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Listening to the Ear 

"Your tale, Sir, would cure deafness." 

-Shakespeare, The Tempest (act I, scene ii) 



For the closest of friends, 

IWWO: 'YO:p TO: TWV </>D,wv. 

-Plato's Phaedrus 
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Abstract 

Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, of

fering a promising acoustic window on the mechanics of hearing in awake, listening human 

beings. That window is clouded, however, by an incomplete knowledge of wave reflection 

and transmission, both forth and back within the cochlea and through the middle ear. 

This thesis "does windows," addressing wave propagation and scattering on both sides 

of the middle ear. A summary of highlights follows. Measurements of the cochlear in

put impedance in cat are used to identify a new symmetry in cochlear mechanics-termed 

"tapering symmetry" after its geometric interpretation in simple models-that guarantees 

that the wavelength of the traveling wave changes slowly with position near the stapes. 

Waves therefore propagate without reflection through the basal turns of the cochlea. An

alytic methods for solving the cochlear wave equations using a perturbative scattering 

series are given and used to demonstrate that, contrary to common belief, conventional 

cochlear models exhibit negligible internal reflection whether or not they accurately repre

sent the tapering symmetries ofthe inner ear. Frameworks for the systematic "deconstruc

tion" of eardrum and middle-ear transduction characteristics are developed and applied to 

the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A sim

ple phenomenological model of inner-ear compressibility that correctly predicts hearing 

thresholds in patients with missing or disarticulated middle-ear ossicles is developed and 

used to establish an upper bound on cochlear compressibility several orders of magnitude 

smaller than that provided by direct measurements. Accurate measurements of stimulus

frequency evoked otoacoustic emissions are performed and used to determine the form 

and frequency variation of the cochlear traveling-wave ratio noninvasively. Those mea

surements are inverted to obtain the spatial distribution of mechanical inhomogeneities 

responsible for evoked emission. Although current models require that the periodicities 

found in emission spectra and threshold hearing curves originate in a corresponding corru

gation in the mechanics of the cochlea, it is shown that the observed spectral periodicities 

can arise spontaneously through the dynamics of wave propagation and reflection and that 

the organ of Corti, as suggested by the anatomy, need manifest no particular translational 

symmetries. 
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Introd uction 

The mammalian ear has evolved a remarkable mechanism for the detection and analysis 

of sound. Far from being an objective, passive recorder of sense impressions, the ear is 

an energy-producing mechanical system that creates sound in response to sound. Those 

sounds can be recorded noninvasively in the ear canal with sensitive microphones. Thus, 

by listening seriously to what the ear is saying, one can explore the mechanics of hearing 

in awake, listening human beings. 

Blow on an Aeolian harp. As the strings vibrate they move air molecules surrounding 

the harp and sound waves are created that travel outwards to the listening ear. Upon 

entering the ear canal those waves vibrate the eardrum, whose oscillations are transmitted 

by the bones of the middle ear (the three smallest of the human body: the malleus, incus, 

and stapes) to the oval window of the cochlea. 

Helmholtz pictured the cochlea itself as a miniature harp, connected string by string 

to neural fibers (Helmholtz 1863). Sensations of tone were created as sound waves induced 

the strings to resonate in sympathetic vibration, exciting corresponding fibers, which sent 

electrical signals to the brain. This view of cochlear mechanics was overturned, however, 

by the experiments of Georg von Bekesy who showed that, unlike the strings of a harp, the 

structures within the cochlea are not under tension (von Bekesy 1960). 

Rather, the cochlea consists of three fluid-filled chambers coiled into a spiral like a 

snail's shell about the size of a large pea. (Applied to the ear by the Sicilian philosopher 

Empedocles,l the word "cochlea" comes from the Greek K,ox>.ia(, referring to the spiny, 

spiral-shelled Mediterranean gastropod Murex trunculus, source of the coveted royal dye, 

Tyrian purple.) Separated by membranes from the other two, the central chamber contains 

a longitudinal array of specialized sensory cells, the hair cells of the organ of Corti. By 

directly observing the motion of the basilar membrane in human cadavers, von Bekesy 

demonstrated that vibration of the stapes sets the cochlear fluids into motion, generating a 

wave that travels along the organ of Corti until it reaches a point where its energy excites 

the nearby hair cells and is transduced into electrical potentials. The location of the point 

1 Empedocles' (d . circa 430 B .C.E.) contributions to physics include the famous theory of the four 
elements (earth, air, fire, and water) and their manipulation by the two powers, affinity and antipathy. 
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of transduction varies monotonically with the frequency of the stimulus. Tones of low 

frequency stimulate hair cells near the apex of the cochlea; higher-frequency tones excite 

regions closer to the stapes. The cochlea thus acts like an acoustic prism, separating sounds 

into their component frequencies and mapping those frequencies onto different points along 

the organ of Corti. This "textbook" understanding of traveling-wave excitation in the 

cochlea was, until recently, believed correct at all stimulus levels.2 Although the classical 

view applies for loud sounds (and in the dead), a remarkably different picture now pertains 

at lower sound intensities. 

It is now known that the ear creates sound while listening to sound (Kemp 1978). 

A recent model of cochlear mechanics deduced from measurements of basilar-membrane 

motion (Zweig 1991) predicts that cellular force generators in the cochlea-presumably the 

outer hair cells, which are motile, exhibiting a voltage-dependent contraction in isolated 

preparations (Brownell et al. 1985; Zenner et al. 1987), and receive extensive innervation 

from the brain (Spoendlin 1979)-boost the energy of incoming sound, amplifying traveling 

waves somewhat as a laser amplifies light. Consequently, small backward-traveling waves, 

originating from the scattering of forward-traveling waves by mechanical inhomogeneities 

in the organ of Corti (Manley 1983; Lonsbury-Martin et al. 1988), are amplified as they 

travel backwards to the stapes, from which they are partially reflected. Unreflected waves 

vibrate the middle-ear bones and ultimately appear in the ear canal as sound ("otoacoustic 

emissions"). The generation of large backward-traveling waves radically changes our view 

of wave motion in the cochlea at low sound-pressure levels. The superposition of forward

and backward-traveling waves leads to a standing-wave component in the cochlear response, 

thereby increasing the overall sensitivity of hearing. 

The threshold hearing curve shows periodic minima (Elliot 1958; Thomas 1975) at fre

quencies that correlate strongly with maxima in the spectra of otoacoustic emissions (Horst 

et al. 1983; Zwicker and Schloth 1984). The ear emits most loudly at those frequencies for 

which it is most sensitive. Since the cellular force generators are limited in the energy they 

2 See, however, the work of LePage (LePage 1987; LePage 1990), who describes experiments identifying 
another possible component-a "summating baseline shift"-in the response of the organ of Corti and 
suggests that they provide evidence for the dynamic control of cochlear tuning, achieved by varying the 
tension in the radial fibers of the pars pectinata. The outer hair cells then serve-returning to Helmholtz
much like the pedals on an orchestral harp. 
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can emit, cochlear excitation patterns produced when the ear listens to quiet sounds are 

qualitatively different from those produced in response to louder sounds. The extensive 

innervation of hair cells by neurons from the brain suggests that the brain may, accord

ing to its expectations, purposefully alter the mechanical state of the ear to facilitate the 

extraction of signal from noise; the ear may actively modify and control its own experience. 

Background 

More than forty years ago, Gold (1948) proposed that the viscous damping of the organ 

of Corti might be overcome by a "regenerative mechanism" through which electrochem

ical energy was converted into mechanical forces that counteracted the damping. Gold 

suggested that such feedback might occasionally drive a region of the cochlea into self

oscillation, and that such sustained oscillations could underly the familiar phenomenon of 

"ringing in the ear." Although Gold predicted that those mechanical oscillations would gen

erate acoustic counterparts detectable in the ear canal, his hypothesis remained unexplored 

for thirty years, until Kemp (1978), working with sensitive microphones, demonstrated the 

existence of otoacoustic emissions originating within the cochlea. 

To supply background and context for the work described here-which investigates 

the unexpected experimental finding that when listening to quiet sounds the ear emits, at 

certain regularly-spaced frequencies corresponding to those at which it is most sensitive, 

nearly as much energy as it receives Kemp (1978)-this section provides a brief synopsis of 

some of the more interesting features of otoacoustic emissions. Probst et al. (1991) provide 

a recent, comprehensive review of the field, which they find represented, to date, by more 

than 300 published papers . 

• Otoacoustic emissions (OAEs) can occur in the absence of acoustic stimuli (sponta

neous OAEs) or they can be generated by the cochlea in response to sound (evoked 

OAEs) . 

• Click- or tone burst-evoked otoacoustic emissions, known as cochlear echoes, can be 

evoked from essentially all normal human ears. Their ubiquity and the close correlation 

between the spectra of the evoking stimulus and that of the resulting echo (Norton 

and Neely 1987) indicate that evoked emissions reflect normal cochlear mechanics, 
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not cochlear pathology. Indeed, the presence and level of evoked emission offers an 

objective, clinical measure of cochlear function (Kemp et al. 1986). 

• Human spontaneous and evoked OAEs are found most often in the frequency range 

1-2 kHz. This frequency window may be a reflection of the transfer characteristics of 

the middle ear (Shera and Zweig 1992d; Shera and Zweig 1992g). 

• The amplitude of stimulus-frequency and transiently-evoked OAEs grows linearly with 

the level of the evoking stimulus below approximately 10 dB; at higher stimulus levels 

they saturate (Zwicker and Schloth 1984). 

• Spontaneous otoacoustic emissions produce a non-Gaussian probability distribution 

for the pressure amplitude in the ear canal, suggesting that they arise as the result of 

instabilities in an active feedback system, rather than through the passive filtering of 

thermal noise (Bialek and Wit 1983). 

• Evidence suggests that spontaneous OAEs may arise through damage to the cochlea 

(Zurek and Clark 1981; Ruggero et al. 1983) and are not important for the normal 

process of hearing. Characterization of their properties, however, could give insight 

into the structure of the active processes that contribute to normal hearing. 

• Surveys of emission prevalence (see Probst et al. 1991) find that spontaneous OAEs 

occur more frequently in females (52%) than in males (30%). Similar gender differences 

occur in both infants and adults (Strickland et al. 1985). These surprising statistics 

may reflect differences in the stapes reflection coefficient originating through gender

related variations in middle-ear size. 

• Spontaneous OAEs display typical nonlinear behavior. They show both suppression 

and entrainment in response to external tones at nearby frequencies (e.g., Rabinowitz 

and Widin 1984), suggesting that they may be characterized phenomenologically as 

originating from the motion of a nonlinear harmonic oscillator. 

• Measurements of the minimum stimulus energy needed to entrain a spontaneous emis

sion yield results on the order of 1 eV (Wit and Ritsma 1983), suggesting that emis

sion phenomena could be triggered by or originate in processes at the level of a single 

molecule. 
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• Pairs of adjacent spontaneous emissions (and sometimes even groups of noncontiguous 

emissions) can be "linked" (Burns et al. 1984; Jones et al. 1986), meaning that they 

appear to switch on and off alternately in time, as though the emission energy were 

somehow shared between two quasi-stable states. 

• When the ear is driven by two primary tones of frequency It and h, combination tones 

at frequencies nit ± mh, where nand m are integers, are generated in the cochlea. 

These combination tones can be detected both psychophysically (Goldstein 1967) and 

by microphones in the human ear canal (Kemp 1979). Spontaneous OAEs have been 

found to generate their own intermodulation distortion products (Burns et al. 1984; 

Jones et al. 1986). 

• If, in addition to the two primaries, a third cancellation tone at a combination-tone 

frequency is presented, its amplitude and phase can be adjusted so that the combi

nation tone is no longer heard. In conjunction with a model of the middle ear, a 

nonlinear model of the cochlea can predict the amplitude and phase of the required 

cancellation tone and the results of other psychophysical null experiments (Shera and 

Zweig 1992b). 

• The behavior of otoacoustic emissions is controlled via feedback from the central ner

vous system. Experiments have shown that contralateral tones can alter the amplitude 

and frequency of both spontaneous and evoked OAEs (Mott et al. 1989). Whitehead 

(1991) has described similar, centrally-mediated variations in emission characteristics. 

Evoked emission and the thesis 

Measurement of the pressure in the human ear canal as a stimulus tone is swept slowly 

in frequency yields two surprises. First, as demonstrated by Kemp (1978) more than a 

decade ago, the measured pressure contains a surprising amount of spectral structure, 

revealing the presence of an additional tone evoked by the stimulus and generated within 

the cochlea. Second, and perhaps even more surprising, that spectral structure typically 

assumes a remarkably simple form, consisting of regular, almost periodic oscillations in the 

amplitude and phase. 
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This thesis attempts to understand the origin of that simple pattern and explores a 

number of interesting qualitative features of evoked otoacoustic emissions: 

• Close examination of the human threshold hearing curve reveals a substantial mi

crostructure (Elliot 1958; Thomas 1975). Threshold sensitivity can vary by more than 

10 dB over intervals of 50 Hz. The microstructure of the human threshold hearing 

curve suggests that the cochlea, at least at low stimulus levels, is characterized by a 

discrete (rather than the often presumed continuous) spatial symmetry. The threshold 

hearing curve defines a "cochlear reticule." The cochlear reticule may result from the 

generation of standing-wave patterns in the inner ear (Kemp 1980) or may reflect an 

intrinsic corrugation or washboarding in the mechanics of the organ of Corti. 

• Maxima in the spectra of evoked emissions are correlated strongly with minima in the 

threshold microstructure (Kemp 1979; Horst et al. 1983; Zwicker and Schloth 1984). 

The ear emits preferentially at those frequencies at which it is most sensitive. 

• The frequency spacing of adjacent maxima in both the spectra of evoked OAEs and 

the threshold hearing curve varies systematically with the frequency of the stimulus. 

Psychophysically, the observed frequency interval represents roughly half a critical 

bandwidth (Zwicker and Schloth 1984). When converted to a length using the cochlear 

frequency-position map, the frequency spacing corresponds to a constant distance 

(roughly half a millimeter) along the organ of Corti. Perhaps significantly, this distance 

is nearly the same as that traversed by outer hair cell afferent auditory nerve fibers, 

which travel basally some distance after entering the cochlea before synapsing with 

the outer hair cells (Spoendlin 1978). 

• Evidence suggests that the microstructure of the human threshold hearing curve may 

be correlated between the two ears (Probst et al. 1986). If this is so, otoacoustic 

emissions may play an important role in signal processing at low and intermediate 

sound-pressure levels (e.g. in the localization of low intensity sounds or the extrac

tion of unvoiced speech from ambient noise). If otoacoustic emissions do function in 

signal processing, and are not merely an epiphenomenon of cochlear activity, then it 

is possible that the boundary condition at the basal end of the cochlea (which helps 

determine the distribution of sound created in the inner ear) evolved to facilitate this 
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function. A model of the middle ear (Shera and Zweig 1992a) can be used to explore 

this possibility . 

• The data of Zwicker and Schloth (1984) indicate that at low stimulus levels where 

emissions are strong the analytic structure of the ear-canal pressure is not what one 

would expect from a causal system (Shera and Zweig, unpublished observation). The 

real and imaginary parts of a causal function are Hilbert transforms of one another; 

the real and imaginary parts of Zwicker's measured ear-canal pressure do not satisfy 

these relations, raising the intriguing possibility that feedback from the brain plays a 

major role in the generation or control of evoked emission. 

Overview 

Otoacoustic emissions thus offer a promising acoustic window on the mechanics of 

hearing. That window is clouded, however, by an incomplete knowledge of wave reflection 

and transmission, both forth and back within the cochlea and through the middle ear. 

This thesis "does windows," addressing wave propagation and scattering on both sides of 

the middle ear to provide an understanding of the striking spectral periodicities found in 

emission spectra and the microstructure of the threshold hearing curve. Organized as a 

series of self-contained chapters (corresponding to papers, either published or submitted for 

publication, written in collaboration with George Zweig), the thesis is unified thematically 

by its concern with understanding how measurements made in the ear canal can be used 

as a noninvasive probe of cochlear mechanics. 

The thesis-organized as a round-trip journey outwards from the cochlea to the 

eardrum and middle ear and then back again to the cochlea-explores two principle themes. 

Since quantitative interpretation of otoacoustic emissions requires knowledge of middle-ear 

transfer functions not currently available, the thesis first develops (in chapters III, IV, 

and VI) frameworks for the systematic "deconstruction" of eardrum (§III) and middle-ear 

mechanics (§IV), providing a common ground for the comparison between theory and ex

periment. For example, the framework is used to establish an upper bound on inner-ear 

compressibility several orders of magnitude smaller than those provided by direct measure

ments (§VI). 
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Second, the thesis explores (in chapters I, II, V, VII, and VIII) the propagation and 

reflection of cochlear waves. Measurements of cochlear input impedance in cat are used 

to identify a new symmetry in cochlear mechanics-termed "tapering symmetry" after 

its geometric interpretation in simple models- that guarantees that the wavelength of the 

traveling wave changes slowly with position near the stapes (§I). Waves therefore propagate 

without reflection through the basal turns of the cochlea. Analytic methods of solving the 

cochlear wave equations that incorporate both scattering by mechanical inhomogeneities in 

the organ of Corti (§II) and reflection and transmission at the cochlear boundary with the 

middle ear are developed. Those methods are used to demonstrate that measurements of 

otoacoustic emissions can be employed to determine middle-ear transfer functions noninva

sively (§V). Accurate measurements of stimulus-frequency evoked otoacoustic emissions are 

made and, after "dividing out" the unknown transfer characteristics ofthe middle ear, used 

to determine the form and principle frequency variation of the cochlear traveling-wave ratio 

(§VII). Finally, those measurements are "inverted" and solutions to the inverse scattering 

problem obtained for the distribution of mechanical inhomogeneities responsible for evoked 

emission (§VIII). Although current models require that the periodicities found in emission 

spectra and threshold hearing curves originate in a corresponding corrugation in the struc

ture of the cochlea (e.g., Strube 1985; Peisl 1988; Strube 1989), the thesis demonstrates 

that the striking spectral periodicities can arise spontaneously through the dynamics of 

wave propagation and reflection and that the remarkable spectral order, as suggested by 

the anatomy of the organ of Corti, need have no objective spatial correlate. 
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A Symmetry Suppresses the Cochlear Catastrophe 

Christopher A. Shera and George Zweig 

Hearing Research Laboratory 
Signition, Inc. 
P.O. Box 1020 

Los Alamos, New Mexico 87544 

ABSTRACT 

When the independent spatial variable is defined appropriately, the empirical 
finding that the phase of the cochlear input impedance is small (Lynch et 
al. 1982) is shown to imply that the wavelength of the pressure wave in the 
cochlea changes slowly with position near the stapes. As a result, waves 
traveling in either direction through the basal turn undergo little reflection, 
and the transfer of energy between the middle and inner ears remains efficient 
at low frequencies . The slow variation of the wavelength implies that the 
series impedance Z and shunt admittance Y of the cochlear transmission line 
are approximately proportional at low frequencies and thus requires that the 
width of the basilar membrane and the cross-sectional areas of the cochlear 
scalae taper in opposite directions . Maintenance of the symmetry between Z 
and Y is both necessary and sufficient to ensure that the spatial derivative of 
the wavelength, and hence the phase of the cochlear input impedance, remains 
small. 

Although introduced in another context, the model of Zweig (1987; 1991) 
manifests the symmetry between Z and Y. In other transmission-line mod
els of cochlear mechanics, however, that symmetry is absent, and the spatial 
derivative of the wavelength diverges at low frequencies-the "cochlear catas
trophe." Those models therefore contradict the impedance measurements and 
predict little transfer of energy between the middle and inner ears. 
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Introd uction 

Measurements of the velocity of the basilar membrane in response to tones of different 

frequency (e.g., Rhode 1971; Robles et al. 1986) and the absence of spectral ripples in non

invasive measurements of middle-ear input impedance (Kemp and Chum 1980; Zwicker 

and Schloth 1984) both indicate that little reflection of forward-traveling waves occurs 

within the cochlea at high sound-pressure levels. Indeed, it is widely believed that the 

cochlea evolved to suppress such reflection at stimulus levels sufficiently above thresh

old (Zweig et al. 1976; Zweig 1976). A number of authors have argued, however, that the 

cochlea is strikingly asymmetric with respect to wave travel in the two directions along the 

organ of Corti and that the internal reflection of backward-traveling waves is significant 

at all sound levels (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986; 

Kaernbach et al. 1987). Such reflection, if present, would have important consequences 

for understanding the nature of otoacoustic emissions and their contribution to auditory 

signal processing (Kemp 1978; Kemp 1979). 

This paper demonstrates, however, that measurements of the cochlear input impe-

dance, 

(Lynch et al. 1982; Nedzelnitsky 1974a; Nedzelnitsky 1980) which indicate that its phase 

is nearly zero, imply- when the independent spatial variable is appropriately defined

that the wavelength of the traveling pressure wave changes slowly with position near the 

stapes. Consequently, reflection of waves traveling in either direction through the basal 

turn must be small. The slow variation of the wavelength implies that the longitudinal 

impedance Z of the cochlea and the shunt admittance Y of the organ of Corti are approx

imately proportional. Maintenance of that symmetry between Z and Y is both necessary 

and sufficient for transmission-line models to agree with the impedance measurements. If 

the symmetry is broken, however, the spatial derivative of the wavelength diverges at low 

frequencies. That divergence, manifest in nearly all models of cochlear mechanics, we call 

the "cochlear catastrophe."l Those models are thus in contradiction with measurements 

1 The cochlear catastrophe takes its name by analogy with the apparent divergence at low photon 
energy in the scattering cross-section of an electron, the so-called "infrared catastrophe" of quantum 
electrodynamics (Bloch and Nordsieck 1937; Feynman 1961). The word "catastrophe" comes from the 
Greek K.OITOIITTpfc/!ftV meaning "to turn down" and describes the ironic reversal in fortune characteristic 
of the denouement of a classical tragedy. Appropriately, models of cochlear mechanics exhibiting the 
catastrophe display a pronounced decrease in the magnitude of the cochlear input impedance and a sharp 
fall-off in energy transfer to the cochlea at low frequencies. 
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of the cochlear input impedance. Whereas the measured input impedance is essentially 

real and constant over a wide frequency range, the models predict a nonzero phase and 

a considerable variation in amplitude arising from the broken symmetry. Another model 

of cochlear mechanics (Zweig 1987; Zweig 1991) enforces the symmetry and so avoids the 

cochlear catastrophe, remaining approximately consistent with the impedance data. 

The rate of change of the wavelength near the stapes is also shown to affect the 

sensitivity of the ear. Models of cochlear mechanics that exhibit the catastrophe predict a 

decrease in the transfer of acoustic energy to the cochlea at low frequencies. Suppression 

of the cochlear catastrophe prevents that dramatic decline in middle-ear efficiency. 

A. Overview 

The paper consists of two parts. In the first, the cochlear input impedance is defined, 

its measurement in the cat reviewed, and an approximate analytic expression for it ob

tained. Consistency with the measurements of Lynch et al. (1982) is shown to require that 

the wavelength of the traveling wave change slowly at the basal end of the cochlea. The 

implications of a slowly changing wavelength for the reflection of traveling waves, for the 

geometric structure of the cochlea, and for the sensitivity of hearing are then discussed. 

The second part parallels the first, illustrating the results in a simple class of cochlear 

models. Those models fall into two categories differing in the spatial variation of their pa

rameters: those in which the wavelength changes slowly near the stapes (e.g., Zweig 1987; 

Zweig 1991), and those, such as the models used to discuss the reflection of retrograde 

waves (Viergever 1986; de Boer et al. 1986ab and Kaernbach et al. 1987), that exhibit 

the cochlear catastrophe. The companion paper (Shera and Zweig 1991b) explores the 

consequences of breaking the symmetry between Z and Y for the reflection of traveling 

waves. 

I. The Symmetry 

A. The cochlear input impedance 

As seen from the basal end of the cochlea, the response at the driving frequency 

to a pure tone of angular frequency wand amplitude A can, if the organ of Corti is 

essentially incompressible (cf. Shera and Zweig 1992a), be characterized by the cochlear 
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input impedance, which is defined as the ratio of the pressure difference P(x,w; A) across 

the organ of Corti to the volume velocity U(x,w; A) of the cochlear fluids in the scala 

vestibuli: 

~(w;A) == PI 
U x=O; cochlea driven forward • 

(1) 

The position x = 0 corresponds to the basal opening of the cochlear spiral, and the di-

acritical arrow indicates that the cochlea is being driven in the "natural," or forward, 

direction. 

B. Amplitude and frequency range of interest 

At moderate intensities nonlinearities in cochlear mechanics make significant contri

butions to ~(w; A), which varies strongly with A (Kemp 1979a). At high intensities, 

however, the relative amplitude of those nonlinear contributions is always small (Kemp 

and Chum 1980; Zwicker and Schloth 1984), and the function ~(w; A) becomes indepen

dent of the amplitude of the stimulating tone: 2 

~(w; A) == Zo(w), for A > Aoo. (2) 

In humans, the stimulus amplitude Aoo corresponds to roughly 60 dB above threshold at 

frequencies w /27r f'V 1 kHz. 

At the lowest frequencies (w/27r :s 100 Hz) interpretation of Zo(w) is complicated 

by viscosity and the effects of the geometry of the apical scalae and helicotrema (Koshi

goe et al. 1983; Puria and Allen 1991). For example, the termination of the organ of 

Corti at the helicotrema may result, at very low frequencies, in the partial reflection of 

waves back toward the stapes. Such waves can have significant effects on the cochlear 

input impedance (Puria and Allen 1991). By restricting attention to higher frequencies 

(w/27r ;::: 100 Hz), at which stimulus energy is absorbed before reaching the apical end 

of the cochlea, such complications are avoided and measurements of Zo(w) can be com

pared with the predictions of models that do not specify cochlear responses to the lowest 

frequencies. 

2 The situation in non-mammals may be more complex (e.g., Rosowski et al . 1984). 
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c. Measurements of Zo(w) 

Lynch et al. (1982) and Nedzelnitsky (1974a; 1980) have measured the input impedance 

of the cat inner ear at high stimulus amplitudes. At the lowest frequencies (w /27r ;:; 80 Hz) 

their measurements include effects due to the impedance of the round window, but at 

higher frequencies the impedance they measure reduces to Zo(w) and is determined solely 

by the internal mechanics of the cochlea.3 Their measurements of Zo(w), together with 

smoothed, minimum-phase fits (Zweig and Konishi 1987; Konishi and Zweig 1989) to the 

data, are shown in Fig. 1. 

The measurements indicate that the phase LZo(w) of the cochlear input impedance 

is small over a broad range of frequencies greater than approximately 100 Hz (see also 

Nedzelnitsky 1974b): 

1 1
- -1 I ImZo(w) I 

LZo(w) = tan ReZo(w) ~ 1 (w/27r ~ 100 Hz), (3) 

where Re and 1m indicate the real and imaginary parts of their arguments. Note, in 

addition, that ReZo(w) is roughly constant. 

The measurement errors are not precisely known, but since driving-point impedances 

are minimum-phase functions (Bode 1945), a lower bound on the error is given by the 

deviations from the minimum-phase fit, which do not exceed ±2 dB in the amplitude 

and ±100 in the phase. Lynch et al. (1982) provide an upper bound on the error of ±10 

dB in the amplitude and roughly ±40° in the phase (Nedzelnitsky 1974a) but believe 

those limits substantially overestimate the actual error at frequencies greater than 100 

Hz (Lynch et aI. 1982; Peake 1989). 

3 Lynch et al . (1982) m easure the ratio Pv /U, where Pv is the pressure in the scala vestibuli. As 
defined by Eq. (1), however, the cochlear input impedance Zo(w) is the ratio of the pressure difference, 

P= P y - Pt, (3.1) 

between the scala vestibuli and scala tympani to the fluid volume velocity U in the scala vestibuli. The 
measurements of Nedzelnitsky (1980) indicate, however, that 

(w/21r .<: 100 Hz), (3 .2) 

so that P ::::: Py at frequenci es greater than 100 Hz in the basal turn of the cat cochlea. Lynch et al. (1982) 
refer to Zo as the "input impedance across the cochlear partition" and denote it by Z~. 
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Figure 1. Amplitude and phase of the cochlear input impedance Zo(w) of the cat measured 
by Lynch et al. (1982) together with smoothed, minimum-phase fits to the measurements (Zweig 
and Konishi 1987; Konishi and Zweig 1989) . Key to symbols: measurements for cat 25 (0) from 
Fig. 15 of Lynch et al. and corresponding fit (--); measurements for cat 18 (x) from Fig. 15 
of Lynch et al. and corresponding fit (- - - -); averaged measurements for 29 cats (.) from Fig. 24 of 
Lynch et al. and corresponding fit ( ). Lynch et al. report measurements for an additional 
cat (cat 27); those measurements are not shown here because they include only a few points above 
100 Hz. Note that the deviations from the minimum-phase fit are less than approximately ±2 dB 
in the amplitude and ±10o in the phase. Those errors were used as inputs to the fitting procedure 
and determined the relative weighting of amplitude and phase data (Zweig and Konishi 1987). 
The data indicate that the phase of Zo(w) is small in the frequency range 100-7000 Hz. 
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D. Transmission-line models of cochlear mechanics 

An approximate analytic form for Zo(w) can be derived from transmission-line models 

of cochlear mechanics, enabling one to understand the constraints that measurements of 

Zo(W) impose on such models. Those constraints can be expected to take the form of a 

symmetry principle enforcing the empirical relation LZo(w) ::::::J O. 

At intensities A > Aoo and frequencies w ~ weo ' where weo is the characteristic angu-

lar frequency at the beginning of the organ of Corti (x = 0), the basal turn of the cochlea 

is analogous to a linear, one-dimensional mechanical transmission line (Zwislocki-Moscicki 

1948; Peterson and Bogert 1950; Zweig 1991) with series impedance Z(x,w) and shunt ad

mittance Y(x,w) per unit length. A section ofthe cochlear transmission line is illustrated 

schematically in Fig. 2. Application of Kirchoff's circuit laws yields a pair of coupled, 

first-order transmission-line equations, 

and 

describing the variation of P and U. 

dP = -ZU 
dx 

dU = _YP, 
dx 

(4) 

(5) 

Validity of the simple transmission-line analogue used here requires that the cochlear 

response be linear and that the long-wavelength approximation hold in the basal turn of 

the cochlea at low frequencies. The motion of the organ of Corti is nonlinear primarily 

in the region of maximal velocity (Rhode 1971; Robles et al. 1986), which for angular 

frequencies w ~ Weo occurs in the more apical turns of the cochlea. In addition, for 

frequencies W ~ Weo the wavelengths of the waves on the organ of Corti are long relative 

to the heights of the scalae (Nedzelnitsky 1980). The pressure then depends only on 

position along the organ of Corti and not on the two orthogonal directions; the geometry 

of the basal turn is thus effectively one-dimensiona1.4 

4 Sondhi (1978) has shown, for example, that the input impedance of a two-dimensional cochlear 
model is essentially identical with the one-dimensional result. However, the effects of the vestibule have 
yet to be carefully investigated. 
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- Impedance - • Z(x,ro)ill • -
U(x,ro) U(x+ill,ro) 

Admittance 
P(X ,ro) Y(x,ro)ill P(x+ ill,ro) 

I U(x,ro) - U(x+6x,ro) 

- -
x x + ill 

Figure 2. A transmission-line analog for a section of the basal turn of the cochlea. The series 
impedance Z(x, w)~x includes the inertia of the cochlear fluids oscillating in the longitudinal 
direction, whereas the shunt admittance Y(x,w)~x characterizes the transverse response of the 
organ of Corti to a pressure difference across the scala media. 
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E. A change of coordinates 

Solution of the transmission-line equations is simplified by regarding P and U as 

functions of the "spatial" variable5 

X(x,w) = -i lax Z(i,w)di. (6) 

Two points are then separated by a "distance" equal to -i times the total series impedance 

between them. Conventional cochlear models predict that the impedance of the cochlear 

fluids to motion in the longitudinal direction is predominantly inertial. The series im

pedance Z(x,w) is thus essentially imaginary, and the factor -i, where i == p, thus 

makes X( x > 0, w) a positive, real-valued, monotonically-increasing function of x. Written 

in terms of X the transmission-line equations become 

and 

dP = -iU 
dX 

(7) 

(8) 

where :>.(X, w) is the characteristic impedance Zc (X, w) of the transmission line: 

- % 
:>'(X,w) == Zc(X,w) == (~) (9) 

Equations (7) and (8) describe a transmission line with series impedance and shunt 

admittance ij:>.2 per unit length dX. 

5 Three related spatial variables (x, x, and () are used in this paper. The first, with dimensions 

[x] = length, (5 .1) 

represents distance along the organ of Corti. The second, with dimensions of acoustic impedance, 

[X] = mass/length4 . time, (5.2) 

is used to transform the transmission-line equations (4) and (5) into a form [namely Eq. 10 for P] without 
explicit first derivatives of the dependent variable. The coordinate X will later be shown to be the most 
natural for a description of wave propagation in the cochlea. The third spatial variable, (, represents 
length measured in units of the distance over which the characteristic frequency changes by about an 
octave in the basal turn and is introduced to simplify expressions involving the dependence of model 
parameters on position. 

Throughout this paper when a function, say Z(x,w), is written as a function of another spatial 
variable, say X, we adopt the notational convention that 

Z(x,w) == Z(x(x,w), w) . (5.3) 
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Decoupling Eqs. (7) and (8) yields a wave equation for the pressure difference P(X, w) 

across the scala media: 
d2 P 1 
dX2 + i.? P = 0 . (10) 

When distance is measured in terms of X, A(X,W) is just 1/27r times the local wavelength 

,x(X,w) of the wave on the basilar membrane (Zweig et al. 1976). Throughout this paper 

A(X,W) is thus referred to as the wavelength (and A' == dA/dX as its spatial derivative). 

Note, in addition, that the symbols A(X,W) and Ze(X,w) are used interchangeably. 

F. Theoretical input impedance 

If the wavelength >'(X,w) varies slowly with position X, waves traveling down the 

organ of Corti undergo little reflection. Equation (10) for the pressure can then be solved 

by expanding P in an asymptotic WKB series (e.g., Bender and Orszag 1978), which yields 

(e.g., Green 1837; Jeffreys 1924; Zweig et al. 1976) 

P( ) -i JX dx/" + % In" + ... X,W '" e (11) 

for the forward-traveling pressure wave. Equation (7) for U then implies that 

When the wavelength has the form predicted by transmission-line models at frequencies 

w ~ weo ' truncating the series after the first two terms is optimal and yields6 

Z ( ) >'0 
o w ~ 1 + i>'~ /2 

(13) 

The subscripts "0" indicate that the quantities are evaluated at the basal end of the organ 

of Corti; for example, 

AO(W) == A(O,W) . (14) 

The prime7 denotes differentiation with respect to x: 

A~(W) == dA~'W) I 
X x=O 

(15) 

6 Viergever and de Boer (1987) obtained a similar approximate form [to which Eq. (13) reduces 
when the series impedance Z is independent of position] for the "matching impedance" of a nonuniform 
transmission line and found it to be in excellent agreement with numerical calculations. 

7 The traditional accent of the ecstasy of catastrophe. 
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Note that A' (X, w) is dimensionless. 

Recall that by restricting attention to frequencies w/27r ~ 100 Hz and stimulus am

plitudes A > A oo , contributions to the input impedance due to reflection from the heli

cotrema and the amplification by the "cochlear laser" (Zweig 1991; Zweig 1989) of wavelets 

scattered from mechanical inhomogeneities in the organ of Corti can be assumed small. 

Reflections from apical regions of the cochlea may, however, be responsible for the fine 

structure in the measured impedance curves (Puria and Allen 1991). If reflections are not 

too large, Zo (w) can be approximated by an expression depending only on the mechanics 

at the basal end of the cochlea. 

G. A limit on the rate of change of the wavelength 

The measurements of Lynch et al. (1982) place important constraints on transmission

line models of cochlear mechanics. As shown later in the examples (Sec. II), those models 

predict that at frequencies much less than the characteristic frequencies near the stapes 

(i.e., at w ~ weo ), the wavelength A(X, w) is approximately real and the imaginary part 

of its spatial derivative A'(X,W) is small: 

I 
ImAo I 
ReAo ~ 1, (16) 

and 

IImA~1 ~ 1. (17) 

Since forward-traveling waves have the approximate form (Zweig et al. 1976) 

(18) 

the real nature of the wavelength guarantees that waves of low frequency propagate 

through the basal turn of the cochlea without substantial change in amplitude. 

Applied to Eq. (13) for Zo, inequalities (16) and (17) imply that 

LZo ~ - tan-1 (ReA~/2) . (19) 

Combining Eq. (17) with the empirical finding that 

ILZo(w)1 ~ 1 (20) 
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above 100 Hz (cf. Fig. 1) therefore yields 

(21) 

As an immediate consequence, note that the rough constancy of the measured Zo (w ) 

implies 

"o(w) ~ constant (22) 

Inequality (21) , which constitutes the central result upon which this paper elabo

rates, depends for its validity on the empirical finding that LZo(w) is small (Lynch et 

al. 1982) and on inequalities (16) and (17), which follow from basic assumptions under

lying models of cochlear mechanics. Should those assumptions prove inapplicable to the 

real cochlea, the mechanics of hearing must be considerably different from that currently 

conceived. 

H. Relation to cochlear reflection of traveling waves 

The inequality 

(23) 

which transmission-line models of cochlear mechanics must satisfy if they are to be consis

tent with the measurements of Lynch et al. (1982), can be interpreted physically in terms 

of the reflection of waves traveling along the organ of Corti. Inequality (23) is equivalent 

to the condition that the change in wavelength over distances on the order of a wavelength 

be less than the wavelength. That statement implies, by analogy with the propagation of 

light through a medium of variable refractive index (e.g., Born and Wolf 1959), that waves 

traveling in either direction along the organ of Corti undergo little reflection. Mathemat

ically, the statement means that the WKB approximation may be used when solving the 

transmission-line equations, at least within the basal turn of the cochlea (Schroeder 1973; 

Zweig et al. 1976). Note that Eq. (23) thus provides ex post facto justification for the 

WKB expansion of the pressure used to obtain Eq. (13) for Zo(w). 
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1. A symmetry between Z and Y 

The limit on the spatial derivative of the wavelength imposed by the measurements, 

~1 (24) 

x=o 

implies that near the basal end of the cochlea the longitudinal impedance Z(X, w) of the 

cochlea and the shunt admittance Y(X,w) of the organ of Corti are constrained to be be 

roughly proportional at low frequencies: 

Y(X,w) ~ <l>2(w)Z(X,w) (25) 

where <I>(w) is independent of x. Conversely, if Z and Yare roughly proportional, the 

derivative oftheir ratio will be small. Based on its geometric interpretation in conventional 

cochlear models (see below), we call the proportionality between Z and Y the "tapering 

symmetry." 

In deriving Eq. (25) we assume that the derivative A' = A (dIn AI dX) is small because 

A(X,W) is essentially independent of X (at small X) and not because the wavelength itself 

is small. Support for that assumption comes from measurements of the magnitude the 

cochlear input impedance (Lynch et al. 1982). When combined with Eq. (13) for Zo, those 

measurements indicate that at low frequencies the wavelength of the pressure wave within 

the basal turn of the cochlea is long; i.e., that AO is not small. 

Technically, the impedance measurements require only that the symmetry hold at 

the point of measurement (i.e., at X = 0). We assume that the approximate symmetry 

continues to hold at least within the basal turn of the cochlea. An estimate of the length 

scale over which the symmetry might be expected to hold can be obtained from the Taylor 

expansion of A(X,W) about X = 0: 

A(X,W) ~ AO + A~X + ... (26) 

Thus, 

(ixi ~ IAoIA~I). (27) 
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Note that if the symmetry between Z and Y is broken, the derivative A'(X,W) can 

become large. As shown below, for example, transmission-line models in which such 

symmetry breaking occurs predict that A(X, w ~ wco ) is independent of frequency in the 

basal turn. Since in those models the series impedance Z, and hence the differential 

element dX, is proportional to w, the derivative dA/dX can be expected to diverge like l/w 

at low frequencies. 

The symmetry between Z and Y implies a symmetry between P and U. When IA'I 
is small-and in the absence of reflections from elsewhere in the cochlea-Eq. (7) for U 

implies that the ratio of P to U is simply the wavelength, or characteristic impedance, 

A(X,W): 

(28) 

The approximate proportionality between Z and Y implies that A is nearly constant near 

the stapes. Consequently, 

P 
U ~ AO (29) 

so that P and U are roughly proportional in the basal turn. The symmetry between P and 

U follows immediately from the symmetry between Z and Y and the observation that the 

transmission-line equations (4) and (5) are invariant under the simultaneous substitutions 

Z f-+ Y and P f-+ U. 

The symmetry between Z and Y relates two distinct aspects of cochlear mechanics. 

Whereas the impedance Z characterizes the geometry of the scalae and the longitudinal 

motion of the cochlear fluids, the shunt admittance Y describes the transverse response of 

an individual section of the organ of Corti to a pressure difference across the scala media. 

Remarkably, the symmetry imposed by the measurements implies that at low frequencies 

those functions are roughly proportional in the basal turn of the cochlea. 

J. Spatial coordinates revisited 

The symmetry between Z and Y selects the X coordinate system-originally intro

duced as a mathematical convenience for solving the transmission-line equations-as the 

most natural for describing the variation of pressure and volume velocity in the basal 
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turn of the cochlea. Since Z and Yare approximately proportional, the wavelength A 

measured in units defined by X is nearly constant at frequencies w ~ wCo near the stapes. 

Consequently, P can be written as a simple superposition of plane waves of the form 

(30) 

The same is not true, however, for the familiar wavelength Ax measured in units of 

length x. The familiar wavelength and its derivative are related to A and A' through the 

equations 
dx -

Ax = dX A = iA/ Z , (31) 

and 
dAx _ dX dAx _ A' A dlnZ 
dx - dx dX - - ----;IX. (32) 

Recall that A(X,W ~ wco ) is approximately constant in the basal turn [see Eq. (22)]. Since 

both Z and dX are, in standard models, proportional to w, the familiar wavelength Ax and 

its spatial derivative dAx/dx thus diverge like 1/w at low frequencies. 

K. Application to conventional cochlear models 

Earlier it was shown that consistency with the measurements of Lynch et al. requires 

that the wavelength change slowly near the stapes and therefore that Z and Y be roughly 

proportional. At low frequencies in the basal turn, conventional cochlear models predict 

that the series impedance Z is determined by the acoustic inertia M(x) of the cochlear 

fluids and the shunt admittance Y is dominated by the compliance C( x) of the organ of 

Corti and its basilar membrane. Z and Y thus have the limiting asymptotic forms 8 

Z ~ iwM(x) 
/3-+0 

and Y ~ iwC(x) , 
/3-+0 

(33) 

8 At the lowest frequencies Z may acquire a real part arising from viscous effects. That contribution 
should be small in the basal turn if the ratio £y of the viscous boundary layer thickness to the radius of 
the scala vestibuli (or tympani) satisfies 

~1/ 
£y = -- <t: 1 . 

wpS 
(8 .1) 

Here, p and 1/ are, respectively, the density and coefficient of viscosity of the cochlear fluids, and S is 
the cross-sectional area of the scala. The values p ~ 1 g/cm3

, 1/ ::::: 0.02 g/cm . s (von Bekesy 1960), and 
S::::: 0.01 cm2 (e .g., Wever 1949; Dallos 1970) indicate that the inequality is satisfied at frequencies 

w/27r ~ 3 Hz. (8 .2) 
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(1987; 1991) the circuit elements Z(x,w) and Y(x,w), and consequently the transfer func-

tions, "scale;" that is, they are functions not of x and w independently, but only of the 

single variable (3(x,w) defined by Eq. (35). At small (3 in that model, 

Z(x,w) = i{3(x,w)weoMo and Y(x,w) ~ i{3(x,w)weo CO , (39) 

where Mo and Co are constants. Hence, 

- W e -
M(x) = -(o)Mo 

We X 
and C(x) = w(eo)Co 

We X 
(40) 

near the stapes, so that the model automatically reproduces the required proportionality 

between M and C.9 

M. Implications for cochlear geometry 

The symmetry between M and C does not hold in other cochlear models. For exam

ple, C is typically assumed to increase exponentially with position, corresponding to the 

approximately exponential variation in characteristic frequency at the basal end of the 

cochlea (e.g., von Bekesy 1960; Greenwood 1961; Eldredge et al. 1981; Liberman 1982). 

The series inductance M, however, is often assumed to be independent of position. An 

acoustic inertance, M is usually taken to have the form 

- Po 
M(x) ex Sex) , (41) 

where Po is the density of the cochlear fluids and S( x) represents the effective cross

sectional area of the two scalae. Simple treatments (e.g., Zwislocki 1965; Dallos 1973) 

give 

(42) 

9 The predictions of scaling symmetry are consistent with Greenwood's (1961) demonstration that von 
Bekesy's post-mortem measurements of the static volume elasticity E(x) of the organ of Corti obey the 
approximate scaling relation 

Weo 
E(x)::::: -(-) Eo We X 

(9.1) 

in a variety of animals, from mice to elephants. 
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where Sv and St are, respectively, the cross-sectional areas of the scala vestibuli and 

the scala tympani.lO Thus, M is constant when the scalae are approximated as boxes of 

constant cross-section (de Boer 1980; Viergever 1980). In such models the spatial variation 

of M and C are therefore quite different, breaking the tapering symmetry required by 

measurements of the cochlear input impedance. 

The symmetry deduced from measurements of the input impedance finds support in 

a consilience with measurements of cochlear anatomy, which indicate that whereas the 

width, and hence the compliance (von Bekesy 1960), of the basilar membrane increases 

toward the helicotrema, the cross-sectional areas of the scalae decrease, especially at the 

basal end of the cochlea where the variation is roughly exponential (Wever 1949; Fernandez 

1952; Zwislocki 1965). Those opposing tapers tend to make M and C proportional, thereby 

preserving the symmetry between Z and Y. 

N. Corroboration from cadaversll 

Unfortunately, existing anatomical measurements do not permit a definitive quantita

tive examination of the proportionality between M and C. For example, the relationship 

between measured properties of the cochlea- the point stiffness of the basilar membrane 

(Gummer et al. 1981; Olson 1990), for example-and the effective impedances appearing 

in the model equations is not well understood. Even if one were to adopt the correspon

dences suggested by simple models-such as Eq. (42) for S appearing in Eq. (41) for 

M -appropriate measurements have yet to be made in a single animal. Comparing mea

surements across preparations is complicated both by uncertainties in the location of the 

measurement coordinate system and by differences in the overall size of the cochlea (Bohne 

and Carr 1979). 

Despite such uncertainties, a qualitative comparison of measurements on human ca-

davers is suggestive. Figure 3 compares the spatial variation of the effective cross-sectional 

area S, computed from Eq. (42) using the measurements of Wever (1949), with that of 

10 Although a typical mammalian cochlea consists of a coiled tube containing three chambers (the scala 
vestibuli, the scala media, and the scala tympani), simple models of cochlear mechanics approximate the 
structure by two chambers (the scala vestibuli and scala tympani) separated by the organ of Corti with 
its basilar membrane. In that simplified view, the quantity Sy appearing in Eq. (42) does not represent 
the true area of the scala vestibuli but should include some fraction of the area Sm of the scala media. 
Since Sm ~ Sy at the basal end of the cochlea, however, that correction is small. 

11 Symmetry under a cemetery wall. 
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Figure 3. Comparison of the spatial variation of the effective cross-sectional area S (.) computed 
from measurements of the scala vestibuli and scala tympani in three cadavers by Wever (1949) 
with that of the reciprocal of the static volume elasticity E (0) of the basal region of the organ of 
Corti (from Fig. 11-73 of von Bekesy 1960). Panels (a), (b), and (c) correspond to measurements 
from Figs. 73, 74, and 75 of Wever (1949), respectively. The effective cross-sectional area S 
was computed from Wever's measurements using Eq. (42). The points are connected by straight 
dotted lines C ···) to aid the eye. The solid line ( ) represents the best exponential fit to the 
measurements of 1/ E. The absolute scale for the stiffness measurements is varied between panels 
so that the region (containing large symbols) in which the two functions have similar slopes, can 
be more easily discerned. Although the precise location of the beginning of the organ of Corti 
is not known- and end effects may complicate the interpretation of the area measurements near 
the oval window- for the first 15% of the length of the organ of Corti, Sand 1/ E both vary 
exponentially and are roughly proportional. 
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the reciprocal of the static volume elasticity E of the organ of Corti measured by von 

Bekesy (1960). Since von Bekesy's elasticity measurements were made in cadavers, they 

do not include contributions from physiologically active mechanical elements. Since the 

symmetry between Z and Y evolved in living ears, there is little reason to expect it to 

hold after death. The figure indicates, however, that Sand 1/ E, and hence-by adopting 

the naive correspondences M ()( 1/ Sand C ()( E-M and C, are indeed proportional near 

the base of the cochlea. Although the location of the beginning of the organ of Corti 

is not precisely known and end effects complicate the interpretation near the stapes, the 

proportionality appears to hold for roughly the first 15% of the distance along the organ 

of CortiP 

O. Consequences for the sensitivity of hearing 

The slow variation of the wavelength has important consequences for the detection 

of sound. The efficiency of the middle-ear is defined as the fraction of the time-averaged 

power entering the middle ear that is absorbed by the cochlea (Rosowski et al. 1986): 

Power into cochlea 
17me(W) == Power into middle ear (43) 

Here, Pe(w) and Ue(w) are the pressure and volume velocity measured in the ear canal 

at the eardrum. The middle-ear input impedance Ze(w) and transfer function Tme(w) are 

defined more precisely in the Appendix. 

Although cochlear contributions to middle-ear efficiency are complicated, a qualitative 

understanding of the effect of tapering symmetry on energy transfer to the cochlea at low 

frequencies can be obtained by examining the factor ReZo. Since "0 and ,,~ are both 

approximately real at low frequencies, 

ReZo ~ Re { "0 I } ~ __ "_o,--~ 
1 + iAo/2 1 + (A~/2)2 

(44) 

12 Similar results are obtained in guinea pigs by combining the anatomical measurements of Fernandez 
(1952) with the basilar membrane stiffness measurements of Gummer et al. (1981). The analysis, however, 
is not definitive, both because Gummer et al.'s estimate of the slope of the stiffness variation is uncertain 
(their measurements are confined to only a small patch of the basilar membrane) and because the rela
tionship between the point stiffness they measure and the effective volume compliance C appearing in the 
equations is not well understood. 
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Because "~(w) is small at auditory frequencies, ReZo, and consequently middle-ear ef

ficiency, stays roughly constant. Conversely, for 17me(w) to remain roughly constant at 

low frequencies-given the measured transfer characteristics of the cat middle ear, the 

approximate value of ReZo, and the theoretical result that "0 varies only slowly with 

frequency-requires that ,,~ be small. 

Note, however, that were "~(w) to diverge as w -+ 0, as it does in models exhibiting the 

cochlear catastrophe, ReZo would approach zero. In that limit (Le., the limit ReZo -+ 0), 

17me becomes proportional to ReZo (see the Appendix), and the transfer of energy into 

the cochlea becomes vanishingly small. Thus, in a world differing from ours only in that 

the wavelength changes rapidly in the basal turn of the cochlea, the sensitivity of hearing 

would be considerably reduced at low frequencies. 

II. The Catastrophe 

The remainder of this paper illustrates the comments made above by explicit compu

tations for two categories of models, distinguished by the extent to which they exhibit the 

cochlear catastrophe. Note that the issues addressed-the cochlear input impedance and 

middle-ear efficiency-depend only on the form of the model at low frequencies near the 

stapes. The reflection of retrograde waves discussed in the companion paper (Shera and 

Zweig 1991b) depends on more global characteristics of the model cochleas. The following 

sections also serve to justify by example the statements [Le., Eqs. (16) and (17)] that "0 
and ,,~ are approximately real, which were used to derive the limit on the rate of change 

of the wavelength [Le., Eq. (21)]. 

A. Conventional transmission-line models 

In many transmission-line models, including those used to investigate reflection of 

waves in the cochlea (de Boer and Viergever 1984; Viergever 1986; de Boer et al. 1986ab 

and Kaernbach et al. 1987), the series impedance Z(x,w) and shunt admittance Y(x,w) 

per unit length have the form 

Z(x,w) = iwM(x) and { 
1 }-l 

Y(x,w) = iwM(x) + R(x) + iwC(x) , ( 45) 
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where M, M, R, and C are real-valued functions of x. The wavelength thus becomes 

- 1f2 
"(x,w) = (~) V1 - (32 + io{3 , (46) 

where (3(x,w) = w/we(x) in accord with Eq. (35), we(x) = 1/v'MC is the characteristic 

angular frequency, and o( x) = weRC is the dimensionless damping parameter. For future 

reference, note that 

( 47) 

that is, "o(w ~ weo) is essentially real, in agreement with Eq. (16). 

At the basal end of the cochlea, the derivative "'(X,w) has the value 

, 1 (weo d, + ;00 dln(O/We)) I . 
"0 (w ~ W eO ) ~ 4 I\To • 

HI W d( 2 d( (=0 
(48) 

The dimensionless spatial variable 

(= x/I ( 49) 

used here (see note 5) is defined in terms of the length scale lover which the characteristic 

frequency changes by a factor of e in the basal turn (Liberman 1982): 

(50) 

The dimensionless parameter No is defined by 

(51) 

and the real dimensionless function ,( () by 

- 1f2 
-1 (M) ,(0 = "00 C (52) 

Note that ,(0) = 1. 
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B. The reality and divergence of "~(w) 

Equation (48) for the derivative can now be used to find the conditions under which 

"~(w) becomes large, giving Zo(w) a nonzero phase. Comparison of transmission-line 

models with measured basilar membrane transfer functions (e.g., Zweig et al. 1976; de 

Boer 1980) suggests that the damping parameter 00 is small whereas No is relatively 

large. The values 

1 
00 rv - and No rv 5 

20 

are typical. If 0(0 is roughly constant (as it is in the models discussed here), then 

dln(ojwc ) 
d( rv 1 . 

Hence, 

IIm"~1 ~ 1 , 

in agreement with Eq. (17). 

The derivative of the wavelength then becomes, in agreement with Eq. (37), 

where the frequency scale, 

I () w", "0 w ~-
w 

(53) 

(54) 

(55) 

(56) 

(57) 

indicates the frequency at which I"~ I = 1 and therefore provides a measure of the severity 

of the cochlear catastrophe. Typically the dimensionless quantity -d, / d( is of order one, 

so that 

(58) 

However, if the circuit elements Z and Y scale, as they do in the model of Zweig (1987; 

1991), then d,jd( vanishes and 

w'" = o. (59) 



c. Predictions for Zo(w) 

Reference to Eq. (13) for the input impedance thus yields13 

Aoo 
Zo(w) ~ 1 - iwK./2w 

1.25 

(60) 

Unless WK. is small enough to suppress the divergence and guarantee that IA~(w)1 ~ 1 in 

the frequency range of hearing, the model input impedance will contain a substantial 

imaginary part at low frequencies (w ~ WK.) and, in particular, the phase of Zo(w) will 

approach 90 0
•
14 

Theoretical predictions for the cochlear input impedance computed from Eq. (1) are 

shown in Figs. 4, 5, and 6 for the models of Viergever (1986) and de Boer et al. (1986ab 

and Kaernbach et al. 1987). The parameter values used by de Boer et al. were selected, 

on the basis of measurements in other animals, to approximate a human cochlea (de Boer 

1980). To compare the model with measurements on cats, the parameter values must 

be rescaled. Shown are predictions using both the original parameter values and those 

rescaled by changing the frequency-position map (Liberman 1982).15 The parameter 

13 Equation (60) for the model input impedance implies that Zo(w) can , at low frequencies, be repre
sented by an equivalent circuit consisting of an inductor and a resistor in parallel (cf. Allen 1979). More 
explicitly, 

where 

Z ( . L ) II R - iwLo Ro 
0::::; IW 0 0 = . 

Ro + IwLo 

Ro = AOO and 
AOO 

Lo =2- . 
WK. 

(13.1) 

(13.2) 

Note that Lynch et al . (1982) represented their averaged measurements with a phenomenological 
network model, which reduces, at frequencies greater than approximately 100 Hz, to a resistance Rc in 
parallel with an inductance Mo (their notation) . Like Dallos (1970), Lynch et al. (1982) speculate that 
the inductive term arises from effects at the apical end of the cochlea. As shown here and in Allen (1979) 
and Puria and Allen (1991), inductive effects can arise from the spatial variation of the wavelength near 
the stapes. 

14 The Appendix of the companion paper (Shera and Zweig 1991b) shows that Eq. (60) for Zo(w) 
captures the leading-order behavior of the cochlear input impedance, even in models that exhibit the 
cochlear catastrophe. 

15 Measurements on the cat (Liberman 1982) imply that 

we(x)/weo ~ (1 + f) e- xll - f, (15.1) 

where weo /27r ::::; 57 kHz, f ~ V156, and I::::; 5 mm. For the purposes of rescaling the model of de Boer et al. 
(1986ab and Kaernbach et al. 1987), the small parameter f was set to zero so that the frequency-position 
map remained purely exponential. When necessary, values x > Xh, where Xh is the ostensible position of 
the helicotrema, were permitted to keep the minimum frequency below 100 Hz and so prevent spurious 
reflections from the apex of the cochlea (cf. Puria and Allen 1991) . Taking f = 0 then has a negligible 
effect on the model predictions discussed in this paper. 
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100 200 500 1000 2000 5000 

Frequency (Hz) 

Figure 4. Amplitude and phase of Zo(w) computed numerically for several models of cochlear 
mechanics compared with the averaged measurements (.) of Lynch et al. (1982) shown in Fig. 1: 
( ) the model of Viergever (1986); (- -) the model of de Boer et al. (1986ab and 
Kaernbach et al. 1987) with original parameter values and with those obtained by rescaling ( ----+) 
the frequency-position map to correspond with that of the cat 14 [Weo /27r -+ 57 kHz and 1 -+ 5 mm 
from Liberman (1982); Nand {j were kept constant at their original values]; ( .. . . -) the model 
of Zweig (1987; 1991), derived for low SPL at frequencies greater than approximately 3 kHz but 
here extrapolated to low frequencies and high stimulus levels (parameter values are those of Zweig 
except that the feedback strength p = 0 and the damping constant {j > 0; i .e., only the passive 
component of the admittance Y of the scala media has been included). The minimum-phase 
fit from Fig. 1 (- _ . -) is shown for comparison. The amplitudes of the model impedances are 
normalized at 7 kHz to the value given by the phenomenological network model of Lynch et al. 
(1982). The errors on the measurements are estimates based on a comparison with the minimum
phase fits. Note that the averaging performed by Lynch et al. has decreased the random errors 
but revealed systematic errors of the same order as the random errors in cats 18 and 25. Unless 
measurement errors are substantially greater than the lower bounds shown here, most models 
of cochlear mechanics-of which those of Viergever and de Boer et al. are but examples-are in 
disagreement with the measurements. 
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values used by Viergever apparently represent a "generic" cochlea; the frequency-position 

map, however, is sufficiently similar to the cat's that no rescaling is necessary. 

Unless the measurement errors are substantially greater than the lower bounds es

timated from the minimum-phase fits, the model predictions disagree significantly with 

the empirical values. Although they were not developed to address low-frequency reflec

tion phenomena, many other models of cochlear mechanics, as noted by Wickesberg and 

Geisler (1986), also exhibit such behavior (e.g., Zweig et al. 1976; Allen 1979; Sondhi 1978; 

Neely 1981; Wickesberg and Geisler 1986). Shown for comparison is Zo(w) for the model 

of Zweig (1987; 1991). Introduced in another context, that model was shown to be valid 

at high frequencies (w/27r ~ 3 kHz) and low sound-pressure levels but has here been ex

trapolated to lower frequencies and higher intensities. Nevertheless, because it manifests 

scaling symmetry that model agrees better with the measured impedance functions. 

Any disagreement with the empirical values occurs at frequencies w .$ w'" for which 

the imaginary part of Zo (w) becomes substantial. The approximate value of w'" for each 

model can be determined from the phase of Zo (w) by using the relation 

w'" ~ 2wtanLZo . (61) 

Table I gives values of w'" for the models of cochlear mechanics shown in the figures. Also 

given in the table are the derivatives, 

(62) 

evaluated at a fixed value of w/wco = IJ40 chosen to represent a typical low frequency in 

the model. For the cat the frequency %o(wco /27r) ~ 1.5 kHz (Liberman 1982). Except for 

the model of Zweig (1987; 1991), which has w'" = 0 and therefore completely avoids the 

cochlear catastrophe, all have w",/27r ~ 100 Hz and IA~(%owco)1 > 1. 

The measurements of Lynch et al. can be used to estimate the values of w'" and A~ that 

would bring such models into agreement with their data. Those estimates, computed from 

parameters of their phenomenological network model (which represent a best fit to their 

averaged measurements), are given for comparison; as expected, w",/27r ,..... 100 Hz. The 

estimate is, of course, only approximate; other factors not related to symmetry breaking 

in the basal turn (and not accounted for in standard models), such as the presence of 

reflections from more apical regions of the cochlea (cf. Puria and Allen 1991), may affect 

the apparent value of w"'. 
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Figure 5. Amplitude and phase of Zo(w) for the models of cochlear mechanics shown in Fig. 4 
compared with the measured values (0) and the minimum-phase fit (- - . -) for cat 25 shown 
in Fig. 1. The errors on the measurements, which appear to be randomly distributed, are esti
mates based on a comparison with the minimum-phase fits. Again, the amplitudes of the model 
impedances are normalized at 7 kHz to the value given by the phenomenological network model. 



1.29 

,-... 12 
c: 
~ 
..-

Q) 
6 

L 

CD 
""0 0 -.....-
Q) 

""0 
:3 -6 -+-' 

0... 

E « -12 

60 ----,-... --en --Q) --Q) 40 --L --(J) 
Q) 

""0 20 -.....-
Q) 
en 
0 0 ...c 

0... 

-20 

100 200 500 1000 2000 5000 

Frequency (Hz) 

Figure 6. Amplitude and phase of Zo(w) for the models of cochlear mechanics shown in Fig. 4 
compared with the measured values (x) and the minimum-phase fit (- _ . -) for cat 18 shown in 
Fig. 1. The errors are as described in Fig. 5, and the amplitudes of the model impedances are 
normalized to agree with the data at approximately 7 kHz. 
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Cochlear Models wK /21r IA~( %owco)1 

de Boer (1980) ................ 1688 3.0 
de Boer et al. (1986a) 
de Boer et al. (1986b) 
Kaernbach et al. (1987) 

de Boer (1980, rescaled to the cat) 4275 3.0 
Viergever (1986) ............... 6917 5.5 
Zweig (1987; 1991) ............. 0 0.0 

Empirical Values 

Estimated from Lynch et al. (1982) 170 0.12 

Table 1. Values of WK and "h characterizing the cochlear catastrophe. The first column con
tains values of wK/27r (in Hz) such that l"h(WK)1 = 1. For each model, wK/27r corresponds 
to the frequency at which the phase of the model input impedance passes through approxi
mately tan -1 (112) ~ 25° and indicates the approximate frequency below which the model input 
impedance differs significantly from the empirical value. Since Zo(w) is essentially real above 
100 Hz (cf. Fig. 1), any model with wK/27r ~ 100 Hz is in disagreement with the measurements. 
Note that to explore cochlear reflection phenomena at low frequencies, de Boer et al. (1986ab 
and Kaernbach et al. 1987) use the model developed in another context by de Boer (1980) . The 
empirical value based on the measurements of Lynch et al. (1982) was estimated from the pa
rameters of their phenomenological network model by using the formula [in their notation; cf. 
Eq. (13 .2)] : 

Since other mechanisms not related to symmetry breaking may give rise to an apparent inductive 
behavior at low frequencies, the empirical estimate is only approximate. The second column 
contains values of the magnitude of the spatial derivative of the wavelength at a typical low 
frequency in each model: 

Note that for the cat wco /27r ~ 57 kHz (Liberman 1982), and so %o(wco/27r) ~ 1.5 kHz. Nonzero 
model values of I"hl result from a symmetry-breaking that occurs between the series impedance 
Z and the shunt admittance Y [ef. Eq. (24)]. 
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D. Middle-ear efficiency 

This section illustrates the effects of the cochlear catastrophe on the efficiency Tlme(w) 

of the middle ear. By using measurements on the cat, it can be shown (see the Appendix) 

that Tlme(w) has the approximate form 

Tlme ~ ReZo + Rc/3 
aReZo 

(w/27r .$ 700 Hz) . (63) 

Here, Rc is the cochlear resistance measured by Lynch et al. (1982) and a is a dimen

sionless constant of order one determined by middle-ear mechanics. Equation (60) for the 

model input impedance implies that 

(64) 

Therefore, ReZo, and consequently Tlme(w), becomes small at frequencies below 112 WK.' 

Figure 7 plots Tlme(w), computed from Eq. (63), based on the models of Viergever 

(1986) and de Boer et al. (1986ab and Ka.ernbach et al. 1987, rescaled to the cat). Shown 

for comparison are results based on the model of Zweig (1987; 1991), the averaged mea

surements of Lynch et al. (1982), and the minimum-phase fit to those measurements from 

Fig. 1. Although the absolute efficiencies are not reliable because the constant a was de

termined by combining measurements from a gallimaufry of cats, the indicated frequency 

dependence is approximately correct. In addition, it is reassuring to note that the con

straint 0 ~ Tlme ~ 1 applicable to a passive system is everywhere satisfied. Inclusion of the 

empirical finding that I"~I ~ 1 causes Tlme(w) to remain roughly constant throughout the 

frequency range of the figure. As expected, however, the symmetry-breaking exhibited by 

the models of Viergever (1986) and de Boer et al. (1986ab and Ka.ernbach et al. 1987) 

significantly decreases middle-ear efficiency at low frequencies. 

III. Summary 

Recent theoretical arguments for significant asymmetry in the reflection of cochlear 

waves (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986; Kaernbach et 

al. 1987) are based on models that, unless measurement errors are substantially greater 

than the lower bounds estimated from minimum-phase fits to the data, disagree with mea

surements of the cochlear input impedance (Lynch et al. 1982). This paper demonstrates 
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Figure 7. Middle-ear efficiency 77me(W) in dB (i.e., 10 loglO 77me) computed from Eq. (63) for three 
models of cochlear mechanics: ( ) the model of Viergever (1986); (--) the model of de 
Boer et al. (1986ab and Kaernbach et al. 1987), rescaled to the cat as in Fig. 4; C···) the model of 
Zweig (1987; 1991) extrapolated to low frequencies and high SPL as in Fig. 4. Values computed 
by using the averaged measurements (e) of Lynch et al. (1982), with error estimates from Fig. 4, 
and the corresponding minimum-phase fit from Fig. 1 (- _. -) are shown for comparison. The 
constant a appearing in Eq. (63) was taken to have the value a = 0.8 (see the Appendix), and 
the model impedances were normalized as in Fig. 4. The catastrophe exhibited by the models of 
Viergever and de Boer et al. decreases middle-ear efficiency considerably. 
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that those measurements require that the wavelength change slowly in the basal turn of 

the cochlea and hence that waves traveling in either direction undergo little reflection.16 

More generally, linear, one-dimensional transmission-line models are expected to de

scribe the mechanics of the basal turn of the cochlea at low frequencies and high sound

pressure levels. The cochlear input impedance therefore has the approximate form 

Z ( ) ;'0 
o w ~ 1 + i;'~/2 (65) 

In that regime transmission-line models predict that both the wavelength ;.(X, w) and its 

spatial derivative ;.'(X,w) are approximately real. Since Lynch et al.'s (1982) measure

ments of the cochlear input impedance indicate that the phase of Zo(w) is small above 

100 Hz, those transmission-line models must also satisfy 

1;"(x,w)1 ~ 1 (66) 

i.e., the wavelength changes slowly at the basal end of the cochlea. That result has the 

following consequences, the logical interrelations of which are diagramed in Fig. 8 . 

• The series impedance Z(X,w) and shunt admittance Y(X,w) are roughly proportional 

at low frequencies near the stapes: 

(67) 

For the broad class of cochlear models defined by Eqs. (33), that symmetry between 

Z and Y reduces to a proportionality between the longitudinal inductance M rep

resenting the inertia of the cochlear fluids and the shunt capacitance C representing 

the effective compliance of the organ of Corti and its basilar membrane. The width 

of the basilar membrane and the cross-sectional areas of the scalae taper in opposite 

directions, providing independent support for that proportionality . 

• The WKB approximation can be used when solving the cochlear transmission-line 

equations, at least in the basal turn of the cochlea. Little internal reflection of waves 

16 The companion paper (Shera and Zweig 1991b)-which explores whether violation of tapering sym
metry leads to wave reflection in the cochlea-demonstrates that the empirical conclusion that cochlear 
reflection must be small in the basal turn applies to a broad class of cochlear models whether or not they 
accurately represent the symmetries of the inner ear. 
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traveling in either direction along the organ of Corti can therefore be expected. The 

absence of waves traveling in two directions presumably simplifies the analysis of 

sound . 

• The efficiency of the middle ear at transferring acoustic power into the cochlea remains 

roughly constant below 700 Hz. The rate of change of the wavelength near the stapes 

is thus an important determinant of the sensitivity of the ear at low frequencies. 
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Appendix A: Estimating Middle-Ear Efficiency 

The efficiency 1}me(w) of the middle ear at transferring acoustic power to the cochlea 

depends both on the characteristics of the middle ear and on the cochlear input impedance 

Zo(w). By combining measurements on the cat to estimate and separate out the contribu

tion made by the middle ear, this appendix derives an expression for middle-ear efficiency 

as an explicit function of ReZo. The appendix thus finds an expression 1}me(w; ReZo) 

that enables one to estimate- by imagining different cochlear models connected to a 

fixed, empirically-characterized middle ear-the middle-ear efficiency associated with each 

model. 

As in Rosowski et al. (1986), the middle-ear efficiency 1}me(w) is defined to be the 

fraction of the time-averaged power entering the middle ear that is absorbed by the cochlea: 

(AI) 

Here, Pe and Ue are the pressure and volume velocity measured in the ear canal at the 

eardrum, and 

) Pe I Ze(w == -
Ue middle ear driven forward 

(A2) 

is the middle-ear input impedance. The transfer function Tme is defined by 

Uol Tme(w) == p. . 
e middle ear driven forward 

(A3) 

Of the two quantities IZeTmel2 and ReZe that depend on the middle ear in Eq. (AI), the 

following discussion first considers 1 ZeT me 12 and shows that at low frequencies it is nearly 

independent of the cochlear input impedance Zo(w). An expression for ReZe, valid in the 

same frequency range, is then found as a function of ReZo. 

Measurements on the cat (Guinan and Peake 1967; Lynch 1981; Allen 1986) indicate 

that for frequencies less than approximately 700 Hz, Ze and Tme have the form 

1 
Ze ~ -=--C . and Tme ~ iwCme 

zw e 
(A4) 

Models of the cat middle ear (e.g., Lynch 1981; Carr and Zweig 1984) suggest that the 

constants Ce and Cme are proportional to the combined compliances of such middle-ear 
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structures as the eardrum, cavities, and ossicular joints and are thus essentially indepen-

dent of Zoo 

Allen (1986) explicitly demonstrated that independence for Ze by measuring IZe(w)1 

both before and after setting Zo ~ 0 by removing the basilar membrane and draining the 

cochlear fluidsP The implications of that experiment can be understood most readily 

by noting that 
Z _ aZo + b 

e - cZo + d ' (AS) 

where (~~) are the elements of the transfer matrix T of the middle ear (Shera and Zweig 

1992a), defined by 

(A6) 

When the basilar membrane is removed and the cochlear fluids drained, 

(A7) 

Removing the cochlear load had a negligible effect on I Ze I below approximately 700 Hz. 

Hence, 

lazo + bl ~ I!!. I 
cZo + d d 

(w/27r .!S 700 Hz) , (A8) 

so that18 

(A9) 

and19 

(A10) 

Thus, since 
1 1 

T me = aZo + b ~ b ' (All) 

17 Allen (1986) measured the ratio of pressure to particle velocity in the ear canal at the eardrum, 
which is everywhere proportional to Ze. The proportionality constant is approximately the cross-sectional 
area of the ear canal which has a typical value of 0.15 cm 2 in cats (Shaw 1974). 

18 The other possibility consistent with Eq. (A8), namely that 

aZo = (p - l)b and cZo = (±p - l)d, (18 .1) 

where pew) is some function of frequency, can be excluded because no function p can be found that is 
simultaneously consistent both with the principle of reciprocity, which requires det T = +1, and the 
expected forms (see text) of the matrix elements at low frequencies. 

19 Additional support for the inequality IcZo I <t:: Idl comes from the observations that at low frequencies 
the cat eardrum moves much like a rigid plate (Khanna and Tonndorf 1972; Decraemer et al. 1989) and 
that the ossicular joints are expected to be quite stiff (e .g ., Lynch 1981; Carr and Zweig 1984). 
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the structure of the middle and inner ears are such that 

(A12) 

and so depends only on the middle ear below 700 Hz. 

To estimate middle-ear contributions to ReZe , note that at low frequencies models 

of the cat middle ear (e.g., Lynch 1981; Carr and Zweig 1984) predict that the matrix 

elements a and d are both approximately positive real, whereas band c are, respectively, 

negative imaginary and positive imaginary. In addition, they suggest that Ibel ~ ladl. 

Thus, by Eq. (A5), 

ReZe ~ kReZo + Rme , (A13) 

where 

k ~ ~ and Rme ~ Re { % } (A14) 

are constants. 

Allen (1986) has measured ReZe while varying the cochlea load,2o and those mea

surements can be used to estimate the value of the resistance Rme. According to Allen's 

measurements, removing the cochlear load decreases ReZe by approximately 10-15 dB (or 

roughly a factor of 4) below 700 Hz. Hence, 

(A15) 

where Rc represents the resistance of the cochlea. Equation (A15) gives the approxi

mate value of Rme , determined by middle-ear mechanics, in terms of the known cochlear 

resistance. Thus, 

ReZe ~ k(ReZo + R c /3) . (A16) 

Using Eqs. (A12) and (A16) in Eq. (AI) for 7]me(w) yields the expression, namely 

Eq. (63), used in the text: 

aReZo 
7]me(w; ReZo) ~ ReZo + Rc/3 (w/27r ~ 700 Hz) , (A17) 

20 Allen's measurements were made with the middle-ear cavities widely open. At frequencies much 
lower than the middle-ear cavity resonance near 4 kHz that modification should have little effect on ReZe . 

Calculations using models of the middle ear (e.g., Carr and Zweig 1984) support that contention. 
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where 

1 (Crne)2 
a == k C

e 
. (A18) 

The measurements of Guinan and Peake (1967) indicate that Crne ~ 2.5 X 10-9 cms /dyne 

and Lynch (1981) provides the average value Ce ~ 2.36 X 10-7 cms /dyne. Combining 

the measurements of Allen (1986) with Lynch et al.'s (1982) determination of Rc and 

Shaw's (1974) measurements of the cross-sectional area of the ear canal yields the estimate 

k ~ 1/852 • Consequently, a ~ 0.8. Note that the value relies on measurements from many 

cats and thus provides only a rough estimate of its value in any individual. Nonetheless, 

Eq. (A17) can be used, when combined with model predictions of ReZo(w), to explore the 

predicted frequency variation of middle-ear efficiency. 
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ABSTRACT 

A number of authors (de Boer and Viergever 1984; de Boer et al. 1986ab; 
Viergever 1986; Kaernbach et al. 1987) have argued that backward-traveling 
waves, in striking contrast to waves traveling forward towards the helicotrema, 
suffer appreciable reflection as they move through the basal turns of the 
cochlea. Such reflection, if present , would have important consequences for 
understanding the nature and strength of otoacoustic emissions. The apparent 
asymmetry in reflection of cochlear waves is shown, however, to be an artifact 
of the boundary condition those authors impose at the stapes : conventional 
cochlear models are found not to generate reflections of waves traveling in 
either direction even when the wavelength changes rapidly and the WKB ap
proximation breaks down. 
Although backward-traveling waves are not reflected by the secular variation 
of the geometrical and mechanical characteristics of the cochlea, they are re
flected when they reach the stapes. The magnitude of that boundary reflection 
is computed for the cat and shown to be a large, rapidly varying function of 
frequency. 
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Introd uction 

A number of recent papers have found a surprising asymmetry in the reflection of 

cochlear waves (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986; 

Kaernbach et al. 1987). Those papers argue that whereas waves traveling forward towards 

the helicotrema suffer little reflection, backward-traveling waves are strongly reflected 

by the secular variation of the mechanical characteristics of the organ of Corti. Such 

reflection, if present, would have important consequences for understanding the strength 

of otoacoustic emissions measured in the ear canal. 

This paper demonstrates, however, that the reflection of retrograde waves found by 

other authors is an artifact of the boundary condition they impose at the stapes. The 

reflection they find occurs not within the cochlea but rather at an impedance mismatch 

at the cochlear boundary with the middle ear. The ostensible asymmetry in reflection of 

cochlear waves thus appears as the expected consequence of an asymmetric termination 

of the cochlear transmission line. 

The finding that the models they use generate little internal reflection is unexpected; 

since their models, like most cochlear models, break the tapering symmetry required by 

measurements of the cochlear input impedance (Shera and Zweig 1991a) and therefore 

manifest the cochlear catastrophe (i.e., a divergence in the "spatial" derivative of the 

wavelength at low frequencies), one might naively expect them to produce considerable 

reflection of waves traveling through the basal turn. To see this, recall that tapering sym

metry implies that the longitudinal impedance Z of the cochlea and the shunt admittance 

Y of the organ of Corti are approximately proportional. That symmetry guarantees that 

the wavelength, or characteristic impedance, changes slowly at the basal end of the cochlea 

and therefore that waves traveling in either direction undergo little reflection. The logic 

of the argument can be summarized with the diagram: 

{Real Zo} -¢:::::::> {Z ex Y} -¢:::::::> {I;\~ I ~ I} ::} {cochlear reflections are small}, (1) 

where the notation "p::} q" means "p implies q." 

One might therefore expect, although such IS not a necessary consequence of di

agram (1), that models in which the symmetry between Z and Y is broken and the 
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wavelength changes rapidly produce large reflection of retrograde waves. By computing 

reflections in models that exhibit the cochlear catastrophe, this paper shows, however, 

that conventional cochlear models do not create reflections of retrograde waves even when 

Z and Yare not proportional: 

{ z cj.:. Y} ¢::::> { I A~ I ~ 1} ::fo {cochlear reflections are large} . (2) 

Although the input impedance of such models has a nonzero phase at low frequencies-in 

contradiction with experiment-the cochlear reflection of retrograde waves is always small. 

A. Overview 

Since the solution to any scattering problem first requires defining what is meant by a 

wave traveling in a particular direction, Sec. I outlines a method for obtaining projection 

operators that enable one to decompose the solution to the transmission-line equations 

into waves traveling in opposite directions. The method is illustrated by application to 

an asymptotic WKB expansion for the pressure. The connection between the resulting 

WKB series and the geometric-optical series (Bremmer 1951) used by Viergever (1986) 

for the analysis of cochlear reflections is established. Section II introduces a family of 

conventional transmission-line models in which a parameter ~ determines the extent of 

symmetry-breaking between Z and Y. Included in the family are those models (e.g., de 

Boer 1980) used for the investigation of cochlear reflection phenomena. Approximate so

lutions for the traveling-wave components, valid at low frequencies near the stapes, are 

found. Those wave components, asymptotically exact as f3 -+ 0, are matched to the cor

responding WKB waves at higher f3 to obtain approximate solutions valid throughout 

the cochlea. The results of Secs. I and II are then combined for a discussion of cochlear 

reflection. By solving for an infinite cochlea the analog of a plane-wave scattering prob

lem, Sec. III demonstrates that the cochlear reflection of retrograde waves predicted by 

other authors results from an impedance mismatch at the basal boundary. Section IV 

argues that negligible internal reflection of waves, properly defined, is a general property 

of conventional cochlear models. The paper concludes with an estimate of the reflection 

coefficient at the stapes for retrograde waves traveling within the cochlea of the cat. 
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I. Finding the Wave Components 

This section outlines a simple method, based on an arbitrary pair of "basis waves" 

B± and their osculating parameters, for defining projection operators that enable one to 

decompose the total pressure into wave components traveling in opposite directions along 

the organ of Corti. The procedure does not depend on the form of the basis functions, 

although the method is most useful if the B± constitute good approximate solutions to 

the transmission-line equations. The resulting wave components can be interpreted as 

originating from multiple scattering of lower-order waves within the cochlea. The projec

tion operators are used to derive expressions for the wave impedances of a nonuniform 

transmission line. The section concludes with an examination of the relationship of the 

WKB series to the geometric-optical series (Bremmer 1951) used by Viergever (1986) for 

the analysis of cochlear reflections. 

At high sound pressure levels and low frequencies (Le., w ~ wCo where wco is the 

maximal characteristic angular frequency represented on the organ of Corti), the basal 

turn of the cochlea is analogous to a linear, one-dimensional mechanical transmission 

line (Zwislocki-Moscicki 1948; Peterson and Bogert 1950; Zweig 1991). The transmission

line equations imply that the differential pressure P and volume velocity U satisfy the 

equations 

and 

U = i dP 
, 

dX 

where the "spatial" coordinate X is defined by 

x(x,w) = -i foX Z(x',w)dx' , 

and the characteristic impedance 

(3) 

(4) 

(5) 

(6) 

represents the corresponding "wavelength." Recall that Z and Y represent, respectively, 

the longitudinal impedance and shunt admittance per unit length of the cochlear trans-

mission line. 
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For most forms of Z and Y, solutions to Eq. (3) do not exist in terms of elementary 

functions and approximate solutions must therefore be employed. Imagine P to be ap

proximated, in some region of the cochlea, by a superposition of waves B± traveling in 

opposite directions along the organ of Corti: 

(7) 

The direction of wave propagation is indicated by the subscripts on the complex ampli

tudes: the '+' indicates a wave traveling toward the helicotrema, the '-' a wave traveling 

back toward the stapes. The choice of "basis functions" B± is entirely arbitrary, al

though the formalism is most useful if the B± constitute good approximate solutions to 

the transmission-line equations and, in the limit of zero damping, the power flow com

puted with those basis waves is nearly constant. The complex amplitudes A± may be 

determined by boundary conditions (applied, for example, at the base and apex of the 

cochlea) or by matching with solutions valid in adjacent regions. For simplicity, the fre

quency dependence of most dependent variables will be suppressed. 

The basis waves B±, approximate solutions of Eq. (3), are exact solutions of some 

other equations, assumed to be of the form 

d2 B± 1 + fi 
-d 2 +--2-B±=0. 

X A 
(8) 

If Ifil ~ 1, the functions B± form good approximate solutions to the transmission-line 

equations. (In practice, the B± may be obtained by choosing convenient forms for the fi 
so that the solutions to Eqs. (8) correspond to well-known special functions.) 

A. The osculating parameters 'l/J~ 

Adopting the approximate solutions B± as "basis waves" permits the exact decom

position of the pressure P into corresponding components P:f whose sum yields the total 

pressure P: 

P == P~ +P::". (9) 

The superscripts identify the underlying basis waves. The decomposition, affected by 

generalizing Eq. (7) and allowing the constants A±-renamed the 'l/Ji(X)- to vary with 

position, is defined by 

(10) 
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where the functions 'ljJ1(X) are defined by the pair of simultaneous equations 

(11) 

and 

dP = ./,B d8+ ./,B d8_ 
dX - '1"+ dX + '1"- dX . (12) 

At every point X the functions 'IjJ~Hx), known as osculating parameters (Mathews and 

Walker 1964), are defined so that their values give the pressure P and its derivative 

dP / dX exactly. 

IT the 8± constitute exact solutions to Eq. (3) (so that E~ = 0), the osculating pa

rameters become independent of position and one can make the identification 

(13) 

The deviation of the 'ljJ1 from those constant values provides a measure of the error in 

Eq. (7) (Kemble 1935; Mathews and Walker 1964; Froman and Froman 1965). 

The osculating parameters can be found-and their interpretation as scattering am-

plitudes illuminated-as follows. Solving Eqs. (11) and (12) for the functions 'IjJ~Hx) yields 

(14) 

where 

B = d t- 1 
1
8+ I - e 8_ 8~1 8'- (15) 

is the reciprocal of the Wronksian determinant. The osculating parameters 'ljJ1 may then 

be determined by solving the pair of coupled first-order differential equations 

d'IjJ1 ( B ./,B 8 8 B ./,B 8 2 ) 
dX ==j= o±'I"± + -+o'f'l"'f 'f ' (16) 

obtained by differentiating Eq. (14). Here, 

(17) 
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If the lai I are sufficiently small, Eqs. (16) can be solved by iteration. For example, if 

the boundary conditions are such that 1/1+.(0) = 1 and 1/I~(oo) = 0, a first approximation 

to P!!. is given by 

(18) 

representing summed contributions from wavelets B+(X') reflected (a single time) at all 

points X' > X. Decomposing the solution P in the manner of Eq. (9) is equivalent to finding 

the exact solution to the transmission-line equations by solving an integral scattering 

equation in which incident waves B± are scattered by their interaction with potentials ai. 

The wave components P~ can thus be interpreted physically as the summed amplitudes 

at X of all wavelets traveling in a particular direction. 

As is readily apparent from Eq. (18), the value of P!!. depends on the choice of wave 

components B±. Thus, nonzero values of the "reflection coefficient" 

~8 PBI 
R (X,w) == P~ 

+ cochlea driven forward 

(19) 

do not necessarily represent actual reflection of energy back toward the stapes, but may 

result simply from the use of wave components B± for which the corresponding scatter

ing potentials ai(x,w) are not small- that is, wave components that do not constitute 

accurate solutions to the transmission-line equations (see the Appendix for an example). 

B. The projection operators p~ 

The wave components P~ can also be obtained from the total pressure P by means 

of the cochlear projection operators p~, defined by 

P:t. == P:t.{P}. (20) 

Equation (14) then implies that 

~B B (dB~ d ) P± = ±, B± -- - B~-
dX dX 

(21) 

Note that the waves B±(X) are, by construction, eigenfunctions of the projection operators 

with eigenvalues of either zero or one: 

(22) 
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c. The wave impedances Z1 

A simple application of the projection operators P~(X) yields the wave impedances 

Z1(x), defined by 

where, by Eq. (4) for U, 

B _ PI P~ 
Z±=±U =±UB' 

p~=o ± 

B _ .dP~ 
U± = z dX . 

Application of the projection operators yields 

(23) 

(24) 

(25) 

The wave impedances can now be found by setting P~ alternately equal to zero and solving 

for the ratio of P to U: 

(26) 

Equations (26) can be obtained immediately from Eqs. (10) and (24) by imposing the con

dition '1j11' (X) = o. The Z1 are thus identical to the wave impedances for the transmission 

lines described by Eqs. (8); those equations, whose exact solutions are the B±, provide 

an approximate description of the original line [Eq. (3)]. Note that the wave impedances 

depend on the direction of wave propagation. They provide generalizations to nonuniform 

media of the concept of characteristic impedance. 

D. Examples 

This section applies the scattering formalism to approximate solutions of the cochlear 

transmission-line equations obtained by expanding the pressure P in an asymptotic WKB 

series. The connection between the first-order WKB series and the geometric-optical series 

introduced by Bremmer is then illustrated. 

1. The WKB scattering series 

An asymptotic WKB expansion for P yields (Bender and Orszag 1978) 

P(x) rv e±i f" dx' /" + % In" + .... (27) 

Basis waves obtained by including the first and second terms in the expansion will be 

denoted V± and W ±, respectively. 



11.10 

Truncating the asymptotic WKB series after the second term yields the WKB approx

imation (e.g., Green 1837; Jeffreys 1924; Zweig et al. 1976); the approximate solution (7) 

then represents a superposition of WKB basis waves W±(x) defined by 

(28) 

Simple substitution into Eqs. (21) and (26) yields expressions for the corresponding pro

jection operators P± and wave impedances ZI (see the first line of Table I). For future 

reference, note that the corresponding scattering potential has the form 

where 

(OW 

(TB 1--+ (Tw = (Tw - ,w_ 
± ± - - A2 ' 

d B W 2 1 d 2 ~ an (0 1--+ (0 = -A ---VA. 
.J). dX 2 

(29) 

(30) 

The WKB scattering series can be developed by iterative solution of Eqs. (16) for 1/J,±' in 

the manner of Eq. (18). 

2. Relation to the geometric-optical series 

Another scattering series recently used to explore cochlear wave reflection (Viergever 

1986) is the geometric-optical series of Bremmer (1951). Whereas the scattering series 

outlined above is based on the WKB waves W ±, the geometric-optical series uses as its 

"basis set" the functions 

(31) 

obtained by including only the first term in the asymptotic WKB series (27). The functions 

V± thus lack the factor of .J). multiplying the WKB waves W ±; they therefore violate 

energy conservation and do not constitute acceptable solutions to the transmission-line 

equations (Zweig et al. 1976). 

Adopting the V± as one's basis waves leads to the following pair of coupled differential 

equations for the 1/J'±, corresponding to Eqs. (16): 

d1/J'± v (.I,VV V .I,VV2) 
dX = =F(T± 'f'± ± Of - 'f'Of Of ' (32) 



n.ll 

Series B± p8 
± Z8 ± 

WKB ..(i.e ~i fox dx'l" 1 { ( i,) . d } '2 1 T '2;\ 1 ± i;\ dX 
;\ 

1 ± i;\' /2 

Bremmer 
~i J.x dx'l" e a - 1 ± i;\-1 {- d } 

2 dX 
;\ 

Table I. Projection operators P~ and wave impedances Z~ corresponding to basis waves B± 
obtained using the WKB approximation and Bremmer's (1951) geometric-optical series. 



II.12 

where 

(33) 

with 

B V X d B V·"' , ~, = 2i an f± ~ f± = =t=Z" . (34) 

There are two scattering potentials a±, and the corresponding Wronksian determinant 

1/,v is not constant, because, unlike the WKB waves W±, the geometric-optical basis 

waves V± do not satisfy a single differential equation. Iterative solution of Eqs. (32) yields 

Bremmer's geometric-optical series. l 

As noted by Bremmer (1951), a± can be interpreted as effective reflection coefficient 

densities (Le., reflection coefficients per unit length dX) for plane waves. Note that fW can 

be written 

(35) 

Equation (35) suggests that 

(36) 

III conventional cochlear models for which If±1 = IX'I < 1; as verified in Sec. III, the 1/J± 
can thus be expected to vary considerably more rapidly with position than the 1/J"±. 

As before, one can define projection operators that enable one to decompose the total 

solution into traveling-wave components. The corresponding operators, with eigenfunc

tions V±, are given in Table I. The projection operators PI derived here by use of the 

1 Equations (32) may be used to obtain a pair of coupled integral equations for the waves P-f and 

P~: 

(1.1) 

and 

(1.2) 

where 

(1.3) 

are simply the WKB functions W ±. Integral equations (1.1) and (1.2) are equivalent to those obtained 
by Bremmer (1951) by summation of alternate terms of the geometric-optical series. 

Thus, if the retrograde wave P~ is small, the anterograde wave P-f is, to first-order, proportional to 
the WKB wave W + obtained by including the next term in the WKB expansion. Although the geometric
optical series may yield the WKB approximation as its leading term (accounting for the title of Bremmer's 
paper), the series is nonetheless grounded on the lower-order basis waves V±, whose presence is betrayed, 

for example, by the form of the projection operators pr (see Table I). 
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osculating parameters 7/J'± agree with those obtained by Bremmer (1951) by summation 

of the geometric-optical series. As expected, the projection operators for the WKB and 

geometric-optical series, and their corresponding eigenfunctions, become equivalent in the 

limit IA'I --t O. 

Calculating the wave impedances for the V± yields 

(37) 

Unlike the higher-order wave impedances Z; ,2 the Z'± simply equal the characteris

tic impedance Zc of the transmission line and are independent of the direction of wave 

propagation. 

Although the geometric-optical series remains useful for the purposes for which it was 

developed (namely, for solving for the reflected wave present in a homogeneous medium 

because of wave reflection by an adjacent inhomogeneous medium), because the V±(X,w) 

do not provide good approximate solutions to the transmission-line equations, using them 

as the basis for an exploration of reflection phenomena within an inhomogeneous medium 

such as the cochlea leads to results that are difficult to interpret (cf. Sec. III). 

II. Basis Waves Valid Throughout the Cochlea 

Section I outlined a formalism, based on an arbitrary pair of basis functions B±, for 

decomposing the total pressure P into waves traveling in opposite directions. Since the un

derlying basis waves should be chosen to represent accurate solutions to the transmission

line equations, this section introduces a family of passive, conventional transmission-line 

models and solves the equations for approximate basis waves valid throughout the cochlea. 

Because different approximate solutions are valid in different regions of the cochlea, the 

basis waves are given in terms of matched asymptotic expansions. The family of models is 

characterized by a parameter ~ that determines the extent of model symmetry-breaking. 

Section III uses basis waves corresponding to different members of the family to explore 

the reflection of retrograde waves in models appearing in the literature. 

2 Note that the WKB wave impedances zt and the characteristic impedance Zc are related by 

( W W) _ Zf Z~ 
Zc = 2 Z+ II Z_ = 2 W w' 

Z+ +Z_ 
(2.1) 
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A. A family of conventional cochlear models 

In conventional cochlear models the series impedance Z(x,w) and shunt admittance 

Y(x,w) per unit length have the form 

{ 
1 }-l 

Z(x,w) = iwM(x) and Y(x,w) = iwM(x) + R(x) + iwC(x) (38) 

In accord with experiment (e.g., von Bekesy 1960; Greenwood 1961; Eldredge et al. 1981; 

Liberman 1982), the local characteristic frequency decreases exponentially with position 

in the basal turns: 

( ) 
__ 1_ _ -xii 

We X = r;:;;r; - weo e . 
vMC 

(39) 

The phenomena discussed in this paper depend principally on the spatial variation of the 

wavelength i. at low frequencies in the basal turns, that is, at values 

(3(x,w) = wJwe(x) ~ 1 . (40) 

From the circuit elements one can form several dimensionless parameters: the quality 

factor, or Q, of the resonance is given by the reciprocal of the dimensionless damping 

parameter, 

( 41) 

and the dimensionless parameter 

( 42) 

represents the approximate number of wavelengths of the pressure wave in the cochlea in 

response to sinusoidal stimulation. 

Consider the family of conventional cochlear models in which the parameters Nand 

o are constant and 

( )

l-A 

M(x) = Mo w:(:) , ( 43) 

and 

( )

l+A 

C(x) = Co w:(:) . ( 44) 
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Note that if ~ = 0, M is proportional to C and the circuit elements Z and Y scale at low 

frequencies (Shera and Zweig 1991a; Zweig 1991). Since M is usually assumed inversely 

proportional to the effective cross-sectional area of the cochlear scalae, the traditional 

case (e.g., de Boer 1980) in which the scalae are approximated as boxes with constant 

cross-section is obtained by setting ~ = 1. The parameter ~ thus determines the extent 

of symmetry breaking that occurs in the model; for example, the frequency Wit (Shera and 

Zweig 1991a) at which symmetry-breaking becomes apparent is given by 

(45) 

Consistency with the measurements of Lynch et al. (1982) requires I~I ~ 1 (Shera and 

Zweig 1991a). 

B. Solving for the basis waves 

The remainder of this section solves the equations for the family of models introduced 

above to obtain a pair of basis waves B± valid throughout the cochlea. Those basis waves 

are given in terms of matched asymptotic expansions. On a first reading the reader may 

simply wish to note that the basis waves found below are summarized in Eq. (60); the 

corresponding projection operators and wave impedances appear in Table II. 

lt is easy to show that the function 

7r((3) == (3C>/2 P((3) ( 46) 

satisfies the equation 

( 47) 

where the "wavelength" 

A = .)1- (32 + ib(3/{ _ ~(~ - 2) (1- (32 + ib(3) }1/2 
f3 - 4N 1 4( 4N)2 (32 ( 48) 

Note that values I~I ~ 1 suppress the singularity in the wavelength (i.e., the cochlear 

catastrophe) at (3 = O. (The singularity in Af3 is also eliminated when ~ = 2. That value 

of ~, however, corresponds to a cochlea in which the input impedance is imaginary and 

the scalae taper outward from the stapes like a horn.) 



1. Approximate solutions for small f3 
At values of f3 ~ 1, Eq. (47) approaches 

d
2
.7r + {1 _ ~(~.- 2)} 7r = 0 

df32 4f32 ' 

where 

/3 == 4Nf3 . 

The general solution has the form 

7r(/3) = t { fjJH;(/3)} , 
+ 

where L {-} represents any linear combination of its arguments, and the constant 

v == (1 - ~)/2 . 

The Hankel functions, 
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(49) 

(50) 

(51) 

(52) 

(53) 

represent those linear combinations of Bessel functions having the asymptotic form (at 

large z) of incoming and outgoing plane waves.3 Equation (46) implies that the pressure 

has the form 

(f3 ~ 1). (54) 

Table II provides expressions for the projection operators P!f:. and wave impedances 

Z:l:. implied by traveling-wave components of the form given by Eq. (54).4 

2. Approximate solutions elsewhere 

As one moves out of the basal turn the wavelength becomes 

A{3 ~ V1 
-:; + ibf3 , for f3 ~ vl~(~ - 2)1/8N (55) 

and is independent of~. Since the wavelength then changes more slowly with position, 

Eq. (46) can be solved using the WKB approximation, which yields (Zweig et al. 1976) 

+ {Ae 'fi J:a d{3' lAP} 
P(f3) ~ 0 f3CJ./2 . (56) 

Note that if I~I ~ 1, the WKB solution is in fact valid throughout the cochlea. 

3 Bessel-function solutions to the cochlear transmission-line equations were first obtained by Zwislocki 
(1948) . 

4 Note that the spatial variable in Eqs. (46) and (49) is f3 and not x; the formulas of Sec. I must thus 
be modified appropriately to obtain, for example, the projection operators given in Table II. 



~ 

Series Region B± P± Z± 

=Fi1r,8H±{H'f +(2v/,8)H'f-H'f -2H'f~} =F2iaH; 
Hankel (34(1 ,8v H; (,8) ± - ± ± 8 v v-l v v+l v d(3 Hv_1 + (2v/(3)Hv - Hv+1 

A 'fi r dfJ' '''13 
~ { [1 =F ~ (Ap - t:J.Afj/ (3) ] i ± iAfj :(3 } 

4NaAfj JIt:J.(t:J. - 2)1 AfJ€ 130 

A± WKB (3 ~ 8N (3~'2 1 ± i(Ap - t:J.AfJ / (3)/2 

Table II. Projection operators Pg and wave impedances Z~ for the model parameterization of symmetry breaking outlined in Sec. II. The primes 
denote differentiation with respect to f3 and the function 

a(x) == (MIC) % . 

The constants A±, determined by asymptotic matching, are given by Eqs. (61) . 

I1.17 
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3. Asymptotic matching 

When N is sufficiently large (or ~ small), the approximate solutions (54) and (56) 

have an overlapping region of validity, namely those values of (3 such that 

JI~~~ - 2)1 ~ (3 ~ 1 . (57) 

In that region the solutions can be matched to provide an approximate solution throughout 

the cochlea. 

Consider a anterograde wave traveling along the organ of Corti. As ~ == 4N (3 in

creases, the Hankel wave assumes the form (Abramowitz and Stegun 1964) 

(4N(3~I). (58) 

Similarly, at values (3 ~ 1 an anterograde WKB wave becomes 

ei4Nf3o e- i4Nf3 
p rv --- X ---:--

";4N (3t>/2 
((3 ~ 1) . (59) 

Note that the dependence on (3 is identical with that of the asymptotic form of the Hankel 

waves. Equating those asymptotic forms yields the relations 

for (3 ~ 1; 

(60) 

where 

(61) 

+ 
and, once again, L {.} represents any linear combination of its arguments. Equations (60) 

provide, for any value of ~, approximate solutions to the transmission-line equations valid 

throughout the cochlea. Note that a single Hankel wave matches smoothly onto a single 

WKB wave. The implications of that smooth, one-to-one matching for the reflection 

of cochlear waves are explored, first in a concrete example and then more generally, in 

subsequent sections. 
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III. Re:O.ection of Retrograde Waves 

The wave components defined above can now be applied to a discussion of cochlear 

reflection. Many of the general techniques used here for quantifying cochlear reflection 

may prove useful in other contexts (e.g., exploring the role of mechanical inhomogeneities 

in generating otoacoustic emissions). In order to eliminate complications caused by end 

effects, this section first solves, for an infinite cochlea, the cochlear scattering problem 

discussed by other authors in a finite cochlea (de Boer et al. 1986b; Viergever 1986; 

Kaernbach et al. 1987). To explore the effect of basal boundary conditions on the reflection 

coefficient, the scattering problem is then solved for a finite cochlea using several different 

boundary conditions at the stapes. Finally, the scattering from a step discontinuity in the 

stiffness of the organ of Corti is computed and the result interpreted in terms of power 

flow. 

A. Reflection in an infinite cochlea 

As emphasized by Viergever (1986) and Kaernbach et al. (1987), exploration of re

flection intrinsic to the cochlea requires eliminating reflections from the basal boundary. 

Such is most simply accomplished by eliminating the boundary altogether and imagining 

the cochlea as extending infinitely in the negative-x direction. In such an infinite cochlea 

the local characteristic angular frequency continues to increase without bound beyond wCo 

as one travels basalward past x = 0 toward x = -00. 

Consider then the analog of a plane-wave scattering problem in a cochlear model of 

the family discussed in Sec. II. Imagine driving the model backwards from a point Xdrive 

at a frequency such that 1 > f3drive ~ JI~(~ - 2)1/8N so that, locally, the WKB ap

proximation is valid and a retrograde WKB wave is launched upon the basilar membrane. 

As that wave travels basally the local value of f3 becomes ever smaller, the wavelength 

changes ever more rapidly, and (if ~ f; 0) the WKB approximation breaks down. As 

the wave continues toward -00, however, the local value of f3 eventually becomes small 

enough that the wave assumes the form of a retrograde Hankel wave jjv H;(jj). That form 

is maintained, becoming more accurate as f3 -+ O. 

Since the WKB and Hankel waves match smoothly onto one another in their common 

region of validity (see Sec. II), one might suspect that reflection is small everywhere basal 
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to the driving point. That suspicion can be quantified by computing the dimensionless 
~B 

traveling-wave ratio R ,defined as the ratio of the waves traveling in the two directions 

along the organ of Corti: 

~B Pt.1 R (x,w) == p B 

- cochlea driven backward 
(62) 

Here one imagines the cochlear transmission line to be driven "in reverse" by a pressure 

source apical to x (i.e., at Xdrive > x). The diacritical arrow indicates that the primary 
~B 

wave is traveling toward the stapes. I R I then provides a measure of the relative magni-

tude of the reflected wave. That wave is a superposition of wavelets scattered (any number 

of times) from all points in the cochlea basal to x. The primary wave P!!.(x,w) thus acts 

as a probe, returning as Pt. (x, w) with information both about the basal portion of the 

cochlea and (in a finite cochlea) about the cochlear boundary with the middle ear. 
~B 

To compute R for an infinite cochlea one solves (e.g., numerically) the transmission-

line equations for P subject to the "boundary condition" that5 

lim P(x,w) = P!:(x,w) ex ~IJ 1I;(~) ; 
x~-oo 

(63) 

that is, at infinite distance from the driving point the solution consists of that linear 

combination of Bessel functions that at larger values of x represents a single wave traveling 
~B 

away from the driving point. One can then determine the traveling-wave ratio R at 

various points in the cochlea by applying the appropriate projection operators P:f to the 

solution P: 

P±(x,w) = P±(x,w){P(x,w)} . (64) 

As the wave travels basally away from Xdrive the wave components change form (evolv

ing from WKB waves at large positive x to Hankel waves as x ---* -00), and consequently 

the choice of projection operators will vary with position. Here, the wave components are 

5 As (J -+ 0 the Hankel function H; ((J) has the limiting form (Abramowitz and Stegun 1964) 

for v = 0 

for Rev> o. 

Thus for positive v the amplitude of the pressure P approaches a constant value as x -+ -00. 

(5.1) 
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computed using projection operators determined from the matched asymptotic expansion 

outlined in Sec. II: 

~ ~ ~ {i>:' P B P _ pHIW _ 
± t------+ ± = ± = ~ 

PI, 

for {3 ~ 1; 

for {3 ~ v'1~(~ - 2)1/8N. 
(65) 

P: and P% are given in Table II. 

Figure 1 shows the results of such a calculation for the model (~ = 1) of de Boer et 

al. (1986ab and Kaernbach et al. 1987, rescaled to an "infinite cat"). The figure plots 

(66) 

at the fixed stimulus frequency 

ws /27r == 1 kHz. (67) 

When quantities such as R appear without superscripts identifying the underlying basis 

waves, those waves are understood to be taken in accord with the matched asymptotic 

expansion. Since Ws is fixed, the independent variable (3(x,ws) is simply a remapping of 

position, small values of (3 corresponding to regions of large characteristic frequency near 

the base. At fixed frequency, Eq. (39) for wc(x) implies that In{3 is a linear function 

of x. Since the long-wavelength approximation underlying one-dimensional transmission

line models of cochlear mechanics presumably breaks down when the wavelength becomes 

small in the region about maximal membrane velocity ({3 ~ 1), the present discussion of 

cochlear reflections is limited to the basal, small-{3 region of the cochlea ({3 < %). 

The calculated reflection coefficient is everywhere only a small fraction of a percent 

(i'lll rv VlOOO)' Note that nonzero values for R result from the use of projection operators 

whose eigenfunctions are not exact solutions to the transmission-line equations. Similar 

values for the reflection coefficient are found in models with other values of ~, including 

~ = O. Thus wave reflection due to the secular variation of mechanical characteristics 

along the cochlea appears negligible in conventional transmission-line models, regardless 

of the degree of symmetry-breaking exhibited by the model (see Sec. IV). The empirical 

conclusion that wave reflection must be small in the real cochlea at high sound pressure 
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Figure 1. Amplitude of the reflection coefficient R (f3, ws) ( ) for the model (.6. = 1) of 
de Boer et al. (1986ab and Kaernbach et al. 1987) rescaled to the cat [that is, weo /27r ---+ 57 kHz 
and 1---+ 5mm from Liberman (1982); Nand 8 were kept constant at their original values] and 
then made infinite by continuing all functions to x = -00 (or, equivalently, to f3 = 0). The 
stimulus frequency is fixed at ws/27r = 1 kHz. Far from the driving point (i.e., as x ---+ -00), the 
pressure was required to approach a function proportional to Hr; (/3) . The projection operators 

P± used to compute the reflection coefficient were selected according to the matched asymptotic 

expansion [Eqs. (60)] and switch from p% to pf at the point of intersection of the curves 

(i .e., near f3 ~ 0.15) . Note that IRI is everywhere only a fraction of a percent. The dotted lines 
continue the corresponding solid lines through the overlapping regions of validity and indicate, 
for example, that whereas at small f3 a single retrograde Hankel wave Hr; suffices to represent the 
solution, WKB waves W ± traveling in both directions are needed to produce the same pressure 
distribution. 
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levels thus extends to a broad class of conventional cochlear models whether or not they 

accurately represent the geometry of the inner ear. 

Note that considerably larger reflections ((.R I ~ 1f2) have been obtained by other 

authors in finite cochlear models (de Boer et al. 1986b; Viergever 1986; Kaernbach et al. 

1987). Since the model cochlea itself is not the source of those reflections, they must 

originate at the basal boundary at the stapes. 

B. Boundary reflection in a finite cochlea 

To understand the origin of the sizable reflections obtained by others, it is convenient 

to reexpress the scattering problem outlined above in the language of impedances. The 

impedance Z looking basalward toward the stapes is defined by6 

Z( ) - - + -~ P pB + pB I 
X,w = - U = - UB UB , 

+ + - cochlea driven backward 

(68) 

where P and U have been decomposed into waves traveling in opposite directions. Reex

pressing Eq. (68) in terms of the wave impedances Z~(x,w) and the traveling-wave ratio 
~B 

R (x,w) yields (Shera 1986a) 

Z = Z~ 1 + ~B' ~ { ~RB Z+ + Z:: } 
Z+ - R Z:: (69) 

Note that Eq. (69) is simply Eq. (68) rewritten in the language of wave impedances and 

reflection coefficients. Solving for the traveling-wave ratio one obtains 

~B Z jZ:: - 1 
R =..,...----

Z jZ+ + 1 
(70) 

The value of liB depends on the choice of wave components through the wave impedances 

Z~. Whereas the wave impedances Z~ contain only local information, the impedance Z, 
~B 

like the traveling-wave ratio R ,contains information about the entire cochlea basal to 

the driving point, including the boundary with the middle ear. 

6 Figure 2 of Kaernbach et al . (1987) gives 'Z(x,w.) at w./27r = 1 kHz for their model when the ter
mination impedance at the stapes is the local value of the characteristic impedance Zc(O, w.). Kaernbach 
et al . refer to Z(x,w) as the "impedance measured to the left. " 
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~B ~ 

Note that Eq. (70) for the traveling-wave ratio implies that R is zero if Z = Z~, 
the local value of the retrograde wave impedance. In the absence of reflections, the ratio 

~ 

AB(X,W) = ~ (71) 

thus has the value +1, and deviations from that value evince the presence of a reflected 

wave. In addition, terminating the cochlear transmission line with the impedance Z~ at 

its basal end [i.e., imposing the condition that Zo(w) = Z~(O,w)] eliminates the reflection 

of the corresponding retrograde wave component B_ incident upon the boundary. 

Figure 2 plots the amplitude and phase of A(,B,ws) = AHIW(,B,ws) for the model 

(~ = 1) of de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat) for 

two different termination conditions at the stapes. The first condition requires that 

Zo(ws) = Z~(O,ws). Since the Hankel wave components represent good approximate so

lutions to the transmission-line equations at small ,B the termination impedance Z~ (O,ws ) 

creates little reflection. The second condition follows de Boer et al. (de Boer et al. 1986ab; 

Kaernbach et al. 1987) and terminates the cochlear transmission line in its characteris

tic impedance [so that Zo(ws) = Z~ = Zc(O,ws)]. That termination produces significant 

boundary reflection, as is apparent from the oscillatory variations in the amplitude and 

phase of A created by the alternating constructive and destructive interference between 

the waves P _(x,ws ) and P+(x, ws ) traveling in opposite directions along the organ of Corti. 

Equation (70) can be used to estimate the boundary reflection produced by termi

nating the cochlear transmission line with its characteristic impedance Zc (de Boer et al. 

1986ab; Viergever 1986; Kaernbach et al. 1987): 

~I R~ 
Zo=Zc 

Zc/Z~-l 

Zc/Zf- + 1 
(72) 

Substituting the Hankel wave impedances zg from Table II and evaluating the result for 

the model of de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat) gives 

(73) 

The impedance mismatch at the basal boundary occurs because whereas the Hankel wave 

impedance Z~ has a large imaginary part, the termination impedance Zc is nearly real. 

Thus by using the characteristic impedance de Boer et al. (1986ab and Kaernbach et al. 

1987) overestimate (by at least a factor of 500) the internal reflection actually predicted 

by their model. 
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Figure 2. Amplitude and phase of 

computed for the model (~ = 1) of de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to 
the cat as in Fig. 1) with two different boundary conditions at the stapes: ( ) A computed 
when the cochlear transmission line is terminated at the stapes with the Hankel wave impedance 
z!! (,80); (- - -) A computed when the cochlear transmission line is terminated with its char
acteristic impedance Zc (0, ws). The wave impedance Z _ in the definition of A was selected 
according to the matched asymptotic expansions and switches from Z!! to Z~ at f3 ~ 0.15. Note 
that the f3-axis is logarithmic; at fixed frequency Inf3 is a linear function of x [cf. Eq. (39) for 
wc(x»). Oscillatory variations in the amplitude and phase are created by interference between 
waves traveling in opposite directions along the organ of Corti. Those oscillations are essentially 
nonexistent when the cochlear transmission line is terminated with the wave impedance Z!!. (,80) . 
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Figure 3. Time-varying amplitudes of the traveling-wave components P± (Xobs, t) recorded at an 
observation point Xobs after an impulse po6(t) is applied at the stapes in a model with L.\ = 0: 
( ) amplitude of the anterograde pressure wave P+(Xobs, t); (- - -) amplitude of the 
retrograde pressure wave P-(Xobs, t). The total pressure P(Xobs, t) is , at every instant, equal to 
the sum of the wave components P± (Xobs, tL The two panels correspond to different bound
ary conditions at the stapes: (A) the case Zo = 0 (short circuit boundary condition) so that 
~ "'-- w "'--Ro = -1 ; (B) the case Zo = Z_ so that Ro ~ O. The observation point Xobs was taken so that 
We (xobs)/27r = 7 kHz, and the cochlear transmission line was terminated in an open circuit at a 
position Xapical corresponding to a 3 kHz characteristic frequency (thus, RXa Pical = +1) . In both 
panels the pressure P(Xobs , t) is normalized to a maximum value of one and times t are expressed 
in units of the approximate round-trip travel time. The parameters defining the model are those 
of Fig . 1 except that (for clarity of presentation) weo /211' = 20 kHz and 6 = 0.5. Whereas in 
panel (A) waves continue to echo back and forth between the stapes and helicotrema, in panel 
(B) all energy reflected from the impedance mismatch at the apex subsequently "disappears" at 
the stapes, where the termination impedance makes the cochlea appear infinite to WKB waves 
incident upon the boundary. 
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1. Reflections in the time domain 

The absence of reflection of retrograde waves from the basal boundary when the 

model is terminated in the retrograde wave impedance Z~ is confirmed by the time

domain calculation illustrated in Fig. 3. That figure plots the time-varying amplitudes of 

the pressure waves P±(Xobs, t) resulting from an impulse po6(t) applied at the stapes in a 

model with ~ = O. (The calculations are considerably simplified when ~ = O-the scaling 

case corresponding to the cat cochlea-but qualitatively similar results are expected for 

other values as well.) The waves components P±(Xobs, t) were computed numerically by 

implementing the transmission-line equations, their boundary conditions, and Eq. (25) for 

pr in the time-domain (e.g., by replacing impedances with impedance operators acting 

through convolution). 

Two calculations are shown, corresponding to different boundary conditions at the 

stapes. In both cases, however, the cochlear transmission line is "cut" abruptly at a 

point Xapical well before the helicotrema (but satisfying Xapical > Xobs) so that substan

tial energy is reflected back toward the stapes (open circuit boundary condition so that 

RXAPiCAI = +1). In the first case, the basal termination impedance Zo = 0 (short circuit 

boundary condition) so that Ro = -1. Note that energy continues to echo back and 

forth-passing the observation point Xobs in alternating directions- between the stapes 

and helicotrema, which are both, here, perfect reflectors. Since flo RXAPiCAI = -1, the 

pulses P±(Xobs, t) switch polarity on each round trip. In the second case, the termina

tion impedance Zo = Z~, and flo ~ O. (Since ~ = 0, the WKB waves W± everywhere 

provide good approximate solutions to the transmission line equations.) All energy ini

tially reflected from the impedance mismatch at the apex subsequently "disappears" at 

the stapes, where the termination impedance makes the cochlea appear infinite to WKB 

waves incident upon the boundary. 

2. An apparent reflection asymmetry 

The previous results can be used to show how terminating a model cochlear trans

mission line in its characteristic impedance can give rise to an apparent asymmetry in 

the reflection of cochlear waves. To test for an asymmetry in the reflection characteristics 

of the line one might imagine, for example, extracting a section of the transmission line 
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and terminating it with a fixed impedance at one end. While driving the line from the 

other end, one could measure (at the driving point) the resulting reflection coefficient. If 

one were then to repeat the measurement after interchanging the termination and driving 

points, any asymmetry would manifest itself in a different value for the measured reflection 

coefficient. 

Figure 4 plots the expected results of a series of such gedanken experiments performed 

(numerically) on sections of systematically varying length extracted from the model of 

de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat). As always, the 

stimulus frequency is fixed at ws /27r == 1 kHz, and the apical end of the extracted sec

tion is, in each case, taken to be the point corresponding to a characteristic frequency of 

w c /27r = 2 kHz. Thus {3 = ws/wc = % at the apical end of the section. The location Xbasal 

of the basal end of the section is varied systematically, beginning at Xbasal = 0 (i.e., at 

the point with Wc = wco ) and proceeding to larger values of Xbasal so that the sections get 

progressively shorter at the basal end. A particular section of the transmission line there

fore has values of {3 that vary over the range {3basal ::; {3 ::; %, where (3basal = ws/Wc(Xbasal). 

The value of {3basal, recorded along the abscissa, thus fixes the length (and range of charac

teristic frequencies) of the section. For small values of {3basal the extracted section includes 

basal regions of the model cochlea in which the wavelength changes rapidly. As {3basal in

creases those regions are "sliced off," and the section appears more homogeneous to waves 

at the stimulus frequency. 

The figure plots both I'll I, measured at the apical end (i.e., at (3 = %) of the section, 

and IRI, measured at the basal end (Le., at {3 = {3basal).7 The reflection coefficients are 

plotted for two different termination conditions. In the first (panel A), the section is made 

to appear infinite to Hankel/WKB waves incident upon the boundaries. Thus at the apical 

end the termination impedance is the local value of Z+ and at the basal end the value 

of Z_. In the second (panel B), the line is made to appear infinite to geometric-optical 

waves by terminating both ends with the local characteristic impedance Zc. Unlike the 

Hankel/WKB waves, the geometric-optical waves are not accurate approximate solutions 

to the transmission-line equations except in the limit IA'I --+ o. 

7 The equation for Ii can be obtained from Eq. (70) for R by switching the + and - signs and 
reversing the directions of the diacritical arrows (see the Appendix). 
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Figure 4. Amplitude of the reflection coefficients Ii (t1basal , ws) ( ) and Ii ( 112, Ws) (- - -) 
at a stimulus frequency of ws/27r = 1 kHz computed at the basal (i.e., t1 = t1basal) and apical (i.e., 
t1 = 112) ends, respectively, of sections of cochlear transmission line extracted from the cochlear 
model of de Boer et al. (1986ab and Kaernbach et al. 1987), rescaled to the cat as in Fig. 1. The 
location of the basal boundary, indicated by t1basal, is varied along the abscissa. The pro jection 
operators P± used to compute the reflection coefficient were selected according to the matched 

asymptotic expansions [Eqs. (60)] and switch from pI to pf at the points where the derivatives 
change discontinuously (near t1 ~ 0.15). Key to panels: (A) reflection coefficients measured when 
the termination impedances at the ends of the section are the local values of the Hankel/WKB 
wave impedances Z± . (B) reflection coefficients measured when the termination impedances 
are the local values of the characteristic impedance Zc. Note that, for clarity, the amplitudes 
in panel (A) have been multiplied by a factor of 100. Terminating the cochlear transmission 
line in its characteristic impedance gives rise to a pronounced asymmetry between IIiI and IIiI, 
which might, mistakenly, be ascribed to an internal reflection asymmetry between forward- and 
backward-traveling waves . 



II.30 

The figure illustrates clearly how the choice of boundary conditions can give rise to 

an apparent asymmetry in cochlear reflection characteristics. When a section is made to 

appear infinite to Hankel/WKB waves at both ends, Illl and Illl are small and nearly 

identical. When the section is terminated in its characteristic impedance, however, the 

predicted reflection coefficients Illl and Illl are quite different, especially for small f3basal 

for which the measured section contains regions in which the wavelength changes rapidly 

and the geometric-optical waves constitute especially poor approximate solutions to the 

transmission-line equations. The asymmetry arises because boundary reflection from the 

termination is quite different in magnitude at the two ends, being rather small at f3 = Y2 

and rather large at f3 = f3basal. The asymmetry in wave reflection found by other authors 

(de Boer et al. 1986b; Viergever 1986; Kaernbach et al. 1987) can thus be traced to their 

termination of the cochlear transmission line. 

3. Comparison with the geometric-optical series 

In a nonuniform medium such as the cochlea the definition of forward- and backward-

traveling waves is to some extent arbitrary. For the family of conventional models outlined 

in Sec. II, this paper defines the traveling-wave components P± in terms of the Hankel 

and WKB waves given in Table II. Using Hankel and WKB waves (in their respective 

regions of validity) as the "basis set" has the advantage that, in addition to having nearly 

constant power flow, they provide good approximate solutions to the transmission-line 

equations and so propagate independently without substantial reflection or violation of 

energy conservation (Zweig et al. 1976). Underlying Bremmer's geometric-optical series 

used by Viergever (1986) for the analysis of cochlear reflections is a different definition for 

the traveling-wave components (see Sec. I). By computing the "reflection coefficient" based 

on the geometric-optical series, this section demonstrates how adopting as one's basis set 

waves B± that are not good approximate solutions to the transmission-line equations can 

lead to results that are difficult to interpret. 

Using the traveling-wave components resulting from the geometric-optical series leads, 

of course, to a different definition for the reflection coefficient. In terms of the impedance 

Z, the reflection coefficient for the geometric-optical series is given by 

llV = ~t I 
- cochlea driven backward 

Z/Z':. -1 

Z/Z+ + 1 
(74) 
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where the Z± both equal the characteristic impedance Zc of the transmission line. Conse-
~V ~ 

quently, R = 0 if Z = Zc; terminating a transmission line in its characteristic impedance 

thus eliminates the reflection of "geometric-optical waves" V± incident upon the boundary. 

Since the functions V±(X,w) are not good approximate solutions to the transmission-line 

equations, however, the physical interpretation of ii v 
as a reflection coefficient is some-

what problematic. 
~V 

Shown in Fig. 5 is the "reflection coefficient" I R (,B,ws)1 for the geometric-optical 

series computed by using the termination Zc(0,ws).8 Shown for comparison is the 

reflection coefficient Iii (,B,ws)1 computed from the curve in Fig. 2 corresponding to the 
~ ~v 

same termination. I R I and I R I are of similar average amplitude except close to the 

boundary where they diverge and approach values consistent with the underlying difference 

in the traveling-wave components. Recall that it is near the boundary ({3 :5 %0) that the 

model wavelength changes most rapidly and that the difference between the views of the 

traveling-wave components is most pronounced. For example, whereas liil approaches the 
~v ~ 

finite value (~ 0.55) computed above in Eq. (73), I R I rapidly falls to zero as Z --+ Zc' 

Farther from the boundary ({3 ~ %0) the wavelength changes more slowly, and the 

difference in the definition of traveling-wave components manifests itself in another man-
"-- v "-- "--

nero In that region I R I oscillates about an average value given by I R I. I R I is roughly 

constant because the WKB waves W ± provide good approximate solutions to the differen

tial equation, and a fixed linear combination of those waves suffices to satisfy the equation. 

By contrast, the V± constitute poor solutions to the equation, and the linear combination 

needed to produce a solution varies periodically in space. 

To see this more clearly, recall from Sec. 1 that the osculating parameters provide 

(as a function of position) the coefficients of the wave components necessary to satisfy 

8 The reflection coefficients in this paper have been computed using the appropriate projection oper

ators and are thus correct to "infinite" order. A calculation of J[v to first order in the geometric-optical 
series has been performed by Viergever (1986), yielding [d. Eq. (1.1)] 

~V I Pt 
R (X, w) zo=zc(O,w) = p:::. (8 .1) 

w+ IX u~ , 1 1° A' +2. JX' dx" I" , ::::::-- W_-W_dX =- -e x dX . 
W_ ° A 2 x A 

(8.2) 

Figure 2 of Viergever (1986) plots, for his model, the amplitude of Eq. (8.2) at a stimulus frequency of 
1 kHz. 
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Figure 5. Amplitude of the reflection coefficients R ({3,ws) for the geometric-optical series used 
by Viergever (1986) and R. (13, ws) for Hankel/WKB waves compared for the model (~ = 1) of 
de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat as in Fig. 1): (- - -) 
IR.I computed from Eq. (70) with the wave impedances Z± selected according to the matched 

~V 

asymptotic expansion as in Fig. 2; (- ... -) I R I computed from Eq. (74). The boundary condition at 
the stapes [i.e., Z o(w) = Zc(O, w)] guarantees that retrograde "geometric-optical" waves incident 

~V ~ 

upon the boundary are not reflected. Thus I R I -+ 0 at the boundary, and I Ro I ~ 0.55, in 

agreement with the calculation in the text. Away from the boundary, both lR. v I and IR.I are 

large and have similar average amplitudes. The oscillations in flv indicate, however, that the 
"geometric-optical" waves V± do not constitute good approximate solutions to the transmission
line equations. 
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the differential equation. When the wave components B± satisfy the original differential 

equation the corresponding osculating parameters 'l/J1 are independent of position. The 

ratio of the osculating parameters is easily obtained from the reflection coefficient. For 
"-v 

example, in terms of the "reflection coefficient" R the ratio of the osculating parameters 

for the geometric-optical series is given by 

(75) 

analogous expressions hold for other wave components. To obtain the ratio of osculating 

parameters one multiplies the reflection coefficients given in Fig. 5 by the ratio of the 

corresponding wave components. At values of f3 ~ % the ratio of the wave components 

is, in each case, almost constant, and the ratio of the osculating parameters can, it turns 

out, be obtained simply by straightening out the the gentle downward drift in the average 

value of the reflection coefficients.9 The ratio of the osculating parameters for the 

HankelJWKB approximations is thus essentially constant. The large oscillations apparent 

in the Bremmer ratio are not, however, eliminated, demonstrating that the V± do not 

provide good approximate solutions to the transmission-line equations. 

c. Reflection from a mechanical inhomogeneity 

Although waves are not reflected simply by the secular variation of mechanical char

acteristics, they can be reflected when discontinuities or other strong inhomogeneities are 

superimposed upon that more gradual variation. This section solves the scattering prob

lem in a cochlea containing a localized mechanical anomaly in the organ of Corti. The 

result is interpreted in terms of the power flowing past a point in the cochlea. 

In a model of the type introduced in Sec. II.A, assume that the exponential frequency

position map is perturbed to have the form 

{ 
(1 <fJ)e-xll 

w (x)Jw = - , 
C Co -xii e , 

9 Because the factors of J). cancel in the ratio, 

the required "straightening" is the same for each curve. 

for Xo < x < Xl j 

elsewhere. 
(76) 

(9.1) 
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The anomaly, illustrated in Fig. 6-A for several values of 4>, corresponds (for 4> > 0 in a 

model with ~ = 1) to a local increase in the compliance C of the organ of Corti. 

Imagine driving the model backwards from some point apical to an observation point 

Xobs > Xl' The net time-averaged power flowing past the observation point toward the 

stapes is given by 

(77) 

where * represents the operation of complex conjugation. Reexpressing the result as a 

fraction of the incident power flow one obtains 

",= 
Wincident 

(78) 

Figure 6- B plots ,,,(4)) for the model of de Boer et al. (1986ab and Kaernbach et al. 

1987, rescaled to the cat) at the stimulus frequency ws /27r = 1 kHz. Since WKB waves 

represent good approximate solutions to the equations near Xobs (the observation point 

was chosen so that f30bs = %), the WKB wave impedances and projection operators were 

used to determine the incident power flow. The figure plots ,,,(4)) both for an infinite 

cochlea (of the type introduced in Sec. IILA) and for a model terminated at the stapes in 

its characteristic impedance. When the discontinuity is small, ", is close to unity in the 

infinite cochlea, indicating that, despite the secular variation of parameters, little reflection 

of the incident energy occurs in the infinite half-plane basal to the observation point. As 

the size of the discontinuity increases, however, more and more of that energy is reflected 

by the anomaly and the net power flowing basally towards the stapes decreases. 

Terminating the model in its characteristic impedance gives rise to considerable 

boundary reflection; the net power flow is correspondingly reduced. An estimate of the 

value ,,,(4) = 0) can be obtained from Eq. (73): 

(79) 

Using the value 0.55 obtained above for the reflection coefficient yields ",(0) ~ 0.7; that 

value slightly underestimates the actual power flow at Xobs because of the finite damping 

in the model. 
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Figure 6. Illustration of the reflection of wave energ~ produced in a cochlear model by a me
chanical inhomogeneity. Panel (A) plots (over the range 0 < x < Xobs) the perturbed frequency
position map we/weo given by Eq. (76) for several values of the perturbation parameter ¢. When 
¢ = 0 the anomaly in the frequency-position map is eliminated . Panel (B) plots the normalized 
power 1}( ¢) flowing basally towards the stapes past the observation point Xobs for the model of 
de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat as in Fig. 1) using two dif
ferent boundary conditions at the stapes. The stimulus frequency is again fixed at ws/27r = 1 kHz 
and the observation point chosen so that {Jobs = 112- The solid line ( ) shows 1}( ¢) computed 
when the cochlea is assumed infinite as in Fig. 1. Although panel (A) shows the frequency-position 
map only for x > 0, the cochlea is here assumed to extend infinitely in the negative-x direction. 
Despite the strong secular variation in the mechanical characteristics in an infinite cochlea, 1} is 
close to unity when I¢I ~ 1. At larger values of ¢, reflection from the discontinuity reduces the 
net basal power flow considerably. The dashed line (- -) shows 1}(¢) computed when the 
cochlea is terminated at the stapes in its characteristic impedance Ze(O,ws). The boundary re
flection produced by terminating the model in its characteristic impedance reduces the net power 
flow even in the absence of any inhomogeneity. 
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IV. When Do Cochlear Reflections Occur? 

The negligible cochlear reflection found in the models of Sec. II (see Fig. 1) provides 

but a specific example of a result conjectured to hold more generally. In a generic cochlear 

scattering problem the cochlea is divided into two parts in which corresponding approx

imate solutions to the equations are found: an apical region (A) containing the source 

of retrograde waves launched upon the basilar membrane and a more basal region (B) 

in which those waves may be reflected back toward the source. Assume, for simplicity, 

that the basal region B extends infinitely in the negative-x direction so that there are no 

boundary reflections to complicate the discussion. For (3 < 1 the wavelength" in conven

tional cochlear models is essentially real and the wave equation for the pressure has the 

standard Sturm-Liouville form (Courant and Hilbert 1953; Birkhoff and Rota 1969). In 

the source region, the solutions can then be presumed oscillatory so that an appropriate 

linear combination can be taken representing waves traveling independently in opposite 

directions. For example, in the models of Sec. ILA those approximate traveling-wave 

solutions are the WKB waves W±. 

When the approximate solutions in regions A and B have overlapping regions of 

validity, solutions in one region can be matched asymptotically onto solutions in the other. 

In particular, the two traveling-wave solutions in region A can be matched one-to-one onto 

corresponding solutions in region B. By asymptotic matching one can thus construct, in 

principle, two global approximate solutions to the transmission-line equations that, at 

least in region A and the region of overlap, have the form of traveling waves. Adopting as 

one's "basis waves" B± those independent global solutions thus guarantees that waves, so 

defined, propagate essentially without reflection. 

When the mechanics of the cochlea do not vary sufficiently smoothly (e.g., when they 

change discontinuously at a point as illustrated in Sec. lILC), no overlapping region of 

validity exists between the solutions in regions A and B, and no one-to-one matching of 

solutions can be made. Consequently no global solutions exist that correspond, in region 

A, to waves traveling in only a single direction: the discontinuity generates a reflection. 

Even in the absence of discontinuities or other strong mechanical inhomogeneities , 

employing basis waves that constitute poor approximate solutions to the transmission-line 
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equations (e.g., the geometric-optical waves V±) can give rise to an apparent reflection 

(of those basis waves) because a spatially-varying linear combination of (those) waves 

traveling in opposite directions is then necessary to accurately approximate the solution 

(cf. Sec. III.B). 

v. Boundary Reflection in the Cat 

Although traveling waves are not reflected by the secular variation of the geometrical 

and mechanical characteristics of the cochlea, they can be reflected at the basal bound

ary with the middle ear. Discussions of retrograde wave propagation (e.g., de Boer et al. 

1986ab; Viergever 1986; Kaernbach et al. 1987) and models for the generation of otoacous

tic emissions (e.g., Furst and Lapid 1988) have typically chosen a basal boundary condition 

for calculational convenience; the qualitative form of the basal reflection coefficient in an 

actual ear has never been addressed.1o This section estimates Ro(w) for the cat. 

The effective "output impedance" Zo(w) at the stapes is determined by the me-

chanical and acoustical characteristics of the middle and external ears. That impedance 

can be estimated in the cat by combining a model of the middle ear (Carr and Zweig 

1984) with measurements of the radiation impedance of the external ear seen from the 

eardrum (Rosowski et al. 1986; Rosowski et al. 1988). The approximate reflection coeffi

cient Ro(w) can then be found from Eq. (70): 

"--8 Z /Z~ -1 
Ro = 

Z/Z.~+l 
(80) 

x=o 

To the extent that apical reflections make negligible contributions to the measured input 

impedance, the wave impedances Z~ can be estimated from measurements (Lynch et al. 

1982) of the cochlear input impedance Zo(w) according to the rule (Shera and Zweig 

1991a): 

Z~(O,w) ~ Zo(w) and Z~(O,w) ~ Z;(w) . (81) 

10 Matthews (1983) has estimated the impedance Zo (w) in the cat under simulated recording conditions 
in which the middle-ear cavities are widely open and the ear canal terminated with a model stimulus 
delivery system. 
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In accord with measurements of the cochlear input impedance (Lynch et al. 1982), the 

wave impedances Z:f: can also be approximated by the WKB wave impedances of a cochlear 

model with I~I ~ 1 (Shera and Zweig 1991a). 

The resulting reflection coefficient is shown in Fig. 7. Although the precise position of 

the peaks and dips will vary from animal to animal (and from those in the "composite" cat 

shown here), the figure demonstrates that the reflection coefficient, typically of order one, 

can be expected to vary strongly with frequency. Shown for comparison is the reflection 

coefficient computed under simulated recording conditions in which the ear canal is blocked 

at the entrance to the concha. The differences between the two conditions are considerable. 

VI. Summary 

Passive, one-dimensional transmission-line models are expected to describe the me

chanics of the basal turns of the cochlea at high sound pressures and angular frequencies 

W much less than the maximum frequency of hearing Weo. The companion paper (Shera 

and Zweig 1991a) demonstrates that the inner ear of the cat manifests a symmetry be

tween the longitudinal impedance Z of the cochlea and the admittance Y of the organ of 

Corti that guarantees that the wavelength changes slowly near the stapes. Remarkably, 

conventional transmission-line models, whether they manifest that symmetry or not, do 

not appear to generate reflections of waves traveling through the basal turn even when 

the wavelength changes rapidly. 

Unless the model manifests the tapering symmetry required by measurements of the 

input impedance, terminating a cochlear transmission line in its characteristic impedance, 

whether explicitly (de Boer et al. 1986abj Kaernbach et al. 1987) or implicitly (Viergever 

1986), generates significant boundary reflection. The ostensible asymmetry in reflection 

of cochlear waves computed by other authors emerges as the expected consequence of an 

asymmetric termination of the cochlear transmission line. Viergever's (1986) conclusion 

that the decline in stiffness (increase in C) of the basilar membrane is primarily responsible 

for the wave reflection observed in his model is incorrect. In fact, the reflections originate 

not from the secular variation of the stiffness but from an impedance mismatch at the 

basal boundary. 
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Figure 7. Approximate amplitude and phase of ~(w) for the cat cochlea computed from a 
model of the middle ear (Carr and Zweig 1984) for two boundary conditions in the ear canal: 
( ) ~(w) computed using an external-ear radiation impedance Zee(w) at the tympanic 
membrane obtained from measurements on excised external ears (Rosowski et al. 1986; Rosowski 
et al. 1988); (- ... -) ~(w) computed using Zee for simulated experimental recording conditions 
computed from a model consisting of a rigid-walled, closed tube with dimensions typical of the 
feline ear canal (Shaw 1974; Rosowski et al. 1988). The figure shows that ~(w), which is typically 
of 0(1), can be expected to display strong frequency dependence and depend sensitively on the 
boundary conditions imposed by the external ear . 
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Although the extent of symmetry-breaking has little effect on the reflection charac

teristics of the cochlea itself, it does affect the reflection of retrograde waves at the stapes. 

The basal reflection coefficient, demonstrated to vary strongly with frequency in the cat, 

depends on the impedance mismatch between the cochlear "output impedance" Zo and 

the wave impedance Z~(O,w) and is thus determined both by the characteristics of the 

middle and external ears and by the form of the retrograde wave components. Quantita

tive interpretation of spontaneous and other otoacoustic emissions believed to depend on 

that reflection coefficient thus requires that the model accurately represent the symmetries 

of the inner ear. 
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Appendix A: Analytic Approximations to ZO(w) 

This Appendix justifies the assertion of the companion paper (Shera and Zweig 

1991a) 

that the simple WKB wave impedance Z+ (0, w) suffices to determine the leading-order 

behavior of the cochlear input impedance Zo(w), even in models that exhibit the cochlear 

catastrophe. The cochlear scattering formalism outlined Sec. I is used to derive an analytic 

expression for Zo(w) in terms of the wave impedances Z!(O,w) and the corresponding re-
--" 8 

flection coefficient R (0, w). In the absence of apical reflections, and if the basis waves B± 

constitute good solutions to the transmission-line equations near the stapes, 71 8 
is small 

and Zo(w) reduces to the anterograde wave impedance Z'+(O,w). The scattering formal

ism is then combined with the WKB approximation to derive a perturbative expansion 

for Zo(w) in powers of the scattering potential (TW(X). Successive terms in the expansion 

are computed for the model of de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled 

to the cat) and compared to the exact result computed numerically. 

At stimulus amplitudes A > Aoo (Shera and Zweig 1991a), the cochlear input impe

dance is defined by PI p8 + P81 
Zo( w) == U == U! U~ , 

x=o + + - x=o 
(AI) 

where P and U have been decomposed into waves traveling in opposite directions. Reex

pressing Eq. (AI) in terms of the wave impedances Zi(x,w) and the "reflection coefficient" 

--"8 P81 
R (X,w) == P~ 

+ cochlea driven forward 

yields 

8 { --"8 Z'+ + Z~ } Zo(w) = Z+ 1 + R --"8 • 

Z8 - R Z8 - + x=o 

Note that if Z! = Zc, the right-hand side of Eq. (A3) reduces to the expression 

Zc 1 +! 
1- R x=o 

(A2) 

(A3) 

(A4) 

familiar from transmission-line theory (e.g., Slater 1942). Equation (18) in Sec. I implies 

that, to first order, 

(AS) 
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--'-8 

When Ro is small, Eq. (A3) for Zo(w) reduces to the wave impedance Z'+(O,w). 

Calculation of the input impedance using WKB waves W± provides an interesting 

example. Two approximations to Zo(w), namely Z~o(w) and Z~l (w), are shown in Fig. A1 

for the model of de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat). The 
--'-W 

approximations are based on an iterative expansion of Eq. (AS) for Ro in the manner 

of Eq. (18). The second subscript denotes the number of interactions with the WKB 
--'-W 

scattering potential included in the calculation of the reflection coefficient Ro appearing 

in Eq. (A3) for Zo(w): 

~w ----loW ~w ----loW 

Ro (w) = Ro;o + RO;l + RO;2 + ... 

= ° - 100 

W+aWW+ dx' + O(aW aW) . 

(A6) 

(A7) 

Thus, the zeroth-order approximation zt;;o' computed by including terms to O(R;o), is 

simply the anterograde WKB wave impedance 

zt;;o = Z~ (O,w) ; (A8) 

--'-W 
the first-order approximation Z/{l includes terms to order O( ROo1): , . 

W () W { --'-w Z.t' + Z~ } ZOol W = Z+ 1 + ROo1 --'-w . 'zw R ZW 
- - 0;1 + x=O 

(A9) 

The figure demonstrates that, despite the breakdown in the WKB approximation at 

low frequencies, the leading-order behavior of Zo(w) is well captured in the zeroth-order 

approximation zt;;o = Z.t' (O,w). By contrast, the corresponding zeroth-order approxima

tion to Zo(w) (namely Z.+) obtained by using the geometric-optical series fails completely 

to indicate the presence of the cochlear catastrophe. That approximation, shown for com

parison, is simply the characteristic impedance Zc(O,w) to which Z.t'(O,w) reduces in the 

limit I).~I -+ ° (see Sec. J). 

The behavior of the first-order approximation Z~l (w) at frequencies w /27r ;5 1 kHz 

results from the divergence of the scattering series at low frequencies and can be under

stood by examining the form of the scattering potential a W at low (3. At frequencies 

w ~ wco the function 

(A 10) 
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Figure AI. Approximations to the amplitude and phase of Zo(w) for the cochlear model of 
de Boer et al. (1986ab and Kaernbach et al. 1987), rescaled to the cat as in Fig. 1: (- . _ . . _) 
the characteristic impedance Zc(O, w); (- _. -) the zeroth-order approximation Z~o = Zf (0, w) ; 
(- - -) the first-order approximation Z~; ( ) the impedance Zo (w) calculated numeri

cally. The anterograde Hankel wave impedance Z-f (,80), shown for comparison, is indistinguish
able from the numerical result. The impedance amplitudes are normalized at 7 kHz to the value 
given by the phenomenological network model of Lynch et al. (1982) . Unlike the characteris
tic impedance Zc(O,w) , the WKB anterograde wave impedance Zf(O ,w) correctly captures the 
leading-order b ehavior of Zo(w) . 
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is essentially real and diverges like 1/(32. Thus, 

---"w ie+8iN/3 [1 e-8iN/3' , 
RO;1 ((3) ~ - 32N 1/3 (3'2 d(3 ((3 <. 1) (All) 

'" __ 2_· {! + 8iN In (3 + ... } 
32N (3 

(A12) 

diverges like 1/(3. 
---"w 

Although ROol ((3) diverges at low frequencies, the corresponding approximation to the , 

input impedance, Zcf;'1 (w), remains finite. Indeed, note that when R~1 diverges, Eq. (A3) 

for Zo(w) implies that 

(A13) 

Since (see Table I) 

(A14) 

Zcf;'I(W) approaches Zcf;'o(w) at the lowest frequencies, in agreement with Fig. Al. Note 
---"W 

that the divergence in ROol would occur at higher frequencies were it not for the relatively , 

large value of N, which helps to suppress the magnitude of the reflection coefficient. 

Because of its generality and the ease of its physical interpretation, the compan

ion paper (Shera and Zweig 1991a) uses the anterograde WKB wave impedance Z+ to 

approximate Zoo For models of the family introduced in Sec. II, however, a better approx

imation to Zo at small (3 would be the anterograde Hankel wave impedance Z'+ given in 

Table Bl. For the model of de Boer et al. (for which ~ = 1), that approximation becomes 

(A15) 

Plotted in the figure for comparison, Z'+ (iJo) is indistinguishable from the numerical result. 

The analogue of R~1 computed using Hankel waves would thus be quite small. The sizable , 
---"w 

"reflection coefficient" Ro computed above by using WKB waves results entirely from 

the choice of basis waves, and is not indicative of genuine reflection. 
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ABSTRACT 

A phenomenological description of the transduction effected by the eardrum is 
presented. That description is provided by a transfer matrix, whose elements 
define those measurements sufficient to characterize eardrum transduction. 
Causality provides constraints on the matrix elements. In addition, measure
ments of the matrix elements can determine whether they satisfy constraints 
imposed by minimum-phase behavior and the principle of reciprocity. Those 
constraints may be used either to reduce the number of measurements neces
sary to characterize the eardrum or to check the consistency of measurements 
that overdetermine the system. Within its region of validity, the transfer ma
trix of the eardrum provides a common ground for the comparison between 
theory and experiment. As an example, a simple model for the transduc
tion characteristics of the eardrum, defined completely in terms of measurable 
quantities, is presented. 
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Introd uction 

The eardrum begins the process of auditory transduction, converting incident sound 

into a mechanical oscillation of the bones of the middle ear. Although detailed measure

ments of eardrum surface-displacement patterns (Tonndorf and Khanna 1972; Khanna 

and Tonndorf 1972; von Bally 1976; L!lIkberg et al. 1980; Decraemer et al. 1989) provide 

a qualitative picture of the complexity of eardrum vibration, the characteristics of that 

transduction have not been measured. Such experiments do not, for example, measure 

the force transmitted to the ossicles and so fail to characterize those properties of the 

eardrum directly relevant to the process of hearing. Although eardrum dynamics have 

been explored theoretically at varying levels of complexity (Helmholtz 1868; Shaw 1977; 

Shaw and Stinson 1986; Funnell et al. 1987; Rabbitt and Holmes 1986) and qualitative 

agreement between measured and computed surface-displacement patterns obtained, the 

transformation properties of the eardrum have not been thoroughly examined. 

Since measurements are incomplete and eardrum mechanics not well understood, the 

need exists for a comprehensive framework that identifies those measurements necessary 

and sufficient to characterize the transduction properties of the eardrum. Such a frame

work would show one how to prove what is believed known about the system (e.g., its 

analyticity and symmetry properties), and once proven, how to remove the effects of those 

constraints from measurements to expose directly the underlying dynamics. This paper 

proposes such a framework for the phenomenological description of the transformation 

properties of the eardrum. That description is provided by the transfer matrix T~(w) of 

the eardrum, which summarizes those dynamical characteristics of the eardrum important 

for understanding its role in transmitting sound to the middle ear. The transfer-matrix 

elements are necessarily constrained by causality; in addition, measurements of the matrix 

elements can be used to determine whether they are minimum-phase functions and whether 

the eardrum satisfies the principle of reciprocity. If the eardrum is a completely passive 

mechanical transducer, reciprocity must hold. Those constraints may be used either to 

reduce the number of measurements necessary to characterize the eardrum or to check the 

consistency of measurements that overdetermine the system. The transfer-matrix elements 

provide a concise summary of the functional response of the eardrum-thereby facilitating 
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incorporation of eardrum transduction characteristics into models of the middle ear-and 

provide a common ground for comparing theory and experiment. 

Just as the overall response of the ear to sound can be factored into parts describing 

the separate actions of the inner, middle, and external ears, so the response of the middle 

ear itself can, under certain conditions (Shera and Zweig 1992a), be factored into compo

nents describing the individual actions of its constituent parts. Those component factor

izations are conveniently summarized by transfer matrices; the overall transfer matrix is 

simply the product of component matrices. This paper represents the first in a series of 

papers (Shera and Zweig 1991c; Shera and Zweig 1992a; Shera and Zweig 1992d) devoted 

to the phenomenological description of eardrum and middle-ear mechanics. Subsequent 

papers extend the program begun here with the eardrum to provide a phenomenological 

description of the other major components of the middle ear. 

1. Phenomenological Characterization of the Eardrum 

The eardrum (illustrated schematically in Fig. 1) forms the lateral wall of the tym

panic cavity and vibrates in response to incident sound. Volume displacements of the 

eardrum create pressure variations Ptc in the tympanic cavity. At the same time, the 

eardrum exerts a force Fu on the malleus. That force results from the mechanical re

sponse of the eardrum to the driving pressure difference 

(1) 

between the ear canal and the tympanic cavity. 

The measurements of Guinan and Peake (1967) and Buunen and Vlaming (1981) on 

the cat indicate that the eardrum and middle ear respond linearly throughout the intensity 

range of normal hearing below the activation threshold for the acoustic reflex. Linearity 

implies that the eardrum can be completely characterized in terms of its response to pure 

tones. For simplicity, all variables in this paper have been written as complex quantities 

characterizing those responses. For example, the variable Vu , representing the velocity of 

the umbo, is defined in terms of the measured amplitude A(w) and phase <p(w) relative to 

the pressure at the eardrum by 

(2) 
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Figure 1. Schematic drawing of the eardrum in cross-section adapted from Fig. 5- 6 of von 
Bekesy (1960) . 
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Under conditions discussed below, a phenomenological description of eardrum me

chanics is provided by the transfer matrix T~ (w) of the eardrum. Illustrated schematically 

in Fig. 2a, T~ (w) is defined by the equation 

(3) 

where Ue represents the volume velocity of the eardrum. The input and output variables 

are identified by super- and subscripts on the matrix. Since T~ is defined in terms of the 

pressure difference Fe-which reduces to Pe when the middle-ear cavities are surgically 

exposed and opened widely to the atmosphere-the matrix depends only on the properties 

of the eardrum; the effects of the complicated acoustic geometry of the middle-ear cavities, 

discussed in the next paper in this series (Shera and Zweig 1992a), have been "factored 

out." 

In the language of electrical circuit theory, Eq. (3) views the eardrum as a two-port 

network characterized in terms of transfer coefficients. (e.g., Brillouin 1946; Friedland et al. 

1961; Lampton 1978). Although the phenomenology could have been based on any of the 

other standard characterizations oftwo-port networks (e.g., impedance or admittance coef

ficients), the transfer coefficients of the eardrum have especially simple interpretations- as, 

for example, effective areas (see below)-and their measurement-based on manipulation 

of the ossicular load- is convenient. In addition, the transfer-matrix representation, which 

maintains a separation between input and output ports, is natural for describing a cas

cade of systems. For example, the transfer matrix describing the combined action of 

the eardrum and ossicular chain is simply the product of the matrices representing the 

eardrum and ossicular transformations individually (Shera and Zweig 1992a). 

Equation (3) is the most general linear equation relating the four variables defining 

the eardrum transformation.1 The relation is independent of the nature or position 

of any sources or loads presented to the eardrum. (It is ratios such as Fe/Ue or Fu/Vu 

that depend on the loading of the eardrum by the middle and inner ears.) Furthermore, 

1 Equations similar to Eqs. (3), with a specific form for T~, were obtained by Esser (1947) by con
sidering a simple model of the eardrum. However, Esser seems to have realized neither that equations of 
that form follow immediately from the linearity of the mechanics, nor that the coefficients in his model 
were related by the principle of reciprocity. 
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Ue Vu .- .-

r r 
Pc -Pte Fu 

Figure 2a. The eardrum represented as a two-port network that transforms a pressure and 
volume velocity in the ear canal into a force and velocity at the umbo. 
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Ue Vu 
• .. 

1 1 
Pe-Ptc Fu 

Figure 2b. A factored representation of the two-port network of Fig. 2a, making explicit the di
mensional transformation (transduction) performed by the eardrum. The representation consists 
of the transfer matrix product T~Ad-l in cascade with an ideal transformer of turns ratio Acl 
whose function is to provide a change of dimension. The ideal transformer is represented by the 
transfer matrix Ad, defined by 

The unit of area Ad was chosen to be the "classical effective area" of the eardrum (see Sec. I) . 
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the matrix characterizes both "forward" and "reverse" transduction; the same elements 

characterize eardrum transduction whether it is driven by pressure variations in the ear 

canal or by the autonomous motion of the organ of Corti. The transfer matrix thus allows 

a convenient separation between the boundary, or loading, conditions as represented by 

the input and output vectors and the dynamics of the eardrum as described by the matrix 

The simple 2 X 2 transfer-matrix description of the eardrum is appropriate when the 

four variables comprising the input and output vectors suffice to determine the eardrum 

transformation. For example, although sound propagation in the human ear canal is one

dimensional at frequencies less than the cutoff frequency for higher-order modes-which 

for a typical human ear canal is approximately 19 kHz (Stevens et al. 1987)-the pressure 

may be nonuniform close to the eardrum due to the presence of evanescent waves; the 

acoustic force driving the eardrum might not then be accurately approximated by the 

pressure difference Pe. The effects of those non-propagating modes appear to be small, 

however, at frequencies less than'" 6 kHz (Stinson 1985). 

Although the motion of the malleus may be quite complex at high frequencies (e.g., 

Decraemer et al. 1989)-consisting, for example, of both rotational and translational com

ponents (Donahue 1989)-the one-dimensional variables Fu and Vu suffice to describe the 

"output" of the eardrum transformation so long as the effective mechanical input to the 

middle ear is well approximated by a single force and velocity coordinate,2 as it appears 

to be at low frequencies (the precise region of validity, however, has yet to be established). 

In the simplest picture of eardrum dynamics, those coordinates are naturally associated 

with the force applied to the manubrium and the velocity of the umbo. If the action of 

the eardrum is more complicated, other definitions for those coordinates may be more 

usefu1.3 

2 Although at some frequencies the malleus may vibrate in all three spatial dimensions-suggesting 
that a simple transfer-matrix description is not possible-it may be that the effective input to the middle 
ear may still be one-dimensional. For example, vibration in the plane of the displacement of the stapes 
mar be most significant for coupling energy into the inner ear. 

Although presumably concentrated at the umbo-the malleus is most firmly attached to the eardrum 
at the umbo (Graham et al. 1978; Schuknecht and Gulya 1986)-the total force Fu on the manubrium 
results from forces distributed all along the tympanic membrane-malleus attachment and can thus be 
expressed as an integral over the area of contact between the eardrum and the malleus (cf. Tonndorf and 
Khanna 1970; Khanna and Tonndorf 1972). If mallear motion is predominantly rotational the force Fu 
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A. Measurement and interpretation of the matrix elements 

Determination ofthe matrix T~(w) and its (species-dependent) region of validity con

stitutes a fundamental problem in eardrum phenomenology. The elements of the transfer 

matrix 

~e ) 
Av 

(4) 

can be measured by manipulating the middle-ear ossicles. (The diacritical hats indicate 

that the matrix elements are measured with the cavities opened widely.) For example, if 

the malleus is immobilized so that Vu = 0, the element ApI is given by the ratio 

A-I 
F 

~ 

Pe 

Fu 
(5) 

Vu=O (malleus held fixed) 

Note that AF(w) has the dimensions of an area. When the malleus is immobilized, the 

"effective area for force" represents that area by which the pressure difference Pe must by 

multiplied to obtain the force on the malleus. 

The matrix element Av provides another effective area, but in this case associated 

with the transformation of velocity coordinates by the eardrum: 

~ Ue I Av= -V. . 
u Fu=O (ossicular load removed) 

(6) 

When loading due to the ossicular chain has been removed,4 the "effective area for 

velocity" provides the proportionality factor between the velocity of the umbo and the 

can be considered an effective force, acting at the mallear moment arm 1m and defined in terms of the 
total torque by the equation 

(3.1) 

If, in addition, the malleus does not rotate as a rigid body, but, for example, flexes near the tip of 
the manubrium, it may be more useful to define Vu to be the "effective velocity" of the umbo, defined 
in terms of the angular velocity Oh of the head of the malleus (measured at the axis of rotation) and the 
mallear moment arm 1m by 

(3.2) 

4 Note that the force Fu is measured relative to the static force on the malleus (normally counterbal
anced by forces from the ligaments of the middle-ear ossicles) present when the middle ear is quiescent 
and which helps to maintain the configuration of the eardrum. Because static forces from the ligaments 
help maintain the equilibrium position about which the eardrum vibrates, one cannot establish a no-load 
condition on the eardrum by simply removing the malleus altogether. One can, however, establish a 
no-load condition by employing a feedback loop and null-detector: in addition to driving the eardrum 
acoustically, one applies an additional force directly to the malleus so that the total measured force Fu is 
always zero. ' 
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total volume velocity of the eardrum. If the eardrum were a rigid piston, both effective 

areas would be real constants equal to the area of the piston. In general, however, the two 

areas Av(w) and AF(W) 

The remaining elements of the matrix T~ may be determined by similar measure-
~ 

ments. The element Ze represents the no-load transfer impedance of the eardrum found 

by removing the ossicular load and measuring, as a function of frequency, the velocity of 

the umbo produced by a known driving pressure: 
~ 

~ Pe 
Ze= -

Vu 
Fu=O (ossicular load removed) 

Similarly, the element Ye can be found from the relation 

Y. --~ Ue I 
e - Fu Vu=O (malleus held fixed) 

(7) 

(8) 

Were the eardrum a rigid plate, fixing the malleus would prevent the umbo and the rest 

of the eardrum from moving; the matrix element Ye would then be zero. 

Note that T~ cannot be found from measurements of surface-displacement patterns. 

Such experiments do not, for example, measure the pressure in the tympanic cavity or 

the force transmitted to the ossicles. In addition, whereas surface-displacement patterns 
~ 

depend on the loading of the eardrum, the matrix T~ does not. Although surface-

displacement patterns are not directly related to the functional role of the eardrum in 

the process of hearing, they can be helpful in establishing an understanding of the in

ternal dynamics of the eardrum (Funnell et al. 1987; Rabbitt and Holmes 1986). For 

example, examination of displacement patterns can aid in determining which of a family 

of models that accurately predict the transfer-matrix elements provides the most realistic 

description of the eardrum. 

B. Constraints on the matrix elements 

Study of a complex system such as the eardrum often best proceeds by first identifying 

the analyticity and symmetry conditions that constrain the dynamics. At every angular 

frequency w the matrix T~ has four elements, each of which has both a real and an 

imaginary part. Those eight functions of frequency, however, are not all independent. 

Two classes of constraints provide relations among the matrix elements. First are those 

that follow from general physical principles such as causality. Second are those, such as 

reciprocity, that, although not binding in general, might apply to the eardrum because of 

certain qualitative characteristics of its dynamics. 
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1. Causality 

All physical systems are constrained by causality; a system cannot respond before it is 

driven. For a linear system characterized in the frequency domain, causality requires that 

the real and imaginary parts of each transfer-matrix element Tij(W) be Hilbert transforms 

of one another (Bode 1945): 

Re[Ti ·(w)] = -~[ Im[Tiiw' )] dJ.v' 
J 11" w' - W -00 

(9) 

and 

Im[Ti ·(w)] = ~[ Re[Tij(w' )] dJ.v' . 
J 11" w' - W -00 

(10) 

Here f represents a Cauchy principal-value integral. Equations (9) and (10) are equivalent 

to the statement that considered as a function of complex frequency the matrix elements 

Tij(W) are analytic in the lower half of the frequency plane. Causality thus provides 

analytic constraints on the matrix elements.5 Those constraints may be used to check 

measurements of the Tij for internal consistency, reduce measurement uncertainty, and 

determine functional values at frequencies for which measurements are not available (Zweig 

1976; Zweig and Konishi 1987). 

2. Minimum-phase behavior 

In addition to causality, the transfer-matrix elements may satisfy the stronger mini

mum-phase constraint, which requires that the real and imaginary parts of lnTij(w) be 

Hilbert transforms of one another. The responses described by each matrix element would 

then be produced by a mechanical system that responds as rapidly as possible consistent 

with its amplitude characteristic and the constraint of causality (Bode 1945). The matrix 

elements of the example model (see Sec. II) are such minimum-phase functions. Although 

certain combinations of matrix elements, such as the umbo transfer function, might be 

expected to have evolved "optimal" minimum-phase characteristics, such teleological ar

guments do not apply to the matrix elements individually. 

5 The dispersion relations (9) and (10) are valid when the matrix element T'j (w) -+ 0 as W -+ 00. 

When that is not the case, modified, or subtracted, dispersion relations exist (Bode 1945) . In addition, 
the subtracted form of the dispersion relations may be computationally more convenient if, for exam
ple, the low-frequency behavior of the element T'j (w) is known but the high-frequency behavior poorly 
determined (Zweig and Konishi 1987) . 
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3. Reciprocity 

Linear passive mechanical systems obey the principle of reciprocity (Helmholtz 1860; 

Maxwell 1864; Rayleigh 1896; Foldy and Primakoff 1945). A two-port system is said to 

be reciprocal if it is not possible, given the transfer function Fout/V'in-where Fout is the 

generalized force produced at the output port by a generalized velocity V'in at the input

to identify which of the two ports served as the input port for obtaining the given transfer 

function. A necessary and sufficient condition for a system to be reciprocal is that its 

transfer-matrix elements satisfy the algebraic relation 

det T = +1 . (11) 

All linear two-port systems that contain only capacitors, resistors, and inductors-or 

their mechanical analogs-and no sources of generalized force or velocity are reciprocal6 

(Friedland et al. 1961). For small input signals the eardrum appears to be a linear, passive 

mechanical system and can thus be expected to be reciprocal. If satisfied, reciprocity would 

allow determination of one matrix element from measurements of the others: 

(12) 

The eardrum models discussed in Sees. II and III are all reciprocal. It is possible, however, 

that eardrums in some animals may in the process of transduction actively amplify (or 

diminish) the energy in incoming sounds. Were they to be realized in nature, such as yet 

hypothetical eardrums might not be reciprocal. 

C. The effective areas AF and Av 
Discussions of the contribution of the eardrum to the "transformer action" of the mid

dle ear often make reference to the "effective area" ofthe eardrum (von Bekesy 1941; Wever 

et al. 1948; Zwislocki 1975). As demonstrated above, however, there are two such effective 

areas, one associated with each of the two principal effects of eardrum motion: trans

mission of a force to the middle-ear ossicles and a change in the volume of the tympanic 

cavity. The areas associated with those two actions of the eardrum (i.e., transformation 

6 McMillan (1946) demonstrates violation of reciprocity in a linear passive electromechanical system 
containing somewhat more exotic components. 



III.14 

of pressure into both force and volume velocity) are not necessarily equal. Indeed, the 

constraint of reciprocity (12) implies, assuming Ze f. 0, that the two areas could be equal 

if and only if Ye = 0 (that is, only if the eardrum were perfectly rigid). 

The classical concept of the effective area confuses those two actions of the eardrum. 

For example, the classical effective area Ad has been defined to be the area of the plate 

that, if moved through a distance equal to that traversed by the umbo, would sweep 

out the same total volume as the eardrum (Wever and Lawrence 1954). Ad has been 

estimated-taking into account the conical geometry of the membrane-to be roughly 

two-thirds the anatomical area of the eardrum (von Bekesy 1941; Wever and Lawrence 

1954). Defined with reference to eardrum volume displacement, the area Ad is often 

inappropriately applied to the transformation of pressure between the eardrum and the 

oval window (e.g., Zwislocki 1975). In addition, since loading conditions on the eardrum 

are not specified, the classical definition of the effective area is ill-defined. Nevertheless, 

Ad provides a useful reference area with which the amplitudes of the two effective areas 

Av(w) and AF(W) appearing in T~ may be compared. The next paper in this series (Shera 

and Zweig 1992a) discusses the relative importance of the two areas Av(w) and AF(W) 

for middle-ear and cochlear mechanics. 

A simple argument based on reciprocity gives the relative size of the two effective 

areas at low frequencies. The displacement of the umbo Xu is then expected to be in 

phase with the driving pressure Pe when the ossicular load is removed. The element Ze is 

thus proportional to l/iw: 

(Ke > 0). (13) 

Analogous arguments suggest that at low frequencies Ye is proportional to iw, 

(Kd > 0), (14) 

and that the effective areas Av and AF are both positive and real. Reciprocity requires 

that 
~ 

li AF 1· 1 m ~ = 1m ~ ~ 
w-+O Av w-+O 1 + ZeYe 

(15) 

Note that Av and AF have similar values at low frequencies if and only if Ke/ Kd ~ 1. 
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II. Oscillator Model for Eardrum Transduction Characteristics 

To illustrate the formalism, this section presents a simple phenomenological model

the "oscillator model"-for the transduction characteristics of the eardrum defined com-

pletely in terms of measurable quantities. As such, the model differs from other lumped

element models of the eardrum, which contain impedances that would be difficult to 

measure on a real eardrum.7 In contrast with other models, no attempt will be made to 

model the internal dynamics or complex oscillations of the eardrum. Rather, a different 

approach is adopted based on the assumption that three of the elements of the transfer 

matrix T~ of the eardrum are "simple" at low frequencies (Le., are either constant or 

have Laurent expansions in iw dominated by the first three terms). The remaining ma

trix element is determined by assuming reciprocity. Those assumptions, although perhaps 

plausible, have no firm empirical basis and are adopted solely for purposes of illustration. 

For clarity of exposition the discussion proceeds by first considering, and then ex

tending, the transfer-matrix elements of a simple plate model of the eardrum. The model 

is thus ultimately defined by its transfer matrix, without reference to a particular physical 

model of the eardrum. Section II-A demonstrates, however, that the mechanical two

piston model introduced by Shaw (1977; Shaw and Stinson 1981) provides, in the limit 

implied by his parameter values, a mechanical realization of the model transfer matrix 

proposed here. The matrix elements for alternative mechanical models proposed by other 

authors are discussed in the final section. 

A. Matrix elements of the oscillator model 

Measurements indicate that at low frequencies most of the eardrum vibrates in phase 

as a unit, much like a simple piston. For example, Tonndorf and Khanna (1970; 1972) have 

measured the surface displacement of eardrums in human cadavers in response to tones of 

several frequencies. They found that the eardrum remains in its lowest mode of oscillation 

at frequencies less than 3-4 kHz. At higher frequencies the eardrum of the cadaver ear 

breaks up into complex oscillations. Although transition frequencies were higher, Khanna 

7 For example, Kringlebotn (1988) provides no prescription for measuring (and no equations defining) 
the impedance associated with the structures suspending the eardrum in the ear canal. In addition , since 
the equations defining the plate and coupling impedances have no obvious analogs for an actual eardrum, 
it would be difficult-without comparing matrix elements- to determine the extent to which two- or 
three-piston models (Shaw and Stinson 1986) accurately describe eardrum transduction. 
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and Tonndorf (1972) and Decraemer et al. (1989) found qualitatively similar vibration 

patterns in anesthetized cats. Their findings are consistent with those of others based on 

human temporal bone preparations (von Bally 1976) and living subjects (L0kberg et al. 

1980). 

A first approximation to the transfer matrix of the eardrum might thus be found 

by imagining the eardrum as a rigid plate (e.g., Peake and Guinan 1967; Dallos 1973; 

Geisler and Hubbard 1975) with an area Ap held in the ear canal by springs and dampers 

representing the annular ring. Such a model should be a fair approximation at low fre

quencies where the eardrum vibrates in its lowest mode of oscillation. The transfer matrix 
-. A-I Z 
T~ == (~F ~ .) representing the eardrum would then have the form 

Y. Av 

Zp) 
A . 

p 

The impedance 

(16) 

(17) 

contains parameters representing the effective mass, damping, and compliance (per unit 

area) of the plate and the structures holding it in place. 

In the plate approximation the two effective areas AF and Av are identical and equal 

to the area of the plate. Since reciprocity implies that 

1 
(18) -;;::--

Av 

the plate approximation remains approximately valid- in the sense that the areas AF and 

Av have similar values- at frequencies for which IZ5~e I ~ 1. If that inequality is satisfied, 

eardrum transduction can be considered effectively "piston-like" even in the presence of 

complex surface-displacement patterns. 

The plate approximation may be extended by examining the transfer-matrix elements 

individually. Note that in the plate model the matrix element 

~ Ue I Ye ==- =0, 
Fu malleus held fixed 

(19) 

reflecting the fact that the plate was assumed to be rigid. However, measurements in 

the cat made with the ossicles immobilized by gluing them to the cavity walls (Lynch 
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1981) indicate that Ye is nonzero and probably compliant at low frequencies,8 as suggested 

by Eq. (14). More generally, we assume that at higher frequencies this element has the 

form of a simple resonator: 

(20) 

Writing Ye(w) in that form is equivalent to representing l/Ye by the first three terms in a 

Laurent expansion in iw. 

With the ossicular load removed, the eardrum might be expected to remain in its 

lowest mode of oscillation at frequencies higher than those observed by Tonndorf and 

Khanna. In the lowest mode the volume velocity of the eardrum and the velocity of the 

umbo should be roughly in phase and proportional. The effective area for velocity is thus 

approximated, as in the plate model, by a real positive constant: 

Av= -~ Ue I 
Vu ossicular load removed (21) 

~ real positive constant == Ae . 

The element Ze is taken, again as in the plate model, to have the form of a harmonic 

oscillator: 

(22) 

Note that the parameters of the model provide phenomenological characterizations of 

the dynamics; they do not correspond directly to particular anatomical structures, but 

summarize their collective behavior. 

With those assumptions, the effective area for force AF , which relates the pressure 

across the membrane to the force on the malleus at the umbo, may be determined from 

the other elements by assuming reciprocity: 

det T~ = + 1 ==:::;. 

~ 

~-1 Pe 
AF =

Fu 
(23) 

malleus held fixed 

8 Lynch (1981) measured the input admittance Y;n == Ue/ Pe at the eardrum with the malleus "blocked" 
(so that Vu = 0) and found 

Y;n ~ iwC (Vu = 0) (8.1) 

at low frequencies . Since the middle-ear cavities were widely open, Pe = Pe . Hence Y;n = YeAF' If the 
plate approximation is correct to first order, then 

. AF 
lim ~ = 0(1), 

w-+O Av 
(8 .2) 

and the measured frequency variation is primarily that of Ye, which is therefore compliant at low frequen
cies. 
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Thus, although Av is constant in the model, AF can vary substantially in regions where 

zef'e is not constant. The model transfer matrix then has the form 

Z A-I) (A-I e e e 
1 0 (24) 

where the factorization, which separates the dimensional and dynamical transformations 

effected by the eardrum, corresponds to the representation of Fig. 2b. The transfer matrix 

can be factored further to allow the topology of the corresponding equivalent circuit to be 

obtained by inspection (see, for example, Table I of Lampton 1978): 

~ (1 T~ ~ 0 0) (A;I 0) 
1 0 Ae . (25) 

The model of Eq. (24) can be thus represented (see Fig. 3) by a series impedance ZeA;1 

and an ideal transformer (of turns ratio Ae) separated by a shunt admittance Ae Yd. Fac

torization in that form follows immediately from the assumed constancy of the area Av: 
were the first two matrices in the product to be interchanged, the area AF , and not Av 
would have the constant value Ae. 

Simple, qualitative arguments give relations among several of the parameters. First 

note that the area of the eardrum that moves is presumably greater when the ossicular 

loading is removed than when the malleus is fixed: 

( Ao == Area in motion) I > (Aoo == Area in motion) I 
ossicular load removed malleus held fixed 

(26) 

The subscripts "0" and "00" denote the no-load and infinite-load conditions, respectively. 

To the extent, however, that the total mass in motion is proportional to the corresponding 

area one expects 

( Me ~ M~SO ) ~ ( Md ~ M:~oo) . (27) 

Consistent with the model's origin as an extension of the plate model, one requires that 

the areas AF and Av be approximately equal at low frequencies. Equation (15) then 

implies that 

(28) 

Measurement of the matrix elements would allow these relations to be tested experimen-

tally. 
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Figure 3. Network representation of the oscillator model defined by Eq. (24). 
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B. Comparison with simple mechanical models 

Further insight into the interpretation of the oscillator model can be gained by com

parison with the transfer matrices of simple mechanical models of the eardrum. Recall 

that the oscillator model reduces to the rigid-plate (single-piston) model when the ma

trix element Y;, is zero. A more complicated "two-piston" model has been introduced by 

Shaw (1977; Shaw and Stinson 1981) in an attempt to account for measured membrane 

surface-displacement patterns. Two limiting forms of the two-piston model, distinguished 

primarily by the strength of the coupling between the pistons, are discussed below. When 

the coupling is strong, the transfer characteristics of the two-piston model are shown to 

reduce to an equation of the form (24). The system then provides a mechanical realization 

of the model transfer matrix given above. When the coupling is weak, however, the two

piston model has transfer characteristics similar to other simple eardrum models proposed 

in the literature (e.g., Matthews 1980; Neely 1981). 

The compound-eardrum model, illustrated in Fig. 4, represents the eardrum by two 

coupled plates held in the ear canal with springs and dampers. The malleus is rigidly at-
~ 

tached to the center plate. The pressure difference Pe between the ear canal and tympanic 

cavity drives the motion of the plates and produces a force Fu on the malleus, which is 

displaced a distance Xu' The motion of the plates also changes the volume of and hence 

the pressure in the tympanic cavity. If the equations of motion are written in terms of the 

pressure difference Pe , those two effects of plate motion are uncoupled. 

The transfer matrix T~ (w) for the compound eardrum follows immediately from the 

equations of motion (the matrix is written most succinctly as a product of factors): 

1 (Zo + Zc 
Zo + (1 + K) ZC 1 

(~ 
(29) 

Here, Zm represents the impedance of the plate attached to the malleus and Zo the 

impedance of the other plate: 

and (30) 



111.21 

Figure 4. Schematic illustration of the compound-eardrum model in which the eardrum is 
represented by two coupled plates one of which is attached to the malleus. Following Shaw (1977; 
1981), the impedances Zm and Zo are shown as harmonic oscillators and the coupling impedance 
Zc as a spring-damper combination. 
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Zc represents the coupling impedance between the plates and K. the ratio of the plate 

areas: 

(31) 

In Shaw's model Zm and Zo have the form of harmonic oscillators and the interplate 

coupling impedance Zc consists of a spring-damper combination.9 

calculation gives det T~ = +1; as expected, the system is reciprocal. 

A straightforward 

The transfer-matrix elements ofthe compound-eardrum model are, in general, compli-

cated combinations of the impedances Zm, Zo, and Zc that define the model. In the limit 

implied by Shaw and Stinson's (1981) parameter values, however, the matrix elements are, 

as shown below, considerably simplified. Although the matrix elements themselves can 

be readily compared with experiment, because definitions (30) require that determination 

of the impedances Zm and Zo be made in the limit Zc --+ 0, those quantities would be 

difficult to measure on a real eardrum. 

1. A mechanical realization: Models with strong coupling 

To find a mechanical realization for the oscillator model, it is instructive to examine 

the structure of the transfer-matrix elements (29) in the limit in which the area of the plate 

coupled directly to the malleus is only a small fraction of the total area of the eardrum 

(Le., K. ~ 1). Note that if the coupling between the umbo and the adjacent membrane 

(Le., between the inner and outer plates) is strong relative to the stiffness of the majority 

of the membrane, then IZol ~ IZcl. Assume then that 

(32) 

In essence, these assumptions imply that the two resonant normal modes of the unloaded 

compound eardrum are widely separated in frequency so that at low and intermediate 

frequencies the higher mode may be neglected. In addition, since K. ~ 1 the motion of the 

plate attached to the malleus makes little contribution to the total volume velocity of the 

9 To recover Shaw's notation use the rules 

Zc t---+ Zdo, Zo t---+ Zd, and Zm t---+ Zo, (9.1) 

where (this paper) t---+ (Shaw and Stinson 1981). Note that the impedances Zm, Zo, and Zc have 
dimensions different from the impedances Ze and 1/ Yd discussed in the oscillator model. 
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eardrum. The limiting model outlined here is essentially that implied by the parameters 

values used by Shaw and Stinson (1981).10 

Under assumptions (32), the transfer matrix T~ for the compound eardrum reduces 

to an especially simple form: 

(33) 

as given by the oscillator model [Eq. (25)]. The strong mechanical coupling between the 

plates ensures that they move together when the ossicular load is removed. Hence, Av is 

approximately constant. The coupling- which is not so strong that it prevents both plates 

from moving when motion of the malleus is blocked- allows the moving plate to apply a 

force to the malleus, thereby giving rise to a frequency variation in the area AF • 

2. Another limit: Models with weak coupling 

Another class of eardrum models-those with constant AF-arises when the mechan-

ical coupling between the plates is weak and the plates move independently.l1 The 

transfer matrix then reduces to 

1· T~e (1 1m u ~ Z-1 
wea.k 

couplin« 0 

0) (1 Zm) (A;;;I 0) 
1 0 lOAm . (34) 

Note that relative to the oscillator model, and its realization as a pair of strongly coupled 

plates, the positions of the matrices corresponding to series and shunt impedances are 

interchanged. Since only a single plate contributes to the force on the malleus, compound

eardrum models with weak coupling between the plates have AF approximately constant 

(e.g., Matthews 1980; Neely 1981). 

10 For example, Shaw and Stinson 's (1981) parameter values imply that 

" = 9 and "I ZC 1 ~ 14 . 
Zo w/2r-3 kHz 

(10.1 ) 

As noted below, however, Shaw's model presents some ambiguity with regard to the composition of the 
impedance Zm. 

11 The coupling is weak when 

or (11.1) 
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III. Predictions of the Oscillator Model 

To illustrate how the transfer matrix provides a common ground for comparing theory 

and experiment, this section discusses predictions concerning the areas AF and Av, first 

for the oscillator model and then for several other models that make definite, testable 

predictions about the transduction effected by the eardrum. 

A. The ratio of the areas 

The deviation of the ratio AF / Av from unity provides a measure of the extent to 

which eardrum transduction cannot be characterized as resulting from the action of a 

single piston. For the oscillator model 

(35) 

where, for example, We == JKe/Me and tie == weRe/Ke. At low frequencies this ratio 

approaches 

(36) 

as given by Eq. (15). Note that if Ke < Kd as argued above, then % < ~o < 1, in agreement 

with Eq. (15). Combining Eqs. (27) and (28) yields the further inequality 

(37) 

Although Av is constant, a local maximum in IAF(W)I occurs at roughly Wpeak "" JKd/Me 

when 11 - ~ol ~ 1 and We/Wd ~ 1. 

Figure 5 shows the ratio of the effective areas ~(w) as a function of frequency for the 

oscillator model. Shown for comparison are the predictions of other lumped-parameter 

models of the eardrum for which ~(w) is well defined (Kringlebotn 1988; Matthews 1980; 

Neely 1981). Each of the models predicts that 1~(w)1 is essentially constant and of 0(1) 

at low frequencies but rises to a maximum at frequencies above 1 kHz. (With the given 

parameter values, the oscillator model predicts a 1~(w)1 closest to unity; that model is 

thus the most "plate-like" at low frequencies.) The position, magnitude, and sharpness of 

the peak, however, vary dramatically between the models. In the model of Kringlebotn 

Av is constant; the peak in IAF(W)I results primarily from a sharp resonance in the 
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Figure 5. Amplitude and phase of the ratio ~(w) == AF/Av for three models of the eardrum: 
---) the oscillator model of Sec. II using the parameter values 

Name Value 

we/27r 1 kHz 
Wd/ 27r 5 kHz 

De 1.5 
Dd 0.5 
~o 0.95 

(---) the model of Kringlebotn (1988) for the human eardrum; C .. ) the model of Matthews 
(1980) for the cat eardrum with parameter values from Neely (1981). The parameter values 
used for the oscillator model are typical of those found by fitting measurements of the input 
impedance in cadavers (Merchant et al. 1988; Rosowski et al. 1990) to a model of the human 
middle ear (Shera and Zweig 1992d) . The model of Matthews- Neely does not explicitly specify 
the mass of the piston attached to the malleus; it was taken to be proportional to the piston area. 
Note that since the models are reciprocal, 

Av/AF = 1 + ZeYe . 
In the first two models Av is constant; in the third, AF. 
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impedance representing the structures, principally the annular ring, that suspend the 

eardrum in the ear canal. The model of Matthews-Neely predicts that the area AF is 

constant but that IAv(w)1 has a broad, shallow minimum- producing a maximum in 

1~(w)l-at frequencies where the two (mechanically uncoupled) plates representing the 

eardrum move with opposite phase. 

In many eardrum models (e.g., Onchi 1961; Zwislocki 1962; Shaw and Stinson 1981) 

the matrix elements are not determined because some eardrum impedances are either 

incompletely specified or lumped together with parameters describing the middle-ear ossi

des. Although no quantitative comparison is possible, the ratio 1~(w)1 predicted by Shaw 

and Stinson's (1981) two-piston model can be expected to resemble that found for the 

oscillator model. 

B. Assumptions of other models 

Although other authors do not give explicit expressions for the elements of the transfer 

matrix T~ of the eardrum, the implicit assumptions underlying their work can sometimes 

be inferred from the topologies of their middle-ear networks. Most authors (e.g., Zwislocki 

1962; Lutman and Martin 1979; Matthews 1980; Lynch 1981) implicitly assume that the 

effective area for force Adw) is a real constant independent of frequency. Onchi (1961) 

and Kringlebotn (1988), by contrast, make the implicit assumption that the area for 

velocity Av(w) is a real constant. For the reasons outlined above, that approximation was 

explicitly adopted in the oscillator model outlined in Sec. II. In his two-piston model Shaw 

(1977) effectively assumes that Av(w) and Adw) are complex functions with a frequency 

variation dependent on the detailed interaction of the pistons. As shown above, however, 

Shaw and Stinson's (1981) parameter values imply that Av(w) is approximately constant. 

The transfer-matrix elements for more detailed theoretical descriptions of the eardrum 

(e.g., Funnell et al. 1987; Rabbitt and Holmes 1986) are not available. 

IV. Summary 

The paper presents a framework, based on the matrix T~, for the phenomenological 

description of eardrum transduction. Measurements determining the matrix elements 

are defined. The measurements are invasive and involve manipulation of the middle-ear 
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ossicles to vary the load on the eardrum. (Measurements of eardrum surface-displacement 

patterns do not determine the transfer-matrix elements.) Within its region of validity, the 

transfer matrix of the eardrum constitutes a common ground where theory and experiment 

may be systematically compared. In addition: 

• Analyticity and symmetry conditions that may place constraints on the measurements 

of the matrix elements are identified. Those constraints may be used either to reduce 

the number of measurements necessary to characterize the eardrum or to check the 

consistency of measurements that overdetermine the system. Causality constrains 

the analytic structure of the transfer-matrix elements individually. Reciprocity and 

minimum-phase behavior are constraints whose applicability to the eardrum depends 

on the nature of its dynamics. The principle of reciprocity, if found to be applicable, 

provides algebraic constraints among the elements. 

• Two complex effective areas, AF(W) and Av(w), comprise two of the matrix elements. 

Those two areas are associated, respectively, with the transmission of force to the 

middle-ear ossicles and with the change in volume of the tympanic cavity resulting 

from motion of the eardrum. Reciprocity implies that those two areas cannot be 

equal. 

• For purposes of illustration an oscillator model of the transfer characteristics of the 

eardrum is presented. The oscillator model uses reciprocity, and the assumed con

stancy of the area Av(w), to determine the element AF(W) in terms of others whose 

form can be approximated by a Laurent expansion in iw. The model matrix elements 

are minimum-phase functions. 
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ABSTRACT 

To provide a common ground for the comparison between theory and ex
periment, this paper presents a framework for the phenomenological descrip
tion of middle-ear mechanics. The framework defines those measurements 
sufficient to characterize the transduction properties of the middle ear and 
its components. Phenomenological equations are represented in the form of 
an equivalent electrical circuit that can be used to deduce testable relations 
among measurable quantities. Two applications are then discussed. First, the 
classical concept of the middle-ear transformer ratio is generalized to include 
any effects of eardrum flexion or nonrotational ossicular motion. Middle-ear 
models predict that the resulting transformer ratios vary considerably with 
frequency. Second, the conditions under which the topology of existing cir
cuit analogs satisfactorily approximates middle-ear mechanics are given. Most 
middle-ear models cannot be used to correctly predict the absolute pressures 
in the cochlea. 
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Introd uction 

The middle ear converts air-borne sound waves into hydromechanical waves that 

travel along the fluid-filled chambers of the cochlea. Many models of the middle ear have 

been proposed to describe that transduction, a number of which correctly represent the 

middle-ear input impedance of an "average" ear. Yet even at low frequencies those models, 

most consisting of lumped-parameter circuit analogues, remain incompletely tested. For 

example, models predict both "forward-" and "reverse-transmission" characteristics, but 

the latter have never been compared with experiment. In addition, the models often 

include circuit elements that are not defined by equations relating measurable quantities 

in the middle ear. Finally, comprehensive measurements in a single animal, necessary for 

a rigorous comparison between model predictions and experiment, are lacking. 

Since measurements are incomplete and middle-ear transduction not well understood, 

the need exists for a framework within which theory and experiment may be systemat

ically compared. This paper presents such a framework-analogous to that proposed 

earlier for the eardrum (Shera and Zweig 1991c)- for the phenomenological description of 

mammalian middle-ear mechanics. The goals of the framework are 

• to indicate those experiments sufficient to characterize the transfer characteristics of 

the middle ear and of its components; 

• to show how to prove what is believed known about the system (i.e., its analyticity 

and symmetry properties) and, once proven, to remove the effects of those constraints 

from measurements; 

• to make explicit the (often incompletely tested) assumptions underlying circuit models 

of the middle ear; 

• to indicate the conditions under which existing circuit models accurately predict the 

pressures in the cochlea; 

• to show how the forward and reverse transduction characteristics of the middle ear 

can be found from characterizations of its constituent parts, and, conversely, how 

measurements of those transduction characteristics can be "inverted" to describe the 

components; and thus 

• to provide a common ground for comparing theory and experiment on the middle ear. 

The description is obtained by writing down the minimum number of equations that suffice 
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to describe the action of the middle ear as viewed from the "outside"-that is, from behind 

the three "windows" (i.e., the eardrum and the oval and round windows) that face onto 

the tympanic cavity. Those equations are independent of the boundary conditions at any 

of the three windows. For example, no assumptions about the nature of the cochlear load 

(e.g., its compressibility) are made. The form of the resulting equations depends only on 

the linearity of middle-ear mechanics, an assumption that holds throughout the intensity 

range of normal hearing below the threshold for activation of the acoustic reflex. 

This paper is the second in a series (Shera and Zweig 1991c, 1992a-d) devoted to 

middle-ear mechanics. The two companion papers (Shera and Zweig 1992bc) apply the 

phenomenology outlined here to address problems of middle-ear and cochlear mechanics. 

The final paper in the pentalogy (Shera and Zweig 1992d) proposes a simple model of the 

human middle ear and uses it to "invert" measurements of the middle-ear input impedance 

in individual subjects and obtain noninvasive estimates of the mechanical properties of 

the components of the middle ear. 

A. Overview 

This paper extends the phenomenological framework applied previously to the ear

drum (Shera and Zweig 1991c) to encompass the entire middle ear. Middle-ear mechanics 

is first reviewed and linearity shown to guarantee the existence of simple matrix relations 

among the pressures and volume velocities at the three windows (Sec. I). A phenomeno

logical description of middle-ear mechanics independent of the boundary conditions at the 

windows is then presented (Sec. II), including characterizations of the eardrum (Shera and 

Zweig 1991c) and the ossicular chain. The description of middle-ear mechanics-written 

in terms of measurable impedances describing the mechanical and acoustic properties of 

the membranes, bones, ligaments, and cavities of the middle ear-is summarized in a 

block-diagram equivalent circuit (Sec. III). The structure of the equations is then ex

plored, their representation and solution for various stimulus configurations outlined, and 

testable consistency relations given. The paper concludes (Sec. IV) with an examination 

of two issues important for middle-ear mechanics: 1) the generalization of the classical 

concept of the middle-ear transformer ratio to include the effects of eardrum flexion and 

any nonrotational oscillation or bending of the ossiclesj and 2) the conditions under which 

existing circuit models accurately predict the pressures in the cochlea. 
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I. The Structure of the Middle Ear 

The human middle ear consists of those structures within and facing onto the tym

panic cavity. The tympanic cavity is an irregularly shaped, room-like enclosure in the 

temporal bone bounded by six walls. (In many mammals, such as cats and rodents, the 

middle ear is surrounded not by the temporal bone but instead by a bony compartment 

known as the auditory bulla.) The walls, lined with a thin, ciliated mucosa, face one 

another in roughly paired opposition. The lateral wall of the cavity is formed by the 

eardrum, which moves in response to incident sound. Suspended from ligaments and mus

cles attached to the cavity walls, the three bones of the ossicular chain span the cavity like 

an arch and transmit the motion of the eardrum to the oval window on the medial wall, 

where the vibration of the stapes sets the cochlear fluids into motion. Volume displace

ments of the stapes footplate are relieved by displacement of the round window located 

in a membrane-covered niche on the medial wall. The posterior wall of the cavity opens 

through the aditus into the mastoid antrum, whose walls are lined with a labyrinth of 

mastoid air cells reminiscent of a miniature swiss cheese. That cancellate mastoid mesh

work greatly increases the surface area of the cavity. The anterior wall opens into the 

Eustachian tube, which connects the tympanic cavity with the pharynx. Closed during 

normal hearing, the Eustachian tube opens during swallowing to permit equalization of 

pressure in the tympanic cavity. The superior wall, or roof, of the cavity separates the 

tympanic cavity from the brain, whereas the floor separates the middle ear from the carotid 

artery and the jugular bulb. 

The arrival of a sound wave at the eardrum triggers a series of events in the middle 

ear. In brief, the eardrum oscillates, changing the pressure in the tympanic cavity and 

moving the malleus. The vibration of the malleus is transmitted bone by bone through 

the ossicular chain to the oval window, where the vibration of the stapes footplate sets 

the cochlear fluids into motion, generating waves that travel down the organ of Corti. 

Although coupling through the ossicular chain is stronger, pressure variations in the tym

panic cavity also affect the motion of both the stapes and the round window. The middle 

ear can, of course, be driven "in reverse" by the arrival at the stapes and round window 

of waves generated within the cochlea. 
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A. Linearity of the middle ear 

The measurements of Guinan and Peake (1967) and Buunen and Vlaming (1981) 

on the cat indicate that the middle ear responds linearly throughout the intensity range 

of normal hearing up to the threshold for activation of the acoustic reflex. Working on 

cadavers, Rubinstein et al. (1966) found a linear variation in stapes displacement with 

sound pressure level (SPL) below", 100 dB SPL. Correspondingly, linearity for humans 

will be assumed. Linearity implies that the middle ear can be completely characterized in 

terms of its response to pure tones; all variables in this paper have therefore been written 

as complex quantities describing those responses. 

B. Middle-ear geometry: A room with three views 

Figure 1 provides a schematic illustration of a generic mammalian middle ear. Three 

flexible membranes face onto the tympanic cavity, the ossicular chain connecting the 

eardrum with the oval window. (Complications arising in mammals, such as the cat, 

in which the oval and round windows face onto separate cavities are addressed in Ap

pendix A.) Associated with each of the three "windows" is a corresponding pressure P

representing an average over the membrane surface- and net volume velocity U. The 

linearity of middle-ear mechanics implies that the middle ear can be regarded as a "black 

box" and characterized by its frequency response without detailed knowledge of its inter

nal dynamics. Phenomenological equations provide relations among the seven variables-a 

pressure and volume velocity outside each of three windows and the pressure within the 

tympanic cavity-illustrated in the figure. The equations describe the response of the 

middle ear when it is driven from any of the three windows or from the cavity onto which 

they face. The form of those equations is independent of specific details of cavity geometry 

and the precise mode of motion of the bones of the middle ear. 

Four phenomenological equations relate the seven variables in the figure. 1 Those 

four equations provide a complete phenomenological description of middle-ear mechanics. 

The three additional equations necessary to complete the system specify the boundary 

conditions, one at each of the three windows. 

1 More generally, n - nw equations (where nw is the number of windows) relate n unknowns. In the 
cat, for example, n = 9 and nw = 3 (see Appendix A). 
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oval window 

ear canal 
round window 

Figure 1. Schematic representation of a typical mammalian middle ear illustrating the "room 
with three views (windows)." Associated with each window is a corresponding pressure P and 
volume velocity U . This simple picture must be extended in animals, such as the cat, in which 
the round window faces onto the bulla. 
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Linearity implies that the middle-ear equations can be summarized by matrix relations 

in which three (Le., the number of windows) ofthe variables are regarded as "independent" 

(that is, they are determined not by middle-ear mechanics but by boundary conditions 

at the windows) and the other variables expressed in terms of them. Which three of the 

seven variables are chosen as independent may depend, for example, on how the system 

is driven. 

As a simple illustration, note that the structure and linearity of the middle ear guar

antee that the four pressures P are linear, homogeneous functions of the three volume 

velocities U; that is, there exists a matrix Z such that 

(1) 

where Z is a 4 X 3 matrix of impedance coefficients determined (solely) by middle-ear 

mechanics. The homogeneity of the equations follows from the assumption that the middle

ear contains no independent internal sources of motion. There are, of course, G) = 35 such 

matrices, one for each choice of the three independent variables. 

The four equations that constitute Eq. (I)-or, equivalently, the four simpler equa

tions obtained below-summarize middle-ear mechanics in a manner independent of the 

boundary conditions at the three windows. Specification of those boundary conditions 

provides the three additional equations that complete the system. In a typical applica

tion, that specification would include characterizations of the cochlear load and a source 

term in the ear canal that determines, for example, the volume velocity Ue delivered by 

an earphone. 

The equations obtained in the next section-which summarize the mechanical and 

acoustical properties of the membranes, bones, ligaments, and cavities of the middle ear 

by a few independent, measurable impedance functions (five, if eardrum/ossicular trans

duction is reciprocal)-permit determination of all twelve matrix elements of Z (or the 

corresponding elements of any of the other possible matrices). Subsequent sections dis

cuss the representation of those equations as equivalent circuits, examine the nature of the 

boundary conditions, and provide examples in which the formalism is applied to problems 

of middle-ear mechanics. 
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II. Phenomenological Deconstruction of Middle-Ear Mechanics 

This section examines each of the major functional components of the middle ear 

and obtains equations describing the motion of the three windows and the ossicular chain. 

Obtaining equations that are independent of the cochlear load is facilitated by noting 

that the effects of the cavities and the ossicular chain can be uncoupled. Such uncoupling 

permits the definition of a "transfer matrix" that describes the combined action of the 

eardrum and the bones of the middle ear. Under certain conditions, that matrix can be 

factored into components representing the separate contributions of the eardrum and the 

ossicular chain. If the motion of the stapes is sufficiently simple, the matrix representing 

the middle-ear ossicles can itself be factored. When those factorizations are valid, middle

ear transduction characteristics can be systematically "deconstructed" in a manner that 

permits convenient comparison between theory and experiment. 

A. Characterization of the eardrum and ossicular chain 

1. Uncoupling the cavities 

Motion of the eardrum has two effects on the middle ear: it both vibrates the middle-

ear bones and changes the pressure in the middle-ear cavities. A discussion of the mechan

ics of the middle ear is simplified if those two effects of eardrum motion are separated. 

The eardrum and the oval window both face onto the tympanic cavity; each moves 

in response to a pressure difference across its surface. The motion of each membrane is 

therefore naturally described in terms of a pressure difference P defined by 

p == P - Ptc , (2) 

where Ptc is the pressure in the tympanic cavity. Pressure differences P signified by the 

diacritical hat are simply pressures measured relative to a reference in the tympanic cav

ity. Note that if the middle-ear cavities were surgically exposed and opened widely to the 

atmosphere, the pressure in the tympanic cavity would become a constant atmospheric, 

and Ptc would, by definition, vanish; the two pressures P and P would then become equiv

alent.2 With the cavities exposed in that manner, the eardrum remains coupled to the 

2 Here we assume that the cavities are opened widely enough that the radiation impedances of any 
holes in the cavities can be neglected at the low and intermediate frequencies (i.e., less than roughly 
10 kHz) for which the framework is valid. 
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inner ear only through the motion of the ossicular chain. The cavities thus affect middle

ear transduction by providing a frequency-dependent pressure offset from the atmospheric 

pressure surrounding the head. 

2. The eardrum and ossicular chain: eTow 

When pressures are measured relative to the cavity reference, the effects of the cavities 

are uncoupled from those of the ossicular chain. Such uncoupling permits the introduc

tion of a transfer matrix, eTow , that characterizes the eardrum/ossicular contribution to 

coupling between the ear canal and the oval window (see Fig. 2a). Consider the transfor

mation from the pressure and volume velocity at the eardrum to the pressure and volume 

velocity at the oval window in the inner ear. Since the transformation is linear, those four 

quantities are related by an equation of the form 

(3) 

where the matrix, 

~ (N-I 
e _ p 
Tow = Y !) , 

Nu 
(4) 

is a 2 X 2 matrix of complex, frequency-dependent transfer coefficients. (The diacritical 

hats indicate that the matrix elements are measured with the cavities opened widely.) The 

matrix eTow thus characterizes the generation of force by the eardrum and its subsequent 

transmission to the cochlea by the bones and ligaments of the middle ear in a manner 

independent of any sources or loads presented to it. The same matrix elements characterize 

the system whether it is driven from the free field or "in reverse" from within the inner 

ear. 

The matrix elements of eTow have simple physical interpretations as ratios of "input" 

to "output" variables under specific loading conditions. For example, reference to Eq. (3) 

yields 

(5) 

The element .l(w) may therefore be interpreted as the "no-load" transfer impedance. In 

practice, the pressure Pow may be set to zero by draining the cochlear fluids and removing 

the organ of Corti. The other matrix element have similar interpretations: Npl is the 
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r r 

Figure 2a. Schematic illustration of the transformation performed by the combined action of 
the eardrum and ossicular chain. 
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"infinite-load" pressure ratio, Y the infinite-load transfer admittance, and Nu the no-load 

velocity ratio. In the language of electrical circuits, the no- and infinite-load conditions 

correspond, respectively, to short and open circuits. The interpretation of Np and Nu as 

generalized middle-ear transformer ratios is discussed in Sec. IV-A. 

The matrix elements are not all independent; constraints on the elements-which 

may be used either to reduce the number of measurements necessary to characterize ear

drum/ossicular transduction or to check the consistency of measurements that overdeter

mine the system-are discussed in the first paper of the series (Shera and Zweig 1991c). 

Examples of such constraints include causality, which requires that the real and imaginary 

parts of each matrix element be Hilbert transforms of one another, and reciprocity, which 

requires that deteTow = +1.3 

Note that the matrix eTow provides a meaningful description of the open-cavity mid

dle ear whenever the four variables defining the transformation constitute the effective in

put and output of the system. The vibration of the eardrum and ossicles can be arbitrarily 

complicated, involving complex oscillations in all three spatial dimensions, so long as the 

input and output are effectively one-dimensional. On the "input" side, the pressure in the 

human ear canal near the eardrum is uniform in any cross-section at frequencies at least as 

high as 6 kHz (Stinson 1985). And on the output side, measurements near the oval window 

in the basal turn of the cat cochlea are consistent with the "long-wavelength approxima

tion," indicating that the pressure is essentially uniform across the stapes footplate, at 

least for frequencies much less than the local characteristic frequency (Nedzelnitsky 1980). 

3. Approximate factorization of eTow 

When the input to the ossicular chain (i.e., the output of the eardrum) can itself 

be summarized by two variables-representing, for example, the effective force Fu pro

duced by the eardrum at the umbo and the umbo velocity Vu- the matrix eTow can be 

factored into two component matrices, the first, eTu , describing the transduction of the 

eardrum (Shera and Zweig 1991c) and the second, uTow , describing the action of the 

ossicular chain (see Fig. 2b): 

(6) 

3 Although the middle ear is expected to be reciprocal, it is conceivable that some as yet unrecognized 
aspect of its dynamics could render the system nonreciprocal (e.g., were the eardrum or ossicular chain 
actively to amplify signal energy during transduction). 
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r r 

Figure 2b. Network representation of the eardrum/ossicular transformation based on the 
approximate factorization of the matrix eTow into a product of matrices describing the eardrum 
and ossicular transformations individually. 
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The component matrices satisfy the equations 

(7) 

and 

(8) 

Note that the two equations (7) and (8) can be combined and written in an abbreviated 

symbolic form, analogous to the representation in Fig. 2b, in which each matrix is flanked 

by the input and output vectors it transforms: 

(9) 

This more compact notation is used again in Sec. II-A-3-b-2 when discussing an approxi

mate factorization of the the matrix U Tow. 
The regions of validity for this factorization are not known with any certainty (Shera 

and Zweig 1991c); presumably the factorization applies at least at low frequencies where 

the vibration of the ossicles is sufficiently simple (Donahue 1989; Donahue et al. 1991; 

Decraemer and Khanna 1991). 

a) The eardrum: el\ 
Motion of the eardrum both exerts a force on the malleus and drives pressure vari

ations in the tympanic cavity. A phenomenological description of eardrum mechanics is 

provided by the transfer matrix eTu of the eardrum, defined by Eq. (7). Measurement 

and interpretation of the matrix elements, 

~e) , 
Av 

(10) 

are discussed elsewhere (Shera and Zweig 1991c). Note, however, that the characterization 

includes two effective areas of the eardrum. The first, the "effective area for force" AF, 
provides the force on the malleus due to the pressure difference Pe across the eardrum 

when the malleus is immobilized. When loading due to the ossicular chain has been 

removed, the second, the "effective area for velocity" Av , relates the volume displacement 

of the eardrum to the displacement of the umbo. If the eardrum were a rigid piston, both 

effective areas would be real constants equal to the area of the piston. In general, however, 

the two areas Av(w) and Adw) are different complex functions of frequency. 
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b) The ossicular chain: uTow 

The eardrum exerts a force on the malleus that is then transmitted, bone by bone, 

to the stapes footplate in the oval window. Although the precise mode of motion of 

the middle-ear ossicles remains somewhat controversial (e.g., Khanna and Tonndorf 1972; 

Gundersen and H0gmoen 1976; Brenkman et al. 1986; Gyo et al. 1987; Donahue 1989; 

Donahue et al. 1991; Decraemer and Khanna 1991), a phenomenological description of 

ossicular mechanics is provided by the transfer matrix uTow of the ossicular chain. 

The elements of the matrix 

UT~ -
ow - (11) 

can be measured by manipulating the cochlear load. For example, if the oval window is 
~ 

blocked so that Uow = 0 the element Ap is given by the ratio 

A p = -:;:::--~ Fu I 
Pow Uow=O (oval window blocked) 

(12) 

If the cochlear contents are incompressible, the oval window can be blocked by blocking 

the round window. (It might seem that an easier way to block the oval window would 

simply be to cement the stapes in place. To the extent, however, that such gluing alters the 

impedance of the stapes, it modifies the mechanical system one is trying to characterize.) 

Note that AP (w) has the dimensions of an area. When the oval window is blocked, the 

"effective area for pressure" provides the pressure difference Pow across the stapes footplate 

due to the force on the malleus. The matrix element Au l provides another effective area 

associated with the ossicular chain: 

~-I Vu I Au =-
Uow Pow=O (cochlear load removed) 

(13) 

When loading due to the inner ear has been removed, the "effective area for volume 

velocity" relates the velocity of the umbo to the volume velocity of the stapes footplate. 

The remaining elements of the matrix uTow may be determined by similar measurements. 

Like eTu , the transfer matrix uTow of the ossicular chain is expected to be reciprocal. 
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(1) Comparison with the eardrum 

Note that the ossicular chain converts a force and velocity into a pressure and volume 

velocity and is thus analogous to an eardrum driven in reverse. The principal transduction 

of the middle ear, described by the matrix eTow ~ eTuuTow , can thus be viewed as being 

generated by two "eardrums" connected back-to-back at the umbo. 

Both "eardrums" have two effective areas, one associated with the transformation 

of force, the other with the transformation of velocity. Unless the two systems are per

fectly "stiff" (Le., unless the eardrum is inflexible and the ossicular joints rigid so that 

Yoe = Ye = 0), reciprocity implies that those two areas cannot be equal. Indeed, a simple 

argument based on reciprocity (Shera and Zweig 1991c) yields the inequalities 

lim ~F < 1 and 
w-+O Av 

1
. Ap 
1m ~ > 1. 

w-+O Au 
(14) 

At low frequencies, the relative magnitudes of the corresponding areas for the two "ear-

drums" are thus reversed. 

As an illustrative example, consider an idealized ossicular chain consisting of a simple 

lever system in which the malleus and incus are massless, rigidly connected, and rotate 

freely, connecting firmly to the eardrum and stapes with lever arms of 1m and Ii, respec

tively. Let the massless stapes, with footplate area Asc , move freely in the oval window. 

The matrix u Tow then becomes 

uT~ _ (1/1m 
ow - 0 

o ) (Asc 
1/1i 0 

(15) 

Equation (15) represents the ossicular chain as a simple mechanical transformer of turns 

ratio Im/liAsr. A corresponding-although somewhat less idealized-example for the ma

trix eTu, obtained by a simple extension of the transfer matrix of a rigid-plate model of 

the eardrum, is discussed in the first paper in this series (Shera and Zweig 1991c). 

(2) Approximate factorization of uTow 
This section presents an approximate factorization of the matrix uTow into three 

component matrices representing, respectively, the action of the malleoincudal complex, 

the incudostapedial joint, and the stapes. The factorization is based on the assumption 
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that the motion of the stapes is piston-like and can therefore be described by a single 

spatial degree of freedom. 

Each of the three bones of the middle ear presumably moves as a rigid body and each 

therefore has, in principle, three translational and three rotational degrees of freedom. 

For example, recent measurements (Brenkman et al. 1986; Gyo et al. 1987; Donahue 1989; 

Donahue et al. 1991; Decraemer and Khanna 1991) suggest that the mode of vibration 

of the malleus and incus may be more complicated than the simple rotational motion 

classically described (Dahmann 1929; Dahmann 1930; Wever and Lawrence 1954; von 

Bekesy 1960; Kobrak 1959; Kirikae 1960; Guinan and Peake 1967). The motion of the 

stapes is also controversial. 

For example, von Bekesy (1960) concluded, from observations made on human cadav

ers at high sound intensities (and in which the cochleae had been drained), that the stapes 

rotates like a trapdoor about a point on the annular ligament of the stapediovestibular 

joint. More recently Gyo et al. (1987) observed rotational motion in cadavers with intact 

cochleae (also at high SPL). Other recent measurements on cadavers and on anesthetized 

cats and squirrel monkeys, however, contradict that conclusion. Working with cadavers, 

Dankbaar (1970), and more recently Vlaming and Feenstra (1986), found no evidence for 

rotational motion at sound intensities up to 130 dB SPL. Rhode (1978) has shown that 

the motion of the stapes is primarily translational in the squirrel monkey, moving into 

and out of the inner ear like a piston with little rocking motion. Also, Guinan and Peake 

(1967) have observed similar, piston-like stapedial motion in the cat. Thus, although the 

observations on cadavers contradict one another, the measurements on animals suggest 

that a single spatial coordinate may suffice to characterize the motion of the stapes, at 

least at low and intermediate frequencies and normal sound intensities. The motion of 

the stapes would then be completely specified by the translational displacement Xs of its 

footplate. Although the motion of the malleus and incus may involve both translational 

and rotational oscillations, the effective "output" of the malleoincudal complex (i.e., the 

"input" to the stapes) would then be one-dimensional. 
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~ 

With that approximation, the matrix uT ow representing the ossicular chain can be 

factored into component matrices:4 

(16) 

The component matrices are defined by the chain of variables 

(17) 

The symbolic notation introduced in Eq. (9) is used again here for brevity. Equation (17) 

describes the transformation of a force and velocity at the umbo into a pressure and volume 

velocity at the oval window: motion of the umbo is transferred through the malleoincudal 

complex to the lenticular process of the incus, which exerts a force Fs on the head of the 

stapes through the incudostapedial joint; motion of the stapes footplate then changes the 

pressure across the oval window. 

If the motion of the stapes is indeed sufficiently simple that the factorization outlined 

above is valid, one can deduce approximate forms for the matrices IpTs and sTow by 

considering the forces acting on the head and footplate of the stapes. The impedance Zs 

of the stapes is defined by the equation 

(18) 

where Asf is the area of the stapes footplate. The velocity Vs of the stapes produces an 

oval-window volume velocity 

(19) 

The force Fs on the head of the stapes results from the motion, mediated by the ligament 

in the incudostapedial joint, of the lenticular process of the incus: 

(20) 

4 Although presented, for clarity, as a factorization of the m~trix uTow , the contributions of the stapes 
could just as well have been "factored out" from the matrix eTow: 

e- ~ e- Ip s
Tow - Tip T. Tow, (4.1) 

where eTlp describes the combined action of the eardrum and malleoincudal complex. A similar factor
ization has been introduced by Peake et al. (1991), who represent the eardrum and malleoincudal complex 

by a two-port network equivalent to the matrix eTlpIPT •. 
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Equations (18)- (20) imply that 

IpT (1 
s ~ 1/Zisj ~) (21) 

and 

sTow ~ ~ (01 
(22) 

The approximate factorizations of the matrices eTow and uTow discussed in this sec

tion and the representations of the component matrices IpTs and sTow given by Eqs. (21) 

and (22) are adopted in the final paper of this series (Shera and Zweig 1992d), which fits 

a simple model of the middle ear to measurements of the middle-ear input impedance in 

humans and cadavers. 

B. Characterization of the round window 

Khanna and Tonndorf (1971) and Nomura (1984) have shown that the round-window 

membrane of the cat breaks into complicated modes of oscillation at frequencies as low as 

1 kHz. Fortunately, only the net volume velocity of the round window enters the equations 

of motion for the middle ear. The effects of the complex oscillations of the round window 

are included in the impedance Zrw defined below. 

The motion of the round-window membrane is characterized by the impedance Zrw 

defined by the equation 

(23) 

The minus sign appears because volume displacements of the round window, like those of 

the oval window, are defined to be positive out of the adjoining cavity. 

C. Characterization of the cavities 

The pressure in the middle-ear cavities varies in response to the volume displacements 

of the eardrum and the oval and round windows. When the wavelength of sound is long 

compared to the characteristic dimensions of the cavities, the pressure in the cavities is 

nearly uniform and the acoustic properties of the cavities are accurately represented by 

lumped impedances. 
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The pressure Pte in the tympanic cavity is related to the volume velocities of the three 

windows through the equation 

(24) 

The impedance Zcav represents the effective impedance of the middle-ear cavities and 

mastoid air cells. The quantity in parentheses represents the rate of change in volume 

of the tympanic cavity.5 If that volume decreases, the pressure Pte rises; those volume 

displacements that increase the total volume of the tympanic cavity thus enter with a 

minus sign. Equation (24) provides an expression for the reference pressure relative to 

which pressures P are measured. 

Note that if the inner ear is essentially incompressible (Shera and Zweig 1992c), 

I 
Uow + Urw I c5eardrum == U

e 
~ 1 . (25) 

Equation (24) then reduces to 

(26) 

the pressure in the tympanic cavity varies in response only to the motion of the eardrum. 

Indeed, the companion paper (Shera and Zweig 1992c) demonstrates that because of the 

large area ratio between the eardrum and oval window, the pressure in the tympanic 

cavity is determined (regardless of possible cochlear compressibility) principally by the 

eardrum;6 the "ossicular eardrum" has little relative effect on the cavity pressure even in 

those animals, such as the cat, in which the oval and round windows face onto separate 

cavities. 

III. Representation of the Phenomenological Equations 

This section discusses the representation- both as equivalent electrical circuits and 

as matrix equations-of the system of middle-ear equations outlined above in Sec. II, ex

plores assumptions underlying the existence of the conventional "two-port" representation 

5 Variations in volume due to circulation of blood through the mucosa lining the cavities and diffusion 
of air from the cavities into the blood have not been included. Such variations are small and occur on 
time scales significantly longer than those important here (Ingelstedt et al. 1967) . 

6 At frequencies at which not all sections of the eardrum vibrate in phase, however, the area Av and 
hence the effective area ratio may decrease considerably. 
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of middle-ear mechanics, and illustrates how the equations can be completed with bound

ary conditions at the three windows to obtain solutions (for the pressures and volume 

velocities) for a variety of stimulus configurations. 

A. Equivalent circuit of the middle ear 

The equations of motion for the middle ear can be represented in the form of an 

equivalent "black-box" electrical circuit (Fig. 3). The equivalent circuit is symmetric with 

respect to its treatment of the three windows: no specification of either the cochlear or 

external-ear loads are included. Two versions of the circuit are shown. The first, and most 
~ 

general, incorporates the transfer matrix eTow defined in Sec. II-A; the second adopts the 

approximate factorization of that matrix into separate eardrum and ossicular contributions 

discussed in Sec. II-A-3. Throughout the circuit, voltages are analogous to "forces" (e.g., 

to pressures or torques) and currents to "velocities" (e.g., to volume or angular velocities). 

The circuit representation illustrated in Fig. 3 is completely equivalent to the equa

tions given above. The mechanics of the middle ear uniquely determines the topology 

of the equivalent circuit; the equations of motion can be recovered from the figure using 

Kirchoff's circuit laws. 

Other investigators have proposed circuit models of the human middle ear (Zwislocki 

1957; Zwislocki 1962; M011er 1961; Onchi 1961). Those circuits were developed to repre-

sent the input impedance of an "average" middle ear and, for this purpose, have proved 

successful, although middle-ear mechanics has not always been faithfully reflected in the 

network topology. In contrast to previous circuits all voltages, currents, and impedances 

in the equivalent circuit shown in Fig. 3 have measurable analogues. The eardrum and 

ossicular chain, for example, are represented by the matrix eTow , whose elements are de-

fined by, and could be measured using, the equations in Sec. II-A. The correspondence 

between the equivalent circuit and phenomenological equations guarantees that the circuit 

elements can, in principle, be measured and that the circuit can be used to obtain defining 

relationships between measurable quantities. 

By contrast, the circuit of M011er (1961), for example, is not based on equations 

of motion, and the circuit elements can not be measured. Since in most circuit mod

els the correspondence between circuit voltages or currents and measurable quantities in 
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Figure 3a. Equivalent circuit for the human middle ear . The equivalent circuit provides a 
pictorial representation of the equations of the middle ear , which can be recovered by applying 
Kirchoff's circuit laws. The atmospheric pressure surrounding the head is indicated by ground. 
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Uow -r-------------------~·pow 

I-----==_e P rw 

Figure 3b. Equivalent circuit incorporating the approximate factorization of eTow into sep
arate eardrum and ossicular contributions and making explicit the dimensional transformations 
(transduction) they perform. The representation of the eardrum consists of the matrix product 
eTuAd-1 in cascade with an ideal transformer of turns ratio Ad, which provides a change of 
dimension . The ideal transformer is represented by the transfer matrix Ad, defined by 

(
A-1 

Ad == 'fl 
The reference area Ad was chosen to be the "classical effective area" of the eardrum (Shera and 
Zweig 1991c) . The ossicular transformation is represented similarly; the matrix Ase is identical 
to Ad with Ad replaced by Ase, the area of the stapes footplate. 
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the middle ear is seldom made explicit, the underlying equations implicit in the model 

cannot easily be recovered. It is thus difficult to determine whether those equations ac

curately describe the mechanics of the middle ear; those circuit models cannot, therefore, 

conveniently serve as the basis for a comparison between theory and experiment. 

Most middle-ear networks in the literature (e.g., Ross 1968; Shaw 1977; Shaw and 

Stinson 1981; Lutman and Martin 1979; Killion and Clemis 1981; Goode and Killion 1987) 

are variations and refinements on the circuit of Zwislocki (1957; 1962), which provides a 

good representation of the input impedance of an "average" ear for frequencies less than 

1- 2 kHz. The topology of Zwislocki's circuit model differs from the equivalent circuit 

shown in Fig. 3 principally in the location of the impedances representing the middle-ear 

cavities. The position of the cavity impedances in the equivalent circuit follows from the 

requirement that the pressure Pte influence not only the motion of the eardrum but also 

the motions of the oval and round windows. Correct prediction of absolute intracochlear 

pressures depends on the placement ofthe cavity impedances in the equivalent circuit. The 

effect of incorrect placement of the cavity impedances on quantities such as the middle

ear input impedance and stapes transfer function depends on the nature of the cochlear 

load (Shera and Zweig 1992c). 

B. Matrix representation of middle-ear mechanics 

Equations (3), (23), and (24)-four equations relating seven unknowns (Pe, Ue, Pow, 

Uow , P rw , Urw , and Ptc)- provide a complete phenomenological characterization of middle

ear mechanics independent of the loads at any of the three windows. (Here we assume that 

the matrix elements of eTow-of which, assuming reciprocity, only three are independent

and the impedances of the cavities and round window are known.) To solve the equations 

for a given stimulus configuration, three additional equations, one for each window, are 

needed: two to complete specification of the loading conditions-for example, to charac

terize the nature of the cochlear load seen from the oval and round windows-and the 

third (the inhomogeneous source equation) to specify how the system is driven. If the 

loads seen by the three windows are linear (as they are, for example, at the cochlear 

windows in both the low- and high-amplitude limits of cochlear mechanics) the source 

equation simply determines an overall multiplicative constant in the solution. 
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Note that nothing has so far been assumed about the cochlear load other than that the 

pressures Pow and P rw and the volume velocities Uow and Urw suffice, in some combination, 

to determine the cochlear input. Likewise nothing specific has been assumed about the 

boundary conditions in the ear canal. Knowledge of the impedance seen "looking out" 

from the eardrum is needed when the middle ear is driven from one or both of the other 

windows (e.g., when measuring reverse transfer functions). An example in which the 

middle ear is driven from an artificial fourth window introduced into the tympanic cavity 

is discussed in Sec. III-C. 

Section I briefly discussed the existence of matrix representations of middle-ear me

chanics. A particularly illuminating example can be obtained by noting that rather than 

working with the port variables given in Fig. 1, adopting certain linear combinations of 

those variables can simplify specification of the boundary conditions. For example, if the 

cochlear contents are incompressible, the volume velocities Uow and Urw of the oval and 

round windows are equal and opposite; the inner ear then responds only to the pressure 

difference Pow - P rw between the oval and round windows and not the absolute pressure 

at either window. It is therefore convenient to introduce the quantities 

(27) 

and 

(28) 

representing sums and differences of the average pressures and volume velocities immedi

ately inside the oval and round windows. 

A particularly useful representation of the equations is then given by the equation 

(29) 

Note that M is defined only in terms of quantities measurable at the windows, or ports, 

of the middle ear; a fourth equation, for the internal cavity pressure Ptc , has been omitted 

[cf. Eq. (1)]. The matrix elements of M, obtained by algebraic manipulation of the middle

ear equations outlined in Sec. II, are given in Table 1. The following subsection shows 

how this general "three-port" representation can be used to obtain the standard "two

port" description of middle-ear mechanics by assuming that the cochlear contents are 

incompressible. 



1. Incompressibility and the "two-port" description 

The cochlear contents are approximately incompressible if 

21 U
ow ~ Urw 

1 = 21 U+ 1 ~ 1 . Uow Urw U_ 
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(30) 

A companion paper (Shera and Zweig 1992c) explores cochlear compressibility in more 

detail and shows that the assumption of incompressibility appears good to within a few 

percent in the normal ear. In the incompressible limit U+ vanishes identically, providing a 

fifth equation (i.e, U+ = 0) among the dynamical variables. Equation (29) for M implies 

that there then exists a simple 2x2 transfer matrix that relates the "input" to the "output" 

of the middle ear: 

(31) 

Solving the middle-ear equations for the matrix elements yields 

Z + Zrw/Nr;. + (~u + YZrw)Zcav) 
Nu + YZrw 

(32) 

These four matrix elements constitute the upper left-hand corner of the matrix M (see 

Table I). eT _ can be written as the simple matrix product 

eT = (1 - 0 
Zcav)eT (1 

1 ow 0 (33) 

Assuming that the cavities can be "factored out" in this fashion-even in animals, such 

as the cat, in which the oval and round windows face onto separate cavities-is the ba

sis for the "series approximation" (e.g., Lynch 1981). Note that Eq. (33) implies that 

the overall middle-ear transformation described by eT _ is reciprocal if and only if the 

eardrum/ ossicular transformation satisfies det eTow = + l. 
Existence of this approximate "two-port" description of middle-ear mechanics [i.e, 

Eq. (32)] depends on the incompressibility of the cochlear load. Note, however, that even 

in the incompressible limit the two-port description fails when the cochlea is opened and 

driven "in reverse." For example, if a miniature sound source inserted into the cochlea 

delivers a volume velocity Us into the scalae, then 

(34) 
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Thus, U+ = Us :I 0 and the pressure Pe, for example, depends on all three cochlear vari

ables: 
Pe = [N pI + 9 Zcav ] P - + [2 + Zrw / Np + (Nu + 9 Zrw ) Zcav] u_ 

+ [2 - Zrw/Np + (Nu - 2 - 9Zrw )Zcav] U+. 
(35) 

Despite its convenience, the matrix eT _ does not-even in the incompressible limit

provide a complete description of the middle ear (as viewed, outside looking in, from the 

three windows): an additional equation (see Table I, row three), 

P + = [1 + 29 Zcav ] P _ + 2 [Zrw + (Nu + 9 Zrw ) Zcav] U _ , (36) 

is needed to determine the absolute pressures within the cochlea. 

c. Boundary conditions at the three windows 

Complete determination of all seven dynamical variables requires-if U + vanishes 

identically-two additional equations. For example, if the middle ear is driven from the 

ear canal with an earphone delivering a volume velocity Us at the eardrum, those equations 

are 

(37) 

the first constitutes the source equation, the second defines the inner-ear input impedance 

Zie, which characterizes the cochlear load in the incompressible limit (Shera and Zweig 

1992c). 

With knowledge of the loads seen from the three windows, solutions can, of course, be 

obtained for a variety of stimulus configurations. Those solutions can be used to check the 

consistency of the framework. For example, imagine driving the middle ear by introducing 

a volume velocity Us into the tympanic cavity through an artificial fourth window (the 

Eustachian tube or a small opening drilled into the cavity, for example). Equation (24) 

then becomes 

(38) 

The resulting pressure in the cavity is found to be 

[ ~ ~ ]-1 Nu + Y(Zie + Zrw) 
1 + Zcav ~ ~ ~-1 ~ , 

Z + NuZee + (Np + Y Zee) (Zie + Zrw) 
(39) 
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where Zie is the lumped impedance of the inner ear (assumed incompressible) and Zee 

is the impedance of the external ear seen looking out from the eardrum (Rosowski et al. 

1988): 

Zee == - - . P
e I 

Ue ear canal driven from the eardrum 
(40) 

The impedance measured in this configuration is simply the cavity impedance Zcav mod

ified by corrections terms arising from motions induced in the three windows and in the 

ossicular chain. 

1. Consistency relations for the elements of eTow 

Section II-A-2 illustrated how the matrix elements of eTow can be determined by 

measurements of the pressures and volume velocities at the eardrum and oval window un

der no- and infinite-load conditions. Alternatively, the matrix elements can be determined 

by combining measurements, such as those of forward and reverse transfer functions, that 

do not require artificial manipulation of the loads seen by the three windows (provided, 

that is, that those loads themselves are measured). Those independent determinations of 

the matrix elements provide relations that can be used to check the internal consistency 

of the framework. For example, by assuming reciprocity one can determine the matrix 

elements from measurements of the middle-ear input impedance Zme, defined by 

and the transfer functions 

and 

Pe 
Zme == U 

e middle ear driven forward 

Pow 
Tow == ~ 

Pe middle ear driven forward 

~ 

Pe 
Te == ~ 

Pow middle ear driven backward 

( 41) 

(42) 

(43) 

In these measurements, made with the cavities opened widely (so that P = P), the middle-

ear might be driven "in reverse" with a miniature sound source inserted into the scala 

vestibuli near the oval window. 
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Expressions for the transfer functions follow immediately from the middle-ear equa

tions and the supplemental reciprocity constraint det eTow = +1; those expressions can 

then be "inverted" to obtain the matrix elements: 

j{-l _ Zie+rw (Zee + Zme)Te - ZeeZmeTow (1 - TeTow) 
P - Zie+rw (Zee + Zme)TeTow 

(44) 

Zee Zme Tow (1 - TeTow) . z= --------~--~--~ 
(Zee + Zme)Te 

(45) 

Zie+rw{Zee + Zme)Te - ZmeTow{Zee + ZmeTeTow) 
Y=--~~------~------~~~~~~~~ 

Zie+rwZme(Zee + Zme)TeTow 
(46) 

and 

(47) 

Zie+rw is the lumped impedance of the inner ear and round window: Zie+rw == Zie + Zrw. 

As discussed before (Sec. II-A-2), the matrix elements obtained from Eqs. (44)-(47) can 

be checked for consistency with the constraints of causality and minimum-phase behavior. 

IV. Views from the Three Windows 

This section examines two issues of relevance to middle-ear mechanics. First, the 

classical, but somewhat ill-defined, concept of the middle-ear transformer ratio is gener

alized. Second, the conditions under which existing circuit models accurately predict the 

absolute pressures in the cochlea are considered. The two companion papers (Shera and 

Zweig 1992b; Shera and Zweig 1992c) illustrate how the framework can be used to address 

problems of cochlear mechanics. 

Unfortunately, existing measurements do not permit a direct quantitative examination 

of these issues. To provide an indication of the range of existing theoretical predictions, 

however, each section is illustrated with examples from published models of the human 

middle ear (Zwislocki 1962; Kringlebotn 1988). Although they provide a good representa

tion of the input impedance of an average ear, the models remain incompletely tested in 

other respects, even at low frequencies. Thus, the extent to which the models accurately 

predict the quantities discussed here is not known. 
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A. Middle-ear transformer ratios 

The action of the middle-ear is often characterized as that of a mechanical transformer 

whose purpose is to provide the well-known partial impedance match between the inner 

ear and the outside world (Zwislocki 1965; Dallos 1973; Killion and Dallos 1979). The 

overall "transformer ratio" of the middle ear is conventionally defined in terms of the 

classical effective area Ae of the eardrum: 

(48) 

Here Asc is the area of the stapes footplate, and 1m and Ii are, respectively, the mallear 

and incudal moment arms.7 

Just like the classical effective area of the eardrum, however, the traditional concept 

of the middle-ear transformer ratio is based on an idealization of middle-ear mechanics 

with limited operational significance. For example, a better definition would take into 

account the distinction between the two effective areas of the eardrum and their variation 

with frequency (Shera and Zweig 1991c). Even more generally, two overall transformer 

ratios naturally arise: 

(49) 

and 

~ Ue I Nu(w) ==-
Uow p~ -0 ow-

(50). 

The ratio Nu is associated with the transformation of volume velocity between the ear 

canal and the oval window, whereas the ratio Np figures in the pressure transformation. 
~ ~ 

Note that the transformer ratios Nu and Np are neither necessarily equal, constant, nor 

real. Indeed, reciprocity implies that they cannot be equal unless the eardrum and ossicu

lar chain are perfectly stiff (so that :Y = 0). A simple argument based on reciprocity (Shera 

and Zweig 1991c) yields the further relation 

li 
Np 

m-=-<l. 
w-+O Nu 

(51) 

7 Measurements (e .g ., Wever and Lawrence 1954; von Bekesy 1960) imply that N me ::::: 20 for humans, 
with Ae/A.r providing the dominant contribution to the ratio. 
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The ratios Nu and Np reduce to the classical transformer ratio Nme only in the limiting 

(and unrealistic) case in which the eardrum becomes a rigid plate (of area Ae) and the 

ossicular chain is idealized as a simple lever system as in Eq. (15). In that limit, eTow 
becomes 

NmeZe/Ae) . (52) 
N me 

In contrast to the classical transformer ratio Nme , the complex ratios Np and Nu are 

directly measurable and include any effects due to the curvature of the eardrum (Helmholtz 

1868; Tonndorf and Khanna 1970) or to frequency-dependent variations in the ossicu

lar lever-arms. For example, measurements suggest that at higher frequencies the mode 

of vibration of the malleus and incus becomes more complicated than a simple rota

tion (Brenkman et al. 1986; Gyo et al. 1987; Donahue 1989; Donahue et al. 1991; De

craemer and Khanna 1991). Those effects are included in the transformer ratios defined 

above. 

1. Predicted human transformer ratios 
~ ~ 

Figure 4 plots the transformer ratios Nu and Np predicted by the middle-ear models 

of Zwislocki (1962) and Kringlebotn (1988).8 Although qualitatively similar overall, the 

model predictions differ in detail. Both models predict that the transformer ratios are real 

below 1 kHz but at higher frequencies become largely imaginary and have nearly opposite 

sign. Whereas INp I is roughly constant below 5 kHz, INu I decreases to a minimum near 

2 kHz before increasing abruptly at higher frequencies. In both models the ratios Nu 
and Np are thus quite different and show substantial frequency dependence, even at low 

frequencies, where INul > INpl, as given by Eq. (51). 

8 Unfortunately, Zwislocki (1962) and Kringlebotn (1988) lump the impedances Zow and Zrw together 
with impedances describing the inner ear. To "unlump" those impedances, the impedance Zow of the 
stapes, annular ligament, and oval window was assumed to have the form of an harmonic oscillator: 

Zow ~ iwM. + Row + l/iwCa l . (8 .1) 

The parameter M. represents the acoustic mass of the stapes 

M. = m./A:r , (8 .2) 

where m. ~ 2.5 mg (Schuknecht 1974) and A.r ~ 3.6 mm2 (Nomura 1984). The compliance of the 
annular ligament Cal and the impedance Zrw were determined as discussed in footnote 9. The damping 
constant Row was taken, in accordance with the measurements of Lynch et a1. (1982) in cat, to be 117 of 
the total series resistance allocated to the stapes and inner ear in the model (the Qs of the impedance 
Zow are then of 0(1)]. None of the issues discussed here depend on the precise values of the parameters. 
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Figure 4. The transformer ratios Np and Nu predicted by the models of Zwislocki (1962) and 
Kringlebotn (1988) for the human middle ear. Zwislocki's predictions for Np and Nu are repre
sented by solid ( ) and dotted (- .. . -) lines , respectively; Kringlebotn's by long- (--) 
and short-dashed (- - -) lines. Both transformer ratios considerably with frequency. 
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B. Circuit topology 

The pressure in the tympanic cavity affects not only the motion of the eardrum, but 

also that of the oval and round windows. In most middle-ear networks, (e.g., Zwislocki 

1962; Ross 1968; Lutman and Martin 1979; Shaw and Stinson 1981; Goode and Killion 

1987; Kringlebotn 1988) that secondary effect of the cavities is ignored. As discussed 

below, correct positioning of the cavities in the model is essential for exploring the effects 

of direct acoustic coupling to the oval and round windows (see also Peake et al. 1991). 

For example, most middle-ear networks cannot be used to correctly compute the absolute 

pressures within the cochlea. Even such quantities as the middle-ear input impedance 

depend on correct placement of the cavities unless the cochlear contents are incompressible. 

The companion paper (Shera and Zweig 1992c) demonstrates, however, that the effects 

of cochlear compressibility are small, at least in the normal human ear. 

To illustrate these remarks, consider, for example, the transfer function Prw / Ue , 

which, in humans, is given by 

Prw Zrw (1 + Y Zcav) + Zcav (Nu + Y Zie) 
Trw == Ue = Nu + Y(Zie + Zrw) 

(53) 

Here, Zie is the lumped impedance of the inner ear (for simplicity, this section assumes 

that the cochlear contents are incompressible). The network topology of Zwislocki and 

others, in which the cavity pressure effects only the eardrum, predicts, however, that 

(Zwislocki topology), (54) 

which can be obtained simply by taking the limit Zcav -+ 0 in Eq. (53). The Zwislocki 

topology therefore makes no distinction, even in principle, between middle-ear transfer 

functions T and T. Equation (53) reduces to the approximation implicit in Zwislocki's 

circuit, Eq. (54), if and only if 

(55) 
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When inequality (55) is satisfied the cavities affect the absolute cochlear pressures pri

marily by modifying the motion of the eardrum, rather than through any direct action of 

the cavity pressure on the oval and round windows. 

As an example of what models predict for the human ear, Fig. 5 evaluates Otopology 

using the middle-ear models of Zwislocki (1962) and Kringlebotn (1988). Like most existing 

middle-ear models, those models place the cavities in a position in which they have no 

direct effect upon the absolute pressures in the cochlea. Since the parameter values were 

chosen to provide a good representation of the input impedance of an "average" middle 

ear-for which, since cochlear compressibility appears small (Shera and Zweig 1992c), 

the position of the cavities is not important-and were not constrained by measurements 

of intracochlear pressure, their values have not been distorted by an incorrect network 

topology.9 Both models predict that inequality (55) is violated at frequencies greater than 

'" 1 kHz (note, however, that in their fine structure the predictions are quite different). 

The figure shows that because of their incorrect circuit topology, such models cannot be 

used to predict the absolute pressure Prw at high frequencies. (Because the cochlear input 

impedance is large, I Pow I ~ IPrw I, and the effects of incorrect cavity placement are small 

for the pressure Pow.) 

v. Summary 

The paper has presented a phenomenological description of the middle ear and its 

constituent structures valid for both forward and reverse transmission during the normal 

9 Inequality (55) depends on the impedance Zrw of the round window, which is not defined in the 
models but rather lumped together with the impedances of the stapes and cochlea. The calculations 
shown assume that Zrw is compliant throughout the frequency range of the figure. Similar results are 
obtained, however, so long as the impedance of the round window constitutes only a small fraction of the 
lumped impedance of the stapes and inner ear. 

To estimate Zrw, note that Lynch et al. (1982) have shown that the lumped compliance of the stapes 
and inner ear in cat has the approximate form 

I/Clumped ~ I/Cal + I/Crw , (9 .1) 

where Cal and C rw are the compliances of the annular ligament and round window, respectively. Their 
measurements, and those of Nedzelnitsky (1980), indicate that Cal <t: C rw (their ratio in the cat is ap
proximately 1125) so that Clumped ~ Cal. The model calculations presented in this paper assume that 
similar results hold for the human as well. The compliance Clumped in the models of Zwislocki (1962) 
and Kringlebotn (1988)-which is known in both as Cc-has therefore been "unlumped" according to the 
formulae: 

and C rw ~ 25Clumped . (9.2) 

None of the qualitative results discussed in this paper depend on the precise values of these parameters. 
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Figure 5. The function btopology(W) defined by inequality (55) evaluated using the the middle
ear models of Zwislocki ( ) and Kringlebotn (--). The right-hand side of the inequality 
(i .e., the line btopology = 1) is indicated with a dotted line (- .... ). Both models predict that the 
inequality is violated above", 1 kHz and therefore that models with their circuit topology can 
not accurately predict the intracochlear pressure Prw at high frequencies. 



IV.37 

course of hearing « 80 dB SPL). The framework defines those experiments sufficient to 

characterize the transduction characteristics of the middle ear and its components, and 

thus constitutes a common ground where theory and experiment may be systematically 

compared. The constraint of causality (and, if found to be applicable, those of reciprocity 

and minimum-phase behavior) may be used either to reduce the number of measurements 

necessary to characterize the middle ear or to check the consistency of measurements that 

overdetermine the system (Shera and Zweig 1991c). The phenomenology may be used to 

characterize the middle ears of cats (see Appendix A) and other vertebrates. 

The framework has been used to generalize the classical transformer ratio to include 

effects of eardrum flexion or nonrotational vibration of the bones of the middle ear. Middle

ear models predict that the generalized transformer ratios Nu and Np vary considerably 

with frequency. The conditions under which the topology of existing circuit analogs sat

isfactorily approximates middle-ear mechanics have been given and used to demonstrate 

that most models cannot correctly predict absolute intracochlear pressures. 
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Appendix A: Phenomenology of the Feline Middle Ear 

This Appendix extends the phenomenological description of human middle-ear me

chanics to address complications that arise in mammals, such as the cat, in which the oval 

and round window face onto different cavities. Although the description of eardrum/os

sicular transduction carries over from the human, the variation in topology of the three 

windows modifies the equations characterizing the round window and the middle-ear cav

ities. The equations for the feline middle ear are represented in the form of an equivalent 

circuit. 

A. The round window 

Since the round window faces onto the bulla cavity in the cat, its motion is charac

terized by the equation [ef. Eq. (23)] 

(AI) 

where Pbc is the pressure in the bulla cavity. Equations relating Pte and Pbc are given in 

the following section. 

B. The cavities 

Because the oval and round windows face onto separate cavities in the cat, an equation 

for the pressure in each cavity must be obtained; representation of the effects of the divided 

middle-ear cavities by a single lumped impedance (Le., Zcav) is not, in general, possible. 

The pressure Pte in the tympanic cavity is given by 

Pte == Ztc ( Ue - Uow - Ur) , (A2) 

where Ztc is the impedance of the tympanic cavity and Ur is the volume velocity of air 

moving between the tympanic cavity and the bulla through the hole in the bony septum 

known as the foramen. 

Likewise, the pressure in the bulla is given by 

.Fbc == Zbc ( Ur - Urw) (A3) 
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The volume velocity Ur is determined by the impedance Zr of the foramen: 

Pte - Pbc == ZrUr . (A4) 

c. Equivalent circuit 

In the cat six equations-Le., Eqs. (3), (AI), (A2), (A3), and (A4)-relate nine 

unknowns (Pe, Ue, Pow, Uow , Prw , Urw , Pte, Ur, and Pbc); as before, three boundary

condition equations complete specification of the solution. 

A "black-box" equivalent circuit corresponding to the equations for the cat is given 

in Fig. AI. Note that the pressure outside the round window is Pbc . In this respect the 

circuit topology shown here (Carr and Zweig 1984) differs from traditional representations 

of the cat middle-ear (M011er 1965; Peake and Guinan 1967; Lynch 1981) in which either 

the cavities affect only the eardrum or the round window is approximated as facing onto 

the tympanic cavity. [A similar network topology has, however, recently been proposed 

by Peake et al. (1991).J Traditional representations are based on the "series approxima

tion," so-called because the middle-ear input impedance Zme is approximated by the sum 

(Le., the "series combination") of the effective cavity impedance Zcav and the equivalent 

impedance of other middle-ear structures measured with the cavities exposed widely to 

the atmosphere (e.g., Lynch 1981): 

Zme ~ Zcav + Zme , (AS) 

where Zme is defined by Eq. (41). 
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Figure Al. Equivalent circuit for the middle ear of the cat and other mammals in which the 
round window faces onto the bulla. 
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ABSTRACT 

The phenomenological framework outlined in the companion paper (Shera and 
Zweig 1992a) characterizes both forward and reverse transmission through 
the middle ear. This paper illustrates its use in the analysis of noninvasive 
measurements of middle-ear and cochlear mechanics. It is shown how cochlear 
nonlinearities can be exploited to measure middle-ear scattering coefficients, 
and a noninvasive experiment is proposed to test the common assumption 
that the middle ear can be idealized as a simple mechanical transformer. A 
cochlear scattering framework is developed for the analysis of combination
tone and other experiments in which acoustic distortion products are used 
to drive the middle ear "in reverse." The framework is illustrated with a 
simple psychophysical Gedankenexperiment analogous to the neurophysiological 
experiments of Fahey and Allen (1985). 
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Introd uction 

Otoacoustic emissions offer a promising acoustic window on the mechanics of the 

cochlea. That window is clouded, however, by an incomplete knowledge of the trans

mission properties of the middle ear. The potential for using otoacoustic emissions as 

a noninvasive probe of cochlear mechanics is nicely illustrated by the work of Allen and 

Fahey, who have recently proposed using measurements of acoustic distortion products 

to measure the gain of the "cochlear amplifier" (Allen and Fahey 1992; Fahey and Allen 

1985). Cogent analysis of that and other combination-tone experiments depends critically, 

however, on understanding the reflection and transmission of retrograde waves by the mid

dle ear. Models for otoacoustic emissions often ignore the considerable interference effects 

arising from middle-ear reflection, making it difficult to compare their predictions with 

experiment. 

The framework outlined in the companion paper (Shera and Zweig 1992a) charac

terizes both forward and reverse transmission through the middle ear. This paper-the 

third in a series (Shera and Zweig 1991c, 1992a- d) devoted to problems of middle-ear 

mechanics-illustrates, largely by means of concrete example, how that framework can be 

applied to address problems of cochlear and middle-ear mechanics involving the reflection 

and transmission of cochlear waves by and through the middle ear. 

The paper consists of three parts. In the first, the phenomenological framework 

outlined in the companion paper (Shera and Zweig 1992a) is reexpressed in the equivalent 

language of middle-ear scattering coefficients. In the second, the framework is used to 

demonstrate how measurements of otoacoustic emissions can be exploited to measure 

middle-ear reflection and transmission coefficients and thereby to test certain common 

assumptions about the operation of the middle ear. In the third, a cochlear scattering 

formalism suited to the analysis of combination- and cancellation-tone experiments is 

developed within the context of a simple psychophysical Gedankenexperiment similar to 

the neurophysiological experiments of Fahey and Allen (1985). Finally, examples are 

provided that illustrate the considerable interference effects that arise due to the reflection 

of retrograde waves from the stapes. It is shown, for example, that the ear can generate 

tones that are considerably louder outside the cochlea than they are within it. 
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I. Scattering Representation of the Middle Ear 

Earlier papers (Shera and Zweig 1991c; Shera and Zweig 1992a) adopted the transfer

matrix formalism as a natural framework for the systematic "deconstruction" of middle-ear 

transduction characteristics into a product of separately-measurable component transfor

mations. The overall middle-ear transformation can, however, also be described using 

another representation of two-port networks suited to the analysis of wave reflection and 

transmission on either side of the middle ear: the scattering matrix (e.g., Carlin 1956; 

Kuo 1962). With separate knowledge of the wave impedances at the two ports, the two 

representations are equivalent and interconvertible. Although not as computationally con

venient as transfer matrices for the description of cascades of systems, scattering matrices 

provide a more intuitive framework for the analysis of wave reflection and interference 

effects. 

The middle ear converts air-borne sound waves into hydromechanical waves that 

travel along the organ of Corti. Let Pe+ and Pe- be the pressure waves at the eardrum 

propagating in directions, respectively, towards and away from the drum. On the other 

side of the middle ear, let the forward- and backward-traveling waves at the basal end of 

the organ of Corti near the stapes be denoted Pd and Po-, respectively. The scattering 

matrix for the middle ear eso is then defined by the equation 

(1) 

which characterizes the middle-ear transformation by expressing the two outgoing waves 

(i.e., the two waves propagating away from the middle ear) as linear combinations of the 

two incoming waves. The four matrix elements of eso, denoted 

(2) 

are thus the forward and reverse transmission and reflection coefficients for the middle 

ear (defined here as that part of the ear lying between the end of the ear canal and the 

beginning of the organ of Corti).1 

1 In the notation of the companion paper (Shera and Zweig 1992a), which was concerned only with 
the sum and difference pressures just inside the cochlear windows, the two-port el o would be written as 

the cascade el _ I8i -1 0 , where -1 0 represents the vestibular space between the cochlear windows and 

the beginning of the organ of Corti . 
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The waves traveling in the two directions are related to the total pressure and volume 

velocity through the wave impedances Z±, which generalize the concept of characteristic 

impedance to nonuniform media (Shera and Zweig 1991b). For example, so long as the 

cross-sectional area of the ear canal does not vary too rapidly, the wave impedances for 

the ear canal are independent of direction and equal to the local value of the characteristic 

impedance Zoo Thus, 

(3) 

To find the cochlear waves pt, recall that the cochlea of the cat manifests a tapering 

symmetry (Shera and Zweig 1991a) that guarantees that the wavelength or characteristic 

impedance;). changes slowly with position X in the basal turns of the cochlea. The cochlear 

wave impedances are therefore also approximately independent of direction (despite the 

rapid variation of scalae area in the basal turn), and 

p± = %(p±;).u). (4) 

When evaluated at the basal end of the organ of Corti near the stapes (i.e., at X = 0), the 

wavelength ;).0 is simply the cochlear input impedance (Shera and Zweig 1991a). 

Appendix A summarizes the formulae for obtaining the scattering matrix of a system 

given its transfer matrix and the wave impedances at its ports. In addition, Appendix A 

shows how to combine scattering matrices representing the individual networks in a cas

cade to find the matrix representing the cascaded system. 

II. Noninvasive Measurement of Middle-Ear Scattering Coefficients 

Otoacoustic emissions demonstrate that the ear emits sound as well as receiving it. 

When evoked by an external tone, such emissions can be produced by the reflection of 

forward-traveling waves from mechanical inhomogeneities in the organ of Corti (Shera and 

Zweig 1992f). This section shows how evoked emissions and their nonlinear growth with 

stimulus amplitude A can be exploited to measure middle-ear scattering coefficients. 

In the ear canal, evoked otoacoustic emissions manifest themselves through the ear

drum reflection coefficient R~(w; A). The cascading formulae in Appendix A imply that 

r+ - RdeteSo Rt> = _____ ---"-
e 1- Rr- (5) 
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where R == RQ is the traveling-wave ratio evaluated at the basal end of the cochlear spi

ral (Shera and Zweig 1992e). 

At sufficiently low intensities the cochlear traveling-wave ratio R becomes independent 

of A: 

R(w; A) = R(w) (A < AI) . (6) 

At high stimulus intensities the relative amplitude of any reflected waves becomes small, 

and R becomes negligible. Thus, 

R(w;A) = 0 (7) 

and, consequently, 

(8) 

In humans, the stimulus amplitudes AI and AI correspond to roughly 20 dB and 60 dB 

above threshold, respectively (Zwicker and Schloth 1984). 

Were it possible to determine the cochlear traveling-wave ratio R(w; A) indepen

dently, measurements of R~ at three stimulus intensities would provide three independent 

equations that could be solved for the two middle-ear reflection coefficients r± and the 

determinant det eso (or, equivalently, the product of transmission coefficients t+C). In 

the following, the three stimulus amplitudes are assumed to be AI, AI, and A (with 

AI < A < AI; a reasonable choice for A might be vi AlAI). Then, 

and 

+ __ [R(AI) - R(A)] [Re(AI) - r+] [Re(A) - r+] . 
t t - R(AJ)R(A)[Re(AI) _ Re(A)] , 

where Re == R~. For simplicity, the frequency dependence has been suppressed. 

(9) 

(10) 

(11) 

Although Eqs. (9)- (11) require independent determination of the cochlear traveling

wave ratio R(w; A), considerable information about middle-ear scattering coefficients can 

be obtained with less complete knowledge of R. For example, consider the ratio of scat

tering coefficients r defined by 

(12) 



Eqs. (10) and (11) imply that r can be written 

where 

() [1- A] [Re(A\) - r+] [Re(A) - r+] 
r w = A[Re(Ad _ r+] - [Re(A) - r+] , 

A = R(A)/ R(Ad . 
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(13) 

(14) 

Since the unknown function cancels in the ratio, measurement of A only requires determi

nation of R(w; A) to within an unknown multiplicative function of frequency independent 

of A. Equation (13) thus permits determination of r = t+r /r- from measurements of A 

and r+. 

Noninvasive measurements of the form and frequency variation of R(w; A), includ

ing determinations to within an unknown function independent of A, are discussed else

where (Shera and Zweig 1992e). The following section shows how measurement of r can 

be used to test a common assumption about the operation of the middle ear. 

A. The middle ear as transformer: An experimental test 

To simplify calculations of middle-ear transmission, the middle ear is often idealized 

and regarded as a mechanical transformer, albeit with a possibly complex and frequency

dependent transformer ratio Nme (e.g., Allen and Fahey 1992). No direct test of this 

assumption, however, has ever been performed. This section shows how measurements of 

otoacoustic emissions can be used to test that assumption noninvasively. 

The action of the middle ear is that of a transformer if its transfer matrix has the 

form (e.g., Shera and Zweig 1992a) 

eTo ~ (I/Nome 0) N me . (15) 

The interconversion formulae in Appendix A imply that the elements of eso then satisfy 

the equations 

(16) 

and 

(17) 
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If the transformer assumption is valid, the function r can be simplied to the form 

r = r+ - l/r+. (18) 

Equation (9) indicates that the forward reflection coefficient r+ is easily measured 

(e.g., Puria and Allen 1991). Both r+ and r can therefore be measured noninvasively 

in the ear canal. Those measurements can then be combined to test the transformer 

assumption, as represented by Eq. (18). 

III. Analyzing Combination-Tone Experiments 

This section develops, largely by means of concrete example, a framework for the anal

ysis of combination-tone and similar experiments in which cochlear nonlinearities create 

distortion products that propagate in both directions along the organ of Corti. The effects 

of the middle ear are explicitly included. The framework allows the convenient incorpo

ration of cochlear reflection and interference phenomena into analytic approximations of 

the responses of cochlear models to multiple pure-tone stimuli. 

Although the techniques outlined here are useful for the analysis of a number of 

experiments (e.g., Furst et al. 1988), the discussion uses as its principle example an exper

iment similar to that of Fahey and Allen (1985). That experiment uses distortion-product 

otoacoustic emissions to drive the middle ear "in reverse," and compares the amplitude of 

the combination tone measured in the ear canal at threshold (defined, for example, by a 

constant basilar membrane velocity at CF) with the pressure recorded when a tone at the 

distortion-product frequency-its loudness also adjusted to threshold-is played directly. 

More specifically, the experiment consists of measuring the ratio p of ear-canal pres

sures Pec defined by 

= pt I / pt I p - ec intracochlear source ec external source ' (19) 

where the superscripted t indicates that the pressure is measured at psychophysical or 

neurophysiological threshold. 2 The pressures Pec represent the complex Fourier com-

ponents of the ear-canal pressure Pec at the distortion-product frequency. The qualifier 

2 As a useful mnemonic, note the resemblance between the t and the recording electrodes used to 
determine the neurophysiological threshold. 
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"intracochlear source" denotes a stimulus condition in which the measured tone is gener

ated within the cochlea as a distortion product; "external source" indicates that the tone 

is produced in the ear canal with an earphone. 

A. Assumptions and analysis 

Figure 1 provides a schematic diagram of the peripheral auditory system for each of 

the two stimulus conditions. An earpiece containing a miniature earphone and microphone 

is sealed into the ear canal; its Norton-equivalent source impedance is denoted Zs. The 

residual ear-canal space and the middle ear are represented, respectively, by the two-port 

networks eCl e and elo. Appendix A shows how the matrix ecSo, with elements denoted 

ecs _ (R+ ° = T+ 

can be obtained by combining the elements of eCSe and eSo.3 

(20) 

The generation of distortion products by the nonlinear interaction of primary tones 

at frequencies ft and 12 (with 12 > It) is assumed to occur within some region [a, b) 

of the cochlea, presumably near the 12 place where the product of the envelopes of the 

responses to the two primaries is large. The "source region" [a,b] is defined so that 

outside its boundaries the primaries are small enough that the cochlear response to those 

tones is linear. Outside the region [a, b) the response to the combination tone (e.g., at a 

frequency let = 2ft - h) is therefore assumed to superpose linearly with the responses 

to the primaries; any nonlinear interactions- either between the primaries themselves 

(e.g., those generating the combination tone) or, subsequently, between the combination 

tone and its primaries (e.g., two-tone suppression)- thus occur, by definition, entirely 

within [a, b). The details of those nonlinear interactions, however, are unimportant for the 

phenomenological analysis presented here. 

The source region is regarded as a nonlinear "glass box" (denoted t! b) described by 

level-dependent boundary conditions at its borders. The box is glass, its walls transparent, 

3 If the residual ear-canal space between the transducers and the eardrum is made small enough, the 
matrices ecso and eso become equivalent. The residual ear-canal space is negligible if 2wL/ c ~ 1, where 
L is the length of the residual space and c is the speed of sound (see Appendix C). The factor of two arises 
because phase differences due to round-trip travel are important here. As an example, the inequality 
requires L ~ 3 cm at a frequency of 1 kHz . The residual ear-canal space is therefore not negligible in the 
examples shown in Figs. 2 and 3. 
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bl cf 

'stapes'~: r- 'source'region 

- .. . 

t I t + ,.., 

Zs Pee ee l e el o °l a al b Pb bl cf Zcf 

I I 
- ... 

Figure 1. Schematic diagrams of the peripheral auditory system for the external (top) and 
intracochlear (bottom) stimulus conditions described in the text. Zs represents the Norton
equivalent source impedance of the stimulus-delivery and recording system sealed into the ear 
canaL The networks eCl e, el o, and °l a represent, respectively, the residual ear-canal space, 
the middle ear and vestibular space, and the basal portion of the cochlea. The vertical dotted 
line indicates the position of the basal end of the organ of Corti near the stapes. The generation 
of distortion products is assumed to occur within the region [a, b]' represented by the nonlinear 

"glass box" aD b' presumably located near the h place. The source region generates waves that 
travel away from their site of generation in both directions. Forward-traveling waves of frequency 
Jet travel through the apical turns of the cochlea (represented by the network ~cd and deposit 
their energy near the h place, denoted Xcf . 
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because its behavior, unlike that of a linear system, cannot be characterized completely 

in the frequency domain without detailed knowledge of its components. The following 

analysis focuses exclusively on wave propagation at the combination-tone frequency let, 
regarding the primaries simply as parametric "knobs" controlling the amplitude and phase 

of the distortion products generated within [a, b]. Unless otherwise noted, all equations 

are therefore tacitly understood to apply only at the frequency let. 

1. The basal region [0, a] 

The basal region of the cochlea [0, a] is assumed analogous to a linear, one-dimensional 

hydromechanical transmission-line (Peterson and Bogert 1950; Zweig et al. 1976; Zweig 

1991). That is, the analysis assumes that the wavelengths of the waves in the basal 

turns of the cochlea (Le., within and basal to the source region) are long relative to the 

heights of the scalae and, hence, that wave propagation is one-dimensional. This so-called 

"long-wavelength approximation," while valid for the lower-frequency combination tone, is 

presumably violated within [a, b] for the primaries. At the combination-tone frequency the 

region [0, a] can thus be represented by a two-port network °1 a and has a corresponding 

scattering-matrix description °Sa. 

Throughout this paper the elements ofthe cochlear scattering matrix XSy representing 

the interval [x, y] are denoted 

XSy == (Tty t~y), (21) 
t xy T xy 

For simplicity, and in accord with measurements of the cochlear input impedance in 

cat (Shera and Zweig 1991a), waves are assumed to propagate without reflection through 

the basal turn, despite the rapid secular variation of the stiffness of the basilar mem

brane (see also Shera and Zweig 1991 b). The reflection coefficients are therefore assumed 

negligi ble: 

(x,y<a). (22) 

As an example, the cochlear transmission-line equations in Appendix C imply that 

the matrix XSy has the approximate form 

(23) 

where 

(24) 

The subscripts "x" and "y" indicate that the wavelengths A have been evaluated at the 

corresponding "port" or boundary. 
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2. The source region [a, b] 

At the combination-tone frequency, the source region [a, b] has two effects: first, it 

acts as a source of wave energy and, second, it transmits from one boundary to the other 

waves originating outside the region. 

Consider first its role as a source of energy at the combination-tone frequency. Imagine 

for the moment the region [a, b] embedded in an infinite, reflectionless cochlea without 

other combination-tone sources. Two waves then propagate away from the source region. 

At the apical border one measures a net forward-traveling wave Pi!", and at the basal 

boundary a net backward-traveling wave Pa-. Those wave amplitudes are, of course, 

functions of the primaries: 

(25) 

where PI and P2 represent the complex amplitudes of the primaries at some reference 

location (e.g., the stapes). The primaries are written in a calligraphic font, rather than 

the standard italic, to remind the reader that they represent complex amplitudes at fre

quencies, namely It and h, other than the combination-tone frequency let for which the 

response is sought. 

Cochlear waves created outside the source region are transmitted or reflected as they 

propagate through [a, b]. In the absence of the primaries, that propagation would be 

described by a standard scattering matrix as b• When the primaries are present, however, 

possible nonlinear interactions between the primaries and waves at the combination-tone 

frequency may make things more complicated. A useful phenomenological approach is 

to regard the primaries as modifying the effective scattering matrix for the region. This 

approach enables one to obtain an approximate initial solution to the nonlinear problem. 

The procedure can then be iterated, if necessary, and, with the help of this bootstrap, 

higher accuracy obtained. 

At the frequency let wave propagation through the region is then described by the 

matrix as b , whose elements-the reflection and transmission coefficients at let in the pres

ence of the primaries-are, in general, functions of the primaries. When wave propagation 
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at let is linear and unaffected by the presence of the primaries (e.g., when the primaries 

are sufficiently higher in frequency), the matrix aS b reduces to as b• 

Descriptions of the region's wave-generation and wave-transmission characteristics 

can now be combined. As viewed from its boundaries, the source region is assumed to be 

described, at the combination-tone frequency, by the equation 

(26) 

where the matrix aSb and source waves P;; and Pt are functions of the primaries PI and 

P2 (and, in general, of the incoming and outgoing wave amplitudes pf and Pb±): 

(27) 

The first term in Eq. (26) describes wave propagation across the region; the second, wave 

generation within it. In the infinite, reflectionless cochlea described above, the vector (;~) 
b 

vanishes, and the region acts only as a source: 

(28) 

3. The apical region [b, "00"] 

As seen from the boundary b, the apical region of the cochlea can be characterized 

by an equivalent reflection coefficient Rr; for waves of frequency let. (The superscripted t> 

indicates that the reflection coefficient is defined with the primary wave traveling apically 

to the right.)4 A nonzero reflection coefficient can arise, for example, from scattering of 

the forward-traveling wave by mechanical inhomogeneities in the organ of Corti near the 

let place. Reflected wavelets combine and propagate back toward the stapes, ultimately 

giving rise to stimulus-frequency emissions measurable in the ear canal (Shera and Zweig 

1992f). Since the amplitude of stimulus-frequency emissions varies with stimulus level, 

the reflection coefficient Rr; depends on the amplitude of the combination tone. In the 

experiment analyzed here, however, the combination tone is held at threshold where the 

response is assumed linear; Rb is therefore independent of Fb+ (see Sec. I). 

4. This notation differs from that of an earlier paper (Shera and Zweig 1991b), which represents the 
same information using a diacritical arrow. 
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Detection of the tone at let-whether that tone is generated externally or within 

the cochlea-is assumed to occur when the velocity of the basilar membrane at the let 

place (denoted xc{, the characteristic-frequency point) reaches some threshold value v::L 
or, equivalently, when the forward-traveling pressure wave at the point b reaches the 

threshold value p:t. Note, however, that because the pressures p:t (or, equivalently, 

the velocities Ve1) cancel when forming the ratio, p, given by Eq. (19), the measurement 

remains independent of the assumed detection criterion. 

4. Iterating for self-consistency 

Because of the nonlinearities, the properties of the source region (summarized at its 

boundaries, for the frequency let, by the amplitudes P: and Pa- and the matrix as b ) 

depend, in general, on all characteristics of the system (e.g., on boundary conditions in 

the ear canal). For example, the original source waves P: and Pa- are partially reflected by 

the cochlear boundary with the middle ear. Some fraction of their energy therefore returns 

to the source region, where it may interact with the primaries, perhaps changing, in turn, 

the amplitudes of the outgoing source waves. In general, the region [a, b] cannot, therefore, 

be isolated and characterized independently, with exact solutions for the cochlear response 

at let obtained simply by superposition. 

Such solutions can, however, be obtained by iteration. One assumes some reasonable 

initial values for P:, Pa-, and aS b and "solves" the system assuming superposition at the 

frequency let (see below). The resulting approximate solution is then used to adjust the 

characteristics of the source region (according to equations determined by the underlying 

model of cochlear mechanics), and the procedure iterated until a self-consistent solution 

is obtained. A sample iteration algorithm is given in Appendix B. 

B. Solutions assuming superposition 

This section solves for the ear canal pressures Pete for the two stimulus conditions by 

assuming that the principle of superposition holds throughout the cochlea for waves at the 

distortion-product frequency. Superposition implies that the cochlear response at let can 

be obtained simply by summing contributions from all combination-tone wavelets (e.g., 

those originating in the ear canal, within the source region, or by reflection). Depending 
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on the nature of the cochlear nonlinearities, additional iteration may then be required to 

accurately approximate the behavior of the system. 

Many of the equations obtained in this section represent variations on the cascad

ing formulae derived in Appendix A. Familiarity with those derivations may be helpful 

in understanding the physical content of equations whose origin may otherwise appear 

somewhat obscure. 

1. External source 

To solve for the ear canal pressure Pee in terms of the pressure P:, note that 

(29) 

Similarly, 

(30) 

When the source Us is used to generate the tone externally (Fig. 1, top), 

+ ttbT + Pe~ 
Pb = I> + - _ 

1 - RbtObtObR 
(31) 

The numerator represents the wave produced by direct transmission of the forward

traveling wave Pe~ in the ear canal; that wave is then multiply reflected (with reflection 

coefficient Rb in the forward direction and ttbtobR- in the backward).5 Summing those 

multiple reflections introduces an overall multiplicative factor, given by the reciprocal of 

the denominator (see Appendix A), and yields Eq. (31) for the net forward-traveling wave 

at b. 

Combining Eqs. (29) and (31) yields the relation 

t / +t _ (1 + R:e)(l- RbttbtOb R -) 
Pee Pb - + + 

tObT 

The cascading formulae in Appendix A imply that 

I> _ R+ - R det ee So 
Ree - 1- RR-

5 The operative retrograde reflection coefficient is not 

R
" + - R- - R. deteCSo 

- t t 
b - Ob Ob 1 _ R.R+ ' 

(32) 

(33) 

(5.1) 

as might be expected, because R; contains contributions from the boundary conditions in the ear canal 

that are already included in the transmitted wave Pet. 
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where R is the cochlear traveling-wave ratio discussed in Sec. I. Since waves are assumed 

to propagate through the basal region [0, bj without reflection, R and Rb are related by 

(34) 

Equation (32) can therefore be simplified to yield 

(35) 

2. Intracochlear source 

When the tone is generated within the cochlea as a distortion product (Fig. 1, bot

tom), the total forward-traveling wave at b is 

(36) 

In this case, the numerator contains contributions from both source waves P: and Pa-; 

the latter, after partial reflection at a, propagates across [a, bj as a forward-traveling wave 

before joining with P:. As before, the net forward-traveling wave is obtained by summing 

the effects of multiple reflection. Note that we assume r;b = 0, for simplicity. 

Similarly, the total backward-traveling wave at a is 

(37) 

For future reference, note that the relations 

and (38) 

imply that 

R~R~ = RbRb . (39) 

Waves traveling outwards from the eardrum are reflected by the transducer assembly 

with reflection coefficient Rs , given in terms of the Norton-equivalent source impedance 

by the equation 

Rs = Zs - Zo 
Zs + Zo ' 

(40) 



V.17 

where Zo is the characteristic impedance of the ear canal. Consequently, the total ear

canal pressure can be written 

Pee = Pe~ (1 + R.) , (41) 

where the outward-traveling wave 

(42) 

Combining Eqs. (36)-(42), one obtains 

pt /p+ t = toaT- (1 + R.) ii + t;;bR~ 
ee b 1 - R.R+ 1 + iiRb/t~ , (43) 

where ii is the ratio of source-wave amplitudes:6 

(44) 

3. The pressure ratio p 

Combining the two pressure ratios [Eqs. (35) and (43)] yields 

toattbT+T- (1 + Rs) ii + t;;bR~ 
p = (1 + R~e)(l- RsR+)(l- RR-) 1 + iit~bR~ (45) 

Note that the pressures P: t have cancelled in the ratio; p is therefore independent of the 

assumed detection criterion.7 Section III-C evaluates Eq. (45) in several simple limiting 

cases. 

c. Some simple examples 

This section illustrates the formalism by calculating the ratio of ear-canal pressures 

p for the simple case in which the distortion product is assumed to originate from a 

distribution of ideal point sources and the middle ear is regarded as a simple mechanical 

transformer. 

6 In this case Rand R: are related by 

where 

(6.1) 

(6.2) 

7 The simple cancellation of pressures P: t in the ratio p may not occur if threshold d e tection of 
the combination tone is nonlocal (i .e., depends on the cochlear response at locations other than the 
combination-tone place) . 
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1. A distribution of ideal sources 

For this example, assume that aSb = aS b and let the generation of distortion prod

ucts in [a, b] be modeled by a distribution of ideal "current" sources (each with negligible 

Norton-equivalent source admittance) operating at the distortion product frequency. Each 

source is assumed to launch waves of equal amplitude in the two directions. Although 

cochlear nonlinearities are responsible for creating the combination tone (Le., for intro

ducing the sources), once created the source wavelets are assumed, in this example, to 

superpose linearly with the primaries and with each other. 

Sources at difference locations may interfere with one another in complicated ways. 

The assumed superposition of source wavelets implies, however, that the waves P: and 

Pa- measured at the boundaries can be written as an integral over the source region. The 

relative amplitude a == P; / Pb+ of the waves generated by the distribution of sources is 

then summarized by the simple formula 

( 46) 

where i±(x, y) == i~y = t~y and the complex source density function O"(X) represents the 

source strength per unit length dX. The transmission coefficients i- (a, X) and i+ (X, b) 

simply propagate wavelets from their site of generation to the appropriate boundary. 

In this simple model, the source density function 0" can be expected to depend, for 

example, on the amplitude of the primaries, particularly that of fz. As fz increases in 

amplitude, the region of overlap between the two primaries increases and 0" broadens. 

Consider, however, the limiting case of a single ideal point source located at p: 

O"(x) = O"oo(X - p) , ( 47) 

where 0 is the Dirac o-function. Then, 

- - t- /t+ 
Q - ap pb' ( 48) 

2. A transformer middle ear 

To simplify the calculation of middle-ear transmission, let the residual ear-canal space 

be negligible (so that ecSo = eSo-see note 3) and imagine that the middle ear acts 
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like a mechanical transformer, albeit with a possibly complex and frequency-dependent 

transformer ratio Nme (e.g., Allen and Fahey 1992). The action of the middle ear is that 

of a transformer if its transfer matrix has the form (e.g., Shera and Zweig 1992a) 

eT '" (l/Nme 
o '" 0 (49) 

The interconversion formulae in Appendix A imply that the elements of eso then satisfy 

the equations 

and 

3. The pressure ratio 

If evoked emissions are ignored (so that Rb = 0), Eq. (45) for p then reduces to 

where 

Equation (23) implies that 

a) Limiting special cases 

2 - t- t+ 
/p = Op Op • 

(50) 

(51) 

(52) 

(53) 

(54) 

Two special cases are of interest. If the transducer source impedance Zs is perfectly 

matched to the characteristic impedance of the ear canal, then Rs = 0, and 

,~(1 + r-) 
p = 1 + /~r- (55) 

An equation equivalent to Eq. (55) has been obtained independently by Allen and Fahey 

(1992), who use it to estimate the gain of the "cochlear amplifier" (Le., lip I). Note that 

when the gain is large (i.e., Iipl2 ~ 1), the ratio p, in this example, depends only on the 

basal reflection coefficient r-: 

lim p = (1 + r-)/r- . 
hpl-co 

(56) 



If the source impedance Z. is infinite, then R. = 1, and 

2,2 
P = 1 + ~~ (Rs = 1) . 

In this case, P is, remarkably, independent of the middle ear, with 

D. An illustrated example 

lim P = 2. 
hpl-+oo 
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(57) 

(58) 

This section illustrates the considerable, and often underappreciated, effects that can 

arise due to cochlear reflection and interference phenomena by computing the ratio p us

ing a more realistic model of the middle ear. The generation of distortion products is 

modeled by a single, ideal point source located at p E [a,b], with aS b = as b, neglecting 

the concomitant generation of stimulus-frequency emissions at the distortion-product fre

quency (Le., Rb is assumed zero). These simplifying assumptions are adopted purely for 

the purposes of illustration; the situation in the real cochlea (or any nonlinear model) will 

presumably be more complicated. Middle-ear scattering coefficients are computed using 

published models of the human middle ear. This simple Gedankenexperiment is first an

alyzed heuristically and then with the help of the cochlear scattering formalism outlined 

above. 

Figure 2a plots IPl(Jct)1 computed using the middle-ear models of Zwislocki (1962) 

and Kringlebotn (1988). [The subscript "I" denotes the value of Rs and indicates that the 

calculations assume that the Norton-equivalent source impedance Zs of the transducer is 

infinite and hence that the ear-canal reflection coefficient is + 1.] Shown for comparison in 

Fig. 2b are corresponding calculations for the cat (with cavities opened) computed using 

the feline middle-ear models of Carr and Zweig (1984) and Puria (1991). Parameter values 

and matrix characterizations for the networks eele and °lp are given in Appendix C. In 

each case, the frequency of the primary h is fixed and II varied as necessary to produce 

the distortion-product frequency indicated along the abscissa. [This paradigm, chosen for 

the simplicity of its analysis, differs from that of Fahey and Allen (1985), who held Jet 
fixed and varied the primaries.] The figures indicate that Ipi has considerable structure, 

including the presence of "resonance peaks" due to interference effects within the cochlea 

(see below). Although details of the predictions such as the locations and widths of the 

peaks depend on characteristics of the middle and inner ears not known with certainty, 

the qualitative features of the curves are robust. 
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Figure 2. Amplitude of the pressure ratio PI (Jet) for the human (panel a) and feline (panel b) 
ears . In this idealized example, distortion products at the frequency let are produced a single, 
ideal point source located at p. For the human, the predictions use the middle-ear models of 
Zwislocki ( ) and Kringlebotn (- -); for the cat , they use the models of Carr and 
Zweig ( ) and Puria (- -) in which the cavity impedances have been set to zero to 
simulate open-cavity recording conditions. Note that the scales along the axes differ in the two 
panels. The frequency h was fixed at 10 kHz in the human and at 20 kHz in the cat . Other 
parameter values and matrix representations for eel e and °l p are given in Appendix B. The 
calculations assume that the Norton-equivalent source impedance Z. is infinite. Note that Ipi can 
become much greater than unity (- . .. . ) when wave cancellation occurs within the cochlea. 
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1. Interpretation as an interference phenomenon 

Although one might naively expect Ipi always to be less than unity-the idea be

ing that because all measurements are performed at the let threshold, a supra-threshold 

pressure can never appear in the ear canal (Fahey and Allen 1985)-no such constraint is 

apparent in Eq. (45) for p. Indeed, Fig. 2 clearly indicates that Ipi can become quite large. 

To understand this (and the origin of the "resonance peaks"), note that the distortion

product source generates two waves: a wave that travels apically towards its characteristic 

place and another that travels basally towards the stapes, where it undergoes partial reflec

tion (d. Shera and Zweig 1991b). Large values of Ipi occur when the two forward-traveling 

waves (i.e., the forward-traveling wave originally produced by the source and that subse

quently generated from the backward-traveling wave by reflection off the stapes) interfere 

with one another and nearly cancel at the site of detection. The total phase difference 

between the waves, which determines the extent to which cancellation occurs, depends 

both on propagation delays in traveling to and from the stapes and on the phase of the 

stapes reflection coefficient. 

Figure 3 illustrates how phase shifts due to propagation and reflection sum to yield 

the total phase difference by plotting the ratio of the two forward-traveling waves at the 

h place p: 

1/J = p+ I / p+ I - P reflected P generated· (59) 

The p± denote the wave components and the subscripts ± indicate the direction of travel 

(the + indicates that the wave is traveling towards the helicotrema). The qualifiers "gen

erated" and "reflected" indicate, respectively, that the corresponding wave has either 

been generated directly by the distortion product source at p or created by reflection of 

the retrograde wave pp-I d from the cochlear boundary with the middle ear. The 
generate 

ratio 1/J, computed at p, is maintained as both waves propagate towards their common 

characteristic place. 

An approximate expression for 1/J can be obtained by noting that measurements of 

the cochlear input impedance in cat (Lynch et al. 1982) imply that the wavelength A 

of the traveling wave (or, equivalently, the characteristic impedance of the transmission 

line) changes slowly in the basal turns of the cochlea (Shera and Zweig 1991a). Since 
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Figure 3. Amplitude and phase ( ) of the ratio 'If; of the two forward-traveling waves 
at the point p computed for the cat under simulated recording conditions using the middle-ear 
model of Carr and Zweig (1984) . The phase L'If; is the sum of two contributions [see Eq. (63)] : 

a phase shift -8N(f3p - 130) due to propagation delays (----) and a shift LRo due to reflection 
from the stapes (- -). The dotted lines (- .... ) indicate those frequencies at which the two 
waves are out of phase; that destructive interference produces a peak in the magnitude of the 
pressure ratio p (cf. Fig. 2) . 
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IA'I ~ 1,8 the wave impedances Z± seen by the source Vct are approximately equal in the 

two directions (Shera and Zweig 1991b): 

(60) 

Hence, the backward- and forward-traveling waves produced by the source are nearly equal 

at p: 

p-I p+1 
p generated ~ P generated (61) 

Consequently, 'IjJ can be reexpressed as 

'IjJ "'" R<l = p+ I / p-I 
"'" P - P reflected P generated· (62) 

The ratio 'IjJ ofthe two forward-traveling waves is thus approximately equal to the traveling

wave ratio R;, measured at p, when the cochlea is driven "in reverse." The magnitude 

of that traveling-wave ratio is determined principally by any impedance mismatch at the 

cochlear boundary with the middle ear. Were that boundary not present, but the cochlea 

instead extended infinitely in the negative-x direction, the traveling-wave ratio R; would 

be zero (d. Shera and Zweig 1991b). 

The traveling-wave ratio R; measured at p will differ from of its value R~ at x = 
o principally because of phase shifts introduced by traveling to and from the stapes. 

Those phase changes can be computed using the WKB approximation to solve for the 

wave components P±. The resulting WKB waves- which constitute accurate approximate 

solutions to the transmission-line equations describing the basal turn of the cat cochlea at 

low frequencies (Shera and Zweig 1991a)- are defined in Shera and Zweig (1991b). That 

paper also computes the basal reflection coefficient R~ for the cat (with intact cavities), 

under both normal, physiological conditions and the simulated recording conditions used 

here. 

Equation (62) therefore implies that 'IjJ has the approximate value (see Appendix C) 

(63) 

8 The prime denotes differentiation with respect to the "spatial" variable X, in terms of which the 
distance between two points is given by -i times the total series impedance between them (Shera and 
Zweig 1991a). 
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where 

f3p == let / fz and f30 == let / leo . (64) 

The frequency leo represents the maximum frequency of hearing, and N represents the 

approximate number of wavelengths of the pressure wave in the cochlea in response to 

sinusoidal stimulation. Thus, 'I/J is simply the product of two factors: the basal reflection 

coefficient R6 and a phase shift e-8Ni({3p-{3o) due to round-trip wave propagation through 

the basal turn. Peaks in Ipi occur at frequencies Ipeak for which 

(n = 0,1, ... ) ; (65) 

that is, when the two waves are out of phase at the let place. 

The results and interpretation presented heuristically above can be obtained directly 

from the cochlear scattering formalism outlined in Sec. III-B. In the idealized case con

sidered here (Le., point source at p; superposition at let; R; = 0; and Rs = +1), Eq. (45) 

for p reduces to 

(66) 

Poles in Pl occur at zeroes of the denominator. In our case 1 R+ 12 ~ 1 (e.g., Puria 

and Allen 1991), and the second factor in the denominator dominates the behavior. Thus, 

Pl has a pole whenever 

(67) 

Since 'I/J ~ R; [Eq. (62)), peaks in IPll occur whenever 

(n = 0,1, ... ) , (68) 

in agreement with Eq. (65) derived above. 

Note that R; can be written 

R4 = ",2 T/4 
p Ip~"O' (69) 

where 

(70) 
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with, in this case, Rs = +1. Comparison with Eq. (63) for 'Ij; shows the round-trip phase 

shift e-8Ni
({3p-{3o) is simply ,~, the product of the one-way transmission coefficients top 

and trip. 

Note that at frequencies for which Ipl ~ 1, the intracochlear source is producing 

a sound that is, by this measure, much louder outside the cochlea than it is within it. 

The interference effects seen here differ from those that may underly the microstructure 

observed in the threshold hearing curve (Elliot 1958; Thomas 1975; Kemp 1980; Zweig 

1991). Recall that, for simplicity in the example, the scattering of traveling waves and 

their possible amplification at low levels by the "lasing" action of the cochlea (Zweig 

1991) have here been ignored (i.e., R~ = 0). In the more realistic case-or an actual 

measurement- one expects an additional fine structure, cognate to the microstructure in 

the threshold hearing curve, superimposed on the features found here. 

IV. Summary 

This paper has shown how the phenomenological framework outlined in the compan

ion paper (Shera and Zweig 1992a) can be employed in the analysis of noninvasive mea

surements of middle-ear and cochlear mechanics. For example, the framework has been 

used to demonstrate how cochlear nonlinearities can be exploited to measure middle-ear 

scattering coefficients. In addition, a noninvasive experiment has been devised that tests 

the assumption that the middle ear can be idealized as a simple mechanical transformer. 

A cochlear scattering framework has been developed for the analysis of combination-tone 

experiments in which acoustic distortion products are used to drive the middle ear "in 

reverse." The framework-applied to the analysis of a simple noninvasive Gedankenex

periment-was used to demonstrate that the ear can generate sounds that are considerably 

louder outside the cochlea than they are within it. 

Acknow ledgments 

This work was supported by the Theoretical Division of Los Alamos National Labo

ratory and a National Science Foundation Graduate Fellowship to C. A. S. 



V.27 

Appendix A: Transfer and Scattering Matrices 

This Appendix provides a succinct outline of basic properties of transfer and scatter

ing matrices, including rules for their mutual interconversion. In addition, formulae for 

computing the overall transfer or scattering matrix characterizing a cascade of networks 

each individually so characterized are given. 

A. Definitions and interconversion 

Consider a two-port network liz with ports labeled "1" and "2." Let Vi and Ii be, 

respectively, the Fourier transforms of the total "voltage" and the total "current" (positive 

flowing to the right) at the two ports. The transfer matrix, 1Tz == (~~), for the system 

is defined by 

(AI) 

Define right- and leftward traveling waves (denoted V+ and V-, respectively) by the 

equations9 

(A2) 

where Zl and Zz are the wave (or characteristic) impedances at the two ports (assumed 

to be independent of the direction of wave propagation). The corresponding scattering 

matrix, 

(A3) 

is then defined by the equation 

(A4) 

Simple algebraic manipulation allows the matrix elements of lSz to be found from 

the elements of 1Tz, and vice versa. In terms of the elements of 1Tz, 

(A5) 

9 Note that these definitions differ from those conventional in the circuit theory of scattering matrices, 
in which the impedances Zi are assumed to be positive real and the forward and reverse waves (conven
tionally denoted ai and b;) defined so that their product has the dimensions of a power (e.g., Kuo 1962). 
In the latter respect, the waves defined here are similar to the conventions of the theory of wave digital 
filters (e.g., Fettweis 1986; Strube 1986; Friedman 1990). 



where 

And in terms of the elements of 1S2, the elements of 1T2 are found to be: 

and 

A = (1 + R+ - R- - det 1S2 )/2T+ ; 

B = (1 + R+ + R- + det 1S2 )Z2/2T+ ; 

C = (1 - R+ - R- + det 1S2) /2Z1T+ ; 

If the network 112 is reciprocal, 

B. Cascades 

Consider a cascade (®) of two networks: 
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(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

(All) 

(A12) 

The transfer matrix 1T3 for the cascade is simply the product of the corresponding ma-

trices: 

(A13) 

The rules for cascading scattering matrices are more elaborate. Let the two scattering 

matrices have elements 

(A14) 

Then, 

(A15) 

Although Eq. (A15) can be tediously proved by algebra, a more physically illuminating 

derivation goes as follows. Let a rightward-traveling wave of unit amplitude be incident 

from the left on 113. The matrix element (1S3)11 is then simply equal to the amplitude 
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of the net reflected wave, which is easily obtained by superposition; that is, by summing 

that fraction r+ of the incident wave initially reflected by 112 with the series of wavelets 

that "rattle around," (Le., are reflected back and forth between the two systems 112 and 

213 all possible number of times) before "escaping" and contributing to the sum: 

00 

= r+ + t+ R+C I:(r-R+r 
n=O 

(A16) t+R+C 
= r+ + 1 _ r- R+ (Ir- R+I < 1) 

r+ - R+ det 1S2 

1- r- R+ 

Analogous arguments yields expressions for the other matrix elements. 

The net reflection coefficient for a two-port terminated with a one-port (e.g., an 

impedance) follows trivially from Eq. (A16). Let 112 be terminated at port 2 in a one

port characterized by the reflection coefficient R. The reflection coefficient r measured at 

port 1 is then 
r+ - Rdet 1S2 

r= 
1- Rr-

(A17) 

When the termination is attached to port 1 and r measured at port 2, symmetry implies 

that 

(A18) 
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Appendix B: An Iteration Algorithm 

This Appendix illustrates the use of the equations derived in Sec. II by providing an 

example algorithm for obtaining a self-consistent solution for the pressure ratio Pbl Pee 

by iteration. For simplicity, we assume that forward-traveling waves passing the apical 

boundary of the source region are not subsequently reflected (Le., that Rr, = 0). The steps 

in the algorithm are as follows. 

1. Fix the values of the primaries, PI and P2, at the stapes. 

2. Assume, initially, that the cochlear response at the frequency let is zero (i.e., 

that P;o = 0 and Pb± = 0). 

3. Determine the source characteristics (that is, find the waves 1\- [PI, P2, P;o, P;=] 

and P:[P}' P2,P;o,Pb±], and the matrix asb[p}, P2,P;o,Pb±]) using the equa

tions defining the cochlear model and the current values of Pa± and Pb±' 

4. Assume superposition and compute the distortion-product pressures P;o and Pb± 

using the following equations: 

[from Eq. (36)]; 

Pb- = 0 [from Eq. (30)]; 

P; = Pa- [from Eq. (37)]; 

and 

p+ = P- R<l a a a [inferred from Eq. (36)]. 

Recall that Rr, and r;b have all been assumed zero. 

5. Repeat steps #3 and #4 until satisfactory convergence for Pa and Pb is obtained. 

6. Compute Pbl Pee using Eq. (43). 
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Appendix C: Representations of the Ear Canal and Cochlea 

This Appendix presents simple scattering-matrix descriptions of the two-ports eCle 

and °lp representing, respectively, the residual ear-canal space and the basal portion of 

the cochlea. The corresponding transfer matrices can be found using the interconversion 

formulae summarized in Appendix A. 

A. The ear canal 

The residual ear-canal space between the transducers and the eardrum is modeled 

as a rigid-walled cylindrical tube of constant cross-section. At frequencies low enough 

that the pressure is uniform in any cross-section, the scattering matrix eCSe then has the 

approximate form (e.g., Pierce 1981) 

eCSe ~ ( 0 
e- ikL 

e-
ikL

) 

o ' (Cl) 

where the wavenumber k = w/c, and L is the length of the tube. The characteristic 

acoustic impedance of the tube is given by 

Zo = Poc/S , (C2) 

where po is the density of air, c the speed of sound, and S the cross-sectional area of 

the tube. At 34° C the constants have the approximate values: Po ~ 1.15 X 1O-3g/ cm3
; 

c ~ 3.52 X 104 cm/s. The parameter values used in the calculations are L = 1.5 cm and 

S = 0.4 cm2 for the human; and L = 1.5 cm and S = 0.2 cm2 for the cat. The parameter 

values for the cat are the same as those used to compute the stapes reflection coefficient 

under simulated recording conditions (Shera and Zweig 1991b). 

B. The cochlea 

The basal portion of the cochlea (Le., between the stapes and the distortion-product 

source) is modeled as a linear, one-dimensional, hydromechanical transmission line of the 

type used in an earlier paper to discuss the reflection of retrograde waves (Shera and 

Zweig 1991b). The model is assumed scaling-symmetric, in accord with measurements of 

the cochlear input impedance (Shera and Zweig 1991a). For the purposes of the examples, 

the wavelength (or characteristic impedance) ). was taken to have the form 

(C3) 
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where f3 = fife and fe(x) is the cochlear frequency-position map. The real constant >'0 

was set equal to the value Re of the cochlear input impedance (resistance) adopted by the 

middle-ear model used for the calculation. [For the feline middle-ear model ofPuria (1991), 

the resistance measured by Lynch et al. (1982) was used.] Note that when the distance 

X between two points along the cochlear transmission line is defined to be -i times the 

total series impedance between them, then>. is simply 1/27r times the wavelength of the 

traveling pressure wave. 

Solving the transmission-line equations using the WKB approximation yields an ex

pression for the wave components P± (Zweig et al. 1976): 

P ±,...., J:\ 'fi r dxl" ,...., VAe 0 • (C4) 

The scattering matrix °Sp follows immediately: 

(C5) 

where 

(C6) 

Since the integrals cover only the basal, small-f3 region of the cochlea, >. is essentially real, 

and (Zweig et al. 1976) 

(C7) 

Here, the variables f30 = fetl feo and f3p = fet! 12, assuming that fe(P) = h· For the hu

man, feo ~ 20 kHz; for the cat, feo ~ 57 kHz (Liberman 1982). The constant N represents 

the approximate number of wavelengths of the traveling wave in the cochlea in response 

to sinusoidal stimulation. The value N = 5 was assumed in all calculations. 

For simplicity, the calculations shown in Figs. 2 and 3 assume that the Norton

equivalent source impedance Zs is infinite. The input impedance of the apical portion of 

the cochlea seen from P is approximated as 

(C8) 

Note that Zae is a smooth function of frequency and does not include oscillations arising 

from the interference of wavelets reflected from mechanical inhomogeneities expected in 

the more realistic case. 
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ABSTRACT 

Effects of a possible inner-ear compressibility on middle-ear transfer functions 
are explored and a small upper bound on the magnitude of that compressibility 
established . Consequently, the traditional two-port representation of middle
ear mechanics remains valid to within a few percent . If the compressibility 
of the cochlea is small but finite, a simple phenomenological model of that 
compressibility correctly predicts hearing thresholds in the "middleless" ear at 
low frequencies . Experiments to establish the value of cochlear compressibility 
and to explore further its possible contributions to residual hearing in patients 
with missing or disarticulated middle-ear ossicles are suggested . 
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Introd uction 

The representation of middle-ear mechanics simplifies considerably if the cochlear 

contents are incompressible at auditory frequencies. In that limit the volume displacements 

of the cochlear windows are equal and opposite, and the phenomenological framework 

outlined in the companion paper (Shera and Zweig 1992a) implies that the middle ear 

can then be represented as a two-port network and characterized with standard transfer 

or scattering matrices. Although such a representation is almost universally assumed, its 

validity has never been experimentally established. 

For example, direct measurements of cochlear compressibility made by comparing the 

volume velocities of the oval and round windows are few and have been largely inconclu-

sive.1 Nedzelnitsky (1974ab) conservatively concludes, based on the measurements of 

Moxon (1971), that the ratio of oval- to round-window volume displacements is -1, but 

only to within an uncertainty perhaps as large as ±10 dB in the amplitude. 

Although the fluids in the cochlea should be effectively incompressible for all but the 

highest frequencies (e.g., Viergever 1980), the compressibility of the scala media is not 

known. For example, von Bekesy (1936; 1960) has suggested that pressure applied to the 

cochlear windows may change the total fluid volume of the inner ear by inducing flow in 

blood vessels or through the cochlear and vestibular aqueducts. In addition, a nonzero 

cochlear compressibility might arise as the result of cochlear pathology or trauma, or 

during invasive surgery (e.g., through the introduction of transitory air bubbles into the 

scalae). 

This paper presents a phenomenological characterization of cochlear compressibility

analogous to those presented earlier for the eardrum (Shera and Zweig 1991c) and the 

middle ear (Shera and Zweig 1992a)- and uses it to explore its effects on middle-ear and 

cochlear measurements. The results are applied to obtain an upper bound on the magni

tude of cochlear compressibility considerably tighter than the limits provided by existing 

measurements. If that upper bound is realized, cochlear compressibility may provide an 

important mechanism for stimulating the ear in patients with missing or disarticulated 

middle ear bones. 

1 For a review of measurements on cochlear compressibility see Appendix VII of the doctoral thesis 
by Nedzelnitsky (1974a). 
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I. Characterization of Cochlear Compressibility 

Consequences of cochlear compressibility for middle-ear and cochlear mechanics can 

be explored by regarding the inner ear as a two-port network and defining the matrix 

oWTrw , which relates the pressures and volume velocities just inside the two windows 

(Fig. 1): 

( Pow) = ow Trw (Prw) . 
Uow Urw 

(1) 

[This paper adopts the notation of its companion (Shera and Zweig 1992a).] The matrix 

oWTrw exists when nonlinearities in cochlear mechanics have little effect on the response 

of the cochlea at its basal end near the boundary with the middle ear. At moderate 

intensities, nonlinearities in cochlear mechanics contribute significantly to the loading of 

the middle ear (Kemp 1979; Zwicker and Schloth 1984); characterization of the cochlear 

load by transfer matrices or impedances is not then appropriate. As seen from the basal 

end, cochlear mechanics is linear, however, at both low and at high sound intensities (Kemp 

and Chum 1980; Zwicker and Schloth 1984). 

The transfer-matrix description of cochlear compressibility is represented in Fig. l. 

The connections to ground illustrate that the volume velocity of the oval window is not 

necessarily equal and opposite to that of the round window. The sum of the "currents" 

flowing to or from those ground connections represents the sum U + of the volume velocities 

of the oval and round windows (both are defined positive into the inner ear). 

A. The incompressible limit 

All existing models of the middle ear assume that the inner ear is incompressible. 

Incompressibility requires that the volume velocity Uow of the stapes footplate be canceled 

by the volume velocity Urw of the round window: 

I Uow + Urw I I U + I Owindows == 2 U
ow 

_ U
rw 

= 2 U_ ~ 1. (2) 

The inner ear may then be represented by an equivalent lumped impedance Zie(W), defined 

by 

z. = Pow - Prw 
Ie - Uow ' (3) 
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Figure 1. Schematic representation of the inner ear as a two-port network. The ground 
connections imply that the volume velocity of the oval window is not necessarily equal and 
opposite to that of the round window . (The sign convention is such that both Uow and Urw flow 
into the inner ear .) 
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and the matrix oWT rw assumes the form 

OWTrw ~ (1 -Zie) 
o -1 . (4) 

In the incompressible limit the volume velocities of the oval and round windows are equal 

and opposite, no current flows to the ground connections of Fig. 1, and the four-terminal 

transfer-matrix description of the inner ear reduces to a two-terminal lumped impedance. 

In that limit the matrix element 

(5) 

indicating that blocking the round window prevents motion of the stapes. oWTrw is an

tireciprocal (i.e., detOWTrw = -1) because of the sign convention for the volume velocity 

Urw . 

Note that for incompressibility to hold within the context of middle-ear mechanics, 

the volume velocities Uow and Urw must satisfy the less restrictive relation (Shera and 

Zweig 1992a), 

I 
Uow + Urw I 

Oeardrum == U
e 

~ 1 . (6) 

When this equation is valid, the pressure Ptc in the tympanic cavity is driven only by the 

motion of the eardrum. 

The companion paper (Shera and Zweig 1992a) shows that the representation of 

middle-ear mechanics simplifies in the incompressible limit, the more general three-port 

description reducing to the standard two-port. 

II. Effects of a Finite Compressibility 

Measurement of the matrix elements 

(7) 

would permit determination of the validity of the assumption of incompressibility, both 

for middle-ear and cochlear mechanics. For example, consider the idealized ossicular 

chain introduced in the companion paper (Shera and Zweig 1992a) and approximate the 

eardrum as a rigid piston. Then (eTow) 21 = 0, and the two middle-ear transformer ratios 
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Nu and Np reduce to their traditional value Nme . Rewriting Eq. (6) in terms of the matrix 

elements then yields2 

o __ 1_11 + d - c( Zrw + N me Zcav ) 1 
eardrum - 2N d _ (Z Z) ~ l. 

me C rw + cay 
(8) 

In this simple example, a large value of N me (e.g., a large area ratio between the eardrum 

and stapes footplate) helps guarantee that even a significant cochlear compressibility re

mains unimportant for middle-ear mechanics (provided, that is, that N me is not so large 

that the term cNmeZcav makes the dominant contribution to the numerator). The sit

uation in the real middle ear, in which the transformer ratios Nu and Np may vary 

significantly at higher frequencies, is, of course, more complicated. 

For cochlear compressibility to be unimportant within the context of cochlear me

chanics requires, however, the more restrictive condition Eq. (2): 

Owindow8 = 2 ( ) 
1 - d + c Zrw + (2 - Nme)Zcav 

~ 1. (9) 

Not surprisingly, effects of cochlear compressibility are not here suppressed by large values 

of Nme . 

Any finite cochlear compressibility can thus have significant effects, for example, on 

the interpretation of measurements of the inner-ear input impedance, defined by the right

hand side of Eq. (3). Calculation of the impedance yields the expression 

b + (1 - a)(Zrw + Zcav + YZcavZrw) + (1 + d)(l - Nme)Zcav 

d - c(Zrw + Zcav) + Y Zcav(l + d - cZrw ) 
(10) 

which reduces to the value -b = Zie in the incompressible limit. Note that the mea

sured impedance depends not only on properties of the inner ear but also on those of the 

2 If no simplifying assumptions (other than that detOWTrw = -1) about the eardrum and ossicular 
chain are made, inequalities (8) and (9) become, respectively, 

1 
6eardrum = 2 1 + d - C(Zrw + NUZcav) + YZcav(2 - a + d - cZrw ) 

<t:: 1 , (2.1) 
Nu [d + c( Zrw + Zcav)] + Y { b - aZrw + Zcav [2 - a + d - cZrw ] } 

and 
1 + d - c (Zrw + Nu Zcav ) + Y Zcav (2 - a + d - cZrw ) 

6w indowB = 2 ~) ~ ( ) 
1 - d + c (Zrw + (2 - Nu )Zcav - Y Zcav a + d - cZrw 

<t:: 1 . (2 .2) 
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eardrum, ossicular chain, round window, and middle-ear cavities. Since the cochlear input 

impedance is typically measured with the cavities opened and exposed to the atmosphere 

(so that Zcav ~ 0), th~ measured impedance has the value 

Pow - Prw _ b+ (1- a)Zrw 
Uow d - cZrw 

(11) 

To the extent that the cochlea is compressible--or may, accidentally, have been made 

compressible during the measurement, say by the introduction of air bubbles into the 

scalae-the measured impedance does not therefore necessarily reflect its value in an 

intact animal. 

Should the cochlear contents prove to have a nonzero compressibility, placement of 

the cavities in circuit models of the middle ear affects not only the predicted cochlear pres

sures (Shera and Zweig 1992a) but also such quantities as the middle-ear input impedance 

and stapes transfer function, whose values are often assumed not to depend on cavity posi

tion: those quantities are independent of cavity placement only in the incompressible limit. 

The next section demonstrates that consistency with measurements of hearing thresholds 

in individuals without a middle ear requires that the compressibility of the normal human 

inner ear be small. 

III. Hearing with a Middleless Ear 

As noted by von Bekesy (1936; 1960), a finite cochlear compressibility provides one 

mechanism for direct acoustic stimulation of the cochlea. That mechanism may be espe

cially important in ears lacking the eardrum or having an interrupted or missing ossicular 

chain. Although individuals with such impairments can, in fact, hear-albeit with consid

erably elevated thresholds- cochlear mechanics in the incompressible limit predicts that 

no pressure difference across the organ of Corti (Le., no traveling wave) can be produced 

at stimulus frequencies low enough that the cavity pressures driving the oval and round 

windows are equal in magnitude and phase. (Stimulation of the cochlea via bone conduc

tion is not considered here.) By allowing compression of the cochlear contents, however, 

a nonzero compressibility would permit motion of the two windows. Indeed, calculation 

of the volume velocity U _ resulting from a pressure Pe at the eardrum yields 

a + d + c (Zow - Zrw) --- - -~--~----~----~~---
Pe 2 b + dZow - aZrw - cZow Zrw 

(12) 
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in individuals missing their eardrum, malleus, and incus.3 Here, Zow is the combined 

impedance of the stapes, annular ligament, and oval window; and, in the absence of the 

eardrum, Pe = Ptc • Thus, if the cochlea is compressible, traveling waves are generated 

even without an ossicular chain to break the symmetry between the windows. 

A. An upper bound on the compressibility of the cochlea 

Measurements of hearing thresholds in subjects without ossicular input to the in

ner ear (Le., in the middle-earless) enable one-by assuming that near threshold any 

residual hearing results principally from traveling waves generated as a result of cochlear 

compressibility-to constrain a simple phenomenological model of cochlear compressibility 

and thereby obtain an approximate upper bound on the value of a dimensionless param

eter whose difference from zero characterizes the compressibility of the cochlear contents. 

The limit is only an upper bound because other mechanisms that may make contributions 

to stimulating the cochlea-bone conduction or pressure differences between the cochlear 

windows (Peake et al. 1992), for example-are not included. 

The Appendix outlines a simple "squeezable sandwich" model of the organ of Corti in 

which the scala media can change its volume in response to the sum of the pressures in the 

adjoining scalae. The degree of compressibility of the cochlear contents is characterized by 

the dimensionless parameter f, defined in terms of the ratio of the translational stiffness of 

the organ of Corti and basilar membrane to the compressional stiffness of the scala media. 

The model predicts that for frequencies w ~ wco ' where wco is 27r times the maximum 

characteristic frequency represented along the organ of Corti, f is a positive real constant. 

The Appendix shows that the matrix oWTrw then has the form 

3 The equations describing the middleless ear are 

Pe = 0; 

Pow = -ZowUow ; 

and 
~ 

Prw = -ZrwUrw . 

(13) 

(3.1) 

(3.2) 

(3.3) 

In obtaining Eq. (12), the matrix oWT rw was assumed anti reciprocal. Substitution of the matrix elements 
from Eq. (4) verifies that the transfer function U _ / Pe in the impaired ear vanishes in the incompressible 
limit. 
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Note that the incompressible limit [Eq. (4)] is defined as the limit £ -+ O. The "squeezable 

sandwich" model provides, of course, only one simple mechanism, among many, that yields 

a transfer matrix of approximately that form. 

Substitution of the matrix elements into Eq. (12) yields 

_u_ _ _ 2f(Zow - Zrw) 

Zie [Zie + (1 + £) (Zow + Zrw) ] 
(14) 

Note for later comparison that the transfer function in a normal ear has the value 

1 + 0(£) 
- -:::Z,....+--::N::-u-Z-c-av-+-(-I/-N=~ p-+~Y=-Z-ca-v )-(-Z-ie-+-Z-rw-) (15) 

Since the transfer function In a middleless ear depends on the difference between the 

impedances Zow and Zrw, Eq. (14) predicts that blocking the oval window and preventing 

the stapes from moving (so that IZowl becomes effectively infinite) should actually improve 

hearing at low frequencies. 4 In that limit the transfer function becomes 

(16) 

1. Comparison between theory and experiment 

To make that prediction more explicit and obtain a bound on the value of £, note 

that the ratio of transfer functions in normal and middleless ears provides a measure of 

the resulting hearing 10ss:5 

Hearing loss in dB ~ -20log10 (I ~-I . /1 ~-I ) 
e m.ddleless ear e normal 

(17) 

Figure 2 compares that ratio computed6 from the middle-ear models of Zwislocki (1962) 

and Kringlebotn (1988) with the threshold measurements of von Bekesy (1936; 1960). Since 

4 By noting that at low frequencies Zow and Zrw are both expected to be negative imaginary (i.e., 
proportional to l/iw) and Zie positive real [or, if tapering symmetry is broken (Shera and Zweig 199130), 
positive imaginary at the very lowest frequencies], one can show that 

lim IT_I> IT-Inormal , (4.1) 
w-+o 

IZowl-+ oo 

where T _ denotes the transfer function U _ / Pe in a middleless ear with normal stapes. 
5 Here we assume that the operative detection threshold (e.g., a constant basilar-membrane velocity 

at CF) is proportional to the volume velocity U _. Because P _ and U _ are proportional in the model, 
identical results are obtained if the transfer functions P _ / Pe are used to predict the hearing loss. 

6 Details of the calculations can be found in footnotes 8 and 9 of the companion paper (Shera and 
Zweig 199230). 



VI. 11 

the mobility of the stapes in von Bekesy's subjects is not known (they may have suffered 

from otosclerosis or other fixation of the stapes), predictions are shown for both the normal 

and fixed-stapes conditions. The actual mobility of the stapes in these subjects presumably 

falls somewhere between. Note, however, that at low frequencies the differences between 

the two cases are small. 

The overall agreement between theory and experiment is unexpected. The agreement 

at low frequencies depends, of course, on the approximate constancy of the parameter 

f, as given by the simple model outlined in the Appendix. Since pressure differences 

outside the oval and round windows have been ignored, the relative contribution of any 

compressibility to the residual hearing should be largest at low frequencies, where those 

pressure differences are smallest (von Bekesy 1960; Peake et al. 1992). The best upper 

bound on the value of f can therefore be obtained by comparing with measurements at 

low frequencies: the value f = %00 was used in the calculations. Predictions for different 

values of f can be obtained, for f ~ 1, simply by translating the theoretical curves along 

the ordinate. For example, decreasing f by a factor of two shifts the curves upwards (in the 

direction of greater hearing loss) by 6 dB. The figure suggests that cochlear compressibility, 

as parametrized by f, must be small and less than a few percent at low frequencies: 

f < 0(%00) (18) 

If f were any larger, the theory predicts that von Bekesy's subjects would have had more 

sensitive hearing than the measurements indicate. That upper bound is significantly 

tighter than limits obtained by the more direct measurements of cochlear compressibility 

mentioned above (cf. Nedzelnitsky 1974a). 

The bound on f obtained above can be used to determine the importance of com

pressibility for normal middle-ear and cochlear mechanics [cf. inequalities (6) and (2)]. 

Figure 3 plots Oeardrum and Owindows evaluated using the middle-ear models of Zwislocki 

(1962) and Kringlebotn (1988). As expected [cf. inequalities (8) and (9)], 

and (19) 
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Figure 2. Predicted hearing loss for impaired middle ears (i.e., ears lacking the eardrum, 
malleus, or incus) computed by incorporating a simple phenomenological model of cochlear com
pressibility (with € = 0.01) into the middle-ear models of Zwislocki ( ) and Kringlebotn 
(-- --). Predictions are shown for both a normal and a fixed stapes; the theory predicts that 
fixation of the stapes should actually improve hearing in these subjects (the curve corresponding 
to the immobilized stapes is in each case the lower of the two curves for a particular model). Shown 
for comparison are measurements of the hearing loss in impaired subjects (. and *) obtained from 
threshold measurements by von Bekesy (1960; Fig. 5-10). The two curves correspond to different 
determinations of the normal threshold: (.) average audiogram from measurements in five sub
jects with unilateral impairment relative to the mean audiogram for the other, normal ear; (*) 
average audiogram for the same impaired ears relative to normal audiograms obtained in another 
study. The calculations provide an approximate upper limit on the value of the dimensionless 
parameter €; that is, € < O( 1J1OO) at low frequencies, indicating that cochlear compressibility must 
be small. 
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Consequently, the effects of any compressibility on cochlear or middle-ear mechanics are 

expected to be small in the normal ear. 7 The traditional two-port representation of 

middle-ear mechanics thus appears valid to within a few percent. 

Remarkably, the measurements in Fig. 2 follow the theoretical curves predicted for a 

compressible cochlea in the fixed-stapes limit. The subjects thus behave in their threshold 

responses as if their cochleae had a small, frequency-independent compressibility E and suf

fered from at least partial fixation of the stapes. Given the existence of other mechanisms 

(e.g., bone conduction or pressure differences between the windows) that may contribute 

to the residual hearing- especially above fV 1 kHz, both because of potentially larger stim

ulus phase differences between the windows and the increasing intensities needed to reach 

threshold at high frequencies- the agreement at high frequencies is difficult to interpret. 

The agreement at lower frequencies, however, is more conclusive. Although Peake et al. 

(1991) argue that pressure differences alone can explain all residual hearing above 500 

Hz, they note that those differences cannot account for the measured decrease in relative 

hearing loss at lower frequencies. That improved sensitivity is predicted, however, by 

the phenomenological model of inner-ear compressibility presented here, suggesting that 

hearing in middleless ears can be explained, at least at low frequencies, by a small but 

finite compressibility of the cochlear contents. 

Equation (14) can be used to make other predictions to test whether the residual 

hearing actually originates in a slight compressibility of the cochlear contents. For exam

ple, the prediction that immobilizing the stapes may actually improve hearing in these 

subjects, especially at higher frequencies, can be tested in cats or other animals where 

measurements of auditory-nerve fiber thresholds could replace psychophysical determina

tion of the hearing threshold. To minimize pressure differences between the oval and round 

windows, which can drive the cochlea and complicate the interpretation, the experiments 

should ideally be performed in animals in which the two windows face onto the same cav

ity or in preparations in which the cavities have been opened widely. Similarly, residual 

hearing due to compressibility can be expected to decrease if the impedances of the oval 

7 The conclusion, quantified by inequality (9), that the effects of compressibility in cochlear mechanics 
are small applies only at frequencies much less than the local characteristic frequency. The possible 
contributions of compressibility to the "micromechanics" of the organ of Corti at frequencies near CF are 
not known. 
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Figure 3. The functions beardrum and bwindows, defined by inequalities (6) and (2) , evaluated
without any simplifying assumptions about the eardrum or ossicular chain (see footnote 3)- using 
the the middle-ear models of Zwislocki and Kringlebotn. Zwislocki 's predictions for beardrum and 
bwindows are represented by dotted (oo oo -) and solid ( ) lines, respectively; Kringlebotn's by 
short- (---) and long-dashed (--) lines. The value i = 0.01 was used in the calculations. 
The figure indicates that the effects of compressibility on cochlear and middle-ear mechanics are 
expected to be small in the normal ear . 
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and round windows are made more comparable. For example, removing the stapes while 

retaining the oval window membrane, which presumably increases the symmetry between 

the windows, should result in an elevation of hearing thresholds at low frequencies. 

IV. Summary 

The effects of a possible inner-ear compressibility on middle-ear and cochlear mea

surements have been examined. A consideration of hearing thresholds in the middleless 

ear is used to obtain an upper bound on the magnitude of cochlear compressibility. That 

bound, considerably more stringent than that obtained from direct measurements, sug

gests that effects of cochlear compressibility are small in normal hearing. Consequently, 

the traditional two-port representation of middle-ear mechanics is valid to within a few 

percent. 

In the middleless ear, however, a small but finite cochlear compressibility may provide 

the dominant mechanism for stimulating the cochlea at low frequencies. Experiments are 

suggested to establish the magnitude of that compressibility and to explore further its 

contributions to hearing in patients with missing or interrupted ossicular chains. 
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Appendix A: A Simple Model for a Compressible Scala Media 

This Appendix extends a simple transmission-line model of cochlear mechanics to 

include a finite compressibility for the scala media. Solving the resulting equations for the 

transfer matrix ow Trw yields an expression of the form assumed in the text. 

A. The "squeezable sandwich" model 

Consider the "squeezable sandwich" model of the scala media shown in Fig. AI. A 

finite stiffness Kcomp allows the scala media to change its total volume in response to 

pressures in the two scalae. Adjacent sections are coupled only by motion of the cochlear 

fluids; compression of one section of the sandwich squeezes its contents-as if, for example, 

the scala media contained bubbles of air-and does not result in its contents oozing out 

to expand other sections. 

The equations describing the motion of the upper and lower surfaces of the scala 

media (which adjoin, respectively, the scala vestibuli and scala tympani) are 

(AI) 

and 

(A2) 

The parameters M, R, and K are, respectively, the effective mass, damping, and stiffness 

(per unit length) of the organ of Corti. The pressures in the two scalae (assumed uniform 

in the yz-plane) are represented by Pv and Pt. The width of the basilar membrane is 

denoted by b. A small compressibility of the cochlear contents implies that Kcomp ~ K. 

The equations can be uncoupled by defining two new coordinates y± by 

(A3) 

Substitution and forming sums and differences yields 

(A4) 

and 

My_ + Ry_ + (K + 4Kcomp)y- = bp+ , (AS) 
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scala vestibuli 

scala media 
···· · ·· ···t··y~··· · 

scala tympani 

x x+~ 

Figure Al. Schematic diagram of a section ~x of the cochlea in which the scala media is 
represented phenomenologically as a "squeezable sandwich ." The finite stiffness J(comp permits 
the scala media to change its total volume in response to the sum of the pressures pv and Pt in 
the adjoining scalae. 
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where 

P± == Pv ±Pt . (A6) 

Note that Eqs. (A4) and (A5) are uncoupled and describe symmetric and antisymmetric 

modes of vibration driven, respectively, by the difference and sum of the applied forces. 

The motion of the cochlear fluids is described by Newton's second law: 

8pv 8vv -+p-=O· 
8x 8t ' (A7) 

and 

8pt 8vt _ 0 
8x + p 8t - , (A8) 

where Vv and Vt are the particle velocities in the x-direction. Terms nonlinear in the 

particle velocity are small and have been neglected. Since the fluid volume velocities 

U v and Ut are, by definition, the product of particle velocity and cross-sectional area, 

Eqs. (A7) and (A8) can be combined to yield 

where 

The acoustic inertances 

8p± + ~(M+U± - M_uT ) = 0, 
8x 8t 

M - Sv ± St 
± = P SvSt 

(A9) 

(AIO) 

(All) 

where p is the density of the cochlear fluids and Sv and St are the scalae cross-sectional 

areas. M± are proportional to the symmetric and anti symmetric parallel additions of the 

areas of the scalae. If the scalae were completely symmetric, as is often assumed (and will, 

for simplicity, be assumed here), then M_ = O. 

Motion of the cochlear fluid couples the oscillations of adjoining regions of the organ 

of Corti. The fluid volume velocities satisfy equations of continuity of the form 

8uv b· 0 ax + Yv = ; (AI2) 

and 

BUt b· - 0 - - Yt - . ax (AI3) 
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Adding and subtracting these equations yields 

(A14) 

Taking Fourier transforms of these partial differential equations yields two pair of 

coupled ordinary differential equations describing the motion of tlie organ of Corti: 

dP_ = -Z-U . 
dx -, 

dU_ = _YP . 
dx - , 

and 

dP+ = -zU . 
dx + , 

dU+ dx = -YcompP+ . 

The impedances and admittances are defined by 

z == iwM+; 
b2 

Y == iwM + R + K / iw ; 

and 

Y
comp == iwM + R + (K + 4Kcomp) /iw . 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

Equations (A15)-(A18) describe two uncoupled hydromechanical transmission lines (the 

first, driven by P _, with series impedance Z and shunt admittance Y per unit length; the 

second, driven by P+, with series and shunt elements Z and Ycomp , respectively). 

B. The matrix oWTrw and the dimensionless parameter { 

At every point the pressures and volume velocities in each of the two transmission 

lines are proportional (i.e., the transmission lines are linear). If waves travel in only a single 

direction along the lines and the spatial variation of parameters is appropriate-e.g., if the 

circuit elements "scale" within the basal turns of the cochlea (Shera and Zweig 1991a)-the 

proportionality constant is simply the corresponding characteristic impedance. Hence 

(A22) 

and 



where 

z = rz 
c - Vy and 
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(A23) 

Zoom, '" Vv Z . 
~comp 

(A24) 

Evaluating the equations at the basal end of the cochlea yields an expression for the 

transfer matrix oWTrw : 

(A25) 

where 

f == ~ = JYcom
p 

. 
Zcomp Y 

(A26) 

Note that det oWTrw = -1 (the matrix is antireciprocal because ofthe sign conventions for 

Uow and Urw ). At frequencies w ~ wCo ' where wCo is 211" times the maximum characteristic 

frequency represented along the organ of Corti, both Y and Ycomp are stiffness-dominated. 

Hence, 

f ~ 1/ VI + 4J(comp/ J( = positive real constant (A27) 

Section III adopts a transfer matrix of the form (A25) to demonstrate that f ~ 1 in the 

human ear. 
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ABSTRACT 

Threshold hearing curves and the spectra of evoked otoacoustic emissions 
both display a roughly periodic sequence of maxima and minima as a function 
of frequency. Since the cochlea maps frequency into position, many current 
models for the generation of otoacoustic emissions (e.g., Strube 1985; Peisl 
1988; Strube 1989) explain the observed periodicity by supposing that it mir
rors a spatial oscillation in the mechanics of the organ of Corti. Emissions 
are generated when forward-traveling waves reflect from these corrugations in 
the mechanics, suggesting that the amplitude of the cochlear traveling-wave 
ratio should manifest pronounced maxima and minima with a corresponding 
periodicity. This paper describes measurements of stimulus-frequency emis
sions, establishes their analyticity properties, and uses them to explore the 
spatial distribution of mechanical inhomogeneities in the human cochlea. The 
approximate form and frequency dependence of the cochlear traveling-wave 
ratio are determined noninvasively. The amplitude of the traveling-wave ra
tio found empirically is a slowly-varying, non periodic function of frequency, 
suggesting that the distribution of inhomogeneities is uncorrelated with the 
periodicity found in the threshold microstructure. The observed periodicities 
arise predominantly from the sinusoidal variation in relative phase between 
the forward- and backward-traveling waves at the stapes. 
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Introd uction 

The study of cochlear mechanics began with Helmholtz (Helmholtz 1863) who viewed 

the organ of Corti as a miniature harp connected string by string to neural fibers. Sensa

tions of tone were created as sound waves induced the strings to resonate in sympathetic 

vibration, exciting corresponding fibers which sent electrical signals to the brain. This 

view of cochlear mechanics was overturned by the experiments of von Bekesy (von Bekesy 

1960) who showed that structures within the organ of Corti are not under tension. By di

rectly observing the motion of the basilar membrane in cadavers, von Bekesy demonstrated 

that a pure tone generates a forward-traveling wave that propagates through the cochlea 

to a place of maximal membrane displacement beyond which it is strongly attenuated. 

The point of maximal displacement varies monotonically with the frequency of the tone. 

Low-frequency tones stimulate regions near the apex of the cochlea; higher-frequency tones 

excite regions closer to the stapes. This "textbook" picture of traveling-wave excitation 

in the cochlea was, until recently, believed correct at all stimulus levels.1 

It is now known, however, that the ear creates sound while listening to sound (Kemp 

1978). For example, a recent model of cochlear mechanics deduced from measurements 

of basilar-membrane motion (Zweig 1991) predicts that cellular force generators in the 

cochlea-presumably the outer hair cells-amplify traveling waves somewhat as a laser 

amplifies light. Consequently, small backward-traveling waves, originating from forward

traveling waves by reflection from spatial inhomogeneities in the mechanics of the organ 

of Corti (Manley 1983; Lonsbury-Martin et al. 1988; Shera and Zweig 1992f), are am

plified as they travel backwards to the stapes, from which they are partially reflected. 

Unreflected waves vibrate the middle-ear bones and ultimately appear in the ear canal as 

sound ("otoacoustic emissions"). The generation of large backward-traveling waves rad

ically changes our view of wave motion in the cochlea at low sound-pressure levels. The 

superposition of forward- and backward-traveling waves leads to a standing-wave compo

nent in the cochlear response. Active elements amplify the forward and backward waves, 

thereby increasing the sensitivity of hearing. 

1 See, however, the work of LePage (LePage 1987; LePage 1990), who describes experiments identifying 
another possible component-a "summating baseline shift"-in the response of the organ of Corti and 
suggests that they provide evidence for the dynamic control of cochlear tuning, achieved by varying the 
tension in the radial fibers of the pars pectinata. The ou ter hair cells then serve-returning to Helmholtz
much like the pedals on an orchestral harp. 
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The threshold hearing curve shows periodic minima (Elliot 1958) at frequencies that 

correlate strongly with maxima in the spectra of otoacoustic emissions (Horst et al. 1983; 

Zwicker and Schloth 1984). The ear emits most loudly at those frequencies for which 

it is most sensitive. Since the cellular force generators are limited in the energy they 

can emit, cochlear excitation patterns produced when the ear listens to quiet sounds are 

qualitatively different from those produced in response to louder sounds. 

Otoacoustic emissions and the threshold hearing curve may be controlled from the cen

tral nervous system. Experiments have shown, for example, that contralateral tones (Mott 

et al. 1989) can alter both the amplitude and frequency of spontaneous and evoked emis

sions. Whitehead (1991) has described similar, centrally-mediated variations in emission 

characteristics. In addition, careful measurements of stimulus-frequency emissions (Zwicker 

and Schloth 1984) have an analytic structure inconsistent with that of a causal system 

(Shera and Zweig 1986, unpublished observation), raising the intriguing possibility that 

feedback from the brain plays a major role in controlling evoked emission. Since the 

stimuli used in the measurements are periodic and predictable, the brain may actually 

be anticipating its input and altering the mechanical state of the cochlea accordingly. As 

seen from the ear canal, the cochlea would then appear acausal in its response.2 

This paper describes measurements of otoacoustic emissions performed with accuracy 

sufficient to test this apparent acausality and to determine the frequency dependence 

of the complex-valued traveling-wave ratio. Determination of the traveling-wave ratio 

enables one to explore the nature of the mechanical spatial inhomogeneities from which 

backward-traveling waves originate. (The traveling-wave ratio, denoted R, is defined to be 

the ratio of the backward- to the forward-traveling wave measured at the basal end of the 

cochlea near the stapes.) The inhomogeneities cannot be determined from measurements 

of basilar-membrane motion because those measurements are made at a single point. A 

2 Although a physiological mechanism capable of generating the sort of cycle-by-cycle feedback nec
essary to produce the apparent acausality observed by Zwicker and Schloth may be difficult to imagine, 
one might be wise to remember that 

"There are more things in heaven and earth, Horatio, 
Than are dreamt of in your philosophy." 

-Shakespeare, Hamlet (act I, scene v). 
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quantitative analysis of otoacoustic emissions, however, makes an exploration of the spatial 

variation of mechanical properties possible. 

Two simple spatial distributions of the inhomogeneities are consistent with current 

experiments. Since the cochlea maps frequency into position, one possibility is that the 

spatial variation of mechanical characteristics correlates strongly with the periodicities 

observed in otoacoustic emissions and the threshold microstructure (e.g., Strube 1985; 

Peisl 1988; Strube 1989). For example, the effective damping of the organ of Corti could 

be made to mirror the threshold hearing curve, with smaller damping (greater sensitivity) 

occurring at points corresponding to minima in the threshold curve (where quieter sounds 

can be detected). 

Another possibility is that the spatial variation of mechanical characteristics is un

correlated with the periodic variation in frequency of the spectral peaks in otoacoustic 

emissions and the corresponding minima in the threshold hearing curve (Shera and Zweig 

1992f). In this case the inhomogeneities could, for example, be randomly distributed along 

the cochlea and the periodic variations due entirely to the frequency dependence of the 

relative phase at the stapes of the forward- and backward-traveling waves, leading to an 

alternation of constructive and destructive interference as the frequency of the stimulus 

is varied monotonically. A mechanism explaining the emergence of such striking spectral 

order through the scattering of cochlear waves by what may be essentially random spatial 

inhomogeneities is presented in a companion paper (Shera and Zweig 1992f). 

Evidence for or against these two possibilities, both capable of explaining the os

cillatory structure of the measured ear-canal pressure Pee and the correlated threshold 

microstructure, is provided by the form of the traveling-wave ratio R, which contains 

information, carried back to the stapes by the reflected wave, about possible spatial inho

mogeneities in apical regions of the cochlea. A traveling-wave ratio whose amplitude IRI 

manifests correlated, periodic variations-displaying, for example, pronounced maxima 

at the "dip" frequencies of the hearing threshold curve and the corresponding peaks of 

IPeel-strongly suggests a spatial variation of parameters that mirrors the hearing thresh

old curve. Alternatively, a traveling-wave ratio whose amplitude varies relatively slowly 

and non periodically suggests that the underlying spatial distribution of inhomogeneities 
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is more probably irregular or random (Shera and Zweig 1992f). The oscillations in ear

canal pressure Pee then arise because the phase of R varies monotonically with increasing 

frequency, alternately passing through plus and minus one. The existence of these two 

possibilities is evident from the limiting case in which the middle-ear is idealized as a sim

ple mechanical transformer. The ear canal pressure Pee(Wj R) then has the form (Shera 

and Zweig 1992b) 
1+ R 

Pee(Wj R)/ Pee(Wj 0) = -- . 
1- R 

(1) 

Although R cannot be determined from measurements of otoacoustic emissions with

out detailed knowledge of middle-ear transfer coefficients (Shera and Zweig 1992b), certain 

characteristics of its frequency variation can be found by exploiting a property of those 

emissions that enable one to "divide out" many of the the unknown effects of the stimulus

delivery system and the middle ear. The oscillations in the ear-canal pressure Pee are 

superimposed on a smooth, slowly-varying "background," whose form is determined by 

the transfer characteristics of the measuring apparatus, the external and middle ears, and 

cochlear mechanics and geometry near the stapes. Those two components of the pressure 

can be separated by filtering. The assumption that the unknown transfer characteristics 

are slowly varying then enables one to determine the principal frequency variation of R. 

I. The Measurement 

A. Equipment and methods 

Otoacoustic emissions were measured in the human ear canal using a setup whose 

block diagram is illustrated in Fig. 1. Acoustic stimuli were delivered and the response 

recorded using miniature transducers sealed in the ear canal (the Etymotic Research 

ER-2 earphone and ER-10 microphone and preamp). Stimulus-frequency emissions were 

recorded using the two-channel Hewlett-Packard HP-3562A signal analyzer operating in 

swept-sine mode (Blackham et al. 1987). The output of the HP-3562A sinusoidal voltage 

oscillator was fed to channel A of the analyzer, which adjusted the source to maintain 

a constant amplitude, and then attenuated (Wavetek 5080.1) before being delivered to 

the ER-2 earphone. With a constant input voltage, the ER-2 is designed to produce 

an approximately constant sound pressure at the eardrum. After amplification (Briiel & 
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Figure 1. Schematic diagram of the stimulus-delivery and recording system. 
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Kjcer 2610), the microphone signal from the ER-10 was filtered (Wavetek/Rockland 852, 

4th-order Butterworth high-pass filter with a cutoff frequency of 600 Hz) and returned to 

the signal analyzer (channel B), which measured the complex ratio of the voltage signals 

at its two input ports. Stimulus frequencies were stepped discretely in a phase-continuous 

manner from the highest measured frequency to the lowest.3 To ensure a steady-state 

response the analyzer allows a settling time of 20 ms after stepping to a new frequency. In 

addition, the response at each frequency was measured for an integration time t:l.T (with 

t:l.T ;:::: 200 ms) chosen to be much greater than reported latencies of click-evoked echoes, 

which are typically less than 20 ms for all frequencies greater than 800 Hz (e.g., Neely et 

al. 1988; Zweig et al. 1992). 

Subjects were seated comfortably in a reclining chair in a double-walled sound booth 

(Industrial Acoustics). All were between 20 and 40 years of age and had audiometrically 

normal hearing. 

B. Equivalent circuit 

In Fig. 2 the acoustic properties of the stimulus delivery and recording system are 

represented by their Norton-equivalent source Us and source admittance ¥s. The volume 

velocity Us is related to the voltage Vi delivered by the voltage source (and sent, via an 

attenuator, to the earphone) through the transfer-function /(i; that is, 

(2) 

Similarly, the transfer-function /(0 relates the ear-canal pressure Pee and the measured 

microphone output voltage Vo: 

(3) 

The measurement thus consists of determining the dimensionless ratio 

+( . ) _ Vo p w,A = Vi . (4) 

3 Because high frequencies are mapped closer to the stapes than lower frequencies, sweeping from 
high to low advances the traveling-wave envelope into previously unstimulated regions of the cochlea. In 
practice, the direction of the sweep appears to make little difference, except perhaps at frequencies near 
a spontaneous emission. 
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t 
Pee 

I 

Figure 2. Equivalent circuit for the_stimulus-delivery and recording system, represented by its 
Norton-equivalent source amplitude U. and source impedance Z. == I/Ys . The residual ear-canal 
space, middle ear , and vestibular space are represented by an equivalent two-port network eClo, 
with transfer matrix eCTo == (~~) . Seen from the basal end of the organ of Corti, the cochlear 
response at the driving frequency is characterized by the input impedance Z(w; A). 
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When the ratio p+ is independent of stimulus amplitude A, the circuit illustrated in 

Fig. 2 implies that 

(5) 

where 

y+ == KdKo, (6) 

and Zec(w) represents the ear-canal load impedance seen from the tip of the earphone 

assembly. The residual ear-canal space and middle-ear (including the vestibular space) 

are represented as a reciprocal two-port network eCl o (e.g., Shera and Zweig 1992a), with 

transfer matrix eCTo == (~!). The load impedance Zec therefore has the value 

aZ +b 
Zec(w) = cZ + d ' (7) 

where Z(w) is the cochlear input impedance. Zec thus depends on the mechanics of the 

ear canal, the middle ear, and the cochlea. 

As a control and check of the linearity of the measurement system, the ratio p+ 

was measured with the probe assembly inserted into a rigid-walled cylindrical cavity. 

The resulting measurements of ptav, performed at sound pressure levels corresponding to 

sensation levels (SL) of 20 dB and 40 dB above threshold, are shown in Fig. 3. Except for 

differences in the noise level near the impedance minimum (arising from the zero in the 

reactance at the cavity resonance), the two data sets are indistinguishable. 

Chiefly because of delays introduced by the stimulus delivery tubes, the phase of Kj, 

and hence of p+, is dominated by a delay e- iwT , where the delay time T falls in the range 

1-2 ms. Rather than working with p+ , it thus convenient to define the quantity 

(8) 

in which that delay has been removed. With the delay subtracted, ptav becomes a 

minimum-phase function, as expected for measurements proportional to a driving-point 

impedance (Bode 1945). In all measurements that follow, the delay time T, determined 

individually for each measurement using a least-squares linear fit to the phase of p+, has 

been removed in this way. 

The qualitative features of p for the human ear are described in Sec. II, where two 

components of the response are identified. Those components are separated in Sec. III. 

Sections IV and V then show how contributions to p arising from the reflection of cochlear 

waves can be extracted from the measured response. 
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Figure 3. The function ptav(W j A) measured in a rigid-walled cylindrical cavity (consisting of 
a hole of approximate length 3.1 em and volume 1.6 cm3 drilled in a block of plexiglass) at 
two-different stimulus levels: (~) measurements at 40 dB SL j ('\7) measurements at 20 dB SL. 
The measurement integration time was one second. Except for increased noise at the lower level 
(especially noticeable about the impedance minimum near 2700 Hz , a value in close agreement 
with the resonant frequency, h = cf4/ , expected for a closed tube oflength I), ptav is, as expected , 
independent of A (note that the point symbols superpose to form a six-pointed star) . The phase 
of ptav is dominated by a delay originating primarily in the stimulus-delivery tubes. With that 
delay subtracted , ptav is a minimum-phase function , as indicated by the solid line ( ), which 
represents a smoothed, minimum-phase fit to the measurements at 40 dB SL (Zweig and Konishi 
1987; Konishi and Zweig 1989). 
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II. Features and Analyticity of p(w; A) 

Figure 4 shows the results of a series of measurements performed at varying sound

pressure levels (subject JEM-R). Two components are identifiable, distinguished by their 

behavior with stimulus level. At the highest levels, p is a smooth and slowly-varying 

function of frequency. As the stimulus level is reduced, however, an oscillatory component, 

with a period of roughly 90 Hz, appears superimposed on that smooth background, which 

may itself vary with stimulus level. The observations suggest that at low levels (where, 

as shown below, the response is linear) the function p( Wj A) can be viewed as the sum of 

two components: a slowly-varying background component arising predominantly from the 

middle and external ears, and an oscillatory component, presumably arising from "stimulus 

re-emission" within the cochlea. In Sec. III those two components of the response are 

separated, focusing on the region between the two spontaneous emissions at approximately 

1200 and 1660 Hz (cf. Fig. 5). 

A. Linearity at low levels 

Figure 6 demonstrates the existence of a linear regime by overlaying measurements 

made at 0 and 5 dB relative to threshold (SL). The measurements superpose over much 

of the frequency range, although a frequency-dependent temporal shift in the background 

component is apparent, especially above 1500 Hz.4 A technique for estimating the 

background not subject to artifacts introduced by such shifts is introduced in Sec. III. 

Subsequent sections then focus on finding the form of the traveling-wave ratio in the 

linear regime. 

B. Analyticity properties at low levels 

Among the most careful published measurements of stimulus-frequency emissions 

are those of Zwicker and Schloth (1984). Their data, however, have an analytic structure 

inconsistent with that of a causal system (Shera and Zweig 1986, unpublished observation). 

Figure 7 reproduces their measurements of the pressure in the ear canal (data from Fig. 2 

recorded from subject A.S.l in the low-level linear regime at 10 dB SL). Causality requires 

4 Similar changes in the background component are apparent when consecutive measurements are made 
at the same stimulus level, indicating that the variation is due principally, if not entirely, to temporal 
drift, rather than to a frequency-dependent nonlinearity in the mechanics responsible for the background. 
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Figure 4. The function pew; A) measured in subject JEM-R at stimulus levels A indicated on the 
right in dB relative to threshold (SL). The average values of the curves approximately superpose 
but have been offset by 5 dB for clarity. The vertical dotted lines (- .... ) indicate the frequencies 
of the subject's known spontaneous emissions in this frequency range (cf. Fig. 5). At the highest 
level, pew; A) is a smooth, slowly-varying function of frequency. As the stimulus level is reduced, 
oscillations with a period of roughly 100 Hz appear superimposed on that smooth background. 
Note the increased noise at lower stimulus levels. In the data discussed below, the signal-to-noise 
ratio was substantially improved by increasing the measurement integration time from the 200 ms 
used here. 
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Figure 5. Spectral density of the ear-canal pressure measured without external stimulation 
in subject JEM-R (average of 800 spectra). The vertical dotted lines (- ... -), positioned at 
reproducible spectral peaks, indicate the known spontaneous emissions in this frequency range. 
Subsequent analysis focuses on the region between the two spontaneous emissions near 1200 and 
1660 Hz. 
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Figure 6. The function p(w; A) measured (with an 8 second integration time) in subject JEM-R 
at stimulus levels 0 dB SL (\7 connected by · ... . ) and 5 dB SL (~ connected by ). As 
in Fig. 4, the vertical dotted line indicates a known spontaneous emission. Aside from a low
frequency drift in the background-most probably due to static pressure changes in the middle
ear cavities and/or temperature variations in the recording microphone-the two functions nearly 
superpose, indicating that the response is linear at these levels. 
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that the real and imaginary parts of the measured pressure be Hilbert transforms of one 

another (Bode 1945):5 

Re{P(w)} = _! r Im{P(w' )} dw' 
1r J-oo w' - w ' 

(9) 

and 

Im{P(w)} = ! r Re{P(w' )} dw
' 

. 
1r J-oo w' - w 

(10) 

Here f represents a Cauchy principal-value integral. 

In addition, measurement of the pressure under the conditions they report is equiva

lent to determining the driving-point impedance ofthe ear canal. Driving-point impedances 

are minimum-phase functions (Bode 1945). Consequently, the measured pressure must also 

be minimum-phase-that is, In P must be causal- unless there are other, unaccounted-for 

inputs to the ear modifying the response (e.g., signals coming from the central nervous 

system). As measured from the ear canal, the ear might then appear acausal in its re-

sponse. 

Shown in the figure for comparison are the corresponding Hilbert-transforms pairs, 

in which the measurements of the amplitude were used to predict the phase, and vice 

versa. Unless the measurement errors are much larger than suggested by the apparent 

noise level, the expected analyticity properties would normally require that the measured 

and predicted curves superpose. 

To explore, however, whether the apparent acausality reflects changes in the me

chanical state of the ear induced by feedback from the brain, Fig. 8 plots the real and 

imaginary parts oflnp at 5 dB SL (subject JEM-R), together with smoothed, minimum

phase fits to the measurements (Zweig and Konishi 1987; Konishi and Zweig 1989). The 

plotted error bars- estimated by comparison with the minimum-phase fit- correspond to 

0.125 dB in the amplitude and 0.80 in the phase. The fit is everywhere excellent, except 

within the immediate neighborhood of the known spontaneous emission.6 Everywhere 

5 Dispersion relations (9) and (10) are valid when the measured pressure vanishes as w -+ 00. When 
that is not the case, modified, or subtracted, dispersion relations exist (Bode 1945). In addition, the 
subtracted form of the dispersion relations may be computationally more convenient if the low-frequency 
behavior of the pressure is known but the high-frequency behavior poorly determined (Zweig 1976; Zweig 
and Konishi 1987). 

6 Zwicker and Schloth (1984) report their subject (A.S,!) as having no measurable spontaneous emis
sion. 
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Figure 7. Measurements of ear-canal pressure at 10 dB SL ( ) from Fig. 2 of Zwicker 
and Schloth (1984). The dashed line (- - - -) in the upper (lower) panel represents the Hilbert 
transform of the data in the lower (upper) panel. Were the measurements minimum-phase (as 
driving-point impedances must be), the solid and dashed lines would everywhere superpose. 
Note that measurement errors are not given in the paper, but the smoothness of the curves 
suggests that the random errors are small. A Hilbert-transform analysis of the real and imaginary 
parts of the pressure indicates that unless their errors are substantially greater than implied, the 
measurements could not have originated in a causal system. 
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else, however, p satisfies not only the constraints of causality but also the more stringent 

analyticity requirements of minimum-phase behavior (Bode 1945). Demonstrated here in 

the linear regime in one subject, these analyticity properties hold at all stimulus levels 

and are universal among subjects we have examined.7 

Although the origin of the peculiar analyticity properties of the measurements of 

Zwicker and Schloth is not known, their apparent acausality appears unlikely to reflect 

a general involvement of the central nervous system in the generation or control of otoa-

coustic emissions. 

III. Separating the Crooked from the Straight 

Understanding the origin of the oscillatory component in pew) is facilitated by sub

tracting the smooth background and working with the quantity ~(w), defined by 

~(w) == p(w)/ po(w) - 1, (11) 

where po is the background. (Since the analysis focuses on measurements in the linear 

regime, the dependence on stimulus amplitude A has been omitted.) Defining ~ in this 

manner, rather than as the simple difference p - Po, guarantees that the extracted oscil

latory component will be independent of the absolute scale of p. 

The two components of p(w)- namely the smooth background Po(w) and the oscilla

tions ~(w )- can be separated by filtering, thereby allowing each measurement of pC w) to 

serve as its own control against possible variations in the background that occur during 

the course of the measurement. The oscillatory component occurs in the frequency re

sponse and can be removed by passing p through a low-pass filter, just as if the measured 

signal had been recorded in the time domain. Details of the filtering and a discussion of 

the systematic errors it may introduce are given in the Appendix, which demonstrates 

that the conclusions of this paper are not especially sensitive to the choice of smooth 

background.8 

7 We have systematically investigated the analyticity properties of P in seven ears (four subjects) . 
8 It is interesting to note that if the temporal shift can be eliminated or controlled for (using, for 

example, an A-B-A measurement sequence that permits "before" and "after" comparisons), then PO 
may be measurable at low levels-thereby providing a consistency check on the background extracted by 
smoothing- if the limit R -+ 0 can be reversibly induced with aspirin or other drugs without affecting the 
mechanics of the middle ear. 
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Figure 8. The function In p at 5 dB SL (data from Fig. 6) together with smoothed, minimum
phase fits ( ) to the measurements (Zweig and Konishi 1987; Konishi and Zweig 1989). The 
error bars-estimated by comparison with the fits-correspond to 0.125 dB in the amplitude and 
0.80 in the phase. Except near the spontaneous emission (- ... . ), the fit is excellent. Unlike the 
measurements of Zwicker and Schloth (1984), which, if accurate, could not have originated in a 
causal system, the measurements of stimulus-frequency emissions reported here are both causal 
and minimum-phase. 
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Figure 9. Inverse Fourier transforms i-I {Rep(w)} (~connected by ) and i-I {Imp(w)} 
(\7 connected by ---) for the data in the frequency interval [1215, 1475]-chosen to make the 
data nearly periodic- from Fig. 8. Before applying the operator i-I, the data were unramped 
and interpolated to 210 points using bandlimited sin(f)j f interpolation (e.g., Papoulis 1977). 
Shown for comparison is the low-pass filter LlO (with cutoff set at an oscillation period of 130 Hz) 
used to extract the slowly-varying background (- .... ). None of the subsequent analysis is sensitive 
to the precise value of the cutoff (see the Appendix) . 
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Figure 9 shows the spectrum of p(w)-denoted P-l{p(w)}, where F{.} represents the 

operation of Fourier transformation-for a section of the data shown in Fig. 8 (data near 

the spontaneous emission have not been included). Note that at least two, and perhaps 

three, spectral peaks are visible at fractional values 1ft. %, and % of the fundamental 

oscillation period (approximately 90 Hz). Shown for comparison is the spectrum of the 

low-pass filter through which pew) is passed to remove the oscillatory component. The 

result of that filtering is shown in Fig. 10, which plots both the original data and the 

background Po obtained by smoothing. Finally, by subtracting Po from p according to 

Eq. (11) one obtains the oscillatory component ~ shown in Fig. II. 

An estimate of the oscillation period ~f can be obtained by fitting a sinusoid to the 

data. A least-squares fit yields 

~f = 85.2 ± 0.3 Hz, (12) 

where the period has been assumed constant over the interval. 

The next section shows how the oscillatory component ~ can be understood as arising 

from wave reflection in the cochlea. The measurements are then used to explore the 

frequency variation of the traveling-wave ratio. 

IV. The Traveling-Wave Ratio 

This section presents an interpretive framework within which to continue analysis of 

the measurements. The oscillatory component in the response is viewed as originating 

through the production of backward-traveling waves, presumably by the partial reflection 

of the forward-traveling wave. That reflection is likely to occur predominantly near the 

characteristic place in the apical turns of the cochlea, where the response to the forward

traveling wave is largest. By changing the pressure and volume velocity near the stapes, 

backward-traveling waves modify the effective value of the cochlear input impedance. 

A. The cochlear input impedance 

At stimulus amplitudes A for which the mechanics are linear, the cochlear response 

seen from the basal end of the organ of Corti can be characterized by the cochlear input 
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Figure 10. The functions p(w) (e) and the background po(w) (- - -) obtained by smoothing 
the data segment described in Fig. 9. The bandlimited interpolant is given by the solid line 
( ). 
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Figure 11. The function ~(w) == p/po - 1 obtained using the bandlimited interpolants from 
Fig. 10. The real and imaginary parts are represented, respectively, by solid ( ) and dashed 
(- - -) lines. Note that the amplitude and frequency of the oscillations are nearly constant and 
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impedance,9 defined as the ratio of the pressure difference P( x, w) across the organ of 

Corti to the volume velocity U(x,w) of the cochlear fluids in the scala vestibuli: 

PI Z(w) == - . 
U x=O; cochlea driven forward 

(13) 

The position x = 0 corresponds to the basal end of the organ of Corti. At moderate 

intensities, the cochlear response varies strongly with A (Kemp 1979); at high intensi

ties (A> AI), however, the relative amplitude of those nonlinear contributions is always 

small (Kemp and Chum 1980; Zwicker and Schloth 1984), and the ratio PIU becomes 

independent of the amplitude of the stimulating tone. 

Thus, at stimulus amplitudes A > Al and frequencies w ~ wce , where wCe is the char

acteristic angular frequency at the beginning of the organ of Corti (x = 0), the basal 

turn of the cochlea is analogous to a linear, one-dimensional mechanical transmission 

line (Zwislocki-Moscicki 1948; Peterson and Bogert 1950; Zweig 1991) with an input 

impedance, 

Z(w) == Zc(w), for A > Al , (14) 

depending principally on mechanical characteristics and cochlear geometry near the stapes 

(Shera and Zweig 1991a). The stimulus amplitude Al corresponds to roughly 60 dB above 

threshold (Zwicker and Schloth 1984). 

At lower intensities, however, the response near the stapes contains significant con

tributions from more apical regions of the cochlea. Measurements of evoked otoacoustic 

emissions (e.g., Zwicker and Schloth 1984) indicate that their amplitude varies linearly 

with the stimulus at low sound-pressure levels (see also Sec. II.A). In this low-amplitude 

linear regime, the input impedance has the form 

Z(w) = Z 1 + R( w) for A < AI, 
c 1- R(w) , (15) 

familiar from transmission-line theory (e.g., Slater 1942). The amplitude Al corresponds 

to roughly 5-10 dB above threshold in humans. 

9 Here we assume that the cochlear contents are essentia.lly incompressible (Shera and Zweig 1992c). 
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Equation (15) follows (Shera and Zweig 1991b) from the observation that measure

ments of the cochlear input impedance in cat (Lynch et al. 1982) imply that the wave

length of the traveling pressure wave-or, equivalently, the characteristic impedance Zc( w) 

of the transmission line-changes slowly in the basal turn (Shera and Zweig 1991a). The 

tapering symmetry that guarantees a slowly-changing wavelength is assumed applicable 

to the human cochlea as well.10 

The function R(w), for which Eq. (15) constitutes a definition, is the traveling-wave 

ratio evaluated at the basal end of the cochlear spiral. Note that the high-amplitude 

input impedance Zc(w) is recovered in the limit R --t OJ reflections are negligible at those 

intensities. The following section focuses on finding the form of R in the low-level linear 

regime. 

V. Finding the Form of R 

A. A series representation for P 

The expectation of finding /R/less than unity suggests expanding p in a power series 

about R = O. Equation (7) implies that Zec constitutes a bilinear transform of Z, which, 

according to Eq. (15), is but a bilinear transform of R. When combined with Eq. (5) for 

p, those sequential bilinear transforms imply that the power series has the form 

(16) 

where the smooth background is recovered as the limit 

Po = lim p. 
R-O 

(17) 

The coefficients have the values 

(18) 

(19) 

and 

10 Relaxing the assumption of tapering symmetry and adopting the more general expression for the 
input impedance valid when the cochlear wave impedances depend on the direction of propagation (Shera 
and Zweig 1991b) changes only the values of the coefficients and not the form of the power series for p 
obtained as Eq. (16) below. 
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(20) 

(21) 

(22) 

Note that the coefficients Po, p, and q are determined by the characteristics of the mea

surement equipment, ear canal and middle-ear, and the basal region of the cochlea near 

the stapes. By contrast, the traveling-wave ratio R provides information about mechanical 

characteristics and possible spatial inhomogeneities in more apical regions of the cochlea 

close to the characteristic-frequency point (Shera and Zweig 1992f). 

B. Interpreting the power series 

Convergence of the power series requires IqRI < 1. By reexpressing the power series 

in the equivalent language of middle-ear scattering coefficients (Shera and Zweig 1992b), 

one can show that the coefficient q represents the net reflection coefficient for retrograde 

cochlear waves measured at the stapes. Assuming the middle ear to be a passive mechani

cal system therefore yields the constraint Iql ~ 1. Note that q is close to one at frequencies 

for which the source admittance Y,. is small and the middle-ear "stiff" (so that IcZcl ~ 1). 

The function qR therefore represents the product of two reflection coefficients, both 

evaluated at the stapes but measured by driving the system in opposite directions. Note 

that terms in the power series proportional to R2 or higher vanish in the limit that the 

stapes represents a perfectly reflectionless boundary (i.e., in the limit Iql ~ 0). That 

observation suggests that those terms arise from multiple reflection within the cochlea. 

The series expansion (16) for p obtained above is consistent with the spectrum illus

trated in Fig. 9. Adjacent spectral peaks correspond to terms in p proportional to R, R2, 

and R3. The progressive decrease in peak amplitude provides ex-post-facto justification 

for the series expansion (16) performed above. Inspection shows that the peaks are ap

proximately colinear, implying that their amplitudes occur in geometric progression, as 

predicted by Eq. (16). 
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In terms of the power-series expansion, the oscillatory component assumes the form 

~ = pR(1 + qR + q2 R2 + ... ) . 

Note for future reference that 

In ~ = In p + In R + In (1 + q R + q2 R2 + ... ) 

~lnp+lnR+qR (lqRI~1); 

as shown later, the inequality for IqRI is valid for the measurements reported here. 

C. An approximate form for R 

(23) 

(24) 

(25) 

The real and imaginary parts of ~ are plotted against one another in Fig. 12. The 

roughly circular trajectory traced out clockwise about the origin in the complex plane 

indicates that the oscillations in the real and imaginary parts of ~ are roughly 90° out of 

phase and of nearly constant amplitude and frequency. As shown above, ~ is, to leading 

order, equal to pR, where the coefficient p--determined by characteristics of the recording 

system, middle-ear, and cochlea near the stapes-is likely to vary slowly with frequency 

compared to R(w).l1 

To first approximation, therefore, ~ oc R. The traveling-wave ratio then has the form 

of a circular path of slowly-varying radius centered on the origin in the complex plane and 

traced out with nearly constant angular velocity as the frequency is varied uniformly. In 

the language of mathematics, 12 

(26) 

11 In this context, a function y(f) varies slowly with frequency if its fractional change over a typical 
period of oscillation f:),.f is small; that is, if 

For the frequency region near 1 kHz, f:),.f ~ 90 Hz. 
12 Globally, R(w; A) has the form 

R(w; A) = IRI(w; A)e;8(w;A) , 

(11.1 ) 

(12.1) 

where IRI and e are, respectively, the real-valued amplitude and phase. The requirement that the Fourier 
transform of Z(w; A) be real imposes the symmetry 

R·(-w;A) = R(w;A) , (12.2) 

and, consequently, IRI and e are even and odd functions of frequency, respectively. 
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where the radius .H( £w) and "velocity" T( £w) are both real, slowly-varying functions of 

frequency (£ ~ 1); the phase shift </>0 is a real constant. The reference frequency Wo em

phasizes the local nature of the approximationP Note that l/T is simply the oscillation 

period fl./. A phenomenological model for evoked emissions incorporating a traveling-wave 

ratio with constant amplitude and linear phase has been proposed by Kemp (1980). 

Note that the procedure used to extract the background Po may have filtered out any 

slowly-varying DC component Ro in the traveling-wave ratio, which (if that component is 

large) might therefore be more appropriately written 

R ~ Ro + .He- i [(w-wo)r+4>o] , (27) 

where Ro( £w) is a slowly-varying complex function offrequency. Geometrically, Ro reflects 

a possible offset of the circular trajectories from their apparent center about the origin. 

Although the experiments reported here do not constrain the magnitude of such a 

component, other observations suggest that it is small. For example, measurements of 

stimulus-frequency emissions (e.g., Zwicker and Schloth 1984) indicate that low-level 

emission curves oscillate about an "average" given by the corresponding emission curve, 

appropriately rescaled, measured at high levels. (Our own measurements at higher lev

els, when controlled for temporal shifts in the background, corroborate those findings.) 

No significant DC-offset connected with Ro is apparent. In addition, since Ro is slowly

varying, the corresponding group velocity-given by d(LRo)/dJ.,,;-is, by hypothesis, much 

shorter than T. Any component Ro in the traveling-wave ratio would therefore contribute 

a short-latency response to measurements of click- or tone-burst-evoked otoacoustic emis

sions. No such component is observed in human ears (e.g., Kemp and Brown 1983).14 

Thus, if those measurements are correct (and the coefficients Po, p, and q are, as expected, 

essentially independent of stimulus amplitude), 

IRo/ill ~ 1; (28) 

the procedure employed here then captures the dominant contributions to R. 

13 When fitting the data, the reference frequency Wo also serves to decrease the sensitivity of the phase 
shift 4>0 to changes in the parameter T. 

14 A short-latency component has, however, been identified in the gerbil (Kemp and Brown 1983). 
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data of Fig. 11. The roughly circular trajectory, traversed clockwise about the origin (arrow), is 
marked with an asterisk (*) at intervals of approximately 5 Hz. 
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D. Consequences of the approximate form for R 

To explore the predictions of the approximate form (26) for R, it is helpful to substi

tute it into Eq. (25) for In 6: 

Re{ln~} = Re{lnp} + R + IqIRcos[(w - wo)r + </>] + (29) 

and 

Im{ln~} = Im{lnp} - [(w - wo)r + </>0] - IqIRsin[(w - wor) + </>] + ... , (30) 

where 

</> = </>0 - Lq . (31) 

For comparison, the empirical determination of In ~ is plotted in Fig. 13. If the functions 

lnp, R, and q are slowly-varying, Re{ln 6} consists of a nearly constant background upon 

which oscillations of amplitude IqlR and approximate period l/r are superposed. Such 

oscillations, shifted 90 0 in phase, appear also in 1m {In ~}, but in this case superposed on 

a line of slope - r . 

Equations (29) and (30) for the real and imaginary parts of In ~ suggest that an 

especially convenient representation of the data can be obtained by differentiating, which 

also serves to remove much of the unknown, but slowly-varying background. We therefore 

define the dimensionless function 

dln~ dlnR 
TJ=--~--- dn dn 

where the dimensionless frequency n is defined by 

n=:rw. 

dR 
+ qdn ' (32) 

(33) 

By using the approximate form (26) for R and the assumption that Rand r are slowly 

varying one finds 

TJ ~ IqIRcos[(w - wo)r + </>] - i [1 + IqIRsin[(w - wo)r + </>J] , (34) 

~----~v------~ 
~------__ v __ ------~ 

Re{TJ} Im{TJ} 

Thus, if the approximate form (26) is correct, TJ is a causal function whose real and 

imaginary parts oscillate with a period of l/r Hz and with an amplitude IqlR. Note that 
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Figure 13. The function In ~(w) computed using ~(w) from Fig. 11. The real part (--
consists of oscillations superimposed upon a nearly constant background. Similar oscillations, 
shifted 90° in phase, appear in the imaginary part (- - -), but superimposed upon a line of 
nearly constant slope -T . The straight line in the phase indicates the presence of a delay. 
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the model predicts that 1m {1J} oscillates about the average value -1. These predictions 

can be compared with experiment by computing 1J from the empirical determination of ~. 

Figure 14 plots the function 1J obtained by differentiating the data of Fig. 13. The di

mensionless frequency n was defined using the value T = 11. 73 ± 0.05 ms obtained from the 

estimate (12) for the oscillation period ~f. Since differentiation amplifies high-frequency 

noise components, the function shown has, for clarity, been low-pass filtered to suppress 

higher-order terms in 1J (e.g., those proportional to R2 or higher15 ). Note that Im{1J} 

oscillates about the value -1, as predicted by Eq. (34) using the approximate form (26) 

for R. 

Shown for comparison are the predictions of Eq. (34), where the parameters R, T 

and q were assumed constant over the interval before fitting the data (parameter values 

are given in the figure caption). The agreement between the empirical 1J and the model 

result implies that the foregoing analysis, including the approximate local form for R, is 

essentially correct. 

E. Errors and averages 

An indication of the errors in the analysis is provided by Fig. 15, which overlays 

Fig. 14 with the function 1J computed from the other data set illustrated in Fig. 6. The 

small differences between the curves originate principally with changes induced in the 

background by the low-frequency temporal shifts discussed in Sec. II. The Appendix dis

cusses the magnitude of the systematic errors introduced by the choice of filter used to 

extract the smooth background Po. 

Figure 16 overlays Fig. 15 with functions 1J computed from measurements on the same 

subject made several months later. Figure 17 plots the average and its standard deviation 

computed from Fig. 16. Averaging model fits to the data yields the parameter estimates: 

IqlR = 0.124 ± 0.01, T = 11.67 ± 0.1 ms, and <P = 2.17 ± 0.2 radians. Note that no explicit 

model for the effects of the background is included in Eq. (34). The background provides 

a slowly-varying, secular variation in the average value of the curves and thus affects, for 

example, the optimal choice of the amplitude IqlRo. 

15 Note that terms in 1/ of order R2 correspond to terms in ~ of order R3. 
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Figure 14. The function 77(W) computed from Eq. (32) and the data of Fig. 13 ( ). For 
clarity, the function was filtered to remove high-fre9.uency noise. Shown for comparison are 
the predictions of Eq. (34) with parameter values IqlR = 0.11, T = 11.6 ms, and ¢ = 2 radians, 
determined by a least-squares fit to the data (real and imaginary parts simultaneously). For this 
data set, the reference frequency wo was taken to have the value Wo /27r = 1350 Hz. Note that 
Eq. (34) predicts that the imaginary part oscillates about -1, in agreement with the empirical 
result. 
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Figure 15. The function 7J(w) computed using the data at 0 dB SL from Fig. 6 (- - -). For 
comparison, the values are shown superimposed on the data from Fig. 14. The differences between 
the curves, originating principally through changes in the slowly-varying background caused by 
temporal drift, are small and give an indication of the uncertainty in the analysis. 
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Figure 16. Functions 7J(w) computed using three additional measurements of p made in the 
low-level linear regime on the same subject several months later (shown with dotted, dot-dashed, 
and dot-dot-dashed lines) . For comparison, the functions are shown superimposed on those from 
Fig. 15. 
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Figure 17. An estimate ( ) of the function 7J(w) computed by averaging the functions 
shown in Fig. 16 and plotted with error bars representing standard deviations. Fitting the model 
of Eq. (34) separately to each of the five data sets and averaging the results yields the parameter 
estimates given in the text . Shown for comparison (- ... -) are the predictions of the model using 
those average parameter values. 
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F. A consistency check 

In verifying the predictions of the empirical form (26) of the traveling-wave ratio, we 

have determined an estimate of the product qR, which can be expressed in terms of TJ 

through Eq. (34): 

qR ~ Re{TJ} - i[1 + Im{TJ}] . (35) 

Power series (23) for pew) predicts that knowledge of qR determines all higher-order terms 

in the expansion. 

Verification of that prediction is simplified by noting that the empirical form for R 

implies the existence of a one-to-one correspondence between terms in the power series 

and spectral peaks in the Fourier transform of p( w). That correspondence follows from 

the fact that the Fourier transform of e-iWT is proportional to the o-function o(t - r) . 

Consequently, the power series predicts that spectral peaks should occur in geometric 

progression, with the ratio of adjacent peaks assuming the approximate value 

(36) 

The angled brackets indicate that the Fourier transform has "averaged" the parameters 

over the transformed frequency interval. Thus, when plotted on the appropriate scales, 

the spectral peaks should be approximately colinear. 

Figure 18 reproduces the amplitude and phase of the spectrum of Im{p(w)}. Shown 

for comparison are straight lines whose slopes were determined from Eq. (36) using pa

rameter values from the model fit to the function TJ shown in Fig. 14. The foregoing 

analysis correctly predicts both the approximate colinearity and the complex ratio of ad

jacent spectral peaks. By reducing the measurement noise floor even further, one could 

presumably verify the predictions for spectral peaks of even higher order. 

G. Estimating q and R individually 

The amplitude of the oscillations in TJ depend on the amplitude of the traveling-wave 

ratio through the expression iqiR, where iqi depends on unknown properties of the middle

ear. If iqi is close to one, however, the oscillation amplitude is determined principally by 

the value of R. Figure 19 shows values of iqi predicted by published models ofthe "average" 
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Figure 18. The inverse Fourier transform F-l{Im{p(w)}} (\7 connected by · · ···) from Fig. 9 
(similar results , omitted for clarity, are obtained using F-1 {Re{p(w)}}) . The spectral peaks 
corresponding to harmonics of the oscillation period are shown with enlarged solid symbols. The 
analysis presented above predicts that those peaks occur in geometric progression and should 
therefore appear colinear on the scales used here. Straight lines, with slopes obtained using the 
parameter values of Fig. 14, are superimposed for comparison. 
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human middle ear (Zwislocki 1962; Kringlebotn 1988). Although their predictions differ 

in detail, the models are in qualitative agreement and predict that q is a slowly-varying 

function everywhere close to but less than one in magnitude. Reference to Eq. (20) 

shows that q would be exactly one were the source admittance Yo zero and the middle-ear 

perfectly "stiff;" that is, were the eardrum a rigid plate and the ossicular joints rigid (Shera 

and Zweig 1991c; Shera and Zweig 1992a). 

Since Iql ;:; 1, the value IqlR ~ 0.12 determined from the data thus provides a lower 

limit on the amplitude of the traveling-wave ratio. Assuming that the middle-ear model 

predictions are roughly accurate for this subject yields the estimate Iql ~ 0.7 in the fre

quency range of the measurements. Thus, R ~ 0.16-0.18 in this subject. (The uncertainty 

reflects only the approximate uncertainty in the determination of the product IqIR; the 

uncertainty in Iql is not known.) The corresponding standing-wave ratio, which gives the 

approximate ratio of the cochlear pressure at a node to that at an antinode, is related to 

R by 

SWR= 1+ IRI 
1-IRI' 

and is therefore roughly 1.4 near the stapes. 

H. Anomalies and other subjects 

(37) 

The analysis above has focused on determining the form of R in a region where p 

has a simple, regular structure. Reference to Fig. 4 indicates, however, that the periodic 

pattern can fluctuate somewhat erratically and is interrupted by regions where the regular 

pattern is distorted. Those general features are also found in measurements on other ears. 

Typical results are given in Figs. 20-25, which illustrate representative measurements of p, 

demonstrate its minimum-phase analyticity properties, and give the corresponding func

tions 1J. Although the empirical functions 1J tend to have more structure than the simple 

form Eq. (34)-reflecting either an incomplete removal of the background or deviations 

in R from the approximate form given by Eq. (26)-the data from all subjects support 

the conclusion that, within the more regular regions, the amplitude of R varies relatively 

slowly (and nonperiodically) with frequency compared to the phase, in general agreement 

with the idealized form (26). Figures 24 and 25 provide an example of data collected from 

an anomalous region flanked by regions of greater regularity. Such regions may reflect 

underlying anomalies in the mechanical inhomogeneities conjectured to give rise to evoked 

emission (Manley 1983; Lonsbury-Martin et al. 1988; Shera and Zweig 1992f). 
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Figure 19. The function q(w) predicted by the middle-ear models of Zwislocki ( ) and 
Kringlebotn (- - -). The residual ear-canal space was modeled as a rigid-walled tube of length 
1 cm and cross-sectional area 0.4 cm2 . The calculations assume that the source admittance Ys is 
zero; more realistic values yield very similar results . Note that q approaches one at low frequencies 
where the eardrum and ossicular joints become "stiff." The models agree in their prediction that 
q is everywhere close to but less than one in magnitude. 
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Figure 20. Measurements of In P in subject CKL-R at approximately 5 dB 8L together with 
smoothed, minimum-phase fits ( ) to the measurements. The error bars correspond to 
0.125 dB in the amplitude and 0.80 in the phase. The dashed line (- - -) represents the 
estimate of In PO obtained by filtering. 
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Figure 21. The function 7J(w) computed from the data of Fig. 20 ( ) and filtered to remove 
high-frequency noise . Shown for comparison (-- ... ) are the predictions of Eq. (34) with parameter 
values \q\R = 0.17 , T = 7.9 ms, and ¢ = 1.7 radians. The reference frequency W() has the value 
wo/27r = 2300 Hz. 
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Figure 22. Measurements of In p in subject CKL-L at approximately 5 dB SL together with 
smoothed, minimum-phase fits ( ) to the measurements. The error bars correspond to 
0.125 dB in the amplitude and 0.8 0 in the phase. The dashed line (- - -) represents the 
estimate of In po obtained by filtering. 
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Figure 24. Measurements of In P in subject MGC-R at approximately 5 dB SL together with 
smoothed, minimum-phase fits ( ) to the measurements. The error bars correspond to 
0.06 dB in the amplitude and 0.4° in the phase. The dashed line (---) represents the estimate 
of In PO obtained by filtering. Note the presence of an anomalous region, centered about 1050 Hz 
and delimited by short-dashed lines, flanked by regions of more regular behavior. 
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Figure 25. The function 1](w) computed from the data of Fig. 24 ( ) and filtered to 
remove high-frequency noise. The anomalous region centered near 1050 Hz divides the data into 
two regions flanked by intervals of more regular behavior. The parameter T ~ 22 ms used in the 
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VI. Discussion 

A. Interpreting the approximate form for R 

The amplitude of the cochlear traveling-wave ratio is a relatively slowly-varying and 

nonperiodic function of frequency, suggesting that the mechanical inhomogeneities re

sponsible for wave reflection are un correlated with the periodicities observed in the mi

crostructure of threshold hearing curves. Although the amplitude of R varies slowly, its 

phase rotates rapidly. The observed periodicities thus arise predominantly from the si

nusoidal variation in relative phase between the forward- and backward-traveling waves 

at the stapes; as the frequency varies monotonically, the phase e-iw'T passes alternately 

through plus and minus one, giving rise to the peaks and valleys in the measured ear-canal 

pressure [ef. Eq. (1)]. 

In the time domain, the locally linear phase corresponds to a delay, presumably given 

by the round-trip travel time to and from the site of generation of the backward-traveling 

wave (Neely et al. 1988). The values T found here are consistent with emission latencies 

reported elsewhere (e.g., Norton and Neely 1987). 

1. Variation of the delay with frequency 

The approximate variation of T with frequency can be obtained as follows. Measure

ments of the latency L of tone-burst-evoked emissions indicate that the travel time varies 

inversely with frequency (Wilson 1980; Norton and Neely 1987; Zweig et al. 1992), sug

gesting that the emissions originate in a relatively small region of the cochlea appropriate 

to their frequency, presumably near the peak of the corresponding transfer function (Shera 

and Zweig 1992f). Consistency with the latency measurements thus requires 

dO 
L ~ dw ex l/w, (38) 

where 0 denotes the phase of R. Contributions to the latency arising from the middle ear 

have been assumed small. Solving the differential equation for () yields, 

(39) 

where a is a real integration constant and Weo is the maximum frequency represented along 

the organ of Corti. Although introduced as in integration constant, a may vary slowly 

with frequency. 
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One thus obtains an approximate local form for R(w) incorporating the more global 

variation in latency with frequency: 

(40) 

where RI is a slowly-varying real function of frequency. 

One can recover the local empirical form (26) in any neighborhood by expanding the 

phase, 

(41) 

in a Taylor series about some arbitrary reference frequency WI: 

( 42) 

Evaluating the derivative yields, 

(43) 

where (h == (J(WI) is a constant and the derivative do:jdw is, by definition, small and has 

therefore been neglected. In a neighborhood about WI the traveling-wave ratio therefore 

has the approximate form 

(44) 

where Ri is slowly-varying, and the local delay TI has the value 

(45) 

B. Another way of measuring the background? 

This paper has introduced a filtering technique for separating the oscillatory compo

nent in the measured ear-canal pressure from the smooth background determined, among 

other things, by unknown characteristics of the middle ear. The method, outlined in 

the Appendix, requires only a single measurement at low sound-pressure levels, thereby 

allowing each measurement to serve as its own control, both against shifts in the back

ground that occur during the course of the measurement and against nonlinearities in the 

stimulus-delivery and recording system. 
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The vanishing of the oscillatory component with increasing intensity seen in Fig. 4 

suggests defining an alternative background, denoted Poo, by the limit 

Poo(W) == lim pew; A) , 
A-+oo (46) 

where, in practice, the limit is achieved for stimulus amplitudes A > AI. 

The alternative background Poo, which provides the basis for the "vector subtraction" 

method introduced by Kemp (Kemp 1979; Kemp and Chum 1980), was not employed 

here because a low-frequency temporal shift-perhaps due to static pressure changes in 

the middle-ear cavities, temperature variations in the recording microphone, or perhaps 

even an efferent modulation of cochlear mechanics-made it difficult to measure Poo with 

sufficient accuracy. If these speculations concerning the origin of the shift are correct, one 

expects it to originate either in the microphone transfer function ](0 or in the middle-ear 

cavity impedance Zcav, which manifests itself through the transfer coefficients (~!) (Shera 

and Zweig 1992a). Note that if the shift arises predominantly through /(0, the functions 

p and q remain unaffected. It remains, however, an outstanding experimental question 

whether one can make the identification 

? 
Po = Poo . (47) 

VII. Summary 

1. Accurate measurements of stimulus-frequency evoked otoacoustic emissions have been 

made in the low-level linear regime. Unlike the measurements reported by Zwicker 

and Schloth (1984), the measurements described here are consistent with both causal 

and minimum-phase behavior. 

2. The measured response, expressed in the form of the dimensionless ratio p( w), consists 

of an oscillatory component A(W) superimposed on a slowly-varying "background" Po. 

A novel smoothing technique was developed and used to separate those two compo

nents. Whereas the background is determined principally by the acoustic properties 

of the recording system and middle-ear, the oscillatory component originates through 

the reflection of forward-traveling waves, presumably by mechanical inhomogeneities 

in the apical turns of the cochlea. The oscillatory component A(w) can be expressed 
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as a power series in the dimensionless traveling-wave ratio, R(w), which provides a 

measure of the net reflected wave, relative to the forward-traveling wave, at the basal 

end of the cochlea near the stapes. 

3. The extracted oscillatory component Ll(w) was analyzed to determine the principal 

frequency variation of R(w), which was shown, locally, to have the approximate form 

R(w) ~ Ro + Re-i[(w-WO)T+<PO] , (48) 

where R(fW) and T(fW) are both real, slowly-varying functions of frequency (f ~ 1); 

the phase shift 4>0 is a real constant. Although the magnitude of any additional 

slowly-varying component Ro( fW) is not determined by the measurements reported 

here, other published measurements suggest that IRo/ RI ~ 1. Typically, R = 0(1/5) 

and T ~ 12 ms at frequencies wo/27r near 1300 kHz. In individual subjects, the delay 

T can be estimated with this technique to within a tenth of a millisecond. 

4. The amplitude of the cochlear traveling-wave ratio is a relatively slowly-varying and 

nonperiodic function of frequency, suggesting that the distribution of inhomogeneities 

is uncorrelated with the periodicities observed in the microstructure of threshold 

hearing curves. Although the amplitude of R varies slowly, its phase rotates rapidly. 

As conjectured by Kemp (1980), the observed periodicities arise predominantly from 

the sinusoidal variation in relative phase between the forward- and backward-traveling 

waves at the stapes. The locally linear phase presumably arises as the result of wave 

propagation delays due to a total round-trip travel time T from the stapes to the 

point of reflection and back again. A model in which the orderly, almost periodic 

pattern of maxima and minima in the spectra of evoked emissions emerges naturally 

from the scattering of cochlear waves by what may be an essentially random pattern 

of inhomogeneities in the organ of Corti is presented in a companion paper (Shera 

and Zweig 1992f). 
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Appendix A: Smoothing to Extract the Background 

This Appendix defines more explicitly the smoothing operation used to extract the 

background Po. 

Unlike the more familiar case of time-domain filtering, the oscillatory component to be 

removed occurs here in the frequency response. Smoothing involves convolving p, wiggles 

and all, with a smoothing function S of finite bandwidth (e.g., a Gaussian): 

Po=S0p. (AI) 

Here, the convolution is equivalent to a multiplication in the time domain. For exam

ple, let F {.} represent the operation of Fourier transformation and L the inverse Fourier 

transform of the smoothing function: 

L = F-1{S} . (A2) 

(Note that L will have a low-pass characteristic in the time domain.) Then 

Po = F{L X F-l{p}} , (A3) 

when the width of the smoothing function (filter cutoff) is chosen appropriately. 

Such filtering preserves the causal analyticity properties of p. Since p is causal (Fig. 8), 

the corresponding impulse response F-1 {p} vanishes for negative times. So, therefore, 

does L X F-l {p}, implying that the function Po extracted in this way is also causal.16 

Ideally, the filter L should have a sharp spectral cutoff (in this case, a sharp cutoff in 

the time domain) but avoid prolonged ringing in the impulse response (i.e., in the frequency 

response or smoothing function S). Here we approximate those ideal characteristics by 

employing one of a class of "recursive-exponential" filters L n , defined by 

16 An estimate of Po guaranteed to have the same minimum-phase behavior as p is given by 

Po = exp[F{L X F-1{lnp}}] . 

(A4) 

(16.1) 

Numerically, this estimate is essentially indistinguishable from the estimate obtained by filtering p directly. 
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where te is the filter cutoff and rn is defined recursively: 

r r,,-1 
n+l = e , (A5) 

The scale factor An is set by the requirement that the filter amplitude be lie at the cutoff 

point te: 

An = V1n' where In+! = lnC/n + 1) with 11 = 1 . (A6) 

The filters Ln have no poles or other unpleasantness to contribute exponentially-damped 

sinusoids to the impulse response. 

The filters Ln(t, te) are defined to have widths ~t such that ~tlte = 1. The width 

~I of the corresponding smoothing function Sn(f,Je) = F{Ln(t, te)} satisfies 

~f! Ie ~ 1/7r , (A7) 

where Ie == lite. The lower limit of the inequality is attained with the Gaussian smoothing 

function (n = 1). 

As an example, the impulse response, or smoothing function Sn(f,Je) corresponding 

to the filter Ln( t, te) is illustrated in Fig. Al for two cases: a simple Gaussian (Le., 

n = 1) and the 10th-order filter LlO used to extract po. Despite the sharp spectral cutoff 

(see Fig. 9), the smoothing function SlO displays little ringing (note the absence of ringing 

at the "cutoff-period" Ie in the function Po shown in Fig. 10). 

Figures A2 and A3 indicate the nature of the systematic errors introduced into the 

analysis by the choice of smoothing filter. The figures plot the smooth background Po and 

the corresponding function TJ computed using the Gaussian smoothing function SI. The 

results obtained in the text using the function SlO are given for comparison (results for 

orders n > 2 are essentially independent of n). The Gaussian filter leaves clearly visible 

oscillations in the background. 

Although one might naively expect the amplitude of the oscillations in TJ to be re

duced correspondingly, Fig. A3 shows that those oscillations have, if anything, increased. 

To understand this, consider the function pew; R) as a function of R. Ideally, smoothing 

should yield the background function pew; 0). If the spectral cut-off is insufficiently sharp, 

however, filtering will (to first order in R) instead yield the function pew; fR), where f is 
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Figure AI. The smoothing function 5nU, Ie) representing the Fourier transform (impulse 
response) of the recursive-exponential filter Ln(t, te) illustrated for two values of n: ( ) 
smoothing function for the 10th-order filter LlO used to extract PO; (- .. . -) a Gaussian smoothing 
function, corresponding to n = 1. The abscissa represents the dimensionless frequency 1/ Ie , and 
the smoothing functions are normalized to a maximum value of one. Despite the sharp spectral 
cutoff (cf. Fig. 9), the smoothing function 510 displays only minimal ringing. 
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Figure A2. The background po(w) obtained by (under)smoothing the data segment of Fig. 9 
with the Gaussian smoothing function SI ( .. - .. -) using the cut-off period employed earlier 
(i.e., fc = 130 Hz). Figure 10, superposed for comparison, plots p and the smooth background 
PO extracted using the function SlO . 
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nonzero but presumably small (with 0 ~ If I ~ 1). Although the oscillations in the corre

sponding function ~, defined by ~ = p(Wj R)/ p(Wj fR) - 1, clearly decrease in amplitude, 

the same is not true of the logarithm. Indeed, taking the logarithm and expanding in 

power series yields [cf. Eq. (25)] 

ln~ ~ In[(I- f)p] + lnR + (1 + f)qR (lqRI ~ 1) . (A8) 

The coefficient of the term proportional to R (and hence the amplitude of the oscillations 

in TJ) therefore increases with the filtering error Eo In the limit f --t 1, the oscillations in TJ 

have twice their proper amplitude. 

Figures A4 and A5 illustrate the errors introduced by over (rather than under) 

smoothing. As above, the figures plot the background Po and the corresponding func

tion TJ computed using the filter LlO and a cutoff period of 220 Hz. Although the resulting 

estimate of the background is probably too smooth, the function TJ remains relatively 

unaffected. 
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Figure A3. The function 1J(w) computed using the background from Fig. A2 extracted using 
the Gaussian filter L1 ( . _ . . _). For comparison, the figure is shown superimposed on the data 
from Fig. 14, for which the background was extracted using the filter L1O . Although differences 
are small , the oscillations have generally increased slightly in amplitude. 
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Figure A4. The background PO (w) obtained by filtering the data segment of Fig. 9 with the filter 
LlO using a cut-off period Ie = 220 Hz (- _ .. -) SO that the resulting background is considerably 
smoother. Figure 10, superposed for comparison, plots P and the background PO extracted using 
a cutoff period of 130 Hz. 
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Figure A5. The function 7](w) computed using the (over)smooth background from Fig. A4 
extracted using the filter L 10 and a cutoff period of 220 Hz (-- - .. -) . For comparison, the figure 
is shown superimposed on the data from Fig. 14, for which the background was extracted using 
a cutoff period of 130 Hz. 
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ABSTRACT 

Current models for the generation of evoked otoacoustic emISSIOns (e .g., 
Strube 1985; Peisl 1988; Strube 1989) explain the striking periodicity in 
their frequency spectra by suggesting that the observed periodicity originates 
through the reflection of forward-traveling waves off a corresponding periodic
ity, or corrugation, in the mechanics of the cochlea. Although measurements 
of cochlear anatomy find no such corrugation, they do indicate a consider
able disorganization in the arrangement of outer hair cells (Lonsbury-Martin 
et al. 1988) . This paper demonstrates how the periodicity observed in the 
spectra of evoked emissions can emerge spontaneously through the reflection 
of cochlear waves, despite an underlying irregularity in the micromechanics 
of the organ of Corti responsible for that reflection . In the process, measure
ments of the cochlear traveling-wave ratio (Shera and Zweig 1992e) are used 
to deduce constraints on the form of the wavelength of the traveling wave 
near the peak of the wave envelope. 
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Introd uction 

Evoked otoacoustic emissions recorded in the human ear canal often have a remarkably 

simple structure, their frequency spectra consisting of a series of regularly-spaced, almost 

periodic peaks and valleys. Since the cochlea maps frequency into position, the observed 

spectral periodicity has been explained by suggesting that it mirrors an underlying spatial 

corrugation in the mechanics of the cochlea (e.g., Strube 1985; Peisl1988; Strube 1989), 

which is thus conjectured to manifest a discrete translational symmetry much like that of 

a crystal. 

Anatomical studies, however, provide no evidence for such periodicity in the mechan

ics, noting instead a "generalized irregularity" and "cellular disorganization" characteriz

ing the arrangement of outer hair cells in the apical turns of the primate cochlea (Lonsbury

Martin et al. 1988). In regions where some regularity in the mechanics is found (e.g., in 

the "scalloping" patterns produced by the occasional appearance and disappearance of a 

fourth row of outer hair cells), it appears uncorrelated with the emission spectra measured 

at corresponding frequencies in the same ear (Lonsbury-Martin et al. 1988; Martin et al. 

1988). Anatomically, the organ of Corti appears more chaotic than crystalline. 

The analysis presented in this paper shows how the simple periotic periodicity ob

served in the spectra of evoked emissions can emerge spontaneously from such spatial 

disorder through the scattering of reflected wavelets and their amplification at low levels 

by the "lasing" action of the cochlea (Zweig 1991), even when the scattering medium is 

apparently random and disordered. 

The regular oscillations apparent in the emission spectra are reflected in the form of 

the cochlear traveling-wave ratio, which represents the ratio of the forward and backward

traveling waves at the stapes. That ratio has been measured noninvasively (Shera and 

Zweig 1992e) and found, locally, to have a roughly constant amplitude and a linear phase. 

The periodicities in the emission spectra result from the cyclic circling of the phase as the 

frequency changes monotonically. This paper seeks to understand the simple empirical 

form of the traveling-wave ratio, identifies constraints it places on models of cochlear 

mechanics, and demonstrates that it can emerge naturally from the scattering of incident 

waves by disordered inhomogeneities in the organ of Corti. 
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A. Overview 

The paper begins with an examination of the empirical form of the cochlear traveling 

wave ratio R(w). Section II provides a theoretical framework for understanding the origin 

of evoked emissions and the empirical form of R(w) by incorporating mechanical inhomo

geneities into a simple, scaling model of cochlear mechanics. An approximate expression 

for R is obtained in the form of a scattering integral. As a simple consequence, the long 

latency typical of evoked emission in human ears is shown to require that the scatter

ing inhomogeneities break the approximate scaling symmetry, confirming arguments that 

"wave-related" reflection mechanisms cannot account for primate evoked emission (Kemp 

1986; Strube 1989). Section III applies the framework to demonstrate how an approximate 

periodicity in the spectra of evoked emissions can emerge from the scattering of incident 

waves by disordered inhomogeneities in cochlear mechanics. Constraints that the mecha

nism places on the form of the wavelength of the traveling wave near the peak of the wave 

envelope are identified. The analysis is contrasted with the model of Strube (1989), in 

which evoked emissions are conjectured to originate as cochlear 'Bragg reflections' scat

tering from pre-existing corrugations in the mechanics. Finally, Sec. IV obtains solutions 

to the inverse scattering problem, inverting measurements of R to determine the nature 

of the mechanical inhomogeneities responsible for evoked emission. 

I. The Empirical Form of the Traveling-Wave Ratio 

Figure 1 shows a typical measurement of stimulus-frequency emissions, plotting the 

amplitude of the pressure measured in the ear canal as the frequency of a quiet stimu

lus tone is varied along the abscissa (Shera and Zweig 1992e). The measured pressure 

shows oscillations with a period fl.! /! ~ 1/12 superposed on a slowly-varying background. 

Whereas the background is determined principally by the acoustic properties of the mea

suring apparatus and the middle ear, the roughly periodic oscillations arise from the alter

nating constructive and destructive interference between the stimulus tone and a reflected 

wave originating in the cochlea (Kemp 1978; Kemp 1980). The cochlear traveling-wave 

ratio R(w) gives the amplitude and phase of that reflected wave-relative to those of the 

original, forward-traveling wave- evaluated at the basal end of the cochlear spiral. 
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Figure 1. Typical stimulus-frequency emission curve measured in the human ear canal (subject 
JEM-R) at roughly 20 dB above threshold (Shera and Zweig 1992e). Roughly periodic oscillations 
arising from interference between the stimulus tone and a reflected wave originating in the cochlea 
appear superposed on a more slowly-varying background . The vertical dotted lines (- ... -) indicate 
the frequencies of the known spontaneous emissions. 
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Noninvasive measurement of the frequency-dependence of the traveling-wave ratio in 

human ears (Shera and Zweig 1992e) indicates that R(w) has the approximate form 

(1) 

where the parameter f indicates that Ra(fW) varies slowly with frequency compared to 

the phase (f ~ 1). The frequency scale weo represents the maximum frequency of hearing 

and the real constant <p determines the rate at which the phase varies with frequency. 

Expanding the phase, 

(2) 

in a Taylor series about some arbitrary reference frequency demonstrates that the phase 

is, locally, linear. For example, in a neighborhood about WI 

(3) 

where 

(4) 

As the frequency varies monotonically, the phase e-i(w-wdr passes alternately through 

plus and minus one, giving rise to the peaks and valleys-with an oscillation period 

6.f ~ 1/r- measured in the ear-canal pressure. Typical values near 1 kHz are IRa I ~ 0.2 

and r ~ 12 ms (Shera and Zweig 1992e). 

In the time domain, the slope of the phase corresponds to the group delay, pre-

sumably given by the round-trip travel time to and from the site of generation of the 

backward traveling wave (Neely et al. 1988). Equation (4) indicates that the delay varies 

inversely with frequency, consistent with measurements of the latency of tone-burst-evoked 

emissions (Wilson 1980; Norton and Neely 1987; Zweig et al. 1992), which suggest that 

evoked emissions originate in a relatively small region of the cochlea appropriate to their 

frequency, presumably near the peak of the corresponding transfer function. 
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II. Scattering from Mechanical Inhomogeneities 

Evoked emissions have been conjectured to arise from the reflection of forward

traveling waves by inhomogeneities in the structure and mechanics of the cochlea (e.g., 

Manley 1983; Lonsbury-Martin et al. 1988; Strube 1989). This section introduces a frame

work for exploring the effects of small inhomogeneities superimposed on the more gradual 

spatial variation of parameters responsible for the frequency-position map. Subsequent 

sections apply the framework to understanding the origin of the empirical form of the 

traveling-wave ratio. When appropriate, illustrative examples are drawn from the simplest 

model that displays many of the more interesting characteristics of the real cochlea (Zweig 

1991). That model, deduced from measurements of basilar-membrane motion, accurately 

represents the macromechanical motion of the organ of Corti and its basilar membrane in 

the linear regime. 

A. Assumptions and inhomogeneities 

In idealized, model cochleae, the impedance of the organ of Corti varies smoothly 

with position. In the real ear, however, mechanical properties may change discretely from 

hair cell to hair cell. In addition, the cochlea manifests mechanical imperfections-arising, 

for example, from natural variability during development or from damage-perturbing the 

secular variation of parameters responsible for the frequency-position map.! For example, 

the impedance of the organ of Corti may vary somewhat irregularly with position due to 

variations in the number or spatial orientation of the outer hair cells (Lonsbury-Martin et 

al. 1988). 

Small local variations In the micromechanics of the cochlea perturb the macrome

chanical traveling wave, giving rise to minute reflected wavelets that scatter back and 

forth within it as it propagates. Complete characterization of that scattering requires a 

fully-detailed, three-dimensional description of cochlear geometry, including the intricate 

microstructure of the organ of Corti. Micromechanical details determine, for example, 

how the scattered wavelets couple back into the traveling wave, where they combine to 

form a net backward-traveling wave detectable in the ear canal. 

1 When the cochlear response is nonlinear, the traveling wave can itself induce transient spatial varia
tions in the mechanical characteristics of the organ of Corti. Such "wave-related" mechanisms for gener
ating the mechanical inhomogeneities responsible for evoked emission are inconsistent, however, with the 
long latencies measured in human ears (see below). 
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Since a complete description requires measurements of cochlear micromechanics not 

currently available, we adopt here a more phenomenological approach based on the simple 

one-dimensional transmission-line model. Any complicated coupling between the scatter

ing of wavelets within the organ of Corti and the macromechanical traveling wave is sum

marized by an effective, one-dimensional scattering potential. Although such an approach 

is adequate for exploring the more qualitative mechanisms underlying evoked emission, it 

cannot, for lack of micromechanical detail, be used to make quantitative predictions for a 

given distribution of micromechanical inhomogeneities (e.g., for the variations in hair-cell 

orientation mentioned above). 

Mechanisms for creating otoacoustic emissions will thus be described by representing 

the cochlea as a linear, one-dimensional hydromechanical transmission line. Although 

simplifications, these assumptions are not gross distortions. For example, the scattering 

addressed in this paper is most significant at stimulus levels near threshold where cochlear 

mechanics appears linear. And although the long-wavelength approximation presumably 

breaks down near the peak of the transfer function, a simple one-dimensional treatment 

permits elucidation of the scattering mechanisms underlying evoked emission. 

The differential pressure P satisfies the wave equation (Shera and Zweig 1991a) 

d2P 1 
J2+-=2P =O 

X :Ax 
(5) 

where jx represents the wavelength, or characteristic impedance. The diacritical tilde indi

cates that the wavelength includes perturbations arising from mechanical inhomogeneities 

of the type described above. 

Those inhomogeneities scatter waves traveling along the organ of Corti. To analyze 

that scattering, first imagine "ironing out" the inhomogeneities to obtain a smoothly 

varying wavelength :Ax. Traveling-wave solutions for the smooth cochlea can be obtained 

using the WKB approximation. The mechanical inhomogeneities, or perturbations, can 

then be reintroduced and their effect on the pressure waves explored using a perturbative 

scattering series (Shera and Zweig 1991b). 

Equation (5) can therefore be written in the inhomogeneous form 

(6) 
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where the dimensionless scattering potential, 

(7) 

vanishes in the absence of any inhomogeneities. Approximate solutions to the inhomoge

neous scattering equation, based on WKB solutions to the homogeneous equation, can be 

obtained by iteration (Shera and Zweig 1991b). 

To simplify the discussion by reducing the number of independent variables, we adopt 

scaling symmetry for the smooth cochlea (Zweig 1976; Zweig 1991; Shera and Zweig 1991a). 

Rather than depending on position and frequency independently, the wavelength :Ax is 

therefore assumed to depend on those variables only in the combination 

(3(x,w) = wjwc(x) , (8) 

where wc ( x) is the frequency-position map. Of course, inhomogeneities in the mechanics 

typically require a slight breaking of that symmetry. 

Equation (6) becomes 

where 
d{3 

A({3) == A/3({3) = dX Ax . 

(9) 

(10) 

The inhomogeneity e({3,{3o) is now viewed as a function of {3 and {3o, where {3o == wjwco . 

(Later, when evaluating integrals, it proves helpful to regard these composite variables 

as representing, respectively, space and frequency-at fixed {3o, the variable (3 varies only 

with position.) 

1. The empirical wavelength 

Rhode's measurements of basilar-membrane motion in the squirrel monkey have been 

used to obtain an empirical estimate of the wavelength A by solving the cochlear inverse 

problem (Zweig 1991). The empirical wavelength, denoted At to distinguish it from the 

more generic wavelength :A, was shown to have the approximate form 

(11) 
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implying that a section of the organ of Corti responds as though it were a negatively

damped harmonic oscillator (.5 < 0) stabilized by a delayed feedback force of strength 

p > o. The time delay corresponds to J.l ~ 1% cycles of the local oscillation period. The 

parameter N represents the approximate number of wavelengths of the traveling wave 

present in the cochlea in response to sinusoidal stimulation (Zweig et al. 1976). 

In the absence of any inhomogeneities, the behavior of the solutions to Eq. (9) for 

P is determined by the location of the zeroes of ).2. The parameter values found by 

Zweig (1991) imply that the empirical wavelength has, among an infinite series of zeroes, 

two closely-spaced zeros just above the real axis near {3 = 1. Those two zeroes create the 

broad, high peak observed in the measured transfer function. By choosing slightly different 

parameter values, the locations of those two zeroes can be made to coincide without, as 

illustrated in Fig. 2, significantly changing the corresponding transfer function. Indeed, 

requiring that the two zeroes coincide at a given distance from the real axis uniquely 

determines the parameters 0, p, and J.l (for J.l in a neighborhood of 1%). For ease of 

analysis, this paper adopts this simpler "double-zero" form for the empirical wavelength 

). t. The locations of its zeroes are plotted in Fig. 3. 

The empirical wavelength), t was deduced from basilar-membrane transfer functions 

in the squirrel monkey and is limited in its validity to frequencies above approximately 

3 kHz. Although the model is useful for illustrating certain qualitative features of the 

wavelength and their relationship to the mechanisms responsible for evoked emission, its 

quantitative predictions cannot be compared with measurements of human otoacoustic 

emissions made at lower frequencies. 

B. The traveling-wave ratio in the Born approximation 

Applying the WKB approximation, one can develop the solution P to Eq. (6) as a 

cochlear scattering series. Since measurements of the traveling-wave ratio typically yield 

ratios of 0(%0), secondary scattering can be neglected (the Born approximation), and 

one obtains the expression (Shera and Zweig 1991 b) 
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Figure 2. The basilar-membrane transfer function (- .. .. ) computed using the wavelength ? t 
with parameter values determined by requiring that its two zeroes near (3 = 1 coincide. The 
transfer function is compared with extrapolated measurements (.) of basilar-membrane motion 
and with the transfer function derived from the wavelength obtained by solving the cochlear 
inverse problem (--); both are taken from Fig. 10 of Zweig (1991). Parameter values are 

6 = -0.1223; P = 0.1309; J.l = 1.746; N = 5.24; and wcl27r = 7.75 kHz. 



~ 

Q:l.. ..,.,.., 
E 

0.4 

0.3 I-

0.2 -
" .... 

0.1 -

0.0 -

-0.1 
0.0 

I I 

• 

I 
0.5 1.0 

I 

.' 

I 
1.5 

Re~,81 

I 

•• 

I 
2.0 

VIII. 12 
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Figure 3. The zeroes (.) of (:>, t)2 in the complex ,B-plane for the region near ,B = 1, computed 
as in Zweig (1991, Fig. 14) . The zero closest to the real axis, denoted {3, is double . The double 
zero creates the peak of the transfer function. Parameter values are the same as those listed in 
Fig. 2, and were determined by requiring that Im{{3} = 0.03 with J.t ~ 1%. An infinite string of 
zeroes lies on the dotted line outside the range of the figure . Note that all zeroes lie in the upper 
half of the complex frequency plane, indicating that the model is stable. 
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for the traveling-wave ratio. Here, the functions 

(13) 

represent WKB waves, and 

a(a a ) == e({3,{3o) 
1-',1-'0 2i).2 (14) 

The upper integration limit, shown as '00' for convenience, indicates that the integration 

extends to the helicotrema. Because of the rapid fall in IW+ I as {3 increases above one, 

the limit '00' means, in practice, any convenient value of {3 somewhat greater than one. 

We are interested in the traveling-wave ratio evaluated at the basal end of the cochlea 

where the form and frequency dependence of R has been found from experiment (Shera 

and Zweig 1992e). At {30 near the stapes, the traveling-wave ratio becomes 

Since the wavelength is real at small (3, the exponential in front provides a phase shift. 

Substituting the form for a yields 

(16) 

where 

.t.(a ) - +2iJ.Po df3' 1"/2· '" +8Nif3o/2 · 
'P 1-'0 = -e ° z '" -e z ({30 ~ 1) , (17) 

where the real, positive number N, typically of order 0(5), is defined by the limit (Zweig 

et al. 1976) 

lim). = 1/4N . 
f3-+0 

(18) 

C. Evoked emission requires a breaking of scaling symmetry 

Equation (1) representing the empirical form of the traveling-wave ratio can be rewrit-

ten as 

(19) 

Comparing this form with Eq. (16) shows that the phase shift +8N{30 arising from 1jJ({30) 

has the wrong sign-and, for reasonable values of N, is far too small in magnitude- to 
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yield the empirical delay. Likewise, the delay cannot originate in the frequency dependence 

of the lower limit of integration (see Sec. IV). The rapid circling of phase responsible for 

the measured latency must therefore originate in the function g(/3,/3o). Consequently, the 

function g must depend on /30 and cannot be a function of /3 alone. Were g a function 

merely of /3, the integral would not evaluate to a strong function of /30, and the phase 

LR(/3o) would not depend strongly on frequency. 

Equivalently, the scattering potential g describing the inhomogeneities cannot scale. 

The inhomogeneities responsible for evoked emission cannot, therefore, simply move with 

the wave envelope, as they would were those inhomogeneities created by the wave it

self [e.g., by some nonlinearity in the mechanics acting near threshold as a "source" of 

backward-traveling waves (de Boer 1983)]. The rapid frequency variation of the phase 

of R requires a breaking of scaling symmetry. This argument reproduces, in a nutshell, 

the reasoning underlying the conclusion that "wave-related" reflection mechanisms cannot 

explain the long latencies of evoked emissions observed in human ears (Kemp 1979; Kemp 

1986; Strube 1989). 

III. Spectral Periodicity without Cochlear Corrugation 

The following heuristic argument shows how an approximate periodicity in the fre

quency spectra of evoked emissions can emerge from the scattering of cochlear waves by a 

disordered distribution of inhomogeneities in the organ of Corti. The observed periodicity 

is shown to be a measure of the real part of the wavelength near the peak of the transfer 

function. 

A. A dominant spatial frequency for scattering 

In the following analysis it proves helpful to decompose the inhomogeneity g into its 

spatial-frequency components. When the inhomogeneities are irregular or random, g will 

contain contributions from many spatial frequencies. Viewing the inhomogeneities as a 

function of the dimensionless distance I == x/I-where I represents the distance by which 

the characteristic frequency changes by a factor of e in the basal turns-one obtains 

(20) 
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where ~ is the dimensionless spatial frequency obtained when distances are measured in 

terms of 1. The inverse transform is, of course, 

(21) 

Note that since e(! < O,w) = 0, the spatial spectral density e(~,w) is a "causal function" 

(Bode 1945; Zweig and Konishi 1987). Rewriting the Fourier integral in terms of the 

scaling variables yields 

In the Born approximation, the traveling-wave ratio has the value 

R(j3o) :::::J '1/;(130) ()Q e(j3,j3o)k(j3)e -2iJ~ kd/3' dj3 , 
1/30 

where the wavenumber k == 1/;". Thus, 

(22) 

(23) 

R(j3o):::::J '1/;(130) roo

dj3 ke -2iJ~ kd/3' 100 

d~ e(~,j3o)e2-rri€ln(/3//3o) . (24) 
1/30 -00 

Since the logarithm can itself be written as an integral, namely 

the scattering integral becomes 

r/3 dj3' 
In(j3 / (30) = 1/30 IF' 

where the order of integration has been interchanged. 

The scattering integral (26) can thus be written in the form 

where 

(25) 

(26) 

(27) 

(28) 

At fixed 130, the function F has the form of an integral over position (Le., over different 

scattering locations). The following sections use qualitative features of the wavelength to 

evaluate the scattering integral, focusing first on the integral F. The results are used to 

show how the observed spectral order can arise dynamically from scattering off a spatially 

disordered array of inhomogeneities. 
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1. Integrating over space at fixed frequency 

To evaluate the integral F, it is helpful to separate contributions arising from the real 

and imaginary parts of the wavenumber: 

where 

and 

A(.8) == In Ikl + 2 [ fJ Im{k} d.8' , 
lfJo 

()(.8jO == Lk + [fJ(27ra.8' - 2Re{k})d.8' . 
lfJo 

The dependence on the variable .80 is weak and has been omitted here for clarity. 

(29) 

(30) 

(31) 

To elucidate the qualitative behavior of the integral F, note that its value will be 

dominated by the region-centered, by definition, about the value .8 = t1- near the abso

lute maximum of A, which occurs near the peak of the transfer function (i.e., near .8 :::::: 1). 

As a function of ~, the function F will then reach a maximum at values ~ such that the 

phase is stationary when evaluated at t1. The next two sections make these arguments 

more precise. 

a) Determining the scattering location 

At values of .8 :::::: 1, the function A reaches a maximum. A maximum occurs both 

because the wavelength becomes short (Ikl becomes large) near "resonance" and, in active 

models, because of contributions from the second term in Eq. (30) arising from the "lasing" 

action of the cochlea. Equation (18) implies that the first term is positive (for typical values 

of N) and of order In( 4N) or greater. The second term represents any contributions from 

the gain of the "cochlear amplifier." In passive models, Im{k} is always negative and 

the two terms in Eq. (30) tend to cancel, thereby reducing and broadening the peak in 

A. In active models, however, both terms can be positive over some range of .8j the 

resulting peak can be quite high and sharp. For example, the imaginary part of the 

empirical wavenumber, k t == 1/), t, increases many fold just basal to the peak of the transfer 

function (Zweig 1991). As a consequence, there is an exponential increase in energy 

transfer to the traveling wave just before the sign of 1m p t} reverses and the accumulated 
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wave energy is deposited in the organ of Corti. These remarks are illustrated in Fig. 4, 

which plots the function A(,8) for the wavelength" t. 

The value of ,8 at which A reaches its global maximum thus fixes the scattering 

location /3, defined so that 

A(,8) ~ A(/3) '11,8. (32) 

Expanding A in a Taylor series about the /3 yields 

(33) 

where !::J.,8 == ,8 - /3, and 

(34) 

with a > o. 
The approximate width of the peak can be obtained from the Taylor series: 

(35) 

If A is sharply peaked (i.e., if !::J.,8 ~ 1), the scattering location /3 is well defined. The 

magnitude of the scattering integral is then determined principally by a small region, 

identified with a neighborhood of size ±/j.,8 about /3, in the immediate vicinity of the peak 

of the transfer function. (The diacritical hat, which indicates that the underlying function 

is evaluated at the scattering location, was chosen to resemble a "peak" in anticipation 

of this result.) This finding is consistent with measurements of emission spectra and 

latency (Norton and Neely 1987), which suggest that emissions arise in a relatively small 

region that moves with the wave envelope. 

In addition to its role in determining the scattering location- and thus, as shown 

below, the phase of R- the function A(,8) controls, in combination with the scattering po

tential (!, the amplitude of the traveling-wave ratio. When the maximum in A is large, the 

corresponding inhomogeneities can be relatively small; the combination will still produce 

traveling-wave ratios of the size, typically of order 0(%0) or greater, measured exper

imentally. By contrast, models in which A remains relatively small (e.g., the generic 

passive model illustrated in Fig. 4), require gross inhomogeneities to generate measurable 

emissions. 
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Figure 4. The function A(J3) computed using two example wavelengths: ~ ) the empirical 
wavelength At and (- - -) a generic passive wavelength obtained from A by setting p = 0 and 
{; = +0.02. The function A was evaluated at fixed frequency (,130 = 1f1O)' The vertical dotted 
lines C·· ·), placed at values ,13 such that A(,B) = A-I, delimit the neighborhood about the peak 
at j3 defining the scattering region. In the passive model, tha.t neighborhood is large, spanning 
essentially all ,13 < 1. Note that Eq. (18) implies that A(J3o) ~ In4N. 
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b) Determining the dominant spatial frequency 

The position of the maximum in the amplitude of the integrand selects the principle 

scattering location /3. This section shows how the existence of a stationary point in the 

phase selects a principle spatial frequency as making the dominant contribution to that 

scattering. 

The phase f) in the exponential in Eq. (29) for F contains the dependence on the 

mechanical inhomogeneities, specifically on their spatial frequency ~: 

f)(f3;O = Lk + r{3 21r~/f3' - 2Re{k} df3' . 
J{3o 

(36) 

The first term, Lk, is small and changes relatively slowly with position, going smoothly 

from values close to zero at small f3 where the wavelength is real to values near -1r /2 

above "resonance.,,2 

The second term, however, is large and can rotate rapidly with f3. For example, since 

the spatial frequencies characteristic of variation at the level of a hair cell are typically of 

0(500) or greater, one expects 21r~ ~ 1. Similarly, the wavenumber Re{k} is large, even 

at f3 ~ 1, where, by Eq. (18), k ~ 4N, with the real number N being typically of 0(5). 

Since the wavelength decreases with distance from the stapes, Re{ k} becomes even larger 

as the wave approaches the scattering location, /3. 
Since the integrand in Eq. (36) is everywhere large, the phase f) rotates rapidly with 

f3 and contributions to the integral F from nearby locations largely cancel except near 

stationary points of f), which occur at zeroes of the derivative (Papoulis 1968; Friedman 

1969): 
of) I 21r~ , 

0= of3 /3 ~ T - 2 Re{l/:A} , (38) 

2 The argument for neglecting contributions to the derivative of (J arising from Lk, valid in generic 
passive models, becomes stronger when considering the empirical wavelength At. First, note that 

Lk = -LA = -1/2LA2 . (2 .1) 

The two closely-spaced zeroes near iJ responsible for the broad transfer-function peak make the derivative 
of the square of the wavelength small near the peak of the transfer function (Zweig 1991): 

d(A
t )21 :::::: 0 . (2.2) 

df3 li 

Consequently, 

(37) 

near iJ, as required. 
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where contributions from Lk have been neglected. For consistency, the stationary-phase 

condition has been evaluated at the scattering location /3. 

Equation (38) determines the spatial frequency ( at which the phase is stationary and 

the function F therefore maximal: 

(= 2/3Re{1/~}/27r. (39) 

The stationary-phase condition (38) thus determines the existence of a dominant spatial 

frequency. When the traveling-wave ratio is found from Eq. (27) by integrating over~, only 

those spatial frequencies in the neighborhood of ( contribute to the net reflected wave. 

Since scaling symmetry is only an approximate local symmetry, the dominant spatial 

frequency ( depends on position within the cochlea. For example, Re{l/~} presumably 

varies as the shape of the traveling-wave envelope changes with characteristic frequency. 

The dominant spatial frequency ( determined by Eq. (39) is well defined only if 

Re{l/>.} is slowly varying in a neighborhood about /3. The size of that neighborhood is 

determined by the width of the maximum in the function A(,8; 0, defined by Eq. (30). The 

sharper that peak in A- or, equivalently, the better determined the scattering location 

/3- the smaller need be the neighborhood about /3 within which Re{l/>.} remains roughly 

constant. 

As an example, Fig. 5 plots IF(OI computed, at fixed frequency ,80, as a function 

of spatial frequency ~ using the empirical wavelength >. t. As predicted by the foregoing 

analysis, the integral is sharply peaked about the spatial frequency ( given by Eq. (39). As 

discussed below, the integral F(O thus serves as a bandpass spatial filter through which 

the inhomogeneities e are passed to generate the net reflected wave. 

c) Another perspective 

The heuristic arguments outlined above for determining the behavior of F(~) can be 

inverted and the process viewed from a different perspective. Rather than first deter

mining the scattering location and then evaluating the stationary-phase condition at /3 to 

determine (, one can view the stationary-phase condition as determining ,8 as an implicit 

function of ~. In this view, Eq. (38) determines the function ,8(0. The integral F(O will 

then be maximal at that value of ~ for which ,8(0 = /3, where /3 locates the maximum of 

A(,8). That value of ~ is, of course, simply (, as defined by Eq. (39). 
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Figure 5. The function IF(j3o,~) I computed as a function of spatial frequency ~ from Eq. (23) 
using the empirical wavelength" t. The integral F was evaluated at fixed frequency (130 = 1f1O) 
and has been normalized to a maximum value of one. The maximum value along the abscissa cor
responds to the approximate spatial frequency (~x = l/~ ~ 10 Jlm with I = 1f2 em) characteristic 
of variations at the level of a hair cell (Beecher 1974). The vertical dotted line (- . . -) indicates the 
dominant spatial frequency ~-here, ~ ~ 45, corresponding to roughly 10 hair cells-computed 
from Eq. (39). 
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2. Integrating Over spatial frequency 

An irregular distribution of mechanical inhomogeneities represents a superposition 

of inhomogeneities at many spatial frequencies. The net backward-traveling wave then 

. emerges, when the system is linear, as a simple integral over contributions from each 

spatial frequency. As shown here, however, not all spatial frequencies reflect equally. 

The sharp peak in A(,B)-which results, in the squirrel monkey, from the behavior of the 

imaginary part of the wavelength basal to the characteristic frequency point-selects one 

distance scale, determined by the real part of the wavelength, as special. The scattering 

of wavelets and their amplification by the "lasing" action of the cochlea thus serves as 

a sort of dynamic "spatial filter," enhancing contributions from inhomogeneities arrayed 

with spatial period if given by 

(40) 

Eq. (40) can be simplified whenever the wavelength satisfies 

IL~I = lm{~} ~ 1 . 
ReP.} 

(41) 

When that inequality is valid 

(42) 

and consequently 

(43) 

where>. = 271"". 

In terms of the conventional wavelength >.~, related to " by the expression (Shera and 

Zweig 1991a; Zweig 1991) 
dx 271"1 

>. = 271"-" = -" ~ d,B ,B (44) 

the spatial period if can then be wri t ten 

( 45) 

For the empirical wavelength, /J represents the approximate location of the positive

. going zero crossing of 1m P. t}. At that point, the power flow reverses sign and wave energy 

is dumped into the organ of Corti. Thus, in a neighborhood about /J the empirical wave

length satisfies inequality (41), and Eq. (45) is valid. In other words, the "lasing" action 

of the cochlea selectively amplifies wavelets scattered from mechanical inhomogeneities ar

rayed with a spatial frequency determined by the Bragg condition (Ashcroft and Mermin 

1976) at resonance. 
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B. The corresponding spectral periodicity 

Because the cochlea maps frequency into position, the dominance of one spatial fre

quency in generating the reflected wave creates a corresponding periodicity in the spectra 

of evoked emissions. To see this most easily, consider the limit in which the "filter" F(O 

is quite narrow, so that contributions from other than the dominant spatial frequency can 

be neglected. 

In other words, approximate the effective inhomogeneity, obtained through filtering, 

by a 8-function in spatial frequency: 

(46) 

Inverting the spatial Fourier transform to obtain the the potential yields 

( 47) 

Consequently, 

[00 e21ri£.ln(f3/f3o) -2i 1/ df3' /A 

R(f3o) ~ Ql (f3o )1jJ(f30) 1130 A(f3) e Po df3 (48) 

= - ((.I ).1.((.1 ) -21ri~lnf3o e -2'Jo df3 /Ad(.l - 100 21ri£.ln 13 . rP , 
el fJO 'f/ fJO e 130 A(f3) e fJ • 

(49) 

Note that the integral (with limits f30 to '00') is nothing more than a number whose 

value is determined principally by the region near the peak of the transfer function. For 

f30 ~ 1, the frequency dependence enters almost entirely through the phase factor 

(50) 

Locally, the traveling-wave ratio therefore has an approximately constant amplitude 

and a linear phase, in agreement with the form determined empirically (Shera and Zweig 

1992e). Comparing Eq. (49) with its empirical counterpart, Eq. (1) for R(w), determines 

the value of the dominant spatial frequency (: 

(51) 
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Because more than a single spatial frequency contributes to the traveling wave ratio, the 

simple relationships derived here are only approximate. The traveling-wave ratio measured 

in any individual subject will show fluctuations about these idealized forms (Shera and 

Zweig 1992e). 

1. Simulated emissions 

As an example, Figs. 6 and 7 give the results of a simulation, based on the empirical 

wavelength At, in which inhomogeneities in the mechanics of the organ of Corti were intro-

duced by randomly varying the strengths of the fast and slow feedback forces. Those two 

forces are responsible, respectively, for creating a net negative damping and for stabilizing 

the resulting oscillator. The form of the inhomogeneities is motivated by the conjecture 

that the feedback strengths are likely to depend on the number and orientation of the 

outer hair cells, which vary rather irregularly with position in primates (Lonsbury-Martin 

et al. 1988). The figures give both the traveling-wave ratio R(w) and the corresponding 

oscillations produced in the cochlear input impedance 

1 + R(w) 
Z(w; R)jZ(w; 0) = 1 _ R(w) (52) 

In actual measurements made in the ear canal, the recorded emissions have, of course, 

been filtered by the middle ear, thereby altering their apparent amplitude and phase, and 

appear superposed on a slowly-varying background as in Fig. 1. 

The parameter values were varied in such a way that the distance between the double 

zero in At and the real axis varied randomly at the level of the hair cell. The resulting 

wobbles in the location of the double zero are illustrated in Fig. 8. To give an indication 

of the variability, Figs. 9 and 10 overlay the results from a number of simulations, each 

computed for a different set of similar, random inhomogeneities. 

Although the inhomogeneities responsible for the wave scattering are disordered at 

the level ofthe hair cell (the parameters change discontinuously every 10 Mm), the resulting 

simulated emissions show considerable spectral regularity, with peaks and valleys arrayed 

nearly periodically, in agreement with experiment. The phase of R varies almost linearly, 
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Figure 6. The traveling-wave ratio R(w) computed (to all orders in the scattering potential) 
from a simulation, based on the empirical wavelength ). t, in which the strengths of the fast and 
slow feedback forces are varied randomly at the level of the hair cell (i.e., the feedback strengths 
change discontinuously every 10 /lm). The frequency range of the figure was chosen to correspond 
with the lowest frequencies for which the empirical wavelength is believed valid in the squirrel 
monkey. As predicted, the phase LR is almost linear, varying approximately as -27r~ln(w/wco), 
in qualitative agreement with the empirical result. By contrast, the amplitude IRI varies more 
slowly; its fractional change over intervals of size !).f ~ 70 Hz-corresponding to a full rotation 
of the phase-is typically small. Note that in this example IRI generally increases at higher 
frequencies; comparison with Fig. 8 shows that this reflects a general increase with characteristic 
frequency in the rms-value of the underlying inhomogeneities. 
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changing by about 7 cycles over the range of the figure and yielding an average frequency 

spacing /)./ of approximately 

/)./ ~ 500 Hz/7 ~ 70 Hz, (53) 

in agreement with the periodicity predicted by the relation 

/)./ / / ~ 1/¢> = l/t 

= 21l-;2~ Re{l/:).} (54) 

~ 1f2 Re{.\t}/~ = 1f2 Re{.\l}/l (IL:).I ~ 1) . 

Note that IRI varies slowly in comparison with the phase, in agreement with the empirical 

result (Shera and Zweig 1992e). 

A simple, qualitative way to model the level-dependence of the predicted emissions 

is to suppose that raising the stimulus level has the effect of decreasing the strengths 

of the feedback forces, thereby increasing b towards zero and decreasing p. Here, we 

mock up those parameter variations by assuming that raising the stimulus level moves the 

double zero in "t further from the real axis, thereby reducing and broadening the peak of 

the corresponding transfer function in a manner qualitatively consistent with the trends 

observed experimentally. 

Figures 11 and 12 show the results of varying the effective stimulus level in this way. 

The underlying inhomogeneities are those shown in Fig. 8. Despite the simplicity of the 

assumptions, the simulation captures many of the qualitative features seen experimentally. 

Note, for example, that whereas the amplitude of the oscillations is a strong function of 

"level," their period and phase vary only slightly (indeed, they remain here essentially 

unchanged), characteristics that are observed experimentally (Shera and Zweig 1992e). 

These results originate in the differential behavior of the real and and imaginary parts of 

the wavelength: whereas Im{l/"t}, which determines the gain ofthe "cochlear amplifier," 

depends strongly on level (the location of the zeroes), Re{l/"t}, which determines the 

dominant spatial frequency t, varies considerably less. 

Although the linearity of the model renders it unsuitable for exploring spontaneous 

emissions, it is interesting to note that introducing a localized perturbation in the mechan

ics somewhat larger than those employed above often results in the generation of a sharp 
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Figure 1. Simulated stimulus-frequency emissions "recorded" at the basal end of the cochlea. 
The figure plots the cochlear input impedance normalized to its value in the absence of api
cal reflections (i.e., to its value at high stimulus amplitudes or in the corresponding "smooth" 
cochlea): 

l+R 
Z(w; R)/Z(w; 0) = 1 _ R . 

The functions Z were computed from the simulation described in Fig. 6 in which the cellular 
feedback forces are varied randomly at the level of the hair cell. Despite the stochastic nature of 
the inhomogeneities, the amplitude and phase of the cochlear input impedance manifest a pro
nounced periodicity, with peaks and valleys arrayed at intervals predicted by Eq. (54). Consistent 
with its identity as a ratio of driving-point impedances (Bode 1945), the simulated emission curve 
represents a minimum-phase function. 
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Figure 8. A representation of the inhomogeneities used in the simulations shown in Figs. 6 and 7. 
The figure plots deviations in Im{,B}, where ,B is the double zero of" t (,6) found near the real axis 
close to ,6 ~ 1. The zero location, expressed as percent deviation from its unperturbed value
which is the same as that shown in Fig. 3-is plotted as a function of the local characteristic 
frequency wc(x)/27r. Note that the characteristic-frequency axis is reversed (the distance x from 
the stapes increases along the abscissa). The zero location was changed every 10 p.m by picking 
random deviations from a Gaussian distribution with a width corresponding to 0.01 %. The width 
of the distribution was chosen to yield a traveling-wave ratio of mean amplitude JRJ <"V %0 similar 
to that measured experimentally (Shera and Zweig 1992e). However, since the analysis assumes an 
effective, one-dimensional scattering potential, the inhomogeneities used here-in particular, their 
absolute magnitude-cannot currently be related to corresponding micromechanical perturbations 
in the organ of Corti. 
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Figure 9. Simulated stimulus-frequency emissions computed as in Fig. 7, which is overlaid for 
comparison ( ), using different sets of random inhomogeneities of the type shown in Fig. 8. 
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Figure 10. Traveling-wave ratios R(w) corresponding to the simulated emissions shown in Fig. 9. 



VIII.31 

peak in IZ(w)1 and concomitant values of Re{Z} < 0, indicating that the model is "emit

ting" energy at these frequencies (Le., the traveling-wave ratio is greater than one). This 

occurs despite the fact that all spectral zeroes characterizing each of the many oscillators 

making up the organ of Corti are in the upper half of the complex-frequency plane (in

dividually, the oscillators are stable). The appearance of this instability (a "spontaneous 

emission") thus arises as a collective response to the presence of a localized perturbation 

in the mechanics. 

C. Comparison with a corrugated cochlea 

To explain the roughly periodic structure of the spectra of evoked emissions, Strube 

(1989) recently proposed that evoked otoacoustic emissions originate as cochlear Bragg 

reflections scattering from an as yet unidentified periodic corrugation in the mechanics of 

the cochlea. In that model, the cochlea manifests a discrete translational symmetry char

acterized by some length scale ~x. That crystalline structure is, of course, superimposed 

on the more gradual monotonic variation of the mechanics responsible for the variation in 

characteristic frequency with position. The periodicities observed in the emission spectra 

are a direct reflection of this underlying washboarding in cochlear mechanics. Indeed, 

the observed frequency spacing ~f at frequency f in the emission spectra is given, as a 

function of ~x, by the equation 

~f/f = ~x/l. (55) 

Equations (54) and (55) become equivalent under the substitution Re{~x} ~ 2~x. 

In the analysis presented here, the length scale determining the frequency spacing ~f 

arises not as the result of some pre-existing cochlear corrugation, but dynamically from 

the scale provided by the wavelength at resonance. As an illustration, Fig. 13 shows 

a snapshot of the forward-traveling pressure wave generated by a pure tone, computed 

using the empirical wavelength "t. Superimposed on the figure is a grid of constant 

spacing ~x = d = %Re{~x}. (Note that the corresponding spacing ~{3 ~ (3~x/l varies 

with position.) In the model of Strube (1989), the cells correspond to a pre-existing 

washboarding in the mechanics, and perhaps the anatomy, of the cochlea. In the analysis 

presented here, however, the length scale ~x emerges dynamically and has no objective 

correlate independent of the traveling wave. 
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Figure 11. Simulated stimulus-frequency emissions computed for varying "stimulus levels" us
ing the inhomogeneities shown in Fig. 8. The effective stimulus level was increased by moving 
the double zero in "t further from real axis, thereby lowering and broadening the peak in the 
corresponding transfer function. The dashed line (- - -), corresponding to a zero location of 
Im{,B} = 0.033, was computed using the parameter values 

6 = -0.1163; P = 0.1268; and J.l = 1.746. 

The dotted line line (- ... ), corresponding to a zero location ofIm{,B} = 0.04, was computed using 
the parameter values 

6 = -0.1024; P = 0.1175 ; and J.l = 1.745. 

Figure 7, computed using parameter values listed in Fig. 2, is overlaid for comparison ( ). 
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Figure 12. Traveling-wave ratios R(w) corresponding to the simulated emissions shown in 
Fig. 11. 
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In a corrugated cochlea, the scattering location is determined not by the position of 

the maximum in A, but rather by the stationary-phase condition (Strube 1989). Given a 

spatial period ~x, scattering occurs at locations where the wavelength Ax satisfies 

2Re{1/ Ax} = 1/ ~x , (56) 

which, when inequality (41) is satisfied, reduces to the Bragg condition obtained by Strube 

(1989): 

(57) 

The analysis presented here does not, of course, rule out the possibility that the 

cochlea is actually corrugated (at the predicted or any other spatial frequency), but demon

strates that such corrugation, although sufficient, is not necessary for the generation of 

otoacoustic emissions. Indeed, unless the ostensible corrugations are large and "spectrally 

pure" (or happen to coincide with the spatial frequency [), the mechanism described here 

will, in effect, filter them out in favor of spatial-frequency components close to [ and 

perhaps present in the scattering potential only as "spatial noise." 

Note that Strube's identification of the mechanism underlying wave reflection in a cor

rugated cochlea with the phenomenon of Bragg reflection is somewhat problematic. Bragg 

reflection occurs in crystalline materials in which incident waves of constant wavelength 

reflect off a large number of equally-spaced scattering centers (Ashcroft and Mermin 1976). 

The wavelets reflected from each plane of the crystal add coherently-and the phase of the 

scattering integrand is therefore stationary-when the wavelength coincides with half the 

crystal spacing (normal incidence). In the cochlea, however, the wavelength ofthe incident 

wave changes continually with position, and consequently no more than perhaps a couple 

scattering centers can ever contribute coherently to the reflected wave (cf. Fig. 13). 

D. Connection with round-trip travel time 

Section I showed how the empirical phase constant 1> determines the value of the group 

delay through Eq. (4). Since 1> and [ are related through Eq. (51), the overall consistency 

of the analysis requires a connection between the round-trip travel time to and from the 

site of reflection and the dominant spatial frequency. That relationship, established here 
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Figure 13. Temporal snapshot of the real part of the WKB approximation W+ to the forward
traveling pressure wave normalized to unity at the peak, computed using the empirical wavelength 
At. The vertical dotted lines demarcate regions of constant width corresponding to the spatial 
frequency ~ ~ 45 computed from the model (and representing the approximate distance, roughly 
100 p.m, spanned by 10 hair cells). Note that the wavelength is continually changing with posi
tion, so that even were the cochlea corrugated, no more than a couple scattering centers could 
contribute coherently to the reflected wave. 
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by direct computation, suggests another viewpoint from which to understand the origin 

of spectral periodicity in evoked emission. 

The round-trip propagation time is given by 

1
x dx 

T;::::(w)=2Re ( )' 
o c x,w 

(58) 

where c(x,w) is the group velocity of the waves on the organ of Corti, and x represents 

the location of wave reflection. The group velocity is given by 

(59) 

where kx is the local wavenumber l/Ax . Thus, 

[/3 813 d (813 ) 8x 
T;::::(W) = 2 ReJpo 8wdf3 8xk 8f3df3 (60) 

= ~ Re [/3 ~ (13k) df3 
W Jpo df3 

(61) 

2 1/3 = - Re{f3k} . 
W Po 

(62) 

Since the wave slows down considerably as it approaches the resonance location, contri

butions to the travel time coming from the lower limit of integration (i.e., the basal region 

of the cochlea) can be neglected. Thus, 

2 . . 
T;::::(W) ~ -13 Re{l/A} . 

w 
(63) 

If the real part of the wavelength at the scattering location changes slowly, the round

trip travel time varies inversely with frequency, in agreement with measurements of the 

echo latency (Wilson 1980; Norton and Neely 1987; Zweig et al. 1992). Equating Eqs. (4) 

and (63)-that is, latency T with round-trip travel time T;::::-yields the expression 

if> = 2,8 Re{l/5.} /271" = t , (64) 

which relates, via the real part of the wavelength near resonance, the rate of phase rota

tion of the traveling-wave ratio (and hence the emission latency) to the dominant spatial 

frequency for scattering, in agreement with Eq. (51). 
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The connection with round-trip travel times to and from the site of reflection suggests 

an equivalent, but perhaps more physically intuitive, way of understanding the origin of 

the regular, almost periodic pattern characteristic of emission spectra. Interpreted in 

the time domain, the observed spectral regularity implies that the emission latency is well 

defined and, locally, a slowly-varying function of frequency. Reference to Eq. (63) indicates 

that T~ will have a well-defined value at frequency w if (1) the scattering location /3 is well 

determined, and (2) the function Re{l/).} varies slowly at that location. These conditions 

are, of course, just those derived above in Sec. lILA. 

IV. Solving the Inverse Problem 

This section provides another perspective on the analysis presented above, combining 

theory and experiment to "invert" the measurements of R to obtain the form of the scat

tering potential e. The inverse scattering problem has, however, no unique solution; two 

possibilities are discussed, the first corresponding to the corrugated-cochlea model (Strube 

1989) and the second to the dynamic spatial-filtering mechanism outlined in Sec. III. 

A. The inverse scattering problem 

In Sec. I the empirical traveling-wave ratio was shown to have the approximate local 

form (Shera and Zweig 1992e) 

(65) 

where Ro varies only slowly with frequency relative to the phase. Consequently, 

(66) 

In humans, 2rr<p ~ 80 and /30 ~ Y20 at a typical emission frequency of 1 kHz. Thus, 

I d~~oR I = 0(1600) . (67) 

Corresponding to these experimental results are the theoretical expressions derived in 

Sec. II. In the Born approximation, the traveling-wave ratio was shown to have the form 

R(/3o) ~ 'I/J(f30) [00 e(/3, /30 )q(/3) d/3 ; 
i{3o 

(68) 
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where, 

q({3) == e -2i J: d{3' I" /)..,({3) , (69) 

and 

(70) 

Differentiating Eq. (68) for R yields 

dR 2i 
d{3o ~ )..,({3o) R({3o) ~({3o)e({3o,{3o)q(~) 

+ ~((3o) io= oe~/J:o) q({3) d{3 . (71) 

Since 

)..,({30) ~ 1/4N , (72) 

the derivative can be simplified to the form 

dR.[ ] 1= oe({3,{3o) d{3 ~ 2Nz 4R({3o) - e({3o,{3o) + ~({3o) o{3 q({3)d{3. 
o ~ 0 

(73) 

Comparison with Eq. (66) shows that the first term in brackets has the wrong sign to 

provide the dominant contribution to the derivative. In addition, both bracketed terms 

are far too small, given reasonable values of N and lei, to yield the empirical result. 

Consequently, we neglect those terms and approximate the derivative by 

dR ~ ~({3o) [= oe({3,{3o)q({3)d{3. 
d {3o J{3o a (3o 

(74) 

Equations (68) and (74) for Rand dR/d{3o provide the theoretical counterparts to Eqs. (65) 

and (66) deduced from experiment. The inverse scattering problem is then to find forms 

for the potential e that yield the experimental result. 

B. A corrugated cochlea 

The most straightforward way to solve the equations and make the theoretical ex

pressions yield the empirical results is to assume that 

8e({3,{3o) = _ 27ri</> ({3 (3 ) 
8{3o {3o e , 0 • 

(75) 
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When this expression for 8{!/8{3o is substituted into Eq. (74) for dR/d{3o, it yields an 

equation of the empirical form (66). To see this, note that solving Eq. (75) for {! yields 

(!({3,{3o) ~ b({3)e+27ri cJ>ln(/3//3o) , (76) 

where b({3) is an undetermined function of {3. Substituting this expression for (! into 

Eq. (68) yields 

R({3o) ~ 'l/J({3o)e-27ri cJ>ln/3o [00 b({3)e+27ri cJ>ln/3 q({3)d{3, 
1/30 

which, after making the identification 

Ro = 'l/J({3o) [ 00 b({3)e+27ri cJ> In /3 q({3) d{3 , 
1/30 

has precisely the form determined empirically. 

(77) 

(78) 

The exponential mapping between characteristic frequency and position implies that 

(79) 

Therefore, the exponential in (! is a periodic function of position, oscillating with di

mensionless spatial frequency </>. The inhomogeneity appears as a product of a scaling 

function b({3) and a symmetry-breaking function depending only on position. In this case, 

the mechanical inhomogeneities oscillate sinusoidally at a well-defined spatial frequency. 

When spatial periodicities of period ~x are introduced into the mechanics, corresponding 

periodicities of period ~f, where 

~f/f = ~x/l, (80) 

are created in the emission spectra; spatial periodicity in, spectral periodicity out. This 

solution to the inverse problem reduces to the corrugated-cochlea model of Strube (1989). 

C. Dynamic spatial filtering 

The solution to Eq. (66) found above is not, however, unique; another solution can 

be obtained as follows. Recall that by decomposing the inhomogeneity into its spatial 

frequency components, R can be written 

(81) 
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so that 

dR ~ _ 27ri 1f;(f30)joo d~ e(~,f3o)~ [oodf3 q(f3)e21ri f..ln(f3/f3o) , 
df30 f30 -00 lf30 

(82) 

where 8e(~,f3o)/8f3o has been assumed small. 

Assume, now, that the integral J qe21rif..ln f3 df3 has the form of a 6-function in spatial 

frequency: 

[ooq(f3)e21rif..lnf3 df3 ~ A(06(~ - () with (= </J. 
lf30 

With that assumption, R and its derivative become 

R(f3o) ~ llo(f3o)e-21ricf> In f30 , 

where 

Ro(f3o) == 1f;(f3o)e(</J,f3o)A(</J) ; 

and 

dR ~ _ 27ri</J R(f3o) , 
df30 f30 

(83) 

(84) 

(85) 

(86) 

in agreement with the empirical results. Unlike the case of the corrugated cochlea, the 

inhomogeneities (! need have no particular spectral content-indeed, they can be com-

pletely random-as long as e( </J, f3o) f:. O. The appropriate spatial frequency component is 

extracted from the spectrum e dynamically. 

This dynamic spatial-filtering mechanism is, of course, but an idealized version of 

that outlined in Sec. III. Figure 5 shows that the integral J qe21rif..ln f3 df3, which is simply 

the function F, is sharply peaked about the value ~ = (, resembling the b-function 6(~ -() 

used here. As shown above, the constant </J responsible for the observed frequency spacing 

~f is determined by the value of the wavelength at resonance: 

</J ~ 2,8 Re{ 1/:5.} /27r . (87) 

In this solution to the inverse problem, the observed periodicity is not an input to the 

model, but emerges as a consequence of the dynamics. 
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v. Discussion 

Because the cochlea maps frequency into position, it is natural to associate a length 

scale ~x with the observed spectral period D.f characterizing the threshold hearing curve 

and the spectra of evoked emissions. The two intervals are related by 

D.x / 1 = D.f / f , (88) 

an equation obtained by differentiating the exponential form of the frequency-position 

map. Current models require that the frequency spacing D.f originate with a corresponding 

corrugation (of spatial period ~x) in the organ of Corti. This paper has shown, however, 

that the length scale D.x can arise dynamically, and need have no objective correlate in 

the mechanical structure of the cochlea. In this analysis, the frequency spacing D.f reflects 

not some pre-existing corrugation in cochlear mechanics, but arises from the length scale 

provided by the wavelength of the traveling wave near "resonance." 

The frequency spacing D.f of the emission spectra thus provides a noninvasive measure 

of the real part of the wavelength near the peak of the transfer function. For example, 

experiments indicate that whereas Ro appears to be a strong function of stimulus ampli

tude (rapidly going to zero at higher levels), the constant <p determining the frequency 

spacing ~f is essentially independent of level (e.g., Zwicker and Schloth 1984; Shera and 

Zweig 1992e). The theory outlined here thus predicts that Re{l/5.}, which determines 

<p, is largely independent of stimulus level. By contrast, the imaginary part of the wave

length, responsible for the observed variation in the amplitude of R, presumably depends 

considerably on stimulus amplitude. 

The focus of this paper is complementary to the subject of an earlier paper (Shera and 

Zweig 1991a). Both combine measurements and analysis to deduce empirical constraints 

on the form of the wavelength of the traveling pressure wave. But whereas the earlier 

paper focuses on the properties of the wavelength in the basal, small-,8 region of the 

cochlea corresponding to the tails of the transfer functions, this paper explores the region 

near ,8 = 1 about the peak of the wave envelope. Whereas the earlier paper concerns itself 

principally with cochlear mechanics at sound-pressure levels above 60 dB, deducing the 

existence of a tapering symmetry that guarantees that waves traveling through the basal 
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turn suffer little reflection, here the analysis focuses on the low-level, linear regime and 

identifies characteristics of the wavelength necessary for the generation of evoked emissions 

with the amplitude and spectral periodicity observed experimentally. 

This paper assumes scaling symmetry in order to simplify the evaluation of scattering 

integrals that are dominated by the value of the integrand in a small region about the peak 

of the transfer function. Although measurements of basilar-membrane motion (Rhode 

1971; Gummer et al. 1987) have shown that scaling symmetry is operative in the basal 

turns of the cochlea, that symmetry appears to be broken at the lower characteristic 

frequencies for which human evoked emission, measured in the ear canal, is strongest. 

Even at low frequencies, however, there remains a local continuity in the shape of the 

transfer functions- and hence, presumably, in the wavelength-that permits the definition 

of a local scaling variable near the peak of the response. 

Statistical measurements of evoked emissions (e.g., the distribution of amplitude fluc

tuations about the smooth high-amplitude limit for a stimulus-frequency emission curve) 

provide constraints on the form of the inhomogeneities and their spatial correlations. 

For example, deviations from perfect spectral regularity can be quantified by computing 

correlation functions that relate statistical properties of the frequency spectra of evoked 

emissions to those present in the underlying spatial inhomogeneities responsible for the 

reflection. Thus, when coupled with a model of cochlear mechanics, such measurements 

can, in principle, be used to test whether the underlying inhomogeneities are consistent, 

for example, with an assumption of randomness at the level of the hair cell. Any compar

ison between theory and experiment, however, awaits both a model of cochlear mechanics 

believed valid at the relatively low frequencies typical of evoked emission and a systematic 

measurement of the statistical properties of emissions. 

Although correlation functions and other expectation values defined over an ensemble 

can be computed from simulations by changing the inhomogeneities responsible for the 

wave scattering, they are not so easily measured, since the pattern of inhomogeneities is 

fixed in each subject. To the extent that scaling symmetry is applicable in the "smooth" 

cochlea, however, certain statistical properties of the emission spectra may be computable 

in a single subject by invoking an analog of the ergodic principle and replacing averages 

over an ensemble of inhomogeneities explored at fixed frequency (i.e., over an ensemble of 

subjects) with averages over frequency (and hence position) assembled from measurements 

on a single individual. 
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VI. Summary 

This paper has explored the origin of the remarkable regularity apparent in the spec

tra of evoked otoacoustic emissions and has sought to understand the constraints such 

spectral order places on models of cochlear mechanics. Contrary to recent arguments 

(e.g., Strube 1985; Peisl 1988; Strube 1989), the paper has demonstrated that a corre

sponding corrugation in the mechanics of the organ of Corti is not necessary for gener

ating the observed periodicities. When the wavelength satisfies conditions summarized 

below-conditions satisfied by the empirical wavelength deduced from measurements in 

the squirrel monkey (Zweig 1991)-such periodicities can emerge spontaneously through 

the dynamics of wave propagation and reflection, despite the apparent "irregularity" and 

"disorganization" of the micromechanics of the organ of Corti that presumably gives rise 

to that scattering (Lonsbury-Martin et al. 1988). 

The following list summarizes the major results and conclusions of the paper. 

1. Noninvasive measurements of stimulus-frequency emission in human ears indicate that 

the traveling-wave ratio, R(w), has the approximate form (Shera and Zweig 1992e) 

(89) 

where Ro( fW) varies slowly with frequency compared to the phase. 

2. An approximate expression for R(w) has been given in the form of a scattering integral 

and used to demonstrate that the long latencies typical of human evoked emission 

require a breaking of scaling symmetry, confirming arguments (Kemp 1986; Strube 

1989) that "wave-related" reflection mechanisms cannot account for primate evoked 

emission; 

3. The empirical form of R(w) has been inverted to obtain solutions to the inverse 

scattering problem. Two qualitatively different solutions were obtained: 

A. In one possible solution, the observed spectral periodicities reflect a pronounced 

underlying corrugation in the mechanics of the cochlea (Strube 1989). The ob

served spectral period tlf is then related to the length scale tlx characterizing 

the spatial washboarding through the equation 

tlf/ f = tlxjl . (90) 
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This solution achieves spectral periodicity by exploiting the cochlear mapping 

between frequency and position and requiring a corresponding spatial periodic

ity in the inhomogeneities causing the reflection. No particular constraints are 

placed on the form of the wavelength A. Generic passive models, however, re

quire a substantial inhomogeneity to generate emissions of the size determined 

empirically. 

B. Alternatively, the observed spectral order can emerge spontaneously through a 

dynamic process of spatial filtering in which, as suggested by the anatomy (Lons

bury-Martin et al. 1988), the micromechanics of the organ of Corti need manifest 

no particular long-range regularity or organization. To generate a pronounced 

periodicity despite the lack of regularity in the scattering potential, this solution 

requires (a) that the function A(,8), defined by 

A(,8) == -In IAI + 2 [f3 Im{1/A} d,8' , Jf30 
(91) 

have a strong, sharp maximum A at some value /3 < 1; and (b) that Re{1/A} 

remain roughly constant in a neighborhood about /3 of size A,8 proportional to 

the width ofthe maximum in A(,8). Condition (a) guarantees that the scattering 

region about /3 is well defined; condition (b) that inhomogeneities characterized 

by spatial frequencies ~ lying outside a small neighborhood of t = <p contribute 

little to the net reflected wave (or, equivalently, that the round-trip travel time 

varies slowly over the scattering region). In this case, the spectral period Af is 

determined by the value of the wavelength near the peak of the wave envelope: 

Af/f~1/t, (92) 

where 

t = 2/3 Re{1/5.} /211" . (93) 

The observed spectral regularity arises spontaneously through the dynamics of 

wave propagation and reflection. 

The empirical wavelength found by inverting basilar-membrane transfer func

tions measured in the squirrel monkey satisfies these two conditions, achieving 
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the sharp maximum in A through the form of the imaginary part of the wave

length, which results in a substantial transfer of energy to the traveling wave 

basal to the putative scattering location ~ (Zweig 1991). 

The two possibilities are not, of course, mutually exclusive. When conditions (a) and 

(b) are satisfied, however, a pronounced corrugation of the mechanics, while sufficient, 

remains unnecessary for producing the striking periodicities observed in the spectra 

of evoked emission. 
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IX. Epilogue 

"What's past is prologue." 

-Shakespeare, The Tempest (act II, scene i) 

By way of conclusion, these final pages-written with the hope of provoking further 

examination of the ideas presented here-gather together proposals for a number of exper

iments in hearing naturally suggested by the results of the thesis. 

• Tapering symmetry. Tapering symmetry was deduced (§I) from measurements of the 

cochlear input impedance in cat (Lynch et al. 1982). Rigorous comparison with ex

periment requires additional measurements, in both cats and human cadavers. Those 

measurements should be made at the basal end of the organ of Corti, provide consid

erable coverage of low and intermediate frequencies, have known errors, and exhibit 

the minimum-phase analyticity properties required of driving-point impedances (Bode 

1945; Zweig and Konishi 1987). Tapering symmetry predicts that the phase of the 

cochlear input impedance remains small at low frequencies. 

• The opposing tapers of cochlear geometry. Tapering symmetry relates the spatial 

variation of certain geometric and mechanical properties in the basal turns of the 

cochlea (§I). The opposing tapers of cochlear geometry-whereby the scalae areas and 

the width of the basilar membrane taper in opposite directions-are a natural conse

quence of that symmetry. To test more rigorously the simple proportionality implied 

by conventional cochlear models, one can measure the spatial variation of both the 

scalae cross-sectional area and the volume stiffness of the organ of Corti. Ideally, mea

surements should be made in the same preparations used above to measure the input 

impedance. In addition to testing the relationships implied by tapering symmetry, the 

measurements can be compared with the predictions of scaling symmetry (cf. §I). 

• Effective areas of the eardrum. Measurement of the transfer coefficients of the ear

drum-including its two effective areas and their regions of validity-would permit 

incorporation of a phenomenological model of eardrum transduction into models of 

the middle ear and allow a meaningful comparison between the predictions of eardrum 

models and experiment (§III). The standard methodology should include using the 
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constraints imposed by causality to check and "improve" the measurements (Zweig 

and Konishi 1987), which can then be examined for minimum-phase behavior and 

consistency with the principle of reciprocity. 

• Deconstruction of middle-ear mechanics. Systematic, invasive measurements of the 

transfer coefficients of the middle ear and its components in a series of individual 

preparations (preferably feline and/or cadaver) would permit a more rigorous com

parison between middle-ear models and experiment. Current models are based almost 

exclusively on "average" measurements and remain incompletely tested, even at low 

frequencies. For example, models predict both "forward" and "reverse" transfer func

tions, but the latter have never been compared with experiment. Although middle-ear 

transduction characteristics are conveniently factored into a product of component 

transformations, the regions of validity for that factorization remain largely unknown. 

The validity of the program of middle-ear deconstruction must be therefore estab

lished experimentally. As always, measurement consistency should be examined using 

constraints (such as causality and reciprocity) that overdetermine the system. 

• Stapes reflection coefficient. Measurement of middle-ear transfer coefficients and 

cochlear input impedance can be combined to calculate the basal reflection coefficient 

for retrograde waves incident upon the stapes (§II). Those results can be compared 

with the predictions of middle-ear models. The basal reflection coefficient has impor

tant consequences for understanding combination-tone and other similar experiments 

in which the middle ear is driven in reverse (§V). In addition, differences in the am

plitude of that reflection coefficient induced by variations in middle-ear size correlated 

to gender may underly the observation that spontaneous emissions are found more 

frequently in females than in males. 

• Noninvasive measurement of middle-ear scattering coefficients. Combining the analysis 

techniques presented in chapters V and VII allows one to measure certain combinations 

of middle-ear scattering coefficients noninvasively. Those measurements can be used 

to test the common theoretical assumption that the action of the middle-ear can 

be idealized as that of a simple mechanical transformer (Shera and Zweig 1992g). 

Especially interesting would be a comparison between such measurements and the 
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predictions of a middle-ear model whose parameter values have been estimated by 

comparison with the middle-ear input impedance in the same subject (Shera and 

Zweig 1992d). 

• Psychophysical Gedankenexperiments. The Gedankenexperiment analyzed in chap

ter V can be performed psychophysically or, in the spirit of Fahey and Allen (1985), 

neurophysiologically. The analysis suggests one will find pronounced "resonant peaks" 

due to wave interference effects within the cochlea. 

• "Dividing out" the middle ear. The formalism outlined in chapter V can be used to 

identify combination- and cancellation-tone experiments in which the unknown trans

fer characteristics of the middle ear "divide out," greatly simplifying the comparison 

between theory and experiment. 

• Direct measurement of cochlear compressibility. Chapter VI used an analysis of 

psychophysical thresholds in patients with missing or disarticulated middle-ear os

sides (von Bekesy 1936; von Bekesy 1960) to obtain a tight upper bound on the mag

nitude of cochlear compressibility. Direct measurements of oval- and round-window 

volume displacements- made, for example, by measuring stapes displacement with the 

Mossbauer technique (e.g., Lynch et al. 1982) while recording round-window displace

ments with a sensitive microphone sealed over the niche (e.g., Moxon 1971)- should 

be able to corroborate that result. 

• Hearing thresholds in the middleless ear. Additional psychophysical measurements on 

the "middleless" ear should be undertaken to verify von Bekesy's finding- consistent 

with a small, but finite compressibility-that hearing in such ears is most sensitive at 

low frequencies. The prediction that immobilizing the stapes should actually improve 

hearing in these subjects, especially at higher frequencies, can be tested in animal 

preparations where measurements of auditory-nerve fiber thresholds can replace psy

chophysical determination of the hearing threshold. To minimize pressure differences 

between the oval and round windows, which can drive the cochlea and complicate 

the interpretation, the experiments should be performed in animals in which the two 

windows face onto the same cavity or in preparations in which the cavities have been 

opened widely. Similarly, residual hearing due to compressibility can be expected to 
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decrease if the impedances of the oval and round windows are made more comparable. 

For example, removing the stapes while retaining the oval window membrane, which 

presumably increases the symmetry between the windows, should result in an elevation 

of hearing thresholds at low frequencies. 

• Emission statistics. Measurement of amplitude distributions and other statistical prop

erties of stimulus-frequency emissions can be helpful in understanding the distribution 

of spatial inhomogeneities responsible for the reflection underlying evoked emission 

(cf. §VIII). 

• Level-dependence of evoked emISSIOn . Measurements of basilar-membrane transfer 

functions can be "inverted" to find the wavelength of cochlear traveling waves as a 

function of frequency and stimulus level (Zweig 1991). The qualitative picture of 

evoked emission presented in §VIII predicts that the observed spectral periodicity 

(and, as a result, the latency) of evoked emissions provides a measure of the real part 

of the wavelength near the peak of the wave envelope. By contrast, the amplitude of 

evoked emissions reflects the value of the imaginary part of the wavelength (which, 

depending on its sign, may either amplify or diminish the energy in retrograde waves 

during propagation). Measurements of the level-dependence of emission latency and 

amplitude suggest that the real and imaginary parts of the wavelength vary quite 

differently with sound-pressure level. Comparison of these independent determinations 

of the wavelength and its variation with level would provide a critical test of the model 

of evoked emission. 

• Emissions and expectations. Although evoked emissions may originate as an epiphe

nomenon of mechanical activity in the cochlea, the correlation between their spectra 

and the microstructure of the hearing threshold curve and the evidence for their con

trol from the central nervous system suggests that the brain may exploit emissions 

to modify the sensitivity of hearing. Measurements of emissions can be combined 

with psychophysical experiments to explore whether the mechanics are modified by 

expectations . 

• For example, the position of extrema in the emission spectra (and, consequently, 

in the hearing threshold) can be determined from the envelope of the measured 



IX.5 

ear· canal pressure in response to tone burst (Zweig et al. 1992). If those tone 

bursts are masked by noise played to the contralateral ear and the subject asked 

to detect them, the ear might attempt to obtain greater sensitivity at the tone

burst frequency by modifying (perhaps only locally) the pattern of peaks and 

valleys in the threshold microstructure. When reflected in the emission spectra, 

those modifications can be detected noninvasively in the ear canal. 

As another example, it would be interesting to explore emissions evoked by 

transient stimuli under conditions that "confuse" the brain, such as the tone· 

burst illusion described by Deutsch (Deutsch 1974; Deutsch 1975; Houtsma et al. 

1987). Let the letters A and B denote different tones. When the tone sequences 

"ABABAB···" and "BABABA · ··" are presented simultaneously to the right 

and left ears, respectively, the percepts in the two ears are typically" A- A- A- ···" 

and "- B- B- B-·· .. " (The perceived pattern is correlated with the handedness of 

the subject; right handers have a strong tendency to localize the higher frequency 

tone to the right ear.) By recording emissions evoked by these stimuli, presented 

first to each ear separately and then together, one can look for any peripheral 

correlates of central confusion. 
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