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Abstract 

In this thesis, we present three studies motivated by the recent interest III 

spacetimes with closed timelike curves ("CTC's"). 

First, it has been shown that certain energy conditions must be violated if 

spacetime is to develop CTC's. We initiate a study of whether quantum field 

theory permits such violations by proving that, in Minkowski spacetime, a free 

scalar field will satisfy the weak and strong energy conditions averaged along any 

complete null or timelike geodesic. We remark that in fiat, but topologically non

trivial spacetimes, the averaged weak energy condition can be violated. 

Second, it has been argued that the most likely way by which Nature might 

prevent the creation of CTC's is a divergent vacuum polarization at the chronology 

horizon where such CTC's first arise. We derive the form of the vacuum polariza

tion of a conformal scalar field and of a spin-l/2 field near a closed null geodesic 

from which the null generators of a generic compactly generated chronology hori

zon spring forth. We show that the tensorial structure of the polarization and its 

degree of divergence are the same for scalar and for spin-l/2 fields and are inde

pendent of the details of the spacetime geometry. We also show that in generic 

cases, there will be no cancellation of this divergence for a combination of scalar 

and spin-l/2 fields that has equal numbers of Fermi and Bose degrees of freedom. 

Third, in anticipation of the possibility that Nature might permit CTC's, we 

demonstrate that for a classical body with a hard-sphere potential and no internal 

degrees of freedom (a "billiard ball") traveling nonrelativistically in a wormhole 

spacetime with CTC's, the Cauchy problem is ill-posed in a peculiar way. For 

certain ("dangerous") initial data, there would appear to be no self-consistent 

solution to the equations of motion because the ball collides with its younger self 

after having traversed the wormhole. However, we show that for a wide range 

of dangerous and non-dangerous initial data, there is an infinity of self-consistent 

solutions, each involving one self-collision. No initial data are found for which 

there is no self-consistent solution. 
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1 Motivation 

Before the theory of general relativity, space and time were viewed as a rigid, 

unchanging framework in which all physical processes take place. This view re

flected the everyday perception humans had, and still have, of space and time. 

Then, general relativity introduced the idea that space and time are themselves 

dynamic physical quantities whose interaction with matter is governed by nonlin

ear equations, the Einstein field equations. The theory thus allowed, for the first 

time in physics, to describe complex configurations of space and time and, hence, of 

causality. A striking example, provided by general relativity, of a counter-intuitive 

structure of space and time is a black hole, i.e., a region that is causally sealed off 

from the rest of the Universe. 

A disturbing notion compatible with the formalism of general relativity is that 

of closed timelike curves. These are worldlines that, although always directed to

wards the future locally, return to one of their former points. Solutions of Einstein's 

equations exhibiting closed timelike curves have been known for a long time, but 

early examples were regarded as unphysical curiosities rather than viable models of 

something that might occur in the real Universe. Godel's rotating spacetime, where 

closed timelike curves are present always and everywhere, is one such example [1]. 

Recently, a stronger interest in closed timelike curves has been created by the 

discovery of wormhole and other spacetimes that have such curves [2,3,4,5]. An 

effort has since been made by various researchers to answer two questions: first, 

whether there are viable solutions of Einstein's equations with closed timelike 

curves [2,5,6,7,8,9]; and second, whether a sensible initial-value problem can be 

formulated for matter propagating on the background of a spacetime with closed 

timelike curves [3,10,11,12,13,14,15,16J. The present thesis reports work on these 

two issues. We shall give an overview of the body of the thesis in Sec. 2 and make 

a few concluding remarks in Sec. 3. 
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2 Overview of the thesis 

Chapter 2 of this thesis is devoted to the study of averaged energy conditions. 

When wormhole spacetimes with closed timelike curves were first discussed (2) it 

had already been realized that the macroscopic traversable wormholes of these 

spacetimes could only be sustained by matter that violates an averaged version of 

the weak energy condition (17J. More recently, Hawking has proved that when the 

boundary that separates the spacetime region with closed timelike curves from the 

one without (the so-called "chronology horizon") evolves out of a compact domain, 

i.e., when the chronology horizon is "compactly generated", then the weak energy 

condition must be violated [8]. 

It has been known for a long time that quantum fields can violate the local weak 

energy condition. However, by the time wormhole spacetimes with closed timelike 

curves were discovered, a systematic investigation of averaged energy conditions 

had not even been carried out for flat spacetime. The work described in Chapter 

2 was the first such investigation. More specifically, in Chapter 2, we ask whether 

can ever be negative, where (Tab) is the expectation value of the stress-energy tensor 

of a free scalar quantum field, and the integration is taken along a complete null 

or timelike geodesic with tangent vector tao We find that in ordinary Minkowski 

spacetime, this integral cannot be negative, and thus the averaged weak energy 

condition is satisfied. Further, we also find the averaged strong energy condition, 

which refers to the integral of (Tab - (l/2)gabTCc)' to be satisfied in Minkowski 

spacetime, although this places a restriction on the value of the field's curvature 

coupling constant when the average is taken along a timelike geodesic. We point 

out, however, that in flat spacetimes with circularly closed spatial sections, the 

Casimir effect entails a violation of the averaged energy conditions. 

In an addendum to Chapter 2, we give a simple proof that the weak energy 

condition averaged along a complete null geodesic in Minkowski spacetime is not 
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violated by the electromagnetic field, either; and we demonstrate that a violation 

of the local weak energy condition in Minkowski spacetime can arise for a spin-l/2 

field in an eigenstate of particle number, whereas, for a scalar field, it can only 

arise in a superposition of states of different particle numbers . 

The work presented in Chapter 2 initiated further investigations of averaged 

energy conditions [18,19,20] . It was realized that the weak energy condition aver

aged along a complete null geodesic (the "averaged null energy condition") will be 

satisfied in curved two-dimensional spacetimes under very wide assumptions, but 

can be violated in curved four-dimensional spacetimes. 

Chapter 3 deals with the stability of compactly generated chronology horizons. 

It has been shown previously that the vacuum polarization of scalar quantum fields 

will diverge near any chronology horizon [6], and several examples of this diver

gence have been discussed [6,7,9,21]. The divergence, through its back-reaction on 

spacetime geometry, might well alter the spacetime so strongly that closed timelike 

curves will not form . Hawking has recently formulated a "chronology protection 

conjecture" which postulates that closed timelike curves cannot arise in the real 

Universe [8]. He regards the divergent vacuum polarization at the chronology 

horizon as a likely means by which Nature will enforce this rule . 

Any compactly generated chronology horizon possesses at least one smoothly 

closed null geodesic [8], and it is likely that all the generators of the horizon, 

when followed to the past, asymptote to a closed null geodesic [3] . Therefore, the 

divergent vacuum polarization near such a closed null geodesic might well destroy 

the entire chronology horizon and prevent close timelike curves from forming. In 

Chapter 3, we compute the vacuum polarization for a conformal scalar field near 

such a closed null geodesic in a generic spacetime with a compactly generated 

chronology horizon. We find that for an observer who will pass through an event 

on the closed null geodesic after a small interval of proper time ot, the leading-order 

divergence will always be proportional to (ot)-3 and have the tensorial structure of 

the stress-energy of a null fluid that moves along the closed null geodesic. We also 
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compute the analogous divergence for a spin-l/2 field. The degree of divergence of 

the leading-order term and its tensorial structure are found to be the same as in 

the scalar case, but the dependence on certain parameters that describe the details 

of the spacetime geometry near the closed null geodesic is different. We emphasize 

an important consequence of this result: unlike in flat spacetime, in generic cases 

there will be no cancellation of the vacuum polarization for a combination of scalar 

and spin-l/2 fields that, in flat spacetime, would be related by supersymmetry. 

This finding will lend strong support to the chronology protection conjecture if 

Hawking's claim is correct that the divergent vacuum polarization is not rendered 

inconsequential by the effects of quantum gravity [6,8]. 

In Chapter 4, we investigate the consequences that the presence of closed time

like curves would have for the initial-value problem of a simple interacting system. 

For this purpose, we choose a static wormhole with an arbitrarily short throat, re

siding in an otherwise flat spacetime. The interacting system consists of a macro

scopic body with a hard-sphere potential whose internal degrees of freedom we 

neglect (a "billiard ball") . The ball's motion is treated with classical, nonrelativis

tic mechanics. A finite set of initial conditions will have the billiard ball travel 

through the wormhole, backward in external time, encounter a "younger" version 

of itself, and scatter off itself. Such initial conditions would seem not to allow any 

self-consistent solution of the initial-value problem for the ball. However, as we 

find in Chapter 4, for a wide range of such "dangerous" initial data, there is in fact 

an infinite number of different self-consistent solutions for the ball's motion. Each 

of these solutions involves one self-collision of the ball, and the various solutions 

are distinguished by the number of wormhole traversals of the ball. An infinite 

number of such solutions exists even for a wide range of non-dangerous initial data. 

On the other hand, no dangerous initial data are found for which there is no such 

solution, although the search leaves out a certain portion of the set of dangerous 

initial data. 

Chapter 4 represents a collaboration between F. Echeverria, K. S. Thorne, and 
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the author. Within this collaboration, the author's chief contribution was the 

derivation of the exact equations that govern the "coplanar" self-consistent solu

tions with one self-collision and one wormhole-traversal between the two times the 

ball encounters the collision event. He was also strongly involved in the presenta

tion of all other results, with the exception of the numerical studies. 

The upshot of Chapter 4 is very surprising: While the presence of closed time

like curves makes the initial-value problem for billiard ball motion ill-posed, it 

does so by inducing too many solutions rather than by allowing none. It seems 

likely that a quantum mechanical treatment of the ball's motion will make the 

initial-value problem well-posed again. Thorne and the author have attempted to 

show this [12], but, at present, some open questions remain. We shall conclude 

this section with a brief description of some elements of this effort. 

Consider nonrelativistic motion of a billiard ball in the spacetime of Chapter 

4. It is straightforward to write down an action functional that yields the correct 

classical equations of motion, taking self-collisions into account. A natural way to 

attempt a quantum mechanical formulation of the ball's dynamics is via Feynman's 

sum over histories. One could imagine a situation where closed timelike curves 

are not important for the ball's motion at early and late times. Ordinary wave 

functions should then describe the in state and the out state, i.e., the quantum 

state of the ball at some early time and the one at some late time. According 

to Feynman's approach, the out wave function should be related to the in wave 

function by a propagator that is computable as a sum over histories weighted 

by exp( is In), with the sum including histories that involve self-collisions. One 

could take the hard-sphere potential into account by dropping from the sum all 

histories that ever come closer to themselves than twice the ball's radius. This 

procedure based on the sum over histories appears to restore a well-posed initial

value problem in the following sense: for each choice of the in state, it predicts a 

unique probability distribution for the outcome of any set of measurements that 

one might wish to make. 
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An interesting issue in this context is whether the evolution through the region 

with closed timelike curves formally obeys unitarity, i.e., whether the norm of 

the out wave function, computed in the standard way, equals the norm of the 

in wave function. One could try to answer this question in two different ways. 

By manipulating the propagator in its general form, one could relate it to a two

particle propagator in ordinary fiat spacetime and use the unitarity properties of 

the latter. Or, one could choose the in state to be a quasi classical one and then 

attempt a WKB approximation for the propagator. This would have the added 

benefit that one might then find the resultant out state to be quasiclassical also, and 

one would thereby see what happens to a classical billiard ball when an ill-posed 

initial-value problem offers it the choice of several trajectories. Unfortunately, no 

conclusive results about the unitarity issue have been obtained yet. It seems likely 

though, from a WKB calculation, that unitarity is violated: a quasi classical in 

state corresponding to non-dangerous initial data will split into several outgoing 

wave packets, one of them corresponding to straight, collisionless propagation and 

having the same norm as the in state, the others corresponding to the various 

alternative classical solutions with collision, as described in Chapter 4; then, if the 

overlap between the straight piece and the scattered pieces is negligible, the overall 

norm of the out state will exceed the norm of the in state. 

This line of investigation has stimulated research by other workers [13,16]. Very 

recently, e.g., it has been proposed that unitarity will be restored in the situation 

referred to above if one takes histories with multiple self-collisions into account 

[16]. 

3 Conclusion 

In conclusion, we may say that it is quite surprising that theoretical physics 

as we know it does not flatly forbid closed timelike curves. If divergent vacuum 

polarization is indeed the universal mechanism for the prevention of closed timelike 
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curves, one would like to understand why it is singled out to play such a funda

mental role. Perhaps, a unified theory of gravity and matter will hold definitive 

answers to all questions about closed timelike curves. Or perhaps, to obtain such 

answers, we must also understand how physics relates to the notion of free will. 
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This pap.,r initiates a research program to determine wh.,ther, and in what situations, quan
tum fi.,ld th.,ory .,nforces averaged energy conditions on the renormalized str.,ss-en.,rgy t.,nsors 
of quantum fi.,lds. This program is motivattod by th., important roles of averagt:d. en.,rgy con
ditions in gen.,ral-rdativistic singularity th<ocrems, and in preventing the .,xist.,nc., of classical, 
traversabl., wormholes and wormhole-induced closed timelike curves. As a first step in this 
r<OSearch program, this paper shows that a quantized, free scalar field in Minkowski spacetime 
has th., following properties: The weak energy condition is satisfied for a wide class of states 
when averagt:d. along a complete null geodesic, but it can be violattod wh.,n av.,raged along a 
nongeodesic curv.,. If the curvature coupling constant in the scalar wave equation is restrict.,d to 
a certain range, which includes conformal coupling, then the strong .,nergy condition is satisfied 
for th., sam., wide class of states when averaged along a complete timelike goedesic. h is shown, 
further, that this enforcement of energy conditions is not universally true in all spacetimes: by 
closing up Minkowski spacetime in a spatial direction (e.g., by identifying :r = 0 with :r = L), 
one can produce quantum states of a (ree scalar field that violate the averaged weak energy 
condition. 

I. INTRODUCTION AND SUMMARY 

Since spacetime curvature is produced by the total 
stress-energy tensor of all the matter that inhabits space
time, any constraints that all stress-energy tensors must 
satisfy will induce corresponding constraints on space
time curvature. At least twice in the past, physicists as
sumed without much proof that the stress-energy tensor 
was constrained in certain ways; they derived interesting 
resulting constraints on spacetime curvature (gravity), 
and then, later, they discovered counterexamples to the 
stress-energy constraints and thereby lost their gravita
tional results. 

The first example of this was the belief that the stress
energy tensor must always have a non-negative trace, 
T,! ~ 0, and correspondingly that the pressure p of 
superdense matter can never exceed one-third its mass
energy density p. This belief permeated physicists' think
ing about the equation of state of superdense matter dur
ing the 1930s, 1940s, and 1950s.1 In 1961 Zel'dovich2 re
futed the hypothesis T,! ~ 0 and p ~ p/3 by exhibiting 
a model quantum field theory for a vector boson that 
produces p = p. Current theory takes seriously the pos
sibility of nuclear-matter equations of state that imply 
p> p/3 at the centers of the most massive neutron stars 
these equations of state will sustain .3 

The second example was the assumption, in the 1960s, 
that the stress-energy tensor always satisfies one or an
other energy condition: the "weak energy condition" 

(T"vt"tV ~ 0 for all timelike or null t"); the "strong 
energy condition" [(T"v - !T,! 9"v)t"tV ~ 0 for all time
like or null t"] . These energy conditions, when fed into 
the Einstein field equations, produced theorems on the 
inevitability of spacetime singularities at the end point 
of the gravitational collapse of a star, and in the big 
bang.4- 6 However, almost simultaneous with Penrose's 
proof of the first singularity theorem4 researchers in ax
iomatic quantum field theory (Epstein, Glaser, and Jaffe) 
proved that quantum fields cannot always and every
where satisfy such energy conditions? An explicit ex
ample of a quantum violation of the dominant energy 
condition was constructed by Zel'dovich and Pitaevsky 
in 1971,S and gradually in the 1970s researchers became 
aware that the Casimir vacuum9 for the electromagnetic 
field between two perfectly conducting plates violates the 
weak and strong energy conditions. lo Perhaps the sim
plest example of a violation of the weak energy condi
tion is that of a free scalar field in Minkowski spacetime 
when its state is the vacuum plus a small admixture of a 
two-particle statell (see Sec. II). A wide variety of other 
examples have been found since the mid-1970s: quantum 
fields in spacetimes with moving mirrors,Il,12 massive 
Dirac particles in a Kerr-Newman geometry,I3 interact
ing field theories,I4 and even the squeezed vacuum state 
of light,lS which has been constructed experimentally.16 

Do these ubiquitous energy-condition violations make 
singularity theorems irrelevant to the real Universe in 
which we live? Perhaps in part (cosmological mod-

2S42 ®1991 The American Physical Society 
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els have been constructed that use quantum fields to 
avoid singularities17), but perhaps not entirely: In 1978, 
Tipler18 exhibited a new singularity theorem which re
lies not on an energy condition that must be satisfied 
locally, everywhere, but rather on an energy condition 
that is satisfied only when averaged along certain curves 
in spacetime. Borde19 later considered weaker forms of 
this energy condition . Motivated by Tipler's theorem, 
Roman 20 recently has reformulated and reproven Pen
rose's original singularity theorem,4 replacing the local 
weak energy condition by an averaged weak energy con
dition: f d( T""t"t" ~ 0, where the integral is along 
null geodesics with affine parameter ( and tangent vector 
t" = dx" / d(. Whether quantum field theory enforces or 
violates this averaged energy condition is not yet known, 
and very little effort has been made, as yet, to find out . 

This same averaged weak energy condition has recently 
turned out to be crucial elsewhere in physics. 

If the laws of physics permit the existence of macro
scopic, traversable wormholes, then generic relative mo
tions of their mouths, and generic gravitational redshifts 
produced on their mouths by external bodies, inevitably 
will change the manner in which time links up through 
the wormholes and thereby Will create closed timelike 
curves21 ,22 (GTC's) . The researchers who discovered 
this (Morris, Yurtsever, Thorne, Frolov, and Novikov) 
thought, at first, that quantum field theory might pro
tect the Universe against such CTC's by producing a di
vergent vacuum polarization that changes the spacetime 
structure just before the CTC's arise. However, Kim 
and Thorne23 have recently argued that, although the 
vacuum polarization grows large, just before the CTC's 
arise, it might not grow large enough to protect against 
the CTC's. If this is so, then it would seem that the only 
way that physical law can prevent classical, traversable 
wormholes from creating CTC's is by preventing such 
wormholes from ever existing. The possibility of their ex
istence relies crucially on the wormholes being threaded 
by some sort of quantum field in a state that violates the 
averaged weak energy condition.21 It therefore is impor
tant to determine whether quantum field theory enforces 
the averaged weak energy condition in wormhole space
times. 

In view of the importance of averaged energy condi
tions to singularity theorems, to traversable wormholes, 
and to the existence of CTC's, it is appropriate to mount 
a vigorous effort to determine whether, and in what sit
uations, quantum field theory enforces averaged energy 
conditions. This paper is a first step in such an effort. 

Is there reason to hope that averaged energy condi
tions will be enforced by quantum field theory? Yes, at 
least under certain circumstances. Hope comes from two 
directions. Ford has shown, in specific examples24 and 
very recently more generally,25 that quantum field theory 
places certain limits on the magnitudes of fluxes of neg
ative energies. Though these limits are not quite in the 
spirit of an averaged energy condition, they show clearly 
that quantum field theory is not entirely indifferent to 

negative energies. Second it is well known that the to
tal renormalized energy of a free quantum field, scalar or 
Dirac, never is negative in Minkowski spacetime.26 More 
precisely, when one contracts the renormalized stress
energy tensor with the unit timelike normal to any space
like hypersurface and then averages over the spacelike 
hypersurface, one must always get a non-negative result . 
This is an averaged energy condition-though. because it 
involves a three-dimensional average rather than a one
dimensional average, it is not of the type needed for sin
gularity theorems and wormhole studies. 

Since no systematic quantum-field-theory investiga
tions of averaged energy conditions seem ever to have 
been made, this paper begins such an investigation in 
the simplest of situations: free, quantum, scalar fields 
in a flat spacetime. The fields are assumed to be test 
fields; i.e., the influence of their stress-energy tensor on 
the spacetime geometry is ignored . In this paper we 
shall show that, in this simple situation, the enforcement 
of energy conditions depends on the topology27 of the 
nat spacetime: If the spacetime is Minkowski (Euclidean 
topology), then any free, quantum, scalar test field al
ways, in every state, satisfies the averaged weak energy 
condition and a similar averaged strong energy condition 
as long as the field's curvature coupling constant is re
stricted to a certain range. If, instead, the flat spacetime 
has a cylindrical topology (e.g., x = 0 is identified with 
x = L, forcing the field to be spatially periodic) , then 
there are quantum states that violate the averaged weak 
energy condition. These results dash previous hopes21 

that the averaged weak energy condition might be en
forced in all spacetimes, independent of topology. 

We now give a summary of the structure and detailed 
results of this paper: In Sec. II we write down the stress
energy tensor for a free scalar field with arbitrary mass 
and curvature coupling constant in a Minkowski space
time of arbitrary dimension, and we simplify it for the 
purpose of integration. We also discuss how the weak 
energy condition can fail locally. In Sec. III we prove 
that the averaged weak and strong energy conditions 
are satisfied in a Minkowski spacetime. More specifi
cally, we choose a complete geodesic x«) and compute 
the quantity 1-00 d( (T"" - -!T:''1",,)t''t'', where ( and 
t" = dz" /d( are the affine parameter and tangent vector 
of the geodesic, respectively. If the geodesic is null, non
negativity of this quantity corresponds to the averaged 
weak energy condition and also the averaged strong en
ergy condition; if the geodesic is timelike, it corresponds 
to the averaged strong energy condition. We find the 
weak energy condition averaged along a null geodesic 
always to hold, but the strong energy condition aver
aged along a timelike geodesic to hold only for a certain 
range of the curvature coupling constant. This range 
always contains the case of conformal coupling, and for 
spacetime dimensions 2,3,4 it also contains minimal cou
pling. The mathematical treatment in Sec. III is some
what heuristic, but in the Appendix we show how our re
sults can be derived more rigorously for all state vectors 
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in a certain dense subspace of Fock space. This subspace 
is characterized by the requirements that the quantum 
state of the field neither involve arbitrarily large parti
cle numbers nor arbitrarily large momenta. Finally, we 
argue that the results of Sec. III about the range of va
lidity of the two averaged energy conditions apply also 
when the fields are classical. 

In Sec. IV we show by means of a simple example that 
the averaged weak energy condition can fail if the curve 
of integration is not everywhere geodesic. We then turn 
to a flat, cylindrical spacetime, i.e., a Minkowski space
time, closed in one spatial direction . In such a spacetime 
an effect similar to the above-mentioned Casimir effect 
occurs: the fact that the field modes now have a funda
mental period makes the renormalized energy density and 
energy flux in the most natural vacuum state negative. 
One immediately sees from this that the averaged weak 
energy condition is violated in such spacetimes. This re
sult makes it clear that the validity of the averaged weak 
energy condition depends on the topology of spacetime. 

Let z"«(), with ( an affine parameter, be a com
plete geodesic in n-dimensional Minkowski spacetime; 
t" == dz" /de is the geodesic's tangent vector. We are 
interested in the averaged quantity 

T == 100 

d( (T"w - !T~ TJ"w)t"t W
• 

-00 

(3) 

Before substituting the general expression (2) into the 
integral (3), we can make two simplifications. First, 
the two terms in Eq. (2) that are proportional to l/n 
cancel by virtue of the flat-spacetime field equation 
[8"8,,+m2]I,6(z) = 0, which is satisfied by both the classi
cal field and the quantum field operator. Second, the first 
two terms in Eq. (2) that are proportional to e become, 
after double contraction with t", 

[(
dl,6)2 ~1,6] -2e de + 1,6 de2 

and hence cancel in expression (3) by means of partial 
integration. This argument is evidently correct for the 
classical field if 1,6 (dl,6/ dO vanishes at infinity. In the 
quantum case, where the quadratic expressions in 1,6 are 
replaced by the expectation values of the analogous prod
ucts of field operators, the integration by parts can still 
be carried out, as may be seen by temporarily inserting 
a sum over intermediate states between the operators. 
The latter procedure is not in conflict with stress-energy 
tensor renormalilation, which in Minkowski spacetime 
amounts only to normal ordering of the creation and an-

We conclude the paper in Sec. V, by pointing out 
avenues of future research as well as generalizations of 
the present work that are already under investigation by 
workers in the field . 

Our notation and conventions are those of Birrell and 
Davies.28 In particular, the metric has the signature (+
. .. _). 

II. THE STRESS-ENERGY TENSOR 

A free scalar field with mass m and curvature coupling 
constant e satisfies the field equation28 

[V"V" + m2 + eR(z)]I,6(z) = 0, (1) 

where the Ricci scalar R(z) is computed from the back
ground metric. In n-dimensional flat spacetime, the 
stress-energy tensor of the field is given by28 

nihilation parts of the field operators. With these sim
plifications, expression (3) reduces to 

T = 1: d( {1,6."I,6.w + [al,6·°I,6.o - (a+!)m21,62]17"wWt V
, 

(4) 

where 

a == (n - 4)/4 + (3 - n)e. 

(The factors of n stem from the trace of the metric.) 
If t" is null and the field is treated classically, then the 

integrand in expression (4) becomes a squared quantity 
and hence non-negative. To see that this is not necessar
ily true in the quantum case, we need to insert the field 
operator 

where 

Uk(Z) = (2·lIr<n-l)/2(2wk)-1/2e-ik.r', 

c.lk = (k2 + m2)1/2, 

1:" = (c.lk,k), 

[ak,a~,] = 6(n-l)(k - k'lo 

(5) 

With this field operator and employing normal ordering, 
we obtain 
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if tjJ is null. (We have dropped the spacetime depen
dence of the modes uk for ease of notation. We have also 
omitted those terms that cancel when integrated along 
the geodesic.) Since this expression is quadratic in the 
creation and annihilation operators, (0ITjJ~tjJt~12) will be 
nonzero at an arbitrary spacetime point z for a suitably 
chosen two-particle state 12) and the vacuum state 10). 
If l,p) = 10) + lI2), then for small ( the dominant con
tribution to the expectation value (,pITjJ~tjJt~I,p)/(,pI,p) 

at z will be 2Re(l(0ITp~tPt~12), and ( can be EO ad
justed as to make this quantity negative. The state l,p) 
then violates the weak energy condition at z-an ancient, 
well-known result.ll l,p) can be regarded as an approxi
mation to a weakly squeezed state. Braunstein lS pointed 
out some time ago that squeezed states violate the (local) 
weak energy condition and that a natural interpretation 
of the extent of this violation in terms of the zero-point 
energy can be given. In the next section we shall ask 
whether a violation of the averaged weak energy condi
tion is equally possible. 

III. THE AVERAGED ENERGY CONDITIONS 

We wish to carry out the integration over ( in Eq. (3) 
for various choices of the geodesic zjJ«() . The integrand 
itself is defined by an integration over a multiple of the 
one-particle momentum space such as that in Eq. (6). In 
calculating T, we will interchange these two types of in
tegration, thereby obtaining delta functions. We assume 
that the states with respect to which expectation values 
of T are formed guarantee the validity of this procedure. 
Indeed, in the Appendix we will identify a dense subspace 
of Fock space on which the manipulations of this section 
can be carried out in a rigorous fashion: For every vec
tor in this subspace there exist two arbitrarily large, but 
finite numbers Nand K such that in the corresponding 
physical state the field cannot be found to contain more 

(6) 

than N particles or a particle whose momentum exceeds 
K in magnitude . For a state of this kind, as is also shown 
in the Appendix, the expectation value of the integrand 
in Eq. (3) is nowhere singular. 

We now specialize, temporarily, to expression (6); i.e., 
the case of a null geodesic. Because of Poincare invari
ance of the field theory, we do not lose generality by as
suming that zP «() = (t P , where r = eo +el is in the zO, Zl 
hyperplane. Here and throughout, spacetime indices run 
from 0 to n - 1, with ZO the time coordinate. 

The first term in expression (6) is obviously a non
negative operator, since it can be written as the product 
of f cr-lkuk4kkptjJ and its Hermitian conjugate . To 
investigate the contribution of the remaining terms to T, 
we note that i: d( uk(z«()uk'(z«(» 

For a massive field, wk is strictly greater than the 1 com
ponent ofk, and thus the delta function in Eq. (7) is with
out support. In the case of a massless field, it has support 
only where both k and k' lie completely in the positive 
xl direction . For such momenta, however, the factors 
k,.t" = wk - kl and k~t~ = Wk' - k,l in expression (6) 
vanish . Therefore, both for the massive a.nd the massless 
field, the only contribution to T stems from the first term 
in expression (6) and is manifestly non-negative. This 
implies that the averaged weak energ" condition and the 
averaged strong energ" condition are satisfied when one 
averages along an" complete, null geodesic. 

Consider, next, a timelike geodesic. We may assume, 
again by Poincare invariance of the field theory, that 
x"«() = (tjJ, but now with r = eo, i.e., zO = ( and 
z· = 0 for i = 1, ... , n - 1. For this geodesic, 

i: d( uic(z«())uk'(x«()) = 2(271'):-2
Wk 

c5(wk - Wk') = 2(271')~-2IkI6(1kl- Ik'l), (8) 

whereas 

(9) 

which we can consider zero. Hence, when substituting the field (5) into expression (4), we only need to retain terms 
proportional to akak" and we thereby obtain 

Using polar coordinates for the momenta, f cr-1k = io kn-2dk f dO, where It == Ikl, we can reexpress this as 
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where 

Ak= Jdnak' A~=k-1Jdnkiak 
contain momenta of magnitude k only. 

The operator (10) is manifestly non-negative as long 
as a + 1 ~ 0 and -a ~ 0, i.e. for 

-1::: a::: O. (ll) 

This is equivalent to 

"-4 " ___ <t< __ n>4 
4(" - 3) - .. - "- 3' -, 

-00 < € < 00, "= 3, (12) 

-2::: € :::!, "= 2, 

which includes conformal coupling € = (" - 2)/4(" - 1) 
for all " and minimal coupling € = 0 for n = 2, 3, and 
1. Thus, we conclude that the averaged strong energy 
condition is satisfied when the average is taken along any 
complete, time/ike geodesic and € lies in the range (13) . 
For values of € outside the range (13), however, it is not 
difficult to construct states of the field such that the ex
pectation value of T is negative. 

We would like to add that the value of the curvature 
coupling constant is also crucial for the weak ellergy con
dition averaged along any complete, timelike geodesic . 
By the same methods we have used above, one finds that 
for it to be satisfied the absolute value of € must not ex
ceed i, regardless of the spacetime dimension. Minimal 
and conformal coupling are included in this range. 

It is interesting to notice that the manipulations in 
this section remain valid if the field (5) is understood 
to be classical with the ak 's being complex expansion 
coefficients. Our observations about the sign of T in ex
pression (10) are not atl'ected by this change of viewpoint, 
because the averaging of the operator T"v has removed 
from T all terms that do not conserve particle number. 

IV. NONGEODESIC CURVES 
AND CYLINDRICAL SPACETIMES 

Does the validity of the averaged energy conditions de
pend on the geodesic nature of the curve of integration? 
As an example of nongeodesic curves, consider a piece
wise straight null curve in two-dimensional Minkowski 
spacetime (coordinates z and t) that issues from past 
null infinity, runs in the positive z direction most of the 
time, has only one short segment running in the nega
tive x direction, and extends to future null infinity. Let 
the field be massless and in a state where only right
moving modes have nonzero amplitudes to contain par-

(10) 

tides. Then the expectation value of the operator (6) 
will vanish everywhere along the right-going segments of 
the line, because there the tangent vector t" is in the 
same direction as the (null) momenta k" of the occupied 
modes. Hence, the only contribution to the expectation 
value of T arises from the left-going segment of the curve 
and is determined by the local expectation value of the 
operator (6) if this segment is very short. However, that 
local value of the energy density is negative for an appro
priately chosen state of the field, as was shown at the end 
of Sec. II . Thus, we see that the averaged weak energy 
condition can be violated for non geodesic, complete, null 
CUnles, by contrast with null geodesics. 

The averaged weak energy condition can also break 
down in space times that are flat, but topologically non
trivial. Consider, as an example, a two-dimensional flat 
spacetime that is spatially closed along the z axis with 
circumference L . In this spacetime the field modes are 
periodic in z. It is a well-known result that when the 
field is in the vacuum state with respect to these modes, 
the renormalized energy density and pressure of the field 
are negative. More precisely,28 

( 13) 

where the brackets denote expectation values with re
spect to that vacuum state and the field is taken to be 
massless and minimally coupled. From the expectation 
values (13) it follows that the averaged weak energy con
dition is violated alollg every null geodesic in this cylin
drical spacetime . 

V. CONCLUSION 

We have seen that rather simple methods sutl'fice to an
swer the question whether free scalar fields in flat space
times can violate averaged energy conditions. The answer 
found, when the spacetime topology is trivial, is mainly 
negative: If the averaging curves are complete, causal 
geodesics, violations cannot occur; though, in the case 
of timelike geodesics this answer requires certain restric
tions, which do not seem worrisome, on the curvature 
coupling. For nontrivial topologies, however, violations 
can occur. 

The easy success of this paper's initial study is strong 
motivation to push onward into more interesting situa
tions: higher-spin fields in flat spacetime, and most es
pecially, spacetimes with curvature. Analyses with suf
ficient generality to give insight into the validity of en
ergy conditions in singularity theorems are likely to be 
very difficult. Less difficult, perhaps, will be studies that 
tackle the traversable wormhole problem. For example, 
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in static, spherical wormhole spacetimes, is the averaged 
weak energy condition enforced for radial null geodesics 
that thread the wormhole? If it is enforced, then such 
wormholes cannot exist. However, to be compelling, such 
a conclusion will require studies not only of free fields , but 
also of interacting fields-a formidable task . 

The first steps in extending this paper's results to 
curved space times have already been taken : Yurtsever29 
has proven the validity of the averaged weak energy con
dition for a massless, conformally coupled, free scalar 
field in any curved two-dimensional spacetime that meets 
certain asymptotic regularity requirements; and Wald 
and Yurtsever ,30 using algebraic quantum-field-theory 
techniques, can now even dispense with those regularity 
assumptions. Thus, we may hope to witness significant 
progress in the near future . 
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APPENDIX 

Let V be the set of all Fock-space state vectors that 
can be written as 

N 

'1/J) = L,1/Ji), (AI) 
i=O 

where 

IU) E L2 [Kj], 

[( and N are finite and depend on '1/J), I(j) is invariant 
under interchange of any two of its j vector arguments, 
and ,1/J0) is a multiple of the vacuum '0) . V is a dense 
subspace of Fock space, whose physical significance is dis
cussed in the first paragraph of Sec. III. The results of 
that section can be proven rigorously when the expecta
tion value of T"" is formed with respect to a state vector 
in V. We will demonstrate this here for the case of the 
weak energy condition averaged along a null geodesic. 
The case of the strong energy condition averaged along 
a timelike geodesic can be treated in an analogous way. 

In this appendix, then, we prove the non-negativity of 1: d( <1/JIT",,(z«»t"t"I1/J), (A2) 

where the geodesic z«) is as in Sec. III and '1/J) has the 
form (AI) with unit norm. Since T"" is quadratic in 
the creation and annihilation operators, the integrand in 
expression (A2) can be expanded as 

L(1/J;IT""t"t"l1/Ji) + L (1/J; IT""t"t" 11/J.} · 
(j-·1=2 

(A3) 

Here a typical off-diagonal element has the form [see Eq. 
(6)] 

(1/J;-2IT""t"t"'1/Ji) = - J d""""lkd""""lk'ukuk.(1/Ji-2Iokok.I1/J;) 

= j! [dlJ(j) [(Wl_ - let)(wk - leJ)(wk wk )-1/2]exp[-i«wk - let hJk - kJ)l 
2(211")-1 }"i """'\ 2 \ 2 \ 2 

(A4) 

In this integral, the factor in front of the exponential never becomes singular. Together with the integrability properties 
of the I(n) 's this implies that the whole integrand is in £I[Ki]. Thus, the matrix element (A4) exists. The diagonal 
matrix elements can likewise be shown to exist. The finiteness of the sum (A3) then guarantees that the integrand in 
expression (A2) is nowhere singular (as was asserted in the first paragraph of Sec. III). 

If we integrate the off-diagonal matrix element (A4) along a finite stretch of the geodesic, say, from ( = -Z to 
( = Z, we may interchange the order of integration, obtaining 

xfU- 2)*(k3 , •. . , ki )/U)(kl , .. . , k;). (A5) 
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The first factor in the integrand is again nonsingular, anJ so the whole integrand without the sine is in Ll[K:jj. To infer 
the vanishing of the expression (A5) in the limit Z _ 00 , we could immediately apply to the Riemann-Lebesgue lemma 
of Fourier analysis if the argument of the sine were linear in the momenta k; . A s imple coordinate transformation , 
kl ...... wk, - kll and ki ...... wk. - ki , however, produces such linearity, and we thus conclude that the off-diagonal 
elements do not contribute to the integral (A2). The validity of the averaged weak energy condition now follows from 
the fact that the diagonal elements in the sum (A3) cannot be negative (see Sec. III). 
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Addendum to Chapter 2 

In this addendum we shall make two further observations about the stress-

energy tensor of quantum fields in four-dimensional Minkowski spacetime. First, 

we show that the stress-energy tensor of the electromagnetic field, like the one of 

a scalar field, satisfies the weak energy condition averaged along a complete null 

geodesic. This result was recently proven by Folacci [1], using point-splitting renor

malization. We shall rederive it here with much simpler means: renormalization 

by normal ordering, and the Gupta-Bleuler formalism for gauge fields [2]. Second, 

we demonstrate that the stress-energy tensor of a spin-1/2 field can violate the 

local weak energy condition. Whereas, in the case of a scalar field, such a violation 

requires the field to be in a superposition of states of different particle number, we 

show that a massive Dirac spinor can violate the local weak energy condition in 

an eigenstate of particle number. We retain the conventions of the main part of 

Chapter II here. 

The stress-energy tensor of the electromagnetic field is given by 

(2.1) 

where F,.w = AIl,v'- Av,w In computing the integral J~oo d((Tllv)tlltV, we take the 

null geodesic to be given by XIl(C) = (til, where f = eo + el' We then have 

(2.2) 

We insert the vector potential 

3 

All = J d3 k L:(UkEkaaka + h.c.), 
a=O 

(2.3) 

where Uk = [2(27r )3Ikl]-1/2 exp( -ikllxll ), the Eka are polarization vectors with 

1]llvEkaEk/3 = 1]a/3, and the aka are annihilation operators. The first squared term 

in (2.2) then equals, after normal ordering, 

(2.4) 
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3 

T == J d3 k L Ukakc.(ho(k, a) + hl(k, a)) 
c.=o 

J"'V(k a) = €'" kV _ €v k'" , kc. kc.· 

(2.5) 

(2.6) 

When the integration along the geodesic is carried out, delta functions appear in T2 

and Tt2 which select photon momenta of the form k'" = Iklt"'. For such momenta, 

the last factor in (2.5), €2kO - €Ok2 + €2kl - €lk2 , vanishes identically (we have 

dropped the label ka from the polarization vectors), and therefore the integral of 

_T2 - Tt2 along the geodesic vanishes also. To make this delta-function argument 

rigorous we could proceed in the same way as in the main part of Chapter II, where 

we treat the scalar field. The product TtT will produce nonnegative expectation 

values even before integration along the geodesic if we remove all negative-norm 

states by applying the Gupta-Bleuler procedure. The second term in (2.5) can, 

of course, be treated in the same way as the first, and so we find the averaged 

null energy condition to be satisfied for the electromagnetic field in Minkowski 

spacetime. 

The plane-wave decomposition for a massive Dirac spinor reads [2] 

.1. ~ J d3 k ( m ) 1/2 (-ikl'xl' ikl'xl'dt ) 
If' = L.J ()3 urke Crk + vrk e rk . 

r=l 271' Wk 
(2.7) 

Here, the Urk and Vrk are positive-energy and negative-energy four-spinors, respec-

tively. The operator Crk destroys a particle, whereas the operator d;k creates an 

antiparticle. The stress-energy tensor is given by 

(2.8) 

where 1iJ = 1/;t"'(o, and the gamma matrices satisfy {"'("', "'(v} = 2.,,"'1'. We renormalize 

the stress-energy tensor by normal ordering, i.e., by taking all anticommutators to 

vanish. It is clear from (2.7) and (2.8) that if we form the expectation value of Too 

with respect to a state that contains no antiparticles only one term will contribute: 

m ~ J J d3 kd3 k,(Wk + Wkl) t i(krk~)xl' t 
2(271')3~ (WkWkl)I/2urkUrlkle crkcr'k' · 

r,r 

(2.9) 
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This expression does not factorize into an operator and its hermitian conjugate. 

Indeed, we can construct states in which the expectation value of Too is negative 

at a given spacetime point. Let the spinors be normalized so that u!kurk = Wk/m. 

If k = ke3, then, in the Dirac-Pauli representation, 

Choose a state of the form 

o 
k 

o 

(2.10) 

(2.11) 

with kl = kl e3 and k2 = ,Xk1 , where ,X > 1. If kl ~ m we find, after a bit of 

algebra, 
Ikll 

(Too(x = 0))", ~ ( ) (2 - ,X), 
5 271" 3 

(2.12) 

which can obviously be made negative. Since we have used a one-particle state in 

this calculation, the result will hold equally well if the Dirac field is regarded as a 

classical field, with the Crk playing the role of expansion coefficients. As has been 

noted elsewhere [3], the failure of the Dirac field, if treated classically, to satisfy 

energy conditions is related to the fact that the exclusion principle forces one to 

regard half-odd-integer-spin fields as quantum fields in any case. 
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spinor fields near closed null geodesics 
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Abstract 

Hawking has recently proposed a "chronology protection conjecture", which 

states that closed timelike curves cannot form in the real Universe. The most 

likely mechanism for enforcing this conjecture, if it is correct, is a divergent vacuum 

polarization at the Cauchy horizon ("chronology horizon") where closed timelike 

curves first try to form. Hawking has proved that, if the chronology horizon is 

compactly generated, then it contains one or more smoothly closed null geodesics. 

Because it seems likely that all the horizon's generators emerge from these closed 

null geodesics, a sufficiently strongly divergent vacuum polarization at the closed 

null geodesics is likely to destroy the chronology horizon completely and thereby 

prevent closed timelike curves from forming. In this paper we compute the de

tails of the divergence near the closed null geodesics, in a generic spacetime with 

a compactly generated chronology horizon - thereby generalizing earlier compu

tations, in special spacetimes, by Hiscock and Konkowski, Kim and Thorne, and 

Frolov. We carry out the computation for both a conformal scalar field and a 

two-component spinor field. We show that for an observer who will pass through 

a point on the closed null geodesic after a small interval of proper time 8t, the 

leading-order divergence is always proportional to (8t)-3 and has the same ten

sorial structure as the stress-energy of a null fluid moving along the closed null 

geodesic. We also show that, by contrast with flat spacetime, there is in general 

no cancellation between the divergent vacuum energies of a combination of fields 

that, in flat spacetime, would be related by supersymmetry: two conformal scalar 

fields and one two-component spinor field. We discuss the implications of these 

results for Hawking's chronology protection conjecture. 
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1 Introduction and summary 

An effort has been made, over the last few years, to investigate the attitude 

of twentieth-century physics towards the notion of "backward time travel." This 

investigation rests on two pillars: general relativity and quantum field theory. 

General relativity's geometric approach towards space and time allows a "time 

machine" to be conceptualized in terms of closed timelike curves on a Lorentzian 

manifold. Quantum field theory is needed to determine whether there is a stable 

semiclassical solution of Einstein's equations in which quantum matter sustains 

a classical spacetime with closed timelike curves. Quantum field theory should 

also tell us whether a sensible initial-value problem can be formulated for matter 

propagating on the background of such a spacetime [1]. 

The effort described above was sparked when Morris, Thorne, and Yurtsever 

realized that accelerated relative motion of the mouths of a traversable macro

scopic wormhole creates closed timelike curves [2]. Morris and Thorne had found 

earlier that the matter sustaining a traversable wormhole has to violate an aver

aged version of the weak energy condition [3]. Since then, some research has been 

devoted to averaged energy conditions [4], but it is not yet clear whether a space

time with a macroscopic wormhole can be a solution of the semiclassical theory. 

However, Gott [5] has recently found a spacetime in which the relative motion of 

two infinite cosmic strings results in closed timelike curves. These strings do not 

violate classical energy conditions. 

In the spacetime of Morris et al., and also in that of Gott, closed timelike 

curves are not present everywhere. A Cauchy horizon separates the spacetime 

region with closed timelike curves from the one without. Following a suggestion of 

Hawking's, we shall call such a Cauchy horizon a "chronology horizon." Geometric 

considerations suggest quite generally that the stress-energy tensor of any field 

propagating through the region without closed timelike curves might diverge as the 

field approaches the chronology horizon. Morris et al. found that the defocusing 
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effect of the wormhole can prevent classical fields from developing such a divergence 

[2J. Later, however, several researchers independently realized that the stress

energy tensor of a scalar quantum field will always diverge as one approaches any 

event that is connected to itself by a null geodesic [6J; and Kim and Thorne then 

showed that all events on any chronology horizon are limit points of a sequence 

of such self-connected events, and therefore the vacuum polarization must diverge 

everywhere on any chronology horizon [7]. Kim and Thorne went on to compute 

the details of that divergence for a chronology horizon produced by the relative 

motion of two wormhole mouths, and Frolov computed the details for a chronology 

horizon produced by a difference in gravitational redshift between two wormhole 

mouths [8], and very recently, Grant has computed the details of the divergence 

for scalar field in Gott's spacetime [9J. 

Whether a divergent vacuum polarization at the chronology horizon, via its 

back-reaction on the spacetime geometry, would actually alter the causal struc

ture drastically and prevent closed timelike curves altogether, is still controversial. 

Because the divergence only becomes appreciable in a tiny neighborhood of the 

chronology horizon, its influence on the spacetime metric has to be compared to 

the fluctuations that quantum gravity is likely to predict for spacetime geometry 

on very small scales [7]. Hawking has formulated a "chronology protection conjec

ture" according to which the laws of physics do not allow the appearance of closed 

timelike curves [10J. He views divergent vacuum polarization as a likely means 

by which Nature will enforce this rule. Indeed, the divergent vacuum polariza

tion of quantum fields is the only mechanism known so far that has the potential 

to prevent the creation of closed timelike curves in every spacetime which would 

otherwise produce them [7J. 

In his discussion of the chronology protection conjecture, Hawking concentrates 

on spacetimes that possess what he calls "compactly generated" chronology hori

zons. All past directed null geodesic generators of such a chronology horizon enter 

and remain within a compact set. As he points out, the formulation of a Cauchy 
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problem for fields propagating on a spacetime that develops closed timelike curves 

will be more promising if the chronology horizon is compactly generated than if 

it is not. He goes on to show that if the region with closed timelike curves de

velops from a non-compact spacelike hypersurface and the chronology horizon is 

compactly generated then the weak energy condition must be violated. He adds 

that if the initial hypersurface is compact then a compactly generated chronology 

horizon can form without a violation of the weak energy condition, but such a hori

zon will be unstable if any matter passes through it. Therefore, in generic cases, 

a compactly generated chronology horizon requires a violation of the weak energy 

condition, whether or not the initial hypersurface is non-compact. As a corol

lary he concludes that one cannot create closed timelike curves by moving finite 

loops of cosmic string within a finite region of spacetime. Gott's spacetime, with 

its infinite cosmic strings, by contrast, has a non-compactly generated chronology 

horizon and therefore manages to create closed timelike curves without violating 

the weak energy condition. The various wormhole spacetimes mentioned above do 

have compactly generated chronology horizons . 

A compactly generated chronology horizon contains, Hawking proves, at least 

one closed null geodesic. After going around such a geodesic once, the direction 

of its tangent vector has been reproduced, whereas the length of the tangent vec

tor has been boosted by some factor eh . It seems likely that in generic cases, all 

the generators of the chronology horizon, when followed to the past, will asymp

tote to such closed null geodesics [11] . If this is true, then the divergent vacuum 

polarization near these closed null geodesics will be of particular importance for 

the chronology protection conjecture: the divergence, if sufficiently strong, will be 

likely to destroy the entire chronology horizon and thus prevent closed timelike 

curves from forming . 

In this paper we elaborate two remarks that Hawking makes about divergent 

vacuum polarization at compactly generated chronology horizons. The first remark 

is that the result one finds for the divergent stress-energy tensor of a quantum 
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field near a closed null geodesic must always have the same form, regardless of 

the spacetime and the quantum state of the field. In Sec. 2, we compute the 

expectation value of the stress-energy tensor of a conformal scalar field near a 

point X that lies on a closed null geodesic T in an arbitrary spacetime with a 

compactly generated chronology horizon. We show that in the reference frame of 

an observer who will pass through X after a small interval of proper time 6t the 

leading-order divergence of the stress-energy tensor will always be proportional to 

(6t)-3, and the tensorial structure of this leading-order term will be the same as 

for a null fluid that moves along f. We also find that the dependence of this term 

on the boost parameter h always has the same form. Our results in Sec. 2 include 

as special cases the results of Kim and Thorne and of Frolov. 

Hawking's second remark is that one would not expect a cancellation of the di

vergent stress-energy tensor between fields of different spins, or at least not when 

the boost parameter h is nonzero. A cancellation of the vacuum energies does 

occur between fields related by supersymmetry in Minkowski spacetime [12]. How

ever, collections of fields of various spins on a curved classical background cannot 

be constructed as supersymmetric theories unless the background admits a covari

antly constant spinor field [13], and in a spacetime with a compactly generated 

chronology horizon, a spinor field cannot be covariantly constant along the closed 

null geodesic if h f O. This was the basis for Hawking's remark. To show explicitly 

that a cancellation of the vacuum polarization does not occur, we compute, in Sec. 

3, the expectation value of the stress-energy tensor of a two-component (Weyl) 

spinor field near the closed null geodesic T' The degree of divergence, (6t)-3, and 

the tensorial structure, that of a null fluid, are found to be the same as in the case 

of a scalar field. The dependence on the boost parameter h, however, is differ

ent. Moreover, the spinor stress-energy tensor, unlike its scalar counterpart, also 

depends on the angle () through which a spatial plane orthogonal to the tangent 

vector of T is rotated by parallel transport from X to X along T' A cancellation 

of the vacuum energies between two conformal scalar fields and one spinor field, as 
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is known to happen in the supersymmetric case in Minkowski spacetime, is shown 

to be impossible unless h = () = O. 

In Sec. 4 we compare our results to those of others and discuss their relevance 

for the chronology protection conjecture. 

We shall use the metric signature (- + ++) and natural units (G = c = 1) 

throughou t. 

2 Scalar fields 

We consider an arbitrary spacetime M with a compactly generated chronology 

horizon and a closed null geodesic, on this horizon. All steps of our analysis 

depend only on the fact that, causally links a spacetime point X to itself in a 

non-trivial way, i.e., , encompasses other spacetime points than X. Nevertheless, 

for ease of presentation, we shall pretend that, cannot be continuously deformed 

to a trivial curve. Thus, M becomes multiply connected, with a universal covering 

space M. (We can always make M multiply connected by excising from it an 

appropriately chosen curve that , loops around.) Since we are only concerned 

with, and nearby curves, we may assume that the fundamental group of M has 

only one generator, and we may take, to represent this generator. The copies 

of M in M, called the "fundamental domains", can be labeled by the integers. 

Accordingly, the copies in M of a point X' in M shall be denoted by X~, where n 

ranges through the integers. 

Our calculation of the vacuum polarization of a conformally coupled mass

less scalar field <fJ in M shall be based on the Hadamard function Gl(X, X') = 
(<fJ(X)<fJ(X' ) + <fJ(X/)<fJ(X)) , where the expectation value is defined with respect to 

a suitably defined vacuum state. The region before the chronology horizon does 

not contain closed timelike curves, and so the definition of a vacuum state and 

the computation of vacuum stress-energy in this region can proceed in the familiar 

way. The Hadamard function Gl, defined in M, can be represented in terms of 
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the analogous Hadamard function 6 1 in M. For an untwisted field the relation is 

simple: 
00 

n=-oo 

We shall assume that 6 1 has the familiar singularity structure: 

6,1/2 [1 ] 6 1 (X, X') = -2 - + O(ln Io-/) , 
47r 0-

(3 .1) 

(3.2) 

where o-(X, X') is the geodetic interval between X and X', and 6,(X, X') is the 

Van Vleck-Morette determinant, which remains regular as 0- goes to zero. 

The expectation value of the stress-energy tensor (Tab) is obtained by applying 

to G1 a differential operator Dab which is derived from the classical formula for 

Tab and by then taking the coincidence limit X' ~ X . For a conformally coupled 

massless scalar field we can take Dab to be 

Dab = 
1 1 c' 1 
6(V'a/V'b + V'aV'b l ) - 129abV'cV' -12(V'aV'b + V'a/V'b l ) 

+ :89ab(V'cV'c + V'C/V'C
/
) - Rab + ~9abR, (3.3) 

where Rab is the Ricci tensor. To renormalize the otherwise singular expression for 

(Tab), a subtraction is made from G1 before Dab is applied. Because the standard 

renormalization prescription is concerned with the short-distance behavior of G l
, 

the subtracted term equals, up to a piece that will not diverge for null separation 

of X and X', the n = 0 term in (3 .1), i .e., the term in which the copies of X and X' 

in M lie in the same fundamental domain. Thus, we have, up to a non-divergent 

term, 

(Tab(X)) = lim L Dab6 1 (Xo, X~). 
X'_X 

ni=O 

(3.4) 

It is immediately clear from (3 .2) and (3.4) that (Tab(X)) will diverge when X 

lies on 'Y because the geodetic interval vanishes when taken along a null geodesic 

[6J. This divergence is not taken care of by standard renormalization, because it is 

linked to a global feature of M , namely the fact that there is a closed null geodesic. 

Obviously, the divergent vacuum polarization at a point X on 'Y will have 

contributions for all non-zero winding numbers n. In what follows, we shall drop 
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the primes from the X~ in (3.4) because it is the coincidence limit X' - X that 

we are interested in. Dropping these primes will create no confusion about how 

the operator Dab is to be applied because the term with n = 0 is not included in 

(3.4). We shall label the points Xn so that, for positive n, going along the null 

geodesic from Xo to Xn in M corresponds, in M, to going n times around '"Y in 

the future direction. This will boost the tangent vector of '"Y by a factor of eM, 

and Hawking shows that h cannot be negative. In M, the gradients of a(Xo, Xn) 

at Xo and Xn are directly related to the tangent vectors of the null geodesic at 

these points. These gradients can therefore be expressed in terms of the initial 

tangent vector k a of '"Y at X. Let ka be normalized so that kaua = -1, where u a is 

the four-velocity of an observer who passes through X . Further, let ( be an affine 

parameter for '"Y such that k a = dXa / d(, and let (n be the total affine parameter 

distance for going n times around T Then we have 

(3.5) 

where unprimed indices refer to Xo and primed ones refer to X n. If the observer 

will pass through X only after a small interval of proper time 6t , then his current 

spacetime position is connected to itself by a closed spacelike geodesic that is nearly 

null. The geodetic interval for going n times around this geodesic will be, to linear 

order in 6t, 

(3.6) 

By combining (3.2), (3.3), (3.5), and (3.6), we find the contribution to (3.4) with 

a given winding number n: 

(3.7) 

where ~n is the Van Vleck-Morette determinant associated with the null geodesic 

from Xo to X n. 

It is not hard to see what happens to the leading term in (3.7) when one 

switches the sign of n, i.e., when one switches from n circuits around '"Y in the 



32 

future direction to n circuits in the past direction. We can write this term as 

~ 1/2 1 + 4enh + e2nh 

247r2;(5t)2 (enh -l)2 kakb. 

The geodetic interval a is, of course, not affected by a switch of direction. Nei

ther is, in fact, the Van Vleck-Morette determinant . The rational function of e h 

appearing in the last expression is also invariant when one changes the sign of n. 

Taking all this into account, we find, not surprisingly, that the contribution to 

(3.4) with winding number -n is the same as the one with winding number n. 

Therefore, we can write 

(3.8) 

Thus, the leading-order divergence of the scalar vacuum polarization near "I IS 

proportional to (5t)-3 and has the tensorial structure of the stress-energy of a null 

fluid moving along "I. In general, there will be additional divergent terms that 

diverge as lower powers of (5t)-1 and have a more complicated tensorial structure. 

The details of the spacetime geometry around "I leave their imprint on the 

form of the leading-order term in (3.8) only in a very restricted way: through the 

boost parameter h and through the winding-number-dependent factors ~:!2 I (n' 

To understand how the latter scale with n, we turn to the analysis of Kim and 

Thorne [7]. They show that ~~/2 I(n == ~1/2(Xo, Xn)/(n can be constructed in the 

following way: Consider a high-frequency classical scalar wave emitted at Xo. Nor

malize the wave so that in the vicinity of Xo its amplitude equals 1/(. Propagate 

the wave along the null geodesic from Xo to X n, using geometrical optics. Then 

~1/2(XO' Xn)/(n will equal the amplitude of the wave at X n. Without spacetime 

curvature ~~/2 I(n would simply equal l/(n. However, this would imply that clas

sical fields diverge at the chronology horizon [2] . Hence, we should assume that 

spacetime curvature will exert a defocusing effect that drives the wave amplitude 

down more strongly. This defocusing effect (which results from a violation of the 

weak energy condition), after one circuit around "I, will be characterized by an 
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effective focal length. Once the wave has traveled around, enough times that 

the radius of curvature of the wave fronts is much larger than this focal length, 

the wave will interact with the spacetime curvature in essentially the same way 

every additional time it goes around,. The amplitude reduction due to curvature 

with each trip around, will then be expressed by some factor a < 1, which is 

independent of n and of the location of X on " i.e., we will have 

fj.~(J.l/(n+l 
--'..:....:,-:~--'- - a 

fj.~/2 / (n - . 

We see now from (3.8) that the contributions to the (c5t)-3 divergence ofthe vacuum 

polarization will be proportional to 

for sufficiently large n. Clearly, the contributions from high winding numbers are 

suppressed and the series appearing in (3.8) is convergent. 

3 Spin-l/2 fields 

To find the vacuum polarization of a spinor field, we shall develop a compu

tational technique that is very similar to the one used in the preceding section. 

Our treatment largely follows Christensen's well-known work [14]. Some modifica

tions are needed, though, because his presentation refers to a neutral Dirac spinor, 

i.e., a real four-component spinor, whereas we consider a complex two-component 

(Weyl) spinor. In dealing with Weyl spinors, we shall use the definitions found in 

the appendix of Ref. [15], which are suited to our choice of the metric signature. 

The complex conjugate of the spinor 'lj;a will be denoted by ;pa. Spinor indices can 

be lowered with the antisymmetric tensor : 'lj; a = Ca{3'lj;{3. In a given local Lorentz 

frame, sigma matrices can be used to relate spacetime indices to spinor indices. 

We employ the matrices a O = 0-0, being equal to minus the identity, and a i = _o-i, 

i = 1,2,3, being equal to the familiar Pauli matrices. Their spin-index structure 

is given by a aa and o-aa. 
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The stress-energy tensor of a Weyl spinor field is 

(3.9) 

Noting that 'Ij; is an anticommuting field, we can write the expectation value of 

(3.9) as the following coincidence limit : 

(3.10) 

where the bispinor 

S''Ja
l (X, X') = ([,jj&(X), ,pal (X')]) 

is the expectation value of of the field commutator. S is related to a Hadamard

type Green's function, ~J1 [16J: 

saa/(x X') - _ia-c'Jf3\lc91 a/(x X') , - c {3 , . (3.11) 

Substituting this in (3.10), we find 

(3.12) 

In both (3.10) and (3.12) a summation over the index pair a, a' is understood. 

Strictly speaking, a bispinor of parallel transport should be inserted so that this 

index pair refers to the same spacetime point. However, this bispinor becomes the 

unit matrix in the coincidence limit X' - X. 

The Green's function 9 1 can be related to the corresponding Green's function 

{}1 in M. Again we assume an untwisted field, and a formula just like (3.1) will 

hold: 
00 

(3.13) 
n:-oo 

{}1 has a singularity structure analogous to (3.2): 

(3.14) 

where I{3a
/
(X, X') describes the parallel transport of a spinor of the type 'Ij;{3 from 

X to X' (or, equivalently, of a spinor of the type ,pal from X' to X). Standard 
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renormalization in M will agam consist in the subtraction of gl(XO, Xb) from 

Q(X, X') (up to a non-divergent term). As in the case of scalar fields, it is evident 

that the remaining terms gl(XO, X~) with n =I- 1 will lead to a divergent stress

energy tensor near 'Y. In the coincidence limit, these terms contain non-trivial 

spinor propagators I(Xo, Xn) describing parallel transport of spinors as one goes 

n times around 'Y, from X to X. 

We turn next to the computation of the spinor propagator for a given winding 

number n. Let us choose a local Lorentz basis eg, ... , eJ at X so that ua = eg 

and ka = eg + ej. Further, let us use the matrices (To, .•• , (T3 introduced at the 

beginning of this section to represent this Lorentz basis in terms of bispinors. If 

the sigma matrices are understood to refer to a basis o'1t, t a of the spinor space at 

X, then ka will be represented by 

(3.15) 

Parallel transport of a vector tetrad n times around 'Y is equivalent to a Lorentz 

transformation L. We have seen in Sec. 2 that 

Obviously, then, L will take t a into ).ta , where). = en (h+i/l)/2 and 8 is a real number 

depending on the spacetime M. Since L is represented in the spinor basis by a 

matrix of unit determinant, the general form of I(Xo, Xn) in this basis is 

(3.16) 

where J.L is a complex number depending on the spacetime M. (Remember that 

we have defined I(X, X') so that it multiplies a spinor at X from the right.) 

Below, we shall see that J.L drops out of our calculation. The meaning of 8 is 

elucidated by the following [17]. As long as ). =I- 1, it is clear that the matrix (3.16) 

can be diagonalized by a suitable redefinition of oa. When this has been done, 

oCr.oa represents a null vector la such that L\lb = e-nhla. Also, oCr. ta represents a 



36 

complex vector rna that is multiplied by e inB under the action of L. The spacelike 

plane spanned by real linear combinations of rna and its complex conjugate rna is 

orthogonal to ka and La . In this plane, L acts as a rotation, and the rotation angle 

is n8. That L involves an inverse boost in a null direction different from k a and 

generally also effects a rotation in a spacelike plane has been noted by Hawking 

[101· 

Returning to our original spinor basis, we now insert the term gl(XO' X~) into 

the expression (3.12). From (3.5) we see that in the leading-order divergence of 

(3.12) the matrices o-a will only appear in the combination (3.15). It is straight

forward to check that 

where we have suppressed spinor indices. Using 

we easily find the contribution to (3.12) with winding number n: 

1:!.1/2 . enh/ 2 + e3nh/ 2 
47r2,:(otpetnB/2 (enh _ 1)3 kakb, +O((ot)-2), (3.17) 

where we have used the geometric quantities defined in the previous section. 

Again, we would like to see how (3.17) transforms when the sign of n is changed. 

It follows from the definition of the spinor propagators that I(Xo, X-n) is the 

matrix inverse of I(Xo, Xn): 

(
A -11-) 
o A-I 

(3.18) 

This allows us to modify the argument we used in Sec. 2 when changing the sign 

of n in (3.7), and we find that the contribution to (3.12) with winding number -n 

is the complex conjugate of the one with winding number n . Hence, we can write, 

analogously to the scalar case, 

1 [00 1:!.1/2 enh
/
2 + e3nh

/
2] 

(Tab) = 27r2(ot)3 ~ ,: cos(n8/2) (enh _ 1)3 kakb + O((ot)-2). (3.19) 
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The leading-order divergence of the spinor vacuum polarization thus shares its 

tensorial structure and degree of divergence with its scalar counterpart (3.8). For 

sufficiently large n, the terms in (3.19) will be proportional to 

where a describes the defocusing effect of the spacetime curvature around ,",(, as 

explained in Sec. 2. 

Now, suppose that Nature provides us with a combination of conformal scalar 

fields and spin-l/2 fields in accord with supersymmetry: two scalar fields for each 

spin-l/2 field . Then, by comparing (3.19) with (3.8) we see that for h = 0 = 0 

there will be an exact cancellation of the leading (st) -3 divergence. For general 

hand 0, the total stress-energy tensor for each spin-l/2 field together with its 

associated pair of scalar fields will be 

(3.20) 

where 

Pn(x,O) = X4 + 4x2 + 1 - 3cos(nO/2)(x3 + x). 

It is easy to see that Pn(x,(}) > 0 whenever x # 1, regardless of the value of o. 
Thus, the case h = () = 0 is the only one that results in a cancellation of the 

leading-order divergence. 

4 Conclusion 

We have seen that the vacuum polarization near closed null geodesics on com

pactly generated chronology horizons exhibits a remarkable universality. Apart 

from the factors b.n/ (n, the form of the leading-order divergence is completely 

determined by one or two parameters that describe parallel transport around the 

closed null geodesic: h in the case of a scalar field, and hand 0 in the case of a 

spin-l/2 field. 
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The form of the vacuum polarization we have found should be compared with 

other results. The general divergence in Misner space, derived by Hiscock and 

Kinkowski [18] and quoted by Hawking [10], appears different from ours because 

it diverges as the inverse of the fourth power of a time coordinate and because 

it does not have a double null tensorial structure. However, these differences can 

be removed by a Lorentz transformation that becomes singular at the chronology 

horizon of Misner space [18,19] - and that makes Misner space exhibit the same 

near-horizon spacetime structure as generic spacetimes with compactly generated 

chronology horizons. Grant finds a weaker, (6t)-2 divergence at the chronology 

horizon of Gott's spacetime [9]. This has to do with the fact that the chronology 

horizon of Gott's spacetime is not compactly generated and does not possess a 

smoothly closed null geodesic. Indeed, Grant speculates that this feature might 

exempt Gott's spacetime from the chronology protection conjecture. The worm

hole spacetimes considered by Kim and Thorne [7] and by Frolov [8] do have 

compactly generated horizons. As a consequence, their results for the scalar vac

uum polarization, when specialized to the vicinity of the closed null geodesics of 

their spacetimes, are in perfect agreement with ours . On the other hand, at points 

of their chronology horizons that are away from the closed null geodesics, the 

wormhole spacetimes exhibit the same type of weakened divergence as Grant finds 

everywhere on the horizon of Gott's spacetime [7]. 

Our result that a cancellation of vacuum energies between scalar and spinor 

fields will not carryover from flat spacetime to a compactly generated chronology 

horizon also enjoys universality. If it is agreed on that the divergences discussed 

here will not be rendered inconsequential by the effects of quantum gravity then our 

result will lend strong support to the chronology protection conjecture. It should 

be remarked that a ~ancellation can occur for special, but non-trivial values of 

hand (j if a different combination of scalar and spinor fields is considered (more 

specifically, if the number of spinor fields is greater than half the number of scalar 

fields). However, if one believes that the fields in the actual Universe are governed 
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by supersymmetry then one is forced to dismiss as unphysical such combinations, 

because they do not have equal numbers of Fermi and Bose degrees of freedom. 

Finally, we would like to mention a speculation of Hawking's [10] according 

to which the back-reaction of the matter fields might drive an arbitrary spacetime 

that is about to form closed timelike curves into the special configuration h = 0 = 0 

for which there is a cancellation of the vacuum polarization. Might Nature in this 

way try to circumvent the chronology protection conjecture rather than enforce it? 
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Chapter 4 

Billiard balls in wormhole spacetimes 

with closed timelike curves: Classical 

theory 

(By F. Echeverria, G. Klinkhammer, and K. S. Thorne. Originally 
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The effects of self-interaction in cla.ssical physics, in the presence of closed timelike curves, are 
probed by melons of a. simple model problem: The motion a.nd self-collisions of a. nonrela.tivistic, 
cla.ssical billiard ball in a space endowed with a wormhole that ta.kes the ba.ll backwa.rd in time. 
The central question uked i. whether the Ca.uchy problem is well posed for this model problem, in 
the following sense: We define the multiplicity of a.n initial tra.jectory for the ball to be the number 
of self-consistent 80lutions of the ball's equations of motion, which begin with that trajectory. For 
the Cauchy problem to be well posed, a.II initial trajectories must have multiplicity One. A limple 
analog of the science-fiction scenario of going back in time and killing oneself is an initial trajectory 
which is dangerou. in this sense: When followed assuming no collisions, the trajectory takes the ba.ll 
through the wormhole a.nd thereby back in time, and then sends the ball into collision with itself. In 
contrast with one's na.ive expecta.tion that dangerous trajectories might have multiplicity zero &lid 
thereby make the Cauchy problem ill posed ("no 8OIutions"), it is shown tha.t all dangerous initial 
tra.jectories in a wide cla.ss ha.ve infinite mUltiplicity and thereby ma.ke the Cauchy problem ill posed 
in a.n unexpected way: "fa.r too many solutions." The wide class of infinite-multiplicity, da.ngerous 
trajectories includes a.l1 those that are nea.rly coplana.r with the line of centers between tbe worm
hole mouths, and a ba.ll and wormhole restricted by (ba.ll radius)«wormhole radius)«separation 
between wormhole mouths). Two of the infinity of solutions are slight perturbations of the self
inconsistent, collision-free motion, and all the others are strongly different from it. Not all initial 
tra.jectories have infinite multiplicity: trajectories where the ball is initially at rest far from the 
wormhole have multiplicity one, as also, probably, do those where it is almost at rest. A search 
is made for initia.l trajectories with zero multiplicity, and none are found. The search entails con
structing a set of highly nonlinear, coupled, algebraic equations that embody all the ball's laws of 
motion, collision, and wormhole traversal, and then constructing perturbation theory a.nd numeri
cal solutions of the equa.tions. A future paper (pa.per II) will show that, when one takes account 
of the effects of quantum mechanics, the cla.ssically ill-posed Cauchy problem ("too many cla.ssica.l 
solutions") becomes qua.ntum-mechanically well posed in the sense of producing unique proba.bility 
distributions for the outcomes of all measurements. 

I. INTRODUCTION AND SUMMARY 

A. Motivation 

This is one of a series of papers that try to sharpen 
our understanding of causality by exploring whether the 
standard laws. of physics can accommodate themselves, in 
a reasonable manner, to cl06ed timelike curves (CTC's). 

Previous papers have provided a natural spacetime 
arena for such an exploration: The arena of space times 
that contain classical, traversible wormholes (Le., multi
ply connected spatial slices). Morris, Thorne, and Yurt
sever [1] showed that generic relative motions of the 
mouths of a traversible wormhole produce CTC's that 
loop through the wormhole's throat, and Frolov and 
Novikov [2] showed that generic gravitational redshifts 
at a wormhole's two mouths, due to generic external 
gravitational fields, also produce CTC's. (It is not clear 
whether the laws of physics permit the existence of such 
traversible wormholes; the attempt to find out is a sep
arate line of research [1,3-5]' which we shall not discuss 
here .) 

A consortium [6] of researchers from M06COW, Milwau
kee, Chicago, and Pasadena (henceforth referred to as 

"the consortium") has raised the issue of whether the 
Cauchy problem is well posed in spacetimes with CTC's, 
and has explored many facets of the issue. This paper is 
one of several that elaborate on the ideas raised by the 
consortium [6]. 

Two examples of wormhole spacetimes with CTC's are 
depicted in Fig. 1. Both of these spacetimes are flat 
and Minkowski, except for the vicinity of the wormhole 
throat. The wormhole is arbitrarily short, and its two 
mouths move along two world tubes that are depicted as 
thick lines in the figure. The mouths are so small com
pared to their separation that one cannot see in the figure 
their finite size. Proper time T at the wormhole throat 
is marked off along the mouths' world tubes; points with 
the same values of T are the same event, on the throat, 
as seen through the two different mouths. 

In Fig. 1(30) mouth 1 remains forever at rest, while 
mouth 2 accelerates away from 1 at high speed, then re
turns and decelerates to rest. Because the motions of the 
two mouths are like th06e of the twins in the standard 
special-relativistic twin paradox, we shall refer to this 
as the "twin-paradox spacetime." The same relative ag
ing as occurs in the twin paradox produces, here, closed 
timelike curves that loop through the wormhole [I}. The 
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FIG. I. Two examples of wormhole spacetimes with 
closed timelike curves. (a) The "twin-paradox spacetime,B 
(b) the "eternal-time-machine spacetime." 

light-cone-like hypersurCace 7-f. shown in the figure is a 
Cauchy horizon. Through evety event to the future oC 
this Cauchy horizon 7-f. there are CTC's; nowhere in the 
past oC 7-f. are there any CTC's. 

In Fig. l(b) the two mouths are both forever at rest, 
but with a time delay Td between them that is greater 
than the distance a separating them. Because there are 
CTC's looping through the wormhole throughout this 
spacetime, the wormhole can be used in principle as a 
"time machine" for traveling arbitrarily Car into the past 
or the future. For this reason, it has become conventional 
to call this the "eternal-time-machine spacetime." 

Many aspects oC the twin-paradox spacetime and the 
eternal-time-machine spacetime have been studied else
where in the literature [1,6,3,7]. Most importantly Cor 
us, the consortium [6]. and Friedman and Morris [7] have 
used these spacetimes as "testbed arenas" for studying 
whether the Cauchy problem is well posed in the presence 
oC CTC's. 

As the consortium has shown [6], it is an exceedingly 
delicate enterprise to pose initial data in a region of 
spacetime that is threaded by CTC's (the region to the 
Cuture of the Cauchy horizon in the twin-paradox space
time; anywhere, except past null infinity, in the eternal
time-machine spacetime). The delicacy is caused by the 
absence of well-behaved spacelike or null hypersurCaces 
in such a region, on which to pose the data. Various 
aspects of this delicacy are discussed by the consortium 
[6] and by Yurtsever [8], and we shall not in this pa
per attempt to elucidate them Curther. Rather, we shall 
confine attention to the more straightforward situation 
of initial data that are posed in regions to the past of 
all CTC's; i.e., data posed on a spacelike or null Cauchy 
surface to the past of the Cauchy horizon 7-f. in the twin
paradox spacetime, and data posed on past null infinity 
in the eternal-time-machine spacetime. We shall ask (as 
did the consortium [6]) whether the Cauchy problem is 
well posed for such initial data, in the Collowing sense: 

If one gives the same standard initial data as one would 
do in a spacetime without CTC's, then for each choice 
of those data does there exist a self-consistent, global s0-

lution of the standard, local evolution equations, and if 
so is the self-consistent solution unique? (The demand 
for self-consistency has been discussed in depth by the 
consortium [6].) 

One can ask about the well posedness oC the Cauchy 
problem Cor a variety of types of evolving systems in 
spacetimes with CTC's. The first step, carried out by 
Friedman and Morris [7]. was to study the evolution of 
a classical, massless scalar field tP. Friedman and Mor
ris showed rigorously that the Cauchy problem is well 
posed Cor such a field in the eternal-time-machine space
time: Every arbitrary initial value of the field rtP (where 
r is radial distance), posed at past null infinity (limit as 
T - r - -00), gives rise, via the standard local evolution 
equation OtP = 0, to a unique, globally self-consistent 
field tP throughout the eternal-time-machine spacetime. 
It seems highly likely that this behavior is prototypical 
in the sense that, for any zero-rest-mass, noninteracting, 
classical field (e.g., the vacuum electromagnetic field) in 
any stable wormhole spacetime with CTC's, the Cauchy 
problem will be well posed [1,6,7]. 

It seems probable that the well posed ness of the 
Cauchy problem for the field tP results from the fact that 
tP has no self-interactions. More likely to produce peculiar 
results is a system that, aCter traveling around a nearly 
closed timelike world line, can interact with its younger 
self (e.g., a person who tries to kill his younger self). The 
simplest such classical system is a single, classical particle 
that carries a hard-sphere, repulsive potential and has no 
internal degrees oC freedom (a "billiard ball"), and that 
travels with a speed small compared to light so special
relativistic effects can be ignored. The purpose oC this 
paper is to study the CltUchy problem for such a billiard 
ball in the twin-paradox and the eternal-time-machine 
spacetimes. 

Other papers in this series study the well posed ness 
of the Cauchy problem for systems that embody other 
pieces of physics: A companion paper to this one (pa
per II [9]) studies the effects oC non relativistic quantum 
mechanics on the Cauchy problem Cor this paper's bil
liard ball; Novikov and Petrova [10J are currently study
ing a classical billiard ball that has huge numbers of in
ternal degrees of freedom and thus can behave inelasti
cally when it collides with itself; and Novikov [I1J has 
examined, semiquantitatively, a number of complicated 
classical systems (e.g., a bomb that explodes in response 
to a trigger signal, sending explosive debris through a 
wormhole and backward in time where it tries to trig
ger the explosion before the explosion actually occurs). 
For his complicated classical systems, Novikov shows that 
it is plau&ible that there always exists at least one self
consistent solution, no matter how paradoxical the ini
tial data may appear. Unfortunately, for such compli
cated systems it seems hopeless to obtain firm results. 
Accordingly, in this paper, in a quest for firmness, we 
examine the simplest system we can think of that has 
self-interactions: the perfectly elastic, nonrelativistic bil
liard balL 
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B. The Cauchy problem for classical billiard balls 

In this paper we pose our initial data (initial billiard 
ball trajectory, by which we mean initial path and speeti) , 
in the region of spacetime that is devoid of CTC's: before 
the Cauchy horizon for the twin-paradox spacetime [Fig. 
l(a)], or at past null infinity for the eternal-time-machine 
spacetime [Fig. l(b)]. For the twin-paradox spacetime, 
we confine attention for simplicity to initial trajectories 
that take the ball into the vicinity of the wormhole long 
after mouth 2 has returned to rest. This permits us, 
throughout the calculation, to ignore the early-time, rel
ative motion of the wormhole mouths and to treat the 
twin-paradox spacetime as though it were the same as 
the eternal-time-machine spacetime, i.e., the same as Fig. 
l(b ). 

The structure of this (common) spacetime can be 
understood easily as follows [6]: Take ordinary, flat, 
Minkowski spacetime, cut out of it the world tubes of 
two balls that are at rest in a chosen Lorentz coordinate 
system (T, X, Y, Z), and identify the surfaces of the balls, 
with a time delay Td between them. The surfaces of the 
two balls are the mouths of the wormhole, and because 
they have been identified with each other, the wormhole 
is vanishingly short. 

We shall denote by D the separation between the cen
ters of the two mouths as measured in the Lorentz frame 
where they are at rest , by b the radii of the two mouths 
(radius of curvature of their surfaces), by Td the time de
lay between the two mouths, and by r the radius of the 
billiard ball. Throughout this paper we shall measure 
spatial distances in units of D (so the wormhole mouth 
separation is unity) and times in units of Td (so the time 
delay between the two mouths is unity); and we shall de
note by B == biD and R == riD the wormhole radius and 
the billiard ball radius, measured in these units, and by 
v the billiard ball speed, measured in these units (units 
of DITd)' 

The identification we shall use for the two wormhole 
mouths is one in which diametrically opposed points 
(points obtained by reflection in the plane half way be
tween the two mouths) are identical. Stated more pedes
trianly (see Fig. 2): Adjust the Lorentz frame's spatial, 
Cartesian coordinates so the line of centers between the 
two mouths lies on the X axis . Then set up a rigM
handed spherical polar coordinate system (e,~) on the 
right mouth with the polar axis pointed in the -X di-

FIG. 2. The identification of points on the two mouths of 
the wormhole. 

rection (along the line of centers, toward the left mouth) 
and with ~ = 0 along the - Y direction; and set up a 
left-handed spherical polar coordinate system (e,~) on 
the left mouth with polar axis pointed in the +X direc
tion (along the line of centers, toward the right mouth) 
and with ~ = 0 along the -Y direction. Then points 
on the two mouths with the same values of e and ~ are 
identified. 

In our study of the Cauchy problem for a billiard ball 
in the above spacetime, we shall focus on the issue of the 
multiplicity of solutions to the ball's equations of motion. 
For each initial trajectory (initial path and speed) we de
fine the multiplicity to be the number of self-consistent 
solutions of the equations of motion that begin with that 
trajectory. Not surprisingly, it will turn out that each 
initial trajectory has a discrete set of solutions, and thus 
has multiplicity zero or one or two or . ... In the absence 
of CTC's, all trajectories have multiplicity one, which is 
just a fancy way of saying that the Cauchy problem is well 
posed . From exposure to science-fiction scenarios (e.g., 
those in which one goes back in time and kills oneself), 
one might expect CTC's to give rise to initial trajectories 
with zero multiplicity-a severe form of ill posed ness for 
the Cauchy problem. However, we have searched hard for 
initial trajectories with zero multiplicity and have found 
none . On the other hand, our search has not covered all 
initial trajectories (see especially Sec. V), so we cannot 
guarantee the nonexistence of zero-multiplicity trajecto
nes. 

The only trajectories that have any possibility for zero 
multiplicity are those which, when followed assuming no 
collision, produce a collision. We call such trajectories 
dangerous. A trajectory can be dangerous only if it leads 
the ball into the wormhole, and this can happen only if 
the trajectory is nearly coplanar with the line that con
nects the centers of the wormhole mouths-more specif
ically, only if it is within a distance B = (mouth radius) 
of being coplanar with the line of centers. For this rea
son, in this paper we restrict attention to nearly coplanar 
trajectories. The analysis of the billiard ball motion is 
fairly manageable when the initial trajectory is precisely 
coplanar (Sees. 11, III, and IV); and the slightly noncopla
nar case (within a distance <: B of coplanar) can be 
treated using perturbation theory (Sec. V) . However, we 
have not found a manageable way to analyze the case of 
coplanarity to within a distance .... B. 

For the slightly noncoplanar case, and for R <: B <: 
D == 1 (ball small compared to mouths and mouths small 
compared to separation of mouths), we shall derive a 
rather remarkable result (Sec. IV A): All dangerous initial 
trajectories have infinite multiplicity. What a contrast 
with one's naive, science-fiction-based expectation of zero 
multiplicity. 

Figure 3 gives insight into two of the infinite set of 
solutions in the precisely coplanar case. Figure 3(a) is 
the self-inconsistent solution which tells us that the ini
tial trajectory, labeled Ct, is dangerous. When, as in Fig. 
3(a), we assume that the ball travels freely along Ct with
out suffering a collision, it passes through the wormhole, 
emerges along {3 before it went in, and hits itself so hard 
that it knocks itself along Ct', preventing itself from go-
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FIG. 3. Spa.tial diagra.ms showing a. prototypical example of initial da.ta. tha.t produce two self-consistent solutions to the 
billiard-ball equa.tions of motion. Each dia.gra.m shows the ball's spa.tial trajectory, a.nd also shows the ball itself (young version 
in black a.nd old version in grey) a.t the moment of self-collision . (a.) The self-inconsistent solution which a.rises if one a.ssumes 
the ball does not gel hit before ha.versing the wormhole. (b) A "class-I" self-consistent solution in which the ba.1l is speeded up 
a.nd deftected rigMwud sligMly by a. collision before entering the wormhole. (c) A "c1a..sa-U" self-consistent solution in which 
the ball is slowed a.nd deftected leftwa.rd slightly by & collision before entering the wormhole. 

ing through the wormhole. Figure 3(b) is what we call 
a "self-consistent solution of cllUS l" for this same ini
tial trajectory a. The ball, while traveling toward the 
wormhole on a , gets hit gently on its left rear side and 
is speeded up a bit and deflected rightward a bit (along 
trajectory a'); it then enters the wormhole and reemerges 
before it went down (trajectory P) , it tries to pass behind 
its younger self, but gets hit a gentle, glancing blow by its 
younger self and deflected slightly (along trajectory P') . 
Figure 3(c) is what we call a "self-consistent solution of 
cllU6 II." While traveling toward the wormhole, the ball 
(trajectory a) gets hit gently on its front right side and 
is slowed a bit and deflected leftward a bit (along trajec
tory a'), it enters the wormhole and reemerges before it 
went down (trajectory P), it passes in front of its younger 
self and, just before getting all the way past, it gets hit 
a gentie, glancing blow by its younger self and deflected 
slightly (along trajectory {J') . We shall study the details 
of such coplanar class-I and class-II solutions in Sec. IV 
and in Appendixes A and B-and shall do so not only 
for R <: B <: D == 1, but also for wormholes with large 
mouths and balls with large radii. 

The class-I and class-II solutions are small perturba
tions of the self-inconsistent solution, in the sense that 
the ball's path is displaced by only enough (typically of 
order the ball's radius R) to permit the ball to undergo 
a glancing collision rather than a head-on collision. By 
contrast, the other self-consistent solutions are quite dif
ferent from the self-inconsistent one. They (or at least 
the ones studied in this paper) involve a collision that oc
curs somewhat farther from the wormhole than for class 
I and class II, and correspondingly the distance the ball 
t ravels, from its first. encounter with t.he collision to its 
second, is rather larger than in the class-I and class-II s0-

lutions. This means the ball must travel farther back in 
time to achieve such a solution. It. does so by undergoing 
several wormhole traversals. In Sec. III we shall exhibit 
a self-consistent solution corresponding to each value of 
the integer n == (number of wormhole traversals); and we 
shall do so not only when the initial trajectory is danger
ous, but in fact for almost all coplanar initial trajectories 
with speeds VI > D/Td == 1. Figure 9 (in Sec. III) is an 
example with eight traversals. 

Our analysis of these multiple-traversal solutions, by 
contrast with our analysis of the class-I and class-II solu
tions, is restricted to R <: B <: D == 1. This restriction 
permits us to ignore the details of the balls' relative ge
ometry during the collision event (aside from proving, in 
Sec. II, that the necessary geometry exists) . By decou
piing the details of the collision geometry from the rest 
of the solution, we bring the multiple-traversal analysis 
into an elegant geometric form that contrasts with the 
complicated algebraic calculations used to analyze the 
class-I and class-II solutions. This difference motivates 
our presenting the multiple-traversal analysis (Sec. III) 
before the class-I-class-II analysis (Sec. IV). 

This paper restricts attention, for simplicity, to solu
tions that entail a single self-collision. There presum
ably are also multiple-collision solutions, and we spec
ulate about some possible, rather strange ones in the 
paragraph containing Eq. (3.11). Such solutions can only 
increase the tendency of initial trajectories to have high, 
even infinite, multiplicity. 

Having identified this tendency toward high multiplic
ity, we ask ourselves in Sec. III C whether there exist 
any solutions with multiplicity 1; and in Sees. IV and 
V, whether there exist any with multiplicity zero. Our 
search for multiplicity zero comes up empty handed; 
all initial trajectories that we have examined have self
consistent solutions. By contrast , there is lit leG6t a small 
(measure-zero) class of initial trajectories with unit mul
tiplicity: those in which the ball is initially at rest far 
from the wormhole. We suspect, but have not proved, 
that the (finite-measure) initial trajectories with speeds 
VI <: D/Td == 1 and with impact parameters h> D == 1 
also have unit multiplicity; see Sec. III . 

The above conclusions are derived for the precisely 
coplanar case in Sees. II, III, and IV; and they then are all 
extended to the slightly non coplanar case in Sec. V. This 
extension is accomplished by demonstrating (via pertur
bation theory) that for each slightly noncoplanar initial 
trajectory there is a one-to-one correspondence between 
its self-consistent solutions and those of a nearby, pre
cisely coplanar initial trajectory. 

This paper's principal conclusion, that the Cauchy 
problem is ill posed for classical billiard balls in the 
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eternal-time-machine spacetime, suggests at first sight 
that the laws of physics might not be able to accommo
date themselves in any reasonable way to CTC's. How
ever, the laws of classical mechanics are only an approx
imation to the more fundamental laws of quantum me
chanics, and in paper II [9) it will be shown that quan
tum mechanics can cure the multiple-solution ill posed
ness (and can also cure a zero-multiplicity ill posedness, 
if it occurs) : For each initial quantum state of a nonrel
ativistic billiard ball, posed before the region of CTC's, 
the sum-over-histories formulation of quantum mechan
ics predicts unique probabilities for the outcomes of all 
sets of measurements that one might make in the region 
ofCTC's. 

C. Outline of this paper 

We begin our quantitative analysis of coplanar solu
tions in Sec. II, by laying some foundations. In Sec. 
n A we derive simple "wormhole traversal" rules for the 
change of a billiard ball's velocity when it goes through 
the wormhole. Then in Sec . II B we analyze the kine
matics of a billiard ball '5 self-collision when there is only 
one collision event along the ball's world line. Our anal
ysis simplifies subsequent calculations by embodying all 
the kinematics (energy conservation, momentum conser
vation, and friction-free billiard-ball contact at the col
lision event) in one simple rule: the collision must pro
duce either a direct "velocity exchange ," or a "mirror 
exchange" of velocities. 

In Sec. III, by combining the wormhole traversal rules 
with velocity-exchange and mirror-exchange collisions, 
and restricting attention to R <: B <: D == 1, we show 
that multiple solutions to the billiard ball's equations of 
motion are ubiquitous. More specifically, we show that a 
finite measure of such (coplanar) initial trajectories pro
duce not only multiple solutions (Sec. III A), but in fact 
an infinity of solutions (infinite multiplicity; Sec. III B). 
We then show that not all initial trajectories have infinite 
multiplicity; there do exist some with only one solution 
(unit multiplicity; Sec. III C). 

In Sec. IV we turn our attention to dangerous, copla
nar initial trajectories. We begin in Sec. IV A by prov
ing, as a corollary of the Sec. III B analysis, that for 
R <: B <: D == 1 almost all such trajectories have infinite 
multiplicity. Then we extend our search for multiplicity 
zero to balls that are large enough for the geometry of 
the collision to couple significantly into the rest of the s0-

lution, R 10:. B . In Appendix A and Sec . IV B we derive a 
set of highly nonlinear, coupled equations governing self
consistent solutions with such collisions. Those equations 
are valid not only for R 10:. B, but also for B 10:. D == 1. 
However, in Appendix B and Sec. IVC we return to the 
restriction B <: D and there search for solutions of the 
equations. We find analytic, perturbation-theory solu
tions of classes I and II for almost all initial trajecto
ries; and we construct numerical solutions for some typ
ical initial trajectories in the extreme regions where the 
perturbation-theory solutions fail. Our spot checks in 
these extreme regions have not turned up any initial tra
jectories for which numerical solutions do not exist . 

In Sec. V, using perturbation theory, we extend to 
slightly noncoplanar initial trajectories all the coplanar 
results of the previous sections. 

II. FOUNDATIONS: WORMHOLE 
TRAVERSALS AND SELF-COLLISIONS 

In this section we give brief analyses of coplanar worm
hole traversals and billiard-ball self-collisions-analyses 
that produce simple rules for use in subsequent sections . 

A. Coplanar wormhole traversals 

For nearly all the wormhole traversals encountered in 
this paper, the ball's trajectory is coplanar with the line 
of centers of the wormhole mouths, and the ball enters 
mouth 2 and exits from mouth 1, thereby traveling back
ward in time. In this section we shall confine attention 
to such traversals. 

For all traversals, we shall presume that the ball is 
small enough (ball radius R sufficiently small compared 
to mouth radius B) that we can ignore the impulsive 
tidal force exerted on the ball's hard-sphere potential by 
the concentrated spacetime curvature at the wormhole 
throat. Just how small R must be for this depends on 
one's model for the internal structure of the ball. 

In this paper our model for the ball will have the fol
lowing features . (i) We shall refuse to consider collisions 
that occur while the center of the ball is on one side of 
the wormhole throat and its colliding surface is on the 
other; thereby we shall avoid worrying about instanta
neous tidal deformations of the ball's hard-sphere poten
tial during the traversal. (ii) We shall assume (for sim
plicity and definiteness) that, even if R is as large as, say, 
B/2, the ball's center moves through the wormhole in the 
same manner as would an arbitrarily small ball. (iii) We 
shall assume that, even for R as large as B/2, the ball 
recovers from its tidal distortions and resumes its radius
R, spherical shape arbitrarily quickly after a traversal. 
These features of our model are sufficient to permit R to 
be as large as B/2. (Our choice of B/2 rather than B/4 
or 9B/I0 is quite arbitrary.) 

Since the ball's center moves through the wormhole 
in the same manner as would an arbitrarily small ball, 
its motion must be on a straight line and with constant 
speed, as seen by an observer at rest on the throat. Such 
motion guarantees energy and momentum conservation 
during the traversal, as seen by the observer. (We pre
sume that the wormhole recoils negligibly; i.e., we treat 
the ball as a "test object" that moves through the fixed 
wormhole geometry.) 

Since the wormhole mouths are both at rest in the ex
ternal space, constant speed as seen on the throat implies 
that the speed of the ball, as measured in the exterior, is 
unchanged by the traversal: Vout = Vin. 

Straight-line motion, as measured on the throat, im
plies that the ball's outgoing velocity Vout makes the 
same angle 6, with the outgoing mouth's outward nor
mal, as the ball's ingoing velocity Vin makes with the 
ingoing mouth 's inward normal. This in turn implies (cf. 
Fig. 4) that the angle", from the mouths' line of centers 
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(the X axis) to the ball's velocity vector changes during 
the wormhole traversal from'" = (}+,p to '" = (}-,p. Here 
,p is the angular location of the traversal on the wormhole 
throat as depicted in Fig. 4 (not to be confused with the 
~ of Fig. 2). 

These conclusions are summarized by the following 
"wormhole traversal rules" : 

Vout = Vin , (2.1a) 

"'out = "'in - 2,p . (2.lb) 

Here and throughout, an italic v denotes the magnitude 
(speed) of the velocity v . 

B. Coplanar self-collisions 

In this section and throughout this paper we restrict 
attention to self-consistent solutions that involve a single 
self-collision . We shall denote by VI the ball's velocity 
as it enters the collision the first time, by v~ its velocity 
as it leaves the collision the first time, by Vl its velocity 
as it enters the second time, and by v~ its velocity as it 
leaves the second time. In other words, the sequence of 
velocities as measured by the ball itself is VI, v~, V2, v~ . 

No matter how many wormhole traversals the ball may 
make between its two visits to the collision event, the 
"speed in equals speed out" wormhole traversal rule im
plies that 

(2.2a) 

and this, combined with energy conservation, implies 
that 

(2.2b) 

These two speed relations, together with the collision's 
law of momentum conservation, 

(2.2c) 

are a complete set of conservation laws for the ball's ve
locity. 

mouth I mouth 2 

FIG. 4. The "wormhole tra.versal rules" (Eqs. (2.1»), which 
govern copla.na.r wormhole traversals from mouth 2 to mouth 
1. 

V, Y 
velocity exchange 

(a) 

V' 2 

~ .. , d5
~ 

y ..... ........ ~~ 
~ -=--- • 

v, 
mirror exchange 

(b) 

FIG. 5. The two solutions to the self-collision equa.tions: 
"velocity exchange" [Eq. (2.3a)), and "mirror exchange" [Eq. 
(2.4a»). 

These conservation laws can be satisfied In precisely 
two ways (Fig. 5): (i) velocity ~xchange, 

v~ = V2, v; = Vt , (2.3a) 

for which the relative position of the balls at the moment 
of collision (the vector separation of their centers) is 

and (ii) mirror exchange , 

v; = (V2)refteeted in line parallel to v.+v, J 

v; = (Vl)reftected in line parallel to v.+v, , 

(2.3b) 

(2.4a) 

for which the relative position of the balls at the moment 
of collision is 

(2.4b) 

where s = sign(vl-vd. [The relative position ofthe balls 
when they collide, Eq. (2.3b) or (2.4b), is determined by 
the fact that the momentum transfer v~ - VI must be 
along the balls' line-of-centers direction rl - r2, and the 
centers must be separated by a distance 2R.] 

In summary, all the constraints on velocity that a 
self-collision must satisfy are embodied in the simple 
statement that ~ither the balls underyo velocity exchange 
(2.3a), or they underyo mirror exchange (2.4a) . 

III. UBIQUITY OF MULTIPLE SOLUTIONS 
FOR COPLANAR INITIAL TRAJECTORIES 

In this section we shall use the geometry of the veloc
ity exchange, mirror exchange, and wormhole traversal 
rules to show that multiple solutions to the billiard ball's 
equations of motion are ubiquitous. Our discussion will 
be confined to coplanar initial data. However later, in 
Sec. V, we shall see that all coplanar solutions are stable 
(continue to exist) when one perturbs the initial data in 
an arbitrary but infinitesimal, non coplanar way. In our 
discussion, as in Sec. I, we shall refer to the number of 
solutions that an initial trajectory produces as its "mul
tiplicity." 

We begin in Sec. III A by showing that all coplanar 
initial trajectories that are aimed between the wormhole 
mouths have multiplicity at least two. One solution is 
unperturbed straight-line motion, and a second is com-
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posed of a wormhole traversal and a velocity-exchange 
collision . Then in Sec. III B we show that there is a 
wide variety of coplanar initial trajectories (a set of finite 
measure) with infinite multiplicities. Each of the solu
tions we exhibit, for these initial trajectories, has a single 
mirror-exchange collision, together with some number n 
of wormhole traversals; n ranges over positive integers up 
to infinity. Finally, in Sec. III C, we show that a ball ini
tially at rest far from the wormhole has only one solution 
to its equations of motion: the trivial solution where it 
remains forever at rest . We also argue, but do not prove 
firmly, that there is only a single solution for any ball 
with (i) an initial speed that is sufficiently slow but not 
zero, and (ii) an initial path of motion that, if extended 
forever, remains far from the wormhole. 

A. Multiplicity larger than 1 is generic 

Consider a ball whose initial path is coplanar with 
the mouths' line of centers and is directed between the 
mouths, and whose initial speed is arbitrary but nonzero. 
An obvious solution to the ball's equation of motion is 
collision-free, wormhole-traversal-free, straight-line mo
tion [Fig. 6(a)] . A second solution is shown, for the case 
of an arbitrarily small ball, in Fig. 6(b). The ball is hit 
as it crosses the mouths ' line of centers and gets knocked 
radially into mouth 2. Regardless of the ball's initial 
speed VI, it is hit with just the right impulse to give it 
a speed v~ = (D - 2B)/Td = 1 - 2B. It travels through 
the wormhole and returns to its impact point at just the 
right moment to hit itself and be deflected back onto its 

mouth I • 
(a) 

(c) 

FIG. 6. Solutions to the equations of motion for a copla
nar initi&l trajectory that is directed between the wormhole 
mouths. The ball's speed is arbitrary. (a) The trivial s0-

lution . (b) A solution with one wormhole traversal and a 
velocity-exchange collision. (c) Modification of solution (b) 
when the radius of the ball is not negligible. 

original trajectory. Since the wormhole traversal rules 
(2 .1) are trivially obeyed , and the ball has obviously un
dergone a velocity-exchange collision, all the equations of 
motion are satisfied . 

If the ball's radius is not arbitrarily small, both so
lutions, (a) and (b), still exist . However, the details of 
solution (b) are modified slightly, as shown in (c) . The 
collision still entails a precise velocity exchange, and the 
wormhole traversal rule is still satisfied (but not quite so 
trivially as before) . However, there is now an offset of 
the various pieces of the ball's path (solid lines) relative 
to the previous path (dotted lines). 

It is not hard to convince oneself that, when the ball 
is given a finite but small size R ~ B, all the solutions 
described in the remainder of Sec. III remain valid with 
tiny modifications similar to those in Fig. 6(c) . However, 
for ease of presentation we henceforth in Sec. III shall 
keep the ball's size infinitesimal. 

B. Infinite multiplicity is generic 

As a first step in demonstrating that infinite multiplic
ity is generic (i .e. , that all the initial trajectories in a 
set of finite measure have infinite multiplicity), consider 
the highly symmetric initial trajectory shown in Fig . 7. 
The ball's initial speed is arbitrary, and its initial path 
is coplanar with and perpendicular to the line of centers 
and is directed half way between the two mouths. Fig
ures 7(a)-7(d) are four self-consistent solutions for this 
initial trajectory, and they obviously are generalizable to 
produce an infinite set of solutions. Yet another solution 
is that of Fig. 6(b), which involves velocity exchange by 
contrast with the mirror exchange of Fig. 7. 

The solution shown in Fig. 7(b) was pointed out to 
us by Forward [12] (and it motivated our discovery of 
the infinite multiplicity of 5OIutions) . In this 5Olution 
the ball experiences a mirror-exchange collision, which 
knocks it radially into mouth 2. It then emerges radi
ally from mouth I, earlier in external time by precisely 
the right amount Td = 1 to enable it to return to the 
collision event. The wormhole-traversal rules (2.1) are 
trivially satisfied (IPin = I/J, IPout = -~; v; = V2), and 
the mirror-exchange rule is satisfied with the mirror line 
parallel to the line of centers (horizontal dashed line). 
Since the mirror line must be along VI + V2, the speed 
V2 must be V2 = vd sin IP (where IP, as shown in the 
figure, is the IPin of the wormhole-traversal rule). The 
total distance traveled by the ball between collisions (in 
the limit , for simplicity, that B ~ 1) is 1/ COSIP, so the 
total time lapse as measured by the ball between colli
sions is (l/cosIP)(I/v2) = tan1/J/vl' This ball-measured 
time lapse must be equal to the amount of backward time 
travel, Td = I, during the ball's wormhole traversal, in 
order that the ball return to the collision event. Corre
spondingly, the value of IP must be given by 

tan IP = VI • (3.1) 

Notice that there is no constraint whatsoever on the 
initial speed VI. All the equations of motion are satisfied 
in Fig. 7(b), when IP has the value (3.1), regardless of 
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how large or how small VI might be. 
In the limit as VI goes to zero, the ball is initially at 

rest on the mouths' line of centers; it gets hit and knocked 
radially into mouth 2 at speed V2 = 1; it travels backward 
in external time by Tci = 1 while traversing the wormhole' 
and it then emerges radially from mouth 1, travels to th~ 
collision event, hits itself, and comes to rest. Note that 
this solution is really a continuous infinity of solutions: 
the time T of the collision is completely arbitrary. 

The solution in Fig. 7(c) involves two wormhole traver
sals. As measured by the ball, using its own local time, 
the sequence of events is the following: (i) initial path 
a, (ii) mirror-exchange collision, (iii) path {3 from colli
sion to mouth 2, (iv) first wormhole traversal, (v) path r 
from mouth 1 to mouth 2, (vi) second wormhole traver
sal, (vii) path 6 from mouth 1 to collision event, (viii) 
path E: (opposite to initial path). 

As seen by external observers, the sequence is quite dif
ferent. It is straightfoward to verify, by the same method 
as was used in solution (b), that in the limit B <: 1 the 
angle T/J is given by 

mouth I mouth 2 • • 
(a) 

FIG. 7. A specific example of an initial trajectory with 
an infinite number of solutions (infinite multiplicity). (a) The 
trivial solution. (b) Solution with one mirror-exch&Jlge col
lision and one wormhole traversal. (c) Solution with one 
mirror-exchange collision and two wormhole traversals. (d) 
Solution with one mirror-exchange collision and three worm
hole traversals. Solution (b) wu pointed out to us by Forward 
[12] &Jld motivated our discovery of solutions (c) and (d) and 
their generalizations. 

sin T/J + tan T/J = 2vI , (3.2) 

and that the sequence of events is as follows. (i) At time 
T = -1/(1 + cosT/J) before the collision, the ball emerges 
from mouth 1 and starts traveling along 6 toward the col
lision event, while (in its younger incarnation) it is also 
traveling up a. (ii) At time T = - cos T/J /( 1 + cos T/J), the 
ball emerges from mouth 1 and starts traveling along r 
toward mouth 2; there are now three incarnations of the 
ball present. (iii) At time T = 0, the collision between in
carnations a and 6 occurs, knocking incarnation a along 
(3 and incarnation 6 along E:; the third incarnation is still 
traveling along r. (iv) At T = cos T/J / (1 + cos T/J), the ball 
on r enters mouth 2 and disappears, leaving just two 
balls: one on E:, the other on (3. At T = 1/(1 + cosT/J), 
the ball on (3 enters mouth 2 and disappears, leaving just 
one ball, traveling along the final trajectory E:. 

Figure 7(d) involves three wormhole traversals. The 
sequence of paths as measured by the ball is in Greek al
phabetical order. It is left as an exercise for the reader to 
compute the angle T/J in the limit B <: 1 and compute the 
detailed timings of events as seen by external observers. 
The reader should also be able to verify (perhaps with 
the aid of Fig. 9 below and the associated discussion) 
that the wormhole-traversal rules and mirror-exchange 
rules are satisfied . 

The generalization of the solutions of Fig. 7 to an ar
bitrarily high number of wormhole traversals should be 
obvious. We shall examine, in Fig. 9 below, the details 
of the sequence of wormhole traversals involved in that 
generalization. 

The generalization of these mirror-exchange solutions 
to arbitrary coplanar initial trajectories is not quite so 
easy as in the velocity-exchange case of Fig. 6. The 
method of generalization, for a one-traversal solution, is 
shown in Fig. 8. The steps in the method are as follows: 
(i) Specify the initial path a, but not the initial speed VI; 

the initial speed will be calculated as the last step in the 
method. Specify, instead ofthe initial speed, the location 
P along the initial trajectory a at which the collision oc
curs. (ii) By trial and error find a path that takes the 

FIG. 8. Trial-and-error method of generating a one
traversal, mirror-exchange solution for an arbitrary, coplanar 
initial trajectory. 
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ball from point P to mouth 2, then through the wormhole 
in accord with the wormhole-traversal rule, then back to 
point P. That the trial and error will produce precisely 
one path of the desired type is demonstrated by the se
quence of trials /3, 1', 6, . .. , t. The wormhole traversal 
rule (2.lb) guarantees that the modest displacements of 
the path into mouth 2, in going from /3 to l' to .. . to t, 

will produce the large swing of the path around mouth 1 
that is shown in Fig. 8. This large swing, in fact, is an ob
vious consequence of the "diverging-lens" property of any 
wormhole mouth [13, 1J . And this monotonic, Udiverging
lens swing" will obviously produce precisely one path of 
tbe desired form: path {) in Fig. 8. (iii) From the collision
to-collision travel distance along path {) and the backward 
time travel Tel = 1 of the wormhole traversal, compute 
the speed Vl = v~ with which {) must be traversed. This, 
together with the path {), gives the velocities V2 and v~. 
(iv) From the fact that these V2 and v~ must be the re
flection of each other in the mirror line, infer the mirror 
line's orientation. (v) From the fact that the mirror line 
must be parallel to VI + V2, and from the known value 
of V2 and direction of VI (along a), compute the ball's 
initial speed VI. (vi) From the initial speed and direction 
infer the initial velocity VI . (vii) Reflect this VI in the 
mirror line to get v;. All details of the solution are now 
known, and all the ball's equations of motion have been 
satisfied. 

This same method can be used to produce solutions 
with one mirror-exchange collision and an arbitrary num
ber of wormhole traversals: 

For simplicity, restrict attention to a ball with radius 
R and a wormhole with mouth separation D == 1 and 
mouth radius B satisfying 

(3.3) 

Consider an arbitrary coplanar initial trajectory, as 
shown in Fig. 9(a) . It is characterized by the ball'" ini
tial speed VI, the angle tPA that its initial velocity makes 
with the mouths' line of centers, and its initial impact 
parameter h with respect to the center of mouth 2. (The 
subscript A is used on tPA because, in the limit that the 
collision point is infinitely far from the wormhole, the 
angle tPo, at which the ball first hits mouth 2, asymp
totically approaches tPA; cf. Eq. (3.10) below: tPA is the 
asymptotic value of tPo .) By suitable choices of these p&
rameters in the range 0 :5 VI < 00, 0 :5 tPA :5 11', and 
-00 < h < 00, we can describe all possible coplanar ini
tial trajectories. (Trajectories with -11' < tPA < 0 are 
obtained from those with 0 < tP A < 11' by reflection in 
the line of centers.) As we shall see, to obtain an infinite 
number of solutions, each with a single mirror-exchange 
collision and all with the same initial trajectory, we need 
only place two constraints on the initial trajectory: 

VI> 1, tPA > B . (3.4) 

There typically will be solutions (e.g., the class-I and 
class-II solutions of Fig. 3) in which the collision occurs in 
the vicinity ofthe wormhole. However, in this section, in 
order to demonstrate the existence of infinite numbers of 
solutions, we can and shall restrict attention to collisions 

that occur far from the wormhole, i.e ., at 

L> 1 and L > h, (3 .5) 

where L is the distance, along the initial trajectory, from 
the collision to the point of closest approach to mouth 
2; d . Fig. 9(a) . As was the case in Fig. 7, for a fixed 
incoming trajectory, the location L of the collision will 
turn out to depend on the number n of wormhole traver
sals, and in the limit n -+ 00, L will become arbitrarily 
large. In the discussion associated with Fig. 8, we re
garded the initial path and L as fixed, and solved for the 
initial speed VI' Here we shall regard the initial path and 
speed (Le., tPA, h, and vd as fixed and shall solve for L 
in terms of tPA, h, VI, and n . 

Because L > 1, the velocity v~ with which the ball 

• I· 

FIG. 9. A solution to the equations of motion for R < 
B < 1, with an arbitrary number n of wormhole traversals. 
The figure is drawn for n = 8. The initial trajectory, charac
terized by VI, "A, and 1&, is arbitrary except that VI > 1 and 
tPA > B. (a) The large-scale geometry of the solution. (b) 
The sequence of wormhole traversals &8 the ball works its way 
up toward the line of centers. (c) The sequence of traversals 
as the ball worb its way back down from the line of centers. 
The angles tb2. and ';U+I are given by the diverging-lens map 
(3.6). 
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heads toward the wormhole and the velocity V2 with 
which it returns are very nearly antiparallel. Since these 
velocities must be the reflections of each other. the mir
ror line (which is along VI + v,) must be very nearly 
orthogonal to V2. and correspondingly. the speeds must 
be related by 

V2 = v; = VI cos(II/L) = vdl- t(II/L)'), (3.6) 

where we ignore corrections of higher order in hI L. In 
its sequence of n wormhole traversals, the ball goes back
ward in time by !:1T = -nTc/ = -no Correspondingly, in 
order to return to the collision point at the moment of 
collision, it must travel a total distance nV2 . The total 
distance traveled, for large L and n, is easily seen from 
the diagram to be 2L + n (aside from unimportant frac
t.ional correct.ions of order h' I L'). By equating t.hese 
dist.ances to each other and using the value (3.6) for the 
speed v" we obtain the relation 

2L 
(3.7) 

n = VI _ 1- t(h/L)'VI . 

This is' the promised relation which determines the loca
tion L of the collision in terms of the initial trajectory 
(characterized here by h and VI) and the number n of 
wormhole traversals. 

Notice that this relation cannot be satisfied, for arbi
trarily large n and positive L, unless VI > 1. This is the 
origin of the first of constraints (3.4) on our initial tra
jectory. The second of those constraints. "'A > B, is re
quired to ensure that, for arbitrarily large Land n [which 
means for "'A!:::: "'0 !:::: 2tPl in Fig. 9(b), see discussion be
low), the ball can reach mouth 2 on its after-collision 
inward trajectory, without first running into mouth 1. 

For a wide class of initial trajectories. there is a lower 
bound on the number n of wormhole traversals that can 
produce a self-consistent solution . In the regime of our 
analysis (n :> I, L:> I, L :> h) this lower bound shows 
up as the fact that n viewed as a function of L with fixed 
VI and h [Eq. (3.7») has a minimum: 

3A7'i 
nmin = (III _ 1)3/,lhl . (3.8) 

As the initial speed VI decreases toward unity (with h 
fixed), the minimum number of traversals nmin increases 
toward infinity. 

To recapitulate, for every choice of initial conditions in 
the range VI > 1 and "'A > B , there is an infinite num
ber of solutions (labeled by n) to (i) the laws of energy 
and momentum conservation in the billiard-ball collision 
[embodied in Eq. (3.6) which produces mirror-exchange), 
and (ii) the condition that the ball return to its collision 
point at the same time T as it left it [Eq. (3.7»). We can 
be sure that each n > nmin gives a full solution to the 
equations of motion as soon as we have verified one more 
thing: that there is a path leading from the collision point 
of Fig. 9(a), to mouth 2, then through the wormhole n 
times [and obeying the ru/el (2.1) at each trallersa/), then 
out of mouth 1 and back to the collision point. We shall 
now demonstrate that this is so. 

We shall label the wormhole traversals by odd integers 

1, 3. 5, . . . • 2n -1 , and shall label the path up to mouth 
2, the paths between traversals. and the path back to the 
collision point by even integers 0,2,4 •.. . , 2n . Figure 9 
is drawn for n = 8, 2n = 16. The location of traversal 
21: - 1 is described by its angle tP",-1 on the wormhole 
mouths relative to the line of centers, and the direction 
of path 21: is described by the angle tP2t from the line of 
centers to the path's velocity direction . The wormhole 
traversal rule (2.lb). in this notation. reads 

tP'I:+' - tP2i: = -2tP'l:+l for 0 $ I: $ n - 1; (3.9a) 

and the expression for the slope of path 21: in terms of the 
locations of its end points reads (for B <: 1 so ItPu I <: 1) 

sintP21:+1 - sintP21:_1 = - tP;1: for 1 $ I: $ n -1 . 

(3.9b) 

For all except the first and last traversals, the angle tP 
is small compared to unity. Therefore, in (3.9b) the 
sin tPU*1 can be approzimated by tP2I::i:I. ezcept for sin tPl 
and sin~2n_I ' 

Equations (3.9a) and (3.9b) const.it.ute a map from the 
direct.ion tPo of the ingoing path to the direction tP2n of 
the outgoing path. This map embodies all the equations
of-motion constraints on the trial-and-error search for the 
desired ingoing path . In this map we are to take tPo as 
fixed by our chosen location for t.he collision 

tPo = tPA + hlL (3.10) 

[cf. Fig. 9( a») , and we are to adjust the locat.ion tPl of t.he 
in going path so as to produce n wormhole traversals fol
lowed by an outgoing pat.h with direction tP2n = tPo - 1f. 

The diverging-lens behavior of the wormhole guarantees 
that tPl can be so adjusted: By elementary geometric op
t.ics it. should be clear that. the correct route must work 
its way up toward the mouths' line of centers in the man
ner of Fig. 9(b) during the first half of its trip, and must 
then work its way back down in the manner of Fig. 9(c) 
during the second half. In order to do this successfully, 
the paths on the upward route must have tP2I:+2 <: tPu 
and, correspondingly [ef. Eq. (3 .9a»), tP21:+1 ::: 2tP2I:~r, 
as one sees from a more precise study of the map (3.9a) 
and (3.9b), ~'I:+I = 2t/121:[1 + O(B»), where O(B) de
notes a I:-dependent quantity of order B. In part.icular 
(choosing k = 0), ~l must be equal to ttPo[1 + O(B»). 

We can understand qualit.atively (but. not quantita
tively), with the aid of Fig. 8, how the patt.ern of paths 
in the vicinit.y of the hole changes as t.he trial-and-error 
value of ~I is gradually decreased toward and then past 
the fixed ttPo . Initially, for tPl ::: 7r 12, there is just. one 
wormhole t.raversal and t.he outgoing path at mouth 1 
has the form fJ of Fig. 8. As tPl is decreased, the out
going path at mouth 1 swings from fJ to 'Y , which is the 
desired path in our present trial-and-error search [point 
P very far down path 'Y as in Fig. 9(a)]. We thereby 
obtain a solution with one wormhole traversal . As tPl 
is further decreased, the output path at mouth 1 swings 
through 6 and e and up to (. Suddenly at ( the output 
path plunges down mouth 2 and emerges from mouth 1 
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along p. A further decrease of <PI swings the output path 
around to r, the desired position . We now have a solution 
with two wormhole traversals. By continuing to decrease 
the trial-and-error <PI toward 2tPo, we cause the output 
path to swing again from r to (, there enter the wormhole 
a second time and emerge on P, then swing down to "(, 
producing a solution with three traversals, then c ,;J Linue 
its swing to produce solutions with four traversals, five 
traversals, six traversals, ... . Ultimately, as 411 decreases 
through the singular limit point of an infinite number of 
traversals [<PI = a certain value <Plcrit = ttPo + 0(tP0 8)], 
the output path flips over to path 'I, which passes just 
above mouth 2; and further decreases of <PI cause it to 
swing through a pattern 'I, (J, L, reduction of traversals 
by 1; then 'I, (J, " reduction by 1; ... until the number 
of traversals is reduced to zero. During this reduction 
sequence we get no acceptable solutions because the out
put path is not swinging through the required position 
"(. 

This completes our demonstration that for each copla
nar initial trajectory with VI > 1 and tPA > B (and for 
a ball and wormhole satisfying R <: B <: I), there ex
ists an infinite number of solutions of the billiard-ball 
equations of motion, one corresponding to each value 
n > nmin of the number of wormhole traversals, To 
construct the solution with n traversals one can (i) spec
ify the initial trajectory (the parameters tPA, h, vd, (ii) 
then compute the location L of the collision from Eq. 
(3.7), and (iii) then find the location <PI at which the ball 
first enters mouth 2 by the above geometrical trial-and
error method. (Readers who seek higher rigor than we 
do might worry that our analysis has examined only the 
leading-order effects in the small parameters B, R/ B, 
1/ L, and h/ L and has not proved rigorously that higher
order corrections are negligible , We are not worried.) 

C. Initial trajectories with only one solution 

In this section we turn attention from initial trajecto
ries with infinite multiplicity (an infinite number of s0-

lutions), to the issue of whether there exist trajectories 
with only one solution: collision-free motion . As in the 
last section, we shall restrict attention to initial trajecto
ries that are coplanar with the wormhole's line of centers 
and shall describe them by the parameters VI, h, and tP A 

of Fig. 9(a) , 
We learned in the last section that for speeds VI > 1 the 

multiplicity is almost always infinite. This suggests that 
we should seek unit multiplicity in the regime VI <: L 
Moreover, it seems intuitively clear that a good strategy 
for avoiding collisions is to keep the initial trajectory far 
from the wormhole, i.e., to choose h::> 1. 

That h ;» 1 and VI <: 1 are indeed likely to produce 
unit multiplicity we can see from the following: If there 
were a solution with one or more collisions, the first col
lision encountered by the ball presumably would have to 
be of the type depicted in Fig. 9(a): the old incarnation 
of the ball flies out from near the wormhole and knocks 
the young incarnation inward, toward it, and then the old 
incarnation flies away never to collide again. Such a colli-

sion can only be of the mirror-exchange type and not the 
velocity-exchange type. Moreover, even if the ball en
counters many additional collisions near the wormhole, 
energy conservation in the entire sequen.ce of colli.si.ons 
implies that V2 = v~ in the ball's first, dIstant colliSIon; 
and this, together with the argument preceding Eq. (3.6), 
implies that 

(3.11) 

In other words, after its first collision, the ball heads 
toward the wormhole with a speed v~ = V2 very small 
compared to D /Td = 1, and after it has finished all its 
near-wormhole activity, it heads back out toward its first 
collision with the same tiny speed. This implies, in turn, 
that the ball must travel backward in time, via wormhole 
traversals, by a huge amount, AT > 2h/V2 > 2h/vI ;» 
2h ;» L Since each traversal produces a backward time 
travel of only Td = 1, and there is a forward time travel 
of at least D/v = l/v between traversals, the only way 
the ball can achieve such an evolution is by a peculiar 
sequence of multiple collisions near the wormhole that 
build up speeds V > 1, temporarily, followed (from the 
ball's viewpoint) by multiple wormhole traversals into the 
past at these high speeds, and then followed (from the 
ball's viewpoint) by collisions that reduce the ball back 
to V2 <: I and send it back out toward its first collision 
event. We have searched cursorily for such peculiar solu
tions, without success, and we suspect they do not exist. 
However, we have no proof. 

On the other hand, in the limit that the ball's initial 
velocity is precisely zero, and the ball's initial location is 
far from the wormhole mouths, it is easy to prove (with 
one caveat; see below) that there is only one solution, the 
trivial one where the ball remains always at rest. The 
proof makes use of a sequence of nested convex surfaces 
that enclose the wormhole mouths, which for concrete
ness we take to be ellipsoids of revolution (Fig. 10). The 
ellipsoids are labeled by a generalized radius r which in
creases outward. We require that the ball initially reside 
at a radius ro larger than that, rmin, of the ellipsoid which 
barely encloses both wormhole mouths. 

Now, suppose that there were a solution to the equa
tions of motion other than the one in which the ball re-

ro-----

FIG. 10. Nested elliptlOids of revolution surrounding the 
wormhole, which are used to prove that a ball initially at rest 
sufficiently far from the wormhole must always remain at rest. 
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mains at rest. In this solution, the ball would have to 
undergo one or more self-collisions. There are two pos
sibilities: (i) As seen by the ball there is an infinite se
quence of self-collisions that goes on and on forever . We 
have not been able to rule out such a solution rigorously, 
but it seems exceedingly unlikely that one could exist . 
(ii) As seen by the ball there is a last collision . We re
strict ourselves to this case. 

After completing all its collisions , in order to conserve 
energy (cf. Fig. 5 of Ref. [6)), the ball would have to 
return to rest. Let rmax be the largest radius the ball 
reaches while it is in motion. Since rmax > ro > rmin, 
this largest radius must lie outside the w~mhole, and 
there thus must be a collision at this r m .. x , for otherwise 
the moving ball would be at larger radii momentarily 
before or after it is at rmax. However, the object that 
the ball collides with, as it rises to rmax and then gets 
deflected back downward, can only be the ball itself(since 
there exist no objects in this problem except the ball and 
the wormhole), on a path that is coming downward from 
radii r > rmax. We thus reach a contradiction; rmax is 
not the ball 's maxium radius. Therefore, there exist no 
solutions except the trivial one. 

Note that this proof fails if the ball is initially at rest 
inside radius rmin, since the maximum radius then can lie 
at the wormhole mouth, and the wormhole rather than 
a collision can be responsible for deflecting the ball back 
inward toward smaller radii. A specific example of a non
trivial solution of this type is the one where the ball is 
initially at rest on the mouths' line of centers, gets hit 
and knocked into mouth 2, emerges earlier from mouth 
I, hits itself and returns to rest; cf. the second paragraph 
after Eq. (3 .1). 

IV . SEARCH FOR COPLANAR INITIAL 
TRAJECTORIES WITH NO 

SELF-CONSISTENT SOLUTIONS 

We now turn attention to the issue of whether 
there exist coplanar initial trajectories with vanishing 
multiplicity-i.e., initial trajectories that have no self
consistent solutions whatsoever. If there are such initial 
trajectories, they must be of the "dangerous" type, i.e. 
they must be trajectories that, when followed assuming 
no self-collision, produce a self-collision; cf. the discussion 
in Sec. lB . 

Our search for zero multiplicity among the dangerous 
trajectories will be carried out in three pieces. In sub
section A we shall consider the restrictive case of a ball 
and wormhole satisfying R <c B <C I , and shall show 
that in this case all (coplanar) dangerous initial trajec
tories have infinite multiplicity. In Sec. IV B and Ap
pendix A, we shall completely relax these restrictions, 
and require only that B < ! so the wormhole mouths 
do not overlap each other, and R/ B < ! so the ball can 
pass through the wormhole and we can ignore the effects 
of tidal forces on the ball during and after its traver
sal (cf. Sec . IIA). For this case we shall derive a pair of 
coupled, highly nonlinear algebraic equations that gov
ern self-consistent solutions. These equations have solu
tions in all regimes we have examined (the multiplicity 

is nonzero) , but their high nonlinearity has prevented us 
from proving definitively that there always is a solution. 
In Sec. IV C and Appendix B we shall examine the inter
mediate case R/ B < ~ but B <: 1. In this case we shall 
show that for a wide range of dangerous initial trajecto
ries there is always at least one self-consistent solution, 
and we shall argue that this is probably so for all ini
tial trajectories, i.e. , the multiplicity is probably always 
nonzero. 

To summarize, our search will turn up no evidence at 
all for initial trajectories with zero multiplicty. 

As a by-product of our search, we shall obtain a de
tailed understanding of the class-I and class-II solutions 
depicted in Fig. 3, above. 

A. Ball and wormhole with R <: B <: 1 

When R <C B <: I, we can infer from the analysis given 
in Sec. III B above that all dangerous initial trajectories 
have infinite multiplicity. The argument goes as follows. 

Each dangerous initial trajectory, if followed assum
ing no self-collision, must travel backward in time by a 
mouth-2 to mouth-l wormhole traversal so as to produce 
a self-collision. This means that it must hit mouth 2 upon 
nearing the wormhole, and not be blocked from doing so 
by mouth I, which in turn means that the angle tPA. in 
Fig. 9(a) must be larger than B : 

I/JA. >B (4 .180) 

[ef. Eq . (4.7) below with tPA. = (J + ¢J . Moreover, it is 
easy to see that, if n is the total number of mouth-2 to 
mouth-l wormhole traversals that the (seIC-inconsistent) 
trajectory undergoes before hitting itself, then the to
tal distance it travels from its first encounter with the 
event of self-inconsistent collision to its second encounter 
is III > nD = n. Since the wormhole traversals produce 
a backward time travel of IlT = -nTd = -n, the de
mand that there be zero external time lapse between the 
first and second encounters, Ill/VI + IlT = 0, implies 
that the ball 's initial speed is 

VI> 1 . (4.1 b) 

Since each dangerous initial trajectory satisfies condi
tions (4.1a) and (4 .1b), all dangerous initial trajectories 
are in the class for which we proved infinite multiplicity 
in Sec. III B; cf. Eq. (3.4). 

B. B < t and R/ B < t 

Turn next to a wormhole whose size is constrained only 
by B < ~ (mouths do not overlap) and R/B < ! (tidal 
forces ignorable during traversal; cf. Sec. II A) . 

As in the extreme case of R <C B <: I, so also here, all 
dangerous initial trajectories must extend directly from 
infinity to mouth 2, so as to initiate their backward time 
travel. This makes it advantageous to label the initial 
trajectories by a different triplet of parameters than those 
of Fig . 9(a) above. The previous parameters were the 
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initial speed VI of the ball's center, its impact parameter 
h, and its angle tPA relative to the wormhole mouths' line 
of centers. Our new parameters are VI and the two angles 
9, ¢ shown in Fig. 11. The two sets of parameters are 
related by h = -B sin 9, tPA = 9 + ¢ . 

In order to make progress in the search for self
consistent solutions in this weakly constrained case of 
possibly large B and R/ B, we have confined our search to 
self-consistent solutions (i) with just one collision, which 
(ii) is of the mirror-exchange type, and (iii) in which the 
ball first encounters the collision event before any worm
hole traversal and then encounters it again after only one 

Bsinasin a;P [SinO-Sin (O+¢- a;p)] 

traversal. We shall characterize such a self-consistent s0-

lution by (among others) the two angles a and P shown in 
Fig . 11 ; P is the ball's deflection angle when it first passes 
through the collision event, and a is the angle between 
the two incoming balls (old incarnation and new incarna
tion) at the collision event. In Appendix A we show that, 
corresponding to each nonspurious solution (a, P) of the 
following two equations, there exists a self-consistent s0-

lution of the full equations of motion for the billiard ball; 
and we give in Appendix A equations for computing all 
features of that solution. The two equations for a and P 
are 

+ . Il . 01- P { . (0 .I.) B [. 0 . (0 01 - P)]} ( . 01+ P. . SID P SID -2- SID + Y' - SID + SID + ¢ + -2- = VI + d) SID -2- SID 01 SID P , (4.2) 

Bsin (a; P _ 0 -¢) (sin a +sinp) + Bsin9sin(a - P) - sinpsin(a - 9 - ¢) = -dsinasinp, ( 4.3) 

where 

_ sinH< a + P)] 
P - sin[t(a - P)] , (4.4a) 

d = 2sR/(1 + l + 2pcosa)I/2, s = sign(d) ; (4.4b) 

and if one is interested in the ball's speed between colli
sions, it is given by 

FIG. 11. Geometry of a. RIC-consistent solution with one 
wormhole tra.versa.l ud one billia.rd-ball collision . More de
taile of tlWl geometry a.re depicted in Figs. 17 a.nd 18 of Ap
pendix A. By convention all a.ngies a.nd dista.ncea (e.g., a, /J, 
a.nd ci) a.re positive when their orienta.tionl ue u Ihown here. 

(4.5) 

The parameter d is shown in Fig. 11; it is the distance 
that the ball's younger incarnation must travel past the 
point of intersection of the two incoming trajectories, to 
reach the collision event. One can choose its sign & ar
bitrarily in a search for solutions. If /I = +1 (the case 
shown in Fig. 11), the ball's older incarnation passes be
hind the younger, the younger is deflected to the right 
(P> 0) , and we call the collision "class I" [ef. Fig. 3(b)]. 
If s = -I, the older incarnation passes in front of the 
younger , the younger is deflected to the left (P < 0), and 
we call the collision "class II" [ef. Fig. 3( c)] 

Equations (4.2) and (4.3) for a and P have the fol
lowing set of spurious solutions that were introduced by 
manipulations carried out in Appendix A: 

(OI,P) = (0,0), (11",0), (0, 11"), (11",11"), (2¢,O), (4.6a) 

any solution with p < 0 , (4.6b) 

any solution with sign(p) ¥- sign(d) == s . (4.6c) 

Equations (4.2) and (4.3) for a and P are so horri
bly nonlinear that we can say only one thing definitive 
and universal about their solutions: since there are two 
equations for two unknowns, the solutions must form a 
discrete set. It is far from obvious, just looking at the 
equatioDB, whether there exist values of the wormhole 
and ball radii B, R and initial-trajectory parameters V., 
0, ¢ that produce zero solutions. Numerical exploration, 
and the analytic considerations of the next section, have 
not turned up any such zero-multiplicity trajectories. 
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c. B < 1 and RIB < t 

To make further progress in our search for dangerous 
initial trajectories with no self-consistent solutions, we 
shall retain RIB < !, but shall specialize to a worm
hole with mouth radii small compared to their separation, 
B <: D = 1. (Note that these relations imply R <: 1.) 
We shall also limit ourselves to a large but not com
plete set of dangerous initial trajectories: those whose 
self-incoruistent solutions have the same form as the self
consistent solutions analyzed in the last section: the ball 
comes in from infinity, passes through (and ignores) its 
collision event, traverses the wormhole just once, and 
then hits its collision event a second (self-inconsistent) 
time. The parameters of such initial trajectories lie in 
the range 

B/2 < 41 < 1r/2, B - 41 < (J < 41, Vlmin < VI < Vlmax , 

(4.7) 

where 

Vlmin}=c06(J{1_2BC06q,)=f 2R . (4.8) 
Vlmax cos 41 C06 41 

The (J, 41 part of this dangerous region is the interior of 
the thick-lined triangle of Fig. 12. We shall call this the 
"dangerous triangle." The constraint (J > B - 41 (lower 
left edge of dangerous triangle) is required so the ball 
will avoid entering mouth 1 before it reaches mouth 2; 
parameters (11,41) near this edge correspond to incoming 
trajectories that skim past mouth I, go down mouth 2, 
emerge from mouth 1, and then collide self-inconsistently 
near mouth 1. The constraint 41 < 1r/2 (right edge of 
dangerous triangle) is required so the ball's path will in
tersect itself after passing through the wormhole; near 
this edge the outgoing path emerges from the wormhole 
nearly anti parallel to the ingoing path, thereby produc
ing a self-inconsistent collision far from the wormhole. 
The constraint (J < 41 (upper left edge of dangerous tri
angle) is required to make the collision occur before the 
ball enters mouth 2 a second time; for (11, 41) near this 
edge, the self-inconsistent collision occurs cl06e to mouth 
2. The constraint (4.8) on VI (not depicted in the figure) 
guarantees that the ball returns to the collision region at 
the right time to produce a self-inconsistent collision. 

In Appendix B we carry out a search for self-consistent 
solutions throughout this range of dangerous initial tra
jectories. The strategy of the search is based on the phys
ical idea that, because R < B/2 <: 1, the ball travels a 
distance huge compared to its size R between its first and 
second encounters with the collision. This means that a 
very tiny deflection, 1111 .... R <: I, can significantly al
ter the geometry of the collision, and possibly change it 
from the self-inconsistent form of Fig. 3(a) to the class-I 
or class-II selC-consistent form of Figs. 3(b) and 3(c). A 
tiny value of 1111 goes hand in hand with a tiny change 
of a from its self-inconsistent-solution value 241 (which is 
dictated by the wormhole traversal rule shown in Fig. 4). 
This motivates us to search for solutions in the parameter 
range 

1111 <: I, 1£1 <: 1, where £ == a - 241 . (4.9) 

In Appendix B we search in this range by expanding 
Eqs. (4.2) and (4.3) for a, 11 in powers of £ and 11. In 
order to obtain real solutions, ratber than just the spuri
ous solutions of Eq. (4.6a), the equations are expanded to 
quadratic order, and tbey then are combined to yield one 
quadratic and one linear equation, Eqs. (B2) and (BI2) 
[in which Al is as defined in Eq. (4.10) below). These 
equations have simple analytic solutions throughout the 
regime (4.7) of dangerous initial trajectories (through
out the interior of Fig. 12's dangerous triangle), except 
near the triangle's left corner and near its lower left edge. 

e 
7tI2 

B 

FIG. 12. Par&meter space for the ball's initial tr&jectory 
when B < 1, R/ B < ~ . The interior of the thick-lined triu
gle is the region of dugerous initial tr&jectories tb.t produce 
& self-inconsistent collision &Cter one wormhole tr&verul [Eq. 
(4.7)]. We call this the "d&ngerous tri&ngie." EqU&tion. (4.2) 
&nd (4.3) govern IOlutions throughout this d&ngerou. triu
gle. Simple &nalytic IOlutions of these equ&tion. &re given, 
in the indic&ted sh&ded region. of the d&ngerous tri&ngie, by 
the indic&ted equ&tions. Analytic IOlutions c&nnot be derived 
by the techniques of Appendix B for the white regions of the 
triugie (left corner &nd lower left edge), but numeric&i solu
tions h&ve been found in spot checks throughout th&t white 
region. Figure 14 below shows, u &n eX&mple, & IOlution 
(part &nalytic, p&rt numerical) a.lI &iong the upper left edge 
of the d&ngerous tri&ngle, including the left corner. 
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Near this corner and edge, tiny changes of the incoming 
trajectory produce huge changes in the location of the 
self-inconsistent solution; and correspondingly, it turns 
out that self-consistent solutions there typically have a 
large value of t. This causes the power-series expansion 
of Appendix B to break down . However, near this corner 
and edge one can go back to the exact, nonlinear equa
tions (4 .2) and (4.3), and find solutions numerically. At 
all points near the left corner and lower left edge where 
we have tried, we found numerical solutions . Thus, it 
seems likely that solutions exist everywhere in the dan
gerous triangle. 

The simple analytic solutions in the horizontally 
shaded central part of the triangle (i .e ., for collisions not 
close to either mouth; cf. Fig. 12) are interesting and in
structive. In describing these simple solutions we shall 
give formulas not only for /3 and t: (a surrogate for the 
angle 0'), but also for the ball's speed V2 between col
lisions. Other parameters describing the solutions can 
be inferred from the equations in Appendix A. To sim
plify notation in the solutions, we shall characterize the 
initial speed VI and the speed between collisions V2 by 
parameters Al and A2 defined by 

( 4.10) 

(4.11) 

Note that the dangerous initial trajectories have 0 < 
Al < 1. In the central region of the triangle (tP - 0:> B, 
tP + 0 - B :> R, and ~ /2 - tP :> B) there are two simple 
solutions to the quadratic and linear equations (B2) and 
(B12) : one of class I, the other of class II . The class-I 
solution (8 = +1) is 

/3 - SsintP BRA 
- cosO(tan2tP-tan20) I, 

(4.12a) 

(4.12b) 

A2= (1+ 22tPCOStP 20B)AI 
tan - tan 

(4.12c) 

The class-II solution (s = -1) is 

/3 = - Ssin tP BR(1- Ad 
cosO(tan2 tP - tan2 0) , (4.13a) 

(4.13b) 

1-A2'"" (1+ 2
2costP 

20B)(1-AJ). tan tP - tan 
(4.13c) 

These solutions, which when viewed as functions of Al 
(i.e., of vd are linear, actually extend out of the region 
o < AI < 1 of dangerous initial trajectories: The class
I solution is valid for R- I :> Al > 1, as well as for 
o < Al < 1, but it is spurious for Al < 0 since there 
it predicts opposite signs for /3 and 8; cr. Eqs. (4.12a) 

and (4.6c) . Similarly, the class-II solution is valid for 
-R- I <: Al < 0, as well as for 0 < Al < 1, but for 
AI > 1 it predicts opposite signs for /3 and 8 and thus 
is spurious. At the point Al = 0 or 1 where one of the 
solutions stops (becomes spurious), it actually joins onto 
(converts over into) a valid, collision-free solution in a 
manner depicted in Fig. 13. 

These simple solutions for the interior region of the 
dangerous triangle (Fig. 12) break down near the trian
gle's upper left and lower left edges. There, in solving the 
coupled linear and quadratic equations (B2) and (B12), 
one must keep nonlinear terms. It is straightforward to 
do so, and thereby obtain solutions valid near the upper 
left edge, but not near the left corner or lower left. edge. 
In Appendix B we analyze the region near the upper left 
edge (collisions that occur near mouth 2) : 0 < tP-O $ B, 
tP :> B. By combining Eqs. (B2) and (BI2), we ob
tain a quadratic equation [Eq. (B29)J, with rather sim
ple coefficients, for the incoming ball's deflection angle 
/3. Some of the solutions to this quadratic equation are 
spurious (wrong sign of /3 for a chosen sign of 8). In 
Appendix B it is shown that, throughout our chosen re
gion (0 < tP - 0 $ B, tP :> B), there is a nonspurious 
class-I (s = +1) solution, Eq. (B32), but in some parts 
of that region there is no nonspurious class-II solution. 
We suspect, but have not proved, that the missing class
II solution actually exists, but the ball first encounters 
its collision shortly after passing through the wormhole, 
rather than before, and therefore this solution is beyond 
the domain of validity of our analysis. 

On the upper left edge of the dangerous triangle (at 
tP = 0), the class-I solution (B32) has the form depicted 
in Fig. 14. This figure is drawn for AI = t, B = 10-2 

Rccular solution 
without collision 

RcCUIu solution 
ilhout collision 

FIG. 13. Billi .. rd-ball speeds for the two self-consistent 
solutions (4.12) ud (4.13) in the centra.! region of Fig. 12'8 
dugerou5 triugle. (This centr&! region represents collisions 
th .. t occur neither very close to .. wormhole mouth nor .. t huge 
di8tuces from the wormhole.) The p .. runeters plotted, Al 
ud A2, are proportion&! to the speeds VI &Dd V, [Eqs. (4 .10) 
.. nd (4.11»), .. nd the dugerous ruge of incoming speeds is 
0< AI < 1. At e&eh edge of the d .. ngerous ruge, one of the 
solutions joins continuously onto" collision-free solution, and 
the other continues to exist as " solution with collision. 
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and R = 10-5 (though the solution is valid also when R 
is close to B). Notice the sharp change in the deftection 
angle as one passes from t/J > 7r/4 to t/J < 7r/4, and from 
t/J > ,fB = 0.1 to t/J < ,fB = 0.1 : At t/J > 1(/4, the 
deftection angle {3 is of order R = 10-5 (This is rather 
larger than in the central region of the triangle , where it 
is of order BR; cr. Eqs. (4.12a) and (4.13a)J. At ,fB < 
t/J < 7(/4, {3 is .oforder B = 10-2. As t/J decreases toward 
zero (as one moves toward the left corner of the dangerous 
triangle) , ~ grows large and the power series expansion 
of Appendix B begins to break down . We have solved 
numerically the full, nonlinear equations (4.2) and (4.3) 
for Q and {3 in this corner region and have verified that 
a solution continues to exist right up to the corner . 

The analytic solution (B32) takes on especially simple 
forms for a very small ball (Rtan2 ~ <: B) , very near the 
upper left edge ofthe dangerous triangle (I~-Ol tan2 t/J <: 
1), and away from the regions of rapidly changing {3: At 
t/J :>,fB and 1f/4 - t/J :> B the solution becomes 

{3 = sint/Jcos2~B, 
_ cos2~cos2 ~ B . 

~ - sint/J ' (4.14) 

and att/J-1f/4:> B (but 7r/2-t/J::» JR/B and 7(/2-t/J:> 
It/J - Oj1/'), it becomes 

{3=~=_4sint/JRAI . 
cos 2,p 

(4.15) 

These approximations to the solution are plotted as 
dashed lines in Fig. 14. 

To recapitulate, self-consistent analytic solutions with 
1{31 <: 1 and I~I <: 1 exist throughout the dangerous re
gion of Fig. 12, except its left corner and lower left edge; 
and we have found numerical solutions in spot checks of 

10.2,-,.---.------.-----------. 

10·5:-:!~-=-=_-----'_-----------l 
O~I ~~ ~ ~ 

FIG. 14 . A combination numerical and analytic solution 
for the ball's deflection angle tJ as a function of •• along the 
upper edge 8 = tP of Fig. 12'5 dangerous triangle. This is 
the clasa-I solution (tJ > 0) ; the ball and wormhole radii are 
R = 10-' and B = 10-1 ; and the incoming speed is at the 
center of the dangerous range, VI = !(Vlm .. +Vlm;.) [>'1 = !; 
cr. Eq. (4 .10»). 

that corner and edge. We find no evidence, when B < 1 
and R/ B < t, for initial trajectories with zero multiplic
ity. 

v. NONCOPLANAR TRAJECTORIES 

In this section we shall extend most of the coplanar 
results of Secs. III and IV to initial trajectories that are 
slightly noncoplanar. Thereby we shall accumulate evi
dence which suggests , but does not really prove, that all 
noncoplanar initial trajectories have multiplicity larger 
than zero (i.e., have self-consistent solutions to the equa
tions of motion). Throughout our discussion we shall 
confine attention to a wormhole with B <: 1. [This same 
restriction was imposed throughout Sec. III and in all of 
Sec. IV except in the fully nonlinear equations of motion 
(4.2) and (4.3) .J 

As a first step, we shall ask ourselves how nearly copla
Dar a trajectory must be in order to be dangerous, i.e., in 
order to produce a self-inconsistent collision, if followed 
assuming no collision. 

Consider an arbitrary initial trajectory. Define the 
wormhole's "equatorial plane" to be the unique plane 
that is parallel to this initial trajectory and contains the 
wormhole's line of centers. At any point along the ball's 
trajectory, denote by z the height of the ball's center 
above the equatorial plane, denote by I the distance the 
ball has traveled (from some arbitrary origin) parallel 
to the equatorial plane, and denote by z' == dz /dl the 
inclination of its trajectory to the equatorial plane. Our 
definition of equatorial plane guarantees that initially the 
trajectory has z = const == Zl and z' = O. However, z' 
will be made nonzero by the first collision or wormhole 
traversal the ball encounters. 

Now, follow the ball's initial trajectory assuming no 
collisions. In order for the trajectory to be dangerous, 
it must traverse the wormhole . The wormhole traversal 
will convert the trajectory 's inclination from z; = 0 to 
z, = cosOtan(2arcsin(zl/B)J; d. Fig. 15(a). Here 0 is 
the angle at which the trajectory's equatorial projection 
intersects the equatorial normal to the wormhole mouth 
(as in Fig. 11 above). If it travels a subsequent distance 
~l = L2 parallel to the equatorial plane and then collides 
with itself (inconsistently), the height of its center at the 
collision will be z, = %1 + L2 cos 0 tan(2arcsin(zd B)J . To 
guarantee a collision, we must have IZ2 - zll < 2R. Thus, 
the initial trajectory will be dangerous only if 

ZI < Bsin[4arctan(2R/L2cosO)J . (5.1) 

For typical dangerous initial trajectories, L, cos 0 will be 
of order unity, and thus much larger than B, which in 
turn is a little larger than R; so the danger criterion 
(5.1) reduces to %1 $ RB. This means that the danger
ous initial trajectories differ from coplanarity by no more 
than a fraction B <: 1 of the ball's radius R. 

We have not found a good way to analyze dangerous 
initial trajectories near the boundary of the region (5 .1). 
However, for %1 <: B sin[tarctan(2RI L, cosO)J, the ball's 
motions parallel to the equatorial plane (its "in-plane mo
tions") decouple from its motions perpendicular to the 
equatorial plane (its "out-of-plane motions" ), and this 
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mouth 2 

mouth 2 

FIG. 15. Change in a noncoplanar trajectory's inclination 
z' when it traverses the wormhole from mouth 2 to mouth 1: 
(a) for a ball that does not collide before the traversal; (b) 
for a ball that collides and is vertically deflected before the 
traversal. (The change of inclination is a manifestation of the 
wormhole's "diverging-lens" effect.) The left and right halves 
of these twlHiimensional diagrams are the projection of the 
ball's trajectory onto a plane that (i) is orthogonal to the 
equatorial plane (i.e., is vertical), and (ii) passes through the 
mouth's center a.nd through the intersection of the trajectory 
with the mouth . The angle between the trajectory and this 
projection plane is 8, and correspondingly, horizontal distance 
along the projected trajectory is Ic088. 

permits us easily to extend to such trajectories most of 
the results of Secs. III and IV. We shall demonstrate this 
explicitly for self-consistent solutions that have just one 
wormhole traversal and one collision, and then shall ar
gue that it is true also (though with a change in the al
lowed range of Z.) for all other self-consistent solutions. 

Consider, then, a self-consistent solution in which the 
ball gets hit by itself, travels down mouth 2 and out of 
mouth 1, and then hits itself. We shall seek conditions 
on the degree of noncoplanarity that permit the in-plane 
motions to decouple from the out-of-plane motions. 

Denote by ZI and Z2 the out-of-plane displacements of 
the ball's younger and older incarnations at the moment 
of collision. Because the balls are round, the in-plane 
locations of the balls' centers are influenced by the out
of-plane displacements by amounts 

~I- R(I- costP) ~ RtP'/2 ~ !R{(Z2 - zd/2R]2 , 

(5.2) 

where tP is the angle shown in Fig. 16. Similarly, if the 
ball's center passes through the wormhole mouths at a 
height Zmoulh, that height will influence the ball's in
plane motion in the same manner as would a decrease 

6B __ ~ 
B - 2B2 (5.3) 

in the wormhole's radius . The back action of the out
of-plane motion on the in-plane motion will be negligible 

FIG. 16. Back action of a billiard ball'. out-of plane mo
tion on its in-plane motion. 

in the collision and traversal if ~I <: R in (5.2) and 
6B/B <: 1 in (5.3), i.e., if 

IZ2 - zil <: R and Zmoulh <: B . (5.4) 

We now ask what values of :1 lead to self-consistent solu
tions that satisfy this decoupling condition . {To keep for
mulas simple, we shall write them in approximate forms 
valid for the regime (5.4).] 

In the collision, the z component of momentum trans
fer to ball 1 is 

ZI - Z2 (55) 
~P.=~~PI' . 

where ~PI = kmv1I3 (with k typically of order unity) is 
the momentum transfer in the plane, m is the mass of 
the ball, VI is the ball's speed before the collision, and fJ 
is the deflection angle in the plane. This :-momentum 
transfer changes the inclination of the ball's trajectory 
from z~in = 0 to 

I _ ZI - Z, ~PI _ !.!...=..!!k{J .- 1 (5.6) 
Zioul - 2R PI - 2R ......, 

where PI = mVI is the momentum in the plane. After 
traveling a distance LI from the collision point, the ball 
arrives at mouth 2 with height 

(5.7) 

The wormhole's diverging-lena effect causes the ball to 
emerge from its traversal with inclination {Fig. 15(b)] 

I I 2Zmoulh cos (J 1 
z2 = Ziout + B <:. (5.8) 

The height Z2 that the ball reaches after traveling through 
the wormhole and returning to the collision point is 

(5.9) 

Combining Eqs. (5.6), (5.7), (5.8), and (5.9), we obtain 

(2L, c08 (J/ B)zl 
Z2 - ZI = 71-+~(:7k-:::{J~/2:-:R:::)'":-( L-;-I..;;.+-:-:L,....,'-:+~2~Lf-l-:L-, -coa--::(J'/ B=) , 

(5.10a) 

and correspondingly 



60 

1094 ECHEVERRIA, KLINKHAMMER, AND rnORNE 44 

[1 + (k/3/2R)(LI + L 2)]zl 
Zmouth = ""'1-+-(:":'k-::/3-:/2"';'R=-')'-:(~L':"'1 -+-L=-'2-+":""':-2-:L-'1 L"'"2!..C':"OS--=-0 /-:-B=) 

(5.10b) 

Note that, whatever may be the values of the pa
rameters LI, L2, 0, and /3, there always is a height ZI 

that makes Z2 - ZI and Zmouth small enough to satisfy 
the decoupling criteria (5.4). For the typical case of 
4J - 0 :> B , the distances of the collision from the mouths 
are LI - L2 - 1 and the in-plane deflection angle in the 
collision is /3 - BR [Eq. (4.12a»). so 

and both decoupling criteria (5.4) are satisfied if 

ZI <BR . 

(5.11) 

(5.12) 

Unfortunately (and not surprisingly), this decoupled 
range is a small portion of the full range of dangerous ini
tial trajectories ZI < B sinaarctan(2R/ L2 cos 0») - RB. 
Thus, we can say nothing about the existence of solutions 
over the full range. However, in the decoupled range we 
can infer the following from the above analysis . (i) The 
in-plane motion is affected negligibly by the out-of-plane 
motion. (ii) If there exists a solution to the equations 
of motion for the in-plane motion, then there is also a 
solution for the out-of-plane motion, and it is described 
by the above equations. (iii) The in-plane motion is de
scribed by the same equations as for coplanar initial tra
jectories. (iv) Therefore, to each solution for any slightly 
noncoplanar initial trajectory there corresponds a solu
tion for the corresponding coplanar trajectory, and con
versely. We have derived this conclusion only for the 
case of solutions with a single collision and single worm
hole traversal. However, it should be clear that the same 
method can be used to derive the same final conclusion 
for all self-consistent nearly coplanar solutions, regard
less of the number of collisions and traversals. There 
will be a change in the precise criteria for decoupling 
of the in-plane motions from the out-of-plane motions, 
but there will always be some out-of-plane neighborhood 
of coplanar initial trajectories for which the conclusion 
holds true. 

This implies that the results of Secs III and IV for 
coplanar trajectories are also valid for slightly noncopla
nar trajectories. Specifically: (i) When R <: B <: 1 all 
initial trajectories have multiplicities greater than zero 
(i.e., have self-consistent solutions), and all dangerous 
initial trajectories have infinite multiplicity. (ii) When B 
is allowed to be of order unity (but no larger than ~), and 
R/ B is constrained only to be small enough to neglect 
tidal forces, the extensive set of dangerous initial trajec
tories investigated in Sec. IV and Appendix B all have 
self-consistent solutions even when they are perturbed 
slightly in a non coplanar way. 

To recapitulate, these conclusions hold only for a 
neighborhood of coplanarity (typically Zl <: BR) that 
is much smaller than the full range of dangerous initial 
trajectories (typically ZI .!S BR). However, these conclu
sions make us suspect that even when ZI - BR, all initial 
trajectories will have at least one self-consistent solution . 

VI. CONCLUSIONS 

We have found that the Cauchy problem for a billiard 
ball in a wormhole spacetime with closed timelike curves 
is ill posed in the sense that large, generic classes of initial 
trajectories have multiple, and even infinite numbers of 
self-consistent solutions to the equations of motion. On 
the other hand, we have seen no evidence for a stronger 
type of ill posed ness: generic initial trajectories with no 
self-consistent solutions. In paper II [9] it will be shown 
that a sum-over-histories version of quantum mechanics 
restores well p05edness to the Cauchy problem: Quan
tum mechanics predicts definite probabilities for a nearly 
classical billiard ball to follow this, that, or another of its 
classical solutions. 

These results give a first glimpse of the behavior of 
interacting systems in wormhole spacetimes with closed 
timelike curves. It will be interesting to study more re
alistic, albeit more complex, classical and quantum sys
tems, as some researchers are currently doing [10) . How
ever, our results suggest that in general there might be 
no deep conflict between the existence of closed time like 
curves and the standard laws of physics. 
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APPENDIX A: 
DERIVATION OF EQUATIONS FOR 

COPLANAR SELF-CONSISTENT SOLUTIONS 

In this appendix we derive a complete set oC equa
tions that govern seIC-consistent, coplanar solutions with 
B < ~, R/ B small enough to neglect tidal forces, and a 
single collision that the ball first encounters before any 
wormhole traversals and encounters the second time af
ter just one traversal. The bottom line of our derivation 
will be a proof that, to each nonspurious solution oC Eqs. 
(4 .2) and (4.3) there corresponds a solution of the com
plete equations oC motion . 

Our derivation involves the geometric parameters de
picted in Fig. 17, which is a more detailed version of Fig. 
11. The first phase oC our derivation is to construct a 
full set of equations of motion . The equations in our 
Cull set will be numbered; other equations along the way 
will be unnumbered. The Cull set consists oC (i) three 
"main equations," which can be thought of as coupled 
equations for three unknowns, a, /3, and V2, in terms of 
the wormhole and ball radii B, R and the parameters 
Vb 0, '" of the ball's initial trajectory, and (ii) a set of 
auxiliary equations, which express various geometric pa
rameters appearing in the main equations in terms of the 
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FIG. 17. Full geometry of a self-consistent solution with 
one wormhole traversal and one billiard-ball collision. This is 
the same &S Fig. 11, but with many more details shown. By 
convention, &II angles and distances (e.g., cr, p, d, and d1 ) are 
positive when their orientations are &S shown here. 

u'nknowns a, fJ, V2 and the knowns B , R, VI , 8, 4J . 
We begin by constructing the three main equations. 

They are based on and embody the laws of mirror ex
change (which guarantee conservation of momentum and 
energy), the geometry of the balls relative to each other 
and relative to their trajectories at the moment of colli
sion, and the demand that the ball return to the event of 
collision at the same external time T as it left it . (These 
are all the laws of motion except for the wormhole traver
sal rules and the law of straight-line motion between col
lisions and traversal; those remaining laws are embodied 
in the auxiliary equations.) 

The laws of mirror exchange (2.4a) can be rewritten as 

v~ = V2, v~ X (VI + V2) = -V2 x (VI + ,V2) , 

v; = VI, v; X (VI + V2) = -VI x (VI + V2) 

(together with the requirement that we reject the spuri
ous solutions v~ = -V2, v, = -vJ) . The first pair of 
these determine v~ in terms of VI and V2 , and will be 
crucial to our analysis. The second pair determine v~, 
which is of no interest, and thus we can and shall ig
nore them. The first relation v~ = V2 we shall automati
cally use throughout the analysis without even writing it 
do~n; . i .e., nowhere will v~ appear; we shall always write 
V2 In Its place. The second relation v~ x (VI + V2) = 
-V2 x (VI + v,), which then becomes our sole embod
iment of mirror exchange and hence of energy and mo
mentum conservation, we rewrite in terms of the speeds 
and angles shown in Fig. 17: 

v2 sin(a - fJ) = vI(sina +sinfJ) . 

In order to free this equation from its spurious solution 
a - {3 = 11" (i.e., v~ = -V2), we divide both sides by 

2 coo ~(a - fJ), thereby obtaining 

V2 sin Her - fJ) = VI sin Ha + fJ) . (AI) 

This is our first main equation . 
Turn , next , to the geometry of the collision . Letting 

the collision occur at time T = 0 and introducing a suit
able origin of coordinates, we can write the incoming tra
jectories as 

rl(T)=VIT, r2(T)=v2T_2sRlvl+V21 ; 
VI +V2 

cf. Eq. (2.4b). These two trajectories intersect spatially 
(rl = r2) at times TI = -d/vi and T2 = d2 /V2 , where d 
and d2 are the distances shown in Fig. 17. By equating 
the above expressions for rl(TI) and r,(T2), we obtain 

V2 d
2 

+ VI d = 2sR VI + V2 . 
V2 VI IVI + v21 

By forming the scalar products of this equation with 
VI - V;2(VI ·V2)V, (i .e., the component of VI orthogonal 
to v,), and with V2 - vj2(V2· VJ)VI (i.e ., the component 
of V2 orthogonal to vd, we obtain several important re
lations : (i) our second main equation 

Idi/vi = 2R/lvl + v21 

= 2R/( v? + v~ + 2vI V2 cos a )1/2 ; (A2) 

(ii) the relation 

d2/V2 = d/vi , 

which we shall use below to eliminate d2 from our third 
main equation ; and (iii) the signs of d and d2 

sign(d2) = signed) = s . 

[Recall that s was originally defined as the sign of V2 - V I ; 

cf. Eq . (2.4b).] These signs are also the same as that of 
fJ, 

sign(fJ) = signed) = s 

[a relation embodied in the text 's Eq. (4 .6c)], as one 
can see from the following: The geometry of any colli
sion dictates that the momentum transferred to ball 1 
be along the line of centers from ball 2 to ball I, i.e ., 
VI - VI II rl - r2 (where TT means "points in the same 
direction as"). Combining this with Eq. (2.4b), we see 
that v~ -VI II s(v,+vd. Taking the cross product with 
VI we see that VI x VI II SV, X VI, which with the aid of 
Fig. 17 (and the fact that always sin a> 0) implies that 
sin{3 = s. 

Consider, next, the law that the total time lapse be
tween the ball's first and second encounters with the colli
sion must vanish. From F-ig. 17, we see that the vanishing 
total time lapse is given by the time needed to travel the 
distances 0' and c - d, both at speed v" minus the time 
delay tJ.T = 1 introduced by the wormhole traversal: 

~ + c - d, _ 1 = 0 . 
V, V2 

Using the preceding equation to eliminate d2 , we obtain 



62 

1096 ECHEVERRIA. KLINKHAMMER. AND THORNE 

our third main equation: 

0' +c 
V2 = 1 + d/vl . (A3) 

The auxiliary equations. which embody the laws of 
straight-line motion between collisions and wormhole 
traversal, and also embody the wormhole traversal rules, 
are 

c = sin(~ + ~) (1 _ 2B cos~ + 2B sin (1to(2) cos"n) 
smo sm"Y2 

_2B sin (1to/2) COS"Y3 
sin"Y2 ' 

(A4) 

d = -0 + si.n"Y2 (1- 2Bcos~ + 2Bsin(1to(2)COS"Yl) , 
smo sm"y, 

(A5) 

0= .B ,8 [sin(8 -,8) - sin 8'] , 
sm (A6) 

, cos [( 0 + ,8 + 0')/2J 
(A7) a = a 

cos [(9 - ,8 + 0')/2J 

1to=0-,8-0' , (A8) 

"YI = 1(0 - 30' -,8) • (A9) 

"Y2 = 0 + ~ - 28' - ,8 , (A10) 

"Y3 = 1 (0 - 0' - ,8) + <p , (All) 

9' = ~ + 0 _ 0 + {3 
2 ' 

(A12) 

These auxiliary equations can be derived as follows: 
It should be clear from Fig. 17 that PQ = a and PQ' = 

0', and that Q and Q' form an isosceles triangle with 
the center of the right-hand wormhole mouth. Hence, 
QQ' = 2Bsin(1to/2) and TI = (If - 1to)/2. The interior 
angles of the triangle PQQ' must add up to If : 

{3 + (If - TI - 0) + (If - TI + 8') = If . 
When TI is reexpressed in terms of 1to , this immediately be
comes Eq. (A8). Furthermore, applying the sine theorem 
to the triangle PQQ' yields (i) the relation 

a 0' 

sin(lf - TI + 0') = sin(lf - TI- 0) , 

which implies Eq. (A 7); and (ii) 

a 2Bsin(1to/2) 
sine If - " + 0') = sin {3 

which implies 

2 sin [(0 -,8- 0')j2)cos[(9 -,8+ 9')/2] = "isin,8, 

which, by a well-known trigonometric formula, implies 
Eq. (A6) . 

Summing up the interior angles of the triangle TQQ" , 
we find 

(41 + 1to - 8') + (41 + 0) + (11" - 0) = 11" , 

which, when Eq. (A8) is used, yields Eq. (A12). Figure 
18 expands on some details of Fig. 17. Applying the sine 
theorem to the triangle Q"55', we find 

I = 2B . (.1'/2) sin(TI + 0') 
I sm Y' sin(q, + 1to _ 0') 

and 

. sin( TI- 41) 
12 = 2B sm( 1to /2) sine 41 + 1to _ 8') 

For the triangle TQQ" the sine theorem implies 

sin(q, + 0) 
c+12=(1-2Bcosq,+ld · ( ) sm 11"-0 

and 

sine 41 + 1to - 0') 
0+ d = (1 - 2B cos 41 + II) . ( )' sm 11" - 0 

where we have used the relation SQ = 1 - 2B cos 41 . If, 
in the last two equations, we eliminate lit 12 , TI, and 1to 
by using the relations found 50 far, we obtain Eqs. (A4) 
and (A5) with the auxiliary definitions (A6)-(AU). This 
completes our derivation of the auxiliary equations (A4)
(AI2) . 

The next phase of our analysis is a derivation of the 

FIG. 18. Some details of Fig. 17 near the wormhole's left 
mouth (mouth 1). 
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text's equations (4.2) and (4.3) for the angles a and /3. 
These coupled equations follow from our main and aux
iliary equations in the following manner: First we define 

p == V2/VI , 

and reexpress Eq. (AI) as 

p = sin[t(a + /3») 
sin(t(a - /3») 

(A13) 

(A14) 

Now, using Eq. (A2) d can be expressed ill terms of p 
and a as 

(A15) 

wh~re s = signed). By combining Eqs. (A7), (A6), and 
(A12), it can be shown that 

a' sin (3 = B[sin e - sin({3 + e'») 

=B [Sine-Sin (e+t/>- a;(3)] . (A16) 

From Eqs. (A9)-(All) it can be seen that 12 = II + 13, 
and from (AlO) and (A12) that a = e + t/> + 12. Using 
these in Eq. (A4), one can show that 

csin a = sinCe + t/>)(1 - 2B cost/» 

-2B sin(It>/2) cos(8 + t/> + 13) . (A17) 

Next, using (A12) in (A8)-(All), we obtain all the aux
iliary angles in terms of a and {3: 

It> = -t/> + !(a - (3), 'YI = -8 - ~t/> + ~a + V, 
(AI8) 

12 = a - 8 - t/>, 'Y3 = tt/> + ~(a - /3) . 

Using these expressions and some trigonometric manip
ulations, Eq. (A17) can be simplified further, giving 

csin a = sin(8 + t/» 

-B [Sin (e + t/> + a; (3) + sin e] . (AI9) 

Finally, eliminating V2 between (A13) and (A3), and 
replacing p, a', and c from (AI4), (AI6), and (AI9), we 
obtain the first of our equations for a and /3: Eq. (4.2); 
and we obtain the second, Eq. (4.3) by eliminating a 
between (A5) and (A6), using the values (AI8) and (A12) 
of the auxiliary angles, and performing some algebraic 
manipulations. 

Notice that, in the process of deriving our two 
equations (4.2) and (4.3), we multiplied them by 
sin a sin /3sin[(a-{3)/2) [Eq. (4.2»), and by sin a sin (3 [Eq. 
(4.3»). This introduced the first four spurious solutions 
of Eq. (4.6a). The fifth spurious solution in (4.6a) is the 
self-inconsistent solution. Since V2 and VI are both posi
tive by definition, p == V2/VI must also be positive, so any 
solution for a and (3 which produces a negative p via Eq. 
(A14), or equivalently via (4.4a), must be spurious. This 
accounts for Eq. (4.6b). Finally, as was discussed follow
ing Eq. (A2), the collision geometry rules out as spurious 
any solutions with sign({3) ::I signed), which accounts for 
Eq. (4.6c). 

The last phase of our analysis is to explain why, to ev
ery nonspurious solution of Eqs. (4.2) and (4.3) for a and 
/3, there exists a full solution of the billiard ball's equa
tions of motion. The reason is that (i) the main and aux
iliary equations (Al)-(A12) embody all the equations 
of motion (as well as a lot of geometrical constructions); 
and (ii) by regarding the auxiliary equations (A4)-(A12) 
and the third main equation (A3) as definitions of other 
variables in terms of a, (3, B, R, VI, e, t/>, and by insert
ing a nonspurious solution of (4.2) and (4.3) into these 
equations, we automatically produce a solution of the 
remaining two main equations (A2) and (AI). 

APPENDIX B: 
SELF-CONSISTENT SOLUTIONS FOR B < 1 

In this appendix we derive the properties of self
consistent solutions quoted in Sec. IV C, for a wormhole 
and ball with B <: 1 and R/ B < t. We restrict atten
tion to dangerous initial trajectories in the range (4.7) 
[interior of the dangerous triangle depicted in Fig. 12), 
and restrict our search to self-consistent solutions with 
a single collision of the type shown in Fig. 17 and with 
1/31 < 1 and Igl <: 1, where g == a - 2t/>; cr. Eqs. (4.9). 

We begin our derivation in Appendix B 1 by expanding 
the highly nonlinear, coupled equations (4.2), (4.3) in 
powers of (3 and g to the leading orders that produce 
nonspurious solutions. Then in Appendix B 2 we derive 
explicit solutions to those approximate equations for the 
central region of the dangerous triangle, and in Appendix 
B 3 for the upper-edge region of the triangle. 

1. Approximate equations 

In this section we derive the approximate equations 
for/3 and £ by power-series expansions of Eqs. (4.2) and 
(4.3). To facilitate the expansion of Eq. (4.2), we first 
divide it by sin(a/2) (a factor that appears in each term 
in the limit of vanishing (3). When we then expand, the 
resulting equations are homogeneous in /3 and g and at 
linear order admit only spurious solutions, so we move 
on to quadratic order. Up through quadratic order the 
expanded equations take the forms 

Mg + Ng2 + P I {3 + QI{32 + Sd3g = 0, (B1) 

Mg + Ng2 + P2{3 + Q2{32 + S2{3g = 0, (B2) 

for which the coefficients M and N of g and g2 are iden
tically the same in the two equations. The expressions 
for all the expansion coefficients are 

M = !Bsin2t/>cose, (B3) 

N = tB(cos 2t/>C06 e + t sin 2t/> sin e) , (B4) 

PI = - sin(t/> - e) - 2(4AI + s - 2)Rsint/> 

+ B [i sin(2t/> - e) - ~ sin(2t/> + e) - sin e] , 
(B5) 
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QI = - C08~C080 -! cot~sin(~ + 0) 

- 2(2AI - I)Rcos ~ + B(t(9cos2 ~ - 1) cos 0 

+ ~ sin 0 cot ~(7 cos2 ~ - 3») , (B6) 

SI =-c082~cosO/cos~ 

+ R[2(2AI - 1)/ cos~ + (4 - SAl - s) cos~) 
+ B(cosO(~ cos2 ~ - 1) + ~ sin 2~sin 0] , 

(B7) 

P2 = - sin(~ - 0) + 2sRsin ~ 

+ B( -2sin 0 cos2 q, + t sin 2q, cosO) , (BS) 

Q2 = -SRC08~+ B(!cosO- i sin2q,sinO) , (B9) 

S2 = - cos(q, - 0) + sRcos~ 
+ B(cOll0 cos2 ~ + t sin Osin 2~) . (B1O) 

Here the notation is that of Sec. IV and Appendix A, 
including the use of AI as a surrogate for the ball's initial 
speed VI; d. Eqs. (4.10) and (4.S) which imply 

1 
VI = ---:;:(1 - 2B COIl q,) COlI 0 + 2R(2AI - 1)]. (Bll) 

cos,!, 

By subtracting Eq. (B2) from Eq. (Bl) and dividing 
by /3, we obtain the linear equation 

Q/3 + St: + P = 0 , 

where 

Q = - COIl ,p COIl fJ - ! cot,p sin(,p + fJ) 
-(4AI-s-2)Rcos,p 

(B12) 

+ B( - cos fJ + ~ C082 ,p cos fJ + C082 ,p cot,p sin fJ) , 

(BI3) 

S = cosfJ/ cos,p - C08(q, + 0) 

+R(2(1 - 2AJ) cos 2,p/ C08q, - 2s cos q,) 

+B( - cos fJ + ! COIl 0 cos2 ,p - sin 2q,sin fJ), (BI4) 

P = -4Rsin ¢(2AI + S - 1) . (BI5) 

We shall use Eqs. (B2) and (BI2) as our approximate, 
coupled equations for /3 and t:. Since one is quadratic and 
the other is linear, they can be combined to form a single 
quadratic equation for /3 or for t:, but the coefficients 
in that quadratic equation are so complicated that we 
shall not write it down explicitly except in special regimes 
where the coefficients simplify. 

The coefficients in our quadratic and linear equations 
(B2) and (BI2) change drastically (because R <: 1 and 
B <: 1) as one approaches the edges of the dangerous 
triangle (Fig. 12), q, - fJ - 0, q, + 0 - B, q, - 1r/2. 
Correspondingly, the structures of the solutions change 
drastically as one approaches the edges. In Appendix 
B 2 we shall consider the central region (extending out to 
the right edge), and in Appendix B 3, the upper-left-edge 
region . Near the lower left edge and the left corner, t: 

grows large, invalidating the power-series expansion that 
underlies our quadratic and linear equations (B2) and 
(BI2), and thus the methods of this appendix are not 
usable there. 

2. Solutions in the central region 

We specialize, now, to the central region of the danger
ous triangle, ¢-O ;» B, ¢+(J-B :> R; and we retain our 
previous assumptions, B < 1, R/ B < l In one of our 
manipulations we shall require an additional constraint: 
t: <: q, - fJ. Since q, - 0 :> B and t: has already been 
assumed small, this additional constraint is not severe . 

These constraints on the parameters imply that in (B2) 
the terms in t:2 , /32, and /3t: can be neglected compared 
to the first-order terms. The result is the linear relation 

sin 2¢ cOIl 0 
/3= 2sin(q,_fJ)Bt:<:t:· (BI6) 

Inserting this relation into our linear equation (BI2), we 
find that t: is (very nearly) independent of B: 

S cos q, 
t: = sin(O + q,) (AI - cr)R , 

with 

1 {O if s = +1 , 
cr == 2 (

1 - s) = 1 if s = -1. 

Inserting this back into Eq. (BI6), we obtain 

/3 = 4sin 2q, cos,p cosO (AI _ cr)BR 
sin( ¢ - fJ) sin(,p + fJ) 

= Ssin¢ (AI _ cr)BR, 
cos fJ(tan2,p - tan2 (J) 

(BI7) 

(BlS) 

(BI9) 

and by inserting these relations into Eqs. (AI3), (AI4), 
and (4.11), we obtain the dimensionless parameter A2 
that describes the speed V2 of the ball between its en
counters with the collision 

[ 
cos3 q, cos2 fJ ] 

A2 - cr = 1 + 2sin(q, _ fJ)sin(q, + fJ) B (AI - cr) 

=(1+ 2~cos,p 2fJ B )(AI-cr) . (B20) 
tan - tan 

Equations (BI7)-(B20) are the simple form of the s0-

lutions for self-consistent collisions of class I (s = +1, 
cr = 0) and class II (s = -1, cr = 1), which we quoted 
and discussed in Sec. IVB [Eqs. (4.14) and (4.15)]. 

3. Solutions in the upper-edge region 

We turn, finally, to the upper-left-edge region of the 
dangerous triangle, 0 ::; ~-O !S B; and in order to obtain 
valid solutions with 1/31 <: 1 and It: I <: 1, we bound 
ourselves away from the triangle's left corner-i.e., we 
assume that ~ ,. B . In our formulas we shall characterize 
the difference ~ - fJ by a dimensionless parameter 

/J==(~-O)/B . (B21) 
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As in the preceding subsection, our constraints on t/J 
and 8 make the e2 and f32 terms in Eq. (B2) negligible 
compared to the first-order terms; but now the f3e term 
is not a priori negligible. As a result, Eq. (B2) takes the 
form 

(B22) 

where 

1:1 = -pB+2sRsint/J- Bsint/Jcos2t/J, (B23) 

(B24) 

(B25) 

Our other, linear, equation for e and f3 [Eq. (BI2)] also 
simplifies; its coefficients become 

(B26) 

(B27) 

P =-8Rsin t/J(AI - CT) . (B28) 

By combining our two equations and eliminating e, we 
obtain the following quadratic equation for f3: 

f32 + pf3 + q = 0 , (B29) 

with 

p = 2 tan2 t/J[2(AI - CT) - s sin t/J]R 
-(sin t/Jcos 2t/J -ptan2 t/J)B , 

q = -4BRsin2 t/J(AI - CT) . 

(B30) 

(B31) 

In discussing the solutions of this quadratic equation we 
shall restrict attention to the region 0 < Al < 1 of dan
gerous initial trajectories. 

By examining the signs of the coefficients in Eq. (B29), 
it is easy to see that when 8 = + 1 (class-I collision) there 
always exist two real solutions for f3, one positive and 
thus acceptable; the other negative and thus spurious 
(recall that f3 > 0 for class I and f3 < 0 for class II; cf. 
Fig. 3). On the other hand, when s = -1 there is always 
a range of t/J where p2/4 - q < 0 and there is no solution. 
For R <:: 1 and p <:: I, this no-solution region is t/J - w/4. 

Focus attention on the always existent class-I solution, 
s = +1 (and CT = 0). Since q < 0 in this case, the solution 
IS 

f3 = -p/2 + Jp2/4 - q . (B32) 

When one continuously varies t/J in the range of our analy
sis, t/J:> B, p passes through 0 at some point and changes 
sign. Since q is second order in the small radii Band R, 
while p is first order, there is a sharp change in the form 
of the solution (B32) at that point: 

f3 _ {-q/P if p:;$> \q\ , 
- -p if p <:: -\q\ . 

(B33) 

When R tan2 t/J <:: B and p tan 2 t/J <:: I, the change of sign 
for p occurs very close to w/4, and the solution (B33) on 
the two sides of 11"/4 is 

f3=sint/Jcos2t/JB, e= coS2~cos2t/JB ift/J-w/4<::-RAl' 
smt/J 

(B34) 

and 

·hint/J 
f3 = e = ---RAl if t/J - w/4:> +RAl . 

cos2t/J 
(B35) 

Notice that in (B34) (:J and t/J are independent of AI, while in (B35) they are proportional to it . These are the solutions 
quoted in Eqs. (4.14) and (4.15). 

[1) M.S. Morris, K.S. Thorne, and U. Yurtsever, Phys. Rev. 
Leu. 81, 1446 (1988). 

(2) V.P. Frolov and I.D. Novikov, Phys. Rev. D 42, 1057 
(1990); see also I.D. Novikov, Zh. Eksp. Tear. Fiz. 95, 
769 (1989) [SOy. Phys. JETP 88, 439 (1989»). 

[3] S.-W. Kim &lid K.S. Thorne, Phys. Rev. D 43, 3929 
(1991). 

(4) V.P. Frolov, Phys. Rev. D 43, 3878 (1991); U. Yurtsever, 
Class. Quantum Gr&v. 8, 1127 (1991). 

[5] G. Klinkh&mmer, Phys. Rev. D 43, 2542 (1991); U. Yurt
sever, Class. QU&ntum Grav. Lett. 7, L251 (1990); R.M. 
Wald &lid U. Yurtsever, Phys. Rev. D 44, 403 (1991). 

(6) J. Friedm&ll, M.S. Morris, I.D . Novikov, F. Echeverri&, 
G. Klinkhammer, K.S. Thorne, and U. Yurtsever, Phys. 

Rev. D 42, 1915 (1990); cited in text as "the consor
tium." 

(7) J. Friedman &nd M.S. Morris, Phys. Rev. Lett . 66, 401 
(1991); and (in preparation). 

(8) U. Yurtsever, J. Math. Phys. 31, 3064 (1990). 
[9] G . Klinkhammer &lid K.S. Thorne (in preparation); cited 

in text as paper II. 
(10) I.D. Novikov &lid V. Petron (research in progress). 
(11) I.D. Novikov (unpublished). 
(12) R.L. Forward conceived this example for use in his forth

coming science fiction novel, Timemaster. 
(13) M. Morris and K.S. Thorne, Am. J. Phys., 56, 395 

(1988) . 



66 

Epilogue 

... and havingJ . . . J by my own merits and energYJ raised myself 

to one of the highest social positions that any man in England could 

occUPYJ I determined to enjoy myself as became a man of quality for 

the remainder of my life. 

William Makepeace Thakeray, 

The Memoirs of Barry LyndonJ Esq. 


