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ABSTRACT

Theoretical and experimental results are given for the
wavelength dependence of speckle, thus establishing a method for
the reduction of speckle noise in holographic microscopy with the use
of multitoned illumination and a panchromatic viewing system. A model
is presented for a partially diffuse phase type of object and the
statistical behavior of the speckle produced in the image of this
object is studied. A calculation is made for the spectral suto-
correlation function which gives a wavelength spacing required to
decouple the speckle patterns produced by two tones, this spacing
being found to be inversely proportional to the standard deviation
of the heights of the scatterers on the object. A criteria is
defined for the degradation of an image due to speckle and the
resultant improvement is found to depend on the sgquare root of the
number of independent tones used.

The wavelength dependence of speckle is verified in a
series of experiments where we illuminate the object by both laser
and bandlimited light. We first demonstrate the averaging of
speckle in the image of a pap smear when we use four tones of an
argon laser (5145, 4965, 4880 and 4765 R). We then show that the

image of a rough object is speckly even for bandwidths up to 58 H



iv

and then we demonstrate the smoothing of speckle when both a scotch
tape diffuser and a section of an optic nerve is illuminated by six
equally spaced bandlimited tones scanning 1,500 .

Thus, in this study, we demonstrate the feasibility of
eliminating obJjective speckle in holographic microscopy using a
multimonochromatic source and.also provide a theoretical basgis for
studying the properties of rough surfaces by studying the wavelength

diversity of the speckle produced by them.
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Chapter I

Introduction

1.1 Statement of the Problem

The image of a rough object, illuminated with coherent light,
appears granular in structure and a lot of the detail on the image is
hard to discern for this reason. This granular nature of the image
is due to the interference from the phase variations of the light due
to the randomly distributed heights within a resolution cell for the
optical system forming the image. The same kind of granular structure
is observed in the scattered light from a rough cobject and is known as
speckle. With incoherent light, the phases at various points change
with time and the speckle pattern, averaged over a normal period of
observation time, has a negligible contrast.

This speckle has been a subject of numerous studies in the
past(l_ES). One of the major reasons for this interest is because
speckle is a detrimental factor in many saspects of holography, partic-
ularly in holographic microscopy and has been called the "enemy

n(15) of holography. Most of these studies, however, had

number one
been restricted to the case of monochromatic illuminetion and the wave-
length dependence of speckle in the image of an object had not been
studied so far.

The subject of this thesis is to study speckle with the objec-
tive of understanding its occurrence, its spatial véri&tions as the

wavelength of the illuminating beam is scanned through the visible spectrum

and its averaging when the object is illuminated with a set of
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monochromatic tones. Although both imaged and non-imaged speckle is
of interest, we treat only the imaged case in our study since it
is more general and reduces readily to the latter case. We therefore
present both theory and experiments on the spectral dependence of
speckle. Also from these studies we find that one method for reducing
speckle in holography is to illuminate the object with a series of
independent wavelengths to record a multicolor hologram and then to
view this hologram with a panchromastic viewing system.

In the rest of this chapter, we first give a review of the pre-
vious work done on speckle. We then give a short preview of the

material in the rest of this thesis.

1.2 Review of Previous Studies on Speckle

One of the first detailed studies of specklé in monochromatic
(1)

illumination was made by M. Von Laue in 1914 when, using a glass
plate with lykopodium powder on it, he demonstrated the existence of
speckle in the light scattered by this plate. For his illumination,
he used an arc lamp source and a filter which provided blue light

> p

spenning the wavelengths between 4.2 x10 “em and 4.3 %10 “em. For
the non-imaged case, he also developed a theory where he assumed that
the scattered radiation can be given as radiation scattered by a sum

of N equally oriented scattering particles, and for an incident

wave represented by
-ikR
R 2

P(a,B) =

where s BO, Y, &re the direction cosines and R is the distance



P
between the point of origin of the wave and the scatterers, the scat-
tered radiation is given by

o-1kR 1§ eik[xn(a - oco) +yn(B— BO)]
R

n

Y(a,B)

where (xn,yn) represent the coordinates of the scatterers.

Speckle was rediscovered immediately after the advent of the

(2)

visible helium-neon laser, and Rigden and Gordon 5 Langmuir(S) and

Oliver(h) have photographed and discussed the causes of this
phenomenon and correctly attributed it to the fact that irregularities
in the reflecting surface cause a random diffraction effect in the
beam. Rigden and Gordon note that the size of the speckle depends
upon the limiting aéerture of the optical system in which the speckle
is observed and present an analytical argument for this size depen—
dence of speckle. Langmuir notes that this speckle phenomenon is
analogous to radar "clutter', while Oliver notes that the existence
of the speckle depends upon the monochromaticity of the illumination
and the stationarity of the scatterers.

| Goodman(S) studied the analytical properties of the speckle
formed from light scattered by a diffuser, and his work contains the
only prior coﬁsideration of the freguency dependence of speckle. He
modeled the diffuser to be a set of randomly spaced antennas and used
for the electric field a Gaussian distribution and the intensity a
" Rayleigh distfibution. He then calculated the first order and second

order statistics of the speckle as well as the spatial averages of

the intensity.
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The second order statistics of the speckle pattern formed by
light scattered from a rough surface were also calculated by
Goldfiseher(6). He toock his model to be a set of densely packed
scatterers. For an incident power demsity P(u,v) and an attenuation

by each scatterer o , he took the contribution of each scatterer to

the field at some point (x,y) in the cbservation plane to be

2]1/2

[oP(u,v)Aud v/mr cos[2ﬂ(ct~r)/l+qhv}

where ¢ 1is the wvelccity of light, r is the distance between the
scatterer and the point (x,y) and ¢, LI & random phase angle asso-
ciated with the scatterer at (u,v) . He then proceeded to find the
intensity by summing over the various random (u,v) and then, by assum-
ing that the distance between adjacent scatterers approached zero, he
showed that the autocorrelation function of the speckle intensity is
proporticnal to the far field diffraction pattern of the aperture
filled by the area of the diffuse surface. He then proceeded to
verlify this result experimentally.

So far, the general approach to the problem of speckle reduc-
tion in microscopic holography has been by the incoherent superposi-
tion of a number of diffusely illuminated holograms of the same

£7)

object. Martienssen and Spiller first showed that by taking holo-
grams of an obJject when the object is illuminated through a diffuser
~end taking different holograms for different positions of the diffu-

ser, and then superimposing the images formed by these different

holograms, one can eventually, in the viewing, see a practically



speckle free holographic image.

Enloe(B) made a statistical study of speckle in imaging systems.
He also took for his model of a diffuser a set of point scatterers
randomly placed on the object, each scatterer radiating light at a
di fferent phase. He then proceeded to calculate the first order
statistiecs for the intensity in the image plane with this model of a
diffuser and the second order statistics, i.e., the autocorrelation
function and the power spectral density of the intensity. He assumed
in his calculations that the positions of the scatterers were given by
8 Poisson distribution while the phases were given by a normal distri-
bution.

There hes been a fair amount of interest in the speckle reduc-
tion in holograms of objects which are smooth, but have been diffusely
illuminated. ©Since speckle is csused by the fact that light is scat-
tered by the diffuser which does not eventually get collected by the

(9)

image, Leith and Upatnieks have proposed making a diffuser with
very gradual phase variations and placing it in contact with the
object so that the light does not get scattered at high enough sangles
to not be collected by & lens. On the other hand, Gerritson et al(lo)
have proposed a diffraction grating as an illuminator for the object.
This way they can control the angles of illumination and since the
diffraction grating gives a series of beams the image of the hologram
continues to have the redundancy necessary to reduce noise from dust,
ete. On the other hénd, for the grating placed very near the object,

the illuminetion is uniform and since the angles of the illumination

are low enough to be collected by the lens no speckle is seen. Thus
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this is a reasonable way of illuminating a smooth object so as to
avoid speckle while at the same time introducing the redundency in
the holograms which reduces noise due to scratches and dust.

In the application of laser holography to microscopy, the speckle effect
11-13)

has been reported to be g severe obstacle( , limiting the working

resolution to from a few to several times the classical optics limit.

(13)

As an example, Cox, Buckles and Whitlow report resolutions of a
few microns with biological specimens.
The history of speckle has not been completely preoccupied with

(14) has utilized

methods of reducing speckle. For example, Burch
speckle to study surface vibration. By either locking directly at

the scattered light from a rough surface or combining a beam scattered
by the rough surface with a reference beam and cobserving this combina-
tion, it is possible © study the vibration of the scettering surface.
If the surface moves toward or away from the source, the brightness of
the speckles will undergo a cyclic variation, the change from maximum
to minimum brightness corresponding to a displacement in the line of
sight of one quarter wavelength of light. When the motion is very
fast, the speckle becomes blurred and so the nodal areas can be

easily picked out since in those regions the speckle will continue to
have a high contrast. Although holographi¢ technigues exist to enable
the same kinds of studies, the speckle promises to provide a simpler
and guicker method of assessing the nature of vibration.

Gabor(IS)

has classified speckle into two categories: The
objective speckle that arises owing to uneven illumination falling on

the subject. The subjective speckle that arises from the roughness of
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the subject in conjunction with the convolving effect of a finite
aperture. The objective type can occur when one holographically re-
cords a smooth transparency but with a diffuser placed in the beam
illuminating the transparency. While the diffuser creates a helpful
redundancy in the recording, it alsc leads to the deleterious speckle.
He has argued that the only effective means for smoothing the subjective
type of speckle is to increase the aperture. However, if one draws

this conclusion, it is implicitly assumed that operation is at a

single wavelength or that separate, independent locks are not being

made in the overall process.

Lowenthal et al(l6-18)

have studied theoretically the reduction
of speckle in the imasges of coherently illuminated rough objects by
moving a diffuser in contact with the object. They show that this is
equivalent to illuminating the diffuser with ineocherent light and re-
port the results of experiments which confirm their theory.

Dainty(lg)

provides a simplified method of analyzing the second
order statistics of speckle using linear filter theory and square law
detection theory. He reports some experimentel results of the power
spectrum of inﬁensity fluctuations in an image with speckle and obtains
an expression for the power spectrum of the intensity fluctuations in

a speckle pattern produced by a partially coherent system.

Close (21,22)

uses the incoherent superposition of holograms to
reduce the effect of speckle noise in his high resolution holocamera
and obtains resolution of a few microns with this system.

(23)

Elbaum, Greenebaum and King have done experiments on the

wavelength dependence of speckle. They successively recorded, on film,
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the images of a rough bar target when the illumination consisted of

the four tones of an argon laser (5145, 4965, L4880 and h765ﬁ). They
then compared the microdensitometer traces of these images to establish
that the speckle pattern depended upon the wavelength of illumination.

An interesting application of the speckle effect was reported
by Mochon sand Rodeman(gh). It was noticed that when an observer moves
his head, the motion of the speckle pattern observed by him is directly
related to his visual acuity. Thus, if he has perfect vision, i.e.,
he is an emmotropic person, he observes little or no motion of the
speckle pattern when moving his head. If he is myopic he observes
that the speckle pattern moves in the opposite direction relative to
his head motion. If the observer has hypermetropia he will find that
the speckle moves in the same direction as his head. This phenomenon
finds itself as & convenient method of checking the visual acuity,
especially of children, since the cbserver does not have to be gble to
read.

The fact that the wavelength dependence of speckle is related
to the root mean square deviations in the scattering heights of =
rough object makes speckle a useful tool in studying the roughness of
a surface(gs). So far, the only widely used method for measuring
roughness is by a profilometer, which consists of a diamond stylus
which is traced lightly across a surface contour to produce a time
varying voltage output whose magnitude is directly proportional to

the height of the surface contour. The voltage output does not pass

the very high frequency components, the cutoff being known as the
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"roughness width cutoff." However, the profilcometer, though adequste,
damages the surface under test and so laser speckle has been considered
as a possibly useful alternative., Thus, by finding the linewidth of
the illumination for which the speckle contrast is negligible, one can

measure the standard deviaetion of the heights of the surface.

1.3 Summary of Research

In the following chapters we study the behavior of the speckle
electric field and intensity in the image of a rough object. We cal-
culate the statistical behavior of speckle and demonstraté the
averaging of this speckle pattern when the illumination consists of a
set of monochromatic tones.

In Chapter ITI, cdnsidering a pure phase diffuser, we derive
expressions for the speckle electric field and intensity for the image
of this diffuser. We use a physical argument in order to simplify the
calculation of the wavelength spacing required to-decorrelate the
speckle, Experimental results which verify the theory are also given.

In Chapter III we study the statistics of sums of the form
R = E ejahr . We calculate the density functions, the expected.values,
vari;nces and the autocorrelation functions of R and |R|2 .

Since the speckle intensity is of the form of R we can use the mathe-
matical results developed in this chapter to calculate the properties
of laser speckle.

In Chapter IV, we apply these results more specifically to

exemine the detalled statistics of laser speckle. We calculate the

density t'unctions, the degradation of the image and the spatial and
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spectral autocorrelation functions, under monochromatic and band-
limited illumination, for the speckle.

Thus, in this thesis we demonstrate, for the first time, a con-
venient technique for drastically reducing speckle in holographic
microscopy. We calculate a wavelength spacing for decorrelation of
speckle and demonstrate experimentally this reduction of speckle.

We also examine the speckle statistics, a knowledge of which provides

us with a powerful tool to study the surfaces of rough objects.
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CHAPTER II

Speckle Physics

2.1 Introduction

In this chapter we establish a physical basis for understanding
the wavelength diversity of speckle and report some experimental results
which verify our theory. Thus, in section 2.2 we give a conceptual
argument for an order of magnitude estimate for the wavelength spacing
requlred to decorrelate the speckle. In the next section, we derive
an expression for the speckle electric field and intensity in the image

of a pure phase diffuser. We calculate the wavelength change for which

the average of the magnitude squared change in the electric field at a
given point on the image plane is equal to the variance of that field,

and this gives us the wavelength spacing for the speckle to decorrelate.

In Chapters III and IV, we calculate the density function and
the spaﬁial and spectral autocorrelation functions for the speckle and
estimate the Improvement in image quality under multitoned and band-
limited illumination. The results of sections 2.2 and 2.3, therefore,
providé for us a physical basis for understanding the results of the
next two chapters.

In section 2.4 we report experiments using collimated band-
limited light from a carbon arc source and an argon laser to demonstrate
the wavelength dependence of speckle and the averaging of speckle under
multitoned illumination. Thus in this chapter, we show conclusively
that tﬁe speckle pattern depends on wavelength and give an expression

for the wavelength spacing to d&correlate the speckle.



s [

2.2 Estimate of the Wavelength Spacing Required to Decorrelate the

Sggckle

When we have a wave, in a medium with refractive index n ,

of linewidth AV we have that its phase is correlated over a length,(l)

L = = - (2-1)

where L 1is now the coherence length of this wave. Thus if some length
{ is greater than the length given by hi/Ak (25m) then the two end-
points of length {4 will be uncorrelated in phase. Thus if we

illuminate by two waves whose wavelength interval is greater than

O
2nnL

length L .

Ar >

then these two waves will be uncorrelated in phase over the

Now if the standard deviation of the heights of the scatterers

on the diffuser is h0 , then following frgm the above argument the

two waves with a wavelength space AA > Zﬁgh will be uncorrelated in

o]
phase over this interval, Thus this decorrelation carries over onto

the image plane, and we will have the speckle decorrelation when the

two waves have a wavelength spacing

2.3 Diffuser Imaging Results

We model the diffuser to be a pu}e phase object and, in the
geometrical optics approximation, for a plane wave incident on the

diffuser at an angle Go to the normal, the wave exiting on the other
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side of the diffuser will have a spatial phase variation depending upon
the distance each part of the wave had to travel through the diffuser.
Thus if we model the diffuser to consist of a plane sheet of some
average thickness and with scatterers of height hr and width L
superposed on this sheet (see fig, 2, Appendix A, p. 98 ) then the one-
dimensional electric field transmitted by this diffuser can be written

as

= (iz’r)n Esin® (e ‘
f(€) = e Ko ° ol:l o ;L/_\rect( gw-gr){e ()\0 )n3hr-1}] (3—3)

r

where '7\0 is the wavelength of illumination, BO the polar angle of
the incident wave, & +the coordinate in the exit plane of the diffuser,

n

3
refractive indices of the diffuser and air respectively, Gl, 9(; the

given by the quantity (nl/cosel—no/co§6°), n, and n_ ‘the

polar angles of propagation in these two mciadia., and hr the height
of the scatterer at the rth coordinate.

Although the details of the derivai!:ion of (2-3) are outlined
in Egs. (5) through (8) in Appendix A, we give an alternate derivation
for this equation. The multiplicative term exp[-i(zzr/)\o)nogsineo],
with the linear phase taper in (E) , occurs for a plane wave incident
at an angle 60 , as shown in Fig. 2. With noncrve_rla,pp:l.ng steps

assumed in the

Zrec’s[(i - lgr)/wr] ¥
i 4

the term within the square brackets, [], is either 1 or
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expﬂ-i(zn/ho)n3hr] . This holds for an arbitrary value of §., hence
|f(E)|= 1 as it must for a pure phase object.

We could adapt this transmitted field to fit a variety of
models for the diffuser. Thus we can consider the height of a step
given by hr(g) to be roughly constant over the width LA On the
other hand, if one prefers the randomly positioned lenslets of Hopkins
and Tiziani, then hr becomes the gquadratic phase transmission for
each lens, i.e., hr(g) = [(E - §r)2/fr] » where f_ is the focal
length of the lenslet centered at §r a

We now consider the electric field in the image of this diffuser.
If this diffuser is placed on the (E,T) plane and a lens of focal
length F and aperture D 1is placed a distance s' from this diffuser
in the (u,v) plane, while the image is formed a distance s from the
lens in the (x,y) plane (fig. 1, Appendix A, p. 97 ), then by the
successive application of Rayleigh Sommerfeld's fomula, as detailed
in Egs. (1), (2), (3), and (11) in Appendix A, we obtain the one

dimensional electric field at the (x,y) plane to be

2
11"“.:a(xﬂ - am (x) g Lye
E,(x) = e o Ma')j it f(_ ﬁ) e MM ( A ) (2-4)

-0

where M is the magnification of the optical system and f(%) 1§ -
given in (2-3).

Now, if we meke the assumption that the width of each random
step is much less than the resolution cell size, i.e., W << b ,-where

Av is the size of the resolution cell, then insofar as integrations
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of the form of Eq. (2-4) we can replace the rect [(E - §r)/wr] by
the Dirac delta function, i.e., by w 6(§ =~ &) . Thus, we obtain

for the speckle electric field and intensity the result

2 2 2
i iTrno .X_?_ _ 2xsin80 ) 4Trn0x sin 80
E (x) = Aw/'n e A Ms' H A2M2

o

i'lrno " x-x"\2 imn | 2x'sin® (x") s
™ (ﬁ;) \ 2 r) Pt et - 32

+ e o Z = i o H Ms' w_ |e AO Bhr 1

r d )

and

(x__x')z
-2 %
I(x) = T(iw)%e %2/ b e._u' ) e B er{cos(x—¢1r+¢2r)—cos(x-¢lr)}

r

(x-—xl'_ ® (x—xﬂ’l)z (xwx;)z

-2 o +i(d. -4, )

+ 22 e Aw(er)z{l—cosd)Zr}. = Z Z e Aw Aw. Im "1r
_ mr ;

r

m#r (2-6)

-i¢ +i¢
- M%w v je 2m_1$ ;e 21‘_1‘

m

2 o noxsine0
in which o = 4w(noxsin80/10M) , X = (Z) - g

Trno ?.xx'_sineo (xl':):z
¢1 s M - MZS' 5 and ¢2r = -i_h n3hr
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We next obtain a form for E(x) where the phase factors have

been suppressed. We obtain from Eq. (15), Appendix A, the result

N
Ej(x) =A-BN+B ] etiPBe
r=1 ’ :
imn x?
We have defined A = Aw/T , B = Mw e_ AoM 5' and p as
21Tn3
p S A ' (2_7)

o

If we restrict our study to the worst speckle case we
consider AB negligible with wavelength and can assume B independent
of A . Thus for the purposes of future analysis we take B 1o Dbe
constant.

In Eq. (2-7) the summation r = 1,2,....N extends only over
‘the N scatterers within a resolution cell size. For smooth obJjects
Ei(x) is equal to A and the speckle which occurs for rough objects
is inherent in the terms containing Bj; and the ratio %? is equivalent
to the fractional surface occupied by the scatterers in a resolution
cell,

We note that the expected walue for the electri‘c field is
some complex number, -while the variance is a real number since it
is defined by Gz[El] = <|El"<El>‘2> . Thus OEEEl] gives us the
square of the radius of a circle centered around the expected value
within which roughly half of our values of El lie. The intensity

at some fixed point x can thus be considered to have changed
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significantly when the magnitude of the change in El(x) with
wavelength is of the order of the standard deviation., Thus, we adopt
the criterion that the speckle is decoupled when the wavelength change
causes the average of the magnitude squared change in El(x) to be
equal to the variance for a particular wavelength KO, 1.8,

decorrelation occurs whenever

(8B, (x)AE, "(x)) > 0°[E, (x)] (2-8)

Substituting (2-7) into this criterion and going through the
steps as detailed in Egs. (17) through (29) in Appendix A, we
find that the wavelength spacing required to decouple the speckle in
the case of a rough diffuser, i.e. ph0 > L 4 for hO the standard

deviation for the scatterer heights, is
0 R
M= rmh -8
370

2.4 Experimental Results

We discuss here some of the experimental results as presented
in Appendices A and B. Since at the time of the experiments we did
not have a dye laser, we simulated a tunable monochromatic collimated
source by using a spectrometer to bandlimit the light emitted by a
carbon arc source and collimating the output of the spectrometer
using the pinhole Pi , as shown in Fig. 3, Appendix A. The speckle

in this case is readily seen to move with wavelength by the normal
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eye, which has been in the dark for about 15 minutes, with a character-
istic decorrelation wavelength of between 30 to 1008 . This
compares well with the value of 808 for a scotch tape diffuser
computed from Egq, (2-9) where g = 8.6 5 ho = 0.5 um and h_ 28 um .
Fig. 5 in Appendix A shows the speckle pattern produced by the band-
limited source while Fig, 4, Appendix A, shows the speckle pattern
produced by laser illumination, Figs. 6, 7, 8 and 9 in Appendix A
show the image of an optic nerve in laser illumination, white light,
illumination from a single sk spectral width source and illumination
consisting of 6 separate bandlimited wavelengths scanning u,3ooi to
5,800& respectively. We note the considerable improvement in
resolution in Fig. 6 over that in Fig. 5, demonstrating the speckle
reduction when the illumination consists of a superposition of wave-
lengths.

Similarly Figs, 3a, 3b and 3c in Appendix B show the image
of a pap smear illuminasted by one tone of an argon laser source,
white light and L tones of an argon laser (5145, 4965, L4880 and L4765 R).
We note the resultant improvement in the resolution of the image when

we have a multitoned illumination.
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Chapter III

The Problem of Random Vibrations

£ Introduction

In the previous chapter we developed an expression for the
imaging of a diffuser in monochromatic collimated illumination, and
the resultant creation of speckle. The speckle pattern changes with
wavelength and so it is proposed that by superposing the image of a
diffuser at various wavelengths we would get an averaging out of
speckle, while at the same time the image quality would not be degraded.
Thus, this technigue offers us a promising possibility of reducing
speckle in microscopic holography.

However, in order to understand precisely the wavelength
spacings and the optimum number of tones required to averagé out the

speckle, it is necessary to understand the statistics of the speckle,.

In this chapter we therefore review the statistics of functions

N .
of the form of R :rélelahT where hr is a random variable and N may

or may not be taken as a random variable., In the next chapter we
then extend the results of this chapter to consider the specific
properties of laser speckle which we see in our imaging systems.

N .
The statistics of the function R =r§lelahr were first considered

by Lord Rayleigh(l) in connection with scattering of sound by a random
distribution of particles. Since then this kind of statistical
problem has occurred in a variety of other physical situations.

Karl Pbarsoﬁa has stated this as the problem of random walk and he
formulated it in the following terms:

"A man starts from a point O and walks 4 yards in a straight line;

he then turns through any angle and walks another £ yards in a second

straight line. He repeats this process n times. I require the
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probability that after these n stretches he is at a distance r and

r + dr from his starting point 0."

' While Lord Rayleigh solved this problem in the case of

N—-® the general solution of this problem was obtalned by J. C.

(3) and independently by M. von Smoluchowski.(h) A, A, Markoff(s)

Kluyver
also formulated the problem of random flights in its most general form
and outlined a method for its solution. S. Chandrasekha1(6) has con-

sidered this problem in connection with stellar dynamics., If we take

the gravitational force acting on a star (per unit mass) by

—

N Ty
Pt B
1

where Mi’ ;i denote the mass and distance of a typical field star,
and G the gravitational constant, then it is of interest to calculate
the probability distribution for the force on the star given the
probability laws for the spatial distributions and the masses of the
neighboring stars. Similar problems have copme up in x-ray
Scatteriné?)diffuse Scatteriné of electromagnetic waves from the
earth's surface!S)in considering the statistical properties of random
noise currenté?)and in the study of photon noise in multimode lasers!log
Thus, given a distribution function for the random variables
hr and N we derive in this chapter the distribution functions of R
and IRIB.. We illustrate these results‘by two specific examples which
have been of interest in the literature. We then compare the

properties of the random variables R(a) and R(a+fa) and examine the

conditions when they become independent.
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N Ja N Ja(hy-
3.2 The Density Functions of ¥ e and g L e P~k

We now consider the sum

N (3-1
R(a') =I‘§l ejahr s )

where hr is a random variable and the random.ﬁﬁ;iébies hl, hz,
h3....hN are all independent. We also assume that the density function
of each h_ , r=l....N is f(h) and is the same., In this sum, a is
taken to be a given number., N is also, in general, a random variable
with a distribution function g(N) ; however, for the purposes of our
calculations, we take N to be a constant number; and in the double
sum, we take the set of variables represented by h =~ to be the same as
the set represented by h . We now derive the result for W(R) ,
the density funection for R , as originally outlined by A, A. Markoff(s)
and reviewed by Chandrasekhar(ll). The details of this derivation are
given in Appendix C and we only outline the results of interest to us.
We note from Eqs. (C-18), (C-19) and (C-20), that if we have

a vector R which is a superposition of a number of N vectors ;i 4

each one having an independent probability distribution ;, i.e.

—

- N
R = Y. (3'2)
i)-::l ~

where the probability that the ith displacement lies between Ty and

+dr, is given b
ry dr1 give v

Tl(xi’yi’zi) dx.dy.dz; = T.dr, (3 =1, 500 0)
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then we have that the probability distribution W (R)aR is given by

(-]

() = 25 i R (P B
for
" 3 (3-4)
- N - T -
Apkbl = ] Tylagpe MRS
To apply this result to our sum given in (3-1), wé take ejahr
to be a unit vector ;5 = (xj,yj) where Xy gives the real

part of the phasor and yj the imaginary part. We also assume that
the random variables hr all have a uniform distribution and have
density E% for the interval [- E,g] and zero otherwise, In our
diffuser language, this corresponds to the case of a rough diffuser.
Thus, in spherical co-ordinates we can write the probability density

nd

funetion for =r as

J

@) =3 8(FF - D) (5 =13,2,...,0)  (3-5)

where o is the azimuthal angle of the co-ordinate system, We thus
obtain the density function Wﬂ(ﬁ) , after going through the steps

(c-22) through (C-28), for the sum R as,
® —_ -— — N — —_
= 1 i i d
@) - L [ssnCBIRD (esncl3 " 51 < b

3 .
We further evaluate (3-6) for the cases N=3,4,6 and N— and get the

following results:



~26-

Case (1) - N=3
—b 1 %
Vats = B o< |k} <1)
(3-7)
= - G- ), o
6m|R| .
= (3<|R| <=)
Case (2) - W=k
1
Wl}(-ﬁ) = (Blﬁ] - 3|§’2) (0<'_ﬁl<2)
64m | R| :
(3-8)
1 - -
= - |r)? (2<|R]|<4)
641r|R] ,
: 2 (4<| R <)
Case (3) - N=6
W6(R) & 18 (16]E| = 4|—ﬁ|3 + (5/6)|R14) (0<R<2)
2 nIR] ;
= 18 — (- 20 + 56|%| - 301R]% + 6|73 - (5712) [R]Y) (a<k<s)
2 1r|RI
= 2 % (108 - 72[%| + 18]%}% - 2]k + /1) |[R|*) 4<|R]<6)
2 uiR

(3-9)

2 (6<|R|*)



Case (L) - N==

W(R) =

>
We note here that our distribution for W(R)

WP

(ZﬂN/3)1/2

2
S 1 i)

(3-10)

in the case of

large N 1s the same as obtalned by GoodmaJig and Baint#iﬁ by a

direct application of the central limit theorem.

It is sometimes possible that the number N is also a random

number.

ey
function W(R)

In this case it is obvious that the probability distribution

is given by (using problem 8-11 in Ref. (1k4))

W(R) = :z: P{N = k}wN(E)
k=1

If N has a Poisson distribution them PN = k) = e Ly

and we get for

W(R),

[+ =]

for d some constant

k .

W = 30 1t 1w ®

1

(3-11)

i g

(3-12)

In our later coneiderations, the quantity of interest is

Q= |§|?.

=2
To evaluate the probability density function of lRl from

-
the density for W(R) we simply use the transformation(lh) (also equivalent

to Eq (D-5))
W@

Q

il
o

W(|R|] =v/Q) @0

Q<0

(3-13)
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=3
where we have assumed that W(R) is an even function.

3.3 Expected Values and Variance of R, |R|%
N

We now calculate the expected value of the sum z eiahr
S S : r=1
and E Z '3V im ™/ Using the definition of expected value we
m=1 n=1
have,
<t(h)> = { f(h) t(h)dh - (3-1k)

r
—-—C0

where < > stands for the expectation value and t(h) is some function
of the random variable h. Also we have defined the characteristic

function of a random variable h to be, for F(a) the characteristic function

o

Flay = J Giah

-0

f(h)dh (3-15)

Thus if each hr has the same expectation value, we obtain for

the expectation values of R and Q the quantities,
\
NF(a) (3-16)

<R>

and

(Q?

i

N + N(N-1)F(a)F () o (3-1)
Similarly using the definition for the variance as

G2rem)] = <t(yt (> - <t(h)><t(h)>" (3-18)
we obtain the variance for R and Q as,

o2[R] = N[1 - F(a)F (a)] (3-19)

and
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o*[q] = N(N-1)+2N(N°-b 1)F(a)F " (a)-2N(2N2-58+3) [F(a)F " (a) 124N (N-1)F( 28 )F% (2a)
+N(N-l)(N—E)[[F*(a)JBF(za)+F*(2aﬁa)] (3-20)
3.4 Second order statistics of RLJRI2

We now proceed to a consideration of the higher order
statistics of R and Q. Suppose we have a function P(a). Then its

autocorrelation function 1s defined by

Lt T

y(na)= T-= ?lE-J P(a)P(a + Aa) da (=21

T
If P(a) is a random variable, then this autocorrelation function will
also be a random variable. If {(Aa) is the autocorrelation function,
we can then deseribe it as a random variable with an
appropriéte distribution function, an expected valu:z and a standard
deviation. If P(a)is a function of some random variable h then
p(Aa) is also a function of the random variable h and so the expected
value of ¢(Aa) will become

4 L, %%

<y(Aa)> = J f(h)Y(Aa)dh =T*m§fj J £(b)P(a)P(a + Aa) dadh
= vl (3-22)

where f(h) is the density function of h.

When <y(Aa)> is zero we define the two

(15)

variables P(a) and P(a + Aa) to be wide-senge independent. Thus

in order to find the length Aa for the quantities R(a) and

R(a + Aa) to become independent and also Q(a) and Q(a + Aa) to

become independent we simply consider their autocorrelation function.

If we asgume that N 18 fixed we get
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T
J [ 0 dh £(h )] [ ] [ e—i ( ahr+Aahr)]
7 r=1 r-l

mm

( lpR(Aa) 3T L J J

L-bl :DmT ‘N N ) ifa(h -h ) + Aah ]
a(h - a
=T~m§T~J‘LJ [H-dhrf(l-i,)] b L e m n
- -T r=1 m=1 n=1 S
= NF(Aa) (3-

where F(Aa) is the characteristic function of £(h). Thus when the

function <1PR (Aa)> is sufficiently small, we can consider the two

functions R(a) and R(a + Aa) to be sufficiently independent.

We can do a similar computation for Q (a)

1 _ 5 N _ r
<P (Aa)> =T _T 5 J I[ ja(h n)]Lz Z ja(hp~hg)
Q - T m—l n" =1 g=1
-Jba(hy-h,) o
‘e P’} da 1. £(h )dh_
r=1 k
TR | g

1 T G ; i

ﬂum'é"”:«LJ‘ lz ) oJa(hythp=hy-hg)+jralhy q)]

[ I f(h )dh ]]
|

= N + N(N-1) F(Aa) F (Aa)

23)

(3-2k)
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Similarly we can calculate the spectral density functions SR(GE)

and SQ(Qﬁ) for R and @Q respectively by taking the integral

1 * 4
SA(GJ&) = ‘z-'j"i¢e 1maA(Aa)dAa (3'25)

where A stands for R or Q .

3.5 Statistics of Sums of Independent Sums of Random Vibrations

Now suppose that we have a sum of R(al)....R(aM) where
al,az....éM are sufficiently separated so that the random variables

R(a ;..R(aM) can be considered to be independent., In this case,

l)..
if we denote by @R(w) the characteristic function of R(al) we

get for the probabllity density function of

.4 (3-26)

L = % R(a)
n..—_l ( n

the function (using Eq. 8-40, Reﬁ. (1))

3-1 n
t—1 i -
WL(L) [le éR({‘D’B'J)]

(3-274)
where 3'1 is the inverse fourier transform and is defined by
@
3'l(§(m)) = -Bl—ﬂJe'l‘”t g(w)dw (3-27b)

-0

In the same way we can calculate the density function for

M
jgfa(aj) = H where the aj's are sufficiently apart so that Q(aj)

are wide sense independent. We therefore get the result

M
W(E) =5 eg(e))) (3-28)
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We also obtain the following results for the mean and

—

variance of L and H (from Eq. 8-99, Ref.(14)).

M 5o Mo,
G) = B @} ) o} [L] = X a (R) (3_29\
. J Tl J ‘ /
J= dJd
and
® = 3 @) 2m = % ot(@;) (3-30)
: = P

where (A) stands for the expectation value of A and UZ(A) for the

variance of A.
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3.6. Summary and Conclusions

In this chapter we have studied the statistics of the random
. ¥ Jan, * ,

variables R(a) = w5 © and Qfa) = R(a)R (a) . We have derived
expressions for their density functions in Egs. (3-6) and (3-13) ,
when N is fixed and hr are random variables. We have also derived
an expression given in Eq. (3-11) for the density function of R when
N has some probability distribution. Egs. (3-16), (3-17), (3-19)
and (3-20) give us the expectation values and the variances of R(a)
and Q(a) in terms of the characteristic function of h . In Egs.
(3-23) and (3-24) we have also derived the expected values of the auto-
correlation function of R(a) and Q(a) . We have also considered
sums of the type L = jgl R(aj) and H = jgl Q(aj) and have derived
their density functions in Egs. (3-27) and (3-28). We have also
calculated their expected values and variances in Egs. (3-29) and (3-30).

Thus, in this chapter, we have considered some of the pertinent
results referring to the problem of random wvibrations with a finite number
of steps. In the next chapter we use these results to study the
statistical behaviour of speckle in the image of diffuse objects and
derive some of the important experimental properties which will enable
us to understand the properties of the diffuse object, knowing the
properties of the image speckle, and also establish for us the

necessary guidelines for removing speckle in these images.
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Chapter IV

Image Speckle Statistics

4.1 Introduction

In this chapter, we apply the results of the previous chapter
to study the statistics of speckle in the image of a diffuser. We
calculate the distribution of speckle intensities, the average speckle
size, the wavelength spacing to decorrelate two speckle intensity
patterns, the improvement in the quality of the image with the super-
position of speckle intensity patterns for different wavelengths, and
the spectral autocorrelation function for the speckle electric field
and intensity.

In the previous chapter we studied the properties of two random
variables, R = g ejahr and Q = |R|® . We derived their density
functions, foundr:ieir mean and standard deviation and derived their

autocorrelation function in order to find Aa for which the variables

R(a), R(at+da) and Q(a) , Q(a+ba) become wide sense independent.

We also derived the density functions, mean and variance for the
M M
variables L = nEl R(an) and H = nEl Q(an) for R(al) , R(az)...R(gM)
independent and Q(al), Q(az)...Q(aM) independent. We apply these
results to study the statistics of speckle in this chapter,
Speckle can be classified according to two chief optical

configurationsgll.e. when the observation is made of (a) the far field

pattern and (b) the image of a diffuser illuminated by coherent light,
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There have been a large number of investigations on the statistics
of speckle in both of these configurations,(l-T) the questions of
major interest in the past being the spatial autocorrelation function
and the power spectral density of the speckle dbserveﬁ under mono-
chromatic illumination.

In this chapter we concentrate on the statistics of the
speckle arising in imaging systems, although the essential results for
the wavelength dependence of speckle in the far field region follow from
our calculations, Thus, in section 4,2 we derive the probability
densities for the speckle intensity and electric field in the image of
a diffuser. We also derive the mean and the variances of these
quantities in terms of the characteristic function for the distribution
of the heights of the scatterers in the diffuser and define a criteria
for measuring the degradation of an image due to speckle noise,

We review a calculation, in section 4.3, of the spatial
autocorrelation function of the speckle using some results from
communication theoré});ig)show that for a large diffuser this quantity
is simply the magnitude square of the spatial autocorrelation function
of the pupil function of the system. We thus derive the result that
the average speckle size is equal to the size of a resolution cell for
the optilcal system,

In section 4.4 we derive the autocorrelation functions of the
speckle electric field and intensity with the wavelength as a variable
and then calculate the expected value and the standard deviation for
these autocorrelation functions in terms of the characteristic function

of the heights of the scatterers on the diffuser. We also calculate
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the spectral density function of the speckle and derive from these

results the wavelength spacing for Ewo speckle patterns to become
A

wide sense independent to be e . where A is the mean
Bnn3h0 0
wavelength of 1llumination, n, the difference in the refractive index

3
of the air and the object and hO the standard deviation for the heights

of the séatterers on the diffuser. In the next section we derive the
same result using the definition that two random variables are uncor-
related if the product of their expected values 1s equal to the expected
value of their product.

In section 4.7 we derive the density functions, mean and
variances of the speckle intensity and electric field when the illumina-
tion consists of M dindependent tones. We also calculate the degrada-
tion of the image due to speckle noiseland show that this quantit&
decreases directly in proportion to ;@f— &

We then calculate the speckle electric field mean and standard deviation,
in section 4.8, when the illuminating beam has some given linewidth.
From these calculations, we note that as the linewidth of the beam
approaches the wavelength decorrelation spacing the speckle noise
becomes negligible, We also derive the expected value and the variance
of the autocorrelation function as well as the spectral density
funetion for this case and show that the wavelength spacing to decorrelate
the speckle now is given by the expression

i ) G

AN =
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Where O, 1is the spectral bandwidth of the illumination,

A
Thus in this chapter we lay the basis for understanding some
important aspects of speckle and derive résults which enable us to
calculate the important parameters for using wavelength diversity
techniques to reduce spéckle noise., We thus establish a wavelength
spacing to decorrelate the speckle, a spectral bandwidth for the
speckle to be laser like and estimate the reduction of speckle image

degradation when the illumination consists of a set of independent

monochromatic tones,
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4.2  The Probability Density of Speckle Intensity in the Diffuser Image

From Chapter II, Eq. (2~7) we obtain the result that
the electric field at any point x in the image of a diffuser can be

approximated by

LA
B.(x) =A - BN+ B I e PR (4-1)
L r=1

where we have defined A = AWJ;:- B = ch and p as

—Eﬂn3
A

P:
o)

Here Aw refers to the half width of a resolution cell, W, the ‘average
width of a scatterer and the sum N dis taken over the scatterers in

the region x - Aw < x < X + Aw.

Since it is of interest to consider objects of varying roughness,
we notice that for smooth objects El(x) = A , The speckle that occurs

for diffuse objects is inherent in the terms containing B j; and the

ratio %g is equivalent to the fractional surface area occupied by

the scatterers in a resolution cell and is always less than unity.
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We first calculate the density function of El(x). Rewriting

(3-6), we have for a wvector R =
> r=1
the random variable R, if N dis fixed,

N
> i
Jjah g
) e'™°T, the density function for

a:

W{R)_._?EJ| manHRD[mnch|]|Mdh| ) (h-2)

From the derivation in Appendix D we obtain the density function for

the electric field (L4-1) to be, (see Eq. (D-6))

=]

e % ._-_.El(ABN)
WEl(El) " gﬁzlﬁ(A-BNH ] e

_)[SInclpIJ [plalel (4-3)

Similarly, the density function for- the intensity is given by Eq. (D-9),

iy (1) = 3 [Fp (1,000 + 7 (1, ,6=m)] u(T))

1 Il 1 1
1 ¥ 5+ |&¥T1-(A-BN) DN .=
F(I,.¢) = i sin |p| [sinc|?|1" |p|a
D g elq’(Il)%_(A-BN)‘ % B P17 plalel

(b-b)
where U(I;) dis the unit step function.

We now wish to calculate the expected value and the
variance of the electric field and the intensity. If the

characteristic function of the random variable h_, given by the

@ .
'eiphf(h)dh is denoted by F(p), we note that for the

- : : iph
expected value and vaeriance of the random variable e P

integral

we get

(eiph) = F(p) (k-5)

PPy = 1 - F(p)F (p) (4-6)
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where ( ) denotes the expected value. If we also assume that the
random variables hr, represented by different scattering points,

are independent, then we can calculate the expected value and variance

of our amplitude defined by Eq. (4-1). Thus we obtain

(El(x)> = A-NB+BNF(p) (LT}

o2 (8, (x)] = NL-F(p)F*(p) J5¥ (1-8)

where BB¥* = (ch)z.
Similarly we outline a calculation for the expected wvalue
and the variance of the intensity Il =El}i}ffL Given a random variable

X which is the sum of the random variable bx and a constant c,

where b 1is a constant, i.e.

X = 1C % DX, (L‘-9)
we have )

XX* = ¢ + cbx + cox* + bbxx* . (4-10)

Thus the expected value of XX¥* becomes

(X*) = c2 + cb(x) + cb{x*) + bbl{xx*) _ (b-11)
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Similarly, we have

3 2 2

(XX*)2 = ch + 2bxed + 2bx*ed + ctbix

+ 2b3c(x*)2x + bu(xx*)2

Thus the expected value of ((XX*)2> becomes

+ bzcz(x*)z + b

2

c xx¥ + Zb ex x¥

(4-12)

(% ))? = cl'L + 2beo(x) + 2be(xx) + ¢b(xEY + b2e?{(x*)2) + b2 e (%)

+ 2boel{x"x*) + 2b3c((x*)2x> £ bh((xx*)2>

(4-13)

We now calculate the values of (x),  (x*), (), ¢K2>, ((X*)2>,

x%xy, ((x*)%x), ((x%)?) where

N ;
X = elphr
r=1

We get

(X) = NF(P) ¥
(x*) = NF*(P) )
(xx*) = N + N(N-1)F(p)F*(p) ,

(x%) = N(N-1)F°(p) + NF(2p)

3

((x%)%) = N(N-1)(FP*(p))” + NF*(2p)

(4-1k)

~ (k-15a)

(k-15b)
(4-15¢)

(k-158)

(k-15e)
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("x") = (2N°-N)F(p) + (W°-N)F(2p)F (p) + (W-382+2N)F(p) F (p) (4-15¢)

(x(x)%) = (20°-W)F (p) + (F-W)F (2p)F(p) + (W-38+2M)[F (p)1°F(p)
(4-15g)

and
(Gax)B) = N(@-1)F(2p)F" (2p) + N(N-1)(N-2){F(2p)[F" (2p) 1% (20)F2 (p))

+ WN(-1)%F(p)F (p) + (2N°-) . (4-15h)
Substituting Eqs (4-15) into (4-11) and (4-13) we obtain,

(xX*) = ¢® + DeNF(p) + beNF (p) + bbN + LON(N-1)F(p)F (p) , (4-16)
and

{2y = ot

+ 2be NF(p) + 2beSNF (p) + cob2[N(N-1)F>(p)+NF(2p)]

+ DEPIN(N-1)[F (p)1° + NF (2p)] + WbZc?[N + N(N-1)F(p)F (p)]
+ 20oc{[(WP-M)F(2p)F (p) + (2N2-N)F(p)+(N-3N°+2N)F% (p)F (p)]
+ complex conjugate}

+ B IH(N-1) (W-2)F (2p)F (p)+N(N-1) (8-2) (F () °F(2p)

+ UN(N-1)°F(p)F (p) + (2N°-N) + N(N-1)(N-2)(N-3)(F(p)F (p))°] .

(k-17)
Simplifying (4-17) we cbtain the result,
(xE)2Y = [(Ble” + WPl + (2n2-m)bt] + éNch(p)[c2+b2(2N-1)]
+ CPPPN(N-1)FE (p) + NebPF(2p) + 2boe(N°-N)F(2p)F (p)

+ 2p3en(N-1) (N-2)F2 (p)F (p) + N(N-1)(N-2)b'F" (2p)F2(p)
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+ 2N e? (H-1)bN(N-1)TF(p)F" (p)+#b N(N-1) (N-2) (8-3 ) [F(p)F" (p) 1Z

+ complex conjugate], (4-18)

Also we have for (XX*>2, from Eq. (4-16),
X% = (3[cp°N1% + 2[cPb NIoeNF(p) + (beN)2F3(p)

+ 2BeNP(N-1)F2(p)F (p) + [ (cZ+b%n)b2N(N-1)+ (ber)Z IF(p)F(D)

+ %[F(P)F(P)JZ[bZN(N-l)]z} + complex conjugate , (L-19)

We now use the definition that the standard deviation square

of XX* is given by
?xx’) = (X)) - (Ve . (4-20)
Thus we have

2, n(N-1)b- W3ePblF?(p)

o?(xx”) ={p°c’N
+ Ne“oPF(2p) + ZbeN(N-1)F(2p)F (p)-2b UN(N-1)F (p)F" (p)
+ON(N-1) (N-2)b"F (2p)F2(p) + F(p)F" (p)beN[3b2N-5b2N24 202N -]

- [F(p)F" () 120" [2N3+5K2-3N]

+ complex conjugate ) . (h-21)
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- To find the expected value and the varlance for
Il(x) we simply substitute E (x) for X, A - NB for ¢ and
1
B for b in Egs (4-16) and (4-21), We therefore get,
2 * a *
(Ty(x)) = (A-NB)" + (A-NB)BNF(p) + (A-NB)NEF (p) + BN(N-1)F(p)F (p),
| (4-22)
and
B4

o(1,(x)) = { B*(a-18) Rz (i -1)5 " -1%8% (a-18) *F (1)

+ MB2(A-NB)2F(2p) + 2BON(N-1)(A-NB)F(2p)F (p)

M (W-1)83 (A-18)F2 (p)F (p) + (N-1)(§-2)B"F" (2p)F2(p)

+

B[ 38°N-55"N"+25°N - (A-1B) *1F(p)" (0) -52(p) ¥ ()1

L
2

BA[HN3+10N2-6N] + complex conjugate]} . (4-23)

+

We now define e criterion for deciding when a
particular diffusér“will give a large amount of speckle, If we.take
the ratio of the standard deviation to the expected value of the
intensity, we obtain the average fractional change in amplifude among
different resolution cells of width 2Aw, When this ratio is véry
small, we have the case when most cells have the same intensity; and
there is practically no speckle. In the case where this ratio

approaches one, we have a badly speckled case. Thus we define the ratio

_o(Iy)_ Ea. (h-23
RIp=THY - Bt (-24)

as a measure of our image degradation.
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We note that this quantity is the inverse of the speckle signal to noise

(1)

ratio as defined by Dainty

(I

= 5T0) (he-25)

1

=l

where S/N stands for the signal to noise ratio. We approximate R

for the case F(p) << 1 since Eg. (4-24) is very cumbersome to

analyze. We therefore write R(Il) neglecting terms of order higher
than F(p) . We get

o (282 (A-NB) 2w W(N-1)B"1F -
R(LI }= -2
- [(a-NB)2 + {#(p) + F (p)}{(A«NB)BN}]

We note from Eq. (4-26), that the quantity R(I)is proporticnal to
%ﬁ' Thus a badly speckled case occurs with a smail number of
scatterers per resolution cell. And, as N becomes very large, the
amount of speckle is drastically reduced. We can define a similar
quantity for the electric field, R(El)

a(Eq)

R(E) = Loz
(B o (4-27)

Substituting the results from Egs. (4-7) and (4-8) into Eq.
(4-27) we obtain for the speckle electric field,
+ *
(1 - F(p)F (p) 1P

‘R(E,) = ' - (k-28)
[A-NB + BNF(p)]
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We note that the quantity R(El) is also proportional to

1/¥N . Also when F(p) = 1 , we have R(El) tending to zero, which
corresponds to the case of no speckle, this being the case when the
standard deviation for the heights of the scatterers tends to zero,

i.e., the scatterers have the same height.

4.3"Speckle Size and the Spatial Autocorrelation Function of the
Diffuser Image

We now estimate a value for the average speckle size. This is
given by the half width of the spatial autocorrelation function for the
speckle intensity. The autocorrelation function becomes negligible for
Ax > LAw since from Eq. (L-1) the contribution to the intensity in the

- two cells, each of width 2Aw, come from different scatterers. Thus the

speckle size must have an average value of 2Aw where Aw is the half
width of the resolution cell in the image plane. To see this result
more explicitly we can make a detailed calculation of the spatial auto-
correlation function of the intensity. Such a calculation has béen
done by a variety of authors including Daintéll Enlogzl and Burckhard£3)
and we outline one derivation of the spatial autocorrelation function
of the intensity in the image of a diffuser.

Let us consider the complex electric field transmitted'by the
diffuser to have the value f(&,n), and express the resulting electric

field distribution in the image plane as
E, (x,y) = £(x,y) @ k(x,y) (4-29)

| -
where the symbol &%D denoctes convolution and where k(x,y) is the transfer

function of the imaging system.
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Now suppose that the Fourier transform of the transfer function
is expressed as K(wx,wy) and the electric field exiting the diffuser
is looked upon as a stationary stochastic process, with a power spec-
trum No(wx,wy). The power spectrum of the image intensity is given

by, using direct substitution,

N (wx,wy) F{[£(x,7)@k(x,y) 1@ [£ (x,7) @k(x,y) 1}

i

Fe(x,y)®Dk (x,y)]1F[f (x,7) @Dk(x,y)]

Il

e )% N (ws0) . (k-30)

In the same way we obtain the output power fluctuation of the

{1

1
: . . .
intensity NI(wx,wy) to be given by

N:'[(wx,my) =F [El(x,y)E:{x,y)(@El(x,y) E;(x,y)]

= NF‘_:l((-Dx’ my)@NEl(me wy) (h'"3l)

Thus, if we combine Egs. (4-31) and (4-30) we‘dbtain

2 2
W (w0 ) = IK(mx,my)l No(wx,wy)(:)lK(wxswy)l Nolws0) _30)
|

If the diffuser is relatively large, we can approxXimate No(wx’wy) = 1.

Then the spectral density function of the intemsity becomes,
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M) = [Kugue) 2@ K. )| . (5-33)

as shown in BEq. (8) of Ref. (1).
If we define the spatial autocorrelation function of the intensity by

WI(AX,Ay) , we obtain the result,

¥ (A, by = 3G ) 2@ [k ) 2T

= x(ey) ®klx,y)|° . (b-3h)

Thus the sutocorrelation function for the speckle intensity is
equal to the magnitude sguare of the autocorrelation function for the
transfer function of the optical system. Since the width of this trans-
fer function is equal to the size of a resolution cell in the image
plane, the width of the autocorrelation function is twice this size and

so the average speckle size is 24w .

b} Wavelength Diversity of Speckle

Since our main interest is to underétand the behavior of
speckle with respect to wavVelength we derive in this section +he
autocorrelation function of the speckle image intensity ss a function
of wevelength, a number for the wavelength spacing required to decorre-
late the speckle patterns and an expression for the resulting spectral
density function of the image of a diffuser illuminated by & monochromatic
source.

We rewrite (3-21) which says that if we have a function P(a)

then the autocorrelation function for this function is given by
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pla) Bla+rda) da (4-35)

==
e

=

o

l&l

b
D=

H“@LI—J

However, if P(a) is also a function of a random variable h which
has a density function f(h) , then the quantity of interest is the
average value of the autocorrelation function. This gquantity will
then tell us on the average how much the value of P(a) is changing
from its original value &a when it is measured at the new point (at+ba).
We therefore rewrite Eg. (3-22) to give the expected value of the

autocorrelation function as
o T
Lt 1 %
<‘£’P(Aa)> =J f(h)dh | Toe hil [P(a) P(a+ Aa)da ( ' (L+36)

—00 —p

We first find the autocorrelation function of the electric field., If

we write the electric field as,

| N iphr
El(x) =c +R(p) , R(p) = ) e 3 (4-37)
r=1
¢ = A-NB, b=2B ’
we get
T
Lt = ¢ ' %
wE]_(Ap}:T_mg_T_'}T [c+ bB(p)}{c+bR(p+Ap)] dp
= & + voY (ap) . (4-38)

where ‘WR(Ap) is the autocorrelation function of R(p).

Using (3-23) that the expected value for the autocorrelation
function for R(p) is NF(Ap) , where F(p) is the characteristic
function for the distribution of the heights of the scatterers, we

obtain the result
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Gy (8D = ¢® + v7NF(2p) (4-39)
1

Now, substituting the values (A-NB) for c¢ and B for b we obtain

the expected value for the autocorrelation function of the electric
field to be

2 2
<yp (4p)> = (A-NB)" + B°NF(ap) . (h-ko)
1
We now calculate the expected value of the autocorrelation

function for the intensity. Using the definitions for R{p), ¢ and b

in Eq. (4-37), we rewrite the intensity as,

[c + bR(p)1lc + bR*(p)]

]

¢® + CbR(p) + cbR*(p) + RR*(p) ¢ Th-dind}
_ %
Thus for the product Il(p)Il(p+Ap) we obtain

L (p)T¥(p+op) = [c” + coR(p) + GBR'(p) + B'R(PIR (p)1.
[02 + cbR(p+ap) + cb R(p+Ap)
+ b°R(p+Ap) R (p+bp)]

(4-k42)

- ch + c3bR(p+Ap) I c3bR*(p+Ap) + czbzR(p+Ap)R*(p+Ap)
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SbR(p) + (cb)“R(P)R (p+ap) + (cb) R(p)R(p+ap)

+

3R(p)R(p+AP)R (prap) + c bR (p) + (cb)ZR (p)R(prAD)

+

(cb)%R™(p)R" (prap) + cb R (p)R (p)R(p+ap)

(cb)?R(P)R (p) + cb R(D)R (p)R(p+ap) + cb R(P)R (p)R (prhp)

+

+

+

th(p)R*(p)R(P+&P)R*(I*AP)

Collecting terms and rearranging, we get
L
I, (p)I;(prap) = ¢ + cob[R(p+ap)+ R (prap) + R(p) + R (p)]

b [R(p)R(p+AD)R (p+ap) + R*(p)R*(P)B(rHAP)

+

R(p)R (p) R(p+ap) + R(P)R (D)R (p+ap)]

+

<“p?[R(p+ap)R (p+Ap)+R(D)R (p+AD)

R(p)R(p+Ap)+R*(p)R(p+Ap)+R*(p)R*(p+Ap)

+

i

R(p)R (p)]

+

+

" R(p)R (p)R(p+4p)R” (p+aD)

(4-43)
We now note the following results,
P i T T
'ed l = l :-
It 5 R(pHp)dp =5 | R (prAp)dp = BT J R(p)ip= 7% | R “(p)ap = 0
e -T T -T -7
(L-lba)
P
Lt %J R(p)R(p+4p)R (p+Ap)dp = O - (L4-llDb)
T-pco =T
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T
LT -Bl—TJ R*(P)R*(P)R(p.l-/:\p)dp =0 (b-Llec)
T-ro0 T
T
i *
Lt % J R(p)R (p+Ap)R(p+ip)dp = O (L-bhd)
Teo -
T
T 25 | R(D)K (p)E (p+op)dp = O (bl )
-T
s
Lt g5y R(prop)R (prap)dp = N (k-likie)
-T

T N
e gy RE)R (ep)ap = TP < yp(ep)  (h-lblg)

o _T
z
It % R(p)R(prdp)dp = O (4-blh)
<o ‘.
I,'
Lt %‘TJ R*(P)R(PW“AP)dp = tLrR%(Ap) (L-lihi)
Tooo k-
T
¢ * :
Lt %.J R*(p)R (p+Ap)dp = © (u-uuj)
Trreo _T
T
> *
it 7 ) R(P)R (p)ap = N
oo b
ll ']f; * | * N N a5
1t z j R(P)R (P)R(P+AP)R (p+Ap)AP = Ypg(Ap) =X I e mw n

T m=1 n=1
_ (l-bivi)
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We therefore find that the autocorrelation function of the
quantity Il(ap) is given by the resulﬁ, using Egs. (L-uk), (L-u3)
and the definition (4-35)

T
Lt

¥y (bp) =T %ﬁ_+ L, ()%, (prap)dp
i1

= ch + 2Neb? + czbz[vR(Ap) e wR*(Ap)] + bhwRﬁ(Ap) (4-k5)

where ¢R(AP) and ¢Rﬁ(AP) are defined in Egs. (L-Ulg) and (L-4hk)
respectively. We thus, using the definition (L4-36) and the relations

given in Eqs. (3-23) & (3-24), obtain for the expected value of the

autocorrelation function of = the intensity,

(wIl(AP)> = ch + 2Ne’b? + chbz(F(Ap) s F*(Ap)]

(L-45)
+ bu[N o N(N-l)F(Ap)F*(Ap)]

Thus substituting the values (A-NB) for ¢ and B. for b

we obtain for the expected value for the autocorrelation function of

the intensity as

b, an(a-nB)?B2]

(o, (40)) = [(a-1B)" + xB
+ N(A-NB)?B°[F(4p) + F (4p)]

+ B“N(N-l)F(Ap)F*(Ap) (4-L6)
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Eq. (4-L46) thus gives us the expected value of the autocorrelation
function for the intensity in terms of the number of scatterers per
resolution cell, N, and the characteristic function for the heights
of the scatterers, F(Ap).

We now study expression (4-46) to find out when the two speckle
patterns, one at p and the other at (prdp), are sufficiently
different to be considered as independent functions. Since
(¢I£Ap)) consists of a constant plus a constant times F(Ap)
plus a constant times lF(Ap)lz, the expression (4-46) can be
considered to be near its lowest value when F(Ap)
is near its lowest value. Thus if we calculate the value of Ap
for which F(Ap) becomes small, then that Ap will
give us the spacing over which the intensity decorrelation of the
speckle pattern occurs. We note first that if we have some
function f(x) and its fourier transform F(w) and if the function
f(x) can be assigned a certain bandwidth, i.e. a quantity
Ax = B over which f(x) has any appreciable value, and if F(w)
can also be given a certain bandwidth Aw = Ba)’ then we obtain the
result that the product Bme is always equal to oneﬁégSince the
bandwidth for the density function for the distribution of the
heights of the scatterers is the standard deviation for the heights
of the scatterers, say hO’ then the characteristic function for the
heights of the scatterers, which is the fourier transform of the density
function, must have a bandwidth which is the reciprocal of the
standard deviation for the heights of the scatterers, i.e. the

characteristic function is negligibly small, when
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3.
bp = - (1-t7)
0
where ho = standard deviation for the heights of the scatterers. Now,
-2nn
we have defined p = N 3 . Thus we cbtain Ap to be, for small
0
changes in KO’
d 2]’[113
Ap = T~ 0h = —2 A . . (4-18)
0 Ao

Combining BEas. (4-L47) and (L4-U8), we obtain the wavelength
spacing for the value of the characteristic function to become
negligible to be given by

s

Eﬁn3h0

” . (4-ko)

Since,when the characteristic function is negligible, the ekpected
value of the autocorrelation function for the intensity of the speckle
pattern approaches its minimum, we can consider the two speckle patterns,

one at )\ and the other at A+AA4 to be wide-sense independent when

2

X ‘
— _ decorrelated case (L-50)
Eﬂn3ho 4

AN
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Also since the value of the characteristic function has not
decreased much if A\ is, say, less than a tenth of the value as

given in Eq., (4-48), we can consider the speckle pattern to still be

laserlike for

2
1 A

Ax < Laserlike Case . (h=51)

10 Zﬂn3h0

We note that we would get the same result for the speckle

pattern to become wide-sense independent had we studied only the

electric field of the speckle pattern,

Suppose that the density function of the heights of the scatterers
| 8
is even. Then the characteristic function F(p) is real} gnd S0 we

can rewrite Eq. (4-46) as
( L L 2 2
¢I1(Ap)) = [(A-NB)" + MB" + 2N(A-NB)“B“]
+ 2N(A-NB)?B®F(ap)

+ BN(N-1)F2(ap) : ,' (4-52)

where F{Ap) = F*(Ap). Thus if we do an experiment where we record the
speckle intensity patterns at a bunch of wavelengths and therefore

p, and if we then optically measure the expected value of tﬁe auto~
correlation function of these patterns as a function of the difference
from the original p, then we can, in principle, from the experimentally
determined autocorrelation function, calculate the characteristic

function for the heights of the scatterers in the diffuser. Then a
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simple fourier transform will give us the density of the heights of the
scatterers, Thus from Eq. (4-52), we obtain for the characteristic

function and the density function the values,

F(Ap) =
2a

where

b = 2N(A-NB)232

R 4 2.2
c = [(A-NB)" + NB" + 2N(A-NB)“B” - (y; -(4p))]
1
L

a = B N(N-1) , (4-53a)
and "

£(h) = | e "*Pr(ap)asp (1-53b)

-3

Also, suppose we can do an experiment to measure the auto-
correlation function of the electric field as a function of wavélength.
Then we can similarly calculate the characteristic function and the
resulting density function for the heights of the scatterers and using

Eq. (4-4O) we obtain the results,

{¥g, () - (a-1B)°

BREN

F(Ap) = (4-5ka)

and

. g (1-KB)2
2(n) = o j[e PR (g (ap)alp)p 252 6(0)  (-sho)

Now suppose we had an experiment where we made a measurement of

the autocorrelation functions, as a function of wavelength, of various
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small sections of the image. Then, in general, we can assign a
standard deviation to this experimentdlly measured random function as a
function of the intervdl Ap. We therefore make a calculation of the
standard deviation of the autocorrelation function for the speckle
electric field and the speckle intensity. We first calculate the
variance for the autocorrelation function of the electric field.

Now, we have already calculated, in Eq. (4-8) the variance of a
random variable X where X 1is the sum of a constant ¢ and the
product of another constant b times a random variable x where now

X 1s a sum of the random variables elahr. We get this value to be

o?(X) = N[1 - F(a)F (a)Ib®  (4-55)
where X = ¢ + bx, X = g eiahr » Fla) = ; f(hr)eiahrdhr 5
r=1 -

Now, comparing Egs. (4-9) and (4-38) we obtain, using the

substitutions,

¢ = (A-NB), b =B, &and a =4p , (4-56)

the following value for the variance of the autocorrelation function

of the electric field

Loy (ap)] = N[1-F(ap)F" (ap) 8" (4-57)
1 ;
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We now compute the standard deviation for the autocorrelation
function of the intensity. Eq. (4-45) gives us the expression for

the autocorrelation function of the intensity, and we note that this

can be written as, comparing with Eq. (4-38),

vy (40) = 2Ne®p? + wElmpwEl*cAp) | (4-58)

where, again, ¢ = (A-NB), and b = B.

Now, in deriving Eq. (4-8), we have used the result that if we
have a random variable X which is equal to a constant plus the random
variable x, then the variance of X is the same as the variance of

X, Lu€ay

given X = ¢ + x ,We have

o?(x) = Xy - @Y
e f02+C(X>+c<x*) + (xx*>[c2+c(x>fc<x)*+6c) (x)*]
= Gy - )
, _ _
= o (x) (4-59)
* * '
where we have used the result (x ) = {x) . Thus we obtain from

Eq. (4-58) and (4-57) that the standard deviation of the autocorrelation
function of the intensity is equal to the standard deviation of the
absolute square of the autocorrelation function of the electric fileld.

It is now a straightforward procedure to calculate the desired variance
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62[¢Il(Ap)] by simply substituting for ¢E1(Ap) as given by Eq. (4-38)

into Eqs. (4-9) through (4-23). We therefore obtain the result

Loy (0] = I 5" (a-mB)" 4 gn(n-1)8*

- P (a-18)* 2 (ap) + NBY(A-NB)"F(20p)

+ BO(n-1)(a-uB)2F(20p)F" (ap) -4 (N-1)EO(A-3B)2F? (ap)F (ap)
+ NBsF*(zaP)FZ(Ap)+B”N[3BZN-SBBN2szEN3-(A-NB)ZJ
- F2(ap)[F (p) 12 BO[uN3s10n2-6n]

+ {complex conjugatel] . (L-60)

We recall that while the expected value of the autocorrelation function
of a random variable tells us how much on the average the value of the
random variable has changed from its original ﬁbsition, we note that
the variance of the aﬁtocorrelation function tells us how differéntly
the random variable is changing at various points. Intuitively then,
it is reasonable to say that, if the standard deviation is very large,
then the distribution of speckle intensities is completely uncorrelated
since now the change from the original speckle electriﬁ field or intensity
is widely different at different points on the image. Thus we can
consider the speckle patterns to become independent for Ap such that
the standard deviation becomes a meximum. We note from Egs. (4-57) and
(4-60) that both the standard deviations of the autocorrelation
functions of the electric field and the intensity tend to a maximum

as F(Ap) tends to zero, Thus for F(4p) = O the standard deviation
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of the autocorrelation function for the electric field becomes

STy, (a9) - W82 for F(ap) = O L (4-61)

Similarly the standard deviation of the avtocorrelation function of the

intensity has the wvalue

oliy (@p)] = NBP(A-1B) 2 AN(N-1)B"  for P(4p) = O . (4-62)

Thus from (4-60) we again obtain the result that the speckle is

independent when

A s decorrelated case , (k-63)

30

Now suppose we look at one speckle point in the image plane and
vary the wavelength of the illuminating beam. Then, in general, the
electric field and the intensity at that point will go from a high to
a low and high again with some periodicity. Aléo, in general, this
periodicity will be different for different speckle points. We can
thus assign an average power spectral density fﬁnction for the speckie
electric field and intensity which gives us the probabilities for
the electric field and the intensity  to have various periodicities of
oscillation, We note first that the spectral density function is

simply the fourier transform of the autocorrelation functions, 1.e.
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5g (@) = 5 < 5p(4P) (4 (b0)as (4-64)
3 T oty (4p)
sIl(wp) = E;li e P (&Il(Ap)>éAp (4-65)

Thus, first considering the electric field, we note using
Egs. (4-40) and (4-64) that the power spectrum of the electric field

is given by

sp (@) = = e o P((a-18)% + B*NF(ap)la(ap)
= (A-NB)?8(0) + BN f(wp) : | (4-66)

where f(h) is the function which gives the density of the heights of
the scatterers having a given value h. We note from Eq. (4-66) that
the speckle electric field has a component of magnitude (A-NB)2
whic¢h does not change with electric field. The second term on the
right hand side of Eq., (4-66) gives us, however, the proba.“uilities-of
u@, i.e. the number mp cycles that.thé speckle electric field has varied
per unit change in p. If the standard deviation of the density
function f(h) is h,, then we observe from Eq. (L-66) that the average
rate at which most of the speckle change is h, cycles per unit change
in p. Therefore since Ap = Eff% Ak, a result that we obtained in

lo
Eq. (u_h9g,we note that half of the speckles take more than

Ap” ;
o=, 0
AN = ??ﬁ§ﬁ6 wavelength spacing to go through one full cycle of
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variation in their electric field amplitudes, i.e. from a high value

to a low value‘and then to a high walue again. We therefore note that
the wavelength spacing, AA = E%%EES lis the appropriate minimum
.separation of wavelengths before ie can consider the two speckle electric
fields to be sufficiently decorrelated.

We now calculate the spectral density function for the
variations of the speckle intensity. Again, substituting Eq,’(h-hS)
into Eq. (4~65) we obtain for the spectral density function of the

speckle intensity,

(o]

sIl(%): 2%; J e'imP(Ap)d(Ap){[.(AwNB)u+ N:BLL + zN(A-NB)sz]

-0

+ N(a-1B)2B2[F(ap) + F (4p)]

+ BL*N(N—l)F(AP)F*(AP)*

- (6(0)[ (a-mB)inB* 2N(A-1B) 2B 1+ 2N(A-wB)ZBeE (o)

+ BINN-1) [ ()@ £ (o)1} (4-67)

Again, inspecting Eq. (L4-67) we note that the term
[(APNB)M + NBu + EN(A—NB)ZBBJ gives us the component of the speckle
intensity that never changes with wavelength, the second term on the

right hand side tells us that half of the speckle take more than

2
_29___ change in wavelength, Ak, to go through one cycle of

Zﬁnsho

intensity, where this intensity has magnitude ZN(A-NB)ZB2 and the
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third term has the standard deviation 2h and so gives us the result

0
that BMN(N—l) of the speckles .Ehave ~ variations with the

A
wavelength spacing of AR > HEEQE_ to go through one cycle.
370

As we change the wavelength of the illuminating beam, different
points on the image plane will have different correlations with the
electric field and the intensity in the image plane at the original
wavelength, It is therefore of interest to assign a density function
for the autocorrelation function of the speckle electric field and the
speckle intensity. We therefore do a calculation for these two densify
functions, For the electric field, we proceed to calculate the
probability density function using the same procedure that we have used

to derive Eq. (4-3). We then obtain as the density function the result,

N % ﬂiEl-(,tx-]aaN)2
W (4. (£p)) = fatn 3]
vg. (ap) Vg, (8p)) _ ] P
o . 2P| ¥e,-(a-3)% | O B
[sinc|p|1V|Bld] 3] (4-68)

To derive the probability density function for the intensity,
we first note from Eq. (4-59) that Vg (Ap) 1is simply a constant plus
1

the absolute value sguare of wE (Ap). We therefore first cbtain the
By .
1

probability density function for ¢E Ve and then by & straightforward
1



B

substitution as given by Eg. (D-3), we obtain for the density function

of ¥_ (I.)
B, ¥
W (b ) = [|F, (Y7 ,0=0) + Fy (¥, ,¢=m)
¢Il 1 l{;Il Ty lPIl I a
u(¥, —2Ne®BZ)  (L=69)
1
for
@ _ ey - (2meB®)E- "
Fq, (WI’@:Z i¢ ziJ. J{sin(lp]em(wll* c“B")%-c
I, 1 2l e Ny, -eNe?BR)E- P g 12 B?
- wIl-ZNcZBZF
— I.E — G
fsiHCIol]lpfdlpliJ (k-70)

| 9
where ¢ = (A-NB) and U(y; - 2Nc’B”) is the unit step function.

4.5 TIllustration of Speckle Image Statistics for a Particular Case--

the Gaussian Distribution Function for Scatterer Heights.

We now illustrate the results of the previous sections with a
particular example. We assume that the heights of the scatterers are
distributed normally where our expected value and variance for the
heights have already been taken to be zero and ho, respe;tively.

Thus we can write for the density function of hr as
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I

hyNZrx

0

2 2
e—hr /Eho (k-71)

£(n) =

and the corresponding characteristic function as

1. 8. 8
¥(p) = e"2P Po (4-72)

We note that the density functions for the speckle electric
field and intensity, given by Egs. (4-3) and (L4-4) respectively, are
independent of the density function for the scatter heights. Likewide
the density functions for the autocorrelation of the electric field and
the intensity given by Eqs. (4-68) and (4-70) are also independenﬁ of
the densities of scatterer heights. Substituting Eq. (4-72) into
Eqs; (4-7) and (L-22) we obtain the expected values of the electric
field and the intensity. Thus the expected value of the electric field
is given by

L 2y 2
(E;(x)) = A-NB + BNe =P Bo (4-73)

and, similarly the expected value of the intensity becomes
2 .- h02 5 _ h02
(I,(x)) = (A-NB)® + 2BN(A-NB)e *B'0 B N(N-1)e™P (L7l

Similarly; we obtain for the variance of the electric field, from Eq.

(4-8),

o O B
o“[E,(x)] = N[1-&® "0 18% (4-75)
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and from Eq. (4-23) we obtain the variance of the intensity to be

o?(1,(x)] = 2{ B%(a-18)%N + Em(n-1)8"

Z. 2

ho

5. 7
- W% (a-m)% PP + me(a-wB)%e 7P
A A 5. 5
+ 2B3W(N-1)(a-1B)e>/ %P B0 _um(wo1)B3(a-nm)e3/20 00

2 2
o (1) (W-2)8 e3P B0 | p2T 3p%y-522+ 28215 - (A-NB) ]

5 2
- BM[MN3-10N2-6N]<—?:“2P_ o } , (4-76)

Eq. (4-28), which gives us the ratio of the standard deviation to

the expected value of the electric field, becomes

il 5ok 2 L
NE[1-e"P B0 1%

= (b-77)
[A-NB+BNe 2P h0%] -

»

R(E,) =

The expected wvalue of the autocorrelation function for the

electric field, Eq. (4-40), for a change in p becomes

5 2 2
(wEl(Ap)> = (a-WB)Z + p2e"E(AP) RO s (4-78)

while the expected value of the autocorrelation function for the

intensity becomes,
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Y+ on(a-nB)2B?]

<¢il(Ap)> = [(AﬂNB)h + NB

) 2 12 2
+ on(a-np) el B RY"  gye1)s(8R)hyT gy

where

The standard deviation of the autocorrelation function for the

electric field is

P 2 '
UEEwE (Ap)] = N{}—e = :} 8" , (4-80)
1

and the corresponding standard deviation for the autocorrelation function

for the intensity becomes

g 2
og[wI (Ap)] = [2{2Bh(A—NB)MN+%N(N-1)BS_N3Bh(A_NB)“E'(P) h,
1

2 2
-2(Ap)°h y g @
+ 'l\TBLL(A-I\IB)LL e ¢ 3 236(N-l)(A-NB)Be 5/Z(AP) ho

. 2y 2 ‘ 2 @
- r-1)(aemmyZe > 2B R ) (BT ) o

- 2 2
-(Ap)°hn
+ B'NI38"w-5B W 2B - (A1) e (4p)™,
2 2
-2(Ap)°h
a @ o 58 10n2-6n] . (4-81)

The power spectral density for the electric field becomes, substituting

Eq. (L4-71) into Eq. (4-66),

By B
2 ~w_ /2h
Sg_ (u,) = (a-wB)? 5(0) + EL—e PO

; ‘ (4-82)
i hOJEF
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Similarly the power spectral density for the intensity becomes

2, 2
S () = 5(0)[(a-NB)" + wB" + ow(a-wp)2s?] + AANB)Z o ~Up /2R,
1
h_v/2r
2, 2
L Bwmey) - w74,
© . (u-83)

2h vV
(8] e e

_ Ve can likewise derive corresponding results cobtained in
Egs. (4-73) through (4-83) for some other distribution of heights such

as the uniform distribution with similar substitutions.

4.6 An Intensity Decorrelation Criteria for the Wavelength Spacing

We obtained a wavelength spacing to decorrelate speckle in
Eq. (2-9) by equating the expected value of the magnitude square of
the change in the electric field to the variance of the electric field.
In Eq. (4-50) we obtain this wavelength spacing by finding when the
spectral autocorrelation function of the intensity goes to zero. . In
this section, we again derive the wavelength spacing to decorrelate
the speckle by using the definitiﬁn that two random variables are
uncorrelated when the product of their eﬁpected values is equal to the
expected value of their product.

A convenient starting point is Eq. (2-6) which expresses the
intensity at an arbitrary point x in the image plane, I(x) = EE*,
with a monochromatic plane wave used to illuminate the diffuser.

We rewrite Eq. (2-6) except that we restrict ourselves to

illumination that is normally incident on the diffuser, thus meking x
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end o equal to zero. Also, if we consider the speckle near the =z
axis of the image then we can also neglect the term

R n&.‘fx')g

Ao Mgs'

i

and so we can neglect ¢lr' In this case, the intensity

of the image becomes

2
~(x-x!)
I(x) = w(Aw)2 + 2 /71 Aw z e bw M icos ¢2 - l%
= r r
—2(x-x')
Aw 2
+ 2 E e (Mw ) il - cos ¢, £
r
—(x—x ) —(X—xr) —i¢ 14
: Awr Aw 2 = o
+ ) Je M7 w_de =1t {e -1
m o mrr
b
where
Pop T %E-HBhr : (L-8k)
o

If we consider there to be N scatters per resolution cell,
each of width V. then we can write down the intensity of radiation
in one resclution cell of the image plane in the same way as we arrived at
Eq. (2-7. ). Thus
N

N
I(x) A% + 24B § {cos ph -1} + 2B z 1-cos ph %
r=1 % r_

] Hm
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X a
o

where again p =
Equation (4-85a) can be written as, more simply,

% N N ip(h _=h_)
L ( ) = Ae + 2B (A—B) cos ph_~13 + B2 m r
1 Tzl { g } mzl rgl { ¥
m+1

-iph iph
+1 - (e Ttoe m)}

. (4-85b)

Let us consider this intensity at one resolution cell of the
image plane when the incident radiation consists of a series of discrete
monochromatic tones. Then IT(x), the total intensity, is given by the

sum of the individual intensities for the various wavelengths, i.e.

L
In(x) = nzl I, (2 ,x) (4-86)

Substituting Eq. (4-86) into Eq. (L-8T) we get an equivalent expression
for the intensity in a resolution cell, where we now use 4. for the

random variable {cos phr—l} , and Srm to denote the random variable

—iphr iphm
{e -I} {e —l} . We note that Srm and q,. are not independent
and so a calculation of the statistics, i.e. the standard deviation

of Il(x) is not algebraically simple. Thus IT(X) becomes, for M

\
tones,

M X M §¥ X
I(x)=wA®+28 } }(aB)q _+8° ] ) } g . (489
n=1 r=1 n=l r=1 m=1 TN
T
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If the wavelength interval is large encugh, so that the random variables
L and qr(n+l) and S and Srm(n+l) are uncorrelated, then, for

large M, the second and third terms in Eq. (u_88 will tend to their

N
expected value. Thus 1f the expected value oﬁrglqr is Q and

N N Tl
z X S is equal to & then, for large M,
rm M
m=1l r=1
m#Er

will become,

2 2

IT(x) = A + 2B(A-B)Q + B8 . (4-89)

2

Hence, the intensity at each resclution cell will be the same and
this will have the effect of the speckle averaging dut. We would now
like tc find out the wavelength interval for which the random variables
Lo and qr(n+l) and Srn and Sr(n+l) becgzi independent. To do
this we assume independence if the variable e ¥ becomes uncorrelated.
Thus we wilsh to find the wavelength interval for which the random

iphr
variable e becomes uncorrelated.

Two random variables Rl’ Bg are said to be uncorrelated when

the product of the expected values of the two is equal to the expected

value of their product, i.e., when <Ri><R2> = <RlR2%. Hence, regquiring

iphr iphr iphr
e and e + Ale ) to be uncorrelated leads us directly to
* iph iph iph iph
iph p ip ip ip
<e s <pe Lo - B rA(e ‘ I.)> = 02(6 =Y d (k=90)



From Eq. (4-6) we have o (e ) = 1-F(p)F (p),
®
o iph 5§
where TF(p) = J. eiphf(h)dh. AMlso <e > =F (p). We now have for
iphr -0
Ae
iph iph (Ap)ehre
Ale ) = e iph,, (ap) - g " (L-91)
iphr
Thus for the expected value of Ale ) we have
iph 5 2
<ale ) = (ap) Q%LEQ_+ (ap) 'QQE%%L " (L-92)
P dp
irh iph ‘
similarly, for the expected value of e Ale ) we have the result
-iph_  iph 2
ce  TAle T)> = <ih (Ap) - (ap)2n 2> = .p 2 lfp)°
g - T o] 2
v (4=93)

Thus substituting Eq. (4-93), Eq. (4-91), and Egs. (4-5) and

" (4=6) into Eq. (4-90) we get

% dF(p) > % | aPr(p) . Polte) *
F(p) g 4o + (8p)° F (p) dg $ o = 1-Fp)F (p)
42

. (Lh=0k)

Solving the gquadratic equation (L-9L4) for Ap, we get
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g % % o 2 ‘2
* * * n * 2
- (p) Qf-él;l :‘/[F (p)-d%ép—) + 4 1(p)E (o) | 52 + ¥ (p)EELRL
o dp
Ap =
B )
i 2 dp2
‘ (L-95)
’E'rrn3
Noting again that Ap = —35= A\ , and assuming a gaussian den-
A
o]

sity function, we obtain the wavelength spacing required to decorrelate

iph
e 2 in the case of a rough diffuser (phO > l),
12
A = (4-96)
2m.h °
30

4.7 Speckle Statistics When the Illumination Consists of M Independent

Since the proposed method for the reduction of speckle noise in
this study is by illuminating the diffuse object by a number of
independent tones, making a multicolor hologram of this objectyand then
viewing the hologram with a color blind system, it is of our interest to
understand how the speckle averages under this system. We therefore
celculate the density functions for the speckle electric field and
intensities when the illuminating beam consists of M independent tones,
where by independent we mean that the successive beams are spaced by

a wavelength greater than Ag/eﬁn ho units apart, as given by Eq. (L4-50).

3
o (-]
For & typical 50 A to 100 A interval and a visible wavelength range from
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4,000 to 7,0008 , this would mean that 30 to 60 independent tones are
possible.
To calculate the density function for the electric field we
first write the total electric field at time t = constant = 0 as
M

B = [ 5,00 =ntm) + 32 ] § o TU
ml m=1 r=l

5 (4-97)

where we have assumed that A and B do not change appreciably.with

wavelength and can be assumed to be constant. For the wavelength
spacing such that the elpmhr are independent for the various

wavelengths, we obtain for the density function of WE (ET) substituting

Eq (4-97) into (D-6) i
Wy (Bp) = ——2 -[ sin{|p] N
T 2n ,ET M(A—NB)I 2
+ (o]
sinc|p | M+N laldfs[ - (4-98)

To derive the density function for the superposed independent

intensity patterns we substitute I, in Eq. (3-28)

-1
WIT(IT) = & [&" [WIl(Il)]]“] (4-99)

where W, (I;) is defined in Eq. (4-4) and
AT

30y (1)) = Jie'ileWIl(Il)dIl i s'l(wll(xl)) 1

-

ipI
e JWII(Il)dIl

(4-100)

«©
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I(A_,x) .

IT(X) = ”

and

B2

We now calculate the standard deviation and the expectation
values of the electric field and intensity when the illumination is

by M independent tones. Thus, using Eq. (3-29) and (3-30) we obtain for the

expectation value &nd the variance cof the electric field
<Ep(x)> = M[A-NB + BNF(p)] 4 (4-101)

and

o? I2,(x)] = MN[1 - F(p)F (p)] B? . (4-102)

Similarly, we obtain' for the expectation value and the variance of the

intensity the values,using Eqg. (3-29) and (3-30)

<IT(x)> — M[(A-NB)2 + (A-NB)BNF(p) + (A-NB)NBF*(p) + BQN(N—l)F(p)F*(p)]
. (L-103)

and
2 2
6 [In(x)] = M o"[I, (x)] . (4-10h)

where 62 [Il(x)] is given in Eq. (4-23), and M is the number of
independent illuminating tones.

We now examine the reduction of the speckle image degradation
when the illumination consists of M independent tones. We have
alfeady defined a quantity which gives us a measure of the speckle
noise in BEq. (4=24). Thus we get the expressions R(ET) and R(IT) from

Egs. (L4-24) and (k-27) and Egs. (L-101), (L4-102), (k-103), and (h-104)
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R(E;) = . 2 R(E, ) M Tones y (1-105a)
yi
and
R} = .~ R(I.) M Tones . (1-105b)
5] i r———e
Tl
where R(El) and R(Il) have the definitions
(&)
R(El) = <E1> Single Tone . (1-106a)
and
G(Il)
R(I.) = Single Tone % (1-106b)
1 <Il>
We note that the speckle noise decreases by a factor of

%;:when the illumina%ing beam has M independent tones. Alterna-
t?vely we can say that having M independent tones in the illuminating
beem gives us a signal to noise ratiocimprovement by a factor of T
It is interesting to note, both from Eqs. (4-24) and (4-28) that the
speckle noise decreases as the number of scatterers per resolution

cell increases, this relation being proportional to i where N 1is

v
the number of scatterers per resolution cell.
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4.8 Speckle Statistics when the Tlluminating Beam Consists of Spectral

Components of Finite Width.

In most experiments, the illuminating beam has some
finite sﬁectral width. It is therefore of interest to calculate what
the expected value and the variance of the speckle may be when this
illumination consists of a beam of findite width. We would also like to
calculate the expected values and the variance of the autocorrelation .
function for the speckle electric field and thus get an estimate for
the wavelength spacing necessary to decorrelate the speckle in this
case. Since the result for the electric field has been shown to be
sufficient to understand the behavior of the speckle, we only derive
the relations for the electric field. The corresponding results
for the intensity can be calculated in the same way.

Since both the electric field and the intensities are directly
expressed in terms of p, we shall find it more convenient to express
the Waxe%ength spacing in terms of the interval ©&p, where

0

§A = e 8p . Also, we shall assume that the different spectral
3

components in the illuminating beam are distributed normally about some

mean Ap With some standard deviation o, where we consider %
to be the spectral width of the 1llumination. Now we have already
written the electric field in Eq. (4-1) as

E (x) = A - NB + B} g reE

r=1
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and so the electric field at some time, t = 0, for a beam of finite

spectral width is

~(p-p )% /20,7 (4-107)
E_(x) = J B (x)e - dp

Substituting El(x) in Eq. (4-1) into Eq. (4-107) we obtain

N s oy
" 2
E(x) =A-NB+B | e Py (4-108)
1 r=1

We first calculate tﬁe expected value of the random variablé Es(x).
Since the integral is difficult to evaluate for an arbitrary distribu-
tion we study the precise case of a normal distribution of heights,

as described by the density function in Eq. (4-71). Thus taking the

expected value of E_(x), we obtain from Eq (4-108),

3 2 2
<Es(x)> = "——l“—'J E (x)e by /2ho dhr
27 h e
o.-oo
1 2
--Z'Pozho( . 5—)
1+ c h
BN e g B

i.e. <E_(x)> = (A-NB) + ——— L-109
4 /1 + cpzhoz : )

In the same way, we calculate the variance of Es(x) to be



wB]e

2, 2 i

2 NBZ o T
o [E_(x)] = [6 - e p o ] » (k-110)
% 1+ 6 5.2y
P o
1+c 2h02
where 6 = P E,
(Lizo_Zn &)F
P o
Before we consider this expression further, we first transform cp into
27n
a wavelength spacing. Since B = A3 » we have that
o
2nn3
ap = —5 &2 . (4-112)
A
0

Thus, we define the standard deviation of the wavelength as
73
B, = =B 3; (k-112)

where op is the bandwidth in terms of p and S the bandwidth in

terms of the wavelength. We now substitute Eq. (4-112) into Eq. (4-110)

to obtain
2. 2 1
= p, hg ( 7 )
2 2 9 2
NB 1+ =
?[B, ()] = —B—s I Po By G )
I ey w Sp 2
A O %o
iy o
C})\. £ i ?
1.(__.)h ny 2 . (4-113)
A o ‘o
and 6= o
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We can subdivide Eq. (4-113 ) into two cases, (a) when
pozhoz(oxl?\o)2 << 1 and (b) when pozhoz(o’)\/?\o)2 >> 1, If we consider

case (a) first, we can approximate Eq. (4-113) as

e}
2 2 22,722
o1 <t gt - T e HR
(4-114)

narrow linewidth case

We note that the variance decreases rapidly with increase in the
2 2 A 2 2
quantity o, /A ° and approaches zero as p_"h_"(o,/A ) approaches
Ao o o Ao
one, We note that this condition for the variance to go to zero is
the same as the condition used for obtalning the wavelength spacing

for the decoupling of speckle, Eg (4-5C), we have

o]
pozhoz(izﬁz = 1 when
o
o
O\ T Zrngn (4-115)
o
g 855 5
We now consider the case (b), when P, ho (X~D >> 1. Eq.
o
(4-113) now becomes,
A
2.2 1 0.2 1
—p_h L s B
; 00 4, 4 OA 9 GA p2h2
2 3 P hGG— o0
2 NB o o8 Ay
c"[E (x)] = [L = 16 - e
s o] 2.2 &
(—2\-)13 h OPhOPO
Ao oo

for Py M, G >l (4-116)
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Simplifying, we obtain, 3
l l 9
211 (o o2y . oG "oy ]1
- - 3
A p0 o % opo (4-127)

>

o]

NB

!

o’[E ()] =

Q

broad linewidth case

Thus we note from Eq, (4-117) that as we increase the wave-
length spacings, the variance of the electric field rapidly approaches

zero because of the factor

A A
2 2
wly [ eted’]
Gy GahPe
{6-e }
We also note that for the case OA = p, i,e, for the incident
illumination monochromatic, Eqs, {4-109) and (4-110) reduce to
the results previously derived for the ideally monochromatic case,
i.e, Egs. (4-=7) and (4-8).
We now derive the autocorrelation function for Es(p).

Following the procedure outlined in Section (4.4) we first calculate

*
the value of Es(p)ES(p + Ap)., We obtain

N 12, 2
- o p+ap) zﬁ
* -
E_(p)E_ (p+Ap) = [A-NB + B :E: AP o 29 T i wmem :E: =1
r=1
N 1 2 2 N 1 2
: - <0 “h -i(p+Ap)h_ - —czh
= (a-xB)2 + (a-NBYBD eIPPT o 2P T e g 2P
r=1
r=1
N N 'Plp(h -h ) 1Aph = %U 2(h2 - h2)
2 p m n
Y e |
m=1l n=1
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Now taking the average of (4-118) over p, we obtain the result

i
It .
s (Ap)zTﬂm-%TJ E_(P)E_(p + Ap)dp (4-119)
S
1T

B (4-120)

We now find the expected value of this autocorrelation function.

We get,

<py (bp)> = (A - NBY2 + BN
s

(4-121)

Similarly, the standard deviation of this autocorrelation function
becomes

02[¢E (4p)] = —————-I6 - e | (k-122)

By examining Egs., (4=121) and (4- 122), we would like to
find a criteria when the speckle pattern decorrelates. We therefore
follow the argument used in Section (4.4) and consider the speckle

patterns to be independent when

APZh 2(*—-*J;~———0 > 1 uncorrelated case (h-123)
o] 2. 2
l+O’phO



-85-

Using the substitutioms, Ap = - pO(Ak/AO), Up = —pUA/A, we solve
for
2 Pozho2 1
(AN) 5 ¢ R )y > 1 . (h-12h)
A P h
o] o o 2
1% > Uk
A
)

We obtain the result then,

A . 2mn.h o

1
= Laye (iéﬁz]z decorrelated case

o [H=125)

3 Ao

We now consider the case when Upho << 1, which would
correspond to the case of illumination by a narrowband source which

would have a gy marrow enough to give speckle., Then (4-125 reduces

to
2
A 2mn.h o]
i 2 ZﬁE nt 5 13 D)z(jiﬁzl‘ , narrowband
370 [o)
decorrelation case
(4-126)
2 GAZ
where p "h =~ —5 << 1 .
“ A
o

Alternatively, we consider the case when the illumination

is by a broadband source and there is hardly any speckle. We then

get, substituting p02h02 (Ulszoz) >> 1 into (4-136),

102
2]

M >0, [1 + )

5 broadhand decorrelation case »(H-lBT)

‘ 2
(2ﬂn3h0) GA
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We can now take the fourier transform of (4-121) to also
calculate the spectral density function of the electric field and

we get the expression 2

R
__B o P
2
BZN Zho

e (4-128)

sp (W) = (A - NB)8(0) +
S P hoJﬁf

We note here that the width of the spectral

density function is ho/(l -+ 1'10201_)2);5

which will give us the same
result as Eq, (4-123) for the wavelength spacing before an appreciable

decorrelation of the speckle occurs.
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4,9 Summary and Conclusions

In this chapter we have applied the results of Chapter
ITT to understand the statistical behavior of speckle. We have
taken the electric field and the intensity of the speckle to be a
random variable and then computed the expectation values and the
variance of these guantities, in Eqs. (4-7) and (4-22) and Egs. (4-8)
and (4-~23). We have calculated the density functions for the electric
field and intensity in Eqs. (4-3) and (4-4), We have computed the
spatial autocorrelation function in Eq. (4-34), and so estimated the
average spéckle size to be the size of a resolution cell in the image
plane. We have defined a criteria to determine the degradation of
the image due to speckle, Eq. (4-24) and found that this quantity
is proportional to 1/VN where N is the number of scatterers per
resolution cell.

We then investigated the wavelength diversity of speckle.
We calculate the spectral autocorrelation functions in Eqs. (4~38)
and (4-45). We find the expectation values of these functions
in Eqs. (4-37) and (4-45). We compute the wvariance of the auto-
correlation functions in Eqs. (4-57) and (4-60). We investigate
the spectral density functions for the electric field and the in-
tensity which give wus the distribution of how rapidly the speckle
is changing, in Eqs. (4-66) and (4-67). We derive the intensity
decorrelation criteria in a completely different way and o£tain the
same result for speckle decorrelation as we obtained by a con-

sideration of the autocorrelation functions in Eq. (4-50),.
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We then investigate the statistics of the averaged speckle
patterns when the diffuser is illuminated by a set of M independent
monochromatic tones and obtain the density functions for the electric
field and the intensity in Egqs. (4-99) and (4-100). We obtain the
expected values and the standard deviations of the electric field
and the intensities in Eqs, (4-101), (4-102), (4-103) and (4-104)
respectively. We calculate the image degradation due to speckle in
(4~105) and find an improvement by a factor of 1//M over the single

tone case,

In Section 4.9 we study the statistics of the speckle .
when the illuminating beam is not monochromatic but has a finite
bandwidth Gp. We derive an expression for the electric field for
such a case in Eq.(4-108) and calculate the expected value and the
variance of this field in Egs. (h_log) & (h—llO)- We examine
this expression for the standard deviation to note that the speckle
nolse decreases rapidly with increase in the spectral width of the
illumination and that the image is virtually speckle free if the
spectral width of the illumination is equal the wavelength spacing
to decorrelate the speckle. We then examine the autocorrelation
function for this electric field and calculate a wavelength spacing

required to decorrelate the speckle when the illumination ‘has spectral
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widths of Gh in Eq. (4-125). We calculate the spectral density
function of the electric field for beams of finite spectral width in

Eq. (4-128) and note that in the limit of o the spectral width of

;\ 2
the illumination, going to zero, we obtain the same results as for
monochromatic speckle.

Thus, in this chapter we have examined the statistical
behavior of speckle noise in imaging systems and from our calculations
we obtain the wavelength spacing required to decorrelate the speckle,

the speckle size, and the resulting improvement in resolution when

the 1llumination is not monochromatic,
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CHAPTER V

Summary and Conclusions

In this thesis we have investigated the wavelength dependence
of speckle in the image of a pure phase diffuse object. We have
studied both the speckle electric field and intensity and derived
expressions for the spatial and spectral dependence of these quantities.
We have also demonstrated experimentally the wavelength dependence of
speckle and the averaging of speckle under multitoned illumination.

As a result of these studies we have demonstrated the feasibility of
eliminating speckle in holographic microécopy while still requiring only
a single rapid exposure from some multimonochromatic source and also

e stablished a theoretical basié for deducing the properties of a rough
surface by analyzing the spectral dependence of the speckle due to this
surface.

We have developed an analytic model for a diffuser in section
2.2 and Eq. (2-3) gives us the electric field transmitted by this
diffuser when a plane wave is incident on it. In Eq. (2-7) we give
the electric field in the image of the diffuser and we find that this
‘field is given by a constant, which depends on the area occupied by the‘
scatterers on the diffuser, and a sum of random unit phasors, the angle
of each phasor depending on the height of the corresponding scatterer
on the diffuser and the number of phasgors depending on the number of
Scatterers in one resolution cell. |

We define the image degradation due to speckle in Eq. (4-24)

as the ratio of the standard deviation to the electric field for the
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speckle intensity and find that this quantity is inversely propor-
tional to the square root of the number of scatterers per resolution
cell., Also we note from this equation that this ratio decreases as
the standard deviation for the scatterer heights decrease.

We derive that the gavelength spacing for two speckle patterns
to decorrelate is AA > E;%QE—— where AA 1s the wavelength interval,

370
is the mean wavelength, n., 1is the difference in the refractive

0 3

index of the object and of air and ho is the standard deviation for

A

t he heights of the scatterers. We obtain this result using four d4if-
ferent derivations as described in sections 2.1, 2.2, 4.4 and 4.6,
Eq. (2-2) gives this result if we consider h, to be the temporal
wherence length of a wave of linewidth AA . We derive Eq. (2-9) by
equating the expected value of the magnitude square change in electric
field to the variance of the electric field, Eq. (4-50) comes from
determining when the expected value of the spectral autocorrelation
function of the intensity is negligible, and Egq. (L-96) is deriﬁed by
using the definition that two random variables are uncorrelated when
the product of their expected values is equal to expected value of
their product.

Eq. (4-L4E) gives us the expected value of the autocorrelation
function and we note that this quantity depends on the characteristic
function for the heights of the scatterers on the diffusers. Thus, if
we can measure this expected value for the speckle autocorrelation
function we can determine the density of heights for the scatterers in

the diffuser, as calculated in Eq. (4-53).
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In Bgs {4-105)and (4-106) we have calculated the image degrada-
tion when M independent speckle patterns are added together, such as
is the case under illumination with M independent tones. We note that
this quantity is inversely proportional to VM and so these results
medict the reduction of speckle noise under multitoned illumination.

We calculate the expected value and standard deviation for the
speckle electric field when the illumination has a linewidth of UR
in Eqgs. (4-109) and (4-110). We note from (L4-113) that the speckle noise
18 negligible when the linewidth is equal to the wavelength spacing for
the decorrelation of speckle, We also calculate the expected value of
the spectral autocorrelation function of the speckle in Eq. (4-121)
and the spectral density function in Eq. (4-128).

In section 3.2 we reviewed the calculation for the density
function for a sum of random vibrations, when all phases are equally
possible, and applied these results to calculate the density function
for the speckle electric field and intensity in Egs. (4-3) and (4-L4)
respectively. Also in section 4.3 we review the calculation for the
spatial autocorrelation function for the speckle intensity, which is
given in Eq. (4-3L4)., From this result we deduce that the average
speckle size is egual to the resolution of the imaging system,

In section 2.4, we describe the results of two sets of
experiments conducted to establish the wavelength dependence of speckle,
In one set we illuminate a pap smear by one tone of an aréon laser,
white light, and four tones of the argon laser (5145, 4965, L4880 and

L7658) as shown in Figs. 3a, 3b and 3c in Appendix B and we find the
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reduction of speckle when the four tones are used, In the next set of
experiments, we simulate a tunable monochromatic source by bandlimiting
the light from a carbon arc source with a monochromator and then
collimating this output. Fig. 5 in Appendix A shows the speckle pattern
when the illumination has a linewidth of 5A and Figs. 6, 7, 8 and 9
in Appendix A show respectively the image of an optic nerve in laser
illumination, white light, bandlimited illumination of 53 linewidth
and 6 separated bandlimited tones scanning L, 3004 to 5,8008 .

Thus we have established, both experimentally and theoretically,
that the speckle pattern in the image of a diffuser depends on‘wavelength
and that it averages out in multi-toned illumination and have calcu-

lated some of the spectral properties of this speckle.
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APPENDIX A

Speckle Reduction Using Multiple Tones of Illumination

In this Appendix we detail the derivations for the electric
field and the intensity in the image of a pure phase diffuser, results
given in Egs. (2-5 ) and (2-6 ) in section 2.3, chapter II. We also
give the details for the calculation of the wavelength spacing required
to decorrelate the speckle by equating the expected value of the
magnitude square change in the speckle electric field to the wvariance
of this electric field (Eq. (2-9 )). In addition we give details of
the speckle experiments using collimated bandlimited light from a carbon

arc source described in section 2.4,



Speckle Reduction Using Multiple Tones of lllumination

Nicholas George and Atul Jain

The occurrence and smoothing of speckle are studied as a function of the line width for a highly collimat-
ed illuminating source. A general theory is presented for speckling in the image of a partially diffuse,
phase type of object, which has a variable number of random scattering centers per resolution element.
Then, an expression is derived for the wavelength spacing required to decouple the speckle patterns
-arising from two monochromatic tones in an imaging system, thereby establishing that it is feasible to
smooth speckle using multicolor illumination. This theory is verified in a series of experiments using both
laser illumination and band-limited light from a carbon arc. With highly collimated sources, we show
that speckle appears laserlike for an imaged diffuser even up to line widths of 5 A. Then, smoothing of
speckle is demonstrated in the imaging of a diffuser and for a section of an optic nerve when the illumination
is provided by six narrow lines spread over 1500 A. Since with color-blind, panchromatic viewing the
speckle smooths, a direct extension of this method to holographic microscopy, using a multitone laser,
should permit one to record and reconstruct holograms of diffraction-limited resolution that are essentially

speckle-free.

Introduction

Under monochromatic illumination, objects with a
scale of roughness grossly on the order of the wave-
length are hard to discern in feature detail, owing to
the rapid spatial variations that occur in the scat-
tered radiation. This characteristic of laser illumi-
nation to speckle has been studied by many investi-
gators; however, owing to space limitations, we cite
only a few of the publications.-22 It is difficult to
quote a specific numerical value for this resolution
loss since it varies widely with the roughness of the
object being studied. However, in the application of
laser holography to microscopy, this speckle effect
has been a severe obstacle,8-10-12,17.20 [imiting the
working resolution to from a few to several times the
classical optics limit. As examples, Young et al. re-
port that ‘“the usual resolution criterion should be
divided by five or more whenever diffused laser light
is used’’12; Close reports resolutions of a few microns
on test samples?; and Cox et al. have obtained simi-
lar resolutions with biological specimens.1®

Gabor'* has classified speckle into two categories:
The objective speckle that arises owing to uneven il-
lumination falling on the subject. The subjective
speckle that arises from the roughness of the subject
in conjunction with the convolving effect of a finite
aperture. The objective type can occur when one
holographically records a smooth transparency but

The authors are with the California Institute of Technology,
Pasadena, California 91109.
Received 25 September 1972.
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with a diffuser placed in the beam illuminating the
transparency. While the diffuser creates a helpful
redundancy in the recording, it also leads to the del-
eterious speckle. Most prior studies of speckie elim-
ination have considered only this objective type, and
good results have been reported, although the
subject is far from closed.?-9.14,22

In this paper we consider the smoothing of subjec-
tive speckle. This is a somewhat neglected topic,
since it has been generally argued that the only ef-
fective means for smoothing this type is to increase
the aperture.!* However, if one draws this conclu-
sion, it is implicitly assumed that operation is at a
smgle wavelength or that separate, independent
looks are not being made in the over-all process. In
the method we are to describe, separate wavelengths
are used to provide independent looks.20-21 In this
way, we will show that one can smooth subjective
speckle at a fixed value of aperture. Probably, too, a
method that smooths subjective speckle also smooths
the objective type (but not conversely). Hence, in
this instance, the need for making the distinction is
not great.

An analysis for the wavelength variation of speckle
in an imaging system has not been found in the lit-
erature; however, Goodman has treated the related
problem of the wavelength sensitivity of speckle in
the far-field region of a coherently illuminated group
of scatterers.? Recent experiments have been re-

-ported in confirmation of the thesis that speckle pat-

terns vary spatially in a marked way with change in
wavelength.19-21
We feel that an interesting possibility for dramati-



cally reducing the speckle effect in holographic
microscopy is to use a multicolor recording process
with several widely spaced laser tones spanning the
visible optical region. The hologram-volume effects
permit one to record and play back these images in a
noninteracting way, provided that adequate spatial
separation and wavelength intervals have been cho-
sen between each reference beam.2? In viewing, the
same multitone spectra are used for the reference
beams so that no spatial distortions occur, but a
color-blind monitor with uniform response over the
visible spectrum must be provided, e.g., by a vidicon
apparatus, in order to average the multitone speckle.

Within this context, we report the first study of the
spatial variations of speckle in the imaging system of
a microscope as the wavelength of a monochromatic
source is scanned through the visible. First, we ana-
lyze the imaging of a diffuser in which there is a
variable number of random phase heights per resolu-
tion cell. This is a good model for the objects of
practical interest covering the smooth case, through
the troublesome case where five to ten random scat-
ters per resolution element are limiting the resolu-
tion, and the case where the number of random con-
tributors per resolution cell is very high. We show
that the multicolor speckle will decorrelate when

A — 7)\1 > A2/ 2mngho)i[1 _e_(ph°)2]/ {1
+ (N =1)(pho)?e~P"" T2,

where the ns is the difference in the refractive index
of the air and the diffuse object, N is the number of
scatterers per resolution cell, and the heights h, of
the scatterers have been assumed to have a normal
distribution with an expected value of zero and a
standard deviation hg, p = —2xng/A, and Ao = (M1
+ X2)/2. As an alternative interpretation, speckle
will appear laserlike as a given line width increases
from the few hertz band up to a small fraction of the
above A2 — A1 (this fraction is typically a few ang-
stroms). We note too that wavelength diversity may
also prove useful in electron microscopy where the
monoenergetic electrons typically have a monochro-
maticity dA\/\ < 10-3, where A is the de Broglie wave-
‘length of the electron. This is easily small enough to
cause speckle, however a further consideration of
speckle in matter waves is beyond the scope of this

paper.
Analysis of Diffuser Imaging

An imaging system for a microscope is idealized by
a lens of focal length F and aperture D, an input
plane (£,9) at a distance s’ = F + § from the lens
(Fig. 1), and thus with the image plane at a distance
s given by 1/s + 1/s” = 1/F. For monochromatic il-
lumination, ei@t, of an arbitrary object Do, we de-
scribe the transverse scalar component of the input
electri¢ field by f(¢,n)ei«t. In the image plane, this
corresponding field amplitude is found by two appli-
cations of the usual Fresnel-zone approximation of
Sommerfeld’s formula24; i.e., the output field ampli-
tude E(x,y)el«t is given by

_ exp [—(i27 /N)(s + 87)]
AoZss’

x [[[[ dsandudo & m70)

X exp {—XL‘% [(w—82+ (v—n)]

E(xy y) =

- )TLO% [((x—w)2+(y-— v)z]}r 0

in which (u,v) are Cartesian coordinates in the plane
of the lens, Ao = 2wc/w, and ¢ = 3 X 108 m/sec.
The transmission function for the lens T'(u,v) will
be taken with the spherical convergence factor exp
[+(@r/AoF)(w? + v2)] and a pupil function that is
Gaussian, i.e., it is given by

T(u,v) = exp[—(im/N)(u?+ v2)/p), (2a)

where
1/p = =1/ F) — (i4\y/ w D?), (2b)
and D is the diameter of the lens of focal length F.25
Substitution of Eq. (2) into Eq. (1) and integration
over the (u,v) plane, defining the magnification fac-

tor M = s/s’ and the up-scaled variables x* = —ME,
y’ = —Mpn, give the result:

E(x,y) =

_exp{—(i27 /\)(M + 1)s’ — (i /N)[(x2 + y2)/ M’ ]}
75 2M?

REIIRe

o {5 [ (52 (e
+ (v —y’)ﬂ}. (3)

In the basic imaging equation, Eq. (3), the con-
volving effect of a finite aperture, D, is readily seen.
As is well known, subjective speckle arises from this
averaging or smearing of the input function f (—x’/
M, —y’/M), i.e., for a finite aperture E(x,y) will not
be a perfectly resolved scaled replica of f (—x'/M,
—y’/M). The departures here from the usual imag-

N X

re—F - S

7 "2
Dy IMAGE

K v y

Fig. 1. Single lens magnification with object plane (&,7) and

image plane (x,y).
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Fig. 2. The idealized diffuser object (Do) in the (£7) plane

showing a magnified inset between S1S» for the computation of

the transmission function, Eq. (10). The diffuser has steps of
width w, and random height h,.

ing formula are that phase terms have been retained
and the Gaussian transmission function of Eq. (2) is
used. Hence, it is instructive to find the radius of
the resolution cell for comparison to the conventional
circular pupil function. By integration of Eq. (3)
with a delta function impulse as input, ie., f =
o(x’,y’), we find that the output spot size is given by

E(x,y) « exp[—(wD/2\s)? (x? + y2)],

Thus, in the output plane (x,y), the intensity falls to
a 1/e? fraction of its peak at a radius of 0.637\es/D.
From this impulse interpretation, we define the radi-
us of the resolution cell referenced to the (x,y) plane
or the (£,7) plane, respectively, as

Aw = (2\;8/ wD) or Aw, = (2N\s’ /7 D), (4

If we would have used the usual circ [(u2 +
v2)1/2/(D/2)] as the pupil function portion of Eq.
(2a), the resulting Airy disk would have the function
value [2J1(2)/z)2. This would result in a radius for
the 1/e2 power down locus of 0.82 Nos/D, which is
close enough for our purposes to the corresponding
value of 0.637 Aos/D, obtained for a Gaussian pupil
function.26

Model for the Phase-Type Diffuser

There have been various ways, in the past, of de-
scribing the electric field transmitted by a rough
object. Hopkins and Tiziani,S for instance, idealize
the diffuser as a series of closely packed lenslets of
varying sizes and focal length. Enloe* and Good-
man,2 on the other hand, idealize the diffuser as a
randomly spaced array of inifinitesimal radiators,
each radiating with a random phase.
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A semitransparent object of complex-valued am-
plitude transmission factor Do(£,7) is placed in the
input plane and illuminated by a monochromatic
plane wave incident at the polar angle 8 in the (£,7)
plane (Fig. 2). Thus, the input amplitude function

f(&,m) is given by
f(&,n) = Do&,n) exp[—i(2m /[ Aok sinfl,], ()

where np and n; are the relative indices of refraction
in the two media and noesinfp = njsinf;. For a gen-
eral object consisting of an amplitude transmittance,
denoted by real-valued function Di(£(,n) and the
phase delay ¥(£,1), we write

Dy(&,m) = Du(,n) expl—id(&,m)]. (6

For the surface contour h(&,n) of the diffuser (shown
between planes I and II spaced by Zy + Z, in Fig. 2),
we use a ray optics approximation to y¥(£,3). Thus,
we write the phase delay

WUEN = (2rng/ XX Zo—h)/ cosh,
+ (2mn, /ANZ, + h)/ costy

and suppressing the nonessential constant phase de-
lays, we can rewrite Eq. (5) as follows:

f(ga 7]) = Dl(é’ 7’)
expl~(i2x Monet sind] exp [~ ZZ miem) | ()
in which ng = (n1/cosf1 — no/cosfo).
Now, consider the 31mp11f1ed one-dimensional case
with a pure phase object, i.e., D1 = 1, consisting of

randomly positioned steps of height h, and width w,
centered at £ = &, i.e.,
R(x,y) = D hrrect[(§ —&)/w/]

Then, the one-dimensional idealization of Eq. (7) be-
comes

5 = expl~(izx /Aonig sinf] exp {~(12)
e 3 b veet (€ —£)/wrl}s (®)
where the function rect(x) = 1 when 2| < % and is

zero otherwise. If nonoverlapping steps are assumed
in the expression

Z hr'rect [(E - Er)/ll)r]i

one can prove the following identity:

exp{~(i27 [ A\ngy O hr rect[(§ —£,)/w} = 1
+ 3 rect [(¢ = &)/ w exp[—(i2m [Ao)nah,] — 1.

Substituting this into Eq. (8) we obtain



F(&) = expl—i(2m [ A)not sind]
(1 + 3 rect[(E —£,) /w,]{ expl—i(2m/ A)nghs] — 1}) ©)

Equation (9) for a pure phase type of diffuser
could equally well have been postulated directly, as
follows. The multiplicative term exp[—i(2n/

Ao)no&sin fo], with the linear phase taper in (£), occurs-

fqr a plane wave incident at an angle 6, as shown in
Fig. 2. With nonoverlapping steps assumed in the

> rect[(§ —&)/w,],

the term within the square brackets, [ ], is either 1 or
exp[—i(2w/No)nshr]. This holds for an arbitrary
value of £, hence |f(£§)| =1 as it must for a pure phase
object.

We could adapt this transmitted field to fit a vari-
ety of models for the diffuser. Thus we can consider
the height of a step given by k,(£) to be roughly con-
stant over the width w,. On the other hand, if one
prefers the randomly positioned lenslets of Hopkins
and Tiziani, then h, becomes the quadratic phase
transmission for each lens, i.e., h-(£) = [(¢ — &)3/fr],
where f, is the focal length of the lenslet centered at

F k)

If we make the assumption that the width of each
random step is much less than the resolution cell
size, 1.e., wy < Awy, then insofar as integrations of
the form of Eq. (3), we can replace the rect [(¢§ —
¢r)/wr] by the Dirac delta function, i.e., by wr6(¢ —
¢). Thus, combining Egs. (8) and (9), we find a
convenient approximation for the one-dimensional
input transmittance

f(&) = exp [— (l—)%:r-) noé Sinﬂo]
(‘,1 + > wed€ — Sr).{.exp[—(i%r/ Ansh,] — 1}‘) (10)

To facilitate the consideration of our diffuser, we
arbitrarily define the one-dimensional lens process,
reducing Eq. (3), as follows:
Ey(x) = expl~(imno/A)(x2/ Ms)] f: dx' (_ ;_4)

_imnga’)? I:(x - x')]z}‘
e"p{ oM T | Aw ()

Substitution of Eq. (10) into Eq. (11) and integrat-
ing give

El(x) - AW(W)I/Z exp l:_ l7>l\'0no <ﬁ2s, _2x ;;100)

_ 4mng’x? sinzﬁo:l [ iTng [ x2 :I

- _———}\ZM2 + exp| — W (MS’)
x—x'Y  imne (2x./sinf, (x)?

X Z expw[" ( Aw ) + AQ 2 ( 0 — Mzs/)f]

2

X Mw,' [exp(— Aﬂ-nsh,_l) —1:]. (12)

0

Now define the intensity or energy density factor by
I(x) = E1E1*, and from Eq. (12) we find

I(x) = m(Aw)?e™ + 2m)"* Awe™ Y Mw,

exp [— (x ;lff ’1)2] {cos(X = @y, + ¢ar)— cOS(X —;,)}
+ 2> exp[—2(x — x.")? [(Aw) Mw,)*{1 — cosén}

+ 22 expl ~ (@ — P /(Aw)® — (5~ =, [(Aw)]

m#r

X expl i(¢y, — b1 )]

X M2wnw,(e~i®m — 1)(etider-—1), (13)

in which o = 4m(nex sinf)? /(Ao M)?,
X = (2 [ AoXnox sinby/ M),

dir = (wng/A}2x sinfo/ M — (x,/)*/(M?%")}, and
Qo = (277'/ Aonsh,.

Equation (13) is a convenient starting point for the
statistical analysis of decorrelation based on combin-
ing intensity patterns taken at separate wave-
lengths.2! Equation (12) is the more useful starting
point in the simpler amplitude decoupling criterion
presented in Eq. (21) of the following section.

Expected Value and Variance for the Electric Field

To calculate the wavelength spacing required to
decouple the speckle pattern described by Egs. (12)
and (13), first we analyze the simpler case when g is
constant, e.g., when 0o = 0. Later separate com-
ment is included for the important case when a dis-
tributed angular spectrum is used for the illumina-
tion.

We assume the response of a panchromatic view-
ing system is given by I = E1E1* + ExEx* + . . .
when there are multiple tones of monochromatic il-
lumination, i.e., beat terms are negligible with long
exposure times. Hence, we must compare the intensi-
ties in the image plane at two different wavelengths
and find when these two intensity patterns are
decorrelated. Since in computing E1E1*, common
phase terms will cancel, we factor Eq. (12) extract-
ing and suppressing the term exp{(iwng/No)[(2xsinfo/
M) — (x2/Ms’)]}. The remainder of the electric field
we denote by E;, and rewriting Eq. (12) gives

E(x) = Aw(m)? + Zr: exp [_(xA—ujc,’)z

. oy i
_ %r\()n—]“’ygc‘s,—):l Muw, {exp (—l)\lnsh,>‘ - 1}- (14)

0

Additionally, comparing Eqgs. (12) and (14), one will
note that we have dropped the quadratic multiplier
exp[—4wno2x2sinfo/(No2M?)] from the first term in
Eq. (14); and the small phase term exp{(imno/
Xo)[2(x,” — x)sinbo/M]} from the summation.
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To study the speckle in the image plane, we con-
sider an arbitrary position x. In Eq. (14), the rapid
falloff of the Gaussian term, exp {—[(x — x,)/Aw]?},
limits the number of scatterers from among the en-
tire set x,” that contribute effectively to E; at x.
Thus, if there are N scatterers remaining from this
set that are positioned (in image plane coordinates)
with values of x,’ in the range x ~ Aw < x,” <zx +
Aw, then we can approximate Eq. (14) by

E{(x)= A— BN + B iv: exp(+iph.). (15)

r=1

We have defined A = Aw(mw)!?,
B = Mw, exp[—(iwnf)xz)/()\oM%')] and p as

p = —(2mny/ No). (16)
To simplify the analysis, we assume that the step
widths w, are constant for all scatterers and equal to
we. Also, with negligible error, the Gaussian per-
mits us to approximate the phase term exp
—[imno(xr")2/AoM2s’] in Eq. (14) by the term exp
—[irnox2/NoM3s’] in Eq. (15).

If we assume that the real random variable h, is
distributed according to some known density func-
tion, f(hr), and the corresponding characteristic
function for this distribution is given by F(p) =
f2. exp(+iph) f(h)dh, then we also obtain the fol-
lowing results for the expectation and variance of
eiph (Ref. 27):

an
(18)

(@)

az(eiph)

F(p),
1— F(p)F*(p).

If we also assume that the random variables h,
represented by different scattering points are inde-
pendent, then we can calculate the expected value
and variance of our amplitude defined by Eq. (15).
Thus, we obtain the following expression for the ex-
pected value of the electric field at a point in the
image plane

(Ex)) = A— NB + BNF(p). 9)

Also, the variance in this electric field, defined by
02[E1(x)] = ((Ey — (Ep) (Eyx — (E))*), is readily
computed by substitution of Eq (15) into this form
and simplification using Eqgs. (17)-(19). The result-
ing expression for the variance in the electrical field
.is

oE\(x)] = N(1— FF*)BB*, (20)

where BB* = (Mw,)? and the characteristic function
Fis given by Eq. (17).

Wavelength Spacing for Speckle Decorrelation

We note that our expected value is some complex
number, while the variance is a real number since it
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is defined by 62 = (|E; — (E1)|2). Thus, Eq. (20)
gives us the square of the radius of a circle centered
around the expected value within which roughly half
of our values of E4 lie. The intensity at some fixed:
point x can thus be considered to have changed sig-
nificantly when the magnitude of the change in
E;(x) with wavelength is of the order of the standard
deviation. Thus, we adopt the criterion that the
speckle is decoupled when the wavelength change
causes the average of the magnitude squared change
in E;(x) to be equal to the variance for a particular
wavelength Ao, i.e., decorrelation occurs whenever

(AE((x)AE(x)*) > o?[E (x)]. - (2D

The change in the electric field E;(x) with wave-
length interval AM is given by

AE;(x) = [0E1(x)/IX]AN.

Thus differentiating Eq. (15) with respect to A and
noting that dp/d\ = (+27n3/A\%), we obtain

N
AE(x) = (—ABN + B Y iheh 23

r=1

N
4+ AB ), e,-ph,) AN (22)
r=1
where
AB = imnox*Muw./(N2M?2") exp[imngx?/ (N M2s’)].

We now consider the speckle near the axis, i.e.,
when AB is negligible (worst case). In this case Eq.
(22) reduces to

N
AE(x) = ~ B ik 2;\; 22 einhr AN,

r=1

(23)

If we now compute (E1(x)AE1(x)*), we obtain the
following result, assuming that the expected value of
hy is zero and that the standard deviation is ho,

(AE(0)AE (x)*) = (2 nsAN/A2) he?N
+ (N2 — N)[(d/dp)F(p)]l(d/dp)F(p)]*}BB*. (24)
Substituting Egs. (20) and (24) into the criterion,
Eq. (21), we obtain a value for the wavelength spac-

ing A2 — A1 required to decorrelate the speckle:

Ag _Al

N { 1 — F(p)F*(p) }1/2
= 27y (ke + (N — D{(d/dp)F(p)]((d/dp)F(p)F*

[decoupled case). (25)

The speckle pattern will therefore be laserlike
when the spectral line width of a single tone is much
less than is given by Eq. (25), i.e., when the line
width A is given by



AN < 35 O = ).

Ao? { 1 — F(p)F*(p) }
= 20wn; he? + OV — LI@/dp)F(p)][(d/dp)F(p)FF

[laserlike casel. (26)

To illustrate the above results with an example,
assume that the heights of the scatterers are distrib-
uted normally, where our expected value and stan-
dard deviation for the heights have already been taken
“to be zero and ho, respectively.
density function for h, as

f(h;) = exp[—h,2[(2h,?%)]/ ho(2m)2 (272)
and the corresponding characteristic function as
F(p) = exp(—%p*ho?). (27b)

Substituting Eq. (27) into Eq. (25) we obtain the
wavelength spacing required to decorrelate the spec-
kle pattern as

1 — e P’

Ao
Al = 27l'n3h0 [1 + (N —'1)(h0p)29_p2h02

]/ (28)

We note that for the case of a very rough diffuser,
where (pho) is greater than 1, Eq. (28) can be
approximated by

N = A = A2/ (2mngho), when (pho)? > 1. (29)

In the case of a relatively smooth diffuser, Eq. (28)
can be reduced to

— A()
- [+ (V= 1)(phe ]2’

Az — A when (phy)? < 1. (30)

Now assuming monochromatic illumination, we
study the condition under which we can expect a
particular diffuser to give a large amount of speckle.
If we take the ratio of the standard deviation to the
amplitude of the expected value, i.e., by Eqgs. (19)
and (20), we obtain the average fractional change in
amplitude among different resolution cells of width
2Aw. When this ratio is very small, we have the
case when most cells have the same intensity; and
there is practically no speckle. In the case where
this ratio approaches 1, we have a badly speckled
case. Thus, for the normal distribution, as defmed
by Eq. (27), thlS ratio is given by

(N)”Z(l —p2h02)1/2‘3|
|A— NB + NBer#er?|

R = 31

By Eq. (31), we note that R goes to zero, i.e., no
speckle, when the roughness as characterized by pho
decreases. Alternatively, taking A to be of the same
order of magnitude as NB, we note that the ratio R
is proportional to 1/(N)*/2. Thus, the badly speck-
led case occurs with small numbers of scatterers per

Thus, we write the

resolution element. And as N gets very large, say
exceeding 100, the amount of speckle is drastically
reduced.

If we assume operation at a single wavelength, it is
still possible to obtain averaging of speckle by super-
imposing image intensities formed when the diffuser
is illuminated successively by plane waves at differ-
ent angles of incidence. We can calculate the angu-
lar difference Afp between successive plane waves in-
cident at angles fo1 and 6oz, which will decouple
these respective image intensities. Since we are
considering the sequential recording of intensities,
the phase term containing o, which was suppressed
in writing Eq. (14), still does not enter: and Egs.
(15) and (16) form a convenient starting point.
From n3 = (ny/cosf. — no/cosfp) and nisinf; =
nesinfy, we compute the angular variation of ng:

“dny/dBy = (1/2)(ne*/n,Xsin2f, / cos’d,)

~ (nosindy/ cos®6y). (32)

The variation of p, at fixed wavelength, is found by
differentiation of Eq. (16), i.e.,

dp/dbo = (=2 [N)Xdns/ dby). (33)

Following the same mathematical procedure as we
did in deriving Eq. (25) except that now AE(x) =
[0E1(x)/860]A00, one can readily show that the an-
gular spacing Aflg = o2 — fp1 is given by

Afo

- ()\ { 1 — F(p)F*(p) }‘/z) /
~ \" Whe? + (N = DU(d/dp)F(p)](d/ dp)F(p)F*

{mno[2sinf, / cos?f, — nesin2,/(nicos®d,)}} (34)

For the case when the heights are distributed nor-
mally, by substitution of Eq. (27) into (34), we find
the angular separation required to decouple the
speckle patterns reduces to

Ay = Nof(1 — e P*")/[1 + (N —1)(hop)2e P J112)/

2sinfy _ ngsin?ﬂo):l
[WnOh" (cos200 n;cosith 1(35)

We will use Eq. (35) in the following section to es-
tablish a numerical value for the degree of collima-
tion required to assure that our speckle averaging is
due to wavelength variation and not to multiangular
illuminating beams.

Experiments with Laser Sources

Three different experiments were conducted using
a laser. In the first, a single mode argon laser was
used to illuminate a ground glass diffuser and the
speckle positions were charted as the wavelength was
set to the various principal lines (4579 A, 4727 A,
4765 A, 4880 A, 4965 A, 5017 A, and 5145 A). In
this experiment, the statistical problem is different
in the details from the analysis presented herein
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(e.g., see Goodman’s treatment2) in that the number
of scatterers that contribute at each point in the out-
put plane is essentially that of the entire illuminated
diffuser; and this is usually a very large number.
Since, in this experiment, the diffuser is not being
imaged, one should not be thinking in terms of the
number of scatterers per resolution cell, i.e., the NV of
the previous section. Nevertheless, speckle reposi-
tioning is readily seen; the bright spots in the image
vary quite noticeably for the wavelength shifts of 100
Aorso.

In this first experiment it is also interesting to
vary the size of that portion of the diffuser that is
being illuminated. The equation for the speckle size
in the nonimaged case indicates a speckle size in-
versely proportional to the entire object dimension.16
Thus, one can greatly enlarge the mean speckle size
by placing a small aperture at the diffuser. It is an
experimental convenience to work with these larger
speckles. An effective nonmechanical means for
providing this variable aperture is to pass the colli-
mated output of the laser directly through a micro-
scope objective. Then, of course, the spot size of the
exit beam converges to a small diameter in the rear
focal plane of the objective, and thereafter it rapidly
expands. The diffuser is placed in this exit beam;
axial translation of the diffuser in this region near
and beyond the rear focal plane provides a handy
method for varying the effective aperture over a wide
range. The diffuser is fixed at a specific position that
gives large, easily monitored speckles on a screen at
1-2-m distance; and then the wavelength is varied.
Again, no imaging is involved; and the speckle posi-
tions are readily charted by directly exposing a piece
of sheet film placed at the screen. While speckle
repositioning is definitely observed at the different
wavelengths, we were not satisfied that we had the
amount of control necessary to corroborate the theo-
ry, e.g., the wavelength spacing and total interval
available were limited.

A more persuasive experimental observation of
speckle averaging with multiple tones of monochro-
matic ilumination was obtained in the following sec-
ond experiment using an argon laser source. The
prism line selector, not the single mode etalon, is re-
moved so that oscillation is obtained simultaneously
on several of the transitions listed in the preceding
paragraph. The speckle averages pretty well for
these wavelength spacings; photographing an object
illuminated first by a single tone and then by the
multitone clearly shows this effect. In this imaging
experiment, the aperture of the camera is used to
control the amount of subjective speckle that is in-
troduced by the camera lens.

Unfortunately, the spread of wavelengths and the
single collimated beam of the argon laser are not ad-
equate for the recording and reconstruction of spec-

"kle-free holograms as a simple, single exposure pro-
cess. Both spatial and spectral separation of the
multitone reference beams are probably going to be
required.23
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A third experiment was performed using a single
mode helium-neon laser at 6328 A. This laser is
continuously tunable over the Doppler-broadened
transition (about 1200 MHz) by a piezoelectric con-
trol of the cavity length. Using the 3-M Company’s
Magic Transparent Tape as a standard diffuser,
since it is both readily available and reproducible,
we carefully measured bright spot positons in speckle
patterns as the wavelength was scanned over 1200
MHz. By this experiment, we concluded that the
motion is below the threshold of detection for such
small shifts in frequency. This null result is in
agreement with the prediction of our theory, e.g.,
Eq. (26). Care was taken to control the angular
drift of the laser beam in all of these experiments
[see fp in Eq. (12)]. This is particularly important
for the argon laser since the wavelength selection
consists of angularly positioning a prism in the cavi-
ty. Both this and the large temperature changes
during warmup cause easily measurable drifts in fo.
For our experiments, angular control is obtained by
passing the laser beam through two high-quality mi-
croscope objectives separated by twice their focal
length (20 mm) with a 5-um diam pinhole located at
their common focus. The output beam from this
unity beam expander-spatial filter device is used as
the source. Thus, the angular deviation in 8o is
maintained at some small portion of 2 X 10-%rad.

Multicolor Speckle Experiments

A series of experiments was also performed using
both the Scotch Magic Tape diffuser and a biological
specimen as objects with band-limited light being
used to simulate a continuously tunable laser (see
Fig. 3). A carbon arc or high-pressure mercury arc

Ve
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Fig. 3. The experimental arrangement for obtaining laserlike
speckle from a band-limited, carbon arc source. The diffuse
object Dy, is magnified by the microscope Oy and speckled im-
ages are photographed by the camera C. Illumination from the
arc (A) is band limited by the Spex monochromater (mirrors M;,
M; are 10-cm diam and 75-cm focal length); pinholes Py and P
are 400 pm, P3 is 60 pm, and the microscope objective Oy is used to
collimate the illumination at Dy.



Fig. 4. Speckle pattern with collimated’laser illumination at
6328 A incident on diffuser made from Scotch Magic Tape.
Imaging is as shown in Fig. 3.

source (A) is collimated, dispersed by the grating
(G) for band limiting by pinholes P,, P3; then it is
highly collimated by the pinhole-objective lens com-
bination (P3, O1 in Fig. 3). The objects are placed
at D for magnification by the microscope, Oy, and
photograpbically recorded by the camera (C).

Since the principal objective of this experiment is
a detailed study of the averaging of speckle from a
multitone source, first we must establish values for
the allowable width of the single tone; then, we will
take a series of exposures with wavelength differ-
ences exceeding the interval given by Eq. (28). The
quantitative treatment of the degree of smoothing
that results from a number of independent tones is
beyond the scope of this paper.21

For experimental purposes in the classification of
diffusers, it is convenient to recognize that [Awo/
(wr)]? sets an upper limit to the number of samples
per resolution cell and that ko and {(w;), are coupled,
i.e., by coupled, we mean that in making a finer dif-
fuser, {w,) becomes less, but the attainable hgy usual-
ly decreases too. Hence, we rewrite Eq. (28) as fol-

lows:
SR = S (11— expl—@mngha /N /1L + [Awo/

(w,)) —1] [ho(2mns/ NE exp[—(2mnshy/ N?1),(36)

where Awg = 2\F/(«D).

The Scotch Magic Tape diffuser is relatively
rough; separate measurements using a depth micro-
scope fix the depth ko = 8 um, although it could be
as high as 14 um and the width (w,) =~ 1 um. For n3
= 0.6 and Ao = 0.5 um, we find pho = 50, hence by
Eq. (29) we predict that

A — A\ = 80A (87)
decouples, and the speckle should remain laser-like
for line widths up to about one tenth of this, i.e., for

8 A. We note that N does not enter into this com-
putation, since phg >1.

For the spectrometer used, the output line width
from P3 in Fig. 3 is just slightly under 5 A for the
input pinhole (Pz) of 400 um and the exit pinhole
(P3) of 60 um. In the customary language of partial
coherence,?® an equivalent viewpoint on the need to
restrict AX, as by Eq. (26), is that we must restrict
the temporal coherence so that axial path differences
inherent in traversing the diffuser will not smooth
out the laserlike speckle. Thus, we have nghy <«
¢/Av; hence, we see that ngho AN/A2 <« 1, which is
precisely the expression used to compute the 8-A
limit in the preceding paragraph.

P5 essentially controls A\ in the apparatus; and in
a relatively independent manner, the much smaller
Ps controls the transverse coherence. This is the
reason for the disparity in our choices of their sizes.
This, too, can be understood directly from Eq. (13).
A larger pinhole P3 permits a continuous range of
angle 8o from zero up to some maximum g2 in the il-
lumination of the sample.

From Eq. (35) and the discussion of the previous
section, we obtain the maximum angular bandwidth
allowable for laserlike speckle to be

AD 1 A cos20, %
T 10 {Who[no —(noﬁ/nl)]} ’

in the case of rough diffuser, i.e., pho >> 1, where 6o
is the mean incident angle. For the Scotch Magic
Tape diffuser, this value is 0.02 rad. A simple geo-
metrical consideration gives the illumination on the
diffuser (D) in Fig. 3 to have an angular bandwidth
of 1.9 X 10-3 rad, and so we are well within the limit
to see speckle. (Parenthetically, we note that when
the diffuser is very rough, the occurrence of speckle
is reasonably estimated using a simple temporal co-
herence requirement and the usual transverse coher-
ence requirement, which results from the van Cit-
tert-Zernike theorem. However, in the intermediate

Fig. 5.

Speckle pattern for Scotch Magic tape diffuser, as in
Fig. 4, but illuminated with band-limited light from a carbon arc
(5 A band limited at 6000 A and 70 min of exposure using Tri-X
film). Beam collimation angle is 2 X 10-3 rad.
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Fig. 6. Section of optic nerve at low magnification illuminated
by collimated laser light.

range, phy ~1, the statistical properties control, and
the formulas of the last section should be used.)

Band limiting the source to a 5 A width and main-
taining adequate transverse coherence greatly reduc-
es the illumination level at the camera. A value for
the exposure time is estimated in the following dis-
cussion. Referring to Fig. 3, and noting that the
energy radiated by the source A (carbon arc lamp) is
10-2 W sr-1 A-1 and that the f numbers of the lenses
L; and Lz and mirrors My and Mz have been
matched, we obtain the energy transmitted through
the pinhole P3 to be 3 X 10-6 W in a 5-A bandwidth.
The intensity at the diffuser is approximately 2 X
10-® W/cm2. The magnification of the objective
and camera system (Op and C) is 20 and so the in-
tensity of the light hitting the film is 4 X 10-8 W/
cm2. Now the film requires, including the reciproci-
ty loss factor, 50 ud/cm? of energy to be at threshold
for recording, and so this gives a minimum exposure
time of 20 min.

The speckle pattern using a collimated 6328-A
laser to illuminate the Magic Tape diffuser D in Fig.
3 is shown in Fig. 4. The laserlike speckle pattern
using tbe high pressure arc source is shown in Fiq. 5.
Even so, some averaging of the speckle pattern is ev-
ident with the highly collimated arc source band
limited to 5 A. While a narrower line width would
have been desirable, the extremely long exposure
times, 70 min for one tone, forced this compromise.
With the arc source illumination, the speckle is also
easily seen visually through the microscope eyepiece
(after 15 min of dark adaptation). A precise motor-
ized scan (Spex monochromator) of the grating G
also permits one to observe the speckle variations
with wavelength. Visual observation during motor-
ized scanning at 2A/sec was used in order to estab-
lish that the characteristic decorrelation is in the
range from 30 A to 100 A for the diffusers used. The
corroboration with the computed value of 80 A in
Eq. (37) is excellent.

A separate series of exposures to show the averag-
ing effect of multicolor speckle is presented in Figs. 6
through 9. Its an 8-um thick section from the optic
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nerve of a crayfish, prepared and stained by Roach.3°
All exposures have the same magnification, and the
major characteristic length of the nerve is 1 mm.
First, we should compare the appearance of this optic
nerve when illuminated in laser light (no diffuser is
used in this case, since it would cause speckle) and in
white light as is shown in Figs. 6 and 7, respectively.
It is to be emphasized that this type of comparison is

‘essential to an understanding of the speckle problem,

since the degree of difficulty in seeing things that are
illuminated by a laser is highly dependent on their
roughness; and of course with biological specimens, a
great range of roughness is experienced. For exam-
ple, from this comparison we conclude that the sam-
ple shown is not unusually diffuse, hence its visibili-
ty with laser illumination, while low, is by no means
representative of a badly speckled case.

Now, a single exposure of 180-min duration for one
wavelength of our 5-A band-limited source is shown
in Fig. 8. A multiple exposure with six separate
wavelengths each spaced by 300 A is shown in Fig. 9.
Great care is taken to minimize the relative motion
as the grating is scanned to each new wavelength.
An exposure duration of 50 min is used at each
wavelength, the longer total exposure time being a
characteristic aspect of the averaging process. A
comparison of Figs. 6 and 8 shows the slight smoo-
thing of the laser speckle caused by the finite (5-A)
width of the band-limited carbon arc source. Com-
paring Figs. 8 and 9 dramatically shows the im-
proved resolution that results from using six tones of
the multicolor illumination. In the holographic ap-
plication, Fig. 6 shows the representative speckle for
one-wavelength recording, and Fig. 9 is approximate-
ly the improvement that one would expect using six
tones spanning 1500 A.

Conclusions

A theoretical study of the wavelength dependence
of speckle that has been so troublesome in holo-

Fig. 7. Optic nerve illuminated in white light. Resolution here
is much better than in the speckled image of Fig. 6. The maxi-
mum length of this specimen is approximately 1 mm (actual

length).



Fig. 8. Optic nerve illuminated by a collimated source at 5500 A

with 5-A line width (180-min exposure using a high pressure mer-

cury arc and Tri-X film). Note that the image is speckled to a
slightly lesser degree than with laser illumination.

Fig. 9. Optic nerve illuminated by six separate band-limited

wavelengths, spanning the spectrum from 4300 A to 5800 A.

Note that the resolution is considerably improved over that for a

single tone as shown in Fig. 8. The beam collimation angle of
2 X 10-3 rad is maintained throughout the series.

graphic microscopy is used to establish general crite-
ria for the wavelength interval required in order to
decouple speckle in an imaging system. A simple
statistical argument is presented in analysis of Eq.
(12) for the imaging of a diffuser with variable rough-
ness; expressions for A\ to decouple with speckle or to
keep it laserlike are given by Eq. (25) and (26), respec-
tively. These are specialized for a Gaussian distri-
bution of heights in the diffuser in Eq. (28) and then
applied and discussed in an experimental context in
Eq. (36).

Experiments are described that verify that decor-
relation results as the wavelength is scanned. In ap-
proximate terms, for highly collimated illumination,
speckle is laserlike for AN <8 A and is greatly
smoothed for AX 280 A. Perhaps the most signifi-
cant implication of this study is that it demonstrates
the feasibility of eliminating speckle in holographic
microscopy while still requiring only a single rapid
exposure from some multimonochromatic-toned
source, e.g., a dye laser.

We acknowledge that J. H. Wayland’s and R. J.
Bing’s interest in making holograms of microcircula-
tory blood vessels first stimuiated our interest in
speckle-free holographic microscopy; also we are
pleased to acknowledge helpful discussions with D.
MacQuigg and R. B. MacAnally as well as the en-
thusiastic participation of Francois Bertiere in the
first series of experiments with the laser sources.

This work was supported by the Air Force Office of
Scientific Research.
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The 8-um section of the optic nerve is prepared by perfusing
the eyestalk in 1% K4Fe(CN)g in crayfish saline; it is re-
moved from the crayfish, soaked in saline saturated with pic-
ric acid, dehydrated in alcohol, embedded in paraffin, sec-
tioned with a rotary microtome, stained in a Ponceau acid
fushin solution, and mounted with Permount on glass.



~107 -

APPENDIX B

Speckle in Microscopy

In this appendix we give details of an experiment with an
argon laser discussed in section Z.h, to demonstrate ?he averaging of
speckle in the magnified image of a pap smear when foﬁr tones of the
laser are used (5145, L965, L4880 and 4765R) as compared to when only

the 51458 line is used.



Volume 6, number 3

OPTICS COMMUNICATIONS

-108-

November 1972 .

SPECKLE IN M[(jROSCOPY+

Nicholas GEORGE and Atul JAIN
California Institute of Technology, Pasadena, California 91109, USA

Received 19 Jqu 1972
Revised manuscript received 1 August 1972

Wwe present some theoretical and experimental results for the averaging of speckle as a tunction of bandlimited
and multi-tone illumination. In imaging various microscope specimens, we find that photographs taken with either
6 narrow lines spread over 1500 A or white light have comparable resolution.

It has been found that holographic microscopy is
severely limited in attainable resolution by speckle
noise in the reconstruction. This granular appearance
of an image is due to the interference from phase vari-
ations of the light caused by the randomly distributed
heights of an object which occur within a resolution
cell [1-6].

In this communication we outline a theory for the
wavelength sensitivity of speckle; and we present data
showing speckle averaging as a function of wavelength
for typical microscope specimens. These results are di-
rectly applicable to multi-tone holegraphic recording,
however our experiments have been limited to the use
of various multi-toned sources as simple illuminators
and do not include holographic recerdings.

Consider the microscope imaging system shown in
the enclosed border in fig. 1. A typical point Ab of
the object D, a diffuser, is shown imaged as A;. For -
the one-dimensional case of a pure phase object we
take the random thickness variations to be h(§)*.

The index difference between D and the surroundings
is denoted by n5. Assuming monochromatic illumina-

tion of wavelength A, normally incident and collimat-

1 Research supported in part by the Air Force Office of
Scientific Research. ;

+ Comparison between pure phase and other diffuser models
is made in ref. [7).

ed, we can write the tangential electric field, exiting
D, as

f(§) = exp [(2mi/Ng)nsh(£)], (1)

~where exp(—iwt) is suppressed.

Useful diffuser models in characterizing speckle are
described by [1—8] and others. Both in laser speckle
metrology [8] and in microscopy of typical biological
specimens, the direct radiation is important in estab-
lishing the speckle contrast. Thus, we assume a func-
tional idealization for & given by

h(&) =rE h,rect (E;Sr) 5

¥

consisting of random variables /4, and w,. In this mod-
el the number of scattering centers per resolution cell
can be small. By definition the function rect(x) = 1
when|x 1< 1/2 and is zero otherwise. For the diffuse
surfaces of interest in microscopy, the scattering an-
gles are quite large; hence w, is on the order of a wave-
length or smaller. While the following physical picture
is hardly defensible rigorously as a model for our
choice of 4, it may be helpful in visualizing this dif-
fuser to think in terms of a polished glass slide with
randomly positioned steps of height A, and width w,
centered at £ = £,. Similarly, if one prefers the random-
ly positioned lenslets of Hopkins and Tiziani [2], then
h, becomes a constant plus the quadratic phase trans-
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Fig. 1. The experimental arrangement for studying speckle in
band-limited light or with the argon laser. The inset, labeled
microscope, shows the diffuse object D, the microscope objec-
tive Opg and the image recording by the camera C. Band-limit-
ed and highly collimated illumination is obtained by passing
light from the arc A through the Spex monochromator (mir-
rors M, , M, are 10 cm diameter and 75 ¢m focal length and
pinholes P, and P, are 400 um), the pinhole P, of 60 pm,
and the collimating 20 mm objective O, .

mission function for each lens. Thus, substitution of
the function choice for A(£) in (1), assuming non-over-
lapping rect functions and rearranging give equivalently:

f&)=1 +25 rect(szr){exp{(.?n'i/ko)n_;h,] — 1}

g ) (2)
We note that | f(¢)!= 1, and that the integer, minus
one, in brackets in the summation properly reduces
the direct transmission to account for the energy
scattered by the term exp[(27i/Ag)nsh,].

With the conventional Fresnel-zone approximations
of Sommerfeld’s formula, one can show that the ra-
diation arriving at A; comes from a very limited re-
gion, i.e., the resolution cell of radius p, surrounding
Ag [9]. In this integration, we neglect the slight phase
taper over pg as detailed in [9]; and for simplicity,
we assume a unity amplitude weighting factor over
pg- The radiusbpo is approximately given by the Airy
disc size,ie.,1.22 Ngf/D in which fand D are the
focal length and diameter respectively of the objective
Oy - Thus, for the imaged diffuser, the tangential elec-
tric field at A;, £(x;), is approximately given by the
following summation over p:
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N
E(x)=R—-BN+B 25 exp(iph,,), 3)

m=1

where p=2mn3/Ag. In (3), the summation m=1.2,...,N
extends only over the /V scatterers within a radius p
about A . The explicit forms for the parameters R
and B follow from the aforementioned integration of
(2); however they are not of interest in the statistical
argument. [t is of interest to consider objects of vary-
ing roughness; and we note that for a smooth object
E = R. Also, the speckle which occurs for diffuse ob-
jects is inherent in the terms containing B; and the
ratio BNV/R is equivalent to the fractional surface oc-
cupied by the scatterers in a resolution cell.

For the case of monochromatic illumination, the
details of the speckle pattern in an image can be de-
duced from a statistical consideration of (3) with p
fixed. However, what is of central interest to us here
is the wavelength sensitivity of £. The following sim-
ple argument leads directly to an expression for the
wavelength spacing which is required to decouple the
speckle patterns for a rough diffuser. The wavelength
sensitivity is due mainly to the exponential terms con-
taining p in (3); and as a worst case applicable on-axis,
we neglect the wavelength variations of R and B. Ata
fixed point A;, we require that the root-mean-square
phase difference between an arbitrary pair of scatterers
change by n/2,1e.,

1 1 -
2m13(75- le—) ((hy — hy Y12 =371, 4)

Simplifying (4), we find that the wavelength spacing
AN=X,—\, required to decouple the speckle is given
byTt:

AN =2\(/4V2 nshyg, (%)

where h is the standard deviation of the heights of
the scatterers.

1 A more careful analysis for AX, based on an intensity
criterion, is made in ref. [10]. The result which reduces
approximately to (5) for a rough diffuser is given by

. | - F(p) F*(p) ] 12
2nn, |h3 + (N—1) (dF(p)/dp }{dF(p)idpt*|
in which F(p) is the characteristic function (Fourier trans-

form) of the probability density function f{4;) for the ran-
dom heights A;.
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The criterion (4) is meaningful only for large A,
hence (5) is applicable only for a rough diffuser. The
limiting case as /1 goes to zero is readily explained
separately. In this case, the speckle is weak since by
(3) £ =R and only a partial decoupling of the low
contrast speckle will reduce its deleterious effect.

In our experiments we compare the speckle patterns
under monochromatic, bandlimited, and multi-toned
illumination. In the first series, we use the Minnesota
Mining and Manufacturing Company’s Magic Trans-
parent Tape No. 810, for which we measure an 7, ~
8 um and (w,) = 1 um. With 3 = 0.5 and A = 5000 A,

OPTICS COMMUNICATIONS

November 1972

(5) gives us AX =110 A as the wavelength spacing re-
quired for decoupling. Fig. 2 shows the speckle char-
acteristics in the image of this diffuser, placed at D

in fig. 1, under illumination from a He—Ne laser or
alternately a band-limited arc source. Note, as expect-
ed, the similarity of the speckle under laser illumnina-
tion and the 5 A light. A low numerical aperture for
Oy is used to assure py > <w,) and so one is not able
to resolve the 1 um scatterers under white light. Fig. 2
(4) demonstrates a considerable speckle reduction
when 6 tones of 5 A width and spanning 1500 A are
used for the illumination.

Fig. 2. Image of Scotch-Magic-Tape diffuser for the following illumination: (1) laser source at 6328 A, (2) light from an arc source
band-limited to 5 A as shown in fig. 1, (3) white light, and (4) six tones of band-limited (5 A) light spanning 1500 A.
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&
Fig. 3}Hlmage of the positive PAP-smear illuminated by 4 tones of an argon laser (5145, 4965, 4880, and 4765 A). Note the im-
provement of resolution from the case of fig. 3a, although the image is still not as good as under white light.
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T 5 B

Fig. B\blmage of the positive PAP-smear illuminated by white light.

As one would expect, the roughness and the atten-
dant speckle vary widely in the many biological speci-
mens that have been studied. For example, figs. 3a, b,
and c¢ show the highly magnified image of a positive
PAP-smear, illuminated without relative motion by a
single color of the argon laser (5145 A), 4 tones from
an argon laser (5145, 4965, 4880, and 4765 A), and
with white light, respectively. The size of the central-
ly located white cell is roughly 14 um. So that none of
the averaging could be attributed to variations in the
illumination angle as the argon laser is tuned to ifs var-
ious lines, first the laser beam is passed through a spa-
tial filter (10 mm objective and 5 um pinhole) and
then recollimated. This assures a pointing accuracy of
about 10— 4 radians. While for one color the image is
badly speckled, we see that four monochromatic tones
averaged on an intensity basis by multiple exposures
lead to a good improvement. With the argon laser,
one is still too limited in the available wavelength
spread. This is evident on comparing to the white light
resolution shown in fig. 3c. Similar experiments with
6to 12 band-limited lines of 5 A width show consid-
erably more improvement than the 4 lines from the

o
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argon laser, if the wavelength spanned exceeds 1500 A.

Perhaps the most significant implication of this
study is that it demonstrates the feasibility of reducing
speckle in holographic microscopy while still requiring
only a single rapid exposure from some multitoned
source such as a dye laser.
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APPENDIX C

Probability Distribution for a Sum of Unit Vibrations

In this Appendix we review the derivation of the probability

density of the sum N

R =§3 T
i=1l -
given the probability densities of ;i's . Although this derivation has
been reviewed by a number of authors(l)-(6), our treatment follows that
of Chandrasekhar(6) whose method was originally outlined by A. A.
Markoff(5). In this Appendix we also apply our results to calculate
the density function for the sum
N -
R=Y DM (c-1)

r=1

and specify these functions for the case N = 3,4,6 and N - =,

where the raniom variables hr are uniformly distributed from - g
to Z .
a

We therefore first state the problem in its most general form

and apply the results to the case defined in (C-1).



= 1T
Let

2

1 n .
$j = (@j g @j }""J¢j ) (J = l;-‘--N) (C—Z)

be N, n-dimensional vectors, the components of each of these vectors

being functions of s coordinates

k k, 1 _2 8 . ,
cP'j =£Pj(qj’:1j ""'q-'j ) (k=11---,n; J =l’....’N) (C-3)

The probability that the qjl's occur in the range

1 1 1l 2 2 2 s s s 5
Qj 3 q'J +qu ;qj ’q,j +dqj ;""5 qJ )qJ +dQ‘J 2 (J=l""'3N) (C-h)

1 s 1 s = -
is given by 7.(Q. ,...,9. )dg. ...dg. = T.(g.)dg.. Further, let
g y J(qJ s enesdy ) a4 a; J(qJ) a4 )

1M =

1.2 o -
(87,8%,....,8") =7 = Z1%y (c-5)

The problem is:what is the probability that
= £T)

gpl—es—)s—w i e . .
o gd@o ¢ @O + gdéoswhere @O is some preassigned value for 3, (c-6)

If we denote the probability by

’ 1. 2 3 N =
w_(® )ad = W(&
N('O) 0 d@o d@o pe..dd ( O)déo

0
We clearly have
e yag o [T (e (a3}
WN( o)d@o ='J.... o1 Sy q-j (c-7)

where the integration is affected over only those parts of the Ns
dimensional configuration space where the inequalities (¢-6) are
s atisfied.

We now introduce a factor A(ﬁi,...,ﬁﬁ) having the

following properties:
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- — . = g o — — —
A(ql....qN) = 1 whenever 3,-3d%, < § < By + %6@0 (c-8)
= 0 otherwise
Then
i d — (‘ 4 - — N { — —»}
= | T.(q9.)dqg. 3
Wy (3,)ae, J._-‘Jﬂ(ql,....,qN)'jEl 5(ay)da, (c-9)

where now the integration is extended over all the accessible regions
of the configuration space. The intrbduction of the factor A under
the integral sign in Eq (C-9)in this manner appears at first sight

as a very formal device t©O extend the range of integration over the
entire configuration space. But the essence of Markoff's method is
that an explicit expression for this factor can be given,

Consider thr: integrals
g

o
i ¢ sinakpk
T

P

8, = J
~ k

k. exp(ipkyk)dpk (k = lJ .. '}n) (C—lO)

This integral defining ék has the property

6, =1 whenever -a <y, <o (c-11)
= 0 otherwise
Now let
N
kX k k
= 548 Y. = & Ps - ¢ 5] (k=l)'--)n) (C-lz)
% TERe 0 Ve T BT 0
Accordingly,
- - = < , <&+ P =
6, = 1 whenever QO gd@O jEl QJ‘ 0 zd 0 (c-13)
= 0 otherwise
Consequently
n
b=T 06 (C-14)
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Substituting for A from Egs. (C-10) and (C-14%) in Eq. (C-9) we

obtain
o 1 i i Sln(—ﬁQOp ?
W (@O)déo =7 Joneed) e Ji II 9 (q dq} B e IS
T " (p) (@) |
(c-15)
n N
exp {i{kgil El@JkP - E 3 kp ]]dpl de
d@o % - _ig-a —

=camd..d° ° AN(B)dp

where we have written

I N (1 +ip -@ -1 -

(p) = -[....Jd T...dg.” g2, (8, ol T
Ayle 31;11 i iy * 5{2y gy (c-16)
The case of greatest interest is when all the functions Tj

(of the respective qj's) are equal. Eq.(C-16)then becomes

Ay - e’ ©(@az " (c-17)

Thus if we have a vector R wnich is a superposition of a

+
number of N vectors r.

i each one having an independent probability

distribution Ti,lue.
L, N
R :j,Z— Ty (c-18)

where the probability that the iih displacement lies between r, and

ri+dri 18 gaven by

Ti(x,¥4,2;) dx dy.dz; = 7.dr, AT NP |

then we have that the probability distribution WN(R)dR is given by

W(R) - é_l_j e PR p()as (c-19)
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= -
-ip'r. —
308 3 ar, (c-20)

A =1 [ nE
= N o
N jo1 g I

@

These results can be immediately applied to our original

. 18 e
R in  (C-1) if we consider e” T to be a unit vector ry = (xj,yj)
N .
a
with a random direction and the sum Z_'el‘ hI’is the total displacement
r=1
vector R and where Tj(rj) is the joint probability

distribution csf_;'j .

Proceeding further, we write the probability density

function for —fj as
e 1 sel® B . ' '
Tj[rjl - = 5(|rj| -1) 8(w) (J=1,.,N) (c-21)

since we are specifically interested in the behavior of |f€ l it is

obvious that it is simplest to work in terms of rj, [§| rather than in
terms of the components of ;j and R.

Substituting (C-21) into (C-20) we obtain our expression for

AN(;) as
- N 1 _i—-v.-- 2 -

g1 B

-
or using polar coordinates with the z-axis in the direction of ¢
® g Z2r

+ N 17 iI—Hr-cose 2 .
AN(p) =jl:_-11 _2_'(|) t[%) e J 6(rj -l)&(a;)rj sn.nedrjdedw (c-23)

Integrating over the polar angles 6 and w we get
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B L 1|p,r cose 2_ :
AN(Q) H % 6(xr ; 1) sin © dBdrj

1.T§T' g sin(lplrj)rjé(rjz-l)drj (c-24)

it

I A=

Thus - '
oy < | EB [iﬁfl]wd; -

Again using polar coordinates with the z-axis pointing in the direction

of R, ﬁe have
? +l 21

W= Ll
Integrating over and t we get

© ¥
ey < L ARPS 1 .o sinfp || 2 .,>

W (R) = — 1 sin(|P[[R]) {—’—‘1—[_. }pl alo (e-27)
N 2r® |R| b pi J! el

This expression further reduces to

Rl {S_iIIIJE'ET.l}YdWH?IZMm{Sl (c-26)

[=-]

Wp(®) = isin( [F11R]) {sinels|}" [¢] als] (c-28)

2ﬁ2|ﬁ
We now illustrate this method by evaluating the integral
on the right-hand side of (C-28) for finite values of N by considering

the cases N =3 and 4, For N = 3, (C-28) becomes

@

— ir 3
W_(R) = —L sin( r*llRl) sin Ipl
S TR b

deI
|d

(c-29)

R 13
sin( |3 [&])sin3([5]) = 33 cosl(|R]-1)-3 cos[(|E| + DIF|]

—cos[(|R]-3)[p|1 + cos[(|R|+3)[P]1 (c-30)



__'[__']_9..

Further o

J{COS[(lﬁl -1)[pl1- cos[]R]+1)|3]]} Tl‘;i

) ‘zj (sin? ([R|;l)ipl 2RI l)lpl }T_[TZ P
- bl |R] + 1 - [ 122 ll)

We have a similar formula for the integral involving the other pair

of cosines in Eg (C-30) Combining these results we obtain

= 1 > :
W@ = {(z|R|_3) 1] 1 (c-32)
Or equivalently we get
W, (R) = . (O<f§}<l)
3 87
1 >
- (3 - |&]), (1<|R| <3 ’
=0 (3<|EI<00)

We now consider the case N = 4. From Eq. (C-28) we get

(o]

@ =i [ s GHRDsw*(BD (o-3h)
0
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From this equation we derive
o«

P : s d B > 4,1+
- S (R, 1 - L f%ﬁi stn([5]| XDt (BD  (o-ss)

27
(¢

o

- 5 J d{%{ {sin[([R] + #)[5]) + sin [(JR] - ©[?]]

o

~ 4 sinl([R] + 2[p|1 - 4 sin [[R] - 2[3]1 + 6 sin (JR||2])?

(Cc-36)
where the two alternatives in the last two steps of Eq. (C-34) depend,

respectively, on the signs of (’R[ - L) and ([R' - 2). Thus

2
s4r —— [|R|W,(®)] = - 6 (0<|®|<2)
d|R|
=+ 2 (2<]E[<4) (¢-37)
= (4<|E|<m)

Integrating the foregoing equation working backwards from

>
large values of IR] where all derivations must vanish, we find

20| - &) (2<|R|<b)

d >
64m — Akl [|ﬁ|w4(R)]
(€-38)

-6 || +8 (0<|R}<2)
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where we have used the continuity of the quantity on the left side of

this equation at |[R| = 2.

Integrating Eq

(C-38) once again, we similarly obtain

oo [Rlw, R = [R|® - 8 [r] + 16 (2<[R|<t)
C-
and
>. 2 > >
64 [R|w, R) = - 3|R| " + 8[R| (2>[R[>0) o
Thus finally we obtain
W@ = —— 6lf] - 3% (<[l
64ﬂ|R]
—L— @- ]rD? 2<% <4 (c-b1)
64| R|
=
0 (4<|R| <=)

In like manner, it is possible in principle to evaluate the integral for

WN(i) for any finite value of N although the calculations may become

very tedious.

for the case N = 6,

We may, however, note the following solution obtained



=122~

W (R) = 13 as|xr| - 4|ﬁ|3 + (5/6)|R|4) (0<R<2)
2 W|Rl
= L— (- 20 + 56/R] - 30[R|% + 6[RI> - (5/12) [k]%) (2<Bes)
2 ﬁlRi
= 18 — (108 - 72|k + 18|%|% - 2[%|3 + @/12)|®]* 4<|R|<6)
2 W}R
ol (6<|R]|=)

(c-k2)

We now consider the special case whemn N is very large,

N>>1. In this case

B in[p|.N L T2 N
o (ir-gr{-f’i) —— @ -t (c-43)

_ -N[p|%/6
e

Accordingly, for large values of N Eq. (C-28) becomes

w72 I
Nel®/6 &2 I3 (C-lt)

R "l anlﬁl

ol

et
=
=
N’

[l

—

O ~——8



Therefore,

as N »> « (c-k45)
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APFENDIX D

Prdbabilify Density for the Speckle Electric Fleld and Intensity

In this appendix we derive the probability density for the
speckle electric field given in Eq, (4-1) and the speckle intensity
given by the absolute value square of the electric field, In order
to do this we rewrite the following results;:

(a) The speckle electric field is given by Eq (4-1)

N
_ iphy
El(x)-A-BN+ BZe

r=1

(p-1)

where 'hr is a random variable and A, B, N and p are

given numbers

(b) fhe density function for the random variable R , where
- Jp '
R = E e By and phr takes on all possible angles, is (see (3-6))
r=
fee]

w§(ﬁ')=—-2—l:-47sin(|5'| B Lsnel 3117151 a 5] (D-2)
21 |R|

(c) Given a function y = ax + b, where a and b are
constants and also given the density function for the random
variable x to be fx(x) , the density function for y is,

rewriting Eq. (5-7) in Ref. (1) ,

1, @b ’
£, = o7 % 5 (-3)
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(d) Given a function z = |y| , where the density function

for y 1is fy(y) , the density function for =z is (see Eq.
(5-12), Ref. 1)

fz(z) = {fy(z) 3 fy(-Z)]U(Z) (D-4)

where U(z) is a unit step function and is 0 for z <O,

and unity for z > 0 .

(e) The density function for V = 22
Ref, (1))

, is given by (Eq. 5-9 ,

1
£ () = T [5,007) + £y(aV)Ju(v) (D-5)

To calculate the density function for the electric field we

substitute (D-1) and (D-2) into (D-3) and obtain

[++]
— — E —(A-BN) — - —_
Wﬁ (El) = S 1 isin(lp] .-.J-“.-.—]é-.—-._ )[sinclpl]mlpld lpl
1 2n” |E,-(A-BN) | (D-6)
The density function of the absolute of the electric field, IEli
is given by, substituting (D-6) into (D-4)
W . |) =0v, (|g)) + w, (<[5, ])Iu(|E,|) (D7)
IEll(I 1) E, B E, 1 1

Also substituting (D-7) into (D-5) and simplifying the algebra

we obtein that the density function of the speckle intensity, I, = |El|2

is given by
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W («/‘ )+w \/Il)]U(I]_) (D-8)

w. (I

L 1) ‘V—

Alternatively (D-8) can be written as

U(I) 1 B - Il' ™ : = N|— -
I L | \Isine|p| 1|5l a |Pl
A vl [ e T ( P ) p
VI g s s
g ( i )[sinCIpIJNIpld {ol
Wf+(A-BN)| B

D-9)
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