepening is marked, it is (experimentally) known as solvent 

demixing. An increasing gradient that flows in a long enough chromatography col

umn will form a "shock," or jump, in solvent concentration. Such solvent jumps are 
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not desireable in chromatography, because they cause impurities in the column to 

be released as the jump travels down the column, producing spurious "sample" con-

centration peaks. When solvent jumps are disallowed, such impurities are released 

slowly and are typically lost in detector baseline "noise." One can find a mathemat-

ical constraint on the input solvent profile so as to disallow shock formation within 

the column (chapter 7). 

The use of a control theory of chromatography is introduced and briefly dis

cussed in chapter 7, for a simplified system. 

In their partial differential equation form, the solute equations are too compli

cated to be solved practically for complex solute mixtures. Therefore these equa-

tions must be simplified as much as possible without losing relevant information. 

There are two mathematical methods utilized here, that together go far in simpli

fying the solute partial differential equations, covered in chapters 8 and 9. One 

method is to use moments, particularly the location (mean) of a sharp solute pulse, 

and its width (variance). The other method utilized is perturbation theory, based ' 

on a small packing number dplL ~ I, where dp is the average substrate particle 

diameter, and L is the column length. Typically in HPLC, d,,f L "'" 10- 4
. It is 

shown that, after undimensionalizing the dynamical equations, the nondimensional 

parameters appearing in the equations are 

a;v 1 
ip == -- = -f-Pe 

4D;L 4 
v f-

i. = Lk,O' = St. 
f-

Sip = 2St, 

D,L f-

i, = Vt9 = t9Pe
p 

, 

where Pe is the P eclet number, Sh is the Sherwood number, St. is the kinetics 

Stanton number, St, is the fluid film mass transfer Stanton number, Pep is the 
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packing Peclet number, or Bodenstein number, and we call c: the packing number. 

Vie see that the packing number occurs in each of the nondimensional numbers, 

thus restricting the validity of the perturbation analysis to values 

4 
Pe «: -

c: 

St. » c: 

c: 
St, » 2 

e 
Pep» J' 

The perturbation and moment techniques applied to the solute partial differential 

equations give rise to two first order ordinary differential equations for each solute, 

one for the pulse location, and one for the pulse width. For the case of a constant 

control (constant solvent conditions) the HETP - Height Equivalent to a Theoret

ical Plate is calculated. The HETP is a function that has been used classically to 

characterize the "efficiency" of a chromatographic system. In chapter 9 the HETP 

is calculated for a model system for a large range of Peclet numbers, for differ-

ent constant solvent concentrations, and for different solutes. It is found that the 

HETP varies widely for different constant solvent concentrations and between dif-

ferent solutes, indicating most importantly that for complex multi component clU'o-

matography systems, computer control with comprehensive mathematical models 

are imperative, and that it is likely that the control theory developed in this paper 

will result in improved separations of complex solute mixtures. 
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CHAPTER 1 

Hydraulic Properties of Porous Media 

and Rheology of Mixed Solvents 

Introduction: In liquid chromatography, changing the relative concentra tions 

of solvents is the most effective way to control the system, and so it is imperative 

to understand the flow characteristics of mixed solvents through chromatograph 

columns. In thi s chap ter we develop a theory for such flows, based in part on the 

extant theory of t he flow of groundwater through sandy soil [5,6]. The specific 

mathematical goal here is to find the formula for the local solvent velocity and 

specifically how this velocity depends on th e local and t ranscolumn solvent densit ies 

and viscosit ies . T hen , given empirical formulas rela ting mixed solvent density and 

viscosity to relative consti tuent solvent concentra tion , one obtains the dynamical 

equation for the mixed soh·ent. 

With the above goal in mind , we proceed to develop the necessary concepts, 

find the equation for the piezometric head , give a simple example relevant to HPLC, 

and finally develop the required formula for the local velocity of the solvent mixture 

in the general case. 

Porosity: The porosity of a porous substra te is a measurement of the extent 

to which it contains interstices . It can be expressed quantitatively as the ratio of 

the volume of interstices to the total volume (within a control volume): 

r; = Vi = Vw = V - Vrn = 1 _ Vm 

V V V V 
[dimensionless] 
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where 
{) = porosity 

Vi = volume of interstices 

v = total volume 

Vw - volume of fluid in saturated sample 

Vm volume of substrate particles. 

An alternate expression is 

{) = Pm - Pd = 1 _ Pd [dimensionless] 
pm pm 

where 
pm = mean density of particles 

Pd = density of dry substrate particles. 

Considering spherical particles, the arrangement of particles can greatly af-

fect porosity - Slichter (see [11]) shows that the most compact - rhombohedral -

arrangement of particles gives a porosity of about .26, whereas for the least com-

pact, cubical arrangement the porosity is about .48. The shape of the particles 

may increase or decrease the porosity, which is a local variable except for homo-

geneously graded, well-packed particles (as is usually the case in chromatography). 

The greater the range of sizes of particle sizes in the porous medium, generally the 

greater the porosity due to resulting non-compactness of the largest particles. 

Void Ratio: The void ratio of a porous substrate is the ratio of the volume 

of its interstices to the volume of the particles: 

= 
'13 

1-'13 
[dimensionless] 

Permeability : The permeability of a porous substrate measures its ability 

to transmit fluid under a potential gradient (see below); it is commonly found that 

permeability is proportional to the square of the mean particle diameter: 

kp = Cd2 [L2] 
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where 
kp = intrinsic permeability 

C = dimensionless constant depending on porosity 

d = mean particle diameter. 

Darcy's Law: Darcy [5,6} found empirically that the rate of viscous laminar 

flow of water through a porous medium (sand) is proportional to the hydraulic 

gradient (see Figure 5); 

Q d¢> 
q = - = - K -

A dx 
[LIT} 

where Q is the volume flux, A is the cross- sectional area of the medium, x is the 

d istance down the column , and the constant of proportionality K is the hydraulic 

conduc tivity. Also, the form of the potential is q, = z + pi"'! where P is pressure, and 

"'! is the specific weight of the fluid, so 

dq, 
q = -K

dx 

holds also for an inclined porous medium. pi"'! is called the pressure head for an 

incompressible fluid. To understand this more fully, consider Figure 5. A test 

section of a porous medium is saturated with fluid which fills tanks at either end 

of the test section. An arbitrary reference level is chosen, and the heights Zi of the 

ends of the test section are measured. The test section is tilted, is of length L, cross 

section A, and has volume flux Q through it. There is a pressure head Pi I"'! in the 

tank at either end of the test section, giving a potential 

at either end. In this experiment we maintain constant levels of fluid in each end 

tank, measuring inflow and outflow and hence Q. It is found that 
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Figure 5: Flow through an inclined chromatograph column filled with a homo
genecu.:; porous l1''!edi um . Adapted from Bear [J. 
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Extension of Darcy's Law When K = K(x), the porous medium is as-

sumed isotropic, but 

As q increases the relation between the specific discharge and the hydraulic gradient 

deviates from Darcy 's proportional law. It is found that Darcy's law is valid for 

Re = qdlv < 10, where Re is the Reynold's number (see Figure [6]). Above Re '" 10 

the interstices develop turbulent flow. 

Hydraulic Conductivity: The hydraulic conductivity is defined as 

~ kg kgp 
J\ = - =--

v T] 
[LIT] 

where k [L'] is the permeability of the porous substrate, v [L'IT] is the kinematic 

viscosity, 9 [LIT'] is gravitational acceleration, '7 [MILT] is the dynamic viscosity, 

and p [M I P] is fluid density. For a compressible fluid in isothermal conditions, 

, = ,(p), so the pressure head is 

r~ 
P. ,(p) 

and hence the piezometric hcad (or Hubbert's potential) is 

° JP dp 
¢> = z+ -(). 

P. , P 

The length z represents elevation head (potential energy per unit weight of fluid.) 

The sum of pressure head and elevation head is the piezometric head ¢>o. 

Fluid Velocity : For a fluid which does not react with the substrate, the 

velocity depends on the porosity, hydraulic conductivity, and the hydraulic gradient : 

1 d¢>o 
v- --K-- 19 dx' 

where v is the velocity averaged over the cross section perpendicular to the direction 

of flow. This formula is useful if the porous medium is quite homogeneous , as is the 
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Figure 6: De.-iation from Darcy's Law at high flow velocities. Adapted from 
Be •. r [ J. 
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case in chromatography. Since J{ = kpg /ri, velocity is clearly inversely proportional 

to the viscosity '1 of the fluid. 

Solvent Mixture Viscosity : In liquid chromatography, the most effective 

control variable is relative solvent composition in systems of two or more solvents. 

As mentioned before, RPLC is usually done with a water-organic solvent mixture. 

Such a mixture has long been known to have a rather large variation of viscosity 

over the range of possible relative concentrations. The viscosity may vary about 

a factor of three for water and methanol, ethanol, tetrahydrofuran, acetonitrile, or 

n-propanol (e.g ., Melander and Horvath , [34] ), as shown in Figure 7. 

From the figure, least square fits were calculated to estimate the mixed solvent 

viscosities for methanol- water and acetonitrile- water as 

'1M ,O H (8) = .0195483 
- .034928' + .008798 + .01017, 

'1ACN (8) = .0252583 
- .076038' + .046768 + .09711, 

(in Poise (gm/cm8ec), at 25" C) where 8 is the percent volume organic ·solvent . 

The density variations at 25" C, in gm/cm3, are 

PM ,O H (8) = - .082878' - .121048 + .99652, 

PAC N (8) = -.2128 + .999, 

where least squ ares fitting was done with data from P erry and Green [38]. Later 

the local velocities and diffusivities will be calculated using the above functions for 

a hypothetical variation of solvent composition within a chromatography column. 

Diffusivity and Dispersion: The variability of solute diffusion coefficients 

with solvent mixture composition can be adequately predicted (Perkins and Geankopo-

lis [37]) by a modified Wilke-Chang equation 

-8 (4)M)}T 
D j = 7.4 X 10 VO.S "1m , 
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temperature. Ad3pted from Melander and Horvath []. 
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where TO (I<) is temperature, '7m (cP) is the liquid mixture dynamic viscosity, V. 

(g.': :" ) is the molal volume at normal boiling temperature, D j ('.::) is the solute 

diffusion coefficient in the bulk liquid mixture, and 

where <Pj is the "association constant" for pure liquid i, x, is the mole fraction of 

liquid i, and M, is the molecular weight of liquid i. The molal volume at normal 

boiling temperature can be fairly accurately estimated (if not known empirically) 

by either the method of LeBas or the method of Schroeder [37]. 

Using the above relation for the bulk liquid diffusion coefficients, the coefficients 

for ethanol, hexanol, octyldecanol, and tritium tracer in methanol-water binary 

solvent are (at 25° C, '7m in centipoise) 

DE "" 7.4 X 10-8 (46.8 + 14s)t 
'I", (s) l1.57 

x 298 

DH 
8 (46.8 + 14s)t 

x 298 "" 7.4 x 10-
'7m (s )20.05 

DOD 
8 (46.8 + 14s)t 

x 298 "" 7.4 x 10-
'7m (s)37.1D 

D, "" 7.4 X 10-8 (46.8 + 14s)t 
'7m(s)7 

x 298, 

shown in Figure 8. 

Using the data of Greenkorn [17] (see Figure 9) one may estimate the disper-

sion coefficient D , over a very large range of linear velocities for different solvent 

compositions. From Figure 9, we have approximately that 

D , 
IS "" 01 + KPe, 

with K "" 1.163 and 01 "" .7, where D is the solute diffusion coefficient in the 

hulk solvent. Thus the packing Peclet number (or Bodenstein number) can be 
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Figure S: Theoretical bulk diffusion coefficients for trace octyldecanol, hexanol, 
etha:101, and tlitium, at various volume: fractions of methanol in wat.er. At 25° 
C. 
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approximated as 

vd 
Pep = D P 

"" (1.163 + .7Pe-' t' . , 

Solvent Continuity Equation: Here we consider the density of the entire, 

mixed solvent. Thus we need not worry about adsorption source terms in the 

equation, since they cancel. For a control volume we obtain, assuming rJ = rJ(x, t), 

p = p(x, t), q = q(x, t), and p = p(x, t), 

a a 
-(prJ) = --(pq) . 
at ax 

Thus if p = p(p) only, then 

The solvent in the column is slightly compressible; define a coefficient of com-

pressibility f3 by 

f3 = ~ ap. 
pap 

The substrate can be considered elastic - it can undergo deformation and thus 

change the porosity rJ. This does not necessarily imply that the particles themselves 

are deformed, though deformation can be dramatic, as for Sephadex packings with 

high "G- numbers," with Janson and Hedman [24J finding exponential variation of 

permeability with pressure drop. The changes in porosity due to pressure changes 

are characterized by the coefficient 

1 arJ 
0=--- . 

1 - rJ ap 

From the above relations, we have 

a arJ ap ap ap 
-(prJ) = (p- + rJ-) - = p[a(1 - rJ) + f3rJJ- . 
at ap ap at at 
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Thus, using the relation between pressure and the Hubbert potential ¢. = z + p/,,(, 

o¢· 1 op 
at pg fJt' 

so that 

Set 

S; = gp' [a(1 - 19) + /119], 

which gives the mass of solvent added to or removed from storage in a unit volume 

of the porous medium per unit change of the potential ¢.. Then the continuity 

equation can be written 

At this point, typical assumptions made (Bear, [5]) for analysis of groundwater 

flow are: 1) Darcy's Law is valid; 2) S~, I< are independent of variability of 19 and 

p (so I< = kppg/J.1. "" kpPog/J.1.); and 3) q~ ~ t9¥,-. Then we have that 

where pSo = So· The second assumption would seem generally valid for NPLC 

solvent systems, but clearly not so for RPLC solvent systems. RPLC will be dis-

cussed shortly; first we consider a simpler problem of pressure variation within a 

chromatography column. 

Using the above assumptions, using Darcy's law, we obtain 

for an isotropic porous medium. If the porous medium is also homogeneous, then 

I< is constant: 
o¢· a' ¢ . 

So-,;:;- = I<~. 
ut ux' 
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A typical chromatograph column for HPLC operates at high back pressure and 

has a very nearly homogeneous, isotropic porous substrate, so for an NPLC solvent 

Hubbert's potential will be governed by the equation 

aq,' ]( a' q,' 
at = So ax' ' 

with boundary conditions 

q,' (0, t) = J(t), q,'(L,t) = g(t), 

where J(t) and g(t) are specified by specifying end pressures. 

Example for HPLC : It is not uncommon for HPLC pumps to be capable 

of back pressures of about 10 to 6000psia (or: 1 to 400atm). Often it is desired 

to vary the type of solvent in time. This involves a variation in the viscosity of 

the solvent mixture, and hence by Darcy's Law eit.her the pressure or the velocity 

must change; if one wishes to keep the velocity constant, the back pressure must be 

slowly changed. 

Let's consider a situation at constant solvent composition in which we specify an 

acceptable initial pressure gradient and suddenly change the column end pressure. 

This situa t ion is modelled by 

at So ax' 
for 0 :::; x :::; L, 

q,' (0, t) = q,1 cons tant 

q,' (L, t) = q" constant 

q,"(x,O) = J(x) given, such that 

q,1 # J(O) . 

This type of problem is best solved by setting 

q,' = u + w, 
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where 
d2 u 
dx 2 = 0 

u(O, t) = </>1 

u(L, t) = </>2, 

aw K a2 w ---at So ax 2 

w(O,t)=O 

w(L,t) = 0 

w(x,O) = f(x) - u(x), 

Clearly then 
x 

u(x) = </>1 + (</>2 - </>1) L 

~ "mrx Kn27f2 
w(x, t) = L... an sm( L) exp( - 5

0
£2 t) 

n=! 

with 

so that 

" '" ('" "')x 2~</>2(-1)"-</>1 " (n7fx) (Kn27r2) </> = '1'1 + '1'2 - '1' 1 - + - L... sm - exp - t 
L L n L 50 £2 

n= 1 

If 

f( x) = 1>1 +(1)2 - 1>I)~' 

then 

JL f( ) " (n7f~)d L ~ 1>2(-1)" -1>1 " (n7rx) (Kn27r2) 
~ sm - ~ = - - L... S111 - exp - t " 

a L 7r "= I n L So L2 

Since these sums are absolutely convergent we may combine the two as 
x 

</>" =</> I + (</>2 - </> I)I 

2 ~ (</>2 -1>2)(-1)" - (</>I -1>1) " (n7rx) ( + - L... S111 -L exp 7f n 
n=1 
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the sum of steady-state and transient parts. If only the back pressure (at x = 0 

) is changed, then </1, = <I>" and </11 i J(O). Then at around x = 0 , t = 0 

there is a boundary layer such that [o</1'/ox [ ~ 1, as seen in Figure 10, implying 

that the instantaneous local average velocity is very large there, as is the pressure 

gradient. To avoid rearranging and possibly shattering the substrate particles due 

to the resulting large stresses over the length of a particle, (reaching critical values 

of a for the substrate) changes in prescribed pressure should be made smoothly and 

slowly. 

Velocity Variations in RPLC Solvent Systems: The solvent is the carrier 

of the solutes in the mobile phase; as such, the solvent determines the limiting 

velocity of the mobile phase fluid through the column. Waves or local variations of 

solvent composition create corresponding changes in viscosity and density, though it 

is the overall solvent composition in the entire column that determines transcolumn 

pressure gradients and hence overall flow. This will be borne out by our next 

calculations. To find the dynamics of the solvent system we first need to consider 

the dynamics of the pressure gradient. In order to accomplish this, we need to 

consider S~ and I( to be variable with p and I). In this case we use the equation 

with 

0</1' 
q = -[(

Ox ' 
[( = k pg , 

') 

where (3 = ;* is the compressibility of the solvent and a = 1~. :: is the com

pressibility of the solid substrate. 'Vhen gradients of binary solvent are used in 

the column, S~, p, and I) are dependent on the solvent concentration sex, t). This 

implies that in order to find the pressure gradient, the solvent concentration dy-

namics must be known, but to find the solvent dynamics, the pressure gradient has 
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Figure 10: Effect of instantaneous chc.nge :n end pressure head showing steep 
gradient near column end. (Eighty terms taken in summation - oscillations 
nonphysical.) 
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to be known. Thus the hydraulic and solvent dynamical equations must be solved 

simultaneously. 

The dependences p = p(s) and '7 = 1)(s) should be found empirically, as well 

as dependencies on p and T, since there is no accurate means of estimating them. 

This is not an unreasonable task, given that there are only a few important solvent 

components typically used in RPLC and NPLC. Vve expect that the dependencies 

will be much less important in NPLC, as discussed earlier. 

It should be noted also that pressure (essentially",') dependencies of relevant 

parameters should be found, since pressure can vary a few hundred atmospheres 

down the column. Figure 11 depicts the variabili ty of viscosity with pressure. We 

find that, for the solvents typically used in chromatography, viscosity can be con-

sidered constant with respect to pressure over typical column pressure gradients. 

We consider density essentially constant with respect to pressure. The most 

dramatic variations of mixed solvent density and viscosity derive from changes in 

relative concentration of the solvent components. 

The equation for the Hubbert potential for solvent gradient conditions in the 

case where the pressures are fixed at either end of the column can be calculated as 

follows. Assume that the solid substrate (e.g., silica) compressibility a is essentially 

zero compared to solvent compressibility (3. Then we have 

with initial condition (0 < x < L) 

""(x,D) = "', + ("', - "',)~ 

with p(s(x,D» = constant, (3(s(x,D» = constant, and 7)(s(x,D» - constant fol-

lowing from taking s(x, 0) = constant. The boundary conditions are 

"'. (0, t) = "', fixed, "'. (L, t) = "', fixed. 
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Figure 11: Viscosities of seJected nuics as a function of pressure. Adapte d from 
Bridgman [ ]. 
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Since typical values (for the solvents of interest) of compressibility are less than 

10- 10 cgs, volume fraction,') about 100 , viscosity about 10- 2 cgs, and permeability 

about 10- 5 to 1O- 6 cgs, the coefficient of the t ime derivative can be seen to be 

a factor of about 10- 6 smaller than the space derivative coefficient , so one may 

effectively consider the system to be always at steady state: 

so that 
kp2 a if> ° 
--

7] ax 
constant. 

Thus the initial condition may be discarded since it will decay so fast onto the 

steady state solu tion. One may solve for if>0 now: we have 

a if> ° QoI7(S) 

ax kp2(S) · 

Time enters in now only as a parameter. Thus one obtains 

but 

implying that 

Therefore 

° Qo JL 7]( s) 
if> (L ,t) = k 0 p2(S) dx + if> 1 

if>°(x, t )= (if>2-</>1) J" 7](s) dX+if>I. 
f L .'!.!.!.l. dx 0 p2 (s) 

o p' ( ,) 

This calculation enters in the equation for solven t dynamics via the velocity, 

and hence * 0. Thus we use 

aif>° 
ax 

-
t< if> 2 - if>d 7] ( S) 
e.:.l!2. f L .'!.!.!.l. dx . 

L 0 p'(,) 
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The velocity of the mobile phase is thus 

1 kpg a¢, 
v=-q=--

f) t'J'1 ax 
_ kg(<p, - <p,)IL 
- _Q ()' fL..'!i!l.d -vp S L 0 p2(s) X 

Now this form of the linear velocity can be substituted in the solvent dynamical 

equation. The requirement of fixed end pressures is indeed physically reasonable. 

Intracolumn Reynolds and Peclet Numbers: We found that the piezo-

metric head in the case of an incompressible solvent varies as 

Rewrite this in a normalized form (with (; = xl L) 

The linear velocity within the column was found earlier; let 

the Reynold 's number is 

Re(x,t) = dpvp = dpkg <p, -<p, , 
'1 t'J'1 L f' .!L d~ o p2 ~ 

and we consider the quantity 

- Ret'J(6.<p)-' (J"7 )-' Re = -- -- ='7 - d( 
dpkg Lop' 

Finally, we consider a Peclet number Pe = Pel dp • To get a feeling for what 

the range of these variables might be, consider a methanol- water solvent system 

with hypothetical linear solvent composition variation within a column. We choose 
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three hypothetical intracolumn composition variations, all increasing in methanol 

concentration from column bottom to top: 

51W = 1-( 

5,(0 = .37 - .37( 

53W=i-.63( 

Note that 5 , IS associated with an increase, then a decrease in viscosity, 52 is 

associated with an decrease in viscosity, and 53 IS associated with a increase in 

viscosity. The corresponding variations in P, 1], v, D, !i.e, and Pe are plotted in 

Figures 12, 13, 14, 15, 16, and 17. One may see that the variations in all of these 

variables are substantial. Of course, to get the so/vent dynamics one must combine 

the velocity calculation obtained in the previous section with the solvent continuity 

equation. The solvent continuity equation, along with the solute equations, will be 

discussed in more detail in cha.pters 2, 3, 4, 8, and 9. 
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o 1 
Distance Fraction Down Column 

Figure 12: Intracolunul binary soh-ent density ,-ariation for t.hree hypotl:etical 
soh-ent concentration distributions (see text) . At 25° C. 



.11 

::;
.~ 

o 
u 

" ;; 

.09 

33 

o 1 
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Figure 13 : Intracolum .. "1 binary solvent kinematic viscosity variation for three 
hypothetical so1Yent concentration distributions (see text) . At 25° C. 
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Figure 14: Intracolumn binary sohoent yelccity yariation for three hypothetical 
solvent concentration distributions (see text). At 25° C. 



140 
',,-

"- -
1 

__ . "Re" 
~""" ", 

.....•... ~" .. 

35 

Re~·:'->:\" 
~ 

':>: :.:::::::~~.::::.-. ----- ---------------r------- .-... -.. -----'-.-:....,c:-~>-~-------
--.---_______ -__ -_-_--_-_-__ --_=- lj' 

~------------
·==--=--1 

I 75 L-____________________________ -c 

o 1 
Distance Fraction Down Column 

Figure 15: Intracolumn binary solyent Reynolds ~umber variation for three 
hypotheticd soh'ellt concentration distributions (see text). At 25" C. 
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Figu re 16: Intracolumn solute (hexanel ) diiiu, ivit.y variation for three hypothet
ical soh-ent concentration disfributions (see t.ext) . At 25" C. 



37 

1.4 ;--------------------, 

FeJ ) 

---------~-------~~---.I 
I 

r---- -~---~- J 
L--- --------- '··~···I 
1 Pe" I 

1.0 1,-___________________ --11 
o 1 

Distance Fraction Down Column 

Figure 17: Intraco!umn Peclet number (for hexano1) variation for three hypo
thetical solvent concentration distributions (see text). At 2.5 0 C. 
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CHAPTER 2 

Existence and Uniqueness of Solutions to the 

Solvent and Solute Equations 

Introduction: Here we examine the basic solvent and solute dynamical equa-

tions as to whether or not they possess solutions, and also if these solu tions are 

unique. The actual form of these equations is discussed in more detail in chapters 

3, 4, 8, and particularly 9, the latter chapter dealing also with numerical solu tions . 

For this chapter, the mathematical structure of the equations is discussed in terms 

of Sobolev norms, and no mention is made of Sobolev norms outside of this chapter. 

The chosen normalized form of the solvent equation is 

as as 
ar + {3(s)a( =0, 

with 
v(s) 

{3(s) = 1 + 1~.IJ'(S) 
a bounded strictly positive function; effects of a nonlinear isotherm b(s) are consid

ered more important than the relatively very smal l effects of dispersion, fluid film 

mass transfer, or intrapart icle diffusion. The coefficient v(( , r), the local velocity of 

the solvent, has been discussed in detail in chapter 1, and has the form 

_ (_ JI 7)(s) )-1 
V = pes) -:;--() d~ , 

a P s 

where p = p/ Po is normalized density, and 7) = '7/'10 is the normalized dynamic 

viscosity. The chosen form (for this chapter) of the solute equation, which includes 

a linear isotherm, dispersion, and intra particle diffusion, is 
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subject to the initial and boundary conditions 

c(e,~, r) = c(~,r) 
GCI _ 0 
Gel.=O -

c(CO)=O 

c(e,~, O) =O 

c(O,r) = ¢(r), 

wi th c, eEL, (0, 00 ) 

(One may also include fluid film mass transfer effects, as in chapter 9, but here they 

are omitted for clarity.) 

Mathematical Preliminaries: The reader is guided to reference [28] for a 

more thorough development of Sobolev spaces and existence of solutions to partial 

differential equations. Here we show (local) existence and uniqueness of the sol

vent and solute equations. Existence is shown by introducing an iterative solution 

technique, wherein each iterate possesses a unique, bounded solut ion, bounded in-

dependently of the iteration number, and then showing a Cauchy criterion holds for 

the sequence of iterates, together implying uniform convergence of the iteration to 

a solution. 

\Ve use the inner product and associated induced norm 

(UI,U,) = (ul(·,r),u,(·,r» = J oo ul(Cr)u,(~,r)dC 
o 

Ilull' = (u,u), 

in conjunction with the Sobolev classes of inner products and norms defined by 
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For functions a( (, 7) we use the max norm 

I a 1==max{1 a((,1') I: 0:<:; « oo}. 

We use the results that for u, v E £[0,00) 

(UI, aU2):<:; lI udillau 211 :<:;1 a 1= lI u dlll u 211 

1 
IIulllllu 211 :<:; 2(lIudl2 + lI u 211

2
) 

and the Sobolev inequality for u E GI [0, 00): 

which implies that 

We also will make use of the following versions of Gronwall's Lemma and Picard's 

Lemma, stated here without proof: 

Gronwall's Lemma. Suppose y E GI[O,T], 1/; E Ga[O,T] satisfy 

dy 
dt :<:; cy(t) + 1/;(t ); 0:<:; t:<:; T 

for some c ~ O. Then 

y(t) :<:; e" { y(O) + r 11/;(T) I d1'}; 0:<:; t:<:; T. 
a 

Picard's Lemma. Let {1)' (tn, k = 0,1,2, ... denote a sequence of nonnega-

tive continuous functions such that 

1)'+1 :<:;a+bj'1)'(1')d1' 
a 
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for 0 .:; t .:; T and a, b 2': O. Then the sequence is uniformly bounded; if a = 0, the 

sequence converges uniformly to zero. 

Uniqueness of Solutions to the Solvent Equation. The solvent equation 

I S 

AS as 
aT + j3(s) o~ = 0, 

where we note again that j3( s) is bounded and strictly positive. 

Lemma 1. Solutions to the solvent equation are unique. 

Proof: Let u, v be solutions. Then w = u - v satisfies 

Ow au ov 
aT +j3(u)o~ -j3(v )o~ =0, 

but 
au ov Ow ov 

j3(u) O~ - j3(v) O~ = j3(u) O~ + (j3(u) - j3(v)) O~' 

and by the mean value theorem, 

Thus we have 

with 
w(~,O) = 0 

W(O,T)=O . 

If the evolution of "energy" is calculated, we find 

1 d Ow 
--d (W(·,T),W(-,T)) = (w, "') 
2 T uT 

Ow - au, 
= -(W,j3(UI) o~ + j3 oi w) 

- au, 1 
~ -I j3 o~ 100 (w,w) + 2"1 j3(uJ) 100 (w,w) 

.:; ~ 1 j3(uJ) 100 (w, w) = Kllw(-, T)II', 
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so by Gronwall's Lemma, 

and since w«(,O) - 0, the above implies W(~,T) - 0 on the entire domain, and 

hence u, = U2' 

Existence of Solutions to the Solvent Equation. In this section we in-

troduce an iteration whose iterates sn possess smooth solutions on [0, LJ x [0, TJ, 

that the iterates are bounded independently of n, and satisfy a Cauchy criterion, 

so that the iteration cOI1\·erges. 

The iteration is defined as 

=0, 

where the coefficient is given by 

(3n = (3(sn). 

The initial and boundary conditions for each iterate is 

sn+'«(,o) = So constant, 

4>(0) = so· 

Lemma 2. The iterates to the above problem are bounded independently of n 

in the H2 norm. 

Proof: The iteration begins at n = 1, and we take SO = so. Clearly s' exists 

and is bounded. Assume sn exists and is bounded. Note from its definition that the 

coefficient (3 is positive, smooth, and bounded. Note also that each iterate problem 

has a smooth, unique solution for a finite time; shocks will take time to develop if 
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¢ is smooth. The evolution of the norm is given as 

(using integration by parts as needed) where 

" 0(3 I =-. aS" 

This is not sufficient to bound the norm, because of the derivative of sn appeanng 

on the right hand side. We then use the solvent equation to find the evolution of 

the derivative .,;; , : 

with boundary conditions 

which are obtained also from the original solvent equation. Using integration by 

parts and the usual inequa lities, we find 



44 

but the max norm of the derivative of s" can be approximated by the L , norm of 

the second derivative of s" via the Sobolev inequality, so that we now need to find 

the evolut ion equation for the second derivative: 

1 d 8'S"+1 8'S"+1 83S"+l 
:2 dr II 8~' (-, r)II' = ( 8~' ' 8~'r ) 

8'S"+1 83S"+l 8'S"+1 8s" 8'S"+1 8'S"+1 8S"+18's" 
= -( 8e ,fJ" 8~3 ) + ( 8~' ,2," 8~ 8~' ) + ( 8~' ,," 8( 8e) 

8' s"+ 1 8s" 8s"+ 1 

+ ( 8(' ' a" ( 8~)' 8( ) 
85" 8'S"+1 8S"+1 8'S"+18's" 

:<:; 5 I," 100 I 8[ 100 II 8(' II' + I," 100 I 8~ I", II 8(' 1111 8(' II 
as" 8S"+182 8"+1 82 s"+1 

+ I a" 100 I 8[ I~ II 8( 1111 8~' II + +fJ" (0, r)( 8(' (0, r))'. 

To obtain an estimate we need to relate the above es timates to a Sobolev norm, as 

follows: 

ddrlls"+lll' :<:;1," 100 I 8;; I", Ils"+lll' + .p'(r)fJ"(O,r), 

:<:; Kolls" Il fl ' Ils"+III' + .p'(r)fJ"(O,r), 

8 "+1 8,"+1 
:<:; ]{,lIs"IIH,1I s8~ 1I'+fJ"(O,r)( '8( (O,r))" 

d 8' s"+ 1 85" 8' s"+' 
dr II 8e (-, r)II' :<:; 51," 100 I 8[ 100 II 8~' II' 

8s ll 8s"+ 1 82 sn+ 1 EP s"+ I 

+ Ia" 100 1 8( I ~I I 8( 1111 8e lI+fJ"(O,r)( 8(' (O,r))' 

825"+1 82s"+1 82s n 

:<:; ]{, lis" 111f' II 8e II' +]{3 II s"+ '1111' [II 8(' II' + II 8e II'J 

8sn + 1 82s"+1 82 s"+1 

+Iqs" II;" [II 8( II' + II 8(' II'J + fJ" (0, r)( 8e (0, r))' 
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so that, adding these three estimates, we obtain 

0' s"+ I 
+,8"(O,r)( 0(' (O,r))', 

this last step also following from the induction assumption. Let the forcing be 

denoted by 

os a's 
F(r) = ,p'(r) ,8(0,7) + ,8(0,7)(0((0,7))' + ,8(0,7)(0(' (0,7))' 

noting that for these boundary terms no superscripts are necessary, so the solution 

IS 

Ils"+1(-,7)11~, ~ exp(J"i!s" 1111,7) [ll s(-, O)II;l' + r F(7°)droj, 
o 

so it is clear that a time T, can be found such that 

for 0 ~ 7 ~ T
" 

where J{0 is independent of the iterate number. Thus the lemma is proven. 

To proye convergence, we need to find the evolution of the norm of 

Lemma 3. The iteration '7" -> 0 as n -> 00. 

Proof: \Ve ha\·e the equations 

08"+1 as"+1 
ar + ,8(s") o( = 0, 

os" ,8( "-I )OS" 0 -+ s -= or a( 

with the usual boundary conditions. Subtracting these two equations from each 

other, we obtain 
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Using the mean value theorem, we find the equation 

where 
_ 8S,,+1 

q," 1)" = - {3C s" ) ,( 
8( 

with homogeneous initial and boundary conditions_ Thus the norm satisfies 

8 ,,+ 1 

= (1)" + 1 , q," 1)" - {3" '~( ) 

:s: I q," 1= 111)" 11111)"+ 1 II 

on ° :s: r ::; T1 _ Then by Gronwall's Lemma, 

11')"+' II' :s: exp(/(o r)( 11'(+ 1 C-, 0)11' + /(1 J Til,]" (-, r' )11' dr'), 
o 

but 11,)"(-,0)11 = 0, so 

111),,+111' :s: W r 111)"(-,r')II' dr' 
o 

(:s: WT1111)"(-,r)II'), 

where ° :s: f ::; T" so by Picard 's Lemma Cor note that we can choose T, such that 

J(' T1 = 1/2), the sequence converges uniformly to zero: 

17 11 
-+ 0 as n. --t 00 . 

Uniqueness of Solutions to the Solute Equation. We have seen that the 

solution to the solvent equation is unique and exists; also, it can be shown (28, 
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and references therein] that a unique solution exists for a linear partial differential 

equation of the type 

oe ac - a'c 
or + v(~, r) a~ - D((, r) ae = F((, r) 

on ((,r) E [0,1] x [0,00), c((,r) = 0, c(O,r) = </J(r) e(-,r) E L,[O,oo), where v, jj, 

F are all bounded C' functions with jj > 28> 0, 8 constant, for all ~,r. 

Here we will show existence by converting the solute equations into an iterative 

problem with each iterate possessing an equation in the form of the above linear 

equation , so that each iterate exists and is smooth locally. Below we treat the case 

of the solute unaffected by fluid film m ass transfer; basically the same method as 

below may be used when fluid film mass transfer is important . 

Lemma 4. Th e form of the solute equation as mentioned earlier 

subjec t to th.e initial - boundary conditions 

e(I',(, r ) = c((, r) 

ae l _ ° 
al'l,;o -

c(~ , O) = ° 
e(I' ,('O) =0 

c(O,r) = </J( r). 

can be tm11 s/o1-m ed into an equivalen t form 

a'cn
+ I J' - D, a~' + 0 H(Cr - f)cn((,i')df = 0; 

c(O,r) = </J( t) 

c((,O) = ° 
cEL,[O,oo) 
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That is to say, the transformation is isomorphic. 

Proof: We wish to solve the following problem: 

subject to the initial - boundary conditions 

c(l,~,r) = c(~,r) 
aC I _ 0 
ael,:O -

C(eO)=O 

C(e ,eO)=O 

c(O,r) = cp( r). 

First we note that the equation only for c above is equivalent to 

a
a (<I>ec) - D aa

2 

(<I>lIc) = 0 
r e2 

where <I> (~, r) = f3 + J((e r) subject to 

ecl,: ! = c((, r) 

ecl,:o =0 

- I 0 gCIT;;;o = . 

One may solve for 1/;(e, (, r) = ec(e, e r) in terms of the "boundary forcing" 

cp = c((, r), using the Green's function for 1/;. In order to carry this out, we need 

to express the boundary forcing cp above as a body forcing appearing in the part ial 

differential equation instead of in the boundary conditions. Thus we need to find 

an extended operator A , deriyed from the original operator A, where 

a a2 

A == -a 1'((,r) - D -a . 
r e2 
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Let the domain of A be described by the set of functions Wee, ~, r) satisfying 

AW=O 

W(O,Cr)=O 

Wee, C 0) = 0 

W(e,Cr) = c( l,~,r) = c(Cr). 

In these equations ~ is merely a parameter. Introduce an inner product 

((V, W))~ J ~ J 1 VW dg dr, 
o 0 

where V = V(e,~, r) is an integrable function whose properties will be defined in 

the following development. 

\Ve will now define a problem for V adjoint to the one defined for W above, by 

using the inner product. Using integration by parts, 

[}' 
(( V, AW)) = J ~ r V A(W) de dr 

o 0 

J ~ Jl 8 8'W 
= V[,,(-y(~,r)W)-D,,--;-]dedr 

o 0 ur ue 

J 1 J'" J 1 8V = {V,W] :;O de - ,...,,-W dedr 
o 0 0 uT 

J ~ 8W J ~ J 1 8V 8W + {-DV-]~dr - (-D--) dl] dr 
o 8e 0 0 8e 8e 

J 1 J'" J 1 8V = {V,W] :;O de- ,...,,-Wde dr 
o 0 0 uT 

J ~ 8W J'" J 1 8' V + {-DV,,]~dr+ (-D",W)dedr 
o ue 0 0 ue 

so we identify the adjoint operator A" as 

8 8' A" = _'V(> r)- - D -
- I \"" " ?' ur Ul]-
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and let the domain of A" be described by the set of functions Vee, (, r) satisfying 

A"V = 0 

This allows the equaJi ty 

V(e,(,r - 00) = 0 

V(O,(,r) =0 

V(l,~,r) = c(l,(,r) = c((,r) 

((V, AW)) = ((A" V, W)). 

Now we define the extended operator A, such that 

((V, AW)) = ((A" V, W )) ob((V, A, W )) 

Again using integration by parts, we obtain 

((A" V, TV )) = J= r A"(V)W dedr 
o 0 

J= J' av a'v = [-1'(~, r)-a W - D a ' wJ de dr 
o 0 r e 

J' J=J' a = {-1'VWJ~ de- (-V -
a 

(-yW)) dgdr 
o 0 0 T 

J = av J 00 J ' av aw + { - D - TVJbdr- (-D--)dedr 
o ae 0 0 ae ae 

J' Joo J' a = { -1'VWJ~ de- (-V-
a 

bW)) de dr 
o 0 0 T 

J 00 av J '" J' a' W + {-D-wJbdr - (-DV--, )dedr 
o ae 0 0 ae 

so we identify the extended operator A, as 

a a' 
A, == -a 1'((, r) - D-a + 2D6'(e - l )c((, r), 

r e' 
and let the domain of A , be described by the set of functions T¥(e, ~, r) satisfying 

A,T¥ = O 

T¥(e, (, 0) = 0 

T¥(O, (, r) = 0 

T¥(l,(, r) = O. 
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Having found the body-forcing equivalent to the original problem, we now apply 

separation of variables to the homogeneous problem to find the Green's function. 

gc(g,~,r) = f(r)g(g)h(~) 

o 02 

or ('(Cr)f(r)g(g)) - D og2 (J(r)g(g)) = 0 

so that (" > 0) 
(-y fl' Dg" 
--=-K,= --

f 9 

with boundary conditions g(O) = 0 = g(l), implying that, setting" = Dn 2 -;r2, 

g(g) = sin(n-;rg) . 

Also, we have 

so that 

J T ,'+" f(r) = Aexp(- ( )dr) , 
o , 

which simplifies to 

A,(CO) JT dr f(r) = exp(_Dn2-;r2_) 
,(~,r) 0 , 

Thus we have the solution for the homogeneous initial and boundary conditions, 

and with body forcing e(~, g, r) as 

gc(g,~, r) = A r r G(g, r; §, f)e(~, e, f) de df, 
o 0 

where the Green's function G is given by 

00 ,(CO)exp(-Dn2-;r2 r- f ~) 
G( "")? '" 0 ,(Co) . ( ). ( ") (2,7; (2, T = .... L...J (") SIn nne 81 11 n:rre . 

, Cr-r 
n=1 
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Earlier we found that the body forcing we will be concerned with is 

f(C e, r) = 2D8'(e - 1)c(C r). 

Substituting this into the integral of the Green's function and integrating by parts, 

we obtain 

r r G(e, r; e,f)2D8'(e - 1)c(€,f) dedf 
o 0 

= r (G(e, r; e, f)2D8(e - l)c(~,f)l ~df 
o -r r ~G8(e-1)2Dc(~,f)dedf 
o 0 ue 

JT 8GI D ( A)d-= - -8 1 - 2 cCr r. 
o {} e- 1 

Also, 

so that we now have 

ec(e,Cr) = I'(CO)4Drr r f 
o n=1 

Clearly the series appearing in the integrand is uniformly convergent in 0 ::; e ::; 1 

and r > 0, so we may differentiate c with respect to e: 

Since 

8 ( sin( 11 rr e ) ) ()" 
" =11rr -1 , ue e 

we obtain 
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With this expression the original equation for c(~, 7) can be written as 

OC oc J T ~ " , 

{) 07 + V O~ - 12D'7C'(1 - {) ~ n' In (~, 7 - 7)C(~, 7)d7 = 0. 
o n:;;: 1 

The problem to be solved is now in the form 

{) ~C + V ~c + r H(~ , 7 - r)c(~,f) dr = ° 
U7 U~ 0 

wi th boundary condi tions 

c(CO)=o, C(0,7) = 9(7), 

and hence the lemma is proven. Note that 

Q(C7) = r Hc dr 
o 

is bounded if C exists, since H is bounded on [0,7) and c is assumed in L, [0, 00). 

Uniqueness of the Solution to the Solute Equation: For any two solu-

tions c" c, ,., = c, - c, satisfies 

0,., 0'7 JTH(~ ') (~')d ' DO',., 07 + V o~ + 0 ,,7 - 7 '7 ,,7 7 - 'O~' = 0; 

with initial and boundary conditions 

'7(0,7) = 0 

,.,(~, 0) = ° 
'7EL,[0,00) 

Lemma 5. The above equation and boundary and initia l data for,., implies 

,., = 0. 

Proof: (Th ough the argument can be carried through with D, =f 0, here we 

take D , = 0 for clarity of the argument.) The form of the solute above equation 
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suggests using Laplace transformation in the variable r. Introduce the transforms 

for c and initial condition <p as 

R(Cp) = J= e- PT H(~,r)dr 
o 

Ci(~'P) = J= e- PT ci(~,r)dr, 
o 

fj = Cl - C2 

and so 

dij -
t9p" + V d~ + H" = 0, 

with initial condition ,,(0,])) = 0, 

using the convolution theorem. The transformed solution can then be expressed as 

J• t9p 1 -
ij(~,p)=ij(O,p)exp(- (V+VH(~,p))dx) = 0. 

o 

Thus (;1 = (;2, and hence CI = C2 on the whole domain, and so the lemma is proven . 

Existence of Solution to the Solute Equation: This follows by showing 

that the solution of the iteration equation given by 

= Cn(C r ); 

where the forcing is given by 

Cn(Cr) = - r H(Cr - f)cn(Cf)df + F(~,r ); 
o 

cn+I(O,r) = <p( r) 

cn+I(~,O)=O 

cn + 1 E L,[O, oo) 
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is bounded independently of n, and satisfies a Cauchy criterion; hence the sequence 

of twice differentiable functions {cn } converges, to a twice differentiable function 

c(C r). 

,;Vith this in mind, we proceed to state some lemmas. 

Lemma 6 . The above itemtion at the (n + 1) step is bounded independently of 

n: 

where ]( depends on T" depends on up to the second derivative of the boundary 

data, and 5, (where D, 2: 25 > 0). 

Proof: See reference [28] . 

Lemma 7 : The sequence of solutions to the iterative problem satisfy 

l17)n+'II~, ::; ]((117)(-,0)11;1' + r 1177"(.,r)II~, df) 
o 

where 7)n+I(~,r) = cn+I(Cr) - cn(~,r); since 7)(CO) = 0, the sequence 7)n+1 ---> O. 

Proof: See reference [28]. 

Hence the iteration is bounded, satisfies a Cauchy criterion, and hence con-

verges uniformly to a unique solution. 
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CHAPTER 3 

Uncontrolled Solute Dynamical Equations 

In this chapter typical uncontrolled dynamical models of solutes in chromatog

raphy that have appeared in the literature will be reviewed quickly. Solutions to the 

simpler equations will be found in Chapter 4; subsequent chapters discuss controlled 

dynamics. 

Equations of conservation. For simplicity, let us consider only one solute in 

the sample mixture as it t ravels down the column. The mobile phase is considered to 

be in plug flow th rough a packed bed of porous particles, all assumed to be spheres of 

uniform radius R and porosity (J. Plug flow refers to the case where the flow can be 

averaged over each cross-section down the column; the flow must be quasilaminar. 

The solute in the mobile phase has concentration e(x, t), where t denotes time and 

x denotes distance down the column. The solute in the stationary phase within the 

particles has concentration c(r, x, t), where t and x are as before, and r denotes the 

radial distance from the center of the particles. The column is of length L and has 

a void volume fraction {}, the volume available to the liquid outside the particles 

relative to column volume. The concentration of adsorbed sample molecules in the 

average particle at distance x down the column is denoted q(r, x, t), while the solute 

concentration inside the average particle is denoted c(r, x, t). 

Conservation of mass across a control volume in the column gives the equation 

of continui ty [2,9,11,14,29,30,32,33,41,50,51, 52,53] 

ae ae as a2e {}- + v - + (1 - {})- - D , - = 0 at ax at ax2 

where s = sex, t) is the average solute concentration inside the particles, whether 

adsorbed or not. The coefficient D , takes into account axial dispersion and diffusion 

in the flow. If the particles are nonporous , the source term in the discussion above 
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is instead (1 - t'J)aq / at, so the continuity equation is 

ac ac aq a' c {}- + v- + (1 - {})- - D, - = o. 
at ax at ax' 

Equations of Intraparticle Diffusion and Fluid Film Mass Transfer: 

For the average particle at p osition x down the column, the diffusion of solute into 

the particle and adsorption to the solid surface is given by 

pac aq _ D (a'C ~ aC) = 0 
at + at par' + r or ' 

where the adsorbent is of spheri cal particles of radius Rand Dp is the diffusion 

coefficient inside the particles. For spheri cal particles, the surface area per unit bed 

volume is 
3(1 - {}) 

R 

so that flux of solute into the particle pores gives the ra te of change of the average 

particle concentration: 

The rate of mass transfer of solute across the fluid film surrounding each particle is 

given by 

Dp ~c I = kdc(x,t) - c(R, x, t )]. 
ur Ir :R 

If the resistance to mass transfer is relatively small, a t r = R we may take c(x, t ) = 

c(R , x, t ). 

Reaction equations (equilibrium theory) . When V is not so large that we 

must use kinetics equations for reactions of sample molecules with the substrate, 

we assume a local equilibrium relation , called the adsorption isoth erm, between 

adsorbed and unadsorbed molecules: 

q(x,t) = h( c(x, t». 
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The shape of the function h( c) affects the profile of a concentration pulse travelling 

down the column. 

In the linea r equilibrium case, we have 

q(x ,t) = J(th c(x ,t). 

This relation is accurate whenever the solute concentration is quite small. A typical 

relation for higher concentrations is the Langmuir isotherm, which indeed reduces 

to the linear case for small c( x, t) 

so that 

Reaction equations (kinetic theory) . For weak adsorbers or small solute 

concenti'ation, there is a simple relation describing the rate of adsorption at (x, t ) : 

oq 1 "I = k,Qc(x,t) - k,Cq(x,t), 
vt I, 

where k, is the forward reaction rate constant, Q is the adsorption capacity of the 

column, k, is the backward reaction rate constant, and C is the "solvent capacity. " 

At steady-state we arrive at the linear equilibrium relation 

q( x, t) = J(" ~c(x, t), 

If instead we assume the forward adsorption rate is proportional to the product 

of un adsorbed molecule concentration and the concentration of available adsorption 

sites , and that the backward reaction rate is proportional to the product of adsorbed 
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molecule concentration and concentration of "available sites" In the solvent, we 

obtain the Langmuir kinetic equation 

aq 1 ( "I = k, (Q - q(x, t)) e(x, t) - k, C - e(x, t)) q(x, t). 
vt I. 

This will lead to the Langmuir isotherm at steady-state conditions. If the solvent 

capacity is always much larger than the un adsorbed molecule concentration, then 

we have 

aq 1 "I = ", (A - q(x,t))e(x , t) - k,Cq(x,t). 
vt I. 

Dynamical equations. \Ve first consider the equilibrium dynamical equa-

tions. Combining the isotherm equation 

q(x, t) = h(e(x, t)) 

with the conservation equation 

{jac V ae (1 _ {j)aq = 0 
at + ax + at 

yeilds the simple hyperbolic equation 

1 ( 1 - {j / ') ae ae 0 - 1+--, -+- -v {j at ax - , 

where v = V f{j is the linear velocity. For a Langmuir isotherm this has b een shown 

to be an adequate model in ci rcumstances with high solute concentrations (see 

Figure 18). 

There are two primary sources of nonequilibrium that can be of importance -

fast flow velocities v, and initial conditions not satisfying the equilibrium isotherm. 

Initially, a t the introduction of the sample into the column, there are no adsorbed 

molecules. However , in using the equilibrium isotherm we actually are assuming 

that there is (immediately) a concentration of adsorbed molecules proportional (in 
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the linear case) to the concentration of unadsorbed molecules introduced into the 

column. 

There are two usual ways around this contradiction. One way is to go ahead 

and assume immediate equilibrium, so that the initial boundary value conditions 

are 

c(x,O) = q(x,O) = 0, 

c(O, t) = J(t), 

and 

q(O, t) = h(J(t)). 

We then further assume that the decay of the "true" solution onto the approximate 

solution satisfying these unphysical conditions is quite fast compared to sanlple 

elution time. It is found experimentally that this is a reasonable assumption for the 

usual range of flow velocities v . 

The second way is to abandon the isotherm equation and use a kinetics equa-

tion, such as for linear kinetics, and use the more physically accurate initial and 

boundary values 

c(x,O) = q(x,O) = 0, 

c(O, t) = J(t), 

q(O, t) = O. 

One finds that for v not too large thi s solution decays onto the equilibrium solution 

in a.n exponentially short time. 

To obtain the dynamical equation for the case involving the kinetics equation, 

it is easiest to change independent variables: 

x 
f= -

V 
and 

{Ix 
r; = t --. 

V 
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Then the conservation equation 

becomes 

,/'Je V ae aq = 0 
at + ax + at 

ae aq _ 0 
ar + aij - . 

This relation implies the existence of a potential F(r, in such that dF is an exact 

differen tial 

i .e., 

dF = cdi'; - qdr, 

aF 
c(r,in= a- ' 

71 

aF 
q(r, ij) = - ar . 

So, combining this with the linear kinetics equation 

aaql = Vaa~ = ",Qe(r,ij) - k,Cq(r,fj) . 
tl, '7 

we obtain 

For Langmuir kinetics, we instead obtain 

a' F aF aF aF aF 
Va-a- +",Qa- +k,C-a- -(k, +"')a- a- = 0, 

T71 71 T T71 

which can be put in the same form as the linear equation via the Thomas transfor

mation, which will be discussed in the next chapter. 

Dynamical equ a tions for several solutes : equilibrium theory. In the 

linear theory, there are no interactions between solutes, so that the equat ions are 

decoupled: 

ac, a ( , ) - + - A ·c· = 0 ar aij •• 
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for i = 1 ... n, where n denotes the total number of solutes. 

Assuming a Langmuir isotherm, we obtain a set of coupled nonlinear hyperbolic 

equations 

ac, a ( ) 
aT + afj h(J(" c" . .. , cn ) = 0 

where 1(, is given by 
(c - (I:. c·))q· J(. _ ", 

, - (Q - (I: j qj ))c. . 

Dynamical equations for several solutes: kinetic theory. Using the 

notion of potentials F, as defined from the conservation equation 

for i = 1 ... 11, so that 

ac, aq, _ 0 
aT + afj -

aF.
c,(T, fj) = a-' 

71 

aF.
q,(T, in = - aT' 

and so the linear kinetics dynamical equations are 

a2 F, aF, aF, 
V a- a- + k. ,c a- + kl ,Q a- = o. 

T'1 . T . 71 

For Langmuir kinetics, the dynamical equations are a set of coupled, nonlinear 

hyperbolic equations 

V a2F, kCaF, k .QaF, ("k . k)("aF.aF,)_o 
aTafj + '.' aT + I .' afj + ~ I " + '.J ~ aT afj - . 

J t , l 
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CHAPTER 4 

Solutions to the Simpler Uncontrolled 

Dynamical Equations 

In this chapter the easier uncontrolled solute dynamical models that have ap

peared in the literature will be solved. The more accurate dynamical models have 

analytical solutions too complex to include here, and indeed are generally in them

selves too complicated to be very useful. As we will demonstrate in following chap

ters, other techniques can be more fruitfully implemented, namely perturbation and 

moment techniques. 

Solution of the linear equilibrium dynamical equations. Recall from 

the third chapter that the equation for linear, local equilibrium theory of one solute 

is (where v = V j{)) 
1 1 - a ae ae 
~(l+ -a-K,h) at + ax = 0, 

with 

e(x, O) = 0 

and 

e(O, t) = f(t). 

Here we have assumed that the solvent is not changing with respect to x. This is 

simple to solve using the method of characteri stics. Let t = t(x). On the charac-

te"istic curve defined by 
dt 1 1 - a 
-d = -(1 + -a-K,h), 

x v 

t(O) = to, 
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the concen tration satisfies 

dc = 0 
dx ' 

c(O,to) = J(to). 

Thus the characteristic curve is given by 

1 1 -19 
t(x) = ;;(1 + -19-K'h)x + to 

and so the solution to the overall problem is 

1 1 -19 
c(x, t) = J(t - ;;(1 + -19-K'h )x) 

for 

1( 1-19 ) t "2;; 1 + -19-K'h x. 

The solution for several solutes is of course analogous, with due respect to each 

solute's different reaction coefficient : 

( 
1 1 -19 ) 

c;(x, t) = J; t - ;;(1 + -19-K'h,;)x 

for 

1( 1-19 ) t"2;; 1 + -19-K'h,; x. 

Solution of the nonlinear equilibrium dynamical equations: one so-

lute. Using the Langmuir isotherm to eliminate q(r, 7)),we obtain 

oc+~( KQ e )=0 
or (7) C + [K - 1Je . 

(Again we assume that the solvent is not changing with respect to x .) Thus [50,54J 

((C+[K-1JC)2) oc + oe =0. 
KQc or (7) 
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the characteristic curves are thus given by 

_ ((C+[K-l]f(T)2) 
T- 1(Qf(TO) 1/+TO. 

Note that this is implicit in TO' Depending on the shape of f( TO)' shocks can occur 

in the solution. 

Solution of the nonlinear equilibrium dynamical equations: several 

solutes. This is not an easy solution, and there is no way to express the general 

solution. Helferrich and Klein [19] have written a book on the subject as it pertains 

to chromatography (see the review in appendix A). 

Solution of the linear nonequilibrium dynamical equation: one so-

lute. This equation 

which we will call the linearized Thomas equation, has been solved by Thomas 

[50,51] for some very simple boundary conditions, and investigated in detail by 

Goldstein [14,15]. Here it will be solved for a simple initial finite pulse. 

Let k = k" K = k,/kb , ,., = kQT, e = kC7), u(,."e) = c(,."e)/C, v(,."e) = 

q(,." e )/Q, and r = 1/ K. Then the linearized Thomas equation becomes 

The boundary conditions are (assigning the arbitrary constant F(O,O) = 1) 



for p 2: 0, e = 0, and 

for e 2: 0, p = 0, where 
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of J' -a = f ee) => F == 1 + f (w)dw 
e 0 

{
CO 

f ee) = ' 
0, 

if 0 ~ e ~ w; 
otherwise. 

This initial boundary value problem can be solved perhaps best by Heaviside trans-

form with respect to e. 

The Heaviside transformation of F(p, e) with respect to e is defined as 

and its inverse as 

1 J . dp H(e)F( p, e) = -2' e" F(p,p)-, 
7rZ 8 P 

. where 6 denotes the Bromwich contour and H (e) denotes the unit step function. 

The dynamical equation then becomes 

of . of 
(p + 1) op + rpF - p[ op (p, 0) + "F(p, 0)] = 0, 

or 

of . 
(p + 1) op + "pF - pr = O. 

The initial condition for this can be found from the boundary condition () by trans-

forming it : 

F(O,p) = 1 + f(p)/p, 
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and since fee) can be written in terms of step functions 

fee) = CO [H(e) - H(e - w)], 

we have 

j(p) = CO [1 - exp(-pw)] , 

and so 

• CO ( prJ.') CO ( P7·J.') F(J.',p) = 1 + -exp --- - -exp --- exp(-pw). 
p p+1 p p+1 

Taking the inverse transform of F, 

j ' j'-w>o 
F(J.' , e) = 1 + CO J(rJ.',w)dw - CO J(rJ.',w)dw, 

° ° 
where 

1 j ( (x ) d( J(x,y) = -. exp (y - -- -. 
2."., B (+ 1 ( 

That the boundary conditions arc indeed satisfied can be easily verified via one of 

the properties of J(x ,y): 

J(O, y) = 1. 

The original dependent variables satisfy 

thus 

aF 
c=kCae 

aF 
q=-kQ-, 

all 

c(r,7/) = kCcO{ J(kQr / J(, kC7)) - J(kQr / J(, kC7) - w 2: O)} 
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f
ke. 

q(r,7)) = kQco/I<{ exp(-kQr/I< -w)Io(2v'kQrw/I<)dw}, 
kCt7-W 

where I o is the zeroth order modified Bessel function. 

Solution of the linear nonequilibrium dynamical equation: 11 solutes. 

Recall this case involves a set of uncoupled equations, so that we can use the solution 

found in the previous section: 

EP F; k", Q oF; kb" C of, _ ° --+----+-----or a'l v 07) V or 

Let k, = k"" I< = k, .,/kb ." I" = k,Qr, (! = k,CII, u,(p,i!) = c,(p,i!)/C, 

v, (p, i!) = q, (p, i! )/Q, and I', = 1/ Ie. Then the linearized Thomas equation becomes 

The boundary conditions are 

for p ;::: 0, i! = 0, and 

for i! ;::: 0, p = 0. As before, the pulses at the boundary are 

J; (i!) = { c?, if ° :::: i! :::: W; 
0, otherwise. 

Thus the solution to this set of equations is 

{f "C, } 
q(r, 7)) = k,Qc?!I<, exp(-k,Qr/I<, -w) I o(2v'k,Qrw/ K)dw . 

k,CIJ-W 
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Solution of the nonlinear nonequilibrium dynamical equation: one 

solute. As done previously, a potential is introduced; here we call it 1/;: 

so that the Thomas equation is 

o1/; 
c(r,l)) = ", 

Ul) 

o1/; 
q(r, 1)) = - or. 

Making the same independent variable transformations as in the previous section, 

we obtain 

The boundary conditions are 

for I-' 2: 0, e = 0, and 

o1/; = fee) oe 
for e 2: 0,/1 = o. We assign the arbitrary 1/;(0,0) = 1. Then 1/;( /1,0) = 1 for I' 2: 0 

and 

1/;(0,11) = 1+ r f(w)dw 
o 

for 11 2: o. 

Vie can arrive back at the linearized form of the Thomas equation by introduc-

ing a nonlinear transformation, the one used here being slightly d ifferent than the 

Thomas transformation [14,51]: 

F(/1, e) = exp[(1 - r)( 1/; (/1, e) - e + /1-1)], 
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which gives 

and 

u = N/F, 

v = M/F. 

Here we have set 

aF N = F + ae /(1 - r), 

aF 
1.1 = F - a" /(1 - r). 

The dynamical equation is then 

a2 F aF aF 
a"ae + a" + r ae = O. 

The boundary conditions are 

F(O, e) = exp[(l - r) r (t(w) - l)dw}. 
o 

\Ve use the Heaviside transformation again; the dynamical equation then be-

COInes 

or 
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Th us the solution to the transformed equation is 

• p [ (PrfJ.)] (PTfJ.) F(fJ.,p) = exp[( l - r )fJ.) - exp --- + x(p)exp --- , 
p-r+ 1 p+1 p+ 1 

where X(p) is the Heaviside transform of F(O, (!). The expressions for M and N are 

thus 

[ 
P[X(P) - 1)] ( PTfJ.) 

N(/1.,p)= X(p)+ 1-r exp -p+1 

and 

M(fJ.,p) = [ x(p) + p[X(p)-l ) ]exp(- PTfJ.). 
p+1 (1-r)(p+1) p+1 

The solutions are expressed in terms of the function 

1 j ( ( . ." ) d( 
J(x ,y) = 27ri a exp (y - (+ 1 (' 

whose many properties can be found in ' '''atson [54). One can develop the asymp

totic and Taylor expansions of J(x,y), which can be of use for numerical work. 

In this chapter we have covered solutions to the chromatography dynamical 

equations that can be fairly simply expressed, though the Thomas equation has a 

solution that is clearly not terribly simple. Solutions to the more complete equa-

tions, combining intraparticle diffusion and kineti cs, et c. are not very useful in 

themselves. Instead, one should use only the "important" or "relevant" parts of 

the solutions, typically done by using moment techniques [29,30,32). However, the 

manner in which moment formul as have been obtained in past literature is useless 

when dynamical control of the chromatography system is desired. In chapters 8 

and 9 a new method is presented for arriving at moment formulas, called moment 

integra tion by parts, a method easi ly applied to any control case. 
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CHAPTER 5 

Adsorben t and Bi n a r y Solvent Models 

In Chr0111atography, one or more solvents are always present in high concel1-

trations; the number of adsorption sites on the solid substrate is quite small and 

is entirely covered by the solvent and solutes. The solvent system is well into the 

nonlinear range of the isotherm describing the relationship between adsorbed and 

un~dsorbed components. 

From thermodynamics, we define an activity ai (normalized fugacity) which for 

regular mixtures is simply related to the mole fraction Xi of the solvent componcnt 

1: ai = 'i.1"i' Ideal m;xIV7'CS satisfy ,i = 1. For a regular, nonideal mixture (I"1<1cS 

[23]), 

Dln'i _ .0.V; 
Up - RT' 

where p is pressure, II. is the gas constant, T is temperature , and .0. if; IS excess 

partial molar volume that is due to reaction, weakly dependent on solvent CO!llPO

sition for small molecules, assumed negligibly so. Assuming that .0. if; is essentially 

indepenJent of pressure in the range 1 - 300 atmospheres, we can intcgrate: 

]).0. V; 
,; = exp( RT ). 

At equilibrium, a steady-state partition occurs between mobile-ph use and stationary-

phase concentrations. This is described by the reaction coefficien t , which is calcu-

la ted by finding a certain ratio of activities. Assume that we model the binary 

solvent stationary-phase displacement reaction as 
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where Si represents a molecule of solvent i and A represents an adsorbent site . Here 

the solvents have been assumed to be of equivalen t size on the adsorbent. Also, the 

excess volume may be nonzero, and the binary solvent system is assumed to satisfy 

s,+s,= 1 and b, + b, = 1, 

where 8i and bi represent mole fractions of un adsorbed and adsorbed solvent !, 

respectively. Then the Langmuir reaction coefficient (a constant) is given by 

where a. , is the activity of unadsorbed solvent i, and a,; is the activity of adsor bed 

solvent i, and t:, if; are the respective excess volumes. If the two solvents are similar 

in size and chemistry, the exponential terms cancel. Or if it is assumed instead that 

t:, if; is independent of solvent composition, all the exponentials may be divided into 

the J\L to define a new equilibrium constant. Since s, + 5, = 1, we obtain 

= 
b,(1 - 8, ) 
8,(1 - b,)' 

so that 

b, 
(KL - 1)8, + 1 

Likewise, 

= 
(1 - b,)s, 
(1 - 8, )b, ' 

so 

b 
_ JCZ' s, , -

(J\Z' -1)8, +1 

Note that indeed b, + b, = 1, and both solvents have Langm uir isother·ms l!'ith 

inverse reac tion coefficients. Also, if KL = 1, then the soh·ents are identical in 

chemistry and the isotherms are en tirely linear. In genera l, in the linear region (S i 
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small) b, = I(L S, and b2 = 1(;; 1 S2 . There are analogous results for ternary or 

higher-order solvent systems. 

The use of mole fraction s in the above calcula tions presents some difficulties, 

primarily when combining the solvent reaction model into the soh-ent continuity 

equation . The difficulty is that unless the two solvents have essentially the same 

chemical makeup, the total number of moles cannot remain constant, because the 

volume in the column is constant. Thus we cannot simply divide each solvent's 

dynamical equation by the total number of solvent moles to obtain the dyn amics of 

the solvent mole fractions . A more natural form of the concentrations is the volume 

fraction; there is a constant volume available to the mobi le phase, and a constant 

"volume" avai lable to the stationary phase. Vie may take the mole concentrations 

appearing in each solvent equation and multiply through by its partial molar volume, 

assumed constant, and so we obtain the volume fraction of solvent per em3 column 

volume. The partia l molar \-olume is not t ruly constant; for example, consider the 

partial molar volumes for the ethanol- water mixture in Figure 19. However, we 

find satisfactory accuracy with experimental data, assuming that the partial molar 

volumes are constant, at least in the examples considered to date . 

The form of the soh·ent isotherms in terms of volume fraction s can be fOllnd to 

be essentially identical to those in terms of mole fraction s, the only difference being 

in the reaction coefficient ("Langmuir coefficient"). Returning to the definition 

of the Langmuir reaction coefficient in terms of activities, and assuming that the 

activity coefficients cancel, then 

where s;, b; are 111 mole fractions. If s;, b; represent molar concentrations, then 
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from the above, 
~~ -
;;) +b., I) +1., bI 52 

---L1........ --h- - S 1 b
2 

• 
11 +1., 61 +b., 

From the defin ition of partial molar volumes and the presence of constant volumes 

in the stationary and mobile phases , we can write 

S, v" + S, v" = 1 

ii, Vo, + 1" ii" = 1; 

i. e., the sum of volume fractions is one in each phase. Thus 

Thus the first solvent's isotherm is given in terms of volume fractions as 

where 

which is weakly dependent on s " but here is assumed constant in the isotherm. It 

is easy to see that the second solvent isotherm n/., 1" l has a "Langmuir coefficient" 

f 1
_, _, 

o \.. L . 

If the solvents are not of simila r size, and obey the displacement reaction 

S, + zS, . A r" S, . A. + zS, 

then the equilibrium constant is 

in mole fra.cti ons, and 

KL =J(L(13,) (~'r 
11" Vb, 

_ (VbI Ii.) e -(Sl v" lr 
(11" s, l 1 - (b, Vb, l 
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in volume fractions. Either of these formulas expresses an isotherm that must be 

calculated from the implicit equation 

where the terms are either for mole or volume fraction. 

Ad sorb e nt Mod els : Typical adsorbents for HPLC are based on uniformly 

sized silica beads, 5 to 50j.Lm in diameter, usually treated so as to be superficially 

porous (pellicular) or totally porous (see Figure 4). NPLC methods utili zc the bare 

silica surface as adsorbent, though stcps should be taken so as to make the silica 

su rface more "generic" with solvent addit ivcs 48. Even then, there are typically 

adsorbent sites of various act ivities. As reviewed by Little [31], the typical silica 

surface prepared for chromatography is composed of "free" silanol (SiOH) groups 

(Figure 20), "geminal" silanols (Figure 21), and hydrogen-bqnded silanols (Figure 

22). A two-dimensional schematic (Figure 23) of the adsorbent si lanols and resulting 

polarity inhomogeneities shows what a polar solute might experi ence as it passes 

oyer the surface. An apolar solute would experience an essentially homogeneneous 

surface. The effects of inhomogeneities that are due to various types of silanols will 

be discussed in the next section in conjunction with solute and solvent equilibria . 

RPLC adsorbents consist of silica beads with one of the usual fun ctional groups 

attached to the silanols . Probably the most common of the functiona l groups are 

alky l chains, often of length eight or eighteen ca rbons. Figure 24 shows a schematic 

of "octylsilica," or a hydrocarbonaceous ligand of length cight bonded to the silica 

surface. The silanols are never entirely coyercd, though the si lanols are well beneath 

the alkyl "surface." Note that in contrast to the polar NPLC surface, the bonded 

RPLC surface is apolar and hydrophobic. Thus polar solutcs will bind less than 

apolar solutes, in contradistinction to the NPLC adsorbent surfa.ce characteristics. 

The silanols within the "forest" of alkyl cha.ins mayor may not be accessible to a 
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INCREASING POLARITY 
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Figure 23: Schematic Silica Surface Inhomogeneities . 
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solu te, independently of its polarity, depending on its size . Figure [25J schematical ly 

shows how large molecules (a) may interact only with the surface of the hydrocar

bonaceous adsorbent, and steri cally restricted from entering into the alkyl chain 

"forest." Solutes or solvents (b) that are small enough might enter into the "forest" 

to interact with the silanols. (Sometimes su ch silanols are capped with smaller alkyl 

groups - however, the important aspect to note is the actuality of multiple adsorp

tion site types for smaller molecules .) Thus the smaller molecules may experience 

a somewhat different porosity and slightly different dynamics (see Figure 26) than 

the larger molecules. Figure 25 shows a molecule (c) with an alkyl chain attached 

and a hydrophilic portion represented by the dashed square and shows how such 

a molecule would adsorb to the surface alkyl chains, with the hydrophilic portion 

outward. Such arrangements can effect strong binding and can modify the adsor

bent characteri stics if present in high concentrations (see the. chapter on ca/a/y:ed 

adso7·l'tion for further discussion of this m a tter ) . 

RPLC solvents must be chosen so as to "solvate" the ligands on the silica 

surface. For instance, if we choose pure water as solvent with no organic component, 

we commonly obtain "greasy patches" [34J of ligands that are due to the water 

molecules' energetically not being able to remain between the ligands, which then 

"fold up" on each other (see Figure 27). Thus it is important to keep a few percent of 

the organic component in the mixed solvent, which a llows assumption of a constant 

adsorbent capacity. 

Solvent Loca lizat ion Models . In the previous section we assumed that all 

adsorbent sites are equivalent, and that no interactions occur between adsorbed sol

vent molecules . Li ttle [31J reviewed apparent exceptions to this, when two or more 

types of adsorption sites exist on the substrate. Snyder [44,45J has called adsorp

tion to the sites with higher reactivities (usually associated with surface si lanols) 
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Figure 27: Unsolyated C-8 Silica. 
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localization. 

Snyder [45] proposed a model in which one type of adsorption site exists for 

solvent 1, and two exist for (localizing) solvent 2. Let f3i represent the mole fra ction 

of soh'ent 2 adsorbed to adsorbent site type i, the sites being present in a fraction 

Ni of the total number of sites . Let ,p represent the mole fraction of unadsorbed 

solvent 2, s the mole fr action of unadsorbed solvent 1, and b the mole fraction of 

adsorbed solvent 1. Snyder then proposed that when s + ,p = 1, b + f3 = 1, then 

Snyder did not go further in the analysis , except to investigate the linea r capacity 

of such a system. Ho\\'ever , if we proceed to find the isotherm of the nonlocalizing 

solvent, we find 

which gives (aft er some algebra) 

\\'here bi are the "co- isotherms," which are notably not of Langmuir type. Thu s 

(nonlocalizing) solvent 1 does not have the desired Langmuir isotherm . 

The above difficulties with Snyder's proposal can be remedied, as will be ShO\\,I1, 

but it will be apparent that his idea that only one of the two solvents in a binary 

solvent sys tem might show "localizing" behavior is erroneous. 

To improve Snyder's model and take it further, assume a less approximate form 

for the f3i isotherms: 

1(i,p 1(i ,p 
f3i = (1(i - 1),p + 1 - !\i ,p + s 

An example isotherm is depicted in Figure 28, for N, = .25, N, = .75, 1(, = 100, 

and 1(, = 2. Note the sharp rise at low concentrations. To comp are with some 



87 

j3 I 
_-------J 

------------------

I 
------------------_ I 

o ~i(_'·_· ___________________ l_-_j3 __ --_-~_--_~_--_--_--~-j 
o .6 

~fole Fraction 

Figure 28: Complementary localizing solvent i~otherms at lower moJe fractions 
showing steepening effect.. 



88 

1 I .----- I 
_--.---- I 

I 
I 

j 
"$ I , .. ,.-....... -

I / .... 
•.. /" 

. / I / j 
O~(------------------------------~ 

o 1 
~[ol.e Fraction 

Figure 29 : Xon- Langmu!r isctherm behavior (nonlinear) of localizing soh"ent 
showlng two linear regions l at low c.nd at high mole fractions . 



''1 

]/ I I 
I 

1/ 

r 
,I 

89 

,OJ5, / 
f ----l I 
~ I _ 

- 0 
,Oil ,£0

0 

' '? Ig 

oot 

,3 .·5 0 2 4 G 

Figure 30: Expedment.zl E;yicience for j'hotll silano} sites: deviation fron1 a Lang
muir isothHl11. Adapted fro:l1 Snyder and Poppe {]. 

8 10 



90 

experimental data supposed to demonstrate localization, look at I/J//3 qualitatively 

in Figures 29 and 30: 

I/J [1 + [KI - 1]I/J] [1 + [K, - 1]I/J] 
/3 = NI 1(1 [1 + [K, - 1] I/J ] + N,K, [1 + [KI - 1] I/J] -

\Ve see two regions of essentially linear behavior (instead of only one - as is the 

case for Langmuir-type isotherm) as the system first fills the more energetic sites 

according to a Langmuir scheme, a.nd then fills the less energetic sites, also according 

to a (different) Langmuir scheme_ 

The b isotherm is calculated as 

b = 1- /3 = 1 - N I /31 - N,/3, 

= 1 - NI 1'1 I/J _ No -:-;-l...,'=-I I/J,--
K I 1f; + s - KI I/J + S 

(KI I/J + s)(K,I/J + s) - NI KI 1f;(K,I/J + s) - N,K,I/J(KI I/J + s) 
-

-

(1(1 I/J + s)(K,I/J + s) 
[ICK, I/J' - (NI +l'l,)I(IK, I/J' ] + (1- NI )sIC I/J + (1-- N,)sJ{,I/J + s' 

(KI I/J + s)(K,I/J + s) 
N, sKI 1f; + NI sK,I/J + (NI + N, )s' 

(KII/J + s)(J(,I/J + s) 
-N s(K, I/J+s) N s(KI I/J+s) 
- 1(1(1 I/J + s)(1',I/J + s) + '(1(1 I/J + s)(K,I/J + s) 

} ' -I K-I 
= NI \ I S + N, _--",_s_ 

K; I S + I/J K; I S + I/J 

K; I S N K; I S = NI + 0 .,.----:~'___c __ _ 
(K;I -l)s + 1 - (K;I - l )s + l. 

This again is in "Langmuir form" if we look at the two terms independently, and we 

see each term is in the same form as the corresponding /3; except with a Langmuir 

reaction coefficient that is the inverse to the origina l. Also note that both soh-ents 

show the effects of localization , contrary to Snyder's thoughts_ In the next section 

we study the effects of this soh-ent localization on the binding of solutes _ 

Note that, using the isotherm 

_ N K I 1f; 
/3 - I (KI _ 1)I/J + 1 

+ No K,I/J 
- (K, - 1)I/J + 1 
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to calculate ~~ , we can then find the dynamical equation for T/;; 

which becomes 

aT/; aT/; 1 - ,:; af3 _ 0 
at + v Ox + ,:; at _- , 

1 [ 1 -,:; N,f(, 1 -,:; N,f(, lOT/; alP 
-;; 1+ (-,:;-) [(1(, - 1)T/; + 1]' + (-,:;-) [( f(, - 1)T/; + 1]' at + ox = 0, 

which can of course be dealt with by the method of characteristics. 

Binary Solvent Modulation of Sample R etention: In Chapters 6 and 

(particularly) 7, we deriye the equations describing how soh-ent concentration affects 

the solute retention (equilibrium reaction coefficient). For a binary soh-ent, we find 

that the equilibrium coefficient for a solute is 

qs" 

cbn ' 

where q, b are adsorbed solute and solvent concentrations, respect ively, and c, s arc 

un adsorbed solute and soh-ent concentrations, respecti'-ely, the balance equation 

following from the di splacement reaction 

c + n(5 . A) K ~- C - (nA) + ,,5, 

where _4 denotes an adsorption site_ Thus 

and since 

~ ( ) -" - = 1 + [f(, - l ]s , 
s" 

where f(, is the Langmuir coefficient for the soh-ent, we have 

In(J(,,,) = In(J(,am) - nln(l + [1(, - l]s )_ 
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This model can be rigorously tested against experimental data from Karger et al. 

[25], who found how n-hexanol and n-octanol retention on a C- 1S bonded phase 

column depended on the methanol (MeOH) and acetonitrile (ACN) concentration 

yaried in MeOH-water and ACN-water solvents, respectively. To find the param

eters learn ,h, ICam ,0, nh, no, 1(/11 eO If, and ](A C N , there is no need to do a least 

squares fit to obtain the outstanding curves in Figure 3l. At s = 0 we can find 

J("m,h "'" 63, J(,am ,o "'" 1000. For the MeO H- water data, taking s = 1, we find the 

yalues for nh In(J(M ,O H ) and no In(J(,IJ ,OH), noting at this point that nh /no "'" .75. 

We make the assumption at this point that methanol (CH3 ) - OH ~nd acetoni

trile (C H 3 ) - C == C N are chemically the same size in the di splacement of the 

n-hexanol and n- octanol from the adsorbent. Thus, using the ACN- water dat~, we 

find for s = 1 the yalues nh In(I(A cN) and no In(I(A cN) (noting that also in this 

case nh /no "'" . 75). From the four values at s = 1, we find 

Jc,t , 0 /I "'" l.995 

J{A C N "'" 7.S72 

no "'" 4 .01S 

nh "'" 3.015. 

Very interestingly, note that the ratio nh/no "'" .75 is the same as the ratio of the 

number of carbon atoms in each alcohol (6/S), which is consistent with the pictlll'e 

of the alkyl group of the alcohol nesting into the alkyl forest of the bonded phase 

adsorbent . From this picture, we can predict the ni's and K"m ,i'S for all alcohols 

from ethanol to n- octadecanol by interpolation ruld extrapolation. A more extensive 

analysis of this and of similar problems wi ll appear in future papers. 

L ocalizing Solve nt E ffects o n Solute R e t e ntio n: Assuming a solute the 

same size (n = 1) as the solvent molecules, we obtain the isotherm (as resulting 
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from a localizing solvent) as 

q1fJ 
J('(lrn = c{3' 

or 

We find tha t 

f3 NJ(, [1 + [J(2 - 1]1fJ] + N2J(2 [1 + [](, - 1] 1fJ ] 
-

1fJ [1 + [J(, - 1]1fJ] [1 + [](, - 1]1fJ] 

Thus 

_ ]( [(NJ(, + N,J(,) + NJ(dJ(, -1]1fJ + N,J(,[I(, - 1]1fJ] 
q - ,am ([1(, _ 1]1fJ + 1)([J(2 _ 1]1fJ + 1) c, 

so the solute's effective reaction coefficient for the case of a binary localizing solvent 

1S 

1"" (1fJ) - y [(N, 1(, + N,J(,) + N, J(, [J(, - 1] 1fJ + N,J(, [J(, - 1]1P] 
" ~ If - ' .om ([J(,-1]1fJ+ 1)([J(,-1]1fJ+ 1) . 

For a case where N, = .25, N, = .75, J(, = 100, ](, = 2, In(I(;'1 / J(,am) is plotted 

in Figure 32. 

If n > 1, so that several solvent molecules are displaced by one solute molecule, 

we obtain 

so that 

In [1,';,1 (1fJ)] = In(J("m) + n[ln[(N,!{, + N2J(,) + N,J(d](, -1]1fJ + N,I,',[I,', -1]':'] 

- In([J(, -1]1fJ + 1) - In([1(, -1]1fJ + 1)]. 

The above example is shown again in Figure 33, except with n = 4. 
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The dynamical equation for the solute is easily found by obtaining oq / ot and 

substituting it in the equation 

OC OC 1 - 13 aq --
ot + v ox + -()- at = o. 

An in-depth comparison with experimental data will be giyen in a future article . 

In this chapter we ha,-e discussed binary solvents and their effects on solutes 

without solvent- solute binding in the mobile or stationary phases. In the next 

chapter higher-order soh-ent systems are discussed, along ",ith the noyel concept of 

cataly:td adsorption, which sen-es to unify notions of ion exchange and ion pairing 

in a form useful for the dynamical equations of chromatography under di scussion. 
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Fi&ure 32: E~ect cf SC·h'el:t lccaEzat:c:l C:1 solute : ~ !e::t:c' :1 : ... a::atk:1 wit:l 
n:ethc:':cl :',iC'!1! f!c.ctk,;'} 1:1 'sa!l:;i,:1 = 1, :V1 = .2.5 , N'J = .t.5, f{l = 100, j{J = 2. 
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CHAPTER 6 

Mult isolvent Systems and 

Catalyzed Adsorption Models 

Introd uction : In this chapter we will develop models for systems of more 

than two solvents. \Ve note that for such systems, if we assume that solvent behavior 

is governed by only simple displacement effects, nothing is gained by having more 

than two solvents, except possibly a larger range of solvent strengths . That is, 

selectivity, or dispersion of the solutes' retention times, is not affected. In fact, 

for each solvent added to the system (over two), a higher-dimensiona l redundancy 

is created. Therefore, if we are to have three or more solvents in a system, \I·e 

should introduce soh ·ents that interact in chemical pathways other than simple 

displacement. 

The following theoretical development includes new models appropriate for 

both normal and re\·ersed-ph~se chromatography, including effects of i011 pairi11g, 

ion exchange, bases, acids, complex exchange, and hc:ete7'on chen1.istry, all in a uni

fied framework . All these effects are classified here under catalyzed adsorption, since 

they provide alternative chemical pathways parallel to simple displacement, either 

diminishing or enhancing adsorption at equilibrium. Selectivity may be enhanced 

by altering either the mobile phase 01' the stationary phase; catalyzed adsorption 

includes both of these options. Localiza tion effects on the adsorptive surface (pri

marily associated with '·hot" silanol sites) are discussed because of the effect on 

selectivity, though these effects are not classified under catalyzed adsorption. 

First we will introduce multisolvent systems with simple displacement chem

istry, then add in localization effects, and finally discuss catalyzed adsorption. 
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Though in one circumstance a less phenomenological theory exists for a particu-

lar adsorption process (Melander and Horvath's solvophobic theory for some RPLC 

cases [34]), we choose a level of description that . can be applied to all form s of 

chromatography and easily integrated in to the proper dynamical equations . 

M ul tiso lvent Displace m ent: T ypically no more than three or four solvents 

are mixed together for a given chemical separation, so we confine the discussion to 

systems of that size. Assume that the different solvent molecules are of similar size, 

and that the volume change upon displacement (adsorption) is negligible. Then we 

can consider displncement to be described by simple binary reaction coefficients, 

expressed as ratios of mole fractions : 

where b; are the adsorbed solvent species and S; are the unadsorbcd soh'cnt species . 

Clearly, 

solving for b; we obtain 

S; 
b; = --=-'--:::-:-

S; + L j,.!; Kj; s j . 

Choosing solvent i = 1 to be the "weak" reference solvcnt (e.g., water in RPLC, 

methylene chloride in NPLC), 

U Sll1g 

S , = 1 - L Sj . 

i ~ 1 

The same form of isotherm holds for volume fractions (see Chapter 5) with different 

"equilibrium coefficients" J{;j' The reference solvent is chosen such that a ll Kjl ~ 1; 
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K j 1 = 1 implies that there is no difference 111 the displacement process between 

solvent j and solvent 1, and will force the [Kj1 - IJsj term to vanish. 

E luotropic Series : If the solvent coefficients Kjl are quite different , we may 

use three or four solvents to increase the available range of solute ](", values; the 

Kjl then provide a basis for an eluotropic series of solvents. 

Localization : A standard choice of NPLC solvent system s is now emerging 

[48J, which includes two localizing solvents. Also , in RPLC we almost inevitably 

have to contend with silica surfaces unsaturated with hydro carbonaceous ligand, 

though this effect can be largely controlled [34J. In gas chromatography, we also 

have similar localization problems [38J. Clearly, localization effects are important 

to consider. Call the two localizing solvents i = 3 and i = 4, implying that they are 

the two stronger (in NPLC) solvents - localizability is associated with the more 

polar soh·ents. (In RPLC, the more polar solvents are "weaker"). 

Suppose that there arc only two types of adsorption sites, present in proportions 

Nl and ],", = 1 - N l , respectively. Then for a four-component solvent system, we 

have 

b, - N K,\ s, 
- 11 + Lj;" [KJl -lJsj 

If solvents 1 and 2 are not localizing in themselves, then we require Iq, K~1 . 

Thus, when 54 = 83, 

b, 
1 + [K21 - 1)80 

S I 

1 + [K21 - 1J s2 

= 1- b,. 

These expressions must be rewritten if there is a possibility that s, = 0: 
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In NPLC or RPLC this is a possibility. However, the previous expression for the 

isotherm brings out the important aspects of the J(;j values . 

Solvent Isotherm Effects on Solute R e t e11tion : The solute-solvent dis-

placement 
K •• m. 1 

G + n(S . A) ;=' G . (nA) + nS 

is described at equilibrium by the constant 

I( _ qs~ 
aam 1 - bn ' 

c 1 

where we have chosen solvent 1 as the reference . Thus 

with ( 
b, ) n 

= 1(& 01»,1 - 1 

5, 

or 
P 

X ,JJ.l = X ,am ,1 [2:: N; { 51 + X~, 5, + X~, 53 + X iI 52} -1]" , 

i= 1 

",here there are P distinct localized adsorption site types, four solvents of equal 

size, and the solute being discussed is the size equivalent of n soh'ent molecules, 

Cata lyzed Adsorption: A unified scheme will now be presented that in-

eludes effects of ion exchange, ion pair, and complex exchange effects on the dis-

placement process; these effects we call catalyzed adsorption because they represent 

additional chemical pathways parallel to adsorption via displacement. Catalyzed 

adsorption can be utilized theoretically to good effect in any liquid chromatogra-

phy, though ion-pair and ion-exchange chromatography are currently done in an 

RPLC setting, 

Denote the displacement of solvent by solute as 

K. 
G + n(S ' A) ;=' G . (nA) + nS, 

Parallel chemical pathways can be introduced by two general means: liquid (mo-

bile) phase solvent- solute interactions and solid (stationary) phase soh'ent- solute 
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interactions, as follows. Note that the reactions are balanced with respect to the 

entire chemical system; though we use the same stoichiometric factor n throughout, 

it will in general be different at the various steps below. 

K, 
C + 2n(5 . A) + n5 ;=' C . (nA.) + 2n5 + n(5 . A) 

~ K, d K.2. ~ K.~ 
K. K& 

C · (n5) + 211(5 · A) ;=' (n5) · C· (nA) + n(5· .4) + n5 ;=' (n [5 · A]) . C· (nA) + 2n5 

~ 1(, ~ 1<.7 
C · (n[5 · A]) + n(5 . A) + n5 

whereby we obtain the following expressions: 

where 
d= concentration of C· (n5) 

cP= concen tration of C· (n[5· A]) 

q~ = concentration of (nA) . C . (n5) 

qb = concen tration of (nA) . C . (n[5· A]). 

We may see that J(o is the equilibrium coefficient associated with simple displace-

ment, and that J(, represents a competing pathway whereby "ion pairing" occurs 
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in the mobile phase. From the ion- paired complex, various pathways are possible 

for adsorption - here we have a schematic representation showing either that the 

complexed solvent is adsorbed first, or that the complexed solute is adsorbed first. 

The more complex the shape of the solute, the more possible paths there are parallel 

to displacement . The total adsorbed solute k p can be written in terms of the ](i 

and c, the unadsorbed solute: 

=](0 [1 + (](-1 + ](6](1 )s" + ](-lb"]c 
, 1/ '](O 3 

T rip 
= \.effC. 

Here b = b( s) is the isotherm for that solvent, which mayor ma.y not be localizing; 

also, 

I f 0 I f (b)" 
\eJ/ = \. 0 - . 

s 

Examples of log ](;~ J curves are given below . We can use the alcohol series for 

which the ](~J J were calculated (Chapter 5) to demonstrate how one might under

stand what the effective reaction coefficient would look like if methanol- catalyzed 

adsorption occUlTed along with the usual displacement reaction in methanol- water 

solvent. \\Te compare these curves with the experimental curves for some phenylala-

nine oligomers (Figure 34), which apparently are affected by methanol- catalyzed 

adsorption. Note that the correction to In ]{~J J that is due to catalyzed adsorption 

IS 

where (for methanol on C- 1S columns) ]{, = ](AI ,0 H ~ 2. In Figure 35 we see 

curves generated from the OCI = 10, oc, = 0 case, and the OCI = 0, oc, = 100 

case in Figure 36. The solu te isotherms are modulated by the solvent by raising 

In(]{'J J ) at high s values; the curve at higher s values becomes progressi,·ely more 

downturned (yet always monotonic) for larger oc,. A similar correction is apparent 
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Acetonit.rile - H3PO. 

§ 0.0 

-1.0 

\.01 Methancl - H,PO. 
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§ 0.0 ~\ 

--"-~-:~ 
-1.0 

1 ________ . ______ _ 

3.0 FFF Propan-2-ol - H3PO. 

H\ ":'"m 

F 
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20 40 GO SO 
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Figure 34 : Retenllon beha\"ior of phenyJ.al~ .iljne oligomers on C-lS bonded phase 
for yarious indicated soh"ent compositions, with orthophosphorie acid modifier. 
The dorrlain. of solyent compositions is limited by the component miscibility of 
the binary soh·ents. Shown are data for oligomers of length 1 to 5. 
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4.5 

3.0 

o 1 
!\fole Fraction 

Figure 3·5 : Effect of cc.taJyz.ed aDsorption 011 so!ut.e ise·therJ11s: variation with 
methanol rliole fraction in water , il = 3, ]{Hb = 2, f{1C::l. = 63, 0 '1 = 10, 0 '1 = o. 



105 

i 

~ 

~ 

';) 
.~ -'-,:' 

-~------.--' 

3 
a 1 

~ loJe Fraction 

Figure 36: Effect of c.atalyzed ad~olptjon on solute isotherms: variation with 
methanol mole fraction in wat.er, il = 3, }(~ol'J = 2, J<:c.':":1 = 63 , 0 ·1 = 100, 
02 = O. 
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Figure 37: Effect of catalyzed adsorption on solute isotherms: ,"ariation with 
methanol mole fr action in water, n = 3, ]{,o/IJ = 2, I<,om = 63.1 0 1 = 0, 0 '2 = 40 . 
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31··_·· .. _._ pentanol 

L ~~--.---.. -.----.--__ 
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I :~~·:'~~l-----~ ----
r----------I propanol 

.---
ethanol 

o 
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-----1 
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Figure 38: Effect of catalyzed ad,orpt ion Oll theoret ieal alcohol ,eries i,otherm" 
ethanol, propanol, but-anol, and pentanol ; variation wilh methanol mole frac.tion 
in water, ]{,olv = 2, 01 = 0, Q2 = ~O . 
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in Figure 37 where a, = 0 and a, = 40, and the alcohol series data are derived 

from the analysis in Chapter 5. Note that the alcohol seri es ' curves a re similar , with 

hypothetical catalyzed adsorption effects included, to the phenylalinine curve sets . 

In Figure 35 a ll alcohols were taken to have the same a, and a,; such is unlikely, 

but no experimental values were available . Future papers will deal with detailed 

experimental data for oligomers and alcohol series; i t appears that the theory holds 

good possi bili ties of explaining such curves. 

For situations in which ion exchange is present parallel to displacement : 

~ /{r 
C + nS + 2n(S· A) ~ C· (n[S· AJ) + n(S· A) + nS <=' (n[S . AJ) . C . (n.'1.) + 211S, 

which gives 

This in turn implies 

} ' c~ 
' 8 = - b-' 

c " 

Ai'(s,c) = q + qb + cD 

= X O [1 + (X8 )5" + X 7 X 8 b"] c 
'11 Xo Xo 

} .T i e 
= \. tfjC. 

Note that Ai, has the same dependence on s, b that A ip does, so that they are 

empirically indistingu ishable . 

In a system of fou r solvents , with the fourth giving cata lyzed adsorption, we 

could have (assuming I,;, = KL for every i,j, - i .e., solvents 1 and 2 nonloca li z-

ing) 

p 

X ,,,,, = ICa"", ['L Ni(s, +1(;, s, +X;, S3 +X;, S, t' r . [1 +a(Xj )s~ + j3(Xj )b~], 
i= 1 

so that 
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where a and f3 represent appropriate functions of the equilibrium coefficients. In an 

optimization of resolution of a system of such solutes, we would find the dynamics 

of Sj(x, t) to determine the equilibrium coefficients' actua l values for each solute. 

It should be stressed that in the above catalysis schemes, various stoichiometries 

are possible; for simplicity it was assumed that the same stoichiometric factor 11 

occurred in every reaction - generally, they seem to be different. 
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CHAPTER 7 

Controlled Dynamics: 

Preliminaries 

Introduction: There are various ways to control dynamics in chromatography, 

including varying solvent strength, temperature, pressure gradient, and substrate. 

However, the most useful and apparently effective way is to vary solvent strength 

through time as the sample solutes pass through the column; the next best way 

generally is to vary the velocity of the fluid (effected by changing the pressure drop 

across the length of the column.) We will focus our discussion primarily on solvent 

control, though in some cases in conjunction with velocity control. The idea of 

control is of course to arrive at a "better" or "best" separation, via optimization 

of control. In this chapter we introduce basic ideas of control of chromatographic 

dynamics using the simplest dynamical model. In chapter 9 we consider a thor-

ough control model, though due to the complexity of the subject, a more complete 

discussion of optimization will be postponed to later papers. 

Isocratic separations: Recall from the discussion in chapter 4 that the elu

tion t.ime for the simplest dynamical model of chromatography is given by 

(where s is solvent concentration in a binary solvent mixture) which, when undi-

mensionalized by the experiment time t"p becomes 

t, . 
T; := -" = .6.(19; + (1-19)[(;) + 0, 

t erp 

where .6. = Llvt"p and 0 = wo/t"p' This characteristic curve will be found to be 

essentially the same as the equation for the first moment (see chapter 9). 
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For a given it' component, the width of its concentration pulse can be simply 

stated in terms of characteristic curves: 

(where t." denotes the characteristic for the back of the pulse, and t/,' denotes 

the characteristic for the front of the pulse,) a constant throughout the column. 

Therefore the bisolute resolution n, given by the difference in mean positions of 

two solutes divided by the sum of their individual widths is simply proportional to 

the difference in the mean posi tions: 

Vve see that a cost function for optimization based on bisolute resolutions permits 

(for this model) independent adjustment of the reaction coefficient terms and Ll 

(the latter being usually equivalent to adjusting the mobile phase velocity since the 

length of the column usually is not considered variable.) This property may be used 

to advantage in the following way. 

If we fix a desired overall experiment time (the duration of the entire chro

matographic run) and then optimize (maximize) overall resolution - say 

., .6. 2 
2 

C=L n; = 4w
2 

L[(I1,+l -I1,)+[(I-fJ,+l)I{,+l-(I-fJ,)1<;jl , 
i i 

with respect to solvent effects on 1<" then we would obtain various n, with possibly 

a large range of values. Thus there might be a very small value of min{n,}. But 

one can rectify this by changing Ll (i.e. velocity or column length) so as to make 

the minimwll resolution component comply with a desired minimum value r,: 

and so all other nj (j i= i) scale accordingly. 
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One could also vary the velocity so as to make the n, essentially equal once C 

is maximized. Note that for each solute, its characteristic equation is given by 

so if V = Vet), we obtain 

dt 
dx 

-
(1 - t'J, )1(, + t'J, 

t'J, V 

f t. 1 fL 
V(t)dt = -;f «1 - t'J, )1(, + t'J, )dx = ([1 - t'Jll(, + t'J, )L. 

to I 0 

One is then free to select Vet), though one should limit Vet) to experimentally 

achievable values, and indeed, well within the limits determined by acceptable dis-

persive effects. 

Let us reconsider the cost function. If the overall experiment time is left un-

specified and is optimized (along with solvent concentration) it is easily seen that 

for any given velocity V or solvent strength (concentration) s, longer experiment 

times lead to higher resolutions, so we expect the experiment time to increase with

out bound in an optimization (maximization) of C. This problem might be resolved 

by subtracting the square of the overall experiment time from C and maximizing, 

but there is a compelling reason not to do this: there is no direct control over 

the minimum bisolute resolution min, {n,}, so it could conceivably be essentially 

zero. A way to handle this problem without varying the velocity (as we did above) 

is to introduce a new cost function which encourages the minimum resolution to 

be a given value; this should lead to phenomenologically better performance. To 

implement this thinking, we can try the new cost function 

11=1 

where r m'n is the specified minimum resolution, and we have weighted this objective 

proportionally to the number of components. 
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We note that the dependence of a solute reaction coefficient K .. m on solvent 

concentration s has by many researchers (e.g., [43- 48]) been taken to be 

In(K,am) = 17 - as, 

where a and 1) are solute-dependent empirical parameters. However, it is well 

documented that this relation is only approximate (though less so for small solute 

molecules in aqueous methanol solvent,) and often quite inadequate. A way is now 

presented (also see chapter 5) to relate the effective sample reaction coefficient and 

s in a less empirical manner. Our model involves the assumptions that mobile 

phase solute-solvent interactions are negligible, the solvent is present in the system 

in large quantities, so as to be well into the nonlinear portion of the isotherm, and 

competes with the solute for adsorption sites on the substrate, following a Langmuir 

isotherm. '\/ole will develop the model here, where only constant solvent control is 

considered, but the model will be in a sense more important for the gradient control 

case; this is due to the fact that our model allows us to easily include the effect of 

solvent dynamics on the sample retention, including gradient steepening, or shock 

formation . 

Assuming a binary solvent, the solvent - solute equations are, in mole fractions, 

( {Js, +Vs, +(l-{J)b, =0) 

~ 1 ~ 
l b, = "/ [s(l - b) - -}' b(l - s)] = 0 ) 

\ JO/V 

( {Jc, + V c, + (1 - (J)q, = 0 ) 

t q, = k,[c(l- b) - _ l _q(l - s)] = 0 J 
le arn 

(solvent eq uation s) 

(solut e equations) 

and consider the local equi librium case q, = 0, b, = O. Here c = c(x, t) and 

q = q(x, t) denote free and bound solute (respectively), and s = sex, t) and b = 

b(x, t) denote free and bound solvent (respectively). Above we made the implicit 
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approximations that 1 - b - q ~ 1 - b, and 1 - s - c ~ 1 - s. Note that only the 

solvent is in nonlinear quantities; the solute's second- order effects are negligible in 

the reaction equations due to the assumed small quantities present. We then can 

determine the isotherms for the solvent and the solute: 

b = SK",v 
(1(, olv - 1Js + 1 

q = K,om ([K ~ 1J + l) c. 
, o lv s 

Therefore an effective reaction coefficient I{' II can be defined for the solute: 

Note that if K",v = 1 there is no dependence of K," on s, as expected since this 

would imply there is no effective difference between the two solvents in the system. 

This gives the new relation between the (effective) reaction coefficient for the solute 

and the solvent concentration: 

In(K,,,) = In(K"m) - In(l + [K, olv - 1J s). 

In the above we assumed implicitly that it took just one solvent molecule to displace 

one solute molecule, and vice versa. For the case where n > 1 solvent molecules 

displace one solute molecule, which is often the case, we obtain instead 

which gives at steady state 

but since 

[
1 - b

J 
n 

q = I<.om -1-- , 
-s 

b = sI<,ofv 

[K",v - 1 Js + 1 
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we obtain 

q = K.om ([K.
ol

• ~ l]s + 1)" c. 

In this case, we haye the relation 

In(K,,,) = In(1(,.m)- nln([K. ol• -1]s + 1). 

If [1(,01. - l]s(x, t) < 1, this last formula is similar to the linear phenomenological 

model since In(1 + f) ~ f for f small. For K. large, there is a considerable dis-

crepancy with the linear phenomenological model, but better correspondence with 

general experimental data (chapter 5). We take this to mean that our solvent- solute 

model has experimental validity. Using this new model we can include explicitly 

the influence of the dynamics of the solvent in the effective reaction coefficient of 

the solute. 

\Ve can use the simple dynamical model giving the solutes' characteristic curves, 

which depend on the effective reaction coefficient of the solute on the substrate, to 

demonstrate optimization of isocratic control. A very simple mixture of solutes is 

used, with effective reaction coefficients as shown in Figure 39. Assuming a constant 

peak width, the minimum bisolute resolutions are calculated and plotted in Figure 

40. One can easily pick out the global maximum of the curve, at about s = .3. 

If one ran an experiment at this solvent concentration one obtains the optimum 

performance over the set of isocratic binary solvent controls, relative to the given 

cost function. 

Gradient Control: Consider for a moment what is required in the case of a 

solvent gradient control. Experimental examples of solvent gradient controls applied 

to a test mixture of solutes is shown in Figure 41. To obtain s(x, t), we need to 

solve 

.0 os Vos a ( sK .. I , ) u-+ -+-at ox at [K. ol , - l]s + 1 
=0, 
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Figure 39: ~!odulat;oll c·f reaction coefficients of three hypothetical solutes by 
binary 50h-ent, for various mole fractions of reference soh-ent . 
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Figure 40: !\1inimum resolution function for three hypothetica l solute~, showing 
local maxima at 30% and . 0% reference solvent mole fraction. 
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or 

1 [ 1 - {) K",v 1 as as 
;; +-{)-([I('o'v - l]s + I)' at + ax = 0, 

where v is the linear velocity. Using the method of characteristics, we obtain the 

set of equations 

dt 1 1 1 - {) K,o'v -=-+-
dx v v {) ([K",v - l]s + 1)" 

teO) = to 

:.: = 0, s(O, to) = <p(to) gIven. 

If we choose <p( to) to be a simple linear variation, one can solve these equations 

analytically. Note that we do not want the solvent gradient to develop into a 

shock - experimentally this results in spurious sample peaks - this corresponds 

mathematically to allowing only one solution to a cubic equation in the variable to: 

i.e., the discriminant of the cubic must be positive. 

Solvent Shock Constraints: VlTe find the characteristic curves for the solvent 

are then 
s = constant = <P(to) 

() ( 1 1 1 - {) K.o'v ) 
t x = ;; + ;;-{)-([I('o'v -l]<p(to) + I)' x + to· 

Shocks will form if the chosen <p(to) is increasing; it is important that shocks do 

not form inside the column: x < L (see the introduction). To find the location of 

the shock, we describe two characteristic curves: (i) one passing through a given 

t,(O) = to and (ii) one nearby, passing through t,(O) = to + .6.t: 

(i) () ( 1 1 1 - {) K",v ) 
t, x = ;; + ;;-{)-([K.o'v -l]<p(to) + 1)' x + to 

(ii) () ( 1 1 1 - {) K",v ) .6. 
t, x = ;; + ;;-{)-([K.o'v -l]<p(to + .6.t) + I)' :1: + to + t. 

The envelope of intersecting characteristics is found by subtracting (i) from (ii), 

where we take t, (x · ) = t,(x·): 

1 - {) K.o'v [ 1 
0= -{)---v- (1 + [K",v - l] <p(to + .6.t))' 1 1 x· + .6.t. 

(1 + [K,o'v - ll <p(to))' 
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o 

o 10 20 

Time (~lil1utes) 

Figure 41: Test mixture separat.ed with indicat.ed :;.olyent gradients. The top 
~radient is acetonit.rile - water, and t.he bottom two gradients 111ethanol- water. 
All gradients are from 0% to 100% organic soh"ent. A.dapted from Schoenmakers, 
Billiet, and de Galan []. 
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Dividing by 1-' 6tK ",. we have . , ' 

__ t'J ___ v_ = ~[ 1 
1 - t'J ](.0" ~t (1 + [](.o', - 1J r/>(to + ~t))2 

1 J . 
(1 + [](.o', - 1Jr/>(to))2 x , 

then taking the limit ~t ---+ 0, we obtain 

{) v d ( )-2 
-1 _ {) -I' = -d 1 + [](.o', - 1Jr/>(to) x 

\J()/V ,to 

= -2x' [](,o', - 1Jr/>I(to)[1 + [](.o', - 1J r/>(to)J-
3 

so that the value x' at which the shock occurs is 

x · [1 + [](,o', -lJr/>(to)J
3 

r/>I( to) 

Since the shock is not allowed inside the column, we require x' > £; thus 

[1 + []("" -lJr/>(to)J
3 

1- {) 2£ 
-'--'-=-::---:--,-'--:--:----'-'-- > ---

](;0" r/>I( to) - {) v 

is a constraint on the choice of solvent, gradient slope, and concentration. 

For example, if one chose a linear gradient 

() 
II -10 

r/> to = to + 10 
YI 

for 0 :s: to :s: YI, the resulting constraint on the control parameters would be 

[1 + [K"" - 1J(=to + 10)J 3 1 - t'J 2£ 
y, >---

]( 2 ( lJ...=..I.2. ) - {) v· 
JO/v Yt 

For such a choice in q,(to) we have q,(0) :s: q,(to); for this choice in gradient to IS 

eliminated: 
[1 + [](,o', - IhoJ 3 1 - {) 2£ 

2: -{)--;-. ](2 (0' -00) 
.folv Yl 

Of course, the constraint is released when II = 10. Indeed, as long as q, is strictly 

monotonic in to, we have 

[1 + [K,o', -lJq,(0)J
3 

1- {) 2£ 
-'-----',-=:'-'-.,--,-'--:--:--'-'- > ---

Y' -" - t'J v' \"olv"Pm(Jx 
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or more generally 
[1 + [[{. o/, - 1]¢m;n]3 > 1- {) 2L 

Y' ,,-, - {) , 
\.,oltJ1.pm(1~ V 

where 

There are some other introductory points to discuss concerning control func-

tion specification. For a linear gradient of solvent, we need to find a beginning 

solvent concentration 1'0 (at time t = 0,) the final solvent concentration 1'" and the 

"gradient time" T, which defines the slope cf the gradient: 

gradient slope 
1', - 1'0 

Let f, denote the time at which the slowest solute elutes from the column. One may 

find a unique soh'ent characteristic TO (x) which at x = L satisfies TO (L) = 1-,. Call 

the value TO(O) the control tim e. For a well- defined 1'0, the sample is released into 

the column at t = 0 with simultaneous solvent concentration 1'0. For a well- defined 

1', the gradient time should be taken to be identical to the control time: 

Thus the solvent concentration that the slowest solute experiences as it elutes from 

the column is 1',. Note that if T, i To(O), 1'1 would of course not be the actual solvent 

concentration at the time of slowest solute elution , giving undesireable redundancy 

in the mathematical system through an ill- defined control function. Indeed, for 

arbitrary ¢(t), one must make a similar definition as was done above for the control 

time. 
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CHAPTER 8 

Perturbation Theory for Liquid Chromatography 

Introduction. Perturbation theory can be applied very effectively and appro

priately to HPLC models. In this chapter we cover two different developments of 

perturbation theory for the record, the first (Giddings' method) more of a heuristic 

method. The preferred development is don~ in chapter 9; the reader may skip to 

chapter 9 without loss of continuity of argument. 

The reason that perturbation theory works is primarily due to the nature of 

modern column technology, which to a large extent prevents much sample or solvent 

concentration peak spreading, so one typically can express the effects from mech

anisms such as intraparticle diffusion, fluid film mass transfer, and nonequilibrium 

reactions as p erturbations of more easily solvable "equilibrium" dynamical equa

tions. Recall that the sample solute equations are assumed linear due to the small 

sample concentrations, and though the solvent equations are nonlinear no solvent 

shocks are allowed to occur in the chromatography column, (effectively preventing 

spurious peak formation). Without the use of perturbation theory the controlled 

dynamical equations (having variable coefficients) are at best very tedious to solve 

and use, and apparently do not offer significant improvement over the perturba

tion solution. Finally, one may use representations of the perturbed solute control 

equations ' solutions in the calculation of the "cost" functional in turn used for opti

mization of the control. In such a manner one h as more control over peak spreading, 

primarily through the steepness of the solvent gradient. V/hile kinetics, diffusion, 

dispersion, and fluid film mass transfer processes widen the solute peaks, solvent 

gradients of increasing concentration of the solvent component with larger reaction 
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coefficient will cause the solute peak to narrow. This is a result of the rear of the 

solute peak experiencing a higher solvent concentration than the front, so the rear 

is moving fas ter than the front. 

There are three ways we can obtain equilibrium solution perturbation terms. 

Giddings [11] originally found perturbation solutions for the uncontrolled linear 

kinetics and intraparticle diffusion cases, using a somewhat heuristic method derived 

from his research on flame diffusion- reaction flow systems. V.fe review one of his 

solutions, extend it to the solvent- controlled case, but do not go further because 

the method does not suit the ultimate purpose in obtaining the perturbed equations 

- this will be discussed later. The other method we use in this chapter is simply 

from the standard perturbation techniques for parti al differential equations ( e.g . , 

Nayfeh [36], Kervorkian and Cole [26]), applied to the controlled dynamics equations 

(variable coefficients). These latter perturbed equations have not been reported 

before ill the li terature. Vie then show that they hayc a special structurc which 

generically allows mass conservation in the· system, something Giddings' resulting 

equations do not possess. Equations for the first two moments (peak location and 

width) are found , which are surpri singly simple, and allow effective optimization of 

the system. The third and best method, called moment integration by pa7·ts will be 

used to derive the "full" moment control equations in chapter 9. 

Giddings' Method 

Giddings and Hirschfelder [11,12] developed a method of determining the amount 

of spreading of a solute concentration pulse due to nonequilibrium effects and mass 
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transfer. They noted that in actuality the stationary phase concentration profile 

lags behind that which exists at exact equilibrium, and the mobile phase concentra

tion profile is displaced ahead of the exact equilibrium profile. That is, ahead of the 

center of the concentration profile the mobile phase concentration is greater than 

that of what would be expected at equilibrium, and behind the center of the concen-

tration profile the mobile phase concentration is less than the equilibrium amount. 

Further, the rate of migration of the solute overall is proportional to the mobile 

phase concentration at any point. If R denotes the fraction of solute molecules 

in the mobile phase at equilibrium, the solute's mobile phase ahead of the profile 

center is actually travelling at a greater rate than Rv, where v is the linear velocity, 

and the mobile phase behind the center of overall concentration is travelling at a 

lesser rate than Rv. Thus the solute's overall concentration profile is widened, the 

the rate of which depends on the degree of nonequilibrium. Note that the larger v 

is, the more pronounced the nonequilibrium effects are. 

One-s ite adsorption kinetics: constant solvent concentration. Though 

one can develop a theory for multiple types of adsorption sites, we only consider 

the solu tion process for adsorbents with a single type of adsorption site. Consider 

the concentration e(x, i) , the amount of solute per unit yolume packing material, 

equal to the sum of solute per unit volume of column packing in the mobile phase 

em and stationary phase e,. At complete equilibrium , we label these terms c;" and 

e; . Next we introduce the "equilibrium departure" terms f m , f, via 

so that 

c' m 

c, = c; (1 + f,), 

\Ve assume tha.t f ; « 1. The sum of the component concentra.tions in both cases 
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IS C: 

c, + ern = c, c: + C:n = c, SO C, + em = C; + C:n . 

Thus 

or so that 

c:n Em REm 
f, = --- = ----. 

c" 1-R • 
Through adsorption and desorption, the rate of mass transfer between phases in-

creases as nonequlibrium increases. For the mobile phase this rate of transfer is 

( 
dCm ) 

Sill = dt ml' 

the rate of increase in Cm purely due to m ass transfer; thus 

for the linear theory. At equilibrium, 

Then 

Eliminating €, , 

Then we relate Sm to flow properties. From the conservation of m ass , we obtain 

( 
dCm ) 

+ dt flow' 



where 

so we have 
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( dcm ) 

dt "ow 

aCm 
=-V--, ax 

aCm a 
aT = 8 m - V aX Cm , and 

aCm a 
8 m = aT + V ax Cm 

[ ac;" a.) [ aEm c;" 
- aT + V ax Cm + aT 

ac;" a. 
"" aT + V ax Cm , 

neglecting the terms of order Em . Now by definition, C:n = Rc, and the mass 

conservation equation for C is simpler; mass transfer effects leave C = Cm + c, 

unchanged. Thus any net gain in C in a control volume is due to influx of mobile 

phase: 

ac a 
- - - v-c aT - ax m 

= -V aa [c;" (1 + Em)) "" -V aa C;". 
x x 

But since C;l = Rc, then R- 1 a:; = ;; , so we now have 

Earlier it was found that 

so now we have 

ac;" "" _ Rv ac~, . th us 
aT aT ' 

ac· a 
m + . 

Sm = aT v ax em 

R 
a. a. 

~ - v-c +v-c ax m ax m 

= v( l - R)~c;" ax 

-c;" (k, + k,)Em = (1 - R)v :x c;", which implies 

(1 - R)v a (1 .). 
k k a nCm " +', x 
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(Note that Em is positive at the front of the concentration peak and negative at the 

back, as per the intuitive discussion earlier.) 

Thus 
(1 - R)v a . 

- k k a em' " + '. X 

= c~ 
R(l - R)v a . 

- k. ax em' 

The last step derives from 

(k, + k.)lk. = 1 + k, k. = 1 + e; Ie:,. = ele:,. = 11 R. 

Thus the nonequilibrium dynamics can be approximated by using only the equilib, 

rium solution. 

AdsOl'ption kinetics: variable solvent concentration. Vve can also apply 

Giddings' method to the case where the solvent is varying, implying that k" k., 

and R all depend on x, t. Much of the analysis is unchanged from the previous 

derivations; we find that 

but now, since e:" = Re, 

so that 

Hence 

implies 

ae:" = a(Re) = e aR + R ae, 
aT aT aT aT 

ac a • -::::::: -v-c 
aT ax m 

ac:" ~ c:" aR _ vR~c. 
aT R aT ax m' 
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and so 

aC· a 
8 m ~ ---!!!... + V -C· 

aT Ox m 

c;" oR a. a 
Sm '" -- - vR-c + v-C· R aT ax m ax m 

c;" aR a • 
= R aT - v(l - R) ax Cm • 

Therefore 

c;" aR 0 
'" --- - v(l - R)-c· 

R aT Ox m' 

and so 

1 aR (1 - R )v a I ( • ) 
Em '" - R( k, + k f ) aT - k, + k, ax n Cm 

_ __ 1 aR _ R(l - R)v a I ( . ) 
- k,) aT k, ax n Cm , 

again using 1/(k, + k,) = Rlk,. Finally, 

c;" aR R(l - R)v a • 
- k. aT - k, ax Cm • 

Since k" kf depend on t ime through the mobile phase solvent concentration s(x, t ), 

we can use 

aR dR as ---OT ds aT' 

Standard Perturbation Techniques. The equations of chromatography 

have been written down in previous sections, but for clarity they will be summarized 

here. VVe denote the mobile phase solute concentration by c(x, t) and stationary 

phase sample concentration by q(x, t). The mobile phase solvent concentration is 

denoted by sex, t) and the stationary phase solvent concentration by b(x, t ). Con-

centrations of solute and solvent internal to porous substrate particles are denoted 

by c and .s respectively, both dependent on ", x, t. 



The solute equations are 

with boundary conditions 

and initial conditions 
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c(O, t) = ¢(t) 

c(·,t) E L,(O,oo), 

c(x,O)=o 

c(x,O) = ° 
c('·,x,O) = ° 
q(,·,x,O) = 0. 

At equilibrium we obtain the linear isotherm 

q = J(,Jj (x, t)c. 

(See chapter 5.) If the particles are not considered porous, the intraparticle diffusion 

equation is eliminated and the 

3(1 - {))Dp oe I 
R{)v orl,=R 

term in the first equation is replaced by 
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The solvent equations are (concentrations measured in mole fractions) 

with particle boundary condition 

and initial- boundary conditions s(r,x,t) = s(x,t) 

s(O, t) = <I>(t) 

s(x,O) = constant 

5(X,0) = constant. 

b(r, x, 0) = 0. 

Note that, whereas [(,am is dependent on x and t, vi" its dependency on s(x, t), 

[(", is constant. The diffusion coefficient Dp and diffusion coefficient D, will be in 

general different for solvent and each solute. At equilibrium we obtain the isotherm 

--:-;;--l_{..: • .:,o ',-;5-:--:q - ." 
- [[(' 0' - 1js + l' 

Again, if the particles are not considered porous, the intraparticle diffusion equation 

is disregarded and the 
3(1 - {))Dp os I 

R{)v O,·I,:R 

term in the first equation is replaced by 

These equations will now be investigated for the cases of one rate-limiting 

mechanism at a time. Dispersion effects will not be considered here; in chapter 9 
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they will be dealt with. In each solute case, the equations first will not be solved 

for constant 1(" , , which solution is easily obtained from the variable 1(" , case. 

Solute Equations: equilibrium r eaction, intraparticle diffusion, no 

fluid film mass transfer, variable 1(,,,. The continuity equation is 

1 oc OC 3(1 - 19)D p OC I _ O. 
;;- ot + Ox + R19v or I,=R - , 

the intraparticle diffusion equation is 

(J0C + oq -D r_'~"'oc =0 
ot ot P or or 

which can be written as 

!:.(J0C + L oq _ L D
p
"-' ~,., OC = 0 

v ot vot v or or 

or, introducing normalized variables T = 'Z, (= x/L, and (! = r/R, 

Here we ha\'e set what we call the packing number c = dp/ L and the Peele t number 

P e = ~. vVe assume q = 1(" , C. ' ''Ie also assume f « 1, where f = cPe/4, and 
• 

substitute C = Co + fC, + f'C, + .. . into the dynamical equations to find a regular 

perturbation series: 

(J 0 (" " , " ) 0 [}' ( " " '" + )] OT CO + fC, + f C, + . .. + OT ~ ," Co + fC, + f C, • •• -

1 ,0 ,0 (" " '" ) 0 - (! - '" rl" '" Co + fC, + f C, + . .. = . 
f VI! vI! 
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Equating like powers of f, we obtain 

which implies that 

-2 0 2 0 
A e -e -co = ° oe oe 

>'0 = 0, 

Co = c. 

but from the above result, Co = c, so 

so that 

implies 

>'0 = 0, 

e' 8 . A 

--8 [,Bc + 1(", c] + >'1 = Cl 6 T 

or, substituting in the result for Cl 
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Now integrating, we obtain 

but the boundary condition 

implies Ao = 0, so that 

and it is not necessary to find (;, . 

Evaluating the deriyatives ¥:- 1,= l ' we find 

1 - ,J 1 . I _ 3(1 - ,J) 1 {o f a [fJ }( 1 
---CI - +-- c+ ",C ,J f ,= 1 ,J f 3 or 

The combination of continuity and intraparticle diffusion equations then yeilds 

[ 
1 - ,J (fJ Y 2f oK" , )] oe oe 1 - ,J [OK,,, f A' K ,,, ] 

1 + -,J- + \ 'J/ - 15 or or + o( + -,J- or - 15 or' e 

_ 1-,J -=-[fJ+K"lo2 e =0. 
{) 15 'or' 

This form of dynamical equations indicates any pulse ini tial data obviously 

will travel while spreading. Note there seems to be a source term (the zeroth- order 

deri vati ve) - howe\"er, as we soon will see, the "source" tenn serves to cancel the 

perturbed "wave veloci ty" and a "source" term from the diffusion. This will be 

clear once the special structure of the equation is seen. If we label 

A(> ) - 1 - ,J (fJ K _ 2f oK" , ) 
<" r - 1 + {) + ' J/ 15 or 

1-,Jf 
B(e r) = -{)- 15 [fJ + K " ,], 
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then the dynamical equation becomes 

oe oe oA A' B a' e 
A(~,T)OT + o~ +{ aT + aT' }e-B(~,T)OT' =0. 

One must retain the fundamental assumption of mass conservation; here it is not 

immediately clear that it is retained. It is easily shown that mass is conserved by 

integrating the equation throughout time, keeping in mind that the solute pulse 

is very narrow, so coefficients A and B are essentially constant over the nonzero 

portion of the pulse, located at T = T' (0: 

1'" oe 1'" oe 100 

aA 0
2 
B A(CT)."dT+ ",~dT+ {"+..,,......,}edT 

o uT 0 U,,:- 0 uT uT 

1
00 a? 

- B(~, T) o~~ dT = O . 
• 

In tegrating by parts, with 0 ::; ~ ::; 1, then 

100 

A(CT) ~e dT = [Ae]:;" - j''' ~A edT 
a uT 0 uT 

oA 100 

"" --(CTO) edT 
aT • 
oA 0 

= - aT (C T )m •. 

100 a2 e ae 100 aB ae 
B(~,T)a 2 dT =[B-

a
]:;" - -a -a dT 

oTT 0 T T 

1'" ae a 100 

adT "" a edT . ~ ~ . 
am. 

=8{' 



J'" aA a' B 
{-+-}edT 

o aT aT' 
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aA a' B J '" ""{-a (~,TO)+-a ,(~,TO)} edT 
T T 0 

aA a'B 
= {aT (CTO) + aT' (CTO)}mo. 

Thus the total mass satisfies 

aA a' B a aA a' B 
- aT (CT o)mo + aT' (~,TO)mo + a~mo + {aT (~,TO) + aT' (~,TO)}mo = 0 

or simply 

amo = 0 
a~ , 

so mass is clearly conserved in the dynamical equation. The location TO (0 is just the 

first moment: 1-'; (0 = TO (0 (see appendix A for a discussion of moment techniques). 

Next we wi ll determine the dynamical equations for 1-';. Multiply the dynamical 

equation by T and then integrate: 

J'" ae J'" ae J'" aA a' B TA(~, T)-a dT + T-a dT + r{ -a + -a ' }edT 
o T 0 ~ 0 T T 

J'" a'e 
- TB(CT)aT ,dT=O. -

o 

Integrating by parts, similar to the calculation for m o: 

J '" ae J '" a TA(~,T)-a dT = [TAe];;" - -a (TA)edT 
o T O T 

aA J'" J'" "" --a (C TO) TedT - A(C TO) edT 
T OO 

= - ~~(C TO )ml - A(C TO )mo. 

J'" ~e & J'" a & TB(CTh;-,dT = [TB,,]~ - "(TB),,dT 
o uT uT 0 uT uT 

8 J'" 8' = -[8T(TB)e]~ + 0 aT' (TB)edT 

aB J '" "" 2-
a 

(~, TO ) edT 
T 0 

a'B J'" + aT' (~, TO) TedT 
o 

_ ?8B(c 0) a'B(> 0) --a ~,T m o + a "T mi' 
T T' 
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Joa f} f} J"" 
o T f}~ dT ~ f}~ 0 TcdT 

f}m, 
-Bf' 

Joa f}A f}'B 
o {f}T + f}T' } TcdT 

f}A f}'B J oa 
~ { f}T (~, T") + f}T' (~, T")} TcdT 

o 

= (~ A(CT")+ ~'B(~,T")}m,. 
uT ur2 

Thus m, satisfies 

f}A f}m, f}A f}' B 
- A(C T" )mo - f}T (C T" )m , + Bf+{ f}T (~, T") + f}T' (~, T")} m, 

f}B f}' B 
- 2",(C T" )mo - ,,---(~, T" )m, = 0 

uT UT 2 

or simply 

but 1-'; = m, /mo and T" = 1-';, so 

Thus for the case where the equilibrium dynamics are perturbed by intraparticle 

diffusion, 

Next we will determine the dynamical equations for 1-',. Multiply the dynamical 

equation by T' and then integrate: 

J
oa f}c J oa f}c J "" f}A a'B 

T' A(C T )"dT + T' "dT + T' { '" + ~} edT 
o uT 0 u~ 0 uT uT 

Joa a'c 
- T' B(~, T) aT' dT = O. 

o 

Integrating by parts, 
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Thus m, satisfies 

-2.4(C IA )m, - :r .4(~, 1-'; )m, + ;~ m, + { :r .4(~, 1-';) + ~~~ (C I-';)} m, 

-2B(~, 1./, )mo -4 aaB (~, 1-'; )m, - aa' B (C 1-'; )m, = 0, 
r r' 

or simply (since 1-': = mdmo) 

d d, d ( ')' 
d~ 1-', = d~ f.L, - d~ f.L1 

implies 

For the case where the equilibrium dynamics are perturbed by intraparticle diffu-

S10n, 

For a typical gradient solvent control, K" I is monotonically decreasing - one can 

thus slow the growth of 1-'2' 
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Solute Equations: nonequilibrimTI reaction, no diffusion or fluid film 

mass transfer, variable K 'I I' Here the relevant continuity equation is 

The reaction kinetics equation is 

aq L 1 - = -kl [(1 - b)e - --q(1 - s)] aT v K,am 

which can be written as 

aq 1 
€- = (1 - b)e - --q(1 - s). aT l(, am 

Where 
v dp v 

€ = k L = L k d = cSt" 
1 , p 

c is the packing number, and St, is the kinetics Stanton number. (Recall K,am = 

k,/k,.) We let T = vt/L and ~ = x/L. Now, assuming that € «: 1, we substitute 

q = qo + €q, + €' q, + . . . into the dynamical equations. Though this is truly 

a singular perturbation problem, we only consider the outer (regular) expansion, 

since the singular part of the q expansion is associated with initial conditions and 

very small times. The continuity equation gives 

ae ae 1 - {) a , - + - + ---(qo + €q, + € q, + ... ) = o. aT a~ {) aT 

The reaction kinetics equation gives 

Equating like powers of €, we obtain 

o (1 - b) 
€ : go = ( )K,am e 

1 - s 

ago 1 
€' : - = ---(1- s)q, . aT l(,am 
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Combining these last two equations we obtain 

q, = _ K,'am a [1 - bel = 
(1-S)aT 1-s 

Thus the combination of continuity and reaction equations yeilds 

Collecting terms, 

This perturbed equation fits the generic equation type introduced in the last 

section, with 

( 
, ) 1 - {} r 1 - {} a (J(,am )}r 1 - {} J(,am a r 

A ~,fl, = 1 + -{}-J\ " , - €-{}--a -- \", - 2€-{}----a J\.'f! T 1-s 1-s T 

and 

B( t ') 1 - {)( J(,am )F 
"fl, =€-{}- (1-s) "f! 

Thus the dynamics for fl', (0 and fl,(O can be determined with the same generic 

equations, which for this case are 

a/-,; 1-{)}( 1-{}}( a K,am 
a~ = 1 + -{}- 'f! + €-{}- ," aT 1 - s 

afl, 21 - {}}r J(,am 
- = --f lel!--
a~ {} 1 - s 

Note the location fl; of the concentration pulse is perturbed slightly by the kinetics. 

For the case of the solute being equivalent to n solvent molecules, in the above 

equations replace (s - 1) with (s - 1)", and the appropriate K",. 
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Solvent Equations: equilibrium, intraparticle diffusion, no fluid film 

mass transfer. Vve will find the regular perturbation to the solvent equation, since 

the singular part only is important where the second derivative is large - i.e ., at 

shocks and "corners" of the control forcing . Recall that shocks are disallowed in the 

solvent profile within the column; also, with small perturbations we can do without 

the minimal corrections to the [('11 obtained by equilibrium theory entirely -

the equations presented below are included just for comparison with the solute 

equations, and that indeed intraparticle diffusion affects the solvent also. 

The continuity equation is 

1 as as 3(1 - fJ)Dp as 
;;; -a t + -o-x + -'----:R=-fJ-=-v-'----"-- Or 1 -0 

Ir=R - . 

The intraparticle diffusion equation is 

which can be written as 

Las LOS L3(1 - fJ)Dp as --+ -+ 
v at ax RfJv a" 

L (J0s + Lab _ L D ,,-2 ~r2 aS - 0 
vat vat v P oror-

or, for r = tvlL, ~ = xlL, e = rlR, 

Also, we aSSUlne 

so that 

as + as + 3(1 - {J)LDp as 1 _ 0 
or o~ R2v oe 1,=1- . 

(30S + ob _ LDp e-2 ~e2 aS = O. 
or aT VR2 oe oe 

b = K",s 
1 + [K", - l] s 

ob ~o, as 
-

or (1 + [~ o, - 1]s)2 or' 
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Now, if e ~ 1, where 

we substitute s = So + es, + e's, + ... into the dynamical equations: 

P o(, , " ) o[ l( .. ,(so+eS,+e's,+···) 1 - So + es, + e s, + ... + - -or or 1 + [l( .. , - 1](so + es, + e's, + ... ) 
1 ,0 ,0 (' , " ) -12- -;:;-12 -;:;- So + es, + e s, + ... = O. 
e ue ue 

Equating like powers of e, we obtain 

_, a ,0 , 
12 -12 -So = 0 oe 012 

which implies that So = s (a constant with respect to e), using the same argument 

as for the solute. 

1 0 [ l(, s 1 
e : ar ps + 1 + [l(, - 1]s 

then integrating: 

12
3 a [ l(, s 1 

3 ar ps + 1 + [l(, - 1]s 

_, 0 ,0 , 
= 12 aee ae s" 

\ ,as, 
+AO = 12 -

012 

where Ao is a constant, but then the boundary condition 

implies Ao = 0, so 

12' a l(. s ] 
"6 ar fp s + 1 + fl(, _ 1Js + A, 

implies that (noting S, = 0 at 12 = 1) 

12' - 1 a l(, s 
S, - 6 or [ps + 1 + [l(, - 1],1 

1 a [ l(.s, )'] 
e : ar ps, + (1 + [l(, - 1]s -

_, a ,a , 
= 12 aee a/" 
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or, substituting in the result for 8" 

rl - 1 a ( 1<, a 1<, s ) 
6 aT [,8 + (1 + [I<, - I]S)2] aT [,8s + (1 + [I<, -1]S)2] 

-2 a 2 a _ 
=e ae e a/2' 

Now integrating, we obtain 

e5 e3 a ( 1<,] a 1<, s ) 
(30 - IS) aT [,8 + (1 + [I<, - l]s)2 aT [,8s + (1 + [I<, - I] S)2 ] 

A 2 aS2 
+ 0 = e ae' 

but the boundary condition 

implies Ao = 0, so 

and it is not necessary to find S2' 

Evaluating the derivatives I!f:- I r= l' we find 

3(1 - 19) 1 as, I 

19 ~ ae 1'~1 

The combination of continuity and intraparticle diffusion equations then yeilds 

1 - 19 1<, as as 4E 1 - 19 (I<, - 1 )1<; (as 2 

{I + -19-(,8 + 1 + [I<, - I])} aT + a~ + 15 19 (1 + [I<, - l] s)5 aT) 

1 - 19 E 1<2 a2 s 
--- ' -- 0 

19 15 (1 + [I<, - l]s )4 aT2 - . 

Note that this is a singular perturbation !)roblem, typical of the form of equation 

obtained when dispersion, fluid film mass transfer, or kinetics perturb the solvent 

system . It can be dealt with as a regular perturbation problem, ignoring the initia l 

boundary layer, unless shocks are allowed in the solvent system. If shocks are 

disallowed, one simply uses the method of characteristics to solve the resulting 

hyperbolic subproblems. This will be considered at length in future papers; for 

most problems we simply use the unperturbed dynamics for the solvent equation, 

as appears in chapters 2 and 9. 
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CHAPTER 9 

Moment Control Equations 

'iVhen solvent concentrations are allowed to vary, the solute reaction coefficient 

can no longer be considered to be constant, so that the dynamical equations have 

variable coefficients. This renders Laplace transform techniques ineffectu al for ob

taining useful expressions for the moments . We found a method superior to Laplace 

Transforms for obtaining the moments from the constant coefficient equations, that 

can be applied effectively to the variable coefficient equations also, yielding ex

tremely useful first- order ordinary differential equations for the moments. We will 

ca ll thi s technique moment integration by pa,·ts since it relies on integration by 

parts of the dynamical equations, and to denote its difference from other extant 

techniques. Moment integration by parts is the m9st economical way of finding 

moment equations for pulsed systems. In the following development, the equilib

rium reaction coefficient, diffusion coefficient, and other t ransfer coefficients will be 

considered variable, but the reader may easily see the corresponding solution for 

the constant coefficient case. 

Central to the solution of the variable coefficient case is an understanding 

that coefficient variability comes from ch anges of solvent composition, pressure, 

temperature, or velocity on a much smaller time scale that the solute concentration 

pulse width. Therefore, one can m ake the very important assumption that, over 

the scale of the solute pulse width, the coefficien ts in the dynamical equat ions are 

constant . 

The reader unacquainted with definitions of the moments and their significance 

to pulse analysis in chromatogr aphy is referred to appendices Band C. Also, we 
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need to clarify some aspects of one of the dynamical equations, concerning solute 

adsorption kinetics modulated by solvent concentration (see also chapter 5): 

8 1 
€-q = (1- b)e - --(1 - s)q 

8T K.am 
1 

= -y-(K'ff e - q)(1 - s) . 
• am 

Note that 8q/8T = 0 when either q = K eff e (reaction is at equilibrium) or when 

s = 1 =} b = 1 (adsorbent is saturated with the strong solvent). The latter case does 

not represent local equilibrium; a t solvent saturation of the adsorbent the solute has 

no chance to adsorb. Since this is not a useful situation, we require that s < 1 and 

hence that b < 1. Actually, keeping in mind the approximations made in deriving 

the solute isotherm, we require 1- s > e and 1- b > q. Thus it is important for the 

validity of our model to consider s :;:: .95. Also, in RPLC it is typically necessary 

to keep at least a few percent organic component in the solvent to keep the bonded 

phase adsorbent "solvated" (see chapter 5), so we require s 2': .05. 

Now we proceed to derive the moment control equations. The most general 

form of equations considered here include solvent equilibrium modulation of the 

solute reaction coefficient, and perturbative spreading of the solute pulse due to 

reaction kinetics, interparticle and intraparticle diffusion, and fluid film mass trans-

fer. All parameters may have dependence on solvent composition, though velocity 

dependence (due to changing viscosity) demands a different form of the dynami

cal equations (where v is not included in the independent variable), which will be 

treated later. The equations are (recall ~ = x/L, T = Lt/v , 12 = 1"/ R) 

8e 8e 3( 1 - t9) 1 8e - + - + -'----;;--~ 
8~ 8T t9 €p 812 

with boundary conditions 

8'e 
1 _€ - = 0 
1.= 1 ' 8~2 ' 

e(~, 0) == 0 

e(O,T) = f(T) 

e(-, T) E L,(O, 00), 
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oc 1 - 0 oe 1.=0 -

Soc 1 = c - c, 
Oe 1.= 1 

€. oq = (1- b)c __ 1_(1_ s)q. 
aT J("m 

The dimensionless parameters are defined by 

R2 v d;v 1 
€p = -- = -- = -cPe 

D,L 411,L 4 
v c 

€k =--=-
Lk,o, St, 

S D, 2D, 2 
= k,R = k,dp = Sh 

c 
S€p = 2St, 

D,L c 
€, = va = {)Pe

p 
, 

where Pe is the Peclet number, Sh is the Sherwood number, St. is the kinetics 

SI,anton number, St, is the fluid film mass tronsfer Sianton number, Pep is the 

)Jacking Peclet number, or Bodenstein number, and we call c the )Jacking number. 

Note that since D" v, and Pep vary with s, so do all of the above dimensionless 

quantities except c . In HPLC , usually c ~ 10- 4
, so this limits the size of the 

multiplicative dimensionless quantity if perturbation technique is to be useful. In 

the following derivation, we use the moment notations 

m;(O = J= r'c((,T)dT, 
o 

"'<(0 = J= T'C((,T)dT, 
o 

1';(0 = J= T'q((,T)dT, 
o 
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Calculation of m~: The equation 

f.!"'q = (1 - b)e - +-(1 - s)q aT /\..om 

J'" v J'" 1 J'" f. aqdT= (l-b)edT--
K 

(l-s)qdT. 
o T 0 .am 0 

A$suming s, b varying slowly over the concentration pulse for e, q, and using inte-

gration by parts, this gives 

o = (1 - b )'n~ - J( 
1 

(1 - s )p~, 
• a n1 

Then, 

gives through in tegration by parts 

a 2 V -, 0 
V(/! VI? mo = , 

so that 
V _, 10 
"mo = ug g2 

=> 10 = 0 from the boundary conditions. 

Thus m~ is constant with respect to I? From the fluid- film mass transfer equation, 

we then obtain 

I ,-, I - 0 
Iq=1= 1nO -mo 1{l=1-

for all CT. Now, from the continuity equation 

we obtain 

_vc + _vc + _3('-.1-:;--_t'J-,-) 1 Oe 
of., OT t'J fp VI? 

I 
Ig=l 

=> 
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so that dm~ _ dm~ 1 (~") 
d~ - d~ 10 exp f, ~ . 

Since c(-, r) E L2(0 , 00) (physically, mass is not added to the column), we must take 

d~; 10= O. Thus m~ = constant throughout the column (i.e., for all O. 

Calculation of m;: The equation 

f. ~q = (1 - b)c - _1_(1 - s)q or I<.am 

j - ~ j - 1 j -
f. r-o dr = r(1- b)c dr - -I' r(1- s)qdr. 

o T 0 \,am 0 

Assuming s, b varying slowly over the concentration pulse for c, q, and using inte-

gration by parts, this gives 

but since 

and also 

which implies 

-fd)~ = (1 - b)m; - I< 
1 

(1 - s)p;, 
,am 

, }{ . , 
Po = eJ J 1no, 

(3 ' }' , 1 -2 a 2 a ., - m - \ fJ m - -I] -I]-m 
o , 0 fp a I] a I] , 

=0 

2 ((3 }( )' a 2 a ". 
-fp I] + ' fJ 171 0 = -a I] -a m" 

I] I] 

integrating and using the boundary conditions, 

I] ((3 }' )' o. , 
-fp - + >," mo = -a m,; 

3 I] 

From the fluid- film mass transfer equation, we then obtain 

cO" 1 -' " 1 -0 °ol]m, 1 -m, -m, 1 -q= 1 q= 1 
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which gives 

which gives the value of the constant /' j hence 

- , ' 6 1 (f3 r ) ' 1 - 1/ (f3 r ) , 1n,=In,+ €P3 + \" , Ino+€p 6 + \" , Ino 

and so 

Now, from the continuity equation we obtain 

am~ , 3(1 -19) 1 arh', 
7if - Ino + 19 €p 01] 

which upon substitution becomes 

so that we obtain an equation for 1/, : 

with the initial condition 

1 J '" J1;(0) = -, r¢(r)dr 
111.0 0 

82 m ' 
-€ __ I =0 

, 0(2 

given, 

and the initial value ~(O) to be discussed momentarily. 

Calculation of m;: The equation 

€. aq = (1 _ b)c __ 1_(1 - s)q 
aT 1(' 010 

J '" aq J '" 1 J '" 
€, r'"dr= r'(1-b)cdr--1r r'(l-s)qdr. 

o uT 0 \ Jam 0 
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Assuming s, b varying slowly over the concentration pulse for c, q, and using inte-

gration by p arts , this gives 

=(I_b)m~ _ _ },l (l-s)p~, 
\ ,am 

which would be used for the calculation of m3. Vve found 

using the internal diffusion equation we have 

2(3 
• , 2' 1 _, a ,a ., 

- m - p - -e -e-m 
, 'Ep ae oe ' = 0 

which implies (substituting for p; and Ih; ) 

2 4 2 

-2Ep (((3 + [{' If )[e'm; + Ep (! ~ e ((3 + [{'If )m~ + fiEp e3 ((3 + Ie" )m~ J 
a ,a ., 

= ae e ae m
,; 

integrating and using the boundary conditions, 

We need not calculate m; itself, only its derivative as above. 

Now, from the cont inui ty equation we obtain 

a , 2' -aEm, + m, 
3(1 - {)) 1 a . , 

- {) -a "~, 
Ep e 

I 
I t!= I 

which upon substitution becomes (also d ividing by m~): 

d' p; dp; [ 1 - t9 ( ')J ' 
E, dE' - dE + 2 1 + -{)- (3 + I\ , ,, p, + F, = 0, 
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where F, is given by 
2 1-{} 2 1-{} 

F, = 15 Ep -{}-((3 + K",)' + 3"'p -{}-((3 + K", )' 

1 - {}, I(',m + 2E. -_a-I~", --, 
u 1 - s 

wi th the ini tial condi tion 

1 J 00 I-'~(O) = -, T'¢(T)dT 
rno 0 

and the initial value 4't(0) to be discussed momentarily. 

We now have, for each solute, equations for the moments 1-'; and 1-';, which will 

ultimately yeild the position and width of each solute's associated concentration 

pulse: 

where 
1-{} 

FI = 1 + - {} -((3 + Ie" ) 

and F, is given as before. The F; terms may be considered forcing in these second

order equations, determined by the solvent and system constants. These equations 

can be reduced to first-order differential equations by precluding nonphysical ex-

ponential growth (from the condition CCT) E L2(0,00». This is done similarly as 

in the solution to rn~; we simply choose the values of the initial conditions appro-

priately. Integrating the equation for 1-'; once, we obtain 

dl-" ~ 1 J ( ( 
d~1 = exp( -)[ -- exp( -- )FI d( + 7/11. 
~ Ee Ee 0 Ee 

Integrating by parts, we obtain 

dl-'; ( [ dFI , d' FI 
- =exp(-) 7/1 - FI(O) - E -(0) - E --(0) _ ... 
d( E, ' d~ , de 

J( ( dn F ( 
- En exp( - - ) __ 1 d( + exp( --)(FI (0+ 

o E, d(n E, 

dFI ,d' FI ) 1 
E, d( (0 + E, de (0 + . .. . 
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Choosing the previously undetermined derivative initial condition to be 

""1 = d~; (0) = [2: (E, ~); FI ] {= O' 
1=0 

the exponential behavior of J.J; is eliminated, and now we have 

(Note: if solvent concentration s is increasing in time, it is decreasing in space, so 

[{'f f is increasing in space, as is Fl' Thus the solute is slowed by a very small 

amount.) Assuming E, ~ 1, we approximab: 

dJ.J; ~ F (t ) 
d( ~ I ~ . 

This is the appropriate dynamical equation for J.J;, and now we can more easily find 

the associated dynamical equation for 

since from this identity 

The equation for J.J; can likewise be reduced to a first-order differential equa-

tion; using precisely the same kind of argument as for the J.J; equation, we obtain 

4; F' F d(F' F) d( = 2 I J.JI + 2 + E, d( 2 I J.JI + 2 + ... 

with initial condition 

so, dropping the smaller-order terms, we have finally the approximate equation 

dJ.J~ 2F' F d (F . ) d( ~ I J.JI + 2 + E, d( 2 I J.JI , 
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and hence the approximate equation for the "variance" term J1., is 

dJ1.' ?' dF, dJ1.; 
d( "" F, + _f, (J1., d( + F, d( ) 

F ? ,dF, 2 F' = ,+ _f, J1., d( + f, l' 

The final set of approximate equations for each solute are thus 

dJ1.; (1 - {)) 
d( = 1 + {) ((3 + ](" , ) 

dJ1., 2 1 - {) ,2 1 - {) , 
d( = 15 fp -{)-((3 + ](" ,) + "3 8fp -{)-((3 + ](,,, ) 

1 - {) r I('a m ? ,1 - {) 8](" , ( 1 - {) ( ))' + 2f, -{)-I\", 1 _ 5 + _f,J1., {) 8( + 2f, 1 + -{)- (3 + ](,,, . 

The last term in the expression for dJ1.,j d( contains the factor d](" , / de which 

will be negative for the typical solvent gradient, and hence will reduce the growth of 

the peak width. In fact, in the absence of dominating peak width growth parameters 

fp, f" f" or 8, the width will actually narrow under the influence of a solvent 

gradient. Such an effect in experiment has long been acknowledged. 

In terms of standard dimensionless variables as reviewed earlier this chapter, 

we haye 

d(.l2 1 1 - {) ( r)' € 1 - {) ((3 )' 
d( = 30 EPe-{)- (3 + I\ ,Jj + 3St, -{)- + ](" , 

€ 1 - {) J(, am 2 € [ , 1 - {) 8J(,,, ( 1 - {) ( r)) ,] 
+ 2 St, -{)-J(" , 1 _ 5 + J P ep J1., -{)- 8( + 1 + -{)- (3 + 1\,,, . 

If, as generally happens in RPLC, the linear velocity v is variable, we go back 

to dimensional moments 

and 
_ (L), 
(.l, = - J1.,. 

v 

The expressions for dJ1.; / d( and d(.l, / d( may be used to find directly the dy

namics of the Height Equivalent to a Theoretical Plale (HETP - see appendix C) 

for a given solute: 
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The HETP has been used classically to characterize the "efficiency" of columns - the 

smaller the HETP, the more "efficient" the column. Define the normalized HET Pas 

iI = HILand the reduced HETP as h = iI Ie: = Hid •. For the constant- parameter 

case, the reduced HETP is 

~H(l) __ 2_ 1 -19 ( (3 + [{'II ) 2 [~Pe _1_] 
e: - 19Pe + 19 1 + 1-" [(3 + [{ J 30 + 3St 

P "ef / J 

1 -19 ( 2 ) 2 _1 [{ J(,arn 

+ 19 l+'~·[(3+J(,I/J St. ,1/1_s· 

This agrees with the HETP found by moments derived by means of Laplace trans-

forms, as discussed in detail by Arnold et al. [3J (see appendix C), the only dif-

ferences being the explicit dependencies on Pe, St., St" and the nature of the 

dependence of the reaction coefficient on the solvent concentration. 

We can write (as per the discussion in chapter 1) the packing Peclet number as 

the fluid film Stanton number can be expressed as 

St, = : ShPe- l
, 

• 
and so (from [3,21,22,39}) 

for Pe > 50, and 

S ~ \1(19)50 t (P )- 1 t, ~ d e 
• 

for Pe < 50. 

Thus for a tracer solute with no binding 

I? 1-19( (3 )21 d 
-H(1)=3;(1.l6+2.8Pe- ' )+-.Q- • [-+ • L JPe 
e: I.f If 1 + 1 ~ (3 30 3fl50, 
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for Pe < 50, and 

I ? 1-{)( (J )21 d 
-H(1)=-{)-(1.16+2.SPe- 1 )+-{)- • [-Pe+-P Pe}] 
e 1 + 1 ~ (J 30 3!1 

for Pe > 50. This combined expression for the plate height is close to the Van 

Deemter form, obtained by a heuristic argument [11]: 

B 
H =A+ - +Cv, 

v 

where v is a form of the velocity. 

For the isocratic control case, we need not worry about solvent dynamics; using 

the predicted RETP for the case of methanol- water solvent in a C-1S column, with 

n- hexanol as solute, we obtain the following results. "',Ie take {) = 1/4, (J = 1/4, 

D, = 6D for the relation of intra particle diffusivity to bulk diffusivity, !1 = 1, dp = 

lOl1m, and L = 10 cm. Assuming the forward reaction rate to be k, o, = .5 sec 1
, 

we obtain the curves in Figures 42 and 43, showing RETP dependence on sand 

Pe. Note that as Pe gets smaller, s has less influence on the system. Increasing 

k,o, to 100, as in Figures 44 and 45, we see s has little effect on the system unless 

we look at much higher Peclet numbers (velocities). Figure 46 shows RETP curves 

for two different molecules (assumed with the same k, o" for lack of experimental 

data), as functions of the hexanol Pe. We see substantially different curves. 

These RETP curves would seem to indicate that it is not a simple matter 

to choose an overall best flow velocity, since the RETP minimum changes dra-

matically for different molecules and different relative solvent concentrations. This 

underscores the necessity of developing an advanced optimization theory for solvent 

control. 

Gradient Control: As mentioned in chapter 7, when using a solvent gradient 

for solute dynamical control, it is useful to define a control time (the duration of 

the control scheme), which has to depend on the experiment time (the column exit 
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Figure 42: Hexanol BETP yariatioll with Peclet number Pe at yarious mole 
fractions s of methanol in methanol-water sohoent.; kf cr = .5. 
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Figure 43: Hexanol HETP Y2riatje-n with mole fraction s of methanol in 
IT:!c thanol-water sohent for Peclet numbers Pe = .0 1, Pe = .1, and Pe = 1; 

kJc,.r = ,.j. 
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s =.1 

3 
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F!gure 44: Hexcnol HETP variation with Peclet number Pe at various mole 
fractions s of methanol in methanol- wat.er soh·ent.j kfor = 100 . 
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Figure 45 : Hexanol RETP Y2.natlOn with mole fradio~l s of methanol ill 
!'!"lethanol-water soh-ent for Peclet numbers Pe = .01, Pe = .1, and Pe = Ii 
k,,, = 100. 



100 

4 x 10' I .. ~·I / ... I 
........... / II 

/, . 

.-~ .. ~.--."' .. - hexadecanol 

4 

.il I .1 1 10 
Pe 

Figure 46: Hexano l (ind hcxadecanol JIETP variation with hexanol Pecl et num
ber Pe at mole fraction 5 = .5 of methanol in methanol-water solvent; k Jot' = .5 
assumed for both molecules . 
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time of the slowest solute). Suppose /1-; (1) is the largest column exit time of a ll the 

solutes. We want this time to be the same as the time when the end of the solvent 

gradient exits the column. Clearly /1-; (1) depends on solvent dynamics. Solvent 

dynamics depend on the velocity through the column, which depends itself on the 

solvent dynamics. This will now be expressed mathematically. 

Solvent dynamics for nonporous particles is expressed as 

as +v(s)as + 1-iJab =0 
at ax iJ at 

where 

b = l{. s 
1 + [l{, - l] s' 

and s(x, O) = 0, s(O, t) = ¢(t ), and the linear velocity v IS determined by end 

pressures, densi ty, and dynamic viscosity: 

kg6.¢1 L 
v = . 

iJ p( s ) f 0' ;,'(.\ d( 

Notice that v is a global operator on s, so the equation for s is not hyperbolic. 

Let Vo be the linear velocity of some standard isocratic solvent mixture. Define a 

normalized veloci ty as 

_ (_ J l ~(s) )-1 
V = pes) -::;--() d( , 

o P s 

where v = vivo, 7) = 7) 17)0, and P = pi Po. Then the solvent equation can be put in 

the form 

( _ J 1 ~(s) ) ( 1 - iJ l{. ) as as 
pes) 0 p'(s) d( 1 + -iJ-(l + (K. - 1] s)2 aT + a( = 0 

where T = vo tl Land ( = x I L. The initial and boundary conditions are 

s((,O) =0, and s(O,T)=¢(TLlvo), 
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with <p some arbitrary function. However, we are only interested in <p on the interval 

o ~ T ~ T,O" , the control time, so define a = T /T,," = t/t,," , so 

The trouble with the above use of T, O" is that it is not known Ii priori. It must be 

calculated in conjunction with T"p = J.L; (1). 

Let 

J'ry(s) 
Q(8; a) = -::;--( ) de 

a p 8 

with T,on = T,," as an initial guess. If T,on turns out to be incorrect, a new guess 

is made, so that ¢( a) is rescaled. Given TOO" , an iterative technique might be tried 

such as 

'( )Q( ) ( 1 - {) l(. ) 08;+, 08;+, 
p 8;+, 8;;a 1 + -{)-(1 + [l(, - 1)8;+,)2 a:;:- + T = 0, 

(as was used to prove existence of a solution to the solvent equation) starting with 

constant 80, so as to giYe a hyperbolic structure to each subproblem, but then it 

would be awkward to calculate J.L; (1), because one would have to store and inter-

pol ate oyer many 8 values across its domain. Instead, it is best to calculate the 

solvent equation numerically as a partial differential equation (for instance using 

finite differences), simultaneously calculating J.L; (0. 

The solvent equation can be solved numerically to obtain estimates of s for all 

~ at each time step, and so approximate Q( S; a) at each a. One takes a grid in space 

with constant stepsize D.~, but a variable sized time step D.a, being careful not to 

violate any step size constrain ts imposed by conditional convergence (e.g ., Courant-

Friedrich- Levy condition). The time step size is determined by the calculation of 

D.a = /1', (~ + D.O - /1; (0 via an ordinary differential equation solver. This technique 

is used to calculate the reduced HETP of n- hexanol in a methanol- water solvent 

(see Figure 47). 
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Figure 47: Theoretical dynamics of aqueous methanol sol\'ent and hexanol so
lute. Concent.ration profiles are shown at two times within t.he column of length 
10 em; solute.: profiles exaggerated horizontally and vertically. Note steepening 
of smoot.h solvent gradient, and very little spreilding of the solut.e pulse . Con
ditions are: T = 25° C, d" = 10 microns, l'e = 400, ;3 = .25, v = .25, cubic 
spline initial solvent gradi ent from .25 to s = .50. 
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Use of Average Velocities: If one estimates the density and viscosity of 

the solvent mixture as constant, one may use an easier teclmique, utilizing only 

characteristic equations. VIle solve the equation 

dl-'~ _ 
d( - F,(s) 

using, sayan explicit ordinary differential equation solver, stepping from ( to (+t>( 

using the value of s(C 1-'; (O/t"n) to obtain a = 1-'; (( + t>()/t ,on' Then one follows 

a solvent characteristic e back to ao at ( = 0 to find the new value of s along that 

characteristic. Hence we can step again in space. 

To obtain ao at each step one must solve the equations for the solvent charac-

teristic 
da 1 . - ( 1 - ,9 I{, ) 
d( = T,on p(s)Q(s) 1 + -,9-(1 + [I{. -1]s)2 

= F(sjTcon), 

with initial condition a(O) = ao; 
ds 
d( = 0, 

with initial condition s(O ,ao) = <p(ao). where Q(s) is an averaged value assuming 

constant viscosity and density of solvent over a certain time. 

Thus 

s(Ca(O) = <p(ao) = constant 

on the characteristic curve, so we obtain the nonlinear equation 

to solve. In the integration scheme, we know that a = I-'~ ((0 + t>O and the space 

location ( = (0 + t>( and hence can use a Newton iterative technique to find ao . 

Once 1-'; (1) and the corresponding ao is estimated, if ao =I l one must try a new 

T ,on; this process can be cast into a numerical "shooting" technique. 
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APPENDIX A 

Nonlinear Multicomponent Stoichiometric Systems 

In this appendix the theory of Helfferich and Klein [19J is briefly covered, partic-

ularly wi th regard to how it fits in wi th our formalism for general chromatographic 

systems. 

Considering mobile and stationary phases of a set of solutes to be at equilibrium 

in the column, we define (using Helfferich and Klein's notation) 

and 

where we now have both stationary phase concentration G, and mobile phase con-

centration G, given per unit volume of the column rather than of the respective 

phase. \Ve also define total concentrations of sorbable species' phases as 

If the system has G and G constant, we may conveniently define the normalized 

concentrations Yi 1 Zj as 

G, 
y, - C' 

so that I: y, = 1, 

z, 
G, 
G' 
I: z, = 1. 

Thus, if there are n components in a system, we can represent the mobile or sta-

tionary phase concentration state as a point on an (n - I)-dimensional simplex. 

Further, a normalized distributio7l ratio is defined as : 

z, GG, 
= 

y, GG, 
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and a binary separa tion factor 

Note that 

O'jj = 1. 

The n components are ordered in terms of their affinity CdC" such that 

C C 
-' >-' 
C, Cj 

for j > i. 

Hence (\"'j > 1, for j > I. Vie call this an affinity sequence, with decreasing 

values of affinity. 

If in this system sorption of one component implies desorption of another, 

this process is called exchange sorption; if the sorbent has a constant capacity for 

sorbable components, then the exchange sorption is stoichiometric (I.e., the amount 

sorbed is equal to the amount desorbed). A physical example of such a system 

is ion exchange chromatography of dilute systems, according to the authors. Of 

importance to the developments of the present research is that the authors note 

that systems of n components having Langmuir isotherms can be represented as an 

(n + I)- component stoichiometric system. That a Langmuir system of the type the 

authors consider is not in itself stoichiometric is easy to demonstrate; consider for 

the following development that 

for j = 1 .. . n. 

For this to be stoichiometric, we must have the total sorbed concentration constant: 

constant, 

which clearly only holds for c, infinitely large. 
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Also of importance is that the a;; are constant in a Langmuir system: 

Q;J(; 
a;; = Q K , , 

so that indeed the authors' formalism can be applied. 

To convert such a Langmuir system into a stoichiometric system, note that 

I+L;I<;c;' 
for j = 1 ... n, 

and that a stoichiometric system can be written as 

where 

R = L; q; = 
L; C; 

for j = 1 .. . n, 

constant. 

Thus such an n-component Langmuir system is equivalent to an (n+ I)-component 

stoichiometric system via 

Q;J(; = Ra; ,k for i = 1 ... k - 1, 

so take 

J(;c; = (a;,. - l)x; 

Q;J(; 
a;,' =--y 

x; RJ(; 
-

Ci QJ(; - R 

= Qi](j 
O'i+l,k R 

Xi+l RI{i 
-

Ci Qi]{j - R 

for i = 1 . . . k - 1, 

for i = k ... n, 

for i = k ... n, 

for i = 1 . .. k - 1, 

for i = 1 ... k - 1, 

for i = k ... n, 

for i = k ... n, 

If we want the same scale for measuring concentration in both phases, we the have 

Yi I(j 
for i = 1 ... k - 1, -

Qi]" -R qi 

Yi+ 1 J(i 
for i = k ... n. = 

qi QiJ(i -R 
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Vve are free to choose R; if we choose 

0< R < QnJ{n, 

then all x" y, will be positive; so we choose R within this interval and such that 

L x, < 1. 

In this way, the pseudocomponent will have lowest affinity, and is labelled with 

index n + 1. To demonstrate this procedure, we carry out calculations for Langmuir 

systems with one and two components. 

The dynamical equations 

aG, aG, ac, 0 -- +Uo-- + -- = at ax at 

can be undimensionalized using the previous normalizations: 

cay, 1 az, az, 
--+---+-= 0. uoG at Uo at ax 

Defining 

so that our equation is now 

with equilibrium isotherms 

Yj 

G x r = ~uo(t - -) G Uo 
x=x 
a c a 
at = uoG ar 
a G a a 

ax = - car + ax 

for j = 1 ... n 
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Another way to represent the dependent variables is through the so-called H-

Transform, which reduces to the problem of finding the "H-roots" of 

which can be shown to satisfy 

IT n (h,QiK; -1) 
C

j 
= ____ ~'-~'~~Q~,~K~,~~----

K, W_, . ~ . (QQiKKi -1) 
1- , I"f'-J '. 

for the mobile phase variables. The H- transform is remarked to be similar to Binet's 

Transformation for the description of homofocal surfaces in differential geometry 

[35]. 

For instance, in a three component space for an ordinary stoichiometric system, 

we can represent the available compositions in a simplex as shown in Figure 48. The 

interior solid and dashed lines are called composition paths, which satisfy 

for all i,j. 

In a three component system, there are two such paths through each composit ion 

point. These paths are important in the representation of coherence, which consti-

tutes quasi- steady state behavior for the nonlinear waves in the system. Helfferich 

and Klein give a complete characterization of coherence in such systems. Schemati-

cally, one may represent the attainment of coherence as a sort of "vector projection." 

Suppose the system has an initial state of a square pulse, as in Figure 449. 

Then through time we see a development in which the respective pulses find 

and retain the same general shape and relative positions - the scales of the pulse 

lengths and heights will change dynamically. If the dependent variables are viewed 

on the simplex, we see in time that the noncoherent initial state resolves itself 

into two "vectors" lying along the composition paths which intersect at the base 
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composition point for the initial composition variation. Note that the composition 

paths are solely determined by the equilibrium properties of the system, and are 

independent of space, time, and experimental conditions. 

In the next section the applicability of the authors ' formalism to our MPLC 

control problem will be discussed. 

Application to Process Mod elling in MPLC. Firs t of all, the idea of co

herence mentioned in the previous section implies the forma tion of various shocks 

in the concentration profiles. Recall that shocks are not to be allowed in t he chro

matogr aphic column, and so coherence is never allowed to develop. For this reason 

Helfferich and Klein's formalism has no applicability to the control problems dis

cussed in this paper. The present problem deals with nonlinear concentra tions only 

for the solvent system ; the solu tes are assumed in small , linear concentrations. The 

solvent control will generally be assumed monotonic; shocks would indeed form 

within the column if the control were allowed to vary nonmonotonically, or if the 

solutes were in very high concentrations. The la tter situation points to the impor

tance of being aware of the linear capacity of the column. In fu t ure papers we will 

discuss the con trol problem wherein such shocks are a llowed in the system, which 

has its importan ce in multi component affinity chroma tography, along with the im

pOl·tant aspects of the so-called coherent sta tes . Roughly speaking, the situation 

for fully nonlinear dynamics is as follows. There will be 11 solute components to 

be separated, and two or three solvents to control the separation. The concept of 

coherence is intimately rela ted with that of component resolution , since a coher

ent state will be seen to represent the maximum at tainable resolution for a given 

control. 

All solutes begin their history wi thin the column as pulses of equal width, with 

solvents possessing the leas t affinity and solutes with progressively higher affinities -
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if a component has lower affinity than the solvents, ther is no solvent control possible 

for that component. Though the solutes are generally in nonlinear concentrations, 

there also might be those that are in small, linear concentrations. 

More general nonlinear problems involving fluid film mass transfer, porous

particle diffusion, and nonequili bri urn reactions can be approached as perturbations 

from the above equilibrium problem. 
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APPENDIX B 

Moment Techniques 

Moment techniques are used in various physical theories for pulsed systems, as 

they ignore some of the detail of solving the overall partial differential equations, 

while not leaving out the essentials. Essentially following Kubin [29J and Kucera 

[30J, the form of the solution to a set of equations for chromatography is postulated 

to be 

c(x,t) = ~ an 'lin (T), 
0 ::::0 

where 
t - J1.' 

T - I 
- V2J1.2 ' 

mo J= a, = 'kl.j2irji; c(x,t)'Ii'(T)dt, 
2 . _7rJ1., 0 

m,(x) = J= t'c(x,t)dt, 
o 

'() m,(x) 
PI; x = , 

mo 

II, = _1_ J = (t - J1.;)' c(x, t)dt, 
1no 0 

and 'Ii, is the k'h Hermite polynomial 

d' 
'Ii,(T) = (- I)' exP(T)'-d exp(-T'). 

T' 

The quantities J1.~ and J1.' are called mom en /so The first few coefficients a, can be 

calculated as being 

mo 
ao(x) = V 27rJ1., (x) , 



173 

( rna ) Ji3 
a3 = 92 3' '- -2' 

- ·v 7r Ji2 

and further terms involving higher and higher moments: 

an -
I~J (1)' • rno 2: - Jin -HP2 

,j27rJi2 '=0 2'k!(n - 2k)!(2Ji2)I'iJ 

where for even 11 

and for odd n 

Kubin applied moment techniques to a lineal' model of partition chromatog

raphy with a finite pulse as initial condition, whereas Kucera considered the same 

equations but with a delta function initial condition. Recall that in chapter 4 ex-

plicit solutions to these problems were reviewed. The value of the moment method 

becomes clear when we try to interpret the analytical solution and compare with 

experimental data, for the first moments have much physical and mathematical sig-

nificance. The solution method involved the Heaviside transformation; it turns out 

that one can avoid taking the inverse transform of the entire solution and relatively 

easily find the moments instead . This is indeed an advantage in terms of relative 

simplicity and clarity, when comparing with the full analytical solution, if it can be 

found. Kubin notes that 

m k = ( -1 Y lim ddk [c( x, s) J 
,- 0 soC s 

where s is the transform varia.ble, a.nd any moment Pj or pi can be expressed 

in terms of combinations of rn. for k = 1··· 00 . Here we note that the moment 

integra tion by parts method found in this paper is much easier to implement than 

Kubin and Kucera's method for their constant coefficient equations; their method 

is not viable for the controlled equations considered in this paper. 
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For the case of equilibrium chromatography such that there is only axial dis-

persion, no mass transfer and delta function initial conditions the first few moments 

are (from Kucera) 

Jlo = Jl~ = 1 

JlI = 0 

Jl3 = 

where Kucera has the "effective velocity" u" and "effective diffusion" D " as 

For the more complete linear problem with longitudinal diffusion, radial dif-

fusion in the particles, mass transfer, completing the inverse transform has proven 

intractable so far, and yet the moments can be calculated. The first few are as 

follows: 

Jlo = Jl~ = 1 

JlI = 0 

Jl2 = 

(
2L 4D) }~[R2(1+[(n)2 €(1+[(n)2 [(nJ 

+ -+- €\ + +-
U u 2 'D, v(v + 2) H, Hn 
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Note that the first moment 11; does not depend on the effective shape of the 

substrate particles II the radial diffusion Dr or the mass transfer coefficients H , and 

H n , but only on the equilibrium reaction coefficients /(, and /(n, the solute velocity 

V, and axial dispersion D,. 

A pertinent question about the Hermite expansion IS how many terms are 

needed to obtain satisfactory results, and indeed, what are satisfactory results? 

This brings us back to considering the primary concern in chromatography: we 

would like to have a clear separation of the different solutes. The expression of 

this goal involves a definition of resolution, which is agreed to depend on the width 

of each solute peak and the relative retention times of the different solutes. This 

means that the moments 11; and 112 are crucial to the problem. But can we get 

away with using only these moments? That is, if we substitute the Hermite ex

pansion into the chromatography equations of our choice, are we forced to solve 

equations involving any other moments if we try to finn I"~ and P'2? For all the 

linear equations considered, we find that the answer is no - higher moments are 

not needed. However, this answer should be qualified somewhat. If a Gaussian 

distribution of concentration is assumed, and this distribution is decomposed into 

Hermite modes, we should only need to consider the first term in the expansion, 

since that is all that is needed to model the peak perfectly. However, if for instance 

a "box" function is modelled wi th the expansion, there are of course more terms 

in the expansion having a nonzero contribution. More generally, if the function is 

symmetric, its Hennite expansion will have odd terms zero; if the function is odd, 

the even terms in the Hermi te expansion will be zero. Asymmetries in a function 

will make both even and odd terms important. If we consider only the width and 

retention time important for a solute's peak, then we can fit a Gaussian shape to 

that peak, ignoring further structure of the solution. 
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APPENDIX C 

Relation of Moments to Physical Parameters 

Kucera [30] notes that if a detector measuring the concentration of solutes 

eluting from the chromatographic column is at distance x = L down the column, 

then we can define various significant times. First, there is the time tR of peak 

maximum such that 

oc(L,t) 1 - 0 at 1,=,_ - , 

and the time ts of the peak median defined as 

f ' 5 1 f = 
c( L, t)dt = 2 c(L, t)dt 

o 0 

which is when half the area of the peak is registered, the time te of the mean (center 

of "gravity") of the p eak given by 

te = Jl',(L) = f = tc(L,t)dt, 
o 

and the time to when the concentration peak's maximum passes by the point x = L: 

oc( x, to) 1 _ 0 
ox I,=L-' 

For the uncontrolled case, it makes good sense to define an effective velocity 

u", and hence to define the retention time as t;. = L/u". It is generally known 

that t;. = to; the relation bet ween ts and t;. can be had from the relation 

which gives approximately that 

t o -'- t _ D" 
R - 5 . 

u 2 

" 



Kucera [ ] also shows that 

and the relation 
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t' -'- t + D" 
R - R u 2 ' 

" 

_ 2D" t;, = fc 
u' 
" 

is directly from the first moment, and gives for large times a difference between the 

two times which can be neglected. The retention time is important to determine 

accurately because it gives the partition coefficient. 

The second moment fJ., is the variance of a Gaussian peak shape and clearly 

depends on all the important parameters in the chromatographic system. For dy

namics without a change in solvent strength, fJ.' increases with length of the column, 

with longitudinal diffusion, and the size of the substrate particles; it decreases with 

larger radial diffusion in the particles, with an increase in the mass transfer across 

the particle boundary, and increased symmetry of the particles. 

The definition of 11" and D" as constants is invalid when the partition coeffi

cient changes as it does in the case of solvent strength control. The first moments 

are still useful, though, and really the above times can all be obtained from the 

moment fJ.; . 

There is a question as to whether or not the popular phenomenological expres-

sions for the HETP have more accuracy and predictability than HETP expressions 

based on moments. In this section it is argued that moments offer as much accuracy 

and perhaps better predictability; also, moments are derived from an underlying 

dynamic model of chromatography, so giving overall a more complete and detailed 

understanding of the chromatographic system. 

Arnold et a1. [3] have made a careful study of the HETP and its relationship 

to moments, particularly in the context of measuring equilibrium binding constants 

and rate constants of biochemical reactions. Horvath and Lin's [21,22} plate height 
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expresslOn 
a B 

H = ----:---:- + - + Cv 
1+bv1/3 V 

commonly used in such cases is taken to task, as the expression is sometimes inap-

propriate to the situation . VVe note that yet another popular form for the HETP 

I S 

h = AV I/3 + B/v + cv 

put forth by Knox [27J. Clearly there is disagreement as to what the proper form is 

for the A tenn. Knox does not give a theoretical derivation for this term, but rather 

merely states that if one assumes a functional form of the plate height contribution 

from flow anisotropy - dispersion coupled with solute diffusion outside the particles 

as 
1 

with z < 1, v = uodp / D"" h = H / dp , and 17, r constants then we can fit experi-

mental data rather closely. The value of z seems to be between 0.2 and 0.5, yet for 

the reason that this form is "cumbersome" Knox suggests the form 

h A 1/3 
fl ow = V . 

It might be inferred that Knox's reasoning behind this was based on the following: 

note tha t 0.2 < 1/ 3 < 0.5; as v -+ 0, and z = 1/3, 

1 1 L 
hJ, ow = -..,.--- -+ - v s , 

17 + r V -' r 

giving Knox's final form for "/I ow ' However , it is qui te clear that if v is not small, 

Knox's expression is in large error. Indeed , for v large, 

clearly a constant. 
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Overall, Knox 's arguments do not seem compelling, partly because of the lack 

of sensitivity of his expression for hI/ ow to changes in the exponent z - with 

enough parameters it seems that relevant data could always be fitted, and partly 

because there is no rigorous quantitative theoretical reasoning behind his choice of 

the functional form of hI/ow' Knox has found that only very high quality data over 

a range of two magnitudes of v give an accurate estimation of h. On the other hand, 

Horvath and Lin's expression is backed by a theoretical argument. We would like 

to relate the phenomenological plate height to physical parameters with as few free 

parameters as possible; while Horvath and Lin present a more physical argument 

for their plate height expression, Arnold et al. [3) take exception to the extent to 

which their model is typically taken. Further , they find that for the effective region 

of applicability of Horvath and Lin's model, there is a model given from moment 

techniques which gives an essentially identical expression. 

Let us consider Arnold's arguments. In the case that the peak profile is Gaus-

sian, so that 112 is identified with the variance, the HETP can be expressed as 

H = 1l2L 
? • , -

III 

If the column characteristics are already set, H can be written in terms of mobile 

phase yelocity u. One such expression that has been in use for quite some time is 

the Van Deemter equation 

B 
H = A+ - +C1I 

11 

where the effects of molecular diffusion and dispersion determine the first two coeffi-

cients, and mass transfer, intraparticle diffusion , and sorption kinetics determine the 

last coefficient. As Arnold rem arks, Giddings [11) explained that the Van Deemter 

equation did not take into account flow and diffusive coupling in the space between 

particles, and that .4 should have flow rate dependence. Horvath and Lin [21,22) 
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suggested a form for this dependence, which was subsequently used by many re

searchers. Arnold has made suggestions as to the proper form of the flow rate 

dependence and for what values of u. 

For terms other than for the flow and diffusion coupling, it happens that 

Horvath and Lin's model agrees in detail (see Arnold [3]) with the plate height 

equation derived from the moment expressions found by Kucera [30] and Furusawa 

et al. [9]. Arnold questions the need for the term introduced by Horvath and Lin, 

as the calculation from using the moments would seem to include any coupling 

between axial mixing and diffusion. Using Arnold's notation, the moments and 

resulting HETP are 

£ 
1-'; = - [0 + (1 - 0)(3 + (1 - o)(lp K 

Uo 

2£ (E. [ ((lpK)]2 ( ) [(lpK dp(32 ( (lpK)2 (1 10)]) 1-'2 = - -- f+(I-f)(3 1+-- + I-f -+-- 1+-- -+--
Uo ul (3 ~ 60 (3 ~ ~~ 

so that the HETP defined by H = 1-'2 £ / 1-';' is 

2d 2(1-f)[ezK +((3+(lpI()'~(,;-+ k'~ )] 

H - P+' , J, -- Uo 
P ep [f + (1 - f)((3 + (lpK]' 

where Pep = Uo dp / E. is the packing Peelet number. 
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APPENDIX D 

"Fast Method Development" 

Here we give a short description of the philosophy and method behind what 

is called "Fast Method Development" (FMD) in order to show contrast with the 

techniques presented in this paper and highlight certain important issues. 

Fast Method Development. FMD has developed over the past five years as a 

primarily personal computer-based process whereby two to seven initial chromato-

graph experiments (see Figure 50), each at a different solvent strength, are done 

to identify the retention properties of the solutes in a mixture of chemicals to be 

separated. The isocratic retent ion of each solute can then be predicted using a well-

known linear relationship between solvent strength and the logarithm of retention. 

A standard algebraic approximation of the dependence of isocratic bi- peak resolu-

tion on "capaci ty factor", "column plate number," and peak spacing is then used 

by computer software to predict resolution at any solvent strength thereby giving 

a map of minimum bi- peak resolution for all solute pairings (Figure 51). Then the 

experience of the chromatographer is called into play along with more software to 

help improve separation by changing column type, particle size, and fiow rate. 

Recently [48] FMD has been upgraded to include the possibility of a linear vari-

ation in solvent strength during the chromatographic experiment, not only isocratic 

(constant) solvent conditions. Thus FMD presents an increase in ease of developing 

what is now considered an acceptable chromatogram. 

We start by defining the resolution between two consecutive solutes' peaks. 

The peak shape is assumed to be Gaussian, which turns out to be quite acceptable 

for most cases. The bisolute resolution R is 
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1) Do two gradient runs. 
2) Do sol\'ent strength simulation. 
3) Find relatiye resolution map. 
4) Select sohent.. 
5) Do column simuJatjoll~pt.im..izatjoll. 
G) Fine tune final procedure. 

Figure 50: Guidelines for Fast ~fethod Deyelopment. 
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Figure 51: Fast ~Ietbod Development applied t.o RPLC separation of six steroids 
(see text) . Ad'pted from Snyder, Glajeh , and Kirkla!ld [). 
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where t R ,. is the retention time and TV; is the peak width for solute i. If we define 

the plate number as 

where 

and 

N = 16(tR /W)2 

t R 2 - to t~ 2 k' a = =,~--=.!C = _'_ = ..2 
tR,1 - to t~" k; 

t'R . = tR • - to " , 

t' 
k'=~ 
, to 

Since the peak shape is Gaussian, we interpret TV = 4<7, i.e., the width is four stan-

dard deviations. From these relations we can easily find that the bisolute resolution 

IS 

IN a-I k' 
R=-- 2 . 

4 a 1 + k; 

The primary importance of k' IS that it is proportional to the equilibrium 

partition coefficient (Giddings [llJ.) Note that the definition of N assumes that it 

is a well - defined constant for the column, which we will show is often incorrect 

and would lead us to err in some important situations; N is dependent on such 

things as solute type, solvent type and concentration, solvent gradient, and solute 

concentration. 

If we accept the above phenomenological relationship then we can state that 

the plate number N, of the column must satisfy 

where R is the resolution required to separate any two of the solutes. Thus we 

will have to know how N, depends on column length, particle diameter, and flow 

velocity. For short columns, often times peak profile is markedly disturbed; this is 
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probably a nonequilibrium phenomenon which can be modelled by including kinetics 

in the system equations - this cannot be dealt with in FMD. So, a column length 

is assumed that does not give rise to such perturbations; then generally Nc is found 

to be roughly proportional to column length. Another parameter closely related to 

N is H, the Height Equivalent to a Theoretical Plate (HETP) given by 

H= LIN. 

The bandwidth near the end of the column can be expressed in units of length 

relative to column length, so giving us the expression 

N = (Lla)' 

where a' is the Gaussian peak variance. Then the expression for H becomes 

H = a'IL. 

Further, a' can be considered to be the sum of variances (peak spreading) origi-

nating from assumed independent mechanisms such as diffusion, fluid flow through 

the column, mass transfer resistance between mobile and stationary phases, and 

adsorption kinetics (Giddings [ll)). Diffusion in the mobile phase arises from the 

solute concentration gradient, and gives rise to a variance of 

where"{ is the tortuosity coefficient due to the structure of the substrate. Stationary 

phase diffusion gives a variance contribution of 

a~" = 2k,,{,D,Llu 

Variance contribution from the fluid flow derives from differing streamlines and 

microchannel diameters in the substrate - local fluid velocities depend on the 

structure. This contributes a factor 

a' = aLu'/3 
F 
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where a is a constant depending on particle diameter and mobile phase diffusion. 

Finally, since diffusion across the boundary between mobile and stationary phases 

takes a finite time, there is a variance due to mass transfer resistance 

where C is a function of solute retention. (Here again we see that the plate height 

is really solute - dependent). Since adsorption kinetics contributes a variance pro-

pot·tional to Ld;u/Dm its coefficient can be included in C. 

The above variances summed up give an expression for the HETP of 

Cd2 u 
+ k'/"D,) + au l

!3 + D: 

It should be noted, however, that at large enough velocities the flow characteristics 

change considerably, as turbulence sets in within the microchannels(Giddings [ll]). 

A solvent model is necessary for the formulation of any theory of chromatogra-

phy. Snyder, et of. [44,45,47] has improved nondynamical models of the behavior of 

solvents on various chromatograpic packings. This model is primarily for columns 

with silica or alumina as substrate, though simpler versions of the model are quite 

adequate for other substrates as long as only certain combinations of solvents are 

used. It is assumed that the measured effect of solvent on solu te behavior is due 

not to interactions in the mobile phase but rather due to competition for for ad-

sorbing sites on the substrate. A phenomenological parameter solvent strength E is 

postulated to affect the solute retention coefficient as 

where k, denotes the value of k' for a mobile phases 1 and 2, Q is a substrate activity 

constant, and A, refers to the cross- sectional area of the adsorbing molecule. 
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The surface of the typical substrate, or adsorbent, has isolated polar (i.e ., with 

dipole moment) groups scattered across its surface in addition to the generalized 

reactability of a ll exposed surface. These polar areas can react differently with a 

given mobile phase molecule if the molecule is itself polar. With silica as substrate, 

the polar areas are silanols (Si- OH) randomly scattered . The column can be pre

treated with a depolarizer to incapacitate the polar groups, but polar groups can 

actually aid the separation of some solutes . For two solutes of similar retention in a 

nonpolar environment, changing to a polar solvent can create large changes in the 

solutes' relative retention if one is more polar than the other. The formula above 

already includes effects of localization of solvent and solute: a change in solvent 

localization changes € whereas a change in localization of solute changes apparent 

A, value. What the equation does not include is the effect of interactions of the 

two types of localization. Snyder, et at. [451 found that for silica adsorbents and 

localizing solvent/solute combinations the following equation holds: 

.6, depends both on the properties of solute (X) and mobile phase Nf,. Suppose 

.6x is the measure of relative localization of X. Let the coefficient In, mcrease 

both with the amount of localization of some mobile phase solvent Sj and with its 

proportion of coverage OJ of the adsorbent. An experimentally - verified linear free 

energy relationship between these parameters is 

Here increased localization results in decreased solute retention. On the other hand, 

.6x increases with increasing X localization. In, can be varied to help control 

solutes' retention times, via changing solvent composition. In can be calculated 
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by determining the polarity coefficient mO of a pure solvent which localizes and 

specifying the fraction OJ of the polar solvent: 

In = In° I(Oj). 

The function 1 is empirical, taking values between zero (for OJ = 0) and one (for 

0=1.) 

Still another factor was found to be of importance, though less so than solvent 

strength and solvent/solute localization. The relative basicity of a solvent is thought 

to give rise to a noticeable effect on solute retention. Snyder, et al. call this effect 

solvent-specific localization which gi"es rise to a term 6 2 : 

We see then that solvent strength, solvent/solute localization, and solvent

specific localization can be varied independently, allowing a great deal of control of 

the selectivity of the chromatographic system. It should be noted, however, that 

these parameters have upper and lower bounds; indeed, the maximum value of In; 

increases as the solvent strength increases. The proposition is then to include, say, 

four solvents in the mobile phase, changing respective concentrations in order to 

institute solute retention control. For example, we choose solvents A,B,C,D, where 

A in nonpolar, B is weakly polarized, and C and D are increasingly polar. Also, 

C and D have basicity, increasing from C to D. In such a way we can predict the 

retention chara,cteristics for solutes, and use this predictability to improve separa

tion. Snyder, et (II. [48] suggest for example hexane (a saturated hydrocarbon) 

for A, methylene chloride for B, an ether like methyl tert.- butyl ether for C, and 

acetonitrile for D. 

These results have been found useful for the case where solvent characteristics 

are changed only from experiment to experiment - not for solvent changes during 
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the chromatographic run - except for the case when only solvent strength € is 

varied. This is not to say that one could not obtain superior results by considering 

changes in C,l and c" , just that methods utilizing these other aspects of the solvent 

model have not been developed. Rather, Snyder and his colleagues have focussed on 

simpler techniques for improving solute separation via Fast Method Development. 

It appears tha t FMD cannot handle more parameters gracefully or easily. 

Snyder 's equa tion s express what occurs with a static solvent - solute model. To 

help take into account the dynamics when the solvent charcteristics change during 

the experiment, Snyder [47] uses an averaging of the solvent gradient to give effective 

relative retentions. This approach fails if anything more complicated than a linear 

solvent strength gradient is modelled. In fact, it is very likely the case that a large 

amount of controllability of the system is lost through averaging. 

There is still another very important aspect that the model fails to address: 

the nature of high concen t rations of solvent in the mobile phase. It is perfectly 

natural to consider the solvents present in the mobile phase as solutes, in light 

of the mechanisms of solvent action (i.e., competition for attachment sites on the 

adsorbent; mobile phase effects negligible) shown to hold true by experiment. This 

behavior can be modelled by nonlinear dynamical equations (Thomas [50,51], Walter 

[52,53], Goldstein [14,15]) the nonlinearity deriving from the high concentrations. 

Thus we would expect to find that the implicitly linear model used in FMD to fa il 

to show peculiarly nonlinear effects. Most notable among these effects are gradient 

spreading and "shock" formation from gradients. \Vhich effect will occur depends 

on the particula rs of variations in the solvent concentration; for the simple type of 

solvent gradients used in FMD, the solvent gradient will tend to increase its slope 

as it travels down the chromatographic column. This means that solutes near the 

top of the column experience a solvent gradient that is not as steep as the solutes 
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further down the column. Exactly how important this nonlinear effect I S to the 

control of the solute separation will have to be investigated. 
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