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ABSTRACT 

In Part I several fundamental concepts in seismology are examined 

in detail. The different teleseismic seismic magnitude scales are 

studied on the basis of Gutenberg and Richter's original notepads. 

The "revised magnitudes" presented by Richter and Duda are shown to be 

basically body wave magnitudes which are converted to the surface wave 

basis. These revised magnitudes are systemically higher (by an average 

of 0.22) than the magnitudes published by Gutenberg and Richter in 

Seismicity of the Earth, which are basically surface wave magnitudes. 

Use of the revised magnitudes has led to substantial over-estimates 

of the moment of great earthquakes. Fault area, rather than magnitude, 

should be used for moment estimates when the moment is unavailable. 

A dataset of 41 moderate and large earthquakes is used to derive 

scaling laws relating kinematic fault parameters such as magnitudes, 

moment and fault dimensions. If effective stress and static stress 

drop are equal, then fault rise time, T, and fault area, S, are 

related by 
1/2 3/2 

T = 16S /(7~ 8), where S is shear velocity. Fault 

length (parallel to strike) and width (parallel to dip) are empiri-

cally related by L = 2W. Observed data agree well with the predicted 

scaling relations. Fault width (i. e. the two dimensionality of 

faults) must not be neglected. Inclusion of width leads to different 

average source spectra for surface waves and body waves. The ~ 

versus M relation from this study differs significantly from the 
s 

Gutenberg-Richter relation, because the Gutenberg-Richter equation 

was derived for body waves with a predominant period of about 5 sec 
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and thus does not apply to modern 1 sec ~ determinations. Previous 

investigators who assumed that the Gutenberg-Richter relation was 

derived from 1 sec data were in error. 

In Part II, the theory necessary to calculate the amplitudes 

of the earth's rotationally and elliptically split free oscillations is 

developed. The amplitude of each singlet is explicitly given as 

the product of factors for fault geometry, seismic moment, source 

depth, earth structure and the geographic coordinates of the source 

and receiver. These results are applicable for the synthesis of 

either spectra or time domain records for which splitting is an impor

tant factor. 

The splitting of the earth's normal modes was observed for both 

the 1960 Chilean and 1964 Alaskan earthquakes. The theoretical results 

for the excitation of singlets are used to predict the relative ampli

tude of observed split peaks. Good agreement is obtained for thrust 

fault source models derived from long period surface waves. However, 

other mechanisms, such as a slow isotropic volume change, are also 

consistent with the split mode relative amplitudes, and are excluded 

only by additional data. 

The split modes are observed for the 1960 Chilean earthquake by 

analysis in the time domain. One hundred fifty hours of the Isabella, 

California strain record are filtered to isolate individual multiplets. 

Synthetic seismograms with and without splitting are used to confirm 

the splitting of OS2 and OS3 and to demonstrate the splitting of 

OS4' OSS' OT3 and OT4' Different techniques for measuring the Q 
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of split modes are studied. It is concluded that Q determinations 

from comparison of time domain synthetics to data give much more 

stability than frequency domain techniques. Uncertainties in the 

calibration of the instrumental absolute amplitudes rule out a direct 

determination of the moment of the Chilean earthquake. However, by 

comparing Isabella records for Chile and Alaska, the long-period 

moment of the Chilean earthquake is found to be 3.3 times that of the 

Alaskan event. By using the moment estimated for Alaska from long 

period surface waves, the moment of the Chilean earthquake is est-

30 
imated to be 2.4 x 10 dyne cm. 
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PART 1. 

EARTHQUAKE SOURCE MODELS, 

MAGNITUDES AND SCALING RELATIONS 
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Chapter 1 

INTRODUCTION 

The first fundamental understanding of earthquake sources was 

achieved by Reid (1910) after the 1906 San Francisco earthquake. 

Reid realized that the dislocation along a fault could be considered 

as an "elastic rebound." The earth, which had been subjected to a 

strain by some tectonic forces, released that strain by slipping at a 

preexisting zone of weakness. The elastic rebound theory, and the 

recognition of the fundamental role of faults, allowed the first real 

understanding of the earthquake process. 

Despite the early recognition of faulting, a long controversy 

persisted about the physical and mathematical nature of the earthquake 

source. It was proposed that earthquake sources could be modeled as 

single couples, double couples or "cone-type" mechanisms. The "cone

type" mechanism (equivalent to the compensated linear vector dipole) 

fell into disfavor, as it was recognized that the observed P wave 

first motions for well-constrained events always had a quadrantal 

distribution. However, the couple and double couple both have quad

rantal P wave radiation patterns. Honda (1962) presented conclusive 

evidence for the double couple mechanism by studying S wave polari

zation angles. 

In recent years, the "cone-type" mechanism was revived by Knopoff 

and Randall (1970). Gilbert (1970) presented a general formalism, 

the moment tensor, which can represent double couples, "cone-type" 

mechanisms and explosions. 
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The elucidation of the mechanism of earthquakes is one of the 

most important fundamental problems in seismology. Another equally 

important problem is the specification of the "size" of an earthquake. 

Ideally WA wish to describe the "size" in terms of energy, or some 

other fundamental physical quantity. However, in practice the simplest 

measurements involve the amplitude and period of various body and 

surface wave phases, which may then be converted into a magnitude on 

the scales defined by Gutenberg and Richter. Several different magni-

tude scales exist, and although earthquake "magnitudes" may be given 

on any of several different scales, frequently the description of 

which scale was used is lacking. As is shown in Chapter 2, serious 

errors can result when Richter's (1958) "revised magnitudes," which 

are basically body wave magnitudes converted to the surface wave 

basis, are treated as surface wave magnitudes. For example, 

large overestimates of seismic strain release, have been caused by 

using the revised magnitudes to obtain moment estimates. 

Magnitude is one parameter describing the "size" of an earthquake, 

but is not directly related to physical dimensions such as fault 

length, rise time, etc. A class of scaling relat ions has been 

developed to relate the magnitude, which is assumed to be related to 

a particular part of the seismic source spectrum, to physical fault 
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parameters. The classic example of scaling relations is the work of 

Aki (1967). 

Scaling relations are presented in Chapter 3 which differ from 

Aki's in two important ways. 1) Aki (1967) did not consider the 

effect of fault width (i.e. the two dimensionality of faults), while 

this is included in the present model. 2) Aki constrained his model 

to fit Gutenberg and Richter's ~ - Ms relation, and assumed that 

the ~ was measured at a period of 1 sec. However, because it is 

shown in Chapter 2 that Gutenberg and Richter actually measured ~ at 

a period of about 6-12 sec, Aki's assumption was inappropriate. 

The scaling relations in Chapter 3 fit a variety of data, includ-

ing m. - M , log N - M 100" S - M and spectral ratios of similar o s 0 s' C> s 

events. Major conclusions are 1) There are upper limits on ~ and Ms 

caused by the saturation of the source spectrum. 2) The inclusion 

of width leads to different average spectra for teleseismic surface 

and body waves. 
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Chapter 2 

MAGNITUDES OF GREAT SHALLOW EARTHQUAKES FROM 1904 TO 1952 

ABSTRACT 

The "revised magnitudes", M, converted from Gutenberg's unified 

magnitude, m, and listed by Richter (1958) and Duda (1965) are syste-

matically higher than the magnitudes listed by Gutenberg and Richter 

(1954) in Seismicity of the Earth. This difference is examined on the 

basis of Gutenberg and.Richter's unpublished original worksheets for 

Seismicity of the Earth. It is concluded that (1) the magnitudes of 

most shallow "class a" earthquakes in Seismicity of the Earth are 

essentially equivalent to the 20 sec surface-wave magnitude, M ; (2) s 

the revised magnitudes, M, of most great shallow (less than 40 km) 

earthquakes listed in Richter (1958) (also used in Duda, 1965) heavily 

1 3 
emphasize body-wave magnitudes, mb , and are given by M = 4 Ms + 4 . 

(1.59 ~ - 3.97). For earthquakes at depths of 40-60 km, M is given 

by M = (1.59 ~ - 3.97). M and M are thus distinct and should not be 
s 

confused. Because of the saturation of the surface-wave magnitude scale 

at M ~ 8.0, use of empirical moment vs. magnitude relations for estis -

mating the seismic moment results in large errors. Use of the fault 

area, S, is suggested for estimating the moment. 
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INTRODUCTION 

In spite of its imperfections, magnitude is still the most commonly 

used parameter in describing the size of an earthquake. However, one 

frequently hears references to "the" magnitude of an earthquake without 

any specification of which scale is being used. Actually there are 

many different magnitude scales, and a magnitude is much less useful if 

it is not accompanied by a description of how it was determined. 

The proliferation of magnitude scales is particularly insidious 

because sometimes two different magnitude scales have the same name. 

For example, the teleseismic body wave magnitude, ~, was determined 

from broad band instruments by Gutenberg and Richter, but currently is 

determined from short-period, narrow-band, WWSSN instruments by the 

USGS. Thus there really are two completely different scales for tele-

seismic body-wave magnitudes, one for periods of about 6 to 12 sec 

and another for periods of 1 sec, but they go by the same name, in 

spite of their radically different characteristics. 

The present state of knowledge of the background of the magnitude 

scales seems to warrant a re-examination of the magnitude scales for 

body waves, ~, and for surface waves. Ms' both as developed by 

Gutenberg and Richter and as defined in modern practice. M is par
s 

ticularly worth examining because M values have been used with various 
s 

empirical relations to estimate the energy and the seismic moment of 

earthquakes. Earthquake energy and seismic mo~ent are important in 

the discussion of various global problems, such as heat flow, the 

Chandler tvobble and plate motion. For earthquakes from 1904 to 1952, 
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three magnitude catalogs are most commonly used: Gutenberg and Richter 

(1954), Richter (1958) and Duda (1965). However, there are significant 

differences between the magnitude values listed in these catalogs. In 

view of the fundamental importance of the earthquake magnitude in vari

ous geophysical problems, we examine these differences and the meaning 

of the magnitude scale adopted in each of these catalogs. 

MAGNITUDE SCALES 

The magnitude of an earthquake was the first source parameter to 

be defined and is still the most directly measurable. As originally 

defined by Richter (1935), magnitudes for local earthquakes, ML. were 

calculated from amplitudes on Wood--Anderson torsion instruments. 

Gutenberg and Richter (1936, 1941, 1942) published several intermediate 

reports on amplitudes and magnitudes. Gutenberg (1945a, b, c) defined 

surface wave magnitudes, Ms' and body wave magnitudes,~. The final 

versions of the body wave and surface l.rave scales were given by Guten

berg and Richter (956). The details of Gutenberg and Richter's body

wave and surface-wave magnitudes, as well as later definitions, are 

discussed in the Appendix to this chapter. 

Although Ms and ~ are measured at different periods, Gutenberg 

and Richter viewed Ms and ~ as parameters representing the same 

quantity, namely energy (Gutenberg, 1945c). This view led Gutenberg 

and Richter (1956) and Gutenberg (1957) to the- concept of "unified 

magnitude." To facilitate the construction of a "unified magnitude" 

scale, they obtained empirical relations between ~ and Ms 
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~ ~ 0.63 Ms + 2.5 (2.1a) 

Ms = 1.59 ~ - 3.97. (2.lb) 

These relations were then used to define the body-wave basis and 

surface-wave basis for magnitudes. Magnitudes are converted by using 

the relations 

m(M) = 0.63 M + 2.5 (2.2a) 

M(m) 1.59 m - 3.97 (2.2b) 

where M is a magnitude on the surface-wave basis and m(M) is the corre-

sponding magnitude on the body-wave basis. Similarly, if m is a magni-

tude on the body-wave basis then M(m) is the computed magnitude on the 

surface-\07ave basis. m :: m(M ) is the magnitude on the body-wave basis 
s s 

calculated from the observed surface-wave magnitude, Ms' Also~:: 

M(~) is the magnitude on the surface-wave basis calculated from the 

observed body-wave magnitude. 

The unified magnitude, m, '-.TaS obtained by taking a weighted aver-

age of ~ and ms (Gutenberg and Richter, 1956 ; Gutenberg, 1957) 

(2.3) 

with a + S = 1. It is equally possible to define the unified magnitude 

on the surface-wave basis: 

M = a~ + SMs (2.4) 

Richter prefers this to m. In his book (Richter, 1958), he converted 
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Gutenberg's unified magnitudes, m, to M by using equation (2.2b). (As 

a result of roundoff the M values differ slightly from those obtained 

directly from equation (2.4).) 

GREAT EARTHQUAKE MAGNITUDES FROM 1904 TO 1952 

Four primary data sets for magnitudes of large shallow earthquakes 

from 1904 to 1952 are displayed in Table 2.1. Gutenberg and Richter 

(1954) listed all of the 109 events (in Table 2.1) in their Table 13, 

"class a shallow shocks." (Their Table 13 contained events having 

M ~ 7. 75.) The earthquake locations and origin times are also from 

Gutenberg and Richter. Richter (1958) listed "revised magnitudes" for 

the class a shocks with magnitudes greater than 7 3/4 in his Table 

XIV-2. Duda (1965) listed magnitudes for all of the events in Table 

2.1. Each of these references lists "magnitudes" without any descrip

tion of the scales used to derive them. The revised magnitudes denoted 

by M given by Richter (1958) are on the average 0.22 higher than the 

magnitudes in Seismicity of the Earth. The largest difference is 0.6. 

The magnitudes listed by Duda (1965) are teken from Richter's catalog 

if an event is listed there - otherwise the value from Seismicity of 

the Earth is used. Thus the differences between Duda's magnitudes and 

the Gutenberg-Richter (G-R) catalog reflect only the differences 

between Richter's catalog and the G-R values. We will explore the 

difference between the Richter (1958) magnitud~s and the G-R (1954) 

magnitudes, to clarify the differences between the magnitude scales. 

The best source of data for reexamining the magnitudes is the 



NO. DATE TIME 

1904, Jan. 20 14:52.1 

2 June 25 14:45.6 

3 June 25 21:00.5 

4 June 27 00:09.0 

5 Aug. 24 20:59.9 

6 Aug. 27 21:56.1 

7 Dec. 20* 05:44.3 

8 1905, Feb. 14 08:46.6 

9 April 4 00:50.0 

10 July 6 16:21.0 

11 July 9 09:40.4 

12 July 23 02:46.2 

13 1906, Jan. 31 15:36.0 

14 April 18 13: 12. 0 

15 Aug. 17 00:10.7 

TABLE 2.1 EARTHQUAKE DATA 

LOCATION 

7 N 79 FJ 

52 N 159 E 

52 N 159 E 

52 N 159 E 

30 N 130 E 

64 NISI W 

8 1/2 N 83 W 

53 N 178 W 

33 N 76 E 

39 1/2 N 142 1/2 E 

49 N 99 E 

49 N 98 E 

1 N 81 1/2 W 

38 N 123 W 

51 N 179 E 

Published Magnitudes 

SEIS. OF 
EARTH (1954) 

7 3/4 

8.0 

8.1 

7.9 

7 3/4 

7 3/4 

7 3/4 

7 3/4 

8 

7 3/4 

8 1/4 

8 1/4 

8.6 

8 1/4 

8.0 

DUDA 
(1965) 

7.9 

8.3 

8.1 

7.9 

7.9 

8.3 

8.3 

7.9 

8.6 

7.9 

8.4 

8.7 

8.9 

8.3 

8.3 

RICHTER 
(1958) 

7.9 

8.3 

8.1 

7.9 

7.9 

8.3 

8.3 

7.9 

8.6 

7.9 

8.4 

8.7 

8.9 

8.3 

8.3 

Gutenberg-Richter Notes 

M 
s 

7.7 

7.9 

8.0 

7.9 

7.7 

7.7 

7.6 

7.9 

7.8 

7.9(1 ) 

8.2(1) 

8.7 

8.3 

8.2 

fib 

7.6 

7.8 

7.7 

7.5 

7.7 

7.8 

7.8 

7.5 

7.5 

8.2 

7.4 

7.8 

T 

12 

8 

6 

7 

9 I 
I-' 
I-' 

7 I 

11 

12 

9 

13 

7 



TABLE 2.1 EARTHQUAKE DATA (Cont'd) 

Published Magnitudes Gutenberg-Richter Notes 

SEIS. OF DUDA RICHTER M mb T 
NO. DATE TIME LOCATION EARTH (1954) (1965) (1958) s 

16 Aug. 17 00:40.0 33 S 72 W 8.4 8.6 8.6 8.4 

17 Sept. 14 16:04.3 7 S 149 E 8.1 8.4 8.4 

18 Nov. 19* 07:18.3 22 S 109 E 7 3/4 7 3/4 7.5 7.5 10 

19 Dec. 22 18:21.0 43 1/2 N 85 E 7.9 8.3 8.3 7.7 7.5 9 
I 

20 1907. April 15 06:08.1 17 N 100 W 8.1 8.3 8.3 8.0 7.9 14 \:::; 
I 

21 Sept. 2 16:01. 5 52 N 173 E 7 3/4 7 3/4 7.S 7.3 13 

22 Oct. 21 04:23.6 38 N 69 E 8.0 8.1 8.1 7.6 7.6 11 

23 1909, July 30* 10: 51. 9 17 N 100 1/2 W 7 3/4 7 3/4 7.4 7.4 10 

24 1911, Jan. 3 23:25:45 43 1/2 N 77 1/2 E 8.4 8.7 8.7 8.4 8.1 14 

25 Feb. 18 18:41:03 40 N 73 E 7 3/4 7 3/4 7.6 7.3 8 

26 June 7 i , 11: 02. 7 17 1/2 N 102 1/2 W 7 3/4 7.9 7.9 7.7 7.5 8 

27 July 12* 04:07.6 9 N 126 E 7 3/4 7 3/4 7.7 7.6 8 

28 Aug. 16 22:41.3 7 N 137 E 7.9 8.1 8.1 7.8 7.6 9 

29 1912, Hay 23 02: 2/,.1 21 N 97 E 8.0 7.9 7.9 8.0 7.3 13 

30 Aug. 9 01:29.0 40 1/2 N 27 E 7 3/4 7 3/4 7.7 7.0 10 



TABLE 2.1 EARTHQUAKE DATA (Cont I d) 

Published Magnitudes Gutenberg-Richter Notes 

SEIS. OF DUDA RICHTER M ffib T 

TUlE LOCATION EARTH (1954) (1965) (1958) 
s 

~O. DATE 

31 1913. Mar. 14* 08:45:00 4 1/2 N 126 1/2 E 7.9 8.3 8.3 7.9 7.7 4 

32 1913. Aug. 6 22:14.4 17 S 74 W 7 3/4 7.9 7.9 

33 1914. May 26 14:22.7 2 S 137 E 7.9 7.9 8.0 7.3 6 

34 1915. May 1 05:00:0 47 N 155 E 7.9 8.1 8.1 8.0 7.7 11 
I 

35 July 31 01: 31.4 54 N 162 E 7 3/4 7 3/4 7.6 7.5 7 
f-" 
W 
I 

36 Oct. 3 06:52.8 40 1/2 N 117 1/2 W 7 3/4 7 3/4 7.7 7.3 7 

37 1916. Jan. 1 13:20.6 4 S 154 E 7 3/4 7.9 7.9 

38 Jan. 13 08:20.8 3 S 135 1/2 E 7.8 8.1 8.1 7.7 7.6 7 

39 1917. Jan. 30 02:45.6 56 1/2 N 163 E 3/4 8.1 8.1 7.8 7.7 9 

40 Hay 1* 18:26.5 29 S 177 W 8 8.6 8.6 7.9 7.9 8 

41 June 26 05:49.7 15 1/2 S 173 W 8.3 8.7 8.7 8.4 8.0 11 

42 1918. Aug. 15 12:18.2 5 1/2 N 123 E 8 1/4 8.3 8.3 8.0 7.6 7 

43 Sept. 7 17:16:13 45 1/2 N 151 1/2 E 8 1/4 8.3 8.3 

44 Nov. 8 04:38.0 44 1/2 NISI 1/2 E 7 3/4 7.9 7.9 7.7 7.5 6 

45 Dec. 4* 11:47.8 26 S 71 W 7 3/4 7 3/4 7.6 7.3 9 



TABLE 2.1 EARTHQUAKE DATA (Cont'd) 

Published Magnitudes Gutenberg-Richter Notes 

SElS. OF DUDA RICHTER M mb T 
NO. DATE TIME LOCATION EARTH (1954) (1965) (1958) s 

46 1919, April 30 07:17:05 19 S 172 1/2 W 8.3 8.4 8.4 

47 Hay 6 19:41:12 5 S 154 E 7.9 8.1 8.1 

48 1920, June 5 04:21:28 23 1/2 N 122 E 8 8.3 8.3 

49 Sept. 20 14:39:00 20 S 168 E 8 8.3 8.3 7.9 7.8 7 
I 

50 Dec. 16 12:05:48 36 N 105 E 8 1/2 8.6 8.6 f-' 
.j:>-

I 
51 1922, Nov. 11 04:32.6 28 1/2 S 70 W 8.3 8.4 8.4 

52 1923, Feb. 3 16:01:41 54 N 161 E 8.3 8.4 8.4 8.3 7.7 7 

53 Sept. 1 02:58:36 35 1/4 N 139 1/2 E 8.2 8.3 8.3 S.2 (2) 7.7 

54 1924, April 14 16:20:23 6 1/2 N 126 1/2 E 8.3 8.3 8.3 8.3 7.7 5 

55 June 26 01:37:34 56 S 157 1/2 E 7.8 8.3 8.3 7.7 7.9 8 

56 1927, Harch 7 09:27:36 35 3/4 N 134 3/4 E 7 3/4 7.9 7.9 7.6 7.6 4 

57 May 22 22:32:42 36 3/4 N 102 E 8.0 8.3 8.3 7.9 7.9 7 

58 1928, June 17 03:19:27 16 1/4 N 98 W 7.8 7.9 7.9 7.8 7.6 9 

59 Dec. 1 04:06:10 35 S 72 W 8.0 8.3 8.3 8.0 7.7 8 

60 1929, Harch 7 01:34:39 51 N 170 \.J' 8.1 8.6 8.6 7.7(3) 7.7(3) 9 (3) 



TABLE 2.1 EARTHQUAKE DATA (Cont'd) 

Published Magnitudes Gutenberg-Richter Notes 

SEIS. OF DUDA RICHTER M mb T 
EARTH (1954) (1965 ) (1958) s KO. DATE TIME LOCATION 

61 June 27 12:47:05 54 S 29 1/2 W 7.8 8.3 8.3 

62 1931, Jan. 15 01:50:41 16 N 96 3/4 W 7.8 7.9 7.9 7.8 7.6 13 

63 Feb. 2 22:46:42 39 1/2 S 177 E 7 3/4 7.9 7.9 7.8 7.6 10 

64 Aug. 10 21:18:40 47 N 90 E 8.0 7.9 7.9 7.9 7.G 9 
I 

10 1/2 S 161 3/4 E f-' 65 1931, Oct. 3 19:13:13 7.9 8.1 8.1 7.9 7.7 7 \J1 
I 

66 1932, May 14 13:11:00 1/2 N 126 E 8.0 8.3 8.3 8.0 7.8 13 

67 June 3 10:36:50 19 1/2 N 104 1/4 W 8.1 8.1 8.1 8.2 7.6 12 

68 June 18 10:12:10 19 1/2 N 103 1/2 W 7.8 7.9 7.9 7.8 7.4 11 

69 1933, March 2 17:30:54' 39 1/4 N 144 1/2 E 8.5 8.9 8.9 8.3(4 ) 8.2(4) 11(4) 

70 1934', Jan. 15 08:43:18 26 1/2 N 86 1/2 E 8.3 8.4 8.4 8.3 7.8 10 

71 July 18 19:40:15 11 3/4 S 166 1/2 E 8.2 Il.I 8.1 8.1 6.8 10 

72 1935, Sept. 20 01:46:33 3 '1/2 S 141 3/4 E 7.9 7.9 7.9 

73 Dec. 28 02:35:22 o N 98 1/4 E 7.9 8.1 8.1 7.7 7.7 8 

7L, 1938, Feb. 1 19:04:18 5 1/4 S 130 1/2 E 8.2 8.6 8.6 8.2 8.0 6 

75 Nov. 10 20:18:43 55 1/2 N 158 W 8.3 8.7 8.7 8.3 8.2 13 



TABLE 2.1 EARTHQUAKE DATA (Cont'd) 

Published Magnitudes Gutenberg-Richter Notes 

SEIS. OF DUDA RICHTER M mb T 
NO. DATE TIME LOCATION EARTH (1954) (1965) (1958) s 

76 1939, Jan. 25 03:32:14 36 1/4 S 72 1/4 W 7 3/4 8.3 8.3 

77 Jan. 30 02:18:27 6 1/2 S 155 1/2 E 7.8 7.9 7.9 7.8 

78 Apr il 30* 02:55:30 10 1/2 S 158 1/2 E 8.0 8.1 8.1 8.0 7.4 

79 Dpc. 26 23:57:21 39 1/2 N 38 1/2 E 8.0 7.9 7.9 7.8 7.7 8 

80 1940, May 24* 16:33:57 10 1/2 S 77 W 8 8.4 8.4 7.9 7.9 8 I 
I-' 

'" 81 1941, June 26* 11:52:03 12 1/2 N 92 1/2 E 8.1 8.7 8.7 7.7 8.0 8 I 

82 Nov. 18 16:46:22 32 N 132 E 7.8 7.9 7.9 7.8 7.5 8 

83 Nov. 25 18:03:55 37 1/2 N 18 1/2 W 8.3 8.4 8.4 8.2 7.8 8 

84 1942, May 14 02:13:18 3/4 S 81 1/2 W 7.9 8.3 8.3 7.9 7.7 8 

85 Aug. 6* 23:36:59 14 N 91 W 7.9 8.3 8.3 7.9 7.7 5 

86 Aug. 24* 22:50:27 15 S 76 W 8.1 8.6 8.6 8.2 7.9 11 

87 Nov. 10 11:41:27 49 1/2 S 32 E 7.9 8.3 8.3 7.9 7.7 11 

88 1943, April 6* 16:07:15 30 3/4 S 72 W 7.9 8.3 8.3 7.9 7.6 9 

89 Hay 25 23:07:36 7 1/2 N 128 E 7.9 8.1 8.1 7.7 7.8 7 

90 July 29 03:02:16 19 1/4 N 67 1/2 W 7 3/4 7.9 7.9 7.7 7.5 8 



TABLE 2.1 EARTHQUAKE DATA (Cont'd) 

Published Magnitudes Gutenberg-Richter Notes 

SEIS. OF DUDA RICHTER M ffib T 
NO. DATE TUfE LOCATION EARTH (1954) (1965) (1958) s 

91 Sept. 6 03:41:30 53 S 159 E 7.8 7.9 7.9 7.7 7.5 11 

92 1944, Dec. 7 04:35:42 33 3/4 N 136 E 8.0 8.3 8.3 8.0 7.8 15 

93 1945, Nov. 27 21:56:50 24 1/2 N 63 E 8 1/4 8.3 8.3 8.0 7.7 9 

94 Dec. 28 17:48:45 6 S 150 E 7.8 7.8 7.7 7.3 9 
I 

95 1946, Aug. 4 17:51:05 19 1/4 N 69 W 8.1 8.1 8.1 8.0 7.6 10 ~ -...J 
I 

96 Sept. 12 15:20:20 23 1/2 N 96 E 7 3/4 7 3/4 7.8 7.4 8 

97 Sept. 29 03:01:55 4 1/2 S 153 1/2 E 7 3/4 7 3/4 7.7 7.4 8 

98 Dec. 20 19:19:05 32 1/2 N 134 1/2 E 8.2 8.4 8.4 8.2 7.8 9 

99 1948, Jan. 24 17:46:40 10 1/2 N 122 E 8.2 8.3 8.3 8.2 7.7 13 

100 Sept. 8 15:09:11 21 S 174 W 7.8 7.9 7.9 7.8 7.5 6 

101 1949, Aug. 22 04:01:11 53 3/4 N 133 1/4 W 8.1 8.1 8.1 8.1 7.5 8 

102 Dec. 17 06:53:30 54 S 71 W 7 3/4 7 3/4 7.7 7.4 7 

103 Dec. 17 15:07:55 54 S 71 W 7 3/4 7 3/4 7.7 7.4 6 

104 1950, Aug. 15 14:09:30 28 1/2 N 96 1/2 E 8.6 8.7 8.7 8.6 8.0 9 

105 Dec. 2'~ 19:51:49 18 1/4 S 167 1/2 E 7 3/4 8.1 8.1 7.2 7.6 7 



NO. D!ITE TUill 

106 1951, Nov. 18 09:35:47 

107 1952, Bar. 4 01:22:43 

108 Har. 19 10:57:12 

109 Nov. 4 16:58:26 

(1) Okal (l~77) . 

(2) Kanamori and Miyamura (1970) 

(3) Kanamori (1972) • 

(4) Kanamori (1971) 

*Ilypocentral depth 40 - 60 km 

TABLE 2.1 EARTHQUAKE DATA (Cont I d) 

LOCATION 

30 1/2 N 91 E 

42 1/2 N 143 E 

9 1/2 N 127 1/4 E 

52 3/4 N 159 1/2 E 

Published Magnitudes 

SEIS. OF 
EARTH (1954) 

8.0 

8.3 

7 3/4 

8 1/4 

DtTDA 
(1965) 

7.9 

8.6 

7.9 

8.4 

RICHTER 
(1958) 

7.9 

8.6 

7.9 

8.4 

Gutenberg-Richter Notes 

M 
s 

8.0 

8.3 

7.6 

8.2 

mb 

7.3 

8.0 

7.6 

7.9 

T 

10 

9 

8 

8 

I 
I-' 
CO 
I 
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original \'lOrk of Gutenberg and Richter. Fortunately, mas t of their 

original worksheets for Seismicity of the Earth are still on file at 

Caltech. We found copies of their worksheets for 91 of the 109 events 

in Table 2.1. The surface-wave magnitudes (M ) for these 91 events 
s 

(and five others, from other sources) are listed in Table 2.1. (Sources 

for the other five events are given in footnotes.) The surface wave 

magnitudes were derived from the worksheets in a straightforward manner. 

Gutenberg and Richter's original single station M (often labeled 
s 

Mmax ' for maximum amplitude, on their worksheets) values were numeri-

cally averaged for each event. On the whole, the surface-wave magni-

tudes from the notes differ only slightly from those in the Gutenberg-

Richter catalog. 

Magnitudes in Seismicity of the Earth were given to the nearest 

tenth when Gutenberg and Richter considered the value accurate to the 

nearest tenth, e.g. 8.0, 7.7; values which they considered to be less 

3 accurate are given only the the nearest quarter, e.g. 8, 74, The 

magnitudes in Seismicity of the Earth are an average of 0.06 higher 

than those from the notepads. Furthermore, the magnitudes of 74 of the 

96 events differ by 0.1 or less. We therefore conclude that the magni-

tudes in Seismicity of the Earth are essentially equivalent to M for 
s 

the events we have checked. Probably for nearly all the shallow events 

in the G-R catalog it is safe to treat their "magnitude" as being M • 
s 

We also obtained body-wave magnitudes from the notes. Because 

there were several different definitions of the body-wave magnitude, 

many of the worksheets have several different calculations in which a 
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body-wave magnitude is given. We list in Table 2.1 the value which 

appeared to us to be calculated according to the method in Gutenberg 

and Richter (1956). Although in some cases the value we have listed 

may be slightly in error, it seems important to list these previously 

unpublished ~ values. ~ values were given in the worksheets for 

90 events, and are listed in Table 2.1, together with two from other 

sources. Apparently the station corrections given by Gutenberg (1945c) 

were used in making these ~ determinations. 

Two other items are listed in Table 2.1. T is the average period 

used in determination of ~ from equation (2.15). Also, Gutenberg 

and Richter considered most of the events in Table 2.1 to be at normal 

depth, but some earthquakes were considered to be at depths of 40-60 

km. The deeper events are indicated by an asterisk to the right of 

the date. 

UNIFIED MAGNITUDES 

Gutenberg and Richter never published the details of their methods 

of determining the unified magnitudes. However, Gutenberg (1957) 

stated that the unified magnitude was found primarily from body-wave 

magnitudes, with only supplemental use of surface-wave magnitudes. 

This suggests that ~ was emphasized in the weighted average of ~ and 

m to find m described by Gutenberg and Richter (1956). Our analysis, 
s 

described below, supports this suggestion. 

A preliminary examination of the data in Table 2.1 suggested that 

in most cases the weights used by Gutenberg and Richter in finding the 
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"f" d "d 3 unl le magnltu es were a = 4 1 and S =-
4 

(in equations 2.3 and 2.4). 

In finding m they apparently used the magnitudes in Seismicity of the 

Earth as H 
s 

Therefore we have used the magnitudes from Seismicity of 

the Earth, rather than the H values we list in Table 2.1, in testing 
s 

these weights. Also, for the deeper events (40-60 km) in Table 2.1 

the weights apparently are a = 1 and S = 0, i.e. only the body-wave 

magnitude was used in finding the unified magnitude of these events. 

We have the ~ values from the worksheets for 77 events for which 

Richter (1958) gives a revised magnitude. Of these, 66 are at normal 

depth and 11 at depths of 40-60 km. We tested the relations 

M = 1. M + 1 (1.59 m. - 3.97) 
4 s 4 D 

(2.5) 

for events at normal depth and 

M (1. 59 ~ - 3.97) (2.6) 

for events at depths of 40-60 km. We then rounded the M value from 

equation (2.5) or (2.6) to the nearest tenth. 53 of our 66 M values 

for shalla,., earthquake were within 0.1 of the revised magnitude given 

by Richter, as were 8 of the 11 deep earthquake magnitudes. Further-

more, the scatter was basically symmetric about zero. We therefore 

conclude that equations (2.5) and (2.6) give the revised magnitude, M, 

of Richter (1958). 

After the above text was written, a further examination of Guten-

berg's notes uncovered additional typed worksheets with his values of 

"~" , "H " and "m." 
s 

Although these worksheets list body-\vave 
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magnitudes for events which are missing from Table 2.1, they have not 

been added to the table, because it is not known how they were derived. 

An examination of the unified magnitudes suggests that the above inter-

pretation is generally correct and that there may also have been a 

subj ective w"eighting factor used in averaging ~ and ms' 

The revised magnitudes, M, in Richtel"'S catalog are distinctly 

different from M in Seismicity of the Earth. The magnitudes which were 
s 

given in these catalogs are on different scales. Errors have resulted 

from treating the revised magnitudes, M, as M. For illustration we 
s 

now examine several earthquakes for which the magnitude is significantly 

larger in Richter's catalog than in Seismicity of the Earth. 

The Tokachi-Oki earthquake of 4 March 1952 is a simple case. 

Gutenberg and Richter (unpublished notes) found ~ 8.0 and M = 8.3. 
s 

The "magnitude" in Seismicity of the Earth is given as 8.3. For 

M = 8.3, equation (2.2a) yields m = 7.7. The weighted average, from s s 

equation (2.3) of ms and ~ (with a 3/4 and f3 1/4) gives m = 7.9, 

or through equation (2.2b), M = 8.6, which is the value given by 

Richter (1958). 

Richter (1958, p. 350) gives some examples of calculating the 

unified magnitude in his Table 22-5. This table is misleadingly 

labeled. The column labeled "m from surface waves" is not an m value 
s 

from equation (2.2a). Rather, it is the average of ms and~. This 

may have resulted from the manner in which the table was constructed. 

Perhaps the M value had already been found and the other columns were 

added later. In any case, the unified magnitude found by taking an 
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unweighted average of the "m from body waves" and the "m from surface 

,..raves" still has the effect of weighting ~ three times as heavily. 

The Aleutian earthquake of 7 Harch 1929 is a notable example of a 

large difference between M , from the G-R catalog, and M, from the 
s 

Richter catalog. Kanamori (1972) found ~ = 7.67 and Ms = 7.68. The 

G-R catalog gives M = 8.1. Their magnitude may have been increased to 

compensate for the apparent focal depth of 50-60 km which \Vas noted 

by Richter (1958); this is unclear, because we did not find the work-

sheet for this event. Richter (1958) gave ~ = 7.9 and M = 8.6; 

apparently his unified magnitude was derived completely from ~, using 

equation (2.6). 

Despite its various imperfections, the magnitude scale provides 

important information concerning the source spectrum at the period 

where the magnitude is determined. In the light of recent earthquake 

source theories (e.g. Aki, 1967), the differences between the source 

spectra of different events are very important for understanding various 

source characteristics, such as source dimension, stress drop and 

ambient stress. As shown in Table 2.1, most body-wave magnitudes for 

large earthquakes from 1904 to 1952 were determined at periods of 6 to 

12 seconds. However, the determinations of ~ used in the PDE Catalog 

are made at periods of 1 to 3 seconds. Thus the classical and modern 

~ determinations represent different parts of the spectrum and should 

not be directly compared. It is important to note not only the magni-

tude but also the period at which the magnitude h determined. This 

point is discussed further in the appendix to this chapter. 
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ESTIMATES OF SEISHIC HOHENT 

Besides being intrinsically significant, the magnitudes are fre-

quently used to estimate other source parameters. For example, Guten, 
berg and Richter (1956) gave an empirical relation between log E, 

seismic energy, and m, unified magnitude. Later, Brune (1968), Davies 

and Brune (1971) and O'Connell and Dziewonski (1976) used the magni-

tudes from Duda's catalog, together with empirical relations between 

log Hand M (treating Duda's magnitudes as M ) to estimate seismic 
o s s 

moment. The first two papers used the moment estimates to estimate 

the seismic slip rates between plates, while the last used the esti-

mated moments to study the excitation of the Chandler Wobble by earth-

quakes. 

Homent estimates from the magnitude of great earthquakes are very 

unreliable. Several recent papers (Kanamori and Anderson, 1975; 

Chinnery and North, 1975; Geller, 1976) point out that for any earth-

28 
quake \vith Mo ~ 10 dyne em, Ms will be 8.3 ± 0.3. Thus for great 

earthquakes H is essentially constant, independent of further increase 
s 

in M. Once the maximum magnitude is reached, estimates of Hand H 
o 0 s 

are extremely unreliable and almost meaningless. 

More reliable estimates of M may be made by using the fault area 
o 

S. Several studies have shown (Aki, 1972, Kanamori and Anderson, 1975; 

Abe, 1975) that a remarkably linear relation exists between log Sand 

log M for very large earthquakes. In terms o~ a crack model, this 
o 

relation suggests a constant stress drop, ~a. For a circular crack, 

Mo ~ 17
6 

ba (;r2 
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The fault area, S, can be reliably estimated from the locations of 

aftershocks. Even for earthquakes in the early part of the century, S 

can be fairly reliably estimated from ISS data (e.g. Sykes, 1971). 

Abe (1975) proposed a relation 

M 
o 

1.23 x 10
22 

53/ 2 dyne-em (2.7) 

for determining the moment from the fault area. This relation corre-

sponds to a nearly circular geometry and a stress drop of about 30 

bars. Although this relation does not apply to earthquakes having a 

stress drop very different from 30 bars, it should give much more reli-

able estimates of M for most large earthquakes than empirical moment
o 

magnitude relations. 

One of the most remarkable examples is the 7 March 1929 Aleutian 

Islands earthquake. Kanamori (1972) obtained a moment of 6.7 x 10
27 

dyne-em. The result of Sykes (1971) suggests S'U 8 x 103 
km

2 . Relation 

27 (2.7) then gives M = 8.8 x 10 dyne-em, which is in good agreement 
o 

with the measured moment. On the other hand Richter (1958) gave M 

8.6 for this event. If this value is considered as M and is used to 
s 

estimate the moment through an empirical relation between M and M o s 

(e.g. log M = 8.8 + 2.5 M ; O'Connell and Dziewonski, 1976), 
o s 

M = 2 x 1030 dyne-em is obtained. This value is more than 200 times 
o 

too large and is equal to the largest seismic ~oment ever reliably 

determined (2 x 1030 dyne-em for the 1960 Chilean earthquake; Kanamori 

and Cipar, 1974). 
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Recently Kanamori (1977) studied the energy release in great 

earthquakes, on the basis of the moment of great earthquakes, either 

as measured directly or as estimated from the aftershock area or 100-

sec magnitude. Kanamori then used the relation 

w = M /(2 x 104) (2.8) a 

to estimate W, the minimum released strain energy. This relation gave 

much more satisfactory estimates of released seismic energy than those 

made from the Gutenberg-Richter energy-magnitude formula, 

10g10 E == 1.5 M + 1l.8 , 
s 

E in ergs (2.9) 

because the estimates based on moment are not affected by the satura-

tion of the magnitude scale. In fact, equation (2.9) was inverted by 

Kanamori to find a new magnitude, MW, from log W. 

MW 0.67 (10g10 W) - 7.9 

M and W in dyne-em 
a 

(2.10) 

MW is not affected by the saturation of the surface-wave magnitude scale 

and gives a r.eliable estimate of the size of the greatest earthquakes. 

CONCLUSION 

We have given Ms values (for 96) and ~ values (for 92) of the 

109 "class a" shallow earthquakes in Gutenberg~and Richter's (1954) 

Seismicity of the Earth. Our values of M , taken from Gutenberg and 
s 

Richter's unpublished notes, differ only slightly from the Gutenberg-
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Richter magnitudes, which are significantly lm.,er than the "revised 

magnitudes" of Richter (1958) and Duda (1965). This difference results 

from the fact that the Gutenberg-Richter magnitudes are basically M , 
s 

while the revised magnitudes are "unified magnitudes" which heavily 

emphasize ~. 

For most shallow earthquakes Richter's (1958) M is related to 

the 20 sec surface-wave magnitude, Ms' and the body-vlave magnitude ~ 

by 

M = t Ms + Z [1.59 ~ - 3.97J. 

For events at depths of 40-60 km the revised magnitude, M, is calcu-

lated only from ~. 

M = 1.59 ~ - 3.97. 

Revised magnitude, M and surface-wave magnitude M are distinct magni
s 

tude scales and should not be confused. 
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APPENDIX 

SURFACE WAVE MAGNITUDES 

Gutenberg (1945a) presented an empirical formula for surface wave 

magnitudes. His formula was derived from a least squares fit to ampli-

tude data from mostly Pacific earthquakes. For shallow earthquakes at 

o 0 
distances 15 < ~ < 130 , Gutenberg found the formula 

Ms = log ~ + 1.656 log ~ + 1.818 + C. (2.11) 

C is the (empirically determined) station correction and ~ is the 

horizontal component of the maximum ground movement (in microns) during 

the surface waves having a period of about 20 seconds. This formula 

was derived for oceanic paths and for teleseismic distances. (The 

problems which result from magnitude determination at short distances 

or along continental paths have been discussed by Alewine (1972) and 

~mrshall and Basham (1972) and will not be covered here.) 

The amplitude, ~, in equation (2.11) is a somewhat ill-defined 

quantity. Gutenberg intended ~ to be the "total" horizontal amplitude 

(zero to peak). By this he meant that ~ was the "vector sum" 

(~+ ~)1/2 (2.12) 

where ~ is the maximum amplitude on the N-S component and ~ the 

maximum on the E-W component. The "vector sum" probably leads to an 

amplitude which is larger than the amplitude one would measure from 

the (rotated) Rayleigh wave or Love wave. The maxima on the N-S and 

E-lv components will rarely occur at the same time; thus the amplitude 
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derived from equation (2.12) must always be at least as large as the 

true maximum amplitude, both because ~ and ~ may be measured at 

different times and because Love and Rayleigh waves may overlap. 

Gutenberg (1945a) clearly recognized that use of the vector sum leads 

to increased amplitudes. He recommended that if only one component is 

available for magnitude determination, its amplitude should be multi-

plied by 1.4 (i.e. 12) for use in equation (2.11). 

Many investigators after Gutenberg and Richter proposed their own 

versions of the surface wave magnitude scale. The results of their 

research were summarized by Vanek et al. (1962) who proposed the 

formula 

M 
s 

log (A/T) + 1.66 log ~ + 3.3 
max 

(2.l3) 

which has been adopted officially by the IASPEI (International Associa-

tion for Seismology and Physics of the Earth's Interior). In equation 

(2.13) (A/T) is the maximum of all A/T (amplitude/period) values of 
max 

the wave groups on a record. For T 20 sec, equation (2.13) reduces 

to 

Hs = log A20 + 1.66 log ~ + 2.0 (2.14) 

Equation (2.14) is nearly identical to Gutenberg's equation (2.11); the 

only significant difference is that the additive constant in equation 

(2.14) is 0.18 larger. The method for measuring A20 or (A/T) is not max 

precisely defined. If the horizontal components are combined "vector-

ially" then the magnitudes from equation (2.13) or (2.14) \vill be 
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systematically higher than Gutenberg's by 0.18. On the other hand, if 

each horizontal component is used separately, and the two independent 

horizontal M values are averaged, then magnitudes from the IASPEI 
s 

formula would be virtually identical to Gutenberg's. There does not 

seem to be a precise definition of how (A/T) should be measured, max 

although the usual method seems to be vectorial summation. Perhaps an 

international standard should be developed by the IASPEI. 

Since the more widespread use of vertical broadband instruments, 

and particularly since the advent of the m~SSN, M has frequently been 
s 

determined from the amplitude on the vertical component, using equation 

(2.13). The relation between the vertical and horizontal amplitudes is 

not clear. The spectral ratio of horizontal to vertical Rayleigh wave 

components (ellipticity) probably is a good approximation for the ratio 

of (A/T)h . to (A/T) ,even though the amplitudes are measured in 
orlZ vert 

the time domain. If the ellipticity is used to approximate the time 

domain ratio, then one expects the vertical Rayleigh wave amplitude to 

be about 1.4 times the horizontal. Thus log (A/T) might be 0.15 vert 

larger than log (A/T)h . for Rayleigh waves. This increase may be orlZ 

offset by the tendency for Love waves, vector summing and higher modes 

to increase (A/T)h .' orlZ 

We have discussed only a small fraction of the research on surface 

wave magnitudes following Gutenberg and Richter.. In spite of some 

later revisions in the procedures for determin~ng magnitudes, the 

modern definition is essentially equivalent to Gutenberg and Richter's 

M. Their M values probably can be compared to modern measurements 
s s 
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without appreciable difficulties. 

BODY HAVE MAGNITUDES 

Gutenberg (1945b, c) gave formulae for body wave-magnitudes of 

shallow and deep earthquakes respectively. Later, Gutenberg and Richter 

(1956) published their final version of the body-wave magnitude formula. 

~ = log (A/T) + Q (2.15) 

Q is an empirically determined term which accounts for the source

receiver distance and the source depth. (A/T) is the maximum in the 

wave group of either P, PP or SR, with separate tables and charts of 

Q for each phase. (A is either the center to peak or half of the 

peak to peak ground displacement.) 

Although later authors, e.g. Vanek ~ al. (1962) have proposed 

revisions of the ~ formula, the Gutenberg-Richter formula continues 

in wide use. There are two main differences between the original 

method for implementing equation (2.15) and the current practice of 

the USGS. These differences, discussed below, result in substantially 

different ~ values from Gutenberg and Richter's. 

One radical change in ~ determination is the different type of 

instrument used for modern determinations. Most of the P waves used 

by Gutenberg and Richter, particularly for larger events, were all 

measured on broad-band instruments at periods qf about 6 to 12 seconds, 

with longer periods for the larger events. The ~ measurements cur~ 

rently made by the USGS use amplitudes and periods from the short 
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period WlJSSN instruments, which are sharply peaked at about 1/2 second. 

In practice, the period at which the peak amplitude occurs is nearly 

always about 1 sec. Furthermore, the USGS instructions ask that T be 

restricted to less than 3 sec. Another change in the way magnitudes 

are determined is the USGS requirement that (A/T) must be measured in 

the first 5 seconds of the record. The previous practice had been that 

the peak (A/T) might be measured longer into the record, to allow for 

an earthquake with a gradual onset (Bath, 1966). Richter (personal 

communication) notes that using the first P instead of the maximum 

leads to representing major earthquakes (about 7 or more) by magnitudes 

around 5 which are those of minor immediate foreshocks. 

The discrepancy between the narrowband ~ values determined by 

the USGS and the broadband mb values obtained by seismologists in the 

eastern hemisphere is well known to observational seismologists (e.g. 

SIPRI, 1968). Although many factors enter into the problem, the main 

cause of the discrepancy appears to be the different passbands of the 

instruments. Because the P-wave spectrum eventually saturates at any 

given frequency as the seismic moment increases, the time domain ampli

tude at 1 sec reaches a constant upper limit; thus ~ values measured 

on short-period narrow-band instruments are saturated for smaller 

earthquakes than the broadband instruments (Geller, 1976 and Chapter 3 

of this thesis). 
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Chapter 3 

SCALING RELATIONS FOR EARTHQUAKE SOURCE PARAMETERS AND MAGNITUDES 

ABSTRACT 

A dataset of forty-one moderate and large earthquakes is used to 

derive scaling rules for kinematic fault parameters. If effective 

stress and static stress drop are equal, then fault rise time, T, and 

1/2 3/2 . 
fault area, S, are related by T = 16S /(7n S), where S 1S shear 

velocity. Fault length (parallel to strike) and width (parallel to 

dip) are empirically related by L == 2W. Scatter for both scaling 

rules is about a factor of two. These scaling laws combine to give 

width and rise time in terms of fault length. Length is then used 

as the sale free parameter in a Haskell type fault model to derive 

scaling law·s relating seismic moment to M (20 sec. surface wave 
s 

magnitude), Ms to S and ~ (1 sec body wave magnitude) to Ms. Observed 

data agree well \vith the predicted scaling relation. The "source 

spectrum" depends on both azimuth and apparent velocity of the phase 

or mode, so there is a different "source spectrum" for each mode, 

rather than a single spectrum for all modes. Furthermore, fault 

width (i.e. the two dimensionality of faults) must not be neglected. 

Inclusion of width leads to different average source spectra for sur-

face waves and body waves. 
-3 

These spectra, because of their w high 

frequency asymptote, in turn imply that m, and M reach maximum values 
b ~ S 

regardless of further increases in L and seismic moment. The ~:Ns 

relation from this study differs significantly from the Cutenberg-
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Richter relation, because the Gutenberg-Richter equation was derived 

for body waves with a predominant period of about 5 sec and thus does 

not apply to modern 1 sec ~ determinations. Previous investigators 

who assumed that the Gutenberg-Richter relation was derived from 1 

sec data were in error. Finally, averaging reported rupture veloc

ities yields the relation V
R 

= O.l2S. 
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BACKGROUND 

In the last chapter we studied the definition of various seismic 

magnitude scales. The magnitude is still the most commonly cited 

parameter in discussing the "size" of an earthquake. The magnitude 

is closer to our direct experience than any other fault parameter, 

because we measure the amplitude and period directly from a seismo-

gram, and need only a distance and depth correction to obtain ~ or 

M. Although it is closest to our experience, the magnitude is not 
s 

directly related to more physically meaningful fault parameters, such 

as radiated energy or seismic moment. Other fault parameters, such 

as fault length and width, rise time, rupture velocity and stress drop 

cannot be determined without extensive analysis of the observed data. 

In general, we want to know the physical fault parameters for a given 

earthquake, but often we know only the magnitudes. In such cases it 

is natural to try to use the magnitudes to estimate other source 

parameters. 

The earliest such attempt was made by Gutenberg and Richter. 

Their work culminated with the publication of their final relation 

between radiated wave energy and magnitude (Gutenberg and Richter, 

1956). When they wrote their paper, very little was known about 

seismic source theory. Indeed, at that time a fierce dispute raged 

over the question of single couple versus double couple sources. 

As a result of the fundamental advances in source theory by 

Steketee (1958a, b), de Hoop (1958), 1<faruyama (1963) Burridge and 

Knopoff (1964) and Haskell (1964), the equivalence of elastic 
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dislocations with double couples was placed on a firm foundation. 

Once this equivalence became clear, it could be seen that the seismic 

source and the effect of the medium could be separated. Burridge 

and Knopoff (1964) showed that if the Green's function (point force 

impulse response) for any arbitrarily heterogeneous and anisotropic 

medium was known, that a distributed shear dislocation could be 

modeled by convolving the spatial and temporal dislocation density 

with appropriate derivatives of the Green's function. This is a 

generalization of Harkrider's (1964) result showing that the source 

and medium effects could be separated for any plane-layered, isotropic, 

model. 

Once a greater theoretical understanding of the excitation 

problem was obtained, interest was renewed in studying the details 

of earthquake source mechanisms. Burridge and Knopoff (1964) had 

showed that for any finite source the displacement could be obtained 

by convolving the source density in space and time with the Green's 

function. However, there are some cases, usually in the far-field, 

for which very accurate approximate solutions can be obtained by 

convolving the Green's function in time only with a source time 

function which includes the effect of fault finiteness in space. 

Examples of this procedure for a whole space are the line source 

directivity functions of Ben-Menahem (1961, 1962) and the planar 

source functions of Hirasawa and Stauder (1965) and Mikumo (1969). 

Fukao (1971) extended these solutions to a planar, shallow, propa

gating rupture in a halfspace. It should be noted that each surface 
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or body-wave phase (e.g. P, pP, S, Love, etc.) has its own time 

function, cr, equivalently, source finiteness spectrum, and that 

this must be considered, especially when the free surface is important 

in body-wave problems. The commonly adopted procedure of using a 

single time function for P, pP and sP may not always be appropriate 

for shallow finite sources. 

The fact that the far-field displacement, at least for P or S 

waves in a whole space, could be written as the convolution in time 

of a time function including source finiteness effects, the source 

time function at a single point and the Green's function was essential 

to the next major advance in source theory. Aki (1967) introduced 

the concept of a scaling relation for seismic sources by replacing 

the temporal convolution by the equivalent product of Fourier trans-

forms. He isolated the source finiteness and rise time effects (which 

he preferred to treat in a statistical sense, using the concept of 

spatial and temporal correlation wave numbers) by considering spectral 

ratios from two earthquakes of different magnitude in the same area. 

The principal contribution of this paper is the emphasis 

on relating ~ and M to the source spectrum at 1 and 20-sec respec
s 

tively. As we will see below, there appear to have been specific 

errors in this work; however, the basic concept of a scaling relation 

between magnitudes and the source spectrum has stood the test of time 

and is now almost universally accepted. 
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INTRODUCTION 

The purpose of this chapter is to examine empirical relations 

between gross fault parameters and the agreement of these relations 

with theoretical models of seismic sources. The gross parameters 

to be studied are fault length, width and rise time, rupture velocity, 

and M , and seismic moment. 
s Data from other investigators' studies 

of individual earthquakes are used to study scaling of source param-

eters in an approximate way. In general the data are consistent with 

fault width scaling proportionately to fault length and rise time 

scaling proportionately to the square root of fault area. This 

scaling can then be used to find ~ - M log M - M and log S - M 
b s' 0 s s 

relations. Some of those relations have been studied by Kanamori and 

Anderson (1975b), who provided a theoretical basis for many of the 

empirical relationships used in seismology. 

Tsuboi (1956) was the first investigator to utilize similarity, 

the concept of relating earthquakes of different sizes by a one 

parameter model. By assuming that the horizontal dimensions of the 

earthquake source volume were three times larger than the vertical 

d h 1 2 1.5/6 imension, Tsuboi derived from t e re ation E = ~€ A , where E 

is released energy, ~ is average rigidity, € is average strain drop 

and A is aftershock area. Such approximate scaling relations, as 

first pointed out by Tsuboi, require that the physics of material 

failure be identical for large and small eart~quakes. If that assump-

tion is generally true and if earthquakes tend to be geometrically 

similar, then it follows that fault length and width, and final 
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dislocation all will scale together. Differences in material proper-

ties will weaken the exactness of the similarity when earthquakes 

from two different regions are compared, but, in an approximate sense, 

similarity, as is shown by the data presented below, is a valid 

concept. 

The first paper to systematically relate observed gross seismic 

source parameters to the source spectrum was the now classic work of 

Aki (1967). Although the results presented in this chapter modify 

his results, the methodology and basic outlook are similar to Aki's. 

Later Brune (1970, 1971) contributed to the understanding of seismic 

source spectra. 

Similarity between earthquakes is a dynamic as well as a static 

concept. Not only the final static parameters, but also the spectral 

shape of the equivalent source time function, scales with fault 

length. Spectral similarity can best be demonstrated by comparing 

two earthquakes with identical location and focal mechanism, but 

different magnitude. Such a comparison ensures that seismograms 

from both events will be affected equally by the medium response, so 

that all differences between the records will be from the source 

effects. 

Observational studies of similar pairs of earthquakes have been 

made by Berckhemer (1962) whose results were interpreted by Aki (1967) 

-2 to support Aki's w model. Tsujiura (1973) studied groups of events 

from various regions, concluding that most data were in accord with 

-2 -1 ° Aki's w model, but that some were better fit by an w or w model. 
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One cannot directly compare spectral characteristics of source 

mechanisms from different regions without first correcting the seismo-

grams for transmission effects. Removing the effects of medium 

response will usually require use of synthetic seismogram methods. We 

assume however that one can compare logarithmic fault parameters. such 

as ~ • M or log L. for events in different regions. These comparisons 
b s 

are made with the intention of looking at order of magnitude relation-

ships rather than details. 

In this chapter we will look at scaling relations between five 

sets of such logarithmic parameters: log L vs. log W (fault length vs. 

width). log 't vs. log S (fault rise time vs. area). M vs. log M 
s 0 

(surface wave magnitude vs. seismic moment). ~ vs. M and log S vs. 
s 

M . What \-Jill be shown are not exact correlations, but rather trends s 

which appear to be applicable to most earthquakes. Agreement between 

the simple model used in this chapter and the data are quite good. 

(Long narrow transform faults, such as the San Andreas, are a separate 

class of faults which are not considered in this chapter.) 

OBSERVATIONAL DATASET 

The earthquake data shown in Table 3.1 are from the same forty-one 

shallow events used by Kanamori and Anderson (1975b). All values for 

M are from their paper; the sources for all other observational 
s 

parameters are given in the table of references. Except for minor 

differences which are primarily due to the use of slightly different 

references. data for M and S are equivalent to Kanamori and Anderson's. 
o 



Table 3.1 

Earthquake Source Parameters 

... ', 
Mo L W D T T VR 

f::,(J 

Event Date M 
~ x10 27 dyne-cm km km m sec sec km/sec bars s 

1. Kanto 1 Sept. 1923 8.2 7.6 130 70 2.1 7 10 21 

2. Tango 27 March 1927 7.75 0.46 35 13 3 6 2.5 2.3 115 

3. North Izu 25 Nov. ·1930 7.1 0.2 20 11 3 1.7 150 

4. Saitama 21 Sept. 1933 6.75 0.068 20 10 1 2 1.6 2.3 59 

5. Sanriku 2 Harch 1933 8.3 43 185 100 3.3 7 12 3.2 42 I 
~ 
V1 

6. Long Beach 11 March 1933 6.25 0.028 30 15 0.2 2 2.5 2.3 7 I 

7. Imperial Valley 19 May 1940 7.1 0.48 70 11 2 3.2 55 

8. Tottori 10 Sept. 1943 7.4 0.36 33 13 2.5 1 4.0 2.3 99 

9. Tonankai 7 Dec. 1944 8.2 15 120 80 3.1 9.2 39 
~ 

10. iHkawa 12 Jan. 1945 7.1 0.087 12 11 2.2 1.3 140 

11. Nankaido 20 Dec. 1946 8.2 15 120 80 3.1 9.2 39 

12. Fukui 28 June 1948 7.3 0.33 30 13 2 2 1.9 2.3 100 

13. Tokachi-Oki 4 March 1952 8.3 17 180 100 1.9 14 17 

14. Kern County 21 July 1952 7.7 2 60 18 4.6 1 3.6 140 



Table 3.1 cant. 

Earthquake Source Parameters 

Mo L 
" 

D T T* V 60 
Event Date M mb x1027 dyne-ern km km m sec sec km/~ee bars 

s 

15. r;lirview 16 Dec. 1954 7.1 0.13 36 6 2 1.7 100 

16. Chile 22 May 1960 8.3 2400 800 200 21 36 3.5 91 

17. Kitamino 19 lIug. 1961 7.0 0.09 12 10 2.5 2 1.3 3.J 170 

18. Hasaka Bay 27 March 1963 6.9 0.033 20 8 0.6 2 1.5 2.3 40 

19. North Atlantic I 3 Aug. 1963 6.7 6.1 0.12 32 11 1 2.2 44 I 
.p.. 

20. Kuri1e Islands 13 Oct. 1963 8.2 5.7 75 250 140 3 17 3.5 28 '1' 
2l. North Atlantic II 17 Nov. 1963 6.5 5.9 0.038 27 9 0.48 1.8 24 

22. Spain 15 March 1964 7.1 6.2 0.13 95 10 0.42 3.6 1.11 11 

23. Alaska 28 March 1964 8.5 6.2 520 500 300 7 35 3.5 22 , 
24. Niigata 16 June 1964 7.4 6.1 3.2 80 30 3.3 5.3 66 

25. Rat Island I 4 Feb. 1965 7.9 6.0 140 500 150 2.5 25 4.0 17 

26. Rat Island II 30 March 1965 7.5 5.7 3.4 50 80 1.2 5.8 33 

27. Parkfield 28 June 1966 6.4 5.3 0.032 26 7 0.6 0.7 1.6 2.7 32 

28. Aleutian 4 July 1966 7.2 6.2 0.226 35 12 1.6 2.4 64 

29. Truckee 12 Sept. 1966 5.9 5.4 0.0083 10 10 0.3 1.2 20 



Event Date 

30. Peru 17 Oct. 1966 

31. Borrego 9 Apr. 1968 

32. Tokachi-Oki 16 May 1968 

33. Saitama 1 july 1968 

34. Portuguese 28 Feb. 1969 

35. Kurile Islands 11 Aug. 1969 

36. Gifu 9 Sept. 1969 

37. Peru 31 May 1970 

38. San Fernando 9 Feb. 1971 
~ 

39. Nemuro-Oki 17 June 1973 

40. Turkey 22 July 1967 

41. Iran 31 Aug. 1968 

M 
s 

7.S 

6.7 

8.0 

5.8 

8.0 

7.8 

6.6 

7.8 

6.6 

7.7 

7.1 

7.3 

Table 3.1 cant. 

Earthquake Source Parameters 

Mo 

mb x1027 dyne-cm 

6.3 20 

6.1 0.063 

5.9 28 

5.9 0.019 

7.3 5.5 

7.1 22 

5.5 0.035 

6.6 10 

6.2 0.12 

6.5 6.7 

6.0 0.83 

5.9 1 

L 
km 

80 

33 

150 

10 

80 

180 

18 

130 

20 

60 

80 

80 

IV 
km 

140 

11 

100 

6 

50 

85 

10 

70 

14 

100 

20 

20 

D 
m 

2.6 

0.58 

4.1 

0.92 

2.5 

2.9 

0.6 

1.6 

1.4 

1.6 

1.7 

2.1 

1: 

sec 

1 

1 

1 

1:* 

sec 

9.6 

2.2 

12 

0.9 

6.1 

12 

1.7 

8.7 

2.0 

7.S 

4.7 

4.7 

V 
km/~ec 

3.5 

3.,'. 

3.5 

2.5 

2.5 

2.l. 

[).o 

bars 

41 

22 

37 

100 

53 ~ 
'-l 

28 I 

35 

28 

62 

35 

32 

38 
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(2) Kanamori (1973). 
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(4) Abe (1974b). 
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(8) Kanamori (1972b). 

(9) Kanamori (1972a). 
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(11) Kanamori (1972a). 
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(13) Area from average of Kanamori (unpublished data) and Utsu and Seki 

(1954). Moment from Kanamori (unpublished data). 
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(27) Average of Anderson (1974) and Trifunac and Udwadia (1974). 
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(29) Tsai and Aki (1970). 

(30) Abe (1972b). 
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Mikumo (1973b) and Trifunac (1974). 

(39) Shimazaki (1975). 

(40) Hanks and Wyss (1972). 

(41) Hanks and ~"yss (1972). 
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Each numbered entry in the table of references corresponds to the 

earthquake w'ith the same number in Table 3.1. All but two of the 

columns are observational data; 't*, predicted rise time, and flo, calcu-

lated stress drop, will be discussed below. Length and width have 

been taken from the references, or in some cases estimated. Length 

always refers to length along the strike, regardless of focal mecha-

nism; width refers to width along the dip. Average dislocation comes 

either from field measurements or from dividing the moment (determined 

from seismograms) by the area and an assumed value of the shear 

modulus. 

For all events since August 1963 the ~ value is either taken 

directly from the PDE Monthly Summary, or calculated from the data in 

o 
Earthquake Data Reports. As reported by L. M. Murphy in Bath (1969), 

USCGS (later NOAA and now USGS) asks for the amplitude of the largest 

pulse (with period less than three ~econds) in the first five cycles 

of the teleseismic P or P arrival. The values of A and T are then 
n 

used in the Gutenberg-Richter formula 

(3.1) 

to derive ~ for each station. Values more than 0.7 magnitude units 

from the mean are deleted and the final average is then taken. 

Estimates of rise times typically were made by fitting the first 

upswing on long-period local records to synthetic seismograms calcu-

lated using the Haskell (1969) whole space model at one or two 
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stations. Clearly it would be desirable to use synthetics made for 

more realistic models of earth structure, but they have not yet been 

calculated for these events. Uncertainties due to the tradeoff between 

rise time and rupture velocity and due to the model may combine to 

cause errors which cannot be estimated. In some cases, such as the 

Tottori earthquake (Kanamori, 1972b), rupture velocity and rise time 

are independently constrained. 

LENGTH VERSUS IVIDTH 

Fault length (along the strike) is plotted against fault width 

(down-dip) in Figure 3.1. It can be seen that (with considerable 

scatter) observational data demonstrate that L = 2W. In Figure 3.1, 

the numbers refer to earthquakes in Table 3.1. Intraplate events are 

plotted as open circles and interplate events as solid circles. (This 

convention is also used in all later figures.) There is not any 

clear difference between the interp1ate and intraplate groups. Abe 

(1975c) has independently found L = 2W for a dataset of Japanese 

earthquakes. 

The Haskell model uses L as the direction in \vhich rupture 

propagates, while L was measured along the direction of the strike for 

Figure 3.1. It is implicitly assumed, then, that for these 41 events 

rupture propagated parallel to the strike. This is almost certainly false 

for some thrust events such as San Fernando (Boore and Zoback (1974), 

Trifunac (1974), Mikumo (1973b)), and may well be false for events 

like Nemuro-Oki with L < W. In spite of these exceptions it seems 



100 

E 
..x 

~ 

...c 
+-
u 
S 

10 

10 

-52-

30 -39_ 
26-

100 
Length, km 

1000 

Figure 3.1 - Plot of fault length (along strike) versus fault width 
(along dip) for earthquakes in Table 3.1. Open circles are intra
plate events; closed circles are interplate events. Numbers refer to 
Table 3.1. These conventions are used for all plots of earthquake 
data. 
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that rupture usually propagates parallel to the strike, especially for 

strike-slip faults. 

RISE TI~lli VERSUS THEORETICAL PREDICTIONS 

Kanamori (l972b) shmved that 

D 'V D=-
T 

cr e,o ).J 
(3.2) 

where D is dislocation velocity, D is average dislocation, T is rise 

time, and cr is effective stress. If one assumes that effective 
e,o 

dynamic stress is equal to static stress drop, ~cr, this assumption can 

be tested by comparing observed rise times to the theoretically pre-

dieted rise time 

(3.3) 

One can obtain stress drop in closed form for only a few simple 

models. The most straightforward of these is the circular crack with 

constant stress drop discussed by Keiles-Borok (1959). For that model 

stress drop is given by 

(3.4) 

Although this formula does not give the exact stress drop for the 

rectangular fault model, it follows from the work of Sato (1972) that 
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this is a good approximation. If we substitute (3.4) in (3.3), where 

S is the area of the rectangular fault and D is average dislocation, 

~ve obtain 

(3.5) 

The values of ~a and T* in Table 3.1 were calculated using (3.4) and 

(3.5), respectively. 

Figure 3.2 is a plot of observed versus predicted (from (3.5)) 

rise times for a number of earthquakes. It can be seen that, again 

with considerable scatter, observational and theoretical rise times 

are in agreement. Abe (1975b) reached a similar conclusion from a 

dataset of five Japanese earthquakes. 

The agreement between theoretical and observed rise times has 

important implications for engineering seismology. The only observa

tional parameter required in (3.5) is fault area, which frequently can 

be estimated from geological data. If total dislocation can also be 

determined from geological field work, then particle velocity near 

the fault, an important parameter in engineering seismology, can be 

reliably estimated. This is potentially of great values in areas 

lacking in historical seismicity or good instrumental data. 

RUPTURE VELOCITY 

Table 3.1 lists rupture velocities reported by various investi

gators. These values were determined from matching synthetic 
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Figure 3.2 - Plot of observed rise time versus theoretical rise 
times from (3.5). 
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seismograms to local records or from surface wave analysis. To a 

certain extent then, these values are model dependent. Some also 

may be affected by the difficulty in resolution between rise time and 

rupture velocity. Nevertheless, these measurements probably represent 

a good average sample of rupture velocity measurements. If one picks 

values of S ranging from 3.5 km/sec for shallow crustal events to 

4.5 km/sec for events breaking the entire lithosphere, one then can 

calculate that the average value of (VR/S) is 0.72. (See Table 3.2.) 

Archuleta and Brune (1975) found VR/S = 0.7 in experiments on 

fracture of prestressed foam rubber. Their measured value was for 

the surface of the foam rubber, but if one assumes infinite rupture 

velocity along the dip, their result agrees very well with the result 

VR/S = 0.72 observed for earthquakes. (Their minimum possible value 

for VR/S at depth is 0.638.) Agreement between the earthquake and 

foam rubber rupture velocities may be fortuitous or may be caused by 

a common physical friction mechanism. 

CHOICE OF FAULT MODELS 

All "deterministic" source models specify some (nearly always 

kinematic) conditions at the source, which then fix via the repre

sentation theorem of de Hoop (1958) and Burridge and Knopoff (1964), 

the complete time history at every point in the medium. (Aki (1967, 

1972) and Haskell (1966) proposed "statistical'~ models in which only 

the amplitude spectrum at the source function is specified. Since we 

will be looking at dislocation rise times, these statistical models 
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TABLE 3.2 

Observed Rupture Velocities 

Event VR (Km/ sec) VR/S 

2 Tango 1927 2.3 .65 

4 Saitama 1933 2.3 .65 

5 Sanriku 1933 3.2 .71 

6 Long Beach 1933 2.3 .65 

8 Tottori 1943 2.3 .65 

12 Fukui 1948 2.3 .65 

16 Chile 1960 3.5 .78 

17 Kitamino 1961 3.0 .86 

18 Hasaka Bay 1963 2.3 .65 

20 Kurile Is 1963 3.5 .78 

22 Spain 1964 1.4 .40 

23 Alaska 1964 3.5 .78 

25 Rat Island I 1965 4.0 .89 

27 Parkfield 1966 2.7 .77 

32 Tokachi-Oki 1968 3.5 .78 

33 Saitama 1968 3.4 .97 

35 Kurile Is 1969 3.8 .85 

36 Gifu 1969 2.5 .71 

37 Peru 1970 2.5 .56 

38 San Fernando 1971 2.4 .69 

Average of VR/8 .72 (for 20 events) 
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are not appropriate choices,) Typically the source theory papers 

calculate seismograms for an isotropic homogeneous whole space. 

Since our interest is in logarithmic source parameters, we will assume 

the whole space models are adequate. 

In most deterministic source models, either fault dislocation 

(e.g., Haskell (1969), Mikumo (1973b») or stress drop (and therefore 

fault dislocation, e.g., Burridge and Willis (1969), Richards (1973), 

Sato and Hirasawa (1973», is specified, which in turn gives displace-

ment at other points in the medium. Other authors, e.g., Hanson et al. 

(1974) and Andre-t-ls (1975), have studied numerical models with friction 

between the fault surfaces. 

All of these models predict far-field pulses which scale linearly 

with fault dimensions. Also they all yield flat spectra at low fre

quencies and w-n high frequency asymptotes (n > 2). Thus all of the 

models have at least one "corner frequency" (and some have several). 

For these models the static or low frequency level, which is propor-

. It' . L3 tlona a selsmlC moment, grows as . 

We will continue to use the Haskell (1964, 1969) model of a 

rectangular fault (shown in Fig. 3.3) in this chapter. Most studies 

have used this model in the determination of rise times from local 

seismograms. The basic Haskell model is a fault with length L, width 

W, rise time T (linear ramp time function), final dislocation D and 

rupture velocity V
R

. Rupture is instantaneous in the width direction 

and propagates (starting at one end) along the length with velocity 

V
R

, Some investigators have made the natural extension to bilateral 
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Figure 3.3 - The Haskell (whole space) fault model. 
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rupture propagation. 

Haskell's (1964) expressions are for a "one-dimensional" model 

in vhich width is included only as a weighting factor in the moment. 

Hirasawa and Stauder (1965) and Mikumo (1969) included the complete 

effect of the width to obtain an expression for spectral source ampli-

tude. 

u (w) 
c 

sin(wx ) 
T 

wx 
T 

(3.6) 

In (3.6) M is moment, P is density, r is distance, c is either P or 
o 

c 
S velocity and Re¢ is the radiation pattern (given by Haskell, 1964). 

XL and Xw are duration times associated with length and width, respec

tively and determined by fault geometry and position of the observer. 

IL(l/vR - cos e/c)/21 (3.7) 

(wecos ¢ sin e)/(2c)1 (3.8) 

T/2 (3.9) 

SPECTRAL CHARACTERISTICS 

For the present, let us adopt (in slightly modified form) the 

similarity relations given by Kanamori and Anderson e1975b). 

W 
L 

= canst (3.10) 



D 
L 

ST 
L = C 

3 
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canst 0.11) 

canst 0.12) 

(3.10) is the condition of geometrical similarity; (3.11) and (3.12) 

imply constant stress drop and constant effective stress. 

We will select values of the constants which seem to be good 

averages of observational data. We found that 

L 2W (3.13) 

seemed to be the approximate average of the empirical data. When we 

substitute (3.13) into (3.5) and set S = 4.0 km/sec we get 

T = (16 /l7T2 / (7rr
3/ 2 . 4» .0726L (3.14) 

where T is in seconds and L is in kilometers. 

We could use (3.11) directly to get a scaling relation between 

fault displacement and length. In practice though, most estimates 

of D in Table 3.1 come from dividing M by ~S, so it seems better to 
a 

relate moment directly to length. Setting L = 2W in (3.4) gives 

moment in terms of fault length and stress drop. 

M 
o 

(3.15) 
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where M is in dyne cm, L is in km and ~a in bars. 
o 

FrOTIl (3.6) we can isolate a spectral factor, dependent only on 

fault parameters and frequency. 

A(w) 
sin(wx ) 

T 
(3.16) 

The L 
3 

term follows from the similarity relation M 'V L 3 . When A(ul) 
o 

is multiplied by stless drop and the constant in similarity equation 

(3.15) we get the source moment rate spectrum. 

Equation (3.16) and the factors (3.7)-(3.9) are well known results 

for the case of a rectangular fault in a whole space. These expres-

sions can also be applied directly to the case of a rectangular fault 

with horizontal rupture propagation in the earth. (In doing so, Geller's 

(1976) use of apparent velocity in place of body wave velocity is corrected.) 

For body waves the apparent velocity at the receiver, 

v = elsin i, where c is the near-field P or S app 

velocity and i is the takeoff angle of the teleseismic ray from the 

focal sphere. This can be understood physically by invoking reciproc-

ity. Signals from a source at the position of the teleseismic receiver 

would be picked up (L cos e)/(2c) sooner at the end of the fault than 

at the center. Thus for the case of infinite rupture velocity, this 

is the difference between arrivals at the receiver from the end and 

center of the fault. This type of geometrical interpretation can be 

applied to both (3.7) and (3.8), so that these factors are seen to be 
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the difference in arrival times obtained from geometrical optics. 

Ben-Menahem (1962) gives a more rigorous derivation of this result. 

For surface \.;raves (3.7) is the \.;re1l known directivity factor 

first given by Ben-Menahem (1961). If we neglect the variation of 

the excitation function with depth, (3.8) is the factor for the 

effect of fault width on the surface \.;rave spectrum. In both (3.7) 

and (3.8), c is the (frequency dependent) surface wave phase velocity. 

The geometrical interpretation of (3.7) and (3.8) as phase delay 

between "arrivals" from the center of the fault and the ends is the 

same as for body waves. 

Typical values of c for teleseismic P waves might be 8 krn/sec, 

while for surface waves 4 km/sec is appropriate. If rupture velocity, 

vR = 2.5 km/sec, then for surface waves l/c will be of the same order 

of magnitude as l/v
R

• As e varies from 0 to 2n, XL will range from 

0.08L to 0.32L. Thus a horizontally propagating rupture will cause a 

large directivity effect. On the other hand, for body waves from the 

same source, cos e = sin i. Because of the relatively steep takeoff 

angles of teleseismic rays, it is reasonable to assume Icos 01 < 0.5. 

This assumption leads to the conclusion that XL will vary only 

from 0.16L to 0.24L. There will be only a small azimuthal dependence 

(i.e. directivity effect) of the teleseismic body wave pulse. This 

implies that one can infer the nature of a horizontal rupture propa

gation much more easily from surface waves than teleseismic body waves. 

Because of the different directivity functions for body and sur

face waves, it is inadequate to present only a single spectrum 
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representing the effect of the seismic source, as was done, for exam-

pIe, by Aki (1967, 1972). There is a separate "source spectrum," 

A(w), for each body wave phase or surface wave mode 

The source spectrum depends on azimuth, source 

dimensions, and the velocity, c. Both the length factor, (3.7) 

and the width factor, (3.8), are different for each mode. In the next 

section we will average XL and Xw over all azimuths. In these 

averages, the value of c will affect only XW' even though both factors 

are affected at nearly every particular azimuth. 

Both (3.6) and (3.16) completely neglect the effect of the 

earth's transfer function on observed seismic waves. If one were to 

calculate synthetic seismograms for an individual earthquake, it would 

be necessary to consider the earth's response and the earthquake 

source para.meters, e.g., Fukao (1971) or Langston and Helmberger 

(1975) for body waves or Harkrider (1964, 1970) for surface waves. 

Fukao (1971) and Langston and HeImberger (1975) have demonstrated 

that sP and pP phases play a crucial role in the IIp wave" from shallow 

earthquakes. Similarly one must consider the surface wave excitation 

functions and the sovrce mechanism to calculate accurate Rayleigh 

and Love amplitudes. 

In this chapter we consider trends among events, rather than 

accurate determination of parameters of particular events. Therefore, 

we assume that the effect of the earth structure averages out when 

we construct scaling relations. Thus we will use (3.16) to get 

relations between a and M , log Land M , log M and M • 
b S S 0 S 
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AVERAGE SPECTRA 

We now want to find average asymptotic forms for log A(w) from 

(3.16). In particular we require expressions for teleseismic P 

phases (from which ~ will be determined) and for 20-second Rayleigh 

waves (from which we find M). For both cases we will find average 
s 

values of XL and Xw which take the direction of radiation into account. 

In making our approximation, we will replace I (sin X)/xl by one for 

-1 
X < 1 and by X for X > 1. 

Takeoff angles of teleseismic body waves are nearly vertical. 

We will adopt the approximation that the rays takeoff straight down. 

1T 
Thus, for body waves, we set e = 2 in (3.7) and (3.8). Also, in that 

case, I cos <p I = sin 0, where 0 is dip angle of ,the fault plane. 

Using these values, average spectral factors for body waves are 

and 

<XW> 
body 

W sin 0/ (2c) . 

(3.17) 

(3.18) 

For surface waves we will average XL and Xw for e = 0 to e 21T. 

On the earth's surface we get leas <pI = cos o. Thus we get 

(3.19) 

and 
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<XW) 
surf 

W cos 0/ (if c) . (3.20) 

Comparison of (3.17) and (3.18) with (3.19) and (3.20) shows that the 

average corner frequency due to fault length will be the same for 

body waves and surface waves, but that the corner frequencies due to 

width will be different. This difference affects the high frequency 

spectrum only since the average corner frequency for width is higher 

than that for rise time or length. Note that we have assumed that 

rupture propagates parallel to the earth's surface to obtain (3.17)-

(3.20) . 

Before calculating numerical values for (3.17)-(3.20) we must 

fix V
R

, 0 and c. Also we will use (3.13) to relate L to W. We will 

set VR = 2.88 km/sec, 0 = 45
0

, c = 8 km/sec for P waves and 

c = 3.9 km/sec for surface waves. (For the earth, c must be the 

appropriate phase velocity, not the S wave velocity. Neglecting the 

frequency dependence of surface wave phase velocity is a reasonable 

approximation. ) 

From (3.9) and (3.14) 

0.0363 L = C L 
T 

(3.17) and (3.19) both give 

The width factor for body waves is 

0.0220 L = 

(3.21) 

(3.22) 

(3.23) 
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For surface waves we get 

(XW> 
surf 

0.0289 L (3.24) 

We now can approximate the logarithm of A(w) from (3.16). 

log A(w) 3 log L 

log A(w) 2 log L - log w - log C
L 

(C L)-l 
T 

log A(w) for (C L)-l 
T 

< W < 

(3.25) 

(C~)-l 

log A(w) 

The spectra from these relations are plotted in Figure 3.4. Note 

-2 that the body wave spectra have a much longer interval of w decay 

than the surface wave spectra. As a result of the error in Geller 

(1976), the body wave spectrum in Figure 3.4 and the ~-Ms curve in 

Figure 3.5 are actually for a fault dipping at 8 = 24°. 

The asymptotic spectral amplitudes given by (3.25) are very 

similar to the results obtained by Kanamori and Anderson (1975b). 

They used the same asymptotic approximation for sin X/X in conjunction 

,vith Haskell's (1964) spectral expression. Since Haskell's expression 

ignores the effect of width on the spectrum, the results of this 

chapter differ from Kanamori and Anderson's only at frequencies above 
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BODY WAVES 

Ms determined mb 
28 • L=76 6.0 

, 28 

43 6.0 

26 7 24 6.0 26 E 
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Figure 3.4 - Source spectra for surface waves_~on left) and body waves. 
Both are identical at frequencies below the w corner frequency. The 
body waves have a higher width corner frequency than surface waves, 
which follows from (3.18), (3.20), (3.23) and (3.24). This difference 
occurs because teleseismic P waves, which takeoff essentially straight 
down, have a much higher apparent velocity (phase velocity) than 
surface waves. Therefore_~he separation between rise time and width 
corner frequencies (the w part of the spe.trurn) is much greater 
for body waves than for surface w·aves. 
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the corner frequency for width. For example, the model in this chap-

ter predicts constant 20 sec spectral amplitude for faults longer 

than 110 km while Kanamori and Anderson's predicts amplitudes which 

increase linearly with L. As a result, their model predicts M ~ log L 
s 

for large events, while this paper predicts M 
s 

const. 

-3 Even though both spectra in Figure 3.4 have an eventual w 

asymptote, they are quite different than Aki's (1967) w-cube model. 

Aki's models, as a result of his assumption that v~ = kT , had only 

a single corner frequency. His w-cube model makes a fairly abrupt 

.. f 0 -3 h transltlon rom w to w be avior. The spectra presented here, 

particularly the body wave spectrum, show a gradual transition from 

o -3 
w to w asymptotes. 

~- Ms RELATION 

Changes in the definition of the body wave magnitude scale have 

resulted in a large amount of confusion today. Gutenberg and Richter 

(1942) extended the body wave magnitude scale from local events to 

fairly distant events which were recorded on Wood-Anderson and strong 

motion torsion instruments. 

Gutenberg (1945) introduced a scheme for ~ differing only in 

minor details from the summary in Richter (1958). He determined ~ 

from the instruments available in 1945, which were mostly broadband 

mechanical types. Gutenberg (1945) stated that "the average period of 

P waves in teleseisms is about 4-6 seconds." In general, Gutenberg 

did not publish the period of the P waves he used in determining ~, 
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but from the examination of his unpublished data discussed in the last 

chapter it seems demonstrates that nearly all of his amplitudes were 

obtained at periods of 4-12 sec. 

Gutenberg and Richter (1956) published their final version of the 

relation between ~ and Hs: 

M 
s 

= 0.63 M + 2.50 
s 

1.59 ~ - 3.97 

(3.26a) 

(3.26b) 

Their primary reason for deriving this relation was to facilitate the 

construction of a "unified magnitude scale." Investigators at that 

time apparently viewed the discrepancy between the two magnitude 

scales as an experimental error, rather than a fundamental effect 

of the seismic source spectrum. This view was not unreasonable at 

the time because ~ was measured at periods differing only by a 

factor of 2 to 5 from M and modern source theories had not yet been 
s 

developed. In any case, as discussed in the last chapter, Gutenberg 

and Richter found the (body wave) magnitude m , corresponding to a s 

given M , by using (3.26a). They then took a weighted average of 
s 

~, the actual body wave magnitude, and ms to obtain m, the unified 

magnitude. Later Richter (1958) published values of unified (surface 

wave) magnitude, M, which he obtained by converting m to Musing 

(3.26b). In retrospect, unified magnitude was~inappropriate, since 

it now is clear that for all seismic source theories ~ and Ms repre-

sent different parts of the spectrum which are not related by a 
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factor independent of fault length. 

~ determinations by the USCGS (later NOAA and now the USGS) 

differ markedly from those used by Gutenberg and Richter. USCGS 

values for ~ use (3.1), but A and T are measured on the m~SSN short 

period instrument, which is sharply peaked at 0.5 sec. T nearly 

always is about 1 sec in m~SSN magnitude determinations. Thus m.;rSSN 

magnitudes are based roughly on 1 sec spectral amplitude. On the 

other hand, Gutenberg and Richter determined ~ for many events at 

about 5 sec, with even larger T for the largest events. Therefore, 

it is wrong to take the Gutenberg-Richter wb as being related to 

spectral amplitude at anyone particular period. 

NODELING n~ - Ns 

Aki (1967) proposed two statis tical models of seismic sources, 

an "w-square" model (which decayed as w-
2 at high frequencies) and 

-3 an "w-cube" model, after Haskell (1966) (which decayed as w ). Aki 

compared these two models by calculating spectral ratios for similar 

events and by calculating the relation of ~ to Ms predicted by 

each model. 

Aki calculated M by adding a constant to the logarithm of 
s 

spectral amplitudes at 20 sec. The constant was chosen to give the 

best agreement between theoretical and observational spectral ratios 

of pairs of similar earthquakes studied by Berckhemer (1962). After 

fixing the additive constant for M , Aki then defined a similar 
s 

relation for~. He set ~ = const + (.71 ~ .83) log A(1 sec) and 
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found the constant ,,,hich would make ~ 1:1 when M = 6.7S. The 
s s 

coefficient of log A(1 sec) comes from a correction for duration. 

Aki (1967) calibrated his curves for the w-square and w-cube 

models in this way. He then compared the ~-Ms curves predicted by 

the models to the Gutenberg-Richter ~ -Hs relation (3.26). He 

suggested that the excellent agreement of the w-square model with 

(3.26) strongly supported it, over the w-cube model. Unfortunately, 

his theoretical m. -}-1 curve was based on I-sec spectral amplitudes, 
b s . 

while (3.26) was derived from mostly 4 to 10 sec data. Actually it 

seems that Aki's support for the w-square model was incorrect. The 

WWSSN ~--Hs data (based on 1 sec ~), discussed below, disagree with 

the w-square model. 

The approach in this chapter is to match m.-M , log S-M , log 
b S S 

M -}-1 and spectral ratio data simultaneously, adjusting the two free 
o s 

parameters to get good overall agreement with the data. A least 

squares solution is not particularly appropriate because of the large 

number of parameters and the lack of similarity (e.g., different stress 

drops) found when earthquakes are examined in detail. 

~ is approximated by a constant plus log A(l sec) and Ms by 

another constant plus log A(20 sec). A(w) was found using (3.2S) with 

the constants in (3.21)-(3.24). After several trials the additive 

constants for ~ and H were determined to be C = 4.30 and C
M 

= 2.97. s ~ s 
To obtain seismic moment as a function of L, it was necessary to assign 

/:;0 for use in (3.1S). Kanamori and Anderson (l97Sb) found that stress 

drops are 10-30 bars for most interplate earthquakes and 30-100 bars 
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for most intraplate earthquakes, so ~a = 50 bars was used. 

Clearly it is not exactly correct to get ~ and Ms directly from 

spectral amplitudes. A more accurate approach would be computing 

synthetic seismograms and then measuring ~ and Hs as it is done for 

data. For this study, using spectral amplitudes seems to be an 

acceptable approximation. 

Archambeau (1975) thoroughly discusses the differences between 

time domain and frequency domain estimates of ~ and Ms' His study 

stressed the very small differences which are crucial in the context 

of seismic discrimination. In general though, his study supports the 

applicability of using spectral amplitudes to estimate ~ of small 

and moderate events. Probably any discrepancy between spectral ampli-

tudes and time domain amplitudes is most severe for larger events. 

Two kinds of ~ - Hs data are plotted in Figure 3.5. Points belo\v 

the solid line midway up the figure are from a study of almost one 

thousand events by Evernden (1975). Each point is the average value 

of Hs for all earthquakes with that ~ value. Because Evernden's ~ 

values are an average of 0.3 lower than the USGS values, 0.3 is added 

to the ~ values before plotting them. Points above the line are 

values for individual events since mid-1963 as listed in Table 3.1. 

Data shown in Figure 3.5 are in general agreement with a study 

of the ~- Ms relation by Nagamune (1972). Nagamune fitted two straight 

lines to two years of WWSSN ~ - H data. He found 
. b S 
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w-square 
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Figure 3.5 - USCGS ~ versus M. Lower data points are averages from 
Evernden (1975), corrected by ~dding 0.3 to~. Upper points (above 
horizontal line) are individual earthquakes from Table 3.1. Dashed 
curve is mb-Ms relation from w-square model. Solid curve is from 
(3.21) to (3.25) as described in the text. 
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M 
s 

M 

1. 89 ~ - 4.62 

1.05 m - 0.02 
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M > 5.73 
s 

M < 5.73 

The latter equation comes from a study of small events mostly in 

Hokkaido. Magnitudes in the latter equation are very similar to ~ 

and M . s 

~- M curves from two models are plotted in Figure 3.5. The 
b s 

curve on the right is the ~ - Ms relation predicted by Aki (1972), 

which is based just on log A(l), without any correction for duration. 

It can be seen that all the data lie substantially to the left 

(smaller ~) of the w-square curve. Inclusion of a duration correc

tion for large events would not affect the basic conclusion that the 

w-square model does not agree with the data. 

The lefthand curve is derived from the Haskell model presented 

in this chapter. It can be seen that the predicted ~- Ms curve is 

generally in good agreement with the data. It would have been better 

to have averaged the value of ~ for all earthquakes with a particular 

M for all WWSSN events for several years> rather than present just 
s 

a few data points. 

The Evernden data have a slope of one for events with ~ smaller 

3 
than 5~2 while the predic ted ~ - Ns curve has a slope 0 f 2" for ~> 4.2, 

which clearly disagrees with the data. The large events are too 

scattered to warrant a definite conclusion, but the predicted maximum 
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~ of 6.0 is probably 0.3 or 0.4 too small. This discrepancy may be 

due to use of spectral amplitudes instead of time domain amplitudes. 

Also, it was assumed above that ~ was always based on 1 sec observa-

tions, but this is not strictly true. The Portuguese earthquake of 

1969 (number 34 in Table 3.1) has ~ of 7.3, the largest of any of the 

events in Table 1. The average T for this event was 1.77 sec; the 

Haskell model predicts that if ~ had been determined at 1 sec, it 

would be 0.5 smaller. A systematic variation of T as a function of 

~ could account for part of the difference between the theoretical 

curve and observations. Another possible explanation of the differ-

ence may be heterogeneity of the source mechanism. This possibility 

is discussed later in more detail. 

HIGH FREQUENCY SPECTRA 

The Haskell model, which has w-
3 high frequency decay, moment 

proportional to L3 and "corner frequenc~" w , (for fixed source
c 

receiver geometry, source similarity and source mechanism) proportional 

-1 
to L , is a particular member of a general class of models having 

those properties. Following an argument first suggested by Savage 

(1972), note that for many source models the area radiating energy to 

a far-field observer will appear to grow as t 2 and dislocation from 

that area will grow linearly with t. The far-field pulse, which is 

2 
the time derivative of the moment function will grow as t , giving 

-3 (Bracewell, 1965, p. 144) w high frequency spectral decay (assuming 

the t 2 onset is the most abrupt discontinuity). Many models will also 
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-1 
have a tlcorner frequency" proportional to L ,where L is some char-

acteristic source dimension of that model. Finally, most models give 

M ~ L3 where L is a source dimension. For all models meeting the 
o ' 

above three requirements, high frequency spectral amplitudes will 

behave as 

3 3 -1 3 -3 
A(w) ~ Mo (wC/w) ~ L (L /w) 'V w • 

Thus, all events with fixed geometry and source type will share a 

common high frequency asymptote which is independent of L. Therefore 

the conclusion that ~, and for much larger events, Ms' will have a 

maximum value, applies to a more general class of models. For example, 

Minster (1973), derived ~- Ms curves (with a similar shape to the 

curve from the Haskell model in Figure 3.5) from an Archambeau type 

-3 
(volume) source (also w falloff), although he did not calibrate 

them against ~- Ms data. Minster's results also predict maximum 

values of and M . 
s 

Many investigators, such as Richards (1973), Dahlen (1974), Sato 

and Hirasawa (1973) and Madariaga (1976) have outlined crack models 

for \vhich the initial rupture contributes an w -3 high frequency 

spectrum while a "stopping phase" caused by simultaneous cessation of 

fracture everywhere on the fault contributes w-
2 and therefore domi-

nates the high frequency spectrum. If such models are applicable, 

~, which is based on the initial rupture, would still have a maximum 

value, but M would not. 
s 
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M VERSUS FAULT APillA 
s 

Figure 3.6 is a plot of fault area, S, (taken from Table 3.1) 

and M. The predicted M - log S curve derived from (3.21) - (3.25) 
s s 

agrees quite well with the data. Note that the theoretical curve has 

four different segments. For small earthquakes, up to M = 6.76, the 
s 

1 
. 2 

s ope lS 3' From M = 6.76 to M 
s s 

8.12, the region in which most 

moderately large earthquakes are clustered, the slope is 1. There is 

a small section for which the slope is 2, from M = 8.12 to M 
s s 

8.22. 

After M = 8.22, the largest value of M for this calibration of the s . s 

Haskell model, the slope is infinite (e.g., S increases with no further 

increase in magnitude). 

There is a systematic difference between the interplate (closed 

circles) and intraplate (open circles) in Figure 3.6. Half of the 

intraplate events fall below the predicted M - log S curve, while 
s 

nearly all interplate earthquakes are above the curve. Kanamori and 

Anderson (1975b) showed that, at least in the region ''lith slope one, 

this meant intraplate events had a higher apparent stress. 

Utsu and Seki (1954) found the empirical relation log S = 1.02 x 

H - 4.01. Their M is Japan Meterological Agency (JMA) magnitude, 

which in practice is roughly equivalent to M , and S is in km
2

. For 
s 

the unit slope part of the M s log S curve in Figure 3.6 (M > 6.76) 
s 

the Utsu-Seki relation predicts about five times the fault area. This 

may be due to the way Utsu and Seki apparently_determined fault area. 

They used an area encompassing nearly all the aftershocks, rather than 

the one-day aftershock zone which seems to give much better agreement 
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with observed fault dimensions for earthquakes on continents. B~th 

and Duda (1964) proposed the relation log S = 1.21 M - 5.05, based 
s 

on a study of six earthquakes from different regions. B~th and Duda 

2 
used S as aftershock area (in krn ), not fault plane area, so this is 

basically similar to Utsu and Seki's result. Chinnery (1969) summa-

rizes a number of efforts to find a single linear relation between M 
s 

and the logarithm of other fault parameters. 

M VERSUS MOMENT 
s 

The data of Kanamori and Anderson (1975b) show that ~o = 50 bars 

is a good average, about halfway between values for interplate and 

intraplate events. Using ~o = 50 and (3.15), we find moment (in dyne 

cm) is related to fault length (in km) by M = (2.05 x 10
22 

L3 or 
a 

log M ~ 22.3 + 3 log L. It was sho~~ above that M ~ n log L, where 
a s 

n varies betw"een 0 and 3, as can be seen from the surface wave spectra 

in Figure 3.4. Therefore, for small earthquakes the M :log M slope 
s 0 

is one; for very large events (M ~ constant) the slope is infinite 
s 

(M increases but M is already at a maximum.). 
o s 

The log M 
o 

of the moderate 

1. 5 portion of 

M data from Table 1 are plotted in Figure 3.7. Most 
s 

sized events (M from 6.76 to 8.11) fallon the slope 
s 

3 
the curve (log M ~ -2 M). This part of the curve 

o s 

corresponds to cases where 20 sec spectral amplitudes are measured on 

-1 
the w part of the spectrum. Because the corner frequency for width 

is only slightly greater than that for rise time, the slope 3 

(M ~ 3 log M ) region is very small, extending only from M 
o s s 

8.12 to 
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M 8.22. Beyond that, slope is infinite. The data agree quite well 
s 

with the theoretical curve. As in Figure 3.6, intraplate events tend 

to have smaller M for a given M , corresponding to higher apparent 
o s 

stress. 

Aki (1972) showed that his w-square model also agreed well with 

N vs. log M data. Brune and co-workers (Brune and King, 1967; Brune, 
s 0 

1968; and Brune and Engen, 1969) presented a magnitude scale based 

on 100 sec surface wave amplitude. They then assumed log M ~ log 
o 

A(IOO) and fit two eegments, each with slope 1, to the data. Because 

of their different definition of M , their results cannot be directly 
o 

compared to this chapter. 

28 
Data in this section show that when M is larger than about 10 

o 

dyne em, M reaches its maximum value. It is important to consider 
s 

this when discussing the "maximum credible earthquake" likely to occur 

in a particular area. The earthquake size may be specified in terms 

28 
of M for most earthquakes, but when the moment approaches 10 ,magni

s 

tude no longer is a valid parameter for specifying earthquake "size." 

Whenever the maximum credible earthquake is in this range, e.g., as is 

probably the case in discussing the Alaskan pipeline, moment," not M , 
s 

should be the parameter used. 

SPECTRAL RATIOS OF SH1ILAR EVENTS 

Berckhemer (1962) studied spectral ratios of earthquakes with 

roughly the same location and mechanism. In theory, the spectral ratio 

method eliminates the effect of earth structure and leaves only effects 
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due to the difference in source spectra. Aki (1967) used Berckhemer's 

data to determine the relation between H and corner period for the 
s 

w-square and w-cube models. 

Berckhemer's original data and Aki's theoretical curves are shown 

in Figure 3.8 together with the theoretical curve from the model in 

this paper. Both models seem to agree fairly well with the data. 

Perhaps Aki's fits slightly better. Berckhemer presented six pairs 

of spectra, of which only four are presented here. The remaining two 

pairs used smaller earthquakes, involving mostly short-period data, 

which probably are less reliable. No attempt at fitting these two 

pairs was made. 

Tsujiura (1973) published spectral ratio data for many pairs of 

earthquakes. Most of his events could be fit by both Aki's w-square 

model or Aki's (1972) version of Brune's "w-model", although usually 

one model or the other fit somewhat better. There were, however, two 

pairs of events from the Aleutians which had spectral ratios that were 

unusually flat and could not be fit by either model. Tsujiura's 

spectral ratio data have not yet been compared to the model in this 

chapter. 

DISCUSSION 

The Haskell model with parameters (3.21)-(3.24) is in general 

agreement with ill. -M data (Fig. 3.5), M - log S data (Fig. 3.6), M -
b s s ~ s 

log M data (Fig. 3.7) and spectral ratio data (Fig. 3.8). The most 
o 

serious discrepancy between the data and the model comes in Figure 3.5. 
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On one hand, the maximum value of ~ is probably several tenths too 

small. On the other, the data seem to have a slope of about one up 

to ~ = 51 '4, while the curve from the model has slope one only up to 

4.19. 

This phenomenon could be explained if most earthquakes are complex 

sources with the first burst of energy coming from a smaller, sub-

stantially higher stress drop;, source than the average of the whole 

earthquake. If this is the case, then ~ would be measured on a flat 

or flatter part of the spectrum than one would expect for the earth-

quake as a whole. 

Burdick and Mellman (1976) have suggested that for the Borrego 

earthquake of 1968 most of the body wave energy carne from a source 

region with radius of 8 km, giving about half the area shown in 'fable 

3.1. Since they also found a higher moment, 0.112 x 10
27 

dyne em, 

their stress drop, 96 bars, is about 4 times the value in Table 3.1, 

taken from Hanks and Wyss (1972). Tucker and Brune (1975) also 

suggested that sources showed a smaller high stress drop event super-

imposed on the overall average event. The ~-Ms data in Figure 3.5 

agree with the possibility of the initial fracture having higher 

stress drop than the bulk event, but certainly do not prove that this 

happens. Other explanations are equally admissible. 

SUMMARY 

The following scaling relations relating width and rise time to 

length and fault area are given: 
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L 2W 

The relation for rise time was derived from the assumption that static 

stress drop and dynamic effective stress are equal; agreement of 

theoretical rise times with the data supports that assumption. 

Averages of observed rupture velocities show that V
R 

= 0.72S. 

The Haskell model predicts that magnitude will reach an upper 

limit regardless of further increases in fault length and seismic 

moment. Moment, rather than magnitude, should be used to discuss the 

possible size of great earthquakes. 

The "source spectrum" from any source model is a function of 

apparent (phase) velocity of the mode or phase being considered, as 

well as of azimuth and source parameters. It is incorrect to speak of 

single "source spectrum." 

Theoretical relations between ~ and Ms from the Haskell model 

are: 

~ M + 1.33 s 

2 + 2.28 ~ =-M 
3 s 

1 + 3.91 ~ =-M 
3 s 

6.00 

M < 2.8p 
s 

2.86 < M < 4.90 
s 

4.90 < H < 6.27 
s'" 

6.27 < M 
s 
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M and fault area (in km
2

) are related by 
s 

2 
log S = 3 Ms - 2.28 

log S 

log S 

M 
s 

= M - 4.53 
s 

2M - 12.65 
s 

8.22 

if L = 2W is used. 

M < 6.76 
s 

6.76 < M < 8.12 
s 

8.12 < M < 8.22 
s 

S < 6080 km2 

If we assume a stress drop of 50 bars, then log M (in dyne em) 
o 

and H are related by 
s 

log H 
o 

M + 18.89 
s 

log Mo = ~ Ms + 15.51 

log M 3M + 3.33 o s 

M 8.22 
s 

M < 6.76 
s 

6.76 < M < 8.12 
s 

8.12 < M < 8.22 
s 

log M > 28 
o 

These scaling relations fit observed data quite well. They should not 

be used to determine the value of a parameter for any individual earth-

quake, since these "averages,1I and the assumptions made to derive them, 
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are not exactly correct for any single event. 

A review of work by Gutenberg and Richter reveals that their 

~- Ms relation was derived from ~ data at mostly 5 or 10 second 

period. Models such as Aki's (1967) w-square model which fit theoret

ical 1 sec ~ data to the Gutenberg-Richter relation are probably in 

error. 
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Chapter 1 

INTRODUCTION 

The study of the free oscillations of the earth began as theoreti

cal research. Love (1944) gives the spheroidal and torsional modes of 

a homogeneous elastic sphere. Love's analytic solution could be 

extended to a vertically heterogeneous body only by numerical integra-

tion. 

The first instrument capable of observing free oscillations was 

Benioff's (1935) strainmeter. Benioff et al. (1954) and Benioff (1958) 

reported seeing a wave with a period of 57 minutes which they specu

lated might be a free mode of the earth. Although Benioff's claim was 

greeted with skepticism, it served as a motivation for additional work 

on the theoretical problem of finding the normal modes of more real

istic earth models. 

Pekeris and Jarosch (1958) and Alterman et al. (1959) calculated 

the eigenfrequencies for realistic earth models. The basic formalism 

developed by Alterman et al. was later extended by Saito (1967) and 

still is the generally accepted framework for current studies of 

normal modes (e.g. Okal, 1977). 

Serendipitously, soon after the theoretical methods for calcu

lating eigenfrequencies had been developed, the 1960 Chilean earthquake 

provided the first conclusive observations of free oscillatjons. 

Benioff ~ al. (1961), using the Caltech Isabe~a strainmeter, and 

Ness et al. (1961), using the UCLA tidal gravimeter, found nearly 

identical values for the eigenperiods. Both groups, also independently, 
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found that the gravest modes were split into several very closed 

spaced peaks in the spectrum. 

Pekeris et al. (1961) and Backus and Gilbert (1961) showed that 

the splitting could be explained by the perturbation caused by the 

earth's rotation. The formalism for studying the perturbation is 

identical to that used in atomic physics or in Lamb's (1945) study of 

waves in a rotating basin of water. The frequency separation pre-

dicted by Pekeris et al. and Backus and Gilbert agrees very well with 

the observed splitting. 

Since the Chilean earthquake, extensive theoretical work (summa-

rized in the next chapter) has been done on splitting caused by the 

earth's ellipticity and lateral heterogeneity. However, nearly all 

of this work was concerned with calculating the amount of frequency 

separation caused by different effects. Very little work has been 

done on the amplitudes of split normal modes. 

Also, very little work has been done on studying the observed 

amplitudes of split modes. Pekeris et al. and Backus and Gilbert 

used simple source models to study OS2 and OS3 for the Chilean earth-

quake. However, no one has ever compared the observed amplitudes to 

those predicted by a double couple source model. It is also remark-

able that, although the Chilean earthquake records are the best 

dataset for studying splitting, no further analyses of these data have 

been performed since the work of Benioff ~ al., Smith (1961) and 

Ness et al. 

In this thesis, methods are developed for calculating the 
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amplitudes of split normal modes excited by double couple sources. 

These methods are then used to calculate relative spectral amplitudes 

for comparisons with published observed spectra. The Isabella strain 

record is reexamined and split modes are studied in the time domain 

by narrow band filtering the data. Synthetics are computed using the 

theoretical methods developed in this thesis. Comparison of the 

observations with the synthetics demonstrates the existence of split

ting for modes for which splitting had not been established, and 

allows the use of time domain synthetics for Q determination. The 

methods developed in this thesis should prove extremely useful in the 

study of split normal modes. 
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Chapter 2 

AHPLITUDES OF THE SPLIT NORHAL NODES OF A ROTATING, 

ELLIPTICAL EARTH EXCITED BY A DOUBLE COUPLE 

ABSTRACT 

This chapter develops the theory necessary to explain the amp li-

tudes of the earth's split normal modes. Expressions are derived for 

the amplitudes of the free oscillations of a laterally homogeneous 

rotating and elliptical earth excited by a point double couple. The 

eigenfunctions for this problem are the complex vector spherical 

harmonics about the north pole. The amplitudes of the normal modes 

are obtained by transforming Saito's (1967) r.esults, expressed in 

vector spherical harmonics about the earthquake source, into geographic 

coordinates. The dependence of the excitation of each singlet within 

a mUltiplet is explicitly separated into factors for geometric fault 

parameters, seismic moment, source depth, earth structure and the geo-

graphic coordinates of the source and receiver. Synthetic torsional 

and spheroidal displacement and strain spectra are presented for low 

geometries. 

These results are suitable for the synthesis of observed spectra 

and time domain records in which splitting is an importan~ effect. 

These results are applied to the Chilean and Alaskan earthquakes in the 
~ 

following chapters. Very good agreement w'ith observations is obtained. 
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INTRODUCTION 

Following the observation of split peaks with varying amplitudes 

in the free oscillation spectra of the 1960 Chilean earthquake (by Ness, 

Harrison and Slichter, 1961 and Benioff, Press and Smith, 1961), 

Pekeris, Alterman and Jarosch (1961) and Backus and Gilbert (1961) 

showed that the splitting could be explained by the earth's rotation. 

Pekeris ~ al. and Backus and Gilbert calculated the relative ampli

tudes of the low order spheroidal modes excited by several simple 

sources. In this chapter we calculate the amplitudes of the split 

modes of a rotating and elliptical earth due to a realistic model of 

an earthquake source, a double couple of arbitrary orientation. 

These results for the excitation of the split modes allow one to 

use the relative amplitudes of singlets to study earthquake source 

mechanisms. In the next chapter we calculate for the first time the 

theoretical singlet amplitude ratios from published source parameters 

for the 1960 Chilean earthquake and the 1964 Alaskan earthquake. For 

both events the synthetic relative spectral amplitudes are in remarkable 

agreement with observations of very low order modes. It is also possi

ble to analyze several hundred hours of records from the Chilean earth

quake for these low order modes. These records are dominated by a 

complicated signal generated by rotational splitting which is matched 

quite closely in the time domain (Chapter 4) using the r~sults derived 

in this chapter. 

The calculation of the excitation of the normal modes of a non

rotating, laterally homogeneous earth is greatly simplified by its 
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spherical symmetry. As a result of the degeneracy arising from this 

symmetry, vector spherical harmonics in coordinates with the source on 

the polar axis may be chosen as eigenfunctions. This choice greatly 

simplifies the excitation calculations, because the eigenfrequency 

depends only on the angular order number, t, and only modes with 

azimuthal order numbers m = 0, ±1, ±2 are excited by a point double 

couple. 

The earth's rotation and ellipticity remove the degeneracy of 

the problem. For the nondegenerate problem, splitting is caused by 

the perturbing effects of the Coriolis force, centripetal force and 

ellipticity, all of which are symmetric about the earth's rotation 

axis. In contrast to the degenerate case, there is a distinct eigen

frequency, w
tm

' for each singlet. Dahlen (1968, 1969) showed that the 

zeroeth order eigenfunctions are complex vector spherical harmonics 

about the North Pole, and calculated the eigenfrequencies of the split 

modes for several earth models. Although the frequency splitting 

within a mUltiplet depends on the earth's rotation rate, ellipticity 

and structure, the zeroeth order amplitudes of the split normal modes 

do not depend on the rotation rate and the ellipticity, and may thus 

be calculated without taking into account the precise frequency 

separation. 

A substantial portion of the method for calculating the excitation 

of the degenerate modes may be adapted to the nondegenerate case, 

although much additional complexity results because the source is not 

on the axis of symmetry. The most important consequence of the removal 
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of the degeneracy is that in general, for a double couple point source, 

modes of every azimuthal order number from m = -2 to m = +£ are excited. 

We show that the spectral amplitudes of the pair of singlets of orders 

m are equal. Furthermore, the geographic coordinates of the source and 

receiver appear individually in the expressions for the amplitudes, 

while for the degenerate case only their ~elative position affects the 

final result. 

If the additional perturbation induced by lateral heterogeneity 

is introduced, then in general the eigenfunctions are linear combina

tions of the spherical harmonics (Saito, 1971; Usami, 1971; Madariaga, 

1972; Madariaga and Aki, 1972; Luh, 1974; Dahlen, 1976). In this 

study we consider only the effects of rotation and ellipticity which 

are the primary causes of the splitting of the low order modes. In 

the remainder of the thesis nondegenerate is used to denote the case 

of a laterally homogeneous, rotating and elliptical earth, which has 

complete symmetry about the rotation axis. 

Many authors have considered the excitation of the earth's normal 

modes. Saito (1967) presented expressions for the excitation of free 

oscillations by a point source in a spherically symmetric earth. 

Kanamori (1970 a, b, 1971, 1976), Abe (1970), Fukao and Abe (1971), 

Shimazaki (1975), Okal (1976), and other authors applied Saito's normal 

mode results to the synthesis of long period surface waves. Kanamori 

and Cipar (1974) presented compact expressions for the excitation 

problem. Gilbert (1970, 1973) introduced the moment tensor representa

tion of a seismic source, which was used by Dziewonski and Gilbert 
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(1974) and Gilbert and Dziewonski (1975) to calculate the excitation 

of the degenerate modes. (The moment tensor (Gilbert, 1970) is formally 

equivalent to the double couples and couples without moment used by 

Saito (1967) and Takeuchi and Saito (1972). The equivalence has been 

discussed by several authors, e.g. Geller (1976). Luh and Dziewonski 

(1976) modified che moment tensor solution to 

include the effects of rotation and ellipticity. 

In this chapter we extend Saito's results to obtain the excitation 

of the nondegenerate normal modes. This approach allows us to apply 

solutions for the excitation of degenerate normal modes (Saito, Kana

mori and Cipar) to the nondenerate modes. We derive expressions 

for torsional and spheroidal displacement and strain fields in the time 

domain. These expressions may then be used to calculate spectral 

amplitudes. 

We calculate synthetic displacement and strain spectra for low 

order fundamental mode torsional and spheroidal multiplets (angular 

orders two through five) excited by four basic fault geometries 

(vertical and 450 dip; pure dip slip and strike slip). For particular 

source and receiver locations we present figures showing the relative 

spectral amplitudes of the individual singlets within each multiplet 

for each displacement and strain component. In general, the relative 

amplitudes within a multiplet will vary substantially wit~ angular 

order number or even between different displac~ent or strain componenrn 

for the same order number. Usually there is no consistency in the 

preferential excitation of singlet pairs with azimuthal order numbers 
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±m between multiplets. 

Our method may be summarized as follows. We use Dahlen's (1968) 

results for the case of complete symmetry about the rotation axis. 

Since the zeroeth order eigenfunctions are the complex vector spherical 

harmonics about the north pole, we obtain the excitation in terms of 

these eigenfunctions. To do so we use the rotation matrix elements 

to transform the excitation expanded in vector spherical harmonics 

about the source into the geographic coordinates. 

This first order perturbation theory using zeroeth order eigen

functions and first order eigenfrequencies is, of course, an approxima

tion. Such an approximation, in which the eigenvalue is found to a 

higher order than the eigenfunction, is a common practice in applica

tions of perturbation theory. We regard the resulting zeroeth order 

amplitudes as being adequate for our purposes, as our intent is to 

derive results suitable for comparison to observations. For this 

purpose we require far greater precision in the eigenfrequency than in 

the eigenfunction. 

By examining spectra, eigenfrequencies can be determined quite 

precisely. On the other hand, spectral amplitudes cannot be measured 

very precisely; the uncertainty is probably at least 10%. Since the 

error made in omitting the first order correction to the eigenfunctions 

is of the same order as the first order correction of the eigenfre

quencies. and is almost certainly smaller than the experimental 

uncertainty in the amplitudes, it seems sufficient to use the zeroeth 

order amplitudes. Similarly, the first order eigenfrequencies seem 
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acceptable in view of present experimental errors. 

The true test of such an approximation is in its application to 

the data. Because we are successful in synthesizing spectra (chapter 3) 

and time domain records (chapter 4) it appears that the first order 

perturbation theory is all that is required. As better data become 

available~ perhaps from the new long period network (Agnew et al., 

1976), it may be necessary to employ higher order perturbation theory. 

Our method, using the rotation matrix elements, could also be 

generalized to the case of a laterally heterogeneous earth. Since 

the eigenfunctions are now linear combinations of the spherical 

harmonics about the north pole (Luh, 1974), we would again transform 

the excitation into the geographic coordinates. The final result would 

then be obtained by taking the appropriate linear combinations. Due 

to the complexity of this procedure and our ability to fit data for 

very low order modes with a model including only rotation and elliptic

ity, we do not include the effect of lateral heterogeneity in this 

thesis. 

NORMAL MODES OF A ROTATING ELLIPTICAL EARTH 

We adapt Saito's (1967) results for the normal modes of a spheri

cally symrnetri~ earth to the case of a laterally homogeneous, rotating 

and elliptical earth. The displacements and stresses are expanded in 

complex vector spherical harmonics about the north pole. 

The torsional and spheroidal displacements are respectively 
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[y~ (r)l 
n 'j 9.m 

(

. + . - ) lW t lW t 
a n 9.rn + e n 9.m (2.1) 

and 

(2.2) 

+ 
The torsional and spheroidal vertical stresses. P = (P P P) , rr' r8' r¢ 

are respectively 

00 9. 

L L 
9.=0 m=-Z 

and 

x (
. + . - ) lW t lW t 

e n 9.m + e n 9.m • (2.4) 

We follow established usage, and denote eigenfrequencies for both. 

torsional and spheroidal modes by wn , although the torsional eigen
n hm 

frequencies (in 2.1 and 2.3) differ from the~pheroidal ones (in 2.2 

and 2.4). The frequency in question should be clear from the context. 

For the degenerate problem, each mode has two eigenfrequencies 
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with equal absolute value, but opposite sign. However, when a pertur-

bation is applied, the eigenfrequencies associated with a particular 

mode no longer have the same absolute value. The positive eigenfre

quencies ( w~ ) may be considered as the "physical" frequencies of the 
n ",m 

split modes. The negative eigenfrequencies ( w~ ) arise from any 
n ",m 

application of perturbation theory to the splitting problem (e.g. 

Backus and Gilbert, 1961). In later sections the negative eigen-

frequencies will be eliminated from the final expressions. 

The sum over n sums all the overtones. From this point we consider 

only a single overtone and suppress the sum over n and all overtone 

indices. The complete displacement and stress fields can always be 

derived by adding all the overtones. 

A£m and D£m are the amplitudes of the individual spheroidal and 

torsiona~ modes and are found by solving the excitation problem. 

·S T 
(Yi)£m and (Yi)£m are the spheroidal and torsional radial eigenfunc-

tions. Though derived for the degenerate case, they remain valid, to 

zeroeth order, for the nondegenerate case. Following Alterman et al. 

(1959) and Saito (1967) we will suppress all subscripts on the (Y.)n 
1 ",m 

in the remainder of the thesis. 

The surficial basis vectors are the complex vector spherical harmonics 

1 aY£m(8,¢) 

sin 8 a¢ 
(2.5) 

o 
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where 

(_l)m [(Q,-m) !] ~ pm( e) im¢ 
(Q,+m)! Q, cos e (m .:: 0) (2.6) 

and 

(m < 0) 

e is the colatitude and ~ is the longitude. The associated Legendre 

polynomials are defined as 

m 
p Q, (x) (2.7) 

The vector spherical harmonics then have the orthogonality and normali-

zation properties 

21T 1T 

fa fa (T; 'm' (0 '~))-(Tim (0 ,~)) sin e de d¢ 

2 1T 

L2Ia fa (+1' ) (+1 ) sin e de dCP = S Q, , m ' (e , ¢) • S Q,m ( e , ¢) 

21T 1T 

[[ (+2* ) (+2 ) e de de s Q, 'm ' (e , cp) • S Q,m ( e , ¢) sin 
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(2.8) 

where 

L2 = Q,(Q,+1). 

Equation (2.6) gives us the symmetry relations 

-+ (_l)m +* TQ,m(6,</» TQ,_m(6,</» (2.9) 

-+1 
SQ,m(6,</» (_l)m -+ 11( 

SQ,_m(6,</» 

-+2 
SQ,m(6,</» (_l)m -+2* 

SQ,_m(6,</» 

for the vector spherical harmonics. 

Dahlen (1968) applied perturbation theory to the degenerate case, 

and calculated the splitting for several earth models. The perturbed 

eigenfrequencies may be found from the unperturbed eigenfrequency, 

using 

W.Q,m (2.10) 

Here the perturbed eigenfrequency, wQ,ro' and the unperturbed eigen-

frequency, w.Q,' may be either positive or negative but must have the 

same sign. The frequency shift (ow) is given ~ 

(OW).Q,m (2.11) 
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in Dahlen's notation, where the splitting parameters at and Yt are due 

to the ellipticity, and B
t 

is due to the earth's rotation. Because of 

2 
the m dependence of (ow)tm' the perturbed eigenfrequencies are not 

symmetrically spaced about the unperturbed eigenfrequency or the central 

perturbed frequency. 

The splitting parameters for positiv2 and negative frequencies 

are related by 

Since W; = - Wt' (2.11) and (2.12) show that 

and thus 

+ 
(ow) tm 

+ 
w.Q,m W

t
_m 

(2.12) 

(2.13) 

(2.14) 

We will use (2.14), together with the symmetry relations bettveen 

spherical harmonics (2.9), to eliminate the negative eigenfrequencies 
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from the final expressions for the displacements. 

TRANSFORMATION OF THE SOURCE DISCONTINUITIES 

INTO GEOGRAPHIC COORDINATES 

We nmy generalize Saito's (1967) results to the ,case of a rotating, 

elliptical earth. A point source causes discontinuities in stress and 

displacement across an infinitesimal shell, which are expanded in vector 

spherical harmonics. The expansion coefficients are required to find 

the amplitudes of the free oscillations. For the nondegenerate case, 

the expansion must be carried out in the geographic coordinate frame. 

Luh and Dziewonski (1976) calculate these expansion coefficients from 

scratch for each individual source location and mechanism. 

Our approach is to use Saito's expansion coefficients for the 

discontinuities resulting from a double couple, in a coordinate system 

with the source on the polar axis. We then use elements of the rota

tion matrices to transform this spherical harmonic expansion into the 

geographic coordinate frame. Thus for any source location we perform 

a simple transformation rather than completely recalculate the expan

sion coefficients. 

It is first necessary to introduce the coordinate system of the 

earthquake source, and to show how the rotation matrix elements allow 

us to transform the expansion coefficients from this coordinate system 

to the geographic system. 

We adopt the fault geometry of Kanamori and Cipar, shown in 

figure 2.1. '~e use a coordinate system in which the source is at 
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FAI/LT PLANE 
L 

North 

Figure 2.1 - Fault representation of Kanamori and Cipar (slightly 
modified). v is the slip vector, and gives the displacement of the 
hanging wall block. n is the normal to the fault plane, and L points 
north. The strike p is measured counterclockwise from L. The dip 
angle 0 is measured from the negative Xi axis, and the slip an~le A 
is measured in the fault plane counterclockwise from Xi. 
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(r = r 8' = 0, ¢' = 0) and describe points in this system by s' 

(r, 8 " ¢I). In this frame the fault strike, at an angle p measured 
, 

counterclockwise from north, is the Xl axis. 
, 

The X3 axis is vertical. 
t 

The fault plane dips at an angle 8 measured from the negative X
2 

axis, 

and the slip angle A, which gives the direction in which the hanging 

wall block moves with respect to the foot wall block, is measured 

counterclockwise from Xl in the fault plane. The cartesian unit vector 

in the direction of slip is given by 

A 

V = (cos A, sin A cos 8, sin A sin 8) (2.15) 

and the unit normal to the fault plane is 

n (0, - sin 8, cos 8). (2.16) 

The geographic coordinates of the source are (r, 8 , ¢ ), and 
s s s 

points in the geographic system have coordinates (r, 8, ¢). The X3 

axis is the polar axis and the Xl -X
3 

plane is the plane of the prime 

meridian. Thus the unit vector e points south at any point and ¢ points 

east. 

Hereafter, we will use primes (X!, f!, y!, A; ) to denote quanti-
1 1 1 Nm 

ties associated with the source coordinate frame. The corresponding 

unprimed quantities are associated with the geographic coordinates. 

The source and geographic systems can be related to each other 

through the three Euler angles which allow us to rotate the geographic 

(Xl' X2 , X
3

) axes into the source (Xi, Xi' X3) axes. To perform this 
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transformation we start with the Xl' X2 , X3 axes and make three counter-

clockw"ise rotations. We first rotate by a about the X3 axis, then by 

* 8 about the resulting X
2 

(or X
2

) axis, and finally by y about the X; 

axis. This process is shown in figure 2.2. The line L, drawn to 

clarify the choice of Euler angles, points north in the Xi-X; plane. 

We see that for a source at e , ~ , with fault strike p, 
s s 

a = ~ s 

8 = e s 

y=n+p. 

(2.17) 

(This is only true for the Euler angle conventions of Brink and Satchler 

(1968) - at least three other conventions are used by other authors.) 

Brink and Satchler show that spherical harmonics in the two 

coordinate systems are related by the rotation matrices D~(a,8,Y) 

which are irreducible representations of the rotation group. For 

brevity, we will denote this set of three Euler angles by R = (a,8,y). 

The rotation matrix elements are then given by 

where 

[(£+m)! (£-m)! (£+k)! (£-k) !J~ ::: 2: (_l)t 

t t!(£+m-t)! (£-k-t)! (t+k-m)! 

[ J
2t+k-m 

sin (8/2) [cos (8/ 2)J U+m-k-2t 

(2.18) 

x (2.19) 
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X3 

North Pole 
X3 

X' 
2 

North Pole 
Source 

X' 
3 

X* 
1 

Strike 

X' 
2 

__ ~~--r-----~X** 
2 

Euler angles 

f3 = 8s 
about X* 2 

y= 1T + P 
about X~ 

Figure 2.2 - Euler angles which rotate geographic (Xl' X2 , XJ) axes 
into source (Xi, x~, X;) axes. All rotations are right hanaed. The 
line L points nortfi in the Xi - Xz plane. 
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and the summation ranges over all values of t which give non-negative 

factorials. (An alternative derivation of the rotation matrix elements 

is given by Backus (1964).) 

The relation between spherical harmonics in the source and geo-

graphic frames is then 

(2.20) 

Since the vector spherical harmonics are themselves vectors, we may 

write equalities between vectors (rather than their components) 

Q 

D~k(R) + (' ') L + 
T.Q,k e ,<p T.Q,m(e,<P) 

m=-£ 

Q 

S~k(e"<p') = L D~(R) S~m(e,<P) (2.21) 
m=-Q, 

-S~k(el,cj>') 
Q, 

Q, 52 L Dmk (R) (e ,cj» • 
m=-Q, 

Qm 

(To compare individual components in (2.21) directly, the (e,ej» 

components must be rotated into the (e',cj>') frame, or vice versa.) 

We now use the rotation matrix elements to obtain the expansion 

in geographic coordinates of the discontinuities in displacement and 

stress caused by a point source. We begin with this expansion in the 

source coordinates, and derive the relations between the two expansions. 

These relations will allow us to convert Saito's source frame results 

to the geographic results we require. 
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In the source frame, Saito's expressions for the discontinuities 

in displacement and stress can be rewritten as 

8U(~ ;t) = V(r + E: t) - V(r - E: t)-= 
s s' s' 

00 

~. _[ ~~o mtjgiT(W J \m(O' ,. 'J + giS(wJ s:m(O' '. 'J 

(2.22) 

and 

8P(t ;t) = Per + E:,t) - Per - E:, t) = 
s s s 

~.l Jo mtJ~iT (wJ T~m (0' ,.' J + gis(wJ s~m (0' '. 'J 

+ g4S
(W) S~m(e',cj> I)] x eiw

t 
dw (2.23) 

where oU(f ;t) and oP(t ;t) are the jumps in displacement and stress 
s s 

respectively across a spherical shell at the source depth r = r . 
s 

For the special case of a step function source time dependence, 

the frequency dependent discontinuity coefficients g~(w) may be 
1 

written 

g ~ (w) 
1 

(f.) , 
1 (2.24) 

where the f' are the expansion coefficients for the spatial dependence 
i 
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of the discontinuity. Each (f~)' or (f~) I has an implicit dependence 
1 1 

on 9" and m. 

To transform (2.22) and (2.23) to the geographic coordinates, we 

use the results derived in (2.21) for the vector spherical harmonics, 

and derive a general relation between the discontinuity expansion 

coefficients in geographic coordinates and those in source coordinates 

in terms of the rotation matrix elements 

(f.) n 
1 ",m (2.25) 

In this equation we have written the 9", m dependence of the f. explic-
1 

itly. We will omit these subscripts in the remainder of our discus~ 

sions. Note that, as the f. are coefficients of the basis vectors, 
1 

they transform (2.25) in the opposite sense as the vector spherical 

harmonics (2.21). 

Using this relation between the discontinuity expansion coeffi-

cients, we could rewrite (2.22) and (2.23) to obtain expressions for 

the discontinuities in displacement and stress in the geographic 

coordinates. We will not do so, because in calculating the excitation, 

we require the discontinuity expansion coefficients, f. (2.25) rather 
1 

than the discontinuities themselves. 
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TORSIONAL NODES EXCITED BY A POINT DOUBLE COUPLE 

We now use the expansion coefficients in geographic coordinates 

to apply Saito's excitation results to the nondegenerate case. We 

derive the excitation of the torsional modes in some detail in this 

section; we present results for spheroidal modes in the next section. 

It is shown that although (in source coordinates) only singlets of 

orders m;-2 through m=+2 are excited in the degenerate case, all 

2£+1 singlets within a multiplet are excited in the nondegenerate case. 

We now modify Saito's results for the displacements resulting 

from a point source with step function time dependence and unit seismic 

moment. To zeroeth order, in the geographic frame, Saito's expression 

may be written as 

-)-T -)-
U (r,t) (2.26) 

-)- T T 
,,,here r is the position of the receiver, y 1 (r) and y 2 (r) are the 

eigenfunctions for the torsional modes, and I~ is an energy integral 

defined by Saito. 

AQ,m = 

A£m is the modal amplitude 

[r2(f~ yi(r) - fi y~(r»)]r=rs 
2w~ I~ 

As we have shm"n, we can express this as 

.(2.27) 

(2.28) 
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where the source frame modal amplitude is 

(r2 [(f~) , T (fT) , y~(r)] )r=r
s 

y 1 (r) - 1 

A~k 
2w 2 IT 

1 

(2.29) 

These equations are valid for an arbitrary point source. Saito 

gives expressions for (fi)' and (f~)' for a double couple, in terms of 

the real spherical harmonics (P;(cos 8) cos m¢ and P;<sin 8) sin m¢) 
A 

and in terms of the cartesian components of the unit slip vector, v, 
A 

and the unit normal to the fault plane, n. These can be transformed 

into the coefficients of positive and negative complex spherical 

harmonics for the fault representation of Kanamori and Cipar. For 

the complex (but still completely unnormalized) spherical harmonics, 

P;(cos 8) ei~, the coefficients become 

for m = ± 1, and 

2,Q,+1 
:::::--

1 

1 
2 

(-sin A cos 28 -+ i cos A cos 8) (2.30) 

(-cos A sin 0 ± i sin A sin 0 cos 0) (2.31) 

for m = ±2. Both of these quantities are zero for m == 0, and I ml- > 2. 

(~s is the rigidity at the source depth r s ') 

To convert these coefficients into the co;fficients of our nor-

malized complex spherical harmonics, we mUltiply by the conversion 
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factors, 

= [(£+m)! Jz (_I)m 
C£m (£-m)! J for m > 0 (2.32) 

and 

= C
n 

(_Om 
",-m 

for m <: O. 

For convenience, we introduce the source amplitude factors defined by 

Kanamori and Cipar for the degenerate excitation problem 

(2.33) 

and 

We now calculate the source frame modal amplitude (2.29), A~m' 

which is zero for Iml > 2. If the radiation pattern terms are 

expressed as 

1 
(-sin A 20 i cos A cos 8) PI = - cos -

4 

and 

1 
(-cos A sin o + i sin A sin 0 cos }) (2.34) P2 -

4 

we can write 
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AI == 0 
Q,O (2.35) 

Thus we have the symmetry relation 

AI = (_l)m AI* • 
Q,m 9--m (2.36) 

Brink and Satchler give a symmetry relation for the D9- functions, 
mk 

= [D9- (R)] * (-1) m-k 
-m-k (2.37) 

Substituting (2.35) and (2.36) into (2.28), we find the same symmetry 

for the geographic modal amplitudes as for the source frame amplitudes 

m * A = (-1) An . 
!Lm ",,-m 

(2.38) 

We use (2.38) and the symmetry properties of the vector spherical 

harmonics (2.9) to eliminate the negative eigenfrequencies, w -, .£rom 
9-m 

(2.26). Defining 

(2.39) 
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we obtain the torsional mode displacements resulting from a double 

couple point source with step function source time history; 

-+T -+ 
U (r,t) 

-iW9,mt j 
e , (2.40) 

where w9,m is the positive eigenfrequency. We can also combine terms to 

write the displacements in terms of real quantities 

-+T -+ 
U (r, t) 

(2.41) 

The displacements from spatially finite sources, or those with 

more complicated time functions, may be derived from (2.40) or (2.41) 

by convolution. 

SPHEROIDAL MODES EXCITED BY A POINT DOUBLE COUPLE 

To find the spheroidal mode solutions, we modify Saito's results 

for the displacements resulting from an arbitrary point source with 

step function time dependence and unit seismic moment. To zeroeth 

order, in the geographic frame, Saito's expression is 

00 9, 
-+S -+ 
U (r, t) == 2: 2: 

9,=0 m=-2 
(2.42) 

x 
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,,,here 

(2.43) 

We relate the geographic and source frame modal amplitudes by 

(2.44) 

Thus in the source frame, 

[r2(f~)' y~(r) - (f~)' y~(r») + L 2r2(£~)' y~(r) - (f~)' y~(r»)l~r 
____________________________________________________________ ~s 

(2.45) 

S S 
II and 12 are energy integrals for the spheroidal modes, also defined 

by Saito. 

As we did for the torsional modes, we convert Saito's expansion 

coefficients for a double couple to those of the normalized complex 

vector spherical harmonics. These expressions are simplified by 

introducing the amplitude factors Ko' K1, K2 of Kanamori and Cipar: 

2(3)- + 2].1 ») s s 

>- + 2].1 
s s 

L2 S ) - - y (r ) 
2 3 s 
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S 

Kl 
2Q. + 1 Y 4 (r s) 

(2.46) 2 s L2I S) l1s 4n wQ.(I l + 2 

S 

K2 
2Q. + 1 Y3(rs ) 

2 S L2I S) r 
4n wQ.(I l + s 2 

where A and ~ are the elastic constants at the source depth. Using 
s s 

these, and the radiation pattern terms 

1 sin A sin <5 <5 qo -2 cos 

1 
(-cos A 0 + i sin A 20) (2.47) ql = - cos cos 

4 

1 (-sin A 0 sin 0 i A sin 0) q2 = - cos - cos 4 

we can derive our final relations for the D~m (which are zero for 

Iml > 2) 

n;2 :::: K2q2 CQ.2 

n;l ::: K1ql CQ.l 

n' Q.o 
::: K q C 

o 0 Q.o (2.48) 

n;_l * K1ql CQ._1 

* D;_2 K2
q 2 CQ._2 

Again, note that n;m ( _l)m ,* = Do· X,-m 
Thus for the geographic expansion 

coefficients 
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To obtain our final results for the displacements, we define 

(2.49) 

(2.50) 

We can then write (after disposing of the negative frequencies) that 

-+S -+ 
U (r, t) (2.51) 

or 

-+S -+ 
U (r,t) (2.52) 

-+ -+ ) 
-2Im(E o (r») sin Wo t~ . 

X.m X.m f 

Note that (2.52) shows that the displacements are real. As with the 

torsional modes, w
tm 

is the positive eigenfrequency. 

For an isotropic source of unit moment (2.42) through (2.45), 

(2.51) and (2.52) are used, but the only nonzero excitation coefficient 

in the source frame is 

D' = K' C 
to 0 to (2.53) 

where the source amplitude factor K' is adapted from Takeuchi and Saito 
o 

( 1972) 



-l33-

n + 1 K' 
o 

47T W~(I~ + L2I~) [ 

4l-1 
_~s 

(>.. + 2lJ ) 
s s 

+ 
0. + 2}l ) 

s s 
(A + 2}l ) r 

s s s 

NUNERICAL RESULTS 

(2.54) 

The final expressions for the displacements of spheroidal (2.52) 

and torsional (2.41) modes are suitable for numerical computation. We 

require only the source amplitude factors Ko' K1 , K2 , L1 and L2 , the 

radial eigenfunctions y.(r), the three geometric fault parameters 
1. 

(strike, dip and slip), the locations of the source and receiver and 

the seismic moment. We investigate the dependence of the displacement 

and strain spectra of the fundamental torsional and spheroidal modes 

on the geometric fault parameters and the positions of the source and 

receiver. This also provides us with a method of checking our results. 

We ensure that the total of the displacements and strains within each 

multiplet at time t = 0 are equal to those calculated from the expres-

sions of Kanamori and Cipar (1974) for the degenerate modes. Note 

that the velocities at t = 0 would be identically zero if there \Vas 

no splitting, but that they differ slightly from zero because of the 

~ 

approximation inherent in the perturbation expansion. A second test 

is to verify that for an isotropic source we derive the same results 
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from the addition theorem for Legendre polynomials (Pekeris ~ al., 

1961). 

The values of the source amplitude factors Ko' K1 , Ki and L1 , L2 , 

which were used by Kanamori and Cipar are listed in Table 2.1. These 

amplitude factors are for a hypo central depth of 55 km and a moment of 

27 
10 dyne-cm. He also list the radial displacement eigenfunctions at 

the earth's surface (r = a) for each mode. 

malized to one; only y~(a) varies from mode to mode. 

We also require the radiation pattern coefficients, which are 

given in Table 2.2 for each of the four basic faults. For the degener-

ate case, q is the coefficient for radially symmetric Rayleigh waves; 
o 

q1 and PI' for two-lobed Rayleigh and Love waves respectively and qz 

and PZ' for a four-lobed radiation pattern. Seismologists have 

developed considerable intuition in using surface wave radiation 

patterns to find fault geometries. It is much more difficult to inter-

pret the singlet amplitudes in our figures intuitively, because each 

singlet amplitude involves a sum, (Z.28) or (Z.44), of source frame 

amplitudes weighted by the rotation matrix elements. Thus, except 

for some special cases, it is difficult to find simple explanations 

of the relative amplitudes of singlets within a multiplet. 

Strain and displacement spectra are calculated for eight fund a-

mental low order number modes: OS2 - OSS and OT2 - OTS. These modes 

were chosen because it appears almost certain that they are not seri-

ously affected by perturbations resulting from lateral inhomogeneities. 

Furthermore, it is only for the lowest order modes that individual 
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Table 2.1 

Source Amplitude Factors and Surface Eigenfunctions 

Mode K yi(a) (cm) S 
0 K1 K2 Y3(a) (cm) 

OS2 .616 x 10 -3 .209 x 10-5 .678 x io-5 
1. .252 x 10-1 

OS3 .773 x 10-3 .245 x 10-5 -.160 x 10-4 
1. -.124 

OS4 .768 x 10-3 .243 x 10-5 -.137 x 10-4 1. -.150 

OS5 .760 x 10 -3 .204 x 10 -5 -.105 x 10 -4 
1. -.146 

Mode L1 L2 
T 

Y1 (a) (cm) 

OT2 .493 x 10 -5 .987 x 10-4 1· 

OT3 .391 x 10-5 .337 x 10-4 1. 

OT4 .341 x 10-5 .178 x 10-4 1. 

OT5 .308 x 10-5 .114 x 10-4 1. 
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Table 2. '2 

Source Frame Radiation Pattern Terms 

Fault Type A 0 qo ql q2 PI P2 

Vertical dip slip 90° 90° 0 
i 0 1 

0 
(Fig. 3 & 8) 

- 4 4 

Vertical strike slip 0° 90° 0 0 i 0 1 

(Fig. 4 & 9) 
-- 4 -4 

45° dipping dip slip 90° 45° 1 0 
1 

0 i 

(Fig. 5 & 10) 4 - 8" 8 

45° dipping strike slip 0° 45° 0 1 i i -1 

(Fig. 6 & 11) 412 412 4/2 412 
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singlet peaks have definitely been resolved observationally. 

In figures 2.3 - 2.6 we show synthetic line spectra for four 

fundamental spheroidal modes. For graphical purposes the lines are 

drawn symmetrically and evenly spaced about the central frequency, 

although the eigenfrequency spacing is in fact uneven and asymmetric. 

The effect of attenuation in broadening these lines has not been 

included. Amplitudes are normalized within each displacement and 

strain component. 

We plot the spectral amplitude of each displacement and horizontal 

+ 
strain derived from E£m. Note that the spectral amplitudes are equal 

for the positive and negative (± m) members of each singlet pair. It 

is also interesting that the amplitudes depend separately on the 

colatitude of the source and receiver, rather than only on the separa-

tion. In fact, the longitudes have no effect on the amplitude spectra 

and affect only the phase. (For a spatially finite source, the longi-

tudes will affect the spectral amplitudes through interference, and 

the ±m amplitudes will no longer be equal.) 

Figures 2.3 - 2.6 show spectra for four basic fault geometries: 

vertical dip slip, vertical strike slip, 45
0 

dipping dip slip and 45
0 

dipping strike slip. Two cases are shown in each figure. The top 

halves of the figures show spectra for the case of fault strike, p = 00 

o 
and the bottom halves are for p = 45. Each half is organized as 

follows. The columns, from left to right, display the multiplets 

OS2' OS3' OS4 and OSS· The rows, from top to bottom, show the dis

placement components Dr' De' D~ and strain components eee' e~~ and 
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DIP=90° 
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0 11 
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U JilL 
fi 11 
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"il U 
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illuili Jil 

• JlL 
iliw1 JhlL 
ill li 

I I 
-2 0+2 -20+2 -4 -2 Ot2t4 -4-2 Ot2t4 

Figure 2.3 - Spheroidal mode amplitude spectra for a vertical strike 
. 0 0 - 0 0 SllP fault at e = 30 ,~ = 0 observed at e = 105 , ~ = 120 for 

o s 0 s 
p = 0 and p = 45. 
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Figure 2.4 - Spheroidal mode amplitude spectra for a vertical strike 
.0000 

SllP fault at e = 30 , ~ = 0 observed at ~ = 105 • ~ = 120 for 
o S 0 S 

P = 0 and p = 45 . 
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DIP=45° 
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Figure 2.5 - Spheroidal mode amplitude spectra for a 45
0 

dipping 
. . 0 0 _ 0 0 

dlP SllP fault at 8 = 30 , ¢ = 0 observed at e = 105 , ~ = 120 for o 0 S S . 
P = 0 and p = 45 . 
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DIP=45° SLIP=O° 
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Figure 2.6 - Spheroidal mode amplitude spectra for a 45° dipping 
strike slip fault at e = 30°, ~ = 0° observ~d at e = 105°, ¢ = 120° ° OS s for p = 0 and p = 45 . 
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ee~' All of the plots were marle with the epicenter at e = 300 
<p = 

~ s ' s 
o o and a receiver at e 

o 0 
105 , <p = 120. Thus, regardless of the 

source geometry, several singlets always have low amplitudes in these 

figures because of the small values of P~(cos 105
0

) or its derivatives. 

Even so, the changes in relative spectral amplitudes at a given 

receiver site (for which the arguments of the associated Legendre 

polynomials and their derivatives are fixed) caused by variations in 

fault parameters are substantial. 

In general the effect of varying the fault strike appears to be 

less significant than that of varying the dip or slip angles. In 

certa.in cases though, a change in the strike can cause substantial 

changes in the spectra. For example, for the 45
0 

dipping strike slip 

fault with p 0
0 

in figure 2.6, the m = 0 (zonal) singlet is small 

for all four multiplets. On the other hand~ the 45
0 

striking fault 

has large zonal amplitudes for several components. In fact, the zonal 

which contrast sharply to the same components for the north striking 

fault. The change in strike has an even more remarkable effect for 

figure 2.4, the vertical strike slip fault. The zonal term is identi-

. cally zero for the north striking fault, but dominates some of the 

components of the 45
0 

striking fault (e.g. Dr and eee of OSS and De 

of OS4)' (It can be seen either intuitively, from the asymmetry of 

the displacement about the fault with longitude, or formally, from 

(2.44), that the zonal terms are zero for the north striking strike 

slip fault.) In figures 2.3 through 2.6 the 45
0 

striking fault 
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usually has a larger amplitude for the zonal singlet than the north 

striking fault; of course the amplitude of the zonal singlet is always 

zero for u</> and ee</>. Changes in the strike alter the relative excita-

tion within all of the multiplets in these figures; the 450 dipping 

dip slip fault (figures 2.5) is affected least. 

The effects of varying the dip and slip directions are even 

more noticeable. For our four figures this effect stems from the 

different radiation pattern factors, q., listed in Table 2.2 The 
1. 

q. in turn affect the polar frame excitation coefficients given by 
1. 

(2.44). Note that for a particular strike (either p = 00 or 450
), 

the OS4 and OS5 multiplets look similar for the two strike slip faults 

(figures 2.4 and 2.6), and that these multiplets are less similar 

for the dip slip faults (figures 2.3 and 2.5). The strike-slip pair 

is quite dissimilar to the dip slip pair. Such generalizations cannot 

be made for OS2 and OS3. For example, for OS2 the Dr components of 

the strike slip faults appear similar while the dip slip faults are 

very different. These effects can be understood in terms of the 

coefficients in Tables 2.1 and 2.2, the rotation matrices and the 

vector spherical harmonics, but each individual case must be analyzed 

in detail. For example, OS2 changes substantially with a change in 

strike for the vertical dip slip fault (figure 2.3), but hardly at 

all for the 450 dipping dip slip fault (figure 2.5). The reason for 

this is discussed in detail below. 

In figure 2.7 we show the spectra for an "isotropic" point source 

(e.g. an explosion). The relative spectral amplitudes within a 
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ISOTROPI C SOURCE 
OS2 OS3 OS4 OS5 

ill1 JhlL II 1tl 
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Figure 2.7 - Spheroidal mode amplitude sgectra for an isotropic source o 0 . 0 
at e = 30 , ~ = 0 observed at e = 105 , ~ = 120 

s s 



-14S-

multiplet are obtained from (2.S0), (2.53) and (2.S4). (It can be 

seen from (2.17), (2.19) and (2.44) that "fault strike," p, has no 

effect on these spectra.) Note that for 082 and 083 the spectra in 

figure 2.7 are nearly identical to the spectra in figures 2.Sa and 

2.Sb. 
o 

Even if the fault dip is reduced to 10 (not shown here) the 

similarity remains. The explanation of this similarity is as follows. 

From Table 2.1 we see that, for OS2 and OS3' Ko is about one hundred 

times larger than Kl or K2 . Whenever q , the coefficient of K in 
o 0 

(2.48), is comparable in magnitude to <11 and q2' then the "isotropic!! 

term will dominate the spectra. From Table 2.2 we see that for the 

four basic fault geometries only the 4So 
dipping dip slip fault has 

q ~ O. Thus the spectra from this fault resemble the isotropic 
o 

spectra, while the spectra in figures 2.3, 2.4 and 2.6 do not. 

Thus the spectra from a shallow angle thrust fault closely 

resemble the spectra from an isotropic source for low order spheroidal 

modes. In chapter 3 we discuss the observational consequences of this 

similarity. Kanamori and Cipar (1974) determined the mechanism of the 

1960 Chilean earthquake to be a low angle thrust fault. Due to this 

particular geometry, Pekeris et al. (1961) were able to match the 

observed relative spectral amplitudes with an isotropic source model. 

Spectra from the isotropic source would not have matched the spectra 

of a pure strike-slip earthquake or an earthquake on a fault with 0 = 00 

or 

Figures 2.8 - 2.11 show the displacement and strain spectra for 

torsional modes OT2 - OTS' for the same set of four fault geometries 
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Figure 2.8-Torsional mode amplitude spectra for a vertical dip slip 
o 0 - 0 0 fault at 8 = 30 , ~ = 0 observed at 8 = 105 , ~ = 120 for 

o s 0 s 
p = 0 and p = 45 . 
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Figure 2.9 - Torsional mode amglitude spectra for a vertical strike 
slip fault at e = 30°, <p = 0 observed at a = 105° ~ = 1200 

° s s ' 'I' for p = 0 and p = 45°. 
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Figure 2.10 - Torsional mode amplitude spectra for a 450 dipping dip 
• 0 0 0 0 0 

sl~p fault at 6 :=; 30 , 4> :=; 0 observed at e = 105 • 4> = 120 for p = 0 o s s and p = 45 . 
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Figure 2.11 - Torsional mode amplitude spectra for a 45
0 

dipping strike 
. a a a a 

SllP fault at e = 30 ,<p == 0 observed at e = 105 , <p = 120 for p = 00 
ass 

and p = 45 . 
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as for the spheroidal modes. The torsional modes have no zonal terms 

in the source frame, but the zonal singlet in the geographic frame is 

often excited. A spectacular example is the excitation of the U~ 

component of OT4' and the ee~ components of OTS' by the vertical strike 

slip fault (figure 2.9). The torsional modes, of course, have no radial 

displacement component. They also have the property that eee = - e~~ 

since there is no net dilatation. The amplitude spectra of these two 

strain components are thus identical. 

The spectra of the components of 6T4 and OT5 are generally similar 

for the two strike slip faults. This resemblance is much weaker for 

the dip slip faults. For example. OTS is similar in figures 2.8 and 

2.10, but OT4 is quite different. For the two lower angular order 

modes the spectra of the strike slip faults are generally very similar, 

while those of the dip slip faults are sometimes similar, but often 

show substantial differences. An excellent example of this variability 

can be seen by examining the two displacement components of OT2 in 

figures 2.8 and 2.10 - the Ue components are similar while the U~ 

components are very different. These same two components show inter-

esting results from a change in strike, which can be seen by contrast-

ing the U~ components of OT2 between the two halves of figure 2.10. 

As we observed for the spheroidal modes, the 45
0 

striking fault excites 

the zonal singlet more strongly. 

In conclusion, the amplitude spectra for both displacements and 

strains show a complicated dependence on the fault parameters for a 

variety of faults. It is not possible to predict the spectra using 
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only the locations of the source and receiver to compute the values 

of the vector spherical harmonics. The geometric fault parameters 

(strike, dip and slip) must also be used for a complete synthesis of 

the relative spectral amplitudes. 

DISCUSSION 

Although our derivations are lengthy and somewhat complicated, 

the results may be easily used to compute the strains and displace-

ments excited by arbitrary faults. The computations are simplified 

by the separation of the expressions into factors for five different 

effects. When any single parameter is charged only part of the results 

need be recalculated. 

The radiation pattern terms q. and p. are controlled by the fault 
1. 1. 

dip and slip angles. The Euler angles, and thus the arguments of 

Q. 
Dmk(R), depend on the fault strike and the geographic coordinates of 

the epicenter. The receiver position provides the arguments of the 

vector spherical harmonics. The earth's structure controls the radial 

eigenfunctions and the energy integrals. Finally, the source depth 

controls the values of y.(r ), A(r ) and ~(r). For computational 
1. s· S s 

purposes the earth structure and source depth effects are combined in 

the source amplitude factors Ko' KI , K2 and L1, L2 · 

It is important to note that for a given source-receiver geometry 

and fault mechanism, the relative amplitudes of the singlet pairs 

within a multiplet often differ I between multiplets, and even between 

strain and displacement components of the same multiplet. Our figures 
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show that in general, similar patterns are not observed for different 

mu1tiplets. 

Luh and Dziewonski (1976) suggested that certain patterns might 

persist between multiplets in the excitation of singlets. (Their 

excitation coefficients roughly correspond to our A£m and D£m') Their 

suggestion, which seems to be correct, refers to excitation coeffi-

cients which are independent of receiver location. On the other hand, 

the singlet spectral amplitudes are obtained by mUltiplying the excita-

tion coefficients by the appropriate components of the vector spherical 

harmonics. Therefore, since each singlet involves a different spheri-

cal harmonic the observed spectral amplitudes are strongly dependent 

on receiver position. For example, Luh and Dziewonski commented that 

the prominent m = ±1 peaks in the strain record of the Chilean earth-

quake at Isabella (Benioff ~ al., 1961) might support their sugges-

tion. Since the strain spectrum includes the effect of the receiver 

location, this similarity is fortuitous. However, in this case the 

m = ±l excitation was so dominant that these lines would be largest at 

most receivers. 

Our synthetic spectra have some implications for the determination 

of the eigenfrequencies of an "equivalent degenerate earth model" from 

the actual data. It is not uncommon for a multiplet to be excited 

such that one pair of singlets (e.g. the Dr or D¢ components of Os~2 

for both 4~0 dipping strike slip faults in figure 2.~ has much 

larger amplitudes than the remainder of the multiplet. If the equi-

valent degenerate central frequency for the multiplet were determined 
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2 -2 
by finding the frequency midway bet\-leen OS2 and OS2 ' this estimate 

would be inaccurate because of the asymmetry of the nongenerate 

eigeGfrequencies about the unperturbed singlet frequency. 

Gilbert (1971) suggests that if sources and receivers are distri-

buted randomly on the earth's surface, then stacking a large number 

of spectral observations would yield an ar.curate estimate of the 

degenerate eigenfrequencies if the averaged amplitudes of the individual 

singlets are approximately equal. However, the spectral amplitudes 

are influenced by geometric fault parameters as well as source and 

receiver locations. Thus, it may also be necessary to stack the spectra 

for a random sample of fault mechanisms. Failure to do so may lead to 

systematic errors in estimates of the unperturbed eigenfrequencies of 

the lowest order modes. Since the present dataset used for eigen-

frequency estimation probably does not include a random sample of 

fault parameters and since it has not been demonstrated that stacking 

will yield approximately equal singlet amplitudes, further study of 

this question would be useful. 

CONCLUSIONS 

Expressions are derived for the displacement and strain components 

of the free oscillations of a laterally homogeneous, rotating and 

elliptical earth excited by a point double couple. The rotation 

matrix elements, D~k(R), are used to derive the excitation of the 

nondegenerate modes from results developed for the degenerate modes 

of a nonrotating spherically symmetric earth. These results are 
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presented in a condensed form suitable for computational use. Calcu

lations of the excitation of low order modes are shown for a variety 

of source and receiver locations and for a number of different fault 

parameters. These methods allow the synthesis of spectra and time 

domain records of low order modes for which individual singlets have 

been observationally resolved. This represents a powerful new tool 

which is applied to the study of normal mode amplitude data in the 

following chapters. 
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Chapter 3 

SPLIT FREE OSCILLATION A}WLITUDES FOR THE 

1960 CHILEAN AND 1964 ALASKAN EARTHQUAKES 

ABSTRACT 

Splitting of the earth's normal modes was observed for both the 

1960 Chilean and 1964 Alaskan earthquakes. The strong peaks in the 

observed spectrum of each split multiplet correspond to singlets with 

much higher amplitudes than the others. The theoretical results derived 

in the last chapter predict this pattern. The source mechanisms in

ferred for these earthquakes from surface waves are consistent with the 

observed pattern of relative spectral amplitudes of the split modes. 

However other mechanisms, such as a slow isotropic volume change, are 

also consistent with the split mode amplitudes and are excluded only by 

additional data. 
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INTRODUCTION 

Splitting of the earth's normal modes was first observed by Beni

off, Press and Smith (1961), and Ness, Harrison and Slichter (1961) 

for the Chilean earthquake. Pekeris, Alterman and Jarosch (1961) and 

Backus and Gilbert (1961) calculated the frequency separation due to 

the earth's rotation and obtained good agreement with the observed 

data. Pekeris et al. and Backus and Gilbert both calculated the rela

tive amplitudes of each peak for some simple sources. However, the 

spectral amplitudes resulting from realistic models of the Alaskan 

and Chilean earthquakes as double couple sources have not previously 

been calculated. In this chapter we use the results developed in the 

last chapter to calculate the split mode amplitudes for the Chilean 

and Alaskan earthquakes. The predicted spectra agree quite well with 

published observation of the split spectra. 

At the time of the Chilean earthquake, the major interest in free 

oscillation studies was the accurate determination of the eigenfre

quencies of the normal modes of the earth. Accordingly, when the split 

peaks were discovered in the spectra of OS2 and OS3 by the Caltech 

(Benioff et al.) and UCLA (Ness et al.) groups, the principal question 

of interest was the amount of frequency separation between peaks. Both 

Pekeris et ale and Backus and Gilbert did calculate the amplitudes for 

simple source models, obtaining reasonably good agreement with obser

vations, but the amplitude data were not studied in detail. 

A more detailed study of the amplitudes of the split free oscilla

tions could not be carried out until two related results had been 
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achieved. The first was the realization (by Burridge and Knopoff, 1964) 

that an earthquake source could be modeled as a shear dislocation, 

which in turn is completely equivalent to a double couple. (The 

research leading up to this conclusion is reviewed in chapter 3 of 

part I.) The second item was the first complete solution for the 

excitation of the earth's normal modes by a point force, couple or 

double couple, which was derived by Saito (1967). After these two 

studies had been completed, it then was possible to study the ampli

tudes of the split normal modes excited" by a realistic model of an 

earthquake source. 

When these basic theoretical results had been derived, interest 

in studying the amplitude data had waned. As discussed in the last 

chapter, extensive theoretical work was later done on the splitting 

caused by the earth's ellipticity, lateral heterogeneity and attenua

tion. However no further work was done on studies of the data for the 

rotationally split normal modes, which are the only examples of split

ting ever to have been observed. The work in this chapter thus 

represents the first comparison of the theoretical split spectra cal

culated for the realistic source models to the previously published 

observations for the Chilean and Alaskan earthquakes. 

THEORETICAL SPLIT MODE AMPLITUDES 

The earth's rotation (Pekeris et al., 1961 and Backus and Gilbert, 

1961) and ellipticity (Dahlen, 1968) split the 2£ + 1 singlets belonging 

to the multiplet of angular order £ such that each one has a distinct 
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eigenfrequency. The splitting is observable only for low angular order 

modes, for which the frequency separation of the singlets caused by 

rotation and ellipticity is greater than the broadening of spectral 

lines due to attenuation. For modes for which the splitting is observ

able, some singlets have much larger amplitudes than others in their 

multiplet. Thus the relative amplitudes of the split modes serve as 

an additional constraint in determining the character of earthquake 

source mechanisms at very long periods. 

The theoretical results of the last chapter allow us to synthesize 

the split normal mode amplitudes excited by a realistic model of an 

earthquake source: a double couple of arbitrary orientation resulting 

from slip on a fault plane. (An extensive discussion of other previous 

work is given in the last chapter.) The solution is obtained by trans

forming the spherical harmonic expansion of the excitation from the 

franle of reference of the source into geographic coordinates. We write 

the singlet amplitudes so that there are separate factors for source 

location (latitude and longitude), source depth, fault geometry (strike, 

dip and slip direction), receiver location and the normalized energy 

of each mode. 

For the spheroidal modes and for a step function dislocation with 

unit moment, the displacement spectrum of the normal mode with angular 

order 2 and azimuthal order m is given to zeroeth order by equation 

2.50 of the last chapter. 

Since the Chilean earthquake spectrum was observed on a strain 

meter, we compute the horizontal strain components 
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The strains are given in geographic coordinates, so the strain in a 

strain rod of arbitrary orientation is 
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where y is the strain rod orientation measured counterclockwise from 

north. 

OBSERVED SPECTRA 

There are very few reliable observations of split spectra. Not 

only are great lengths of record needed to resolve splitting, but, 

because attenuation broadens the peaks, even a very long record length 

does not allow resolution of splitting for any but the lowest angular 

order modes. This problem is discussed in Benioff et al. (1961). 

Here we use the three best observations of split spectra, two for 

the Chilean earthquake (OS2 and OS3) and one for the Alaskan earthquake 

Using the theory summarized in the previous chapter,and fault 

geometries determined from the study of long period surface waves, we 
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compute synthetic spectra. We also compute synthetic spectra for an 

isotropic source, and compare the two sets of theoretical spectra to 

observations. Our synthet~c relative spectral amplitudes are in 

excellent agreement with the data. 

Figure 3.1 (from Benioff et al., 1961) shows the spectra of the 

spheroidal multiplets OS2 and OS3 excited by the Chilean earthquake, as 

observed on a strainmeter (striking 38.4
0
W of N) at Isabella, Califor-

nia. Dahlen's (1968) splitting parameters are used to identify the azi-

muthal order numbers of the peaks in figure 3.1 and the center frequency 

is adjusted to give the best fit. The singlet pair with m = ±1 has 

much larger amplitudes than the rest of the 052 multiplet and, simi

+2 
larly, Os; stands out from its multiplet. (The results of a later 

analysis by Smith (1961) of the spectrum differed somewhat but did not 

+1 S±2 later the basic conclusion that OS; and 0 3 had much larger amplitudes 

than the other singlets of their multiplets.) 

As well as the observed spectra, we show our synthetic relative 

spectral amplitudes computed for the finite fault geometry determined 

by Kanamori and Cipar (1974) from long period surface wave studies 

(p = 3500 A = 900 0 = 100 8 , , , s 
o 0 = 128 , $s = 286.5 , L = 800 km, VR = 

3.5 km/sec) and including a precursory slip (tp = 900 sec and .0 = 300 

sec) inferred from a time domain observation (Kanamori and Cipar, 1974) 

and from spectral holes (Kanamori and Anderson, 1975). We also show 

the relative spectra for an isotropic point source, a model which was 

used by Pekeris et ale (1961) for the Chilean earthquake. For both 

sources the spectral amplitudes do not depend on the precise frequency 
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Figure 3.1 - Split spheroidal mode spectra for OS2 (top) and OS3(bottom) 
excited by the 1960 Chilean earthquake, as observed on a stralnmeter 
at Isabella, California (after Benioff et al., 1961). The vertical 
scale of the observed eigenfrequency separation is taken from Dahlen 
(1968), but the central frequency is chosen to yield a best fit with 
the observed peaks. Synthetic relative spectra for an isotropic source 
and for the finite fault geometry of Kanamori and Cipar (1974) are 
given for each mode. The amplitudes are normalized and plotted with 
regular spacing. 
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separation, so for convenience we plot our theoretical amplitudes with 

regular spacing, although the actual spacing is somewhat asymmetric. 

The amplitudes of the split modes are symmetric for a point source; 

interference effects may cause a slight asymmetry for a finite source. 

However, in this case the finiteness and directivity have only a negli-

gible effect on the relative spectral amplitudes. 

Figure 3.2 shows the spectrum from a gravity meter record (Slich-

ter, 1967) of the Alaskan earthquake, after processing and filtering 

by Wiggins and Miller (1972). In this· spectrum the singlet pair S±1 o 2 

has much greater amplitude than the. rest of the multiplet. Below this 

figure we show synthetic spectra (which have the same relative ampli-

tudes as the vertical displacements) for the finite fault geometry 

o 0 0 
(p = 114 , A = 90 , 0 = 20 e , s 

o = 29.9, ~s = 212.4 , L = 500 km, VR = 

3.5 km/sec) determined by Kanamori (1970) and for an isotropic source. 

For both earthquakes, the double couple mechanism derived from 

long period surface waves yields relative spectra which fit the obser-

vations. The exact amplitudes of the lower amplitude peaks are some-

what uncertain, and so the primary consideration is the overall agree-

ment of our theoretical spectra with the observed peaks. These calcula-

tions demonstrate that the fault geometry determined from surface waves 

at periods of several hundred seconds is consistent with free oscilla-

tion data at a period of almost one hour. However, the relative 

spectra for the isotropic source are also consistent with the observa-

tions and in fact closely resemble the double couple spectra. 
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Figure 3.2 - Split spheroidal mode spectra for OS2 excited by the 
Alaskan earthquake as observed on a gravity meter at Los Angeles, 
California by Slichter (1967) after processing by Higgins and Miller 
(1972). Details are as in figure 3.1. The finite fault geometry of 
Kanamori (1970) is used for the double couple-source. 
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DISCUSSION 

We have described the reasons for this similarity in some detail 

in the last chapter, but a briefer explanation will suffice. In the 

frame of reference of the earthquake source, the radiation patterns of 

OS2 and OS3 for a double couple are nearly radially symmetric, because 

the radially symmetric term is much larger than the two-lobed or four

lobed terms. Thus, for these low order spheroidal modes, the radiation 

pattern of an earthquake nearly always resembles that of an isotropic 

source, which is completely radially symmetric. This resemblance is 

maintained when the excitation is transformed into geographic coordi

nates to calculate the split mode amplitudes. The relative spectra of 

an earthquake will differ significantly from those of an isotropic 

source only in special cases, e.g. a pure strike-slip fault. 

The isotropic and double couple sources can be resolved very simply 

from the amplitudes of low order torsional modes, since the former 

would not excite any torsional oscillations. Torsional oscillations 

are clearly visible for both the Chilean (Benioff et al., 1961) and 

Alaskan (Smith, 1966) earthquakes. In addition, long period Rayleigh 

wave (spheroidal oscillations) and Love wave (torsional oscillations) 

data are consistent with a double couple source, but not an isotropic 

source, up to periods of several hundred seconds (Kanamori, 1970; 

Kanamori and Cipar. 1974). Therefore, the double couple source seems 

preferable in explaining the very long period free oscillation spectra. 

It is, of course, possible that an isotropic source component may 

exist as well as the dominant double couple source. This is a difficult 
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issue to resolve. Further study seems warranted; the observation of 

splitting for higher spheroidal models and for torsional modes could be 

useful in determining the mechanisms of these earthquakes, and others 

as well, at long periods. 

For example, the theoretical singlet amplitudes of double couples 

depend strongly on fault geometry for spheroidal modes with i > 4 and 

in general differ from those of an isotropic source. Thus, if splitting 

of these modes could be observed, it would be possible to test whether 

the fault mechanism determined from surface waves is appropriate for 

much longer period free oscillations. Furthermore, once the mechanism 

has been determined, the absolute spectral amplitudes may be used to 

determine the moment at these much longer periods. 

An alternate approach, which is used in the next chapter, is to 

study time domain records of these earthquakes, for the lowest angular 

order modes. We demonstrate in the next chapter that modes (OS4' OSS' 

OT
3

, OT4) for which splitting is difficult to observe in the frequency 

domain show the effects of splitting in the time domain. By computing 

synthetic seismograms for different fault geometries, we can obtain 

additional information about the source. 

Kanamori (1977) has summarized evidence showing that the inter

plate slip rates inferred from long period surface waves are consider

ably smaller than those determined from magnetic anomalies. In view 

of the observations (Kanamori, 1972; Shimazaki and Geller, 1977) that 

. in several cases the earthquake moment was still increasing at periods 

of several hundred seconds, it seems desirable to use low order free 
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oscillations to determine the moment at periods of almost one hour. 

Such determinations would allow us to distinguish between earthquake 

deformation having a time constant of one hour and longer period 

aseismic slip which might involve large portions of the lithosphere. 

For past great earthquakes (e.g. Chile and Alaska), poorly determined 

instrument calibrations and the small number of long period records 

present difficulties in determining absolute spectral amplitudes. 

The new long period network (Agnew et al., 1976) should allow much 

more reliable very long period moment determinations. 
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Chapter 4 

TIME DOMAIN OBSERVATION AND SYNTHESIS OF 

SPLIT SPHEROIDAL AND TORSIONAL FREE OSCILLATIONS 

OF THE 1960 CHILEAN EARTHQUAKE 

ABSTRACT 

The rotationally and elliptically split normal modes of the 

earth are observed for the 1960 Chilean earthquake by analysis in the 

time domain. One hundred and fifty hours of the Isabella, California 

strain record are narrow band filtered about the central frequency of 

each split multiplet to isolate the complex waveform resulting from 

the interference of the different singlets. Synthetic seismograms 

are computed using the theoretical results in chapter 2, which show 

the dependence of the amplitude and phase of the singlets on source 

location, depth, mechanism and the position of the receiver. By com

paring these synthetics to the filtered record, the splitting of 

modes whose splitting had not been previously resolved is demonstrated: 

torsional modes (aT3' aT4) and spheroidal modes (OS4' aSs). The 

splitting of aS2 and aS3 is reconfirmed. Good agreement is obtained 

between the synthetics and the filtered data for a source mechanism 

(previously determined from long period surface waves) of thrust 

motion on a shallow dipping fault. 

Several different methods for estimating }he Q of split normal 

modes are discussed. It is shown that techniques which do not explic

itly consider the splitting give seriously inaccurate Q estimates. Of 
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frequency domain. It is shown that splitting is present for modes 

for which it has not been previously resolved, including torsional 

modes. 

DATA AND ANALYSIS 

Figure 4.1 shows one hundred and fifty hours of the network 

strain record (filtered electronically to reduce the tidal amplitudes) 

from Isabella, California (Benioff et al., 1961) for the great 1960 

Chilean earthquake. The record (top) was processed to remove tides 

by twice subtracting three hour running averages. The resulting 

record (bottom) was tapered at both ends and then filtered to resolve 

individual low angular order modes. The resulting narrow band 

filtered data are shown in the upper traces in Figures 4.2 through 4.7 

for four spheroidal and two torsional modes. All these waveforms show 

the general (e-wt/2Q) attenuation of the entire mode superimposed on 

a complicated pattern which results from the interference of the split 

singlets. 

The narrow band filter had zero phase shift and an amplitude 

response decaying exponentially from 1 at the center of the passband 

-1 
to e at either end. Outside the passband the filter response was 

identically zero. The selection of bandwidth was empirical. Widening 

the window shortens the transient response time of the filter, but 

also allows more noise to pass. In practice it was found that pass-

bands about twice as wide as the splitting interval represented a good 

compromise between minimizing signal distortion and minimizing noise 



-175-

techniques which do include splitting effects, comparison of time 

domain synthetics to narrow band filtered data appears to be an 

extremely promising method. 

Uncertainties in the instrumental response curve for the Isabella 

strainmeter make it difficult to obtain accurate absolute amplitudes, 

and thus moment values. However, by comparing the strain records of 

the Chilean earthquake to the 1964 Alaskan earthquake, the long period 

moment for Chile is found to be 3.26 times larger than for Alaska. If the 

effective moment for Alaska is constant from 300 sec to almost one 

hour, then the moment of the Chilean earthquake for 082 is estimated 

to be 2.4 x 1030 
dyne cm, using Kanamori1s (1970) value of 7.5 x 1029 

dyne cm for Alaska. 
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INTRODUCTION 

Split peaks in the earth's normal mode spectrum were first 

observed for the 1960 Chilean earthquake. The splitting of OS2 and 

OS3 was reported by Benioff, Press and Smith (1961) and Ness, Harrison 

and Slichter (1961). Slichter (1967) observed the splitting of 053 

for the 1964 Alaskan earthquake. Splitting has never been clearly 

demonstrated for other spheroidal modes or for any torsional modes. 

Extensive theoretical efforts (summarized in the last two chapters) 

have been devoted to the computation of the eigenfrequencies of the 

2£ + 1 individual singlets into which the multiplet of angular order 

i (e.g., nSt) is split. This frequency splitting of the very long 

period modes is primarily due to rotation (Pekeris ~ al., 1961 and 

Backus and Gilbert, 1961) and ellipticity (Dahlen, 1968). In chapter 

2 theoretical results were derived which allowed the calculation of 

the amplitudes and phases of the split normal modes (or equivalently, 

their time history) excited by a double couple of arbitrary orienta

tion resulting from slip on a fault plane. These results were applied 

successfully in chapter 3 to split spectra of the Chilean and Alaskan 

earthquakes. 

In this chapter source models derived from long-period surface 

wave studies are used to generate synthetic seismograms for six 

multiplets (052 - 055' OT 3, OT4). The synthetics are then compared 

to the time domain record of the Chilean earth£uake which is narrow

band filtered to isolate each multiplet. This procedure yields 

several results which were not obtained by earlier studies in the 
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CHILEAN EARTHQUAKE May 22, 1960 
STRAIN METER AT ISABELLA, CALIFORNIA 

NETWORK STRAIN 

TIDES REMOVED 

50 hr 100 150 

Figure 4.1 - Isabella strain record of the Chilean earthquake (top 
trace) and the high-passed record with tides removed (bottom trace). 
The origin time of this figure and all others, is 1911 hrs, 22 May 
1960, the origin time of the main shock. The digitized record 
(top) begins 289 min later, at 0000 hrs, 23 May. The high-passed 
record (bottom) starts another three hO'Jrs later. 
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OS2 T=53.8 min, Q=400 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 
I I I o 50 hr 100 150 

Figure 4.2 - Data and synthetics for OSZ' Th~ top trace is filtered 
data. The middle trace includes the effects of splitting, and the 
bottom trace is without splitting. Q = 400 was used for both syn
thetics. The synthetics are tapered and filtered in the same way 
as the data. 
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T=35.6 min, Q=500 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 
I I 

o 50 hr /00 /50 

Figure 4.3 - Data and synthetics for OS3. Q = 500 was used for 
both synthetics. Other details are as ln Figure 4.2. 
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T=25.8 min, Q=400 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 

o 50 hr 100 . 150 

Figure 4.4 - Data and synthetics for 084. Q = 400 was used for 
both synthetics. Other details are as 1n Figure 4.2. 
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T=19.9 min, Q=400 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 
I~~--~~--~~I_~~--~~--~I--~~~--~~I 
a 50 hr 100 150 

Figure 4.5 - Data and synthetics for OSS' Q ~ 400 was used for 
both synthetics. Other details are as ln Figure 4.2. 
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T=28.4 min, Q=450 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 
I I I 

a 50 hr 100 150 

Figure 4.6 - Data and synthetics for OT3. Q = 450 was used for both 
synthetics. Other details are as in Figure 4.2. 
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T= 21.7 min, Q=450 

DATA 

SYNTHETIC 

WITHOUT SPLITTING 
I I 

o 50 hr 100 150 

Figure 4.7 - Data and synthetics for OT4' Q = 450 was used for 
both synthetics. Other details are as in Figure 4.2. 
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admittance. The exact passbands used are listed in Table 4.1. 

The middle trace of each figure shows a synthetic seismogram 

for each mode including the effects of splitting. The presence of 

splitting can be seen by examining the lower traces, which are calcu-

lated without splitting. In this case each mode appears as a pure 

damped harmonic oscillator, since all its singlets have the same 

frequency. (The synthetic without splitting for OT4 shows some com

plexity because a relatively wider filter passband is used.) The data 

are fit far better by the synthetics with splitting than by those 

without it, and thus splitting is demonstrated. 

The eigenfrequency of each singlet is computed using Anderson and 

Hart's (1977) values for the unperturbed eigenfrequencies and Dahlen's 

(1968) rotational splitting parameters. Dahlen's elliptical splitting 

parameters were not used. Woodhouse (1976) has found and corrected 

an error in the way Dahlen calculated the effect of ellip-

ticity on first order discontinuities within the earth. However, 

correct values for the low order elliptical splitting parameters are 

not yet available. When correct elliptical splitting parameters are 

available, then the fit of synthetics to the data may be significantly 

The source mechanism used here was determined by Kanamori and 

Cipar (1974) from long period surface waves. The rupture was initiated 

o 0 0 0 
at 38 S, 286.5 E and propagated at 3.5 km/sec to 46 S, 286.5 E, on a 

fault plane dipping 100 east and striking NlOoE. (We appr.oximate the 

finite source by five point sources at a depth of 55 km). The slip 



-185-

Table 4.1 

FILTER PASSBANDS 

Mode Min. Frequency (cpm) Max. Frequency (cpm) 

OS2 0.01750 0.01950 

OS3 0.02726 0.02882 

OS4 0.03821 0.03935 

OS5 0.04986 0.05070 

OT3 0.03481 0.03566 

OT4 0.04564 0.04640 



-186-

angle is 90
0

, a pure thrust motion. We are also including a precursory 

o slip (Kanamori and Cipar, 1974; Kanamori and Anderson, 1975) at 41.5 S, 

285.70 E, with a rise time of 5 min, starting 15 min before the main 

shock, and with a moment equal to that of the main shock. 

Thus the time domain study shows that the fault geometry derived 

at periods of several hundred seconds is generally consistent with 

the data at far longer periods, although it certainly is not a unique 

solution. As we discussed in th~ previous two chapters, the split 

singlet amplitudes and phases provide 'a method for source mechanism 

studies at very long periods for which splitting is resolvable. (Note 

that the fault propagation mechanism almost certainly cannot be re-

solved from studies of very long period modes.) 

A prior study of split spectra (Smith, 1961) suggested the possible 

splitting of OS4' OT2 and OT3 , but Smith noted that the data for 

these modes were marginal. Our synthetics demonstrate the splitting 

APPARENT Q OF SPLIT MODES 

We study the attenuation of split modes by comparing the data to 

the synthetics. Splitting is no longer visible when the beat time is 

longer than the Q decay time. (In the frequency domain this occurs 

when the broadening of spectral peaks due to attenuation is much 

greater than the frequency separation of singlets resulting from 

rotation and ellipticity.) Figures 4.5 and 4.7, respectively, show 

that splitting is barely detectable for OS5 and OT4' because the 
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synthetics with and without splitting are much more similar than those 

for the longer period modes. 

Although the effect of the splitting of OSS is barely visible in 

figure 4.S, the effect of the splitting on estimates of the Q is sub

stantial. The split synthetic (middle trace) appears to decay more 

rapidly than the unsplit synthetic (bottom trace); actually both 

traces were computed using the same Q, 400. The split synthetic 

decays more rapidly because of the destructive interference of the 

singlets. Thus neglecting the splitting could easily cause an under

estimate of the modal Q value. 

The Q values shown in the figures yield acceptable results, but 

the uncertainty of these values is still rather large.. Only the first 

ISO hours of record are used for these preliminary results. In a 

forthcoming paper, Geller and Stein (1977) use all SOO hours of avail

able record to obtain well-constrained Q values. Even at the present 

stage of the study, certain broad limits may be placed on the modal 

Q values. 

Figure 4.8 shows the effect of varying the Q of synthetics for 

OS3. Three synthetics are calculated with the same source, earth 

model and receiver, but with Q ranging from 1000 to 250. All of the 

synthetics have been filtered in the same way as those in Figure 4.3 

and are plotted on a common amplitude scale. The effect of the 

variation in Q can clearly be seen in the changes in both amplitude 

and waveform. A comparison of the observed record of OS3 in figure 

4.3 to the three synthetics in figure 4.8 shows that the actual modal 
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0 53 T =35.6 min EFFECT OF O. 

0=1000 

Q=500 

Q=250 

o 50 hr 100 150 

Figure 4.8 - Three synthetics for OS3 which are calculated in exactly 
the same way and plotted at the same scale. Since all other param
eters are identical, the effect of different Q's is apparent from a 
comparison of the three traces. 
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Q is probably bracketed by 250 and 1000, and is fit fairly well by 

a Q of 500. This value is still preliminary and will be refined by 

further study. 

In this study we have relied on visual fitting of the synthetics 

to the data to obtain preliminary estimates of the apparent Q of each 

mode. In the forthcoming research, in which the entire 500 hour record 

will be used, the visually obtained Q will be used as the starting 

point for a more rigorous Q determination. Q will be constrained 

further by cross-correlation of the synthetic envelopes with the data 

envelope for a suite of Q values clustered around the starting point. 

The amplitude data will be used as a check on the Q values obtained 

by cross-correlation. 

COMPARISON OF TIME DOMAIN AND FREQUENCY DOMAIN ANALYSES 

The technique outlined in this chapter for determining the Q of 

split modes represents a new approach to this problem. Nearly all 

previous studies of modal Q's have been conducted in the frequency 

domain, using the amplitude spectrum. (Even studies of attenuation in 

the time domain (e.g. Smith, 1972) use the decay of narrow-band 

filtered data to estimate the Q. rather than calculating synthetics 

in the time domain.) 

As will be seen below, many problems result from using only the 

amplitude spectrum, and ignoring the information contained in the 

phase spectrum. This agrees with what would be expected intuitively: 

the splitting is manifested in the time domain as a beat effect, and 
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the phase spectrum determines the precise arrangement of the beats. 

Therefore, if the phase spectrum is not considered, this is equivalent 

to discarding the information in the beat patterns. 

George Backus (personal communication) points out that if both 

the phase and amplitude spectrum are used, then all of the independently 

available data for a multiplet are given by very few numbers in the 

frequency domain (the Fourier transform - amplitude and phase - in the 

relatively narrow frequency range which contains nearly all of the 

energy for the multiplet). The same information in the time domain 

requires many more numbers (the values of the displacement or strain 

at sufficiently closely spaced points in time). 

Nonetheless, it is still desirable to work in the time domain 

to demonstrate the splitting of modes which were not previously known 

to be split, confirm the splitting of OS2 and OS3 and measure the Q 

of each multiplet. All of these goals are related to overall proper

ties of the split multiplets, rather than details of the split singlets 

which are unnecessary for our purposes. We must know the source 

mechanism, which controls the relative excitation of the individual 

singlets, well enough to calculate a reasonable synthetic before we 

can determine the modal Q. It is well known that all estimation 

methods require a tradeoff between stability and resolution. A 

frequency domain analysis will yield a large number of independent 

data, but will not provide much stability. (Small changes in the win

dowing, tapering, filtering, etc., or noise randomly present in the 

data, can substantially affect spectral estimates, especially phase 
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estimates.) The time domain analysis will be much more stable than 

the frequency domain analysis in the presence of noise. The price we 

pay for this is the inability to resolve individual singlets; we can 

resolve only the overall features of the splitting. However, it is 

precisely those overall features which are most of interest, and thus 

the time domain analysis seems preferable for this study. 

Ideally, we want to use the spectral amplitude and phase of each 

singlet to study the earthquake source mechanism. However, there are 

several problems which arise when we set out to use frequency domain 

analysis in practice. These problems are demonstrated by comparisons 

of three different amplitude spectra for the same record of the same 

event. 

Figure 4.9 shows the spectra for OS2 obtained by Benioff et ale 

(1961) and Smith (1961) for the Isabella strain record of the 1960 

Chilean earthquake. The spectrum in figure 4. 9a from Benioff et al. 

was computed using the first 267 hours (16000 min) of the Isabella 

record, while windows of 318 hours (19100 min) and 636 hours (38200 

min) were used for the spectra in Figure 4.9b. It can be seen that 

as the record length becomes longer, the amplitude of the middle 

peak (m = 0) increases substantially compared to that of the m = ±1 

peaks. There are several reasOns for the differences. Although 

Benioff et ale (1961) and Smith (1961) both used the same strain 

record, the record was independently digitized for each study. Also, 

the windowing, smoothing and power spectral analysis were carried out 

separately in each study. The major point, however, is that three 
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different power spectra for the same record of the same earthquake 

produced spectra which are basically similar, but differ very sub

stantially in their details. 

The Chilean earthquake is the largest event for which free 

oscillations have ever been observed, and both the studies by Benioff 

et al. and Smith were carried out very carefully. If we attempted to 

use the spectra in figure 4.9 for detailed analyses, e.g. determining 

the Q of a singlet from peak width and half-height or determin~ng the 

relative excitation of singlets from the relative amplitudes of spec

tral peaks, we would get drastically different results depending on 

which spectrum we used. Figure 4.10, showing the spectra obtained by 

Benioff et al. and Smith for OS3 demonstrates an even more spectacular 

instability. The peak for the m = +2 singlet is present for both the 

Benioff et al. spectrum and the shorter of Smith's two spectra, but 

disappears completely from Smith's longer spectrum. 

The instability of the spectra is inherent in the attempt to 

obtain high resolution of the singlets. Small amounts of noise will 

cause relatively large changes in the fine structure of the singlets. 

Furthermore, it is almost impossible to get any precise estimates of 

how the noise has affected the spectrum. In contrast, as Smith (1972) 

noted, time domain iLspection of narrow band filtered normal modes 

allows a determination of when the signal has decayed to the general 

background noise level. The time domain analy~is thus allows the 

effects of noise to be seen much more clearly than in the frequency 

domain analysis. 
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COMPARISON OF DIFFERENT Q MEASURE}lliNT TECHNIQUES 

Measurements of the modal Q values may be carried out in either 

the frequency domain or the time domain. The frequency domain 

approaches may be grouped into three categories: i) use of peak half

height and width~ ii) decay of peak spectral amplitude in successively 

windowed intervals and iii) decay of total spectral energy in succes

sively windowed intervals. Time domain techniques for modal Q deter

mination may be classed as either i) direct measurements of envelope 

decay or ii) fitting filtered multiplet data by synthetics. Q 

measurements based on height and half-width are now considered as too 

unstable to be useful even for unsplit multiplets (Smith, 1972). 

However, for unsplit multiplets which are well separated in frequency 

from other nearby modes~ either the frequency domain techniques using 

decay of peak spectral amplitude or total multiplet energy, or the 

time domain technique using envelope decay all apparently give reliable 

Q estimates. 

All of the techniques for analysis of the Q of unsplit mUltiplets 

rely basically on the fact that they have only a single eigenfrequency 

and are well separated in frequency from other multiplets. This allows 

the use of analysis techniques for a damped harmonic oscillator. 

However, for the case of the split modes, the singlets are not indi

vidually resolvable with any degree of stability and we can study 

only the multiplet with confidence. Since we~observe the split multi

plet as the sum of several, closely spaced, interfering, singlets, 

the usual techniques for Q determination break down. This is analogous 
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to the breakdown of phase equalization techniques for surface waves 

composed of several interfering overtone branches (Fukao and Abe, 1971). 

Some of the problems associated with Q determinations for split multi-

plets are discussed by Gilbert and Backus (1965). 

The most common technique for frequency domain Q determination is 

apparently the use of the decay of successively windowed peak spectral 

amplitudes. The successive peaks method cannot be used to get reliable 

Q values when splitting is present. To demonstrate this we will 

conduct a numerical experiment of the·validity of the successive peak 

method in a case where we exactly know the Q - namely displacement or 

strain synthetics calculated from equation (4.1): 

(4.1) 

F
tm 

is the displacement or strain amplitude calculated using the 

methods in chapters 2 and 3. All singlets have the same QR, as long as 

lateral heterogeneity is not present (Gilbert and Backus, 1965) and 

the attenuation factor is included to zeroeth order. For, positive w, 

the Fourier transform of (4.1) is 

t 

LFtm 
m=-Q. 

iw -tm 

- iwt - wR, t/2Q 

where T1 and T2 are the start and end of the windows. 

(4.2) 
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We conduct a numerical experiment for OS3' using the modal ampli

tudes, F
3m

, for our source model of the Chilean earthquake and a 

receiver at Isabella. We use equation (4.2) to obtain the spectrum 

for any particular time window, and then evaluate the spectral ampli

tude numerically to find the peak spectral amplitude. In order to 

guard against the possibility that our result is an artifact of some 

particular window length, we make runs with two different window 

lengths, 20 hours and 10 hours. Both runs conclusively demonstrate 

that the Q estimates made from the decay of peak spectral amplitude 

are extremely unreliable and scattered when splitting is a significant 

effect. 

The results of the numerical experiment are shown in Figure (4.11). 

For all cases, Q = 500 is used. The top plot shows the trial with a 

20 hour window. The peak spectral amplitude for each 20 hour interval 

(e.g. 0 20 hours, 20 - 40, etc.) is plotted at the center of the 

interval. Two cases were considered. When there is no rotational 

splitting (Equations 4.1 and 4.2 are still applicable, but now all the 

singlets have the same eigenfrequency, w~m = w~), the peak amplitudes 

(the open circles) are well behaved, falling exactly on the line for 

Q = 500. On the other hand, the peak amplitudes for the case of split 

modes (closed circles) are very badly scattered and do not even decay 

monotonically. Even though the peak spectral amplitudes are exactly 

calculated, with no noise, and the Q is set exactly to 500 in equation 

(4.2), it is completely impossible to recover the Q from the peak ampli

tudes. The same is true of the 10 hour window (bottom of Figure 4.11). 
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20 hr window 

• splitting 
o no splitting 

• 

-. • 
•• -. 

•• 

10 hr window 

40 80 120 
hours 

• • 

• 

160 200 

Figure 4.11 - Results of a numerical test of ~ estimation by decay 
of successive windowed peaks. When there is no splitting (open circles) 
good results are obtained, but when splitting is present (closed 
circles) extremely poor and scattered spectral peaks result. 
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Again, although the peak spectral amplitudes for the unsplit modes 

lie exactly on the Q = 500 curve, in the split case the peak spectral 

amplitudes are very badly scattered and unusable for a reliable Q 

determination. 

This experiment, and actual experience, show that Q estimates 

from successive windowed peaks are extremely unreliable when splitting 

is an important factor. On the other hand, the technique of calcu

lating time domain synthetics for the split modes and varying the Q 

to produce the best overall agreement 'apparently gives accurate and 

stable Q measurements. 

Although a similar numerical experiment has not been conducted to 

test the validity of estimates of Q obtained from the decay of total 

spectral energy in successively windowed intervals, similar results 

are expected. This can be seen by an application of the digital 

equivalent of Parseval's theorem to the data for OS3 shown in figure 

4.3. In practice, estimates of the spectral energy of a particular 

multiplet are made by finding the energy in a finite bandwidth which 

contains nearly all of the energy. The spectral energy is almost 

exactly equal to the energy estimate which would be obtained in the 

time domain by summing X
2
(t) at each sampling point. Figure 4.3 

clearly shows that if we sum X2(t) in successive intervals we will 

not get a monotonically decaying function. Thus the decay of spectral 

amplitudes will not provide useable Q determinations for split multi-

plets. 

The peak spectral amplitudes are generally related to the spectral 
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energy in successively windowed data, so a similar argument explains 

the failure of peak spectral amplitude as a reliable Q estimator. 

Similarly, the time domain envelope decay will not provide reliable 

Q estimates. The failure of all these methods may be traced back to 

a common cause: they all are applicable only to a single, isolated, 

damped harmonic oscillator, while the split multiplets consist of 

several interfering harmonic oscillators. Because of the instability 

which occurs when high resolution spectral techniques are applied we 

cannot reliably isolate individual siriglets. Therefore the only way 

we can reliably study the Q of split normal modes using the present 

dataset is by using time domain synthetics. 

The focal mechanism, in principle, affects the beat pattern of 

the filtered seismograms. Therefore, the accuracy of the Q determina

tion from time domain synthetics seems to depend on the accuracy of 

the focal mechanism determination. However, as was demonstrated in 

the previous two chapters, the azimuthally symmetric term dominates 

the radiation pattern of the low order spheroidal modes for all fault 

geometries except vertical and horizontal fault planes or exactly 

strike-slip dislocations. Since split normal modes are excited only 

by great earthquakes which almost invariably occur on shallow angle 

thrust faults, the split spheroidal mode beat patterns will be almost 

completely insensitive to small errors in the source mechanism. 

Although the torsional modes are more sensitive to the fault geometry, 

their beat patterns generally are smoothly varying functions of focal 

mechanism. Thus Q estimates from time domain synthetics are probably 
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not very sensitive to small errors in the focal mechanism. 

In the future if good records of a great earthquake (M ~ 1030 
o 

dyne em) are obtained at many stations on the IDA array (Agnew et al., 

1976), it may prove possible to achieve high resolution by spectral 

stacking techniques. The present lack of sufficient instrumental 

records for very low order modes makes such stacking impossible at 

present. 

MOMENT OF THE 1960 CHILEAN EARTHQUAKE 

Reliable absolute amplitude calibration of the Isabella strain 

recording system at the time of the Chilean earthquake is very diffi-

cult to obtain. Although calibration tests were performed, it is not 

clear how accurate the results are. Also, topographic effects at the 

instrument site could cause large and, at the present time, unknown 

changes in the amplitudes (Beaumont and Berger, 1976). For these 

reasons, we estimate the moment of the 1960 Chilean earthquake in two 

stages. First, the Isabella records of the Chilean earthquake and 

the 1964 Alaskan earthquake are used to obtain the ratio of the 

moments of the two earthquakes. Then Kanamori's (1970) determination 

of the moment of the Alaskan earthquake from long period surface 

waves is used, together with the moment ratio, to find the moment of 

the Chilean earthquake. 

It is also desirable to use the Chilean earthquake data directly 

to find the relative moment of each mode. If the effective moment is 

essentially constant for all of the split modes from OS2 to OT4 



-202-

(periods from about 53 to 20 minutes) this would suggest that the 

finite propagating rupture and the slow precursory source account for 

nearly all of the slip associated with the Chilean earthquake. On 

the other hand, if the effective moment increases with increasing 

period, this strongly suggests that the coseismic slip and precursory 

source do not account for all of the fault offset. In the latter 

case, an "accelerated creep" with a time constant of several hours, 

possibly involving a slip of the entire lithosphere, is required. 

It should be noted that any study of the observed amplitudes to 

find the moment of each mode is dependent on the source model. In 

this particular study, we assume the finite source geometrys rupture 

propagation and precursory source found by Kanamori and Cipar (1974) 

and Kanamori and Anderson (1975). The parameters for this source 

model are listed above. It is assumed that the moment of the precur

sory source is equal to the moment of the mainshock, since that is the 

general conclusion reached by Kanamori and Cipar and Kanamori and 

Anderson. 

The evidence for the existence of the precursor seems conclusive. 

Kanamori and Cipar present definite instrumental evidence for body 

wave arrivals from the precursor on the Pasadena strain instrument. 

Kanamori (personal communication) has also observed precursors to 

G2 from the main shock, also on the Pasadena strain record. Kanamori 

and Anderson inferred the existence of the precursor from spectral 

holes in the Isabella strain and UCLA gravity spectra. 

Although the existence of the precursor seems well established, 
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its moment relative to that of the main shock is much less constrained. 

Kanamori and Cipar estimated the precursor moment using synthetic 

seismograms from a very simple model, while Kanamori and Anderson 

used amplitude spectral data. These studies show that the precursor 

moment must be of the same order of magnitude as that of the main 

shock, but further work seems needed to ohtain a more accurate value. 

On the basis of our present knowledge of the precursor, we set the 

precursor moment equal to the main shock moment. 

In finding the relative moment of the Chilean and Alaskan earth

quakes, we wish to use the longest period amplitude data which are 

available. The amplitudes of 082 and OS3 for the Chilean earthquake 

are almost completely unaffected by the details of the precursor. 

Because OS2' as is shown by Figure 4.2 and by Figure 1 of Benioff 

et al. (1961), stands out well above the noise, we use its peak-to

peak amplitude for the relative moment calculation. Unfortunately 

for the Alaskan earthquake the lowest order multiplet which is clearly 

resolved is 084 (Smith, 1966, Figure 4). However, no evidence has 

been reported suggesting that a slow dislocation might have accompa

nied the seismic slip for the Alaskan earthquake. Therefore the 

peak-to-peak amplitude of OS4 should be a good measure of the long 

period moment. The observed amplitudes must be corrected for the 

instrument response curve, which is different for Chile and for 

Alaska (Smith, 1966, Figure 3). (The relative instrument calibration 

is assumed to be reliable.) The moment ratio is then given by 



Data (OS2 - Chile) 
R = ~-----.~--~~~----~~~ Counts/Strain (OS2 - Chile) 
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x 
Counts/Strain (OS4 - Alaska) 

Data (OS4 - Alaska) 

x 
(Synthetic - OS4 - Alaska) 

(Synthetic - OS2 - Chile) (4.3) 

A digitized record (not shown here) of the Isabella record of 

the Alaskan earthquake is used and a peak-to-peak amplitude of 72.2 

counts (digital units) is obtained. The card deck for the Chilean 

data is labeled 111 = 400 counts, and the card deck for Alaska, which 

is not labeled, is assumed to have the same scale. The peak-to-peak 

amplitude of OS2 for Chile is 27.0 counts. The OS2 Chile strain 

-13 
synthetic has P-P amplitude of 1.24 x 10 . The OS4 Alaska synthetic 

(not shown), which was calculated using Kanamori's (1970) finite 

-13 source model, has P-P strain amplitude of 4.32 x 10 • Taking the 

response curve from Smith's (1966) Figure 3, we get 

27.0 
R = ------'--"---:-::- X 

1.4 x 10
12 

3.5 x 10
12 

72.2 
4.32 x 10-13 

x 
1.24 x 10-13 

= 3.26 (4.4) 

29 If we use Kanamori's (1970) value of 7.5 x 10 dyne cm as the moment 

of the Alaskan earthquake, the moment of the Chilean earthquake is 

then 

M (Chile) 
a 

= 3.26 x 7.5 x 1029 

(4.5) 

2.4 x 10
30 

dyne cm. 
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This value is about half that obtained by Kanamori and Anderson (1975), 

4 to 5 x 10 30 dyne cm, but is well within the range of experimental 

uncertainty associated with this type of single station measurement. 

RELATIVE MOMENTS OF SPLIT MODES 

FOR THE CHILEAN EARTHQUAKE 

The total moment may be independently estimated from the ampli-

tude of each of the split modes. Because of the uncertainty of the 

absolute calibration of the instrument, only the relative moment for 

each mode is considered. If the relative moment increases with 

increasing period, then an "accelerated creep" process can be inferred. 

Constant relative moment will imply that all of the slip is accounted 

for by our source model. 

The observed P-P amplitudes for each of the split modes is listed 

in Table 4.2. The instrument response curve, as given in Figure 4 of 

Benioff et ale (1961), is assumed to give the correct relative ampli-

tude response. The relative amplitudes of the instrument response for 

each mode are listed in Table 4.2; the normalization is arbitrary. 

The peak-to-peak amplitudes of the strain synthetics are given for a 

27 
total moment of 10 dyne cm. The data amplitudes are then divided 

by the instrument factor and the synthetic amplitudes to obtain the 

relative moment. The confidence limits are nominal, and serve only 

to indicate the relative uncertainty. These v~lues are calculated by 

converting a nominal scatter of ±1 digital unit into the equivalent 

range of relative moment. 



Table 4.2 

RELATIVE MOMENT 

Peak-to-Peak Amplitude Relative 

Mode Data (counts) Strain Synthetic (x 10 14) Instrument (x 109 in/strain) Moment 

OS2 27.0 12.4 2.02 1.08±0.04 

OS3 24.8 12.6 2.02 0.97 ± 0.04 

OS4 9.66 1.18 2.02 4.05±0.42 

OS5 11.7 1. 76 1.97 3.29 ± 0.29 
I 

OT3 5.99 3.58 1.97 0.85 ± 0.14 ~ 
(J"\ 

I 

OT4 4.61 7.55 1.95 0.31 ± 0.07 
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Figure 4.12 - Relative moment of the Chilean earthquake as a function 
of frequency. Error bars are relative and correspond to one count 
(digital unit) for each mode. 
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The relative moment values from Table 4.2 are plotted in figure 

4.12. These amplitudes are somewhat scattered for modes OS4 - OSS and 

OT4' but these modes are noisier and more affected by lateral hetero

geneity than OS2' OS3 or OT3. The amplitudes are generally consis

tent with the source model used in this study, which has a shallow 

angle thrust mechanism and a precursor with the same moment as the 

main shock. This mechanism is not unique, but probably lies in a 

broad range of acceptable solutions. 

The major constraint on the source mechanism obtained from split 

normal modes is provided by the ratio of torsional to spheroidal ampli

tudes. The low angular order spheroidal singlet amplitudes themselves 

are not sensitive to the source mechanism, except for pathological 

source geometries. Although the torsional singlet amplitudes do vary 

with source geometry, until the torsional splitting parameters are 

better known, the detailed excitation patterns cannot be used to study 

source mechanisms. 

CONCLUSIONS 

By applying the theoretical techniques developed in Chapter 2, 

synthetic seismograms of the split normal modes are calculated for the 

1960 Chilean earthquake. These synthetics, for OS2 - OSS and OT3 -

OT4 are in agreement with the observed data. The splitting of OS2 

and OS3 is confirmed, and the splitting of OS4~- OSS and OT3 - OT4 is 

demonstrated for the first time. The agreement of the synthetics for 

the higher angular order modes is expected to improve when correct 
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ellipticity splitting parameters are used. 

Different techniques for determining the Q of split modes are 

compared. It is shown that techniques which implicity treat the 

split mode data as the output from a single damped harmonic oscillator 

do not give meaningful Q estimates. Q can be estimated from either 

time or frequency domain techniques which explicitly include splitting 

effects. However, the amplitude and (especially) phase spectra are 

very unstable, in the presence of noise; changes in window, filter 

response, etc. can also substantially "affect the spectrum. Because 

of the instability of frequency domain measurements, Q measurements 

from comparison of time domain synthetics to data seem much more 

stable and reliable. 

By comparing the amplitude of 082 for Chile to OS4 for Alaska, 

after normalizing each by the synthetic amplitude, the moment of the 

30 
Chilean earthquake is estimated to be 2.4 x 10 dyne cm. However, 

because of the wide scatter of the relative moments (shown in Figure 

4.2) and the uncertainty in the source geometry and the precise nature 

of the precursor, this value should be considered as preliminary. 

Time domain analysis of split normal modes is a powerful new tool 

for data analysis. Future applications of this technique will result 

in more accurate Q determinations and better knowledge of earthquake 

source mechanisms at very long periods. 
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