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ABSTRACT

The diffraction of P and S waves by various obstacles is
studied theoretically, in order to evaluate frequency dependent
corrections to ray theory for elastic waves which travel nearly
along the Earth's core shadow boundary.

Most of the properties of this scattering process are
conveniently illustrated by a simple Earth model, which gives
rise to a problem in plane strain. This model is an infinite
homogeneous elastic solid in which a steady state plane body wave
(of the type P, SV, or SH) is incident on a circular cylindrical
cavity. A Poisson summation is used for the scattered elastic
potentials, and contributions from waves diffracted at least once
around the cylinder are neglected. Simple approximation formulae
are developed to examine the behavior of P, SV, and SH waves on
and near their geometrical shadow boundary behind the fluid.
Computed numerical results are believed to be valid for frequencies
above 0.03 Hz.

The solution method, which may be regarded as a corrected
Fresnel theory, is taken through four successive stages of
generalization to study increasingly realistic Earth models:

(1) diffraction of cylindrical waves from a line source. For this

problem our solution is in excellent agreement with the results of
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an ultrasonic model experiment conducted by Teng and Wu (1968).
(ii) Diffraction by a fluid cylinder of cylindrical waves from a
line source. (iii) Diffraction by a spherical fluid of spherical
waves from a point source. Here we find good agreement between
numerical results from our approximate method, and computation

of the exact Poisson line integral.

The final stage of generalization, to study (iv) diffraction
by a spherical fluid/solid discontinuity in a realistic radially
heterogeneous Earth, is obtained by methods similar to (iii), but
after an extensive revision of Hook's (1961) discussion of elastic
potentials in general media. In our approach, we recognize that
the designation of P and S displacements is somewhat arbitrary
in heterogeneous elastic media, but becomes precise in the high
frequency limit of ray theory (in which P and two S components
are decoupled). These facts are used for radially heterogeneous
isotropic Earth models to establish three potentials (P,S,T)
with the properties (a) that T(E,t) is decoupled from P and S, and
is a potential for SH motion, (b) the coupling of P and SV waves is
reflected in a system of coupled scalar equations for P(g,t)
and S{z,t), and (c) in the high frequency limit we have Pgs,t)

and S(r,t) satisfying canonical upcoupled wave equations with
~ : &5 A {

= z

the respective velocities ()\:_211) 5 (%‘-) .



Many possibilities are suggested by the coupled equations
for P(E,t) and S(zﬂt), apart from their use in the solution of
(iv) above. They lead to a statement of conditions on the Earth
model under which P and SV waves can propagate independently
(at any frequency). We also use them to obtain approximate
reflection coefficients for upper mantle transition regions which
generate observed precursors to the phase PKPPKP, finding that the
extent of velocity gradient anomaly in such regions must be less
than about 4 km, in order to observe short period (1 sec)
reflections.

Our numerical study of core diffraction provides an
explanation for the observed polarization towards SH of diffracted
S waves, and also shows that there is a slight dispersion effect
on-%% data, obtained for P in the range beyond 90°, which can
and must be allowed for in accurate Herglotz-Wiechert inversion
studies. The numerical methods developed for discussion of (iv)

are expected to have wider applications in seismological studies

of the Earth's core, mantle, and crust.
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Chapter 1

General Introduction

Improvements during the 1960's in both the quality and quantity
of seismic data have concurrently stimulated considerable interest
in an improvement of the theory for elastic waves. The immediate
goal of such new theory and data is a more accurate estimation of
the longitudinal and shear wave velocities, and density, everywhere
within the Earth.

The achievement of this goal is in turn crucial to that most
basic aim of geological science, a full statement of the constitution
and evolution of the Earth, because it appears that from data now
available there is a potential for assigning the seismic parameters
with great precision. This potential has indeed been realized
already throughout most of the Earth, and we may cite for example
the longitudinal wvelocity distributions of Gutenberg and Jeffreys
which had been established by 1939, each distribution differing
between depths of 900 and 2800 km by less than 1% from the recent
study of Hales, Cleary and Roberts (1968). However, the importance
of further data analysis lies in the fact that diagnostic clues
to composition are principally contained in regions of high velocity
gradient, or of velocity contrast, and such regions are just
those for which the classical interpretive theories of seismology
are least reliable. Perhaps the major example of this difficulty

is the wide class of upper mantle models which fit experimental



travel time data (see Gerver and Markushevich, 1966, for a
theoretical discussion), and it is necessary to use other
phenomena such as surface wave dispersion (see Brune and Dorman,
1963) or the amplitude of body waves (see Julian and Anderson,
1968) to discriminate further between velocity models.

This study is directed towards improvements of classical
ray theory, and, while several new and quite general results are
presented for homogeneous and inhomogeneous elastic media, we
emphasize the particular problems of analyzing core-diffracted body
waves near the shadow boundary.

The geophysical community has seen a large number of publications
reporting theoretical and observed properties of core diffraction
(for a review, see our Introduction to Chapter 2 below), and
there are several reasons why the core-mantle boundary remains
the subject of widespread current research. In summary we
may mention here that theoretical departures from ray methods are
suggested by Johnson (1969) for rays which nearly graze the boundary,
so standard methods for inverting seismic data are suspect. Yet
the determination of present core-mantle boundary parameters is
important both to our knowledge of the present density distribution
throughout the Earth, and to the historical study of core
differentiation. A large amount of relevant seismic data is
available, partly because arrivals in the distance range 85°-115°

cover a disproportionately large surface area of the Earth.



Alexander and Phinney (1966) have pointed out that comparison
of arrivals in the core shadow which are along the same great
circle path can be used to study lateral heterogeneities at
the bottom of the mantle. A final and basic reason for our
examination of the core-mantle boundary is that it appears to be
a simple example within the Earth of a region of varying velocity,
bounded by a velocity discontinuity. This combination is possibly
present in several other regions of the Earth (see Archambeau,
Flinn and Lambert, 1969), and also in planetary atmospheres which
have been subjected to occultation experiments, and so our new
theoretical and numerical methods may be expected to find applications
considerably wider than the present study. Our results are
summarized below in this Introducﬁion, but first we briefly survey
the standard wave propagation theories now used in seismology.

Ray theory itself (see Eullen's 1963 text for a summary,
and applications), with its underlying assumption that P, SV,
and SH waves separately obey the laws of geometrical optics, is
an approximation which can provide a basic guide to more exact
methods. This must be true, because the bi-characteristiecs of the
general equations for elastic displacement are identifiable
precisely as rays (see Section (3.2) below). Before developing new
methods, we should thus be aware of two types of problems for
which ray theory is essentially exact:

(i) It is exact for problems of plane waves, incident on

plane boundaries, in homogeneous media. (Although there are



some exceptional problems concerned with grazing and critical
incidence. See Goodier and Bishop, 1952, and Hudson, 1962.)

The case of a curved wavefront can be expressed as an integral

over plane waves, and the evaluation of such integrals has led

to a vast catalogue of solved problems, for different source-receiver-

boundary geometries (for an extensive review, see Miklowitz, 1966).

(ii) Robinson (1957) and Vlaar (1968) have shown for
heterogeneous media that a ray theory, based on the concept of
a wavefront as the carrier of a discontinuity in particle wvelocity,
can give exact results for the propagating wavefront itself.
Discontinuities in P, SV, and SH are shown to propagate independently -
but behind the wavefront, these displacement fields are, of course,
coupled in ways which ray theory cannot exactly interpret.

It is often claimed that ray theory is accurate for a medium
in which the changes in such physical properties as velocity, and
velocity gradient, are small over a wavelength (see Officer, 1958,
and Archambeau, Flinn and Lambert, 1969). While such criteria
can be useful in some particular applications, they must be in-
sufficient in general, since the total path length within the
heterogeneity is not taken into account - if this path length is
sufficiently long, we intuitively expect that ray theory must
become arbitrarily bad. But note from (ii) above that we also
should expect ray theory to be arbitrarily good for a spatially

fixed source and recZever, and inhomogeneity (however bad, provided



the elementary equation for displacement is valid) if the source
frequency is sufficiently high. Further breakdown of ray theory
occurs in the neighborhood of caustics (i.e. the envelope of a
system of rays), and of the geometrical boundaries of shadows cast
by discontinuities within the elastic media.

It is clear then that the approximate solutions of ray
theory in seismological applications need checking against exact
solutions, wherever this is possible, in order to assess the accuracy
of the former method. To this end, we give in Chapter 2 below the
exact solution for elastic displacement in simple Earth models,
near the shadow boundary due to the core-mantle discontinuity,
and compare it with ray theory and other approximations. In this
case we can show by example how the assumption of uncorrected
ray theory may consistently bias the conclusions of inversion for
mantle velocities just above the core.

The device of approximating the Earth by welded layers of
homogeneous plates (or concentric homogeneous shells) has led to
much successful work. Methods initiated by Thomson (1950), Haskell
(1953, 1960, 1962), and Knopoff (1964) are particularly useful in
studies of surface wave dispersion, and of course this type of model
is particularly suited to the geophysical problems of inversion.

But there are some strong objections to modelling the Earth
by homogeneous plates.

One type of objection is that these models have spurious



properties not common in general media. Thus, a calculation of the
travel times in layered models often reveals small triplications
induced by the layering - an inconvenience which usually can be
avoided by using, for example, a Mohorovidid law of inhomogeneity
(i.e. velocity proportional to an irrational power of radius). A
more interesting, but still somewhat spurious, property leads

to the fascinating problem of headwaves; the travel time for a head-
wave arrival indicates a travel path of critical incidence at one
of the boundaries, together with grazing boundary ray transmission
in the faster medium, and this special property is the basis of
special methods for the evaluation of headwave displacement.
Typicall&, these are the branch line discussions of, for example,
Berry and West (1966), or the less well-known operational methods
of Jeffreys (1926), or studies of wavefront curvature by Yanovskaya
(1968). But even a small velocity gradient destroys the simple
property of critical incidence - grazing transmission; the
theoretical approach to "headwaves" = (in so far as this energy

may be isolated) is then either a diffraction study of scattering
poles (if velocity decreases with depth: see Hill, 1970) or a
multi-ray study of saddle points and scattering poles (if the
velocity increases with depth: see 5erveﬁy, 1966, Chekin, 1965,
and also Chapman, 1969, for the related problem of SKK...KS within
a simple Earth model). It appears that Runge's Theorem (Hille, 1962)

provides a theoretical link between these different methods for



positive and negative gradients (as the gradient becomes smaller),
and the branch line method in the limiting case of two homogeneous
media.

The second type of objection is part practical, part aesthetic.
We have considerable evidence (e.g. Johnson, 1967) for regions of
high velocity gradient within the upper mantle, but the number
of homogeneous layers needed to model such a region accurately for
body waves is so large that reflection data (Adams, 1968, and Whitcomb
and Anderson, 1970) cannot yet be felated accurately to the velocity
gradient (although Teng and Tung (1969) have recently reported
some success). And so far as we know, the Earth is not composed
of homogeneous layers, and the coupling between P and SV is not
accomplished by discontinuous boundaries; it is accomplished
intrinsically in the equations of motion.

It seems that the only method which both accepts this last
fact, and calculates its effect, is that initiated by Epstein (1930),
which for certain velocity gradients in acoustic media can furnish
an exact solution for the reflection and transmission coefficients.
This method, which transforms the equations of motion into a form
satisfied by hypergeometric functions, and then uses the connection
formulae between different pairs of solutions, is available for a
theoretical study of SH waves. And a conclusion of our Chapter 3
below is that the same method may possibly be used, with an approximate

equation for P waves, to study longitudinal-longitudinal reflection



coefficients for the precursors to PKPPKP.

The methods of Phinney and Alexander (1966) and Phinney and
Cathles (1969) have guided several sections of our Chapter 2 below.
Their procedure is to represent the displacement potentials, for
elastic waves in a simple Earth model, in a standard way as complex
line integrals, and to evaluate the integrals numerically. Such
an approach has been slow in finding seismological applicationms,
since a similar breazk-through was achieved in 1946, in a study by
Fock of electromagnetic waves - and see also Wait and Conda (1959).
Recent work of Chapman (1969) has further extended the method in
seismology by incorporating a scheme for direct numerical integration
of the equations of motion through the turning point at the bottom
of a ray path.

The study below is presented in two chapters, which are almost
independent. (Just one conclusion of Chapter 3 is used in Chapter 2.)

In Chapter 2 we solve a simple shadow boundary problem in
elastic plane strain. In several stages we generalize the solution
method to investigate the shadow boundary set up by a point source
in a simple Earth model composed of separately homogeneous mantle
and core. Exact displacements are calculated (by Phinney's method)
for P, SV, and SH sources, and are compared with the approximations
of ray theory in the 1lit region, and a corrected Fresnel theory

near the geometrical shadow boundary (see Rubinow and Keller, 1961).



We find that the latter approximation (which is found to be

quite accurate in the simple Earth models) can successfully be
generalized to examine more general Earth models (with radial
heterogeneity), giving the combination P + PcP from distances
where they begin to interact, out to (and including) the shadow
boundary. And a numerical method is given for evaluation of
diffracted arrivals in the shadow, back to (and including) the
shadow boundary. Both these methods are quite simple to use

in realistic Earth models; the corrected Fresnel method is
expressed as a factor multiplying the ray approximation for the
direct P wave field, and successfully matches the numerical

shadow region method on the shadow boundary. Several implications
of our results are described, and include (a) showing that the
grazing reflection coefficient for elementary waves at a spherical
discontinuity is, for our geophysical parameters, substantially
different from the corresponding coefficient with a plane
discontinuity, (b) explanation of the observed polarizing effect,
on S waves, of core diffraction, and (c) an evaluation of Johnson's

(1969) caveat, that velocities obtained at the bottom of the mantle,

ar

ah values,

by standard Herglotz-Wiechert inversion of observed
are too low.
In Chapter 3 we attack the problem of finding potentials for

elastic displacement in spherically symmetric isotropic media.

The study of wave propagation has led physicists and applied
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mathematicians to take advantage of many similarities to be found
between the different problems. The similarities arise because
equations of wave propagation (be they for a magnetic intemnsity, for
a stress tensor, or for particle scattering) may often be transformed
to and from certain "canonical forms" of wave equation. The widely
studied properties of canonical forms may then be simply related
to our particular problem, provided we can establish the necessary
transformation. Hook (1961) and Singh and Ben-Menahem (1969) have
studied the equation for elastic deformation, but our approach
differs from these authors in using a slightly simpler potential
representation by which (we prove) all possible displacement solutions
can be studied. We are able to see, from our final choice of potentials,
the theoretical reasons why P and SV body waves in the Earth are
observed to propagate almost independently, and the generality of
our final coupling equations permits a survey of many possible
applications., For example, we show the relevance to seismology
of some canonical wave solutions in certain standard kinds of
inhomogeneity, and are able to see that all experimentally
identifiable reflection horizons in the Earth's mantle must be
highly localized.

The new work presented in this dissertation includes our
study of amplitudes near a shadow boundary in homogeneous elastic

media, and the methods of generalization needed to study radially
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heterogeneous Earth models, their core shadow boundary and shadow
region. The generalizations are examined numerically for a realistic
Earth model. We also place Hook's method of potentials on a

firm and simpler foundation.

The conclusions of our Chapters 2 and 3 may briefly be
summarized by remarking that ray theory, a basiec pillar for many
years of seismological research, has now guided us to more accurate
practical approximations, which can improve our interpretation

of existing data.
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Chapter 2

Diffracted P, SV, and SH Waves, and Their Shadow Boundary Amplitudes

2.1 Introduction

Since the installation of the World-Wide Standardized Seismograph
Network, rapid accumulation of seismic data on diffracted body-wave
amplitudes has given us hope of better determination of the radius
and nature of the Earth's core-mantle boundary. There has been,
however, a lack of appropriate diffraction theory for the interpre-
tation of these recorded amplitudes, particularly fér observations
made near the shadow boundary. This chapter develops a solution
for the displacement of body waves which closely graze the core, and
the theory is examined in relation to some observed data. It is
found that the phenomenon of SH polarization in diffracted S waves,
reported by Cleary et al (1968), is qualitatively explained. It is
also found that the departure from ray theory in‘the shadow boundary
region may be very simply allowed for when using Herglotz-Wiechert
inversion to set up models of the lower mantle (see Johnson (1969): a
frequency dependent correction is made to the observed %% s, to allow
for the interference effect of PcP).

Displacement solutions that are valid only in limited regioms
have previously been obtained for some problems with simple

configurations; for example, a spherical cavity in a homogeneous

elastic medium (Nagase, 1956), a fluid sphere in a homogeneous
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elastic solid (Scholte, 1956; Duwalo and Jacobs, 1969; Knopoff and
Gilbert, 1961), and scattering from a rigid cylinder or sphere
(Gilbert and Knopoff, 1959). Some of these solutions are for
impulsive elastic waves, and so are unsuited to the interpretation
of spectra. All of these solutions are valid only within the
"illuminated" region (that is, the region accessible to direct body
waves from the source), or within the shadow boundary, and they
fail for regions near the geometrical shadow boundary. The failure
of these theories in the critical region of core-grazing rays has
hindered meaningful discussion of the observed diffraction data - for
presumably it is just these rays which provide the best information
we have on core-mantle structure.

Recent progress in acoustics and electromagnetics has provided
solutions valid in the neighborhood of the geometrical shadow boundary,
for scatterers of various simple geometrical shapes (Rice, 1954;
Rubinow and Wu, 1956; Rubinow and Keller, 1951; Nussenzveig, 1965).
Although these results are not immediately applicable to the study
of elastic waves, the gross structure of the solutions and the general
conclusions are expected to be common to all wave-scattering problems:
typically, their findings are

(1) a broadening of the transition zone (that is, the region

between illumination and shadow) with lower frequency,

(2) a dependence of the extent and position of the transition

zone on the boundary condition at the surface of the

scatterer, and
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(3) strong similarity among solutions for spherical, cylindrical,
and paraboloidal scatterers with the same boundary condition.

The theory of this chapter is an extension to seismology of the
solution techniques developed in acoustics and electromagnetics, and
we examine the amplitude behavior of P and S-waves near the geometrical
shadow boundary. This extension involves the study of more general
boundary conditions that couple two potentials and their derivatives,
as opposed to the Dirichlet or Neumann conditions considered in
acoustic and electromagnetic problems. A substantial extension to
the theory of radially heterogenous media is also given.

We are fortunate in having two independent checks on the theory
of this chapter. An ultrasonic seismic model experiment (Teng and
Wu, 1968) has been conducted, which measured transition amplitudes
of P and SV behind a circular hole cut in a thin plate. Also, a
method of Phinney and Alexander (1966), and further described in
Phinney and Cathles (1969), has given transition amplitudes of a
P-wave potential due to a fluid spherical core. The method of
Phinney and his co-workers, which involves extensive numerical
integration, is described below. The results of both the above

projects are in accord with our theory. .
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Plan of Theoretical Development

The simplest geophysically relevant problem of elastic wave
diffraction is a problem in plane strain: a steady state plane wave
of displacement is incident upon a circular cylindrical cavity, and
it is required to evaluate displacements near the geometrical shadow
boundary. This basic problem is solved in section (2.2). The
generalization to diffraction of waves from a line source, and a
comparison of theory with the results of Teng and Wu (1968), is given
in (2.3). In (2.4), we generalize to the case of a fluid cylindrical
scatterer, and in (2.5) we solve the parallel problem of a point
source, with waves scattered by a spherical fluid, and compare the
results of Phinney and.Cathles (1969). The generalization to a
radially heterogeneous Earth is made in section (2.6). In (2.7) we

apply our new results to observed phenomena.

2.2 Theoretical Development of a Simple Model of Diffraction

Statement of Elasticity Problem

A steady-state plane wave of unit displacement is incident from
the left on a circular cylindrical cavity of radius a (see Figure 1(a)).
This is a problem of plane strain, and we wish to evaluate the scattered

displacement field.
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We use polar coordinates (r,6,z) centered on the cylinder axis,
and shall consider the cases of
1. Diffraction of P-waves with a plane P-wave incidence:

y = (cos6,-sinb,0) elchr cosb - wt)

2. Diffraction of SV-waves with a plane SV-wave incidence:

u, = (sinb, cos6,0) el(kr cosb - wt)

3. Diffraction of SH-waves with a plane SH-wave incidence:

i(krcosb-uwt
E'i = (0 :0’1) e ( )
For the P-wave due to SV-wave incidence, and the SV-wave due to P-wave
incidence, formulae are given in Appendix I.
In the first two cases, our problem can be reduced to a two-
dimensional one involving two scalar potentials ¢ and ¢, which are

related to the displacement field u by

M|

S
26

|

_g% = _g% . o) (2:2.1)

u=(i¢-+
~ or
The total displacement u is a solution under the conditions

(i) that (V2 + h2)¢ = (V2 + k2)y = 0, where (h,k) are the wave

numbers for (P,S) waves,
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(ii) that the scattered waves L =u-u are outgoing, and
(iii) that there is neither tangential nor normal stress on

the boundary r = a.

Scattering of P

The incident wave clearly may be represented by

_1 _i(hrcosé-wt) n
¢i H © , and vy 0.

The conditions (i) and (ii) allow us to write scattered potentials as

g, = %E'nz_w(i)n AhHél)(hr) ei(n&-mt) L

- 1 i(n6-
Vg = Tm Y o@D" B Hé )(kr) GHRRBIE)

n"_'-m

K2:242)s

We can evaluate Ah and B by using condition (iii), together with the

relation

el hrcos®d B 2 (i)n Jn(hr) elne

n:—oo
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This procedure is straightforward, but lengthy, and gives

1 % 5" (na) HERAD (2:2.3)
A === 1l <+ e ’ 2.2.3
A & 2, Hr(ll) tha) | ° 2 |-91 Hél) (ha)
where for convenience we have defined operators
0 E M (na) = sWp®) 4 W™ g
123 _(ha) = 1 [R‘”Pm - R(l)Pm:]
where
' (2.2.4)
P(R') = 2ha Hn(ﬁ') (ha) + [kza2 - 2n2] H_éﬂ') (ha)
Q¥ = —2n (ka 18 (ea) - 8P (ka))
) = Zn(ha B0 (ha) - 1Y (ha))

w
1]

(2 - oxa 5" (ka) + [kZaZ - 2112] HI(IR') (ka) .

n

Each of the An and Bn may now be evaluated, for specific values

of w,a,o and B: the unique solution for u follows from equations

(2:2:2) and (2.2+1).
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Discussion of ¢S (i.e. P-P Scattering)

It is unfortunate that the series solutions (2.2.2) converge
so slowly that they are of little direct use. It is clear from
the form of (2.2.3) and (2.2.4) that, if there is convergence, it
must be slow, for Ah is small in general only for n >> ha. For a
simple model of the Earth's core-mantle boundary, we find for body
waves with period 1 to 50 seconds that ha varies between 1600 and
30 ( and ka between 3000 and 60).

However, if we wish to find ¢s for values of (r,8) in the
illuminated zone, and for an incident wave of frequency high enough
for us to expect a reflection effect, we can make an estimate of
the values of n which we expect physically to be most significant.
These values are integers which most nearly satisfy the relation
(see Figure 2)

w r sin i(x)

5 - (2.2.5)

(The corresponding relation for a spherically symmetric body is

n + %-= - 3LEL€$214£ ; see Bremmer (1949), Ben-Menahem (1964).)

A simple way to obtain (2.2.5) is to use the factor o IRE-E)

in the n-th term of the series (2.2.2). This factor indicates that
each term of the series represents a wave travelling around the

cavity with phase velocity v, = §£ in the direction of increasing 6.



=19—

The summation ¢S represents an interference effect of all these
different phase velocities, and the reflected-ray phase velocity is

(see Figure 2) = a/sin i in the direction of increasing 6.

wr% -

The interference is thus constructive only when v_ = i,
n o sin i
when (2.2.5) is nearly satisfied. For (r,8) near the shadow
boundary, we have r sin i a, so the significant terms are
. r sin 1 . . B P
n ~ = ha, The quantity ——Ei——— in (2.2.5) is the familiar seismic

ray parameter, and part of the above theory has a generalization
to radially heterogeneous models (see section (2.6)).

We now proceed to an evaluation of ¢S for large values of ha,
using the Poisson sum formula. Our development has been guided
substantially by the methods of Rubinow and Keller (1961), who
discuss a problem with only one potential and with a different
boundary condition on r = a. A factor exp(-iwt) is understood in
some of the expressions below.

If we define

e iv{B + gﬂ

2,52 (ha)
Alx,8) = | e f, & e

D H(l)(hr) dv
91 Hn (ha) J

:

and use the Poisson sum formula (Morse and Feshbach, 1953)

<o [==]

F(n) = F(v) e : dv
Z z J 2ivmm

TI==—00 =00
-0
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with

! inw/2 (1) in®
F(n) e Ah Hn (hr) e x
we see that
6 = - = E A(xr,2mm + 8) (2.2.6)
s 2ih Lz, ’ o

In this exact formula for ¢s we wish to identify waves that travel
around the cylinder and are then summed to give the scattered field.
For example, we note that, for large ha and m = 1,_§(r,2mﬂ + 6)
has a phase ha(2mm + 8) and hence represents a wave that has
travelled m times around in the direction of increasing 6. To make
further identification it is helpful to rearrange the terms in
equation (2.2.6), to reveal also (1) which waves travel around in
the direction of decreasing 6, (2) which wave just grazes the cavity
for a field point near the upper shadow boundary, and (3) which

wave is diffracted around the lower part of the cavity. We are
guided towards the correct rearrangement by noting that physically
we expect ¢S(r,6) - ¢5(r,-8) and in particular that the upper

and lower shadow boundaries are symmetrical.



.

Using the relations

QIHE? (s =g Qlﬂ\sl) (ha)

and
282 (ha) = 5P (ha)

(2.2.6) becomes

_1 1) 5
°s = "2in H: .- (.A(r,Zm'n +8) + Alr,2mr -e))

1

|

J

(2.2.7)
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Evaluation of ¢S Near the Upper Shadow Boundary

The first infinite sum in (2.2.7) represents waves that, from
their phase, we identify as having travelled m times (m = 1)
completely around the cylinder. These waves attenuate with distance
at a rate proportional to [héﬁ and arrive much later, outside the
time-window we are interested in, so we may ignore them. The integrals
in the remaining two brackets { } represent waves which have not
travelled completely around the cylinder.

From the interference argument mentioned above, we expect to
get contributions for the integrals in (2.2.7) from those regions
near v' = - ha and (since in fact v' = =v) v' = ha. Near
the upper boundary of the shadow, the second bracket { } is then
seen to be negligible relative to the third. Just the opposite
is true when we consider the lower boundary of the shadow (but
with contributions still coming from-v = = ha, v' = + ha). Our
interpretation is thus that the second bracket describes the wave
travelling via the bottom of the cylinder, and the third bracket
that via the top. For our evaluation, the diffracted contribution
via the bottom of the cylinder is negligible, and we may take just

the third bracket { } in (2.2.7), writing it now as
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il © v(-6+0) 2,82 (na)
=1 J e ( 2) Hil)(hr)dv - J e [ 2] ol Hil)(hr)du

% = Zin i 6H)
5 ! Qle (ha)

L
for (ha)’ >> 1, near the upper shadow boundary.

Following Rubinow and Keller (1961), we use

¢ = - 'i'i—h I_al (r,-e) + aZ(r,—e):] where

s L

B2 1y (~e+/2) o
aj(r,-6) = e Hv (hr)dv
0
ha
iv(-e+n/2) aEP (ha) (g
as(r,-6)=1| e —-—-'(-]-:-)-——' H (hr)dv
Q8™ (ha)

-0

o (2)
" Q h
+] elv(-9+ﬂ/2)[ o Wl 5D () av

1+
L 2P

To evaluate a;, we may use the Debye formula for Hsl)(hr)

(since hr > ha and ha is large) to obtain



B

1

ha
L

‘(}?a';z__\,z)i exp i[[hzrz*val" +v sin"l-;’;;-ve] dv

0

ety [ gTiRl J

(2.2.8).

This integrand has just one stationary phase point, given by a value

¥ - such that

\V
g™l ——S— = =
sin ( e 8 y Lo Vg hy.
For P(r,8) near the upper shadow boundary (see Figure 1), this
stationary phase point is near the upper limit of integration in

(2.2.8). Making the definition

g = v

Y2hx

and expanding the phase within (2.2.8) as powers of £, we find

B ey

aj(r,=-6) ﬁ—eihx-

The upper limit is small near the shadow boundary, and the lower
limit is large for high frequencies; so this Fresnel integral may

be approximated by
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!

R 3
ay (r,-8) ~ eIX [1+e e (%) (a-y)] 1f both
J. ]
< 2
h h
(ﬂ) ¥ L and (ﬂ)la‘yl“l :

For regions in which the second condition is invalid, aj(r,-6) may
be found from a table of Fresnel integrals.
To evaluate aj(r,-6), we may still use the Debye expressions

for Hél)(hr), and find near v = ha that

Lv(-0 + 1/2) LDy ox - w/4), (__g_)i
v whx i
But, for HSR)‘(ha) and Hél)(ha) (2 = 1,2), the simple Debye

approximations are useless. Since argument and order are nearly
equal, some form of Langer approximation is necessary (see "Higher
Transcendental Functions" by staff of the Bateman Manuscript Project,
1953, Vol. II, p. 89), and we discuss this below in the section

on numerical results.
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Then
a;(r,=6) ~ (-ﬂ—{_zl;)i ei Ehx_ﬁ/4) (ha}§ CP(m) where

ha

| Qlﬂéz)(ha)-dv r ﬂlﬂiz)(ha)

C_(w) = T - 1+ ——— | + dv
5 (ha)? 2,5 (na) 2,52 (ha)

- * ha v

(2.2.9)

and CP(m) is evaluated below, numerically.

In summary: we have for ¢= ¢ + ¢_ that

I
ke

i(hx-wt) 1 1 2 -in/4 0
o~sm 3 (Fm) ¢ Laen + o g

(2:2:10)5
Scattering of SV
The incident wave may be represented by
1 i(krcos 6-wt)
=0 \U=-—e
by ; 1 ik
The conditions (i) and (ii) allow us to write
© i(ng-wt)
1 . (1) i(n
b =~ Ik (D" C R, e ; (2.2.11)

T (i)n DnHél)(kr) ei(ne—mt)

n=-w
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and condition (iii) then gives

1|—Qz+ Jn(ka) g T
Cn---i” — Dn.—-i 1. <
| o3 B (ka)

where we have defined the operators
Q3Hél)(ka) E S(E)P(l) + Q(Q)R(l) i &= 1,2

2J (ka) = - i [S(Z)Q(l) N S(l)Q(Z)]

]

and P(Q), Q(z), R(E), S(Q) are defined in (2.2.4).

Discussion of ws (i.e. SV-SV scattering)

(2.2.:12)

£2:-2.13)

We use a Poisson sum formula, just as before. Thus, defining

1

o iy(e+n/2) | 933(2) (ka)
™zr,8) = J a —_—

Q 3HV( l) (ka)

-—C0

Hél)(kr) dv
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we have

B, -t Y D(r,2mmt6).
m--m

We find that this sum may be rewritten and interpreted term by term
just as we interpreted equation (2.2.7), so that for an evaluation

near the upper boundary of the shadow we have

i iv (=8+7/2)
T e Hil)(kr) v

0

¥ iv(-6+1/2) Q3H52)(ka) o
e Hv (kr) dv
Q 3H\) (ka)

!
for [ka]g >> 1. We expect the major contribution to come from near

v = ka, and so we write

v

L= 75 | dxT,-9 + dz(r.-e)]
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where ka
iv(=6+n/2) (1)
dy(r,=-8) = e Hv (kr) dv
0
k2 su(-etr/2) 0’ (ka)av
do(r,-8) = e &)
93}1\) (ka)

-—

(2)
" fi3H (ka)
O 1+—‘E—i-)-——— B (kr) av .
Q3H " (ka) o

ka

d; corresponds to a; above, and so

Wi~

=

(a~-y) ]

a1 (x,=8) ~ e™* l:l + e’i"/"(z—k)

if both k—-z y > 1 and B"----i| a-y | << 1
2x 2x :

To evaluate d; near the upper boundary, we may again use the

Debye expansion
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L

i(kx=-m/4) .{_2_.)2 nearv = ka

iv(-6+n/2)
€ \'rka

H(l) (kx)~ e
v

L
For Hél) (ka) and Hég)(ka) (2 = 1,2), we shall use the Langer

approximation., Then

|
F3 . L
dp (r,-8) ~ (.{T.L%_X) . el(kx—ﬂ'/4) . (ka]a' Csv(w)
where
ka 51311\()2) (ka) © 93H\§2) (ka)
Co/lw) = ; —_ dv + 1+ —— dv
SV (ka)? 931{51) (ka) J 93}1\(’1) (ka)
& ka
(2.2.14)

The function Cgy(w) is evaluated below, numerically.

In summary: we have for y = wi + 1,';5 that

Rl [ k{a-y) + [ka)% c s;(m):]

JAlkex-we) )L _ ( 1 )
i o 2 27kx

(2:2:15)
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Scattering of SH

The incident wave has its displacement g, = (0,0,1) ei(krcosa—mt)

parallel to the axis of the cylinder. The 2z component of the dis-

placement satisfies the scalar Helmholtz equation

(v +x2) u =0

and the stress-free boundary condition on the cylindrical boundary

BT

This boundary condition has been studied by Rubinow and Keller (1961),
and from their results we have

u =
i~

R, =+l
~i ~3

! L

1 2 i 3 e
o~ (0,0, 2 (Zikx) e in/4 l: k(a-y) + (k.a) CSH ]) el(kx we)

(2.2.16)

where

Gy ™ = 0.4321 x (1 + /?71)
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This asymptotic solution is valid for
1 _r_-
a z
k k
(-2—};) y > 1 s (-—2-:-(—) | a-y | << 1 .

The Shift of Shadow Boundaries

Using Cartesian coordinates, we see from equations (2.2.1) and
(2.2.10) that the total P-wave displacement field near the upper

shadow boundary for P-P scattering is

-in/4 P -3in /4 .
gl == B Vs [h(a-y) # (ha)}s CP(m)] ; 3‘-————,/ ; O o1 (hx-ut)
=g (Z‘rrhx) (%hx}"

From this expression, we see that on the geometrical boundaryy = a

we have
L ('%"0 ,O) ei(hx—mt) = %Bai as w—> «©

Therefore, following the method of several other authors [for example,
Rubinow and Keller (1961), Nussenzveig (1965)], we make the practical
definition that the shadow boundary for finite frequencies is the

; 1 i ;
curve on which IEJ = It is then a simple matter to show that,

‘2_'.
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)
if ng >> 1, the shadow boundary is y = a + sp, where sp is the
"shadow boundary shift," and

-%
sp = Re CP(m) - ImCP (m)] (ha).

Similarly, for SV-SV scattering, we have

[

(2:2.17)

eiﬁ/4
u~

g'»

1 e—iﬁ/4
¥ 2

bi-

[ ke + ar® oy | » 0
(Zka)z

ei(kx--mt)

S
' =g
and Sgy = [Re Csv(m) + Im Csv(w)] (ka) a

(2:2.18)
For SH-SH scattering u is given by equation (2.2.16)
-z
¥l
and Ssy -1.1806 (ka) a

(2.2.19)

Numerical Method and Results

Method

boundary.

We present here the évaluation of CE(w) and CSV(w) (see
equations (2.2.9) and (2.2.14)), and of amplitudes near the shadow

The elastic medium was assumed to have a P-wave velocity
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o of 13.6 km/sec, and an S-wave velocity B of 7.5 km/sec, and
embedded in it a cylindrical cavity of radius a = 3480 km. These
assumptions make the computational results also comparable to
previously obtained model-experiment data (Teng and Wu, 1968).
Although the theory is wvalid for [ha)% >>1, (ka]% >>1, the computation
was made over the frequency range 0.01 Hz = fAs 5 Hz, which corresponds
to intervals 16 < ha < 8000, and 30 < ka < 15000. A general Hankel
subroutine described by Berry (1964) was modified and incorporated
into the program.

Inspection of the integrands for CP(w) and Csv(m) shows that
three types of numerical evaluation of Hankel functions are
required.

(i) For CP(m) we need Hél)(ka) and Hgl)'(ka) for v near ha.

These two functions are oscillatory.
(ii) TFor CSV(w) we need Hsl)(ha) and Hél)'(ha) for v near ka.

These two functions are expomentially large.

(k)

B2y, 18 (2

(iii) For both CP(w) and CSV(w) we need H
(k=1,2) for order v varying in value near fixed z.
(z = ha or ka.)
" gt —_— 0 (1 -
In fact, in cases (i) and (ii) it is only the ratio Hv (z)/Hv (z) =
R(v,z) (say) which is needed, with v not near z. R satisfies exactly

the Riccati equation
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2
R' =-%— {1-—%2-) - R?, and R varies slowly. So
approximately
L
SR SN] . S h
R(v, ka) = - 53— +1 - T el or v near ha
1

1 v2 i *

R(v, ha) = - ha -1 + ) + ThZa? for v near ka.

Calculation of R by these formulae is correct to within 1%, when
checked against wvalues returned by the HANKEL package. So this
approximation is used in cases (i) and (ii).

For cases (iii), the HANKEL package uses Langer approximation

in the form

H\Ek) (z) = exp [: (—l]k_l i'ﬂ‘/ﬁ] Y1l - n coth n Hik) (iz) ;E=1,2;
3

where £ =v(tanh n - n) and n = cosh™! v/z. A subroutine for Hankel
(k)'

functions of order 1/3 is included, and H\J

(z) is found from the
T
recurrence relation Hék) (z) = H\Ek)(z) - (v/z) H\Ek)(z).
The numerical evaluation of case (iii) was checked against

two constants referred to in Rubinow and Keller (1951), namely
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2 5(2) (5) r“’ 12 ()
Gy = 'l—_,_ —v(l)— dv + 1+ %3—'—‘ dv
z? H (z) H (z)
\Y) v
T | @
CZ = —(—1_),— dv + 1+ —E':—L-j"-,—— dv . (2.2.20)
z> H\J (z) H\, (z)

Rubinow and Wu (1956) show that it is only the region of Langer
approximation which contributes to the integral, and after path

deformation and residue summation obtain

C; ~ 0.49808 x (1 + /3 1) , €, = -0.4321 (1 + ¥V3 4). (2.2:21)

Using our HANKEL package, together with a Simpson integration method,
we find C, and C, are indeed almost independent of z, for the range
16 < z < 10,000, since Rubinow and Wu's values are returned to within
2 .

The integration path for CP(m) and Csv(m) in equations (2.2.9)
and (2.2.14) is the real order axis. Although this is an adequate
path for numerical evaluation, a better path is that shown in Figure 3.
Whenever a complex path might involve extra contributiomns, from
complex poles not near A, the real axis integration was evaluated

as a check. The advantage of the complex path shown is that the
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integrand decays exponentially on either side of the point A, where

i 1]

order equals argument, and a path length of about 4z3 or 5z° is all
that contributes. For a real axis integration, the integrand to the
left of A oscillates with slowly decreasing contributions as the

frequency of oscillation increases, and a path length of about ISZJ5

{
or 20z must be taken.

Results

We first present in Figure 4 the computed complex functions
CP(u) and Csv(w), for the frequency range 0.01 Hz - 5 Hz. The
computation becomes less relevant near the low-frequency end - because
then (ha]i-v 2. Nevertheless, some values are presented for these
low frequencies, and the theory is believed to be good for frequencies
above 0.03 Hz.

It is interesting to compare the results for elastic waves with
the results for acoustic waves. Figure 5 shows the quantity
H = [Re C + Im C], which is proportional to the shift s of shadow
boundaries. H is a negative constant for a hard cylinder ( on which
the normal derivative of the field vanishes) and is a positive
constant for a soft cylinder (on which the field itself vanishes)
(see Rice (1964); Rubinow and Keller (1961). In fact, for a soft

cylinder H = Re C, + Im Cl (see equation (2.2.21)), and for a hard

1

cylinder H = Re C, + Im Cz)). Thus we see that for our SH-wave

2

we have exactly the hard cylinder acoustic problem. For P- or SV-wave
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incidence, H becomes frequency dependent, tending with high
frequencies to the acoustic soft cylinder wvalue - a fact we can
expect by seeing directly from (2.2.9) and (2.2.14) that CP(w) and
Csv(m) both tend to the integral for C; (see (2.2.20)) as w + =,

The shifts of the shadow boundary are shown in Figure 6. At a
given frequency, incident P- and SV- waves would "feel" an effectively
larger scatterer than its true size, whereas SH waves would "feel" a
smaller one. At high frequencies, all shifts correctly approach
zero (i.e. the shadow boundary approaches its geometrical limit).

At lower frequencies, the amounts of shadow shift for different
wave types diverge. For long period body waves, e.g. with period
20 seconds, the cylindrical scatterer of radius a = 3480 km would
seem to be 90 km (2.6%) larger to P-waves, and 290 km (8.3%) larger
to SV-waves, but 150 km (4.3%) smaller to SH-waves.

Further discussion of these results is deferred to the following
sections, in which we develop (1) the generalization to a line source,
and can thus compare our theory with the results of Teng and Wu (1968),
and (2) the generalization to point source and spherical scatterer,

permitting comparison with Phinney and Cathles (1969).

2.3 Diffraction of Cylindrical Waves by a Cylindrical Cavity

The nature of the diffraction of a cylindrical wave by a cylinder

is qualitatively different, in the far field, from the nature of the
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diffraction of a plane wave (see Shenderov (1962)). This is because
the amplitudes of incident and scattered waves decay with distance
according to the same law, for cylindrical incidence, but a plane
wave does not decay at all. However, we shall see below that for the
intermediate distances of geophysical interest, the field set up by
cylindrical incidence can be quantitatively derived in a very simple

way from the plane wave cases considered in Section 2.2.

Statement of Elasticity Problem

A steady-state cylindrical wave of displacement, emanating
from a line source at distance b from a circular cylindrical cavity
of radius a (see Figure 7), is incident from the left on the cavity.

We wish to evaluate displacements near the shadow boundary.

Scattering of P-Waves

ihR
for the incident

In order to obtain the simple form
/R
displacement (at high frequencies), we choose the displacement

potentials

o A -in/4. (1) -iwt B
O = f . 8 Ho (hR) e 5 *1 = 0.
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An application of Graf's addition theorem (Watson, 1958) gives

¢i =/ %ﬁ e-i“/& I Hél)(hb) einﬂ{z Jn(hr) einn/z.ei(ne—wt}(for r < b),

n=—-w

So we take

; = . (1) inm/2 i(né-wt)
o | = / %ﬁﬁ e-lﬁ/4 z Hél)(hb) elnn/2 Ath (hr) \e e

n==—n

(1
Vg B H "~/ (kr)

(2.3.1)

The boundary conditions of zero normal and tangential stress on r = a

then give the forms (2.2.3) for An and Bn’ G i 8

0,52 (ha) 2,3 _(ha)

L
» Bn 2

a1E Y (na) 2,81 (ha)

where ] and Q, are defined in (2.2.4).

Hence we see that the step by step methods of section (2.2)
may be duplicated for the problem of a line source. After identification
and rejection of waves which travel around the cavity, and the
contribution from the lower half-cylinder, we may drop the restriction

r < b (by an appeal to reciprocity), and obtain
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% =~ % Y %F e_in [a1(r.-9) + ap_(r,-e)-_‘

where now

Ha .
ay(x,~8) = J LPE8P W H\El) Giby &2 3 Gy av
(o]
(2)
ol jha (V-8 + 7/2) (D) o dvn/2 ity " —
235 v Q H(1) v
b 157 (ha)
(2)
- X 0.H (ha)
+ J ei\"(_a * KIZ)H(l)(hb) elvw/2 1+ —1—2————~—- H(l)(hr)dv.
v (1) v
ha QIH\J (ha)

Evaluation of aj(r,—6)

Since hr, hb are bigger than v throughout the integration, we

may use Debye expansions to see

ha
aj (r,-86) ~;2r- o ZaE [ (h2r2-y2) - [thz_vzj-"* ¥

o]

i !
2.8 219 O -1V ol Mo o
expi[[hr v] +(hb \)) + v sin hr+v51n s vG]dv
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This integrand has just one stationary phase point, given by a value

- such that

v v
sin™?! (ﬁ) + gsin™? (_g) =g s - L hy (see Figure 7).

For P(r,8) near the upper shadow boundary, this stationary phase point

is near the upper limit of integration. Making the definition

= /R = : ;
5. 2hR;R, (v "s) and expanding the phase in powers of &,

we find
hR
/2R1R2 (a-y) g
ay(x,~8) ~ elhR " %e—21“/4 . J 1_21_ i elE de
J /or !
ZRyR,

/2 i(hR-/4) -in/4 [2hR
~ == © ‘: l+e TR R, (a y)] if both

2
hR hR
(ZRle) w iwoe T (—ZRlR?_) ]a—y’ we X,

-




Evaluation of a,(r,-8)

We may still use the Debye expressions for Hél)(hr), Hél)(hb),

and so near v = ha

§ . -in/4 .
LV -Otw/2)p (1) gy (V12 5D ~2—h————- 1BRT/4) | mhen
v ¥ ™/ RR,

2

-in/4 _i(hR-m/4) '
ap(r,-8) ~2 S :

+ |ha]” C_(w),
hv RiRp ( ] &

where CP(w) is the function defined above for plane incidence, in
equation (2.2.9).

In summary: we have for ¢ = ¢i + @S that

3 i(hR-7/2) ) 1 -iw/4 [ R} [ 3 ]
g -~ e > =-e ——— |h(a-y) + (ha (w)
hl/_R 2 21ThR1R2 [ } CP

£2.3.2)%

Discussion

We see from (2.3.2) that in the neighborhood of the geometrical
shadow boundary (which is given by y = a) the P-wave displacement
due to a line source is still directed along a ray from the source,

and is



sl

ihR / )
-in/4 R 3
%' e/ ZThRyRp ‘-_h<a'3’> + (ha) Cp(“’)]

©

=)

(2.3,3)

We still have the result

1
g+§&mtmgmmumﬂSMMWMm®w,%w+m,

so we may still define the shadow boundary shift as the distance from
geometrical shadow boundary to the half amplitude line. From (2.3.3)

we see that the half amplitude line still has the equation y = a + SP,

where s, is the shift for plane waves (see 2.2.17). But this line is

P

radial to the source, and hence diverges from the geometrical shadow

boundary. In fact, we see

R
i; x SHIFT

SHIFT
P-wave, line source l P-wave, plane source

]

R ‘%
-1_{-; x [Re(:P (w) + ImCp (m)J (ha] .a
(2.3.4)
The simple geometrical relation between the shifts for a line source
and a plane source is illustrated in Figure 8.
Theoretical consideration of SV and SH line sources yields the
same geometrical relation as (2.3.4) and Figure 8 (although the SH

shift is negative).
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Numerical Results

A model experiment described by Teng and Wu (1968) gives several
measurements of the shadow boundary shift for P- and SV-waves. Their
Model I and Model II, illustrated in Figure 9, were thin sheets of
aluminum with a "pulse" of one dominant frequency, and with a circular
hole as the scatterer. The velocity of P-waves in such a plate is

given by

4u(r ;
a = —%é—;—%%ya (for Lamé constants A and U, and density p),

since we can assume this is a system in plane stress (see Love, 1944,
p. 208). Table 1 shows the shifts calculated frpm our theory
(equation (2.3.4)), and Teng and Wu's experimental values. Also in
this table is the geophysical body-wave period for which the model
is scaled.

The methods of this chapter receive encouraging confirmation
from the agreement in Table 1 between theory and experiment. But
direct application of our theory to diffracted seismic waves still

requires additional generalization, given in the following sectiomns.

2,4 Diffraction by a Fluid Cylinder

The effect on shadow boundaries of a fluid scatterer (as opposed

to scatter by a cavity) is difficult to estimate, even qualitatively.
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The boundary conditions become much more complex, and we must allow

for internally reflected waves. But solution of this problem is
important in geophysics, since we have seen that we expect the location
of the shadow boundary to be dependent on physical properties at the
core-mantle interface. We shall see below that our theory requires

very little extension to accommodate the case of fluid scatterers.

Statement of Elasticity Problem

A steady-state cylindrical wave of displacement, emanating from
a line source at distance b from a circular cylindrical fluid of
radius a (see Figure 7) is incidént from the left on the fluid. We
wish to evaluate displacements near the shadow boundary. We take
p, h, k as the density, and‘P and SV wave numbers in the solid,

and p', h' as density and wave number in the fluid.

Scattering of P-waves

As in section (2.3), we take ¢i = /%E e—iﬂ/4H§1)(hR) e-iwt,

wi = 0. Clearly, we may solve for the total scattered field by

writing three potentials in the form



wly T m

@T _ z 4 H(l)(hr) . ei(ne—wt) P-wave r > a
s n n
n=-=w
3 (1 .
ws bn Hn (k1) SV-wave in r > a
Y
o) a' J (') P-wave in r < a
s nn
(2.4.1)

and then solving for (an, bn’ a;) from the continuity of radial
displacement, and tangential and normal stress, across r = a. But
for a source emitting waves with high frequency energy, it is standard
seismological practice to separate a record into P, PP, PcP, PKKP,
etc., and to think of these phases as having different ray paths.
The potential ¢§ of (2.4.1) includes all such contributions (except
the types PP, PcPPKP, etc., which involve reflection from the free
surface), and the problem of splitting ¢§ for these phases is quite
well understood (see Bremmer, 1948, Chap. III; Scholte, 1956; Duwalo
and Jacobs, 1959, for solutions in spherical geometry). Since we
are concerned with the interaction of P and PcP at and near grazing
incidence, we wish to set up scattered wave potentials ¢s’ ws in the

region r > a which ignore phases transmitted through r < a.
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This is done by showing that the solution for each a, bn in (2.4.1)

can be written as a geometric progression in the form

(2) (1) N+1
H'“’ (ha) w H>""(h'a)
h i £, n N n
a =-=+= (LL) + (LL")- C(LYL™) «(L'L)
B €38 H(l)(ha) NEO H(z)(h'a)
n n
N+1
. Hr(f) (ha) " . HIEl) (h'a)
By =g @CD+ILY - [ Q'L | =y - (L'T)
' Hn (ka) N=0 Hn (h'a)

where the symbols (LL), (LL'), (L'L"), (L'L), (LT), (L'T) (of Scholte,
1956) may be identified as reflection and transmission coefficients
in the following way: the term with index N represents (when

summed over n in (2.4.1)) an arrival which approximately has the
phase appropriate to a ray path made up by N internal reflections
within the core. That is, PKK...KP (for an), and PKK...KS (for bn)’

with N+ 1 K's in each case. The initial terms,

e

- ne) (LL)
sl § sl @y = & and
= H(l)(ha) B
sl
= LT) = B
2 H(l) (ha) (LT) by (SaY)
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represent arrivals with the respective phases of PcP and PcS,

so these are the terms which we wish to study. (Note that since
we have a steady state source, the signals coming along all the
different possible paths are superimposed. So the identification
of specified modes of ‘propagation is performed by studying their
phase, and not their travel time).

The manipulative procedure for obtaining the above expansions
of (an, bn) is quite lengthy, and so an alternative method is
given below for the introduction and calculation of the required
(Ah’ Bn). It may be shown that the same result is reached by

either method.
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Potentials for PcP and PcS

The n-th partial wave component within the fluid is chosen in
equation (2.4.1) to have the factor Jn(h'r). This choice must be
made to avoid any singularity at r = 0. But Jn(h'r) is a sum of
ingoing and outgoing waves; although the system of a P-wave source
and conversion to PcP; PcS requires only an ingoing wave within the
fluid. (The outgoing wave within the fluid may then be thought of
as generzated by reflection in the origin: upon reaching r = a, it
generates PKP, PKS, and another ingoing component in the fluid.)
Hence, for our examination of PcP, it is necessary to ignore
Hél)(h'r) terms within the fluid, and we use potentials (¢f equation

(2.3.1))

6, \= /%E_ e-iﬂ/4 E Hél)(hb) einﬁ/Z Ahﬁél)(hr) eimr/2 ei(ne-wt)
v Bnaél) (kr)
¢ A;;H:EZ) (h'r)

(2.4.2)
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The boundary conditions on r = a then give

: as'?) (na) 963_(ha)
b o= =g | 16— B =-
ﬂan (ha)

M|

Q 5Hr(Ll) (ha)

where

: sgr k) 1 (2)
QSHIEQ) (ha) = Scl) [P(L) - P'(z) (l)] [Q(l) _[PJ 2) (1)]
U |

26J_(ha)

e 2),(2)
(@[, e cn] ) <1)[ @ @y )
+ i (R [P - @) U R 2 e &) .

P(g’), Qu‘), R(ﬂ‘), S(R') are defined in (2.2.4) and

I
P'(z) = : a? o HrEZ)(h‘a) U|(2) = h'a HIEZ)(h'a)

L)

v = pa Héz)'(ha) v = nﬁég)(ka).

(2.4.3)
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Since the operator Qs obeys the same reflection rules as Qi,

namely Q5HE$)(ha) - eZFiv QSHSI)(ha), Q5H£3>(ha) = QSHSZ)(ha):

the methods of section (2.3) for scattering by a cavity may now be
applied for the present problem of scattering by a fluid. We find
the asymptotic solution for P-wave displacement is still directed

along the ray from the source (see Figure 10), and is given by

ihR I

- I
e %._ e in/4 / E;ﬁgzﬁg h(a-y) + [ha}3 CgLUID(m) ,
¥ R'

and the shadow boundary shift is

%
SHIFT, = %—[ ReCI;LUID(w) + ImchUID(m)J (ha) "-a
| 1
P-wave, line-source,
fluid scatterer
(2.4.4)
where
ha
Q5H(2)(ha)du Q5H(2)(ha)
FLUID R v v
c (w) = ; + 1+ dv
P & (1) (1)
(ha) 258~ (ha) QsH ™ (ha)
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Theoretical consideration of an SV source leads to a result just

like (2.4.4), but with CiLUID(m) replaced by

ka
CFLUID(N) _ 1 Qﬂ-léz) (ka)dv " -— Q7H\)(2) (ka) N
= a
(2.4.5)

.(2) @
OIRIPOR IO ] . [ 22w ] LD

(2.4.6)
L z(1) are given above in (2.2.4) and (2.4.3).

The SH scattering is of course unaffected by a fluid core.
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Numerical Results

In order to estimate the effect of a fluid scatterer, CELUID and

ngUID were computed from formulae (2.4.5) and (2.4.6), for the

model with a = 3480 km, o = 13.6 km/sec, B = 7.5 km/sec, p = 5.5 gm/ce,
o' = 8.3 km/sec, and p' = 9.5 gm/ce. The real and imaginary parts
of these functions are displayed in Figure 10, plotted as functions
of frequency. The shadow boundary shifts were then calculated (using
(2.4.4)) for both source and receiver at radius 6350 km, and our
results are shown in Figure 1l. A convenient way of describing the
shift is to give the distance Ai , in degrees, from the source to the
half-ray—-amplitude point on the arc with radius 6350 km. This method
is used in Figure 11, and for reference we note that the geometrical
shadow boundary is at A = 113.54°. Also shown in this Figure are the
shifts due to scattering by a cavity, in the same model.

From these numerical results, we see that in the frequency range
of geophysical interest (corresponding to periods between-% sec and
20 sec) the different boundary conditions of cavity and fluid give
rise to substantially different shifts, particularly for P-waves. The
shadow shift for P-waves scattered by the fluid is very small - as
we might expect, since the solid and fluid are acoustically matched
(pa ~ p'a") and the PcP reflection coefficient is small. But the

shifts for S—waves are quite large, about 2° at 10 sec period, with

SH and SV being affected in opposite senses.
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We expect the shadow shifts for line source/cylindrical scatterer
and point source/spherical scatterer to be very similar, because they
have been shown (Rubinow and Keller, 1961; Rice, 1954; Nussenzveig, 1965)
to be similar for more simple boundary conditions. So the numerical
results above may be directly relevant to the geophysical problem of
core-scattered body waves. However, the theory may be simply extended
to the case of point source and spherical core, and in next section

below we develop numerical results for this model.

2.5 Diffraction of Spherical Waves by a Spherical Fluid.

Statement of Elasticity Problem

A steady-state spherical wave of displacement, emanating in an
elastic solid from a point source at distance b from a spherical fluid
of radius a (see Figure 7), is incident from the left. We wish to
evaluate displacements near the shadow boundary. We take p, h, k as
the density, and P and SV wave numbers in the solid, and p', h' as the

density and wave number in the fluid.

Scattering of P-Waves

ihR
e
R

In order to obtain the simple form for the incident dis-
placement (directed radially from the source), we choose the

displacement potentials
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ihR
¢i o :hR 3 ¢i = 0. We use spherical coordinates (r,6,%), in which

the displacement components are related to potentials by
u = grad ¢ + curl curl (ry,0,0).
We have an additional formula in the form

L= -]

oy = nZO (20 +1) 2D (@b) 3_(hr) B_(cos (1-8)) for r < b

(see Abramowitz and Stegun, 1964, p. 440, 6th printing or later)
(1)

where h and j are spherical Hankel/Bessel functionms,
and Pn is a Legendre function of the first kind. Following the
reasoning of section (2.4), we set up potentials ¢s, ¢s’ and ¢; for

respectively PcP, PcS and the ingoing component of core body waves,

and then solve for coefficients a_, bn’ a; in

(=]

o \ = nzo (2a +1>.hﬁl)<hb> 155 P_(cos(-8)).
8 a D (nr)
v b b (kr)
o! a'n{® 'z

(2.5.1)
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The solutions for (an, bn) , found with ar‘1 from the requirements
of continuous stresses and normal displacement across r = a, may
be written in the form

a == where

n

o=

[ 2sh ‘%) (na) 1 %%3_(ha)
1 +—-—-—-I—2'-i-5-—--— 5 b = .-—2- ___3-1.—.._-_
|_ Qsh " (ha) "

(2) ¢ (2)
Rshéz) (ha) = s(l) [ p(z) = ________p:(z) u(g')i\ + [q(l) = P—--——' @) v(l{l r(g')
u u

(2) . (2)
g = r(z{ s R:T)“(l% r(l)[pm ) “(2)} a0d
u u

q(g) = =2n(n +1) (ka ht(ll)'(ka) - hrclg') (ka))

p (2) - l‘%gﬁ' héz) (h'a) e (ha hr(l")'(ha)-hé“(ha))
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O {Zkahép')'(ka) # [kZaZ + 20nln + 1) :] héz) (ka)}
e = ha ™ (ha)

n
o2 = ot % D h(i) (ka) o2 =g hf')'(h'a)

(2.5.2)

We separate in ¢s those waves which travel more than once around

the core by using a Poisson sum formula. In our case, this takes

the form
b=-3 1 fa+3 =-7 ] (-1)“‘] £(v) 21 gy (2.5.3)

n=0 m==—co 5
with

(2)
Qsh L(ha)

f(v) = Z\Jh(_]_')L(hb) 1+ \()I-L)L h(lL) (hr) P __-_(cos(':r-a)).

V=3 Qshv,i(ha) V-2 V=2

The terms from m = 0 may be split by using

Pn(cos A) -%- [Pn(cos A) + Tzr—l- Qn(cos A)—-] + -%- [Pn(cos A) - 12r_1 Qn(cos AE]

le) (cos A) + Qf}z) (cos A), say,
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where Qn is a Legendre function of the second kind, and Q;l) and QE_IZ)
may be shown to represent travelling waves (see Nussensveig, 1965,

p. 96), in respectively the negative and positive A directions.

Hence, we may use near the upper shadow boundary the formula

250 (%) (ha)

¢S(r,6) = - %— J 2\)1’1\()}% (Bb) | 1 + h\(’}z_-(hr) Q\()%i[cos(w—e))dv

f5h (ha)
0

(2.5.4)

The basic method of section (2.2) is still completely appropriate.

Noting the result

, we can obtain

T i[v(r-8)-m/4]
Q\()z)_.L (cos(w—e)) ~ ( e ) e
b

- 21vsinb

ihR +

_ e 1 _ dn/é R _ 3
©= 0 T~ TERY2 "%/ 7mriR, [f(a y)+(na) CP(“)]

near the shadow boundary, where now

ha
y 2shFmayay [ nsh\(fi (ha)
Colw) = —=— ‘(’1)’“ + | [1+ ——-(#— dv (2.5.5)
(ha)3] | ashi?) ma) Ash. "y (ha)

ha

o
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Scattering of SV-Waves

Similarly, for a SV-wave source with potentials c,bi =0,

ikR
wi = %Eﬁ_ ,» the total SV-wave potential near the shadow boundary is
ikR 4
L e 1 4w/s / R " %
VR TR (3T Z7kR; Ry [k(a y)+(ka)” Cgy (w) >
with
ka
% Q7h5_2_2_(ka)dv N n7h5_2_,) (ka)
Corrlw) = - i s 3 1+ —FFF—— | dv and
Y
2% (ka)" 701 (ka) a0 (na)
0 V=a ka V=3

'(2) 1(2)
mhél) (ka) = s(ﬂ') [ p(l) = E——-—' 2 u(lﬂ{q(?’) -+ 2——-—| %)) v(g)] rcl)‘
: u u

(2.5.6)

Scattering of SH-Waves

The SH-wave in spherical coordinates may be expressed'as
u = curl(ry,0,0) where the potential x satisfies 72y + k?y=0. Using

the boundary condition of zero tangential stress on r = a, with an
ikR

SH source potential Xy = IkR_ * ¥e find the total SH-wave potential

near the shadow boundary is
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ikR
_ 7 1_ s/ R [ ) tn ]
X=X ¥ X" Rw)] 2" ¢ s, L) + (ka)” cgy(w) '

with
ka
i) sl = 5% )
Sl = —=x D D =
(ka) | kah i (ka) - b7 (ka)
w kah\()_z_il(ka) & h\EZ) (ka)

dv (2.5:7)
(n? (1)
kahv_t (ka) - hv-i(ka)

Numerical Results

We first present in Figure 12 the computed functioms CP(m) and
CSV(u) for the frequency range 0.01 Hz - 5 Hz, for the model with
a = 3480 km, o = 13.6 km/sec, B = 7.5 km/sec, p = 5.5 gm/cc, a' = 8.3
km/sec, and p' = 9.5 gm/ce. The results are also given for a spherical
cavity. It may be seen from a comparison of Figure 12 with Figures 4
and 6 that a change from cylindrical to spherical scatterer makes

very little difference to the CP(w) and C. . (w). This is then direct

SV

confirmation of a result (mentioned in Section (2.1)) which we would

expect from a survey of the solutions published for simpler boundary
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conditions (Rubinow and Keller, 1961; Nussenzveig, 1965). Namely,
that there is a strong similarity among solutions for cylindrical
and spherical scatterers with the same boundary - conditions.

The function CSH(w) may be calculated from equation (2.5.7),
and it is found to be essentially independent of frequency for
f > 0.1 Hz, taking the value C, (see Equation (2.2.20)) which arises
in a discussion of the cylindrical scatterer. The slight frequency
dependence of CSH(m) at lower frequencies is such that the relation
ReCy (W) + ImCg,(w) ~ ReC, + ImC, is maintained. But this is the
combination of real and imaginary parts which appears in our formula
for shadow boundary shift (see e.g. (2.2.18) and (2.2.19)), and so
there is confirmation of the similarity among cylindrical and spherical
solutions for the boundary conditions of SH waves also.

An interesting feature of the computation for Csv(m) is the effect
of what may be described as a "head-wave" at the core mantle boundary.
Since we have taken o' = 8.3 km/sec, and 8 = 7.5 km/sec, the diffracted
SV time path from the source to receiver in the geometrical shadow
{ 1.e. tfavelling part way with velocity B on the mantle side of the
core/mantle boundary) is longer than the combination (a) source to
core/mantle boundary at critical incidence sin=! %f%-, (b) travel at
velocity a' on the core side of the core/mantle boundary, and (c)

departure at critical transmission from core/mantle boundary to receiver.
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In ray theoretical terms, this latter "head-wave" may be thought

of as a contribution to SV which has a ray parameter h'a/w. The
numerical effect is observed in equation (2.5.6) as a small
contribution to Csv(m) from values of the integrand near v = h'a,

and by deforming the path of integration to separate the contribution
of poles near v = h'a from the contribution of poles near v = ka

we have a device for separating the "head-wave" from the diffracted

SV wave. Even at low frequencies, f ~ 0.02 Hz, the head wave
amplitude is then only 1% of diffracted SV amplitudes (in the transition
zone), so the effect is completely negligible in our model. But the
numerical method of separating 'head wave" contributions will work

for models of a spherical boundary between two media in which a
head-wave is more prominent. A complete discussion of such a boundary
must of course include waves like SKS, SKKKKS which have horizontal
phase velocities approaching that of the head wave (see e.g. Chekin,
1969).

A method of finding the accuracy of our transition region formula,
equations (2.5.5) - (2.5.7), is suggested by the methods of Phinney
and Alexander (1966) and Phinney and Cathles (1969), in which exact
formulae for P-wave potential (e.g. our equation(2.5.4)) are evaluated
numerically. Phinney and his co-workers, and Nussenzveig (1965),

show that the total P-wave may be evaluated by a complex path
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integration in the complex v-plane. For a receiver in the lit zone,
the path may be chosen to pass through two saddles (at v = vj,

Vv = vy, say) on the real v-axis, and vi;(< ha) and v, (> ha) correspond
to the horizontal phase velocities of PcP and P. As the receiver
moves towards the geometrical shadow boundary, the saddle points

vi and v, move together so that v; = ha = vj. Seyond the geometrical
shadow boundary, the complex path integral for the potential is regarded
as a summation of the residues from a series of poles of the integrand,
these poles lying near a line in the v plane which starts out from

v = ha at an angle of %-with the real v-axis. Phinney and Cathles
(1969) show that for source-receiver distances of several degrees on
either side of the geometrical shadow boundary, the same path in the
v-plane may be used in numerical evaluation of the field.

We have used this exact method for the evaluation of scattered
fields, using the FORTRAN program described in Appendix IV. The
results of such computation (which are given below for P-P, SV-SV,
and SH-SH scattering) have obvious merit, in that they are the exact
solutions for our simple Earth model. But the exact results have
a double purpose, in that the success or failure of approximate
formulae - which exhibit source-receiver geometry explicitly = may

also be judged.
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In order that our results may be more relevant to seismic data,
we in fact calculate displacement components, rather than potentials
(¢, ¥y X)» Thus, for example, we see that the exact formula for

total radial displacement in P-P scattering from a source with potential

ihR
6, ==
;3 ihR

is the radial derivative of potential ¢ = ¢i + ¢S.

Comparing Section VI of Nussenzveig (1965), we have

[ (

v

Q Sh\S%)._i(ha)

b = —-%'- 2"Jh(12 (hb) h(l)._(hr) Q 23 (cos 4) dv
v-3 V=3 B

ash %) (ha)

where T is the complex path discussed in our Appendix IV, and so the

radial displacement is calculated from a numerical evaluation of

(2)
Qsh 7% (ha)
g == vh(l)(hb) hh(l)'(hr) s Qézz(cos A) dv 5
P v v (1) -5

The model used for our computation is the same as that used

C (fluid core). We have also

above for the evaluation of CP, CSV’ SH

to specify the source and receiver radii (since the exact method of
computation does not give any simple explicit dependence on source-

receiver geometry), and take b = r = 6350 km.
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Our model is then the model 1 of Phinney and Cathles (1969) -
with the exception of a S-wave velocity of 0.001 km/sec in their
"core." However, a part of Phinney and Cathles' conclusions is that
this non-zero shear velocity has a negligible effect on the scattered
field. Our program may also be used to find the potentials (¢,y,x),
and as a check we have obtained the P-P total potential at 0.03 Hz
and 0.3 Hz: Phinney and Cathles (1969) results for periods 32 sec

and 3.2 sec are then accurately reproduced.

P-P Results

Figure 13 displays the amplitude of total radial P-wave
displacement due to a P-wave point source, with scattering from a
spherical fluid core. The di5p1acement is calculated in three
different ways, using the formulae listed in Table 2, and the
calculations are done for the two frequencies 0.1 Hz and 1.0 Hz.

A few degrees into the 1lit region, the exact solution is seen
to oscillate slightly about the direct P-wave values.

In the transition region, our approximate formula is verified.

(This formula is plotted only for walues of A such that

L
hR 1
(m) I a-y ] < 7 : 8ee

our derivation of potentials in Section (2.3) above.)
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Beyond the geometrical shadow boundary, the decay with distance
becomes exponential. At 125°, the P-wave with frequency 0.1 Hz has
decreased slowly to about 1/6 th of its amplitude at 105° and the
shadow of the core is not very sharp. But for the 1.0 Hz P-wave,
the amplitude decreases at 118° to 1/10 of its amplitude at 110°, and
the shadow is very pronounced. Note that the shadow boundary shift
is very small (i.e. the amplitude at the geometrical shadow boundary
is almost exactly one-half the amplitude of the incident P-wave),

a result we noted in section (2.4) above for the cylindrical problem.

Sy-SV results

Figure 14 displays a normalized amplitude of total horizontal
SV-wave displacement due to a SV-wave point source, with scattering
from a spherical fluid core. The displacement is calculated in
three different ways, using the formulae listed in Table 3, and the
calculations are done for the two frequencies 0.03 Hz and 0.2 Hz.

A few degrees into the 1lit region, the exact solution is seen
to oscillate about the direct SV-wave values, ranging up to 30%
above and below the ray theory amplitudes.

In the transition region, our approximate formula is verified.

Beyond the geometrical shadow, the decay with distance becomes
exponential. At 125°, the SV-wave with frequency 0.03 Hz has

decreased to about 1/11 of its amplitude at 105° - so at this
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low frequency, SV is more effectively shadowed than P-waves of

half the wavelength. For the 0.2 Hz SV-wave, the amplitude decreases
at 118° to 1/10 of its amplitude at 110°, and the shadow is thus as
sharp as for P-waves of about one third the wavelength. Note that

the shadow boundary is 111.3° at 0.03 Hz, and 112.3° at 0.2 Hz,

SH-SH Results

Figure 15 displéys a normalized amplitude of total horizontal
SV-wave displacement due to a SH-wave point source, with scattering
from a spherical fluid core (or spherical cavity). The displacement
is calculated in three different ways, using the formulae listed
in Table 4, and the calculations are done for the two frequencies
0.03 Hz and 0.2 Hz.

A few degrees into the 1lit region, the exact solution is seen to
oscillate slightly about the direct SH-wave values.

In the transition region, our approximate theory is again
verified.

Beyond the geometrical shadow, the decay with distance becomes
exponential. At 125°, the SH-wave with frequency 0.03 Hz has
decreased to about %—of its amplitude at 105°, and the shadow is not
sharp at all. Even for the 0.2 Hz SH wave, the amplitude only
decreases at 118° to 1/3% of its amplitude at 110°, so for a whole

range of frequencies we may expect SH to be observable in the shadow
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region. Note that the shadow boundary is 120.0° at 0.03 Hz, and
114.5° at 0.2 Hz. This is very different from the SV values at
these frequencies.

In order that these numerical results may be compared to
observable body wave amplitudes, we must first obtain the
theoretical generalization of our basic method for transition
regions to a model with radial heterogeneity. This generalization
is obtained below in Section (2.6), but we first conclude the
present section with a remark on amplitudes beyond the tramsition

region.

Amplitude within the Shadow

The theoretical aspects of solutions in this region have been
well understood for over fifty years (Watson, 1919), and we may
briefly summarize by quoting, in our notation for the P-P scattering
problem, the results of Scholte (1956) or of Duwalo and Jacobs (1959):

ihR
ihR

with source potential ¢i = at the point (b,0), the total

potential within the shadow is



=]0=

" :
ih[sz——az]a' + a(A-cos™! % - cos™! %}+[r2-a2)ﬂ

i € (hafm
6(z,0) = = /7 /A : ’ i ;
(br sin 4}*n2 [bz_azyf (2-a2)*
oo -é . . g ) . -;
nzo Gn exp [1 dn [A - cos™! £ - cos 1 ;_} [ha} ] (2.5.8)

(Note that A> cos™! '§—+ cos™! -i- for stations within the shadow.)

The quantities {éj} in equation (2.5.8) are defined by their relation

to the zeros {vj} of Q5h\§l_?_(ha), as v varies near ha in the complex
g

order plane,

s
v, = ha + (ha)” &, .
3 J

The problems associated with any practical use of equation
(2.5.8) are that the complex numbers {5j} have not been easy to
obtain. We give here a simple method for the evaluation, which
relies on the expansion of Hankel functiomns, in the region
| ORDER-ARGUMENT | ~ IORDERI?" , in terms of Airy functions. Thus

(Abramowitz and Stegun, 1964, p. 367)
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These standard formulae are not quite suited to our purpose, since

we wish to study Qsﬁélz(ha) for varying v near fixed ha - and then
~3

v as a function of varying u in (2.5.9) is difficult to obtain.

So we define instead the wvariable

and then

[

(1) A
hv-i(ha) - (Zha)

- ” ) i'ﬂ'/3 & %
sl 2e g in/3 Ai(tezm/:s) s Ai'(ce21”/3) 1 (2_)

Also,
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These expansions may be used to write Q5h3ié(ha) as an
asymptotic series in increasing powers of (i%;)ﬁ . The first three

terms may be written explicitly, giving

V % i
agh (1) ) (ha) -( 2ha) \Elz(ka) (k2a2-2h2a 2)2( ) ge~17/3 [F(z) +0 (ﬁ—a)]

-in/3
where z = te / an

F(z) =

"
>
'..l
Faon)
|
N
S
+
Py
IN
"--_....._-/__
u‘\.
=
~J
’..l
=
~
o))
~~
N
-
I

%
3 2 41“/3
(%;—) { (%+ Mz) 2672 piiay + & Ai'( -2)

with model constants

(e (182 a'o' (._ g ] 282

-l
w, - 42 (1-£)

Z2 42 a
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We assume that the problem of finding zeros, in the v-plane,

1)

of Qsh\)“'i

(ha) reduces to finding zeros {zj}, in the complex z-plane,
of F(z). And then we may use equation (2.5.8) with Gj - zj eiﬂ/3/&4%
But F(z) is simple to evaluate for real values z = 0.0, 0.1, 0.2, -
since Airy functions are tabulated for these values. The zeros
in fact have a small imaginary part, and if x? is a real value
near the zero zj, we take Newton's rule z o~ x? - F(x;)/F‘(xg)
as our approximation. Note that F'(x?) is also simple to evaluate,
since we may use the relation %} Ai'(-2z) = z Ai(-z). We find
below in Section (2.6) that zeros may also be found in this way
for media which are radially heterogeneous, and we defer computation
of the {Sj} until this generalization has been obtained.

The above method is certainly simple to use, and is probably
more accurate than the existing methods for homogeneous media of

(i) Scholte (1956), who essentially has a graphical method of
solving F;(z) = 0, in which F1(z) is obtained from our

F(z) by ignoring the terms in 0{(%;)%}-

(ii) Duwalo and Jacobs (1959), who first assume that the {vj}
are near the zeros which arise in a study of the "soft"
boundary condition, ¢ = 0 on r = a. But in fact, for

geophysical parameters, the {vj} are near the zeros which

arise in a study of the "hard" boundary condition,
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(iii) Phinney and Alexander (1966), who use a numerical search

directly in the v-plane, but with a Hankel function evaluation which

1

p P 2

ignores the term {-41—) (-) {} in our expansion (2.5.9).
\ 2ha v

In section (2.7) below, we examine the relation of the real

Y
part of &, to observable array measurements -QK , and of the imaginary

d
part of §; to amplitude decay in the shadow. But we first extend
the results of this section to a study of spherically symmetric

inhomogeneous Earth models.
2.6 Body Waves in Radially Heterogeneous Media, Scattered by one
Solid/Fluid Interface

In this section we generalize some of the results of (2.5) to
the transition zone set up by a point source embedded in an isotropic
elastic medium, with a fluid elastic spherical scatterer. Density
and elastic parameters are smoothly varying functions of radius
(although discontinuous across the fluid/solid boundary). Many
special techniques have been developed for finding frequency
dependent corrections to ray theory, and such general solutiomns are
commonly stated as asymptotic series in inverse powers of frequency.
(See e.g. Seékler and Keller, 1959 a, b; Yanovskaya, 1968; Babich,
1961; together with the discussion in Bennett and Chessell (1969),
in which such methods are compared with the known and exact solution

for a specific inhomogeneous problem.) The first term in such expansions
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is identifiable as the product of geometrical spreading (which is
independent of frequency) and a phase integral carried along the ray
path from source to receiver.

However, we see in sections (2.2) - (2.5) above, for several
source-scatterer-receiver geometries, that the ray spreading‘term
itself requires modification in the transition zone, In this section
we find the modification in transition zones, to geometrical spreading,
for spherically symmetric media. We neglect those additional terms
which arise in a more complete discussion of P/SV/upgoing/downgoing
interactions in continuously varying media - which terms typically
are of lower order in frequency than the modified geometrical
spreading term. Our method involves some of the results of Chapter
3, together with a generaliéation of the Hankel functions used in
(2.2) - (2.5) above. We restrict our discussion to media with
subcritical velocity gradients, that is, media in which a ray bottoms
at every depth. A new method is also developed for evaluating
amplitudes in the shadow region.

The Expansion of Source Potential, and Potential-Displacement Relation

It is shown below in Chapter 3 that the assignment '"P-wave
component" of displacement in smoothly varying inhomogeneous media

may usefully be discussed by the form



- .

¢(zx,t) £(2)

Y o(x)'

-
f(r) grad

where f is a known function of radius and ¢(r,t) is a potential
which satisfies

p(x) 2
V2¢(£,t) - qu(r) ‘g?% ('75,1:) + sp(r) ¢("£,t) = A(};\,t).

e (r) is known, and A(z,t) is an expression of the coupling between
9(r,t) and a similar SV-wave potential. We discuss a steady state
. -iwt .
point source of P-waves « e , at distance b from the center of the
fluid scatterer (see Figure 16). Since we are here assuming the
neglect of continuous scattering, and neglect of terms which are of at

least one lower order in frequency than geometrical spreading, we

may approximate to an uncoupled Helmholtz equation

2
V2¢Q£,t) + h2(x) ¢(z,t) =0 , with n2 =-%;%E and P-wave

.

displacement u = grad ¢(xr) . This approximation is discussed

3

p(x)
further in section (3.4a), below.

The source potential of our homogeneous solutions above is in
ihR
ihR

and constant wave number h. If such a source ¢i is placed in the

e ] " . - ;
the form , with R as the straight-line source receiver distance,

heterogeneous medium, we may thus characterize it as the solution to
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, together

oy + (C0)? 4, - LEREW (cr )

2nr? sinA 1h(b)
with a radiation condition expressing amplitude decay with distance
away from the source.

In Appendix II we follow some of the methods of Friedman (1951)

and Seckler and Keller (1959b) to obtain an exact series for ¢i in

the form
0,8) = § [+ 3 g ) [81(11) (x) + g2 (r<)-_] P_(cos 4)
n=0
where

x, = max(r,b), % min(r,b), and the gil)(r)(2=1,2;n=0,1,2,....)

are analogous to spherical Hankels hél)(hr). We use the approximation

(cf Debye methods for Hankel functions)

10 .
(2) grnh
ey B
n (h(b))z-

H |

G ol n+3_" ;—'
expii[ [hz(m—(E ) ]da

o (2.6.1)
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in the region above the radius r, - which radius is the deepest
n++
2

penetration of the ray with ray parameter p = » 80 T depends
on n.

By writing the boundary conditions of continuous stresses and
radial displacement on the solid/fluid interface at r = a in terms

of our weakly coupled potentials for P and SV, we may obtain the

formula for scattered potential of PcP as

o (x,0) = = %J gl @ x
0
(2.6.2)
N Q\’._._2 (cos A)dV
Qg\)-ﬁ(a)

where the operator Q is equivalent to the Q5 of equation (2.5.2),
2
but now operating on gt(l )(a) instead of hr(l’q') (ha).
For a discussion of amplitudes within the transition zone, we

again use
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¢s = --% [:al(r,A) - az(r,AiJ where
h(a)a
a(r,s) = J( 2ug\(’_1%). (b) g\()}i () Q\Ei(cos A) dv and
0
(2)
h(a)a Qg ", (a) .
az(r,A) - J 2vg(12(b) g(l?(r) s QSZZ (cos A) dv +
V=3 \)'5_ 0 (l) ( -2
0 g, (2)

(2)

Qg "1 (a)

2vg5_]_'2 (b) g\()}),.i(r) [ 1 +~.—‘Eﬁ_—.jl Q\()Z)’ (eos &) ds
h(a)a gg\)-i (a)

Evaluation of the Scattered (PcP) Potential

For the approximation of aj (r,A), equation (2.6.1) is available.

We see

h(a)a
s Lo, ) I T %

h(b) rb
l:h2 (r)-(%)zjq

1 1 ei@(v) s

g :
[hZ(b) —(%YJ ‘ (Z'rm sinA)

(2.6.3)
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(2.6.3
Continued)
b Rt
f [hz(g)—(-z—)] dE + vA - >
r (V)
Then, to-examine the saddlepoint of (2.6.3) we obtain
r 5 -
de _ _ 2 A% dg
T v J [ h< (&) (E) ] 2 *
r (V)
(2.6.4)
b 2 '5-
s I dg
| [o-@ ] &)

ro(v)

But the angular separation may be expressed by



=

wi=

T i b

L
-2
2 253
seal| [ -] g [wo-9F]g

ro(NP) ro(mp)

(see e.g. Bullen, (1963), equation 7.7.2), where p 1is the ray
parameter for the direct wave from source (b,0) to receiver (r,A).
Hence &(v) is stationary when v = wp, and standard techniques are
available for evaluation of formula (2.6.3). However, to apply them
we need to differentiate-%% again, and this presents certain
manipulative difficulties since the integrands of (2.6.4) are singular

at a limit of the integration which itself depends on v. In Appendix

III it is shown that

d2e

dv2

32T .
-1 EYV3 , where T is the travel

v=wp
time from source to (r,A) along the direct ray. From (2.6.3) we find

receiver

2 (wp) = h(s) ds - %1 , where s is an element of

source

length along the direct ray, and by crossing half the saddle we have



i R

i, wp .
ay(r,8) =~ irbh(b) [ sin A h(b) h(r) cos i(b) cos i(r)

h(s) ds

receiver
iJ

source

Using (2.6.1) to evaluate as(r,A), we find

i

receiver
J h(s)ds

source

-in/4

e e
ay (r,A) = Ih(b)br Yup'

L

2
32T
ik

WA CE)/2 sind E{B)h{x) eos 1(6) cos 1(r)

=

x [h(a)a} CP(m)



il

where now
h(a)a o
1 Qgi%%(a) dv 935%;(3)
CP(m) = ' i PR - 1+ . - dv. -
3 Q 1 Q L
(h(a) 8]3 5 g\)-z. (2) h(a)a g v-;(a)

Using the geometrical spreading methods of Bullen (1963), or by the

method of Appendix II and the evaluation above for a; (r,A), we know

1
1 wp Jo. 927\ )*
ibrh(b) sinA h(b) h(r) cos i(b) cos i(r) YY)

¢.(I:A) =

rreceiver
iJ h(s)ds

source 1
X e X (l + 0 (;))

and so finally we have
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( rh(a)a-wp 5
=
342
o = o, + o ﬂ-:_l-_ < éiﬂ/4 /2- ei‘n'lz-l-z i
i a 2
/
\ 0
/3
~in/4 = b 1
o ——3—2;' (h(a)a) Cp(w) + 0 (;)}x 65 (2.6.5)
-TTW -BA——z-

(The factor-% { 1 is the correction to geometrical spreading.
If we approximate the Fresnel integral within the transition zone,
we obtain the standard form (e.g. (2.5.5)), but now generalized
to radially heterogeneous media.)

The methods used above to obtain a formula for ¢ make frequent
reference to the "direct ray between source and receiver," but for
a receiver slightly beyond the shadow boundary there is no such
ray. Equation (2.6.5) is then useful only for the lit region
(up to and including the geometrical shadow boundary), although it
still has meaning just within the shadow, in the sense that if the
velocity profile a(r) in the mantle is continued (in some smooth

way) below the radius r = a, then all the terms in the right hand
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side of equation (2.6.4) have meaning. The value of v which makes
¢ stationary is still wp, where now p is the ray parameter for a
ray which is travelling in the extended profile, and bottoms below
r = a. All the symbols in equation (2.6.5) can now be defined,
but we must acknowledge that this procedure is not very useful,
since it is difficult to justify any particular choice of mantle
extension below r = a. However, we are able to give below a
separate discussion of the shadow region - back to and including
the geometrical shadow boundary - and also find a numerical method
for the evaluation of CP(m).

It follows from (2.6.5) that the shadow boundary, defined as
the distance A, at which amplitudes are one-half that given by

<
ray theory for the direct wave, satisfies

i

13‘—
pp(a; ) = h( = | h(a) ) Re C (w) + Im C_( ] .
wp L a)a ( a)a L‘ e Cou n C, w)

An alternative derivation of part of the solution (2.6.5)
is given in Appendix V; the method there is to use Fresnel-Kirchhoff
theory, and (2.6.5) is reproduced without the term involving CP(m).
However, although the shifts are dependent on CP(w), we see below that

there is an important and practical application of (2.6.5) which
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does not require evaluation of the CP(m) term.

Diffracted Arrivals within the Shadow

Even though diffracted first arrivals within the core shadow
zone are small, the large surface area of the Earth within this zone
has yielded considerable data on amplitudes and amplitude decay
rates (Gutenberg, 1960; Sacks, 1966, 1967; Alexander and Phinney,
1966). We may show by the methods of Friedman (1951) and Nussenzweig

(1965) that the total P-wave potential within the shadow is

y B & g2 1(a) )
1 1 2
¢(r:A) = = (b) g (r) (l)( ) Qv_:i_(cos A)d\)

(=

(2.6.6)

(cf equation (2.6.2) for PcP), where the operator Q is equivalent

to the Q5 of equation (2.5.2). And ¢(r,A) is evaluated by summation
of the residue series of this integral, which series is determined
by the zeros {vj} of Qgéi;(a) as v varies in the complex order

plane near the value h(a)a. Thus we find (using the formula 2,6.1)
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- "1
b4 = esml4 2r h(a)a !
PAES h(b)br h(b) h(r) cos i (b) cos i(xr) sinA

&
Z Rj exp [;i éj ( h(a)a) (A—Al-bz)]- exp i ®DIFF
(2.6.7)

where (see Figure 19)

9y 1pp = Phase along the diffraction path from (b,0) to (x,A)

2
J h(s) ds + h(a)a (a-A1-Ay) + J h(s) ds
s G

¢y

P ¢ ) d_ 1)
Ry Qg _:(a) /' o ﬂgv_i(a)
v o=V,
J
&)
and dj is related to vj by vj = h(a)a + dj'(h(a)a) .
It remains to calculate the Gj for specific models, and we
give here a generalization of the successful method, set out in

Section (2.5), for a model with individually homogeneous mantle

and core.
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The definition of ngfi) (a) is different from the definition of

z
Qsh(1) (ha) (see (2.5.2)) in just two respects. (i) We replace the

v-4
SR,

v—4,8 v—i,K(a) (where

spherical Hankel functions by g\szl(a), g
-2
the latter two are the radial functions for mantle S and core P-wave
velocity structures), and (ii) the effect of intrinsic coupling adds
. . (€3] ik2) ;
to each of the constituent functions p -u in (2.5.2) an

unknown term which is one order lower in frequency. Since (see

Appendix VI), for v near h(a)a,

z
3
a g_r g\(ii,:(r) = g\ff;(a). 0 {(h(a)a) } , and each of
r=a
1 a)’ : A " 4
gu__;__and g may be written as an asymptotic series in ascending

V=2
2 E s ; (€))
powers of (h(a)a)g , it follows that we may write ng_i(a) as an

¥
asymptotic series in ascending powers of (h—(;)-;) . We find the

first three terms of this series are contained in
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(1)(3) = g(l) (a) [( kz(a)a2_2v2)2 g\e';.-(a)

- (4v2a2R1 + %—;ﬁ) (1) L (@)

./
) 2 e
+ g\,,_i.(a) -0 (ma—) where ks
I
2 a 2 -
R; = ik(@) [1-— R, = -ih'(a)|[1-———|.
k2 (a)a? h'2(a)a2

In Appendix VI we provide a study of g( )(a) as v varies in the
complex order plane near h(a)a, and from the formulae (VI.9) we

have

3

<>()_ 5 CeD @ | k2@ Z_th()z] 5
Sy-3'@ 2h(6) (-x(a))) Bv-%,5° a) a a)a

)

A
[ 2!}];-2}:(51)) :] 2e—i1r/3 [G(z) 6 ( 2!1—){!&22)‘]
a)a h(a)a

where x(r) is the normalized velocity gradient i—g—;— "
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in/3 Yy
z is given by v = h(a) a [ ] o ( 2(1"X(a_))) ] ’

2 h(a)a
Ilj
G(z) = Ai(-z) + (%ED-) Wy & B yd g -

(@) % . .
(2}?&;;‘;1 ) (1—5 + NZ) ze in/3 Ai(-z) + ( %—0- + Ng) zzel'lw/BAi'(-z)

(2.6.8b)

with model constants (evaluated at the core-mantle boundary, r = a)

- - |
S A a2\’ 22
By Ll * A58 "z
28 o ap o o
- _ X . ;
- 30(1—x) _ 30(-x)2
2;2
2 42
w X5 220
where y(xr) = 5 a2 ¢ and
3 o 2 x _ 2y
3 15(1-x) 15(1-x)2
We assume that the problem of finding zeros, in the V-plane,
of Qgéil(a) reduces to finding zeros {zj}, in the complex z-plane,
Z

of G(z). And then we may use equation (2.6.7) with
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dj = 2 ei“/B(l—x(a)}#alz&. The zeros of G(z) are simple to evaluate,
if we use Newton's rule with trial zeros which are real (see (2.5)
above), and we have calculated §; and &, for several Earth models.

Our results are displayed in Table 5, for three different
models of the core mantle boundary (each model specified by
(e,B,p,a',p"', a)), and in each basic model we specify different
choices for x and y (the first and second derivatives of velocity
gradient at the bottom of the mantle). The calculation is done for
the four periods 50 seconds, 20 seconds, 5 seconds, and 1 second,
and it is apparent from Table 5 that &; and &, are quite sensitive
to the choice of x, the first derivative of velocity. In Figure 20ab
we show the real and imaginary parts of 6;, plotted against frequency
for several different choices of x, in the model with a Gutenberg-
Bullard density jump.

We discuss below in (2.7) the significance of these numerical
results, and conclude this section with some final remarks on our
method of finding residue series for the shadow zone.

(i) A knowledge of the imaginary part of §; alone is probably
sufficient to give accurately the amplitude decay rate - since

Im § ~3 x Im §,;, and then Im 5j+ ~1+ Im 5j’ so the terms in

1
equation (2.6.7) are essentially negligible for j > 1. The factors
Rj may be evaluated (which permits a study of absolute amplitudes,

rather than amplitude decay rates) by using the methods of Appendix VI
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to discuss gfii(a).
z

(ii) The constant N, is approximately 10 for realistic Earth
%

models, and, since (‘3?55;) " only for periods less than about 1

1
10
second, it follows that the behavior of G(z) is characterized by the

quantity Ai'(-z). The zeros of Ai'(-z) are in fact appropriate

to the "hard" boundary condition, ¢' = 0 on r = a. Some authors

(e.g. Johnson, 1969) have made the assumption ¢ = 0O on r = a,

the "soft" boundary condition, which is equivalent to characterizing

G(z) by the leading term, Ai(-z). The "soft" boundary condition is

a valid approximation for hollow core models (as we have seen above

in section (2.2) and Figure 5), for then N, is approximately 3%.
(iii) Phinney and Alexander (1969) have given a discussion

of the effect of a velocity gradient on diffracted P in the shadow

zone. They have given values of Im §, based on the assumption

that the effect of a velocity gradieﬁt on zeros of Qgiii(a) is

merely to multiply {vj - h(a)a} by the factor [1—x(a)}§3, where

the éj are calculated for the homogeneous case from a computer

study of QShSEQ(hé)' We see from our method above that this scaling

assumption is justified for either the "hard" or "soft" boundary

condition. However, the gradient x(a) appears in G(z) outside the

argument of the Airy functions. So the assumption is not justified

for our case of a mixed boundary condition. It does provide a useful

approximation and the values of §, in our Table 5, for x + 0, y=20,
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can be found to within about 5% from the values for x =0, y = 0.
(iv) SV-diffraction may be discussed with our method above,

but this is of little interest since SH dominates S arrivals in

the shadow zone (see Figures 14 and 15). It is simple to find the

poles relevant to SH diffraction, and they are the zeros of

[a—g(f)_ I R S(a)] = D(v) (say)

r=a x

near v = k(a)a. From (VI.9) it follows that D(v) may be written
7
; " ; : 2(1-x(a
as an asymptotic series in ascending powers of EG)a
(where now x(r) = E_éﬁ_) , and that the series is strongly

dominated by the first term Ai'(-z), where z is given by

in/3 s
\,=k(a)al'l+_z_e (2.(1-_x(§)_)_)]

2 k(a)a

-Hence we take z; = 1.019, z, = 3.248, z3 = ..... ,» which are the
zeros of Ai'(-z). Values of {zj} may be found which are slightly
more accurate, by obtaining explicitly the second term in the
expansion D(v). This will permit a qualitative appreciation

of large ''curvature" in the velocity profile.



(v) By performing numerically the integration in equation

(2.6.6) we may directly obtain amplitudes in the vicinity of the

shadow boundary, and within the shadow. (N. B. equation (2.6.6) is

valid for the whole forward scattering region, A > A;.) We

evaluate part of the integrand (which is needed only near v = h(a)a)
by using methods developed above for aj(r,A). Thus, expanding

2(v) in (2.6.3) as a Taylor series and using Appendix III, we

can show for v varying near h(a)a that

in/4
_vg\fi?i(r> géi;(b) (E)é(cos A) i E-%E-m Fl (ray geometry, UJ) X

(v-h(a)a) | _1
2

exp i | v(A-4;-4,) + 32T
YV
(2.6.10)
where
"
Fy (ray geometry,w) = h(r)h(b?éiii(r)cosi(b)ZWsinA

¢y

P
exp i J h(s)ds + J h(s) ds .
S Co
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The formula (2.6.10) is valid for all A between (but not including)
the antipodal region (near A = 7) and back to and including the

geometrical shadow boundary (A = A; + Az). F; may be found from a
2

3<T
aa2
theory value of %ﬁ- obtained in the limit as A + A; + A; from below.

knowledge of the ray geometry in Figure 19, and is the ray
Unfortunately, we must not expect (2.6.10) to be useful within the
lit region, since there the direct arrival bottoms at some radius
ry; > a, and it is inappropriate to discuss approximations only
near v = h(a)a.

We have in (2.6.8) a formula for Og o) (a), and similar methods

for Qgizl(a) give the result
-1

iN
+_
) q

-2iw/3

(2)
-————Eil -2in/3 Ai' (te

eZiw/B Atites™ e—ZiHIB )

Qgéii(a)

ad » . po=2im/3 N ) g-24nf3, . ( -Qiﬂ/3)
= 2 ( s - Nz) tAi(te ) + ( ) + N3/ te Ai' | te X

2in/3 % 5y 21w/3

Ai(te 21“/%

) + — Ai' (te

ézg—( =+ N ) tAi(teZlT/?') +(60 + N) r2e?24/3 Ai'(teZiﬂm)

(2.6.11)
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¥
o
Whige = ( 2(}—x 2)) | g Lm 2(v-h(a)a) g2 et
q n(ala } h(a)a

Ny, Np, N3 are the model constants defined in (2.6.8).

With formulae (2.6.10) and (2.6.11) we may now compute the
integral (2.6.6). The technique is essentially the same as our
method in section (2.5), in which we obtained the P-P response in
a medium with individually homogeneous mantle and core - instead
of the Hankel functioms of (2.5), we here use Airy functions.
Hence we use below the terms "Hankel function method" and "Airy
function method" in referring to these similar techniques. Note
that the results of the Airy function method wmay be compared with
ray theory right at the grazing distance A = A} + A; by using the

geometrical spreading formula

l/ .
e-iﬂ/Z ( azT)z
Oyrreer (s 81 + 82) = o 2tw o35 | Fp (ray geometry, w)

(2.6.12)
which gives the potential for the direct P arrival (ignoring PcP).
; , ; 1
We expect that (2.6.6) will give just > ®DIRECT (r, 4 + 4p) for

sufficient high frequencies.
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A simple numerical experiment to check the more general Airy
function method is to use it for calculating ¢(r, A) in a model
with a homogeneous mantle, and to compare these wvalues with
¢(r, 4A) calculated by the Hankel function method (using IFLAG = 1
in the program described in Appendix IV) for the same model. The
results of such an experiment, using the "model 1" of Phinney and
Alexander (1966), are given for amplitudes in Figure 21, and for
%% (i.e. %-%E- phase[: ¢ (x, A)] ) in Figure 22. The computation
is done for the two frequencies 0.1 Hz and 1 Hz, and we see that
there is excellent agreement between the two methods. The amplitude
curves for 1 Hz run together throughout the shadow region, as do

the 2L curves for 1 Hz. For 0.1 Hz the amplitude curves run

34
together just within the shadow region, and the %% curves run
together throughout the shadow. We may further note that the
agreement of the two methods within the 1lit regiom is fortuitous,
since the Airy function method would not be so accurate there in
a medium for which ﬁ%% varied more strongly with distance.
(In such a medium we should use (2.6.5), with numerical integration
of (2.6.11) for calculation of CP(m).) Within the shadow, the
Airy function method is probably more accurate, since we may
show that (2.6.10) and (2.6.11) neglect only terms in 0(%—; ) z

whereas we have used the Hankel function method with a HANKEL

%
package which in fact obliges us to neglect terms in 0 ([zﬁ]) .
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(vi) Our formula (2.6.11) may be used for investigating the
reflection coefficient for a solid-fluid spherical interface, at near
grazing incidence. We may define this coefficient (following Scholte)
by assuming that the primary downgoing wave gg?_)::.(r) Q\(’E)_;;(cos A) gives

(2)
t(a)
E\é‘i)—:"—- = (l)( ) Q\E_z_),_(cos A) on
g\,_.;:(a) 2

rise to an upgoing wave (LL)

reflection at the radius r = a. Then for the longitudinal-longitudinal

reflection coefficient, we have (by the method following our (2.4.1))

- ~g () a8 %) () -
LL) = ——=— . e TR 24633
) (a) a8y (a)

. . 1 :
We recall that wave functions with order v - E are associated with

rays having the ray parameter L . ﬁ-. So the phenomena

a(r) L
of PcP reflection may be discussed by evaluating (2.6.13) with

= h(a)a sin i(a). SV waves within the mantle, and K waves within
the core, are also generated, with respective angles of incidence
j(a) and i'(a) (say) at the radius r = a.
Let us first evaluate (LL) within the lit zone, where i(a)

is less than 90°, We have from a study of the Riccati equation

]
for g\()%)_;_- (r)/g\()%_)i(r) the result
X
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! (1)
gifi(a)/ gi?i(a)nu * 1 h(a) cosi(a), and then from

formula (2.6.8a)we find after some reduction

LI ] 3
82/a? sin 2i sin 23§ + B 05 = . con?Dj
pa cos i'
(LL) ~

p'a' cos i

B2/a? sin 2i sin 2j + 5
pa cos i

+ cos?2j

(2.6.14)

which is exactly the coefficient of reflection for a plane wave
incident upon the plane boundary between homogeneous solid and
fluid half-spaces.

But to evaluate (LL) for near grazing angles of incidence,
i(a) ~ 90°, we must use the results of Appendix VI and formula

(2.6.11), giving approximately

"Ai(t e—-2i7r/3) % inl S2n/3 o, (t e-2i1r/3):]
(LL)~ - (2.6.15):

B . iN . : L
Ai( " e2111/3) & - 1 e2111/3 Ai'( " eZlﬂ/3)]
¥

where t, N;, q are defined in (2.6.11).
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We may now assess the approximation (2.6.14) for near grazing
angles, and see that at i(a) = 90°, this plane wave/plane boundary
approximation gives (LL)~ - 1. The same value is returned by
(2.6.15), with t = 0, only if Nllq << 1. But we have already
noted (see (ii) above) that N; is approximately 10 for realistic
Earth models, and N;/q~ 1 for periods as short as 1 second. We
see from the second terms in the numerator and denominator of
(2.6.15) that, very roughly, (I.L)m..-e"'i-"/3 for periods greater than
two or three seconds. Such a phase change then leads to amplitudes
of (P + PcP) which are very different from the amplitudes
calculated with the phase reversal predicted by (2.6.14), and hence,
for geophysical problems, the plane boundary approximation is

completely inadequate at near grazing incidence.

A summary of the more important techniques developed in this
section is now provided by calculating the total potential ¢(r,4)
for 2 second P waves in an inhomogeneous Earth model. Our results
are given in Table 6 for seven degrees into the 1lit zone, and in

Table 7 for seven degrees into the shadow. The particular Earth
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model is specified by

(a) wvalues of p = p(A) within the lit zone. The eight values
we use are listed in Table 6: they are an approximation to CIT208,
described by Johnson (1969),

(b) a geometrical shadow boundary distance of 97°, and a

surface source,
(c¢) wvelocities, densities and radius for the core mantle

boundary, We take a = 13.68 km/sec, B = 7.3 km/sec, p = 5.6 gm/cc,

&' = 8.1 knjsee, p¥ = 10.0 gmies, -S—E == 0,29 and a= 3481 kn,
T r
2
In the 1lit zone we may find E—g as a function of distance.
LYl

Values of this quantity are listed in Table 6, and for interest we
also tabulate the time interval between ray arrivals PcP and P.
By numerically integrating (2.6.11) for 2 second waves, we find
CP(ﬂ) = (0.3797, 0.0086). Then for the half amplitude distance
(i.e. the distance A at which |¢| is one half the value given by

ray theory) we may obtain from (2.6.5) the result
p(A. ) = 4,440 = 0.020 sec/degree,
-

indicating a shadow boundary shift of about 1.2° into the 1lit zone.
Using formula (2.6.5) it is simple to calculate the correction
[
factor Z { } which multiplies the geometrical ray term ¢ to give
i

¢(r,A). From the phase correction 8¢ we may calculate (by a method
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3T

discussed below in some detail) the apparent for 2 second waves.

Values of the correction factor, and of the apparent §§-, are given
in Table 6. |

In the shadow zone, we find ¢(r,A) by numerically integrating
(2.6.6), using the method described above in note (v). The source
normalization used in our computation gives for the direct wave at
the geometrical shadow boundary (see (2.6.12)) a value 2.259, with

zero phase, and the correction factor F listed in Table 7 is

related to ¢ by

¢(r,p) = 2.-259 F exp iEl(a)a (A = 9711'/180)].

Also given in Table 7 are values of in [¢| and the apparent %%-.
Our results in Tables 6 and 7 are encouragingly consistent
at the geometrical shadow boundary distance of 97°. The correction
factors in each table should here be equal, and we see that their
amplitudes (0.425 and 0.404) differ by only 5%. There is some
difference in their phase, but note that the rate of change of
correction phase is almost continuous from 1lit zone to shadow
(0.163 radians/degree at 96%°, and 0.161 at 97%°).
The numerical techniques described in this section may prove

extremely powerful in discriminating between models of the bottom
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of the mantle - and theymay find application in studying regionms
of the upper mantle in which the velocity gradients are high.
Our methods for studying the grazing incidence spherical reflection
coefficient can also be used for the time domain problem discussed
by Knopoff and Gilbert (1961) who make an approximation (in the
Laplace transform plane) which corresponds to the assumption of
2 plane wave reflection coefficient, and who use scattering
poles appropriate to the soft boundary condition.

In the following section we develop some applications of

our new theoretical results.,
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2.7 Relevance of our Theory, and Applications to Seismic Data

The results of Section (2.5) show explicitly that, in a very
simple Earth model, the amplitude of transition and shadow region
body waves is quite strongly dependent on frequency. And in Section
(2.6) we see that there is a frequency dependent correction to
geometrical spreading for such regions in a more general class of
models. We confine our discussion of these results to some
qualitative remarks on amplitude, and introduce a quantitative study

of the phase of body waves.

P-Wave Amplitudes in the Shadow of the Earth's Core

Sacks (1966) has given estimates of amplitude decay rate within
the shadow, for the periods 25 and 2.5 seconds, and his results
may be expressed in our notation (see Section (2.6), Table 5 and
Figure 20) as Im §;(25) = 0.82, Im §,(2.5) = 1.02. We see in
Figure 20b that both these points fit a theoretical curve for GI(T)
in the model for which x = - 0.2, and from Sacks' data we would

"see" the same

conclude that 25 second and 2.5 second waves
average velocity gradient — and hence, the bottom (c. 100 kilometers)
of the mantle has a constant velocity gradient %%-= = 02 =

However, Alexander and Phinney (1966) and Phinney and Alexander

(1969) give observed amplitude decay rates which differ from Sacks
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in that (i) Im &;(T) varies for different regions of core surface,
and (ii) even for data taken from one region of core surface, Imé;(T)
does not increase with frequency %= in the way that all our theoretical
curves (Figure 20b) would predict. We may draw conclusions from
their data in the following way: the velocity gradient throughout
most of the lower mantle is quite reliably known to be %%-= - 0.28 %
(see e.g. Hales, Cleary and Roberts, 1968), and so diffracted waves
of 50 seconds period will "see'" an averaged gradient that must be
near x = — 0.28 (since this wavelength is several hundred kilometers).
From Figure 20b we thus expect Im ¢&; (50) ~ 0.83. Phinney and
Alexander (1969) show two sets of Im §;(T) (obtained from two
different events, but sampling approximately the same core surface
region) which have Im &,(50) o, 0.8, and these sets show a slight
decrease with increasing frequency to about Im §;(10) ~ 0.75. The
implication from our Figure 20b is then that 10 second waves are
"seeing'" a different average velocity gradient x~/ + 0.1, and hence
the velocity gradient must be changing rapidly as the core boundary
is approached, indicating a low velocity zone.

The necessary resolution of theory with data must await a
careful study of amplitude decay rates at even shorter periods -
perhaps even 2 second and 1 second data may be used quantitatively,

especially since amplitudes near the shadow boundary itself are now

theoretically understood.
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S-Wave Polarization

Theory

Within the transition region and the shadow zone of a simple Earth
model (individually homogeneous mantle and core), we see in section
(2.5) that there are considerable differences between the different
body wave types. And in particular, we see from a comparison of
Figures 14 and 15 that core diffraction will act as a polarizing
mechanism for S-waves. SV waves decay with distance about three times
as fast as SH waves, in this model, and the different decay rates are
evident even 5° within the lit region. Hence, we should expect
that a seismogram written at the geometrical shadow boundary, or
beyond, would contain diffracted S only as SH. This conclusion
may reasonably be maintained even for models with a radially
heterogeneous mantle, since we have seen that it is the particular
boundary conditions at the interface which are responsible for the
particular observed departures from ray theory, and radial heterogeneity
merely changes the location of geometrical shadow boundaries.
Observation

Gutenberg and Richter (1935, p. 331) state that S "is very large
in the few degrees about 95°, but beginning about 99° it decreases
with distance." They note that, although in several records S arrives
chiefly as SH, the sharp polarization appears to depend on the
mechanism of the shock. Also, "at distances beyond 105°.......the
diffracted S appears to be recorded more frequently than diffracted P."

Lehmann (1953) also describes 18 records of diffracted S in Europe

for the Chilean earthquake of December 1, 1928, and notes that this
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phase appears on N-component records, whereas SKS and SKKS were much
larger on E-components. The azimuth from Europe 1s approximately
WSW, and so the polarization is SH. Cleary, Porra and Reed (1967)
describe twelve records of diffracted S at Canberra, for distances
between 99° and 130°. Even though these authors have assumed that
SV cannot theoretically be diffracted at all, one can see from
their Figure 1 (which is three sets of the two horizontal componeits,
each set from a different event) that SV is indeed insignificant
relative to SH.
Conclusion

Thus, although fault-plane studies and calculation of radiatiom
patterns must complement the discussion of any particular record,
we may conclude from the number of published observations that our
theoretical expectation is verified; diffracted S is polarized towards
SH.

The Phase of Transition Region Body Waves

In equation (2.6.5) above we obtain a term which, in the
transition region, corrects the simple ray theory of geometrical
spreading. This new factor has a small imaginary part which is an
implied function of distance A (since p =p(4)), and so the apparent
phase velocity measured by an array in the distance range 90° - 105°
must be frequency dependent. If the phase of our correction factor

is 8¢, then an array measurement of the quantity will be greater

3T
ERAY

than the infinite frequency (or, ray theory) value p by an amount
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§p = 6% (2.7.1)

€ |-
glu:

This equation is obtained and studied by Johnson (1969), who
also shows that the dispersion is large enough to affect array
measurements. Johnson's methods of correction are based on the
necessarily separate theories for lit and shadow regions, and hence
they fail for the crucial region of grazing incidence. But it is in
precisely this region that the correction is most important, since
P and PcP cannot be separated in the time domain. (For example, the
time difference is given as one second at 90° by Herrin et al (1968)).
In order to see effects of ignoring the difference between %%
(obtained by measuring the phase velocity of a certain frequency
component as it travels across an array) and the ray parameter p, we
study the following simple Earth model, in which the known wvelocity
structure is compared with the Herglotz-Wiechert inversion of

m

T
uncorrected %E- values:

Numerical discussion of dispersiomn effect.

Suppose that a point source of 10 second P waves is established
in the simple Earth model of Section (2.5). This mantle is homogeneous,
with velocity 13.6 km/sec. The %%— values at different distances

have been found for such a model from the rate of change of phase
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(and the phase is computed from the exact displacement formula in

Table 2, using the FORTRAN program described in Appendix IV). These

ar
(= [

values are plotted in Figure 23 for the range 105.5° ¢ A < 124.5°,

Q2

together with

a) the known ray parameter, p = igsg sin 1 x 1%5' sec/degree

b) an approximation (discussed below) to %%- (10 sec.),
and c¢) the computed values of %%- for 1 second waves.

A method for the inversion of such %% values is developed in
Appendix VII from a suggestion due to Jeffreys (1966), who discusses
the perturbation of velocities due to a perturbation in the p—AA
relation, and a brief slide rule calculation leads to the
results:

For the 10 second 'ray" emerging at / 108.59,the deepest point

109.5
110.5
111:5
112.5

113.5
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along the '"ray" has radius 3710 km

3691

3672

3651

3630

3608

and at this depth the '"velocity is 13.600 km/sec :

13.595
13.585
13.574
13,561
13.545

Hence, for a model in which the velocity is in fact 13.6,
we note

(i) that the inversion of %% (10 sec) leads to a zone of
slightly low velocity, with gradient

g—;": ~s = 0.05 knfsec/100 kn

at the bottom of the mantle,
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(ii) that this small velocity gradient completely changes the
ray pattern. For example, the ray emerging at 113.5° has its turning

o

point at radius 3608 km if we invert the %%- (10 sec) curve,
and about 3480 km if we invert the p curve. If we have some
independent method which indicates that 113.5° is the distance of
emergence of the grazing ray, then the %% curve for 10 second data
would give a core radius over 120 km too large — even though the
dispersion is at most 4%. Sacks' (1966) estimate for a core radius
of 3550 km may suffer from just this effect, since he obtains a
grazing ray distance of 96° (determined by studying amplitudes at
different frequencies) and then uses Jeffreys' solution giving depth
of penetration of rays at various epicentral distances. Sack's
estimate is over 70 km greater than the "standard" radius of 3473 km,
determined originally by Jeffreys from P and ScS travel times.

(1ii) 1If we extrapolate the calculated "velocity" profile
down to the known core radius of our model, 3480 km, we obtain an
erroneous velocity of 13.48 km/sec for the bottom of the mantle.

~n

Of course, the observed %%-— A relation for P-waves in the
o

Earth is typically obtained with data from short period instruments,

and the more relevant %%~ (1 second) curve of Figure 21 shows better

agreement with ray theory. But even this 1 second curve would give

an incorrect core radius (see note (ii) above). Also the observations

for S waves may be expected to be worse than the 10 second P wave %%-.
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It is apparent from the above numerical discussion that, in
order to obtain the ray parameter p as a function of distance, we
should like to be able to correct the observed %%' values which are
associated with a given frequency. We have seen that this correction
is small (although its cumulative effect can be significant), so
trial-and-error guesses for p=p(A) are adequate. Given such a
trial solution, the approximate %%- at a given frequency w may
be found by the following methods:

(A) 1In the transition zone we use equation (2.7.1), with §9%
obtained from the phase of the bracket { } in equation (2.6.5).

It may be shown that the CP (w) term contributes merely a (small

and) almost constant phase to §&, and so this complicated term may

be neglected in the differentiation (2.7.1), yielding

h(a)a-wp 3
[ 55)
-1 =AW T P 2
Gpwla— Phase l-elﬂﬂ* ,/Q'J 3A2 el’ﬂ'/ZT .
w 3A
' 0

(2.7 +2)

The formula is to be used for the transition region, starting at the
distance for which P and PcP cannot be distinguished.
This method of calculating %%- = p + 8p(w) has been used for
aT

the model discussed above, in which exact values of ETN (10 sec)

are available. The resulting approximation is displayed in
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Figure 23, and we see that (2.7.2) is indeed adequate for the
transition region.

Further confirmation of the approximation is given by Figure 24,
which is for SH waves in the same Earth model (see Table 4). Figure
24 displays computed %%- (33 sec) and g%- (5 sec), together with
the approximation obtained from (2.7.2) for the 33 second curve,
and also the ray parameter. These four quantities are plotted

against distance, and we may note the agreement between the exact

and approximate 33 second curve. (The agreement, however, is not

quite so good as in Figure 21, as |CSH] >> ICP .) Also note the
disparity between these curves and the ray parameter.
A particular simple formula for &p can be found from (2.7.2)

at the distance corresponding to the grazing ray (113.54° in Figures

23 and 24). At this distance we have

#
_ [ -1 3%t
Splw)= | S0

(2.7:3)

The resulting value of %%—at 113.54° for 10 and 1 sec, P waves &s shown
in Figure 23, andrfor 33 second and 5 second SH waves in Figure 24,
All these values agree quite well with the exact values, and
with the values obtained more directly from equation (2.7.2)
We thus note for the transition region (i) that §p - 0 as

w + «, This is another demonstration that simple ray theory is

arbitrarily good at sufficiently high frequencies.
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32T
A2

the simple model of section (2.5). So 8p~~0.055 and 0.078 sec/deg.

(ii) &p is significant, since e.g. = 200 sec/rad.? in
for 1 second and 2 second waves, respectively. But the precisiqn
of the measured %%' values may be reduced to between 0.025 and
0.050 sec/deg. (Johnson, 1969, p. 987) for P waves. The longer
period of S waves gives, for example, &p ~+0.25 sec/deg. at a
period of 20 seconds.

(iii) The formulae (2.7.2) and (2.7.3) are independent of the
boundary condition at r = a, This might be expected, since although
different boundary conditions give different phase shifts at any
given location, the rate of change of phase shift is primarily a
geometrical property (and we may find it from the result of Appendix
V). It may also be possible to use this correction &p for
discontinuities within the Earth other than the core mantle boundary.

(iv) The explicit dependence on travel time curvature indicates
ép is strongly influenced by the gradient of velocity near the
bottom of the mantle. But note that if this curvature is very small,
so that &p from (2.7.3) is negligible, it follows that P and PcP
cannot be distinguished over larger distances. And then the

accumulation of ép from (2.7.2) may be significant over these

larger distances.
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(B) In the shadow region. We see from the residue series
(2.6.7) (which is dominated in the shadow region by the first term)

that

dp (W) ~ ﬂ'—lRe 8. {h(a)a.}y3 (2:744)

where §; is a complex number specifying the zero of Qgéi2§a) nearest
v = h(a)a. Re 8] is shown for several models in Table 5 and
Figure 20a.

We thus note for the shadow region (i) that ép(w) -+ 0 as
w > «, But dp(w) $ 0 as A increases. (We exclude here a discussion
of the focussing effect as the source antipodes at A = 180° is
approached.) So %% tends asymptotically, with increasing
distance, to a value which lies above the core grazing ray parameter.
This asymptotic value, calculated from (2.7.4), is shown for the

four different computed curves in Figures 23 and 24, and

N

the agreement within the shadow is very good.
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(ii). It is unfortunate that the dispersion implied by (2.7.4)
would be difficult to observe directly by the standard method, of
calculating Fourier phase spectra for different seismograms written
in the shadow zone along the same great circle path from the same
seismic event. To appreciate this difficulty, let us calculate
the change in phase §¢ due to dispersion over 20° within the shadow,

for four different Fourier components. Since 6% = w ép(w)x 20 x 130

we find (from (2.7.4) and Figure 20a, for the model with no velocity

gradient) that 8% for period / 50 secs\ is / 0.61 radians\,implying a

30 0.75
10 1.17
2 2,37
phase delay %2 off 4.8 secs . The value of 6% for the 2 second
4.0
1.9
0.7

period is;probably not recoverable from seismic data, because of the
high attenuation (by diffraction) of such a short period signal.

The larger time delays associated with phases of longer period

are bracketed by 3.4 = 1.5 seconds, so it would be difficult to
separate the dispersive effect from the effect of an erroneous

choice of digitization origin time. The seismologist who lacked
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a dispersion theory, and who obtained such values of §¢, might
interpret them as being due to his having chosen an origin time for
digitization which is about 3.4 seconds too early for synchronization
with the arrival 20° within the shadow., If he based his choice of
origin time on a standard Earth model, he might think either that
the velocity at the bottom of the mantle should be about 0.4 km/sec
lower than the standard value, or that he is observing some crustal
or upper mantle travel time anomaly. Clearly, a more correct
approach is to accept that phase delays may be, atleast partly,
due to dispersion.

Our discussion of 8% above is concerned with the resulting
effect on measured phase velocities. However, we may also investigate
the consequences of group delay, since for the group arrival time T

we have
3 3
— = 89 (2.7.5)

The group delay, ;_- 8¢, is found to be approximately half the phase
oW
delay, and so may still be big enough to introduce a significant

delay in the arrival of P on a diffraction record.
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Conclusion

In this chapter we have been able to extend the theory of
body wave diffraction by the Earth's core. Emphasis has been given
to the theory of arrivals near the geometrical shadow boundary,
and we have found that an intuitive appreciation of reflection,
based on a study of plane waves and plane boundaries, does not
suffice for the spherical problem. We have also been able to
obtain new theoretical methods for studying the deep shadow, in
models with individually homogeneous mantle and core. And we have
generalized all our methods to investigate the shadow boundary
and deep shadow in radially heterogeneous models.

We have found that diffraction effects on seismic data are
quite small, but their consistent biasing may introduce significant
errors if the data is not corrected before inversion. Methods
of correction are found, both for the 1lit region and the shadow
region, which are simple in application to core diffraction

studies, and which may be useful in regions of the upper mantle.
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Chapter 3

Elastic Wave Propagation in Spherically

Symmetric Inhomogeneous Media: Potential Methods

3.1 Introduction

It is well known thzt the vector wave equation of elastic
displacement in a spherically symmetric, isotropic Earth model has
three approximate high frequency solutions, referred to in the
geophysical literature as P, SV and SH waves., The P + SV motion,
and SH motion, are independent solutions, and P and SV are
approximately independent in those regions of the model for which
the gradients of physical properties are not too large., Further,
in such slowly varying regions of the model, downgoing and upgoing
waves of the same mode type are also approximately independent.

These approximations have led to extensive and highly
successful ray theory methods for studying properties of the Earth
(see for example, Bullen's, 1963 text). However, some data clearly
require a more precise theory, not only because ray theory may
actually be inadequate for certain problems, but also because we
do not know how much confidence to place in ray theory in some

borderline problems for which it may in fact be perfectly adequate.
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For example, we might wish to know if mode coupling is especially
significant near the bottom point along a P wave ray. Or, how are
the amplitudes of PKPPKP precursors related to velocity profile.

The potential approach to P + SV coupling problems, in general
inhomogeneous isotropic media, has really received very little
attention. The methods reviewed by Ewing et al (1957, Chapter 7),
which assume a specific dependence of physical properties with
Cartesian depth, are useful only if the medium is weakly heterogeneous.
In a series of papers, Hook (1959, 1961, 1962a,b, 1965) and Alverson,
Gair and Hook (1963) have studied the separation of the elastic
wave equation, for general media in which properties vary with
Cartesian depth. (Such media are sometimes called "transversely
homogeneous.'") We find below that this work, which is widely
referenced by other authors studying inhomogeneous media, contains a
basic physical error which (a) leads to incorrect equatioms for
(P + SV) when they are coupled, and (b) does not permit discov ery
of the general solution in media for which P and SV decoupling is
possible. However, Hook's equations, which haye recently been
generalized by Singh and Ben-Menahem (1969a,b) to study spherically
symmetric media, may be modified with some manipulative effort

to give a correct theory.
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Zavadskii (1965a,b,c) has used potentials in very restricted
types of inhomogeneous elastic media, to find solutions by methods
which may be applicable in more general inhomogeneity. For example,
in one problem (Zavadskii, 1965a) he is able to give the general P
potential as a linear sum of four independent Whittaker functioms,
and the coupled SV potential is then a linear sum of the same four
functions, with coefficients simply related to the coefficients
appearing in the P potential.

There is some interest in discussing special media for which
P and SV can decouple, since the method of Epstein (see
Brekhovskikh's (1960) text, Chapter III) may then be used to
evaluate the reflection and transmission coefficients for a
transition layer. But in this chapter we emphasize a discussion
of the P-SV coupling problem, and establish a framework in which
we can see how the coupling occurs. In Section (3.2) we examine
the choice of scalar fields, or dependent variables, for which we
may most usefully develop potentials. In Section (3.3) we rearrange
the vector equation, for elastic motion in spherically symmetric
isotropic media, into a system of coupled equations, in which two
of the unknowns are potentials for our choice of P and SV components
of displacement. And in (3.4) we investigate several properties

of the general coupled system of equations, and indicate
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(as one of their consequences) that strong restrictions may now

be placed on the kinds of tramnsition zone, within the Earth's
upper mantle, which can generate observable reflections. It

seems that the extent of velocity gradient anomaly must be limited

to within about 4 km, in order to explain the short-period

reflection data.
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3.2 A discussion of the choice of dependent wvariables

The displacement equation of elastic motion may be found by
substituting for the stress temsor g(x) in the conservation of

momentum equation,

p(x) = Veg + pf (3.2.1)
where F(x) is the applied force per unit mass, acting within the
medium at x. We expect (from studies of displacement in locally

homogeneous solids) that for general media there are two types of 0
AMx) + 2;1(34:))1

body wave solutions, one related to the velocity a(z) 5(
p ()

i
u(x) C
. This expectation is in fact

and one to the velocity B(x) = (p—zz)—-

confirmed by the work of Karal and Keller (1959), and we wish

here to associate a potential with each of the twc types of solution.
Our basic motivation for using potentials is that we hope to

develop wave equations which are approximately, or exactly, in

the canonical form

2
1 3%2(x,t)

vz(x) ot

v20(x,t) = {8.2.2)

2
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Then with such potentials, we may immediately tap the accumulated
store of known properties for canonical wave solutions.

We must expect that the choice of potentials, and the division
of displacement into a P component and an S component, are somewhat
arbitrary and artificial procedures in heterogeneous media, because
there is a complete failure of almost all the familiar properties
which define P‘and S in homogeneous media. Thus, in our problem,

a longitudinal wave is not necessarily irrotational, a transverse.
wave 1s not necessarily solenoidal, and in general none of these
four types of motion can alone satisfy the displacement equation.
Somehow we must also reconcile the fact that a P wave within the
(inhomogeneous) Earth is intuitively thought of as longitudinal,
and S as transverse, whereas the only useful decomposition theorem
for general vector fields is that providing irrotational and
solenoidal components (with respectively a scalar and a vector
potential).

A reconciliation of this last problem provides the key to
obtaining our final choice of potentials, and in the remainder
of this section we use intuitive methods to examine the approximate
longitudinal and transverse ray solutions, in order to develop
constraints on potentials which approximately satisfy (3.2.2). The
constraints are found to arise from a study of the proportionality
functions which relate cross sectional area of ray tubes to the

wide choice of dependent variables, for which some form of ray
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approximation is appropriate.

An elegant way to study the longitudinal and two transverse
components of body wave displacement is to set up a system of '"ray
coordinates,'" in which these three components of motion are each
parallel to a coordinate axis. Thus, for a point source A within
a spherically symmetric medium, we follow Yosiyama (1933, 1941)
and use coordinates (p,T,¢) which we define (in that part of the
medium which is reached by geometrical rays from the source),
for the point B, as follows:

p is the ray parameter for the ray connecting A to B, assuming

Snell's law and some specified velocity profile v = v(r).

B
T is the travel time integral, J %ﬁ-, taken along p = constant.

A
¢ is the azimuthal coordinate of B from A in the spherical
polar system (r,8,9), with 6 = 0 on A.
An intuitive guess that (p,t,¢) form an orthogonal set is

easily proved correct, since it is simple to obtain the formula

for a distance element as

. 3

2

ds =| hZ @p?+h- dt® + h dzi
s 5 dp+ h dt s 99

%ahowemﬁhxthVﬂmnym
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The exact equations of motion in this coordinate system may
be found from Love (1944, p.90), and we also use the constitutive
relations of Love (op. cit., p. 54). Noting that this reference
uses hx which are the reciprocals of our more modern definitiom,

we have

8% 1 3 5
ez~ hph-rh¢ [T (h*rhdﬁopp) T (h¢hpcp'r) N 20 (hph1°¢P ) ]

o] oh
+_2._0 b petBe B IR e _LL_aA

hn 0T P BR3pp BB _Bp T b
PT
(3.2.3)
32u
with similar equations (3.2.4) and (3.2.5) for p EEEI" P 3;%—

obtained by cyclic permutation of suffices. Examples of the

stress—-displacement relations are
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3 3 oh
B 1-__ ou uT o u }
0pp = 1+ 2) [h 5 | B_h_ ot BB 39 (3.2.6)
e .i_ EBu‘r . u¢ oh K] up ahT]
h %t ' Bh, 3 | Bh 5
3 sh sh
R §_°“¢+hui a¢+hu; ; ]
p 0% Bgfp P DA, OT
h u h u ‘1
=ul29 [ _2 o .
Oré '”[h a7t (h ) " = (h ) (3.2.7)

For waves with high frequency content, we expect spatial
derivatives perpendicular to the ray path to be small relative to the

derivative along the ray path, i.e. we assume

9

(i) that terms in h 3;', h %a are negligible in relation
P o

3
to —— e
. 3t

L

Further intuitive assumptions must be made before the ray theory
formulae are obtained from our equations of motion, and two of them

are
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are independent, and

%
(iii) that the time dependence at B(p,T,$) is proportional

(ii) that up, u_, U

to the source time dependence T(t) (say), but delayed by an amount T.
With these three assumptions, we can show how (3.2.3), (3.2.3)
and (3.2.4) give the ray theory for respectively SV, P, and SH
waves. Consider, for example, SV:

In (3.2.3) we are to substitute for the stress components,
and these are approximated by taking ", - u¢ = 0 (see assumption
(ii)), and by neglecting terms which do not contain at least
one 2. operation on u, (see assumption (i)). Thus, the needed

8T

stress components are simply

I )
o ™ c¢p =g, = UW = 0, and cp,r =y h-c ﬁ(hp)
From (3.2.3) we can show
32u v 5 h h, 3u :]
P _7231: - hphrhqf‘}?[u Mhr —P-BT (3.2.8)

and assumption (iii) implies that we expect a solution in the form
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up(p,'c,é,t) = T(t-1) U(p,T,%)

where T(t) is the source time function. From (3.2.8) we find

h h
u o L '8 18 S
(9‘“_> TU=ftnn ar("_ﬁi) [Tar TU]

T

— 2 iy

u
— oT L

h2
G

Since from our definition of ray coordinates it follows that
h'r = B, the left hand side of (3.2.9) is zero. If we make
the final assumption

(iv) that the time variation of source properties is

sufficiently rapid, i.e.

‘i >>I l.alj. and —--——l -—-—-—-aZU
IT ‘U T 30 ort2
2 —
9T
then
. h h h h
e u_u.) P S
ot B ot B

and the ray approximation for transverse SV displacement at B is

obtained as
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u=u, =0 (3.2.10)

Note that hph¢ has the physical interpretation of being
proportional to the cross—-sectional area at B of a tube of S rays
emanating from the source at A. So (3.2.10) is the geometrical
spreading formula, weighted by a function of time and a function
of radius. We could have obtained these functions from Bullen's
(1963) energy formula, together with an approximation for the

energy in SV. But our method above is instructive in emphasizing

the assumptions (i) - (div).
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Results corresponding to (3.2.10) may be proved for the
longitudinal P approximation. The same four assumptions are

required, and

]
(A + Z1) hph¢

uT(B}a T(t~-t) (3.2.11)

For SH, we find that assumption (ii) may be dropped if the
source has azimuthal symmetry, since we can show equations

(3.2.3-5) have an exact solution u = (0,0,u¢(p,T,t)). Then

approximately
= _5__
u¢(B)m T(t-T) = ]p1¢ (3.2.12)

Now, suppose that ¢ is some potential field due to a point source
in the elastic medium, and that & approximately satisfies (3.2.2).
This equation may be written out as a sum of differential operations
in our ray coordinate system for the velocity profile v(r), and
it can then be shown that
o= T (t=1) [ (3.2.13)

h_h
P ¢

where TQ is the potential source time function.
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We are now in a position to provide necessary constraints on
some of the potentials, weighted by functions of radius, which are
suggested by Hook (1959, 1961). For example,.suppose, for the
SV wave due to an azimuthally symmetric point source, that we attempt

to find a canonical potential ¥ in the form

I

foy = gy ol cunl (r gy (© X 0, 0)

(Here we are using spherical polar coordinates.) The radial
component of the left hand side is (from (3.2.10)) proportional to

T(t-T) sin i (3.2.14)

P ¢

where i is the angle between radial vector and ray path. The radial

component of the right hand side is exactly

. _Esy xr gin?s a2y
f h2 912
T

(since spatial changes of y are principally
SV
along the ray direction)
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1%1-1- is constant along a ray, is approximately

T

which, since

proportional to

g 250 o .
§§!.§%E_£ i ?f%?‘ (from (3.2.13), with the
sv ¢ X )

potential x, v= 8 = h'r’

and time factor TX)

By a comparison with (3.2.14) we obtain the constraints

(a) fx(t—'r)c: T(t-t), which relates the source time functions of
potential and displacement, and is satisfied most simply by Tx = elmt.
If T(t) is to be a step function, then we may take Tx(t) =0

(£<0), =3t (t = 0).

(b) ..g—s.‘..'r—(i o« if_ = 1
S A R 1)
5

a free choice for fSV’ and then Bgy = fSv P .

» Which we interpret below as allowing

To investigate P waves, we try the form

Y, = ?l—(?)- grad (gP (x) @) and obtain constraints for all
P

possible canonical potentials as

(e) éé(t-r)u T(t-t) and
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£, (x)
(d) fP(r) « =t . We find below in (3.3) the reason for similarity
3¢

Vo (x)
between (d) and (b).

To investigate SH waves, we try

1 ' :
My = EEET;Y curl (r gSH(r) 1,0,0) and find

(e) iw(t-r) = T(t-1),

g
(£) . S (which differs from the P-SV constraints).

fsa &

In the above discussion we have been able to relate geometrical
spreading properties of longitudinal and transverse components of
displacement to the spreading properties of canonical potentials.

In the following section we abandon any reliance on the intuitive
methods used above, and develop a choice of potentials for P, SV and

SH which is partly suggested by the constraints (b), (d), and (f).
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3.3 Weave Equations for Potentials

The use of potentials to study elastic displacement in
inhomogeneous media requires a preliminary investigation, to check
that our choice of potentials can cover all possible displacement
solutions. In Appendix VI]?I we show that the general solution for
displacement’ u in a spherically symmetric, self-gravitating,

non-rotating, elastic isotropic Earth may be written as

E(.-l:’t) = %— [gfad <I>(£, t) + curl curl ( 7 x(£, t),0,0 )]

+ curl {r‘."(r,t),0,0} £3:3.1)

where f£(r) is any specified twice continuously differentiable function
of radius; @, ¥ and ¥ are potentials, and (%,x) are independent of Y.

Toroidal motion

The wave equation for ¥ may be found from the substitution of
(3.3.1), with (&,x) = (0,0), into equation (VIII.2). We note that

¥ is not influenced by the gravitational terms. Introducing the
!

scaling factor pz (suggested by (£f) in section (3.2)), we find for
]

T =1~V that
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I

M (say), with

32T

V2r - R i e () T=0 (3.3.2)
Hoat2 x
z
« L TEY _Lw _ 29t
where ET =T (u ) 5 =

Clearly this motion is toroidal, or SH (since Mr = 0), and (3.3.2)
may be studied by the well known methods set out (for example)

in Brekhovskikh's (1960) text.

Spheroidal motion, neglecting self-gravitation

The wave equations for (?,X) may be found from the substitution
of (3.3.1), with ¥ = 0, into (VIII.2), and we neglect here the
gravitation terms. Introducing the scaling factor pai/f (suggested

by (b) and (d) in section (3.2)), we define new potentials

A
(P:S) - f:f)__ (¢1X)
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rf

A
3

sothat u = L + X, where L = A grad —/ _L By - % curl curl[ S,0,0).

£
p* : p

(3.3.3)

It follows from Appendix VIII that the applied force/unit mass inay

be written as

o grad f—,-D(r t) + % curl curl| — F(r ), 0, O

Then if A, B, C are introduced by

) by B AP P 3P
A= 0n + V<P T el 'no(r_) T F eP(r) P (3.3.4)
_oF | g25 _p 328 _ 38
(oHfi= T + V<§ 5 -3—t-2- co(r) e es(r) S (3.3.5)
o L8 8C , 1 9%C _ 5 .o
F dm T gt gy R~ T gt san (3:3:6)
(with Ty Tg» Eps Eg given in Appendix IX) we find
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™, P %%% + m %§-+ o P +'£EEE-%% + w3 A - %§-+ m, D =0Q (3.3.7)

and

cop-g-z—g-+o'1%]s?+czs+ﬁ§—:—+(%+c3)c+3$g}lA+th=0
(3.3.8)

The twelve functions of radius €ps Egs T Ty O g, are

dependent on our specifiable function f£(r), and they are all zero
in homogeneous regions. Defining g(r) = f'/f, these twelve terms
are listed in Appendix IX,

We may regard (3.3.4 - 8) as five equations in the unknowns
(p,S,A,B,C,), with source functions D and F. Equation (3.3.7)
is simply the radial component of the vector wave equation for
displacement, and (3.3.8) is either an integral over 8 of the 6
component of this vector equation, or an integral over ¢ of the ¢
component. (We lose mo generality by neglecting the arbitrary
additional function of radius and time implied by these integratioms,
since it can only change S ( and C) by an additional function of
radius and time. And this does not change the resulting value of
N obtained in (3.3.3)). In the following section we establish
some of the properties of our system of coupled equations, and see

how P and S decouple at high frequencies.
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3.4 Properties of the coupled potential equations

We show first how certain special sources excite solutions of
the coupled system (3.3.4-8) which are identifiable at high
frequencies as P and SV. A critical review of Hook's method is
then given, and we conclude with a summary of some applications

of our potential equatioms.

(a) High frequency decoupling of P and SV waves

By eliminating C from equation (3.3.7), and A from equation
(3.3.8),we can obtain two fourth order equations for potentials
P and S in the form

2
; 2| pD__ . o2 _91_1?____]
e l 2yt VR T gz

2
343, x‘+2g') 2 2o‘]_a_ oD 2, o 3%
+ (F20)x [ u g+ 2 A +2u T p - or L A+2yu LR M2y 3t2

328 ) 38
T [:Uo"( TRl Rl B “zS]

+ L(P) + a(x)D = - r2v?

(3.4.1)
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r 2
2t BE P
uryv Ll’ + V4§ v

My o o 2u' _2u'. . 020" 13 | oF . 2o 0 3%8
+“r[k+2u g+ u A+2yu p lor] wu o= u ot2

'\2 L
- <P oP
+ N(S) + c(x) F = ™ P (th D) + ™y o + w,P

(3.4.2)

where L and N are differential operators with terms up to second
order. (Only the fourth and third order terms on the left hand
side of these equations are needed explicitly, in our study here
of high frequency decoupling.)

Now suppose that we choose the radial scaling function £(r)

so that Ty ™ 0, and consider the point source with potentials

_ 8(x-b) s(p) e MUE

27r2 sin 6

D

X F=0 (3.4.3)

First, we match orders of discontinuity in the source region: it
follows from (3.4.1) that the source discontinuity in the fourth
and third order terms is at most a delta function (since L(P) + a(r) D

has at most a delta function discontinuity there), and hence that
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oD
AH2u

V2P has a delta function discontinuity - at the source.
This last result then suggests a particular solution (or, particular
integral) of the coupled system, wvalid throughout the region in

which our potential P propagates as a wave: namely, that

2
%u— + V2P ﬁ %{»% = 0(1).P (3.4.4a)

From (3.4.1) we see that our potential P is coupled to a potential
S which is two orders in frequency down from P, i.e. since o + 0
we have

S =0(W2) p (3.4.4Db)

and from (3.4.2) we must then require cancellation of the fourth
order terms in S (since m; + 0, LR 0), giving an eikonal equation
for the S-potential phase.

The equations (3.4.4 a,b) have been obtained essentially by
inspection, and hence are sufficient for a solution (P,S) to
the coupled system. In Appendix X we give a proof that necessarily
the right hand sides of (3.4.4a,b) are at most 0(1l)P and 0(w™2)P
(respectively), for the source-generated solution (P,S). In
Appendix X we also show that the turning point formulae of
Appendix VI are still appropriate for partial waves of the

solution P to the coupled fourth order equations (3.4.1-2).
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We may now claim that potentials P and S represent respectively
P and SV waves, since they have the appropriate phases, and potential
P has the correct geometrical property at sufficiently high
frequencies (we may prove this from 3.4.4a). From the formulae
(3.3.3), we see that the derived SV wave displacement is one order
in frequency down from the derived P-wave displacement. The force
potentials (3.4.3) then represent a P-wave source. Clearly, an
SV-wave source can be discussed by the above method, with g. = 0

and force potentials

_ 8(x-b) 8(8) e7TUF

27r2sin8

D=0 F (3.4.5)
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(b) Comparison with Hook's method

The development of potentials for P and SV in media varying
alaong one Cartesian axis has been discussed by Hook (1959, 1961,
1962 a,b, 1965) and Alverson, Gair and Hook (1963), and the
same methods extended to spherically symmetric media by Singh and
Ben-Menahem (1969ab). The approach of these authors is
superficially similar to our work, but implies conclusions which
depart from our results in several respects.

Hook's method is essentially a search for displacement

solutions which are of the form
1, = o grad ¢ N = - curl curl (ry, 0,0) (3.4.6)
~ fi(xr) ’ ~0 £, (x) > = i

with two arbitrary scaling functions f; and f;, instead of our
single function f, and the above papers focus on the model
constraints necessary for the existence of non-trivial uncoupled
solutions o - ko’ u = §0, in the absence of source terms.

[Note that, for these solutions in such special media, our

potential representation (3.3.3) is equivalent to (3.4.6): for

u=L we take S =0 and f = f;, and for u=N take P =0
~ A ~ o~
and f = £,.] Such model constraints are successfully found

(see e.g. Singh and Ben-Menahem (1969a)), and are simple
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i

to obtain in our notation by inspection of the coupled system
(3.3.4-3.3.8): 1if i - EO is to be a solution then our S = 0,

So C, B and A are zero and we require

1

2
om_ §E§ + %% +m, B =0 with £, P = p° 0, and
2
V2P _..‘0___.3_2. .@2.{.3 P=20

T X2p a9t2 "o ar © P

If P represents a non-trivial wave, we must require Tos Ty and
mp to be zero. So L 0 defines the choice of f;, and then
7, =0, m, = 0 are the required necessary model constraints.
(See Appendix IX for the definition of these functioms.)
Similarly, if u = Eo is a non-trivial solution, then R, = 0
defines the choice of f5 (and f2=|= f1), and o, =0 and 0, = 0 are
the required necessary c::nstrainfs. Finally, it can be shown
that if u = -TC‘-o is a non-trivial solution, then so is u = ‘150

The special nature of these solutions is revealed by

examining the representation (3.4.6), and we can see how
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(i) these potentials are unnecessarily general, in that
Hook and his co-workers have not given a proof that their
representation (with two arbitrarily chosen scaling functions)
is possible for every displacement solution. Thus, with a
specified choice of (f;, f2), and a particular displacement
solution uj; , we do not know if (%,%) exist such that
u1='£— grad ¢ + == curl curl (r¥x, 0, 0).
~Tf fo .
[We have supplied the necessary proof in Appendix VIII for our
representation (3.3.3), which potentials are a subset of the
set of potentials in (3.4.6) for different choices of f, f; and
£o..] Hence, we must regard as suspect those equations given
by Hook (1961) which couple & and X in his general media. We
can also see

(ii) that Hook's application of (3.4.6) is too narrow,
since, in the absence of source terms, P and SV are in general
coupled even in those special media for which decoupling is
possible. This fact, which we see by inspection of (3.4.1) and
(3.4.2) with either Ty Tls T2 all zero or G, 915 92 all zero,
does follow from the analysis of Alverson, Gair and Hook (1963),

who write the equations of motion B&
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as %5 =.9 (where A is a matrix differential operator acting
on displacement components),

transform to potentials P15 P25 4 (¢5 gives the SH motion)
by u = Bg for some matrix differential operator B (given essentially

by (3.4.6) when ¢35 = O),and

try to find B such that

Au = AB$ = CD¢ in which D is diagonal. (The
condition that D can be found is a model constraint, and reduces

to the requirement that Tos Ty and m, can all be zero.) Alverson
et al discuss only the uncoupled equations D § = 0 (i.e. dy14; = 0,

dp2¢, = 0, say), but in general these are not the only significant

solutions to CD¢ = 0, since CD§ is of the form

%T grad (d;;¢,) + ?% curl curl (r dzz¢,, 0, 0)
and ¢, is in general still coupled to ¢,.

(iii) Hook and his co-workers have not considered the
effect of a source term. Using our method of analysis in (a)
above, it may be seen that (for media in which non-trivial

solutions u = Eo’ u = §o exist), the source-generated potentials

P and S are indeed decoupled if the applied force/unit mass is

expressible as
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1 £,D 1 rfs,
F = = grad —1—-) + == curl curl ( : F, 0, 0 (3.4.7)
~ £ 03 f2 o5

where f; is chosen so that v = 0, and £, so that = 0. We

0
note further that such force potentials can always be found if
the force is confined to a homogeneous part of the medium.

(iv) Singh and Ben-Menahem (1969b) have recently used
Hook's method to explain the geophysical observation that P and
SV are substantially decoupled in the Earth. Their work implies
that these waves are independent, because in special models
pctentials can be chosen which satisfy uncoupled wave equations
like (3.3.2) for the SH potential, and they show by example that
the Jeffreys-Bullen Earth is at most depths similar to such a
special model. This study may be criticized directly because
their special model is still split up into several layers, and
indirectly because of our remark (ii) above, concerning coupling
in the special media. (It would however be interesting to
evaluate the functions 7, (r) and wz(r) for Earth models which
best satisfy modern data, to see at which depths most mode
conversion may be expected to take place.)

Qur work in (&) above implies rather that P and S are
sufficiently independent to explain the geophysical observation

(of independence), and satisfy a wave equation (3.4.4) like
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that for the SH potential, merely because the effect of
heterogeneity near a confined source can be made negligible.
Thus, suppose that the source is non-zero only near the radius

r = b, It follows from Appendix VII that the applied force/unit

mass may in the frequency domain be written as

1 -iwt

F = W l: grad D; + curl curl (rFl, 090)]

(3.4.8)

for some force potentials D;, F;. And since the force is zero

away from r = b, we can have

E;Z;Y grad D; A'EE?;T grad Dy -§;fg)

(or a similar result with F;).

Using new force potentials

_ %:(.Q. £ (b) Dle R__L_ D
£1(x) £2(b) £2(b)

T = __(_l. F1 e_lmt
fo(x)
we may use the methods of (a) above, with D as a P-wave source
(coupled to a smaller SV displacement) and F as an independent

SV-wave source (coupled to a smaller P displacement).



-150-

(c) Brief summary of applications and extensions

(i) A conclusion of our study of coupled potentials in (a)
above is that, at high frequencies, P and S separately satisfy
wave equations like (3.4.4a), which are essentially in the canonical
form (3.2.2). This basic result is the assumption needed in Chapter
2, to generalize the theory for an Earth model with individuaily
homogeneous mantle and core to the theory for gemeral radial
heterogeneity. [We prove in Appendix X that the WKBJ and turning
point results, obtained in Chapter 2 from the canonical equation
(3.2.2), may also be derived from our coupled equations (3.4.1)
and (3.4.2)] And so Chapter 2 is justified as a major application
of our choice for coupled potentials.

(ii) The general form of the coupled equations (3.3.4)-(3.3.8)
permits specialization to the detailed study of specified forms
of radial heterocgeneity. The many logarithmic derivatives

(g—xﬂn F = E—) appearing in Appendix IX suggest that power laws

F
a
P o r
A rb
c
(1] T

may be particularly suitable, for then such derivatives are constants.
Zavadskii (1965a) discusses a similar elastic medium which is

transversely homogeneous, i.e. the logarithmic depth derivative of
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p, A, and p are constant, and in which also the squares of the

two velocities are proportional to depth. He obtains the equations
corresponding to our (3.4.1-3.4.2), but without the option of a
varying scale factor f, and is able to reduce them to two Whittaker
equations. The solution is then given by two coupled potentials,
each a linear combination of the same four Whittaker functiomns.

(iii) The numerical study of such a special inhomogeneous
medium is sometimes able to give us considerable insight into
seismological problems. A practical example here is the relevance
of theory and numerical details, given by Brekhovskikh (1960),
to the problem of describing postulated upper mantle transitions
in the Earth. The theory here indicates that regions of anomalous
velocity gradient must be confined to within at most 4 kilometers,
in order to generate observable PKPPKP precursors.

Several steps are needed to obtain this result.

First, we note from Engdahl and Flinn (1969) that the apparent
slowness %% for the precursors (near A = 65°) is about 2.9 seconds/
degree, which implies that the angle of incidence i (say) at a
transition zone near 650 km is about 16° to the vertical. An S
wave with the same slowness has at this depth an angle of incidence
j (say) about 9°.

Second, in Appendix XI we find formulae giving the reflection

and transmission coefficients between two slightly different
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welded homogeneous half-spaces, for an incident P wave, [This Appendix
gives two methods for obtaining the coefficients, first by studying
the boundary condition and second from the intrinsic coupling
contained in the wave equations of displacement in heterogeneous
media.] Suppose that this wave is incident from below at 16° to
the wvertical, and that the upper medium has a density 5% smaller,
a longitudinal velocity 10% smaller, and a shear velocity about 20%
smaller than corresponding parameters in the lower medium. [These
velocity wvalues are somewhat less than the total change across the
major transition region suggested at 650 km depth by Anderson and
Julian (1969): the density jump is found not to be particularly
important in our argument, in contrast to the suggestion of Teng
and Tung (1969).] From our Appendix XI formulae, we conclude
that in this extreme case of a step discontinuity the reflection
coefficient for P waves (i.e. P(up) + P(down)) and the conversion
coefficient for SV waves (i.e. P(up) =+ SV(down)) are both about
<0057

Third, in order to obtain an upper limit for reflection
coefficients (P(up) - P(down)) in different models of the transition
region, we make the strong assumption that mode conversion is
negligible. (We see from the calculation in Appendix XI that
this is indeed a strong assumption. Howevgr, we may expect that

the conclusions of the order of magnitude argument which it permits
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are not significantly changed, since we are interested in obtaining
only an upper bound for the P-P reflection amplitude.) We may also
reasonably assume that the PKP wave incident at the transition has
a horizontal phase velocity centered at one dominant value, and
that the transition itself is transversely homogeneous. It

follows from our results in (a) above that the longitudinal wave

system may then be discussed by a potential P satisfying

V2P + h2(z) P =0 (3.4.9)

where the wave number h is a function of depth z, and we take z,
to be the depth to the center of the transition region.

Brekhovskikh (1960) gives an extended account of the Epstein
(1930) method of studying (3.4.9), which permits the calculation
of reflection coefficients (for different angles of incidence)

from a transition region described by the wvelocity profile

]
pi=

-m(z-zo)
alz) | ;_XNe (3.4.10)
o (=) _
m(z-zo)

l+e
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(N.B. our z increases downwards) where N and m are real constants.
This profile is a smooth transition between the two values a(=) and
a(-=) = u(w)(l-N)-%'(from bottom to top), and for our study of the
650 km (= zo) transition in the Earth we are interested in finding
reflection coefficients for the wvalue (l—Nf& = 1.1, which represents

a 10% change in velocity. We take the effective thickness & of the

transition zone to be given by & =.§$§Z km, since at depths z, - %-2,
zo +-% % we can show the velocities are less than 1% different from

respectively their upper and lower limiting values, a(—=) and a(Q).
Brekhovskikh gives for the modulus of the reflection coefficient

the exact formula

272
sinh ¢ =— cos i - cos?i - N
Anm

" 272 . \ 2. }
gfnh N T cos i + cos“i - N
AT

where i is the angle of incidence at z = + « (taken as 16° in our
application) and A is the wavelength 27a(®)/w. Brekhovskikh also
plots values of R against i for different ratios 2/A in this case
of N = - 0.21 (his Figure 76). These are just the values needed to
discuss our geophysical problem. They are not in fact particularly

sensitive to the angle of incidence in the range 0 < i < 30°, and
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we note the values

R=4,5x 1072, 2,5x 1072, 1.8 x 1073, 1.0 x 1075,

3.2 x 10710, 7.9 x 10724

for ratio values

=0.1, 0.2, 0.5, 1, 2, 5

> =

Note that the approximation we have obtained in Appendix XI is
R = 5.7 x 1072 in the limiting case %’= 0 - which result fits
in well with the above sequence.

Fourth, we quote Adams' (1968) remarks that "Amplitudes observed
for the clearer reflections range from a few percent up to 20 percent
and in one case 40 percent of the main phase," that "At times there

are clear pulse-like early arrivals," and that the more common

"emergent forerunner is usually of short period (one second or less),"
and note also (from our formula 2.6.14) that the main phase

(reflected essentially from the Earth's surface) has a reflection

coefficient of nearly one. Adams' remarks concern horizons less

deep than 650 km, and Engdahl and Flinn (1969) have pointed out that

some of the arrivals picked as precursors by Adams are probably the

phase SKKKP. However, the brief summary of "a few percent ...

of the main phase" and an "emergent forerunner .....(one second.,.)"
P g
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is all we need, and seems to be uncﬁanged by more recent studies
(Whitcomb, personal communication, 1969).

Fifth, and finally, it is clear from the comparison of theory
and observation that transition zones must be highly localized.
For, a wave with the predominant period of two seconds (say),
incident upon the transition with wavelength about 20 km, is
reflected back down with more than 2.5% of its incident amplitude only
if the transition width is less than about 4 km. To obtain this final
upper bound we have made highly conservative estimates throughout our
theoretical development (except in neglecting a focusing effect
of curvature of the transition; this should change our conclusion
only if such curvature is substantially different from the curvature
of that horizon which produces the main PKPPKP phase), in the
postulated size of the jump in parameters acréss the transitionm,
and in our observational summary. The less conservative assumptions
of a one second incident wave, reflected back down with more than
4% of its incident amplitude, imply a transition width of less
than about 1 km.

The reason why our somewhat crude assumptions can lead to
such a definite result is that the £all off in the reflection
coefficient R is extremely rapid as %‘increases. As a corollary
we may remark that the continuous scattering, due to the large
vertical extent of small velocity gradients in the Earth, is

essentially negligible, and presumably that anelasticity has a
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more important effect on the total transmission coefficient along
a ray path.

It is of considerable importance to determine if the localized
transition required above to explain reflection observations may
have the nature of a discontinuity in velocity gradient, rather
than in the velocity itself (i.e., a second-order discontinuity rather
than a first). The general methods set out in Chapter 2 (Section 6)
above may be appropriate for an accurate discussion of such modelling,
but we can profitably enter here a brief summary of the solution
found by Rayleigh in his study of waves propagating along inhomogeneous
strings. (See Rayleigh, 1945, Vol. I, §148.) Brekhovskikh (1960)
quotes this solution in the context of light-wave propagation in
media of varying refractive index, and gives a numerical discussion.
We use seismological terminology, rather than the mechanical and

optical parameters of these references, and the "profile" is

= = —
a(z) g z. z, L/2
r 2=z 1 ]
a(z) = a, + (dz-dl) L S t3 8 = L/2 <z < z + L/2
a(z) = o, z, + L/2 < z.
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Brekhovskikh's numerical work is for the case of a wave incident
in the first medium, with o, = 0.8 a,. So the second medium has
a higher velocity (and the total jump of 20% is almost certainly
larger than those jumps which may occur in realistic Earth models).
If the incident wavelength is A, then R, the reflection coefficient

modulus for normal incidence, is given in general by

| sinh Eu on (al/az)] | ¢ =0y
B 3 £ *° Tma 3
{sinhz [u In (u.l /az)] -+ 43;2} 1
where L
{;l [ 2L Gl ]zi}
L = T = m———
4 R(az—al)
or by
| sin [m on (allaz)] | 02=0]

R = it -;—‘>

{sin2 [m% (ul/uz):] + lunz}—r

where

 ——
'J
1
=~
il

27L o3
== { e
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[Note: the boundary conditions assumed here are those originating
in Rayleigh's problem. We may expect the general features of the
seismological reflection to be the same.] The following brief
description of R can be given, in the case a; = 0.8 as:

R = 0 for certain specific values %-= 0.56; 1.ll, 14664 wuese
given by solutions of m %n (a;/ay) = vm, where v is an integer.

In the range 0 2 & 0.56, R falls almost linearly from 12% to

A
zero. In the range 0.56 S-%‘S 1.11, R rises from zero to a
maximum of 2.5% and falls back to zero. In the range 1.11 22z 1.66,

A

R rises from zero to a maeximum of 1.6%, and falls back to zero.
The maxima occur about half way between the zeros.

It is again apparent that the observations impose some severe
restrictions on this model of transition zones, if it is to explain
the PKPPKP precursor amplitude data. [Note, the above numerical
work is obtained for reflection from a medium of greater velocity,
rather than a lesser. However, R falls into about the same range
of values if we evaluate reflection from the lesser velocity
medium, since | Zn (ay/ap) | = | - 2n (02/a;)| .1 Thus, if the data
do indeed indicate that the reflection coefficient is more than 2.5%,
then L/A = 0.45 is required by the model. The upper limit here

then implies for observation of a one second wave that the transition



is less than about 4 kilometers - even in this case of a 20%
jump in velocity.

The zeros and maxima in the reflection coefficient suggest
that for different frequencies there is destructive and constructive
interference, between reflections reverberating between upper and
lower velocity gradient discontinuities. Hence, for a similar
transition, but in which one of the two second-order discontinuities
is smoothed out, we may reasonably expect a reflection coefficient
lying between the extrema (maxima and zeros) calculated for our pair
of discontinuities. (See Archambeau, Flinn and Lambert, 1969,
for the development of Earth models with such one-sided transitionms.)

That is, a modified reflection coefficient obtained approximately as
=2 w2 .-}
R=9,5 10 - SR I [ o R 1 x 10

for the ratio wvalues

>

=0.2 , 0.5 , 0,

and here we make the interpretation of L/A as the gradient in the
transition region, Then L/A = 0.5 gives for a 10 km wavelength

the gradient
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éﬁ, _ G2—0)

dz L

~ 2 km/sec, per 5 km. Yet even this large second-order
discontinuity (plus about 5 km of anomalous gradient) has a
reflection coefficient of only 3% (which perhaps may just be

large enough to explain the observations).

In conclusion, we may emphasize that it is the short period
reflection data from transitions which provide our strongest
restrictions on the localized nature of these regions. The search
for such data, difficult though they are to find, must become one
of the more important projects in seismology — since each confirmed
reflection horizon must be a narrower region, of larger velocity
anomaly, than has previously been supposed. We also note that
the present lack of reflection data, from the major 350-400 km
"discontinuity" (described by, for example, Johnson, 1967),
merely implies that the anomalous region is spread over more than
about 20 kilometers. Some of the conservative estimates we have
been obliged to make in the above discussion should be improved
by obtaining special solutions for our basic coupling equations
(3.3.4)-(3.3.8), rather than by discussing approximations to them.

(iv) An extension of our method for obtaining useful potentials
" can be given, to examine the displacement u in an elastic isotropic

medium with general heterogeneity. For, the equation of motion is
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where F is the applied force/unit mass, the Cartesian tensor g
has components

and p,A and u are all functions of position.

We may then seek
solutions in the form

£(g) p* p*
and generalize the discussion given in (3.4a) above to discuss

the choices of f which, for special sources, lead to decoupled

equations in ¢ and A in the high frequency limit.
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(d) Conclusions

We have been able to find a system of potentials by which we may
study all elastic displacements in a spherically symmetric, isotropic,
Earth model. Properties of P, SV and SH waves may be identified
by individual potentials, and it is found that well-known methods
of solution for canonical wave problems are available for an
examination of high-frequency elastic waves in the Earth.

Such solutions have frequency-dependent amplitudes for the
waves scattered by transition regions. We find in (3.4c) above
that those transition regions in the Earth, which are experimentally
identifiable as reflection horizoms for short periods, must be
much more localized than has hitherto been generally supposed.

Our new method of potentials permits a shadow boundary solution
method (presented in sections 2.2-2.5) to be generalized to study
elastic waves in realistic models of the Earth's core/mantle
transition. The conclusions of this studyare given at the end
of Chapter 2 above: they include a quantitative appreciation of
Johnson's (1969) caveat, that the body wave phases which bottom
near the core/mantle interface have a significantly dispersad
horizontal phase velocity. It is expected that our numerical
methods, developed in Chapter 2 for the evaluation of waves which
travel close to the core shadow boundary, may find applications

in many other wave propagation problems.
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Appendix I

Formulae for P-S and S-P Scattering

We discuss here our simplest model of diffraction - a steady
state plane wave of unit displacement, incident from the left om a

circular cylindrical cavity. See Section (2.2).

a) P-S (See Figure 1(b))
With equations (2.2.2) and (2.2.3) we may use the Poisson

sum formula to obtain ws, the potential for scattered SV waves, as

f=e]

i, %' E B(r, 2mm + 6) where
m=—
oo i\)(a + ll'_)
| W
B(r,6) = | e Hv (kx) Qsz(ha) dv .
ﬂlﬂ(l) (ha)
v
We can show that B(r,-8) = - B(r,-27 +8) and so

oo

E (B(r,2mm+6) - B(r,va-e)) + B(r,8)
m=1

-3

- B(r,-6)
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All but one of these terms are negligible, and we have

1;;5 =+ % B(r,-8) near the upper PS boundary.
Contributions to the integral B(r,-8) must come from near v = kr-sin i
(see Figure 2), i.e. from near v = ha, if (r,8) is near the PS

boundary (see Figure 1(b)). So we approximate the integrand in this

region.
iv [-B+ -;L] L iv [ic - %) 10,
e H(l) (kr) ~ 2 e . % e
v T (k212 - vz]
where

5% B - R

B

s M L X =
+v[s:|.n o a+2 :|.c:| -

and ic is the critical angle of incidence at r = a. Then

iv [-8 g —] i [kX"‘ '—) iv (i - .".".)
e H(l) (k1) ~(—2—)% e e k.
v kX ¥

where X is a Cartesian coordinate along 6 = -ZE - i_. See Figure 1b.

The asymptotic expression is valid if v ~ krsin i and
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kX | i-(6+i -3 | <<1 , i.e. for (r,0) sufficiently

near the PS geometrical shadow boundary.

Finally, then, we have

N 3
ws ﬂ'(anX e (ha) CPS(N), where

o gk~

f Wl 720 0,3, (ha)
i e
5

e A0 &
1 H\()l) (ha)

b) S-P (see Figure 1(c)).

The derivation here is exactly parallel to the case of P-S

scattering, and we find the SP potential

(haj§ CSP(m), where

Qo) = ~—=4

SP (ha)®

@ iv(i - lq
J c 2 Qy J_(ka)
3 v
e dv @

o Q3 H\El) (ka)
The sign difference between ws and ¢S above is due to the sign

difference in our choice of source potentials for the two problems.
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Appendix II

Expansion of the Point Source in a Smoothly

Varving Spherically-Symmetric Medium

We wish to find the expansion, in an infinite series of spherical

waves, for the solution to

P4, + B2(0)e, = SED W (- 4n )

ol 2n1r2 sin A ih(b)

(see Figure 1b for parameters r,A,b).
The angular functions are separable and lead to the same equation
as the homogeneous case, with Legendre function solutions. Se we

try the form

oo

¢i(r,A) = z a(r,n) Pn(cos A) (1%.1)
n=0
1 [T
Then a(r,n) = {n - EJ J ¢i(r,A) Pn(cos A) sin A dA, and

0
substitution of (II.1l) in the Helmholtz equation yields

% Era(r,n)J + [hz(r) - Eﬁ‘-;—%l] ra(r,n) = D) (11.2)

after an appeal to the orthogonality of Legendre functioms.



-179-

Following Seckler and Keller (1959b) and Friedman (1951) we
introduce three particular solutions of the homogeneous equation
related to (II.2). Let fn(r) be that solution for a(r,n) which
is regular at the singularity r=0, and for large values of r let

(D (2) : g : ;
g 5 (r) and 8, (r) be respectively, the outgoing and ingoing solution.
(We may assume that outside some very large radius the medium is
homogeneous.) Apart from a normalization, the three solutions are

then completely defined, and we may take

Il

a(r,n)

cy gél)(r) b=r
(11.3)

co fn(r) 0¥ = bs

The constants c¢j, ¢o are determined from noting that (II.2)

implies both
i
¢ gé )(b) - ¢ fn(b) =0 and

& [gril) ®) + b glgl)'(b)] = g [fn(b) ¥ bfl'l(b)] o EERSG

S0

(1
_2mn  5® 2041 8 P

1 " Im®mb2 " Wm * %2 T Ia®m)b? W)




-180-

where W(r) = g(l)

- (r) fg(r) - gil)'(r) fn(r) is the Wronskian of

these two solutions.

stace (r%)' = (rg" ()(re ()" - (zg{ (0))" (x£_(0))

1
0y W(r) a =

The constant of proportionality depends on the normalization we
choose for the basic solutions. Apart from this constant factor,
we also know (for media in which rays do not become trapped in a

duct) that the géi)(r) may be given approximately by WKBJ solutions,

1.6,
(1) ey r ni 2%
(2) K(2) 2
g (r)w exp % i h? (g)- dg
3
S IRT AL T
ro-(2)’] :
T
(1I1.4)
where K(l), K(z) are constants and T is that radius at which the

integrand vanishes (see Morse and Feshbach (1953), p. 1101).

Defining

s we have p =

T
Hl

- S
v(ro)
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where v(r) is the velocity from which wave-number h(r) = w/v(r) is
derived. Hence, T, has a physical interpretation as the radius
to the deepest point along the ray with ray parameter p.

Our normalization for gr(lg') (r) is made after comparison with
the Debye approximation to spherical Hankel functions. This

approximation is

and so may be written as

(l) ~ it r l 2 1
+ in/4 i L
¥ h(z) (hr) ~ = K exp = iJ \:hz- e ] dg
n 2 £
¥

- 2
k=
—
=
X%
|
———
]
H
o
bt
-+~
o

(in which h is constant).
We then take the normalization for géz) (r) which allows

equation (II.4) to be written as
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(1) + i e 193
gP@~e— . 2.2 1\ exp ¢ i[ Lhzco-(l‘iz—) ] ag
Z - £
h(b)] Ehz(r)_ (&tz_ J :
r (o]

in the region for which h(r) *r > n +-% (i.e. above the depth of

deepest penetration of the ray with parameter p). In homogeneous

(2)

media, the g, (r) are spherical Hankel functions héﬂ)(hr).

Similarly, from WKBJ theory we have

re, 1y2 3
PR [ e,
i

1y L
y o b '3 r
[(—3) - w2 ’

in the region for which h(xr) r <n +-£. We take

2
3 . .
K=-————, , for then in homogeneous media
2 ()

fn(r) is the spherical Bessel function jn(hr).

The three functions fn(r), géz)(r) are solutions in all ranges
of radius, and it is of interest to find the connection formula
between them. From Morse and Feshbach (1953, pp. 1097-1101) we see

that the same relation is satisfied as that for spherical Hankel/Bessel

functions, i.e. the connection formula has the simple form
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£ (o) =% [ g (x) + 5P (r)] (11.5)

With the normalization above, it is now possible to evaluate

the Wronskian. We find

i

W(r) = - ——
r2h(b)

, exactly.

So from equations (II.1), (II.3), (II.5) we finally obtain

o5 (x,8) = ] (n +%) gr(ll) (z,) [ gr(ll) fe.) * g1_<12) (r<)] (II.6)
n=0
where
r_ = max(r,b), r_ = min(r,b).

> <

The formula used in section (2.5) for expanding the point source

in a homogeneous medium is a special case of equation (II.6).
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Appendix III

d%o - 1
A Proof that dv2 azT *
Vv = wp ¥ dnZ

where & is the Phase Function of Section (2.6).

From equation (2.6.4), we have

do dg dg

2 L;
EZEIZ(E) - —;—z az[hz(a) - -‘giz-:]

ro(v) ro(v)

#A,

where ro(v) = v/h[ro(v)] , and hence is a singularity of the

integrands. We consider only those media in which the velocity

gradient is sub-critical, i.e. %% <-§ . It is then permissible to
transform from £ to n, where

L = *° we a-v
where L= e 4 b(E) and so

" h(®) ’



-185-

{ h(r)-r/w h(b)*b/w
_@E o ) dn i + dn =
& n Euznz-va (1-2) n Euzn?--v’{]‘ (1-2)

£ |<
El<

This formula may be integrated by parts, and

+ A

hir)r/w h(b)b/w

E|<
£ |<

These integrands have no singularity (unless at T = 1.
is ruled out by requiring sub-critical velocity gradients).
are zero at the lower limits of integration, and so by direct

differentiation we may obtain

But this

They
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d2@_(l> E +(1) .l .
o A= X & <
dv i-g - [éZ(I)r2_v2]1 1 ; s [Pz(b)bz—v{]z

h(r) r/uw h(b)b/w

v/w

Comparing Bullen (1963, p. 113), we see that

__1.a _ 4t
= . 5 But p = aA

time, and so finally we have

-y[4)

V=wp

d2e
dv2

where T is the travel



-187-

Appendix IV

Description of the Program EXACT

EXACT is a FORTRAN 4 computer program, written for an IBM 360/75
system, which evaluates complex path integrations in the v-plane of

certain functions F(IFLAG, v), discussed in Section (2.5).

Purpose

For correct choice of the path, this integral is the exact solution
at the point P(r,A) to one of six elasticity problems (specified by
IFLAG = 1,...,6). With IFLAG = 1,2 and 3 these solutions are for
the exact total potential in respectively, P-P, SV-S5V, SH-SH scattering
due to a source potential at point S(b,0). For IFLAG = 4,5 and 6
the solutions are an exact total component of displacement for the

problems listed in Tables 2, 3 and 4, respectively.

Usage

A problem of the above type is specified by an Earth model
(a,B,a',p,p0", @), IFLAG, a frequency, a set of (up to 6) source radii b,
one station radius r, a set of (up to 30) station distances A, and a

description of the complex path I (up to 5 line segments).
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Choice of path T,

A discussion of this type of path integral is given by Phinney
and Cathles (1969), in which it is pointed out that the solution at
(r,A) for a range of A may be found numerically using the same complex
path T'. Thus the integrand has to be changed for different A, and
the integrand has two saddles or none according as (r,A) is in
the 1lit zone or the shadow. 3But we do not attempt to make T follow
2 steepest descent path. The advantage of fixing I' in each problem
is seen by observing that the integrand may be split into three
factors, dependent respectively on source/station radii, on the

Earth model, and on A. TFor example, we have

: (2)
Qzh J_(ha)
F(1,v) = -vh(l'?_(hb) pd) (hr) s - Sk x (ZZ(cosA) ;
v- V-4 ) Q.-
* * Qsh " (ha) =

The evaluation of the first two factors is much more time consuming

(2)
Q

than evaluation of . So the program stores values of the first

two factors, and these values may be re-used in each integration
for different A, since T is fixed.
For the solutions given in Chapter 2, T is composed of three.
line segments. See Figure 17. TFor P-wave problems, I is
A » (ha,0) - B -+ C where B is chosen to be near the direct P-wave
saddle point for the smallest A in the range discussed. The integrands

decay exponentially along directions (ha,0) - A, B+ C; A and C are

chosen sufficiently far from the real axis to include all the
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significant contributions of the integrand. Thus, for P-wave problems
[ is essentially the path described by Phinney and Cathles (1969).

For SH problems we use E + (ka,0) + F + G in the same way as for
P-wave problems. For SV there is the additional complication

(see Section (2.5)) due to the poles near (h'a,0). So for the low

frequency (f = 0.03 Hz) we use D + (h'a0) > F + G, and for the high

frequency (f = 0.2 Hz) we use E »+ (ka,0) + F+ G, A choice of
different paths has in fact shown the "head-wave" effect to be
negligibly small (~ 1%), and we mention it because this is the only

case in which our program returns solutions varying by more than

0.2% for a different choice of paths.

Method

The Hankel package of SHARE numbers 1355-1359, 1361 is used,
after correction of three errors. The functions QSEE(COSA) are
evaluated by converting formulae in Robin (1958, pages 237 and 240)
into a power series in %—, and retaining OE%3).

A considerable reduction in core space is achieved by integrating
the different line segments separately. For example, with a P-wave
problem, the three factors mentioned above are first evaluated at
(say) 51 points along A - (ha,0) (see Figure 17; these have to be
stored some for each b, some for each A). A Simpson integration

scheme then selects values corresponding to each (b,A) combination,



=190~

and stores the integrals along this first line segment, The second
line segment is then treated, and note that the wvalues of the three
factors mentioned above need to be stored only along one line segment,
and only before segment integration., The third line segment is
integrated, and the final solution is a sum of the three line segments
corresponding to one (b,A) combination.

A simple on-line plotting option is available for each segment,
to monitor the choice of end points and also the spacing of points
at which the integrand is evaluated. (Up to 101 points may be taken
on each segment.) The fact that both real and imaginary parts of the
integrand are well-behaved numerically is our justification for using
a Simpson's rule with even spacing. Any integration method which
varies the spacing will required much more computer time, since

for example, the model factor

(2)
Qshv_i(ha)
ﬂsh(l?(ha)
V-2
would have to be re-calculated for each A, and separately for real

and imaginary integrations.
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Appendix V

The Fresnel-Kirchhoff Method in Radially Heterogeneous Media

We take the elasticity problem posed in section (2.6), and use
methods of geometrical ray theory to obtain a similar solution.
Our basic formula is a standard integral theorem for the potential

at P(r;A):

$(P) = - %’; ” [¢(Q) —‘;;,G(Q,P) - G(Q,P) %—E(Q) as (Vv.1)
S Q onS

where S is any closed surface surrounding P, n is the outward normal
on S, and G(Q,P) is a Greens function. The normalization of G in

equation(V.1l) is such that ray theory approximation gives

eié(Q,P)
G(Q,P) ~RQE) where we define
3
B
®(A,B) = [ h(s)ds (integrating along the direct ray from A to B)
A
L
F
R(A,B) = 1,1, [sin (8,-5,) n(x,) nlr,) cos 1(r,) cos i(rB]]

(v.2)
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in which p (the ray parameter), i(rA) and i(rB) (angles of incidence),
and T(travel time) refer to the direct ray from A to B. Note that
in a homogeneous medium R(Q,P) = distance between Q and P, and the
formula for G is exact.

We chose the surface S = A+ B + C where (see Figure 18a) A
is part of the plane normal to SP which passes through 0 (the turning
point) - namely that part between some arbitrarily large radius and
radius r = a; B is the hemisphere of core surface on the P side of A,
and C is the hemisphere which contains P and forms a closed surface
together with A and B.

The contribution from C to the integral (V.1l) is negligible.

We take Kirchhoff's boundary conditions on A and B, i.e.

on A:
@ =¢,(Q, =2 B (note: ¢, (Q) = =—— 6(5,Q))
¢(@) = ¢, (@, anQ"anIQ Rater. 4,00 = TRte) ToAe
on B: ¢(Q) =0, %%— = 0 (see Born and Wolf (1959, p. 378)),

Q

1 ; 5
and neglect-i in comparison to h to obtain

6(B) = - 1 {Jeiécs,q)em(q,m

lﬂfJ

) sin i(rQ;S,Q] + sin i(rQ;Q,Pi]ih(rQ]dS

i h(b) R(S,Q) R(Q,P)
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As the element dS(Q) ranges over A, the only factors in this
integrand which change rapidly are the phase functions. So we take
all other factors outside the integration (using their values when
Q is at 0, see Figure 18a), giving

I
1JS h(s) ds

_ _h{y) e JJ 159(Q)
) - 270 (5) R(S,0) R(0,B) }/ © o (V.30 »

where 6%(Q) is the difference in phase between the sum of ray paths
(S +Q) and (Q +~ P), and the ray path (S = P).

We thus need to evalua£e §3(Q) as some function of two parameters
(u,v), say, which specify the position of Q on the "aperture" plane A.
Our choice of these parameters is guided by the Fresnel method fer
a screen in homogeneous media (see e.g. Bzker and Copson (1939));
thus, the integration of exp i §9(Q) has contributions only from
the vicinity of the point 0, about which point 8% is first expressed
as some second order formula A(u(Q) - u(0))2 + u(v(Q) - v(0))2.

Our parameterization of the aperture plane is shown in Figure 18b,
as viewed from the source side, near 0. The horizontal axis is
simply Cartesian distance z from the vertical plane through S and P.
The vertical axis is given by the ray parameter q of the ray (S + Q).

89(Q) has a component 62¢ (say) due to the fact that Q is not in
the same vertical plane as SP. If the angular distance from S to Q

is A, + 6A;, and from Q to P is Ap; + 8A,, then it follows from a
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formula for travel time (Bullen, 1963, p. 112) that Gz¢ = wp(8A; + 845),
where we use p as the ray parameter for (S -+ P). But 6Ai = (22 cot Ai)/
2y2, where y is the radius to 0, so we have obtained one component

of 82(Q).

The remaining component, due to the vertical difference between
0 and Q, may be obtained graphically as follows:

Suppose Q is a fixed point, and P is varied (with constant radius)
around that position P(Q) which has the same ray parameter as (S + Q).
Let us examine the p-A diagram, Figure 18c, for both the rays S -+ P
and Q ~+ P as P varies. The ray parameter for the S - P path is

a function of distance (A) governed by the Earth model. But the ray

h r sin i(r)
w

parameter for Q + P is , and this has the almost

Q

constant value q as P varies for fixed Q. Note that the travel time

I=Tr

difference for arrivals at P (from S) via the two paths is given by

cayZ
the area between the two curves in Figure 18c, i.e. LSERL (—%%) »

and the corresponding component of 6% is wx travel time distance.

The formulae used for the integration of (V.3) are thus

- WO
§2(Q) = wp g;f [cot Ay + cot Azj - QSQERl_ ( __%%) aad

as = %%§§%E%E(Y)] where 7 is the normalized velocity gradient,

fle

. Then

<|H
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P
iJ h(s)ds
S
. _ =h(y)e W
o(B) = 2vh(b) R(S,0) R(0,P) h(y) (1-z(y))
|

exp i| wp 57 (cot Ay + cot Az] +

Ly

z=—» wq=h(a)a

Set

=

2 2

op

-—C0

-1
32T 3
and — = VA . We then obtain

I S = 2
&iijil— (— é—) = —-12, and note that J eiﬂ/za

w(@-p)?(_ 34
2

B)

) dzdq .

- "4

P
L

s(2) = L
h "
f (a)aB%T :
| [jﬂm 337]
.% 1 —1w/4/—§1 ] ein/212 d
0

]

receiver

source

v s 32T
ih(b) R(S,0) R(0,P)[1-z(y)] | wpl(cot A; + cot 4y) ( v aAZ)

h(s)ds

(v.4)
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This is a useful form for ¢(P), but we can obtain better

similarity with section (2.6). For, noting from (V.2) that

!
[ sin A; h(b) cos i(b)"Il

R(S,0) = b |
h(y) (1-z(y))
i sin A, h(r) cos i(rx) ‘
R(0,P) = r and also that
¥ h(y) (1-z(y))

(cot 87 + cot Az) sin A, sin Ay = sin A, we have from (V.4) the

result

1 wP (-m 322)
$(B) = i br h(b) sin A h(b) h(r) cos i(b) cos i(r) o4
_h(a)a-wp receiver
r—,,m, 92T |* 1 h(s)ds
| ™ 382
. - . source
% 1 - e_lﬁIAJTZ elﬁ/ZT dt Xe
0

(v.5)
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which is part of the solution (2.6.5). Since in this Appendix we

use the Kirchhoff boundary conditions ¢(Q) = 0, %% = 0 on the
surface B, equation (V.5) does not contain the integral of reflection
coefficients which is a feature of (2.6.5).

If the medium is homogeneous, and if further r = b, then (V.5)

does reduce to the Fresnel formula quoted by Phinney and Cathles (1969).
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Appendix VI

Asymptotic Expansion about Turning Points

We study the function g(_)(r), introduced in Section (2.6),
and obtain first a method of evaluation for r varying in the region
- ;13
lr - R| ~ R|v| , where we define the turning point radius R to be

the solution of
= h(R)R (VI.1l)

We restrict our discussion to media for which a ray bottoms at every
depth, and then equation (VI.l) defines just one value R, which
is a function of w.

If we take b(xr) = r+ﬁ (i)(r), then

a2y
dr?

r-c|+—l
i:hﬂu

[hz()--—-—'] b = 0.

We need to evaluate several physical variables (e.g. the
gradient of velocity a(r)) at the turning point radius R, and it
is convenient to use the notation of capital letters to represent

values at r = R. Thus, we use

= h(R), X = x(R) where xe—=L G __xr dh@)
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2 2
and Y = y(R) where y = z?) -g;%— . We also define a variable u
'3
Lo " I __ o 2Q-xm
by u 9 (v-Hr), where Q = q(R) and._q(R) ( ey )
Note that capitals are independent of r, but do depend on wv.
. d _ _Hd_ .
Since ok ¥ (for a fixed value of v), we have for
c(u) = b(r) the result
1_d% 2 de h2 (r) v2 —
Q2 du?¢ QHr du HZ H2r2

In order to study solutions of this equation near the value u = 0,

1
QZ

we expand the coefficients as a power series in , to obtain

1 0Cu) | de

.dﬁ:. - _l._. 1 +
Q¢ du? Q4.2(1-X) Q2 du

u u? (3¥%2-3-y) , 0@u?) gl
o[- RS % ] e

(VI.2)
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Now we assume the asymptotic form

Il .~ 8

c(u) = 5%5 fn(u), valid for u = 0(1).

n=o

Upon substitution for c(u) into (VI.2), it follows that we require

I
o

£,7() - uf ()

i &
o

(VI.3)

and so on for fn(u), with n > 1.
Clearly, fo(u) is some combination of Airy functions, and the
combination may be found by taking an arbitrarily large value of
v (so that fo(u) dominates the expansion for c(u)) and comparing
@ 1

the resultant gq_;(r)"v >

fo(u) with the approximation given

in Appendix II:
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W~

lu/zi- 3

v2
)l(r)"" (E(D))"" T - T exp i J[hz(g) - ] dg
[ (r)-—jl

R
(VI.4)

for r just greater than R. Expanding the phase integrand about
£ = R , we have
v2 v 21-13
h?(g) - “’&E- %), (-X). This approximation may be integrated,

and from (VI.&) we obtain

-4 7
_l-r-/4 2 3 i _.l_ %
(l) (I) ~ T [2 h(h) CL-X)} (2_0-;‘_}{)_) eXp 1 3‘9 (—u)
(-u)

The Airy function which has the corresponding phase property is

2im/3

‘- x 3
)—v__ em/lz exp i 3 (-u)

Al (ue and hence we obtain
2 {'ﬁf (_u)"‘f ’

fo (u) as

Vi

J

4
B _ ., -in/3 m 2(1-X)  (ge2i™/3
J.o(u) g 2 e ( 2h(b) (l—X)) ( v ) Al(ue )
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Then f,(u) may be determined from equation (VI.3), and we

achieve the result

L

-in/3 - z vV i
8§f;(r) _ _2e ( m ) ( 21 x)) Ad(uei™/3y |

2h(b) (1-X) v

r

"%
2(1-X) 2-3X Y . 2im/3
( v ) ( 200-X) ~ 20(_1—x)2) u Af(ue™7) +

s
31 + X) . o 2im/3 ., ,.2in/3 p—
(20 ax 20(1—x)2) il AL' (ue )p +0 ( . )

where

L
3
0 (2—(1'—}‘1) H(R-1) (VI.S5)

We note (i) that X, Y, R, H are all functions of v, but not
of r. (ii) The intrinsic coupling in an inhomogeneous medium
(P-SV coupling, up-downgoing P to P coupling) merely adds terms to
equation (VI.2) which are O (%FJ (for a proof, we use the
coupled equations developed in Chapter 3). And so even the second

@)

term in our expansion for g-é(r) is not affected by intrinsic

coupling.
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(iii) From equation (VI.5) we find

; % Yy
4 @, 283y T ) (2(1—)()) v p. 2im/3
ar 8-4) =" T 1 (Zh(b)(l-x) v L e
¢ g 3
20-8) )< (3a+x)ud | Yu 7-3X Y -2in/3,,, 2in/3
( v ) (20(1—:“ T20@02 T 2000 20(1—x)2) o Adfue™)
%
8 + 3X Y - 2in/3 2(1-X
L (20(1—:{) 4 20(1-x)2) R ( v )
(VI.6)

(iv) The results (VI.5) and (VI.6) reduce to standard expansions
for spherical Hankel functions, if we take X = Y = 0. (See

Abramowitz and Stegun (1964), § 9.3.23).

(v) The formulae above have been obtained for any fixed choice
of v, as r varies near the turning point radius R. Since u = 0(1),
our formulae are valid in the region |[r - R|~ R[\)[_’r’ .

But provided we maintain u = 0(1), it is clear that our
results may also be used for a fixed choice of r, r = r; (say),
as v varies such that R is near r,. The expansions (VI.5) and

(VI.6) are then useful only if we can evaluate
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s

u(v) = ( i ﬁ(R(\’))})} (v- H(R(W)} r,)

as v varies in the complex order plane near the value v = h(r;)r;.
A simple and sufficiently accurate formula for u(v) is provided

by the Taylor series expansion, since we can show

2
g : (v-h@z1dr1) g2,
u(v) = (v=h(r;)r;) v - > T2
v=h(ri)r, v=h(r,)r,

+Ul:h(i1)r1)ﬂ

(V1.7)
We find after some algebraic reduction, that
7 £
¢ (552 L] ol
Ust - \ThGepn / LT=Gen T za=anord U L\nGon
(VI.8)

where we define
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I
7 2Q-x() )3[9— h(zy)r)
B K h(r1)n 1-x(ry)

] = 0Q1).

Since h(r;)r; >> 30 for almost all seismic body wave problems,
the first two terms in equation (VI.8) are sufficiently accurate
to determine u. The expansions (VI.5) and (VI.6) may now be
written in terms of t, and v and t are equivalent independent

variables (satisfying a linear relation). Our final asymptotic

expressions are then

. 4 P
¢H) s 251'”/3( % ) ( 2(l—x1)) L | EER
gy_i(xy) = e \2R0) @=xD) ) | Alee ) +
2(1-x) K 3x;-2
-X ) ( Sx)- v1 . 21-"/3
( hyry 30(1-x3) * 30(1_xl)2) t Ai(t e )

2(1-x;) )’%
hir;

93-:1-1 2}’1 24 .
5 2iw/3, ., 2in/3
+ (60(1—:-:1) + 5= ) te Ai'(t e ) +0



%
( 2(1-x1)

and
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- B ¢ I
dr ®v-

%(r)

Zaiﬂ/Bh

1 T
L
II‘

I
2h(b) (1-x1)

ji(Z(l—Xl)

r=rj

&
. 2in/3
T
Byry ) Ai"(t e ) +
- 3 3 A
) ( (9x%;-1)t 3 2yqt . 7-3x%3 B V1 e“ziW/B
hr; 60(1-x;) lS(l—Xl)z 20(1-x1) 20(1-x;)2
X At(te?i™/3)
- ’é
4 (2_3X1 o ) o R ety 2(1-x1)
30(l—xl) 30(1—X1)2 hlrl
(V1.9)
The suffix 1 denotes evaluation at r = I, and we recall the
definitions
.- Ldo _r2d%
“gar ® YT o dr?
v = hlrl [-l X

hﬂﬂ

(

hir

2(l—x1)

for velocity profile a(r), and
E

)]
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Appendix VII

Inversion of Perturbed %%-data

Statement of Inversion Problem

; . dT ; -
We wish to invert =+ values (given as a function of A) to

dA
obtain the velocity profile V(r), when %%—- p(a) = ép(8) is small,

and the profile v(r) corresponding to p(4) is known.

Solution Method (due to Jeffreys, 1966)

Let r be the turning point radius for the ray with emergence
at distance A in the known structure v(r), and let r + &r be
this radius, for emergence at A, in V(r). Then from Wiechert-

Herglotz inversion in each model we have

i i + 0p; — -
| cosh -;r:T7ST- - cosh Lh} dA; = 7 &n (r+5r) N

where p; = p(4;) and n= p(A). Jeffreys (1966) points out that
for small perturbations ép,, the integrand here may adequately be

approximated by the first order terms, which are
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n dp; —p; o

2 2
nlpi- n’l

Application

This method is particularly simple to use when v(r) is a
constant (since the integrals of the first order terms may be found
explicitly). -Thus, to invert the 10 second values of g—} in Figure

22 we take

v = 13.6 km/sec, for which p(a) = §330

136 sin(%é-) sec/radian,

i

T N . ;
and 5 (10 sec) = p for A & 108.5° x 180 - Ao(say)
2
_ . P 180 o T
=p + B (A Ao) X ( . ) for AOS,- A S 113.5° x 180

Our solution method gives r + 6r = r exp [- I1 - 12] where

1 A P16n dAl 1 A dpy da,
I, = = =— e I. = — —_—
. ‘n’ n(py2-n<) ’ & l (plz-—nz)

0
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Clearly, &r = 0 for distances not greater than A°(=108.5°). For

dn

Ao < A ¢ 113.5° we find that I; = - o and for I, we use
2
.18 180
5p1 i x( =~ ) (AI-AO)
L n i‘
x o 4
2 6350 1 A\ _ 6350 sin A
(plz- n ) 136 ( cos? 3= - cos? f)“‘m [_- (8-2,) "2_}
So
2 L A
[ -
o L [ a8 (.18 180) 2 J B1rdg) o,
2" ¢ \6350/\ 5 T sin J @ -4 "7
v A
o

i,
0.000362 (A-Ao) for (A - ao) in degrees.

Since I, and I, are small, we may find §r from

i3
r

b+ ér _ Sr _ Sn & &
V(]:'+<31.')-n+fjn 13.6[:l+ - 'ﬂ} 13.6 [1 12].

The generation of V(r + 8r) from the above formulae is shown in

= = 11'12' and then

Table 8.
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Appendix VIII

Potentials for Elastic Solutions in Spherically Symmetric Media

We wish to prove that, if u is the elastic displacement solution
due to a known body force F in a spherically symmetric, self-
gravitating, non-rotating Earth, and if f is any sufficiently smooth
known function of radius, then there exist scalar fields ¢, X, and ¥

such that u may be written as u(g,t) = u) + uz, where

u; = Jz:(r) [ grad @(x,t) + curl curl (rx (z,t), 0, 0):] and
Y2 = curl (r¥ (r,t), 0, 0).

Further, u; is the solution for a certain body force Fj,
and uz is the solution for a certain body force F2 (where Fy and
F> may be constructed from ). &

(This representation of u is used in Chapter 3 above, and
it is found that certain useful choices of f(r) may be made, which
allow ¢ and X to be interpreted as weakly coupled potentials for

P and SV motion.)
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Proof: The equations of motion are

2

e

3
F=p

PF sz TP grad(g-g) - pgdivy - p grad y = (A + 2y) grad div y

+ p curl curl u - (grad A) div u - grad(u-vy) + (_5-V) Vu = (Vu+Vu
V2y = 47 G(p div u + u-grad p) (VIII.2)

where ‘Eﬁg,t) is a specified source term, ¥ is the perturbation in
gravitational potential, g is the gravitational acceleration, G is
the gravitational constant, p, A and Y are functions of radius r.
The first step in our proof is to write (VIII.2) as an
equation for the vector v = f(r)g, where f is specified. [We should
note that strong physical assumptions are made in taking (VIII.2)
to be wvalid in the source region, if the source is highly localized.
For example, this equation does not allow for any perturbations in
A(r), u(r), though perturbations might be expected for material in
the neighborhood of a point source. However, some justification of
the above linear equation is obtained from model experiments, in
which good agreement (see e.g. our Table 1) is found between the
observed displacements due to a point source, and the theoretical

consequences of equation (VIII.2).] Term by term we have for y
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%y o %y
P 3t2 T F 3t2
P grad(g-g) = - p grad (% vr) (g = (—g,0,0))

1
(A + 2u) grad div yu = (A + 2u) grad [%‘f er

-+ 2u)(grad %) div v - }..if‘__%}i grad div y,

’ 4
< BE_ L o s 235 _
p curl curl u = 72 [( div x,0,0) - e e (xw) grad (vr)]

1
 f
+ 11(%2‘) (o, Voo vé) +}§-curl curl y,

1
(grad A) divft\1‘=—(%—,0, O)[div’y_'—

r-hlr-E
ﬂ4
I

grad (u-vu) + (u9) W - (Wu-V)y

- T ~ a
UL P e S, e W T W
f 3T f ' - r

I

o T WO . S
or o rsing 3¢ f [0}

(See Morse and Feshbach, 1953, p. 33) (VIII.3)
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The second step is to use the Helmholtz  theorem and represent
Yy, by potentials as v = grad ¢ + curl 4, in which we may choose the

3¢ ! d aAG
value of div A. Then note that v_ = >t m(ﬁ (sinf A¢) - W) .

and div’y’ = V2%, So ¥, and V2¢ are independent of Ar' We also use
f(r)fl = grad D + curl ’@

The third step is to substitute for y andffl into (VIIIL.2), using
(VIII.3), and to manipulate the resulting four scalar equations into
two groups. These are

(i) 3 scalar equations involving ¢, curlrgt_, Y, and D,
c:urlrg (but independent of Ar’ div A, Er’ div E), and
{(ii) 1 scalar equation involving A, div 4, Er’ div E (independent
of &, curlr;{-;, Y, and D, curlrg).
This grouping of equations is obtained as follows:

The Poisson equation for gravitational potential is

2o kuts (B 33 - KL o'
Vey= 471G (f div vy, 7T PV -+ e (a)

Since V. div v are independent of Ar’ (2) is one equation of group (i).

The vector equation in (VIII.2) is
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2 1
pgrad D +pcurl E =p 2? [grad ¢ + curl A] +[:pg + (A+u) %— —A',0,0] V29

i | L}
pf grad (% vr) + (A+2u)f grad (%; vr) - p-g— grad 0, = pf grad v

/
1 tet 1 T
- (ng__LL, O,O)v -Te 4 I (rx)ﬂf(%) ©, V> v,)

O
rsiné 86 £ ¢

(A + 2u) grad (v2¢) + u curl curl curl A.

(VIII.4)

Let the r-component of equation (VIII.4) be labelled "equation (b)."

Then, since we may show r c:un:'lr curl B = %g—r (x? div B) -
V2 (r Br) for any B, we have
curlr curl curl ﬁ =

1 2
= Ve (r c.urlr A,

(VIII.S5)

So, clearly (b) is another equation of group (i).

Perform on vector equation (VIII.4) the operation
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= - p= l_ 3_ 2 = l —_— 3 1 3_
Llv) = Vol rZ 3r © <"’)r rsinb 96 e (‘")B ¥ rsing 9¢ ("')q‘:
to obtain equation (c). Then, checking term by term, the
independence of Ar is obvious down to

2 £' 3 2u £' 3 r 3 g g
. [r T o ﬁ‘x)J " i [sine ag (5190 Vo) * g 3, J

wiLEL B | oea. B a5 ]_ -
e PR (r vr) independent of A_.

]

{ /7
A similar method works for L [uf G_Z) (o, Voo v¢)J , and for the

terms which multiply u'.

]-»

I Il:u curl curl curl A

8
or

rH)—-

The final term we must check is

curlr earl curl A -

{ur?- [curlr curl curlé}} 5

and this too is independent of Ar (by VIII.5). So equation (c) is

another equation of group (i).

Perform on vector equation (VIII.4) the operation
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=) e 1 -§-- i ~ - l a_ At
M(~) = curlr(fv) sy e 'L_Slne ( )¢,} rsinb 3¢ ( )8

to obtain equation (d). We note that M (function of radius only

x grad (scalar)) = 0. Then the left hand side of (d) is a function
of (Er, div E) only (by the vector identity leading to our (VIII.5)).
Let us check in detail those terms in the right hand side of (d)

for which the dependence only on (Ar, div ,{‘,’ Er’ div ’}E.’) is not

obvious. We have

o)lcn
2]

[2uf* 5 o 2u £ 2
M =gk v (r,\_r,):{ k= (r curlr (grad ¢ + curl A)

|
which depends only on (Ar, div ’é). The point here is that r c:urlr
commutes with functions of radius, and with radial deriwvatives,
and r curlrg depends only on (Ar, div A). The only other term
we should look at is

r—
M| ¥ curl curl curl i&:] = u curlr curl curl curl ’z_;k_,

o

o eed by D
= ve(r curl  curl A)
{cf. VI1iss)
but u::m:lr curl A depends only on (Ar, div ,é). We may conclude

that (d) is our group (ii) equation.
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The fourth step in our proof is a discussion (cf. Scholte (1956)
for homogeneous media) of properties of our two groups of equations.
In the first group (of three equations), the quantities D,

curlr E generate unknowns 9, c:u.:rlr A and Y. But these are
independent of Ar. So, for this displacement solution (u;, say)

Ar = (0. With the choice div §,= 0 we have

1 f1 s
T | sin6 88 (sind 4,) + 228 = Vs

But this is the condition that there exists a scalar function x(say)

such that
e o Y - 2X -
Ag= sind 26 4 A¢ = T So }}J— curl (ryx,0,0)

and the solution to group (i) may be expressed in the form

1 -~
u o= 7] L grad ¢ + curl curl (rx,0,0)] . (VIII.6)

The second group consists of an equation for the quantities
(Ar, div -é)’ and we may choose ¢ = curlr A= 0, ¥ = 0 without changing
this equation. So for this solution (u;, say) we have (£ gz)r =0
and div (f up) = 0. Hence ('}_12)]: = 0 and div yp = 0. So, there .

exists a scalar function J(say) such that



-218-
b = curl (x¥,0,0) (VIII.7)

(Note that we have now a specific choice of div A.)

The independence of potential forms (VIII.6) and VIII.7) may be
emphasized by noting that u; is generated by that body force F
(with related potentials fF; = grad D; + curl E;, say) for which

D; = D, curlr E1=curl E , (E_l)r =0, divE; =0 (VIII.8)

T
and yp is generated by that body force Fp (with related potentials
£Fp = grad Dy + curl Ep, say) for which

Dy =0 curlr E; =0, (};32)1_ = B.» div E; = div E

(VIII.9).

It is simple to show that F; and F, exist (since we may construct
solutions to (VIIL.8), (VIII.9) with given D, E), and, finally,

we also note that scalar fields F; and E; exist such that

1

Fy = m [ grad D; + curl curl (rFl,0,0):[

|
N
1

= curl (rE,,0,0).
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Appendix IX

A List of Functions Defined in Section (3.3)

g=f'/f
2
_ARM o, A plg . u'g .2 . 3 (Rt
€p A+2u E 2(x+2u) op * A2 ® T * 4 \p
lp" pf _]J‘D' 2}.1‘

2p 1o  O+2wp (2

p* 2! Atu
o p A+2u - A+F2u &

- 1
m o= 2ug - ZE gy (z_g_

A+2u

r u
ke g) LZu' + (WH)g | 25

"_f*_“;l_'.g. n %‘l.pz‘lu. +

1
S g 2p' | _u P
& M) g' + 2042p)8 + p'g - =
( = g) [( = 8 MRt + W = 5 ]qu 2 "1



G2

It

l'+pg-

-pT

(3+2u) p'
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‘ 2
) . Ll L ] .
Moy Mup'g Alg M3u 3 _e_)
W 2u p u U 4 \ o
B 8 DI L - A
2p T W  TMH
1 %
E.__..._L‘....;..iﬂg
P u u

1
20+2p)g" + 2(A" +') g - 2£

(2

u' _ A+2q

\

—_— =

2u" +

2
E

” u 8)\:"(}«+u)g+2u'+

y iy '
(+2u) g" + &}M + 2N g\ g + 2(A"-uN) e _ 4y

[ 2p' Ad2p
e

g) [- (+u) g' +3—:—.5_ A'g +

: o T2

2u
2
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1
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Appendix X

Some Properties of the source-generated potentials

described in Section (3.4)(a).

We prove the necessity of equations (3.4.4a,b), and show

that the results of Appendices II and VI still apply. The source

term is taken (see 3.4.3) as

£.(x) -iwt
1 e
e ?%;7 grad| — D| where D= Sesh) 8(E) &
. o®(x) 27z sin

and f(r) is chosen so that ﬂo(r) = 0,
First, to amplify the discussion given in (3.4)(a) we follow
the method of Luneburg (described, e.g., by Karal and Keller

(1959)), and consider a solution (4,B,C,P,S) where each of the

five unknowns is in the form

iw(rv—t) -
V=e ) (iw) " v (X.1)
m=0 =

where the phase Ty and the v are functions of position only.
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Consider integers % and n defined by

2
pb + vip - _E_.i_g. & chl)}? (=A)

A2y a2y 3t
v2s _%—at—z-z 0(w)s (= C + 00 E;) (X.2)

Clearly we have & <2, n < 2,

Suppose & = 2. By comparing the highest powers of frequency in

equation (3.4.1), we see that S = 0(1)P (i.e. that the leading
terms in the expansion X.l1l for P and S are of the same order).
From (3.4.2) we see that n < 0, and hence from X.2 that C = 0(w)S.
Now examine equation (3.3.7): the terms in P are O0(w)P
(since Ty = 0), the terms im A, %% are 0(w3)P (from X.2 with & = 2)
and those in B are 0(w3)S (from 3.3.6 and our last result for C),
which equal O(w3)P. So for this equation the terms in P are two
orders in frequency down from those in A and B.
It is therefore possible to obtain the first two terms in
our expansion X.l for each of A,B,C, and S (by comparing the
highest two powers of frequency in the four equations 3.3.5-3.3.8),
independent of the source term D. Hence the two leading terms
of the derived displacement N (see 3.3.3) are independent of the

applied force F. Clearly this solution is not generated by the
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source, but is one of the solutions to the homogeneous equations
(3.4.1) and (3.4.2) with D = 0, F = 0. Hence, we reject the
case L = 2.

Suppose 4 = 1. Then similarly we find S = 0(w™1)P and

still ¢ = O(w)S. In (3.3.7) the terms in P are one order in

frequency down from those in A and B, and then the first term

in displacement N is independent of F. Hence we reject 2 = 1.
So & <0, and from (3.4.1) S is at most 0(w™%P). These

results are two of our desired properties.

Second, we briefly discuss the turning point method of our
Appendix VI, in which (3.4.4a) was taken to be valid in the
turning point region. This assumption is questionable, since it
is obtained above with heavy reliance on wave properties. (Note
also that the expansion (X.1)is not useful at the turning point
radius, for a partial wave of V, since this radius is then a
caustic and the geometrical optics approximation for the first
term is unbounded.)

We study the expansions
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{ P\ ®© a(r,n)

= z P (cos @)
S| n=0 \ c(z,n) =

(cf Appendix II. The Pn are Legendre polynomials) and introduce

(1)

a partial wave 8, (r) as the outgoing solution for a(r,n)
so that a(r,n) = ¢ gr(ll) (r) for b < r. In the region in which
. gél)(r) travels as a wave, the result £ < 0 in (X.2) is sufficient
to establish the WKBJ formula - which is thus seen to be unchanged
by the weak coupling to an SV mode.

Suppose that throughout the medium gél)(r) is coupled to
the S-function d(r,n). (In fact, c(r,n) = ¢; d(r,n) for b < r.)
We now give a brief outline to establish that the concluding
formulae of Appendix VI are still wvalid near the turning point

(1

r = R of g, z(r):
3

Define b(r), R, Q, H, X, ¥, u, and c(u) by the formulae

given in Appendix VI. Then equation (3.4.1) may be written as

2 2 ey
u u” (3%-3-Y) i

d2
B;(R) H" iz e(u) + Q—-i- 4Q (1=

eqw

1 d 5

P S 3 4% _mc
2Q7(1-X) du | Q7 du? Q2

+(B;(R) + RB,(R)) H"

+ 0(Q") c(u) = 0(Q%) O0(w?) d(R,v -3) (X.3)
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where e(u) is the expression on the left hand side of equation

(VL. 2) s

SRt . A3 A_+2u_) 2u' _ 20"

The highest order term on the right hand side of (3.4.2) is
0(Q%) c(u), and hence d(r, v -',i) (travelling as a wave and
satisfying the eikonal equation) is such that 0(w3) d(R, v -'%) -
0(Q2) c(u). So the right hand side of X.3 is 0(Q5) c(u), and we

see that c(u) can be expanded in the form

o £ (u)
£ (u) +*lf £,(w) + z = . Thus, comparing coefficients
o Q W Qn

for Q% in X.3 we have (£" - uf)" - u(f " - uf ) = 0 and for Qs

- 5 "
- 1 e N1 O U (BX -3 = Y)
(£1" - uxi) ' - u(fln - ufl) + Z(l-X) + 4(1-% fO
S ' w o T
e fo 3 u? (3%-3-v) | _ 1% Bbe (fo ufo ) =0
2(1-X 4(1-% B; 2(1-x)
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It is then seen that we have essentially the same formulae for
fo and f; which were obtained as VI.3, and we have proved our

2 " : : ; (1)
desired result: that the turning point expansion of g, (r)
satisfying (3.4.1) or (3.4.4a) have the same first two terms.
It is of interest also to note that the next term for c(u),

fS(u) i
__TET_ , depends on d(r, v -3 ), and hence that the mode coupling

(1)

effect on g, (r) is still one order in frequency down from the

main term, even at the turning point.
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Appendix XI

The Reflection and Transmission Coefficients, Between Two

Slightlv Different Welded Homogeneous Elastic Half-Spaces,

for an Incident P-Wave.

The derivation below is done in two ways, first by a study of
the boundary condition, and second from the equations of motion.
The numerical result referred to in (3.4) above is obtained here
in the final paragraph.

Take Cartesian coordinates with z = 0 as the boundary between
the media, z increasing into the first medium, and consider an
incident plane P wave in the first medium, propagating perpendicular
to the y-axis and in the direction of increasing Xx.

We use the standard potential representation for this-problem,
displacement = grad ¢ + curl (0,0,¢), use suffices to label

quantities in the two media, and solve for the system

¢T =P  exp i [ wt - Hyx sin i; + Hyjz cos i; ] incident P
¢§ =P exp i [ wt - Hjx sin i; - Hyz cos i3 ] reflected P
65 =P" exp 1 [ wt - Hyx sin i, + Hyz cos i, ]  transmitted P
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=S" exp i [ wt - Ki;x sin j; - Kjz cos i ]

w; = st exp i [ wt - Kox sin jp + Koz cos jo ]

t r

i.e. we wish to obtain Pr, B s 5 St in terms of P and the
difference in properties between the two media, For this purpose

we use the continuity of two displacement and two stress components

across the boundary, finding
wq (B + P¥)- Ky cos 3; ST = wq B* + Ky cos 3, S

. i ; s
p, cos 231 {P + Pr} + p, sin 2j1 S °y

H; cos 1; (P* - P¥) - wq s¥ = H, cos i, P* - uq s*

i 2
M1 H% sin 2i4 {Pl - Pr] + u3K; cos 2j, st =

2 2
U, Hp sin 2i, pt 4 uz Ky cos 23, St.

where

H; sin i; = K; sin j, = wq.
1
4 2 2 2

reflected SV

transmitted SV.

cos 2j2 Pt -0, sin 2j2 S

=
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If Ap, Aa, and AR are the increments in demnsity, longitudinal

velocity, and shear wave velocity- (from the first to the second
i+ j1+j2
medium), and if we take mean angles i = g » vy T, then

we can show that to first order the solution is

P’ = [-é-— (cos 2j - %—} +%2(———1'-—;—) —-gﬁ' [4 sinzj]:] Pi
i

2 cos

©

Pt=rl+-§9- ['—1)+%‘1(—1—0)] pt

2 cos

r _ _sin i ’ : -y Ap L ) =~ 1

S 2cosjsini[:51n [1+23]p +4s.1n3cos(1+3)—-§-8 P

gt - _sin i [:sin (1 - 23) 82 _ 4 gin § cos (1 - 3) %B_] pi
2 cos j'sin i P

(X1.1)
These formulae break down only if i ~ 90°, that is, for
propagation nearly parallel to the boundary. [Numerical work
for the application required in Chapter 3 is given following our

equation (XI.9).]
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The reflection/transmission coefficients obtained above are
derived from the study of boundary conditions. It is of some
interest to obtain them also directly from the equations of
motion in continuous media. We here outline the steps by which
this may be done, acknowledging the work of Chapman (1969), who
obtains the equations (XI.8) below by a slightly different and
less direct method:

We study an elastic medium in which density and velocities
o and B vary in the z direction of a set of Cartesian axes, and
discuss the steady-state wave system P-SV which moves with velocity.

c in the x direction. Having thus specified the horizontal

wave number, w/c, the vertical wave numbers are then

(mZ m2
i \ai-- Z-z— = 2k mqu (S&y)
(XI.2)
2 2
w W -
1 B—z - E'i- = & mqs
Suppressing the factor elm(t—x/c)’ we can show that the wave

equation may be written in the canonical matrix form
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d _ -
e M u (XI.3) where u :/ U and
-0
ZZ
u
Z
g
zZx

¥ = 0 0 I |
c H
2 -iw
0 0 pw e
| LA 1
iw -
c(A+2u) A+2u 0 2
| 2 -7
" Lu (M+u)w 1wA 0 0
e (A+2u) c (+23)
- P

(which has the eigenvalues = iwqa, - iqu).
In this plane strain problem, u. and u are two components of
displacement, and - - and 0, are two of the components of the stress
tensor. There are close analogies here with some equations
arising in the study of radio wave propagation in the ionosphere
(see Budden, 1961).

For a homogeneous medium, M is constant, and it is clear that
the solutions of equation (XI.3) are essentially the eigenvectors

of M, multiplied by a phase factor derived from the corresponding
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eigenvalues and path length. This suggests that for our
inhomogeneous problem we try solutions in the form of a sum of

coupled eigenvectors, i.e.

u = Wa(z) —zw + Wa(z) -:%9 + W3(z) iugq,
2w
| msz wzuR —%9— qB
——iwqu imqa 1
c
?QEEE 2293 w2uR
C o c qa
+ Wy(z) -iqu
-2uw?
& qB
-iw
c
mZuR
(XI.4)

where R E-%E--%E , and the Wi contain phase factors. [Note: these

eigenvectors of M may be found directly, but a simple way to write
them straight down can be found from discussion of potentials in
a hompgeneous medium. ] It is found that if the Wi are scaled by

a function of depth, according to the scheme
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Vi =7pq Wi, V3= qu‘ W3
2 2 b L

then substitution of (XI.4) and (XI.5) into (XI.3) gives for Vi

the matrix equation

iwqa 0 0 —63
dy, : 0 —iwqa T 0
dz ;
0 0 lqu 0 —61 -52
0 0 0 -iqu -3, 61
where
T 2 v 1
61=_—l—;h_ g__Z%u__i_zanBle:_
2 2(:(qmq5 c
q' q!
i, Gt nratbcs. S22 B vwn . @0 Rt BER T
3 20 2q 2 » YL

(XI1.5)

81 82

-8, =83

Y
&y B
(XI.6)

<



-235-

This equation for J opens up many interesting interpretations of
coupling in heterogeneous media. For example, the WKBJ solution
is obtained by ignoring the gradient terms di’ and taking the
right hand side of equation (XI.6) to be zero. Unfortunately,
however, the 6i have singularities at depths where either q, °r
g are zero (or singularities at both depths) - corresponding to
the WKBJ turning point, and the bottoming depth along a ray -
and approximate methods of solution break down.

We can examine the continuous scattering process (away from
depths such that q, of qB are zero), and obtain our equations
(XI.1l) in the following way: From (XI.6) we may identify V;
approximately as the P-wave phase for an up-going wave (z increases
upwards). If this wave is taken as incident, then (following
Chapman, 1969) we introduce reflection and transmission coefficients
by

V2 =, RP? VI, V3 = TPS Vl, Vx__* = RPS V]_ (XI.?)

These phase functions are respectively appropriate for reflection
to a down-going P-wave, converted transmission to upgoing SV,
and converted reflection to downgoing SV.

Substituting (XI.7) into (XI.6), and eliminating Vj, we obtain
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d . 2
Tz Rop = 2uwq Rpp = 83 (I-Rpp)=(8; + Rypdy) Thg =(8) + Rypd))Ryg

d . ! 2
— T . = 1m(qa—q8) TPS-Gl(l + TPS) -(SZ-TPséa) RPP (8y + TPsdz) RPS

d ; 2
Rpg = 1(q+ag) Ryg + 82 (1-Rp )+ (81 + Ryg63) Rpp=(8y + Rye61) Tpg
(XI.8)
[These coupled Riccati equations have been obtained by Chapman

(1969), using the Budden (1961) approach of discussing a matrix

transformation on u.]

Now we see that approximately

EE'RPP - Zimqa RPP = 03

|
-3
|

daz Tpg = 1ulqmqp) Tpg - 6y

d _—_— . .
RPS = 1m(qa.q8) RPS + 8, , with for example the solution

z z
Ziquadz' -Ziwj qqdz"

RPP(Z) =g * 83(z') e dz'
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This integral may be interpreted as the summed contribution

of a stack of individually homogeneous layers of thickness dz', with
dp dao

density and velocity discontinuities of-E;r dz', e dz', and
%%T dz' between the layers. The phase of the integrand is appropriate

for such an interpretation, and so also is the amplitude, since we

may show that if 4, and qg are physically described by angles

of incidence i and j, then g, = EQ%_& . g = cog § iand

(XI1.9)

This is just our desired result, for a comparison of (XI.9) and

(XI.1) shows that

83edz' = R; ( = the reflection coefficient between two slightly
different homogeneous half spaces). Similar results may be shown
for §; and &,, and we have found that the same approximate formulae
for reflection and conversion coefficients may be derived either
from the boundary conditions or from the equations of motion.
The type of approximation we find has in fact been widely studied
in the case of simple boundary conditions - see Bremmer (1951)

and Brekhovskikh (1960).
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We now return to the results of our first derivation, and

5 I
g5

examining the reflected and transmitted amplitudes Pt, S
. r t r
as i tends to zero, we are able to see that |S'|, |[S"| << |P7],

i.e. that the SV waves are negligible for propagation nearly normal

to the boundary. But for the application in section (3.4) we have

o Lp 1 Ao 1 AB it
9%, =

{ = o = = o= — — i p— —_—= e —
i 167, j 5 50 ° o B 10 ° B 5 ¢ And then
the P-P reflection coefficient,-EI , is =0.057, and the P-S
P ;
conversion (reflection) coefficient, — , is -0.058. Note that
P

these are the reflection and conversion coefficients for potentials.
The corresponding coefficents for amplitudes are easily derived,

and we find that the reflection coefficient P-P is still -0.057,
but the conversion coefficient P-S is -0.058 x a/B. So in fact

the reflected S wave amplitude is substantially greater than the

reflected P wave amplitude.
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LIST OF TABLES

Comparison of theoretical and experimental shadow shifts.
Experimental data from Teng and Wu (1968).

Formulae for P-P scattering from a point source by a
spherical fluid core. See Figure 13 for plots of the
amplitude of vertical displacement, lurl, at frequencies
0.1 and 1.0 Hz.

Formulae for SV-SV scattering from a point source by a

spherical fluid core. See Figure 14 for plots of a
u

normalized amplitude of horizontal diSplacement,l :%E; l,

at frequencies 0.03 and 0.2 Hz.

Formulae for SH-SH scattering from a point source by a

spherical cavity (or fluid core). See Figure 15 for

plots of a normalized amplitude of horizontal displacement,
I u¢/r | , at frequencies 0.03 and 0.2 Hz.

Values of the complex numbers §, and 6, for different

models of the core mantle boundary, given at different

periods.

Corrections to ray theory, for 2 second P waves, in a

model with specified ray parameter p = p(4), with the

geometrical shadow boundary at 97°, and velocity

gradient-%% =.- 0,2 %. at the bottom of the mantle.
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Amplitudes and %% , for 2 second core diffracted P waves,
in a model with the geometrical shadow boundary at 97°,
with

2

2
S = = 50 sec/radian“,

aa?
A =97°
and velocity gradient g% == 0.2 %~ at the bottom of the
mantle. Our source normalization gives an amplitude of
2.259 for the direct ray arrival at 97°, with zero phase.

Evaluation of the velocity profile V(r + ér). See

Appendix VII,
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FIGURE CAPTIONS

Figure la. Parameters for a plane wave, incident from the left
on a cylindrical cavity.

Figure 1lb,c. Parameters for a field point (r,8) near (b) the PS
boundary and (c) the SP boundary. See Appendix I.

Figure 2. Parameters for a geometrically reflected ray.

Figure 3. The complex integration path for evaluation of Cp(w)
(z = ha), and CSV(m) (z = ka).

Figure 4. The complex functions Cp, C, for scattering by a

Y
cylindrical cavity, plotted against frequency.

Figure 5. Comparison of solutions with different boundary
conditions.

Figure 6. Shadow boundary shifts for P, SV and SH waves,
scattered by a cylindrical cavity.

Figure 7. Parameters for a field point P(r,6) near the shadow
boundary, for a line or point source at S(b,m).

Figure 8. The geometrical relation between line source and
plane source shadow boundary shifts.

Figure 9. Parameters for the model experiments of Teng and Wu (1968).

Figure 10. The complex functions C,, Cgy for scattering by a

P!
cylindrical fluid, plotted against frequency.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

12.

13,

14.

35,

16.

17.
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Location of shadow boundaries, plotted against
frequency, for the three different wave types.

Results are for a line source, and both cavity and
fluid cylindrical scatterers.

The complex functions CP(w), Csv(m) for scattering

by a spherical cavity, and for scattering by a fluid
core.

Vertical component of P-wave displacement amplitude

due to a P-wave source: comparison at two frequencies
of different theories. See Table 2 for formulae.
Horizontal component of normalized SV-wave displacement
amplitude, | ;%E; l , due to a SV-wave source: comparison
at two frequencies of different theories. See Table 3
for formulae,

Horizontal component of normalized SH wave displacement
amplitude I E%——- , due to a SH-wave source: comparison
at two frequencies of different theories. See Table 4
for formulae.

Parameters for a field point P(r,A) near the shadow
boundary, for a point source at (b,0) within a
spherically symmetric medium.

Paths used for numerical integration in the complex

order plane.
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Figure 18a. Parameters for the Fresnel-Kirchhoff diffraction theory.
18b. Parameters in the aperture plane, near the turning point 0.
18c. p-A relations for the two rays S + P, Q -+ P (for fixed

Q, and P varying in A about the extension of S + Q).

Figure 19. Parameters for a diffracted arrival.

Figure 20a. Real part of 61.

Figure 20b. Imaginary part of §,, where §, parameterizes the location

of the first pole v

y Of Qg(li(a) by v; = h(a)a +

N
5,(h(a)a), in the model a = 13.6, 8 = 7.3, p = 5.6,
o' = 8.1, p' = 10.0, a = 3480. Results are plotted

for four different linear velocity gradients at the

bottom of the mantle:

da
= =-10.2, 0.0, 0.2, 0.4.

= a+

]
11
e|H

Figure 21, P-wave potential amplitude due to a P-wave source in
a homogeneous mantle, éalculated at 0.1 Hz and 1.0 Hz
by the Hankel function method and by the Airy function
method,

Figure 22, L

for P-wave potential due to a P-wave source in a
homogeneous mantle, calculated at 0.1 Hz and 1.0 Hz
by the Hankel function method and by the Airy function

method.
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Figure 23, %% for the P-wave vertical displacement due to a P-wave

source in a homogeneous mantle, calculated exactly at
0.1 Hz and 1.0 Hz by the Hankel function method, and
calculated approximately by Fresnel, residue, and ray
theories.,

Figure 24, %%- for the SH-wave horizontal displacement due to a SH-
wave source in a homogeneous mantle, calculated exactly
at 0.03 Hz and 0.2 Hz by the Hankel function method,
and calculated approximately by Fresnel, residue, and

ray theories.
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