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ABSTRACT 

The diffraction of P and S waves by various obstacles is 

studied theoretically, in order to evaluate frequency dependent 

corrections to ray theory for elastic waves which travel nearly 

along the Earth's core shadow boundary. 

Most of the properties of this scattering process are 

conveniently illustrated by a simple Earth model, which gives 

rise to a problem in plane strain . This model is an infinite 

homogeneous elastic solid in which a steady state plane body wave 

(of the type P, SV, or SH) is incident on a circular cylindrical 

cavity. A Poisson summation is used for the scattered elastic 

potentials, and contributions from waves diffracted at least once 

around the cylinder are neglected. Simple approximation formulae 

are developed to examine the behavior of P, SV, and SH waves on 

and near their geometrical shadow boundary behind the fluid. 

Computed numerical results are believed to be valid for frequencies 

above 0 . 03 Hz. 

The solution method, which may be regarded as a corrected 

Fresnel theory, is taken through four successive stages of 

generalization to study increasingly realistic Earth models: 

(i) diffraction of cylindrical waves from a line source. For this 

problem our solution is in excellent agreement with the results of 
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an ultrasonic model experiment conducted by Teng and Wu (1968) . 

(ii) Diffraction by a fluid cylinder of cylindrical waves from a 

line source. (iii) Diffraction by a spherical fluid of spheri cal 

waves from a point source. Here we find good agreement between 

numerical results from our approximate method, and computation 

of the exact Poisson line integral. 

The final stage of generalization, to study (iv) diffraction 

by a spherical fluid/solid discontinuity in a realistic radially 

heterogeneous Earth, is obtained by methods similar to (iii), but 

after an extensive revision of Hook's (1961) discussion of elastic 

potentials in general media . In our approach , we recognize that 

the designation of P and S displacements is somewhat arbitrary 

in heterogeneous elastic media, but becomes precise in the high 

frequency limit of ray theory (in which P and two S components 

are decoupled). These facts are used for radially heterogeneous 

isotropic Earth models to establish three potentials (P,S,T) 

with the properties (a) that T(r,t) is decoupled from P and S, and 
~ 

is a potential for SH motion, (b) the coupling of P and SV waves is 

reflected in a system of coupled scalar equations for P(X,t) 

and S(r,t), and (c) in the high frequency · .Hmit we have P(r,t) 
~ ~ 

and S(r,t) satisfying canonical uncoupled wave 

~ . 1" (A+21l)t. IIl )± 
respect~ve ve oc~t~es --p-- \; . 

equations with 

the 
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Many possibilities are suggested by the coupled equations 

for P(~,t) and S(£,t), apart from their use in the solution of 

(iv) above. They lead to a statement of conditions on the Earth 

model under which P and SV waves can propagate independently 

(at any frequency). We also use them to obtain approximate 

reflection coefficients for upper mantle transition regions which 

generate observed precursors to the phase PKPPKP, finding that the 

extent of velocity gradient anomaly in such regions must be less 

than about 4 km, in order to observe short period (1 sec) 

reflections. 

Our numerical study of core diffraction provides an 

explanation for the observed polarization towards SH of diffracted 

S waves, and also shows that there is a slight dispersion effect 

dT on d6 data, obtained for P in the range beyond 90·, which can 

and must be allowed for in accurate Herglotz- Wiechert inversion 

studies. The numerical methods developed for discussion of (iv) 

are expected to have wider applications in seismological studies 

of the Earth's core, mantle, and crust. 
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Chapter 1 

General Introduction 

Improvements during the 1960's in both the quality and quantity 

of seismic data have concurrently stimulated considerable interest 

in an improvement of t he t heory for elastic waves. The immediate 

goal of such new theory and data is a more accurate estimation of 

the longitudinal and shear wave velocities, and density, everywhere 

within the Earth . 

The achievement of this ' goal is in turn crucial to that most 

basic aim of geological science, a full statement of the constitution 

and evolution of the Earth, because it appears that from data now 

available there is a potential for assigning the seismic parameters 

with great precision. This potential has indeed been realized 

already throughout most of the Earth, and we may cite for example 

the longitudinal velocity distributions of Gutenberg and Jeffreys 

which had been established by 1939, each distribution differing 

between depths of 900 and 2800 km by less than 1% from the recent 

study of Hales, Cleary and Roberts (1968). However, the importance 

of further data analysis lies in the fact that diagnostic clues 

to composition are principally contained in regions of high velocity 

gradient, or of velocity contrast, and such regions are just 

those for which the classical interpretive theories of seismology 

are least reliable . Perhaps the major example of this difficulty 

is the wide class of upper mantle models which fit experimental 
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travel time data (see Gerver and Markushevich, 1966, for a 

theoretical discussion), and it is necessary to use other 

phenomena such as surface wave dispersion (see Brune and Dorman, 

1963) or the amplitude of body waves (see Julian and Anderson, 

1968) to discriminate further between velocity models. 

Ynis study is directed towards improvements of classical 

ray theory, and, while several new and quite general results are 

p~esented for homogeneous and inhomogeneous elastic media, we 

emphasize the particular problems of analyzing core-diffracted body 

waves near the shadow boundary . 

The geophysical community has seen a large number of publications 

reporting theoretical and observed properties of core diffraction 

(for a review, see our Introduction to Chapter 2 below), and 

there are several reasons why the core-mantle boundary remains 

t he subject of widespread current research. In summary we 

may mention here that theoretical departures from r ay methods are 

suggested by Johnson (1969) for rays which nearly graze the boundary, 

so standard methods for inverting seismic data are suspect. Yet 

t he determination of present core-mantle boundary parameters is 

important both to our knowledge of the present density distribution 

throughout the Earth, and to the historical study of core 

differentiation . A large amount of relevant seismic data is 

available, partly because arrivals in the distance range 85°-115° 

cover a disproportionately large surface area of the Earth . 
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Alexander and Phinney (1966) have pointed out that comparison 

of arrivals in the core shadow which are along the same great 

circle path can be used to study lateral heterogeneities at 

t he bottom of the mantle . A final and basic reason for our 

examination of the core-mantle boundary is that it appears to be 

a simple example within the Earth of a region of varying velocity, 

bounded by a velocity discontinuity . This combination is possibly 

present in several other regions of the Earth (see Archambeau, 

Flinn and Lambert, 1969), and also in planetary atmospheres which 

have been subjected to occultation experiments, and so our new 

theoretical and numerical methods may be expected to find applications 

considerably wider than the present study. Our results are 

summarized below in this Introduction, but first we briefly survey 

the standard wave propagation theories now used in seismology. 

Ray theory itself (see Bullen's 1963 text for a summary, 

and applications), with its underlying assumption that P, SV, 

and SH waves separately obey the laws of geometrical optics, is 

an approximation which can provide a basic guide to more exact 

methods. This must be true, because the bi-characteristics of t he 

general equations for elastic displacement are identifiable 

precisely as rays (see Section (3.2) below). Before developing new 

methods, we should thus be aware of two types of problems for 

which ray theory is essentially exact: 

(i) It is exact for problems of plane waves, incident on 

plane boundaries, in homogeneous media . (Although there are 
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some e~ceptional problems concerned with grazing and critical 

incidence. See Goodier and Bishop , 1952, and Hudson, 1962 . ) 

The case of a curved wavefront can be e~ressed as an integral 

over plane waves, and the evaluation of such integrals has led 

to a vast catalogue of solved problems, for differentsource-receiver­

boundary geometries (for an e~tensive review, see Miklowitz, 1966). 

(ii) Robinson (1957) and Vlaar (1968) have shown for 

heterogeneous media that a ray theory, based on t he concept of 

a wavefront as t he carrier of a discontinuity in particle velocity, 

can give e~act r esults for the propagating wavefront itself . 

Discontinuities in P , SV, and SH are shown to propagate independently -

but behind the wavefront, these displacement fields are, of course, 

coupled in ways which ray theory cannot e~ctly interpret . 

It is often claimed that ray theory is accurate for a medium 

in which the changes in such physical properties as velocity, and 

velocity gradient , are small over a wavelength (see Officer, 1958, 

and Archambeau, Flinn and Lambert, 1969). While such criteria 

can be useful in some particular applications, t hey must be in­

sufficient in general, since the total path length within the 

heterogeneity is not taken into account - if this path length is 

sufficiently long, we intuitively e~ect that ray t heor y must 

become arbitrarily bad. But note from (ii) above that we also 

should e~ect ray theory to be arbitrarily good for a spatially 

fi~ed source and rect.ver, and inhomogeneity (however bad, provided 
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the elementary equation for displacement is valid) if the source 

frequency is sufficiently high. Further breakdown of ray theory 

occurs in the neighborhood of .caustics (i.e . the envelope of a 

system of rays), and of the geometrical boundaries of shadows cas t 

by discontinuities within the elastic media . 

It is clear then that the approximate solutions of ray 

theory in seismological applications need checking against exact 

solutions , wherever this is possible, in order to assess the accuracy 

of the former method . To this end , we give in Chap t er 2 below t he 

exact solution for elastic displacement in simple Earth models , 

near the shadow boundary due to the core- mantle discontinuity , 

and compare it with ray theory and other approximations . In this 

case we can show by example how the assumption of uncor rec t ed 

ray theory may consistently bias the conclusions of inversion fo r 

mantle velocities just above the core . 

Tne device of approximating the Earth by welded layer s of 

homogeneous plates (or concentric homogeneous shells) has l ed t o 

much successful work. Methods initiated by Thomson (1950), Haskell 

(1953, 1960, 1962) , and Knopoff (1964) are particularly useful in 

studies of surface wave dispe r sion , and of course this type of model 

is particularly suited to the geophysical pr oblems of inver sion . 

But there are some strong objections t o modelling the Ear th 

by homogeneous plates . 

One type of objection is that these models have spurious 
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properties not common in general media . Thus, a calculation of the 

travel times in layered models often reveals small triplications 

induced by the layering - an inconvenience which usually can be 

avoided by using, for example, a Mohorovi~i~ law of inhomogeneity 

(i . e . velocity proportional to an irrational power of radius) . A 

more interesting, but still somewhat spurious, property leads 

to the fascinating problem of headwaves; the traveltime for a head­

wave arrival indicates a travel path of critical incidence at one 

of the boundaries, toge ther with grazing boundary ray transmission 

in the faster medium, and this special property is the basis of 

special me t hods for t he evaluation of headwave displacement. 

Typically , these a re the branch line discussions of, for example, 

Berry and "est (1966) , or the l ess ,."ell- known operational methods 

of Jeffreys (1926) , or s tudies of wavefront curvature by Yanovskaya 

(1968) . But even a small veloci t y gr adient destroys the simple 

property of critical incidence - grazing transmission; t he 

theoretical approach to "headwaves" (in so far as t his ener gy 

may be isolated) is then either a diffraction study of scattering 

poles (if velocity decreases with dep t h : see Hill, 1970) or a 

multi-ray study of saddle points and scattering poles (if the 

velocity increases with depth: see ~erve~y , 1966, Chekin, 1965, 

and also Chapman, 1969, for the related problem of SKK ••• KS within 

a simple Earth model) . It appears that Runge ' s Theorem (Hille , 1962) 

provides a theoretical link between these different me t hods for 
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positive and negative gradients (as the gradient becomes smaller), 

and the branch line method in the limiting case of two homogeneous 

media. 

The second type of objection is part practical, part aesthetic . 

We have considerable evidence (e . g . Johnson, 1967) for regions of 

high velocity gradient within the upper mantle, but t he number 

of homogeneous layers needed to model such a region accurately for 

body waves is so large that reflection data (Adams , 1968 , and I,~itcomb 

and Anderson , 1970) cannot yet be related accurately to the velocity 

gradient (although Teng and Tung (1969) have recently reported 

some success). And so far as we know, the Earth is not composed 

of homogeneous layers, and the coupling between P and SV is not 

accomplished by discontinuous boundaries; it is accomplished 

intrinsically in the equations of motion. 

It seems that the only method which both accepts this last 

fact , and calculates its effect, is that initiated by Epstein (1930) , 

which for certain velocity gradients in acoustic media can furnish 

an exact solution for the reflection and transmission coefficients . 

This method , which transforms the equations of motion into a form 

satisfied by hypergeometric functions , and then uses the connection 

formulae between different pairs of solutions, is available for a 

theoretical study of SH waves . And a conclusion of our Chapter 3 

below is that the same method may possibly be used, with an approximate 

equation for P waves, to study longitudinal-longitudinal reflection 
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coefficients for the precursors to PKPPKP . 

The methods of Phinney and Alexander (1966) and Phinney and 

Cathles (1969) have guided several sections of our Chapter 2 below . 

Their procedure is to represent the displacement potentials, for 

elastic waves in a simple Earth model, in a standard way as complex 

line integrals, and to evaluate the integrals numerically . Such 

an approach has been slow in finding seismological applications, 

since a similar break-through was achieved in 1946 , in a study by 

Fock of electromagnetic waves - and see also Wait and Conda (1959) . 

Recent work of Chapman (1969) has furthe r extended the method in 

seismology by incorporating a scheme for direct numerical integration 

of the equations of motion through the turning point a t the bottom 

of a ray path . 

The study below is presented in two chapters, which are almost 

independent. (Just one conclusion of Chapter 3 is used in Chapter 2 . ) 

In Chapter 2 we solve a simple shadow boundary problem in 

elastic plane strain . In several stages we generalize the solution 

method to investigate the shadow boundary set up by a poin t source 

in a simple Earth model composed of separately homogeneous mantle 

and core . Exact displacements are calculated (by Phinney's method) 

for P, SV, and SH sources, and are compared with the approximations 

of ray theory in the lit region, and a corrected Fresnel theo r y 

near the geometrical shadow boundary (see Rubinow and Keller , 1961) . 
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We find that the latter approximation (which is found to be 

quite accurate in the simple Earth models) can successfully be 

generalized to examine more general Earth models (with radial 

heterogeneity), giving the combination P + PcP from distances 

where they begin to interact, out to (and including) the shadow 

boundary . And a numerical method is given for evaluation of 

diffracted arrivals in the shadow, back to (and including) the 

shadow boundary . Both these methods are quite simple to use 

in realistic Earth models ; the corrected Fresnel method is 

expressed as a factor multiplying the ray approximation for the 

direct P wave field, and successfully matches the numerical 

shadow region method on the shadow boundary . Several implications 

of our results are described, and include (a) showing that the 

grazing reflection coefficient for elementary waves at a spherical 

discontinuity is, for our geophysical parameters , substantially 

different from the corresponding coefficient with a plane 

discontinuity, (b) explanation of the observed polarizing effect, 

on S waves , of core diffraction, and (c) an evaluation of Johnson's 

(1969) caveat, that velocities obtained at the bottom of the mantle, 

dT by standard Herglotz- Wiechert inversion of observed d6 values, 

are too low . 

In Chapter 3 we attack the problem of finding potentials for 

elastic displacement in spherically symmetric isotropic media . 

The study of wave propagation has led physicists and applied 
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mathematicians to take advantage of many similarities to be found 

bet"een the different problems. The similarities arise because 

equations of wave propagation (be they for a magnetic intensity, for 

a stress tensor, or for particle scattering) may often be transformed 

to and from certain "canonical forms" of wave equation. The widely 

studied properties of canonical forms may then be simply related 

to our particular problem, provided we can establish the necessary 

transformation . Hook (1961) and Singh and Ben- Menahem (1969) have 

studied the equation for elastic deformation, but our approach 

differs from these authors in using a slightly simpler potential 

representation by which (we prove) all possible displacement solutions 

can be studied. We are able to see, from our final choice of potentials , 

the theoretical reasons why P and SV body waves in the Earth are 

observed to propagate almost independently, and the generality of 

our final coupling equations permits a survey of many possible 

applications . For example, we show the relevance to seismology 

of some canonical wave solutions in certain standard kinds of 

inhomogeneity, and are able to see that all experimentally 

identifiable reflection horizons in the Earth ' s mant le mus t be 

highly localized. 

The new work presented in this dissertation includes our 

study of amplitudes near a shadow boundary in homogeneous elastic 

media, and the methods of generalization needed to s t udy radially 
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heterogeneous Earth models, their eore shadow boundary and shadow 

region. The generalizations are examined numerieally for a realistic 

Earth model. We also place Hook's method of potentials on a 

firm and simpler foundation. 

The conclusions of our Chapters 2 and 3 may briefly be 

summarized by remarking that ray theory, a basic pillar for many 

years of seismological research, has now guided us to more accurate 

pr actical approximations, which can improve our interpretation 

of existing data . 
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Chapter 2 

Diffracted P, SV, and SH Waves , and Their Shadow Boundary Amplitudes 

2.1 Introduction 

Since the installation of the World- Wide Standardized Seismograph 

Network, rapid accumulation of seismic data on diffracted body- wave 

amplitudes has given us hope of better determination of the radius 

and nature of the Earth's core-mantle boundary. There has been, 

however, a lack of appropriate diffraction theory for the interpre-

tation of these recorded amplitudes, particularly for observations 

made near the shadow boundary . This chapter develops a solution 

for the displacement of body waves which closely graze the core, and 

t he theory is examined in relation to some observed data. It is 

found that the phenomenon of SH polarization in diffracted S waves, 

reported by Cleary et al (1968), is qualitatively explained . It is 

also found that the departure from ray theory in the shadow boundary 

region may be very simply allowed for when using Herglotz-Wiechert 

inversion to set up models of the lower mantle (see Johnson (1969): a 

dT frequency dependent correction is made to the observed d~ 

for the interference effect of PcP). 

to allow 

Displacement solutions that are valid only in limited regions 

have previously been obtained for some problems with simple 

configurat ions ; for example , a spherical cavity in a homogeneous 

elastic medium (Nagase, 1956), a fluid sphere in a homogeneous 
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elastic solid (Scholte, 1956; Duwalo and Jacobs, 1969; Knopoff and 

Gilbert, 1961), and scattering from a rigid cylinder or sphere 

(Gilbert and Knopoff, 1959). Some of these solutions are for 

i mpulsive elastic waves, and so are unsuited to the interpretation 

of spectra. All of these solutions are valid only within the 

"illuminated" region (that is, the region accessible to direct body 

waves from the source), or within the shadow boundary, and they 

fail for regions near the geometrical shadow boundary . The failure 

of these theories in the critical region of core- grazing rays has 

hindered meaningful discussion of the observed diffraction data - for 

presumably it is just these rays which provide the best information 

we have on core- mantle structure . 

Recent progress in acoustics and electromagnetics has provided 

solutions valid in the neighborhood of the geometrical shadow boundary, 

for scatterers of various simple geometrical shapes (Rice, 1954; 

Rubinow and Wu, 1956; Rubinow and Keller, 1951; Nussenzveig, 1965) . 

Although these results are not immediately applicable to the study 

of elastic waves, the gross structure of the solutions and the general 

conclusions are expected to be common to all wave- scattering problems : 

typically, their findings are 

(1) a broadening of the transition zone (that is, the region 

between illumination and shadow) with lower frequency, 

(2) a dependence of the extent and position of the transition 

zone on the boundary condition at the surface of the 

scatterer, and 
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(3) strong similarity among solutions for spherical, cylindrical, 

and paraboloidal s catterers with the same boundary condition. 

The theory of this chapter is an extension to seismology of the 

solution techniques developed in acoustics and electromagnetics, and 

we examine t he amp litude behavior of P and S- waves near the geometrical 

shadow boundary. This extension involves the study of more general 

boundary conditions that couple two potentials and their derivatives, 

as opposed to the Dirichlet or Neumann conditions considered in 

acoustic and electromagnetic problems . A substantial extension to 

the theory of radially heterogenous media is also given. 

We are fortunate in having two independent checks on the theory 

of this chapter. An ultrasonic seismic model experiment (Teng and 

Wu, 1968) has been conducted, which measured transition amplitudes 

of P and SV behind a circular hole cut in a thin plate . Also, a 

method of Phinney and Alexander (1966), and further described in 

Phinney and Cathles (1969), has given transition amplitudes of a 

P- wave potential due to a fluid spherical core . The method of 

Phinney and his co- \"orkers, which involves extensive numerical 

integration, is described belOt" . The results of both the above 

projects are in accord with our theory. 
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Plan of Theoretical Develoument 

The simplest geophysically relevant problem of elastic wave 

diffraction is a problem in plane strain: a steady state plane wave 

of displacement is incident upon a circular cylindrical cavity, and 

it is required to evaluate displacements near the geometrical shadow 

boundary. This basic problem is solved in section (2 . 2) . The 

generalization to diffraction of waves from a line source, and a 

comparison of theory with the results of Teng and Wu (1968), is given 

in (2.3). In (2 . 4), we generalize to the case of a fluid cylindrical 

scatterer, and in (2 . 5) we solve the parallel problem of a point 

source, with waves scattered by a ' spherical fluid, and compare the 

results of Phinney and Cathles (1969). The generalization to a 

radially heterogeneous Earth is made in section (2 . 6). In (2.7) we 

apply our new results to observed phenomena. 

2.2 Theoretical Develoument of a Simple Model of Diffraction 

Sta tement of Elasticity Problem 

A steady-state plane wave of unit displacement is incident from 

the left on a circular cylindrical cavity of radius a (see Figure l(a)). 

This is a problem of plane strain, and we wish to evaluate the scattered 

displacement field . 



-15-

We use polar coordinates (r,6,z) centered on the cylinder axis, 

and shall consider the cases of 

1 . Diffraction of P-waves with a plane P- wave incidence: 

i(hr cos 6 - wt) u. = (cos6, - sin6,0) e 
"'.I. 

2 . Diffraction of SV- waves with a plane SV-wave incidence : 

_ ( . 6 6 0) i(kr cos 6 - wt) u. - sln, cos, e 
"'.I. 

3 . Diffraction of SH- waves "ith a plane SH-wave incidence: 

u. = (0,0 ,1) 
"'.I. 

i (krcos 6- wt) 
e 

For the P-wave due to SV-wave incidence, and the SV-wave due to P- wave 

incidence, formulae are given in Appendix I . 

In the first two cases , our problem can be r educed to a !';o-

dimensional one involving !';O scalar po t entials q. and 'iJ , which ar e 

related to the displacement field u by 
~ 

(2 . 2 .1) 

The total displacement ~ is a solution under the conditions 

(i) that (V2 + h2) q. = (V2 + k2) 'iJ = 0, where (h ,k) ar e the wave 

number s for (P , S) waves , 
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that the scattered waves u _ u - u. are outgoing, and """ ~ '"""-

(iii) that there is neither tangential nor normal stress on 

the boundary r = a. 

Scattering of P 

The incident wave clearly may be represented by 

i(hrcos 8- wt) d ," e ,an 't'. =O. 
~ 

The conditions (i) and (ii) allow us to write scattered potentials as 

1 
ih 

lVe can evaluate 

relation 

A 
n 

e 

and B by n 

i hrcos8 
= 

H(l) (kr) 
n 

using condition (iii) , 

00 

L (i)n J (hr) in8 
e 

n n=-co 

i(n8- wt) 
e 

(2 . 2.2) . 

together with the 
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This procedure is straightforward, but lengthy, and gives 

1 °1 H(2) (ha) 

=-t[:: J (ha) 

J 1 + n 
B 

n (2 . 2.3) A -Z 
H(l) (ha) H(l) (ha) n °1 n 

n n 

where for convenience we have defined operators 

° H (R. ) (ha) 
1 n 

= S(l)p( R. ) + Q(l)R( R. ) R. = 1,2 

02J (ha) - i [R(2)p(1) _ R(1)p(2)] 
n 

where 

p ( .I. ) 2ha Hn ( R. )' (ha) + [ k2a2 - 2n2] H ( R. ) (ha) 
(2.2.4) 

- n 

Q (R.) - - 2n (ka H~R. ) ' (ka) _H~R. ) (ka) ) 

R (R.) 
- 2n ( ha H~R. )' (ha) - H~R.) (ha») 

S (R.) 
- 2ka H (R.) , (ka) + k2a2 - 2n2 ] H (R.) (ka) • 

n n 

Each of the A and B may now be evaluated , fo r specific values 
n n 

of w ,a, ~ and S : the unique solution for u follows from equations 
...." 

(2 .2.2) and (2 . 2 . 1) . 
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Discussion of ¢ (i.e . P- P Scattering) 
s 

It is unfortunate that the series solutions (2.2.2) converge 

so slowly that they are of little direct use. It is clear from 

the form of (2 .2.3) and (2.2.4) that, if there is convergence, it 

must be slow, for A is small in general only for n »ha. For a 
n 

simple model of the Earth's core-mantle boundary, we find for body 

waves with period 1 to 50 seconds that ha varies between 1600 and 

30 (and ka between 3000 and 60) . 

However, if we wish to find $ for values of (r,B) in the 
s 

illuminated zone, and for an incident wave of frequency high enough 

for us to expect a reflection effect , we can make an estimate of 

the values of n which we expect physically to be most significant. 

These values are integers which most nearly satisfy the relation 

(see Figure 2) 

n 
w r sin i(r) 

a 
(2.2 . 5) 

(The corresponding relation for a spherically symmetric body is 

+ 1 ___ w r sin i 
n ; see Bremmer (1949), Ben- Menahem (1964).) 2 a 

(ina- wt) A simple way to obtain (2.2 . 5) is to use the factor e 

in the n-th term of the series (2 . 2.2). This factor indicates that 

each term of the series represents a wave travelling around the 

cavity with phase velocity v = 
n n 

wr in the direction of increasing B. 
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The summation ~ represents an interference effect of all these 
s 

different phase velocities, and the reflected-ray phase velocity is 

(see Figure 2) - a/sin i in the direction of increasing e . 

The interference is thus constructive only "hen 
wr - 0 v =-~ ,i.e. 

n n sin i 

when (2.2 .5) is nearly satisfied. For (r, e) near the shadow 

boundary, we have r sin i ~ a, so the significant terms are 

n ~ - ha . The quantity r sin i 
a 

in (2 . 2.5) is the familiar seismic 

ray parameter, and part of the above theory has a generalization 

to radially heterogeneous model s (see section (2.6» . 

We now proceed to an evaluation of $ for large values of ha, 
s 

using the Poisson sum formula. Our development has been guided 

substan tially by the methods of Rubinm, and Keller (1961), who 

discuss a problem with only one potential and with a different 

boundary condition on r = a. A factor exp( - i wt) is understood in 

some of the expressions below. 

If we define 

A(r, e) H(l)(hr) d\l 
\I 

and use the Poisson sum formula (Morse and Feshbach, 1953) 

L F(n) 
n=- oo 



with 

1 F(n) = 
ih 

we see that 

cPs 

in1T /2 
e 

1 - - -2ih 
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A H (1) (hr) 
n n 

in6 
e 

A(r,2m1T + 6) (2.2 . 6) • 

In this exact formula for cP we wish to identify waves that travel 
s 

around the cylinder and are then summed to give the scattered field. 

For example, we note that, for large ha and m ~ 1, A(r,2m1T + 6) 

has a phase ha(2m1T + 6) and hence represents a wave that has 

travelled m times around in t he direction of increasing 6 . To make 

further identification it is helpful to rearrange the terms in 

equation (2 . 2.6), to reveal also (1) which waves travel around in 

the direction of decreasing e, (2) which wave just grazes the cavity 

for a field point near the upper shadow boundary, and (3) which 

wave is diffracted around the lower part of the cavity. We are 

guided towards the correct rearrangement by noting that physically 

we expect <p (r,6) = <p (r,-6) and in particular that the upper 
s s 

and lower shadow boundaries are symmetrical. 
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Using the relations 

and 

(2 . 2 . 6) becomes 

( A( r ,2m" +6) + A( r ,2m" -e)) 1 
j 

+{f.i" I'll (1) J~ i (e-1) 
Hv (hr )dv + e 

n H (2) (ha) 
H (1) (h r ) _ 1 --;V,,=", __ 

v n H(l) (ha) 
1 v 

o 

H(l)(hr)dv ' 
v ' + J

~ i V' ( - e~2) 
e H(l) (hr) 

v ' 
_nl_H..:;,~7,,)_(h_a_) dV} ] 
n H( l) (ha) 

1 v ' 

(2 . 2 .7) 
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Evaluation of ~ Near the Upper Shadow Boundary s . 

The first infinite sum in (2 . 2 . 7) represents waves that, from 

their phase, we identify as having travelled m times (m ~ 1) 

completely around the cylinder. These waves attenuate with distance 
1 

at a rate proportional to (ha)' and arrive much 1ate~ outside the 

time-window we are interested in, so we may ignore them. The integrals 

in the remaining two brackets { } ' represent waves which have not 

travelled completely around the cylinder. 

From the interference argument mentioned above, we expect to 

ge t contributions for the integrals in (2 . 2.7) from those regions 

near v ' = - ha and (since in fact v ' = - v) v' ha . Near 

the upper boundary of the shadow, the second bracket { } is then 

seen to be negligible relative to the third . Just the opposite 

is true when we consider the lower boundary of the shadow (but 

with contributions still coming from ·v = - ha, v ' = + ha) . Our 

interpretation is thus that the second bracket describes the wave 

travelling via the bottom of the cylinder, and the third bracket 

that via the top . For our evaluation, the diffracted contribution 

via the bottom of the · cylinder is negligible, and we may take just 

the third bracket .{ } in (2.2.7), writing it now as 
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1 ~\I -e-i-f 
H~ ) (hr)d\l + e f

~.( 1T) 

, 
for (ha)3 1 h h d b d » ,near t e upper s a ow oun ary . 

Following Rubinow and Keller (1961), we use 

where 

al(r, - e) f
ha i \l (- e+1T/2) (1) 

_ e H (hr)d\l 
\I 

o 

ha 

I 
i \l(- e+1r/2) 

a2 (r , - 6) " e 

n H (2) (ha) 
_ 1 ...:;\1-=-<"" __ H (1) (hr) d\l 
n H (1) (ha) \I 

1 \I 

+ r ei\l (- 6+,,/2) [ 

ha 

To evaluate aI, we may use the Debye formula for H(l) (hr) 
\I 

(since hr > ha and ha is large) to obtain 
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(2.2.8) . 

This integrand has just one stationary phase point , given by a value 

v = v such that 
s 

e Le. v 
s 

hy. 

For P(r, e) near the upper shadow boundary (see Figure 1), this 

stationary phase point is near the upper limit of integration in 

(2 . 2 . 8) . Making the definition 

(v-v) 
s 

and expanding the phase within (2.2 . 8) as powers of ~ , we find 

ihx 2 -i7f /4 al(r, - 8) ~ e ' e • 
.;; j 

(~j (a- y) 

- (~jy 

i~2 
e d~ • . 

The uppe r limit is small near the shadow boundary, and the lower 

limit is large for high frequencies; so this Fresnel integral may 

be approximated by 



ihx 
al (r, - 6) - e 

1 

Oxf y » 1 
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if bot h 

and (~J!;. I a-y I « 1 

For regions in which the second condition is invalid , al( r,-6) may 

be found from a table of Fresnel integrals . 

To evaluate a2(r, - 6) , we may still use the Debye expr essions 

for H(l) (hr) and find near v = ha that 
v ' 

i (hx -- e 11/4) . ( _2 )3: 
1Ihx 

But , for H(~) ' (ha) and H(~)(ha) (~= 1,2), the simple Debye 
v v 

approximations are useless. Since argument and order are nearly 

equal , some form of Langer approximation is necessary (see "Higher 

Transcendental Functions" by staff of the Bateman Manuscript Pr oject, 

1953 , Vol . II, p . 89), and we discuss this below in t he sect ion 

on numerical results~ 
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Then 

a2(r, - 9) 

and Cp( w) is evaluated below , numerically. 

In summary : we have for 4> = 4> . + 4> that 
~ s 

~ ei(hx- wt) {1:. _ (_1 )i 
¢ ih 2 2r.hx 

- iTT /4 [ 
e h (a- y) + 

Scattering of SV 

The incident wave may be represented by 

.!.. 

(ha)3 

1 
i (krcos 9- wt) 

ljJ i ik e 

The conditions (i) and ("ii) allow us to write 

i(n9- wt) 
(i) n C H(l) (hr) e 

n n 

where 

(2.2.9) 

(2 . 2.10) . 

(2 . 2. 11) 

00 

1 ~ (i)n D H(l) (kr) ei (n9- wt ) 
- ik L n n 

n=-co 
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and condition (iii) then gives 

1 n4 J (ka) ] [ n3 H(2) (ka) ] 
C = - "2 H~l) (ka) ) 

D = 1 1 + n 
n n3 n - "2 n3 H~l) (ka) 

where we have defined the operators 

, R, 1,2 

d P (R,) Q ( R, ) R( R, ) s ( R, ) d f· d <n an , , , are e 1ne • 

Discussion of ~ (i .e. SV- SV scattering) s 

(2 . 2 . 4) . 

(2 . 2 . 12) 

(2 . 2 . 13) 

We use a Poisson sum formula, just as before . Thus , defining 

V(r , S) 
-r e iV (S+1T/2) H(l)(kr) dv 

v 
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we have 
00 

ljis = + 2~k L V(r,2m1T+e). 
m--

We find that this sum may be rewritten and interpreted term by term 

just as we interpreted equation (2.2.7), so that for an evaluation 

near the upper boundary of the shadow we have 

1 {foo 

i v(- e+n/2) (1) 
lji s = + 2ik e Hv (kr) dv 

o 

-
/ 

n H (2) (ka) 
3 v 

H (1) (kr) 
v 

for (ka)3 »1 . We expect the major contribution to come from near 

v = ka, and so we write 



where 

d2 (r ,-e) 
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_ fka iV( - e+1T /2) (1) 
e H (kr) dv 

Q 

=_ 

f
ka e iV( - e+1T/2) 

+ r eiV ( - e+1T/2) [ 

ka 

v 

dl corresponds to al above, and so 

if both and (~x)~ I a- y I « l. 

H(l) (kr) dv . 
v 

To evaluate d2 near the upper boundary, we may again use the 

Debye expansion 
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I 

e i \l ( - 6+;r / 2) H(l) (kr)- e i (kx- ;r /4) ( 2)"i near \I = ka . 
\I ' \ ;rkx 

For H (2 ) '(ka) and H ( 2) (ka) ( 2 1,2), we shall use the Langer 
\I Ii 

approximation . Then 

where 

.L 

d2(r, - 6) _ ( _ 2_ )2-
lIkx 

C SV( w) = _ 1_ , [ 
(ka)l 

i(kx- 1I/4) e • 
J. 

(ka) , 

d\l + r 
ka 

The function CSV( w) is evaluated below, numerically . 

that 
In summary : we have for $ = $ . + $ 

~ s 

(2 . 2 .14) 

i(kx- wt) 
e ---
ik 

1 1 >. -i 11 / 4 . "3 

{
.I. [ 'J} Z-(211kX) e k (a-Y)+(ka) CSV( w) 

(2 . 2.15) 
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Scattering of SH 

. i (krcos e- wt) The incident wave has its d~splacement u. = (0,0,1) e 
"'l. 

parallel to the axis of the cylinder. The z component of the dis-

placement satisfies the scalar Helmholtz equation 

(,,2 + = a 

and the stress-free boundary condition on the cylindrical boundary 

r = a, 

11 a u = a 
ar z 

This boundary condition has been studied by Rubinow and Keller (1961) , 

and from their results we have 

,., (0,0, 
1 
2 

e- i rr / 4 [ k(a- y) 

where 
- 0.4321 x (1 + f3 i) 

(2 . 2 . 16) 
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This asymptotic solution is valid for 

y » 1 

The Shift of Shado" Boundaries 

Using Cartesian coordinates, "e see from equations (2.2.1) and 

(2 . 2 . 10) that the total P- "ave displacement field near the upper 

shado" boundary for P- P scattering is 

e - i rr /4. 
-- y. 
( 2rrhX) .. 

- 3irr /4 
e , 0) ei(hx- wt) 

'( )V;. 2rrhx 

From this expression, "e see that on the geometrical boundary y = a 

u + (i,o,o) i(hx-wt) 1 
e = 2 %. as w-+ oo 

Therefor e , follo"ing the method of several other authors [for example, 

Rubino" and Keller (1961), Nussenzveig (1965)], "e make the practical 

definition that the shado" boundary for finite frequencies is the 

curve on which I ~ I = i. It is then a simple matter to show that, 
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\Vl 

if ( ha) » 1, the shadow boundary is y ~ a + sP' where sp is the 

"shadow boundary shift," and 

(2.2 . 17) 

Similarly, for SV- SV scattering, we have 

( 

i rr /4 1 - iTf/4 [ " e e ''3 .:: - ( ):l:':2 - :i k(a- y) + (ka) 
2Tfkx ( 2rrkX) 

and (2.2 . 18) 

For SH- SH scattering u is given by equation (2 . 2.16) 

and sSH ~ - 1.1806 (karJ a- (2 . 2. 19) 

Numerical Method and Results 

Me thod 

He present here the evaluation of C
E 

(w) and CSV(w) (see 

equations (2.2 . 9) and (2.2.14)), and of amplitudes near the shadow 

boundary. 

The elastic medium was assumed to have a P- wave velocity 
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a of 13.6 km/sec, and an S-wave velocity e of 7 . 5 km/sec, and 

embedded in it a cylindrical cavity of radius a = 3480 km. These 

assumptions make the computational results also comparable to 

previously obtained model- experiment data (Teng and Wu, 1968). 
, I 

Although the theory is valid for (ha)3 » 1, (ka) 3 »1, the computation 

was made over the frequency range 0.01 Hz ~ f ~ 5 Hz , which corresponds 

to intervals 16 < ha < 8000, and 30 < ka < 15000 . A general Hankel 

subroutine described by Berry (1964) was modified and incorporat ed 

into the program. 

Inspection of the integrands for Cp(w) and CSV(w) shows that 

three types of numerical evaluation of Hankel functions are 

required . 

(i) For Cp(w) we need H~l)(ka) and H~l)' (ka) fo r v near ha . 

These two functions are oscillatory . 

(ii) For CSV(W) we need H~l)(ha) and H~l) ' (ha) for v near ka . 

These two functions are exponentially large . 

(iii) For both Cp(w) and CSV( w) we need H~k)(z) , H~k)' (z) 

(k=l,2) for order v varying in value near fixed z . 

(z = ha or ka.) 

In fact, in cases (i) and (ii) it is only the ratio H(l)' (z)/H(l)(z) 
v v 

R(v , z) (say) which is needed , with v not near z . R satisfies exactly 

the Riccati equation 
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R' = - ~ - ( 1 - ~) - R2, and R varies slowly . So 

approximately 

R(v , ka) 1 
+ i [ 1 

v2 1 ] ± for v near ha - 2ka - k2ii2 - 4k2a2 

1 

R(v , hal 
_ -..1 _ _ 

[ - 1 
v2 

1 J ~ for v near ka . 2ha + h2a2 + 4h2a2 

Calculation of R by these formulae is correct to within 1%, when 

checked against values returned by the HANKEL package . So this 

approximation is used in cases (i) and (ii). 

For cases (iii) , t he HAhTKEL package uses Langer approximation 

in t he form 

, k 1,2 , 

wher e ~ = v (tanh n - n) and n = cosh- 1 viz . A subroutine for Hankel 

func tions of order 1/3 is included, and H(k) ' (z) is found from the 
v 

recurrence rela tion H(k)' (z) = H(k)( z) - (viz) H(k)(z) . 
v v v 

The numerical evaluation of case (iii) was checked a gainst 

two constants referred to in Rubinow and Keller (1951) , namely 



f
z H~2) (z) 

H(l) (z) 
v 

_ 00 
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C
2 

" lZ 3
l 

[ f Z _H V7:( 2,,) " (_z_) 
H(l) • (z) 

v 

dv + 
H(2)' (z) 

+ v 
H(l) • (z) 

v 
}] (2.2.20) 

- z 

Rubino" and Wu (1956) sho" that it is only the re gion of Langer 

approximation "hich contributes to the integral, and after path 

deformation and residue summation obtain 

Cj'" 0.49808 x (1 + /3 i) C2 '" -0.4321 (1 + /3 i) . (2 . 2.21) 

Using our HANKEL package, together with a Simpson integration me thod, 

"e find Cj and C2 are indeed almost independent of z, for the range 

16 < z < 10,000, since Rubinow and I'u's values are returned to within 

1 % "2 0 0 

The integration path for Cp(w) and CSV(w) in equations (2 .2.9) 

and (2.2.14) is the real order axis. Although this is an adequate 

path for numerical evaluation, a better path is that shown in Figure 3. 

Whenever a complex path might involve extra contributions, from 

complex poles not near A, the real axis integration was evaluated 

as a check. The advantage of the complex path shown is that the 
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integrand decays exponentially on either side of the point A, where 
, , 
- 3 

order equals argument, and a path length of about 4z' or 5z is all 

t hat contributes. For a real axis integration, the integrand to the 

left of A oscillates with slowly decreasing contributions as the 
, 

frequency of oscillation increases, and a path length of about 15z' 
, , 

or 20z must be taken. 

Results 

We first present in Figure 4 the computed complex functions 

Cp(W) and CSV(w), for t he frequency range 0.01 Hz - 5 Hz . The 

computation becomes less relevant near the low- frequency end - because 
, 

then (ha) ' ~ 2 . Nevertheless, some values are presented for these 

low frequencies, and the theory is believed to be good for frequencies 

above 0 . 03 Hz . 

It is interesting to compare the results fo r elastic waves with 

the results for acoustic waves . Figure 5 shows the quantity 

H = IRe C + 1m C], which is proportional to the shift s of shadow 

b oundaries . H is a negative constant for a hard cylinder ( on which 

t he normal derivative of the field vanishes) and is a positive 

constant for a soft cylinder (on which the field itself vanishes) 

(see Rice (1964); Rubinow and Keller (1961) . In fact, for a soft 

cylinder H = Re C
l 

+ 1m C
l 

(see equation (2 . 2 . 21)) , and for a hard 

cylinder H = Re C
2 

+ 1m C
2
)). Thus we see that for our SH-wave 

we have exactly the hard cylinder acoustic problem. For p- or SV-wave 
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incidence, H becomes frequency dependent, tending with high 

frequencies to the acoustic soft cylinder value - a fact we can 

expect by seeing directly from (2 . 2 . 9) and (2.2 . 14) that C (w) and 
P 

CSv(w) both tend to the integral for Cl (see (2.2 . 20)) as w + =. 
The shifts of the shadow boundary are shown in Figure 6. At a 

given frequency, incident P- and SV- waves would "feel" an effectively 

1argor scatterer than its true size, whereas SH waves would "feel" a 

smaller one . At high frequencies, all shifts correctly approach 

zero (i . e . the shadow boundary approaches its geometrical limit) . 

At lower frequencies, the amounts of shadow shift for different 

wave types diverge . For long period body waves, e . g . with period 

20 seconds, the cylindrical scatterer of radius a = 3480 km would 

seem to be 90 km (2.6%) larger to P-waves, and 290 km (8 . 3%) larger 

to SV-waves, but 150 km (4 . 3%) smaller to SH- waves . 

Further discussion of t hese results is deferred to the following 

sections, in which we develop (1) the generalization to a line source, 

and can thus compare our theory with the results of Teng and Wu (1968) , 

and (2) the generalization to point source and spherical scatter er , 

permitting comparison with Phinney and Cath1es (1969). 

2.3 Diffraction of Cylindrical Waves by a Cylindrical Cavity 

The nature of the diffraction of a cylindrical wave by a cylinder 

is qualitatively different, in the far field, from the nature of the 
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diffraction of a pl~,e wave (see Shenderov (1962)) . This is because 

the amplitudes of incident and scattered waves decay with distance 

according to the same law, for cylindrical incidence, but a plane 

wave does not decay at all . However, we shall see below that for the 

intermediate distances of geophysical interest, the field set up by 

cylindrical incidence can be quantitatively derived in a very simple 

way from the plane wave cases considered in Section 2 . 2 . 

Statement of Elasticity Problem 

A steady- state cylindrical wave of displacement, emanating 

from a line source at distance b from a circular cylindrical cavity 

of radius a (see Figure 7), is incident from the left on the cavity . 

I,e wish to evaluate displacements near the shadow boundary. 

Scattering of P- Waves 

In order to obtain the simple form 
ihR e for the incident 

displacement (at high frequencies), we choose the displacement 

potentials 

- iwt e .pi o . 
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An application of Graf's addition theorem (Watson, 1958) gives 

n=- CXI 

So we take 

H(l) (hb) 
n 

~ s 

inn/2 
e 

inn/2 i(ne- wt)(f b) e • e or r < • 

A H (1) (hr ) 
n n 

B H(l) (kr) 
n n 

inn /2 i(n9- wt) 
e e 

(2 . 3 . 1) 

The boundary conditions of zero normal and tangential str ess on r = a 

then give the forms (2 . 2.3) for A and B , i . e . 
n n 

A = 
n 

1 
2 

where 01 and 02 are defined in (2 . 2 . 4) . 

Hence we see that the step by step me thods of section (2.2) 

may be duplicated for the problem of a line source . After identification 

and rejection of waves which travel around the cavity, and the 

contribution from the lower half- cylinder, we may drop the r estriction 

r < b (by an appeal to reciprocity) , and obtain 
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where now 

o 

EvaluAtion of a j(r, - S) 

i vrr /2 
e 

n H (2) (ha) 
j v 

H( l) (hr)dv 
v 

H(l) (hr)dv . 
v 

Since hr , hb ar e bigger than v t hroughout the integration , we 

may use Debye expansions to see 

aj(r, - S) 2 -2irr /4 - -e 
rr 

o 

x 



-42-

This integrand has just one stationary phase point, given by a value 

such that 

a i.e. v ; hy (see Figure 7). 
s 

For P( r, a) near the upper shadow boundary, this stationary phase point 

is near the upper limit of integration . Making the definition 

we find 

al ( r ,-8) 
ihR 

~ e 

(v- v) and expanding the phase in powers of ~, 
s 

2 - 2in/4 -e 
n 

r'J Ir~R I e i (hR- n/4) [ 1 + e- in / 4 J;~~R21 (a-y) ] if both 

y » 1, 
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Evaluation of a2(r, - 9) 

I.]e may still use the Debye expressions for H(l) (hr) , H(l) (hb) 
v v ' 

and so near v = ha 

2 - i1l/4 i(hR- 1I /4) 
e e 

11 

2 e- iTr / 4 

~ -"h ~/;::;R;1:;R=2 
i(hR- 1I /4) 

e . Then 

where Cp(w) is the function defined above for plane incidence, in 

equation (2 . 2 . 9). 

In summary : we have for <I> = 

Discussion 

4>. + <I> that ]. s 

t 
+ (ha) 

(2 . 3.2) • 

We see from (2.3 . 2) that in the neighborhood of the geometrical 

shadow boundary (which is given by y = a) the P-wave displacement 

due to a line source is still directed along a ray from the source, 

and is 



ihR 
e - irr/4 

e 

He still have the result 

1 
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~ + 2 ~on t he geometrical shadow boundary, as w +~, 

(2 . 3 . 3) 

so we may still define the shadow boundary shift as the distance from 

geometrical shadow boundary "to t he half ampli t ude line. From (2 .3. 3) 

we see that the half amplitude line still has the equation y = a + s , 
p 

where sp is the shift for plane waves (see 2 . 2 .17) . But this line is 

radial to the source, and hence diverges from the geome trical shadow 

boundary . In fact, we see 

R 
SHIFT I 

P- wave, line source 
= - x SHIFT I Rl P-wave , plane source 

~l x [Reep (w) + ImS> (w) ] 
- '1 

(ha) . a 

(2 . 3 . 4) 

The simple geometrical relation between the shifts for a line source 

and a plane source is illustrated in Figure 8 . 

Theoretical consideration of SV and SH line sources yields the 

same geometrical relation as (2.3 . 4) and Figure 8 (although the SH 

shift is negative). 
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Numerical Results 

A model experiment described by Teng and Wu (1968) gives several 

measurements of the shadow boundary shift for P- and SV- waves . Their 

Model I and Model II, illustrated in Figure 9, were thin sheets of 

aluminum with a "pulse" of one dominant frequency, and with a circular 

hole as the scatterer . The velocity of P- waves in s uch a plat e is 

given by 

a = (for Lame cons tan ts A and ~ , and densi t y p) , 

since we can assume this is a system in plane stress (see Love , 1944 , 

p. 208) . Table 1 shows the shifts calculated from our theory 

(equation (2 . 3 . 4)), and Teng and Wu's experimental values . Also in 

this table is the geophysical body- wave period fo r which the model 

is scaled. 

The me t hods of this chapter receive encouraging confirmation 

from the a greement in Table 1 between theory and experiment . But 

direct application of our theory to diffracted seismic waves s t ill 

requires additional generalization, given in the following sections . 

2.4 Diffraction by a Fluid CYlinder 

The effect on shadow boundaries of a fluid scatterer (as opposed 

to scatter by a cavity) is difficult to estimate, even quali t atively . 
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The boundary conditions become much more complex, and we must allow 

for internally reflected waves. But solution of this problem is 

important in geophysics, since we have seen that we expect the location 

of the shadow boundary to be dependent on physical properties at the 

core-mantle interface . We shall see below that our theory requires 

very little extension to accommodate the case of fluid scatterers . 

Statement of Elasticity Problem 

A steady- state cylindrical wave of displacement, emanating f r om 

a line source at distance b from a circular cylindrical fluid of 

radius a (see Figure 7) is incident from the left on the fluid . We 

wish to evaluate displacements near the shadow boundary. We take 

p, h, k as the density, and P and SV wave numbers in the solid, 

and p', h' as density and wave number in the fluid. 

Scattering of P- waves 

As in section (2.3) , we take ~. = ;rr-; e-iTI / 4H(1) (hR) e- iwt 
1 /~ 0 

$ . = O. Clearly, we may solve for the total scat t ered field by 
1 

writing three potentials in the form 
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~ 

H(l)(hr) i(ne- wt) T 
L 

P- wave r > a 
~ ~ a . e 

s n n 
n=-~ 

,T b H(l) (kr) SV- wave in r > ~s n n 

'T 
~s a' J (h'~ P- wave in r < 

n n 

(2.4 . 1) 

and then solving for (a , b , a') from the continuity of radial n n n 

displacement, and tangential and normal stress, across r a . But 

a 

a 

for a source emitting waves with high frequency energy, it is standard 

seismological practice to separate a record into P, PP, PcP, PKKP , 

etc., and to think of these phases as having different ray paths . 

The potential ~! of (2.4.1) includes all such contributions (except 

the types PP, PcPPKP, etc . , which involve reflection from the free 

surface), and the problem of splitting ~T for these phases is quite 
s 

well understood (see Bremmer, 1948, Chap. III; Scholte, 1956; Duwalo 

and Jacobs, 1959, for solutions in spherical geometry) . Since we 

are concerned with the interaction of P and PcP at and near grazing 

incidence, we wish to set up scattered wave potentials ~s' ~s in the 

region r > a which ignore phases transmitted through r < a . 
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This is done by showing that the solution for each a , b in (2.4.1) n n 

can be written as a geometric progression in the form 

H (2) (ha) {,eel + 
(H(l) (h'a) r 1 w 

1 1 n (LL I) . L (L'L,)N n · (L ' L) a = --+-
H(l) (ha) n 2 2 

N=O H(2) (h'a) 
n n 

b = t (1) (LT)+(LL')· L 
H(2) (ha) { w 

n . H (ka) N=O 
n 

(L'L,)N ( _Hn7,(l,..,.)_(h_ '_a_) )N+l. (L'T} 

H(2)(h l a) 
n 

where the symbols (LL), (LL'), (L'L'), (L'L), (LT) , (L'T) (of Scholte, 

1956) may be identified as reflection and transmission coefficients 

in the following way: the term with index N represents (when 

slli~ed over n in (2.4.1)) an arrival which approximately has the 

phase appropriate to a ray path made up by N internal reflections 

within the core . That is, PKK •• ·.KP (for an)' and PKK ••• KS (for bn), 

with N + 1 K1 s in each case. The initial terms , 

1 
2 

H (2) (ha) 
n 

H(l) (ha) 
n 

H (2) (ha) 

(LL) ] =: 

n 
--'H ("-1-0-) -(h-a-) (LT) - B n 

n 

A 
n 

(say) 

and 
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r epresen t arrivals wi th the respective phases of PcP and PcS, 

so these are the terms which we wish to study . (Note that since 

we have a steady s tate source, the signals coming along all the 

different possible paths are superimposed . So the identification 

of specified modes of 'propagation is performed by studying their 

phase , and not t heir travel time) . 

The manipulative procedure for obtaining the above expansions 

of (a , b ) is quite lengthy, and so an alternative method is 
n n 

given below for t he introduction and calculation of the required 

(A , B). It may be shown that the same result is reached by 
n n 

either method . 



-50-

Potentials for PcP and PcS 

The n- th partial "ave component within the fluid is chosen in 

equation (2 . 4 .1) to have the factor J (h'r). This choice must be 
n 

made to avoid any singularity at r = O. But J (h'r) is a sum of 
n 

ingoing and outgoing waves , although the sys tem of a P- wave source 

and conversion to PcP, PcS r equires only an ingoing wave within the 

fluid . (Tne outgoing wave within the fluid may then be thought of 

as generated by reflection in the origin: upon reaching r = a, it 

generates PKP, PKS, and another ingoing componen t in the fluid . ) 

Hence, for our examination of PcP, it is necessary to ignore 

H( l)(h'r) terms within the fluid, and we use potentials (cf equation 
n 

(2.3.1» 

1jJ s 

o - iw/4 
/Th" e 

H(l) (hb) 
n 

n~-c:o 

inw/2 
e A H (1) (hr) 

n n 

B H(l) (kr) 
n n 

A'H(2) (h ' r) 
n n 

inw /2 i(nS - wt) 
e e 

(2 . 4 . 2) 
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The boundary conditions on r = a then give 

1 
B = - -

n 2 Q H (1) (ha) 
5 n 

Q H( ~)(ha) 
5 n 

p' ( 2) 

u. (2) 

_ . ( (2) [ (l) P ' (2) (l)J (1) [(2) P' (2)u(2)]) 
Q6J (ha) = + 1. R P - (2) U - R P - (2) • 

n U. U' 

(2 . 4.3) 
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Since the operator Os obeys the same reflection rules as OJ , 

(1) 21fiv (1) 
namely 0sH (ha) = e 0SH (ha), -v v 

the methods of section (2 . 3) for scattering by a cavity may now be 

applied for the present problem of scattering by a fluid . We find 

the asymptotic solution for P- wave displacement is still directed 

along the ray f rom the source (see Figure 10), and is given by 

ihR 
e 

e 
- in /4 

and the shadow boundary shift is 

SHIFT, 

P- 'tV'ave, line- source, 

fluid scatterer 

where 

[ 
I/~ FLUID l} 

h(a- y) + (ha) cP (W)J' 

(2 .4. 4) 
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Theoretical consideration of an SV source leads to a result just 

like (2 . 4 . 4) , but with C!LUID(w) replaced by 

(2 . 4 .5) 

(.0 [(1) p' (2) 
S p - u' (2) 

p , (2) (~) ] 
- V 

u' (2) 

(2 . 4.6) 

( ~ ) (1) are given above in (2 . 2 . 4) and (2 . 4.3). 
where S , ••• • • , R 

The SH scattering is of course unaffe cted by a fluid core. 
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~umerical Results 

In order to estimate t he effect of a fluid scatterer, C~UID and 

c~UID were computed from formulae (2.4.5) and (2.4.6), for the 

wodel with a = 3480 km, a = 13.6 km/sec, e = 7.5 km/sec, p = 5.5 gm/cc, 

a ' = 8 .3 km/sec, and p' 9 . 5 gm/cc . The real and imaginary parts 

of these functions are displayed in Figure 10, plotted as functions 

of frequency. The shadow boundary shifts were t hen calculated (using 

(2.4 . 4)) for both source and receiver at radius 6350 km, and our 

results are shown in Figure 11. A convenient way of describing the 

shift is to give the distance~, , in degrees, from the source to the 
l 

half- ray- amplitude point on the arc with radius 6350 km. This method 

is used in Figure 11, and for reference we note that the geometrical 

shadow boundary is at ~ = 113.54°. Also shown in this Figure are the 

shifts due to scattering by a cavity, in the same model . 

From these numerical results, we see that in the frequency range 

1 of geophysical interest (corresponding to periods between 2 sec and 

20 sec) the different boundary conditions of cavity and fluid give 

rise to substantially different shifts, particularly for P- waves. The 

shadow shift for P-waves scattered by the fluid is very small - as 

we might expect, since the solid and fluid are acoustically matched 

(pa ~ p'a ' ) and the PcP reflection coefficient is small . But the 

shifts for S-waves are quite large, about 2° at 10 sec period, with 

SH and SV being affected in opposite senses . 
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We expect the shadow shifts for line source/cylindrical scatterer 

and point source/spherical scatterer to be very similar, because they 

have been shown (Rubinow and Keller, 1961; Rice, 1954; Nussenzveig, 1965) 

to be similar for more simple boundary conditions . So the numerical 

results above may be directly relevant to the geophysical problem of 

core- scattered body waves. However, the theory may be simply extended 

to the case of point source and spherical core, and in next section 

below we develop numerical results for this model. 

2.5 Diffraction of Spherical Waves by a Spherical Fluid . 

Statement of Elasticity Problem 

A steady-state spherical wave of displacement, emanating in an 

elastic solid from a point source at distance b from a spherical fluid 

of radius a (see Figure 7), is incident from the left . We wish to 

evaluate displacements near the shadow boundary . We take p, h , k as 

the density , and P and SV wave number s in the solid, and p ', h' as the 

density and wave number in the fluid. 

Scattering of P- Waves 

In order to obtain the simple 
ihR 

e form ---- for t he incident dis ­
R 

placement (directed radially from the source), we choose the 

displacement potentials 
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~i ; O. We use spherical coordinates (r,e,$), in which 

the displacement components are related to potentials by 

u ; grad $ + curl curl (r~ ,O,O). 

We have an additional formula in the form 

L 
n;O 

(2n +1) h{l){hb) j (hr) P {cos (n-e)) 
n n n 

for r < b 

(see Abramowitz and Stegun, 1964, p. 440, 6th printing or later) 

where h{l) and j are spherical Hankel/Bessel functions, 

and P is a Legendre function of the first kind . Following the 
n 

reasoning of section (2.4), we set up potentials $s' ~s ' and $ ~ for 

respectively PcP, PcS and the ingoing component of core body waves, 

and t hen solve for coefficients an' b , a' in 
n n 

~s 

$ ' 
s 

L 
n;O 

(2n +1) h (l) (hb) 
. n 

j (hr) 
n 

a h (l) (hr) 
n n 

b h (l) (kr) 
n n 

a'h(2) (h ' r) 
n n 

P (cos{n- e)) • 
n 

(2 . 5.l) 
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The solutions for (a , b ), found with a ' from the requirements 
n n n 

of continuous stresses and normal displacement across r = a, may 

be written in the form 

1 [ n5h~2) (h a) ] 
a = - - 1 + ---';,0-0---

n 2 n 5h~1) (ha) n h (1) (ha) 
5 n 

where 

n h ( ~ ) (ha) 
5 n 

(1) [( R. ) p' ( 2) ( ~)] f ( 1) p' (2) (l~ ( R. ) 
- s p - (2) u + q - (2) v r 

u' '- u' 

(R. ) 
P 

(1) p' ( 2) (1) (l{ (2) p' (2) (2)J 
p - (2) u + r p - (2) u and 

u' u' 

- 4 ha h~R. ) I (ha) + [k2 a 2 - 2n(n + 1) ] h( R. ) (ha) 
n 

q ( R. ) ;; - 2n(n +1) ( ka h~R. ) I (ka) _ h~R. ) (ka) ) 



u(~) _ ha h (~)' (ha) 
n 
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(2 . 5 . 2) 

He separate in 4> those waves which travel more than once a r ound 
s 

the core by using a Poisson sum formula . In our case , t his takes 

the form 

00 

- i L 
m=-oo 

with 

f(v) 

The terms from m = 0 may be split by using 

P (cos ll) 
n 

= 1:. [p (cos 2 n 
2i 

ll) + - Q (cos 
1f n 

_ Q~l) (cos ll) + 

2i1fmv e dv (2 .5. 3) 

ll) - - Q (cos ll) 2i ~ 
1f n 
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where Q is a Legendre function of the second kind, and Q(l) and Q(2) 
n n n 

may be shown to represent travelling waves (see Nussensveig , 1965 , 

p. 96), in respectively the negative and positive ~ directions . 

Hence , we may use near the upper shadow boundary the formula 

(2 .5. 4) 

The basic method of section (2 . 2) is still complet ely app r opr iate . 

Noting the result 

(2) ( ) Q I cos(1T- 8) ~ 
\1 - '2. 

).. 

( )

1 i[V(1T- 8) - 1T/4] 

21TV;in8 e , we can obtai n 

-i1T/4 R 3 i~ L 
e / 21ThRIR2 h(a- y)+(ha) 

near the shadow boundary, where now 

1 (2 . 5.5) 
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Scattering of SV- Waves 

Similarly, 
ikR 

for a SV- wave source with potentials $ . = 0, 
~ 

e 
Wi = ikR the total SV- wave potential near the shadow boundary is 

with 

ka 

o,,~~t ,h",+ r( , il7h (2~ (ka) 
1 [ f CSV(w) + V<i: 

- '/ n h (l? (ka) il h (l~ (ha) (ka) 3 7 V-- 7 'V -I 
0 • ka 

n h (i) (ka) 
7 n 

( i ) [ (1) p' (2) ( l ~ ~ ( i ) p ' (2) 
- s p - I (2) u t Lq - I (2) 

. u u 

Scattering of SH- Waves 

) dV] 

r 
(1) 

(2.5 . 6) 

The SH- wave in spherical coordinates may be expressed ' as 

and 

u = curl(rx , O,O) where the potential X satisfies V2X + k2 X=0 . Using 

the boundary condition of zero tangential stress on r = a, with an 
ikR 

e 
SH source potential Xi = ikR , we find the total SH-wave potential 

near t he shadow boundary is 
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x l eiTr /4/ R I [k(a- y) + (ka}'/~ csH(w)l} 
2 - 2wkR1R, ~ 

with 

[ 

ka (2) t (2) 

J 
kah ,(ka) - h ,(ka) 

- (k~) ~ -kah----;("'"~ _~; "(-k-a)--h--c(,","~~~ -(k-a-) 
o v -~ v-~ 

dv 

kah~=~ I (ka) - h~~~ (ka)) dV] 
+ (1) I (1) 

kah L (ka) - h , (ka) 
V -:a.. V -z. 

(2 .5.7) 

Numerical Results 

We first present in Figure 12 the computed functions Cp( w) and 

Csv(w) for the frequency range 0.01 Hz - 5 Hz, for the model with 

a = 3480 km, a = 13 . 6 km/sec, S = 7 . 5 km/sec, p = 5.5 gm/cc , a ' = 8. 3 

km/sec, and p' = 9 .5 gm/cc . The results are also given for a spherical 

cavity . It may be seen from a comparison of Figure 12 with Figures 4 

and 6 that a change from cylindrical to spherical scatterer makes 

very little difference to the Cp(w) and CSV(w) . This is then direct 

confirmation of a result (mentioned in Section (2 . 1)) which we would 

expect from a survey of the solutions published fo r simpler boundary 
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conditions (Rubinow and Keller , 1961; Nussenzveig, 1965) . Namely , 

that there is a strong similarity among solutions for cylindrical 

and spherical scatterers with the same boundary·· conditions. 

The function CSH(w) may be calculated from equation ( 2 . 5.7), 

and it is found to be essentially independent of frequency for 

f > 0.1 Hz, taking t he value Cz (see Equation (2 . 2 . 20» which arises 

in a discussion of the cylindrical scatterer . The slight frequency 

dependence of CSH(w) at lower frequencies is such that t he relation 

ReCSH(w) + ImCSH( w) ~ ReCz + ImCz is maintained . But this is the 

combination of real and imaginary parts which appears in our formula 

for shadow boundary shift (see e . g . (2.2 .18) and (2.2 . 19», and so 

there is confirmation of the similari t y among cylindrical and spherical 

solutions for the boundary conditions of SH waves also. 

An interesting featur e of the computation for CSV(w) is t he effect 

of what may be described as a "head- wave" at the core mantle boundary . 

Since we have taken a ' = 8 .3 km/sec, and a = 7. 5 km/sec, the diffracted 

SV time path from the source to receiver in the geometrical shadow 

( i . e . travelling part way with velocity S on the mantle side of t he 

core/mantle boundary) is longer than the combination (a) source to 

core/mantle boundary at critical incidence sin- 1 ~ : ; , (b) travel at 

velocity a' on the core side of the core/mantle boundary , and ( c) 

departure at critical transmission from core/mantle boundary to receiver. 
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In ray theoretical terms, this latter "head-wave" may be thought 

of as a contribution to SV "hich has a ray parameter h' a/w . The 

numerical effect is observed in equation (2 . 5 . 6) as a small 

contribution to CSV(w) from values of the integrand near v = h'a, 

and by deforming the path of integration to separate the contribution 

of poles near v = h'a from the contribution of poles near v = ka 

"e have a device for separating the "head- wave" from the diffracted 

SV wave . Even at low frequencies, f ~ 0 . 02 Hz, the head wave 

amplitude is then only 1% of diffracted SV ampli t udes (in the transition 

zone), so the effect is completely negligible in our model . But the 

numerical method of separating "head wave" contribut ions will work 

for models of a spherical boundary bet"een two media in which a 

head- wave is more prominent . A complete discussion of such a boundary 

must of course include waves like SKS, SKKKKS which have horizontal 

phase velocities approaching that of the head wave (see e . g . Chekin, 

1969) • 

A method of finding the accuracy of our t r ansition region formula , 

equations (2 . 5 . 5) - (2 . 5 . 7), is suggested by the methods of Phinney 

and Alexander (1966) and Phinney and Cathles (1969) , in which exact 

formulae for P- wave potential (e . g . our equation(2 . 5 . 4» are evaluated 

numerically. Phinney and his co- workers, and Nussenzveig (1965) , 

show that the total P- wave may be evaluated by a complex path 
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integration in the complex v- plane . For a receiver in the lit zone, 

the path may be chosen to pass through two saddles (at v ~ vI, 

v ~ v2 , say) on the real v-axis, and vI « ha) and v2(> ha) correspond 

to the horizontal phase velocities of PcP and P . As the receiver 

moves towards the geometrical shadow boundary, the saddle points 

~and v2 move together so that vI ~ ha ~ v2 . Beyond the geometrical 

shadow boundary, the complex path integral for the potential is regarded 

as a summation of the residues from a series of poles of the integrand , 

these poles lying near a line in the v plane which starts out from 

v ~ ha at an angle of } with the real v- axis. Phinney and Cathles 

(1969) show that for source- receiver distances of several degrees on 

either side of the geometrical shadow boundary , the same path in the 

v- plane may be used in numerical evaluation of the field . 

We have used this exact me t hod for the evaluation of scattered 

fields, using the FORTRAN program described in Appendix IV . The 

results of such computation (which are given below for P- P , SV- SV, 

and SH- SH scattering) have obvious merit, in that they are the exact 

solutions for our simple Earth model. But the exact results have 

a double purpose, in that the success or failure of approximate 

formulae - which exhibit source- receiver geometry explicitly - may 

also be judged. 
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In order that our results may be more relevant to seismic data, 

we in fact calculate displacement components, rather than potentials 

($ , ~ , X). Thus, for example, we see that the exact formula for 

total radial displacement in P- P scattering from a source with potential 

CP i = 

ihR 
e 

ihR is the radial derivative of potential $ 

Comparing Section VI of Nussenzveig (1965), we have 

4> = - t f 
r 

n h (2~ (ha) 
5 \) -1 

4>. + 4> • 
~ s 

where r is the complex path discussed in our Appendix IV , and so the 

radial displacement is calculated from a numerical evaluation of 

u 
r 

f 
vh(l) (hb) hh(l)' (hr) 

v v 

r 

The model used for our computation is the same as that used 

above for the evaluation of Cp ' CSV ' CSH (fluid core) . We have also 

to specify the source and receiver radii (since the exact method of 

computation does not give any simple explicit dependence on source-

receiver geometry), and take b = r = 6350 km. 
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Our model is then the model 1 of Phinney and Cathles (1969) -

',ith the exception of a S-wave velocity of 0.001 km/sec in their 

"core . " However, a part of Phinney and Cathles' conclusions is that 

this non-zero shear velocity has a negligible effect on the scattered 

field. Our program may also be used to find the potentials (~, ~ ,X), 

and as a check we have obtained the P-P total potential at 0 . 03 Hz 

and 0.3 Hz: Phinney and Cathles (1969) results for periods 32 sec 

and 3 . 2 sec are then accurately reproduced. 

P-P Results 

Figure 13 displays the amplitude of total radial P- wave 

displacement due to a P- wave point source, with scattering from a 

spherical fluid core. The displacement is calculated in three 

different ways, using the formulae listed in Table 2, and the 

calculations are done for the two frequencies 0.1 Hz and 1 . 0 Hz . 

A few degrees into the lit region, the exact solution is seen 

to oscillate slightly about the direct P-wave values. 

In the transition region, our approximate formula is verified. 

(This formula is plotted only for values of ~ such that 

1 I a- y 1""2 see 

our derivation of potentials in Section (2.3) above . ) 
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Beyond the geometrical shadow boundary, the decay with distance 

becomes exponential . At 125°, the P-wave with frequency 0.1 Hz has 

decreased slowly to about 1/6 th of its amplitude at 105° and the 

shadow of the core is not very sharp . But for the 1 . 0 Hz P- wave , 

t he amplitude decreases at 118° to 1/10 of its amplitude at 110°, and 

the shadow is very pronounced . Note that the shadow boundary shift 

is very small (i.e . the amplitude at the geometrical shadow boundary 

is almost exactly one-half the amplitude of the incident P- wave), 

a result we noted in section (2 . 4) above for the cylindrical problem. 

SV- SV results 

Figure 14 displays a normalized amplitude of total horizontal 

SV- «ave displacement due to a SV-wave point source, with scattering 

from a spherical fluid core . The displacement is calculated in 

three different ways, using the formulae listed in Table 3, and the 

calculations are done for the two frequencies 0 . 03 Hz and 0 . 2 Hz . 

A fe« degrees into the lit region, the exact solution is seen 

to oscillate about the direct SV-wave valuesJranging up to 30% 

above and below the ray theory amplitudes . 

In the transition region, our approximate formula is verified. 

Beyond the geometrical shadow, the decay with distance becomes 

exponential. At 125°, t he SV- wave with frequency 0.03 Hz has 

decreased to about 1/11 of its amplitude at 105° - so -at this 
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low frequency, SV is more effectively shadowed than P- waves of 

half the wavelength . For the 0 . 2 Hz SV- wave, the amplitude decreases 

at 118° to 1/10 of its amplitude at 110°, and the shadow is thus as 

sharp as for P- waves of about one third the wavelengt h . Note t hat 

the shadow boundary is 111.3° at 0.03 Hz , and 112 .3° at 0 .2 Hz . 

SH- SH Results 

Figure 15 displays a normalized ampli tude of total horizontal 

SV- wave displacement due to a SH- wave point source , with scattering 

from a spherical fluid core (or spherical cavity). The displacement 

is calculated in three different ways, using the formulae listed 

in Table 4, and the calculations are done for the two frequencies 

0 . 03 Hz and 0 . 2 Hz. 

A few degrees into the lit region, the exact solution is seen to 

oscillate slightly about the direct SH- wave values . 

In the transition region, our approximate theory is again 

verified. 

Beyond the geometr ical shadow, the decay with distance becomes 

exponential. At 125°, t he SH- wave with frequency 0 . 03 Hz has 

1 decreased to about 4 of its amplitude at 105°, and the shadow is not 

sharp at all. Even for the 0 . 2 Hz SH wave , the amplitude only 

decreases at 118° to 1/3~ of its amplitude at 110°, so for a whole 

range of frequencies we may expect SH to be _obs.ervable in the shadow 
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region. Note that the shadow boundary is 120 . 0° at 0.03 Hz, and 

114.5° at 0 . 2 Hz . This is very different from the SV values at 

these frequencies. 

In order that these numerical results may be compared to 

observable body wave amplitudes, we must first obtain the 

theoretical generalization of our basic method for transition 

regions to a model with radial heterogeneity. This generalization 

is obtained below in Section (2.6), but we first conclude the 

present section with a remark on amplitudes beyond the transition 

region. 

Amplitude within the Shadow 

The theoretical aspects of solutions in this region have been 

well understood for over fifty years (Watson, 1919), and we may 

briefly summarize by quoting, in our notation for the P- P scattering 

problem, the results of Scholte (1956) or of Duwalo and Jacobs (1959): 

with source potential $ . = 
1. 

potential within the shadow is 

ihR 
e 
ihR 

at the point (b,O), the total 
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(hai J (2 .5. 8) 

(No te t hat lI> cos- 1 ~ + cos- 1 ~ for stations within the shadow.) 
b r 

The quantities {c . } in equation (2.5 .8) are defined by their relation 
J 

(1) 
to the zeros {v

j
} of OShv_i(ha), as v varies near ha in the complex 

order plane, 

The problems associated with any practical use of equation 

(2 .5. 8) are that the complex numbers {c.} have not been easy to 
J 

obtain. We give here a simple method for the evaluation , which 

relies on the expansion of Hankel functions, in the region 

I ORDER- ARGID!ENT I ~ I ORDER 1'1, , in terms of Airy functions. Thus 

(Abramowitz and Stegun, 1964, p. 367) 
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(2.5.9) 
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These standard formulae are not quite suited to our purpose, since 

we wish to study ~5H(11(ha) for varying v near fixed ha - and then 
v ->. 

v as a function of varying u in (2 .5.9) is difficult to obtain . 

So we define instead the variable 

and then 

h (l{ (ha) 
v - I. 

I Also, 

h~:r (kalh~:i(ka) = i (1 - vZ/kZaZl" 
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These eh~ansions may be used to write n5h(1~(ha) as an 
v- . 

asymptotic series in increasing powers of ( h
2a)'':; The first t hree 

terms may be written explicitly, giving 

t 
- i Tr /3 d where z _ e an 

( 
''3 

F(z) _ Ai(- z) + 2) M 7iTr /6 A"' ( ) ha .I: 1 e ~ - z -

2:; 1 " /3 2 4iTr/3 ~{ ~ (ha) (15 + M2) zel.1T Ai(- z) + ~Oe Ai'( - z) 

with model constants 

_2-

( 1- ~~2) 

-I 

_ B~) 
a 
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We assume that the problem of finding zeros, in the v- plane, 

of " h(l),(ha) d f' d ' { } "5 V- i re uces to ~n ~ng zeros Zj , in the complex z-plane, 

e iTr / 3/2 If]. of F(z) . And t hen we may use equation (2 . 5 . 8) wi th C. = z . 
J J 

But F(z) is simple to evaluate for real values z = 0 . 0, 0 . 1, 0.2, -

since Airy functions are tabulated for these values . The zeros 

in fact have a small imaginary part, and if is a real value 

near the zero z . , we take Newton ' s rule z ,...., x~ - F(x~)/F ' (x?) 
J n J J J 

as our approximation . 
o Note that P' (x.) is also simple to evaluat e , 
J 

since we may use the relation d 
dz Ai ' (- z) = z Ai(-z ) . We find 

below in Section (2 . 6) that zeros may also be found in t his way 

for media which are radially heterogeneous , and we defer computation 

of the {c.} until this generalization has been obtained . 
J 

The above method is certainly simple to use, and is probably 

more accurate t han t he existing met hods for homogeneous media of 

(i) Scholte (1956), who essentially has a graphical method of 

solving Fl(z) = 0, in which Fl(z) is obtained f r om our 

O {( h2afl;} . F(z) by ignor ing the terms in ) 

(ii) Duwalo and Jacobs (1959), who first assume that the {v.l 
J 

are near the zeros which arise in a study of the "soft" 

boundary condition, 9 = 0 on r a . But in fact , for 

geophysical parameters, the {v .} are near the zeros which 
J 

arise in a study of the "hard" boundary condition, 

$' = 0 on r = a . 
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(iii) Phinney and Alexander (1966), who use a numerical search 

directly in the v- plane, but with a Hankel function evaluation which 

ignores the 
r 11 "i 2 )' 

term \ 2ha . (-;) {} in our expansion (2 . 5 . 9) . 

In section (2.7) below, we examine the relation of the real 

par t of 01 to observable array measurements dT 
d~ , and of the imaginary 

part of 01 to amplitude decay in the shadow. But we first extend 

the results of this section to a study of spherically symmetric 

inhomogeneous Earth models . 

2 . 6 Body Waves in Radially Heterogeneous Media . Scattered by one 

Solid/Fluid Interface 

In this section we generalize some of the results of (2 . 5) to 

the transition zone set up by a point source embedded in an isotropic 

elastic medium, with a fluid elastic spherical scatterer . Density 

and elas tic parameters are smoothly varying functions of r adius 

(although discontinuous across the fluid/solid boundary). Many 

special techniques have been developed for finding frequency 

dependent corrections to ray theory, and such general solutions are 

commonly stated as asymptotic series in inverse powers of frequency . 

(See e . g . Seckler and Keller, 1959 a, b; Yanovskaya, 1968; Babich, 

1961; together with the discussion in Bennett and Chess ell (1969) , 

in which such me t hods are compared wi th the known and exact solution 

for a specific inhomogeneous problem.) The first term in such expansions 



- 76-

is identifiable as the product of geometrical spreading (which is 

independent of frequency) and a phase integral carried along the ray 

path from source to receiver . 

However, we see in sections (2.2) - (2 . 5) above, for several 

source- scatterer-receiver geometries, that the ray spreading ,term 

itself requires modification in the transition zone. In this section 

we find the modification in transition zones , to geometrical spreadi ng , 

for spherically symmetric media. We neglect those additional terms 

which arise in a more complete discussion of P/SV/upgoing/downgoing 

interactions in continuously varying media - which terms typically 

are of lower order in frequency than the modified geometrical 

spreading term. Our method involves some of the results of Chap t er 

3, toge ther with a generalization of the Hankel func tions used in 

(2.2) - (2.5) above . He restrict our discussion to media with 

subcritical velocity gradients, that is, media in which a r ay bo t toms 

at every depth . A new method is also developed fo r evaluating 

amplitudes in t he shadow region . 

The Expansion of Source Potential, and Potential- Displacement Relation 

It is shown below in Chapter 3 that the assignment "P- wave 

component" of displacement in smoothly varying i nhomogeneous media 

may usefully be discussed by the form 
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f(r)- ' grad [¢(E,'t) fer) J 
I p (r)' 

where f is a knmffi function of radius and ,pCE" t ) is a potenti al 

which satisfies 

(E.,t) + E (r) $(r,t) . - p ~ 
A(r , t) • 
~, 

E (r) is known, and A(r,t) is an expression of the coupling between p ~ 

¢(E"t) and a similar SV- wave potential. We discuss a steady state 

- iwt 
point source of P- waves ~ e , at distance b from the center of the 

fluid scatterer (see Figure 16). Since we are here assuming the 

neglect of continuous scattering , and neglect of terms which ar e of at 

least one lower order in frequency than geometrical spreading, we 

may approximate to an uncoupled Helmholtz equation 

and P- wave 

displacement u = 1 grad $(E,) 
~ Tp{r7 

This app r oximat ion is discussed 

further in section (3 . 4a), below . 

t he 

The source potential of our homogeneous solutions above is in 
ihR 

e form ihR ,with R as the straight- line sour ce receiver distance, 

and constant wave number h. If such a source $ . i s placed in the 
1. 

heterogeneous medium , we may thus characterize it as the solution to 
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( 
- 411 ) 

X ih(b) , together + (h(r»)2 ~. 
1. 

oCr-b) 0 (6) 
; 

with a radiation condition expressing amplitude decay with distance 

away from t he source. 

In Appendix II we follo<. some of the methods of F.riedman (1951) 

and Seckler and Keller (1959b) to obtain an exact series for ~. in 
1. 

the form 

where 

p (cos 6) 
n 

are analogous to spherical Hanke1s h( ~)(hr) . We use the approximation 
n 

(cf Debye methods for Hankel functions) 

(1) 
+i1l /4 

g (2) ( r ) e 1 1 irJ¥ X .,. 
r. 

[h2 (r) _ ~n n (h (b» ) " 
r + 

r 

exp ± i r [h2W - C:if Ji d~ 
r 

(2.6 . 1) 0 
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in the region above the radius r - which radius is the deepest 
o n+.!. 

penetration of t he ray with ray parameter p -
OJ 

on n . 

2-
, so r depends 

o 

By writing the boundary conditions of continuous stresses and 

radial displacement on t he solid/fluid interface at r = a in terms 

of our weakly coupled potentials f or P and SV, we may ,obtain the 

formula for scattered potential of PcP as 

1 r 2\1g (11 (b) ~~~ (r) $ (r 6) '" - - X s ' 2 \1- , 
0 

(2 _6 . 2) 

[ 1 + 

rlg (2~ (a) ] ~~~ (cos lI) dv 
\) - i: 

rl~~i (a) 

where the operator rl is equivalent to the rl5 of equation (2.5.2), 

but now operating on ~i)(a) instead of h~i)(ha)_ 

For a discussion of amplitudes within the t r ansition zone , we 

again use 
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q, 1 
[ a l (r , 11) + az (r, Il)] where = -2 s 

al(r , ll) 
t(a)a (1) g~~£ (r) 

(2) 
11) dv and - 2vg ,(b) Q .!.(cos \) -1: v- .. 

0 

t(a)a 
2vg(1? (b) g (1; (r ) 

llg (2: (a) 
Q(2), (c~s az (r , 11) V- I. 11) dv + - ( 1) V- I. v-,i rlg ,(a) v- 'i. 

0 v - a; 

r dv 

h(a)a 

Evaluation of the Scattered (Pcp) Potential 

For t he approximat ion of al( r, Il) , equation (2 . 6 . 1) is available . 

We see 

= [h(a)a~.L 
h(b) rb 

(2 . 6 . 3) 

H(v) d 
e v 
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+ 

31[ 
d~ + v6 - 7+ 

Then, to examine the sadd1epoint of (2 . 6 . 3) we obtain 

{ I
r 

[ h 2 (~) 
r (v) 

o 

+ 

But the angular separation may be expressed by 

(2.6.3 
Continued) 

(2 . 6.4) 
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, 
-i 

- W
2

p2 J 
~2 

(see e.g . Bullen, (1963), equation 7.7 . 2), where p is the ray 

parameter for the direct wave from source (b,O) to receiver (r,6). 

Hence ~ ( v) is stationary when v = wp , and standard techniques are 

available for evaluation of formula (2 . 6 . 3) . However, to apply them 

we need to differentiate ~~ again, and t his presents certain 

manipulative difficulties since the integrands of (2.6 . 4) are singular 

at a limit of the integration which itself depends on v . In Appendix 

III it is shown that 

, where T is the travel 

time from source to (r,6) along the direct ray . From (2 . 6 . 3) we find 

= J receiver 

source 

3;r 
h(s) ds - ~ , where s is an element of 

leng th along the direct ray, and by crossing half the saddle we have 



e 
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1 
z 

Wp . Cw aa~T2 )J X sin A h(b) her) cos i(b) cos i(r) \ ~ 

f
receiver 

i h(s) ds 
source 

x {1 + e-
i rr

/
4n f 

o 

h(a) a- wp , 

[ 
a2T]>' 

- .. w aA2 

Using (2 . 6 . 1) to evaluate a2(r, A), we find 

f
receiver 

i h(s)ds 

source 

-irr /4 
e r-T e 

a2 (r,A) ,.. ih(b)br >'wp ' -=--------
;rh-(-b-)-h-(r-)-rr-/-2-s-i-nA--h-(b-)-h-(-r-) -c-o-S-i-(b-)-c-os-i-(-r~) 

, 
X (h(a)a)' Cp(w) 
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where now 

1 ; hJ( a)a __ ng-;~~~~c-( __ a) ___ dV + J~ [ 

(h (a) a)'l ngv_I (a) 
o h (a) a 

Us ing the geometrical spreading methods of Bullen (1963), or by the 

me t hod of Appendix II and the evaluation above for a1 (r,~) , we know 

¢ . (r , ~ ) = -:7'-1 -;-;,=", [ wp 
~ ibrh(b) SiM h(b) her) cos i(b) cos i(r) 

J
receiver 

i h(s)ds 
source 

X e 

and so finally we have 



4> = 4>.+4> 
~ s 

I 
= 

2 
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o 

c (w) 
p + 0 (~) x 4>. 

~ 
(2.6 . 5) 

I 
(Yne factor 2 { } is the correction to geometrical spreading. 

If we approximate the Fresnel integral within the transition zone, 

we obtain the standard form (e . g . (2 .5.5», but now generalized 

to radially heterogeneous media . ) 

The methods used above to obtain a formula for 4> make frequent 

reference to the "direct ray between source and receiver t II but for 

a receiver slightly beyond the shadow boundary there is no such 

ray. Equation (2 . 6 . 5) is then useful only for the lit region 

(up to and including the geometrical shadow boundar y) , although it 

still has meaning just within the shadow, in the sense that if the 

velocity profile a( r) in the mantle is continued (in some smooth 

way) below the radius r - a, t hen all the terms in the right hand 
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side of equation (2 . 6 . 4) have meaning. The value of v which makes 

~ stationary is still wp, where now p is the ray parameter for a 

ray which is travelling in the extended profile, and bottoms below 

r = a . All the symbols in equation (2.6.5) can now be defined, 

but we must acknowledge that this procedure is not very useful, 

since it is difficult to justify any particular choice of mantle 

extension below r = a. However, we are able to give below a 

separate discussion of the shadow region - back to and including 

the geometrical shadow boundary - and also find a numerical method 

for the evaluation of Cp(w) . 

It follows from (2 . 6.5) that the shadow boundary, defined as 

the distance ~i at which amplitudes are one- half that given by 
~ 

ray theory for the direct wave , satisfies 

WP(~ l ) - h(a)a 
• 

An alternative derivation of part of the solution (2 . 6 . 5) 

is given in Appendix V; the method there is to use Fresnel- Kirchhoff 

theory, and (2 . 6 .5 ) is reproduced without the term involving Cp(w). 

However, although the shifts are dependent on Cp(W) , we see below that 

there is an important and practical application of (2.6.5) which 
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does not require evaluation of the Cp(w) term . 

Diffracted Arrivals within the Shadow 

Even though diffracted first arrivals within the core shadow 

zone are small, the large surface area of the Earth within this zone 

has yielded considerable data on amplitudes and amplitude decay 

rates (Gutenberg, 1960; Sacks, 1966, 1967; Alexander and Phinney, 

1966) . We may show by the methods of Friedman (1951) and Nussenzweig 

(1965) that the total P- wave po t ential within the shadow is 

¢ (r ,6) 
ilg (2~(a) 

v- • 

(2 . 6.6) 

(cf equation (2 . 6 . 2) for PcP), where the operator il is equivalent 

to the il s of equation (2 . 5.2). And Hr,6) is evaluated by summation 

of the residue series of this integral, which series is determined 

by the zeros {v.} of ilg (l~ (a) as v varies in the complex order 
J V- i 

plane near the value h(a)a . Thus we find (using the formula 2 . 6. 1) 



.;:.~ 7.""(b"7":) b:--r- h (b ) 
3iTf /4 ( 
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2Tf h(a)a 
her) cos i 

'/2 

(b) cos i(r) sin~)' 

L Rj exp [i 
j 

cIIDIFF 

(2.6.7) 

where (see Figure 19) 

cIIDIFF ; phase along the diffraction path from (b,O) to (r,~) 

C1 

; f h(s) 

S 

fig (l~ (a) 
v- i 

h(s) ds 

v ; v. 
J 

'I; 
and OJ is related to Vj by v j ; h(a)a + OJ "( h(a)a) . 

It remains to calculate the o. for specific models , and we 
J 

give here a generalization of the successful method, set out in 

Section (2 . 5) , for a model with individually homogeneous mantle 

and core. 
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The definition of ~~=~(a) is different from the definition of 
L 

~5h(1~(ha) (see (2 . 5.2» in just two respects . (i) We replace the 
'0 - 2 

( i ) ( i ) (i) 
spherical Hankel functions by g ~(a), g ~ Sea), g ~ K(a) (where 

\) - 2 'V-z, v-~, 

the latter two are the radial functions for mantle S and cor e P- wave 

velocity structures), and (iO We effect of intrinsic coupling adds 

to each of the constituent functions p(i) - u,(2) in (2 . 5 . 2) an 

unknown term which is one order lower in frequency. Since (see 

Appendix VI), for v near h(a)a, 

d 
a dr 

g (1) ... and g (lr 
\.1 - , \) -.2.. 

~ 

o { (h(a)a y} , and each of 

r = a 

may be written as an asymptotic series in ascending 

( 
2 )?:-powers of h (a)a 3, it follows that we may write ~g(l~(a) as an 

( 

2 )1', '0 - . 

asymptotic series in ascending powers of We find the h(a)a • 

first three terms of this series are contained in 
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(2 . 6 . 8a) 

In Appendix VI we provide a study of g(l~(a) as v varies in the 
'V - 'i. 

complex order plane near h(a)a, and from the formulae (VI . 9) we 

have 

ng (1), (a) 
v--;z. 

'I 

(2h(b)(1- X(a»)" g~=~ ,s(a) [k
2

(a) 

',> 

[ 2(1-x(a» J 2e- iTr / 3 [G(Z) + 0 ( 2(1- X(a»)] 
h (a)a h (a)a 

where x(r) is the normalized velocity gradient ~ dda , 
a r 

x 
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[ 
i 1l /3 

z is given by v = heal a 1 + :=z~e72-- ( 
2(1- X(a))) '/3 ] 

h (a)a ' 

'/J 

G(z) _ Ai(- z) + (2(~(:~:») Nl e7i1l / 6 Ai' (- z) _ 

( 
2(1-x(a)))~{(1 ) i 1l /3. ( 1 ) h(a)a 15 + N2 ze A~(-z) + 60 + N3 

2 4i1l/3A·, ( 1) z e ~ -zJ 

(2 . 6 . 8b) 

with model constants (evaluated at the core- mantle boundary , r = a) 

_ [ 483 ( 13 2 )~ ... 1'1 = - 1 - 2' 
3 ex ex 

x 

, , 
+ S!-L 

exp 

y 
30(1- x) 30 (1- x) 2 

where 

2 x 
N 3 = - .;-;:''7:----;­l5(1- x) 

2y 
l5(1- x)2 

We assume that the problem of finding zeros, in the v-plane, 

of Qg (l~(a) reduces to finding zeros {z.}, in the complex z-plane, 
v-i J 

of G(z). And then we may use equation (2 . 6.7) with 
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i Tr /3 ( }"I3!J 0 . = z. e l-x(a) /2. 
J J 

The zeros of G(z) are simple to evaluate, 

if we use Newton's rule with trial zeros which are real (see (2 . 5) 

above), and we have calculated 01 and 02 for several Earth models . 

Our results are displayed in Table 5, for three different 

models of the core mantle boundary (each model specified by 

(a,S,p,a ', p ', a)), and in each basic model we specify different 

choices for x and y (the first and second derivatives of velocity 

gradient at the bottom of the mantle) . The calculation is done for 

the four periods 50 seconds, 20 seconds, 5 seconds, and 1 second, 

and it is apparent from Table 5 that 01 and 02 are quite sensitive 

to the choice of x, the first derivative of velocity. In Figure 20ab 

we show the real and ~ginary parts of 01, plotted against frequency 

for several different choices of x, in the model with a Gutenberg-

Bullard density jump . 

He discuss below in (2 .7) the significance of these numerical 

results, and conclude t his section with some final remarks on our 

method of finding residue series for the shadow zone. 

(i) A knowledge of the imaginary part of 01 alone is probably 

sufficient to give accurately the amplitude decay rate - since 

the terms in 1m 02 ~ 3 x 1m 01' and then 1m 0j+l ~ 1 + 1m OJ ' so 

equation (2.6.7) are essentially negligible for j > 1 . The factors 

R
j 

may be evaluated (which permits a study of absolute amplitudes; 

rather than amplitude decay rates) by using the methods of Appendix VI 
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(2) 
g , (a) . 

V- I 
to discuss 

(ii) The constant NJ is approximately 10 for realistic Earth 

models, and, since ( ~ (a)a) IJ~ io only for periods less than about 1 

second, it follows that the behavior of G(z) is characterized by the 

quantity Ai'(- z). The zeros of Ai'(- z) are in fact appropriate 

to the "hard" boundary condition, q, ' = 0 on r a. Some authors 

(e.g . Johnson, 1969) have made the assumption q, = 0 on r = a, 

the "soft" boundary condition, which is equivalent to characterizing 

G(z) by the leading term, Ai(- z) . The "soft" boundary condition is 

a valid approximation for hollow core models (as we have seen above 

in section (2 . 2) and Figure 5), for then N1 is approximately 3i. 

(iii) Phinney and Alexander (1969) have given a discussion 

of the effect of a velocity gradient on diffracted P in the shadow 

zone . They have given values of 1m 01 based on the assumption 

that the effect of a velocity gradient on zeros 

merely to multiply {v. - h(a)a} by the factor 
J 

of ng (l~ (a) is 
v- l 

(l-x(a) )'1;, where 

the o. are calculated for the homogeneous case from a computer 
J 

study of g5h(1~(ha). We see from our method above that this scaling v- ,. 
assumption is justified for either the "hard" or "soft" boundary 

condition . However, the gradient x(a) appears in G(z) outside the 

argument of the Airy functions . So the assumption is not justified 

for our case of a mixed boundary condition . It does provide a useful 

approximation and the values 0= 02 in our Table 5, for x + 0, y = 0, 
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can be found to within about 5% from the values for x = 0 , y = o. 

(iv) SV- diffraction may be discussed with our method above , 

but this is of little interest since SH dominates S arrivals in 

the shadow zone (see Figures 14 and 15) . It is simple to find t he 

poles relevant to SH diffraction, and they are t he zeros of 

near V = k(a)a. 

r=a 

(1) 
g , 

v- "i.' 

From (VI . 9) it follows that D(v) may be written 
'I 

as an asymptotic series in ascending 
[

2 (l- x(a)) :] 3 
powers of k(a)a J 

r de ) (where now x(r) = a dr and that the series is strongly 

dominated by the first term Ai'( - z), where z is given by 

v = 
i;r/3 

+~ 
2 

"~J 
( 

2(1- X(a))) 
k(a)a . 

. Hence we take z l = 1.019, z2 = 3.248, z 3 = .. . .. , which are the 

zeros of Ai'(- z). Values of {z. } may be found which ar e sli ghtly 
J 

more accurate, by obtaining explicitly t he second term in the 

expansion D(v) . This will permit a qualitative appr eciat ion 

of large "curvature" in the velocity profile . 
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(v) By performing numerically the integration in equation 

(2 .6 . 6) we may directly obtain amplitudes in the vicinity of the 

shadow boundary, and within the shadow . (N . B. equation (2 . 6 . 6) is 

valid for the whole forward scattering region, 6 > 61 . ) We 

evaluate part of t he integrand (which is needed only near v = h(a)a) 

by using me thods developed above for al(r , 6). Thus , expanding 

¢(v) in (2 . 6.3) as a Taylor series and using Appendix III , we 

can show for v var ying near h(a)a that 

iTf/4 
e 

h(b) r b Fl(r ay geometry , w) x 

2 
(v- h(a)a) 

2 

where 

'l;J. 

'. ,u, "='''' ,. j . ( ",)",;::~: ''',,'' "", .,"") 

exp 

) J 

(2 . 6 .10) 
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The formula (2 . 6 .10) is valid for all 6 between (but not including) 

t he antipodal region (near 6 = rr) and back to and including the 

geometrical shadow boundary (6 = 6[ + 62 ) ' F[ may be found from a 

a2T 
knowledge of the ray geometry in Figure 19, and a62 is the ray 

t heor y value of ~ obtained in the limit as 6 ~ 6[ + 62 from below . 

Unfortuna tely , we must not expect (2 . 6 .10) to be useful within the 

lit region, since there the direct arrival bottoms at some radius 

r[ > a, and it is inappropriate to discuss appr oximations only 

near v = h(a)a . 

We have in (2 . 6 . 8) a formula for ng~=~(a), and similar methods 

for ng(2~(a) give the result 
v- ~ 

i N[ 
+ -­

q 
- 2irr/3 A"( - 2irr /3) e ~ te 

_ :' [ ( :, .,,) CA' 'co -2,. /3, + ( :0 + N,) ".2"/3 Ai' ( ,.H. /3)]} X 

{
Ai( te2irr13) + i N[ e 2irr / 3 Ai I (te2irr/3) 

q . 

1 - q-z ( 1 ) .( 2irr/3) (1 \ 15 + N2 tA~ te + 60 + N3) 

-1 

t2e2irr /3 Ai I (te2irr / 3)]} 

(2 . 6 .11) 
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q 

y 
} 

( 
2(1- x(a » ) 

h(a)a t 
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2(v- h(a)a) 92 
h(a)a , and 

Nl, N2 , K3 are the model constants defined in (2 . 6 .8). 

\olith formulae (2 . 6 . 10) and (2.6 .11 ) we may now compute the 

integral (2.6 . 6) . The technique is essentially the same as our 

method in section (2 . 5), in which we obtained the P- P response in 

a medium with individually homogeneous mantle and core - instead 

of the Hankel functions of (2 . 5), we here use Airy functions . 

Hence we use below the terms "Hankel function method " and'lI.iry 

function method " in referring to these similar techniques . Note 

that the results of the Airy function method may be compared with 

ray theory right at the grazing distance ~ = ~l + ~2 by using the 

geometrical spreading formula 

- i n /2 
e 
h(b)rb Fl (ray geometry, w) 

(2 . 6 . 12) 

which gives the potential for the direct P arrival (ignoring PcP). 

1 
\ole expect t hat (2 . 6 . 6) will give just 2 ~DIRECT (r , ~l + ~2 ) for 

sufficient high frequencies . 
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A simple nunerical experiment to check the more general Airy 

function method is to use it for calculating ~(r, ~) in a model 

with a homogeneous mantle, and to compare t hese values with 

$ (r, ~) calculated by the Hankel function method (using IFLAG = 1 

in the program described in Appendix IV) for the same model. The 

results or such an experiment , using the "model 1" of Phinney and 

Alexander (1966) , are given for amplitudes in Figure 21, and for 

~ ~ (i. e. : ~~ phase [ $ (r , ~) J ) in Figure 22. The computation 

is done for t he two frequencies 0 . 1 Hz and 1 Hz, and we see that 

there is excellent agreement between the two methods . The amplitude 

curves for 1 Hz run together throughout the shadow region, as do 

the aT • 1 Hz 
~ curves ror . For 0 . 1 Hz t he amplitude curves run 

together just within the shadow region , and t he at 
a~ 

curves run 

together throughout t he shadow. We may f urther note that the 

agreement of the two met hods within the lit region is fortuitous , 

since the Air y function method would not be so accurate there in 

a medium for which a2T 
a~2 varied more strongly with distance . 

(In such a medium we should use (2 . 6.5), with numerical integr~tion 

of (2.6 .11 ) for calculation of Cp(w) . ) Wit hin the shadow, the 

Airy function met hod is probably more accurate, since we may 

show that (2.6.10) and (2 . 6 .11) neglect only terms in 0 (~a ) , 

whereas we have used the Hankel function met hod with a HANKEL 

package which in fact obliges us to neglect terms in 0 ( [h2a] )'13 
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(vi) Our formula (2 . 6 .11) ~y be used for investigating the 

reflection coefficient for a solid-fluid spherical interface, at near 

grazing incidence. We may define this coefficient (following Scholte) 

(2) 
by assuming that the primary dmmgoing 

to an upgoing wave (LL) 
g~~~(a) 
~=i(a) 

rise 

wave Q ,(cos 6) gives v-:. 
(2) 

Q,;_.!.(cos 6) on 
2. 

reflection at the radius r = a. Then for the longitudinal- longitudinal 

reflection coefficient, we have (by the method following our (2 . 4 . 1)) 

(LL) (2.6 . 13) 

1 
We recall t hat wave functions with order v - 2 are associated with 

r sin i(r) 
rays having the ray parameter a(r) 

v = -
w 

50 the phenomena 

of PcP reflection may be discussed by evaluating (2.6 . 13) with 

v = h(a)a sin , i(a). 5V waves within the mantle, and K waves within 

the core, are also generated , with respective angles of incidence 

j(a) and i'(a) (say) at the radius r = a. 

Let us first evaluate (LL) within the lit zone, where i(a) 

is less than 90° . We have from a study of the Riccati equation 

for g (i )l (r)/g (i ),(r) the result v- 2. v_;: 



(1)' 

g (2), (a) I 
V - i, 
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(1) 
(2) 

g ,(a) rV ± i h(a) cosi(a), and then from 
'V-'j. 

formula (2.6 . sal we find after some reduction 

g2/a2 sin 2i sin 2j • P I a' cos i cos 22j ... -
pa cos i' 

(LL) --' 

g2/a2 sin 2i sin 2j + 
p Ia' cos i + cos 22j 
pa cos i' 

(2 . 6 .14) 

which is exactly the coefficient of reflection for a plane wave 

incident upon the plane boundary between homogeneous solid and 

fluid half- spaces. 

But to evaluate (LL) for near grazing angles of incidence, 

i(a) '" 90°, we must use the results of Appendix VI and formula 

(2.6 .11), giving approximately 

[ Ai (t 
e- 2i1l/3) i Nl -2i1l/3 . ( -2i1l /3) ] + -- e Ai ' t e q 

(LL) ""' - (2.6.15) • 

[ Ai( t e2i1l/3) 
i Nl 2i1l/3 . , ( 2i1l /3) ] +-- e A~ t e 

q 

where t , Nl , q are defined in (2.6 . 11) . 
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He may now assess the approximation (2.6.14) for near grazing 

angles, and see that at i(a) = 90°, this plane wave/plane boundary 

approximation gives (LL)rv - 1. The same value is returned by 

(2 . 6 . 15), with t = 0, only if N)/q «1 . But we have already 

noted (see (ii) above) that N) is approximately 10 for realistic 

Earth models, and N)/q ~ 1 for periods as short as 1 second . He 

see from the second terms in the numerator and denominator of 

(2.6.15) that, very roughly, (LL) ~ e- i1f/ 3 for periods greater than 

two or three seconds. Such a phase change then leads to amplitudes 

of (P + PcP) "hich are very different from the amplitudes 

calculated with the phase reversal predicted by (2 . 6 . 14), and hence, 

for geophysical problems, the plane boundary approximation is 

completely inadequate at near grazing incidence. 

A summary of the more important techniques developed in this 

section is now provided by calculating the total potential $(r,6) 

for 2 second P waves in an inhomogeneous Earth model. Our results 

are given in Table 6 for seven degrees into the lit zone , and in 

Table 7 for seven degrees into the shadow. The particular Earth 
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model is specified by 

(a) values of p = p(~) within the lit zone. The eight values 

we use are listed in Table 6 : they are an approximation t o CIT208 , 

described by Johnson (1969), 

(b) a geometrical shadow boundary distance of 97°, and a 

surface source, 

(c) velocities, densities and radius for the core mantle 

boundary, We take a = 13.6 8 km/sec, 8 = 7.3 km/sec , p 5.6 gm/cc , 

a ' = 8.1 km/sec, p' = 10.0 gm/cc, da 0.2 £!. and a = 3481 km . , 
dr r 

In the lit f" d a2T function of distance . zone we may ~n -- as a 
a~2 

Values of this quantity are listed in Table 6, and for interest we 

also tabulate t he time interval between ray arrivals PcP and P . 

By numerically integrating (2 . 6 . 11) for 2 second waves, we find 

C ( TI ) = (0 .3797, 0.0086) . Then for the half amplitude distance 
P 

(i . e . the distance ~ at which I~I is one half the value given by 

ray theory) we may obtain from (2 . 6.5) the result 

p(~-,- ) - 4 . 440 0 . 020 sec/degree, 
~ 

indicating a shadow boundary shift of about 1.2° into the l it zone. 

Using formula (2 .6.5) it is simple to calculate the correction 
, 

factor 2 { } which multiplies the geometrical ray term ~ i to give 

$(r , ~) . From the phase correction 0<1) we may calculate. (by a method 
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. "T 
discussed below in some detail) the apparent ~ for 2 second waves . 

all 

Values of the correction factor, and of the apparent aT , are given 
all 

in Table 6 . 

In the shadow zone, we find ~ (r , lI) by numerically integrating 

(2 . 6 . 6) , using the method described above in note (v) . The source 

normalizat i on used in our computation gives for the direct wave at 

the geometrical shadow boundary (see (2 . 6 . 12» a value 2.259, with 

zero phase , and the correction factor F listed in Table 7 is 

related to 4> by 

$( r,lI) = 2 . 259 F exp i~(a)a (ll - 97 11 /180)J . 

Also given in Table 7 are values of 2n 14>1 and the apparent 1! 
all 

Our results in Tables 6 and 7 are encour agingly consistent 

at the geometrical shadow boundary distance of 97° . The correction 

factors in each table should here be equal, and we see tha t t heir 

amplitudes (0 . 425 and 0 . 404) differ by only 5% . There is some 

difference in t heir phase, but note that the rate of change of 

correction phase is almos t continuous from lit zone t o shadow 

(0 .163 radians/degree at 96~0, and 0 . 161 at 97~0) . 

The numerical techniques described in this section may prove 

extremely powerful in discriminating between models of the bottom 
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of t he mantle - and theymay find application in studying regions 

of the upper mant le in which t he velocity gradients are high. 

Our methods for studying the grazing incidence spherical reflection 

coefficient can als o be used for t he time domain problem discussed 

by Knopoff and Gi lbert (1961) who make an approximation (in the 

Lapl ace transfor m plane) which corresponds to the assumption of 

a plane wave reflection coefficient, and who us e scattering 

poles appropriate to the sof t boundary condition. 

In the following section we develop some applications of 

our new t heoretical r esults. 
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2.7 Relevance of our Theorv. and Applications to Seismic Data 

The results of Section (2 . 5) show explicitly that, in a ver y 

simple Earth model, the amplitude of transition and shadow region 

body waves is quite strongly dependent on frequency . And in Section 

(2 . 6) we see that there is a frequency dependent correction to 

geometrical spreading for such regions in a more general class of 

models . We confine our discussion of these resul ts to some 

qualitative remarks on amplitude , and introduce a quantitative study 

of the phase of body waves . 

P- Wave Ampli tud es in the Shadow of the Earth's Core 

Sacks (1966) has given estimates of amplitude decay rate within 

the shadow, for t he periods 25 and 2 .5 seconds, and his r esults 

may be expr essed in our no t a tion (see Section (2 . 6) , Table 5 and 

Figure 20) as 1m 01(25) = 0 . 82, 1m 01 (2 . 5) = 1 . 02 . We see in 

Figure 20b that both these points fit a theoretical curve for 01 (T) 

in the model for which x = - 0.2, and from Sacks' data we would 

conclude that 25 second and 2. 5 second waves "see" t he same 

average velocity gradient - and hence, the bottom (c . 100 kilometers) 

da E!.. of the mantle has a constant velocity gradient -- = - 0 2 dr • r 

However, Alexander and Phinney (1966) and Phinney and Alexander 

(1969) give observed amplitude decay rates which differ from Sacks 
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in that (i) 1m Ql (T) varies for different regions of core surface, 

and (ii) even for data taken from one region of core surface, l~ol(T) 

I 
does not increase with frequency f in the way that all our theoretical 

curves (Figure 20b) would predict . We may draw conclusions from 

their data in the f9llowing way : the velocity gradient throughout 

most of the lower mantle is quite reliably known to be ~~ = - 0.28 ~ 

(see e . g . Hales, Cleary and Roberts, 1968), and so diffracted waves 

of 50 seconds period will "see" an averaged gradient that must be 

near x = - 0.28 (since this wavelength is several hundred kilometers). 

From Figure 20b we thus expect 1m 01(50) -v 0 . 83. Phinney and 

Alexander (1969) show two sets of 1m 01(T) (obtained from two 

different events, but sampling approximately the same core surface 

region) which have 1m 01 (50) "" 0 .8, and these sets show a slight 

decrease with increasing frequency to about 1m 01(lO) rV 0 .75. The 

i mplication from our Figure 20b is then that 10 second waves a r e 

"seeing" a different average velocity gradient x --.J + 0 . 1, and hence 

the velocity gradient must be changing rapidly as the core boundary 

is approached, indicating a low velocity zone. 

The necessary resolution of theory with data must await a 

careful study of amplitude decay rates at even shorter periods -

perhaps even 2 second and 1 second data may be used quantitatively, 

especially since amplitudes near the shadow boundary itself are now 

theoretically understood. 



S- Wave Polar ization 

Theory 

-107-

Within the transition region and the shadow zone of a simple Earth 

model (individually homogeneous mantle and core), we see in section 

(2.5) that there are considerable differences between the different 

body wave types . And in particular, we see from a comparison of 

Figures 14 and 15 that core diffraction will act as a polarizing 

mechanism for S-waves. SV waves decay with distance about three times 

as fast as SH waves, in this model, and the different decay rates are 

evident even 5° within the lit region. Hence, we should expect 

that a seismogram written at the geometrical shadow boundary, or 

beyond, would contain diffracted S only as SR. This conclusion 

may reasonably be maintained even for models with a radially 

heterogeneous mantle, since we have seen that it is the particular 

boundary conditions at the interface which are responsible for the 

particular observed departures from ray theory, and radial heterogeneity 

merely changes the location of geometrical shadow boundaries . 

Observation 

Gutenberg and Richter (1935, p. 331) state that S "is very large 

in the few degrees about 95°, but beginning about 99° it decreases 

with distance." They note that, although in several records S arrives 

chiefly as SR, the sharp polarization appears to depend on the 

mechanism of the shock . Also , "at distances beyond 105° . . . • . . . the 

diffracted S appears to be recorded more frequently than diffracted P." 

Lehmann (1953) also describes 18 records of diffracted S in Europe 

for the Chilean earthquake of December 1, 1928, and notes that this 
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phase appears on K-component records, whereas SKS and SKKS were much 

larger on E-components. The azimuth from Europe is approximately 

HS\\I, and so the polarization is SR. Cleary, Porra and Reed (1967) 

describe twelve records of diffracted S at Canberra, for distances 

between 99° and 130°. Even though these authors have assumed that 

SV cannot t heoretically be diffracted at all, one can see from 

their Figure 1 (which is t hree sets of the two horizontal components, 

each set from a different event) that SV is indeed insignificant 

relative to SR. 

Conclusion 

Thus, although fault-plane studies and calculation of radiation 

patterns must complement the discussion of any particular record, 

we may conclude from the number of published observations that our 

theoretical expectation is verified; diffracted S is polarized towards 

SR. 

The Phase of Transition Region Body Haves 

In equation (2.6.5) above we obtain a term which, in the 

transition region, corrects the simple ray theory of geometrical 

spreading. This new factor has a small imaginary part which is an 

implied function of distance ~ (since p =p(~)) , and so the apparent 

phase velocity measured by an array in the distance range 90° - 105° 

must be frequency dependent . If the phase of our correction factor 

is 6~, then an array measurement of t he quantity ~~ will be greater 

t han the infinite frequency (or, ray theory) value p by an amount 
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(2 . 7.1) 

This equation is obtained and studied by Johnson (1969) , who 

also shows that the dispersion is large enough to affect array 

measurements . Johnson's methods of correction are based on the 

necessarily separat e theories for lit and shadow regions, and hence 

they fail for the crucial region of grazing incidence. But it is in 

precisely this region that t he correction is mos t important, since 

P and PcP cannot be separated in t he time domain . (For examp~e, the 

time difference is gi ven as one second at 90· by Herrin et al (1968)) . 

In order to see effects of ignoring t he difference between ~~ 

(obtained by measuring t he phase velocity of a certain frequency 

component as it travels across an array) and t he ray parameter p, we 

study the following simple Earth model, in which t he known velocity 

structure is compared with the Herglotz-Wiechert inversion of 

uncorrected values: 

~umerical discuss i on of dispersion effect . 

Suppose t hat a point source of 10 second P waves is established 

in the simple Ear th model of Section (2. 5). This mantle is homogeneous, 

with velocity. 13.6 km/sec. The 
aT 
a~ 

values at different distances 

have been found for such a model from the rate of ahange of phase 
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(and the phase is computed from the exact displacement formula in 

Table 2, using the FORTRAN program described in Appendix IV). These 

aT 
at. values are plotted in Figure 23 for the range 105 .5° ~ t. ~ 124.5°, 

together with 

and 

a) 

b) 

6350 the known ray parameter, p = 
13 . 6 

sin i x 1T 

180 sec/degree 

aT an approximation (discussed below) to ~ (10 sec . ), 

c) the computed values of aT 
at. for 1 second waves . 

A method for the inversion of such aT 1 . d 1 d' a6 va ues 15 eve ope 1n 

Appendix VII from a suggestion due to Jeffreys (1966) , who discusses 

the perturbation of velocities due to a perturbation in the p- t. 

relation , and a brief slide r ule calculation leads to t he 

results: 

For the 10 second "r ay" emerging at 108.5 ,the deepest point 

109.5 

110 . 5 

111.5 

112 . 5 

113.5 
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along the "ray ll has radius 3710 kIn 

3691 

3672 

3651 

3630 

3608 

and at this depth the "velocity is 13.600 kIn/sec 

13 . 595 

13.585 

13 . 574 

13 . 561 

13.545 

Hence, for a model in which the velocity is in fact 13 . 6, 

we note 

(i) 
aT that the inversion of ~ (10 sec) leads to a zone of 

slightly low velocity, with gradient 

~~ 'V - 0 . 05 kIn/sec/100 kIn 

at the bottom of the mantle, 
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(ii) that this small velocity gr adient completely changes t he 

ray pattern . For example, t he ray emerging at 113.5° has its turning 

point at radius 3608 km i f we invert t he (10 sec) curve, 

and about 3480 km if we invert the p curve. If we have some 

independent method which indicates that 113.5° is the distance of 

emer gence of the grazing ray, then the aT 
all curve for 10 second data 

would give a core r adius over 120 km too large - even t hough the 

dispersion is at most 4% . Sacks' (1966) estimate for a core radius 

of 3550 km may suffer f r om just this effec t, since he obtains a 

grazing ray distance of 96° (determined by studying amplitudes at 

different frequencies) and then uses Jeffreys' solution giving depth 

of penetration of rays at various epicentral distances. Sack's 

estimate is over 70 km greater than t he "standard" radius of 3473 km, 

determined originally by Jeffreys from P and ScS travel times. 

(iii ) If we extrapolate the calculated "velocity" profile 

down to t he known core radius of our model , 3480 km, we obtain an 

erroneous veloci t y of 13.48 km/sec for the bottom of the mantle . 

Of course, the observed aT 
all II relation for P- waves in the 

Earth is typically obtained with data from short period instruments, 

and the more relevant (1 second) curve of Figure 21 shows better 

agreement with ray theory . But even t his 1 second curve would give 

an incorrect core radius (see note (ii ) above) . Also the observations 

aT 
for S waves may be expected to be worse than the 10 second P wave a6 



- 113-

It is appar ent from the above numerical discussion that, in 

order to obtain the ray parameter p as a function of distance, we 

should like to be able to correct the observed aT 
~ values which are 

associated with a given frequency . We have seen that this correction 

is small (although its cumulative effect can be significant), so 

trial- and-error guesses for p=p(~) are adequate . Given such a 

trial solution, the approximate aT 
a~ 

at a given frequency w may 

be found by the following methods : 

(A) In the transition zone we use equation (2 . 7.1), with 09 

obtained from the phase of the bracket { } in equation (2 . 6 .5) . 

It may be show~ that the Cp(w) term contributes merely a (small 

and) almost constant phase to o~, and so this complicated term may 

be neglected in the differentiation (2 . 7 . 1), yielding 

1 a [Phase{l _ e -
ill

/
4 

6;:> ""' --w a~ 

h(a)a- wp 

J 
( a2T)">-

.f2 - llW a~2 

o 
(2 . 7 . 2) 

The formula is to be used for the transition region, starting at the 

distance for which P and PcP cannot be distinguished. 

This method of calculating aT p + op(w) has been used for 
a~ 

the model discussed above, in which exact values of aT (10 sec) 
a~ 

are available . The resulting app.roximation is displayed in 
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Figure 23, and we see that (2.7 . 2) is indeed adequate for the 

transition region. 

Further confirmation of the approximation is given by Figure 24, 

which is for SH waves in the same Earth model (see Table 4). Figure 

24 displays computed aT 
all. (33 sec) and aT 

all. (5 sec), together with 

the approximation obtained from (2 . 7. 2) for the 33 second curve, 

and also t he ray parameter . These four quantities are plotted 

against distance, and we may note the agreement between the exact 

and approximate 33 second curve. (The agreement, however , is not 

quite so good as in Figure 21, as ICSHI » ICp l .) Also no t e t he 

disparity between t hese curves and the ray parameter . 

A particular simple formula for op can be found f r om (2 .7. 2) 

at t he distance corresponding to the grazing r ay (113 . 54° in Figures 

23 and 24) . At this distance we have 

op (w) = (2 .7.3) 

The resulting value of ~~ at 113 . 54° for 10 and 1 sec. P waves *s shown 

in Figure 23, and fo r 33 second and 5 second SH waves in Figur e 24. 

All t hese values agree quite well with the exact values , and 

with the values obtained more directly from equation (2.7.2) 

"fe t hus note for t he transition region (i) tha t op -+- 0 as 

w -+- '" This is another demonst ration t ha t simple ray theory is 

arbi trarily good at sufficiently high frequencies. 
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(ii) op is significant, since e . g. a2T 
a~2 ~ 200 sec/rad. 2 in 

the simple model of section (2.5). 50 op '"" 0 . 055 and 0 . 078 sec/deg. 

for 1 second and 2 second waves, respectively . But the precision 

of the measured aT 
~ values may be reduced to between 0 . 025 and 

0 . 050 sec/deg . (Johnson, 1969, p. 987) for P waves . The longer 

period of 5 waves gives, for example, op ~ 0.25 sec/deg . at a 

period of 20 seconds . 

(iii) The formulae (2.7.2) and (2.7 . 3) are independent of the 

boundary condition at r = a, This might be expected, since although 

different boundary conditions give different phase shifts at any 

given location, the rate of change of phase shift is primarily a 

geometrical property (and we may find it from the result of Ap~endix 

V). I t may also be possible to use this correction op for 

discontinuities within t he Earth other than the core mantle boundary . 

(iv) The explicit dependence on travel time curvature indicates 

op is strongly influenced by the gradient of velocity near the 

bottom of the mantle. But note that if this curvature is very small, 

so t hat op from (2.7 . 3) is negligible, it follows that P and PcP 

cannot be distinguished over larger distances. And then the 

accumulation of op from (2.7.2) may be significant over these 

larger distances . 
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(B) In the shadow region . We see from t he residue series 

(2 . 6 .7 ) (which is dominated in the shadow region by the first term) 

that 

, () 1 R' (h (a)a{) up w ~ - e Uj . r 
w (2.7 .4) 

where OJ is a complex number specifying the zero of n 2(:~{a) nearest 
)I ... 

v = h{a)a . Re 01 is shown for several models in Table 5 and 

Figure 20a. 

We thus note for the shadow region (i) that op(w) + 0 as 

Bu"t op (w) j> 0 as r, increases . (VIe exclude here a discussion 

of the focussing effect as the source antipodes at A = 1800 is 

approached . ) So 
aT 
ar, tends asymptotically, with increasing 

distance, to a value which lies above the core grazing ray parameter . 

This asymptotic va lue, calculated from (2.7.4), is shown for the 

four different computed curves in Figures .2} and 24, and 

the agreement within the shadow is very good. 
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(ii) . It is unfortunate that the dispersion implied by (2 . 7 . 4) 

would be difficult to observe directly by the standard method , of 

calculating Fourier phase spectra for different seismograms written 

in the shadow zone along the same great circle path f r om the same 

seismic event. To appreciate this difficu·lty, let us calculate 

the change in phase 09 due to dispersion over 20· within t he shadow , 

for four different Fourier components . 1T 
Since 0$ = W op(w)x 20 x 180 

we find (from (2 . 7 . 4) and Figure 20a, for the model with no velocity 

gradient) that 0$ for period 50 secs is 0 . 61 r adi an ,i mplyi ng a 

30 0 .75 

10 1 . 17 

2 2 .37 

0<1> phase delay -- of 4 . 8 secs The value of 09 fo r t he 2 second 
W 

4 . 0 

1.9 

0 . 7 

period is probably not recoverable from seismic da t a , because of the 

high attenuation (by diffraction) of such a short period signal . 

The larger time delays associated with phases of longer pe r iod 

are bracketed by 3 . 4 ± 1.5 seconds , so it would be difficult to 

separate the dispersive effect from the effect of an e r roneous 

choice of digitization origin time . The seismologis t who l acked 
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a dispersion theory, and who obtained such values of 0$ , might 

interpret them as being due to his having chosen an origin time for 

digitization which is about 3.4 seconds too early for synchronization 

with the arrival 20° within the shadow. If he based his choice of 

origin time on a standard Earth model, he mi gh t think either that 

the velocity at the bottom of the mantle should be about 0.4 km/sec 

lower than t he standard value, or that he is observing some crustal 

or upper mantle travel time anomaly . Clearly, a more correct 

approach is to accept that phase delays may be, atleast partly, 

due to dispersion . 

Our discussion of 0$ above is concerned with the resulting 

effect on measured phase velocities. However, we may also investigate 

the consequences of group delay, since for the group arrival time T 

we have 

aT 0 0 
at;" = p + ow at;" 0$ (2 .7.5) 

o The group delay, ___ 09 , is found to be approximately half the phase 
ow 

delay, and so may still be big enough to introduce a significant 

delay in the arrival of P on a diffraction record. 
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Conclus i on 

In this chapter we have been able to extend the theory of 

body wave diffraction by the Earth's core. Emphasis has been given 

to t he theory of arrivals near the geometrical shadow boundary , 

and we have found that an intuitive appreciation of reflection , 

based on a study of plane waves and plane boundaries, does not 

suffice for the spherical problem. We have also been able to 

obtain new theoretical methods for studying the deep shadow, in 

models with individually homogeneous mantle and core . And we have 

generalized all our methods to investigate the shadow boundary 

and deep shadow in radially heterogeneous models . 

We have found that diffraction effects on seismic data are 

quite small, but their consistent biasing may introduce significant 

errors if the data is not corrected before inversion. Methods 

of correction are found, both for the lit region and the shadow 

region, which are simple in application to core diffrac tion 

studies, and which may be useful in regions of t he upper mant le . 
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Chapter 3 

Elastic Wave Propagation in Spherically 

Symmetric Inhomogeneous Media : Potential Methods 

3 . 1 Introduction 

It is well knmm thc.t the vector wave equation of elastic 

displacement in a spherically symmetric, isotropic Earth model has 

three approximate high frequency solutions, referred to in the 

geophysical literature as P, SV and SH waves . The P + SV mot i on , 

and SH motion, are independent solutions, and P and SV are 

approximately independent in those regions of the model fo r which 

the gradients of physical properties are not too large. Fur ther , 

in such slowly varying regions of the model, downgoing and upgoing 

waves of the same mode type are also approximately independent . 

These approximations have led to extensive and highly 

successful ray theory methods for studying properties of the Eart h 

(see for example, Bullen's, 1963 text) . However, some data clearly 

require a more precise theory, not only because ray theory may 

actually be inadequate for certain problems, but also because we 

do not know how much confidence to place in ray theory in some 

borderline problems for which it may in fact be perfectly adequate. 
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For example, we might wish to know if mode coupling is especially 

significant near the bottom point along a P wave ray . Or, how are 

the amplitudes of PKPPKP precursors related to velocity profile . 

The potential approach to P + SV coupling problems, in general 

inhomogeneous isotropic media , has really received very little 

attention . The methods reviewed by Ewing et al (1957, Chapter 7), 

which assume a specific dependence of physical properties with 

Cartesian depth, are useful only if the medium is weakly heterogeneous . 

In a series of papers, Hook (1959, 1961, 1962a ,b, 1965) and Alverson , 

Gair and Hook (1963) have studied the separation of the elastic 

wave equation, for general media in which properties vary with 

Cartesian depth. (Such media are sometimes called "transversely 

homogeneous . ") He find below that this work, which is widely 

referenced by other authors studying inhomogeneous media, contains a 

basic physical error which (a) leads to incorrect equations for 

(P + SV) when they are coupled, and (b) does not permit discovery 

of the general solution in media for which P and SV decoupling is 

possible. Hm.ever, Hook's equations, which have recently been , 

generalized by Singh and Ben-}~nahem (1969a ,b) to study spherically 

symreetric media, may be modified with some manipulative effort 

to give a correct theory . 
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Zavadskii (1965a,b,c) has used potentials in very restricted 

types of inhomogeneous elastic media , to find solutions by me thods 

which uay be applicable in more gene r al inhomogeneity. For example , 

in one pr oblem (Zavadskii , 1965a) he is able t o give the general P 

potential as a linear sum of four independent Whittaker functions , 

and the coupled SV potential is then a linear sum of t he same four 

functions, with coefficients simply related to the coefficients 

appearing in the p potential . 

There is some interest in discussing special media for which 

P and SV can decouple, since the method of Eps tein (see 

Brekhovskikh's (1960) text, Chapter III) may then be used to 

evaluate the reflection and transmission coefficients for a 

transition layer. But in this chapter we emphasize a discussion 

of the P- SV coupling problem , and establish a framework in which 

we can see how the coupling occurs. In Section (3 . 2) we examine 

the choice of scalar fields , or dependent variables , for which we 

may most usefully develop potentials . In Section (3 . 3) we rearrange 

the vec t or equation , for elastic motion in spherically symme tric 

isotropic media , into a system of coupled equations, in which two 

of the unknowns are potentials for our choice of P and SV components 

of displacement . And in (3 . 4) we investigate several properties 

of t he general coupled system of equations, and indicate 
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(as one of their consequences) that strong restrictions may now 

be placed on the kinds of transition zone, within the Earth's 

upper mantle, which can generate observable reflections . It 

seems that the extent of velocity gradient anomaly must be limited 

to within about 4 km, in order to explain the short- period 

reflection data. 
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3.2 A discussion of the choice of dependent variables 

The displacement equation of elastic motion may be found by 

substituting for the stress .tensor ~(x) in the conservation of 
-~ 

momentum equation, 

(3.2.1) 

where F(x) is the applied force per unit mass, 
~~ 

acting within the 

medium at x . \ole expect (from studies of displacement in locally 

homogeneous solids) that for general media there are two types of ~ 

(

h(X) + 2)J(X))' 
body wave solutions, one related to the velocity a(~) = ~ ~ 

p(~) 

and one to the velocity a(~) = 
IJ 

( 
)J (~) )l. 
P (~) • 

This expectation is in fact 

confirmed by the work of Karal and Keller (1959), and we wish 

here to associate a potential with each of the twu types of solution. 

Our basic motivation for using potentials is that we hope to 

develop wave equations which are approximately , or exactly, in 

t he canonical form 

1 a2¢(~, t) 

v2(~) at2 
(3.2.2) 
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Then with such potentials, we may immediately t ap the accumulated 

store of known properties for canonical wave solutions . 

l,e must expect that the choice of potentials, and the division 

of displacement into a P component and an S component, are somewhat 

arbitrary and artificial procedures in heterogeneous media, because 

there is a complete failure of almost all the familiar properties 

which define P and S in homogeneous media . Thus, in our problem, 

a longitudinal wave is not necessarily irrotational, a transverse _ 

wave is not necessarily solenoidal, and in general none of these 

four types of motion can alone satisfy the displacement equation . 

Somehow we must also reconcile the fact t hat a P wave within the 

(inhomogeneous) Earth is intuitively thought of as longitudinal, 

and S as transverse, whereas the only useful decomposition theorem 

for general vector fields is that providing irrotational and 

solenoidal componen t s (with respectively a scalar and a vector 

potential). 

A reconciliation of this last problem provides the key to 

obtaining our final choice of po tentials, and in the remainder 

of this section we use intuitive methods to examine the approximate 

longitudinal and transverse ray solutions, in order to develop 

constraints on potentials which approximately satisfy (3 . 2.2). The 

constraints are found to arise from a study of the proportionality 

functions which relate cross sectional area of ray tubes to the 

wide choice of dependent variables, for which some form of ray 
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approximation is appropriate . 

An elegant way to study the longitudinal and two transverse 

components of body ,,,ave displacement is to set up a system of "ray 

coordinates,lI in which these three components of motion are each 

parallel to a coordinate axis. Thus, for a point source A within 

a spherically symmetric medium, we follow Yosiyama (1933, 1941) 

and use coordinates (p,T,$) which we define (in that part of the 

medium which is reached by geometrical rays from the source), 

for the point B, as follows: 

P is the ray parameter for the ray connecting A to B, assuming 

Snell's law and some specified velocity profile v = vCr) . 

T is t he travel time integral, JB ds , taken along p = constant . 
A V 

$ is the azimuthal coordinate of B from A in the spherical 

polar system (r,e,$), with e = 0 on A. 

An intuitive guess that (p,T,~) form an orthogonal set is 

easily proved correct, since it is simple to obtain the formula 

for a distance element as 

, 

ds = [ h~ dp2+ h~ dT2 + h: dq,2 r 
We also see that h4 is the velocity v . 
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The exact equations of motion in this coordinate system may 

be found from Love (1944 , p . 90), and we also use t he constitutive 

relations of Love (~. cit ., p. 54) . Noting that this reference 

uses h which are the reciprocals of our more modern definition, 
x 

we have 

cr ~ a 
+ rr-""37 h 

~ P ~ P 

with similar equations (3 . 2 . 4) 

o 
"iT :3 ----h h ap 
p T 

a2u 
T 

and (3 . 2 . 5) for p ~ , 

obtained by cyclic permutation of suffices. Examples of the 

stress-displacement relations are-

(3 .2. 3) 
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(3.2.6) 

(3 . 2.7) 

For waves with high frequency content, we expect spatial 

derivatives perpendicular to the ray path to be small relative to the 

derivative along the ray path , i . e . we assume 

to h 
T 

(i) 

a 
dT 

that terms in a 
hap' 

P 
are negligible in relation 

Further intuitive assumptions must be made before the ray theory 

foroulae are obtained from our equations of motion, and two of them 

are 
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(ii) that up' u T ' u~ are independent, and 

(iii) that the time dependence at B(p,T,~) is proportional 

to the source time dependence T(t) (say) , but del ayed by an amount T. 

With these three assumptions, we can show how (3 . 2.3), (3 . 2 . 3) 

and (3 .2.4) give t he ray theory for respectively SV, P, and SH 

Haves. Consider, for example, SV: 

In (3 . 2.3) "e are to substitute fo r the stress components , 

and these are approximated by taking uT = u~ = 0 ( see assumption 

(ii)) , and by 

a 
neglecting terms which do not contain at least 

one operat ion on u (see assumption (i)) . 
p 

str ess components are simply 

a TT 

Fr om (3.2 .3) we can show 

h 
= II --E. 

h 
T 

Thus , the needed 

(3 . 2 . 8) 

and assumption (iii) implies that we expect a solution in the form 



u (p,T, cp ,t) 
p 

= 
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T(t- T) U(p ,T, cp) 

where T(t) is the source time function. From (3 . 2 . 8) we find 

T U 

r 
-'- L I . 2 

h 
T 

T uJ 

a2u 
T --2 - (3.2.9) 

aT 

Since from our definition of ray coordinates it follows that 

h = e, the left hand side of (3.2.9) is zero . If we make 
T 

the final assumption 

(iv) that the time variation of source properties is 

sufficiently rapid, i.e. 

then 

1 au 
U a-r 

and the ray approximation for transver se SV displacement at B is 

obtained as 
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o (3 . 2 . 10) 

B 

Note that hph~ has the physical interpretation of being 

proportional to the cross- sectional area at B of a tube of S rays 

emanating from the source at A. So (3.2 . 10) is the geometrical 

spreading formula, weighted by a function of time and a function 

of radius . He could have obtained these functions from Bullen's 

(1963) energy formula, toge ther with an approximation for t he 

energy in SV . But our method above is instructive in emphasizing 

the assumptions (i) - (iv) . 
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Results corresponding to (3.2.10) may be proved for the 

longitudinal P approximation . The same four assumptions are 

required, and 

u (B)« T(t- -r) 
-r 

(3.2 . 11) 

B 

For SH, we find that assumption (ii) may be dropped if the 

source has azimuthal symmetry, since we can show equations 

(3.2.3- 5) have an exact solution ~ = (O ,O,u $(p ,-r,t)). Then 

approximately 

u'" (B)« T(t- -r) ~ 
'!' -J Jl hphq, 

B 

(3.2 . 12) 

Now, suppose that ~ is some potential field due to a point source 

in the elastic medium, and that ~ approximately satisfies (3 . 2.2). 

This equation may be written out as a sum of differential operations 

in our ray coordinate system for the velocity profile vCr), and 

it can then be shown that 

(3.2 . 13) 

where T~ is the potential source time function. 
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We are now in a position to provide necessary constraints on 

some of the potentia ls, weighted by functions of radius , which are 

suggested by Hook (1959 , 1961) . For example , suppose , for the 

SV wave due to an azimuthally symmetric point source, that we attempt 

to find a canonical potential X in the form 

curl curl (r gsv (r) X, 0, 0) 

(Here we are using spherical polar coordinates.) The radial 

component of the left hand side is (from (3 . 2 . 10» pr opor tional t o 

T(t-T) Ck sin i 
-V~ 

(3 . 2 . 14) 

where i is the angle between radial vector and r ay path . The r adial 

component of the right hand side is exactly 

r sin 
d ea-e sine a~ 

W 

r s in2i b (since spatial changes of X ar e principally 
h 2 dT 2 

T 
along the ray direction) 



whic.h, since 
r sin 

h · 
T 

proportional to 

sin 
h 

T 
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i is constant along a ray, is approximately 

i l'X J h;h,p I (from (3 . 2.13), with the 

potential x, v = ~ = 

and time factor T ) 
X 

h , 
T 

By a comparison with (3.2 . 14) we obtain t he constraints 

(a) T (t-T)~ T(t- T), which relates the source time functions of 
X 

potential and displacement , and is satisfied most simply by T 
X 

If T(t) is to be a step function, then we may take T (t) = 0 
X 

( t ~ 0), = t t 2 (t ~ 0) . 

= e 

(b) 
h 

T 
~ -= 1 , which we interpret below as allowing 

- "1-a free choice for fsv' and then gsv = fSV p • 

To investigate P waves , we try the form 

~ = f~(r) grad (Sp(r) ~) and obtain constraints for all 

possible canonical potentials as 

(c) T (t-T)~ T(t- T) and 
~ 

i wt 
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He find below in (3.3) the reason for similarity 

To investigate SH waves, we try 

1 
~H ; fSH(r) curl (r gSH(r) ~ ,O,O) and find 

(f) (which differs from the P- SV constraints) . 

In the above discussion we have been able to relate geometrical 

spreading properties of longitudinal and transverse components of 

displacement to t he spreading properties of canonical potentials. 

In the following section ,,,e abandon any reliance on the intuitive 

methods used above , and develop a choice of potentials for P, SV and 

SH which is partly suggested by the constraints (b), (d) , and (f) . 
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3.3 Have Equations for Potentials 

The use of potentials to study elastic displacement in 

inhomogeneous media requires a preliminary investigation, to check 

that our choice of potentials can cover all possible displacement 

solutions . In Appendix VIII we shmv that the general solution for 

displacement· ~ in a spherically symmetric, self- gravitating , 

non-rotating, elastic isotropic Earth may be written as 

~( r, 
~ 

t) + curl curl ( r X(L' t) ,0,0 ) J 

+ curl (r~(r,t),O,O} (3 . 3 . 1) 

where fer) is any specified twice continuously differentiable function 

of radius; ~ , X and ~ are potentials, and (~,X) are independent of ~ . 

Toroidal motion 

The wave equation for ~ may be found from the substitution of 

(3.3.1), with (~,X) = (0,0), into equation (VIII . 2) . We note that 

~ is not influenced by the gravitational terms. Introducing the 
.1-,. 

scaling factor ~ (suggested by (f) in section (3 . 2», we find f or 
, 

T = )12 ~ that 



u = 
~ 

curl ( 
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r~ , .0,.0) = _1_,_ 
)J >- )J ;: (

.0 _l_l!. _l!.) 
, sinS at ' as 

= N (say) , with 
~ 

where 
_ 1: ~ _ 2)J , 

2)J r )J 

(3.3 . 2) 

Clearly th i s motion is toroidal, or SH (s ince M = C), and (3.3 . 2) 
r 

may be studied by the well known methods set out (for example) 

in Brekhovskikh's (196.0) text. 

Spheroidal motion, neglecting self- gravitation 

The wave equations for (~ , X) may be found from the substitution 

of (3 .3. 1) , wi t h ¥ = .0 , into (VIII.2) , and we neglect here the 

gravitation terms . Introducing the scaling factor p ~~/f (suggested 

by (b) and (d) in section (3.2», we define new potentials 

(P ,S) 
. 'I" 

= -p - ( ~ , X) 
f 
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so that u = L + N, where L - - - -
1 = -f 

f grad -;.- P, 
p1 

1 N = 
~ f curl curl (rf S,O,O) . 

p' 

(3 . 3 . 3) 

It follows from Appendix VIII that the applied force/unit mass may 

be written as 

1 f 
f grad - ,- D(r, t) 

p 'i -
+10 

f (
orf ) curl curl pi F(r., t ) , 0 , 0 • 

Then if A, B, C ar e introduced by 

A = ~ -'- n2p 
- ),+2)1 • v 

- ~ (r) ~ + £p(r) P a 0 3r 

(say) 

(with ~o ' 00' £p' £s given in Appendix IX) we find 

(3 . 3 . 4) 

(3 .3.5 ) 

(3 . 3 . 6) 
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(3 . 3.7) 

and 

(3 . 3 . 8) 

The t:>velve functions of radius Ep ' ES ' "0- - "4 , 00 --- 04 are 

dependent on our specifiable function fer), and they are all zero 

in homogeneous regions . Defining g( r) = f'/f, these t:>velve terms 

are listed in Appendix IX. 

We may regard (3.3 . 4 - 8) as five equations in the unknowns 

(P,S,A,B,C,), with source functions D and F . Equation (3 . 3 . 7) 

is simply the radial component of the vector wave equation for 

displacement , and (3 . 3 . 8) is either an integral over e of t he e 

component of this vector equation , or an integral over ~ of the ~ 

component. (We lose no generality by neglecting the arbitrary 

additional function of radius and time implied by these integrations , 

since it can only change S ( and C) by an additional function of 

radius and time . And this does not change the resulting value of 

K obtained in (3.3.3)) . In the following section we establish 
~ 

some of the properties of our system of coupled equations, and see 

how P and S decouple at high frequencies . 
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3 . 4 Properties of the coupled potential equations 

l,e show first how certain special sources excite solutions of 

t he coupled system (3 . 3 . 4-8) which are identifiable at high 

frequencies as P and SV . A critical review of Hook's method is 

then given, and we conclude with a summary of some applications 

of our potential equations. 

(a) High frequency decoupling of P and SV waves 

By eliminating C from equation (3 . 3 . 7) , and A f r om equation 

(3 . 3.8) , we can obtain two fourth order equations f or poten tial s 

P and S in the form 

( ) 2 [ pD A + 2~ r V A+2~ 

2 ( A '+2~ ') _ llL _ ~J.L [ ""PD<--._ +V2 PJ- a2p] 
A +2~ ~ . p ar A+2~ A+2~ at2 

(3 . 4 . 1) 
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[
A+3 U 

+ \lr H2\l g 

+ N(S) + c(r) F 

(3 . 4.2) 

where Land N are differential operators with terms up to second 

order. (Only the fourth and third order terms on the left hand 

side of these equations are needed explicitly, in our study here 

of high frequency decoupling . ) 

Now suppose that we choose the radial scaling function fer) 

so that n = 0, and consider the point source with potentials 
o 

D 
Ii (r-b) 0(8 ) - i wt 

e 

2nr2 sin 8 
F = 0 (3 . 4 . 3) 

First, we match orders of discontinuity in the source region: it 

follows from (3 . 4.1) that the source discontinuity in the fourth 

and third order terms is at most a delta function (since L(P) + a(r) D 

has at most a delta function discontinuity there), and hence that 
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"2p has a d 1 f . d· . . pD , e ta unct~on ~scont~nu~ty - A+2~ at the source . 

This last result then suggests a particular solution (or, particular 

integral) of the coupled system, valid throughout the region in 

which our potential P propagates as a wave : namely, that 

pD 
H2)J 

+ V2P _ ..J<p-,-_ a2
p () 

H2)J at2 = 0 1 . P (3.4 . 4a) 

From (3 . 4.1) we see that our potential P is coupled to a potential 

S which is two or ders in frequency down from P , i . e . since 0 + 0 
o 

we have 

S (3 . 4 . 4b) 

and from (3.4.2) we must then require cancellation of the fourth 

order terms in S (since ~l + 0, ~o = 0) , giving an eikonal equation 

for the S- potential phase. 

The equations (3 . 4 . 4 a,b) have been obtained essentially by 

inspection, and hence are sufficient for a solution (P ,S ) to 

the coupled system . In Appendix X we give a proof that necessarily 

the right hand sides of (3 . 4 . 4a,b) are at mos t O(l)P and 0(w- 2)P 

(respectively) , for the source- generated solution (P,S) . In 

Appendix X we also show that the turning point formulae of 

Appendix VI are still appropriate for partial waves of the 

solution P to the coupled fourth order equations (3 .4.1-2 ) . 
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We may now claim that potentials P and S represent respectively 

P and SV waves, since they have the appropriate phases, and potential 

P has the correct geometrical property at sufficiently high 

frequencies (we may prove this from 3 . 4.4a) . From the formulae 

(3 . 3.3) , we see that the derived SV wave displacement is one order 

in frequency down from the derived P- wave displacement. The force 

potentials (3.4.3) then represent a P- wave source. Clearly, an 

SV- wave source can be discussed by the above method , with cr = 0 
o 

and force potentials 

D o F 
6(r-b) 6(6) - iwt 

e 
(3 . 4 .5) 
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(b) Comparison with Hook's method 

The development of potentials for P and SV in media varying 

along one Cartesian axis has been discussed by Hook (1959, 1961 , 

1962 a,b , 1965) and Alverson, Gair and Hook (1963), and the 

same me thods extended to spherically symmetric media by Singh and 

Ben- Menahem (1969ab) . The approach of these authors is 

superficially similar to our work , but implies conclusions which 

depart from our results in several respects . 

Hook's method i s essentially a search for disp l acement 

solutions which are of the form 

L; 1 
"'0 fl (r) 

grad ¢ , 
1 N ; -'7-:­

"'0 f2(r) 
curl curl (rx , 0,0) (3 . 4.6) 

with two arbitrary scaling func tions fl and f2' instead of our 

single function f, and the above papers focus on the model 

const r aints necessary for the existence of non- trivial uncoupled 

solutions u ; L , u ; N , in the absence of source terms . 
,..; '"""'0 ,...., .-....0 

[Note that, for these solutions in such special media, our 

potential representation (3 .3. 3) is equivalent to (3 . 4 . 6): for 

u ; L we take S ; 0 and f ; fl ' and f or u ; N take P ; 0 
- """0 - """"0 

and f ; f 2 . ] Such model constraints are s uccessfully found 

(see e . g . Singh and Ben- Menahem (l969a» , and are simple 
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to obtain in our notation by inspection of the coupled system 

(3 .3.4-3.3. 8) : if u = L is to be a solution then our S = o. 
""" 

So C, B and A are zero and we require 

o with fl P = 

o 

I .. p ~ ,and 

If P represents a non-trivial wave, we must require ~o' ~1 and 

~2 to be zero. So ~o = 0 defines the choice of fl' and then 

~l 0, ~2 = 0 are the required necessary model constraints . 

(See Appendix IX for the definition of these functions.) 

Similarly, if u = N is a non-trivial solution, then 0 0 
~ """ 0 

defines the choice of f2 (and f2+ fl), and 01 = 0 and O 2 = 0 are 

the required necessary constraints. Finally, it can be shown 

that if u = L is a non- trivial solution, then so is u = N • 
,.... .-....0 ,.... """'0 

The special nature of these solutions is revealed by 

examining the representation (3 . 4 . 6), and we can see how 
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(i) these potentials are unnecessarily general, in that 

Hook and his co- workers have not given a proof that their 

representation (with two arbitrarily chosen scaling functions) 

is possible for every displacement solution . Thus , with a 

specified choice of (fl, f2), and a particular displacement 

solution ~ , we do not know if (~ , X) exist such that 

grad ~ + ~2 curl curl (r X, 0 , 0) . 

[IJe have supplied the necessary proof in Appendix VIII for our 

representation (3.3.3), which potentials are a subset of the 

set of potentials in (3.4 . 6) for different choices of · f, fl and 

f 2 . ] Hence, we must regard as suspect those equations given 

by Hook (1961) which couple ~ and X in his general media . We 

can also see 

(ii) that Hook's application of (3 . 4. 6) is too nar row , 

since, in the absence of source terms, P and SV are in gener a l 

coupled even in those special media for which decoupling is 

possible . This fact, "hich we see by inspection of (3 . 4. 1) and 

(3 .4 . 2) with either TI , TIl ' TI2 all zero or a , 01, 02 all zer o , 
o 0 

does fo11O\, from the analysis of Alverson, Gair and Hook (1963) , 

who ",rite the equations of motion ~ 
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as A~ = .£ (,.,here A is a matrix differential operator acting 

on displacement components), 

transform to potentials ~ l' ~z ' $3 ($3 gives the SH motion) 

by u = B1 for some matrix differential operator B (given essentially 

by (3.4.6) "hen '1>3 = 0), and 

try to find B such that 

A~ = ABf = CDi in "hich D is diagonal. (The 

condition that D can be found is a model constraint, and reduces 

to the requirement that TID , TI l and TIZ can all be zero.) Alverson 

~ al discuss only the uncoupled equations D f = .£ (i.e . dll$l = 0, 

dZZ$Z = 0, say), but in general these are not the only significant 

solutions to CD! = Q, since CDf is of the form 

curl curl (r dZZ $z , 0 , 0) 

and $1 is in general still coupled to $z . 

(iii) Hook and his co-"orkers have not considered the 

effect of a source t erm. Using our method of analysis in (a) 

above, it may be seen that (for media in which non-trivial 

solutions u = L u = N exist), the source-generated potentials 
..-..0' ~ .-...0 

P and S a re indeed decoupled if the applied force/unit mass is 

expressible as 
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( 
rf2 

curl curl ---r­
p .. 

F, 0, 0 ) (3.4.7) 

where f1 is chosen so that ~O = 0, and f2 so that ao = O. We 

note further that such force potentials can always be found if 

the force is confined to a homogeneous part of the medium. 

(iv) Singh and Ben- Menahem (1969b) have recently used 

Hook's me thod to explain the geophysical observation that P and 

SV are substantially decoupled in the Earth . Their wo r k implies 

that these waves are independent, because in special models 

potentials can be chosen which satisfy uncoupled wave equations 

like (3.3 . 2) for the SH potential, and they shm. by example that 

the Jeffreys-Bullen Earth is at most depths similar to such a 

special model . This study may be criticized directly because 

their special model is still split up into sever a l layers, and 

indirectly because of our remark (ii) above , concerning coupling 

in the special media . (It would however be interes ting to 

evaluate the functions ~l(r) and ~2(r) for Earth models which 

best satisfy modern data, to see at "'hich depths mos t mode 

conversion may be expected to take place . ) 

Our work in (a) above implies rather that P and S are 

sufficiently independent to explain the geophysical observation 

(of independence), and satisfy a wave equation (3 . 4 . 4) like 
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that for the SH potential, merely because the effect of 

heterogeneity near a confined source can be made negligible . 

Thus, suppose that the source is non-zero only near the radius 

r = b . It follows from Appendix VII that the applied force/unit 

mass may in the frequency domain be written as 

F = 1 [grad Dl + curl curl (rFl , 0 , O)J f2 (r) 
-iwt 

e 

(3 . 4 . 8) 

for some force potentials Dl, Fl ' And since the force is zero 

away from r = b, we can have 

grad 

(or a similar result with Fl) ' 

Using new force potentials 

D 

we may use the methods of (a) above, with D as a P-wave source 

(coupled to a smaller SV displacement) and F as an independent 

SV-wave source (coupled to a smaller P displacement) . 

and 
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(c) Brief summary of applications and extensions 

(i) A conclusion of our study of coupled potentials in (a) 

above is that, at high frequencies, P and S separately satisfy 

wave equations like (3 . 4 . 4a), "hich are essentially in the canonical 

form (3.2.2). This basic result is the assumption needed in Chapter 

2, to generalize the theory for an Earth model with individually 

homogeneous mantle and core to the theory for general radial 

heterogeneity . [We prove in Appendix X that the IYKBJ and turning 

point results, obtained in Chapter 2 from the canonical equation 

(3 . 2.2), may also be derived from our coupled equations (3 . 4 . 1) 

and {3 . 4 . 2)J And so Chapter 2 is justified as a major application 

of our choice for coupled potentials . 

(ii) The general form of the coupled equations (3.3 . 4) - (3 . 3 . 8) 

permits specialization to the detailed study of specified forms 

of radial heterogeneity. The many logarithmic derivatives 

( ~x IJn F = ~,) appearing in Appendix IX suggest that pm,er laws 

may be particularly suitable, for then such derivatives are constants . 

Zavadskii (1965a) discusses a similar elastic medium which is 

transversely homogeneous, i . e . the logarithmic depth derivative of 
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p, A, and ~ are constant, and in which also the squares of the 

two velocities are proportional to depth . He obtains the equations 

corresponding to our (3.4.1-3 . 4.2), but without the option of a 

varying sca~ factor f, and is able to reduce them to two Whittaker 

equations . The solution is then given by two coupled potentials, 

each a linear combination of the same four l~ittaker functions. 

(iii) The numerical study of such a special inhomogeneous 

medium is sometimes able to give us considerable insight into 

seismological problems. A practical example here is the relevance 

of theory and numerical details, given by Brekhovskikh (1960), 

to the problem of describing postulated upper mantle transitions 

in the Earth. The theory here indicates that regions of anomalous 

velocity gradient must be confined to within at most 4 kilometers, 

in order to generate observable PKPPKP precursors. 

Several steps are needed to obtain this result. 

First, we note from Engdahl and Flinn (1969) that the apparent 

dT 
slowness d~ for t he precursors (near ~ = 65°) is about 2.9 seconds/ 

degree, which implies that the angle of incidence i (say) at a 

transition zone near 650 km is about 16° to the vertical. An S 

wave wi t h the same slowness has at this depth an angle of incidence 

j (say) about 9°. 

Second, in Appendix XI we find formulae giving the reflection 

and transmission coefficients between two slightly different 
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welded homogeneous half- spaces , for an incident P wave. [This Appendix 

gives two methods for obtaining the coefficients, first by studying 

the boundary condition and second from the intrinsic coupling 

contained in the wave equations of displacement in heterogeneous 

media . ] Suppose that this wave is incident from below at 16° to 

the vertical, and that the upper medium has a density 5% smaller, 

a longitudinal velocity 10% smaller, and a shear velocity about 20% 

smaller than corresponding parameters in the lower medium. [These 

velocity values are somewhat less than the total change across the 

major transition region suggested at 650 km depth by Anderson and 

Julian (1969) : the density jump is found not to be particularly 

important in our argument, in contrast to the suggestion of Teng 

and Tung (1969) . ] From our Appendix XI formulae, we conclude 

that in this extreme case of a step discontinuity the reflection 

coefficient for P waves (i . e . P(up) + P(down» and the conversion 

coefficient for SV waves (i.e. P(up) + SV(down» are both about 

- 0 . 057 . 

Third, in order to obtain an upper limit for reflection 

coefficients (P(up) + P(down» in different models of the transition 

region, we make the strong assumption that mode conversion is 

negligible. (We see from the calculation in Appendix XI that 

this is indeed a strong assumption. However, we may expect that 

the conclusions of the order of magnitude argument which it permits 
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are not significantly changed, since we are interested in obtaining 

only an upper bound for the P-P reflection amplitude.) We may also 

reasonably assume that the PKP wave incident at the transition has 

a horizontal phase velocity centered at one dominant value, and 

that the transition itself is transversely homogeneous . It 

follows from our results in (a) above that the longitudinal wave 

system may then be discussed by a potential P satisfying 

o (3.4.9) 

where the wave number h is a function of depth z, and we take z 
o 

to be the depth to the center of the transition region. 

Brekhovskikh (1960) gives an extended account of the Epstein 

(1930) method of studying (3 . 4 . 9), which permits the calculation 

of reflection coefficients (for different angles of incidence) 

from a transition region described by the velocity profile 

1 
-m(z-z ) 

= [l _ Ne 0 

- m(z- z ) 
1 + e 0 

J~ (3.4.10) 
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(N . B. our z increases downwards) where Nand m are real constants. 

This profile is a smooth transition between the two values a(~) and 
_ 1/1-

a(-oo) = a(~)(l-N) (from bottom to top), and for our study of the 

650 km (= z ) transition in the Earth we are interested in finding 
o 

reflection coefficients for the value (l-N)~ = 1.1, which represents 

a 10% change in velocity. We take the effective thickness i of the 

to be given by i = 3.52 km, depths 1 transition zone since at z - - 2. 
m 0 2 ' 

1 show the velocities less than 1% different from z + 2" 2. we can are 
0 

respectively their upper and lower limiting values, a(-oo) and a(~). 

Brekhovskikh gives for the modulus of the reflection coefficient 

the exact formula 

. h {2TI2 [ s~n Am cos i - -V cos2i - N1J} 

R = 

{ 2~2 [ sinh Am cos i + -V cos 2i -N']} 

where i is the angle of incidence at z = + ~ (taken as 16° in our 

application) and A is the wavelength 2TIa(~)/w. Brekhovskikh also 

plots values of R against i for different ratios 2. / A in this case 

of N = - 0 .21 (his Figure 76) . These are just the values needed to 

discuss our geophysical problem. They are not in fact particularly 

sensitive to the angle of incidence in the range 0 ~ i ~ 30°, and 
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we note the values 

2 2 - 3 5 R = 4.5 x 10- , 2 . 5 x .10-, 1. 8 x 10 , 1. 0 x 10- , 

3.2 x 10- 1°, 7.9 x 10-24 

fo r ratio values 

Q. I = 0 . 1 , 0 . 2, 0 .5, 1, 2 , 5 

Note that the approximation we have obtained in Appendix XI is 

R = 5.7 x 10-2 in the limiting case t = 0 - which result fits 

in well with the above sequence. 

Fourth, we quote Adams ' (1968) remar ks t hat "Amp litudes obser ved 

for the clearer reflections range from a few percent up to 20 percent 

and in one case 40 percent of the main phase ," t hat "At times there 

are clear pulse- like early arrivals ," and t hat the more common 

"emer gen t forerunner is usually of short period (one second or less)," 

and note also (from our formula 2 . 6 . 14) that the main phase 

(reflected essent i ally from the Ear t h ' s surface) has a reflection 

coefficient of nearly one . Adams ' remarks concern horizons less 

deep than 650 km, and Engdahl and Flinn (1969) have pointed out tha t 

some of the arrivals picked as precursors by Adams are probably the 

phase SKKKP. However, the brief summary of ':a few percent ••• 

of the main phase" and an "emergent forerunner ••••• (one second ••• )" 
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is all we need, and seems to be unchanged by more recent studies 

(\fui tcomb, personal communication, 1969) . 

Fifth, and finally, it is clear from the comparison of theory 

and observation that transition zones must be highly localized . 

For, a wave wi th the predominant period of two seconds (say), 

incident upon the transition with wavelength about 20 km, is 

reflected back down with more than 2.5% of its incident amplitude only 

if the transition width is less than about 4 km. To obtain this final 

upper bound we have made highly conservative estimates throughout our 

theoretical development (except in neglecting a focusing effect 

of curvature of the transition; this should change our conclusion 

only if such curvature is substantially different from the curvature 

of that horizon 'i7hich produces the main PKPPKP phase) , in the 

postulated size of the jump in parameters across the transition, 

and in our observational summary . The less conservative assumptions 

of a one second incident wave , reflected back down with more than 

4% of its incident amplitude , imply a transition width of less 

than about 1 km . 

The reason why our somewhat crude assumptions can lead to 

such a definite result is that the falloff in the reflection 

coefficient R is extremely rapid as ~ increases . As a corollary 

we may remark that the continuous scattering, due to the large 

vertical extent of small velocity gradients in the Earth, is 

essentially negligible, and presumably that anelasticity has a 



-157-

more important effect on the total transmission coefficient along 

a ray path . 

It is of considerable importance to determine if the loca lized 

transition required above to explain reflection observations may 

have the nature of a discontinuity in velocity gradient, rather 

than in the velocity itself (i. e., a second- order discontinuity rather 

than a first) . The general methods set out in Chapter 2 (Section 6) 

above may be appropriate for an accurate discussion of such modelling, 

but we can profitably enter here a brief summary of the solution 

found by Rayleigh in his study of waves propagating along inhomogeneous 

strings . (See Rayleigh, 1945, Vol. I, §148 . ) Brekhovskikh (1960) 

quotes this solution in the context of light- wave propagation in 

media of varying refractive index , and gives a numerialidiscussion. 

We use seismological terminology, rather than the mechanical and 

optical parameters of these r eferences , and the "profile" is 

e«Z) 

e«Z) 

e«Z) 

Z :s; Z - L/2 
o 

Z - L/2 :s; Z :s; Z + L/2 
o 0 

Z + L/2 :s; z . 
o 
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Brekhovskikh's numerical work is for the case of a wave incident 

in the first medium, with a1 = 0 . 8 a 2 . So the second medium has 

a higher velocity (and the total jump of 20% is almost certainly 

larger than those jumps which may occur in realistic Earth models). 

If the incident wavelength is A, then R, the reflection coefficient 

modulus for normal incidence, is given in general by 

R = 

where 

II 

or by 

R 

where 

if 

\i [ 

if 

L 
< 

A 
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[Note : the boundary conditions assumed here are those originating 

in Rayleigh's problem. We may expect the general features of the 

seismological reflection to be the same . ] The following brief 

description of R can be given , in the case al = 0 . 8 a2: 

R = 0 for certain specific values f = 0 .56, 1.11, 1.66, 

given by solutions of m £n Cal/a2) = \111 , where \I is an integer. 

- L -
In the range 0 ~I ~ 0.56, R falls almost linearly from 12% to 

zero. In the range 0 . 56 ~f ~ 1 . 11, R rises from zero to a 

maximum of 2 .5% and falls back to zero . L In the range 1.11 Sis 1.66, 

R rises from zero to a maximum of 1 . 6% , and falls back to zero. 

The maxima occur about half way between the zeros. 

It is ~gain apparent that the observations impose some severe 

restrictions on this model of transition zones, if it is to explain 

the PKPPKP precursor amplitude data. [Note, the above numerical 

work is obtained for reflection from a medium of greater velocity, 

rather than a lesser. However, R falls into about the same range 

of values if we evaluate reflection from the lesser velocity 

do indeed indicate that the reflection coefficient is more than 2.5%, 

then L/A ~ 0 . 45 is required by the model. The upper limit here 

then implies for observation of a one second wave that the transition 



is less than about 4 kilometers - even in this case of a 20% 

jump in velocity . 

The zeros and maxima in the reflection coefficient suggest 

that for different frequencies there is destructive and constructive 

interference, between reflections reverberating between upper and 

lower velocity gradient discontinuities . Hence, for a similar 

transition, but in which one of the two second- order discontinuities 

is smoothed out, we may reasonably expect a reflection coefficient 

lying between the extrema (maxima and zeros) calculated for our pair 

of discontinuities . (See Archambeau, Flinn and Lambert, 1969, 

for t he development of Earth models with such one- sided transitions.) 

That is, a modified reflection coefficient obtained approximat ely as 

R 
-2 9.5 x 10 . 

for the ratio values 

L I = 0.2 0.5 , 

_ 2 
, 3 x 10 

1.0, 

- 2 
1 x 10 

and here we make the interpretation of L/ A as the gradient in the 

transition region. Then L/A = 0.5 gives f or a 10 km wavelength 

the gradient 
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d ex 
- - --L- - 2 km/sec, per 5 km. dz Yet even this large second- order 

discontinuity (plus about 5 km of anomalous gradient) has a 

reflection coefficient of only 3% (which perhaps may just be 

large enough to explain the observations) . 

In conclusion, we may emphasize that it is the short period 

reflection data from transitions which provide our strongest 

restrictions on the localized nature of these regions. The search 

for such data, difficult though they are to find, must become one 

of the more important projects in seismology - since each confirmed 

reflection horizon must be a narrower region, of larger velocity 

anomaly, than has previously been supposed . We also note that 

the present lack of reflection data, from the major 350- 400 km 

"discontinuity" (described by, for example, Johnson , 1967), 

merely implies that the anomalous region is spread over more than 

about 20 kilometers . Some of the conservative estimates we have 

been obliged to make in the above discussion should be improved 

by obtaining special solutions for our basic coupling equations 

(3 . 3.4) - (3 . 3 . 8), rather than by discussing approximations to them. 

(iv) An extension of our method for obtaining useful potentials 

can be given, to examine the displacement u in an elastic isotropic -
mecium with general heterogeneity . For, the equation of motion is 
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where! is the applied force/unit mass, the Cartesian tensor ~ 

has componen ts 

CJ " J" A 6 . " u , , + \l [u. " + u" kJ 
J- 1J k, .... 1, J J , 

and p , A and \l are all functions of position . We may then seek 

solutions in t he form 

and generalize the discussion given in (3 . 4a) above to discuss 

t he choices of f which, for special sources, lead to decoupled 

equations in ~ and ~in the high frequency limit. 
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(d) Conclusions 

\,e have been able to find a system of potentials by which we may 

study all elastic displacements in a spherically symmetric, isotropic, 

Earth model . Properties of P, SV and SH waves may be identified 

by individual potentials, and it is found that well-known methods 

of solution for canonical wave problems are available for an 

examination of high-frequency elastic waves in the Earth. 

Such solutions have frequency- dependent amplitudes for the 

waves scattered by transition regions. We find in (3 . 4c) above 

that those transition regions in the Earth , which are experimentally 

identifiable as reflection horizons for short periods, must be 

much more localized than has hitherto been generally supposed . 

Our new method of potentials permits a shadow boundary solution 

method (presented in sections 2.2-2.5) to be generalized to study 

elastic waves in realistic models of the Earth's core/mantle 

transition. The conclusions of this study are given at the end 

of Chapter 2 above: they include a quantitative appreciation of 

Johnson 's (1969) caveat , that the body wave phases which bottom 

near the core/mantle interface have a significantly dispersed 

horizontal phase velocity . It is expected that our numerical 

methods, developed in Chapter 2 for the evaluation of waves which 

travel close to the core shadow boundary, may find applications 

in many other wave propagation problems. 
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Appendix I 

Formulae for P- S and S- P Scatte ring 

We discuss here our simples t mode l of diffraction - a steady 

stat e plane wave of unit displ acement, incident from the left on a 

circular cylindrical cavity . See Section (2 .2). 

a) P-S (See Figure l(b» 

With equations (2 .2. 2) and (2 .2.3) we may use the Poisson 

sum formula to obtain W , t he potential for scattered SV waves, as 
s 

1)1 = s 

B(r, 6) = 
- 0> 

1. 
2 m=-oo 

B(r, 2mrr + 6) 

i ,,(a + f) 
H( l) (kr) e 

" 

where 

I.e can show that B(r,- a) = - B(r, - 2n +6) and so 

' ... i [ ~, (",.,_.) -",., .. -.»)} + " '. ' ) 

- B( r,-a) ] 
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All but one of these t erms are negligible , and we have 

IjJ 
s 

1 + 2 B(r , - S) near the upper PS boundary . 

Contributions to t he i ntegr al B(r,-S) must come from near v = kr sin i 

(see Figure 2) , i .e. from near v = ha , if (r, S) is near t he PS 

boundary (see Fi gure l (b)) . So we approximate t he integrand in this 

re gion. 

i v (- S+ f) 
H(l) (kr) 

v 

iv (i c 
e e e 

where 

~ - 6 + 1!. - i ] 
kr 2 c 

and i is the critical angle of incidence at r 
c 

a . Then 

e 

i v(- S +-¥-) 
H(l) (kr) 

v 

i v (i 
c 

e e 

where X is a Cartesian coordinate along 6 = f - ic 

The asymptotic expression is valid if v ~ krsin i and 

See Figure lb . 
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kX I i - (e + ic - ~) I «1 ,i . e. for (r, e) sufficiently 

near the PS geometrical shadow boundary . 

Finally, then, we have 

1 ~ J~ 
(ha)" ..., 

iv (i 

e 

b) S- P (see Figure l(c». 

c 02Jv (ha) 

II I H(l) (ha) 
v 

dv 

The derivation here is exactly parallel to the case of P-S 

scattering, and we find the SP potential 

i (hX - *) . 
(ha)1 CSP(W), where e 

e dv 

The sign difference between $s and ~s above is due to the sign 

difference in our choice of source potentials for the two problems. 
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Appendix II 

Expansion of the Point Source in a Smoothly 

Varying Spherically- Symmetric Medium 

We wish to find the expansion, in an infinite series of spherical 

waves , for the solution to 

oC r - b) 6(1l) 
211r2 sin II 

x (-

(see Figure lb for parameters r , ll ,b). 

411 ) 
ih(b) 

The angular functions are separable and lead to the same equation 

as the homogeneous case, with Legendre function solutions. So we 

try t he form 

~ .(r,ll) 
1 I 

n=O 
a(r,n) P (cos ll) 

n 
(II .1) 

Then a(r,n) = (n + i) f1l~ i(r,1l) Pn(cos ll) sin II dll , and 
o 

substitution of (11.1) in the Helmholtz equation yields 

- 0 (r- b) (2n+l) 
i h(b) r 

after an appeal to the orthogonality of Legendre functions. 

(II.2) 
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Following Seckler and Keller (1959b) and Friedman (1951) we 

introduce t hree particular solutions of the homogeneous equation 

related to (11.2). Let f (r) be that solution for a(r,n) which 
n 

is regular at the singularity r=O, and for large values of r let 

g(l)(r) and g(2)(r) be respectively, t he outgoing and ingoing solution . 
n n 

(We may assume that outside some very large radius the medium is 

homogeneous.) Apart from a normalization, the t hree " sol utions "ar e 

then completely defined, and we may take 

a(r ,n) Cj ~l) (r) 

~ c2 f (r) 
n 

b ,;: r 

O';:r,;:b . 

(II . 3) 

The constants Cj, c2 are determined from noting that (11 . 2) 

implies both 

so 
f (b) 

n 2n+l 
Web) C2 ~ ih(b)b2 

and 

~l) (b) 

Web) 

2n+l 
- ih(b)b ' 
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"here H(r) " gel) (r) f' (r) 
n n 

gel)' (r) f (r) is the Hronskian of 
n n 

these two solutions . 

0, H(r) ex 
1 
~ 

The constant of proportionality depends on the normalization we 

choose for t he basic solutions . Apart from this constant factor, 

we also know (for media in which rays do not become trapped in a 

duct) that the g(~)(r) may be given approximately by WKBJ solutions, 
n 

i.e. 

(1) 
(1) 

(')T g (2) (r) 
K(2) 

± i r [ h
2W

- n7 d~ r "" exp 
n 

[h2 (r) _ ,n+t YJ ~ 0 

r 

(II. 4) 

(1) (2) where K ,K are constants and r is that radius at which the 
o 

integrand vanishes (see Morse and Feshbach (1953), p . 1101). 

Defining 

p ,,-

1 
n+I 

OJ 
we have 

r 
o p = -,0;:""­

vCr ) o 
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where v Cr) is the velocity from which wave-number her) = w/v(r) is 

derived . Hence, r has a physical interpretation as the radius o 

to t he deepes t point along t he ray with ray parameter p. 

Our normalization for g(~)(r) is made after comparison with 
n 

t he Debye approximation to spherical Hankel functions . This 

approximation is 

(1) 

h (2) (hr ) "" 
n 

exp ± i [(h
2

r
2

_ (n~Yf + (n~) sin-
1 
(:: )- 0~) ~ -tJ 

(hr ) i [h2r2 - (n~) 2J ~ 

and so may be written as 

(1) 

r h (2) (hr) 
n 

I ire h2_ ( n;) 2 Jid~ 
o 

(in which h is constant) . 

He t hen take the normalization for g(~) (r) which allows 
n 

equation (II . 4) to be written as 



(1) 

g (2) (r) 
n 

+ iE. 
4 1 

r 
1 
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( 
1. ) 2J.!.. exp n+2 ~ 

r 

J
r (1)2Ji 

:t i [h2 (E;)- n;"2 d~ 
r 

o 

in t he region for which her) • r > n + t (i . e . above the depth of 

deepest penetration of the ray with parameter p) . In homogeneous 

media, the g(~)(r) are spherical Hankel functions h(~)(hr) . 
n n 

Similarly, from WKBJ theory we have 

K 
r f ( r) "" --'''-­

n 
exp + 

r o 

. th . f .. ch h (r) r < n + _1
2

• 1n e reg10n or wn1 We take 

for then in homogeneous media 

f (r) is the spherical Bessel function j (hr) . 
n n 

The three functions f (r), g(~)(r) are solutions in all ~anges 
n n 

of radius, and it is of interest to find the connection formula 

between them. From Morse and Feshbach (1953, pp. 1097- 1101) we see 

that t he same relation is satisfied as that for spherical Hankel/Bessel 

functions, i . e . the connection formula has the simple form 
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fn (r) = t [ g~l) (r) + ~2) (r) ] (II.S) 

With the normalization above, it is now possible to evaluate 

t he Wronskian. We find 

W( r) = 
i , exactly. 

So from equations (11 . 1), (11 .3) , (11 .5) we finally obtain 

q, . ( r ,1I) 
~ 

where 

max(r ,b) , 

(11.6) 

r< = min(r,b). 

The formula used in section (2.5) for expanding the point source 

in a homogeneous medium is a special case of equation (11.6). 
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Appendix III 

A Proof t hat 

"here ¢ i s t he Phase Function of Section (2 . 6) . 

From equation (2 . 6 . 4), "e have 

r 
r (v) 

o 

r 
r (v) 

o 

~.J'here ro (v) = v/h(ro(v)) , and hence is a singularity of the 

integrands . We consider only t hose media in "hich the velocity 

gradient is sub- critical, i.e. 

transform from ~ to n , where 

n = 
S; h (~) 

w 

~ ~hW where r; = - hW d~ 

dv v 
< ­

dr r 

Then 

and so 

It is then permissible to 

d~ 
w 

= 
hW (1- r;) 
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d~ 
dv = - v 

This formula may be integrated by parts, and 

:: " J, ,\ 1 00'-> (:" If'''"-[V,l 

+ f (r)r/w 

v / w 

v 
W 

~l'l (l:~) dl'l + f
h(b) 

v/w 

v ]h(b)b/W 

cos- 1 ( ) wl'l 

b/w 

v 
W 

+ /:, 

These integrands have no singularity (unless at ~ = 1 . But this 

is ruled out by requiring sub-critical velocity gradients) . They 

are zero at the lower limits of integration , and so by direct 

differentiation we may obtain 



r/w 
1 
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(l~~) . 
~=b 

Comparing Bullen (1963, p . 113) , we see that 

= 
v=wp 

1 
w 

d6 
dp 

time, and so finally we have 

~~~ = - 1/ [w ~:; J . 
v=wp 

dT 
But P = d6 wher e T is t he t r avel 
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Appendix IV 

Description of the Program EXACT 

EXACT is a FORT~~ 4 computer program, written for an IBM 360/75 

system, which evaluates complex path integrations in the v-plane of 

certain functions F(IFLAG, v), discussed in Section (2 . 5). 

Purpose 

For correct choice of the path, this integral is the exact solution 

at the poirrt P(r,~) to one of six elasticity problems (specified by 

IFLAG = 1, ... ,6) . Wi th IFLAG ~ 1,2 and 3 these solutions are for 

the exact total potential in respectively, P-P, SV-SV, SH-SH scattering 

due to a source potential at point S(b,O) . For IFLAG = 4,5 and 6 

the solutions are an exact total component of displacement for the 

problems listed in Tables 2, 3 and 4, respectively. 

Usage 

A problem of the above type is specified by an Earth model 

(a,e,a ' ,p,p', a), IFLAG, a frequency, a set of (up to 6) source radii b, 

one station radius r, a set of (up to 30) station distances ~ , and a 

description of the complex path r (up to 5 line segments). 
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Choice of path f . 

A dis cussion of this type of path integral i s given by Phinney 

and Cathles (1969), in which i t is pointed out that the solution at 

(r , ~) for a range of ~ may be found numerically using the same complex 

path f . Thus t he integrand has to be changed for different ~ , and 

the integr and has D,O saddles or none according as (r,~) is in 

the lit zone or the shadow. But we do not attempt to make f follow 

a steepest descent path . The advantage of fixing f in each problem 

is seen by observing that the integrand may be split into three 

factors, dependent respectively on source/station radii , on the 

Earth model, and on~ . For example, we have 

F(l ,v) 

The evaluation of t he first two factors is much more time consuming 

t han evaluation of Q(2) . SO t he program stores values of the firs t 
v 

two factors , and t hese values may be re- used in each integr ation 

for different ~ , s ince f is fixed . 

For the solutions given in Chapter 2, f is composed of three. 

line segments. See Figur e 17 . For P- wave problems, r is 

A + (ha , O) + B + C where B is chosen to be near the direct P- wave 

saddle point for the smallest ~ in the range discussed . The integrands 

decay exponent ially along dir ections (ha,O) + A, B + C; A and Care 

chosen sufficiently far f rom the real axis to include all t he 
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significant contributions of t he integrand . Thus, for P- wave problems 

I is essentially the path described by Phinney and Cathles (1969) . 

For SH problems we use E ~ (ka,O) ~ F ~ G in the same way as for 

P-wave problems . For SV there is the additional compli cation 

(see Section (2 . 5» due to the poles near (h ' a , O) . So for t he l ow 

frequency (f 0 . 03 Hz) we use D -+ (h' a,0) ~ F ~ G, and fo r t he hi gh 

frequency (f = 0 . 2 Hz) we use E ~ (ka ,O) ~ F -+ G. A choice of 

different paths has in fact shown the "head- wave" effect to be 

negligibly small (~ 1%) , and we mention it because t his i s t he only 

case in which our program returns solutions varying by more t han 

0 . 2% for a different choice of paths . 

Met hod 

, 
The Hankel package of SHARE numbers 1355- 1359, 1361 is 

after correction of three errors . The functions Q(2~(COS6) 
\1 - :i 

used , 

are 

evaluated by converting formulae in Robin (1958, pages 237 and 240) 

into a power series in! , and retaining 0 (!3) . 
v v 

A considerable reduction in core space is achieved by integr ating 

the different line segments separately . For examp l e , with a P- wave 

problem , the three factors mentioned above are first evalua t ed at 

(say) 51 points along A ~ (ha,O) (see Figure 17 ; these have to be 

stored some for each b, some for each 6) . A Simpson int egration 

scheme then selects values corresponding to each (b , 6) combination , 
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and stores the integrals along this first line segment. The second 

line segment is then treated, and note that the values of the three 

factors mentioned above need to be stored only along one line segment, 

and only before segment integration. The third line segment is 

integrated, and the final solution is a sum of the three line segments 

corresponding to one (b,~) combination. 

A simple on-line plotting option is available for each segment , 

to monitor the choice of end points and also the spacing of points 

at which the integrand is evaluated. (Up to 101 points may be taken 

on each segment . ) The fact that both real and imaginary parts of the 

integrand are well- behaved numerically is our justification for using 

a Simpson's rule with even spacing . Any integration method which 

varies the spacing will required much more computer time, since , 
for example, the model factor 

[ flSh ! (ha) 
\) -~ 
(2) J 

would have to be re-ca1cu1ated for each ~, and separately for real 

and imaginary integrations. 



-191-

Appendix V 

The Fresnel-Kirchhoff Method in Radially Heterogeneous Media 

We take the elasticity problem posed in section (2.6), and use 

methods of geometrical ray theory to obtain a similar solution . 

Our basic formula is a standard integral theorem for the potential 

at P(r,t.) : 

HP) = - ~1f JJ [HQ) 
S 

a -;;- G(Q ,P) on-
_ G(Q P) 21(Q5l , an J 

Q 

dS (V.l) 

onS 

where S is any closed surface surrounding P, n is the outward normal 

on S, and G(Q,P) is a Greens function. The normalization of G in 

equation(V.l) is such that ray theory approximation gives 

i<l> (Q ,P) 
G(Q,P) 

e 
R(Q ,P) where we define 

B 
iP(A ,B) - h(s)ds (integrating along t he direct ray from A to B) 

A 

R(A,B) - rArB [sin(t.A- t.B) h(r A) h(rB) cos i (r A) cos i(rB)]i 

[wp (-w ~)Jf 
(V.2) 
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in which p (the ray parameter), i(r
A

) and i(r
B

) (angles of incidence), 

and T(travel time) refer to the direct ray from A to B. Note that 

in a homogeneous medium R(Q ,P) = distance between Q and P, and the 

formula for G is exact . 

We chose the surface S = A + B + C where (see Figure 18a) A 

is part of the plane normal to SP which passes through 0 (the turning 

point) - namely that part between some arbitrarily large radius and 

radius r = a; B is the hemisphere of core surface on the P side of A, 

and C is the hemisphere which contains P and forms a closed surface 

together with A and B. 

The contribution from C to the integral (V.l) is negligible. 

We take Kirchhoff's boundary conditions on A and B, i.e. 

on A: 
a'" 3$ . =1 = ~I (note: $ . (Q) an Q an Q ~ ~h(b) G(S,Q») 

on B: $ (Q) 0 , ~9 1 = 0 
on Q 

(see Born and Wolf (1959 , p. 378», 

1 
and neglect R in comparison to h to obtain 

<:> (P) 1 f H(S,Q) i<i>(Q,P) ~ . . ( S Q) i( Q p)~ ·h( )as - -- e e s~n ~ r . + sin r
Q
;, ~ rQ 411 J . Q" 

A ------------~---------------------------
i h(b) R(S,Q) R(Q ,P) 
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As the element dS(Q) ranges over A, the only factors in this 

in~egrand which change rapidly are the phase functions . 50 we take 

all other factors outside the integration (using their values when 

Q is at 0 , see Figur e 18a), giving 

d: h(s) ds 

If <p (P) heX) e e icSHQ) dS (V . 3) , 21lh(b) R(5,0) R(O,P) 
A 

wher e cS$ (Q) is t he difference in phase between the sum of ray paths 

(5 ~ Q) and (Q + P), and t he ray path (5 + P) . 

We thus need to evaluate cS~(Q) as some function of two parameters 

(u,v), say, ,.,hich specify the position of Q on the "aperture" plane A. 

Our choice of these parameters is guided by the Fresnel method for 

a s creen in homogeneous media (see e . g . Baker and Copson (1939)); 

thus, the integration of exp i cS$(Q) has contributions only from 

the vicinity of the point 0, about which point cSO is first expressed 

as some second order formula A( U(Q) - u(0)) 2 + ~(v(Q) - v(0))2 . 

Our parameterization of the aperture plane is shown in Figure lSb, 

as viewed from t he source side, near O. The horizontal axis is 

simply Cartesian distance z from t he vertical plane through 5 and P. 

The vertical axis is given by t he r ay parameter q of the ray (5 + Q) . 

cS O(Q) has a component cS ~ (say) due to the fact that Q is not in 
z 

the same vertical plane as 5P . If the angular distance from 5 to Q 

i s ~ : + cS~ l' and from Q to P is ~2 + cS~2 ' t hen it follows from a 
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formula for t r avel time (Bullen , 1963, p. 112) that 0 ~ = wp(oa1 + Oa2) , 
z 

wher e we use p as the ray par ameter f or (S + P). But oa . = (z2 cot a .)/ 
1. 1. 

2y2, "here y is t he r adius to 0, so "e have obtained one component 

of oO(Q) . 

rne remaining component, due to the vertical difference between 

° and Q, may be ob t ained graphically as f ollows: 

Suppose Q is a fixed point, and P is varied (with constant radius) 

around that position P(Q) which has the same ray parameter as (S + Q) . 

Let us examine the p- a diagram, Figure l 8c, for both the rays S + P 

and Q + P as P varies . The ray parameter for the S + P path is 

a func tion of dis tance (a) governed by the Earth model . But the ray 

h r sin i(r) 1 parameter for Q + P is 
w ' r=r 

Q 
constant value q as P varies for fixed Q. 

and this has the almost 

No te that t he travel time 

difference for arr ivals at P (from S) via the t wo paths is given by 

(q_p) 2(_ aa) the area between t he t wo curves in Figure l8c, i.e. 
2 ap 

and the corresponding component of 00 is wx travel time distance. 

The formulae used for the integration of (V .3) are thus 

o~(Q) ( ) w(g_p)2 ( aa) cot a1 + cot a2 + 2 - ap and 

cIS = dz dg w 
h(y)[l-~(y)l 

where ~ is the normalized velocity gradient, 

r dv 
v dr Then 



i r h(s)ds 
S 
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¢(p) = - h(y)e w 
2nh(b) R(S ,O) R( O,P) ~h7(y~)~(1~_--~(y)) x 

r 
z=-oo wq =h(a) a 

Set 

W( q_p)2 
2 

exp 
[ 

z2 ( ) w(q -u)2 ( atl )n i wp 2y2 cot til + co t tl2 + 2 ' - apU dZdq 

and not e that f~ ein / 2a2 da = ein / 41:2' 

and ~: = (~~~) - 1 • I,e then ob t ain 

I 

<j>(P) <0'0,'.",0, R'O,')[H")) [ ..,1,;' " + '"' ',J (-- ::nr 
h (a) a- wp 

[ 
a2TJk - nw al\2 

J
r eceiver 

i h(s)ds 
source 

X e 

o 

(V . 4) 

x 
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This is a useful form for $(P) , but we can obtain better 

similarity with section (2 . 6) . For , noting from (V .2) that 

I 

["" " >(0) eo' '(0)]' R(S ,0) = b 
h(y)(l-~(y)) 

, 

[ ,'" " >«) eo' ,«) r 
R(O,P) r and also that 

hey) (l- ~(y)) 

(co t ~l + cot ~2) sin ~l sin ~2 sin ~ , we have from (V . 4) the 

result 

wp 
¢ (P) = ..,.1=;---;-;;---;- [ 

i br h(b) sin 6 h(b) he r ) cos i(b) cos i(r) 

h(a)a- wp 

[~w ~:;Ji 

o 

_,!reCei ver 
h(s)ds 

} 

source 

d, X e 

(V.S) 

x 
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which is part of the solution (2 . 6.5) . Since in this Appendix we 

use the Kirchhoff boundary conditions ~ (Q) = 0 , o on the 

surface B, equation (V .5) does not contain the integral of reflection 

coefficients which is a feature of (2 . 6 . 5). 

If the medium is homogeneous, and if further r = b, t hen (V .5) 

does reduce to the Fresnel formula quoted by Phinney and Cathles (1969) . 
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Appendix VI 

Asymptotic Expansion about Turning Points 

We study the function g(l~(r), introduced in Section (2 . 6), 
v- I 

and obtain first a method of evaluation fo r r varying in the region 
- 'I-; 

Ir - RI ~ Rlv l , where we define the turning point radius R to be 

the solution of 

v = h(R)R (VI. 1) 

He restrict our discussion to media for which a r ay bottoms a t ever y 

depth, and then equation (VI.l) defines jus t one value R, which 

is a function of v . 

If we take b (r) + ~~ (1) ( ) r g ,r, 
v- -

2. 

then 

1 db [2 v
2 ] + - - + h (r) - - b r dr r2 o. 

He need to evaluate several physical variables (e . g . the 

gradient of velocity a (r» at the turning point radius R, and it 

is convenient to use the notation of capital letter s to represent 

values at r = R. Thus, we use 

H = h(R), x = x(R) where -,.::.r.,- da = _ r d her) 
x = a(r) dr her) dr 
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and Y = y(R) where y = r2( ) ~2~ We also define a variable u 
a r r I) 

= _1 __ ( 2(l-X))3 
Q q(R) andq(R) - h (r)r • by 1 Q (\1 - &) , where 

Note tha t capitals are independent of r, but do depend on \I . 

S. d H d (for a fixed value of \I ), we have for ~nce - = - Q du dr 

c (u) = b (r) t he result 

] c = 0 

In order to s tudy solutions of t his equation near the value u = 0, 

we expand t he coefficients as a power series in 

[ 
1 + o(u)] dc 

Q2 du 

1 

Q2 , to obtain 

c = 0 

(VI. 2) 
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Now we assume the asymptotic form 

00 

c(u) = L Q~n fn(u), valid for u = 0(1) . 
n=o 

Upon substitution for c(u) into (VI . 2), it follows that we require 

f "(u) - uf (u) = 0 
o 0 

1 
2 (l- X) 

and so on for f .eu) , with n > 1. 
n 

(Vr.3) 

Clearly, f (u) is some combination of Airy functions, and the 
o 

combination may be found by taking an arbitrarily large value of 

v (so that f (u) dominates the expansion for c(u)) and comparing 
o 

(1) 1 
the resultant g_, L(r) ~ ~ f (u) with the approximation given 

v-~ r 0 

in Appendix II: 



(1) 
g I (r)-v v - -

2 
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e- i n / 4 1 1 

(h (b))"'- ~ GO=---=--v-2j-;-# 
h 2 (r )­ r2 

2 J~ -fz d( 

(VI. 4) 

for r just greater than R. Expanding the phase integrand about 

~ = R , we have 

v2 
( v\ 2H

3 
h 2 (0 - V~ (- H) -; (l-X) . This approximation may be integrated, 

and from (VI.4) we obtain 

I 

[ 2 h(b)(l- Xr 
.:>:(} exp 1. 3 - u 

!'I ( -u) 

The Airy function which has the corresponding phase property is 

f (u) as 
o 

in /12 e 
-r=rr 

~ ';" 
exp i 3 (- u) 

( -u)'-I' 
, and hence we obtain 

i n/3 ( n )i ( 2 (v1- X) )% f (u) = 2 e - - -
o 2h(b) (l- X) 
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Then f t (u) may be determined f rom equation (VI . 3), and we 

achieve the resul t 

2- 3X 
20 (l- X) 

( 
3 (1 + X) Y ) 
20 (l- X) + 20(1- X)2 

2 2i1f/3 u e 

where 

u = H(R-r) (VI. 5) 

We note (i) that X, Y, R, H are all functions of v , but not 

of r . (i1) The intrinsic coupling in an inhomogeneous medium 

(P- SV coupling , up- dowugoing P to P coupling) merely adds terms to 

equation (VI. 2) which are 0 (~) (for a proof, we use the 

coupled equations developed in Chapter 3). And so even the second 

term in our expansion for g(li(r) is not affected by intrinsic 
,, - ~ 

coupling . 
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(iii) From equation (VI . S) we find 

L (l~ (r) 
dr g"-2 

in/3 ~.. '1~ [ . 
=_ 2e H( n ) (2(l- X)) A" ( 2l.Ti/3) + 

l 2h(b) (l- X) " ~ ue 
r' 

( 
2 (l- X) )'/3{ (3 (l+X)u3 + -::-7-Yu:;,3,---,-"7'O 7- 3X 

" 20 (l- X) 20(1- X)2 + 20(1- X) 
Y .\ -2in/3A. ( 2in/3) 

- 20(1- X)2) e ~ ue 

( 
8 + 3X Y ) 

+ 20(1- X) + 20(1-X)2 "w C". ". n, + 0 { (, C';" n ] 
(VI. 6) 

(iv) The results (VI . S) and (VI.6) reduce to standard expansions 

for spherical Hankel functions, if we t ake X = Y = O. (See 

Abramowit z and St egun (1964) , § 9 . 3 . 23). 

(v) The formulae above have been obtained for any fixed choice 

of " , as r varies near the turning point radius R. Since u = 0(1), 
-'1, 

our formulae are valid in the region Ir R I~ RI"I 

But provided we maintain u = 0(1), i t is clear t hat our 

results may also be used for a fixed choice of r, r = r l (say), 

as v varies such that R is near r,. The expansions (VI.S) and 

(VI . 6) are then useful only if we can evaluate 
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'I, 
u(v ) ( 2(1 - ~(R(V )) } ) (~ _ H(R(v)} r, ) 

as v varies in the complex order plane near the value v = h(rl)rl o 

A simple and sufficiently accurate formula for u(v) is provided 

by t he Taylor series expansion, since we can show 

u (v ) 

(VI. 7) 

We find a f ter some algebraic reduction, t hat 

(VI. B) 

where " e define 
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t _ = 0 (1) • 

Since h(rl)rl » 30 for almost all seismic body wave problems, 

the first two terms in equation (VI . 8) are sufficiently accurate 

t o determine u . The expansions (VI.5) and (VI.6) may no" be 

written in terms of t, and v and t are equivalent independent 

variables (satisfying a linear r elation) . Our final asymptotic 

expressions are t hen 

(1) 
g l (r 1) v- , 

+ 
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and 

!L g (l~ (r) I ~-
dr \1 - "2 

YI ) -2iTI /3 
- 20(I- XI)2 e 

+ t Ai' (te2iTI / 3) + O 
{

- ( 2 (hl-I Xr II ) )~.J}J 

(VI. 9) 

The suffix I denotes evaluation at r ~ r, ' and we recall the 

definitions 

r d o; x = -­
a dr 

r 2 d 2a 
Y ~ - --2 for velocity profile a(r), and 

a dr 
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Appendix VII 

dT 
Inversion of Perturbed d6 data 

Statement of Inversion Problem 

We «ish to invert dT 
d6 

values (given as a function of 6) to 

obtain the velocity profile VCr), when dT 
d6 - p(6) ~ op(6) is small, 

and the profile vCr) corresponding to p(6) is known. 

Solution Method (due to Jeffreys, 1966) 

Let r be the turning point radius for the ray with emergence 

at distance 6 in the known structure vCr), and let r + Or be 

this radius, for emergence at &, in VCr) . Then from Wiechert -

Herglotz inversion in each model we have 

rr + oPl ) 
+ on 

o l.. 

where PI ~ P (61) and n~ p (lI) . Jeffreys (1966) points out that 

for small perturbations oP l ' the integrand here may adequately be 

approximated by the first order terms, which are 
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n oPI - PIon 

2 2 
I1[PI - n 1 

This method is particularly simple to use when vCr) is a 

constant (since the integrals of t he first order terms may be found 

eA~licitly). -Thus , t o invert the 10 second values of dT 
dll in Figure 

22 we take 

v 13 . 6 km/sec, for which p(lI) = ~;:~ sin (1T;1I) sec/radian, 

and dT 
dll (10 sec) = 

= 

P for 1I ~ 10S.5° 

P + O. lS (1I-1I ) 
5 0 

x 

Our solution method gives r + or = r 

II = -~ r PIon dll l 

11 (PI 2- n2) I l. = 

1T 1I (say) x ISO -
0 

~ 

( 1~0 ) for 1I 
0 
~ 1I :; 113 . 5° 

exp [- I -I IJ where 

~r 
oPI dll l 

(P I
2- n2 ) 

0 

1T 

x lSO 
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Clearly, or = 0 for di s t ances not gr eater than 6 (=10B . 5° ) . For 
o 

6 < 6 ~ 113 . 5° we find that 11 = - ~ , and for 12 we use o n 

.1B 
= 

5 

So 

1. 

~" 
~)~ 6350 [ (6- 6 ) 
2 13 . 6 1 

sin 
2 

Sf 1 (~)(-lB) ( l BO) ( . 2 
(61 - 6 ) 

12 
0 

d61 
11 6350 5 1(' s~n (6 - 61)"'" 

J/. 
= 0 . 000362 (6-6

0
) 

Since 11 and 12 are 

VCr + or) = r + or 
n + on 

6 
0 

fo r (6 - 6 ) in degrees . 
0 

small, we may find or from 

= 13 . 6 [1 - 12 ] 

The generation of VCr + or) from the above formulae is shown in 

Table B. 
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Appendix VIII 

Potentials for Elastic Solutions in Spherically Symme tric Media 

We wish to prove that, if ~ is the elastic displacement solution 

due to a known body force F in a spherically symmetric, self--
gravitating, non-rotating Earth , and if f is any sufficiently s mooth 

known function of radius , t hen there exist scalar fields 0 , X, and ~ 

such that ~ may be written as 1\(I., t) = 1\1 + ..!!2 , where 

:;1 = ~(r) [ grad ¢(E"t) + curl curl (rx (!:.,t) , 0 , O)J and 

-"2 = curl ( r '!' c.~"t ), 0 , 0). 

Further, ~1 is the solution for a certain body force!l, 

and U2 is the solution for a certain body force F2 (where Fl and 
~ ~ -

!2 may be constructed from!). 

(This representation of ~ is used in Chapter 3 above, and 

it i s found that certain useful choices of fer) may be made, which 

allow 0 and X to be interpreted as weakly coupled potentials for 

P and SV motion .. ) 
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Proof : The equations of motion are 

PF 
~ 

P ~ + P grad(g · u) - pg div ~ - p grad ~ - (h + 2~) grad div ~ 
at I"'V """ ,..., 

+ ~ curl curl >!,- (grad h) div,>!,- grad(~ · 'V~) + ~. 'V) 'V~ - ('V~ . 'V)~ 

'V 2ljJ ~ 41f G(p div ~ + >!,·grad p) (VIII. 2) 

"her e F (r , t) is a specified source term, ljJ is the perturbation in 
~~ 

gravi tat ional potential, g is the gravitational acceleration , G is 

the gravitational constant, p , h and ~ are functions of radius r . 

The first step in our proof is to ><rite (VIII .2) as an 

equation for t he vector :!.- ~ f (r)~ "here f is specif ied. [We should 

note that s trong physical assumptions are made in taking (VIII .2) 

to be valid in the source region , if the source is highly localized. 

Fo r examp le, t his equation does not allo" for any perturbations in 

he r ) , ~(r) , though pe rturbations might be expected for material in 

t he neighborhood of a point source. However , some justification of 

the above linear equation is obtained from model experiments, in 

which good agreement (see e. g . our Table 1) is found between the 

observed displacements due to a point source, and the theoretical 

consequences of equation (VIII . 2) .] Term by term we have for ~ 
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p grad(g.u) -- ( .e = (-g , O, O)) 

A + 2)J 
div ::!.- - f gr ad div ~ 

)J curl curl ~ = if [ (- div X,O,O) + ~ ~ r (r~) - grad (vr ) ] 

I 

+ )J({~) (0, va' Vq,) +Jcurl curl X. 

- (grad A) div ~ = - ( ~ I , 0, 0) [ f ' J div v - - v 
~ f r 

- grad (u ' '7)J) + (u''7) '7)J - ('7)J ' '7) u 
~ ~ ~ 

I [ (OV flV) _ L 2 ---E. ___ r 
f 3r f 

aVa va 1 aVr f ' 
---- + ----- V 
ar r r aa f a ' 

aV v 1 av I ] 
_ <I> _ ....t + r _ ff v '" 
ar r rsina a$ y 

(See Morse and Feshbach, 1953, p. 33) (VIII.3) 
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The second step is to use the Helmholtz theorem and represent 

v by potentials as v = grad ~ + curl A, in which we may choose the 

~ ~ ;; 1 ( a. aAe) 
value of div A· Then note that vr = a; + r sin6 ae (s~ne Aq,) - ~ , 

and div ~ = V2~ . So vr and V2~ are independent of Ar • We also use 

f(r)F = grad D + curl E . 
~ ~ 

The third step is to substitute for v and F into (VIII . 2), using 
~ rV 

(VIIL3) , and to manipulate the resulting four scalar e'luations into 

two groups . These are 

(i) 3 scalar equations involving ~ , curl A, ~ , and D, r ..... 

curl E (but independent of A , div A, E , div E) , and r - r ;v r -"OJ 

(ii) 1 scalar equation involving A , div A, E , div E (independent r "V r ,...., 

of 0 , curlr2' ~ , and D, curlr!). 
This grouping of equations is obtained as follO\"s: 

The Poisson equation for gravitational potential is 

V2~= 41rG -;:- div v - -.: pv 
(

0 f' 
r ,v f r 

(a) 

Since v , div v are independent of Ar , (a) is one equation of group (i) . 
r ~ 

The vector equation in (VIII.2) is 
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- pf grad (t Vr ) + f ' 
~~ grad vr - pf grad ~ 

(~ - ~ ) f f' 0,0 vr 
+ 2uf ' L 

rf dr 

I 

(r~) + ~f (~) (0 , ve ' vcj» 

- )l , 2 ---..E.. - ~ v 
[ ( 

dV ~, ) 
ar f r ' 

aVe v e 1 aVr ---- + ----
ar r r as 

~ - ~ 
ar r 

1 aVr 
+ -r-s 7in- e=- acj> 

- (A + 2~) grad (,,2~) + ~ curl curl curl A. 
~ 

(VIIL4) 

Let t he r-component of equation (VII I. 4) be labelled "equation (b) . " 

Then, since we may show r curl curl B = .l.L (r2 div.M -
r - r 3r --

we have 
curl

r 
curl curl!;. = - ~ ,,2 (r cur l

r 
f:) , 

(VIILS) 

So, clearly (b) is another eguation of group (i). 

Perform on vector equation (Vlll.4) the operation 
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1 0 'Sf) 1 a () 
rsinS as sw \.~ S + rsinS a$ - q, 

to obtain equation (c) . Then, checking term by term, the 

independence of A is obvious down to 
r 

L ~-- (rv) [
2 f' a ] 
r f ar - [ 

r a 
sina as 

2~ f ' a [2 2 =--- r'V~ 
r2 f or 

a 
ar (r2vr~ - independent of 

A similar method works for L [~f ( ~~) (0, va' Vq,)J ' and for the 

terms which multiply ~ '. The final term we mus t check is 

L ~ curl curl curl j; ] = )l ' curl 
r 

curl curl A -
~ 

and this too is independent of A (by VIII . 5) . So equation (c) is 
r 

another equation of group (i). 

Perform on vector equation (VIII.4) the oper ation 

A • 
r 
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_ curl (~ ) 
r 

1 a 
rsinS as 

1 a 
rsinS 34> (.-v) S 

to obtain equation (d) . We note that M (function of radius only 

x grad (s calar) ) = O. Then t he left hand side of (d) is a function 

of (E
r

, div ~ only (by the vector identity leading to our (VIII.5)) . 

Let us check in detail those terms in the right hand side of (d) 

for which t he dependence only on (A , div A, E , div E) is not r ....... r ,..., 

obvious . He have 

M [2~f ' 1...- ( r v)] 
rf 3r "" 

2~ f ' 3 
= r 2 far curl 

r 
(grad ~ + curl~) ] 

which depends only on (A , div A) . The point here is that r curl 
r - r 

commutes with func tions of radius, and wi th radial derivatives, 

and r curl v depends only on (A , div ~) . The only other term r- r--

we should look at is 

M ~ curl curl curl ~J 
L 

~ curl curl curl curl A r ,..., 

=_ .H. 
r 

V2 ( r curl curl A) r r--

(cf. VIII. 5) 

but curl curl A depends only on (A , div A). He may conclude 
r"""" r "'" 

that (d) is our group (ii) equation . 
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The fourth step in our proof is a discussion (cf. Scholte (1956) 

for homogeneous media) of properties of our two groups of equations . 

In the first gr oup (of t hree equations), the quantities D, 

curl E generate unknowns ~ , curl A and ~ . But these are r- r ....... 

independent of A. So, for t his displacement solution (~l' say) 
r 

A = O. lhth the choice div A = 0 we have 
r ~ 

1 
r 

1 aA~ + __ --X. 

sinS a¢ = o. 

But t his is t he condition that there exists a scalar function x(say) 

such that 

A = _l _ .£.x 
S sinS aq, 

.£.x 
as So A = curl (rx,O,O) 

rJ 

and the solution to group (i) may be expressed in the form 

u 
'" 

1 
f ( r) grad ~ + curl curl (rx,o ,o)] (VIII . 6) 

The second group consists of an equation for the quantities 

(A , div A) , and we may choose ~ = curl A = 0 ~ = 0 without changing 
r <"V r""'" , 

this equation . So for t hi s solution (~2' say) we have (f U2) = 0 .. ~ r 

and di v (f ..l!2) O. Hence (U2) = 0 and div 1)2 = O. So, there 
~ r . . 

exists a scalar function p(say) such that 
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~2 = curl (r~,O,O) (VIII. 7) 

(Note that we have now a specific choice of di v k..) 

The independence of potential forms (VIII . 6) and VIII.7) may be 

emphasized by noting that ~l is generated by that body fo rce Fl 
~ 

("ith related potentials fXl = grad Dl + curl 1'1 , say) for which 

D, curl El 
r~ 

curl E 
r~ 

o (VIII . 8) 

and u2 is generated by that body force F2 (with related potentials 
~ ~ 

f!2 = grad D2 + curl)l2, say) for which 

o curl E2 
r-

0 , E , 
r div)l2 div E 

rv 

(VIII. 9). 

It is simple to show that)) and 1:2 exist (since we may construct 

solutions to (VIII.8), (VIII.9) with given D, E) , and, finally, 
~ 

we also note that s calar fields Fl and E2 exist such that 

Fl - _1 __ [ grad Dl + curl curl (rFl,O ,O)J ,-./ - f(r) 
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Appendix IX 

A List of Functions Defined in Section (3.3) 

g = f'lf 

1 p " p ' ll ' P' 
- Zp- - rp - (A+2~)p 

"2 

_ 4u ' '' _ 2~' 2~ " 
~g" ...:.:::.....<> ~"g - ---,;- + -- + 

r r" r 

( 
211 ' ) -- g 
~ 

+ 2(H211) + II g - - --Jl. , 211 'J II 
r r A+211 

-~­
H2~ 

p ' 
- - " 2p 1 
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(H2)1) ~ 
A' + )1g - 2 P 

'If = 
4 

- P 'lfo 

= _ H)1 g ' +H)1 U _ h + H3)1 g + 1. ( pp ' ):2. 
£5 )1 2)1 p )1 r )1 4 

_ 2'" _ 
2(H2)1)g ' + 2( 1. ' + )1 ') g ~ 2)1 " + 

r 

( 2)1)1 ' - H)12)1 g) [ 2 )1 ] - ( 1.+)1) g + 2)1' + r-

2 (H2)1)g ' 2(A '-)1 ' )g 4)1 ' + + 2 (A '+)1 ' ) g' + 1. " g + ='-'----"-..t....O_'-
r r -rr-

+ 2~g _ A , g+¥J -(~+ Ii-) °1 
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Appendix X 

Some Properties of t he source-generated potentials 

described in Section (3 .4) (a) . 

We prove the necessity of equations (3.4.4a ,b ) , and show 

that the results of Appendices II and VI still apply. The source 

term is taken (see 3.4.3) as 

1 [f1(r) 
F = -::--( ) grad 
- I r p\l,(r) 

where D 

and f(r) is chosen so that ~ (r) = O. 
o 

o (r- b) O(e) 
- iwt 

e 

First, to amplify the discussion given in (3 . 4)(a) we follow 

the me thod of Luneburg (described, e . g., by Karal and Keller 

(1959» , and consider a solution (A,B,C,P,S) where each of the 

five unknowns is in the form 

V = e L 
m=O 

- m (iw) v 
m 

(X.l ) 

where the phase TV and the vm are functions of position only. 
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Consider integers i and n defined by 

pD 
H 2 \l 

+ v2p _ P 
H2)J 

_ .P. a2s = 
)J at2 

a2 p i 
a t 2 = O(w )P (=A) 

Clearly we have i $ 2, n $ 2 . 

(X.2) 

Supp os e i = 2. By comparing the highest powers of frequency in 

equation (3 . 4.1), we see that S = O(l)P (i .e. that the leading 

terms in the expansion X.l for P and S are of the same order) . 

From (3 . 4.2) we see that n $ 0, and hence from X. 2 that C = O(w)S . 

~ow examine equation (3.3.7) : the terms in P are O(w)P 

(since 7r = 0), the terms 
0 

. A aA 
1n ,~ are 0(w3)P (from X.2 with i = 2) 

and those in Bare 0(w3)S (from 3.3 . 6 and our last result for C), 

which equal 0(w3)P . So for this equation the terms in P are two 

orders in frequency down from those in A and B. 

It is therefore possible to obtain the first two terms in 

our expansion X.l for each of A,B ,C, and S (by comparing the 

highest two powers of frequency in the four equations 3.3 . 5- 3 . 3 . 8), 

independent of the source term D. Hence the two leading terms 

of the derived displacement ~ ( s ee 3 .3.3) are independent of the 

applied force!. Clearly this solution is not gener ated by the 
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source, but is one of the solutions to the homogeneous equations 

(3 . 4 .1) and (3.4 . 2) with D ~ 0, F ~ O. Hence, we reject the 

case ~ ~ 2 . 

Suppos e i ~ 1 . Then similarly we find S ~ O(w-I)P and 

still C ~ O(w)S . In (3 .3.7 ) the terms in P are one order in 

frequency down from those in A and B, and then the first term 

in displacement ~ is independent of E. Hence we reject i ~ 1. 

So ~ ~ 0, and from (3.4 .1) S is at most 0(w-2p). These 

results are two of our desired properties. 

Second, we briefly discuss the turning point method of our 

Appendix VI, in which (3 . 4 .4a) was taken to be valid in the 

turning point region. This assumption is questionable, since it 

is obtained above with heavy reliance on wave properties. (Note 

also that the expansion (X .l)is not useful at the turning point 

radius, for a partial wave of V, since this radius is then a 

caustic and the geometrical optics approximation for the first 

term is unbounded.) 

We study the expansions 



L 
n=O ( 

a(r,n») 

c (r,n) 
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p (cos e) 
n 

( cf Appendix II . Tne P are Legendre polynomials) and introduce 
n 

a partial wave g( l)(r) as t he outgoing solution for a(r,n) 
n 

so that a(r,n) = c, g~l)(r) for b Sr . In the region in which 

g( l )(r ) travels as a wave, t he result ~ sO in (X . 2) is sufficient 
n 

to es tab 1ish the I.flCBJ formula - which is thus seen to be unchanged 

by the weak coupling to an SV mode . 

Suppose that throughout the medium ~l)(r) is coupled to 

t he S-function d(r,n) . (In fact, c(r,n) = c 1 d(r,n) fo r b Sr.) 

I"e now give a brief outline to establish that the concluding 

formulae of Appendix VI are still valid near the turning point 

(1) 
r = R of g ,(r ) : 

v -:;. 

Define b(r), R, Q, H, X, Y, u, and c(u) by the formulae 

given in Appendix VI . Then equation (3 . 4.1) may be wri tten as 

- u -+ 
Q 

u
2 

(3X- 3- Y) ) J 
4Q4(1- X) e(u) 

(x . 3) 
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where e(u) is the expression on the left hand side of equation 

(VI. 2) , 

(H2\1)[ H3\1 g+.2 (A 1+2\l') _ 2\1 ' _ 2P '] 
\1 H2\1 \1 P 

The highest order term on the right hand side of (3.4 . 2) is 

O(Q2) c(u), and hence d(r , 
f 

\) - :2.) (t ravelling as a wave and 
I 

satisfying the eikonal equation) is such that O(w3) d(R, \) -~ ) 

O(Q2) c(u). So the right hand side of X.3 is O(Q5) c(u), and we 

see that c(u) can be expanded in the form 

~ 

fo(u) + ~2 f1(u) + L 
n=3 

for Q8 in X.3 we have (f " 
o 

f (u) 
n Thus, comparing coefficients 

uf )" - u(f " - uf ) 
o 0 0 

o and for Q6 

[ 
, 

- f 

2(~-X) 
+ u2 (3X - 3 - y) 

4 (l- X) 

o 



- 227-

It is then seen that we have essentially the same formulae for 

f and i l which were obtained as VI . 3, and we have proved our 
o 

desired result: that the turning po~nt expansion of g(l)( r ) 
n 

satisfying (3 . 4 . 1) or (3 . 4 . 4a) have the same first t wo terms. 

of interest also to note that the next t e rm for c (u) , 

~ depends on d(r, v - 2 ), and hence t hat t he mode coupling 

effect on g(l)(r) is still one order in frequency down from the 
n 

main term, even at the turning poi nt. 
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Appendix XI 

The Reflection and Transmission Coefficients , Between Two 

Slightly Differ ent We lded Homogeneous Elastic Half- Spaces, 

for an Incident P- Have. 

The derivation below is done in two ways, first by a study of 

the boundary condition, and second from the equations of motion. 

The numerical result referred to in (3.4) above is obtained here 

in the final paragraph . 

Take Cartesian coordinates with Z = 0 as the boundary between 

the media, Z increasing into the first medium, and consider an 

i ncident plane P wave in the first medium , propagating perpendicular 

to the y-axis and in the direction of increasing x . 

He use the standard potential representation for this -problem, 

displacement = grad ~ + curl (O,O , ~), use suffices to label 

quantities in the two media, and solve for the system 

incident P 

Pr exp < [ wt - HIX - - H - 1 ~ s~n ~l - lZ cos ~l reflected P 

t P exp i [ wt - HZx sin iz + Hzz cos i z 1 transmitted P 
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reflected SV 

transmitted SV . 

i.e. we "ish to obtain pr, Pc. Sr, st in terms of pi and the 

difference in properties between the two media . For this purpose 

we use the continuity of two displacement and two stress components 

across the boundary, finding 

wq (pi + pr) _ Kj cos jj Sr wq pt + KZ cos jz st 

Pj cos 2j 1 (pi + P) + PI sin 2· Sr = Pz cos 2j pt _ Pz sin 2j st J 1 Z Z 

Hj cos il (pi _ pr) - wq S r Hz cos iZ pt _ wq st 

)l1 Ht sin 2il (pi _ P) + 
Z 

)lIKj cos 2j j Sr 

Z 
2iZ pt Z 

2j Z st . )lZ Hz sin + )lZ Kz cos 

where 

Ifj sin ij Kj sin jj = wq . 
Z Z Z Z 
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If ~p, ~~ , and ~e are the increments in density , longitudinal 

velocity, and shear ",ave velocity (from the first to 
il+i2 

medium), and if we take mean angles i = --~2--

we can show that to first order the solution is 

(cos 2j - 1.) + ~~ ( 
2 ~ 2 

+A2. 
p 

sin j [( ) ~n - sin i + 2j ~p + 4 sin j 
2 cos j sin i 

sin i 

2 cos j'sin i 
[sin (i - 2j) A2. _ 4 sin j 

p 

, j = 

the second 
jl+j2 

2 ,then 

(XL I) 

These formulae break down only if i - 90·, that is , for 

propagation nearly parallel to the boundary . [Numerical work 

for the application required in Chapter 3 is given following our 

equation (Xl.9).] 
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The reflection/transmission coefficients obtained above are 

derived from the study of boundary conditions. It is of some 

interest to obtain them also directly from the equations of 

motion in continuous media . We here outline the steps by which 

this may be done, acknowledging the work of Chapman (1969), who 

obtains the equations (XI.S) below by a slightly different and 

less direct method: 

lye study an elastic medium in which density and velocities 

a and e vary in the z direction of a set of Cartesian axes, and 

discuss the steady- state wave system P-SV which moves with velocity . 

c in the x direction. Having thus specified the horizontal 

wave number, w/c , the vertical wave numbers are then 

. (W2 w2 ) ± (say) :!: ;;:z- C2 - w~ 

(XI. 2) 

- S2 c2 + ( w
2 

_ w
2 

) - ± wqa 

iw(t-x/c) Suppressing the factor e , we can show that the wave 

equation may be written in the canonical matrix form 
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d 
dz ;:. = ti~ (XI . 3) where 

ti - 0 0 

0 0 

i WA - 1 
c(H2\.1) H2\.1 

- pw2+ 4jJ (HjJ ) w2 - iwA 

c2(H2jJ) c(H2\.1) 

u 
x 

- a 
zz 

u 
z 

a zx 

i 
c 

pw2 

0 

0 

(which has the eigenvalues ± i wqa ' ± iwq~) . 

and 

1 
\.I 

- iw 
c 

0 

0 

In this plane strai n p r oblem , u and u are two components of 
x z 

displac~~ent , and a and a are t wo of t he components of t he stress zz zx 

tenso r. There a r e close analogies here with some equations 

arising in the study of r adio wave propagation in the ionosphere 

(see Budden, 1961). 

For a homogeneous medium, ti is constant, and it is clear that 

the solutions of equation (XI . 3) a r e essentially the eigenvectors 

of ti, multipli ed by a phase factor derived from the corresponding 
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eigenvalues and path length. This suggests that for our 

inhomogeneous problem we try solutions in the form of a sum of 

coupled eigenvectors, i.e. 

W2 (z) 
- iw + W2 (z) u = 

( W:~R 
- iwq 

" 
_2~w2 

c q" 

- iw 
c 

w2~R 

iwq 
" 

2~w2 
c q" 

-iwq 
S 

- i w 
c 

+ W3 (z) iwq
S 

2~w2 
- c- qs 

- iw 
c 

w2~R 

(Xl. 4) 

where R " ~2 - ~2 ' and the Hi contain phase factors . [Note : these 

eigenvectors of ~ may be found directly, but a simple way to write 

them straight down can be found from discussion of potentials in 

a hompgeneous medium . ] It is found that if the W. are scaled by 
~ 

a function of depth, according to the scheme 
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(Xl. 5) 

then subs titution of (XI . 4) and (XI.5) into (XI . 3) gives for V. 
~ 

the matrix equation 

i wq 0 
" dY, 0 - iwq 

dz + 
0 0 

0 0 

where 

0 0 

0 0 
" = 

i wq
S 

0 

0 - i wq
S 

p ' 2S2 \1 ' -
-p- - - 2- -\1- + 2q" q s 

c 

0 -°3 °1 °2 
-°3 0 -°2 -°1 
-°1 -°2 0 -°4 
-°2 °1 -°4 0 

(Xl. 6) 

J, 
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This equat ion for ~ opens up many interesting interpretations of 

coupling in heterogeneous media. For example, t he WKBJ solution 

is obtained by ignoring t he gradient t erms 0 ., and taking the 
~ 

right hand side of equation (XI .6 ) to be zero . Unfor tunately, 

however , the o. have singularities at depths where either q or 
~ a 

qe are zero (or singularities at bo t h depths) - corresponding to 

t he v~J turning point, and t he bot toming depth along a r ay -

&,d approximate methods of solution break down . 

He can examine the continuous scattering process (away from 

depths such that qa or qe are zero) , and obtain our equa tions 

(XI .l ) in the followi ng way : From (XI . 6) we may identify Vj 

approximately as t he P- wave phase for an up- going wave (z increases 

upwar ds) . If t his wave is taken as incident, t hen (following 

Cnapman , 1969) we introduce reflection and transmission coefficients 

by 

(XI. 7) 

These phase functions are respectively appropriate fo r reflection 

to a dmm- going P- wave , converted transmi ssion to up going SV, 

and converted reflec tion t o downgoing SV. 

Substituting (XI .7 ) into (XI . 6), and eliminating Vj, we obtain 
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d 
dz ~p = 

d 
dz ~S = 

(XI. 8) 

[These coupled Riccati equations have been obtained by Chapman 

(1969), using the Budden (1961) approach of discussing a matrix 

transformation on ~ . l 

Now we see that approximately 

d 
- R = 2iwqN Rp - ° 3 dz -1'P ~ -1' 

d 
dz ~S iW(qa+qe) ~S + 02 , with for example the solution 

I
z ' 

- 2iw qadz" 

= e 03(Z ') e dz ' 

z 



- 237-

This integral may be interpreted as the summed contribution 

of a stack of indivi dually homogeneous layers of thickness dz ', with 

density and velocity discontinuities of :~ , dz', :~ , dz', and 

d8 dz' dz' between t he layers. The phase of the integrand is appropriate 

for such an interpretation , and so also is the amplitude, since we 

may show that if qa and q8 are physicall y described by angles 

cos i of incidence i and j, then q = ~~~ 
a a 

cos 
q = 8 8 

j , and 

(Xl. 9) 

This is just our desired result , for a comparison of (Xl . 9) and 

(XI.l) shows t hat 

( _ the reflection coefficien t between two slightly 

different homogeneous half spaces). Similar results may be s hown 

for 01 and 02 ' and we have found t ha t t he same approximate formulae 

for reflection and conversion coefficients may be derived either 

from the boundary conditions or from the equations of motion . 

The type of approximation we f ind has in fact been widely studied 

in the case of simple boundary conditions - see Bremmer (1951) 

and Brekhovskikh (1960) . 
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He now r eturn to the results of our first derivation, and 

examining t he reflected and transmitted amplitudes pt, Sr , st 

as i tends to zero, we are able to see that Isr l, Is tl « Ipr j, 
i.e. t hat t he SV "aves are negligible for p rop aga tion nearly normal 

to t he boundary . But for t he application in section (3 . 4) we have 

i = 

the 

16 0 90'y!" = 1 t,a = _ 
, j = , p 20 ' a 

r 
p- p reflection coefficient, ~ , 

p1. 

conversion ( reflection) coefficient, 

And then 

is - 0 . OS 7, and the P- S 

Sr . 
-. , loS -0 . 058 . 
p1. 

Note that 

these are the reflection and conversion coefficients for potentials . 

The corresponding coefficents for ampli tudes are easily derived, 

and we find that the reflection coefficient P- P is still - 0.057, 

but the conversion coefficient P- S is -0 . 058 x a/S . So in fact 

the reflected S wave amplitude is substantially greater than the 

reflected P wave amplitude. 
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Table 2. 

Table 3 . 

Table 4. 

Table 5 . 
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LIST OF TABLES 

Comparison of theoretical and experimental shadow shifts . 

Experimental data from Teng and Wu (1968) . 

Formulae for P-P scattering from a point source by a 

spherical fluid core. See Figure 13 for plots of the 

amplitude of vertical displacement, lu I, a t frequencies 
r 

o . 1 and 1. 0 Hz . 

Formulae for SV-SV scattering from a point sour ce by a 

spherical fluid core . See Figure 14 for plots of a 

normalized amplitude of horizontal 

at frequencies 0 . 03 and 0.2 Hz . 

u e 
di splacement, I ---:--k I , 

-~ r 

Formulae for SH- SH scattering from a point source by a 

spherical cavity (or fluid core). See Figur e 15 for 

plots of a normalized amplitude of horizontal displacement , 

, at frequencies 0 . 03 and 0 . 2 Hz . 

Values of the complex numbers °1 and °2 for different 

models of the core mantle boundary , given at different 

periods . 

Corrections to ray theory, for 2 second P waves , in a 

model ',ith specified ray parameter p = p(lI) , with the 

geometrical shadow boundary at 97° , and velocity 

da a 1 gradient =.- 0.2 at the bottom of the mant e . 
dr r 
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Table 7 . Amplitudes and ~~ , for 2 second core diffracted P waves , 

in a model with the geometrical shadow boundary at 97° , 

with 

= - 50 sec/radian2 , 

and velocity gradient da = - 0 . 2 ~ at the bottom of the 
dr r 

mantle. Our source normalization gives an amplitude of 

2.259 for the direct ray arrival a t 97°, with zero phase . 

Table 8 . Evaluation of the velocity profile V(r + or) . See 

Appendix VII . 
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Figure lao 
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FIGURE CAPTIONS 

Parameters for a plane wave , incident from the left 

on a cylindrical cavity. 

Figure lb,c. Parameter s for a fie ld point (r, e) near (b) the PS 

boundary and (c) the SP boundary . See Appendix I. 

Figur e 2. 

Figure 3 . 

Figur e 4 . 

Figure 5 . 

Figure 6 . 

Figur e 7. 

Figure 8. 

Figure 9 . 

Figure 10. 

Parameters for a geometrically reflected ray. 

The complex int egration path for evaluation of Cp(w) 

(z = ha), and Csv(w) (z = ka) . 

The complex functions Cp, CSV for scattering by a 

cylindrical cavity, plotted against frequency. 

Comparison of solutions with different boundary 

conditions . 

Shadow boundary shif t s for P , SV and SH waves , 

scat t er ed by a cylindrical cavity . 

Parameters for a field point P(r,e) near the shadow 

boundary , for a line or point source at S(b, n). 

The geometrical relation between line source and 

plane source shadow boundary shifts . 

Parameters for the model exper iment s of Teng and Wu (1968). 

The complex functions CP' CSV for scattering by a 

cylindrical fluid, plotted a gainst frequency. 



Figure 11. 

Figure 12. 

Figure 13 . 

Figure 14. 

Figure 15. 

Figure 16. 

Figure 17. 

-252-

Location of shadow boundaries , plotted against 

frequency, for the three different wave types. 

Results are for a line source, and both cavity and 

fluid cylindrical scatterers. 

The complex functions Cp(w), CSV(w) for scattering 

by a spherical cavity, and for scattering by a fluid 

core. 

Vertical component of P- wave displacement amplitude 

due to a P;vave source: comparison at two frequencies 

of different theories. See Table 2 for formulae . 

Horizontal 

amplitude, 

component of normalized SV-wave displacement 
u e I ---- I due to a SV- wave source: comparison -ikr ' 

at two frequencies of different theories . See Table 3 

for formulae. 

Horizontal component of normalized SH wave displacement 
uq, 

amplitude I ---- I, due to a SH- wave source : comparison 
r 

at two frequencies of different theories. See Table 4 

for formulae. 

Parameters for a field point P(r,~) near the shadow 

boundary, for a point source at (b,O) within a 

spherically symmetric medium. 

Paths used for numerical integration in the complex 

order plane. 
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Figure 18a . Parame ters for the Fresnel- Kirchhoff diffraction theory . 

18b . Parameters in the aperture plane , near the turning poin t O. 

18c . p- t; relations for the two rays S ... P , Q ... P (for fixed 

Q, and P varying in t; about the extension of S ... Q). 

Figure 19 . Parameters for a diffracted arrival. 

Figure 20a . Real part of °
1

• 

Figure 20b. Imaginary part of 01' where 01 parameterizes the location 

Figure 21. 

Figure 22 . 

of the first pole v I of !lg (1) (a) by , 
V- I. 

VI = h(a)a + 

'~ 
01 (h(a)a) , in the model a = 13 . 6, a = 7 . 3 , p = 5 . 6 , 

a ' = 8.1, p ' = 10 . 0, a = 3480 . Results are plotted 

for four different linear veloci ty gradients at the 

bottom of the mantle: 

x - - 0 . 2 , 0 . 0 , 0 . 2 , 0 . 4 . 

P- wave potential amplitude due to a P- wave sour ce in 

a homogeneous mantle, calculated at 0 . 1 Hz and 1 . 0 Hz 

by the Hankel function method and by the Airy f unction 

me thod. 

aT 
a/\ 

for P- wave potential due to a P- wave source in a 

h omogeneous mantle, calculated at 0 . 1 Hz and 1 . 0 Hz 

by the Hankel function method and by the Airy function 

method . 



Figure 23 . 

Figure 24 . 
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for the P- wave vertical displacement due t o a P- wave 

source in a homogeneous mantle, calculated exactly at 

0.1 Hz and 1.0 Hz by the Hankel function method , and 

calculated approximately by Fresnel , residue , and ray 

theories . 

aT 
a ~ 

for the SH- wave horizontal displacement due to a SH-

wave source in a homogeneous mantle, calculated exactly 

at 0 . 03 Hz and 0 . 2 Hz by the Hankel function method , 

and calculated approximately by Fresnel , residue, and 

ray theories . 
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