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Abstract 

I perform calculations of high momentum-transfer, quasielastic electron scatter­

ing from nuclei using a relativistic, microscopic model of the reaction that includes the 

effects of final-state interactions via an eikonal approximation and the effects of color 

transparency via a cross-section that varies along the exit path of the proton. The 

results of this microscopic calculation agree to 5% with a semiclassical estimate based 

on the mean free path of the proton in the nuclear medium. The overall uncertainty 

in the calculation is on the order of 10%; this figure is dominated by uncertainties in 

the potential that describes the final state interaction. Color transparency effects an 

enhancement on the order of a few percent (in total cross-section) for Q2 = 1 Gey2, 

and ten percent for Q2 = lOGe y2. The predictions of various specific transparency 

models differ by approximately 20%, and thus are probably not experimentally dis­

tinguishable for Q2 < 10 Gey2. 
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Introduction 
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This thesis describes calculations of quasielastic electron scattering from nuclei at 

high momentum transfers. In this introduction, I discuss two ways of modeling the 

interaction between the outgoing proton and the residual nucleus: first, using the 

conventional nucleon-nucleus interaction; and second, using a model that includes 

"color transparency" effects, which modify the usual final state interaction. I then 

briefly discuss some important aspects of perturbative quantum chromodynamics, 

present a physical motivation for color transparency, and discuss the relationship 

between the two. Finally, I give an outline of the rest of this thesis. 

1.1 Final State Interactions in Qmisielastic Electron Scattering 

The subject of this thesis is the quasielastic (QE) nuclear reaction, which is 

depicted schematically in Figure 1.1. An incident electron emits a virtual photon in 

the electromagnetic field of a target nucleus. The photon is absorbed by a proton 

which subsequently exits the nucleus into a detector. No other particles are measured 

in the final state, neither is there enough missing energy that one may have been 

produced. This investigation concerns processes in which the momentum transferred 

to the nucleus by the electron is large-on the order of several GeV. 

In my calculations, I consider only single-photon exchange between the electron 

and the nucleus , because higher-order corrections due to quantum electrodynamics 

(on the order of a 2 ~ 1/1372 ) are negligible compared to the uncertainty in the 
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e A-I 

e A 

Figure 1.1 - Schematic diagram for th~ (e,e'p) reaction. An 
incident electron scatters from a target composed of A nucleons, 
knocking out a proton and leaving A-I nucleons in a (possibly 
excited) residual nucleus. The momentum transfers relevant to 
this thesis are on the order of a few Ge V. 

description of the hadronic interactions (on the order of 5 to 10%) [1]. Furthermore, 

at the electron energies I study, electromagnetic distortions of the outgoing electron 

due to either the residual nucleus or the the ejected proton are unimportant [2]. 

However, I do wish to treat the interaction between the outgoing proton and the rest 

of the nucleus : these interactions are the focus of this thesis. 

In the semiclassical calculation presented in Chapter 2, the final state interaction 

(FSI) is modeled semiclassically as absorption governed by the mean free path of the 

proton as it travels through the nuclear medium. In the microscopic calculation 

described in Chapters 3 and 4, the FSI is described by an optical potential. This 
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potential is determined by fitting a parameterized potential form to proton-nucleus 

scattering data or by using free nucleon-nucleon amplitudes together with a nuclear 

density distribution to construct a phenomenological nucleon-nucleus interaction. An 

eikonal approximation (rather than a partial wave analysis, which is tractable only 

at lower energies), is used to calculate the distortions of the final state wavefunction. 

In both these calculations, the physical mechanism responsible for the FSI is the 

ordinary interaction between the struck proton and the rest of the nucleus. 

In Chapter 5, I consider an extension of the microscopic model that includes 

the effects of color transparency (CT); these investigations of the color transparency 

phenomenon are the primary new results in this thesis. Color transparency causes 

protons that have been scattered with high momentum transfer to be less strongly 

absorbed by the nuclear medium than would otherwise be expected [3,4]. Therefore, 

an understanding of nuclear color transparency requires an accurate model of the 

conventional final state interaction, because the signature of CT is an enhancement 

in the observed flux of QE protons relative to the expected flux, and the expected 

flux clearly depends upon the details of the final state interaction. 

1.2 Perturbative Quantum Chromo dynamics and Color Transparency 

Because the color transparency hypothesis is a prediction of perturbative quan­

tum chromo dynamics (PQCD), I briefly sketch some of the important ideas of PQCD. 

Consider elastic electron-proton scattering . . At low energies, the virtual photon 

scatters from the proton coherently and its quark substructure is not apparent; at 

higher energies, the photon may resolve the quark constituents and most likely will 

cause a change in the internal degrees of freedom of the proton. In a high-energy 

elastic scattering process, however, the internal degrees of freedom of the final state 

must be identical to those of the initial state; hence, the struck quark must distribute 
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its momentum by (hard) rescattering with the other quarks. Since, to leading order, 

the coupling constant of QCD varies with the momentum transfer Q2 according to 

(1.1) 

(where Nf is the number of quark flavors and A is the QCD scale parameter [5]), these 

hard rescatterings among quarks can .be treated perturbatively when (Q2 / A 2) is large 

enough to make a s (Q2) small compared to one. Using the factorization hypothesis, 

the matrix element for the process is written as a product of three pieces: a form 

factor (or wavefunction) describing the nonp~rturbative initial state of the proton, a 

hard scattering amplitude which is calculated perturbatively, and another form factor 

describing the final state [6]. 

1.2.1 Scaling Law for High-Energy Exclusive Hadronic Processes 

A major prediction of PQCD is the high energy, fixed center-of-mass angle scaling 

law for high-energy exclusive hadronic or semi-hadronic processes [7]. The scaling law 

can be written 

t 
high s, tj - fixed, 

s 
(1.2) 

where sand tare Mandelstam variables and n is the total number of pointlike con-

stituents (valence quarks, leptons, or photons) in the initial and final states. A heuris-

tic derivation of the scaling law for exclusive (semi-) hadronic processes follows. 

Consider a generic quark level diagram for such a process, depicted in Figure 1.2, 

and perform dimensional analysis on the matrix element for this diagram. External 

fermion lines contribute a dimension Et, gluon and photon propagators contribute 

1/ E2 , and quark propagators contribute 1/ E. Only those diagrams that have the 
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Figure 1.2 - Schematic diagram of an exclusive semi-hadronic 
scattering process, for example, ep -+ ep1l". The virtual photon 
strikes the leftmost quark, which then shares its momentum 
with the other parton that composes the final pion. 

fewest number of intermediate gluon and photon lines contribute at high energy be­

cause of the extra factor of E2 in the denominator for each additional propagator. 

However, since the reaction is exclusive, only diagrams in which all the quarks that 

belong to a given particle in the final state are connected are physical. These con-

straints require that the lowest order matrix element for the process have dimension 

1 
[M] = En-4' (1.3) 

where n is the total number of external lines. The differential cross-section then has 

dimension 

[~: ] ( 
1 ) 2 1 ( 1 ) n-2 

En-4 E4 = E2 (1.4) 
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At high energies (those large relative to all of the masses of the particles involved), 

the only scale for the process is the center-of-mass energy, -JS. Replacing E2 with s 

gives the scaling result 

dO' 1 
-(X--
dt sn-2· 

(1..1) ) 

This scaling prediction has been tested experimentally by by measuring the electro-

magnetic form factors of various hadrons and found to be reasonably accurate for 

Q2 on the order of 5 Gey2 [8]; however, the agreement is not exact and further 

experimental investigation of PQCD is desirable. 

1.2.2 Color Transparency 

Like the scaling law, color transparency is a prediction of PQCD that applies 

to exclusive hadronic processes. Consider elastic electron-proton scattering again. 

At momentum transfers on the order of several GeY, the wavelength of the virtual 

photon is short compared to the characteristic radius of the proton 

h 1 
), = 1Q1 ~ 2 GeY = 0.1 fm ~ rproton = 0.81 fm. (1.6) 

Of course, the proton "radius" is only an average quantity: while the QCD proton is 

most likely to be observed in a configuration of radius approximately 1 fm, there exist 

configurations (Fock space components) in which the separation distance between 

quarks is significantly smaller. When a proton is struck by a short-wavelength photon, 

it is most likely that the photon will interact with a single quark incoherently (since 

the other quarks are probably at least several wavelengths distant); thus, at high 

energies, inelastic processes like fragmentation dominate. 
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In elastic processes, however, the final state must remain bound as a proton; 

hence, if a short-wavelength photon strikes a quark, the other quarks must be suffi­

ciently "close" to the struck quark that a coherent response is possible. Heuristically, 

elastic processes can be regarded as sampling only those Fock space components with 

a size on the order of the wavelength of the virtual photon. Because the amplitude 

for observing these small components is small, elastic reactions are unlikely at high 

energies; however, in the rare cases in which high momentum-transfer elastic reac­

tions do take place, it can be inferred that the initial proton occupied a space with 

a dimension on the order of the wavelength of the virtual photon. Since that wave­

length is inversely proportional to Iql, the initial size of the struck proton vanishes 

with increasing momentum transfer. 

After undergoing a high-energy exclusive scattering, the proton relaxes by ex­

panding back to its equilibrium size. Several models exist for how this "hadronization" 

occurs [9], but for now it is sufficient to say that the quarks expand at approximately 

the speed of light until they reach their normal separation distance and then remain 

in that state; and that the "hadrbnization length" , or the distance the proton travels 

while this process occurs, is on the order of I = ElM, where E is the energy of the 

proton and M is its mass. 

Now consider elastic electron-proton scattering carried out in a nuclear environ­

ment. The above argument about the size of a proton following a high momentum­

transfer exclusive reaction still applies; however, in this case the small configuration 

interacts with the residual nucleus as it is returning to its equilibrium size. In the 

normal proton-nucleus interaction, the proton scatters from the other nucleons with a 

cross-section that is determined primarily by its size [10]; therefore, it is plausible that 

the cross-section for the interaction of the "small" proton with the other nucleons will 
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be small. For instance, at Iql = 2 GeV, the "geometrical" cross-section (obtained by 

evaluating 7rri where r..L = l/lql) is 0.3 mb, much less than the free value of 40 mb. 

Furthermore, the hadronization length for such a proton is of the same order as a 

typical nuclear radius; again using Iql = 2 GeV, lh ~ I = 2.4 fm. Hence the recoiling 

proton interacts only weakly with the medium along its much of its exit path, and 

the residual nucleus can be regarded as becoming "transparent" to it. By varying the 

ratio of the hadronization length to the nuclear radius (i.e. by varying A at fixed Q2 

or vice versa), the CT mechanism can be investigated [3,4]. 

That a proton of reduced size has a correspondingly reduced nuclear absorption 

cross-section is actually a necessary consequence of QCD. Since the proton, like all 

QCD-allowed states, is a color singlet, a multipole expansion of its color field has only 

terms which are dipole or higher in order. Moreover, since dipole (and higher order) 

fields are proportional to the separation distance between the (color) charges, the 

color field of the struck proton tends toward zero as its size becomes small. Because 

the FSI between the proton and the rest of the nucleus is due to the strong force 

acting between their respective color fields, the strength of the final state interactions 

must be diminished for protons of reduced size. 

Bearing in mind the above argument, I now clarify the semiclassical color trans­

parency picture of a small proton, modeled as a black disk, interacting with the nu­

cleons in the residual nucleus. The interaction between two normal nucleons is almost 

perfectly absorptive: their cross-section is nearly equal to the sum of their projected 

areas. When a small proton interacts with a normal nucleon, however, the relevant 

area is that of the small particle; this is because the large nucleon, rather than itself 

being absorbing, is transparent to a color singlet of a much smaller size. Physically, 

the small configuration "passes through" the larger one without interaction. 
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Neither the fixed-angle scaling prediction nor the color transparency hypothesis 

relies on any specific property of QCD beyond the fact that in QCD, hadrons are 

composed of pointlike fermions that are asymptotically free [7] . Indeed, both are 

necessary consequences of QCD but are not sufficient to rule out other nonabeliean 

gauge theories , which share these essential properties; hence, observation of either 

one of these phenomena can provide only indirect support for the correctness of 

QCD. However, because no exact calculation of electron-proton or electron-nucleus 

scattering exists, even indirect evidence is worth considering. 

1.3 Organization of this Thesis 

In Chapter 2, I give a description of a semiclassical calculation of proton absorp­

tion in QE scattering. In Chapter 3, I present a relativistic, microscopic formalism 

for the QE reaction. Detailed algebra is deferred to Appendix A, and Appendices B 

and C contain derivations of a density-dependent optical model and a general optical 

potential satisfying incoming-wave boundary conditions, respectively. In Chapter 4, 

I present results of numerical calculations based on the formalism of Chapter 3, both 

for plane-wave final states and distorted-wave final states without color transparency. 

The effects of color transparency are included in the calculations presented in Chap­

ter 5. For completeness, Appendix D contains a listing of the code used in these 

calculations. Chapter 6 contains a summary and conclusions. 
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Chapter 2 

Sem iclassica I Ca leu lations 

I describe a semiclassical model of the interaction between a high-energy proton and a 

target nucleus, and use this model to calculate the probability that a quasielastically 

scattered proton will be absorbed on its way out of the residual nucleus. Results 

of this calculation indicate that nearly all of the escaping particles originate in the 

nuclear surface; moreover, the escape probability displays a keen sensitivity to the 

surface thickness of the nuclear density distribution. I discuss a similar calculation 

by Farrar et al that includes color transparency effects. 

2.1 Formalism 

I seek to derive a formula for the probability of absorption of an incident particle 

by a target medium. My approach is purely semiclassical: I neglect any wave proper-

ties ofthe projectile (or the target), since they should not be important for describing 

the behavior of a few-GeV proton in a nucleus. Quantitatively, the proton's deBroglie 

wavelength 

he 
). = 2 GeV ~ 0.1 fm (2.1) 

is much smaller than both the characteristic internucleon distance 

1 

D NN ~ (37r2) 1r ro = 2.1 fm (2.2) 
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L 

-
dx 

Figure 2.1 - Schematic diagram for deriving the change in flux 
of a particle as it traverses an absorptive medium. The incident 
particle is denoted a, the target particles are denoted b, and the 
flux of a past the point x is denoted .1"{x). 

Outgoing 
Flux 

(obtained by assuming a density of p = (~1l'Tg) -Ion a regular body-centered cubic 

lattice of nucleons) and the characteristic intranucleon distance 

rrms = 0.81 fm. (2.3) 

Thus, a semiclassical approximation (equivalent to averaging over many proton wave-

lengths) is justified. 

Consider a particle a incident upon a medium composed of particles b with 

density Pb, and let <Tab be the total cross-section for interaction between the incident 

and target particles. Define x to be a coordinate in the direction of a's motion, and 

let F( x) be the flux of a past x, schematically shown in Figure 2.1. 
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Upon traversing a small distance, .6.x, the change in the flux of a is 

F(x) - F(x + .6.x) = :F(x) O"ab Pb .6.x, (2.4) 

since by definition the cross-section is 

Scattered Flux of a Particles 
O"ab - (Incident Flux of a Particles) (Incident Flux of b Particles) (2.5) 

Rewriting the finite difference as a differential, and integrating from x = 0 to x = L 

gIVes 

:F(L) = e-Uab Pb L 
:F(O) , (2.6) 

where the left side of the equation can be interpreted as the probability that a will 

exit the material unscattered. 

Equation 2.6 can be used to calculate the probability that a quasielastically 

scattered proton will be absorbed on its way out of the residual nucleus. Let ro = 
(Zo, bo) denote the intial position of the proton in the nucleus, and let z be the 

direction of its final momentum. The exit trajectory is taken to be a straight line 

because only those protons which follow such a trajectory will exit the nucleus with the 

desired quasielastic kinematics. The probability that the proton will travel through 

a small element dz of its path without being scattered is 

P(dz) = exp [-O"pN PN(Z) dz] , (2.7) 

where PN(Z) is the total nucleon density at (z, b) and O"pN is the proton-nucleon cross­

section. Multiplying together the escape probabilities associated with each element of 

the exit path then gives the probability that a proton originating at ro will escape the 



-13-

nucleus unscattered. This product of exponentials can be rewritten as the exponential 

of a sum, and the sum over infinitesimal path elements can in turn be written as an 

integral 

P(rol = exp [-] dz' "PN PN(Z'l] , (2.8) 

where the direction of the (straight-line) exit path might still depend upon the initial 

position of the proton. 

Assuming that all of the momentum of the virtual photon is transferred to the 

struck proton, the final momentum is (kb + q), where kb is the momentum of the 

initial bound proton and q is the three-momentum transfer of the reaction. Since 

the values of Iql relevant to this calculation are on the order of a few GeV, and Ikbl 

is at most a few hundred MeV [11], neglecting kb in their sum is not unreasonable. 

With this approximation, the exit path is in the direction of <1, independent of the 

particular bound state (hence also the position) from which the proton was emitted. 

The total escape probability is the density-weighted average of the expression in 

Equation 2.8; explicitly, 

(2.9) 

where the densities Pp and PN are normalized to 1 and A, respectively. The cross­

section does not depend strongly on either the energy of the proton or the isospin of 

the target nucleon; approximating O'pN as a constant 40 mb is reasonably accurate for 

energies above 1 GeV [10]. The escape probability can then be evaluated analytically 

for a uniform nuclear density or computed numerically for a more realistic distribution 
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like the Fermi distribution. A rough estimate of the A dependence of Pesc can be made 

as follows: the average mean free path of a proton through nuclear matter is 

1 
Amfp = -_-- = 1.5 fm; 

pcrpN 
(2.10) 

therefore, for a nucleus with a radius larger than a few fermis (i.e. for A > 20), only 

particles on the surface have a significant probability for escape. Thus, Pesc should 

scale as the ratio of the surface area of a nucleus to its volume, or as A -i. 

2.2 Results of Semiclassical Calculations 

Equation 2.9 requires two pieces of input; as usual, these contain the important 

physics. The first is the cross-section, which I take to be 40 mb; the second is the 

nuclear density, which I investigate below. 

The nuclear density distributions of Barrett and Jackson [12] are determined by 

fitting parameterized distributions to low-energy elastic electron-nucleus scattering 

data. They assume that the neutron distribution (and hence also the total nucleon 

distribution) is proportional to the proton (charge) distribution: PN ex: pn ex: PP) 

where PN = Zpp + N pn. For most larger nuclei, they use the two-parameter Fermi 

distribution 

(2.11) 

to parameterize the density, where Cp is chosen so that Pp is normalized to 1. In 

lighter nuclei, surface effects are more significant. Some require three parameters for 

an accurate description of their surfaces: 

(2.12) 
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Figure 2.2 - Probability that the ejected proton of an (e,e'p) 
reaction will escape the nucleus unscattered. The dot dashed line 
was calculated analytically for a uniform nuclear distribution of 
radius 1.2A! fm and the diamonds were evaluated numerically 
with the experimental distributions of Reference [12]. 

The modified Gaussian distribution 

(2.13) 

is best-suited to describing the exceptional 12C nucleus. Reference [12] contains a 

compilation of data and parameter values for a large range of nuclei. 

Figure 2.2 shows the escape probability plotted as a function of the nuclear 

mass number. The dot dashed line represents the escape probability calculated with 

a uniform density distribution of p = 0.17 nucleons/fm3 [11], and the diamonds are 

the results obtained with the experimentally-determined distributions. 
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The values of the escape probability obtained using realistic density distributions 

exceed those obtained with a uniform distribution by a constant factor of about 35%. 

The effects of finite surface thickness are so marked because most of the exiting 

protons originate in the surface and thus are particularly sensitive to its diffuseness. 

Mathematically, this sensitivity arises from the exponential density dependence in 

the expression for the escape probability: a small change in the line integral of the 

density results in a relatively large change in the escape probability. The slope of the 

dotdashed line on the log plot is -0.3 (for large A), in good agreement with the simple 

A-i mean-free-path prediction. I note that the results of this calculation agree with 

the predictions (also semiclassical) of Farrar et al [9]. 

2.3 Color Transparency Effects 

The semiclassical formalism described above is easily extended to include the 

effects of color transparency [9]. The only necessary change is to replace the pN 

cross-section with an effective cross-section, (j;~(Z'), that varies along the exit path 

of the proton. The modified escape probability is then 

(2 .14) 

The physics of transparency is embedded in the effective cross-section, more specif-

ically, in the function of z that multiplies the free cross-section to simulate the ex-

pansion of the initially-small proton. As discussed earlier, the cross-section for a 

high-energy hadron in nuclear matter is primarily geometric: 

......, 2 
OhN ......, 7fT .1, (2.15) 

where r.1 is the characteristic transverse dimension of the hadron [13]. A hadron 

that has a small transverse size has a correspondingly small absorption cross-section 
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and conversely a large escape probability. To specify a color transparency model, it 

suffices to determine r..L (z) for the expanding proton; the behavior of the cross-section 

is then determined via Equation 2.15. 

Farrar et al consider two models for this expanSIOn. In their "naive parton 

model" , the quarks separate at the speed of light until the proton regains its normal 

size. Alternatively, they consider a case where the partons "diffuse" out until they 

reach their equilibrium separation distance. The naive model provides a simple es-

timate of the size of the transparency effect; the more sophisticated diffusion model 

is supposed to better reflect the underlying dynamics of perturbative QCD. I discuss 

both models below, as they will be used in the relativistic calculations of Chapter 5. 

For convenience, denote the semiclassical model without transparency, the quan-

tum diffusion model, and the naive parton model as 7 = 0, 1, and 2, respectively. 

7=0 

The cross-section remains constant along the entire exit path; thus, the expansion 

function is 

(2.16) 

and the cross-section is 

eff ( )_ apN z = apN, (2.17) 

where apN is the total pN cross-section and ri = JapN/7r is the free value of r..L. 

7=1 

In a random-walk process, the quarks separate at a rate proportional to VZ, thus 

the cross-section increases linearly along the exit path. The initial size of the proton 
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is r~(fm) ~ 1.2/ Jt (GeV), where t is the usual Mandelstam variable (equal to the 

square of the four-momentum transfer). The hadronization length-the length over 

which the proton regains its normal size-is 

lh (fm) = 0.61kl (GeV), (2.18) 

where Ikl is the magnitude of the proton's momentum. 

7=2 

In the naive parton model, the quarks are regarded as essentially free, and they 

separate at the speed of light. Thus r l.(z) increases as z, and the cross-section grows 

quadratically along the exit path. In units where c = 1, the hadronization length is 

simply the time it takes the quarks to attain their equilibrium separation, properly 

boosted to the rest frame of the nucleus 

(2.19) 

where ts = 1 Ge V / q is the initial proton shrinkage, and ri = 0.81 fm is the final size 

of the proton. 

All three models can be succinctly combined into the single expression 

(2.20) 

where both Ih and ts depend on 7 implicitly. These effective cross-sections are plotted 

together in Figure 2.3. 

Of the two models, the naive parton model predicts the greater escape probability 

(hence the greater transparency), both because the cross-section grows more slowly 

and because the hadronization length is larger than in the diffusion model. 
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Figure 2.3 - Effective cross sections of each of the three trans­
parency models. The effective cross-section is shown as a func­
tion of the distance from the point where the proton was struck. 
The dashed line corresponds to the diffusion model (T = 1), the 
solid line to the naive parton model (T = 2), and the dotdashed 
line to the model without any transparency effects (T = 0). The 
hadronization length depends on T; subscripts are used to dis­
tinguish lh for the two models. 

Calculations performed usmg this semiclassical color transparency model are 

published in Reference [9]. The authors conclude that predictions of the three expan-

sion models vary significantly, so an experimental determination of whether trans-

parency exists, and if so, which model best describes it, appears possible. They also 

make a similar calculation for general exclusive hadron-nucleus scattering. The only 

modification to the previous discussion is that instead of one exponential attenuation 

factor in Equation 2.14, there are three: one each for the incident hadron to reach 

the interaction point and the scattered hadron to leave the nucleus unattenuated, 
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and the usual factor describing the attenuation of the knocked-out nucleon. In the 

case of quasielastic proton-nucleus (p,2p) scattering, experimental data is available. 

Carroll et al [14] measure the (p,2p) cross-section for lithium, carbon, aluminum, 

copper, and lead targets at incident proton momenta of 6, 10, and 12 GeV Ie. To 

investigate transparency, they plot their measured cross-section, divided by the free 

proton-proton cross-section, as a function of the incident proton beam momentum. 

When compared to Farrar's semiclassical calculations, the measurements support the 

existence of some amount of transparency, however, the observed decrease in the 

transparency for PLAB > 10 GeV is not predicted by any of the models. Theoretical 

attempts to understand this result have focussed on improved descriptions of the free 

proton-proton cross-section, including oscillations around the leading 8-10 behavior 

of apN [15] and postulated heavy quark resonance thresholds [16], but these are pri­

marily speculative. Both a clearer experimental investigation of transparency (for 

example, using electrons as the projectile [17]) and a detailed theoretical understand­

ing of the process (including a full relativistic and quantum mechanical description 

of the final state interaction) are desirable. 
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Chapter 3 

Relativistic DWIA Calculation 

In Section 1, I review the standard scattering formalism for the (e,e' p) reaction, giving 

the cross-section in terms of matrix elements of the nuclear electromagnetic current 

operator between the initial and final states of the proton. In Section 2, I derive an 

expression for the distorted-wave final state of the proton, using an eikonal approxi­

mation to include the effects of its interactions with the residual nucleus. Section 3 

contains a brief description of the model used to generate relativistic wavefunctions 

for the initial bound state. Detailed formulae for the nuclear current matrix elements 

are given in Appendix A. 

3.1 Quasielastic Electron Scattering Formalism 

The quasielastic reaction under consideration is represented schematically in 

Figure 3.1. The incoming and outgoing electron (four-) momenta are denoted p and 

p'; q is the momentum of the virtual photon; and k is the momentum of the ejected 

proton. 

I work III the distorted-wave impulse approximation (DWIA); I assume that 

the only physical mechanism for the scattering is one-photon exchange between the 

electron and a single nucleon, after which the ejectile may interact with (become dis­

torted by) the rest of the nucleus. This approximation should become more accurate 

at higher energies since the probability for coherent excitation of several nucleons de­

creases as the wavelength of the virtual photon decreases; its use is well-justified for 
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Figure 3.1 - Schematic representation of the (e,e'p) reaction. 
The incoming and outgoing electron (four-) momenta are de­
noted p and p'; q is the momentum of the virtual photon; and k 
is the momentum of the ejected proton. The recoil momentum 
of the nucleus is denoted P. Here and throughout this the­
sis, italic letters denote four-vectors and boldface letters denote 
three-vectors. 

the energies of interest here. Throughout these calculations, the recoil momentum pI 

of the residual nucleus, which is of order l/A compared to p, p', and k, is neglected. 

The ejectile is knocked out of a nuclear shell state characterized by principal 

quantum number n, total angular momentum quantum numbers j and m, orbital 

angular momentum quantum number I, and isospin quantum number t. For the 

proton knockout reaction, t is +~. Since the final state proton is on mass-shell, its 

energy is Ek = Vlkl2 + M2. 
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I define coordinates such that k is parallel to z, because the final-state distorted 

wave is most naturally expressed in the coordinate system where the ejectile exit 

path is along the positive z axis. This system differs from the one most often used; 

in "parallel kinematics" it is q rather than k that defines the positive z axis. 

z 

k 

y 

Figure 3.2 - Coordinate system used in (e,e'p) calculations. The 
positive % axis lies along the outgoing proton's momentum k. 
The angle that the perpendicular component of the momentum 
transfer, q.l, makes with the positive x axis is {3. The angle 
between the electron momenta is (}. 

My coordinate system is shown in Figure 3.3. The azimuthal orientation of 

the coordinate system is arbitrary, subject to the constraint that the angle f3 is not 

a multiple of f, as this causes either the transverse-transverse or the longitudinal-

transverse response function to become ill-defined. f3 is defined as the angle between q 

and the positive x axis , and () is the angle between initial and final electron momenta. 
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Following a derivation in Reference [18J, the cross-section for the (e, e' p) reaction 

IS 

(3.1) 

where the P below the summation sign is an abbreviation for the usual sum over 

final and average over initial polarization states, and m and M are the electron and 

proton masses, respectively. The initial wavefunction of the target nucleus is IWi(P)) 

and the final wavefunction that describes both the ejected proton and the recoiling 

residual nucleus is denoted Iw,(k, P')). It is customary to separate the cross-section 

into an electron contribution and a nuclear contribution 

where the lepton tensor as 

1]p,v = L m
2 

uplip,upUplivup. 

p 

(3.2) 

(3.3) 

With typical electron energies on the order of a few GeV, the electron's mass is 

negligible compared to its momentum. In this extreme relativistic limit, 1]1'11 is easily 

evaluated using trace algebra; the result is 

In contrast, the nuclear tensor 

WP,II == L84(Energy).JP,t.Jv, 
p 

(3.4) 

(3.5) 



-25 -

composed of the nuclear current matrix elements .:11' _ (w,(k, P')IJI'(q)lwi(P)}, 

cannot be evaluated directly from a fundamental field theory, as it depends on the 

details of the complicated many-body (and nonperturbative) initial and final hadronic 

states. Clearly, additional phenomenological assumptions about these states are re-

quired; they will be addressed shortly. 

Substituting the expression for TJI'V in Equation 3.4 into the formula for the 

cross-section yields 

(3.6) 

where ~ = q2/ Iq12, and the Mott cross-section for elastic scattering from a free, 

pointlike, spin-! particle 

(3.7) 

has been factored out of the cross-section. There are four independent response 

functions [19]; they are defined to be the following elements of the nuclear response 

tensor: 

RL == Woo = 1.:1°12 

RT = W22 + Wll = 1.:1212 + 1.:1112 

cos(2f3) Rrr - W22 - Wll = 1.:1212 - 1.:1112 
(3.8) 

Together with kinematics, these completely determine the behavior of the cross-

section; the problem is then reduced to calculating the nuclear current matrix el-

ements .:11'. I note that Equations 3.7 and 3.10 are taken from the derivation in 
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Reference [18], which is performed in parallel kinematics; thus, the matrix elements I 

calculate in the coordinate system shown in Figure 3.2 must be rotated into parallel 

coordinates before the cross-section may be evaluated. 

The nuclear current matrix elements consist of three ingredients: the initial 

bound state, the current, and the final state of the outgoing proton. For the present 

discussion, the current is taken to be that of a free nucleon 

(3.9) 

In the next two sections, I treat the initial and the final states of the proton. 

3.2 Distorted Wave Final State: The Relativistic Eikonal Approximation 

I seek an expression for the wavefunction of the outgoing proton that accounts 

for final state interactions between the proton and the residual nucleus. Assume that 

this interaction can be described by a potential, hereafter called the optical potential. 

Since this potential will be used in a relativistic framework, its Dirac structure must be 

specified. Much work has been done recently [20] to construct an accurate relativistic 

description of nuclear structure; in these models, the nucleon-nucleus interaction is 

expressed as the sum of two large pieces of opposite sign which nearly cancel to give 

the relatively small nuclear binding. These are a strong, repulsive, vector interaction 

and a slightly stronger, attractive, scalar interaction. In this calculation, I assume 

that the optical potential that describes the final state interaction between the ejected 

proton and the rest of the nucleus can be written with the same Dirac structure as 

the potential which binds the nucleons inside the nucleus. Fits to p-A scattering data 

with potentials of this form have been performed on a variety of nuclei [21,22,23]. 

Both potentials are taken to be central, and are usually written in a two-parameter 

Fermi form. 
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Let IW(-») be the wavefunction of the outgoing proton, where k and s are its k,s 

momentum and spin. The superscript (-) specifies that it obeys incoming spherical 

wave boundary conditions; that is, the outgoing wave consists of a plane wave of 

momentum k and spin s. Following Reference [24], let Iwt}) have Pauli upper and , 

lower components u~-} and w~-}. Then the Dirac equation which these wavefunctions , , 

obey is 

(3.10) 

This equation can be decomposed into a system of two coupled differential equations 

in the (two-component) wavefunctions u~ -} and w~ -} . Using the Dirac rep resent a-, , 

tion for a and f3 and eliminating w~-} from this system gives, after some algebraic , 

manipulation, the following equation in Schrodinger form 

[:~ + Va + Vso(a· L - ir· p)] ut} = 2~ ut}, (3.11) 

where Va and the Vso are central and spin-orbit potentials, defined to be the following 

functions of V, and Vv : 

E V2 - V 2 
Va = V, + M Vv + s 2M v 

lId 
Vso = 2M[E + M + V, _ Vv] ;: dr[Vv - Va]. 

(3.12) 

Motivated by the knowledge of its asymptotic form, the upper component of the 

wavefunction can be rewritten as 

(3.13) 

implicitly defining a new function S(r). The problem of solving for the wavefunction 

has now been recast as solving for S(r), the "eikonal phase" [25]. This function is in 
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general an operator in spin space, i.e. a 2 x 2 matrix that acts on XS. Now at high 

enough energies, this phase is only weakly modulated by the potential. Algebraically, 

for 

we have 

oS 
oz ~ 1. (3.14) 

Therefore, the second order terms \72 Sand (\7 S)2 can be neglected in the expansion 

of the kinetic energy term of the Schroedinger equation 

p2 (_) 
-u 2M k,s 

(3.15) 

Substituting this expression for the kinetic energy back into Equation 3.11 yields 

- (~) k· \7S = Vc + Vso [0"' (r x k) - ir· k]. (3.16) 

Choosing z = k, decompose r into parallel and a perpendicular components, r = (z, b) 

Then k· \7 S is just IkloSj oz. Integrating Equation 3.18 from z' = z to 00 with the 

boundary condition that S( 00, b) = 0 yields the following expression for S 

(Xl 

S(z, b) = ~ J dz' (Vc(z', b) + Vso(z', b) [0"' (b x k) - ikz'J). (3.17) 

z 

Care must be taken when choosing a potential with which to calculate this eikonal 

phase [26]; the optical potential that corresponds to outgoing spherical-wave boundary 
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conditions-which has a negative imaginary part-would cause enhancement rather 

than absorption of the distorted wave in this expression. In fact, the potential appro-

priate for incoming wave boundary conditions is the complex conjugate of the ordinary 

potential; for a derivation, see Appendix C. For convenience, whenever potentials are 

discussed in this thesis, their "standard" form is used, and it is understood that the 

conjugate of the potentials must be taken in the first step of any calculations. 

It is convenient to divide S into two parts on the basis of its spin structure 

(3.18) 

where Sl is proportional to the unit operator in the Pauli spin space, 

00 

Sl(Z, b) = ~ J dz' [VC(ZI, b) - VSO(Z', b)ikz'] , (3.19) 

z 

and S2 contains the nontrivial spin dependence, 

00 

A1J '{ I } S2(Z, b) (a· a) == k dz Vso(z, b)[O'· (b x k)] . (3.20) 

z 

These definitions are used later in Appendix A. 

3.3 Relativistic Nuclear Wavefunctions: Quantum Hadrodynamics 

The goal of Quantum Hadrodynamics (QHD) is to describe the nucleus by a 

field theory of nucleons interacting via the exchange of mesons. This is motivated 

theoretically by the fact that QCD, (which presumably describes the strong inter- and 

intra-nucleon interactions exactly) must in the limit of low energies reduce to a field 

theory of interacting nucleons and mesons [27] and experimentally by the fact that the 

two-nucleon interaction is indeed to a good approximation described by a one-pion 



- 30-

exchange potential at long distances [11]. While treating QHD as true field theory 

(for example by performing loop expansions) is dubious [28], the model, considered as 

a phenomenology, gives an adequate description (to within 10 percent [29])of nuclear 

densities and energy levels, and provides the best available nuclear wavefunctions 

consistent with a relativistic formalism. 

In the simplest version of the model [30] (QHD-I, or the u - w model), there are 

only two meson fields in addition to the nucleon field. As mentioned in Section 3.2, 

there is an attractive scalar field, u, which is associated with the two-pion resonance in 

the nucleon-nucleon amplitude, and a repulsive vector field, w, which is identified with 

the physical w meson. A more sophisticated version of the model (QHD-II) includes 

additional fields due to 7r, p, and ,particles. In the mean field approximation, we 

seek to find the ground state of a particular nucleus by replacing the meson fields 

with their mean values while allowing the nucleon fields to fluctuate. 

Writing the Euler-Lagrange equation for the nucleon field in the presence of the 

meson mean-fields gives a Dirac equation 

[ . 0 1 0 1 0 0] -za· \7 + 9v V + "29pT3b + e"2(1 + T3)A (r) + (3(M - 9s<P (r)) 'lIa = Ea 'lIa , 

(3.21) 

where V, <p, b, and A are the w, u, p, and, fields, respectively, which can be solved 

self-consistently for the nucleon wavefunctions. 

The bound states of the nucleons in the potential generated by the meson fields 

is written as the product of angular momentum eigenstates (spin spherical harmonics) 

and radial wavefunctions 

(3.22) 
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where K, is a convenient way to characterize 1 and j simultaneously 

1- {K, 
- -(K + 1), (3.23) 

and 'r/t is an isospin eigenstate, with t = +~ for protons and t = -~ for neutrons. 

Note that the full four-component wavefunction is not an eigenstate of the orbital 

angular momentum operator, L; either the upper components have 1 = j + ~ and the 

lower components have 1 = j - ~ or vice versa. W is normalized so that J d3xwtw = 

1. Codes implementing this general formalism exist [29,31], and I use the radial 

wavefunctions they generate as input to my calculation. 
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Chapter 4 

DWIA Calculations 

In Section 4.1, results of relativistic calculations of quasielastic scattering from oxy­

gen, calcium, and lead are presented. Section 4.2 contains an analysis of theoretical 

uncertainty in the calculation; computational and numerical accuracy are examined 

in Section 4.3. 

4.1 DWIA Results 

The previous chapter, together with Appendix A, specifies a prescription for 

computing the response of any nucleus to quasielastic scattering, provided the en­

ergy of the outgoing particle is high enough that the eikonal approximation is valid. 

The calculation requires three pieces of input: first, the kinematics, specifically the 

momentum transfer of the reaction and the final momentum of the proton; second, 

the wavefunction of the initial bound state; and third, an optical potential describing 

the interaction between the outgoing proton and the residual nucleus. Given these, 

the code implementing the formalism of the appendix returns four response functions 

(five if the initial electrons are polarized) that completely determine the hadronic 

contribution to the (e,e'p) cross-section. The first of the three inputs is simple (at 

least for a theorist); the second is more interesting, but outside the scope of this thesis 

(References [29] and [31] contain the details of the relativistic nuclear wavefunctions I 

use). In this chapter I concentrate on the third, which embodies most of the essential 

physics of this calculation. 
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The bulk of the results shown here are for quasielastic scattering from calcium, 

primarily because a high energy, relativistic optical potential for calcium is available 

in the literature [21]. Cooper et al obtain relativistic scalar and vector potentials by 

assuming they can be described by symmetrized two-parameter Fermi distributions 

and then performing an energy-dependent global fit to all of the available p-40Ca 

elastic scattering data. I convert their Dirac scalar and vector potentials into central 

and spin-orbit potentials via Equations 3.14, which I then use as input to my code. 

In their model, both the parameters that describe the shape of the potential as well 

as those that determine its strength have a quadratic dependence on the laboratory 

kinetic energy of the proton. While their parabolic fitting procedure yields a good 

description of the data within the range of proton kinetic energies they study (150 

MeV to 1040 MeV), it makes extrapolation to higher energies dangerously unreliable. 

For these energies, I use the density-dependent potential model described in Appendix 

B. The densities I use are taken from Barrett and Jackson [12]. 

An example of typical output from the calculation is shown in Figure 4.1. The 

five response functions for the quasielastic scattering of polarized electrons from the 

1Pl shell of calcium, both with and without distortion, are shown as functions of 
2 

Ipi = Ik - ql, where Iql = Ikl is held fixed. Figure 3.1 defines the kinematic variables; 

however, the results shown in this and all following figures have been calculated by 

rotating the matrix elements to parallel kinematics before calculating either response 

functions or cross-sections. The value of the incident electron momentum used in this 

calculation is 1840 MeV; in general, I use IPil = Tf+800 (MeV) for these calculations. 

Throughout, I take the angle between initial and final electron momenta to be 0.9 

radians, the electron helicity to be one half, and the angle {3 to be 2.0 radians. 
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Figure 4.1 - Response functions for the quasielastic knockout 
of a 1040 MeV proton from the 1pl. shell of calcium. The five • response functions and the cross-section are plotted as functions 
of Ipi == Ik - ql, where Iql = Ikl = 1741 MeV. The dashed curves 
represent the plane-wave calculation and the solid curves are re­
sults of the distorted-wave calculation. The electron kinematics 
used are given in the text. 

1.25 1.5 

The plane-wave results were calculated by using the full distorted-wave code and 

setting the distorting potentials to zero, rather than by performing the simpler plane-

wave calculation independently. This procedure provides a means of checking the 

complex distorted-wave code, since the physical effect produced by distortion should 

be primarily absorption. The curves plotted in Figure 4.2 were calculated for an 

ejectile with 1040 MeV of kinetic energy, the highest for which the optical potential 

of Reference [21] is valid. 

The results of the calculations show the expected behavior: the distorted-wave 

responses are in general smaller in magnitude than the plane-wave responses because 

of the absorptive effects embodied in the large negative imaginary part of the central 
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potential. The transverse response function is largest at this energy and dominates 

the cross-section. The helicity-dependent response function, RLT', is identically zero 

III the absence of distortion. At nearly-parallel kinematics (small Ipl) as well as 

III the smaller transverse-transverse and helicity-dependent response functions, an 

enhancement (in magnitude) due to the spin-orbit potential is evident. (Vso and 

Va have opposite signs.) While the inclusion of a spin-orbit term in the potential 

is necessary to achieve a good description of low and intermediate energy scattering 

behavior [32], its effects should decrease as energy increases. In the density-dependent 

potential used at higher energies, the additional factor of 1/ k in Vso relative to Va 

(Equation B.I0) effects this decrease, which is investigated further in Section 4.1.3. 

In a real experiment, it would be difficult or impossible to determine that a pro-

ton had been ejected from a specific nuclear bound state (in this example the Ip~ 

shell), since the final state of the residual nucleus is difficult to measure. The calcu-

lation shown in Figure 4.2 is the same as that in Figure 4.1, except that the results 

have been averaged over all six of the proton states in calcium (with appropriate 

weights from simple angular momentum counting) and thus are more appropriate for 

comparison with experimental data. 

These response functions show the same qualitative behavior as those for any 

one of the individual shells: the effect of distortion is an overall decrease in magnitude 

by a factor of about one half. (This factor depends of course on the energy of the 

proton as well as the mass number of the nucleus it traverses.) The knee apparent 

in each of the response functions of Figure 4.2 is due to the contribution of the 281. 
2 

shell, which has a slightly more complex structure than the other n = 1 shells. 
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Figure 4.2 - Same as Figure 4.1 except that these results have 
been averaged over all of the possible initial bound states of the 
proton in calcium. 

4.1.1 Initial State Dependence 

While the nuclear-averaged calculation shown in Figure 4.2 is more relevant to 

experiment than the single-shell calculation shown in Figure 4.1, it is interesting to 

examine briefly the systematic dependence of the response functions on the quantum 

numbers of the initial bound state. In the nonrelativistic, plane-wave limit, the 

transverse and longitudinal response functions are essentially Fourier transforms of 

the bound state radial wavefunctions. Thus the response from a particular shell 

should be peaked at a value determined by the r.m.s. radius of that shell and the 

magnitude of the momentum transfer. In Figure 4.3, the longitudinal responses from 

each of the shells of calcium are plotted together for the same kinematics. The 

progression from the s shells to the p shells to the d shells is clear. The expected 
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node in the response functions for scattering from the 281 shell is also manifest. All 
~ 

of the response functions shown in the figure were calculated using the distorting 

potential of Reference [21]. The normalizations of the response functions from the 

various shells appear different in the figure; however, with the correct weight of p2 

and a necessary additional factor of p in the 281 response, their integrals (over p) are 
~ 

the same. 

---0) 

El .... 
'-' 

.... 
~ 

0.6 

0.4 

0.2 

0.0 
o 0.25 0.5 0.75 1 1.25 

P (fm-1) 

Figure 4.3 - Longitudinal response functions for knockout of an 
800 MeV proton from each of the shells of 40Ca. The different 
line types correspond to knockout from different initial shells: 
the solid curve to knockout from the 18.1. shell, the dotted curve 

2 

to the 2sl. shell, the dashed curves to 1pl. and 1p~, and the 
2 2 2 

dot dashed curves to 1di and 1d!. 

1.5 
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4.1.2 Absorption Analysis 

A more physically interesting quantity that can be extracted from raw results 

like those shown in Figures 4.1 through 4.3 is the fraction of the plane wave that is 

absorbed by +.he nuclear medium. I define the absorption, A, to be 

(4.1) 

In evaluating of A, I use cross-sections that have been integrated over Ipl. 

Figure 4.4 shows the absorption as a function of ejectile kinetic energy for various 

nuclei. The values obtained for the absorption are positive: the spin-orbit enhance-

ments (which tend to cause the absorption to be negative) in RTT and RLT' are 

overwhelmed by the contribution of RT to the differential cross-section, and the en-

han cement at small Ipi does not survive the Ipl-integration. Results obtained using 

the potential of Reference [21] (plotted as solid diamonds) show a slight rise in the 

absorption with energy, due in part to the corresponding decrease in the relative 

magnitude of the spin-orbit potential. The density-dependent potential model of Ap-

pendix B, however, predicts a nearly constant absorption, with a value of about sixty 

percent for calcium. 

It is this asymptotic value which may be compared with the results of the semi-

classical calculation of Chapter 2. Indeed, the two agree quite well, indicating that 

for an outgoing particle of more than about one Ge V of kinetic energy, the details of 

the interaction mechanism (relativity, spin-dependence, and even quantum mechan-

ics) are small perturbations to the simple semiclassical picture of Chapter 2. Table 

4.1 shows this comparison for oxygen, calcium, and lead. 
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Figure 4.4 - Energy dependence of proton absorption in oxygen, 
calcium, and lead. The fraction of the undistorted cross-section 
that is absorbed by the nuclear medium is shown as a function 
of ejectile kinetic energy. The various symbols corresponding to 
different nuclei are defined in the legend. Solid symbols corre­
spond to results obtained with the potentials [21] and [22]; open 
symbols were calculated using the density-dependent potential. 

Nucleus Mass Absorption Absorption 

(Full) (Semiclassical) 

Oxygen 16 0.51 0.52 

Calcium 40 0.57 0.63 

Lead 208 0.77 0.79 
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4.1.3 Quenching of Longitudinal Response Function 

A notable success of the relativistic description of electron-nucleus scattering 

IS its prediction of a suppression of longitudinal (relative to transverse) response 

functions at intermediate and high energies [33]. While nonrelativistic approaches 

yield transverse and longitudinal responses of nearly equal magnitude independent 

of energy, calculations using a relativistic formalism exhibit a natural suppression of 

RL at higher energies. Figure 4.5 shows this quenching behavior in the results of my 

(relati vis tic ) calculation. 
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Figure 4.5 - Relative size oflongitudinal and transverse response 
functions as a function of energy. RL and RT are calculated for 
quasielastic scattering averaged over the entire calcium nucleus 
and are integrated over ali kinematically-allowed Ipl; their ratio 
is then plotted as a function of ejectile kinetic energy. Circles 
represent points where the (distorted-wave) calculation was ac­
tually performed; the dotted curve connects them smoothly. 
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4.1.4 Effects of Spin-Orbit Potential 

The last results I present before turning to uncertainty analyses are some cal­

culations in which I examine the effects of different pieces of the optical potential 

separately. Of course the full potential provides the most accurate description of 

the final state interaction; however, it is instructive investigate how its individual 

components contribute to the final results. To this end, calculations were performed 

in which different parts of the potential were set to zero; comparisons with the full 

calculations then allow a determination of their effects. 

Figure 4.6 shows three calculations of RTT for quasielastic scattering from cal­

cium using: (1) the full distorting potential of Reference [21], (2) only the central 

part of that potential, and (3) a potential that is identically zero. The transverse­

transverse response function is particularly sensitive to the spin-orbit potential, which 

causes a large enhancement in its magnitude even at the relatively high energy of 500 

MeV. Its effects are largest at small Ipl. 

The dramatic effect that the spin-orbit potential has upon RTT suggests that 

a measurement of the transverse-transverse response function might yield more ac­

curate information about the presently ill-constrained spin-orbit term; however, the 

separation of RTT from the other response functions requires proton spectrometry 

at several angles outside the electron scattering plane and would be experimentally 

demanding. Perhaps a more accessible effect of Vso then is the slight decrease ob­

served in the total cross-section when the spin-orbit potential is turned off. The 

spin-orbit distortions actually increase the outgoing flux of protons, thus the absorp­

tion is greater without the spin-orbit term than with it. The ratio of the absorption 

without the spin-orbit potential to the absorption with it is plotted in Figure 4.7 as 

a function of the initial bound state quantum numbers of the proton and its final 



0.0 

-0.2 

-0.4 

-0.6 

o 

"-=- --- . - . - . - . - ' - '-

0.5 

- 42-

- ' -'- ' -'--.;:-:- -

~-------

1 1.5 
p (fm-1) 

Figure 4.6 - Effects of spin-orbit potential. The transverse­
transverse response function is plotted for knockout of a 500 
MeV proton from the 1p.l. shell of calcium. The solid curve was 
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calculated using the full potential of Reference [21]. The dashed 
curve shows the plane-wave result. The dot-dashed curve repre­
sents the modified calculation in which the spin-orbit term was 
set to zero. 

kinetic energy. As expected, the spin-orbit effects decrease with energy; they are on 

the order of several percent for protons with one GeV of kinetic energy. In general, 

those shells in which the wavefunction is concentrated further out from the center of 

the nucleus are affected most, since Vso is itself surface-peaked. 

A similar analysis was made of the effect of the real part the optical potential. 

It was found to be even smaller than that of Vso; the real potential has negligible 

impact on the results of this calculation. 
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Figure 4.7 - Energy and shell dependence of enhancement due 
to spin-orbit potential. A modified distorted-wave calculation 
was performed setting the spin-orbit potential to zero. The ra­
tio of the absorption obtained in this modified calculation to the 
absorption obtained in the full calculation is plotted as a func­
tion of ejectile kinetic energy separately for each of the shells in 
calcium. 

4.2 Uncertainty Analysis-Theoretical 

In order to gauge the reliability of the results in the prevIOUS sections, it is 

necessary to understand the sources of uncertainty in the calculation and their relative 

sizes. I first examine the class of uncertainties arising from theoretical ambiguities in 

the inputs to the calculation. 
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4.2.1 Choice of Optical Potential 

The most immediately apparent and potentially most hazardous of these ambi­

guities lies in the choice of the optical potential. I use two different classes of optical 

model: potentials derived from parameterized fits to elastic scattering data, and po­

tentials of the form of Equation B.I0, where only the nuclear density is taken from 

experiment. Even within the first class, different fitting procedures yield different 

potentials and there is no a priori way of deciding which gives the best results. Only 

if differences of this kind have minimal impact on physical predictions can the results 

be considered meaningful. Figure 4.8 shows that calcium results obtained using two 

such optical potentials are indeed quite similar, even though the potentials themselves 

are very different (especially in their real and spin dependent parts). 

Of course, that this should be true is not simply fortuitous. The real and spin­

dependent parts of optical potentials derived from different fitting procedures vary as 

much as they do precisely because the data constrains 1m [Va] most strongly. Indeed, 

high energy elastic scattering data can be explained to a great degree by a single 

quantity characterizing the mean free path of the proton in the nuclear medium, 

which corresponds roughly to the depth of the well in the imaginary part of the 

central potential [34]. The degree to which predictions of two such potentials do 

differ is a measure of the uncertainty in the results that arises from the choice of an 

optical potential- in this case on the order of ten percent. 

Another similar question that must be addressed arises from the fact that the 

optical potential of Reference [21] can only be used to describe the interaction between 

the proton and the calcium nucleus when the proton has less than one GeV of ki­

netic energy. At higher energies (which are most relevant to the investigation of color 

transparency) I use the density-dependent model of Appendix B. Like Cooper's, this 
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Figure 4.8 - Sensitivity of DWIA results to uncertainties in the 
optical potential. All three of the curves represent calculations 
of knockout from the 1p.ll shell of calcium at 800 Me V, differing 
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only in the optical potential used. The solid curve was calculated 
using the potential defined by Parameter Set I of Reference 
[21]; the dotted curve was calculated using Parameter Set II. 
For comparison, the plane-wave results are shown as a dashed 
curve. 

potential is both complex and spin-dependent. It should become more accurate with 

increasing energy, since its formulation depends upon the assumption that the outgo-

ing proton interacts with each particle in the medium independently-an assumption 

that becomes more correct as the wavelength of the proton becomes short compared 

to the mean separation distance between particles in the medium. Algebraically, this 

condition can be expressed as 

( 4.2) 
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where Aproton = l/lkl and rsep ~ (V3/2)(2/p)!, yielding 

1 
k~ p~ . ( 4.3) 

For a typical nuclear density of 0.16 fm -3, the momentum constraint becomes k ~ 100 

MeV. Clearly, for a proton with 800 MeV of kinetic energy, this inequality is satisfied, 

thus both Cooper's potential and the density-dependent potential are applicable. 

Figure 4.9 shows the two potentials plotted together for comparison. While they have 

roughly the same shape and magnitude, their differences are not a priori negligible. 
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Figure 4.9 - Comparison of two different calcium optical poten­
tials. The solid curve is the optical potential defined by Pa­
rameter Set I of Reference [21], and the dashed curve density­
dependent potential of Appendix B. Both potentials are energy­
dependent and are shown here for a particle with 800 MeV of lab 
kinetic energy. The spin-orbit part of the density-dependent po­
tential must be smoothed out near the origin; the domain over 
which the function has been smoothed is indicated by dotted 
lines. 
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Figure 4.10 shows a comparison of the results obtained with the two potentials 

plotted in Figure 4.9. As before, the differences in physical quantities (i.e., cross-

sections, absorptions) are much smaller than the differences between the potentials 

themselves. 
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Figure 4.10 - Comparison of results using the two potentials in 
Figure 4.9. The results obtained with the potential of Refer­
ence [21] are shown with solid curves, those obtained with the 
density-dependent potential are shown with dotted curves. The 
undistorted results are shown with dashed lines. Note that in 
some plots the dotted and solid lines are almost superimposed. 
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The same analysis was performed for oxygen; results obtained with the phe-

nomenological potential of Reference [22] were compared with those obtained using 

the density-dependent potential model. As for calcium, physical quantities are rela-

tively insensitive to differences in the optical potentials. I conclude that despite the 

ambiguity inherent in choosing a particular optical model, or even a particular scheme 
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for fitting the parameters of that model to the data, the results of the calculation do 

not depend greatly on the details of the model and are therefore unambiguous. 

4.2.2 Bound State Wavefunction Model Dependence 

Another potential source of uncertainty is the uncertainty in the wavefunction 

describing the initial bound state of the proton. In order to estimate how this uncer-

tainty affects my predictions, I performed calculations with two different initial state 

wavefunctions and examined the differences between the results. These are shown in 

Figure 4.11. I found that the differences in the response functions are of the same 

magnitude as the differences in the wavefunctions themselves, usually a few percent. 

The figure shows results for knockout from the 1p 1 shell of oxygen, for which the 
~ 

two different relativistic wavefunctions show a particularly large disagreement. In 

the other shells, as well as in the oxygen nucleus as a whole, the differences between 

the response functions calculated with the two different kinds of wavefunctions are 

several times smaller. 

4.2.3 Summary of Theoretical Uncertainty 

Compiling the uncertainty discussed in the previous section together in one table, 

I have 

Source 

Fitting Procedure 

Potential Model 

Bound State 

Wavefunction 

Magnitude 

9% 

2% 

4% 
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Figure 4.11 - Effect of varying the initial bound state wavefunc­
tion. Two different relativistic Ipl. bound states, one calculated • using a linearized Hartl'ee solution of QHD-II (solid curve) [31], 
and the other using a nonlinear Hartree solution (dashed curve) 
[29] of the same nuclear field theory, are used as input and the 
output is compared. 

1.6 

Thus, there is a total uncertainty in the calculation on the order of fifteen percent. 

It is curious that the variance in the results due to different fitting procedures ap-

plied to the same potential is over four times as large as the variance between results 

obtained using completely disparate potential models. I suspect that a realistic num-

ber for the overall uncertainty arising from a reasonable choice of an optical potential 

lies somewhere in between, thus making the total uncertainty in the calculation closer 

to ten percent. 
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4.3 Constraints on Computational and Numerical Error 

Turning now to more prosaIC aspects of the calculation, I discuss first some 

calculations made to test that the code faithfully implements the formalism laid out 

in the appendix. 

The first such check was to compare with another calculation of the same pro­

cess. Van Orden et al [18] have calculated quasielastic scattering using a relativistic 

distorted-wave model, but instead employ a partial-wave analysis of the distortion. 

Their calculation is performed entirely in momentum space, and thus bears very little 

resemblance to mine at a computational level. That the two calculations yield simi­

lar results is therefore convincing evidence that they are both free of computational 

errors. Figure 4.12 shows a comparison of our plane-wave results. The differences 

between the plane-wave calculations can be attributed to differences in the bound 

state wavefunctions used. 

Figure 4.13 shows a comparison of our distorted-wave calculations. Since the calcula­

tions were done for protons of only 135 Me V kinetic energy, the eikonal approximation 

could well introduce significant errors into my calculation. However, the two calcula­

tions agree quite well, even at this low energy. 

A second check I performed on the calculation was to compare with analytical 

expressions for nonrelativistic, undistorted knockout from harmonic oscillator bound 

states. The results generated by the code with these simplified inputs agree with the 

analytic results to within numerical accuracy. 

These numerical effects were investigated thoroughly in a third set of tests per­

formed on the code. All of the purely numerical parameters of the calculation, such 

as integration and differentiation step sizes, were halved until the results remained 
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Figure 4.12 - Comparison of plane-wave calculations of knock­
out of a 135 MeV proton from the Ip~ shell of oxygen. The 
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solid curves are my calculations; the dashed curves were taken 
from Reference [18]. They follow a slightly different angular 
momentum convention; I have divided their results by (2J + 1) 
for the comparison. 

2 

invariant to within one part in 10-6 • I determined a set of numerical parameters that 

yielded sufficient numerical accuracy and reasonable run times, and used these in the 

production runs of the code. "Sufficient" numerical accuracy was taken to be 10-3, 

an order of magnitude smaller than any of the other effects studied. 
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Chapter 5 

Color Tra nsparency Results 

This chapter contains results of (e, e'p) calculations that include color transparency 

effects . In Section 5.1, I outline a prescription for incorporating the color transparency 

mechanism into the DWIA calculation of Chapter 4. I present results, and discuss 

their uncertainty, in Section 5.2. 

5.1 Transparency Formalism 

In their semiclassical calculation, Farrar et al [9] model color transparency via 

an effective proton-nucleon interaction cross-section that varies along the exit path 

of the proton. This cross-section, initially very small, grows monotonically until 

its magnitude equals the usual free value of aNN. In my (quantum mechanical) 

calculation, there is no well-defined proton exit path; however, the eikonal formulation 

of the distorted wave that I use does allow a fairly straightforward translation of their 

basic idea into the language of quantum mechanics. The final state wavefunction at 

any point in the nucleus depends on the integral of the interaction potential along a 

line in the direction of the final momentum from the point in question to the nuclear 

surface; thus, the appropriate generalization of Farrar's effective cross-section is an 

effective potential that varies along the eikonal integration path. 

This general strategy is not without several subtleties that warrant careful ex­

amination. The first such issue to be resolved arises because of the relativistic nature 
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of my calculation. Recall that the nuclear interaction can be characterized relativis-

tically either by its Dirac components, Vs and Vv, or by its central and spin-orbit 

components, Va and Vso. A prescription for computing the effective potential must 

specify which of these pairs is to be scaled along the integration path. The choice is 

not arbitrary, since the transformation between the two sets of potentials is nonlinear 

(Equations 3.14) and thus a multiplicative factor applied to Vs and Vv does not cor-

respond to the same function of Va and Vso. Since the latter appear in the eikonal 

integral (in this sense they are more physical quantities), it would be convenient to 

choose them as the basis for the effective potential that describes color transparency. 

Equations B.17 provide further motivation for this selection: Va-which is an order 

of magnitude larger than Vso-depends linearly on (j NN. A linear (quadratic) growth 

of Va and Vso in the full calculation reduces to a linear (quadratic) growth of (j NN 

in the nonrelativistic, non-spin-dependent limit. For these reasons, I use effective 

central and spin-orbit potentials that scale with distance along the eikonal path to 

describe color transparency. 

Before addressing the final technical question of how to eliminate Vs and Vv from 

the calculation entirely, I complete the color transparency prescription by specifying 

the function used to scale Va and Vso. Guided by the expression for the effective 

cross-section in Reference [9], I seek a function that has a value proportional to 1/ Iql 

at the origin and grows linearly at the rate determined by the final momentum of 

the proton until it reaches one. The initial size of the proton is of the order of the 

wavelength of the virtual photon, and is 

ts = Ik (GeV)12' 
1 

(5.1) 
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The quarks in the proton separate at a speed on the order of c, and, in the frame of 

the nucleus, the distance the proton travels during that time is 

(5.2) 

where ro = O.SI fm is the proton's final size, and the finite initial size of the proton 

has been treated exactly. The scaling function I seek is then 

(5.3) 

and color transparency is introduced into the distorted-wave calculation via the sub-

stitutions 

00 00 J Vc(z', b) z' dz' --+ J R(z'; z)Vc(z', b) z' dz' 
z z 

00 00 
(5.4) 

J Vso(z', b) z' dz' --+ J R(z'; z)Vso(z', b) z' dz'. 
z z 

The generalization of the scaling function to include Farrar's quadratic expansion 

model is 

(5.5) 

where T = 0, 1, and 2 are defined in Section 2.3. 

I return now to the remaining technical problem of eliminating the Dirac compo-

nents of the potential from the calculation completely, in favor of a central/spin-orbit 

description of the interaction. The potentials that appear as integrands in the dis-

torted wavefunction have already been converted into effective, transparency-inducing 

potentials; however, this eikonal term is not the only potential-dependent term in the 
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matrix elements. The function D(r) = E + M + Vs(r) + Vv(r) appears in the lower 

spinor components of the distorted wavefunction-see for example Equation A.1S. 

Not only do these potentials fail to enter in the form of an integral over the proton's 

exit path (which facilitated the analogy with the effective cross-section of the semiclas­

sical calculation), but they are also the wrong pair of potentials for the formulation 

of color transparency altogether. If the transformation between scalar/vector poten-

tials and central/spin-orbit potentials were invertible there would be no problem, but 

unfortunately it is not. Closer inspection shows, however, that full invert ability is 

not actually required. An expression for D in terms of Va and Vso suffices, and is 

derived below. 

From Equations 3.14, I have 

Vso(r) = - (2~) E + M + ~(r) _ Vv(r) ~ (V;(r) - V~(r») . (5.6) 

The desired function, D(r), is conveniently embedded in the expression for Vso. 

Rearranging the differentials as 

( 1) d [Vs ( r) - Vv (r )] 
VSO(r) r dr = - 2M E + M + V,(r) - Vv(r) 

suggests a solution by integration. At fixed b, I have 

rdr = zdz. 

(5.7) 

(5.S) 

Changing the variable of the integral on the left side and performing the right-hand 

integral analytically yields 

00 J Vso(z', b) z' dz' = - 2~ In [E + M + V,(z', b) + Vv(z', b)J l~· (5.9) 

z 
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The potentials vanish at infinity, so 

00 

D(r) = (E + M) exp [2l\1 J Vso(z', b) z' dz'] , (5.10) 

z 

eliminating not only V, and Vv but also Vc from the expression for D. It also has the 

desirable form of an integral along the eikonal path, which is, moreover, one that is 

already computed in the DWIA calculation. 

5.2 Transparency Results 

Figure 5.1 shows the effect color transparency has on the results of the DWIA 

calculations that were presented in Section 4.1. This figure is the same as Figure 

4.2, except that a third (dotted) curve shows the transparency results. Unless other-

wise specified, the transparency model used in the calculations presented here is the 

diffusion model (T = 1) discussed in Chapter 2. In addition, the outgoing proton's 

kinetic energy is five times higher in this figure than in the earlier one, since the color 

transparency effect is nearly negligible for protons with less than one Ge V of kinetic 

energy. Transparency effects are strictly zero for protons with k < 1 Ge V (Tf = 433 

MeV), because the wavelength of the virtual photon is then larger than the proton 

and no shrinkage occurs. 

While increasing the proton energy makes the color transparency effect more 

pronounced, it has disadvantages too: the magnitudes of both the response functions 

and the total cross-section drop steeply with increasing energy. (Note the additional 

overall factors of 10-3 .) In calcium at 5 Ge V, about one third of the absorptive effects 

of distortion are nullified by transparency. 
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Figure 5.1 - Response functions for the quasielastic knockout of 
a 5 Ge V proton from calcium. This plot represents the same cal­
culation as the one in Figwoe 4.2, only at 7j = 5 Ge V. The solid 
curve corresponds to the distorted-wave calculation, and the 
dotted curve corresponds to a calculation that includes trans­
parency effects. The undistorted results are plotted as dashed 
curves for comparison. 

The amount of the distortion that is negated in this way is an interesting quantity 

which characterizes the transparency. I define the transparency, T, to be 

at - ad 
T=---, 

au - ad 
(5.11) 

where at, ad, and au are the transparent, distorted, and undistorted cross-sections, 

respectively. Note that my definition of transparency is quite different from the 

quantity of the same name often quoted in the literature [9, 14]. According to my 

definition, a transparency of one implies that the transparent cross-section is identi-

cal to the undistorted cross-section (i.e., that the distortion is entirely thwarted by 
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transparency). Likewise, a transparency of zero corresponds to the case where the 

transparent cross-section is equal to the distorted cross-section. This definition of the 

transparency is reminiscent of the definition given to the absorption in Equation 4.1; 

indeed, the two are related simply by 

where At and Ad are the absorption with and without transparency effects. 
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Figure 5.2 - Transparency as a function of energy and nucleus. 
The transparency, T, is plotted as a function of the kinetic en­
ergy of the outgoing proton for oxygen, calcium, and lead. Note 
that, using the definition of Equation 5.11, the transparency ob­
served in oxygen at a fixed energy is actually greater than the 
transparency observed in lead at the san1e energy. 

(5.12) 
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Transparency is plotted as a function of energy and nucleus in Figure 5.3. The 

transparency rises monotonically with energy as it should, becoming appreciable for 

Tf ~ 1 GeV. By 10 GeV, it is an important effect. At a fixed energy, the transparency 

increases for decreasing A, because the hadronization length is a larger fraction of the 

smaller nuclear radius. 

Another quantity of interest is the absolute size of the color transparency effect. 

Whereas T is defined to be the enhancement due to transparency normalized to the 

distortion, I define the "raw" enhancement to be 

(5.13) 

While the relative sizes of distortion and transparency are of theoretical interest, 

the enhancement is the quantity that is significant in determining whether color 

transparency is experimentally observable. Figure 5.3 shows E as a function of Iql2 

for the usual three nuclei. 

Note that, at fixed energy, the vertical ordering of the symbols in Figure 5.3 is 

reversed relative to that found in Figure 5.2. Figure 5.4, which illustrates the proton 

expansion at several energies, provides a graphical explanation of this behavior. For 

concreteness, the figure is drawn using the naive parton model for the expansion. 

Since a greater fraction of the distortion is cancelled out by transparency in oxygen, 

I have 

(5.14) 

however, since the integmted effect is larger in lead, I have 

(5 .15) 
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Figure 5.3 - Magnitude of transparency enhancelllent. The ratio 
of the total cross-section with transparency effects included to 
that without any such effects is plotted as a function of the 
square of the lllagnitude of the (three-) lllOlllentulll transfer. 

Since the effects of color transparency are of a measurable magnitude, it is in-

teresting to examine whether the details of a particular transparency model are ob-

servable. In Figure 5.5, I compare three such models. The solid curve represents the 

nominal transparency model, the dashed curve represents this same model with the 

hadronization length parameter artificially doubled, and the dotted curve represents 

the T = 2 model. The nominal transparency model, in which the partons separate 

as fast as physically possible, presents a lower bound on the observable transparency, 

if the geometric arguments about the initial size of the proton and its interaction 

cross-section are to be believed. 
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Figure 5.4 - Geometry of (naive parton) expansion at 1, 5, and 
10 GeV. The circles represent the nuclear radii, and the scal­
ing function, R(z), is plotted along the vertical axis at several 
different proton kinetic energies. 
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The transparency is fairly sensitive to both lh and 'T. Doubling lh or setting 'T 

equal to two each cause an increase of approximately fifty percent T. 
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Figure 5.5 - Model dependence of transparency effect. Trans­
parencies are plotted for the Calcium nucleus using three differ­
ent models: the solid curve is the result of the nominal trans­
parency model. The dashed curve is the result of doubling the 
hadronization length parameter. The dotted curve was calcu­
lated by considering quadratic, rather than linear, expansion. 



Chapter 6 

Summary 

- 64 -

I performed calculations of high momentum-transfer, quasielastic electron scat­

tering from nuclei using three theoretical models. The first of these is a semiclassical 

model based on a simple picture of absorption governed by the mean free path of the 

proton in the nuclear medium; the primary physics input to this calculation is the 

nuclear density distribution. The second is a fully relativistic, quantum mechanical 

model of the reaction that includes the effects of final-state interactions via an eikonal 

approximation; its essential inputs are an initial bound state wavefunction, a nuclear 

current, and an optical potential describing the distortion of the final-state wavefunc­

tion. The third model is an extension of the second, and includes color transparency 

effects. 

The results of the microscopic calculation and those of the semiclassical calcu­

lation agree very well-to within five percent-in their predictions of the magnitude 

of the attenuation suffered by the outgoing proton. Since the uncertainty in the mi­

croscopic calculation itself is of this same size, I conclude that the essential physics 

is semiclassical. Surface diffuseness alone causes a 30% decrease in absorption, an 

effect much larger than the effects of quantum mechanics and relativity combined. 

The proton escape probability displays the expected A -~ behavior in both models. 

Conclusions that can be drawn from the microscopic calculations beyond the 

semiclassical results include: (1) The eikonal approximation used to calculate the 
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distortion of the final state is accurate for outgoing kinetic energies as low as sev­

eral hundred MeV, (2) The response of the nucleus to the reaction is unexpectedly 

sensitive to the small spin-dependent part of the distorting potential. This potential 

causes an overall decrease in the absorption (as much as 50% at very low energies) 

and a radical enhancement of the transverse-transverse response function, (3) The 

longitudinal response function is increasingly suppressed relative to the transverse 

response function at high energies; nonrelativistic approaches have failed to account 

for this experimentally-observed behavior. 

An analysis of the variance in the results of distorted-wave calculations performed 

with different inputs shows that most of their uncertainty arises from the choice of 

an optical potential, and relatively little from the bound-state wavefunction. The 

overall magnitude of the uncertainty is less than 10%; results of the calculation were 

not greatly sensitive to large changes in the more poorly-constrained parts of the 

distorting potentials. 

Color transparency effects are of the order of a few percent for Q2 = 1 GeV2 

and ten percent for Q2 = 10 Ge V2 . For a Q2 of 100, the (albeit tiny) cross-section 

is increased by a factor of two in the presence of transparency. The experiment 

running presently at SLAC with Q2 up to 7 can thus be expected to see a small 

amount of transparency. The various transparency models differ in their predictions 

by approximately 20%, and thus are probably not distinguishable for Q2 below 10. 
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Appendix A 

Nuclear Current Matrix Elements 

Complete detailed expressions for the nuclear current matrix elements are derived. 

I begin with the general nuclear current matrix element for the (e, e'p )reaction 

(A.I) 

In the distorted wave impulse approximation (DWIA), the initial state consists of 

a bound proton, whose wavefunction is characterized by i, and (A - 1) "spectator" 

nucleons, properly antisymmetrized; the final state consists of an outgoing proton of 

momentum k and spin s, and the (A - 1) other nucleons in some final configuration 

(A.2) 

The index, i, is an abbreviation for the complete set quantum numbers which describe 

the bound state 

i = (n,j, 1, m, t). (A.3) 

The DWIA allows the matrix element to be factored into spectator degrees of freedom, 

which obey the closure approximation, and ejectile degrees of freedom 
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Since the scattered state wavefunction in position space contains differential 

operators which are simplest when they can be regarded as operating on everything 

lying to their right, I take the complex conjugate of the matrix element 

U sing the normalization conventions 

(pa I p' f3) = (27Ii83(p' - p) 8a p 

(r a I r' f3) = 83(r' - r) 8ap , 

and 

(A.5) 

(A.6) 

the matrix element is expanded by inserting (position space) identity operators before 

and after the current operator. Assuming that JI-L( q) is just the current of a free 

nucleon, (i.e. that the nuclear environment does not change the properties of a nucleon 

too much), the (adjoint) current operator has as its position space representation 

(A.7) 

where the matrices JI-L are 

(A.S) 

Fl and F2 are the usual nucleon form factors and are computed using a parameteriza-

tion of their experimental values. The delta function in the current operator cancels 

one of the space integrals, leaving 

(A.9) 
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All spinor algebra is performed in the Dirac-Pauli representation 

,0 = [~ ~I] (A.I0) 

and 

a [0 , = _ua u
a

] o . (A.11) 

From Section 3.4, the bound state wavefunction is 

(A.12) 

The notation K is discussed in that section. For the remainder of this appendix, the 

quantum numbers n, K, m, and t will be dropped; all subsequent equations implicitly 

refer to proton knockout from a single nuclear shell. In this notation, <I>±",m will be 

denoted simply <I>±. This bound state wavefunction is normalized to unity. 

The scattered wavefunction (Section 3.2) is 

o',(-)() N [ 1 ] ik·r is(r) 
'i-'k,s r = S D(r)-l(u.p) e e Xs, (A.13) 

where D(r) = E + M + Vs(r) - Vv(r). 

The crucial quantity to be evaluated is the integrand in equation A.9 

(A.14) 

Consider first the time component of the 4-vector integrand. In so doing, I sacrifice 

the manifest covariance of the formalism to derive an expression that is amenable to 
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actual computation. In the Dirac-Pauli representation, the time component of the 

current matrix is 

Jot(q)=Fl(q2)[~ ~] -FHq2) L qa[_~a 
a=x,Y,z 

(A.15) 

where the spacetime indices of the momentum transfer have been raised according to 

and o 
qO = q , (A.16) 

thus leaving an expression involving (non-lorentz) sums over repeated (upper) space 

indices, which are indicated by small roman letters. The nucleon mass has been 

absorbed into the second form factor via 

(A.17) 

The general approach is to first decompose Dirac 4-component spinors and 4x4 

matrix operators into Pauli 2-component "spinors" and 2x2 matrix operators, and 

then to express the full nuclear current matrix element as an integral of (scalar) 

matrix elements in the two-dimensional Pauli spin space. Performing the first of 

these reductions on TJ yields 

TJ = Ns Fl ; e-
iqor [-i G(r) q>t e ikor eiS(r)Xs-

~ 1 ° [ N D -Iqor 
sr2 - e 

r 

~~~~q>~ (u.p) e
ikor 

eiS(r)xs] + 

iG(r) q>t cf1' (u.p) e ikor eiS(r)X _ 
D(r) + s 

F( r) <I>~ cf1' e ikor eiS(r) xs ] qa. 

(A.18) 
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The angular momentum eigenstates of the bound proton, <1>±, are just projections 

of the states of total angular momentum j and orbital angular momentum Z± onto 

states of definite m 

(A.19) 

where Z± is defined to be Z(±,.;). These spin spherical harmonics can be written 

compactly as 

2 

<1>±(0) = L C; llf"'(O) Xc\') (A.20) 
a=l 

with ml = m - ! and m2 = m +!. The Clebsch-Gordan coefficients 

±_ ± 1 1 . 
CI = (1 ml 2 2' Jm) 

± ± 1 1 . 
C2 = (1 m22 -2'Jm), 

and 
(A.21) 

can be evaluated algebraicallyj they are 

,.;>0 ,.;>0 
and (A.22) 

,.;<0 ,.; < O. 

The vectors Xl and X2 are the (two-dimensional) basis spin states. It is the adjoint of 

this spin spherical harmonic that appears in Il'j in addition, it is convenient to make 

explicit its azimuthal dependence. Thus I recast equation A.20 as 

2 

<1>1(0) = LC; f!(O)e- im",qixl, (A.23) 
a=l 

where f is the ¢-independent part of the spherical harmonic 

21± + 1 (l± - ma)'p,ma ( L1) 
(l± )' l± cosu. 41T + ma . 

(A.24) 
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The sign convention for the associated Legendre polynomial is that of Jackson [35]. 

With these expressions in hand, I define azimuthally-averaged Pauli matrix ele­

ments. These must must include the factors eiS(r) and eiq.r as well since they depend 

on cjJ 

211" 

P; = J dcjJ e-iq.r e-imatP [xl eik-r eiS(r)xs] 

o 
211" 

P; = J dcjJ e-iq.r e-imatP [xl (u·p) eik.r eiS(r)xs] 

o 
211" 

p;,a = J dcjJe-iq.r e-imatP [xlcra (u·p) eik.r eiS(r)Xs] 

o 
211" 

Pd,a = J dcjJ e-iq.r e-imatP [xlcraeik.r eiS(r) Xs] . 

o 

(A.25) 

In terms of these (still not completely specified) functions, the cjJ-integrated matrix 

element is 

211" J dcjJ I O = Ns Fl ~ [-i G(r) ct f:(O) P; (r,O) - ~~~~ C; f;(O) P;(r, 0)] + 
o 

NsF2; [ i~~~~Ct f:(O)p;,a(r,0) - F(r)C; f;(O) Pd,a(r, 0)] qa, 

(A.26) 

where sums over a and repeated upper roman indices are implied. Finally, the integral 

over the remaining two space coordinates, r and x = cos 0, is carried out. It is shown 

only symbolically here since in practice it must be evaluated numerically 

(r, x). (A.27) 
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A similar expression can be derived for the spacelike components of the nuclear 

current. Only the nuclear current matrix differs; in this case it is 

(A.28) 

Substituting this matrix into equation A.14 and performing the azimuthal integration 

as before yields 

211" J d<p Ia = NSF}; [-i~~~~Ct f;;(O) p;,a(r, 0) F(r)C;; f;;(O) p:,a(r, 0)] + 
o 

NsF2; [ i~~~~Ct f;;(O) p;,a(r, 0) - F(r)C;; f;;(O)P:,a(r,O)]qO + 

NsF2; [ G(r)Ct f;;(O) p:,C(r, 0) +i~~~~C;; f;;(O)p;'C(r,O)]€abcqb. 

(A.29) 

This expression is also integrated over rand 0 numerically 

(r, x). (A.30) 

The cos O-integration is done using a 20- or 32-point Gauss-Legendre quadrature for-

mula [36], and the r-integration is performed using Simpson's rule, also with 20 

to 30 integration points . Equations A.26 through A.30 complete the prescription 

for calculating the nuclear current matrix elements except for the evaluation of the 

azimuthally-averaged Pauli matrix elements. I conclude the appendix with that eval-

uation. 

All eight of the Pauli matrix elements (equation A.25) depend on the exponential 

of the eikonal phase, 

(A.31) 
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and on its derivatives and its products with other Pauli matrices. An application of 

the relation 

exp [ia + ib(T·c] = eia [cos be + i (T·e sin be] (A.32) 

yields 

(A.33) 
= C(1', B) I + i S(r, B) (T·ft. 

The sole azimuthal dependence of this operator is contained in the vector ft, 

ft = (sin </>, cos </>, 0). (A.34) 

Using the coordinate system defined in Section 3.1, the vector dot products are 

k . r = kr cos B and 
(A.35) 

where 

k - (0 k) = (0 0 k) -, ", 

and (A.36) 

r = (h,z) = (bcos</>,bsin</>,z). 

There are five azimuthal integrals which appear in the matrix elements; they are 

21r 

An (m, z) = J d</> e-imt/J eiz cos t/J In( </», 

o 

where the functions In ( </» are 

!I(</» = 1, he</»~ = sin </>, he</»~ = cos</>, 

he</»~ = sin2</>, 15 (</» = cos 2</>. 

(A.37) 

(A.38) 
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These can be evaluated analytically in terms of ordinary Bessel functions to be 

A2(m,z) = -7rim (Jm-l(Z) + Jm+1(Z)] 

A3(m, z) = 7rim- 1 (Jm-l(Z) - Jm+l (Z)] 

A4(m, z) = 7rim
-

1 [-Jm -2(Z) + Jm +2(Z)] 

(A.39) 

I use Cr and Sr to denote derivatives with respect to r of the functions C and S, 

and similarly define Co and So. The matrix elements of aa and of the identity matrix 

between the initial states of spin a and the final state of spin s are denoted sa and 

So, respectively. Finally, the Pauli spin algebra (which is straightforward, but long) 

was performed using Mathematica. The result is 

(A.40) 

(A.41) 

(A.42) 



rP;'Y = rCAlSY + S [ir A3S0 + r A2SZ] 

rP;'z = rCAlSz + S [rA3SX - rA2SY] , 
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(A.43) 

(A.44) 

(A.45) 

where each of the matrix elements has been multiplied by r (the product of r2 from 

the Jacobian and ~ from the bound state wavefunction). The following definitions 

have been used to simplify the final results 
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Appendix B 

Density-Dependent Optical Potential 

I present a relativistic, density-dependent optical model of the interaction between a 

high-energy proton and a nucleus. 

Glauber [25] derives an approximate potential to describe the interaction between 

an incident particle and the nucleons that comprise a target nucleus: the effective 

(or "optical") potential due to the collection of nucleons in the target is expressed 

as a function of the density of target nucleons and empirical two-body scattering 

amplitudes. I give a brief sketch of that derivation here, paying particular attention to 

the assumptions employed and the modifications necessary for relativistic kinematics. 

There remain some technical questions concerning the use of quasielastic- rather than 

elastic-scattering boundary conditions; these are addressed in Appendix C for an 

arbitrary complex optical potential. 

Glauber begins with the underlying two-body process: the scattering amplitude 

is related to the phase-shift that the incident particle suffers as a result of its inter­

action with a target particle by 

(E.1) 

where b is a two-component projection of r onto a plane perpendicular to k, i.e., an 

impact parameter. In the eikonal approximation, this phase-shift is a function of the 
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line integral of the (two-body) potential along k 

00 

X(b) = - :k J V(b,z') dz'. (B.2) 
-00 

I have written the phase-shift as a function of the incident momentum rather than 

the incident velocity; this change is the only one needed to obtain a relativistic gen-

eralization of Glauber's derivation. 

The phase-shift for scattering from a collection of particles is just the density-

weighted average of the individual phase-shifts 

A 
eiXopt(b) = J l'l1ol 2 II eiXj(b-sj) d 3qj, 

j=l 

(B.3) 

where 'l1o(qI, q2'" qA) is the ground-state wavefunction of the target and qj = 

(Sj, Zj) are the coordinates of the jth particle perpendicular to, and parallel to, k. 

In the independent-particle approximation, the square of the wavefunction can be 

factored into a product of single-particle densities 

A 

1'l10 (qi)1
2 = II Pj(qj), 

j=l 

and the collective phase-shift can then be written 

A 

eiXopt(b) = n J pj(qj) eiXj(b-sj) d 3qj. 

)=1 

After taking logarithms of both sides, it is useful to introduce the functions 

(BA) 

(B.5) 

(B.6) 
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Since the single-particle densities are normalized, 

(B.7) 

the phase-shift is 

A 

Xop,(b) = -i f,log [1 - J N(qj) rj(b - Sj) d 3q j], (B.8) 

The integrals J pj f j are small: by the optical theorem, J f jd2b = % = 20 mb, thus 

J pjfjd3q ~ i and higher-order terms in the Taylor expansion of the logarithm may 

be dropped, leaving 

A 

Xopt(b) = i L J pj(qj) fj(b - Sj) d 3qj. 
j=l 

(B. g) 

Physically, this approximation is valid because the range of the interaction is small 

compared to the typical internucleon separation distance. 

For a collection of nucleons, there are only two independent scattering functions, 

f p and f n. As a further simplification, suppose there is a single function f that 

describes the average scattering properties of a target nucleon. This approximation is 

quite accurate at high energies, where NN scattering is primarily geometric. Defining 

an average density 

1 A 

p(q) = A LPj(q), 
j=l 

(B.lO) 

the total phase-shift becomes 

Xopt(b) = iA J p(q) f(b - s) d 3q 

= iA J f(s) d 2s J p(b, z) dz, 
(B.ll) 
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where the components of the average coordinate are denoted q = (s, z), and the 

argument of r has been simplified by again dropping terms of order a 2 / R2. Now the 

r-integral is related to the single-particle amplitude via Equation B.I 

J 2 27r 
r(s)d s = ik f(O), (B.12) 

thus the total phase-shift is simply 

2A7r J Xopt(b) = -k-f(O) p(b,z)dz. (B.13) 

Comparison with Equation B.2 then requires that the optical potential take the form 

2A7r1i2 

Vopt(r) = - M f(O) per), 

where r = Irl. 

A more general two-particle amplitude might include spin dependence 

where, by convention, 

f(k',k) = F(k',k) + (0-. n) 9(k',k) 

= F(O) + (0-. n)9(O), 

k X k' 
11 = Ik x k'i and 

k·k' 
o = Ikllk'i. 

(B.14) 

(B.15) 

(B.16) 

Following the above derivation with this new amplitude yields the spin-dependent 

optical potential 

_21l-A1i2 [ i , I dp ] 
Vopt(r) = M F(O) per) + 1ik2 9 (0);: dr (0-. L) . (B.17) 
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The derivatives arise from a Taylor-series expansion of the (0" . n) term. 

The two-particle amplitudes must be taken from experiment. A common pa-

rameterization [37] is 

; . 

(B.IS) 

where q = k-k' and Ikl = Ik'i = k. This form is convenient since the optical theorem 

is manifestly satisfied: 

41l' Imf(O) = 41l' ImF(O) = (FNN. 
k k 

(B.19) 

The parameters C¥, b, and (F are taken from fits to NN scattering data [3S, 39]. 
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Appendix C 

o ptica I Potentia I Bou nda ry Conditions 

I derive a simple relationship between an optical potential that obeys outgoing 

spherical-wave boundary conditions and the corresponding potential that obeys in­

coming spherical-wave conditions. 

Mathematically, a potential that arises from a fundamental (two-body) interac­

tion is a real function of spacetime. When an interaction instead takes place between 

an incident particle and a system of target particles, it is convenient to consider the 

complex generalization of the real potential: the real part describes the scattering 

of the incident particle into states of different final momentum as before, while the 

imaginary part describes absorption of the incident flux by the medium. Of cours~ 

the incident particle is not physically "absorbed"; the imaginary part of the potential 

merely accounts for changes in the internal state of the target. For this appendix 

only, I distinguish these effective, complex potentials from ordinary real potentials by 

using script V's for the former. 

Whether real or complex, a potential alone does not completely determine the 

behavior of the solution to a scattering problem; boundary conditions are also re­

quired. There are two such scattering boundary conditions: the usual one in which 

the final state consists of a scattered (outgoing) spherical wave and an unscattered 

plane wave, denoted (+); and another, relevant to the (e,e'p) reaction, in which the 
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initial state consists of an incoming spherical wave and an incoming plane wave, de­

noted (-). A real, two-body potential is insensitive to the difference between the 

two types of boundary condition, since it is a local operator and boundary conditions 

depend on the behavior of wavefunctions at infinity. However, the imaginary, part of 

an effective potential does in general depend on the particular boundary conditions 

employed. While it is false that V( +) = V( -), the two are related; in this appendix 

I show that they are simply complex conjugates. I follow Feshbach's [40] formal 

derivation of the many-body optical potential V( +), and modify it as necessary for 

quasielastic processes. 

Consider a system of A + 1 nucleons: A nucleons comprise a target nucleus and 

the final nucleon is taken to be the projectile. The Hamiltonian for this system can 

be written 

H = HA +To + V, (C.l) 

where HA is the Hamiltonian of the nucleus, To is the kinetic energy of the incident 

proton, and V is the potential energy of the system. Using the eigenstates of the 

(undisturbed) nucleus as a basis, the wavefunction of the system can be expanded as 

(C.2) 

where the bound states obey 

(C.3) 

Matrix elements of the potential between two bound-state configurations are denoted 

(C.4) 



-83-

where round brackets indicate that only target degrees of freedom have been inte-

grated out. 

I seek to isolate the dynamics of the projectile, that is, to write a Schrodinger 

equation for Uo in which only in the potential term depends on the state of the bound 

nucleons and {UI, U2, .. . }. Defining the column vector 

(C.5) 

and the row vector 

(C.6) 

the Schrodinger equation for the entire system may be re-expressed as a pair of coupled 

equations 

[To + Voo - E] Uo = -V 0 t q> 
(C.7) 

[H - EI] q> = -Yo uo, 

where H is a matrix with elements Hij = TOOij + Vij + €iOij. Formally eliminating q> 

from the system yields the desired Schrodinger equation 

[TO + Voo + V 0 t E(±)~ _ H V 0] Uo = E± uo, (C.8) 

where 

E(±) = E ± i1J , (C.9) 
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insures that appropriate boundary conditions are satisfied. The optical potential I 

seek is then the sum of the last two terms in the bracketed expression above: 

v(±) = Voo + vot 1 Vo. 
E(±)I- H 

(C.10) 

The identity operator in the space over which Vo t acts is 

00 J dex J dc' I Cf? (c' , ex)) (Cf? (c' , ex) I , (C.ll) 
eo 

where c' is an excitation energy (bounded below by co), and ex collectively repre-

sents any remaining quantum numbers, such as spin. Inserting this operator into the 

expression for the potential yields 

00 

V(±)=Voo+ J dex J dc'VotlCf?(c',ex)) E(±)~_H(Cf?(c"ex)IVo. (C.12) 

eo 

Care must be taken when performing the c' integration; there is a pole at c' = E(±) 

and the line of the integration must pass on the correct side of the pole in the complex 

c' plane. For outgoing spherical-wave boundary conditions, the contour is shown in 

Figure C.l. 

From complex analysis, the imaginary part of the potential is one half the residue 

at the pole E( +), which is rounded counterclockwise. For the opposite boundary 

condition, the only change is that the contour passes the pole above the real axis, in 

a clockwise sense. The sign of the residue is then reversed, so that 

1m [V(-)] = -1m [V(+)] . (C.13) 
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1m £' 

E (+) Re £' 

Figure C.l - Contour of Complex £' Integration 

Evidently, the real part is unaffected by the change of boundary conditions, yielding 

the result 

V(-) = V(+)*. (C.14) 
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For completeness, I include in this thesis a copy of the FORTRAN 77 code that was 

used to generate the results presented in Chapters 4 and 5. 

Cppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp 

C 
PROGRAM RESPONSE 

C 
C LATTICE: R (30) and X (20) and P (300) 
C DISTORTION: ATTACH FILE WITH SUBROUTINE VOPT 
C COLOR TRANSPARENCY: MULTIPLIES POTENTIAL ALONG EXIT PATH 
C BOUND STATE : FROM FURNSTAHL CODE 
C 

C COMPUTES THE RESPONSE FUNCTIONS AND TOTAL CROSS SECTION FOR 
C PROTON KNOCKOUT FROM A NUCLEUS 
C 
C PHYSICAL INPUTS: 
C 

C 
C 

C 

C 

C 

C 
C 

C 
C 

C 

C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

K 
TF 
EI 
T2 
ETHETA 

PINIT 
HELICT 
QSTEP 
!DIST 

(INPUT,INTEGER) 
(INPUT,REAL) 
(INPUT,REAL) 
(INPUT,REAL) 
(INPUT,REAL) 

(INPUT,REAL) 
(INPUT,REAL) 
(INPUT,REAL) 
(INPUT,INTEGER) 

F (R) , G (R) 

VS (R) , VV (R) 
PHYSICAL CONSTANTS 

C NUMERICAL INPUTS: 
C 

C 
C 

NMAX 
RMAX 

QUANTUM NUMBER OF BOUND STATE 
KINETIC ENERGY OF FINAL STATE 
TOTAL ENERGY OF INITIAL STATE 
AN ARBITRARY REAL NUMBER 
ANGLE BTW. INITIAL AND FINAL ELECTRON 
MOMENTUM (SHOULDN'T BE 0 . 0) 
MAGNITUDE OF INITIAL ELECTRON MOMENTUM 
HELl CITY OF OUTGOING ELECTRON 
INTERVAL FOR Q(PERP) 
o FOR PLANE WAVES 
1 FOR OPTICAL POTENTIAL (A=40 ONLY) 
2 FOR T-RHO 

RADIAL WAVEFUNCTIONS OF BOUND STATE 
GENERATED BY FURNSTAHL QHD CODE 
DIRAC OPTICAL POTENTIALS (SCALAR/VECTOR) 
MASS, MAGNETIC MOMENT OF PROTON 
MASS SCALE IN DIPOLE FORM FACTOR 

MAXIMUM NUMBER FOR N OF BOUND STATE 
UPPER LIMIT ON R INTEGRATION 
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NR C NUMBER OF POINTS IN R INTEGRATION 
NRV C NUMBER OF POINTS IN POTENTIAL ARRAY 
NX C NUMBER OF POINTS IN THETA INTEGRATION 
X(I) WT(I) C GAUSSIAN WEIGHTS. ABSCISSAS (I=l.NX) 
DELR DELT C USED IN DIFFERENTIAITION 

C Z STEPSIZE FOR INTEGRATION ALONG EXIT PATH DZ 
T2 C AN ARBITRARY ANGLE. SHOULD NOT BE N*PI/2 

C 
C ALL ENERGIES AND MOMENTA ARE INPUT IN MEV AND ALL DISTANCES 
C ARE INPUT IN FERMIS 
C 
C ASSUMPTIONS 
C 
C DISTORTIONS OF FINAL STATE TREATED IN EIKONAL APPROXIMATION 
C DIPOLE FORM FOR PROTON FORM FACTORS 
C 

C 

C 

C 

C 

C 

C 

PARAMETER 
*( NR 30 
*. NRV 300 
*. NX = 20 

REAL 
* X (NX) 
*. WT (NX) 

COMMON /NUMERICS/ 
* IR DR 
*. WT X 
*. DELR DELT 
*. QSTEP • NQS 

COMPLEX 
* I 

COMMON /CONSTANTS/ 
* PMASS PMU 
*. PKAPPA FFS 
*. I 
*. HC 
*. IDIST 
*. T2 

REAL 
* NB 
*. KZ 

COMMON 
* QX 
*. KZ 
*. EI 
*. J2 
*. MSF 
*. TF 

PI 
ALPHA 
ICT 

NS 
LHADR 

/KINEMATICS/ 
• QZ 

E 

K 

M2 
NB 
ETHETA 

*. HELICT LHADR 

IX 
RMAX 
DZ 
DRV 

• QT 
P 
L (2) 
ML (2) 
NS 
PINIT 
TSHRINK 
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*, IA 
C 

COMPLEX 
* JO JX , JY JZ 
*, JOP , JXP JYP JZP 
*, JOPP JXPP , JYPP JZPP 
*, W01 , W10 , W02 W20 
*, CRL CRP 

C 
REAL 

* KX , KY 
C 

CALL STARTUP 
C 

DO 30 II = 0, NQS 
QX = II * QSTEP 

C 
CALL QXDEPKIN 

C 
WOO = 0.0 
Wl1 0.0 
W22 = 0.0 
W01 = (0.0,0.0) 
W10 (0.0,0.0) 
W02 (0 .0,0 . 0) 
W20 = (0.0,0.0) 

C 
DO 20 M2 = -J2, J2, 2 
DO 10 MSF = -1, 1, 2 

C 
CALL JMU (JO,JX,JY,JZ) 

C 
WRITE (8,*) , QX ' ,QX 
WRITE (8,*) , M2 ' ,M2 
WRITE (8,*) , MSF = ' ,MSF 
WRITE (8,*) , JO ',JO 

*, ' JX ' ,JX 
WRITE (8,*) , JY , ,JY 

*, 
, JZ = , ,JZ 

C 
C ROTATE J TO NEW FRAME 
C 

Q32 QX**2 + QZ**2 
Q3MAG SQRT (Q32) 
Q42 = QT**2 - Q32 
CT1 = QZ / Q3MAG 
ST1 QX / Q3MAG 
PS P / HC 
CT2 COS (T2) 
ST2 = SIN (T2) 
B PI + T2 
CB = COS (B) 
SB = SIN (B) 
C2B = COS (2.0 * B) 



C 
C 

C 

C 

C 
C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

10 
20 
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ROTATE BY Tl ABOUT Y AXIS 

JOP = JO 
JXP = JX * CTl JZ * STl 
JYP = JY 
JZP JZ * CTl + JX * ST1 

ROTATE BY T2 ABOUT Z AXIS 

JOPP = JOP 
JXPP = JXP * CT2 JYP * ST2 
JYPP = JYP * CT2 + JXP * ST2 
JZPP = JZP 

ADD UP SPIN CONTRIBUTIONS 

woo woo + CABS (JOPP) ** 2 
Wll Wll + CABS (JXPp) ** 2 
W22 W22 + CABS (JYPp) ** 2 
WOl = WOl + JOPP * CONJG (JXPp) 
W10 = Wl0 + JXPP * CONJG (JOPP) 
W02 = W02 + JOPP * CONJG (JYPp) 
W20 = W20 + JYPP * CONJG (JOPp) 

CONTINUE 
CONTINUE 

SC = HC ** 3 

CRL (W02 + W20) 
CRP (Wl0 - '0101) * I 

RL = WOO / (J2 + 1.0) * SC 
RT = (W22 + Wll) / (J2 + 1. 0) * SC 
RTT = (W22 - Wll) / (J2 + 1.0) / C2B * SC 
RLT REAL (CRL) / (J2 + 1.0) / SB * SC 
RLTP REAL (CRP) / (J2 + 1.0) / CB * SC 

IF (ABS(AIMAG(CRL)*SC) . GT. lE-6) 
* WRITE (6,*) , NONZERO IMAG (CRL) = ',AIMAG(CRL)*SC 

IF (ABS(AIMAG(CRP)*SC) .GT. lE-6) 
* WRITE (6,*) , NONZERO IMAG (CRP) ',AIMAG(CRP)*SC 

SMOTT ALPHA * COS (ETHETA/2.0) 
* / (2.0 * PINIT * SIN (ETHETA/2.0) ** 2) 

SMOTT = SMOTT ** 2 

TEMP3 TAN (ETHETA/2.0) 
TEMP1 = TEMP3 ** 2 
TEMP2 Q42 / Q32 

TEMP4 = ( TEMP2 ** 2.0 ) * RL 
* + ( TEMP1 - TEMP2 / 2.0 ) * RT 
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* - ( TEMP2 / 2.0 * C2B) * RTT 
* + «TEMPi - TEMP2) ** 0.5 * TEMP2 * SB) * RLT 
* + (HELICT * TEMP2 * TEMP3 * CB) * RLTP 

C 
STOT = PMASS * KZ / (2 . 0 * PI) ** 3 * SMOTT * TEMP4 

C 
WRITE (10.*) PS.RL 
WRITE (12.*) PS.RT 
WRITE (14.*) PS.RLT 
WRITE (16.*) PS.RTT 
WRITE (18.*) PS.RLTP 
WRITE (20.*) PS.STOT 

C 
30 CONTINUE 

END 
C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE STARTUP 
C 
C OPENS FILES. WRITES HEADERS. READS INPUT FILES. 
C DOES EVERYTHING THAT ONLY GETS DONE ONCE 
C 

C 

C 

C 

C 

C 

C 

PARAMETER 
*( NR = 30 
*. NRV = 300 
*. NX = 20 

REAL 
* X (NX) 
*. WT (NX) 

COMMON /NUMERICS/ 
* IR DR 
*. WT X 
*. DELR • DELT 
*. QSTEP • NQS 

COMPLEX 
* I 

COMMON /CONSTANTS/ 
* PMASS 
*. PKAPPA 
*. I 
*. HC 
*. IDIST 
*. T2 

REAL 
* NB 
*. KZ 
*. LHMULT 

PMU 
FFS 
PI 
ALPHA 
leT 

NS 
LHADR 

) 

• IX 
• RMAX 
• DZ 

DRV 



C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

COMMON /KINEMATICS/ 
* QX • QZ • QT 

P *. KZ 

*. EI 
*. J2 
*. MSF 
*. TF 

• E 
K 

M2 
• L 
• ML 

NB • NS 
ETHETA PINIT 

*. HELICT LHADR TSHRINK 
*. IA 

REAL 
* FNK (O:NR) 
*. GNK (O:NR) 
*. FSTAR (2.2.NX) 

COMMON /WAVEFN/ 
* FNK 
*. FSTAR 

REAL 
* RHO 

• GNK 

(O:NRV) 

COMMON /DENSITY/ 
* RHO 

DATA 
* PMASS 
*. FFS 
*. HC 
*. PMU 

/ 938.27960 
842.62000 
197 . 32858 

2.79000 
1.79000 

(2) 
(2) 
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/ 
/ 
/ 
/ 
/ *. PKAPPA 

*. I 
*. ALPHA 

/ 
/ 
/ 
/ 
/( 
/ 

0 . 00000. 1 . 00000)/ 
0 . 0072992701 / 

PI = 4.0 * ATAN (1.0) 

IJKL 0 

5 CONTINUE 

WAIT WHILE FILE BECOMES AVAILABLE 

IJKL = IJKL + 1 
IF (IJKL .GE. 1000) STOP , CANT OPEN FILE ' 
DO IJK 
ENDDO 

= 1. 100000 

C OPEN FILES 
C 

OPEN ( 2.ERR=5 .STATUS='OLD') 
OPEN ( 4.ERR=5 .STATUS='OLD') 
OPEN ( 8.FILE='eoO'.STATUS='NEW') 
OPEN (10.FILE='eol'.STATUS='NEW') 
OPEN (12.FILE='eo2'.STATUS='NEW') 



C 

OPEN (14,FILE='eo3',STATUS='NEW') 
OPEN (16,FILE='eo4',STATUS='NEW') 
OPEN (18,FILE='eo5',STATUS='NEW') 
OPEN (20,FILE='eo6',STATUS='NEW') 
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C READ INPUT PARAMETERS 
C 

C 

C 
C 

C 

C 

READ (5,*) TF, IA, IDIST, ICT 
READ (5,*) 
READ (5,*) QSTEP,NQS,DZ 
READ (5,*) 
READ (5,*) PINIT,ETHETA,DELT,DELR 
READ (5,*) 
READ (5,*) T2,HELICT,LHMULT 
READ (5,*) 

GAUSSIAN WEIGHTS AND ABSCISSAS 

DO 10 JX = NX/2 + 1, NX 
READ (2,*) X (JX), WT (JX) 

10 CONTINUE 

DO 20 JX 
X (JX) 
WT (JX) 

20 CONTINUE 

1, NX/2 
- X (NX + 1 - JX) 

WT (NX + 1 - JX) 

C FURNSTAHL WAVEFUNCTION FILE HEADER INFORMATION 
C 

C 

READ (4,*) 
READ (4,*) 
READ (4,*) NRDUM,DRDUM 
READ (4,*) 
READ (4,1) K,EI 
READ (4,*) 

C SCALE TO RIGHT UNITS (MEV) 
C 

C 

C 

IF (MOD (NRDUM,NR ) .NE. 0) STOP 'NR WRONG' 
IF (MOD (NRDUM,NRV) .NE. 0) STOP , NRV WRONG' 

NSKIP 
DRDUM 
DR 
RMAX 
DRV 

= NRDUM / NR 
= DRDUM / HC 

NSKIP * DRDUM 
= DR * NR 
= NRDUM / NRV * DRDUM 

C READ FURNSTAHL RADIAL WAVEFUNCTION 
C 

DO 50 JR = 0, NR-1 
READ (4,*) RDUM, GNK (JR), FNK (JR) 
DO 40 ISKIP = 1, NSKIP - 1 
READ (4,*) 

40 CONTINUE 



- 93-

GNK (JR) = GNK (JR) * SQRT (HC) 
FNK (JR) FNK (JR) * SQRT (HC) 

50 CONTINUE 
C 

GNK (NR) = 0.0 
FNK (NR) = 0.0 

C 
CLOSE (2) 

CLOSE (4) 
C 
C CHECK NORM OF BOUND STATE 
C 

WS = 4 . 0 
JR = 0 

C 
GSUM = GNK (JR) ** 2 
FSUM = FNK (JR) ** 2 

C 
DO 60 JR = 1. NR-1 

C 
GSUM = GSUM + GNK (JR) ** 2 * WS 
FSUM = FSUM + FNK (JR) ** 2 * WS 

C 
WS = 6.0 - WS 

C 
60 CONTINUE 

C 
JR = NR 

C 
GSUM = (GSUM + GNK (JR) ** 2) * DR / 3.0 
FSUM (FSUM + FNK (JR) ** 2) * DR / 3.0 
ANORM GSUM + FSUM 

C 
WRITE (6.*) , WAVEFN NORM : ' ,ANORM 

C 
C CHECK NORM OF DENSITY 
C 

WS = 4 . 0 
JR = 0 
RDUM = JR * DRV 
PSUM = RDUM ** 2 * RHO (JR) 

C 
DO 70 JR 1. NRV-1 

C 
RDUM = JR * DRV 
PSUM = PSUM + RDUM ** 2 * RHO (JR) * WS 
WS 6.0 - WS 

C 
70 CONTINUE 

C 
JR = NRV 
RDUM = JR * DRV 
PSUM = (PSUM + RDUM ** 2 * RHO (JR)) * 4.0 * PI * DRV / 3.0 
BNORM = PSUM 
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C 
WRITE (6,*) , DENSITY NORM: ',BNORM 

C 

C THAT KINEMATICS WHICH IS INDEPENDENT OF QX 
C (IF IT DEPENDS ON QX, IT IS DONE IN QXDEPKIN) 
C 

EBIND = PMASS - EI 
QT = TF + EBIND 
KZ = SQRT (2.0 * TF * PMASS + TF * TF) 
E = SQRT ( PMASS * PMASS + KZ * KZ) 
NS SQRT ( (E + PMASS) / (2.0 * E) ) 
NB = 1.0 

C 

C LHADR IS THE HADRONIZATION LENGTH IN INVERSE MEV 
C 

TSHRINK = 1E6 / KZ / KZ 
LHADR KZ / PMASS * 0 .81 / HC * (1 - TSHRINK) 
LHADR LHADR * LHMULT 

C 
C BOUND STATE ANGULAR MOMENTUM 
C 

C 

C 
C 

C 

C 

C 

C 

J2 = 2 * ABS (K) - 1 

IF (K .GT . 0) THEN 
L (1) = K 

L (2) K - 1 

ELSEIF (K . LT. 0) THEN 
L (1) (K + 1) 
L (2) = - K 

ELSE 
STOP , KAPPA WAS ZERO ' 

ENDIF 

WRITE FILE HEADERS 

WRITE (6,*) , K ' ,K 
WRITE (6,*) , NX = ' ,NX 
WRITE (6,*) , NR = ' ,NR 
WRITE (6,*) , QT = ' ,QT 

WRITE (8,*) , K ' ,K 
WRITE (8,*) , NX ' ,NX 
WRITE (8,*) , NR ' ,NR 
WRITE (8,*) , QT ' ,QT 

WRITE (10,*) 'TF,IA,K,IDIST,ICT,NQS+1' 
WRITE (12,*) 'TF,IA,K,IDIST,ICT,NQS+1' 
WRITE (14,*) 'TF,IA,K,IDIST,ICT,NQS+1' 
WRITE (16,*) 'TF,IA,K,IDIST,ICT,NQS+1' 
WRITE (18,*) 'TF,IA,K,IDIST,ICT,NQS+1' 
WRITE (20,*) 'TF,IA,K,IDIST,ICT,NQS+1' 

WRITE (10,*) TF,IA,K,IDIST,ICT,NQS+1 
WRITE (12,*) TF,IA,K,IDIST,ICT,NQS+1 



C 
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WRITE (14,*) TF,IA,K,IDIST,ICT,NQS+1 
WRITE (16,*) TF,IA,K,IDIST,ICT,NQS+1 
WRITE (18,*) TF,IA,K,IDIST,ICT,NQS+1 
WRITE (20,*) TF,IA,K,IDIST,ICT,NQS+1 

C CALCULATE LOOKUP TABLE FOR OPTICAL POTENTIAL 
C 

CALL VOPT 
C 

C CALCULATE LOOKUP TABLE FOR INTEGRALS OF OPTICAL POTENTIALS 
C 

CALL GETFRT 
C 

RETURN 
C 
C FORMAT 
C 

1 FORMAT (15X,I7,2X,F15.5) 
C 

END 
C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE GETFRT 
C 

C COMPUTES THE FUNCTIONS C(R,TH) AND S(R , TH) (AND THEIR 
C DERIVATIVES) WHICH DEPEND ON THE INTEGRALS OF THE OPTICAL 
C POTENTIALS (AND THEIR DERIVATIVES) 
C THESE FUNCTIONS ARE COMPUTED OVER THE WHOLE NUCLEUS 
C 

PARAMETER 
*( NR = 30 
*, NRV = 300 
*, NX 20 ) 

C 
REAL 

* X (NX) 
*, WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 
*, WT X RMAX 
*, DELR DELT DZ 
*, QSTEP , NQS DRV 

C 
COMPLEX 

* I 
C 

COMMON /CONSTANTS/ 
* PMASS PMU 
*, PKAPPA FFS 
*, I PI 
*, HC ALPHA 
*, IDIST ICT 
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*. T2 
C 

REAL 
* NB NS 
*. KZ LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ • E P 
*. EI • K • L (2) 
*. J2 • M2 • ML (2) 

*. MSF NB NS 
*. TF ETHETA • PINIT 
*. HELICT LHADR • TSHRINK 
*. IA 

C 
COMPLEX 

* FRT (0:NR.NX.6) 
C 

COMMON /SPACEFUNC/ 

* FRT 
C 

COMPLEX 

* Sl • S2 
*. SlA S2A 
*. SlB S2B 
*. SlC S2C 
*. SlD S2D 
*. DRS1 DRS2 
*. DTS1 DTS2 
*. CRT SRT 

C 
C LOOP OVER SPACE LATTICE 
C 

DO 10 IR O. NR 
DO 10 IX = 1. NX 

C 
R IR * DR 
TH ACOS (X(IX)) 
CT COS (TH) 
ST = SIN (TH) 
B R * ST 
Z = R * CT 

C 
IF (R .EQ. 0.0) THEN 

RA = R + DELR / HC 
RB = R 
DDR = DELR / HC 

ELSEIF (R .EQ . RMAX) THEN 
RA R 
RB R - DELR / HC 
DDR DELR / HC 

ELSE 
RA = R + DELR / HC 
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RB R - DELR / HC 
DDR DELR / HC * 2.0 

ENDIF 
C 

THC = TH + DELT 
THD = TH - DELT 

C 
IF (RA .LT. 0.0 .OR. RB .LT. 0) STOP • ERROR IN DS/DR • 

C 
CALL S12_LATPT (R ,TH ,S1 ,S2 ) 
CALL S12_NOTLP (RA,TH ,S1A,S2A) 
CALL S12_NOTLP (RB,TH ,S1B,S2B) 
CALL S12_NOTLP (R ,THC,S1C,S2C) 
CALL S12_NOTLP (R ,THD,S1D,S2D) 

C 
DRS1 (S1A - S1B) / DDR 
DRS2 (S2A - S2B) / DDR 
DTS1 (S1C - S1D) / 2.0 / DELT 
DTS2 (S2C S2D) / 2.0 / DELT 

C 
CRT EXP (I * Sl) * COS (S2) 
SRT EXP (I * S1) * SIN (S2) 

C 
C NOW FILL UP THE FRT ARRAY AT THIS POINT 
C 

FRT (IR, IX,1) CRT 
FRT (IR,IX,2) SRT 
FRT (IR,IX,3) CRT * I * (DRS1 + KZ * CT) SRT * DRS2 
FRT (IR,IX,4) = SRT * I * (DRSl + KZ * CT) + CRT * DRS2 
FRT (IR,IX,S) = CRT * I * (DTS1 - KZ * ST * R) - SRT * DTS2 
FRT (IR,IX,6) SRT * I * (DTS1 - KZ * ST * R) + CRT * DTS2 

C 
10 CONTINUE 

RETURN 
END 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE S12_LATPT (R,TH,Sl,S2) 
C 

C INTEGRATES THE EIKONAL PHASE ALONG THE EXIT PATH STARTING 
C ON A POINT ON THE (BIG) INTEGRATION LATTICE . 
C THE EIKONAL PHASE IS A FUNCTION OF THE OPTICAL POTENTIALS 
C V (CENTRAL) AND V (SPIN-ORBIT) 
C CALCULATES THE FUNCTION (E + M + VS - VV) FROM THE 
C INTEGRAL OF THE SPIN-ORBIT POTENTIAL (THIS ALLOWS IT 
C TO INCLUDE COLOR TRANSPARENCY EFFECTS) 
C 

PARAMETER 
*( NR 30 
*, NRV 300 
*, NX 20 

C 
REAL 
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* x (NX) 
*. WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 

*. WT X RMAX 
*. DELR • DELT • DZ 
*. QSTEP • NQS DRV 

C 
COMPLEX 

* I 
C 

COMMON /CONSTANTS/ 

* PMASS PMU 
*. PKAPPA • FFS 
*. I PI 
*. HC ALPHA 
*. IDIST • ICT 
*. T2 

C 
REAL 

* NB NS 
*. KZ LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ E P 
* EI K L (2) 
*. J2 M2 ML (2) 

*. MSF NB NS 
*. TF ETHETA PINIT 
*. HELICT LHADR • TSHRINK 
*. IA 

C 
COMPLEX 

* VC (O:NRV+1) 

*. VSO (O:NRV+1) 
*. DENOM (O:NR.NX) 

C 
COMMON /POTENTIAL/ 

* VC • VSO 
*. DENOM 

C 
COMPLEX 

* SUM1 SUM2 SUM3 
*. Sl S2 VCP 
*. VSOP 

C 
Z R * COS (TH) 
B R * SIN (TH) 

C 
ZP Z 
RP R 

C 
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C POTENTIAL VALUES FROM TABLE TABLE 
C 

JR = NRV / NR * IR 
C 

VCP = vc (JR) 
VSOP = vso (JR) 

C 
C CALCULATE COLOR TRANSPARENCY FUNCTION 
C 

IF (ICT .EQ. 0 .OR. TSHRINK .GE. 1.0) THEN 
RZ = 1.0 

ELSEIF (ZP-Z .LT . LHADR) THEN 
RZ = «ZP - Z) / LHADR) ** ICT * (1.0 - TSHRINK) + TSHRINK 

C 

ELSE 
RZ 

ENDIF 
= 1.0 

C COLOR TRANSPARENCY FUNCTION MULTIPLIES POTENTIALS 
C 

C 

C 
10 

C 

C 

C 

C 

C 

VCP 
VSOP 

SUMl 
SUM2 
SUM3 

CONTINUE 

ZP 
RP 

= VCP * RZ 
VSOP * RZ 

= VCP 
= VSOP * ZP 
= VSOP 

ZP + DZ / HC 
SQRT (ZP*ZP + B*B) 

IF (RP .GE. RMAX) GO TO 20 

RS = RP / DRV 
JR = INT (RS) 

VCP = vc (JR) + (RS - JR) 
VSOP = VSO (JR) + (RS - JR) 

* (VC (JR+l) 
* (VSO (JR+l) 

C COLOR TRANSPARENCY FUNCTION 
C 

IF (ICT .EQ. 0 .OR . TSHRINK . GE. 1 .0) THEN 
RZ = 1. 0 

ELSE IF (ZP-Z .LT. LHADR) THEN 

- VC 
- VSO 

(JR) ) 
(JR) ) 

RZ = «ZP - z) / LHADR) ** ICT * (1.0 - TSHRINK) + TSHRINK 

C 

C 

ELSE 
RZ 

ENDIF 
= 1.0 

VCP VCP * RZ 
VSOP VSOP * RZ 

SUMl = SUMl + 2.0 * VCP 
SUM2 = SUM2 + 2 . 0 * VSOP * ZP 



C 

C 

C 

SUM3 = SUM3 + 2.0 * VSOP 

GO TO 10 
20 CONTINUE 

SUM1 = SUM1 * DZ / HC / 2 . 0 
SUM2 = SUM2 * DZ / HC / 2.0 
SUM3 SUM3 * DZ / HC / 2.0 
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C CALCULATE DENOMINATOR FUNCTION 
C 

DENOM (IR.IX) 
* = (E + PMASS) * EXP (2.0 * PMASS * SUM2) 

C 

C I HAVE TO DO V* FOR INCOMING WAVE BOUNDARY CONDITIONS 
C 

SUM1 = CONJG (SUM1) 
SUM2 = CONJG (SUM2) 
SUM3 CONJG (SUM3) 

C 

C EIKONAL PHASE 
C 

C 

C 

IF (IDIST .EQ. 2) SUH2 = (0.0.0.0) 

Sl 
S2 

RETURN 
END 

SUM1 * PMASS / KZ + SUM2 * PMASS * I 
SUM3 * PMASS * B 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE S12_NOTLP (R.TH,Sl,S2) 
C 
C INTEGRATES THE EIKONAL PHASE ALONG THE EXIT PATH STARTING 
C ON A POINT ON THE (BIG) INTEGRATION LATTICE. 
C THE EIKONAL PHASE IS A FUNCTION OF THE OPTICAL POTENTIALS 
C V (CENTRAL) AND V (SPIN-ORBIT) 
C 

PARAMETER 
*( NR = 30 
*. NRV = 300 
*. NX 20 

C 
REAL 

* X (NX) 
*. WT (NX) 

C 
COMMON /NUHERICS/ 

* IR • DR IX 
*. WT • X RMAX 
*. DELR DELT DZ 
*. QSTEP • NQS DRV 

C 
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COMPLEX 

* I 

C 
COMMON /CONSTANTS/ 

* PMASS , PMU 
*, PKAPPA FFS 
*, I , PI 
*, HC ALPHA 
*, IDIST ICT 
*, T2 

C 
REAL 

* NB NS 
*, KZ , LHADR 

C 
COMMON /KINEMATICS/ 

* QX , QZ , QT 
*, KZ , E P 
*, EI K L (2) 
*, J2 M2 ML (2) 

*, MSF NB NS 
*, TF ETHETA , PINIT 
*, HELICT , LHADR TSHRINK 
*, IA 

C 
COMPLEX 

* VC (O:NRV+1) 
*, VSO (O : NRV+1) 
*, DENOM (O : NR,NX) 

C 
COMMON /POTENTIAL/ 

* VC , VSO 
*, DENOM 

C 
COMPLEX 

* SUM1 SUM2 SUM3 
*, Sl S2 VCP 
*, VSOP 

C 
Z = R * COS (TH) 
B R * SIN (TH) 

C 
zp Z 

RP R 
C 

RS = RP / DRV 
JR INT (RS) 

C 
C INTERPOLATE BETWEEN POTENTIAL VALUES IN TABLE 
C 

VCP = VC (JR) + (RS - JR) * (VC (JR+1) - VC (JR) ) 
VSOP VSO (JR) + (RS - JR) * (VSO (JR+1) - VSO (JR)) 

C 
C CALCULATE COLOR TRANSPARENCY FUNCTION 
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C 
IF (ICT .EQ. 0 .OR. TSHRINK .GE. 1.0) THEN 

RZ = 1.0 
ELSEIF (ZP-Z .LT. LHADR) THEN 

RZ «ZP - Z) / LHADR) ** ICT * (1.0 - TSHRINK) + TSHRINK 
ELSE 

RZ = 1.0 
ENDIF 

C 

C COLOR TRANSPARENCY FUNCTION MULTIPLIES POTENTIALS 
C 

C 

C 
10 

C 

C 

C 

C 

C 

VCP 
VSOP 

SUMl 
SUM2 
SUM3 

CONTINUE 

ZP 
RP 

= VCP * RZ 
= VSOP * RZ 

VCP 
= VSOP * ZP 

VSOP 

= ZP + DZ / HC 
= SQRT (ZP*ZP + B*B) 

IF (RP . GE . RMAX) GO TO 20 

RS = RP / DRV 
JR INT (RS) 

VCP = VC (JR) + (RS - JR) 
VSOP = VSO (JR) + (RS - JR) 

* (VC (JR+l) - VC (JR) ) 
* (VSO (JR+l) - VSO (JR)) 

C COLOR TRANSPARENCY FUNCTION 
C 

C 

C 

C 

20 
C 

IF (ICT . EQ . 0 .OR. TSHRINK . GE. 1 .0) THEN 
RZ = 1.0 

ELSE IF (ZP-Z .LT. LHADR) THEN 
RZ = «ZP - Z) / LHADR) ** ICT * (1.0 - TSHRINK) + TSHRINK 

ELSE 
RZ = 1.0 

ENDIF 

VCP 
VSOP 

SUMl 
SUM2 
SUM3 

GO TO 10 
CONTINUE 

SUMl 
SUM2 
SUM3 

= VCP * RZ 
VSOP * RZ 

= SUMl + 2.0 * VCP 
= SUM2 + 2.0 * VSOP * ZP 

SUM3 + 2.0 * VSOP 

= SUMl * DZ / HC / 2.0 
= SUM2 * DZ / HC / 2.0 
= SUM3 * DZ / HC / 2 . 0 
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C 

C I HAVE TO DO V* FOR INCOMING WAVE BOUNDARY CONDITIONS 
C 

SUM1 CONJG (SUM1) 
SUM2 = CONJG (SUM2) 
SUM3 = CONJG (SUM3) 

C 
C EIKONAL PHASE 
C 

IF (IDIST .EQ. 2) SUM2 = (0.0,0.0) 
C 

Sl = SUM1 * PMASS / KZ + SUM2 * PMASS * I 
S2 SUM3 * PMASS * B 

C 
RETURN 
END 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE QXDEPKIN 
C 
C SETS UP KINEMATICS VARIABLES THAT DEPEND ON THE 
C PERPENDICULAR COMPONENT OF THE MOMENTUM TRANSFER (QX) 
C 

C 

C 

C 

C 
C 
C 

C 

COMPLEX 

* I 

COMMON /CONSTANTS/ 
* PMASS PMU 
*, PKAPPA FFS 
*, I PI 
*, HC ALPHA 
*, IDIST ICT 
*, T2 

REAL 
* NB NS 
*, KZ LHADR 

COMMON /KINEMATICS/ 
* QX , QZ 
*, KZ E 
*, EI K 
*, J2 M2 
*, MSF NB 
*, TF ETHETA 
*, HELICT LHADR 
*, IA 

QX KINEMATICS 

, QT 
P 
L (2) 
ML (2) 
NS 
PINIT 
TSHRINK 

Q3MAG = SQRT (2.0 * TF * PMASS + TF 
TEMP = ( Q3MAG ** 2 - QX 

* TF ) 

* QX ) 



C 

C 
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IF (TEMP .LT . 0.0) THEN 
STOP , REACHED END OF KINEMATIC RANGE ' 

ENDIF 

QZ SQRT ( TEMP ) 
P = SQRT «KZ - QZ) ** 2 + QX * QX ) 
E = SQRT ( KZ * KZ + PMASS * PMASS) 

RETURN 
END 

C 

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE JMU (JO.JX.JY.JZ) 
C 
C COMPUTES THE MATRIX ELEMENTS OF THE NUCLEAR CURRENT BETWEEN 
C THE INITIAL BOUND STATE AND THE FINAL DISTORTED PLANE WAVE 
C 

PARAMETER 
*( NR 30 

*. NRV 300 

*. NX 20 
C 

REAL 

* X (NX) 
*. WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 

*. WT X RMAX 

*. DELR DELT DZ 

*. QSTEP • NQS DRV 
C 

COMPLEX 

* I 
C 

COMMON /CONSTANTS/ 

* PMASS PMU 

*. PKAPPA FFS 

*. I PI 

*. HC ALPHA 

*. IDIST ICT 
*. T2 

C 
REAL 

* NB NS 
*. KZ LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ E P 

*. EI K L (2) 

*. J2 M2 ML (2) 

*. MSF HB NS 



C 

C 

C 

C 

C 

*, TF ,ETHETA, PINIT 
*, HELICT ,LHADR ,TSHRINK 
*, IA 

COKPLEX 
* TSK (14,2) 

COKMON /THTSUM/ 
* TSK 

COMPLEX 
* SUKO (2) JO 
*, SUMX (2) JX 
*, SUMY (2) , JY 
*, SUMZ (2) , JZ 
*, QDOTJ 
*, QDOTJi 
*, QDOTJ2 
*, RSK 

REAL 

(14,2) 

* C (2,2) 

- 105 -

C SPIN DEPENDENT STUFF 
C 

CALL SETSPIN 
c 
C SIMPSON INTEGRATION ALONG R 
C 

WS 4.0 
IR = 0 
R = 0.0 

C 
CALL THTINT (R) 

C 

DO 10 MK = 1, 2 
DO 10 NN = 1, 14 

C 

RSK (NN,KK) = TSM (NN,MM) 
C 

10 CONTINUE 
C 

DO 30 IR = 1, NR-1 
C 

R = DR * IR 
CALL THTINT (R) 

C 
DO 20 MK = 1, 2 
DO 20 NN = 1, 14 

C 
RSK (NN,MM) = RSK (NN,MM) + WS * TSM (NN,MM) 

C 
20 CONTINUE 

C 
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iriS = 6.0 - iriS 
C 

30 CONTINUE 
C 

IR = NR 
R = NR * DR 

C 
CALL THTINT (R) 

C 
DO 40 MM = 1, 2 
DO 40 NN 1, 14 

C 
RSM (NN,MM) (RSM (NN,MM) + TSM (NN,MM)) * DR / 3.0 

C 
40 CONTINUE 

C 
C FORM FACTORS 
C 

CALL FORMFAC (Fl,F2) 
C 

F2 = F2 / (2.0 * PMASS) 
C 
C CG COEFFICIENTS PROJECT OUT GOOD J FOR BOUND STATE 
C 

CALL CLEBSCH (C) 
C 
C CONSTANTS 
C 

DO 50 MS 1, 2 
C 

SUMO (MS) RSM ( l,MS) * Fl * (-I) * C (l,MS) 
* + RSM ( 2,MS) * Fl * (-1) * C (2,MS) 

* + RSM ( 3,MS) * F2 * QX * ( I) * C (l,MS) 

* + RSM ( 5,MS) * F2 * QZ * ( I) * C (l,MS) 

* + RSM ( 6,MS) * F2 * QX * (-1) * C (2,MS) 

* + RSM ( 8,MS) * F2 * QZ * (-1) * C (2,MS) 
C 

SUMX (MS) = RSM ( 3,MS) * Fl * (-I) * C (l,MS) 

* + RSM ( 6,MS) * Fl * (-1) * C (2,MS) 

* + RSM (10,MS) * F2 * QZ * (-1) * C (l,MS) 

* + RSM (13,MS) * F2 * QZ * (-I) * C (2,MS) 

* + RSM ( 3,MS) * F2 * QT * ( I) * C (l,MS) 

* + RSM ( 6,MS) * F2 * QT * (-1) * C (2,MS) 
C 

SUMZ (MS) = RSM ( 5,MS) * Fl * (-I) * C (1, MS) 

* + RSM ( 8,MS) * Fl * (-1) * C (2,MS) 

* + RSM (10,MS) * F2 * QX * ( 1) * C (l,MS) 

* + RSM (13,MS) * F2 * QX * ( I) * C (2,MS) 

* + RSM ( 5,MS) * F2 * QT * ( I) * C (l,MS) 

* + RSM ( 8,MS) * F2 * QT * (-1) * C (2,MS) 
C 

SUMY (MS) = RSM ( 9,MS) * F2 * QZ * ( 1) * C (l,MS) 

* + RSM ( l1,MS) * F2 * QX * (-1) * C (l,MS) 

* + RSM (12,MS) * F2 * QZ * ( I) * C (2,MS) 



C 

C 

C 

* 
* 
* 
* 
* 

+ RSM 
+ RSM 
+ RSM 
+ RSM 
+ RSM 

(14,MS) * F2 * 
( 4,MS) * F1 
( 7,MS) * F1 
( 4,MS) * F2 * 
( 7,MS) * F2 * 
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QX * (-I) * 
* (-I) * 
* (-1) * 

QT * ( I) * 
QT * (-1) * 

50 CONTINUE 

JO NB * NS * (SUMO (1) + SUMO (2)) 
JX NB * NS * (SUMX (1) + SUM X (2)) 
JY NB * NS * (SUMY (1) + SUMY (2)) 
JZ = NB * NS * (SUMZ (1) + SUMZ (2)) 

C (2,MS) 
C (l,MS) 
C (2,MS) 
C (l,MS) 
C (2,MS) 

C CHECK TO SEE WHETHER THE CURRENT IS CONSERVED 
C 

C 

QDOTJ1 
QDOTJ2 
QDOTJ 

QT * JO 
= - QX * JX - QZ * JZ 
= QDOTJ1 + QDOTJ2 

C OUTPUT CURRENT CONSERVATION INFORMATION 
C 

c WRITE (6,*) QDOTJ,QDOTJ1,QDOTJ2 
C 

RETURN 
END 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE SETSPIN 
C 
C SETS UP PAULI SPIN ALGEBRA AND EVERYTHING THAT DEPENDS 
C ON ANGULAR MOMENTUM 
C 

PARAMETER 
*( NR = 30 

*, NRV 300 

*, NX = 20 ) 

C 
REAL 

* X (NX) 
*, WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 
*, WT X RMAX 
*, DELR DELT DZ 
*, QSTEP , NQS DRV 

C 
COMPLEX 

* I 
C 

COMMON /CONSTANTS/ 

* PMASS PMU 
*, PKAPPA , FFS 
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*. I • PI 
*. HC ALPHA 
*. IDIST · ICT 
*. T2 

C 
REAL 

* NB NS 
*. KZ • LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ E P 
*. EI K L (2) 
*. J2 M2 • ML (2) 
*. MSF NB NS 
*. TF ETHETA PINIT 
*. HELICT LHADR • TSHRINK 
*. IA 

C 
COMPLEX 

* SO (2) 

*. SX (2) 
*. SY (2) 

*. SZ (2) 
C 

COMMON /SPINS/ 

* SO SX 
*. SY • SZ 

C 
REAL 

* FNK (O:NR) 

*. GNK (O:NR) 

*. FSTAR (2.2.NX) 
C 

COMMON /WAVEFN/ 

* FNK • GNK 
*. FSTAR 

C 
INTEGER 

* FAC (-12 : 12) 
C 

DATA 
* FAC / 12 * O. 1. 1 

*. 2. 6. 24 

*. 120. 720. 5040 

*. 40320. 362880. 3628800 

*. 39916800. 479001600 / 
C 

REAL 

* NUM 
C 

C (INITIAL PAULI SPINoR) (SIGMA-MU) (FINAL PAULI SPINoR) 
C 

IF (MSF . EQ. 1) THEN 
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so (1) = 1.0 
SX (1) = 0.0 
SY (1) = 0.0 
SZ (1) = 1.0 
SO (2) = 0.0 
SX (2) = 1.0 
SY (2) = I 
SZ (2) = 0.0 

ELSEIF (MSF .EQ. -1) THEN 
SO (1) 0.0 
SX (1) 1.0 
SY (1) = - I 
SZ (1) = 0.0 
SO (2) = 1.0 
SX (2) = 0.0 
SY (2) = 0.0 
SZ (2) -1.0 

ENDIF 
C 

C BOUND STATE ANGULAR MOMENTUM STUFF 
C 

C 

DO 10 MS = 
ML (MS) 

10 CONTINUE 

1, 2 

(M2 + (-1.0) ** MS) / 2 

C THETA DEPENDENT/PHI INDEPENDENT PART OF THE SPHERICAL 
C HARMONICS (FSTAR) 
C 

DO 
DO 
DO 

C 

C 

C 

20 JX = 1, NX 
20 MS = 1, 2 
20 MK = 1, 2 

NUM = FAC (L(MK) 
DEN = FAC (L(MK) 

IF (DEN.NE.O.O) THEN 
DEN 

ENDIF 
= 1.0 / DEN 

- ML(MS» * (2.0 * L(MK) 
+ ML(MS» * (4.0 * PI) 

+ 1.0) 

FSTAR (MK,MS,JX) = SQRT (NUM * DEN) * PLM(L(MK),ML(MS),X(JX» 
C 

20 CONTINUE 

RETURN 
END 

C 

CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 
C 

REAL FUNCTION PLM (L,M,X) 
C 
C COMPUTES THE ASSOCIATED LEGENDRE POLYNOMIAL PLM(X) 
C FOR M NOT IN [-L,LJ, THE RESULT IS SET TO ZERO 
C 
C RESTRICTIONS: 
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C 
C RANGE OF X [ -1,1] 
C 

INTEGER 
* FAC (-12:12) 

C 
DATA 

* FAC / 12 * 0, 1, 1 
*, 2, 6, 24 
*, 120, 720, 5040 
*. 40320. 362880. 3628800 

C 

C 

C 

C 

*, 39916800, 479001600 

N = ABS (M) 

IF (ABS(X) .GT. 1.0) STOP' PLM - l' 
IF (N + L .GT. 12) STOP' PLM - 2' 

IF (N .GT. L) THEN 
PLM = 0.0 
RETURN 

ENDIF 

C COMPUTE PNN 
C 

PNN = 1.0 
TEMP SQRT «1.0-X)*(1.0+X)) 
DFAC 1.0 

C 
DO 10 I = 1, N 

PNN - PNN * DFAC * TEMP 
DFAC = DFAC + 2.0 

10 CONTINUE 
C 

IF (L .EQ. N) THEN 
PLN = PNN 

ELSE 
C 
C COMPUTE P(N+l)N 
C 

C 

PNP1N = X * (2*N + 1) * PNN 
IF (L . EQ . N+l) THEN 

PLN 
ELSE 

= PNP1N 

C COMPUTE PLN 
C 

DO 20 LL N+2,L 

/ 

PLLN = (X*(2*LL-l)*PNP1N - (LL+N-l)*PNN)/(LL-N) 
PNN = PNP1N 
PNP1N = PLLN 

20 CONTINUE 
PLN 

ENDIF 
PLLN 
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ENDIF 
C 

C TAKE CARE OF NEGATIVE M'S 
C 

C 

C 

IF (M.GE . O) THEN 
PLM 

ELSE 
PLM 

ENDIF 

RETURN 
END 

= PLN 

PLN * FAC (L-N) / FAC (L+N) * (-1 . 0) ** N 

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE THTINT (R) 
C 
C COMPUTES THETA INTEGRALS VIA GAUSSIAN INTEGRATION 
C 

PARAMETER 
*( NR 30 
*. NRV 300 
*. NX 20 

C 
REAL 

* X (NX) 
*. WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 
*. WT X RMAX 
*. DELR DELT DZ 

*. QSTEP • NQS DRV 
C 

COMPLEX 
* I 

C 
COMMON /CONSTANTS/ 

* PMASS • PMU 
*. PKAPPA FFS 

*. I PI 
*. HC ALPHA 
*. IDIST ICT 
*. T2 

C 
REAL 

* NB NS 
*. KZ LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ E P 
*. EI • K • L (2) 

*. J2 M2 ML (2) 



C 

C 

C 

C 

C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

10 

*, MSF , NB , NS 
*, TF , ETHETA , PINIT 
*, HELICT , LHADR , TSHRINK 
*, IA 

COMPLEX 

* TSM (14,2) 

COMMON /THTSUM/ 
* TSM 

COMPLEX 
* FNC (14,2) 

COMMON /MTERMS/ 

* FNC 

GAUSSIAN INTEGRATION FROM 

DO 10 MM 1, 2 
DO 10 NN 1, 14 

TSM (NN,MM) 0 . 0 

CONTINUE 

DO 30 IX 1, NX 

TH = ACOS (X(IX)) 

CALL INTEGRND (R,TH) 

DO 20 MM= 1, 2 
DO 20 NN= 1, 14 

X 
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= -1 TO X = 1 

TSM (NN,MM) = TSM (NN,MM) + WT (IX) * FNC (NN,MM) 

20 CONTINUE 

30 CONTINUE 
RETURN 
END 

C 

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE INTEGRND (R,TH) 
C 
C COMPUTES THE INTEGRAND IN THE MATRIX ELEMENTS 
C 
C 
C 

C 

C 
C 

N,K,M2 
MSF 
QX,QZ 
QT 
KZ 

(INPUT, INTEGER) 
(INPUT,INTEGER) 
(INPUT,REAL) 
(INPUT ,REAL) 
(INPUT,REAL) 

QUANTUM NUMBERS OF BOUND STATE 
FINAL PROTON SPIN 
SPACELIKE COMPONENTS OF MOM TRANSFER 
TIMELIKE COMPONENT OF MOM TRANSFER 
OUTGOING PROTON MOMENTUM 
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C R.TH (INPUT. REAL) POSITION COORDINATES 
C MTERMS (OUTPUT) COMMON BLOCK CONTAINING M.E. TERMS 
C 

PARAMETER 
*( NR = 30 
*. NRV = 300 
*. NX = 20 ) 

C 
REAL 

* X (NX) 
*. W'T (NX) 

C 
COMMON /NUMERICS/ 

* IR • DR IX 

*. W'T • X • RMAX 
*. DELR DELT DZ 
*. QSTEP • NQS DRV 

C 
COMPLEX 

* I 
C 

COMMON /CONSTANTS/ 
* PMASS PMU 
*. PKAPPA FFS 
*. I PI 
*. HC ALPHA 
*. IDIST ICT 
*. T2 

C 
REAL 

* NB NS 
*. KZ • LHADR 

C 
COMMON /KINEMATICS/ 

* QX • QZ • QT 
*. KZ E P 
*. EI • K L (2) 
*. J2 M2 ML (2) 
*. MSF NB NS 
*. TF ETHETA PINIT 
*. HELICT LHADR • TSHRINK 
*. IA 

C 
COMPLEX 

* SO (2) 
*. SX (2) 
*. SY (2) 
*. SZ (2) 

C 
COMMON /SPINS/ 

* SO SX 
*. SY • SZ 

C 
COMPLEX 
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* vc (O:NRV+1) 
*. vso (O:NRV+1) 
*. DENOM (O:NR.NX) 

C 
COMMON /POTENTIAL/ 

* VC • VSO 
*. DENOM 

C 
REAL 

* FNK (O:NR) 
*. GNK (O:NR) 
*. FSTAR (2.2.NX) 

C 
COMMON /WAVEFN/ 

* FNK • GNK 
*. FSTAR 

C 
COMPLEX 

* FNC (14.2) 
C 

COMMON /MTERMS/ 

* FNC 
C 

COMPLEX 

* FRT (0:NR,NX.6) 
C 

COMMON /SPACEFUNC/ 

* FRT 
C 

COMPLEX 

* ISO ISX 
*. ISY ISZ 
*. ISP • ISQ 
*. ISR ISS • 1ST 
*. CRT SRT 
*. DCR DSR 
*. DCT DST 
*. SPF (8.2) 
*. ANG (5) 

*. ALL 
C 
C COORDINATES 
C 

CT COS (TH) 
ST SIN (TH) 

C 
IF (ST .EQ. 0.0) THEN 

STOP • 1 / SIN (TH) IS NOT DEFINED ON AXIS • 
ELSE 

STI = 1.0 / ST 
ENDIF 

C 
Z R * CT 
B = R * ST 



C 
C 

C 

C 

CRT 
SRT 
DCR 
DSR 
DCT 
DST 
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FUNCTIONS THAT ONLY DEPEND ON POSITION 

= FRT (IR,IX,l) 
FRT (IR,IX,2) 

= FRT (IR,IX,3) 
= FRT (IR,IX,4) 
= FRT (IR,IX,5) 

FRT (IR,IX,6) 

ALL = EXP (I * (KZ - QZ) * Z) 
C 
C LOOP ON INITIAL SPIN 
C 

DO 10 MS = 1, 2 
C 

C PAULI MATRIX ELEMENTS 
C 

ISO SO (MS) 
ISX SX (MS) 
ISY SY (MS) 
ISZ sz (MS) 

C 

C AZIMUTHAL INTEGRALS 
C 

ZZ - QX * B 
CALL PHIINT (ML(MS),ZZ,ANG) 

. C 

C DEFINE CLUSTERS 
C 

ISP ISX * ANG (2) + ISY * ANG(3) 
ISQ ISX * ANG (3) + ISY * ANG(2) 
ISR I * ISO * ANG (3) - ISZ * ANG(2) 
ISS I * ISO * ANG (2) + ISZ * ANG(3) 
1ST ISY * ANG (3) - ISX * ANG(2) 

C 
C TERMS IN THE INTEGRAND FOR THE MATRIX ELEMENTS 
C 

SPF ( l,MS) CRT * ISO * ANG (1) * R 
* + SRT * ISP * R * I 

C 
SPF ( 2,MS) = -SRT * (Iso * ANG (4) * STI 

* +ISZ * ANG (5) * STI * I) 
* + DCT * (ISZ * ANG (1) * ST * I 
* -ISQ * CT * I) 
* + DST * (Iso * ANG (4) * CT 
* +ISX * ANG (3) * ST * I 
* -ISY * ANG (2) * ST * I 
* +ISZ * ANG (5) * CT * 1) 
* - DCR * (ISQ * ST * R * I 
* +ISZ * ANG (1) * CT * R * I) 
* + DSR * (Iso * ANG (4) * ST * R 
* -ISX * ANG (3) * CT * R * I 
* +ISY * ANG (2) * CT * R * I 
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* +IS2 * ANG (5) * ST * R * I) 
C 

SPF ( 3,MS) = -SRT * (ISX * ANG (4) * STI 
* +ISY * ANG (5) * STI ) 

* + DCT * (ISY * ANG (1) * ST 
* -ISR * CT ) 

* + DST * (ISX * ANG (4) * CT 
* +ISO * ANG (3) * ST * I 
* +IS2 * ANG (2) * ST 
* +ISY * ANG (5) * CT ) 

* - DCR * (ISR * ST * R 
* +ISY * ANG (1) * CT * R ) 

* + DSR * (ISX * ANG (4) * ST * R 
* -ISO * ANG (3) * CT * R * I 
* -IS2 * ANG (2) * CT * R 
* +ISY * ANG (5) * ST * R ) 

C 
SPF ( 4,MS) = -SRT * (ISY * ANG (4) * STI 

* -ISX * ANG (5) * STI 
* - DCT * (Isx * ANG (1) * ST 
* +ISS * CT ) 

* + DST * (ISY * ANG (4) * CT 
* +IS2 * ANG (3) * ST 
* -ISO * ANG (2) * ST * I 
* -ISX * ANG (5) * CT ) 

* - DCR * (Iss * ST * R 
* -ISX * ANG (1) * CT * R ) 

* + DSR * .(ISY * ANG (4) * ST * R 
* -1S2 * ANG (3) * CT * R 

* +ISO * ANG (2) * CT * R * I 
* -ISX * ANG (5) * ST * R ) 

C 
SPF ( 5,MS) -SRT * (IS2 * ANG (4) * STI 

* +ISO * ANG (5) * STI * I) 
* + DCT * (Iso * ANG (1) * ST * I 
* +IST * CT ) 

* + DST * (IS2 * ANG (4) * CT 
* +ISO * ANG (5) * CT * I 
* -ISP * ST ) 

* + DCR * (IST * ST * R 

* -ISO * ANG (1) * CT * R * I) 
* + DSR * (IS2 * ANG (4) * ST * R 
* +ISO * ANG (5) * ST * R * I 
* +ISP * CT * R ) 

C 
SPF ( 6,MS) CRT * ISX * ANG (1) * R 

* - SRT * IS2 * ANG (3) * R 
* + SRT * ISO * ANG (2) * R * I 

C 
SPF ( 7,MS) CRT * ISY * ANG (1) * R 

* + SRT * IS2 * ANG (2) * R 
* + SRT * ISO * ANG (3) * R * I 

C 
SPF ( 8,MS) CRT * IS2 * ANG (1) * R 
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* + SRT * ISX * ANG (3) * R 
* - SRT * ISY * ANG (2) * R 

C 
C PUT IN THE NON-SPIN-DEPENDENT PART 
C 

FNC ( 1,MS) = SPF ( 1,MS) * ALL * GNK (IR) 
* * FSTAR (1,MS,IX) 

FNC ( 2,MS) SPF ( 2,MS) * ALL * FNK (IR) / DENOM (IR,IX) 
* * FSTAR (2,MS,IX) 

FNC ( 3,MS) = SPF ( 3,MS) * ALL * GNK (IR) / DENOM (IR,IX) 
* * FSTAR (1,MS,IX) 

FNC ( 4,MS) SPF ( 4,MS) * ALL * GNK (IR) / DENOM (IR,IX) 
* * FSTAR (1,MS,IX) 

FNC ( 5,MS) = SPF ( 5,MS) * ALL * GNK (IR) / DEN OM (IR,IX) 
* * FSTAR (1,MS,IX) 

FNC ( 6,MS) = SPF ( 6,MS) * ALL * FNK (IR) 

* * FSTAR (2,MS,IX) 
FNC ( 7,MS) SPF ( 7,MS) * ALL * FNK (IR) 

* * FSTAR (2,MS,IX) 
FNC ( 8,MS) = SPF ( 8,MS) * ALL * FNK (IR) 

* * FSTAR (2,MS,IX) 
FNC ( 9,MS) = SPF ( 6,MS) * ALL * GNK (IR) 

* * FSTAR (1,MS,IX) 
FNC (10,MS) SPF ( 7,MS) * ALL * GNK (IR) 

* * FSTAR (1,MS,IX) 
FNC (11,MS) = SPF ( 8,MS) * ALL * GNK (IR) 

* * FSTAR (1,MS,IX) 
FNC (12,MS) = SPF ( 3,MS) * ALL * FNK (IR) / DENOM (IR,IX) 

* * FSTAR (2,MS,IX) 
FNC (13,MS) = SPF ( 4,MS) * ALL * FNK (IR) / DENOM (IR,IX) 

* * FSTAR (2,MS,IX) 
FNC (14,MS) = SPF ( 5,MS) * ALL * FNK (IR) / DENOM (IR,IX) 

* * FSTAR (2,MS,IX) 
C 

10 CONTINUE 
C 

RETURN 
END 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE PHIINT (M,Z,ANG) 
C 
C COMPUTES PHI INTEGRAL IN MATRIX ELEMENT VIA 
C ANALYTIC EXPRESSIONS INVOLVING BESSEL FUNCTIONS 
C 
C M (INPUT, INTEGER) ML FOR BOUND STATE 
C Z (INPUT,REAL) QX * B 
C ANG (5) (OUTPUT,COMPLEX) AN (M,Z) 
C 

COMPLEX 
* I 

C 
COMMON /CONSTANTS/ 
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* PMASS , PMU 
*, PKAPPA , FFS 
*, I PI 
*, HC , ALPHA 
*, IDIST , ICT 
*, T2 

C 
COMPLEX 

* ANG (5) 
C 

IF (Z .NE. 0.0) THEN 
C 

CALL BESS (M ,Z,BM ,BMM1,BMP1) 
CALL BESS (M-2,Z,BMM2,DUM ,DUM) 

C 
ANG (1) = 2 .0 * PI * I ** M * BM 
ANG (2) = -PI * I ** M * (BMM1 + BMP1) 
ANG (3) = PI * I ** (M- 1) * (BMM1 BMP1) 
ANG (4) -PI * I ** (M- 1) * (BMM2 BMP2) 
ANG (5) -PI * I ** M * (BMM2 + BMP2) 

C 
RETURN 

C 
ENDIF 
IF (M .EQ. 0) THEN 

C 
ANG (1) = CMPLX (2 . 0 * pI) 

ANG (2) = (0 .0,0.0) 
ANG (3) = (0 .0,0 . 0) 
ANG (4) = (0 .0,0.0) 
ANG (5) = (0 .0,0 . 0) 
RETURN 

C 
ENDIF 
IF (M .EQ . 1) THEN 

C 
ANG (1) = (0.0,0.0) 
ANG (2) = CMPLX(-I * PI) 
ANG (3) = CMPLX( pI) 

ANG (4) = (0.0 , 0.0) 
ANG (5) = (0 .0,0 . 0) 
RETURN 

C 
ENDIF 
IF (M .EQ. -1) THEN 

C 
ANG (1) (0 .0,0.0) 
ANG (2) = CMPLX( I * PI) 
ANG (3) = CMPLX( PI) 
ANG (4) = (0.0,0.0) 
ANG (5) = (0.0,0.0) 
RETURN 

C 
ENDIF 



C 

C 

C 

C 

C 

C 

IF (M .EQ. 2) THEN 

ANG (1) (0.0,0.0) 
ANG (2) (0.0,0 . 0) 
ANG (3) = (0 . 0,0 . 0) 
ANG (4) CMPLX(-I * pI) 
ANG (5) CMPLX( PI) 
RETURN 

ENDIF 
IF (M . EQ. -2) THEN 

ANG (1) 
ANG (2) 

ANG (3) 

ANG (4) 

ANG (5) 

RETURN 

ENDIF 

ANG (1) 
ANG (2) = 
ANG (3) = 
ANG (4) 

ANG (5) 

RETURN 

END 

= (0.0,0.0) 
= (0.0,0.0) 

(0.0,0.0) 
CMPLX( I * PI) 

= CMPLX( PI) 

(0 . 0,0.0) 
(0.0,0.0) 
(0.0,0 . 0) 
(0.0,0 . 0) 
(0.0,0 . 0) 
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C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE BESS (N , Z,JN,JNM1,JNP1) 
C 

C RETURNS THE BESSEL FUNCTION SEQUENCE J(N,Z),J(N-1,Z),J(N+1,Z) 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 

N 

Z 
IN 
JNM1 
JNP1 

PARAMETER 

(INPUT, INTEGER) 
(INPUT,REAL) 
(OUTPUT ,REAL) 
(OUTPUT ,REAL) 
(OUTPUT,REAL) 

* (MLMAX = 20 ) 

REAL 
* IN , JNM1 
*, JNP1 

REAL 
* B (O :MLMAX) 

IF (N . EQ. 0) THEN 

ORDER OF THE BESSEL FUNCTION 
ARGUMENT OF THE BESSEL FUNCTION 
J(N,Z) 
J(N-1,Z) 
J(N+l,Z) 



C 

C 

C 

C 

C 

C 
C 
C 

C 

C 

C 

JNMl 
IN 
JNPl 

RETURN 
ENDIF 

X 
A 
NMAX 
ND 

CALL BSJA 

JNMl 
IN 
JNPl 

- BESJl (Z) 
= BESJO (Z) 

BESJl (Z) 

ABS (Z) 
0.0 
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N / ABS (N) * (ABS (N) + 1) 

= 7 

(X,A,NMAX,ND,B) 

B (ABS(N-l)) 
= B (ABS(N) ) 

= B (ABS(N+l)) 

IF (Z .LT. 0.0) THEN 

TAKE CARE OF NEGATIVE ARGUMENTS 

JNMl JNMl * (-1.0) ** (N-1) 
IN IN * (-1. 0) ** (N ) 

JNPl = JNPl * (-1.0) ** (N+l) 

ENDIF 

RETURN 
END 

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE FORMFAC (Fl.F2) 
C 

C COMPUTES PROTON FORM FACTORS Fl(Q**2) AND F2(Q**2) ACCORDING 
C TO THE DIPOLE FORMULA 
C 

C 
C 
C 

C 
C 

QX,QZ 
QT 
Fl 
F2 

(INPUT,REAL) 
(INPUT,REAL) 
(OUTPUT,REAL) 
(OUTPUT,REAL) 

SPACELIKE COMPONENT OF MOM TRANSFER 
TIMELIKE COMPONENT OF MOM TRANSFER 
Fl FORM FACTOR 
F2 FORM FACTOR 

C ALSO USED ARE PROTON MASS AND MAGNETIC MOMENT FROM /PROTON/ 
C 

COMPLEX 
* I 

C 

COMMON /CONSTANTS/ 
* PMASS PMU 
*, PKAPPA , FFS 
*. I , PI 
*, HC ALPHA 
*, IDIST ICT 



C 

C 

C 

C 

C 

*. T2 

REAL 
* NB 
*. KZ 

• NS 
LHADR 

COMMON /KINEMATICS/ 
* QX • QZ 
*. 
*. 
*. 
*. 
*. 
*. 
*. 

KZ 
EI 
J2 
MSF 
TF 
HELICT 
IA 

E 

K 

M2 
NB 
ETHETA 
LHADR 
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• QT 
P 
L (2) 
ML (2) 
NS 
PINIT 

• TSHRINK 

Q2 QT*QT - QX*QX - QZ*QZ 
P2 
A2 

DENOM 
Fl 
F2 

RETURN 
END 

= 

PMASS*PMASS 
FFS*FFS 

(A2 - Q2) ** 2 * 
- A2*A2 * (PMU * 
- A2*A2 * P2 * 4 

(4 * P2 - Q2) 
Q2 - 4 * P2) / DENOM 
* (1 - PMU) / DENOM 

C 
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

C 

C 

C 

C 
C 

C 

C 

C 

C 
C 

C 

C 

SUBROUTINE CLEBSCH (C) 

COMPUTES THE CLEBSCH-GORDAN COEFFICIENTS 

* 

C (1.1) 
C (1.2) 
C (2.1) 
C (2.2) 

K.J.M2 
C 

REAL 
NB 

*. KZ 

<1/2 1/2 L(i) 
<1/2 -1/2 L(i) 
<1/2 1/2 L(2) 

= <1/2 -1/2 L(2) 

(INPUT.INTEGER) 
(OUTPUT.REAL) 

NS 
LHADR 

M-1/2 J M> 
M+l/2 J M> 
M-l/2 J M> 
M+1/2 J M> 

ANG MOMENTUM QUANTUM NUMBERS OF BS 
CLEBSCH-GORDAN COEFFICIENTS 

COMMON /KINEMATICS/ 
* QX • QZ • QT 
*. KZ E P 
*. EI K L (2) 
*. J2 M2 ML (2) 
*. MSF NB NS 
*. TF ETHETA PINIT 
*. HELICT LHADR TSHRINK 
*. IA 
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C 
REAL 

* L2 , C (2,2) 
C 

L2 = FLOAT (2 * L(l)) 
C 

IF (K .LT . 0) THEN 
C (1,1) = SQRT «L2 + M2 + 1.0) / 2 . 0 / (L2 + 1.0) ) 
C (1,2) = SQRT «L2 - M2 + 1. 0) / 2 . 0 / (L2 + 1. 0)) 

ELSEIF (K .GT . 0) THEN 
C (1,1) = -SQRT «L2 - M2 + 1.0) / 2.0 / (L2 + 1. 0)) 
C (1,2) = SQRT «L2 + M2 + 1. 0) / 2.0 / (L2 + 1. 0)) 

ENDIF 
C 

L2 = FLOAT (2 * L(2)) 
C 

IF (K .GT. 0) THEN 
C (2,1) = SQRT «L2 + M2 + 1. 0) / 2.0 / (L2 + 1. 0)) 
C (2,2) = SQRT «L2 - M2 + 1. 0) / 2 . 0 / (L2 + 1. 0)) 

ELSEIF (K . LT. 0) THEN 
C (2,1) -SQRT «L2 - M2 + 1.0) / 2.0 / (L2 + 1. 0)) 
C (2 , 2) = SQRT «L2 + M2 + 1. 0) / 2.0 / (L2 + 1. 0)) 

ENDIF 
C 

IF (ABS (ML (1)) . GT. L (1)) C (1,1) 0 . 0 
IF (ABS (ML (2)) .GT. L (1)) C (1,2) 0 . 0 
IF (ABS (ML (1)) .GT. L (2)) C (2,1) 0 . 0 
IF (ABS (ML (2)) .GT. L (2)) C (2,2) = 0 . 0 

C 
RETURN 
END 

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
C 

SUBROUTINE VOPT 
C 
C CALCULATE LOOKUP TABLE (l-D) FOR OPTICAL POTENTIAL 
C 

PARAMETER 
*( NR = 30 
*, NRV = 300 
*, NX = 20 ) 

C 
REAL 

* X (NX) 
*, WT (NX) 

C 
COMMON /NUMERICS/ 

* IR DR IX 
*, WT X , RMAX 
*, DELR DELT DZ 

*, QSTEP , NQS DRV 
C 

COMPLEX 
* I 



C 

C 

C 

C 

C 

C 

C 

C 

C 

COMMON /CONSTANTS/ 
* PMASS 
*. PKAPPA 
*. I 
*. HC 
*. IDIST 
*. T2 

REAL 
* NB 
*. KZ 

PMU 

• FFS 
• PI 
• ALPHA 
• ICT 

NS 
• LHADR 

COMMON /KINEMATICS/ 
* QX • QZ • QT 
*. KZ 
*. EI 
*. J2 
*. MSF 
*. TF 
*. HELICT 
*. IA 

COMPLEX 
* VC 
*. VSO 
*. DEN 

E P 
K • L 
M2 • ML 

• NB NS 
ETHETA • PINIT 
LHADR 

(0 : NRV+1) 
(0 : NRV+1) 
(O:NR.NX) 

• TSHRINK 

COMMON /POTENTIAL/ 
* vc • VSO 
*. DEN 

COMPLEX 
* VS • VV 

REAL 
* RHO (0:NRV+1) 

IF (IDIST .EQ. 0) THEN 

C PLANE WAVES 
C 

C 

C 

C 

C 

DO 10 JR 

vc (JR) 
VSO (JR) 

10 CONTINUE 
RETURN 
ENDIF 

O. NRV+1 

(0.0.0.0) 
(0 . 0.0.0) 

IF (IDIST .EQ. 1) THEN 
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(2) 

(2) 

C ONE OF THE PHENOMENOLIGICAL FITS TO SPECIFIC NUCLEI 
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C 
IF (IA .EQ . 40) THEN 

C 
C CLARK OPTICAL POTENTAIL FOR CALCIUM - 1 
C ENERGY RANGE FOR THIS POTENTIAL 
C 

DE = (TF - 400.0) / 400.0 
A13 = REAL (IA) ** (1.0/3.0) 

C 
IF (IF . GT . 1040 . 0) GOTO 40 

C 
C VECTOR POTENTIAL PARAMETERS 
C 

CVR = 0 .8894 - 0 . 3765 * DE + 0 . 0700 * DE * DE 
RVR 1. 0159 
AVR = 0 . 6678 
CVI = 1. 1446 + 0 . 1406 * DE - 0.0924 * DE * DE 
RVI 1.0842 - 0.0090 * DE - 0.0032 * DE * DE 
AVI 0.5702 - 0.0599 * DE + 0.0064 * DE * DE 

C 
C SCALAR POTENTIAL PARAMETERS 
C 

CSR 0.9730 - 0.2170 * DE + 0.0109 * DE * DE 
RSR 1.0098 
ASR = 0 . 6918 
CSI = 1. 2072 + 0.2324 * DE - 0.2913 * DE * DE 
RSI = 1.0872 - 0.0090 * DE + 0.0070 * DE * DE 
ASI = 0 . 5587 - 0.0452 * DE - 0.0521 * DE * DE 

C 
C SCALE FACTORS 
C 

CVR CVR * ( 300 . 0) 
CVI CVI * (-100 . 0) 
RVR RVR / HC 
AVR = AVR / HC 
RVI RVI / HC 
AVI = AVI / HC 

C 
CSR = CSR * (-400.0) 
CSI CSI * ( 100.0) 
RSR RSR / HC 
ASR ASR / HC 
RSI RSI / He 
ASI = ASI / HC 

C 
C R-INDEPENDENT EXPONENTIALS 
C 

E1VR EXP (-RVR * A13 / AVR) 
E1VI = EXP (-RVI * A13 / AVI) 
E1SR EXP (-RSR * A13 / ASR) 
E1SI EXP (-RSI * A13 / ASI) 

C 
DO 20 JR = O. NRV+l 

C 
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C R-DEPENDENT EXPONENTIALS 
C 

RD JR * DRV 
C 

E2VR = EXP (RD / AVR) 
E2VI = EXP (RD / AVI) 
E2SR = EXP (RD / ASR) 
E2S1 = EXP (RD / ASI) 

C 

C RADIAL DEPENDENCE OF VECTOR/SCALAR REAL/IMAG PARTS 
C 

FVR (1.0 + E1VR * E2VR) ** (-1.0) 
* * (1.0 + E1VR / E2VR) ** (-1.0) 

FSR (1.0 + E1SR * E2SR) ** (-1.0) 
* * (1.0 + E1SR / E2SR) ** (-1 . 0) 

FVI = (1.0 + E1VI * E2VI) ** (-1.0) 
* * (1 . 0 + E1VI / E2VI) ** (-1 . 0) 
FSI (1 . 0 + E1SI * E2SI) ** (-1 .0) 

* * (1.0 + E1SI / E2SI) ** (-1 . 0) 
C 
C DERIVATIVE TERM FOR SPIN-ORBIT POTENTIAL 
C 

C 

C 

C 

C 

C 

* 
* 

* 
* 

* 
* 

* 
* 

IF (RD . EQ. 0 . 0) THEN 

DFVR -2.0 * FVR / AVR / AVR * E1VR / (1.0 + E1VR) ** 2 
DFVI = -2 . 0 * FVI / AVI / AVI * E1VI / (1 . 0 + E1VI) ** 2 
DFSR = -2 . 0 * FSR / ASR / ASR * E1SR / (1.0 + E1SR) ** 2 
DFSI = -2.0 * FSI / ASI / ASI * E1SI / (1.0 + E1SI) ** 2 

ELSE 

DFVR 

DFVI 

DFSR 

DFSI 

ENDIF 

=(E1VR / E2VR / (1.0 + E1VR / E2VR) 
- E1VR * E2VR / (1 . 0 + E1VR * E2VR)) 
* FVR / AVR / RD 
=(E1VI / E2VI / (1.0 + E1VI / E2VI) 
- E1VI * E2VI / (1 . 0 + E1VI * E2VI)) 
* FVI / AVI / RD 
=(E1SR / E2SR / (1 . 0 + E1SR / E2SR) 
- E1SR * E2SR / (1 . 0 + E1SR * E2SR)) 
* FSR / ASR / RD 
=(E1SI / E2SI / (1.0 + E1SI / E2SI) 
- E1SI * E2SI / (1.0 + E1SI * E2SI)) 
* FSI / ASI / RD 

C VECTOR AND SCALAR POTENTIALS 
C 

VV = CVR * FVR + I * CVI * FVI 
VS = CSR * FSR + I * CSI * FSI 

C 
C SWITCH OVER TO CENTRAL/SPIN ORBIT DESCRIPTION 
C 

VC (JR) = VS + E/PMASS * VV + (VS*VS - VV*VV) / (2.0*PMASS) 



C 

C 

C 
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VSO (JR) = 1 . 0 / (2.0 * PMASS * (E + PMASS + VS - VV) ) 
* * (CVR*DFVR + I*CVI*DFVI - CSR*DFSR - I*CSI*DFSI) 

20 CONTINUE 
RETURN 

ELSEIF (IA .EQ. 16) THEN 

C ITALIAN OPTICAL POTENTIAL FOR OXYGEN 
C ENERGY RANGE FOR THIS POTENTIAL 
C 

A13 = REAL (IA) ** (1.0/3.0) 
NFlX 18 

C 
IF (IT .NE. 800.0) GO TO 40 

C 
C VECTOR POTENTIAL PARAMETERS 
C 

CVR 104 . 20 
RVR 1.05 
AVR 0.60 
CVI = -72 . 55 
RVI = 0 . 98 
AVI = 0.48 

C 
C SCALAR POTENTIAL PARAMETERS 
C 

CSR -215.67 
RSR = 0.99 
ASR 0.64 

C 
C SCALE FACTORS 
C 

RVR RVR / HC 
AVR = AVR / HC 
RVI RVI / HC 
AVI AVI / HC 
RSR RSR / HC 
ASR ASR / HC 

C 
C R-INDEPENDENT EXPONENTIALS 
C 

E1VR EXP (-RVR * A13 / AVR) 
E1VI EXP (-RVI * A13 / AVI) 
E1SR EXP (-RSR * A13 / ASR) 

C 
DO 30 JR 0, NRV+1 

C 
C R-DEPENDENT EXPONENTIALS 
C 

RD JR * DRV 
C 

E2VR = EXP (RD / AVR) 
E2VI EXP (RD / AVI) 



- 127 -

E2SR = EXP (RD / ASR) 
c 
C RADIAL DEPENDENCE OF VECTOR AND SCALAR REAL PARTS 
C AND VECTOR IMAGINARY PART (R NOT BIG) 
C 

FVR = 1.0 / (1.0 + E1VR * E2VR) 
FSR 1.0 / (1 . 0 + E1SR * E2SR) 
FVI = 1.0 / (1.0 + E1VI * E2VI) 

C 
C DERIVATIVE TERM FOR SPIN-ORBIT POTENTIAL 
C 

IF (RD .EQ. 0.0) THEN 
C 
C THE ORIGIN WILL BE FIXED UP LATER 
C 

C 

C 

C 

C 

DFVR = 1.0 
DFVI 1.0 
DFSR 1. 0 

ELSE 

DFVR 
DFSR 
DFVI 
DFVR 
DFSR 
DFVI 

ENDIF 

-1.0 
-1.0 
-1.0 
DFVR 
DFSR 
DFVI 

/ 
/ 
/ 
/ 
/ 
/ 

AVR / (1.0 + 
ASR / (1.0 + 
AVI / (1.0 + 
RD 
RD 
RD 

E1VR 
E1SR 
E1VI 

* E2VR) 
* E2SR) 
* E2VI) 

** 2 * E1VR * E2VR 
** 2 * E1SR * E2SR 
** 2 * E1VI * E2VI 

C VECTOR AND SCALAR POTENTIALS 
C 

VV CVR * FVR + I * CVI * FVI 
VS = CSR * FSR 

C 
C SWITCH OVER TO CENTRAL/SPIN ORBIT DESCRIPTION 
C 

C 

C 

* 

VC (JR) 
VSO (JR) 

30 CONTINUE 

= VS + E/PMASS * VV + (VS*VS - VV*VV) / (2.0*PMASS) 
= 1.0 / (2.0 * PMASS * (E + PMASS + VS - VV) ) 
* (CVR*DFVR + I*CVI*DFVI - CSR*DFSR) 

C FIX UP BEHAVIOR NEAR ORIGIN ORIGIN (LINEAR) 
C 

* 
C 

C 

DO IF 
VSO (IF) 

ENDDO 

RETURN 
ENDIF 
ENDIF 

0, NFIX-l 
VSO (NFIX) 

+ FLOAT (NFIX-IF) * (VSO (NFIX) - VSO (NFIX+l)) 
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IF (IDIST .EQ . 2) THEN 
C 
C DENSITY DEPENDENT OPTICAL POTENTIAL 
C 

40 CONTINUE 
!DIST = 2 

C 

C DENSITY PARAMETERS FROM BARRETT AND JACKSON 
C 

C 

C 

C 

C 

C 

C 

C 

IF (IA .EQ . 16) THEN 

OMEGA 
RADIUS 
SKINDP 
NFlX 

= -0.051 
= 2 . 608 / HC 

0 . 513 / HC 
20 

ELSEIF (IA .EQ. 40) THEN 

OMEGA 
RADIUS 
SKINDP 
NFlX 

-0 . 161 
3.766 / HC 
0.586 / HC 

= 15 

ELSEIF (IA .EQ. 208) THEN 

OMEGA 
RADIUS 
SKINDP 
NFlX 

ELSE 

0.000 
6 . 624 / HC 
0.549 / HC 

15 

STOP • I DO NT HAVE DENSITY PARAMETERS FOR THIS NUCLEUS' 
ENDIF 

C I GOT FROM THESE NN AMPLITUDE PARAMETERS FROM VARY, ET. AL. 
C 

C 

ALPHAA 
ALP HAC 
SIGMAA 
SIGMAC 

-0 . 2 
= -1.1 

4.4 / HC / HC 
6 . 1 / HC / HC 

C USE 3-PARAMETER FERMI DISTRIBUTION FOR DENSITIES 
C 

DO 50 JR 0, NRV+l 
C 

RD JR * DRV 
RHO (JR) (1.0 + OMEGA * RD * RD / RADIUS / RADIUS) 

* / (1.0 + EXP «RD - RADIUS) / SKINDP)) 
C 

50 CONTINUE 
C 
C CALCULATE THE NORMALIZATION OF THIS DENSITY 
C 

WS = 4.0 



C 

C 

C 

C 

C 

C 
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JR = 0 
RDUM = JR * DRV 
PSUM = RDUM ** 2 * RHO (JR) 

DO 60 JR 1, NRV-1 

RDUM = JR * DRV 
PSUM = PSUM + RDUM ** 2 * RHO (JR) * WS 
WS 6.0 - WS 

60 CONTINUE 

JR 
RDUM 
PSUM 
CNoRM 

NRV 
= JR * DRV 

(PSUM + RDUM ** 2 * RHO (JR)) * 4 . 0 * PI * DRV / 3 . 0 
PSUM 

WRITE (6,*) , DENSITY NORM: ',CNORM 

C RESCALE DENSITY SO ITS NORM WILL BE ONE 
C 

DO 70 JR 0, NRV+1 
C 

RHO (JR) RHO (JR) / CNORM 
C 

70 CONTINUE 
C 

C CALCULATE POTENTIALS FROM SCALED DENSITY 
C 

DO 80 JR 0, NRV+1 
C 

RD JR * DRV 
XDUM (RD - RADIUS) / SKINDP 

C 
C SPIN-ORBIT POTENTIAL DEPENDS ON THE DERIVATIVE OF DENSITY 
C 

IF (RD . NE. 0.0) THEN 
DRHo = ((2 . 0 * OMEGA * RD / RADIUS ** 2) / 

* (1 . 0 + EXP (XDUM)) 
* (1 . 0 + OMEGA * (RD / RADIUS) ** 2) / 
* (1.0 + EXP (XDUM)) ** 2 . 0 * 
* EXP (XDUM) / SKINDP ) / RD / CNORM 

ELSE 
DRHO (2.0 * OMEGA / RADIUS ** 2) / (1 . 0 + EXP (XDUM)) 
DRHo = DRHO / CNORM 
ENDIF 

c 
VC (JR) -IA / PMASS * (I + ALPHAA) / 2.0 * SIGMAA 

* * KZ * RHO (JR) 
VSo (JR) -IA / PMASS * (I + ALPHAC) / 2.0 * SIGMAC 

* * DRHO / 2 . 0 / PMASS 
C 

80 CONTINUE 
C 
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C FIX UP THE BEHAVIOR NEAR THE ORIGIN (LINEAR FIT) 
C 

C 

C 

C 

* 

DO 90 IF 
VSO (IF) 

90 CONTINUE 

RETURN 
ENDIF 

= O. NFIX-1 
VSO (NFIX) 

+ FLOAT (NFIX-IF) * (VSO (NFIX) - vso (NFIX+1)) 

IF (IDIST .EQ . 3) THEN 

C ALTERNATE PARAMETER SET FOR CALCIUM POTENTIAL 
C ENERGY RANGE FOR THIS POTENTIAL 
C 

C 

C 

DE 
A13 

(TF - 400.0) / 400.0 
REAL (IA) ** (1 . 0/3 . 0) 

IF (TF .GT. 1040 . 0) GOTO 40 
IF (IA .NE. 40) STOP 'IDIST 3 ONLY FOR IA 40' 

C VECTOR POTENTIAL PARAMETERS 
C 

CVR 0.6861 - 0 . 1618 * DE - 0.0144 * DE * DE 
RVR 1 . 0600 
AVR 0.5817 
CVI = 0.5030 + 0 . 3274 * DE - 0.0739 * DE * DE 
RVI 1.1658 0 . 0882 * DE - 0.0224 * DE * DE 
AVI = 0 . 4861 + 0.0603 * DE + 0.0205 * DE * DE 

C 
C SCALAR POTENTIAL PARAMETERS 
C 

CSR 0 . 6987 - 0.0506 * DE - 0.0336 * DE * DE 
RSR 1. 0672 
ASR 0 . 6111 
CSI 0 . 3212 + 0.2613 * DE + 0 . 0969 * DE * DE 
RSI = 1. 2019 - 0.1026 * DE - 0.0681 * DE * DE 
ASI = 0.4204 + 0.0926 * DE + 0.0282 * DE * DE 

C 
C SCALE FACTORS 
C 

CVR = CVR * ( 300.0) 
CVI CVI * (-100.0) 
RVR RVR / HC 
AVR = AVR / HC 
RVI RVI / HC 
AVI AVI / HC 

C 
CSR CSR * (-400.0) 
CSI = CSI * ( 100 . 0) 
RSR RSR / HC 
ASR = ASR / HC 
RSI RSI / HC 
ASI ASI / HC 
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c 
C R-INDEPENDENT EXPONENTIALS 
C 

E1VR = EXP (-RVR * A13 / AVR) 
E1VI = EXP (-RVI * A13 / AVI) 
E1SR = EXP (-RSR * A13 / ASR) 
E1SI EXP (-RSI * A13 / ASI) 

c 
DO 100 JR = 0, NRV+l 

C 

C R-DEPENDENT EXPONENTIALS 
C 

RD JR * DRV 
C 

E2VR = EXP (RD / AVR) 
E2VI = EXP (RD I AVI) 
E2SR EXP (RD / ASR) 
E2SI = EXP (RD / ASI) 

c 
c RADIAL DEPENDENCE OF VECTOR/SCALAR REAL/IMAG PARTS 
C 

FVR = (1. 0 + E1VR * E2VR) ** (-1.0) 

* * (1.0 + E1VR I E2VR) ** (-1.0) 
FSR = (1.0 + E1SR * E2SR) ** (-1.0) 

* * (1.0 + E1SR / E2SR) ** (-1.0) 
FVI (1.0 + E1VI * E2VI) ** (-1.0) 

* * (1.0 + E1VI / E2VI) ** (-1.0) 
FSI = (1.0 + E1SI * E2SI) ** (-1.0) 

* * (1.0 + E1SI / E2SI) ** (-1. 0) 
C 
C DERIVATIVE TERM FOR SPIN-ORBIT POTENTIAL 
C 

IF (RD .EQ. 0.0) THEN 
C 

DFVR = -2.0 * FVR I AVR I AVR * E1VR / (1.0 + E1VR) ** 2 
DFVI -2.0 * FVI I AVI / AVI * E1VI / (1.0 + E1VI) ** 2 
DFSR = -2.0 * FSR I ASR / ASR * E1SR / (1.0 + E1SR) ** 2 
DFSI = -2.0 * FSI I ASI / ASI * E1SI / (1.0 + E1SI) ** 2 

C 
ELSE 

C 

DFVR =(E1VR / E2VR I (1.0 + E1VR / E2VR) 
* - E1VR * E2VR I (1.0 + E1VR * E2VR)) 

* * FVR / AVR I RD 
DFVI =(E1VI I E2VI I (1.0 + E1VI I E2VI) 

* - E1VI * E2VI I (1.0 + E1VI * E2VI)) 
* * FVI / AVI I RD 

DFSR =(E1SR / E2SR I (1.0 + E1SR / E2SR) 

* - E1SR * E2SR I (1.0 + E1SR * E2SR)) 
* * FSR / ASR I RD 
DFSI =(E1SI / E2SI I (1.0 + E1SI / E2SI) 

* - E1SI * E2SI / (1.0 + E1SI * E2SI)) 
* * FSI / ASI I RD 

C 
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ENDIF 
C 

C VECTOR AND SCALAR POTENTIALS 
C 

VV = CVR * FVR + I * CVI * FVI 
VS = CSR * FSR + I * CSI * FSI 

C 
C SWITCH OVER TO CENTRAL/SPIN ORBIT DESCRIPTION 
C 

C 

C 

* 

VC (JR) 
VSO (JR) 

100 CONTINUE 
RETURN 
ENDIF 

= VS + E/PMASS * VV + (VS*VS - VV*VV) / (2.0*PMASS) 
= 1.0 / (2.0 * PMASS * (E + PMASS + VS - VV) ) 
* (CVR*DFVR + I*CVI*DFVI - CSR*DFSR - I*CSI*DFSI) 

STOP , OOPS, IDIST OUT OF RANGE ' 
END 
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