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Listening to the Ear

“Your tale, Sir, would cure deafness.”

—Shakespeare, The Tempest (act 1, scene ii)
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For the closest of friends,
KoLV Yap TQ TOV Pidwv.

—Plato’s Phaedrus
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Abstract

Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, of-
fering a promising acoustic window on the mechanics of hearing in awake, listening human
beings. That window is clouded, however, by an incomplete knowledge of wave reflection
and transmission, both forth and back within the cochlea and through the middle ear.
This thesis “does windows,” addressing wave propagation and scattering on both sides
of the middle ear. A summary of highlights follows. Measurements of the cochlear in-
put impedance in cat are used to identify a new symmetry in cochlear mechanics—termed
“tapering symmetry” after its geometric interpretation in simple models—that guarantees
that the wavelength of the traveling wave changes slowly with position near the stapes.
Waves therefore propagate without reflection through the basal turns of the cochlea. An-
alytic methods for solving the cochlear wave equations using a perturbative scattering
series are given and used to demonstrate that, contrary to common belief, conventional
cochlear models exhibit negligible internal reflection whether or not they accurately repre-
sent the tapering symmetries of the inner ear. Frameworks for the systematic “deconstruc-
tion” of eardrum and middle-ear transduction characteristics are developed and applied to
the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A sim-
ple phenomenological model of inner-ear compressibility that correctly predicts hearing
thresholds in patients with missing or disarticulated middle-ear ossicles is developed and
used to establish an upper bound on cochlear compressibility several orders of magnitude
smaller than that provided by direct measurements. Accurate measurements of stimulus-
frequency evoked otoacoustic emissions are performed and used to determine the form
and frequency variation of the cochlear traveling-wave ratio noninvasively. Those mea-
surements are inverted to obtain the spatial distribution of mechanical inhomogeneities
responsible for evoked emission. Although current models require that the periodicities
found in emission spectra and threshold hearing curves originate in a corresponding corru-
gation in the mechanics of the cochlea, it is shown that the observed spectral periodicities
can arise spontaneously through the dynamics of wave propagation and reflection and that
the organ of Corti, as suggested by the anatomy, need manifest no particular translational

symmetries.
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Introduction

The mammalian ear has evolved a remarkable mechanism for the detection and analysis
of sound. Far from being an objective, passive recorder of sense impressions, the ear is
an energy-producing mechanical system that creates sound in response to sound. Those
sounds can be recorded noninvasively in the ear canal with sensitive microphones. Thus,
by listening seriously to what the ear is saying, one can explore the mechanics of hearing
in awake, listening human beings.

Blow on an Aeolian harp. As the strings vibrate they move air molecules surrounding
the harp and sound waves are created that travel outwards to the listening ear. Upon
entering the ear canal those waves vibrate the eardrum, whose oscillations are transmitted
by the bones of the middle ear (the three smallest of the human body: the malleus, incus,
and stapes) to the oval window of the cochlea.

Helmholtz pictured the cochlea itself as a miniature harp, connected string by string
to neural fibers (Helmholtz 1863). Sensations of tone were created as sound waves induced
the strings to resonate in sympathetic vibration, exciting corresponding fibers, which sent
electrical signals to the brain. This view of cochlear mechanics was overturned, however,
by the experiments of Georg von Békésy who showed that, unlike the strings of a harp, the
structures within the cochlea are not under tension (von Békésy 1960).

Rather, the cochlea consists of three fluid-filled chambers coiled into a spiral like a
snail’s shell about the size of a large pea. (Applied to the ear by the Sicilian philosopher
Empedocles,! the word “cochlea” comes from the Greek koxAias, referring to the spiny,
spiral-shelled Mediterranean gastropod Murex trunculus, source of the coveted royal dye,
Tyrian purple.) Separated by membranes from the other two, the central chamber contains
a longitudinal array of specialized sensory cells, the hair cells of the organ of Corti. By
directly observing the motion of the basilar membrane in human cadavers, von Békésy
demonstrated that vibration of the stapes sets the cochlear fluids into motion, generating a
wave that travels along the organ of Corti until it reaches a point where its energy excites

the nearby hair cells and is transduced into electrical potentials. The location of the point

1 Empedocles’ (d. circa 430 B.C.E.) contributions to physics include the famous theory of the four
elements (earth, air, fire, and water) and their manipulation by the two powers, affinity and antipathy.
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of transduction varies monotonically with the frequency of the stimulus. Tones of low
frequency stimulate hair cells near the apex of the cochlea; higher-frequency tones excite
regions closer to the stapes. The cochlea thus acts like an acoustic prism, separating sounds
into their component frequencies and mapping those frequencies onto different points along
the organ of Corti. This “textbook” understanding of traveling-wave excitation in the
cochlea was, until recently, believed correct at all stimulus levels.? Although the classical
view applies for loud sounds (and in the dead), a remarkably different picture now pertains
at lower sound intensities.

It is now known that the ear creates sound while listening to sound (Kemp 1978).
A recent model of cochlear mechanics deduced from measurements of basilar-membrane
motion (Zweig 1991) predicts that cellular force generators in the cochlea—presumably the
outer hair cells, which are motile, exhibiting a voltage-dependent contraction in isolated
preparations (Brownell et al. 1985; Zenner et al. 1987), and receive extensive innervation
from the brain (Spoendlin 1979)—boost the energy of incoming sound, amplifying traveling
waves somewhat as a laser amplifies light. Consequently, small backward-traveling waves,
originating from the scattering of forward-traveling waves by mechanical inhomogeneities
in the organ of Corti (Manley 1983; Lonsbury-Martin et al. 1988), are amplified as they
travel backwards to the stapes, from which they are partially reflected. Unreflected waves
vibrate the middle-ear bones and ultimately appear in the ear canal as sound (“otoacoustic
emissions”). The generation of large backward-traveling waves radically changes our view
of wave motion in the cochlea at low sound-pressure levels. The superposition of forward-
and backward-traveling waves leads to a standing-wave component in the cochlear response,
thereby increasing the overall sensitivity of hearing.

The threshold hearing curve shows periodic minima (Elliot 1958; Thomas 1975) at fre-
quencies that correlate strongly with maxima in the spectra of otoacoustic emissions (Horst
et al. 1983; Zwicker and Schloth 1984). The ear emits most loudly at those frequencies for

which it is most sensitive. Since the cellular force generators are limited in the energy they

2 See, however, the work of LePage (LePage 1987; LePage 1990), who describes experiments identifying
another possible component—a “summating baseline shift”—in the response of the organ of Corti and
suggests that they provide evidence for the dynamic control of cochlear tuning, achieved by varying the
tension in the radial fibers of the pars pectinata. The outer hair cells then serve—returning to Helmholtz—
much like the pedals on an orchestral harp.
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can emit, cochlear excitation patterns produced when the ear listens to quiet sounds are
qualitatively different from those produced in response to louder sounds. The extensive
innervation of hair cells by neurons from the brain suggests that the brain may, accord-
ing to its expectations, purposefully alter the mechanical state of the ear to facilitate the

extraction of signal from noise; the ear may actively modify and control its own experience.

Background

More than forty years ago, Gold (1948) proposed that the viscous damping of the organ
of Corti might be overcome by a “regenerative mechanism” through which electrochem-
ical energy was converted into mechanical forces that counteracted the damping. Gold
suggested that such feedback might occasionally drive a region of the cochlea into self-
oscillation, and that such sustained oscillations could underly the familiar phenomenon of
“ringing in the ear.” Although Gold predicted that those mechanical oscillations would gen-
erate acoustic counterparts detectable in the ear canal, his hypothesis remained unexplored
for thirty years, until Kemp (1978), working with sensitive microphones, demonstrated the
existence of otoacoustic emissions originating within the cochlea.

To supply background and context for the work described here—which investigates
the unexpected experimental finding that when listening to quiet sounds the ear emits, at
certain regularly-spaced frequencies corresponding to those at which it is most sensitive,
nearly as much energy as it receives Kemp (1978)—this section provides a brief synopsis of
some of the more interesting features of otoacoustic emissions. Probst et al. (1991) provide
a recent, comprehensive review of the field, which they find represented, to date, by more

than 300 published papers.

e Otoacoustic emissions (OAEs) can occur in the absence of acoustic stimuli (sponta-
neous OAEs) or they can be generated by the cochlea in response to sound (evoked

OAEs).

e Click- or toneburst-evoked otoacoustic emissions, known as cochlear echoes, can be
evoked from essentially all normal human ears. Their ubiquity and the close correlation
between the spectra of the evoking stimulus and that of the resulting echo (Norton

and Neely 1987) indicate that evoked emissions reflect normal cochlear mechanics,
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not cochlear pathology. Indeed, the presence and level of evoked emission offers an

objective, clinical measure of cochlear function (Kemp et al. 1986).

Human spontaneous and evoked OAEs are found most often in the frequency range
1-2 kHz. This frequency window may be a reflection of the transfer characteristics of

the middle ear (Shera and Zweig 1992d; Shera and Zweig 1992g).

The amplitude of stimulus-frequency and transiently-evoked OAEs grows linearly with
the level of the evoking stimulus below approximately 10 dB; at higher stimulus levels

they saturate (Zwicker and Schloth 1984).

Spontaneous otoacoustic emissions produce a non-Gaussian probability distribution
for the pressure amplitude in the ear canal, suggesting that they arise as the result of
instabilities in an active feedback system, rather than through the passive filtering of

thermal noise (Bialek and Wit 1983).

Evidence suggests that spontaneous OAEs may arise through damage to the cochlea
(Zurek and Clark 1981; Ruggero et al. 1983) and are not important for the normal
process of hearing. Characterization of their properties, however, could give insight

into the structure of the active processes that contribute to normal hearing.

Surveys of emission prevalence (see Probst et al. 1991) find that spontaneous OAEs
occur more frequently in females (52%) than in males (30%). Similar gender differences
occur in both infants and adults (Strickland et al. 1985). These surprising statistics
may reflect differences in the stapes reflection coefficient originating through gender-

related variations in middle-ear size.

Spontaneous OAEs display typical nonlinear behavior. They show both suppression
and entrainment in response to external tones at nearby frequencies (e.g., Rabinowitz
and Widin 1984), suggesting that they may be characterized phenomenologically as

originating from the motion of a nonlinear harmonic oscillator.

Measurements of the minimum stimulus energy needed to entrain a spontaneous emis-
sion yield results on the order of 1 eV (Wit and Ritsma 1983), suggesting that emis-
sion phenomena could be triggered by or originate in processes at the level of a single

molecule.
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e Pairs of adjacent spontaneous emissions (and sometimes even groups of noncontiguous
emissions) can be “linked” (Burns et al. 1984; Jones et al. 1986), meaning that they
appear to switch on and off alternately in time, as though the emission energy were

somehow shared between two quasi-stable states.

e When the ear is driven by two primary tones of frequency f; and f,, combination tones
at frequencies nf; + mfy, where n and m are integers, are generated in the cochlea.
These combination tones can be detected both psychophysically (Goldstein 1967) and
by microphones in the human ear canal (Kemp 1979). Spontaneous OAEs have been
found to generate their own intermodulation distortion products (Burns et al. 1984;

Jones et al. 1986).

e If, in addition to the two primaries, a third cancellation tone at a combination-tone
frequency is presented, its amplitude and phase can be adjusted so that the combi-
nation tone is no longer heard. In conjunction with a model of the middle ear, a
nonlinear model of the cochlea can predict the amplitude and phase of the required
cancellation tone and the results of other psychophysical null experiments (Shera and

Zweig 1992b).

e The behavior of otoacoustic emissions is controlled via feedback from the central ner-
vous system. Experiments have shown that contralateral tones can alter the amplitude
and frequency of both spontaneous and evoked OAEs (Mott et al. 1989). Whitehead

(1991) has described similar, centrally-mediated variations in emission characteristics.

Evoked emission and the thesis

Measurement of the pressure in the human ear canal as a stimulus tone is swept slowly
in frequency yields two surprises. First, as demonstrated by Kemp (1978) more than a
decade ago, the measured pressure contains a surprising amount of spectral structure,
revealing the presence of an additional tone evoked by the stimulus and generated within
the cochlea. Second, and perhaps even more surprising, that spectral structure typically
assumes a remarkably simple form, consisting of regular, almost periodic oscillations in the

amplitude and phase.
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This thesis attempts to understand the origin of that simple pattern and explores a

number of interesting qualitative features of evoked otoacoustic emissions:

e Close examination of the human threshold hearing curve reveals a substantial mi-
crostructure (Elliot 1958; Thomas 1975). Threshold sensitivity can vary by more than
10 dB over intervals of 50 Hz. The microstructure of the human threshold hearing
curve suggests that the cochlea, at least at low stimulus levels, is characterized by a
discrete (rather than the often presumed continuous) spatial symmetry. The threshold
hearing curve defines a “cochlear reticule.” The cochlear reticule may result from the
generation of standing-wave patterns in the inner ear (Kemp 1980) or may reflect an

intrinsic corrugation or washboarding in the mechanics of the organ of Corti.

e Maxima in the spectra of evoked emissions are correlated strongly with minima in the
threshold microstructure (Kemp 1979; Horst et al. 1983; Zwicker and Schloth 1984).

The ear emits preferentially at those frequencies at which it is most sensitive.

e The frequency spacing of adjacent maxima in both the spectra of evoked OAEs and
the threshold hearing curve varies systematically with the frequency of the stimulus.
Psychophysically, the observed frequency interval represents roughly half a critical
bandwidth (Zwicker and Schloth 1984). When converted to a length using the cochlear
frequency-position map, the frequency spacing corresponds to a constant distance
(roughly half a millimeter) along the organ of Corti. Perhaps significantly, this distance
is nearly the same as that traversed by outer hair cell afferent auditory nerve fibers,
which travel basally some distance after entering the cochlea before synapsing with

the outer hair cells (Spoendlin 1978).

e Evidence suggests that the microstructure of the human threshold hearing curve may
be correlated between the two ears (Probst et al. 1986). If this is so, otoacoustic
emissions may play an important role in signal processing at low and intermediate
sound-pressure levels (e.g. in the localization of low intensity sounds or the extrac-
tion of unvoiced speech from ambient noise). If otoacoustic emissions do function in
signal processing, and are not merely an epiphenomenon of cochlear activity, then it
is possible that the boundary condition at the basal end of the cochlea (which helps

determine the distribution of sound created in the inner ear) evolved to facilitate this
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function. A model of the middle ear (Shera and Zweig 1992a) can be used to explore
this possibility.

e The data of Zwicker and Schloth (1984) indicate that at low stimulus levels where
emissions are strong the analytic structure of the ear-canal pressure is not what one
would expect from a causal system (Shera and Zweig, unpublished observation). The
real and imaginary parts of a causal function are Hilbert transforms of one another;
the real and imaginary parts of Zwicker’s measured ear-canal pressure do not satisfy
these relations, raising the intriguing possibility that feedback from the brain plays a

major role in the generation or control of evoked emission.

Overview

Otoacoustic emissions thus offer a promising acoustic window on the mechanics of
hearing. That window is clouded, however, by an incomplete knowledge of wave reflection
and transmission, both forth and back within the cochlea and through the middle ear.

” addressing wave propagation and scattering on both sides of

This thesis “does windows,’
the middle ear to provide an understanding of the striking spectral periodicities found in
emission spectra and the microstructure of the threshold hearing curve. Organized as a
series of self-contained chapters (corresponding to papers, either published or submitted for
publication, written in collaboration with George Zweig), the thesis is unified thematically
by its concern with understanding how measurements made in the ear canal can be used
as a noninvasive probe of cochlear mechanics.

The thesis—organized as a round-trip journey outwards from the cochlea to the
eardrum and middle ear and then back again to the cochlea—explores two principle themes.
Since quantitative interpretation of otoacoustic emissions requires knowledge of middle-ear
transfer functions not currently available, the thesis first develops (in chapters III, IV,
and VI) frameworks for the systematic “deconstruction” of eardrum (§III) and middle-ear
mechanics (§IV), providing a common ground for the comparison between theory and ex-
periment. For example, the framework is used to establish an upper bound on inner-ear

compressibility several orders of magnitude smaller than those provided by direct measure-

ments (§VI).
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Second, the thesis explores (in chapters I, II, V, VII, and VIII) the propagation and
reflection of cochlear waves. Measurements of cochlear input impedance in cat are used
to identify a new symmetry in cochlear mechanics—termed “tapering symmetry” after
its geometric interpretation in simple models—that guarantees that the wavelength of the
traveling wave changes slowly with position near the stapes (§I). Waves therefore propagate
without reflection through the basal turns of the cochlea. Analytic methods of solving the
cochlear wave equations that incorporate both scattering by mechanical inhomogeneities in
the organ of Corti (§II) and reflection and transmission at the cochlear boundary with the
middle ear are developed. Those methods are used to demonstrate that measurements of
otoacoustic emissions can be employed to determine middle-ear transfer functions noninva-
sively (§V). Accurate measurements of stimulus-frequency evoked otoacoustic emissions are
made and, after “dividing out” the unknown transfer characteristics of the middle ear, used
to determine the form and principle frequency variation of the cochlear traveling-wave ratio
(§VII). Finally, those measurements are “inverted” and solutions to the inverse scattering
problem obtained for the distribution of mechanical inhomogeneities responsible for evoked
emission (§VIII). Although current models require that the periodicities found in emission
spectra and threshold hearing curves originate in a corresponding corrugation in the struc-
ture of the cochlea (e.g., Strube 1985; Peisl 1988; Strube 1989), the thesis demonstrates
that the striking spectral periodicities can arise spontaneously through the dynamics of
wave propagation and reflection and that the remarkable spectral order, as suggested by

the anatomy of the organ of Corti, need have no objective spatial correlate.



A Symmetry Suppresses the Cochlear Catastrophe

Christopher A. Shera and George Zweig
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Los Alamos, New Mexico 87544

ABSTRACT

When the independent spatial variable is defined appropriately, the empirical
finding that the phase of the cochlear input impedance is small (Lynch et
al. 1982) is shown to imply that the wavelength of the pressure wave in the
cochlea changes slowly with position near the stapes. As a result, waves
traveling in either direction through the basal turn undergo little reflection,
and the transfer of energy between the middle and inner ears remains efficient
at low frequencies. The slow variation of the wavelength implies that the
series impedance Z and shunt admittance Y of the cochlear transmission line
are approximately proportional at low frequencies and thus requires that the
width of the basilar membrane and the cross-sectional areas of the cochlear
scalae taper in opposite directions. Maintenance of the symmetry between Z
and Y is both necessary and sufficient to ensure that the spatial derivative of
the wavelength, and hence the phase of the cochlear input impedance, remains
small.

Although introduced in another context, the model of Zweig (1987; 1991)
manifests the symmetry between Z and Y. In other transmission-line mod-
els of cochlear mechanics, however, that symmetry is absent, and the spatial
derivative of the wavelength diverges at low frequencies—the “cochlear catas-
trophe.” Those models therefore contradict the impedance measurements and
predict little transfer of energy between the middle and inner ears.

I.1
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Introduction

Measurements of the velocity of the basilar membrane in response to tones of different
frequency (e.g., Rhode 1971; Robles et al. 1986) and the absence of spectral ripples in non-
invasive measurements of middle-ear input impedance (Kemp and Chum 1980; Zwicker
and Schloth 1984) both indicate that little reflection of forward-traveling waves occurs
within the cochlea at high sound-pressure levels. Indeed, it is widely believed that the
cochlea evolved to suppress such reflection at stimulus levels sufficiently above thresh-
old (Zweig et al. 1976; Zweig 1976). A number of authors have argued, however, that the
cochlea is strikingly asymmetric with respect to wave travel in the two directions along the
organ of Corti and that the internal reflection of backward-traveling waves is significant
at all sound levels (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986;
Kaernbach et al. 1987). Such reflection, if present, would have important consequences
for understanding the nature of otoacoustic emissions and their contribution to auditory
signal processing (Kemp 1978; Kemp 1979).

This paper demonstrates, however, that measurements of the cochlear input impe-
dance,
(Lynch et al. 1982; Nedzelnitsky 1974a; Nedzelnitsky 1980) which indicate that its phase
is nearly zero, imply—when the independent spatial variable is appropriately defined—
that the wavelength of the traveling pressure wave changes slowly with position near the
stapes. Consequently, reflection of waves traveling in either direction through the basal
turn must be small. The slow variation of the wavelength implies that the longitudinal
impedance Z of the cochlea and the shunt admittance Y of the organ of Corti are approx-
imately proportional. Maintenance of that symmetry between Z and Y is both necessary
and sufficient for transmission-line models to agree with the impedance measurements. If
the symmetry is broken, however, the spatial derivative of the wavelength diverges at low
frequencies. That divergence, manifest in nearly all models of cochlear mechanics, we call

1

the “cochlear catastrophe.”” Those models are thus in contradiction with measurements

1 The cochlear catastrophe takes its name by analogy with the apparent divergence at low photon
energy in the scattering cross-section of an electron, the so-called “infrared catastrophe” of quantum
electrodynamics (Bloch and Nordsieck 1937; Feynman 1961). The word “catastrophe” comes from the
Greek karaoTpéperv meaning “to turn down” and describes the ironic reversal in fortune characteristic
of the dénouement of a classical tragedy. Appropriately, models of cochlear mechanics exhibiting the
catastrophe display a pronounced decrease in the magnitude of the cochlear input impedance and a sharp
fall-off in energy transfer to the cochlea at low frequencies.



14

of the cochlear input impedance. Whereas the measured input impedance is essentially
real and constant over a wide frequency range, the models predict a nonzero phase and
a considerable variation in amplitude arising from the broken symmetry. Another model
of cochlear mechanics (Zweig 1987; Zweig 1991) enforces the symmetry and so avoids the
cochlear catastrophe, remaining approximately consistent with the impedance data.

The rate of change of the wavelength near the stapes is also shown to affect the
sensitivity of the ear. Models of cochlear mechanics that exhibit the catastrophe predict a
decrease in the transfer of acoustic energy to the cochlea at low frequencies. Suppression

of the cochlear catastrophe prevents that dramatic decline in middle-ear efficiency.

A. Overview

The paper consists of two parts. In the first, the cochlear input impedance is defined,
its measurement in the cat reviewed, and an approximate analytic expression for it ob-
tained. Consistency with the measurements of Lynch et al. (1982) is shown to require that
the wavelength of the traveling wave change slowly at the basal end of the cochlea. The
implications of a slowly changing wavelength for the reflection of traveling waves, for the
geometric structure of the cochlea, and for the sensitivity of hearing are then discussed.
The second part parallels the first, illustrating the results in a simple class of cochlear
models. Those models fall into two categories differing in the spatial variation of their pa-
rameters: those in which the wavelength changes slowly near the stapes (e.g., Zweig 1987;
Zweig 1991), and those, such as the models used to discuss the reflection of retrograde
waves (Viergever 1986; de Boer et al. 1986ab and Kaernbach et al. 1987), that exhibit
the cochlear catastrophe. The companion paper (Shera and Zweig 1991b) explores the
consequences of breaking the symmetry between Z and Y for the reflection of traveling

waves.

I. The Symmetry

A. The cochlear input impedance
As seen from the basal end of the cochlea, the response at the driving frequency
to a pure tone of angular frequency w and amplitude A can, if the organ of Corti is

essentially incompressible (cf. Shera and Zweig 1992a), be characterized by the cochlear
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input impedance, which is defined as the ratio of the pressure difference P(z,w; A) across
the organ of Corti to the volume velocity U(z,w; A) of the cochlear fluids in the scala

vestibuli:
P

D(wid) = 3

(1)

z=0; cochlea driven forward

The position z = 0 corresponds to the basal opening of the cochlear spiral, and the di-
acritical arrow indicates that the cochlea is being driven in the “natural,” or forward,

direction.

B. Amplitude and frequency range of interest

At moderate intensities nonlinearities in cochlear mechanics make significant contri-
butions to —Z)(w;A), which varies strongly with A (Kemp 1979a). At high intensities,
however, the relative amplitude of those nonlinear contributions is always small (Kemp
and Chum 1980; Zwicker and Schloth 1984), and the function Zo(w; A) becomes indepen-

dent of the amplitude of the stimulating tone:?
Zo(w; A) = Zo(w), for A> A. (2)

In humans, the stimulus amplitude A, corresponds to roughly 60 dB above threshold at
frequencies w/2m ~ 1 kHz.

At the lowest frequencies (w/27 < 100 Hz) interpretation of Zy(w) is complicated
by viscosity and the effects of the geometry of the apical scalae and helicotrema (Koshi-
goe et al. 1983; Puria and Allen 1991). For example, the termination of the organ of
Corti at the helicotrema may result, at very low frequencies, in the partial reflection of
waves back toward the stapes. Such waves can have significant effects on the cochlear
input impedance (Puria and Allen 1991). By restricting attention to higher frequencies
(w/2w 2 100 Hz), at which stimulus energy is absorbed before reaching the apical end
of the cochlea, such complications are avoided and measurements of Zy(w) can be com-
pared with the predictions of models that do not specify cochlear responses to the lowest

frequencies.

2 The situation in non-mammals may be more complex (e.g., Rosowski et al. 1984).
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C. Measurements of Z,(w)

Lynch et al. (1982) and Nedzelnitsky (1974a; 1980) have measured the input impedance
of the cat inner ear at high stimulus amplitudes. At the lowest frequencies (w/2r < 80 Hz)
their measurements include effects due to the impedance of the round window, but at
higher frequencies the impedance they measure reduces to Zp(w) and is determined solely

by the internal mechanics of the cochlea.?

Their measurements of Zyp(w), together with
smoothed, minimum-phase fits (Zweig and Konishi 1987; Konishi and Zweig 1989) to the
data, are shown in Fig. 1.

The measurements indicate that the phase ZZy(w) of the cochlear input impedance
is small over a broad range of frequencies greater than approximately 100 Hz (see also
Nedzelnitsky 1974b):

IIIlZo (w)

ReZo(w) <1 (w/27 2 100 Hz), (3)

|£Z(w)| = tan™!

where Re and Im indicate the real and imaginary parts of their arguments. Note, in
addition, that ReZy(w) is roughly constant.

The measurement errors are not precisely known, but since driving-point impedances
are minimum-phase functions (Bode 1945), a lower bound on the error is given by the
deviations from the minimum-phase fit, which do not exceed +2 dB in the amplitude
and £10° in the phase. Lynch et al. (1982) provide an upper bound on the error of +10
dB in the amplitude and roughly +40° in the phase (Nedzelnitsky 1974a) but believe
those limits substantially overestimate the actual error at frequencies greater than 100

Hz (Lynch et al. 1982; Peake 1989).

. Lynch et al. (1982) measure the ratio Py/U, where P, is the pressure in the scala vestibuli. As
defined by Eq. (1), however, the cochlear input impedance Zg(w) is the ratio of the pressure difference,

P=P,-P, (3.1)

between the scala vestibuli and scala tympani to the fluid volume velocity U in the scala vestibuli. The
measurements of Nedzelnitsky (1980) indicate, however, that

P, > P, (w/27 R 100 Hz), (3.2)

so that P = Py at frequencies greater than 100 Hz in the basal turn of the cat cochlea. Lynch et al. (1982)
refer to Zp as the “input impedance across the cochlear partition” and denote it by Z,.
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Figure 1. Amplitude and phase of the cochlear input impedance Zp(w) of the cat measured
by Lynch et al. (1982) together with smoothed, minimum-phase fits to the measurements (Zweig
and Konishi 1987; Konishi and Zweig 1989). Key to symbols: measurements for cat 25 (o) from
Fig. 15 of Lynch et al. and corresponding fit (—— ——); measurements for cat 18 (x) from Fig. 15
of Lynch et al. and corresponding fit (- ---); averaged measurements for 29 cats (e) from Fig. 24 of
Lynch et al. and corresponding fit ( ). Lynch et al. report measurements for an additional
cat (cat 27); those measurements are not shown here because they include only a few points above
100 Hz. Note that the deviations from the minimum-phase fit are less than approximately +2 dB
in the amplitude and £10° in the phase. Those errors were used as inputs to the fitting procedure
and determined the relative weighting of amplitude and phase data (Zweig and Konishi 1987).
The data indicate that the phase of Zp(w) is small in the frequency range 100-7000 Hz.
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D. Transmission-line models of cochlear mechanics

An approximate analytic form for Zy(w) can be derived from transmission-line models
of cochlear mechanics, enabling one to understand the constraints that measurements of
Zp(w) impose on such models. Those constraints can be expected to take the form of a
symmetry principle enforcing the empirical relation £Zy(w) = 0.

At intensities A > A, and frequencies w < w,,, where w, is the characteristic angu-
lar frequency at the beginning of the organ of Corti (z = 0), the basal turn of the cochlea
is analogous to a linear, one-dimensional mechanical transmission line (Zwislocki-Mo$cicki
1948; Peterson and Bogert 1950; Zweig 1991) with series impedance Z(z,w) and shunt ad-
mittance Y (z,w) per unit length. A section of the cochlear transmission line is illustrated
schematically in Fig. 2. Application of Kirchoff’s circuit laws yields a pair of coupled,

first-order transmission-line equations,

dP _

F ~has -ZU (4)
and

dU

i -YP, (5)

describing the variation of P and U.

Validity of the simple transmission-line analogue used here requires that the cochlear
response be linear and that the long-wavelength approximation hold in the basal turn of
the cochlea at low frequencies. The motion of the organ of Corti is nonlinear primarily
in the region of maximal velocity (Rhode 1971; Robles et al. 1986), which for angular
frequencies w < w., occurs in the more apical turns of the cochlea. In addition, for
frequencies w < w,, the wavelengths of the waves on the organ of Corti are long relative
to the heights of the scalae (Nedzelnitsky 1980). The pressure then depends only on
position along the organ of Corti and not on the two orthogonal directions; the geometry

of the basal turn is thus effectively one-dimensional.?

4 Sondhi (1978) has shown, for example, that the input impedance of a two-dimensional cochlear
model is essentially identical with the one-dimensional result. However, the effects of the vestibule have
yet to be carefully investigated.
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Igapedance
» Z(x,0)Ax .
Ulx,w) U(x+Ax,m)
Admittance
P(x,m) Y(x,0)Ax P(x+Ax,m)
Ux,m) — Ux+Ax,m)
@ ®
X X+ Ax

Figure 2. A transmission-line analog for a section of the basal turn of the cochlea. The series
impedance Z(z,w)Az includes the inertia of the cochlear fluids oscillating in the longitudinal
direction, whereas the shunt admittance Y (z,w)Az characterizes the transverse response of the

organ of Corti to a pressure difference across the scala media.
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E. A change of coordinates
Solution of the transmission-line equations is simplified by regarding P and U as

functions of the “spatial” variable®

x(z,w) = —i/O‘xZ(a':,w) dt . (6)

Two points are then separated by a “distance” equal to —¢ times the total series impedance
between them. Conventional cochlear models predict that the impedance of the cochlear
fluids to motion in the longitudinal direction is predominantly inertial. The series im-
pedance Z(z,w) is thus essentially imaginary, and the factor —i, where i = /=1, thus
makes x(z > 0,w) a positive, real-valued, monotonically-increasing function of . Written

in terms of y the transmission-line equations become

dP .

-J)-(- = —1U (7)
and

dU )

R =

where A(x,w) is the characteristic impedance Z.(x,w) of the transmission line:

A() = Ze(w) = (%)/ . ©)

Equations (7) and (8) describe a transmission line with series impedance ¢ and shunt

admittance i/A? per unit length dy.

5 Three related spatial variables (z, x, and () are used in this paper. The first, with dimensions

[z] = length, (5.1)
represents distance along the organ of Corti. The second, with dimensions of acoustic impedance,
[x] = mass/length?® - time, (5.2)

is used to transform the transmission-line equations (4) and (5) into a form [namely Eq. 10 for P] without
explicit first derivatives of the dependent variable. The coordinate x will later be shown to be the most
natural for a description of wave propagation in the cochlea. The third spatial variable, ¢, represents
length measured in units of the distance over which the characteristic frequency changes by about an
octave in the basal turn and is introduced to simplify expressions involving the dependence of model
parameters on position. -

Throughout this paper when a function, say Z(z,w), is written as a function of another spatial
variable, say x, we adopt the notational convention that

Z(x,w) = Z(2(x,w), w) - (5.3)
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Decoupling Eqgs. (7) and (8) yields a wave equation for the pressure difference P(x,w)
across the scala media: ,

%X_}: + }—1213 =1. (10)

When distance is measured in terms of x, A(x,w) is just 1/27 times the local wavelength

A(x,w) of the wave on the basilar membrane (Zweig et al. 1976). Throughout this paper

A(x,w) is thus referred to as the wavelength (and X' = d)\/dx as its spatial derivative).

Note, in addition, that the symbols A(x,w) and Z.(x,w) are used interchangeably.

F. Theoretical input impedance

If the wavelength A(x,w) varies slowly with position x, waves traveling down the
organ of Corti undergo little reflection. Equation (10) for the pressure can then be solved
by expanding P in an asymptotic WKB series (e.g., Bender and Orszag 1978), which yields
(e.g., Green 1837; Jeffreys 1924; Zweig et al. 1976)

i PN 1
P(x,w) ~ 6_’.[ dx/A + Yol + -

for the forward-traveling pressure wave. Equation (7) for U then implies that

X
Zo_l(w):idlnp Nii {—i/ d¥/A + Y%InX + }

iy e (12)

x=0
When the wavelength has the form predicted by transmission-line models at frequencies

w <€ We,, truncating the series after the first two terms is optimal and yields®

Ao
Z N — . 1
o) 1+1Xy/2 18]
The subscripts “0” indicate that the quantities are evaluated at the basal end of the organ
of Corti; for example,

Ao(w) = A(0,w) . (14)
The prime” denotes differentiation with respect to x:

dA(x,w)

Ap(w) = T :
x=0

(15)

6 Viergever and de Boer (1987) obtained a similar approximate form [to which Eq. (13) reduces
when the series impedance Z is independent of position] for the “matching impedance” of a nonuniform
transmission line and found it to be in excellent agreement with numerical calculations.

The traditional accent of the ecstasy of catastrophe.



I.12

Note that A'(x,w) is dimensionless.

Recall that by restricting attention to frequencies w/27 2 100 Hz and stimulus am-
plitudes A > A, contributions to the input impedance due to reflection from the heli-
cotrema and the amplification by the “cochlear laser” (Zweig 1991; Zweig 1989) of wavelets
scattered from mechanical inhomogeneities in the organ of Corti can be assumed small.
Reflections from apical regions of the cochlea may, however, be responsible for the fine
structure in the measured impedance curves (Puria and Allen 1991). If reflections are not
too large, Zo(w) can be approximated by an expression depending only on the mechanics

at the basal end of the cochlea.

G. A limit on the rate of change of the wavelength

The measurements of Lynch et al. (1982) place important constraints on transmission-
line models of cochlear mechanics. As shown later in the examples (Sec. IT), those models
predict that at frequencies much less than the characteristic frequencies near the stapes
(i.e., at w € we, ), the wavelength A(x,w) is approximately real and the imaginary part

of its spatial derivative A'(y,w) is small:

Im7\0

Re}() ~ & P (16)
and

[tm2g| < 1. (17)

Since forward-traveling waves have the approximate form (Zweig et al. 1976)
Py (x,0) m Ay @)WV [ A (18)

the real nature of the wavelength guarantees that waves of low frequency propagate
through the basal turn of the cochlea without substantial change in amplitude.

Applied to Eq. (13) for Zy, inequalities (16) and (17) imply that
LZy ~ —tan~" (Re)y/2) . (19)
Combining Eq. (17) with the empirical finding that

|£Zy(w)| < 1 (20)
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above 100 Hz (cf. Fig. 1) therefore yields
[M@)] €1 (v < we). (21)

As an immediate consequence, note that the rough constancy of the measured Zy(w)
implies

Ao(w) & constant (W <€ wep)- (22)

Inequality (21), which constitutes the central result upon which this paper elabo-
rates, depends for its validity on the empirical finding that ZZy(w) is small (Lynch et
al. 1982) and on inequalities (16) and (17), which follow from basic assumptions under-
lying models of cochlear mechanics. Should those assumptions prove inapplicable to the
real cochlea, the mechanics of hearing must be considerably different from that currently

conceived.

H. Relation to cochlear reflection of traveling waves
The inequality

Pow) €1 (@ K weo), (23)

which transmission-line models of cochlear mechanics must satisfy if they are to be consis-
tent with the measurements of Lynch et al. (1982), can be interpreted physically in terms
of the reflection of waves traveling along the organ of Corti. Inequality (23) is equivalent
to the condition that the change in wavelength over distances on the order of a wavelength
be less than the wavelength. That statement implies, by analogy with the propagation of
light through a medium of variable refractive index (e.g., Born and Wolf 1959), that waves
traveling in either direction along the organ of Corti undergo little reflection. Mathemat-
ically, the statement means that the WKB approximation may be used when solving the
transmission-line equations, at least within the basal turn of the cochlea (Schroeder 1973;
Zweig et al. 1976). Note that Eq. (23) thus provides ex post facto justification for the

WKB expansion of the pressure used to obtain Eq. (13) for Zy(w).
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I. A symmetry between Z and Y
The limit on the spatial derivative of the wavelength imposed by the measurements,

_ 1/
o |4 (Z2)"
Yol = o\ ¥ <1 (w<we), (24)

x=0

implies that near the basal end of the cochlea the longitudinal impedance Z(y,w) of the
cochlea and the shunt admittance Y (x,w) of the organ of Corti are constrained to be be

roughly proportional at low frequencies:
Y(xow) = ¢ (@)Z(x,w)  (Ix] < [%0/A0] and w < we,), (25)

where ¢(w) is independent of x. Conversely, if Z and Y are roughly proportional, the
derivative of their ratio will be small. Based on its geometric interpretation in conventional
cochlear models (see below), we call the proportionality between Z and Y the “tapering
symmetry.”

In deriving Eq. (25) we assume that the derivative A’ = X(d1n A/dyx) is small because
A(x,w) is essentially independent of x (at small x) and not because the wavelength itself
is small. Support for that assumption comes from measurements of the magnitude the
cochlear input impedance (Lynch et al. 1982). When combined with Eq. (13) for Z, those
measurements indicate that at low frequencies the wavelength of the pressure wave within
the basal turn of the cochlea is long; i.e., that A¢ is not small.

Technically, the impedance measurements require only that the symmetry hold at
the point of measurement (i.e., at x = 0). We assume that the approximate symmetry
continues to hold at least within the basal turn of the cochlea. An estimate of the length
scale over which the symmetry might be expected to hold can be obtained from the Taylor

expansion of A(x,w) about x = 0:
Ax,w) = Ao +AgX + -+ - (26)

Thus,
Aew) = Ao (Ixl < 2o /Al)- (27)
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Note that if the symmetry between Z and Y is broken, the derivative A'(x,w) can
become large. As shown below, for example, transmission-line models in which such
symmetry breaking occurs predict that A(x,w < wc,) is independent of frequency in the
basal turn. Since in those models the series impedance Z, and hence the differential
element dy, is proportional to w, the derivative dA/dx can be expected to diverge like 1/w
at low frequencies.

The symmetry between Z and Y implies a symmetry between P and U. When |X'|
is small—and in the absence of reflections from elsewhere in the cochlea—Eq. (7) for U
implies that the ratio of P to U is simply the wavelength, or characteristic impedance,
A w):

The approximate proportionality between Z and Y implies that A is nearly constant near

the stapes. Consequently,

v (Ixl < 120 /20] and w < we, ), (29)

Ao

so that P and U are roughly proportional in the basal turn. The symmetry between P and
U follows immediately from the symmetry between Z and Y and the observation that the
transmission-line equations (4) and (5) are invariant under the simultaneous substitutions
Z~Yand PeU.

The symmetry between Z and Y relates two distinct aspects of cochlear mechanics.
Whereas the impedance Z characterizes the geometry of the scalae and the longitudinal
motion of the cochlear fluids, the shunt admittance Y describes the transverse response of
an individual section of the organ of Corti to a pressure difference across the scala media.
Remarkably, the symmetry imposed by the measurements implies that at low frequencies

those functions are roughly proportional in the basal turn of the cochlea.

J. Spatial coordinates revisited
The symmetry between Z and Y selects the x coordinate system—originally intro-
duced as a mathematical convenience for solving the transmission-line equations—as the

most natural for describing the variation of pressure and volume velocity in the basal
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turn of the cochlea. Since Z and Y are approximately proportional, the wavelength A
measured in units defined by x is nearly constant at frequencies w < w,, near the stapes.

Consequently, P can be written as a simple superposition of plane waves of the form
etix/o (Ix] < |Ao/A] and w < we, ). (30)

The same is not true, however, for the familiar wavelength A, measured in units of

length z. The familiar wavelength and its derivative are related to A and A’ through the

equations
dx e S
Xz_ak_zX/Z, (31)
and -
dxx - dx d}x At dan
d:c_dzdx—}—) dy (32)

Recall that A(x,w < wc,) is approximately constant in the basal turn [see Eq. (22)]. Since
both Z and dx are, in standard models, proportional to w, the familiar wavelength A, and

its spatial derivative dA,/dz thus diverge like 1/w at low frequencies.

K. Application to conventional cochlear models

Earlier it was shown that consistency with the measurements of Lynch et al. requires
that the wavelength change slowly near the stapes and therefore that Z and Y be roughly
proportional. At low frequencies in the basal turn, conventional cochlear models predict
that the series impedance Z is determined by the acoustic inertia M(z) of the cochlear
fluids and the shunt admittance Y is dominated by the compliance C(z) of the organ of

Corti and its basilar membrane. Z and Y thus have the limiting asymptotic forms®

Z = iwM(z) and Y =i wC(z), (33)

8 At the lowest frequencies Z may acquire a real part arising from viscous effects. That contribution
should be small in the basal turn if the ratio €, of the viscous boundary layer thickness to the radius of

the scala vestibuli (or tympani) satisfies
/ n
€&y = B ) I 8.1
v — < (8.1)

Here, p and 7 are, respectively, the density and coefficient of viscosity of the cochlear fluids, and S is
the cross-sectional area of the scala. The values p &~ 1 g/cm®, 5 = 0.02 g/cm - s (von Békésy 1960), and
S 2~ 0.01 cm? (e.g., Wever 1949; Dallos 1970) indicate that the inequality is satisfied at frequencies

w/27r > 3 Hz. (8.2)
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and therefore

i
M
Ao (E) - (34)
~ Here, the variable
B(z,w) = w/w(z) , (35)

where w.(z) is the mapping between characteristic frequency and position. Near the stapes
the symmetry thus constrains the spatial variation of the effective compliance of the organ

of Corti C(z) to be that of the effective inertia of the cochlear fluids M(z):
C(z) = ¢*M(z), (36)

where ¢ is a constant independent of position and frequency. (Note that Z and Y, shown
to be proportional when considered as functions of y, maintain their proportionality when
considered as functions of z.)

Calculation of the derivative of the wavelength yields
wﬂ
XO(""’) = v (w € we,), (37)

where the frequency scale w, is defined by

1 d ("
Wy = -——ﬁ; &"1—. (?) . (38)
z=0

Thus, when the symmetry between M and C is broken, Aj(w) diverges like 1/w at low

frequencies—the cochlear catastrophe.

L. Relation to scaling symmetry

The symmetry between Z and Y at low frequencies can be obtained as a limiting
case of the scaling symmetry (Zweig 1976) suggested by Rhode’s (1971) measurements
of basilar-membrane transfer functions in the squirrel monkey and also found in the pi-
geon (Gummer et al. 1987). Applied to cochlear transfer functions, scaling symmetry
implies (Zweig 1976) that the envelopes of the response of the basilar membrane to tones
of nearby frequency are “shift-similar;” that is, one can be made to overlay the other

simply by translating its envelope and adjusting its overall height. In the model of Zweig



1.18

(1987; 1991) the circuit elements Z(z,w) and Y (z,w), and consequently the transfer func-
tions, “scale;” that is, they are functions not of z and w independently, but only of the

single variable 3(z,w) defined by Eq. (35). At small 3 in that model,
Z(z,w) = if(z,wwe, My and Y(z,w) = if(z,w)we,Co , (39)

where My and Cj are constants. Hence,

wco

we(z)

We,

M(z) = e

My, and C(z)=

& (40)

near the stapes, so that the model automatically reproduces the required proportionality

between M and C.?

M. Implications for cochlear geometry

The symmetry between M and C does not hold in other cochlear models. For exam-
ple, C is typically assumed to increase exponentially with position, corresponding to the
approximately exponential variation in characteristic frequency at the basal end of the
cochlea (e.g., von Békésy 1960; Greenwood 1961; Eldredge et al. 1981; Liberman 1982).
The series inductance M, however, is often assumed to be independent of position. An
acoustic inertance, M is usually taken to have the form

M(z) x % : (41)

where po is the density of the cochlear fluids and S(z) represents the effective cross-
sectional area of the two scalae. Simple treatments (e.g., Zwislocki 1965; Dallos 1973)

give
Sy St

S:SV“S‘Em" (42)

9 The predictions of scaling symmetry are consistent with Greenwood’s (1961) demonstration that von
Békésy’s post-mortem measurements of the static volume elasticity E(z) of the organ of Corti obey the
approximate scaling relation
Weo

we(z)

E(z) ~ By (9.1)

in a variety of animals, from mice to elephants.



1.19

where S, and S; are, respectively, the cross-sectional areas of the scala vestibuli and
the scala tympani.l® Thus, M is constant when the scalae are approximated as boxes of
constant cross-section (de Boer 1980; Viergever 1980). In such models the spatial variation
of M and C are therefore quite different, breaking the tapering symmetry required by
measurements of the cochlear input impedance.

The symmetry deduced from measurements of the input impedance finds support in
a consilience with measurements of cochlear anatomy, which indicate that whereas the
width, and hence the compliance (von Békésy 1960), of the basilar membrane increases
toward the helicotrema, the cross-sectional areas of the scalae decrease, especially at the
basal end of the cochlea where the variation is roughly exponential (Wever 1949; Fernédndez
1952; Zwislocki 1965). Those opposing tapers tend to make M and C proportional, thereby

preserving the symmetry between Z and Y.

N. Corroboration from cadavers!!

Unfortunately, existing anatomical measurements do not permit a definitive quantita-
tive examination of the proportionality between M and C. For example, the relationship
between measured properties of the cochlea—the point stiffness of the basilar membrane
(Gummer et al. 1981; Olson 1990), for example—and the effective impedances appearing
in the model equations is not well understood. Even if one were to adopt the correspon-
dences suggested by simple models—such as Eq. (42) for S appearing in Eq. (41) for
M —appropriate measurements have yet to be made in a single animal. Comparing mea-
surements across preparations is complicated both by uncertainties in the location of the
measurement coordinate system and by differences in the overall size of the cochlea (Bohne
and Carr 1979).

Despite such uncertainties, a qualitative comparison of measurements on human ca-
davers is suggestive. Figure 3 compares the spatial variation of the effective cross-sectional

area S, computed from Eq. (42) using the measurements of Wever (1949), with that of

10 Although a typical mammalian cochlea consists of a coiled tube containing three chambers (the scala
vestibuli, the scala media, and the scala tympani), simple models of cochlear mechanics approximate the
structure by two chambers (the scala vestibuli and scala tympani) separated by the organ of Corti with
its basilar membrane. In that simplified view, the quantity S, appearing in Eq. (42) does not represent
the true area of the scala vestibuli but should include some fraction of the area S, of the scala media.
Since S € Sy at the basal end of the cochlea, however, that correction is small.

Symmetry under a cemetery wall.
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Figure 3. Comparison of the spatial variation of the effective cross-sectional area S (e) computed
from measurements of the scala vestibuli and scala tympani in three cadavers by Wever (1949)
with that of the reciprocal of the static volume elasticity E (o) of the basal region of the organ of
Corti (from Fig. 11-73 of von Békésy 1960). Panels (a), (b), and (c) correspond to measurements
from Figs. 73, 74, and 75 of Wever (1949), respectively. The effective cross-sectional area S
was computed from Wever’s measurements using Eq. (42). The points are connected by straight
dotted lines (-----) to aid the eye. The solid line ( ) represents the best exponential fit to the
measurements of 1/E. The absolute scale for the stiffness measurements is varied between panels
so that the region (containing large symbols) in which the two functions have similar slopes, can
be more easily discerned. Although the precise location of the beginning of the organ of Corti
is not known—and end effects may complicate the interpretation of the area measurements near
the oval window—for the first 15% of the length of the organ of Corti, S and 1/F both vary
exponentially and are roughly proportional.
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the reciprocal of the static volume elasticity ' of the organ of Corti measured by von
Békésy (1960). Since von Békésy’s elasticity measurements were made in cadavers, they
do not include contributions from physiologically active mechanical elements. Since the
symmetry between Z and Y evolved in living ears, there is little reason to expect it to
hold after death. The figure indicates, however, that S and 1/F, and hence—by adopting
the naive correspondences M o« 1/S and C &« E—M and C, are indeed proportional near
the base of the cochlea. Although the location of the beginning of the organ of Corti
is not precisely known and end effects complicate the interpretation near the stapes, the
proportionality appears to hold for roughly the first 15% of the distance along the organ

of Corti.'?

O. Consequences for the sensitivity of hearing

The slow variation of the wavelength has important consequences for the detection
of sound. The efficiency of the middle-ear is defined as the fraction of the time-averaged
power entering the middle ear that is absorbed by the cochlea (Rosowski et al. 1986):

Power into cochlea Re{P, Ug }
Power into middle ear ~ Re{P, Uz}

2 ReZy
ReZ, ~

Dene(w) = = |2, T (43)

Here, Pe(w) and U(w) are the pressure and volume velocity measured in the ear canal
at the eardrum. The middle-ear input impedance Z(w) and transfer function Tine(w) are
defined more precisely in the Appendix.

Although cochlear contributions to middle-ear efficiency are complicated, a qualitative
understanding of the effect of tapering symmetry on energy transfer to the cochlea at low
frequencies can be obtained by examining the factor ReZp. Since Xg and A are both

approximately real at low frequencies,

Ao Ao
ReZ, zRe{ - }z w <L Wey) - 44

12" Similar results are obtained in guinea pigs by combining the anatomical measurements of Fernindez
(1952) with the basilar membrane stiffness measurements of Gummer et al. (1981). The analysis, however,
is not definitive, both because Gummer et al.’s estimate of the slope of the stiffness variation is uncertain
(their measurements are confined to only a small patch of the basilar membrane) and because the rela-
tionship between the point stiffness they measure and the effective volume compliance C appearing in the
equations is not well understood.
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Because Ag(w) is small at auditory frequencies, ReZy, and consequently middle-ear ef-
ficiency, stays roughly constant. Conversely, for 7me(w) to remain roughly constant at
low frequencies—given the measured transfer characteristics of the cat middle ear, the
approximate value of ReZp, and the theoretical result that Ay varies only slowly with
frequency—requires that Ay be small.

Note, however, that were Ag(w) to diverge as w — 0, as it does in models exhibiting the
cochlear catastrophe, ReZy would approach zero. In that limit (i.e., the limit ReZy, — 0),
Tme becomes proportional to ReZ, (see the Appendix), and the transfer of energy into
the cochlea becomes vanishingly small. Thus, in a world differing from ours only in that
the wavelength changes rapidly in the basal turn of the cochlea, the sensitivity of hearing

would be considerably reduced at low frequencies.

I1. The Catastrophe

The remainder of this paper illustrates the comments made above by explicit compu-
tations for two categories of models, distinguished by the extent to which they exhibit the
cochlear catastrophe. Note that the issues addressed—the cochlear input impedance and
middle-ear efficiency—depend only on the form of the model at low frequencies near the
stapes. The reflection of retrograde waves discussed in the companion paper (Shera and
Zweig 1991b) depends on more global characteristics of the model cochleas. The following
sections also serve to justify by example the statements [i.e., Eqs. (16) and (17)] that Xo
and ) are approximately real, which were used to derive the limit on the rate of change

of the wavelength [i.e., Eq. (21)].

A. Conventional transmission-line models

In many transmission-line models, including those used to investigate reflection of
waves in the cochlea (de Boer and Viergever 1984; Viergever 1986; de Boer et al. 1986ab
and Kaernbach et al. 1987), the series impedance Z(z,w) and shunt admittance ¥ (z,w)

per unit length have the form

_ _ 1 =4
Z(z,w)=wM(z) and Y(z,w)= {in(z) + R(z) + iwC(m)} , (45)
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where M, M, R, and C are real-valued functions of . The wavelength thus becomes

= n

M) = () Vi-F T, (16)

where B(z,w) = w/w:(z) in accord with Eq. (35), w.(z) = 1/VMC is the characteristic
angular frequency, and é(z) = w.RC is the dimensionless damping parameter. For future
reference, note that

= 1/2
No(w <€ weg) ~ A(0,0) = (g—z) = oo (47)

that is, Ag(w < wc, ) is essentially real, in agreement with Eq. (16).

At the basal end of the cochlea, the derivative X'(x,w) has the value

1 [we, dy .60 dIn(d/wc)
p o) X — | ==— _ N
o(w K we,) AN, ( v s dC o (48)
The dimensionless spatial variable
(==z/l (49)

used here (see note 5) is defined in terms of the length scale [ over which the characteristic

frequency changes by a factor of e in the basal turn (Liberman 1982):
we(¢) = we,e™¢ . (50)
The dimensionless parameter Ny is defined by
No = % (%)1/2 y (51)
and the real dimensionless function y(¢) by
MOEET ({4)1/2 . 52)

Note that y(0) = 1.
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B. The reality and divergence of Aj(w)

Equation (48) for the derivative can now be used to find the conditions under which
Ab(w) becomes large, giving Zo(w) a nonzero phase. Comparison of transmission-line
models with measured basilar membrane transfer functions (e.g., Zweig et al. 1976; de
Boer 1980) suggests that the damping parameter §p is small whereas Ny is relatively
large. The values

8o ~ 2—10 and No~5 (53)

are typical. If §((¢) is roughly constant (as it is in the models discussed here), then

din(é/w.) N

r 1. (54)

Hence,

[mAf| <« 1, (55)

in agreement with Eq. (17).

The derivative of the wavelength then becomes, in agreement with Eq. (37),
! Wk
N@)m -2 (<) (56)

where the frequency scale,

_ 1 dy
W= "Weo \ TN, dC

indicates the frequency at which |7\6| = 1 and therefore provides a measure of the severity

=0

¢=0

of the cochlear catastrophe. Typically the dimensionless quantity —dv/d( is of order one,
so that

1
Wy ~ 2—Owc° = (58)

However, if the circuit elements Z and Y scale, as they do in the model of Zweig (1987;
1991), then dvy/d( vanishes and
we=0. (59)
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C. Predictions for Zp(w)
Reference to Eq. (13) for the input impedance thus yields!?

A
Zo(w) ~ 1 L

Ttz (@S (60)

Unless w, is small enough to suppress the divergence and guarantee that |Aj(w)| < 1 in
the frequency range of hearing, the model input impedance will contain a substantial
imaginary part at low frequencies (w < wy) and, in particular, the phase of Zy(w) will
approach 90°.1

Theoretical predictions for the cochlear input impedance computed from Eq. (1) are
shown in Figs. 4, 5, and 6 for the models of Viergever (1986) and de Boer et al. (1986ab
and Kaernbach et al. 1987). The parameter values used by de Boer et al. were selected,
on the basis of measurements in other animals, to approximate a human cochlea (de Boer
1980). To compare the model with measurements on cats, the parameter values must

be rescaled. Shown are predictions using both the original parameter values and those

rescaled by changing the frequency-position map (Liberman 1982).!1®*  The parameter

12 Equation (60) for the model input impedance implies that Zp(w) can, at low frequencies, be repre-
sented by an equivalent circuit consisting of an inductor and a resistor in parallel (cf. Allen 1979). More
explicitly,

. iwLoRo
Zo = (iwLo) || Ro = —————— .
o = (iwLo) || Ro Ro 1 iwLe (w < wep), (13.1)
where .
Ro=2Xpo and Lo=2 :" : (13.2)

Note that Lynch et al. (1982) represented their averaged measurements with a phenomenological
network model, which reduces, at frequencies greater than approximately 100 Hz, to a resistance R¢ in
parallel with an inductance Mg (their notation). Like Dallos (1970), Lynch et al. (1982) speculate that
the inductive term arises from effects at the apical end of the cochlea. As shown here and in Allen (1979)
and Puria and Allen (1991), inductive effects can arise from the spatial variation of the wavelength near
the stapes.

4 The Appendix of the companion paper (Shera and Zweig 1991b) shows that Eq. (60) for Zp(w)
captures the leading-order behavior of the cochlear input impedance, even in models that exhibit the
cochlear catastrophe.

5 Measurements on the cat (Liberman 1982) imply that

we(z)/weg = (14¢€) e~/ — ¢, (15.1)

where we, /27 = 57 kHz, € = 56, and I & 5 mm. For the purposes of rescaling the model of de Boer et al.
(1986ab and Kaernbach et al. 1987), the small parameter € was set to zero so that the frequency-position
map remained purely exponential. When necessary, values £ > zy,, where zy, is the ostensible position of
the helicotrema, were permitted to keep the minimum frequency below 100 Hz and so prevent spurious
reflections from the apex of the cochlea (cf. Puria and Allen 1991). Taking ¢ = 0 then has a negligible
effect on the model predictions discussed in this paper.
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Figure 4. Amplitude and phase of Zyp(w) computed numerically for several models of cochlear
mechanics compared with the averaged measurements (o) of Lynch et al. (1982) shown in Fig. 1:
( ) the model of Viergever (1986); (— ——) the model of de Boer et al. (1986ab and
Kaernbach et al. 1987) with original parameter values and with those obtained by rescaling (—)
the frequency-position map to correspond with that of the cat!? [weg /27 — 5TkHz and | — 5 mm
from Liberman (1982); N and & were kept constant at their original values]; (----- ) the model
of Zweig (1987; 1991), derived for low SPL at frequencies greater than approximately 3 kHz but
here extrapolated to low frequencies and high stimulus levels (parameter values are those of Zweig
except that the feedback strength p = 0 and the damping constant § > 0; i.e., only the passive
component of the admittance Y of the scala media has been included). The minimum-phase
fit from Fig. 1 ( —-—) is shown for comparison. The amplitudes of the model impedances are
normalized at 7 kHz to the value given by the phenomenological network model of Lynch et al.
(1982). The errors on the measurements are estimates based on a comparison with the minimum-
phase fits. Note that the averaging performed by Lynch et al. has decreased the random errors
but revealed systematic errors of the same order as the random errors in cats 18 and 25. Unless
measurement errors are substantially greater than the lower bounds shown here, most models
of cochlear mechanics—of which those of Viergever and de Boer et al. are but examples—are in
disagreement with the measurements.
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values used by Viergever apparently represent a “generic” cochlea; the frequency-position
map, however, is sufficiently similar to the cat’s that no rescaling is necessary.

Unless the measurement errors are substantially greater than the lower bounds es-
timated from the minimum-phase fits, the model predictions disagree significantly with
the empirical values. Although they were not developed to address low-frequency reflec-
tion phenomena, many other models of cochlear mechanics, as noted by Wickesberg and
Geisler (1986), also exhibit such behavior (e.g., Zweig et al. 1976; Allen 1979; Sondhi 1978;
Neely 1981; Wickesberg and Geisler 1986). Shown for comparison is Zy(w) for the model
of Zweig (1987; 1991). Introduced in another context, that model was shown to be valid
at high frequencies (w/27 2 3 kHz) and low sound-pressure levels but has here been ex-
trapolated to lower frequencies and higher intensities. Nevertheless, because it manifests
scaling symmetry that model agrees better with the measured impedance functions.

Any disagreement with the empirical values occurs at frequencies w < w,, for which
the imaginary part of Zy(w) becomes substantial. The approximate value of w, for each

model can be determined from the phase of Zy(w) by using the relation
we ~ wtan lZg . (61)

Table I gives values of wy for the models of cochlear mechanics shown in the figures. Also

given in the table are the derivatives,

I%( 1/40 Weq )

Wi

~ 40

) (62)

<o
evaluated at a fixed value of w/w., = Yy chosen to represent a typical low frequency in
the model. For the cat the frequency Yjo(wc,/27) =~ 1.5 kHz (Liberman 1982). Except for
the model of Zweig (1987; 1991), which has w, = 0 and therefore completely avoids the
cochlear catastrophe, all have w, /27 3> 100 Hz and |Ag( Yo we, )| > 1.

The measurements of Lynch et al. can be used to estimate the values of w, and Xj that
would bring such models into agreement with their data. Those estimates, computed from
parameters of their phenomenological network model (which represent a best fit to their
averaged measurements), are given for comparison; as expected, w, /27 ~ 100 Hz. The
estimate is, of course, only approximate; other factors not related to symmetry breaking
in the basal turn (and not accounted for in standard models), such as the presence of
reflections from more apical regions of the cochlea (cf. Puria and Allen 1991), may affect

the apparent value of w,.
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Figure 5. Amplitude and phase of Zp(w) for the models of cochlear mechanics shown in Fig. 4
compared with the measured values (o) and the minimum-phase fit (- —- —) for cat 25 shown
in Fig. 1. The errors on the measurements, which appear to be randomly distributed, are esti-
mates based on a comparison with the minimum-phase fits. Again, the amplitudes of the model
impedances are normalized at 7 kHz to the value given by the phenomenological network model.
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Figure 6. Amplitude and phase of Zg(w) for the models of cochlear mechanics shown in Fig. 4
compared with the measured values (x) and the minimum-phase fit ( —-—) for cat 18 shown in
Fig. 1. The errors are as described in Fig. 5, and the amplitudes of the model impedances are
normalized to agree with the data at approximately 7 kHz.
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Cochlear Models wy /27 |20 (Yaowe, )|

de Baer (1980) +exwessnunsinnns 1688 3.0
de Boer et al. (1986a)
de Boer et al. (1986b)
Kaernbach et al. (1987)

de Boer (1980, rescaled to the cat) 4275 3.0

Vietgever (1986) oo viunns ssinen 6917 5.5

Zweig (1987;1991) ............. 0 0.0
Empirical Values

Estimated from Lynch et al. (1982) 170 0.12

Table I. Values of wx and Ay characterizing the cochlear catastrophe. The first column con-
tains values of wx/27 (in Hz) such that |[Agj(wx)|=1. For each model, wx/27 corresponds
to the frequency at which the phase of the model input impedance passes through approxi-
mately tan_1(1/2) a2 25° and indicates the approximate frequency below which the model input
impedance differs significantly from the empirical value. Since Zp(w) is essentially real above
100 Hz (cf. Fig. 1), any model with wx/27 & 100 Hz is in disagreement with the measurements.
Note that to explore cochlear reflection phenomena at low frequencies, de Boer et al. (1986ab
and Kaernbach et al. 1987) use the model developed in another context by de Boer (1980). The
empirical value based on the measurements of Lynch et al. (1982) was estimated from the pa-
rameters of their phenomenological network model by using the formula [in their notation; cf.
Eq. (13.2)]: .
~9C

W ~ 2 "
Since other mechanisms not related to symmetry breaking may give rise to an apparent inductive
behavior at low frequencies, the empirical estimate is only approximate. The second column
contains values of the magnitude of the spatial derivative of the wavelength at a typical low
frequency in each model:

|A£)(l/40wco)| ~ 40

Wk
w,

Note that for the cat wey /27 2 57 kHz (Liberman 1982), and so Y4o(wc, /27) =~ 1.5 kHz. Nonzero
model values of |Aj| result from a symmetry-breaking that occurs between the series impedance
Z and the shunt admittance Y [cf. Eq. (24)].
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D. Middle-ear efficiency
This section illustrates the effects of the cochlear catastrophe on the efficiency 7me(w)
of the middle ear. By using measurements on the cat, it can be shown (see the Appendix)

that 7me(w) has the approximate form

aReZ

me ~ —— I 2 S .
7 ReZo + Ro/3 (w/2r < 700 Hz) (63)

Here, Rc is the cochlear resistance measured by Lynch et al. (1982) and « is a dimen-
sionless constant of order one determined by middle-ear mechanics. Equation (60) for the

model input impedance implies that

200

Zy " ——.
HE 14 (wk/2w)?

(64)

Therefore, ReZp, and consequently 7me(w), becomes small at frequencies below Y, wy.
Figure 7 plots fme(w), computed from Eq. (63), based on the models of Viergever
(1986) and de Boer et al. (1986ab and Kaernbach et al. 1987, rescaled to the cat). Shown
for comparison are results based on the model of Zweig (1987; 1991), the averaged mea-
surements of Lynch et al. (1982), and the minimum-phase fit to those measurements from
Fig. 1. Although the absolute efficiencies are not reliable because the constant a was de-
termined by combining measurements from a gallimaufry of cats, the indicated frequency
dependence is approximately correct. In addition, it is reassuring to note that the con-
straint 0 < nne < 1 applicable to a passive system is everywhere satisfied. Inclusion of the
empirical finding that |7\6| & 1 causes fme(w) to remain roughly constant throughout the
frequency range of the figure. As expected, however, the symmetry-breaking exhibited by
the models of Viergever (1986) and de Boer et al. (1986ab and Kaernbach et al. 1987)

significantly decreases middle-ear efficiency at low frequencies.

III. Summary

Recent theoretical arguments for significant asymmetry in the reflection of cochlear
waves (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986; Kaernbach et
al. 1987) are based on models that, unless measurement errors are substantially greater
than the lower bounds estimated from minimum-phase fits to the data, disagree with mea-

surements of the cochlear input impedance (Lynch et al. 1982). This paper demonstrates
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Figure 7. Middle-ear efficiency nme(w) in dB (i.e., 1010g; 7me) computed from Eq. (63) for three
models of cochlear mechanics: ( ) the model of Viergever (1986); (— ——) the model of de
Boer et al. (1986ab and Kaernbach et al. 1987), rescaled to the cat as in Fig. 4; (-----) the model of
Zweig (1987; 1991) extrapolated to low frequencies and high SPL as in Fig. 4. Values computed
by using the averaged measurements (e) of Lynch et al. (1982), with error estimates from Fig. 4,
and the corresponding minimum-phase fit from Fig. 1 (- —-—) are shown for comparison. The
constant « appearing in Eq. (63) was taken to have the value & = 0.8 (see the Appendix), and
the model impedances were normalized as in Fig. 4. The catastrophe exhibited by the models of
Viergever and de Boer et al. decreases middle-ear efficiency considerably.
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that those measurements require that the wavelength change slowly in the basal turn of
the cochlea and hence that waves traveling in either direction undergo little reflection.!®
More generally, linear, one-dimensional transmission-line models are expected to de-
scribe the mechanics of the basal turn of the cochlea at low frequencies and high sound-
pressure levels. The cochlear input impedance therefore has the approximate form

Ao

Y TP .
L e T

(W € we,)- (65)

In that regime transmission-line models predict that both the wavelength A(xy,w) and its
spatial derivative A'(x,w) are approximately real. Since Lynch et al.’s (1982) measure-
ments of the cochlear input impedance indicate that the phase of Zy(w) is small above

100 Hz, those transmission-line models must also satisfy
NOow)| <1 (Ix] < Po/Xo] and w < we, ); (66)

i.e., the wavelength changes slowly at the basal end of the cochlea. That result has the
following consequences, the logical interrelations of which are diagramed in Fig. 8.
o The series impedance Z(x,w) and shunt admittance Y (x,w) are roughly proportional

at low frequencies near the stapes:
Y (x,w) = ¢*(w)Z(x,w) - (67)

For the broad class of cochlear models defined by Egs. (33), that symmetry between
Z and Y reduces to a proportionality between the longitudinal inductance M rep-
resenting the inertia of the cochlear fluids and the shunt capacitance C representing
the effective compliance of the organ of Corti and its basilar membrane. The width
of the basilar membrane and the cross-sectional areas of the scalae taper in opposite
directions, providing independent support for that proportionality.

e The WKB approximation can be used when solving the cochlear transmission-line

equations, at least in the basal turn of the cochlea. Little internal reflection of waves

16 The companion paper (Shera and Zweig 1991b)—which explores whether violation of tapering sym-
metry leads to wave reflection in the cochlea—demonstrates that the empirical conclusion that cochlear
reflection must be small in the basal turn applies to a broad class of cochlear models whether or not they
accurately represent the symmetries of the inner ear.



f Tapering Symmetry: Opposing Tapers Scaling
ZxY < of Cochlear Geometry = Symmetry
Experiment: )
Lynch et al. (1982) o _
v P Wavelength Changes " WKB Approximation o Cochlear Reflections
Slowly: |X'| < 1 Valid Small
Input Impedance
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7
Constant Middle-Ear
Efficiency: fme(w) = O(1)

Figure 8. Summary diagram of the logical interrelations between the major findings of the paper. The notation p = ¢ means “p implies ¢.”
Assumptions underlying and regions of validity associated with the inferences are discussed in the text.
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traveling in either direction along the organ of Corti can therefore be expected. The
absence of waves traveling in two directions presumably simplifies the analysis of
sound.

e The efficiency of the middle ear at transferring acoustic power into the cochlea remains
roughly constant below 700 Hz. The rate of change of the wavelength near the stapes

is thus an important determinant of the sensitivity of the ear at low frequencies.
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Appendix A: Estimating Middle-Ear Efficiency

The efficiency fme(w) of the middle ear at transferring acoustic power to the cochlea
depends both on the characteristics of the middle ear and on the cochlear input impedance
Zop(w). By combining measurements on the cat to estimate and separate out the contribu-
tion made by the middle ear, this appendix derives an expression for middle-ear efficiency
as an explicit function of ReZ;. The appendix thus finds an expression 7me(w;ReZy)
that enables one to estimate—by imagining different cochlear models connected to a
fixed, empirically-characterized middle ear—the middle-ear efficiency associated with each
model.

As in Rosowski et al. (1986), the middle-ear efficiency nme(w) is defined to be the

fraction of the time-averaged power entering the middle ear that is absorbed by the cochlea:

2 ReZ
ReZ, °

_ Re{Po U(‘,"}

= Re{P, Uz} (A1)

TIme . IZeTmeI

Here, P, and U, are the pressure and volume velocity measured in the ear canal at the

eardrum, and

7)== (A2)

Ue middle ear driven forward

is the middle-ear input impedance. The transfer function T},. is defined by

Uy

Tme(w) = Fe

(A3)

middle ear driven forward

Of the two quantities |ZeTme|2 and ReZ, that depend on the middle ear in Eq. (A1), the
following discussion first considers |ZeTme|2 and shows that at low frequencies it is nearly
independent of the cochlear input impedance Zy(w). An expression for ReZ,, valid in the

same frequency range, is then found as a function of ReZj.
Measurements on the cat (Guinan and Peake 1967; Lynch 1981; Allen 1986) indicate

that for frequencies less than approximately 700 Hz, Z, and T}, have the form

Ze &

1 ;
iwce . and Tme ~v 2‘-'-’Cme (A4)

Models of the cat middle ear (e.g., Lynch 1981; Carr and Zweig 1984) suggest that the

constants C, and Cy,. are proportional to the combined compliances of such middle-ear
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structures as the eardrum, cavities, and ossicular joints and are thus essentially indepen-
dent of Zj.

Allen (1986) explicitly demonstrated that independence for Z, by measuring IZe(w)|
both before and after setting Zy ~ 0 by removing the basilar membrane and draining the
cochlear fluids.!” The implications of that experiment can be understood most readily

by noting that
_ aZo+b

¢ CZO+d, (A5)

where (22) are the elements of the transfer matrix T of the middle ear (Shera and Zweig

1992a), defined by
Pe _ PO
(Ue)_T(U()) . (A6)

When the basilar membrane is removed and the cochlear fluids drained,

b
2200 = |3] - (a7

Removing the cochlear load had a negligible effect on |Ze| below approximately 700 Hz.

Hence,
aZo+ b b
—_— |~ |= S
cZ0+d| ’d' (w/2m 5 700 Hz) , (A8)
so that!®
|aZo| <[], [eZo] < |d] , (A9)
and!®
b
Zo & rE (A10)
Thus, since
Il
Tme = m ~ 'I-)' ’ (All)

17 Allen (1986) measured the ratio of pressure to particle velocity in the ear canal at the eardrum,
which is everywhere proportional to Z.. The proportionality constant is approximately the cross-sectional
area of the ear canal which has a typical value of 0.15 cm? in cats (Shaw 1974).

8 The other possibility consistent with Eq. (A8), namely that

aZo=(p—1)b and c¢Zo=(tp—1)d, (18.1)
where p(w) is some function of frequency, can be excluded because no function p can be found that is
simultaneously consistent both with the principle of reciprocity, which requires det T = +1, and the

expected forms (see text) of the matrix elements at low frequencies.

9 Additional support for the inequality |cZo| < |d| comes from the observations that at low frequencies
the cat eardrum moves much like a rigid plate (Khanna and Tonndorf 1972; Decraemer et al. 1989) and
that the ossicular joints are expected to be quite stiff (e.g., Lynch 1981; Carr and Zweig 1984).
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the structure of the middle and inner ears are such that

1 Cme
|ZeTme| s 'Z, ~ 1 Ce (AIQ)

and so depends only on the middle ear below 700 Hz.

To estimate middle-ear contributions to ReZ,, note that at low frequencies models
of the cat middle ear (e.g., Lynch 1981; Carr and Zweig 1984) predict that the matrix
elements a and d are both approximately positive real, whereas b and ¢ are, respectively,
negative imaginary and positive imaginary. In addition, they suggest that |bc| < |ad|.
Thus, by Eq. (A5),

ReZ. ~ kReZy + Rpe , (A13)

where

k ~

aul o

-Z— and RmezRe{

} (A14)
are constants.

Allen (1986) has measured ReZ, while varying the cochlea load,”® and those mea-
surements can be used to estimate the value of the resistance R,.. According to Allen’s
measurements, removing the cochlear load decreases ReZ, by approximately 10-15 dB (or

roughly a factor of 4) below 700 Hz. Hence,
il
Rine = ReZe|Z0=0 ~ §kRC , (A15)

where Rc represents the resistance of the cochlea. Equation (A15) gives the approxi-
mate value of Ry, determined by middle-ear mechanics, in terms of the known cochlear
resistance. Thus,

ReZ. ~ k(ReZy + Rc/3) . (A16)

Using Eqgs. (A12) and (A16) in Eq. (A1) for nme(w) yields the expression, namely
Eq. (63), used in the text:

aReZy

"Ime(w;ReZO) ~ ReZo + RC/3

(w/2r < 700 Hz) , (A17)

20 Allen’s measurements were made with the middle-ear cavities widely open. At frequencies much
lower than the middle-ear cavity resonance near 4 kHz that modification should have little effect on ReZ,.
Calculations using models of the middle ear (e.g., Carr and Zweig 1984) support that contention.
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2
" %(%ﬂ) . (A18)

The measurements of Guinan and Peake (1967) indicate that Cppe & 2.5 X 10™% cm® /dyne

where

and Lynch (1981) provides the average value C. = 2.36 X 10~7 ¢cm®/dyne. Combining
the measurements of Allen (1986) with Lynch et al.’s (1982) determination of Rc and
Shaw’s (1974) measurements of the cross-sectional area of the ear canal yields the estimate
k ~ 1/85%. Consequently, @ =~ 0.8. Note that the value relies on measurements from many
cats and thus provides only a rough estimate of its value in any individual. Nonetheless,
Eq. (A17) can be used, when combined with model predictions of ReZy(w), to explore the

predicted frequency variation of middle-ear efficiency.
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ABSTRACT

A number of authors (de Boer and Viergever 1984; de Boer et al. 1986ab;
Viergever 1986; Kaernbach et al. 1987) have argued that backward-traveling
waves, in striking contrast to waves traveling forward towards the helicotrema,
suffer appreciable reflection as they move through the basal turns of the
cochlea. Such reflection, if present, would have important consequences for
understanding the nature and strength of otoacoustic emissions. The apparent
asymmetry in reflection of cochlear waves is shown, however, to be an artifact
of the boundary condition those authors impose at the stapes: conventional
cochlear models are found not to generate reflections of waves traveling in
either direction even when the wavelength changes rapidly and the WKB ap-
proximation breaks down.

Although backward-traveling waves are not reflected by the secular variation
of the geometrical and mechanical characteristics of the cochlea, they are re-
flected when they reach the stapes. The magnitude of that boundary reflection
is computed for the cat and shown to be a large, rapidly varying function of
frequency.
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Introduction

A number of recent papers have found a surprising asymmetry in the reflection of
cochlear waves (de Boer and Viergever 1984; de Boer et al. 1986ab; Viergever 1986;
Kaernbach et al. 1987). Those papers argue that whereas waves traveling forward towards
the helicotrema suffer little reflection, backward-traveling waves are strongly reflected
by the secular variation of the mechanical characteristics of the organ of Corti. Such
reflection, if present, would have important consequences for understanding the strength
of otoacoustic emissions measured in the ear canal.

This paper demonstrates, however, that the reflection of retrograde waves found by
other authors is an artifact of the boundary condition they impose at the stapes. The
reflection they find occurs not within the cochlea but rather at an impedance mismatch
at the cochlear boundary with the middle ear. The ostensible asymmetry in reflection of
cochlear waves thus appears as the expected consequence of an asymmetric termination
of the cochlear transmission line.

The finding that the models they use generate little internal reflection is unexpected;
since their models, like most cochlear models, break the tapering symmetry required by
measurements of the cochlear input impedance (Shera and Zweig 1991a) and therefore
manifest the cochlear catastrophe (i.e., a divergence in the “spatial” derivative of the
wavelength at low frequencies), one might naively expect them to produce considerable
reflection of waves traveling through the basal turn. To see this, recall that tapering sym-
metry implies that the longitudinal impedance Z of the cochlea and the shunt admittance
Y of the organ of Corti are approximately proportional. That symmetry guarantees that
the wavelength, or characteristic impedance, changes slowly at the basal end of the cochlea
and therefore that waves traveling in either direction undergo little reflection. The logic

of the argument can be summarized with the diagram:
{Real Zo} <= {ZxY} <= {|X| <1} = {cochlear reflections are small}, (1)

where the notation “p = ¢” means “p implies ¢.”
One might therefore expect, although such is not a necessary consequence of di-

agram (1), that models in which the symmetry between Z and Y is broken and the
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wavelength changes rapidly produce large reflection of retrograde waves. By computing
reflections in models that exhibit the cochlear catastrophe, this paper shows, however,
that conventional cochlear models do not create reflections of retrograde waves even when

Z and Y are not proportional:
{Z¢Y} < {|X|>1} # {cochlear reflections are large} . (2)

Although the input impedance of such models has a nonzero phase at low frequencies—in

contradiction with experiment—the cochlear reflection of retrograde waves is always small.

A. Overview

Since the solution to any scattering problem first requires defining what is meant by a
wave traveling in a particular direction, Sec. I outlines a method for obtaining projection
operators that enable one to decompose the solution to the transmission-line equations
into waves traveling in opposite directions. The method is illustrated by application to
an asymptotic WKB expansion for the pressure. The connection between the resulting
WKB series and the geometric-optical series (Bremmer 1951) used by Viergever (1986)
for the analysis of cochlear reflections is established. Section II introduces a family of
conventional transmission-line models in which a parameter A determines the extent of
symmetry-breaking between Z and Y. Included in the family are those models (e.g., de
Boer 1980) used for the investigation of cochlear reflection phenomena. Approximate so-
lutions for the traveling-wave components, valid at low frequencies near the stapes, are
found. Those wave components, asymptotically exact as f — 0, are matched to the cor-
responding WKB waves at higher § to obtain approximate solutions valid throughout
the cochlea. The results of Secs. I and II are then combined for a discussion of cochlear
reflection. By solving for an infinite cochlea the analog of a plane-wave scattering prob-
lem, Sec. IIT demonstrates that the cochlear reflection of retrograde waves predicted by
other authors results from an impedance mismatch at the basal boundary. Section IV
argues that negligible internal reflection of waves, properly defined, is a general property
of conventional cochlear models. The paper concludes with an estimate of the reflection

coefficient at the stapes for retrograde waves traveling within the cochlea of the cat.
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I. Finding the Wave Components

This section outlines a simple method, based on an arbitrary pair of “basis waves”
B+ and their osculating parameters, for defining projection operators that enable one to
decompose the total pressure into wave components traveling in opposite directions along
the organ of Corti. The procedure does not depend on the form of the basis functions,
although the method is most useful if the B4 constitute good approximate solutions to
the transmission-line equations. The resulting wave components can be interpreted as
originating from multiple scattering of lower-order waves within the cochlea. The projec-
tion operators are used to derive expressions for the wave impedances of a nonuniform
transmission line. The section concludes with an examination of the relationship of the
WKB series to the geometric-optical series (Bremmer 1951) used by Viergever (1986) for
the analysis of cochlear reflections.

At high sound pressure levels and low frequencies (i.e., w <« w, where w, is the
maximal characteristic angular frequency represented on the organ of Corti), the basal
turn of the cochlea is analogous to a linear, one-dimensional mechanical transmission
line (Zwislocki-Moscicki 1948; Peterson and Bogert 1950; Zweig 1991). The transmission-

line equations imply that the differential pressure P and volume velocity U satisfy the

equations
P 1
d_Xf + FP =0, (3)
and
.dP
U= ZE 5 (4)

where the “spatial” coordinate x is defined by

(5)

-

x(z,w) = —i/ Z(z' ,w)dz'
0

and the characteristic impedance

Aot} = Zoltotd) = (é)/ - (6)

represents the corresponding “wavelength.” Recall that Z and Y represent, respectively,
the longitudinal impedance and shunt admittance per unit length of the cochlear trans-

mission line.
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For most forms of Z and Y, solutions to Eq. (3) do not exist in terms of elementary
functions and approximate solutions must therefore be employed. Imagine P to be ap-
proximated, in some region of the cochlea, by a superposition of waves By traveling in

opposite directions along the organ of Corti:

P(X’w) s A+(w)B+(X’w) + A—(w)B—(Xvw) . (7)

The direction of wave propagation is indicated by the subscripts on the complex ampli-
tudes: the ‘4’ indicates a wave traveling toward the helicotrema, the ‘—’ a wave traveling
back toward the stapes. The choice of “basis functions” By is entirely arbitrary, al-
though the formalism is most useful if the B4 constitute good approximate solutions to
the transmission-line equations and, in the limit of zero damping, the power flow com-
puted with those basis waves is nearly constant. The complex amplitudes A4 may be
determined by boundary conditions (applied, for example, at the base and apex of the
cochlea) or by matching with solutions valid in adjacent regions. For simplicity, the fre-
quency dependence of most dependent variables will be suppressed.

The basis waves By, approximate solutions of Eq. (3), are exact solutions of some

other equations, assumed to be of the form

d’By 1+ €%
ax? + 7 By =0. (8)

If |e1] < 1, the functions By form good approximate solutions to the transmission-line
equations. (In practice, the By may be obtained by choosing convenient forms for the €5

so that the solutions to Egs. (8) correspond to well-known special functions.)

A. The osculating parameters 1}
Adopting the approximate solutions B4 as “basis waves” permits the ezact decom-
position of the pressure P into corresponding components P§ whose sum yields the total

pressure P:
P=P!+PE. (9)
The superscripts identify the underlying basis waves. The decomposition, affected by

generalizing Eq. (7) and allowing the constants Ai—renamed the ¥4 (x)—to vary with
position, is defined by

PE(x) = ¥ (X)Bx(x) , (10)
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where the functions ¥ (x) are defined by the pair of simultaneous equations

P= ¢i3+ + ’l,sz_
and

(11)
d

B dB_
p— ,‘/}+ + + ,‘/)B X

(12)
At every point x the functions %5 (x), known as osculating parameters (Mathews and

Walker 1964), are defined so that their values give the pressure P and its derivative
dP/dx exactly.

If the By constitute exact solutions to Eq. (3) (so that € = 0), the osculating pa-
rameters become independent of position and one can make the identification

Pi(x)= A+ and YI(x)=4

(13)
The deviation of the ¥§ from those constant values provides a measure of the error in

Eq. (7) (Kemble 1935; Mathews and Walker 1964; Fréoman and Fréman 1965)

The osculating parameters can be found—and their interpretation as scattering am-

plitudes illuminated—as follows. Solving Egs. (11) and (12) for the functions 93 (x) yields

dB d
"pi = ’7’8 (d_;: = B;E) P, (14)
where
B — —~ B+ Bf:,.
o det B B

(15)
is the reciprocal of the Wronksian determinant. The osculating parameters 5 may then
be determined by solving the pair of coupled first-order differential equations

dyi
dx

= ¥ (oL 9481 B + oLyiBL)
obtained by differentiating Eq. (14). Here

(16)

o
! - B
Y

(17)
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If the |04 | are sufficiently small, Egs. (16) can be solved by iteration. For example, if
the boundary conditions are such that 95 (0) = 1 and %2 (00) = 0, a first approximation
to P® is given by

oo

P00~ -B- [ Bu()oi()B (X)X’ + O(o%0") (18)
representing summed contributions from wavelets B, (x’) reflected (a single time) at all
points x’ > x. Decomposing the solution P in the manner of Eq. (9) is equivalent to finding
the exact solution to the transmission-line equations by solving an integral scattering
equation in which incident waves By are scattered by their interaction with potentials o}.
The wave components P{ can thus be interpreted physically as the summed amplitudes
at y of all wavelets traveling in a particular direction.

As is readily apparent from Eq. (18), the value of P® depends on the choice of wave
components B4. Thus, nonzero values of the “reflection coefficient”

R (x,w)= P—% (19)

cochlea driven forward
do not necessarily represent actual reflection of energy back toward the stapes, but may
result simply from the use of wave components B4 for which the corresponding scatter-
ing potentials 0% (x,w) are not small—that is, wave components that do not constitute

accurate solutions to the transmission-line equations (see the Appendix for an example).

B. The projection operators ﬁ:ﬁ
The wave components P{ can also be obtained from the total pressure P by means

of the cochlear projection operators ﬁi, defined by

Py = P{P}. (20)
Equation (14) then implies that
- B d
B B — T B
Pf =4+74°Bs ( i B;dx) ; (21)

Note that the waves B4 (x) are, by construction, eigenfunctions of the projection operators

with eigenvalues of either zero or one:

Pr{B;} = 6:;8; . (22)
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C. The wave impedances Z}
A simple application of the projecti